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Abstract 

Bacteria were screened in order to find an organism antagonistic to Listeria 

monocytogenes which could be applied to mussel products and enhance their 

safety, especially when temperature-abused. 

A Listeria monocytogenes isolate from the seafood industry was selected as the 

target organism. 

Strains of Lactobacillus reuteri and Enterococcus fecium were screened on plates 

incubated at 35°C and 10°C for anti-listeria! compounds , but none were found . 

A non-bacteriocinogenic strain of Carnobacterium piscicola, A9b- was selected 

as the antagonist for detailed examination of growth in broth , agar and mussel 

systems at 10°C. This temperature was chosen to represent temperature abuse 

of refrigerated products . 

To distinguish between the growth of the Carnobacterium piscicola stra in and 

wild-type Listeria monocytogenes a "semi-selective" agar was developed using 

phenol-red indicator, and mannitol as the sole carbohydrate source. 

Growth rates of Carnobacterium piscico/a and Listeria monocytogenes were 

compared when grown alone and as a co-culture in agar and broth . Growth rates 

of Listeria monocytogenes when grown alone , and in the presence of 

Carnobacterium piscicola, were determined on mussels. 

Regression analyses were done for the inhibition of Listeria monocytogenes by 

Carnobacterium piscicola . In all cases Carnobacterium piscicola significantly 

inhibited the growth of Listeria monocytogenes (Pbroth= 0.018, Pagar <0.001, 

Pmussels< 0.001) . 
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Growth of both organisms was faster in broth, than on mussels or agar. The 

greatest inhibition of Listeria monocytogenes was observed in broth reaching 

log 10 4.8 at 41 hours of incubation, prior to decreasing after this time. In agar and 

mussels the inhibition lasted longer and had not decreased at the end of the trial. 

The log10 reduction in growth of Listeria monocytogenes in agar was measured at 

3.4 and in mussels measured at 1.6. These results were statistically significant 

(P<0.001 for all) . 

Inhibition of wild type Listeria monocytogenes was also shown in broth when a 

much lower concentration of Carnobacterium piscico/a was used. 

These results should be considered as preliminary and further confirmatory work 

should be done. However, Carnobacterium piscicola A9b- shows promise as an 

antagonistic organism to assist in the control of Listeria monocytogenes in 

mussel products along with industry-accepted good hygienic practices . 
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Chapter 1 Introduction 

l. l The Concept 

1.2 Objectives and Outcomes 



1 Introduction 

1.1 The concept 

Several years ago, I was working with a seafood company. Like all seafood 

companies making ready-to-eat product, they were grappling with Listeria control. 

The idea came to me that competitive micro-flora could be used as a means of 

control rather than the current methods of non-specific destruction of all 

organisms. 

There were two major influences on my thinking at the time, namely: 

• Studies providing evidence that simply reducing the numbers of micro­

organisms may not be effective in controlling pathogens (Jay, 1995). 

• Guidance to processors from US Food and Drug Administration not to 

heat cold-smoked sea-food products too harshly as naturally occurring 

lactic acid bacteria are more heat-sensitive than pathogens they 

suppress , such as Listeria and C/ostridium species. (US FDA, 2001) 

Hence the use of too much heat treatment could make the product less 

safe. 

Some years later the time was right to test this idea. The concept was being 

intensively studied , with most focus on characterising bacteriocins . Most work 

had been done in the dairy industry, less in meat and less again in seafood. A 

few control methods using the products of competitive micro-flora had reached 

the marketplace. 

Mussels were selected as the seafood product for study. 
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1.2 Objectives and outcomes 

Current methods of processing mussels use heat treatment. This serves two 

purposes: 

• To enable the shell to be removed (shucking) and 

• To destroy organisms on the surface. 

Ready-to-eat products are required by law to undergo sufficient treatment to 

destroy Listeria monocytogenes cells, unless a further treatment such as 

acidification is used. In New Zealand the levels of Listeria are considered to be 

extremely low on the raw shellfish entering the shucking process (Gosnell , 

Personal Communication 1998). Therefore mussels are frequently over­

processed in an effort to destroy organisms that may not even be present. 

This project was aimed at investigating an alternative to current methods of 

processing that would allow a less severe heat treatment, but increased 

protection later in the product life, when it is required. The feasibility of using 

antagonistic bacteria to inhibit pathogens that could be present in the final mussel 

product was investigated. The use of probiotic antagonists was the preferred 

approach as these organisms are likely to have more consumer acceptance and 

may provide additional health benefits to consumers. 

Specifically the project was designed to determine the extent of inhibition by 

selected bacteria to pathogens that could be present in mussel products, such as 

L. monocytogenes and to serve as a proof of concept for this alternative control 

method. 

The knowledge obtained in this project could assist seafood-processing 

companies to more effectively control the growth of food pathogens and spoilage 

organisms using antagonistic bacteria. If successful this approach would result in 

an increase in product safety and quality. Also it would provide opportunities to 

decrease costs associated with over-processing , rejected product and limited 

shelf-life. 
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Chapter 2 Literature Review 

2. 1 Background 

2.2 Purpose of this review 

2.3 Concerns with New Zealand Seafood Products 

2.4 The problems with Listeria 

2.5 Use of microbial control methods 

2.6 Mechanisms of antagonism 

2.7 Bacteriocins 

2.8 Challenges on food systems 

2.9 Confusing aspects 

2. 10 Use in industry 

2.11 Where to from here? 



2. Literature Review 

2.1 Background 

Consumers demand a safe and consistent food supply. Food products have 

changed markedly over time and include a higher proportion of refrigerated , 

ready-to-eat, long shelf life, pre-cooked and/or minimally processed foods. Yet 

these products often provide ideal conditions for pathogen growth , especially as 

they may be temperature-abused once they reach the marketplace. 

With these products there has been an increase in the numbers of cold-tolerant 

pathogens implicated in food-borne illness (FSANZ, 2004b) . As a response 

industry has moved to taking more stringent sanitary measures and regulators 

around the world are imposing increasingly higher standards . 

Surveillance and monitoring by a number of countries indicates the incidence of 

food-borne illness has increased substantially during the 1980s and 1990s 

(FSANZ, 2004b) . Reliable data for food-borne illness incidence are not available 

due to a number of factors , including under-reporting of cases . It is estimated 

from surveys that less than one percent of cases are captured in Australia and 

this rate appears to be similar here. The estimated cost to the Australian 

community is $2.6 billion every year (FSANZ, 2004b). On a population basis, 

the situation in New Zealand is likely to be similar. 

Most current methods of pathogen control result in a non-selective destruction of 

bacteria, yet it is well known that many pathogens are inhibited by the growth of 

competitive microflora. In our efforts to destroy all micro-organisms we destroy 

beneficial microbes that would normally suppress the growth of pathogens. Often 

these beneficial microflora are more sensitive to the bactericidal treatments used 

and are destroyed before the pathogens we are trying to control (Jay, 1995). 

Some countries have recently reported a downturn in some illnesses due to 

special efforts at targeting the problem. The USA reported substantial decreases 

in the incidence of infections from some pathogens in 2003 consistent with 
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government initiatives (CDC, 2004). The USA FDA Seafood HACCP1 rule issued 

in December 1995 added to pressure on seafood manufacturers worldwide to 

follow HACCP principles. This has not decreased the incidence of listeriosis 

(CDC, 2005). 

2.2 Purpose of this review 

This project is aimed at investigating the use of active cultures of competing 

microflora for control of bacterial pathogens in mussel products. It is assumed 

that this would be additional to current good manufacturing practices and hygiene 

controls 

The use of probiotic bacteria is preferred as this will prove more acceptable to the 

consumer. Although the use has potential to enhance the health of the 

consumer, this is unlikely unless very large quantities are consumed frequently. 

In order to determine strategies to assist the industry it is important to understand 

the following . 

• Properties concerning the organisms that limit shelf-life and cause food 

safety problems. For the purposes of this study Listeria control is the 

main area of concern (see section 2.4). 

• Characteristics of the organisms that may be used as controls , including 

how they grow, conditions under which they demonstrate anti-microbial 

activity and how they are affected by the product including its 

composition, processing and existing microflora. 

• What is currently done in the seafood industry or in similar industries. 

• Experimental methods that may be used in this application. 

1 Hazard Analysis Critical Control Point is the accepted food safety assurance 

methodology and is defined by Codex Alimentarius in Recommended International Code 

of Practice General Principles of Food Hygiene CAC/RCP 1-1969, Rev.4- 2003. 
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This review will also be concerned with the methods of antagonism and how 

these may be utilised. 

2.3 Concerns with New Zealand Seafood Products 

In New Zealand mussel exports have risen dramatically from NZ$24m in 1988 

and 5,794,105 kg to NZ$185m in 2002 and 28 ,809,245 kg . (MIC, 2004) 

Improved seafood storage and handling techniques and developments in value­

added products have improved export returns . Improving storage techniques for 

live and fresh shellfish is particularly important because of the large distances to 

New Zealand 's markets (SeaFIC, 2004). The focus on value-added products 

emphasises the need to provide high value, high quality and microbiologically 

sound products whether they be fresh or further processed . 

Mussel products are processed and sold in a variety of forms including ready-to­

eat, frozen , marinated, smoked and further processed. Half-shell mussels have 

been heat-treated to open the shell , a shell is removed and the product snap 

frozen after applying a glaze (usually water). This study is applicable to these 

types of products . 

In New Zealand seafood products species of Vibrio, Aeromonas, Listeria and 

Clostridium have been identified as possible pathogens (Fletcher, 1996). 

Aeromonas species are emerging as organisms of concern. These Gram­

negative organisms are widespread, will grow well under refrigeration at 4-5°C 

and have been found in aerobic and vacuum-packed fish products (ICMSF, 

1996a). In a retail survey of New Zealand shellfish motile Aeromonas were found 

in 66% of samples. The risk of illness is considered to be low but more 

investigation is needed as some species are pathogenic (Fletcher, 1996). 

Strains of non-01 Vibrio cholera are believed to be endemic in the New Zealand 

environment and our seafood cannot be ruled out as a potential source of 

intoxication (Fletcher, 1996). However, low numbers of cholera infections are 
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reported in New Zealand (17 between 1980 and 2001) and frequently the source 

has been traced to infection overseas (Sneyd et al. , 2002). 

There is a possibility of C/ostridium botulinum type E being found in seafood as it 

is known to be present in the marine environment overseas. Fortunately cases 

have been very rare in New Zealand (Fletcher, 1996). There is almost no 

information about prevalence and location of this organism in New Zealand. 

In New Zealand L. monocytogenes contamination has been identified as the 

main food safety concern for our seafood industry especially in ready-to-eat 

products (Fletcher et al. , 1998). 

The principal spoilage organisms of New Zealand Greenshell mussels have not 

been reported. Overseas data indicate that for shucked molluscs, bacterial 

populations normally increase to 107 or more when spoiled. Gram-negative 

proteolytic bacteria , usually Pseudomonas and Vibrio , are prominent as well as 

Gram-positive saccharolytic species of Lactobacillus spp (ICMSF, 1998). 

2.4 The problems with Listeria 

2.4.1 It causes illness 

Twenty-six cases of listeriosis were reported by the New Zealand Health 

authorities in 2004. Three were perinatal, resulting in 2 fatalities and of the 

remaining 23 non-perinatal cases, 3 resulted in death (ESR, 2005) . This is 

typical of the incidence in New Zealand and follows patterns in other countries. 

These notifications represent the more severe cases and actual incidence is 

likely to be much higher. Although the incidence of listeriosis is relatively low, the 

fatality rate is high and is approximately 20% in the US (CDC, 2005) . 

Listeriosis usually occurs in certain high-risk groups of people including pregnant 

women , newborn babies and immunocompromised individuals, and occasionally 

in persons without known underlying conditions . In non-pregnant adults Listeria 

primarily causes meningitis, septicaemia and meningocephalitis with a mortality 

rate of 20-25%. In neonates sepsis, meningitis and pneumonia are seen, while 
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pregnant women may experience only mild flu-like symptoms, but the foetus may 

abort (Swaminathan , 2001 ). 

2.4.2 It is resilient 

L. monocytogenes is a Gram-positive, microaerophilic, non-spore forming rod, 

measuring 0.4-0.5µm in diameter and 0.5-2µm in length. In 3-5 day old cultures, 

long peritrichous flagella are found, giving Listeria species its characteristic 

tumbling motility. The organism is not fastidious and grows well in most common 

nutrient media. Survival of L. monocytogenes in foods below 0°C has been 

reported (Miliotis and Bier, 2003) and it will survive several weeks at -18°C. The 

organism can grow in a temperature range of -0.4 to 45°C. It grows in a pH 

range of 4.4 to 9.4 and minimum water activity of 0.92 (ICMSF, 1996b). 

L. monocytogenes is found in a wide variety of habitats , including water, soil , raw 

materials , people and food processing environments . Foods appear to be a 

major vector of human listeriosis infection (ICMSF, 1996b) and mussels have 

been identified as a cause of illness in New Zealand as well as overseas (Baker 

and Wilson , 1993; FAO, 1999). However there have been no incidences of 

Listeria detected in mussels entering processing facilities in New Zealand , ant: 1· 1 

industry, it is widely accepted that mussels become contaminated while in the 

processing environment (Gosnell , Personal Communication , 1998). 

Listeria can readily enter the food-processing environment and once there rapidly 

establish a biofilm. When attached to a surface the biofilm bacteria produce 

extra-cellular material that provides further protection to an organism already 

capable of withstanding relatively harsh conditions . It grows easily in a cold 

environment and its survival in certain adverse conditions, such as higher salt 

concentrations, is enhanced at low temperatures (Swaminathan , 2001 ). 

Cleaning regimes have to be thorough and high mechanical activity provides the 

most effective biofilm removal. Sanitizer alone is not sufficient (Gibson et al. , 

1999). Some areas such as conveyor belts used in the seafood industry are 

particularly difficult to clean. Work at Crop & Food Research Ltd (Seafood 

Research Unit, Nelson) indicates that extracellular polysaccharide material 

produced by attached bacterial species, including L. monocytogenes and 
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Flavobacterium spp, and growth within the weave of the belt, further protect cells 

from the effects of the sanitizer (Boase, 2002). Pseudomonas and 

Flavobacterium spp are commonly found in seafood and the seafood processing 

environment (ICMSF, 1998). These organisms act together as primary 

colonisers enhancing the formation of biofilms of Listeria (Jeong and Frank, 

1994) and survival of Listeria in a biofilm on a stainless steel surface is 

significantly enhanced in the presence of Flavobacterium spp. (Bremer et al. , 

2001 ). 

2.4.3 There are differing standards for Listeria levels 

The infective dose of L. monocytogenes is not known and microbiological limits 

for this organism in foods differ around the world. Most data show that at least 

100 cfu/g are required for disease to develop (Swaminathan, 2001 ). Some 

countries such as France, Germany, Denmark and Canada allow up to 100/g at 

point of sale for some foods. Others such as New Zealand and the USA operate 

essentially a zero tolerance while England and Wales tolerate low levels in ready­

to-eat foods (Lake et al. , 2002). The Food Standards Code adopted by Australia 

and New Zealand does not allow any L. monocytogenes to be detected in 25 g 

for ready-to-eat mussel products but allows detection of up to 100/g in one 

sample of 5 for ready-to-eat processed finfish products (FSANZ, 2004a). To 

further complicate matters the sampling criteria and methods of testing for L. 

monocytogenes differ around the world (FAO, 1999). 

FAO propose a simple decision tree for the establishment of L. monocytogenes 

criteria in foods . The decision is HACCP based. It is concerned primarily with 

whether there could be multiplication to >100 cfu/g within the stated shelf life and 

recommended storage conditions, assuming that in addition , there is no 

listeriocidal treatment prior to consumption . (FAO, 1999) 

Preliminary studies provide some evidence of trade impact due to differing 

standards around the world (FAO, 1999). New Zealand manufacturers, for 

example, have to meet internal standards of zero tolerance as well as meeting 

the requirements for overseas market access. This may make our product more 

expensive entering a "Listeria tolerant" market compared to that from an equally 

"tolerant" market. 
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2.5 Use of microbial control mechanisms 

To be effective, efforts to reduce the level of pathogens and spoilage organisms 

in our foods must use a multi-hurdle approach , particularly in ready-to-eat or 

minimally treated foods . The use of microbial control mechanisms should be 

considered as another hurdle. 

Microbial growth has the potential to affect the growth of other organisms by 

changing the environment and can be expedited in a number of different ways 

These ways could include: 

• Antagonism , such as by change in pH, depletion of essential nutrients 

required for growth of a particu lar strain , or production of substances 

which act directly on target organisms. 

• The production of bacterial signals, allowing expression of phenotypic 

traits that could influence the growth of other organisms. 

• Supply of nutrients from other micro-organisms which cou ld allow the 

growth of target species (metabiosis) (Gram et al. , 2002). 

For control of pathogen growth in mussels we are interested in activities from th, ~ 

list that suppress the growth of target organisms and will focus on the first point , 

as this has been the most well studied. 

An antagonistic micro-organism is one that has the ability to suppress the growth 

of another organism . This includes probiotic organisms. An increasing number 

of organisms are being identified as probiotic and this is likely to continue as 

more organisms are characterised . Many organisms useful for control are fou d 

within the lactic group, therefore these will be considered in more detail in a later 

section. 

Page 9 



2.5 1 Use of bacteriocins (static approach) 

Many micro-organisms produce bacteriocins, which can be used to inhibit other 

bacteria. 

There have been a number of efforts to isolate bacteriocins and to use these on 

food products to control bacterial growth. Nisin was the first bacteriocin to be 

isolated and approved for use in foods and has GRAS (Generally Regarded As 

Safe) status in the USA (FDA, 2002). It is a relatively broad spectrum lantibiotic­

type bacteriocin produced by Lactococcus lactis (McMullen and Stiles, 1996). 

This has been used in foods such as cheese spreads to prevent the outgrowth of 

C. botulinum spores (Riley and Wertz, 2002) . 

Difficulties may arise in the requirement to obtain GRAS status for isolated 

bacteriocins and the need to declare these as additives. 

Many studies have considered the use of isolated bacteriocins as a means of 

bacterial control. A drawback from this static approach is that there may be no 

control over increasing numbers of pathogens if the product is temperature­

abused. Product temperature-abuse is a very common factor in reported cases 

of food-borne illness (Taoukis and Labuza , 2004) . 

2.5.2 Use of live cultures (active approach) 

Cultures may be more acceptable, especially if these have a safe history of use 

by food industries prior to the 1958 Food Additives amendment in the USA 

(Muriana, 1996). Active cultures are more likely to provide assurance of 

protection in cases of temperature-abuse where cultures can grow at enhanced 

rates in a similar fashion to pathogens and spoilage organisms. 

The use of cultures for bio-control is becoming increasingly accepted , not only in 

food products but also in other applications. In June 2000 the company BUS 

Technologies was launched in New Zealand. This company uses lactic acid 

bacteria as protective agents for throat and mouth conditions and these are now 

sold over the counter in New Zealand pharmacies and in other countries. 
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Known probiotic organisms are preferred as active cultures because they may 

confer benefits to the host. At least, they are not seen as harmful , while 

suppressing growth of pathogens in food products 

Numerous bacteriocin-producing lactic acid bacteria inhibitory to L. 

monocytogenes and other pathogens have been isolated from fermented and 

other food products (Muriana, 1996) and many have been tested directly in food 

as an active control system. 

Considerable work has been done in the dairy industry and a large number of 

organisms including nisin-producing Lactococcus lactis strains have been 

successfully used in dairy applications. However many such as L. lactis are 

mesophilic and have not been used successfully in meat systems where products 

are refrigerated (McMullen and Stiles , 1996). 

Appl ications have been patented using the expertise gained from the dairy 

industry in starter cultures . For example, the company Danisco claims probiotic 

cultures to inhibit pathogenic and other undesired bacteria in a variety of dairy 

and non-dairy products without influencing sensory properties (Skoymose, 200?\ 

These include a protective culture using Lactobacil/us plantarum for use in me:it 

and seafood products (Danisco , 2004). 

There has been less work published related to seafood applications and much 

has been studied in liquid systems such as the cold-salmon juice extracts 

described by Nilsson (Nilsson et al. , 1999). More work has been done in the 

meat industry, which can provide useful background information for mussel 

products . 

2.5 3 Use of a combined approach 

Logically, one would expect, the most effective control may be brought about by 

the use of bacteriocin to provide immediate inhibition along with an active cuItur 

The active culture would maintain longer term control when numbers of the targe 

organism increase beyond the point of bacteriocin control. 
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2.6 Mechanisms of antagonism 

The spoilage organisms for many products, including mussels, have been 

identified as belonging to the lactic acid bacteria (LAB) group, as have most 

identified probiotic bacteria. Many LAB demonstrate antibacterial activity 

preventing the growth of other organisms including pathogens of concern in 

seafood products, such as L. monocytogenes (Carr et al., 2002). 

Antagonism can occur by a variety of mechanisms including those outlined 

below. Although these mechanisms have been principally studied in the LAB 

group it is logical to expect that the mechanisms also apply to other groups of 

bacteria. 

2.6.1 Lowering pH and production of organic acids 

Lowering the pH is a common method of antagonism and is often found 

associated with the production of organic acids. Because of their weak 

dissociation constant organic acids can easily pass through the cell membrane 

where they will dissociate in the higher pH environment of the cytoplasm. This 

disrupts cellular metabolism by effects of the acid anion and by the movement of 

hydrogen ions out of the cell causing loss of energy. In numerous studies of 

production of acidic conditions by LAB, relatively large numbers of the antagonist 

need to be present to effectively inhibit a particular pathogen (Adams and 

Nicolaides, 1997). 

This effect is non-specific and will inhibit a wide range of organisms. 

2.6.2 Production of metabolites such as ethanol, hydrogen 
peroxide, diacetyl and CO2 

A large number of compounds produced during cellular metabolism can have 

antagonistic effects. These compounds generally have non-specific activity 

against a number of organisms, both Gram-positive and Gram-negative 

(Ouwehand, 1998). A few examples are described below. 

Page 12 



Fermentation of sugars by heterofermentative lactic acid bacteria produces CO2 

which can be lethal to some organisms. Gram-negative bacteria are more 

susceptible than Gram-positive so spoilage organisms such as Pseudomonas 

may be more inhibited in vacuum-packed products (Adams and Nicolaides, 

1997). Production of CO2 may however be undesirable in vacuum-packed 

products. 

Lactic acid bacteria may produce hydrogen peroxide (H 20 2) in the presence of 

oxygen but lack catalase required to break it down. H20 2 inhibits a range of 

organisms including Staphylococcus aureus and Pseudomonas spp, whereas 

LAB can be more resistant. The amount of H20 2 accumulated by LAB cultures is 

quite variable and depends on the degree to which the medium is oxygenated 

and the temperature. Low temperatures favour H20 2 production as the solubility 

of oxygen is lower (Adams and Nicolaides, 1997). Therefore in an oxygenated 

chilled food product this could offer protection . This would generally be restricted 

to the surface of foods where oxygen tension is adequate but where 

contam ination is most significant. 

Ethanol and diacetyl have established anti-microbial activity and are produced hy 

various lactic acid bacteria. The antibacterial activity of diacetyl has been 

described for a number of organisms including A. hydrophila, E. coli, 

Pseudomonas spp., and Salmonella spp., but the levels required to produce 

appreciable inhibition are generally considered too high to be palatable (Adams 

and Nicolaides, 1997). Lower concentrations may be satisfactory at lower 

temperatures (Archer et al., 1996). 

The spoilage reactions of certain Gram-negative bacteria may produce ammonia 

and trimethylamine, which are toxic to a number of other organisms and 

sometimes to the producer itself. 

2.6.3 Nutrient depletion and crowding 

It is possible that the anti-microbial activity of some organisms is simply due to 

outgrowing competitors and by using up the most readily assimilable or growth­

limiting nutrients (Adams and Nicolaides, 1997). 
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One area of nutrient depletion that has been looked at in detail is the competition 

for iron. When iron levels are low siderophore production (iron chelating 

systems) is induced in groups of organisms such as Pseudomonas (Gram and 

Melchiorsen, 1996). This may be significant in some fish products where iron is 

limiting, but less likely in NZ Greenshell™ mussels with a higher iron content of 

7mg/1 0Og (Sanford , 2003) . 

Work carried out by Buchanan and Bagi (1997) has shown that L. 

monocytogenes Scott A growth was suppressed by Carnobacterium piscico/a2 

strains. Although two of the C. piscicola strains used produced bacteriocin, the 

depression of growth was only slightly greater than the suppression with the non­

bacteriocin producing strains. The effects were shown to be independent of pH 

depression, peroxide production or oxygen depletion for at least one strain and it 

was thought that suppression may be due to nutrient depletion since the effect 

was dose-related. 

A non-bacteriocin producing strain of C. piscico/a, A9b-, was observed to 

suppress the growth of L. monocytogenes under experimental conditions . The 

effect is likely to be due to nutrient depletion by the non-bacteriocin producing 

strain . The degree of depression of maximum cell number was due to the initial 

cell density of the inhibitory organism, but did not require cell-to-cell contact as 

was demonstrated by growing the organisms apart in a diffusion chamber. When 

glucose was introduced back to the media, the depression was abolished. 

However the lag phase was longer and evidence suggests that acetate 

production is also involved in this effect (Nilsson et al. , 2005) . 

2.6.4 Production of low molecular weight substances that 
appear to have a broad spectrum of activity 

The most well known, reuterin (!3-hydroxypropionaldehyde) , is produced by 

Lactobacillus reuteri and has anti-microbial activity toward a range of food borne 

2 Organisms previously classified as Camobacterium piscicola and Lactobacillus maltaromaticum 

have been reclassified as Camobacterium maltaromaticum (Mora et al , 2003) . The term used by 

the supplier of the organisms and by authors has been used in this report for easy reference. 
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pathogens and spoilage organisms including both Gram-positive and Gram­

negative bacteria (Ouwehand , 1998). 

Pyroglutamic acid or 2-pyrorolidone-5-carboxylic acid (PCA) , produced by some 

strains of Lactobacillus casei, is inhibitory against Bacillus subtilis, Enterobacter 

cloacae and Pseudomonas putida (Ouwehand, 1998). 

2.6.5 Production of a range of higher molecular weight 
substances 

The term bacteriocins has defied concise definition for many years and therefore 

is used in different ways by different workers . A common definition is that 

bacteriocins are proteins that are generally narrow acting against similar species 

(Adams et al. , 1997, Ouwehand, 1998, Tagg et al. , 1976). It is now evident that 

bacteriocins take many forms and elicit bactericidal activity beyond species that 

are closely related or confined within a particular niche (Klaenhammer, 1993). 

For example, some from the Pediococcus genus have very broad spectrum of 

action including inhibition of Pediococcus, Lactobacillus, Leuconsotoc, 

Enterococcus, Micrococcus, Listeria, Staphylococcus, Bacillus and Clostridium 

(Nieto-Lozano et al. , 2002). 

Because of the difficulty in classifying bacteriocins many workers favour the use 

of the term Bacteriocin-Like Inhibitory Substance (BLIS) introduced by Tagg . 

Many have been discovered that are smaller than true proteins and their activity 

may not be as restricted as first thought (Tagg et al. , 1976). 

For simplicity , the term bacteriocins is used in this report to include all 

bacteriocin-like inhibitory substances, i.e. anti-microbial substances produced by 

bacteria that are genetically coded as opposed to being produced as a catabolic 

product. Hence specificity and size are not considered important. 

Use of these bacteriocins as a control mechanism for pathogens in foods has 

been the focus of much research in recent years. These will be discussed in 

more detail later. 
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2.7 Bacteriocins 

Much work recently has involved the use of bacteriocins as a pathogen control 

method in foods. This obviously has huge potential for this application whether it 

is used as a static, or as an active control mechanism. Therefore bacteriocins 

will be considered in more depth. 

For use in a food system it is important to understand some characteristics of 

these compounds and their production by lactic bacteria. 

2. 7.1 Production of bacteriocins 

Some organisms can produce more than one bacteriocin and they may be 

plasmid- or chromosomally-coded . Carnobacterium piscicola LV17, for example, 

produces two plasmid-encoded bacteriocins at different stages of the growth 

cycle whereas chromosomal determinants for the production of bacteriocin are 

found in C. piscico/a UAL (Klaenhammer, 1993). 

Features of bacteriocin production important to their use in food applications are 

considered here. 

Stage of life cycle 

Bacteriocins appear to be produced during different stages of the life cycle of the 

bacteria, depending on the organism and conditions. Reported to be primarily 

produced in the growth phase (Nes et al., 2002) , some are produced early in the 

growth cycle while some are produced during later stages including late 

exponential phase (McMullen and Stiles, 1996). Differences within strains of the 

same species have been noted. For example, one strain of C. piscicola isolated 

from fish produced bacteriocin during the mid-exponential phase of growth 

(Stoffels et al. , 1992), whereas maximum yield of the bacteriocin produced by 

C.piscicola CS526 was reached at the end of the exponential phase (Yamazaki 

et al. , 2003) . 
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Other organisms produce bacteriocins during late exponential phase or stationary 

phase, some producing them in bursts while others release them continuously 

(Tagg et al., 1976). 

To minimise unrestricted pathogen growth in food products , production of the 

bacteriocin should occur early in the growth cycle. 

Culture conditions 

Many bacteriocins are produced in anaerobic conditions and many of the 

producers are strict anaerobes or facultative anaerobes. Bacteriocins from 

strains of Lactococcus /actis, Pediococcus pentosaceus, Lactocobacillus 

rhamnosus and Enterococcus faecium have been used to protect against 

Clostridium spore outgrowth in anaerobic conditions. Inhibition was greater at 

10°C than 15°C or 25°C (Rodgers et al. , 2003) . By contrast, aeration of culture 

has been found to greatly increase the yield of staphylococcal bacteriocins (Tagg 

et al. , 1976). 

Bacteriocin production in some strains of C. piscico/a isolated from fresh fi sh N 1 , 

shown between 15 and 34 °C but was completely abolished at 15°C and below 

(Stoffels et al. , 1992). Conversely, increased production of bacteriocins has 

been shown at low temperatures (Buchanan and Klawitter, 1992). 

In many organisms, much of the bacteriocin adsorbs to the producer cell , 

especially close to pH 6.0. Adsorption is lowest at pH 1.5-2.0 (Ouwehand, 1998' 

This is likely to be due to charges on the protein groups at different pH values 

The particular chemical composition of the culture medium is important. Various 

key nutrients such as amino acids and metal ions have been shown to be 

required in vitro for the production of different bacteriocins (Tagg et al., 1976). 
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In some instances the production of bacteriocins has been demonstrated only on 

solid media (Tagg et al. , 1976), whereas many other applications have used 

liquid media, such as the starter cultures for yoghurts and many other fermented 

foods (Ray, 1992). The production of bacteriocin from C. piscicola A9b strains 

has been observed in cold-smoked salmon juice systems but has not been 

detected in cold smoked salmon pieces (Nilsson et al. , 1999). 

De Vuyst ( 1996) notes that bacteriocin production may be increased when the 

producer cells are stressed. Therefore any adverse environmental or culture 

conditions may increase bacteriocin production. This may help explain some of 

the variability in bacteriocin production under different growth condition such as 

temperature and level of oxygen. 

lnducibility of bacteriocins 

The production of some bacteriocins of Gram-positive bacteria has been shown 

to be inducible in a manner analogous to prophage induction (Tagg et al. , 1976). 

The production of bacteriocins by strains of C. piscicola has been reported as 

being regulated by the bacteriocins themselves (Saucier et al. , 1995), and this 

may account for the enhanced bacteriocin production observed in solid media as 

opposed to liquid media. This is however contrary to the observation by Nilsson 

et al. (1999) in salmon juice compared to salmon pieces (see previous section) 

where no bacteriocin production was seen in the solid product. This may be due 

to characteristics of different strains of C. piscicola or to some other difference 

between the experimental systems. Later work by Nilsson et al. (2004), states 

induction of bacteriocin may also be triggered by an extracellular secreted 

peptide, the bacteriocin itself, and acetate in laboratory media and in cold­

smoked salmon juice. 

Ideally, in a solid food system, bacteriocins produced would be inducible or 

triggered by an extra cellular compound to maximise production . 
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2.7.2 Actions of bacteriocins and development of resistance 

In vitro studies have suggested that the cytoplasmic membrane of sensitive cells 

is the target of many bacteriocins, with Gram-positive cells being more sensitive 

due to the structure of the lipopolysaccharide layer (Abee et al. , 1995). However 

some Gram-positive organisms such as Lactobacil/us acidophi/us, Bacillus 

cereus and some Streptococci have been shown to inhibit Gram-negative 

organisms. The mechanism of action in Gram-negative cells appears also to 

affect the cell wall (Tagg et al. , 1976). 

Recent studies show that for some bacteriocins the peptide concentration 

required to cause membrane changes does not necessarily cause cell death. 

The effects on the cell membrane may serve as a mechanism for allowing the 

bacteriocin to enter the cell where it acts (Cleveland et al. , 2001 ). 

The development of bacteriocin resistance has been frequently observed 

(Klaenhammer, 1993) and is very variable. In some cases bacteriocin resistance 

is a stable trait as observed in pediocin-resistant mutants of Listeria 

monocytogenes and less stable in nisin-resistant mutants of Listeria 

monocytogenes (Gravesen et al. , 2002). The fitness , or resistance to stress )t 

the organisms also varies. Pediocin-resistant mutants were shown to be less 

capable than nisin-resistant mutants of withstanding environmental stressors 

such as salt concentration , reduced pH and reduced temperature in vitro. 

However in a saveloy-type meat model at 5°C there were no observed 

differences in fitness between resistant and wild type strains . Nisin resista nce at 

10°C was enhanced in one strain of Listeria when the salt concentration was 

increased, but this effect was not noted at higher temperatures (Gravesen et al , 

2002) . Considering that there are major structural differences between these 

bacteriocins, it is reasonable to expect different responses. 

Unlike antibiotic resistance it appears that bacteriocin resistance may not b 

genetically determined (Cleveland et al. , 2001 ), but more work is needed to 

substantiate this . However bacteriocin producers themselves have developed a 

protection system against their own bacteriocin that is genetically defined (Nes et 

al. , 1996) 
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2.8 Factors affecting bacteriocin activity in food 
systems 

The use of cultures or bacteriocins as control agents in food systems provides 

many challenges . 

In food matrices bacteriocin activity may be affected by a number of factors 

(Ganzle et al. , 1999). While these effects have been studied mostly for 

bacteriocins many are applicable to other mechanisms of antagonism. 

2.8.1 Changes in solubility and charge 

Any change to the growth media will affect the activity of substances within that 

matrix. Changes in pH will have a profound effect on the extent of dissociation 

of organic acids, their charge and their actions in situ. 

Their protein nature may make bacteriocins particularly vulnerable to biochemical 

reactions involving amino acid side chains or hydrophobic interactions that may 

interfere with their intended interaction with target cells (Muriana , 1996). Factors 

such as pH and temperature have also been reported to have effects; this may 

be due to the solubility of the particular bacteriocin at different pH values (Ray, 

1992) and will differ according to the different chemical structure of a bacteriocin. 

2.8.2 Interaction (including binding) with food components 

Antagonistic molecules such as bacteriocins may interact with food molecules 

and this changes their activity. Ganzle et al. (1999) reported the activities of the 

bacteriocins nisin , sakacin P, and curvacin A against Lactobacillus curvatus and 

Listeria innocua , were reduced in the presence of lecithin and this effect was 

related to the bacteriocin rather than to the target organism. Casein and the 

divalent cations magnesium, manganese, and calcium also reduced bacteriocin 

activity, but glycerin monooleate increased the activity of sakacin P and nisin. 
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Nisin has been shown to have higher activity in sausages with lower fat content' 

(Davies et al., 1999), and lower activity on raw meats due to the presence of 

glutathione (Cleveland et al. , 2001 ). 

2.8.3 Inactivation by enzymes 

Nisin has been considered as a bacteriocin for use on meats but it has not 

proven effective (McMullen and Stiles, 1996). The reasons for this have not been 

fully established and may vary according to each specific application. Possible 

factors could include degradation by muscle or bacterial proteases. 

2.8.4 Large molecules may hinder diffusion 

Bacteriocins considered for food application (commonly 4000-8000 Da) are large 

compared to organic acids and other anti-microbial chemicals used in food 

preservation (<100 Da). Lucke (2000) comments that it is commonly observed 

that bacteriocins are less effective in solid foods than in liquid media . The size of 

these molecules may impede diffusion , posing a physical constraint in delivery of 

sufficient quantities to be effective . However one would expect the production of 

auto-induced bacteriocins to be greater in solid systems than in liquid as the 

inducers are likely to remain in close proximity at relatively higher local 

concentrations in solid systems compared to liquid . 

As bacteriocin molecules tend to be specific in their interactions with target 

organisms, less may be required than for a non-specific anti-microbial substance 

provided it can reach the target organisms. 

2.8.5 Changes to the expression of bacteriocin genes 

Bacteriocin production by lactic acid bacteria is often inconsistent and low in food 

products , possibly because of repression of bacteriocin synthesis . The reasons 

for this are not known at this time but could be due to environmental factors such 

as pH, presence of ethanol or sodium chloride. (Nilsson et al., 2004) . 
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2.8.6 Particular strain(s) and state of pathogen present 

It is likely that for any strain of target organism , the physiological state it is in at 

the time will also affect lethality of any antagonistic mechanism. 

Bacteriocins originating from Lactococcus UW and Lactobacil/us sake 148 did not 

express any inhibitory effects on any Listeria serotypes tested, while those arising 

from Lactobacil/us sake 265 and 706, and Pediococcus 347, had a listeriocidal 

effect towards almost every, but not all , serotypes tested (Mirjana et al. , 2004). 

Environmental factors inducing changes in the cell envelope will affect the 

response to the bacteriocin (Ganzle et al. , 1999). Changes in pH may play a role 

here, as th is is likely to affect charges on protein groups. 

Stressors placed on bacteria have profound effects. These are well documented 

in many texts and in many cases stressed bacteria appear more resistant to 

adverse effects than those that are non-stressed (Sanders et al. , 1999). 

The stage of the life cycle of a bacterium can also have an effect on its 

physiological state and it may be that organisms are more or less susceptible to 

antagonists at various stages of the life cycle. Gram-positive cells , for example, 

can grow very rapidly in the exponential phase of growth in a rich medium and 

produce a Gram-negative response to the Gram stain . Th is is because the cell 

wall becomes thinner during rapid growing periods and they lyse during staining 

(Beveridge, 2001 ). Although data are not available for such effects it is logical to 

expect that the physiological state of the organism has a large bearing on effects 

of antagonists. 

2.8.7 Physical state of substrate 

Only a few studies have considered the effectiveness of bacterial cultures or 

bacteriocins in solid food media. Various trials have been done in minced 

(Ganzle et al., 1999; Nieto-Lozano et al. , 2002) or liquid systems (Duffes et al. , 

1999; Himelbloom et al., 2001 ; Nilsson et al. , 2004) . These studies may have 

limited relevance to applications in solid systems. 
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As discussed earlier (section 2.7.1.2), bacteriocins produced by C. piscicola A9b 

in salmon juice were not detected when the organism was grown on cold smoked 

salmon slices stored at 5°C, although the growth of L. monocytogenes was 

suppressed (Nilsson et al. , 1999). High cell numbers of numbers of C. piscicola 

were used. It is possible that the effect was due to depletion of an essential 

nutrient but this has not been investigated in solid foods. 

2.8.8 Bacterial Resistance 

The build up of bacterial resistance could limit the use of bacteriocins as 

protective agents in food systems. This may be mediated by the use of active 

antagonistic cultures , which act in a number of ways, in addition to producing 

bacteriocin, and/or by using a multi-hurdle approach. It may be that unless 

resistant organisms re-enter the factory environment this will not be significant. 

2.9 Confusing aspects 

The overwhelming impression gained from the literature is the extremely large 

variation not only between the growth conditions for producer and target 

organism but also variations between different strains of the same species . 

It is likely that each specific antagonist and antagonistic mechanism will also 

have specific reactions with each food system including the packaging , other 

organisms and their metabolites. Storage conditions such as temperature may 

also influence the activity. Biological variation in a foodstuff composition is likely 

to be significant. No information appears to be available to indicate how 

differences due to growing condition , season , type of feed , or composition of 

growing water may impact on the mussel conditions for growth of organisms. 

An example of the complexity that needs to be understood for any particular 

application can be shown by consideration of the interactions between the 

organisms used in this study, C. piscicola and L. monocytogenes. 

C. piscicola A9b- is a non bacteriocin-producing strain of the bacteriocin 

producing strain C. piscicola A9b+. The inhibitory effect of C. piscico/a A9b- was 
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shown to be partly due to glucose depletion when organisms were grown at 30°C 

in broths . (Nilsson et al., 2005) . In these studies, the organism also produced 

acetate. Growth of L. monocytogenes was inhibited. 

Although not tested, it is likely that acetate also plays an inhibitory role on the 

growth of pathogens such as Listeria. Acetate also has an inhibitory effect on C. 

piscico/a strains (Nilsson et al. , 2002). 

In broth systems, acetate stimulated bacteriocin production in C. piscicola A9b+ 

(Nilsson et al. , 2002) however, bacteriocin production was not seen in cold 

smoked salmon pieces (Nilsson et al. , 1999). 

Bacteriocin production is often increased as a response to conditions of stress 

(De Vuyst, 1996). Whether the acetate acts in its own right as an inducing agent 

or is causing cells to become stressed and therefore produce bacteriocins has 

not been investigated. However, in a mixed culture including bacteriocin­

producers, acetate production may confer an additional advantage. 

C. piscicola A9b+ has the capability of producing a bacteriocin but its production 

has not been detected in solid food systems (Himelbloom et al. , 2001 ; Nilsson et 

al. , 1999). Given this , it may be that the inhibitory effects of the strain A9b+ in 

solid foods are due to the same mechanisms operating as for the non­

bacteriocinogenic strain, rather than the production of bacteriocin. This is yet to 

be investigated. If this is so concerns regarding bacteriocin resistance amongst 

target strains are not important. 

In addition to identifying whether or not a strain has activity in a particular food 

system , it is important to determine details on how the effect occurs over time. 

The changes may not be linear and many differences in the food system could 

impact on the protection. There may in fact be periods when the bio-effect is not 

acting sufficiently to protect against unacceptable levels of pathogens. 

Page 24 



2.10 Use in industry 

Most applications have produced reductions of 1 to 3 log cycles in L. 

monocytogenes in foods (Muriana, 1996), and this is likely to be sufficient for 

many applications, including mussel products. 

Most applications are found in the dairy industry where the use of bacteriocins 

and protective cultures has been widely studied. These have been reviewed by 

many authors (Ray, 1992). 

Some work has been done in the meat industry and less in the seafood industry. 

Meat industry examples are more relevant than dairy examples to the seafood 

industry. Pediococcus acidilactici, Lactobacil/us curvatus, Lactobacillus pentosus 

and Lactobacillus plantarum, when used as commercial starter cultures, showed 

inhibitory action against a wide range of Gram-positive bacteria. P acidilactici 

showed the most activity against L. monocytogenes, L. innocua, C. perfringens, 

B. cereus, B. lichenoformis, and B. subtilis (Nieto-Lozano et al., 2002). Many 

other strains have been or are being investigated, including Enterococcus spp, 

Leuconostoc spp and Lactobacillus spp (De Martinis and Freitas, 2003) 

Species of C. piscicola are found in the endogenous microflora of many seafood 

and meat products and their use has been investigated (Nilsson et al. , 1999; 

Paludan-Muller et al. , 1998; Schobitz et al. , 2003; Yamazaki et al. , 2003). The 

organism has been considered as suitable for use in cold smoked salmon 

(Nilsson et al. , 1999; Nilsson et al. , 2004; Yamazaki et al. , 2003) and refrigerated 

poultry products (Barakat et al. , 2000) . 

For preservation of meats Lucke (2000) suggests a three step approach: 

• Selection of psychotropic LAB with bacteriocins active against L. 

monocytogenes and other undesirable Gram-positive organisms. 

• Selection of psychotropic bacteria that produce enough lactic acid to 

inhibit the growth of other psychotropic bacteria but not form compounds 

with adverse flavour. 
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• Addition of mesophilic LAB that become active rapidly if product is 

temperature abused. 

These principles equally apply to mussels. 

2.10.1 Considerations for mussel products 

Ideally, for an antagonist application to be successful for any selected mussel 

product it will fulfil the following conditions: 

• Growth under refrigerated conditions (allowing for temperature abuse, 

temperatures could be up to 10°C) . 

• Anti-microbial activity at neutral to acidic pH ranges. 

• Freeze-thaw stability as mussels may be frozen directly after processing . 

• Facultative metabolism with the ability to tolerate oxygen, as most 

mussels are not vacuum-packed . 

• Ability to outgrow or out-compete L. monocytogenes. 

• Activity against a wide variety of strains of L. monocytogenes and 

preferably other organisms. 

• Activity by more than one mechanism to minimise the chance of build up 

of resistant organisms. 

• No off-flavours, odours, colours or textural changes such as slime 

production . 

• No harm to consumers. Probiotics are likely to be harmless but this 

needs to be confirmed. Different strains, different levels and a different 

way of ingesting may cause harm. Other antagonistic organisms may 

need to be assessed even more thoroughly. 

• No harm to people during the application process, including no allergies 

from breathing or from skin contact. 

• No gas produced or packaging and aesthetics may be affected. 

• Easily applied to product. Many products could be dipped or sprayed with 

the antagonist. 

Use of a combination of organisms possibly augmented by use of a chemical 

such as an organic acid or bacteriocin may in fact be a better way to achieve 

effective control than use of cultures only. 
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2.11 Where to from here? 

The vast amount of literature on this topic demonstrates an overwhelming 

complexity in the anti-microbial activities and substances produced in a wide 

range of environments by a possibly even wider range of organisms. Hence, fo r 

any given application it is important to test the actions empirically. 

Each strain of a given species can be expected to react differently to the various 

cond itions existing in a foodstuff, including its chemical composition , physical 

state, pH , temperature, gaseous environment and the presence of other micro­

organisms. Changes in the environment may alter the expression of the 

bacteriocin genetic code, thereby altering the production of bacteriocin . However 

effects observed are not always due to the production of bacteriocin . 

Studies demonstrating in vitro activity or activity in one system cannot necessarily 

be applied to another system . 

Anti-microbial effects as have been described earlier, need also to be considered 

in relation to the time sequence of events. There is no reason to expect the anti­

microbial activity to occur in a time dependent fashion and most studies have not 

demonstrated the rate of activity in a system. 

The biological variability in a specific mussel product could also be extremely 

large and be affected by the location of the growing beds, feed , season , water 

temperature and composition, and this would affect subsequent growth of micro­

organisms. 

In this work it was seen to be important to replicate as far as possible the 

conditions that would be found in the final product, but it was also recognised that 

fundamental data obtained from laboratory systems can be helpful to our 

understanding of the industrial system. 

Page 27 




