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Abstract

This thesis presents a control algorithm for significantly enhancing the available thrust

and minimizing the required electrical power consumption of a Variable-Pitch Propulsion

(VPP) system, where the VPP system is made up of a brushless DC motor and a

variable-collective-pitch propeller with its own servo motor. The variable-collective-

pitch propeller mechanism has received recent attention because of the mechanism’s

capability to enhance thrust response bandwidth and propulsive efficiency compared to

conventional Unmanned Aerial Vehicle (UAV) propulsion systems with rigid-geometry

propellers; the mechanism has this capability due to a second mechanical degree of

freedom in the propeller geometry, allowing the collective pitch angle of the propeller

blades to vary according to actuation from a servo motor. When paired with a properly

designed control algorithm, the motor speed and pitch angle can be tuned in real time

to track prescribed thrust trajectories while satisfying some optimality condition.

Motivation for research into highly efficient VPP propulsion systems is encouraged

by the intense interest from private and public sectors in UAVs that are capable of

Vertical TakeOff and Landing (VTOL); while generally capable of both fixed-wing and

hovering flight, VTOL UAVs with rigid-geometry propellers often exhibit short flight

time due to non-optimal propulsion system efficiency across-the-board. Prior research

into power-minimizing control strategies for small VPP systems has been targeted at

multi-rotor platforms and has thus made assumptions that limit variation in the speed of

propeller inflow and in the magnitude of thrust, thus limiting the technology’s applica-

bility to VTOL platforms. The control algorithm presented in this thesis is designed to

accommodate for the wide range of air inflow speeds and thrust magnitudes through the

following algorithm components: a linear feedback thrust controller with a nonlinear,

adaptive feedforward thrust model derived from Blade Element Momentum propeller

theory; an estimator to tune the thrust feedforward model parameters in real-time; and

an Extremum Seeking algorithm for tracking the minimum-power control input config-

uration. Analysis of controller performance is discussed with reference to simulated and

physical validation experiments.
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Chapter 1

Introduction

The field of aerial robotics is constantly changing, and new models of Unmanned Aerial

Vehicles (UAV) are being designed to accomplish tasks of increasing difficulty. UAVs

have been found to be exceptionally useful for observing areas that are very large [2][3][4],

observing sites which are distributed across large areas [5][6][7], or for providing sensing

in areas where safety is a high priority [8]. In designing UAVs to meet these tasks, ve-

hicles with Vertical Take-off and Landing (VTOL) ability have become highly desirable

as they possess a high degree of maneuverability. However, one of the main obstacles

to creating a small VTOL UAV with long endurance is that conventional propulsion

systems are limited in the range of thrust and airspeed ranges for which they exhibit

high performance. Often, a propulsion system that can facilitate VTOL maneuvers is

inefficient during forward flight. This heuristic is graphically seen in Figure 1.1 which

shows wind tunnel performance data of an APC propeller with a 10 inch radius and

a nominal blade pitch of 4.7 inches per rotation [9]; The near vertical blue line shows

a family of flight states characteristic of hover while the near-horizontal orange curve

shows a family of flight states corresponding to level, fixed-wing flight. The propeller

performance data show that the propeller does not perform efficiently in either state,

and, even if it was designed for efficiency in one of the states, it would not be efficient

in the other because of how separate the flight states are. This tradeoff which occurs

during the propulsion system design process is an issue for all fixed-geometry propellers.

The Variable-Pitch Propulsion (VPP) system has been of interest to aviators for

circumventing this flight envelope limitation for almost as long as modern flight has

1
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Figure 1.1: Dimensionless plot of performance data of APC 10x4.7SF propeller. Aero-
dynamic efficiency η is represented by the size of the data point, where a large point
denotes high efficiency. The data points which are down and to the left of the main
trend were taken at a lower propeller speed of about 4000 rpm, and thus exhibit reduced
performance due to Reynolds number effects [1].

existed [10]. First used in the early 20th century to allow internal combustion engines

on airplanes to operate near the optimal engine speed both during takeoff (i.e. at

low air speed) and airborne flight (i.e. at high air speed), VPP saw perhaps its most

advanced form when applied to helicopters. However, the more recent miniaturization

of variable-pitch mechanisms has encouraged recreational remote pilots and researchers

to experiment with variable pitch on UAVs.

Researchers have continued to explore the capabilities of the over-actuated VPP

system. Interestingly, one of the first uses of variable pitch mechanisms on a small UAV

was to increase the feasibility of a tail-sitter aircraft to achieve stable flight in fixed-

wing and hovering configurations [11]. Showing that variable pitch increases aircraft

agility prompted its application to multi-rotor platforms, enabling unprecedented im-

provements in aerobatic performance [12] and operation in multiple environments [13].

Others have used the VPP mechanism as a tool to partially decouple propeller thrust

from propeller speed, thereby allowing propeller speeds to remain constant in the face

of attitude disturbances, and even allowing all propellers on a multi-rotor to be driven

by the same mechanical power source [14][15]. The introduction of these systems to

research and industry contexts will facilitate the development of very capable UAVs
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Figure 1.2: Examples of VTOL aircraft include (Top Left) American Robotics’ self-
managed UAV system for precision agriculture, (Top Right) Lynx VTOL UAV from
Swift Radioplanes, LLC, (Bottom Right) a utility inspection platform from ULC
Robotics Inc., and (Bottom Left) the KapetAir VTOL UAV.

applicable to precision agriculture, search and rescue, environmental monitoring and re-

mote sensing tasks. Greater efficiency and performance in these tasks will be achieved

through the proposed framework in this work.

Within approximately the last 10 years, a body of work associated with VPP has

emerged which shifts the focus away from enhancing agility and toward increasing air-

craft endurance. Some of the first mentions of the utility of VPP for tuning propulsion

efficiency are found in [16] and [17], with the latter proposing a Kalman Filter-based

extremum-seeking approach for arriving at a minimum-power control state. The au-

thors in [18] and [19] proposed minimum-power-consumption controllers for multi-rotor

UAVs. However, to the best of the authors’ knowledge, no model of thrust as a function

of motor speed, pitch angle and air speed has been developed for variable pitch sys-

tems with application to small UAVs. Avoiding the assumption of negligible air speed

is crucial for designing a controller that is valid across a multi-mode UAV’s full flight

envelope.

This thesis builds on previous work which characterized VPP mechanisms in [20][21][22]

by presenting an adaptive control framework which is made to function across a system’s

whole flight envelope. Key components of the control framework’s development have

been presented in [23] and [24]. While Chapter 2 describes the mathematical deriva-

tion of an adaptable thrust model, an estimation and control framework is presented in

Chapter 3 and supported by validation results in Chapter 4. Concluding thoughts and
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descriptions of prudent future research directions are given in Chapter 5.



Chapter 2

System Modeling

2.1 System Modeling

The focus of this paper is on an individual Variable-Pitch Propulsion (VPP) system

which may make up the whole or the part of a UAV of any type. However, since

propulsion systems and UAVs have dynamics which are unequivocally coupled, a one-

dimensional VPP-centric model of the propulsion-UAV coupling will be used for the

remainder of this work as in Equation (2.1).

V̇ = −Cd V
∣∣V ∣∣− gsin(γ) +

T

maf
. (2.1)

Here, Cd is the bulk drag coefficient of the UAV-centric relative to the motion of

that propulsion system; this is easiest to visualize on fixed-wing UAVs with a single

propulsion system pointing in the direction of travel as in Figure 2.1, but for more

complex geometries this quantity becomes more conceptual and would be something

that would need to be learned from data. The constant g is the acceleration due to

gravity, γ is the angle of the propulsion system’s thrust vector relative to the horizon,

T is the thrust produced by the propulsion system, and maf is the airframe mass. V

denotes the speed of air flowing past the propulsion system in a direction normal to

the propeller disk area, and on a real aircraft this could be measured by a pitot tube.

Vehicle airspeed at any time t is both defined by the vehicle’s thrust-wise speed relative

to ground and the wind’s thrust-wise speed relative to ground as

5
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Figure 2.1: Example fuselage of an airframe on which the Variable-Pitch Propulsion
system could be mounted.

V ≡ Vaf/∞ = Vaf/g − U∞/g. (2.2)

Assuming that U∞/g is constant or is changing about a constant value much slower

than the UAV system dynamics means that V̇ ≈ V̇af/g = ax, where ax is the inertial

acceleration of the propulsion system in the thrust direction. As with air speed, this

acceleration can be described by measurements commonly gathered on aerial systems

with an inertial measurement unit by taking the measured longitudinal acceleration

and subtracting out the contribution of gravitational acceleration due to the aircraft’s

attitude.

This section of the paper defines the components of the VPP system, the mathemat-

ical models associated with each system component, and presents some approximations

of those models which will be used for control in the sections to follow.

2.1.1 System Topology

The VPP system of this work consists of a brushless DC motor, two propeller blades,

a digital servo motor, and a mechanism connecting the blades to the servo horn. An

example of an assembled VPP system is pictured below in Figure 2.2.

The output angle of a DC servo motor’s horn can be acceptably modeled with the
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Figure 2.2: The VPP system studied in this work. In contrast with swashplate mecha-
nisms, this mechanism for controlling pitch contains only the collective pitch actuation.

open loop transfer function

Z(s) =
Km

s(Tms+ 1)
V (s) (2.3)

where Z(s) is the Laplace transform of the output servo angle ζ(t), Km is an overall

system gain from input voltage to output angle of the horn and Tm is an overall electro-

mechanical time constant of the system. Assuming that V (s) is defined by a PID

controller on position error relative to a Laplace-transformed reference angle Rζ , we

can write

V (s) = (Kp +
Ki

s
+Kds)(Rζ(s)− Z(z)). (2.4)

We can then arrive at an expression for the so-called loop L:

L = PK =
Z(s)

E(s)
=

Km

s(Tms+ 1)
(Kp +

Ki

s
+Kds). (2.5)

The transfer function from the Laplace-transformed servo angle reference Rζ(s) to



8

servo angle output Z(s) can be formulated as

Z(s)

Rζ(s)
=

L

1 + L
=

Km(Kp+
Ki
s

+Kds)

s(Tms+1)

(1 +
Km(Kp+

Ki
s

+Kds)

s(Tms+1) )

. (2.6)

The closed-loop transfer function can be rearranged as in Equation (2.7). The non-

unity term in the denominator has relative degree of −1, meaning that it goes to zero

as s −→ 0 and behaves like Tm
KmKd

s as s −→ ∞. If the control gains have been appropri-

ately chosen by the manufacturer to avoid underdamping under normal conditions, the

transfer function behaves essentially like a first-order lag with time constant τζ .

Hζ(s) =
Z(s)

Rζ(s)
=

1
s(Tms+1)

Km(Kp+
Ki
s

+Kds)
+ 1
≈ 1

τζs+ 1
. (2.7)

The brushless DC motor can be represented with a nonlinear differential equation in

the rotor’s angular position θ with the parameters dependent on the armature electrical

resistance R, the electrical motor constant ke, a no-load current constant i0, and a

non-constant dissipation parameter C whose variation with time is dependent on motor

speed, blade pitch angle, and vehicle air speed.

θ̈ =
R
((
−ke
R (ke+Kp)− C

∣∣θ̇∣∣)θ̇ − kei0+ ke
R (Ṽa−Kiθ)

)
JR+ keKd

(2.8)

The armature voltage input signal Ṽa can, for most off-the-shelf Electronic Speed Con-

trollers (ESC) executing kinematic control objectives (e.g. speed control), be reliably

assumed to be a PID input signal with gains [Kp, Ki, Kd] and desired values for rotor

position, velocity, and acceleration, which can be expressed as

Ṽa = [Ki Kp Kd][θd θ̇d θ̈d]
T . (2.9)

Equations (2.8) and (2.9) form a nonlinear filter with locally first-order characteristics

relative to θ̇. Following the pattern of Equation 2.7, dynamics for the brushless DC

motor can be approximated as

Hω(s) =
Ω(s)

Rω(s)
≈ 1

τωs+ 1
. (2.10)
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Because the control loops mentioned in these equations are often provided and tuned

by manufacturers of servo motors and ESCs, the actuator dynamics of the servo motor

and brushless DC motor will be approximated in the remainder of the paper by first-

order response models with time constants τζ and τω, respectively.

2.1.2 Blade Element Theory

The flow of fluid around a propeller governs the thrust and drag characteristics. Blade

Element Theory (BET) has been used successfully to model the thrust and drag char-

acteristics of a propeller by modeling tangential and axial air flow as a function of the

two-dimensional propeller geometry at a given radial distance r from the hub. Inte-

grating these independent, two-dimensional flow field solutions along the blade length

produces an estimate of thrust and shaft torque.

While BET has significant computational advantage over computing a 3D flow field

using Finite Element Methods it still lacks usability in certain practical applications

because it requires (1) an iterative solving method such as Newton-Raphson and (2)

knowledge of propeller geometry including local pitch angle β(r), local chord angle

c(r), and the local lift and drag behavior as a function of local blade Angle of Attack α

(AoA). Some formulations of BET such as [25] specifically try to avoid direct knowledge

of local airfoil performance by using parameterized formulations of local lift and drag

which can be tuned with overall propeller performance data. As such, the differential

thrust contribution is described by

dT =
ρNb

2
U(r)2

(
CL(α(r))cos(φ(r))

− CD(α(r))sin(φ(r))
)
c(r)dr

U(r) =
√

(ωr)2 + (V + ν(r, ω, V ))2

(2.11)

where ρ is air density, Nb is the number of blades, U(r) is the magnitude of the local

air flow vector seen by the propeller at radius r, CL and CD are the lift and drag

coefficients which depend on the local Angle of Attack (AoA) α(r), φ(r) is the local

angle between the plane of propeller rotation and U(r), and c(r) is the local chord

length. The definition of U(r) includes the local induced axial velocity ν(r, ω, V ), a

quantity that can be solved for by comparing BET thrust predictions with BEMT
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predictions at each radius r. The following section will look at making a closed-form

approximation of the thrust equation that can be learned from data.

2.1.3 Model Approximations

By substituting in the definition of U(r) as well as the trigonometric identities of cos(·)
and sin(·) written in terms of U(r) and its axial or tangential component, we arrive at

dT =
ρNb

2

√
(ωr)2 + (V + ν(r, ω, V ))2

(
CL(α(r))ωr

− CD(α(r))(V + ν(r, ω, V ))
)
c(r)dr.

(2.12)

Using the simplified definitions of CL(α) and CD(α) provided in [25], we can employ

the trigonometric identities sin(2·) = 2sin(·)cos(·) and sin2(·) = 1
2(1 − cos(2·)), as

well as an order of magnitude approximation of U(r)−
1
4 to obtain Equations (2.13) and

(2.14).

CL(α) =
cl1
2
sin(2α) (2.13)

CD(α) =

(
cd0 +

cd1

2
+ 0.1

cd2√
ρc(r)
µ

)
− cd1

2
cos(2α). (2.14)

Putting these definitions into Equation (2.12) along with the approximation√
(ωr)2 + (V + ν(r, ω, V ))2 ≈ ωr yields

dT ≈ M1

(
M2sin(2α)(ωr)2

− (M3(r)−M4cos(2α))ωr(V + ν(r, ω, V ))

)
c(r)dr

M1 =
ρNb

2
, M2 =

cl1
2
, M4 =

cd1

2

M3(r) =

(
cd0 +

cd1

2
+ 0.1

cd2√
ρc(r)
µ

)
.

(2.15)
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To provide transparency in derivation, the equation for a differential thrust contri-

bution is partitioned into summed terms and written as follows:

dT ≈
5∑
i=1

dTi

dT1 = N1r
2c(r)ω2sin(2α)dr

dT2 = N2(r)c(r)rV ωdr

dT3 = N2(r)c(r)rν(r, ω, V )ωdr

dT4 = N3c(r)rV ωcos(2α)dr

dT5 = N3c(r)rν(r, ω, V )ωcos(2α)dr

N1 = M1M2, N2(r) = −M1M3(r), N3 = M1M4.

(2.16)

The local AoA α(r) is defined by the angle of incoming air flow φ(r), the local pitch

angle of the propeller geometry θ(r), and the collective pitch angle θ0. It turns out

that, for 4-bar linkages with a long coupler link and input and output links of lengths

similar to one another, θ0 can be well approximated as a linear function of the servo

horn angle ζ, which is useful because the mapping between ζ and θ0 is nonlinear and

often unknown or corrupted by process noise due to mechanism backlash. Therefore,

the AoA is defined as

α(r) = θ0 + θ(r)− φ(r, ω, V )

≈ (mζ + b) + θ(r)− φ(r, ω, V ).
(2.17)

The servo horn angle term can be broken out of the definition of α to give

sin(2α) = sin(2mζ)cos(2(b+ θ(r)− φ(r, ω, V )))

+ cos(2mζ)sin(2(b+ θ(r)− φ(r, ω, V )))

cos(2α) = cos(2mζ)cos(2(b+ θ(r)− φ(r, ω, V )))

− sin(2mζ)sin(2(b+ θ(r)− φ(r, ω, V ))).

(2.18)
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Plugging these definitions into Equation (2.16) and grouping terms which are func-

tions of the integration variable r yields

dT1 = N1ω
2sin(2mζ)I1,1(r, ω, V ) + cos(2mζ)I1,2(r, ω, V )

dT2 = V ωI2(r)

dT3 = ωI3(r)

dT4 = N3V ω
(
cos(2mζ)I4,1(r, ω, V )− sin(2mζ)I4,2(r, ω, V )

)
dT5 = N3ω

(
cos(2mζ)I5,1(r, ω, V )− sin(2mζ)I5,2(r, ω, V )

)
.

(2.19)

The terms Ii are indisputably dependent on motor speed and air speed, but since

the effect of their dependency is not easily computed without knowledge of the pro-

peller geometry and additional computational expense, they will be treated as unknown

parameters to be learned on-the-fly.

To release the parameter m from the sinusoid argument, a taylor approximation

is made where sin(2mζ) ≈ 2mζ and cos(2mζ) ≈ 1 − 2m2ζ2. While this formulation

does limit the applicability of the equation to large servo angles, it does enable m to be

lumped with the rest of the unknowns. Therefore, Equation (2.16) can be rewritten as

dT (r) ≈ (a1(r)ζ2 + a2(r)ζ + a3(r))ω2 + (a4(r)ζ2 + a5(r)ζ + a6(r))V ω

+ (a7(r)ζ2 + a8(r)ζ + a9(r))ω.
(2.20)

Upon integration of dT relative to r, each of the coefficients are transformed into new,

unknown parameters bi while ζ, ω and V are constant with respect to the integration.

We then arrive at an approximate expression for thrust as a function of motor speed,

air speed, and servo horn angle:

T (ω, ζ, V,b) ≈ (b1ζ
2 + b2ζ + b3)ω2

+ (b4ζ
2 + b5ζ + b6)V ω

+ (b7ζ
2 + b8ζ + b9)ω.

(2.21)
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2.2 Summary

This chapter details the assumptions about the Variable-Pitch Propulsion System design

as well as the type of platform to which it is affixed. The motor and pitch servo dynamics

were approximated with first-order models with known or estimated time constants. The

remainder of the chapter was devoted to deriving a description of propeller thrust from

Blade Element Theory, resulting in a 9-term closed-form equation which is linear in the

coefficients. This linearity will be exploited for the purpose of online estimation in the

next chapter.



Chapter 3

Control Design

This chapter presents two related, but distinct algorithms for achieving power-minimum

control of a VPP system. Section 3.1 describes the first method that was explored. The

method is simple to implement and requires sensors that are easily integrated onto an

aerial platform. However, the method lacks robustness to both exogenous and endoge-

nous disturbances. The second method which is introduced in section 3.2 is a sophis-

tication of the first method, employing a more rigorously studied power optimization

method and an on-the-fly modeling of thrust characteristics to increase performance

and robustness to disturbances.

3.1 Perturb and Observe Control

This section explores the objective of controlling the 2-DoF VPP system to track a

relatively constant desired state while converging to a minimum-energy-cost solution

of the tracking problem. A pitch control algorithm for minimizing electrical power

consumption is paired with a companion motor speed control algorithm for enforcing

performance constraints related to the tracking of system setpoints. A diagram of the

overall interconnection is shown in Figure 3.1. Interactions between the two algorithms

are explored, and guidelines for achieving stable performance are presented.

14
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Figure 3.1: Flow chart of both algorithms interacting with the plant.

3.1.1 Pitch Control

The pitch control algorithm explored in this paper is based on the class of Power Point

Tracking (PPT) algorithms, and in particular, it is closely based off of the Perturb and

Observe (P&O) algorithm that is commonly used for harvesting maximum electrical

power from solar arrays [26]. The algorithm itself can be applied to either maximization

or minimization problems, and is used here to minimize expended electrical power. The

main strength of P&O is that it does not require a dynamic model of the plant in

order to track the optimum power point. However, because of this model-free design,

P&O is also prone to diverging from the optimal point in periods of externally-induced

transience. A flowchart of the pitch control algorithm is shown in Figure 3.2.

A simple P&O algorithm is used as the base of the pitch controller to locally explore

the power-servo angle space for the perturbation direction of most reward at each point

in time. Also at each point in time, the algorithm observes key quantities of power

consumption, as well as the current desired servo angle ζdesk and motor speed ωk. Note

that the actual state ζk is not directly measured, but is assumed to be reached at each

time step by ensuring that the execution time of the pitch control algorithm is much

slower than the servo dynamics approximation given in equation 2.7. ζdesk and ωk are

added to a moving-average linear regression of power measurements ~Pk with respect to
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Figure 3.2: Flow chart of the composite Perturb and Observe algorithm used.

servo angles ~ζdesk to create an approximation of the local gradient ∂P
∂ζ . The slope m of

this gradient approximation is used to encourage a temporally smooth behavior in ζ.

For situations where the gradient is relatively large, the next Perturbation step of the

algorithm will be taken according to Equation (3.1)

ζdesk+1 = ζdesk − comr (3.1)

where co is a user-defined proportionality constant and r is a characteristic stepsize of

ζdes.

This is done for two reasons. First, the moving average creates the notion of value

history, a quality which often causes the quintessential form of P&O to diverge from the

real solution. Additionally, as noted in [16], varying the pitch suddenly on a VPP system

excites very fast dynamics, which would compromise the assumption of a quasi-steady

state.

As ζ approaches an energy minimum, the slope m will go to zero. When this

happens, the change in ζdesk also goes to zero if Equation (3.1) is still used. When either
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the absolute value of the slope of the estimated gradient falls below the threshold mcrit

or the value ζspr, defined in Equation 3.2, falls below its associated threshold ζsprcrit ,

the simple P&O perturbation is employed as in Equation (3.3) instead of the gradient

descent-based method.

ζspr = max(~ζdesk )−min(~ζdesk ) (3.2)

ζdes = ζk −
cisgn(∆ζk)∆Pk

1 + |∆ωk|
(3.3)

Note that the P&O process assumes several things. First, it is a greedy algorithm,

and in the absence of constraints on system performance, it will seek to minimize power

consumption by reducing the aerodynamic load on the propeller. To avoid convergence

to the trivial solution of a minimum-aerodynamic-load pitch angle, P&O requires a

complementary controller to impose system performance constraints. Second, P&O

assumes that no other factors are perturbing the power consumption in a significant

way. This is a reasonable assumption for power point tracking on solar arrays, where

change in available power due to irradiance fluctuations is several orders of magnitude

slower than the tracking speed of the controller. In contrast, small-scale aerial robots

often experience highly transient periods of power consumption. To help address the

inevitability of relatively large state changes, the Perturbation rule in Equation (3.3) is

scaled by the magnitude of motor speed change in the denominator. The idea behind this

is to reduce the response of the pitch control algorithm to changes that are presumably

caused by some other force to which the motor speed controller is reacting.

3.1.2 Motor Speed Control

Because the pitch algorithm has the role of minimizing cost without self-applying any

constraints, a complementary algorithm for controlling the motor speed was developed

in order to convert a kinematic or kinetic constraint into a power cost to which the

pitch control can react. As shown in Figure 3.3, the motor speed controller’s function is

to track some desired reference signal, which in most cases may take the form of some

aircraft state such as vehicle orientation or velocity. The reference signal is further

assumed to be quasi-steady, that is, that any significant change in the setpoint is much

slower than the response time of the motor speed controller. For the sake of simplicity,
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let any imposed constraint be a scalar quantity, represented by some quasi-steady state

sk in the state vector. A controller of almost any form could be applied within this

framework, and in this case a PID controller was chosen.

The main feature of the motor speed controller is that, in order to impose constraints

on the variable pitch minimization efforts, it must have a much faster response to changes

in the plant dynamics than the pitch controller. If this condition is not met, the pitch

controller will be able to circumvent the constraints and carry the system to an undesired

part of the state-space.

Figure 3.3: Flow chart of the motor speed control steps.

3.1.3 Limitations

Before moving on to the next section, it is important to highlight that the algorithm

presented above does not address the cross-coupling between the pitch and motor con-

trollers, and thus is vulnerable to destabilization in the face of disturbances from outside

or inside the system or from oscillatory behavior due to mutual reactions between the

pitch and motor controllers. Because of the simplicity of this control framework, sta-

bility is possible only if the thrust controller has a much faster response time than the

pitch controller. Experiments in Chapter 4 will confirm this.
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3.2 Extremum-Seeking Control

After validation experiments were conducted on the P&O control algorithm of Section

3.1, adjustments were made to help increase robustness and performance. Two main

observations were seen: first, the Perturb and Observe approach to pitch control in-

troduces high-frequency noise into the system and needs to be temporally smoothed

in practice in order to avoid destabilizing the controller. This smoothing reduces the

convergence rate of power minimization, an undesired consequence. Second, there is no

model of how the power minimization process affects thrust tracking. Addressing these

two ideas became the main focus of the following controller. Figure 3.4 presents the esti-

mation and control framework; in the improved framework, a feedforward thrust model

Tff is employed to account for the innate coupling between servo angle and thrust. The

Perturb and Observe algorithm is replaced by the related method of Extremum Seeking,

denoted in the figure by ES, following the work of Krstic et al. [27][28]. Finally, an

Extended Kalman Filter EKF estimates thrust measurements and uses these to tune

the parameters of Tff . The feedback controller K(s) performs the same function as it

did in the previous algorithm by taking an error signal defined by a reference and state

information and providing a motor-speed signal to drive the system denoted by V PP

toward a desired thrust.

Figure 3.4: Diagram of the overall control framework.

3.2.1 Robust Thrust Control

The thrust model presented in this section draws from the Blade Element Theory sim-

plified model of thrust developed in Section 2.1. In particular, the model expresses
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thrust’s dependence on motor speed, air speed and servo horn angle, which provides a

very useful feedforward motor speed ωff for creating a desired thrust Tdes. This can be

expressed as

ωff =−
bff

2aff
+

√( bff
2aff

)2
−
cff
aff

aff = b1ζ
2 + b2ζ + b3

bff = (b4V + b7)ζ2 + (b5V + b8)ζ + (b6V + b9)

cff = −Tdes

(3.4)

where wff is a feedforward signal which may be fed into the plant V PP in parallel

with a PID feedback trim controller K(s). In using the thrust model as a feedforward

signal, precautions must be taken to ensure the mathematical and physical validity of the

signal value. The choice of plus sign in front of the square root encourages a positive

value of ωff . However, simply choosing a plus sign is not sufficient to guarantee a

positive real feedforward signal. Table 3.1 shows all possible cases of signs of the thrust

model coefficients, and all of the possible resulting signs of ωff . Although the first four

cases are the most expected since these are the cases for which the desired thrust is

positive, it can be seen that by manipulating ζ to enforce the condition

aff (ζ, t) · Tdes(t) > 0 (3.5)

at time t, the existence of a positive real value of ωff is guaranteed regardless of the

coefficients’ relative magnitudes. This makes intuitive sense because this constrains the

thrust model’s concavity to match the sign of the Tdes.

In addition to guaranteeing a positive real value, one ought also to ensure that the

feedforward motor speed is reachable (i.e., finite and within control saturation limits).

Unreachable thrust in the context of a VPP system occurs when the particular servo

angle at time t is too small to produce the thrust within the range of reachable motor

speeds. For propeller blades with cambered airfoils, this condition becomes more likely

to occur when the propeller blade pitch is at small or negative pitch angles. Under the

current control structure proposed in Figure 3.4, this situation would drive the motor

speed to its upper saturation limit. Assuming that the thrust model coefficients bi have

been estimated to adequate confidence in the neighborhood of the saturation limit,
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Case aff bff cff ωff

1 − − − −i
2 + − − +
3 − + − +i
4 + + − +
5 − − + +
6 + − + −i
7 − + + +
8 + + + −i

Table 3.1: Analysis of the possible signs of the feedforward thrust signal ωff given signs
of thrust model coefficients. The addition of ”i” in some of the sign label of ωff indicates
the possibility of obtaining complex roots, depending on the sign of the discriminant.

thrust reachability can be maintained. The terms of Equation 2.21 can be grouped

according to the order of the servo angle ζ, and by bringing the desired thrust to the

right side of the equation and solving for the roots of ζ in the same manner as Equation

3.4, estimates of the thrust-critical servo angles ζcrit are calculated as

ζcrit =− bcrit
2acrit

±
√( bcrit

2acrit

)2
− ccrit
acrit

acrit = b1ω
2
crit + b4ωcritV + b7ωcrit

bcrit = b2ω
2
crit + b5ωcritV + b8ωcrit

ccrit = b3ω
2
crit + b6ωcritV + b9ωcrit − Tdes

ωcrit = (1− ε)ωmax, 0 < ε < 1

(3.6)

where ε is a designer-chosen safety margin to prevent motor speed saturation. In prac-

tice, rules for the value of ε may be developed which parameterize ε as a function of

thrust and perhaps other factors. For most cases it is safe to assume that the larger,

more positive root ζ+
crit is the relevant root. Thus, thrust reachability is preserved to

within an ε safety margin when

acritTdes(ζ − ζ+
crit) ≥ 0. (3.7)

Because the VPP system is a multi-input nonlinear system, any set of PID gains

which satisfies certain performance and stability conditions at a certain operating point

may not satisfy those conditions at another point in the state space. The feedforward
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thrust model attempts to describe the nonlinearity, so some utility can cautiously be

gained by linearizing the feedforward model and assuming it as an adequate approxi-

mation of local plant behavior given a set of well-estimated parameters bi.

Given that the VPP actuators are modeled as first-order filters (see Section 2.1), we

next focus on linearizing the feedforward thrust model about an operating speed ω0.

We can transform the motor speed and thrust signals to be centered on the origin as

ω̃ = ω − ω0

T̃ = T − T0

T̃ref = Tref − T0

(3.8)

where T0 is the value of the thrust produced at the linearization point and Tref is the

reference thrust signal. Using a first-order Taylor series approximation to linearize the

feedforward thrust model about ω0 gives

T (V, ω, ζ) ≈ T0 +KT ω̃ (3.9)

where KT is the linear transfer function gain from motor speed to thrust defined as

KT ≡
∂T (V, ω, ζ)

∂ω

∣∣∣∣
V0,ω0,ζ0

= 2affω0 + bff (3.10)

Implicit in Equation 3.10 is the assumption that any time variation of the gain or phase

delay in the motor speed-to-thrust transfer function is negligible. Although this is not

truly the case with respect to fluid dynamics [29][30], it is often neglected in modeling

small-scale aerial robots. However, a separate source of lag which must be accounted

for arises from the physical method of controller implementation. The zero-order hold

behavior that results from the most common implementations of a controller onto a

discrete microcontroller unit can be modeled with a first-order Pade approximation

as[31]

ZOH(s) ≈ 1

0.5Tss+ 1
(3.11)

.

where Ts is the update period of the controller. Lumping this in with the plant

dynamics, we have

Pm(s) = KTHω(s)ZOH(s) =
KT

(τωs+ 1)(0.5Tss+ 1)
. (3.12)
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Following the design rules of Skogestad and Postlethwaite [32], a PI controller K(s)

is written as

K(s) =
τω0

KT0τc

(
1 +

1

τIs

)
(3.13)

where τω0 and KT0 are assumed values for the motor time constant and linearized thrust

gain, respectively, τc is a controller tuning parameter allowing for a compromise between

stability and performance, and τI = min(τω0 , 4τc).

τω0 and KT0 may be chosen by ballpark estimation from performance data, but

because these values will, in general, change during the course of operation, a robust

stability analysis is employed. Table 3.2 gives the values used in the linear controller

for robustness analysis and simulation along with the pitch controller. The value for

KT 0 was arrived at by assuming that a maximum normalized motor speed (i.e. ω = 1)

produces maximum normalized thrust while also naively assuming the conventional

quadratic relation between thrust and motor speed T = Cω2. This constraint implies

that C = 1 at this operating point and that KT at this point is equal to 2.

Name Value Units

KT 2± 50% -
τω 3.2E−3±50% s
Ts 0.02 s
τc 1.0 · Ts s
τI τω0 s

Table 3.2: Values used for robust analysis and simulation of motor speed controller.

The reality is that the motor speed controller will need to be tuned before any thrust

model parameters are estimated, so it is important that the motor speed controller

be robust to comparatively large changes in the plant model parameters. Figure 3.5

summarizes the stability and performance characteristics for randomly sampled plants

within the ±50% variation of KT and τω. The controller has a worst-case tracking error

of −14 dB at a disturbance frequency of ωd = 2π rad/s. If the disturbance frequency

is halved, tracking error is improved to nearly −20 dB at worst. These two frequencies

mark the range of expected frequency activity produced by the pitch controller talked

about in the next section.
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Figure 3.5: Graph of the closed loop Sensitivity of the motor speed subsystem (left)
and a corresponding plot of the step responses (right) under 50% uncertainty in the
linearized thrust gain KT as well as in the first-order motor time constant τω.

3.2.2 Stable Pitch Control

To improve upon the pitch controller presented in Section 3.1, the Extremum-Seeking

(ES) control algorithm from [27] was used. This particular method, shown in Figure

3.6, superimposes a sinusoidal perturbation of frequency ωp onto the estimated optimal

servo angle ζ̂des. This perturbation excites a response in the power consumption P of the

VPP plant. The power output of the plant is then filtered to remove low-frequency bias,

demodulated with the original perturbation, and then integrated to get the estimated

optimal servo angle. Over time, the ES algorithm will drive ζ̂des to a minimum-power-

consumption configuration given an approximately constant thrust and air speed. The

advantage of this approach over the P&O approach is that the algorithm updates ζ̂des

in a time-averaged manner due to the sinusoidal nature of the perturbation. Secondly,

the perturbation frequency is chosen and is therefore known before run-time, making it

easier to filter out changes in power that do not correspond to the input perturbation.

For this implementation onto the VPP system, several extra elements were added to the

system to improve performance. A low pass filter with cutoff frequency ωlp was added

according to the design recommendations of [33] after demodulation to further limit



25

Figure 3.6: Convergence of the real thrust and thrust feedforward model to a constant
reference at 0.5, 50% of nominal capacity.

high-frequency changes in ζ̂des, and hard saturation limits were also added to clamp

the magnitude of
˙̂
ζdes. The input perturbation a sin(ωt) was modified with a time-

pause entrance and exit condition to prevent the perturbation from exciting the system

undesirably during feedforward model learning or strong thrust transients.

3.2.3 Extended Kalman Filter

An Extended Kalman Filter (EKF) is employed to provide estimation of key propulsion

states from noisy measurements and also to learn the coefficients of a nonlinear feedfor-

ward model of thrust, the form of which has been derived in Section 2.1. In some cases,

a reduced order EKF can be used if there is sufficient confidence in measured states

such that they can be used as measured.

The EKF used in this paper is a discrete time formulation with state x ∈ Rn, n = 15

and output y ∈ Rm, m = 6 modeled respectively by

xk+1 = f(xk) + wk (3.14)

yk = h(xk) + vk (3.15)

where xk = [Vk ωk ζk Pk Tk ax,k bTk ]T , yk = [Vk ωk ζk Pk Tk(Vk, ax,k) ax,k]
T , and wk

and vk are zero-mean, Gaussian random variable vectors in Rn and Rm modeling the

noise in the process and measurement models, respectively. Note that the measurement

of thrust in yk is created based on combining noisy measurements from airspeed Vk
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and gravity-compensated longitudinal acceleration ax,k in Equation (2.1). The process

model for the estimated VPP states not including the coefficients of the thrust model

is written as

Aa =


(1− ∆tCd

maf

∣∣Vk∣∣) 01x3
∆t
maf

0

0 I3x3 03x1 03x1

0 01x3 0 0

0 01x3 0 1

 . (3.16)

The process model f(xk) is defined as

f(xk) =

[
Aa 06x9

09x6 I9x9

]
xk +


04,1

1

010x1

T (ωk, ζk, Vk,bk). (3.17)

The measurement h(xk) is written as

h(xk) =
[
I6x6 06x9

]
xk. (3.18)

The variances of the process and measurement models are assumed to be matrices

Q ∈ Rn and R ∈ Rm, respectively initialized as

Q = diagonal

([
I1x6

1
2I1x9

])
,

R = diagonal

([
2 1 1 1 3 2

])
.

(3.19)

3.3 Summary

This chapter details the design of two control algorithms. The first utilized only a PID

feedback motor speed control algorithm and a modified Perturb and Observe (P&O)

algorithm for power minimization. Although this partitioned-controller showed the

utility of real-time control on a physical system, the algorithm design lacked robustness

because it did not attempt to model the coupling between pitch angle and thrust;

furthermore, the P&O algorithm promoted controller instability when subject to high-

frequency disturbances. To address these shortcomings, the entire control algorithm
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was redesigned to execute thrust control with a nonlinear adaptive feedforward element

in parallel with the feedback PI control law. The P&O approach to power minimization

was replaced with a time-averaged Extremum-Seeking algorithm, and several filters and

state logic conditions were added to define when the minimization process was allowed

to operate.



Chapter 4

Experiments

4.1 P&O Control Experiments

To validate the controller framework described in Section 3.1, two categories of hardware-

based experiments were conducted. The first experimental testbed was an enclosed,

table-mounted lever arm created to test the stability and convergence characteristics of

the controller framework in static-thrust conditions similar to a vertical flight. For the

second experimental testbed, an E-flite Radian remote control glider was used to test

the controller performance during a fixed-wing aerial flight.

4.1.1 Table-Mounted Testbed

A series of experiments were performed on the testbed in which the motor speed con-

troller was allowed to bring the Lever Arm to a desired setpoint θdes, usually 0◦ as is

pictured in Figure 4.1. Upon reaching an approximately steady state, pitch control was

activated and allowed to explore the state space for a minimum, subject to the need for

maintaining an arm attitude close to θdes.

The physical propulsion system, shown attached to the testbed in Figure 4.2, was

made up of a modified APC 12x4.5MR propeller, attached to a T-motor MT2814 770

Kv by a VPP101 Pro variable pitch linkage from Maxx Products International LLC.

Power conversion for the motor was provided by a Zubax Robotics Orel 20 Electronic

Speed Controller. The pitch of the propeller was actuated by a Hitec HS-5087MH servo.

Actuator control, sensor measurement, control algorithm computation, and data logging

28
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Figure 4.1: Design of the table-mounted testbed for controller validation in static thrust
conditions.

were accomplished by a Pixhawk V1 flight controller. Pitch and motor speed control

algorithms were implemented in the PX4 firmware stack and loaded onto the Pixhawk.

Actuator commands were sent to the motor and pitch servo via CAN bus and PWM

communication protocols, respectively. By mounting the Pixhawk to the testbed’s Lever

Arm, on-board IMU measurements of lever arm attitude were gathered.

Figure 4.2: Table-mounted testbed. Structural components made from 3D-printed PLA
plastic and laser-cut Medium Density Fiberboard.
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4.1.2 Aerial Testbed

The experiments performed on the aerial testbed differed from the table-mounted ex-

periments in several key ways. First, the controlled state of the aircraft was chosen to

be airspeed instead of an attitude-based state; because of the nature of fixed-wing flight

and the need for some constraint to be imposed on the aircraft algorithm, airspeed was

the kinematic state of the glider that could be directly influenced by the propulsion

system. Figure 4.1.2 shows the aerial testbed during a takeoff maneuver, during which

the plane was piloted in an exclusively manual mode. Once a desired altitude range was

reached, several different tests were conducted over the course of four test flights. In the

first, the pitch angle of the propeller blades was kept constant in order to provide base-

line performance data for comparison against controller performance. In the second,

the pitch algorithm was activated and allowed to minimize power without constraint

by the motor speed controller. In the third and fourth tests, both pitch and motor

speed controllers were activated together, and the setpoint of the constrained state sdesk

was controlled by the pilot; the pilot changed the constrained state setpoint as little as

possible to facilitate quasi-steady operating conditions for the controllers. In all cases,

the pilot retained manual control of the rudder and elevator to steer the aircraft.

(a)
(b)

Figure 4.3: (a) The modified E-flite Radian modified with custom hardware for testing
VPP performance. (b) The modified E-flite Radian during a takeoff maneuver on one
of the flight tests.

All of the propulsion and avionics hardware used on the table-mounted testbed was

mounted in or on the aerial testbed. In addition, sensors for gathering GPS and airspeed
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readings were mounted on the aerial testbed and interfaced to the Pixhawk via Serial

and I2C communication protocols, respectively.

Pictured in Figure 4.4 is time-series data from both the testbed and aerial exper-

iments, shown separately. In the testbed data in the upper frame, the noise in the

arm angle and power signals comes from the motor speed controller constantly mak-

ing speed adjustments in order to regulate thrust while the pitch controller decreases

power consumption. Note that, in the table-top test, the speed control response time

is able to regulate the arm angle to a tight tolerance because it is much faster than

the response of the pitch controller. Hence, this enables power minimization to happen

under well-enforced constraints. In the aerial test, the motor speed controller gains were

tuned to favor stable convergence over fast convergence to a setpoint. Both controllers

were active for the portion of the time-series inside the vertical, dashed lines. In spite

of the relaxed convergence speed, it can be qualitatively seen that the vehicle airspeed

is able to regulate airspeed fairly well until the pitch component of the glider’s attitude

changed suddenly at about 100 s into the flight.
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Figure 4.4: Experimental data from the testbed and aerial flight experiments, showing
the electrical power consumption as well as the regulated state and state reference signal.

The data in Figure 4.5 summarizes the performance of the controllers in the two

experimental contexts. Performance at the kth time step was estimated offline after the

experiments as

ηk=
Tk
Pk

=
Cd,k(Vk, γk, ax,k)V

2
k +ma g sin(γk) +ma ax,k
Pk

(4.1)

where Tk is the thrust produced by the VPP system, estimated from measurements of
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vehicle pitch γk, longitudinal acceleration ax,k, and in the case of the aerial testbed, air-

speed Vk and aircraft mass ma. Electrical power consumption Pk is obtained from volt-

age and current measurements into the electronic speed controller. The aerial testbed

drag coefficient Cd,k was regressed from gliding data as a linear function of Vk, γk, and

ax,k, yielding an R-square value of 0.97. The upper frame shows that control on the

testbed has marginally higher performance than baseline data from an experiment where

only the thrust controller was activated across a range of manually-set pitch angles. The

lower frame of Figure 4.5 shows that dual controller tends to have higher performance

across the board. Linear regression of the data trends imply that the control strategy

improved performance on average by 3.5% in the table-top tests and by at least 50% in

the aerial tests.
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Figure 4.5: Performance summary of the data presented in Figure 4.4. Thrust is ex-
pressed in grams of mass that would produce an equivalent force under an acceleration of
9.81m ·s−2. In both experiments, the controllers produce generally higher performance,
shown by the steepness of the slope in the data trend.

4.2 ES Control Validation

A number of computational validations were conducted to show the efficacy of the

Extremum-Seeking control approach detailed in Section 3.2. Extensive validation of

the feedforward thrust model against wind tunnel performance data of a wide array of

hobby propellers was conducted to confirm the model’s generality.
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4.2.1 Thrust Model Validation

In order to validate the thrust model derived in Section 2.1.3, wind tunnel data from

the UIUC propeller database [9] were used. For a given propeller in the database, a

regression of the model coefficients was performed using thrust and air speed data, after

which prediction errors for every data point were calculated; since all the propellers in

this database were of constant-pitch, the pitch value in the feedforward model was set to

a constant of unity. The summary regression errors with respect to propeller diameter

and propeller thrust are shown in Figure 4.6. Although prediction error is present in

propellers of any diameter, high prediction error is more likely to occur at thrusts below

2 N . Beyond this thrust, the prediction error rarely exceeds 20%
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Figure 4.6: Description of the magnitude of the fractional error in the prediction of
wind tunnel propeller thrust using the feedforward thrust model, shown with respect
to (a) propeller diameter, (b) non-normalized propeller thrust, and (c) the frequency of
obtaining a certain prediction error.

A strength of this data set is that it has a wide variety of propeller sizes and de-

signs, showing the model’s flexibility in approximating different propeller designs and

variations of nominal propeller pitch. However, a weakness of this wind tunnel data is
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that it does not explicitly have collective pitch as a variable for the propellers in the

database, and therefore it does not test this parameter in the thrust model. Future

testing would need to be done with a data set that has collective pitch data to produce

a strong validation of the model.

4.2.2 Controller Stability

Furthermore, several simulations were conducted to test control algorithm performance

under several virtual flight scenarios. A still-air environment at standard temperature

and sea-level pressure was assumed, and vehicle dynamics were modeled according to

Equation 2.1 with aircraft attitude θ corresponding to the level flight configuration. The

dynamics of the mechanical actuators in the VPP system were modeled as first-order

filters according to Equations 2.7 and 2.10. Virtual sensors in the simulated environment

measured axial air velocity, motor speed, servo horn angle, electrical power consumption

and axial linear acceleration. Measurements of each state were corrupted with zero-mean

gaussian noise at 0.1% of the characteristic maximum value of that state. Fluid flow

dynamics of the propeller were numerically calculated by Drela’s QPROP solver [34].

Motor constants for a T-motor MT2814 770kv and a propeller model for an APC 10x4.7

slow flyer propeller were supplied to QPROP. The update rate of the control algorithm

was run at 50 Hz for all simulated scenarios, representative of the order-of-magnitude

update rate of the Pixhawk flight controller.

Stability of the thrust-tracking, power-minimizing controller is shown for two fun-

damental thrust reference types: constant thrust reference and a simulated reduction

in thrust. The PI gains used for these simulations were drawn from Section 3.2.1 and

are Kp = 0.0398, Ki = 12.5, and the value of the integration gain k in the Extremum-

Seeking controller is −6. One of the advantages of the feedforward thrust model is

that it allows estimation of the actuation limits on thrust with respect to motor speed

and servo angle. To demonstrate this feature, motor speed was limited to 90 % of its

characteristic maximum.

Figure 4.7 shows the controller’s convergence to a constant thrust reference. Initially,

the thrust reference takes a value of Tref = 4 N when t ∈ [0, 40) s. From 40 s onward,

the thrust reference is 8 N . The step change in the thrust reference was given to provide

a look at the behavior of thrust and pitch control laws to abrupt change in setpoint. The
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EKF initially takes about 200 samples to stabilize the thrust feed-forward model. The

thrust converges to within 0.1 N in about 2.25 s. The thrust model converges to within

0.1 N in almost 10 s. The servo horn pitch angle, seen in the upper right-hand panel, is

set to an initial condition of 15◦. Integration of the best-estimate servo angle ζ̂ is speed-

limited to half of the max perturbation speed until the thrust controller is allowed to

reach an approximately steady state. Once the approximately steady-state condition is

met, the limit on integration speed is increased to 4 times the max perturbation speed.

This change in integration speed limit happens about 8 s into the simulation.
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Figure 4.7: Convergence of controller to a constant reference followed by a step increase.
An integrator constant of k = −6 was used.

From this point on, the convergence rate makes only slight progress toward the

optimal configuration; the most probable reason for this is that the EKF seems to be

continually refining the feed-forward to thrust model. A second reason for the seeming

loss in intentional convergence is due to the presence of noise in the measurements. For

instance, the 0.1% variance on the measurement of power consumption is relative to a

500 W characteristic maximum value, translating to a standard deviation of σ = 0.7 W .

This is approximately the same order of magnitude as the error in the estimate of the

steady-state optimum.
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Figure 4.8 shows more clearly that the feed-forward model learning is effective un-

der a variable reference scenario of sufficiently low frequency. As the thrust setpoint

increases, the estimated lower bound on servo angle forces ζ away from the minimum-

power region. Although this has a high power cost, the benefit is that the thrust setpoint

is maintained. From the time that the servo angle disengages from the lower bound,

the time taken to enter the (Popt + 5) W region is approximately 6 s.
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Figure 4.8: Behavior of the Extremum Seeking algorithm under a sinusoidal load with
upper limit on motor speed.

The previous simulation took actuation limits into account. Figure 4.9 shows the

behavior of the ES algorithm with no simulated limit on reachable speed. The algorithm

is able to repeatably bring the servo angle to a near-optimum configuration even in the

face of the low-frequency fluctuations caused by the oscillating thrust reference. The

importance of the feed-forward model is seen by comparing the tracking of the optimum

servo angle during the first period of high thrust with the tracking one period later in the

thrust reference sine wave. Furthermore, under this scenario and current ES algorithm

tuning, the system is restored to operating within approximately 5 W of optimum about

5 s after exceeding the 5 W envelope.
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Figure 4.9: Convergence of the real thrust and thrust feed-forward model to a sinusoidal-
constant reference with k = −6.

4.2.3 Performance

To get a figure of the control algorithm’s ability to minimize power consumption, the

total amount of energy consumed during the aforementioned tests was measured and

compared with energy use under optimal servo angle control. The results are displayed

in Table 4.1.

Algorithm Constant Thrust Sinusoidal Thrust Units

Best Constant Pitch 92 509 W
Algorithm 93(+7) 418(+7) W
Algorithm (limits) 93(+7) 474(+7) W
Optimal Pitch 92 407 W

Table 4.1: Average power consumption for each simulation scenario under the investi-
gated control policies.

Performance of power minimization is calculated against a numerically-calculated

optimal servo angle at the current air speed and thrust. The servo angle is moving

toward the steady-state optimal value at a rate of approximately 0.1 [deg/s] in Figure

4.7, although the rate does slow down as it approaches the optimal point. Part of this is

due to the fact that the energy well has very shallow concavity. In Figure 4.9, the servo
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angle is decreasing, though at a very slow rate. Tuning the extremum seeking controller

will be a subject of future work.

4.3 Summary

The computational and experimental validations shown in this chapter document the

development of an algorithm for controlling the thrust of a Variable-Pitch Propulsion

System while minimizing power cost. Although the physical testbeds demonstrated

that this objective was possible with the simple control laws of PID and P&O, the

susceptibility to disturbances showed the need for the improved control algorithm of

Section 3.2.

Wind tunnel data was used to test feedforward thrust model validity. The improved

controller was tested in several simulation scenarios. Performance of the improved

control framework showed adequate thrust tracking during power optimization and sig-

nificant power reduction compared to best-case constant-pitch propeller even assuming

a worst-case power cost from the pitch servo.



Chapter 5

Conclusion and Future Work

This paper presents a study of control frameworks for a variable-pitch propulsion sys-

tem for efficiently propelling VTOL UAVs. A simple controller using a PID law and a

Perturb Observe algorithm was implemented on a forward-flying UAV to observe the

algorithm performance in a physical system. Improvements were made to the algorithm

were made by replacing or supplementing portions of the control framework. The lin-

ear feedback thrust controller was designed to be robust to considerable variations in

plant parameters. This feedback signal was summed with an adaptive nonlinear feedfor-

ward thrust model. An Extended Kalman Filter provided the mechanism for learning

the thrust model parameters, thereby enabling better thrust tracking performance as

well as the observation of thrust reachability limits. More stable power minimization

was achieved by replacing the Perturb Observe pitch servo control algorithm with an

Extremum-Seeking adaptive control scheme. Several safety mechanisms were put in

place to ensure that the power optimization process is not deleterious to thrust tracking

performance.

Several simulation studies were performed to show the safety and stability of the

control framework under several characteristic inputs. Time-domain performance met-

rics showed the convergence of the motor speed controller in fractions of a second and

the thrust model convergence within about 10 seconds. Convergence of the servo angle

to a near-optimal behavior was on the order of 6 seconds, with refinements occurring

up to 60 seconds from initialization.

Future research avenues that would be valuable to explore include the incorporation

39
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of vehicle drag into the learning model for thrust so that the controller could based

around air speed setpoints. Implementing a cumulative learning element into the pitch

control algorithm would improve convergence speed to optimal configuration and allow

the perturbation of the Extremum-Seeking control to be employed only when new por-

tions of the power manifold are being explored. Additionally, the components of the

algorithm should be validated with physical experiments to test the generality of the

thrust model, the stability of the Extremum-Seeking process under thrust regulation,

and the robustness of the linear feedback motor speed controller during VTOL flight

maneuvers.

Efficient propulsion for VTOL aircraft extends flight time and enlarges the flight

envelope, thereby increasing aerial sensing aircraft utility. If properly controlled, the

Variable Pitch Propulsion system has the potential to significantly boost system effi-

ciency across the board. This thesis focuses on some of the main control questions for

applying Variable Pitch Propulsion to efficient VTOL aircraft, and though there is much

left to be studied about this problem, it is the authors expectation that interest in this

problem will persevere as requirements on UAVs become more extreme.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to use jargon only when necessary or efficient. It was

deemed necessary to clarify a few terms more precisely for the reader, which are listed

below.

A.1 Glossary

• Fixed-wing (FW) – An aircraft with a geometric and functional typology such

that its characteristic flight mode is in a persistent horizontal direction. Such

aircraft usually exhibit one or more wings for producing vertical lift.

• Multi-rotor (MR) – An aircraft with a geometric and functional typology such

that its characteristic flight mode is a hovering or vertical movement direction.

Such aircraft usually exhibit one or more thrust-producing actuators which provide

vertical lift.

A.2 Acronyms

45
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Table A.1: Acronyms

Acronym Meaning

UAV Unmanned Aerial Vehicle

VPP Variable Pitch Propulsion

ES Extremum Seeking

P&O Perturb and Observe

PID Proportional-Integral-Derivative (Control)

KF / EKF Kalman Filter / Extended Kalman Filter

COTS Commercial Off-The-Shelf

BET / BEMT Blade Element Theory / Blade Element Momentum Theory

CFD Computational Fluid Dynamics

AoA / α Angle of Attack

VTOL Vertical Takeoff and Landing

PPT / MPPT (Maximum) Power Point Tracker/ing
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