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Abstract
The number of times an organism reproduces (i.e., its mode of parity) is a fundamental 
life-history character, and evolutionary and ecological models that compare the rela-
tive fitnesses of different modes of parity are common in life-history theory and theo-
retical biology. Despite the success of mathematical models designed to compare 
intrinsic rates of increase (i.e., density-independent growth rates) between annual-
semelparous and perennial-iteroparous reproductive schedules, there is widespread 
evidence that variation in reproductive allocation among semelparous and iteroparous 
organisms alike is continuous. This study reviews the ecological and molecular evi-
dence for the continuity and plasticity of modes of parity—that is, the idea that annual-
semelparous and perennial-iteroparous life histories are better understood as 
endpoints along a continuum of possible strategies. I conclude that parity should be 
understood as a continuum of different modes of parity, which differ by the degree to 
which they disperse or concentrate reproductive effort in time. I further argue that 
there are three main implications of this conclusion: (1) that seasonality should not be 
conflated with parity; (2) that mathematical models purporting to explain the general 
evolution of semelparous life histories from iteroparous ones (or vice versa) should not 
assume that organisms can only display either an annual-semelparous life history or a 
perennial-iteroparous one; and (3) that evolutionary ecologists should base explana-
tions of how different life-history strategies evolve on the physiological or molecular 
basis of traits underlying different modes of parity.
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1  | INTRODUCTION

Semelparity (and the related botanical term “monocarpy”) describes 
the life history defined by a single, highly fecund bout of reproduction, 
and can be contrasted with iteroparity (“polycarpy”), the life history 
defined by repeated (i.e., “iterative”) bouts of reproduction throughout 
life. Identifying the reasons why organisms adopt either mode of parity 
is one of life-history theory’s oldest problems, having been considered 

by both Aristotle (History of Animals, BkIX, 622 1-30, trans. Thompson, 
1907) and Linnaeus (Linnaeus, 1744). In contemporary evolutionary 
ecology, this problem has been formalized by age-structured demo-
graphic models that seek to explain the eco-evolutionary dynamics of 
reproductive patterns by comparing the intrinsic rates of increase (i.e., 
density-independent growth rates) of reproductive strategies (Bryant, 
1971; Charnov & Schaffer, 1973; Cole, 1954; Cushing, 2015; Javoiš, 
2013; Omielan, 1991; Su & Peterman, 2012; Vaupel, Missov & Metcalf, 
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2013; Young, 1981). In such models, two modes of parity are consid-
ered, classified by whether they express all reproductive effort in a 
single year (semelparity), or in more than one (iteroparity). Here, I refer 
to this simplified conception as the “discrete conception of parity.” The 
main advantage of the discrete conception of parity is its analytical 
simplicity; given population growth data, intrinsic rates of increase can 
be easily computed and directly compared. Some intraspecific com-
parisons between phenotypically similar semelparous and iteroparous 
congeners conform to the predictions of demographic models based 
on the discrete conception of parity (Fritz, Stamp & Halverson, 1982; 
Iguchi & Tsukamoto, 2001; Young, 1984, 1990).

However, in this review I will argue that despite the successes—
both theoretical and empirical—of evolutionary explanations rooted in 
the discrete conception of parity, there is widespread evidence that, 
like many other life-history traits, parity is a continuous variable and 
that semelparity and iteroparity are the endpoints of a continuum of 
possible strategies that define the distribution of reproductive effort 
through time, rather than simple alternatives describing whether an 
organism fatally reproduces in a given year or not. On this account, se-
melparity can be understood as the strategy defined by concentrating 
reproductive effort in time and iteroparity as the strategy defined by 
distributing reproductive effort over longer timescales. I refer to this 
idea hereafter as the “continuous conception of parity.” It is import-
ant to note that the continuous conception of parity should not be 
conflated with the related terms “annuality” and “perenniality.” These 
terms specify strategies defined by the “digitization” of reproduction in 
response to seasonal effects supervening on the process of reproduc-
tion, rather than describing how concentrated reproductive effort is in 
time. This distinction is further discussed later.

The abstract idea that parity itself is continuous and not discrete 
may be unpopular but is not new (Hughes & Simons, 2014c; Kirkendall 
& Stenseth, 1985; Roff, 1992; Unwin, Kinnison & Quinn, 1999). 
However, to date the degree to which empirical evidence supports 
the continuity of parity has not yet been examined. Furthermore, evo-
lutionary explanations comparing life-history differences between 
clades with differing modes of parity continue to rely on the discrete 
conception of parity (e.g., Lopes & Leiner, 2015), and mathematical 
models based on the formalization of this assumption continue to be 
produced (Benton & Grant, 1999; Davydova, Diekmann, and van Gils, 
2005; Vaupel et al., 2013). However, because of the ubiquity of evo-
lutionary transitions from iteroparity to semelparity (Table 1), under-
standing parity as a continuous trait is important for understanding 
the underlying eco-evolutionary dynamics that affect the fitness of 
life-history strategies.

In this review, I begin by reviewing the development of both the 
discrete and continuous conceptions of parity as evolutionary hypoth-
eses and/or models. Next, I review empirical work that highlights the 
existence of natural variation in reproduction along a semelparity–iter-
oparity continuum, focusing on three distinct patterns found in natural 
populations that are neither abstractly semelparous nor iteroparous: 
facultative iteroparity, facultative semelparity, and multiple modes of 
parity. I conclude by exploring the implications of the continuous con-
ception of parity for: (1) the study of seasonality as a “digitization” of 

reproduction, (2) the process of mathematically modeling life-history 
optimization, and (3) the study of the molecular regulation of repro-
ductive traits linked to parity.

2  | THE DISCRETE CONCEPTION 
OF PARITY

2.1 | “Cole’s Paradox” and the development of the 
discrete conception of parity

Although the first mathematical model of the intrinsic rate of increase 
in annual plants was constructed by Linnaeus (1744), Lamont Cole 
(1954) was the first to categorize life histories into dichotomous “se-
melparous” and “iteroparous” groups: A semelparous organism is one 
that “dies upon producing seed” and therefore, “potential population 
growth may be considered on the assumption that generations do 
not overlap” (p. 109), while iteroparous organisms include a variety of 
cases, from those where “only two or three litters of young are pro-
duced in a lifetime” as well as “various trees and tapeworms, where a 
single individual may produce thousands of litters” (p. 118). Thus, Cole 
created, and contemporary theorists have inherited, a conception of 
parity as a discrete variable: An organism either reproduces more than 
once or it does not.

Cole also identified “the paradox of semelparity,” and wrote that 
“for an annual species, the absolute gain in intrinsic population growth 
which could be achieved by changing to the perennial reproductive 
habit would be exactly equivalent to adding one individual to the  
average litter size.” (Cole, 1954, p. 118). Consequently, according 
to the model he developed, a semelparous or iteroparous strategy 
evolves in response to strong directional selection for trait values 
that: (1) maximize the annual rate of intrinsic increase; and (2) are 
subject to trade-offs, since reproductive effort is always limited by 
resource availability. The “paradox of semelparity” is that the relative 
intrinsic rates of increase for semelparous and iteroparous strategies 
are very similar (i.e., they differ only by one individual—the mother), 
which suggests that iteroparity, not semelparity, should be rare, while 
in nature, iteroparous life histories are generally more common than 
semelparous ones. Cole’s articulation of the paradox of semelparity 
motivated many studies searching for theoretical selective advantages 
of traits linked to discrete semelparous and iteroparous strategies 
(Cushing, 2015; Murdoch, 1966; Murphy, 1968; Omielan, 1991; Su 
& Peterman, 2012; Vaupel, Missov, and Metcalf, 2013), as well as at-
tempts to detect these selective advantages in natural systems (Fisher 
& Blomberg, 2011; Franklin & Hogarth, 2008; Gagnon & Platt, 2008; 
Kaitala, Tesar & Ranta, 2002; Kraaijeveld, Kraaijeveld-Smit & Adcock, 
2003; Murphy & Rodhouse, 1999). Following Cole, semelparous strat-
egies considered in later life-history models were usually also annual 
(García, 2003; Young & Augspurger, 1991), and thus, the primary goal 
of many models purporting to explain the evolution of semelparity was 
to provide reasons why a perennial-iteroparous strategy might confer 
higher fitness than an annual-semelparous one.

Cole’s “paradox of semelparity” was resolved by acknowledging 
that differences in age-specific rates of mortality affect the relative 
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fitness of semelparous and iteroparous habits. Building on prior analyt-
ical work (Bryant, 1971; Emlen, 1970; Gadgil & Bossert, 1970; Murphy, 
1968), Charnov and Schaffer (1973) and Schaffer (1974b) noted that 
the expected fitness value of individuals at juvenile (i.e., prereproduc-
tive) and adult (i.e., reproductively mature) developmental stages often 
differed. They then argued that when the survival of adults was more 
assured than the survival of juveniles, an iteroparous habit would have 
a comparative growth advantage over a semelparous one. Thus, their 
model emphasized that the reproductive value of members of the age 
class with a lower age- or stage-specific rate of mortality would be— 
assuming equal fitness across age classes—greater than the value of the 
members of the age class with a higher rate of mortality. This approach 
can also be used to analyze the age structures of iteroparous popula-
tions; thus, it is a “discrete” rather than a “binary” model. Young (1981) 
extended this insight into a more general model of intrinsic rates of 
increase, which incorporated not only differences in age-specific sur-
vivorship, but also differences in prereproductive development time 
and time between reproductive episodes. This model provided three 
major reasons why semelparity might be favored by natural selection. 
First, high adult mortality—or the early onset of reproductive senes-
cence—might prevent iteroparous species from accruing fitness gains 
from established parents over long timescales. Second, a high popu-
lation growth rate should favor semelparity outright. Third, when the 
marginal cost of additional offspring is inversely proportional to the 
number of offspring produced, fecundity is maximized by investing all 
reproductive effort into a single episode, that is, adopting an extreme 
annual-semelparous life history—see also Schaffer (1974a, 1974b) and 
Schaffer and Gadgil (1975).

2.2 | Further theoretical work on parity as a 
discrete trait

Given that earlier work sought to explain the prevalence of semelpa-
rous and iteroparous strategies by identifying differences in age-
specific mortality, recent work has sought to explain why differences 
in age-specific mortality persist, as well as how varying environmen-
tal conditions facilitate the co-existence of different modes of parity. 
Models used to predict age and size at first flowering for semelparous 
plants have been found to be more appropriate for long-lived than 
short-lived species (Metcalf, Rose & Rees, 2003; Rees and Rose 2002). 
More recently, mathematical modeling of evolutionary responses to 
discrete semelparous and iteroparous strategies has shown that the 
maintenance of both modes of parity can be a consequence of sto-
chasticity in the ratio of juvenile to adult mortality (Murphy, 1968; 
Ranta, Tesar & Kaitala, 2002), of differences in the effects of density 
on age-specific mortality (Bulmer, 1985, 1994), or as a consequence 
of population instability (Ranta, Kaitala, Alaja & Tesar, 2000). Another 
common approach has been to use simulations, based on compari-
sons between discrete strategies, to argue that spatial heterogene-
ity and stochastic events (i.e., demographic disasters and windfalls) 
influence the evolutionary stability of each mode of parity over small 
spatial scales (e.g., Ranta, Tesar & Kaitala, 2001). Similarly, Zeineddine 
and Jansen (2009) examined the role that discrete modes of parity 

may play in evolutionary tracking, suggesting that species adopting 
an annual-semelparous strategy may have an evolvability advan-
tage over perennial–iteroparous congeners. Moreover, considerable 
evidence now supports two general conclusions: (1) that optimizing 
growth, reproduction, and phenology depend on optimizing parity 
(Iguchi & Tsukamoto, 2001; Keeley & Bond, 1999; Kraaijeveld et al., 
2003; Leiner, Setz & Silva, 2008; Maltby & Calow, 1986; Stegmann 
& Linsenmair, 2002; Trumbo, 2013) and also (2) that parity is espe-
cially important for predicting reproductive scheduling (Cooke, Hinch, 
Farrell, Lapointe & Jones, 2004; Iwasa, 1991; Kozłowski, 1992; 
Kozłowski & Wiegert, 1986; McNamara, 1997; Miller, Williams, 
Jongejans, Brys & Jacquemyn, 2012; Oizumi, 2014; Schaffer and 
Gadgil 1975; Vaupel, Missov, and Metcalf, 2013), programmed senes-
cence (Panagakis, Hamel & Cote, 2017; Ricklefs, 2008; Weimerskirch, 
1992), and/or the optimal allocation of reproductive effort to off-
spring (Cohen, 1966; Einum & Fleming, 2007; Gremer & Venable, 
2014; Mironchenko & Kozłowski, 2014; Smith & Fretwell, 1974; 
Winkler & Fischer, 2002). Thus, contemporary work in evolutionary 
ecology is replete with papers discussing the knock-on effects of the 
assumption that modes of parity are discrete rather than continuous.

2.3 | Empirical support for the discrete 
conception of parity

Empirical support for the predictions made by discrete-conception 
models is strongest where perennial-iteroparous and annual-
semelparous (or, rarely, perennial-semelparous) congeneric species 
coexist and have starkly different life histories. For instance, in a com-
parison of Mount Kenya species of the genus Lobelia, Young (1984) 
found that juvenile and adult mortality of the annual-semelparous 
species L. telekii were higher than in the closely related perennial-
iteroparous species Lobelia deckenii (syn. L. keniensis). Young con-
cluded that the difference in age-specific rates of mortality would 
strongly influence the expected value of future reproduction for each 
species, leading to perennial-iteroparity in one species and annual-
semelparity in the other (see also Young, 1990). Similar comparisons 
between semelparous and iteroparous congeners or confamilials have 
been conducted in insects (Fritz et al., 1982; Stegmann & Linsenmair, 
2002), salmon (Crespi & Teo, 2002; Dickhoff, 1989; Kindsvater, 
Braun, Otto & Reynolds, 2016; Unwin, Kinnison, and Quinn, 1999), 
snakes (Bonnet, 2011), algae (De Wreede & Klinger, 1988), and dasyu-
rid marsupials (Kraaijeveld, Kraaijeveld-Smit, and Adcock, 2003; Mills, 
Bradshaw, Lambert, Bradshaw & Bencini, 2012). Other studies have 
focused on reproductive effort, as a declining marginal cost of off-
spring in terms of reproductive effort should select for an annual- or 
perennial-semelparous life history over an perennial-iteroparous one. 
This is the cited cause of the evolution of semelparity in Digitalis pur-
purea (Sletvold, 2002), and in Antechinus agilis (Fisher & Blomberg, 
2011; Smith & Charnov, 2001). The interaction between intrinsic rate 
of increase and phenology also has important fitness implications; in 
two subspecies of Yucca whipplei, the semelparous variant showed 
higher viability and faster time to germination than the iteroparous 
variant did (Huxman & Loik, 1997). Further studies highlight the 
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mortality differences between juveniles and adults, which explains the 
evolution of semelparity in a variety of long-lived semelparous plants 
(Foster, 1977; Kitajima & Augspurger, 1989; Young & Augspurger, 
1991), as well as in salmonids (Crespi & Teo, 2002; Fleming, 1998; 
Hendry, Morbey, Berg & Wenburg, 2004; Sloat et al., 2014). Taken 
together, even when not biologically plausible, conceptual models 
have proven to be heuristically valuable and have been used to draw 
stark contrasts between the different effects density dependence has 
on annual-semelparous and perennial-iteroparous strategies. In cases 
where such extreme strategies coexist, existing theories seem to do a 
good job of predicting how they evolved.

3  | THE CONTINUOUS CONCEPTION 
OF PARITY

3.1 | From uniparity to continuous reproduction

However, in many cases substantial unexplained variation in parity 
exists even after factors such as age-specific mortality, density de-
pendence, and environmental effects are taken into account. For this 
reason, it seems as though models based on the discrete conception 
of parity describe a limited range of special cases and not the majority 
of systems with congeneric or confamilial species with a spectrum of 
different reproductive strategies. This problem arises because theo-
retical models of the discrete conception of parity make two char-
acteristic assumptions. First, it is assumed that reproductive output 
is allocated among cycles (typically seasons or years) rather than ex-
pressed continuously. This means that offspring produced at two dif-
ferent times within a single season are “counted” as being part of the 
same reproductive episode, while offspring produced at two different 
times in two different seasons are counted as part of categorically dif-
ferent reproductive episodes. This permits the calculation of thresh-
old values (e.g., of size or age) beyond which selection should begin to 
favor one mode of parity or the other, but this is based on a distinction 
that is arbitrary. Second, each individual is assumed to express a single 
reproductive strategy; models do not predict phenotypically plastic 
modes of parity, or facultative switching between modes.

These assumptions do not hold in many cases. There are relatively 
few examples of semelparous reproduction occurring exactly “once”—
that is, in exactly one place, at exactly one time. Moreover, “annuality” 
and “perenniality”—terms that refer to the number of years in which 
organisms reproduce—cannot be used interchangeably with “semel-
parity” and “iteroparity,” which refer to the number of reproductive ep-
isodes organisms have (Fritz, Stamp, and Halverson, 1982; Kirkendall & 
Stenseth, 1985). In “The Evolution of Life Histories”, Roff (1992) noted 
that, “if we consider our unit of time to be a single year, annuals can be 
termed semelparous and perennials iteroparous. A further division is 
possible within annuals, for some reproduce once and are, therefore, 
semelparous within any time scale, while others flower repeatedly 
throughout the summer and, hence, are iteroparous with respect to 
annuals that flower only once, but semelparous with respect to pe-
rennials” (p. 248). That is, it is the simultaneity and the finality of the 
reproductive episode (i.e., the concentration of reproductive effort) 

that defines “perfect” semelparity. Therefore, the continuous con-
ception characterizes “extreme” semelparity to be a single, complete, 
and exhaustive reproductive episode where all reproductive effort 
is invested at once. Examples of this strategy—which Kirkendall and 
Stenseth (1985) termed “uniparity”— include mayflies and mites of the 
genus Adactylidium (Corkum, Ciborowski & Poulin, 1997; Edmunds, 
Jensen & Berner, 1976). Both male and female mayflies die shortly 
after mating and dispersing fertilized eggs. In Adactylid mites, off-
spring devour the mother from the inside out and are thus obligately 
annual-semelparous (Elbadry & Tawfik, 1966; Goldrazena, Jordana & 
Zhang, 1997). The correspondingly “extreme” perennial-iteroparous 
strategy is a long-lived perennial strategy that spreads reproductive 
effort out evenly among a very large number of reproductive cycles. 
Many species, including bristlecone pine, many deep-sea zoanthids, 
and other supercentennial species that reproduce regularly show such 
a habit (Baker, 1992; Druffel et al., 1995; Finch, 1998; Rozas, 2003). 
Intermediate strategies complete reproduction over a shorter times-
cale than bristlecone pine, but over a longer timescale than Adactylid 
mites.

The continuous conception of parity is therefore very simple: 
Parity should be understood as a composite trait, and, rather than 
considering only whether organisms complete reproduction within a 
given year, life-history strategies should be compared by the degree 
to which they concentrate or disperse reproductive effort—and hence 
risk of reproductive failure—in time. For example, a mature biennial 
strategy (where an organism reproduces once per year in two con-
secutive years) distributes reproductive effort over a shorter times-
cale than does a long-lived perennial congener (where an organism 
reproduces once per year in many years); although the biennial strat-
egy is not semelparous, it is further toward the “uniparous” end of the 
continuum of modes of parity than is the perennial strategy. Similarly, 
an annual-semelparous life history that reproduces rapidly lies further 
toward this end of the continuum than does an annual-semelparous 
life history in which reproduction is spread over a longer period of 
time. In extending the underlying logic of the discrete conception in 
this way, the insights gained by comparing “extreme” semelparous and 
iteroparous strategies are included, but the explanatory power of this 
logic is extended to apply to intermediate strategies as well.

3.2 | Empirical support for the continuous 
conception of parity

There is considerable empirical support, from laboratory and field 
studies alike, for the notion that parity varies continuously. Many 
species are facultatively semelparous, others reproduce irregularly or 
opportunistically, and many comparisons between related iteroparous 
and semelparous species do not show measurable differences in fac-
tors affecting intrinsic rates of increase, including age-specific rates of 
mortality. These situations are not uncommon in nature. The problem 
they present is significant because the evolutionary transition from 
semelparity to iteroparity (and back) is ubiquitous, and has occurred 
in a wide variety of taxa (see Table 1 for an example using data from 
angiosperm orders).
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There are important consequences for adopting the continuous 
conception of parity as a starting point for modeling the evolution of 
different modes of parity. Mathematical models based on the discrete 
conception of parity often predict threshold values—in mortality rate, 
size at initiation of reproduction, or expected growth rate—that do not 
agree with empirical observation (Lessells, 2005; Omielan, 1991; Piñol 
& Banzon, 2011; Su & Peterman, 2012; Trumbo, 2013; Vaupel, Missov, 
and Metcalf, 2013). In particular, ESS models derived from assump-
tions rooted in the discrete conception of parity frequently under-
estimate the adaptive value of semelparous reproductive strategies; 
even after accounting for the effects of environmental stochasticity 
and density dependence, ESS models predict that semelparous strate-
gies should be less abundant—and less fit—than they have been found 
to be (Benton & Grant, 1999). In addition, there are empirical cases 
that explicitly do not conform to the predictions of the discrete model. 
For example, an analysis of 12 winter-establishing primrose species 
(Oenothera: Onagraceae) found no significant differences in mortality 
estimates or in environmental determinants of fitness for semelparous 
and iteroparous species (Evans et al., 2005). In some cases, the prob-
lem may be that life histories are too complex for organisms to follow 
discrete strategies; many salmon species also do not fit neatly into 
“classical” annual- or perennial-semelparous and perennial-iteroparous 
classifications (Hendry et al., 2004; Unwin et al., 1999). Other research 
has suggested that deterministic models of investment may provide 
more accurate demographic predictions for long-lived than short-lived 
semelparous species, given that many annual-semelparous species 
(usually plants) show substantial phenotypic plasticity in phenology 
(e.g., size at first flowering), offspring quality, and overall fecundity 
(Burd, Read, Sanson, Jaffre & Jaffré, 2006).

To provide a coherent exposition of the extensive body of recent 
work that shows empirical support for the continuous conception of 
parity, in what follows I focus on three “intermediate” life histories that 
are neither annual-semelparous nor perennial-iteroparous, but ex-
press another mode of parity that falls somewhere in between. These 
include the following: (1) facultative iteroparity; (2) facultative semel-
parity; and (3) multiple modes of parity expressed simultaneously. 
Although these three examples are the most common modes of parity 
that are neither classically (annual or perennial) semelparous nor iter-
oparous, other intermediate strategies exist, particularly when species 
or clades have idiosyncratic life histories. In addition, many differences 
in mode of parity are due to phenotypic plasticity; that is, life-history 
strategies “intermediate” between annual-semelparity and perennial-
iteroparity are displayed in response to an important environmental 
cue. For instance, polar cod (Boreogadus saida) are annual-semelparous 
in nature, but can—given low extrinsic mortality—reproduce in two 
consecutive years in captivity, making them facultatively iteroparous 
(Hop and Gjøsæter, 2013; Hop, Trudeau & Graham, 1995). However, 
males and females of this species also seem to have different life histo-
ries—males begin to reproduce at an earlier age and can, in response to 
environmental stressors of varying strength, allocate varying (and even 
extreme) amounts of reproductive effort to a single instance of repro-
ductive activity; parity in this species is thus also continuously varying 
and phenotypically plastic, and populations display multiple modes of 

parity at once (Nahrgang et al., 2014). Although examples of each life 
history are provided below, many more have been added to Table 2, a 
list of species showing facultatively varying, continuously varying and 
phenotypically plastic modes of parity. However, not all populations 
simultaneously expressing multiple modes of parity do so because of 
phenotypic plasticity; in many cases, this variation is the result of ge-
netic differences between individuals (e.g., Hautekèete, Piquot, and 
Van Dijk, 2001; Leys et al., 2014). Finally, it may seem conceptually 
strange to present “facultative” life histories as evidence in favor of 
the continuous conception of parity, as the very logic of this concep-
tion speaks of a continuum of strategies, rather than a phenotypically 
plastic switch between discrete ones. I discuss facultative semelparity 
and iteroparity here for two reasons: first, these strategies are genu-
ine examples of nondiscrete parity. They are often remarkable from a 
natural history viewpoint--even if they do not show multiple modes of 
parity--and are often reported in this way in the literature. Thus, this 
is an abundant source of empirical evidence that organisms do not 
show, as demographic models predict, only a single mode of parity. 
Second, mode of parity is often subject to a supervening effect of sea-
sonality (see below for further discussion of this effect), and therefore, 
strategies intermediate between annual-semelparity and biennial- or 
perennial-iteroparity (for instance) may disappear not because there 
can only be two modes of parity, but rather because offspring are only 
viable when they are produced in certain seasons. Such seasonal ef-
fects are certainly important, but they do not arise strictly from differ-
ences in the intrinsic rate of increase. Species which show facultative 
switching may, where seasonal effects are less pronounced, show a 
wider range of possible modes of parity.

3.2.1 | Facultative iteroparity

Many semelparous species have shown the ability to facultatively re-
produce one or more times after an initial bout of reproduction has 
begun and ended—this is termed “facultative iteroparity.” Facultative 
iteroparity can be adaptive when it either: (1) provides an oppor-
tunity to realize fitness gains from an unexpected abundance of 
resources, or (2) shifts reproductive effort from inopportune to op-
portune times. The first type of adaptive facultative iteroparity occurs 
when additional bouts of reproduction increase fitness by permitting 
unexpected “bonus” resources to be invested in new offspring. For 
example, mothers of the semelparous crab spider Misumena vatia 
(Araeae, Thomsidae) typically lay and provision a single brood of eggs 
(Gertsch, 1939; Morse, 1979); however, in response to high food 
availability and/or usually warm environmental conditions, they are 
capable of laying and caring for a second brood if sperm supplies are 
not depleted (Morse, 1994). A similar facultative double-broodedness 
in response to unusually favorable environment has been observed in 
the green lynx spider Peucetia viridans (Fink, 1986). In addition, a small 
proportion of Chinook salmon (Onchorhynchus tshawytscha), which 
typically reproduce only once, have been found to survive and repro-
duce in two or three additional seasons (Unwin et al., 1999). Tallamy 
and Brown (1999) showed that large, well-provisioned female burying 
beetles in multiple species in the genus Nicrophorus can reproduce 
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more than once, despite the fact that small females can typically breed 
only once.

The second form of adaptive facultative iteroparity occurs when 
deferral of reproductive effort—from a primary reproductive episode 
to a secondary one—allows an organism to reproduce at a more op-
portune time. Reproduction is deferred to seek the highest marginal 
fitness return on invested reproductive effort. For example, when high 
organic pollution levels disrupt primary reproduction in the freshwa-
ter leech Erpobdella octoculata, reproduction ceases and remaining re-
productive effort is deferred to a second reproductive bout produced 
the next year (Maltby & Calow, 1986). Similar behavior has been seen 
in another Erpobdellid leech, Erpobdella obscura (Davies & Dratnal, 
1996; Peterson, 1983) as well as in many cephalopods (Rocha, Guerra 
& González, 2001). Adaptive deferral of reproductive effort is com-
mon in crab spiders. In Lysiteles coronatus, artificial brood reductions 
resulted in the production of a second brood, and the degree of defer-
ral was proportional to the degree of the original reduction (Futami & 
Akimoto, 2005). This was also observed in the field in Eresid spiders 
of the genera Anelosimus and Stegodyphus, both of which faculta-
tively produce a second brood in response to nest predation (Grinsted, 
Breuker & Bilde, 2014; Schneider & Lubin, 1997; Schneider, Salomon 
& Lubin, 2003). Although the adaptive potential of facultative itero-
parity is often apparent, facultative iteroparity may also be vestigial 
instead of adaptive. In this case, the organism’s life history merely re-
flects an ancestral state, and the second (or additional) bout of repro-
duction should confer little or no adaptive value (Golding & Yuwono, 
1994; Hughes & Simons, 2014b).

3.2.2 | Facultative semelparity

Facultative semelparity occurs when species that are normally 
perennial-iteroparous—that is, they have multiple, discontinuous 
reproductive episodes that span more than one year—are capable 
of expressing only a single reproductive bout (Christiansen, Præbel, 
Siikavuopio & Carscadden, 2008). This is a useful strategy for  
organisms to use to take advantage of unusually good environ-
mental conditions for reproduction. For example, in the short-lived 
mustard Boechera fecunda (syn. Arabis fecunda; Brassicaceae), plants 
are capable of wide range of reproductive strategies, from near-
instantaneous semelparity to multiyear iteroparity. This is because 
B. fecunda can produce many small axillary inflorescences in any 
given year, and their production does not preclude flowering by 
the same rosette in the subsequent year. However, plants can also 
produce large “terminal inflorescences” that exhaust remaining re-
sources and lead to senescence and death. Although some plants 
produce axillary inflorescences for several years before a terminal 
inflorescence, others produce a terminal inflorescence in their first 
year (Lesica & Shelly, 1995; Lesica & Young, 2005). A similar system 
is seen in common foxglove, Digitalis purpurea (Scrophulariaceae), 
which is predominantly biennial or perennial-iteroparous, but can 
be facultatively semelparous if resource availability in the first 
year is high (Sletvold, 2002). Facultative semelparity has also been 
observed in capelin (Christiansen et al., 2008; Loïc et al., 2012), Fo
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squid, soil microarthropods (Siepel, 1994), dasyurid marsupials 
(Kraaijeveld, Kraaijeveld-Smit, and Adcock, 2003; Martins, Bonato, 
Silva & Reis, 2006), and in the flowering plants Ipomopsis aggregata 
(Silvertown & Gordon, 1989) and Cynoglossum officinale (Williams, 
2009). Some facultatively semelparous species show a continuous 
range of types of reproductive episode, rather than discretely fatal 
or nonfatal ones. Erysimum capitatum (Brassicaceae) produces mul-
tiple reproductive episodes in environments where water is plen-
tiful; however, where water is scarce, it expresses a semelparous 
strategy (Kim & Donohue, 2011).

3.2.3 | Multiple modes of parity

The realization of multiple modes of parity at once is a major source 
of confusion for mathematical models that predict a single optimal 
value for all individuals, regardless of whether they are all supposed 
to express an annual-semelparous or perennial-iteroparous habit. The 
range of different modes of parity expressed need not be dramatic 
and may be due to phenotypic plasticity, but, as a consistent response 
to environmental triggers, even small differences in the degree of con-
centration of reproductive effort should significantly affect fitness. In 
many cases, the simultaneous realization of multiple modes of parity 
occurs because different individuals in a population express a continu-
ous range of modes of parity— for example, some annual plants repro-
duce over a long timescale, others complete reproduction over only a 
few days (e.g., Hughes & Simons, 2014c). Such continuous differences 
in mode of parity can occur both: (1) among individuals; or (2) within 
the reproductive episode of a single individual.

Strong empirical evidence of multiple modes of parity realized at 
once is found in sea beets (Beta spp., Amaranthaceae), which display 
reproductive strategies along “a gradient from pronounced itero-
parity to pronounced semelparity” (Hautekèete et al., 2001, p. 796). 
Interestingly, the production of multiple modes of parity is elicited as 
an adaptive response to variable selective pressures faced by these 
species (e.g., predation and disturbance). High levels of environmen-
tal stress cause individuals to trade off future fecundity for increased 
immediate reproductive effort, resulting in a parity gradient tend-
ing to semelparity wherever environmental stress becomes intense 
(Hautekèete, Piquot, and Van Dijk, 2001, 2009). This pattern is con-
sistent with the prediction that higher current reproductive effort can 
prevent organisms from being exposed to uncertain or risky environ-
ments (Rubenstein, 2011; Trumbo, 2013; Vahl, 1981; Williams, 1966). 
Similar trade-offs have been observed in Yucca whipplei (Huxman & 
Loik, 1997), Chusquea ramosissima (Montti, Campanello & Goldstein, 
2011), and Onopordum illyricum (Rees, Sheppard, Briese & Mangel, 
1999). Populations of Lobelia inflata are also capable of producing a 
range of different modes of parity, from a nearly instantaneous annual-
semelparity, where plants produce many similar flowers quickly and 
simultaneously, to (nonadaptive) facultative biennial-iteroparity, 
where as much as half of all reproductive effort is invested in a second 
reproductive episode. The time of initiation of reproduction strongly 
predicted which of these strategies is realized (Hughes & Simons, 
2014b,c).

Many insect species are also capable of displaying a range of 
modes of parity among individuals (Trumbo, 2013). In the assassin bug 
(Atopozelus pallens), females deposit eggs in small clutches, approxi-
mately every two days. However, the number of clutches—and hence 
how prolonged this reproductive episode is—varies substantially 
(Tallamy, Walsh & Peck, 2004). Similarly, female European earwigs 
(Forficula auricularia) show continuous variation in clutch size and can 
even become semelparous by laying only a single one (Meunier et al., 
2012; Ratz, Kramer, Veuille & Meunier, 2016). Most insects show-
ing variation in the number of clutches produced do so in response 
to abiotic cues, particularly temperature and day length (Bradshaw, 
1986). This behavior can also be found in ascidians (Grosberg, 1988) 
and semelparous mammals (Mills et al., 2012; Wolfe, Mills, Garkaklis 
& Bencini, 2004).

Phenotypic plasticity within a reproductive episode of a single in-
dividual is noticeable when a semelparous organism displays a chang-
ing reproductive strategy—varying along the continuum of parity—that 
cannot be attributed to developmental, environmental, or architec-
tural constraints (Diggle, 1995, 1997). This pattern is more difficult 
to detect than phenotypically plastic strategies that differ between 
individuals, but in many systems observable differences exist between 
the “packaging” of reproductive effort, resulting in adaptive variation 
in phenology or offspring quality through time. This can also be diffi-
cult, because—since they reproduce only once—semelparous organ-
isms are expected to show high reproductive effort (Bonser & Aarssen, 
2006). However, the development of fruits of the semelparous plant 
Lobelia inflata varied continuously; in this system, late fruits showed 
accelerated phenology and higher offspring quality relative to early 
fruits. This pattern, which indicated that more reproductive effort was 
invested in later fruit, shows that L. inflata does not “reproduce once” 
but dynamically allocates reproductive effort throughout a sequence 
of repeated fruiting events (Hughes & Simons, 2014a, 2015). Likewise, 
in populations of the semelparous plant Centaurea corymbosa, plants 
showed highly variable life cycles—dynamically varying the proportion 
of reproductive effort allocated to sequential flowers—depending on 
environmental conditions and crowding (Acker, Robert, Bourget & 
Colas, 2014).

3.3 | Evolutionary transitions between modes of 
parity are ubiquitous

Transitions between different strategies along the semelparity–
iteroparity continuum are common throughout the tree of life. 
Furthermore, modes of parity appear to be evolutionarily labile within 
species, and many species show significant intraspecific differences 
in the expression of parity (Hughes & Simons, 2014a,c; Maltby & 
Calow, 1986); these changes are often due to differences in the ge-
netic regulation of the traits underlying modes of parity. While some 
clades consistently display a narrower range of modes of parity (e.g., 
placental mammals are typically iteroparous and have at most tens of 
reproductive bouts in their lives, many others show considerable vari-
ability (see Table 1 for data from plant orders). Among cephalopoda 
(Mollusca), Loligo opalescens, Octopus vulgaris, O. mimus, and O. cyanea 
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display extreme semelparity (Ikeda, Sakurai & Shimizaki, 1993; Rocha 
et al., 2001), while Nautilus spp. show extreme perennial-iteroparity 
(Ward, 1983, 1987). However, other cephalopods, including Octopus 
chierchiae, Sthenoteuthis oualaniensis, and Dosidicus gigas show varying 
degrees of facultative iteroparity (Laptikhovsky, 1998, 1999; Nesis, 
1996; Rocha et al., 2001), while still others, including Sepia officinalis, 
Loligo vulgaris, L. bleekeri, L. forbesi, and Ilex coindetii show facultative 
semelparity, and, in the case of S. officinalis, a strikingly variable du-
ration of reproduction (Baeg, Sakurai & Shimazaki, 1993; Boletzky, 
1987, 1988; Gonzalez, 1994; Gonzalez & Guerra, 1996; Melo & Sauer, 
1999; Rocha & Guerra, 1996). Furthermore, in many of these spe-
cies key traits—such as the timing and duration of reproduction—show 
substantial dependence on environmental effects (Rocha et al., 2001). 
Similar lability in these traits is also present in other clades, includ-
ing both angiosperms and animals (Crespi & Teo, 2002; Hautekèete, 
Piquot, and Van Dijk, 2001; Maltby & Calow, 1986; Tallamy & Brown, 
1999; Varela-Lasheras & Van Dooren, 2014). Therefore, since transi-
tions from mode of parity to another have occurred throughout the 
tree of life, a continuous understanding of parity may clarify the rela-
tionship between life-history strategy and speciation.

4  | UNDERSTANDING THE EVOLUTION OF 
PARITY AS A CONTINUOUS TRAIT

What changes should be made in light of the evidence that parity is a 
continuous trait? In this section, I will focus on three main recommen-
dations. First, I provide a short discussion of how seasonality should 
not be conflated with mode of parity. Second, I discuss the necessity 
of developing new mathematical modeling approaches that treat par-
ity as a continuous variable. This is not simple, since parity itself is 
a composite trait, and relies on the coordination of many biological 
functions at once. Third, I discuss why ecologists should ground fu-
ture studies of adaptive life-history strategies in mechanistic details 
derived from genetic studies of continuously varying life-history traits 
underlying reproduction and, consequently, parity. These recommen-
dations should improve both the validity and reliability of predictive 
models of life-history evolution, while simultaneously providing a 
framework for interpreting empirical findings regarding the expres-
sion of reproductive effort through time.

4.1 | Seasonality and mode of parity

One major implication of treating parity as a continuous variable 
is that this reconception allows us to distinguish between parity 
and seasonality. Parity describes the concentration or diffusion of 
reproductive effort in time, which is distinct from the question of 
seasonal reproduction—that is, how organisms should distribute 
reproductive effort among seasons, when seasonal cycles deter-
mine the favorability of establishment, growth, and reproductive 
conditions (Bulmer, 1994; Calow, 1979; Charnov & Schaffer, 1973; 
Cole, 1954; Evans et al., 2005; Ranta, Tesar, Alaja & Kaitala, 2007; 
Schaffer and Gadgil (1975); Schaffer, 1974b; Young, 1981). It is, 

of course, clear that seasonality is related to parity. Insofar as an 
annual-semelparous organism is defined by the fact that it has a 
single reproductive episode that occurs within one year, it is likely 
to experience selection for strategies that optimize its reproduc-
tive schedule relative to season-specific environmental effects; this 
means that an annual-semelparous organism is more likely to show 
predictable seasonal patterns than a perennial-iteroparous con-
gener that can escape a poor season by overwintering. However, 
the explanatory power of such seasonal adaptations may be much 
weaker when we compare a fast-reproducing semelparous organ-
ism with a slower-reproducing semelparous congener, or when 
we compare an iteroparous strategy where reproductive effort is 
distributed over two seasons with another where reproductive ef-
fort is distributed among ten seasons. Seasonal effects are likely to 
supervene on reproduction whenever regular intervals occur that 
have an impact on the favorability of reproduction. Thus, it may be 
more fruitful to understand annuality and perenniality as strategies 
defined by the “digitization” of reproduction in response to season-
ality. The advantage of this approach is that it makes it easier to 
understand flexible life histories, regardless of whether a species is 
semelparous or iteroparous.

There is widespread empirical evidence that seasonality and parity 
can vary independently. One common pattern is integer changes in 
voltinism among organisms that share a common mode of parity. For 
example, the Muga silkworm (Antheraea assamensis) is semelparous 
and multivoltine throughout its natural range (from India to Borneo). 
This species produces up to six generations per year, with the num-
ber of reproductive cycles depending on length of the season (Ghorai, 
Chaudhuri & Senapati, 2009; Singh & Singh, 1998). However, the 
closely related Chinese tussar silkmoth, Antheraea pernyi, is bivoltine 
at the southern margins of its range, but is univoltine in northern China 
and Korea. Moreover, this continuous variation in voltinism along 
an ecological cline is due to continuous variation in environment-
dependent biogenic monoamine production in the brains of diapause 
pupae (Fukuda, 1953; Liu, Li, Li & Qin, 2010; Matsumoto & Takeda, 
2002). Life histories also vary continuously among populations of the 
wild silkmoth (Bombyx mandarina) and its domesticated counterpart 
(Bombyx mori), where populations in colder climates (e.g., European 
Russia) are univoltine, whereas those in China and Korea are bivoltine 
or multivoltine (Xia et al., 2009). Similar examples can also be found 
in crucifers (Springthorpe & Penfield, 2015; Williams & Hill, 1986), 
orchids (Chase, Hanson, Albert, Whitten & Williams, 2005), freshwa-
ter mollusks (Mackie & Flippance, 1983; McMahon & Bogan, 2001), 
and Centaurea (Asteraceae; Acker et al., 2014), among others. In each 
of these systems, a distinct continuum of reproductive strategies 
despite the supervening effect of seasonality is readily observable. 
Additionally, new models are being developed that consider genera-
tion length independently from parity (Waples, 2016). Thus, we can 
easily tease apart the question of whether reproduction is concen-
trated in time—that is, whether a given species is semelparous—from 
the question of whether seasonality requires that, in temperate cli-
mates, late-reproducing individuals should enter diapause rather than 
reproduce immediately.



     |  8247HUGHES

4.2 | Mathematical models of parity

A second problem facing life-history theory is the challenge of ex-
tending the logic of existing life-history models to account for the 
continuity of modes of parity. Although empirical studies of many 
taxa support the continuous conception of parity, the evolution of 
different modes of parity from one another has generally been ex-
plained by demographic models that compare the special case where 
annual-semelparous and perennial-iteroparous strategies have differ-
ent demographic implications. This makes it relatively difficult to even 
generate predictions for organisms whose reproductive behavior does 
not show an explicitly annual-semelparous or perennial-iteroparous 
life history, or for species or populations that display continuous dif-
ferences in parity. Generalizing these models to provide quantitative 
predictions for such situations should thus be an important goal for 
life-history theory. A newer model should, as an axiom, treat parity as 
a continuous trait and should be able to explain both the evolution of 
semelparous strategies from iteroparous ones (or vice versa) as well as 
the adaptive value of intermediate modes of parity.

These new models will have to build on and learn from a consider-
able body of existing models detailing the eco-evolutionary dynamics 
of semelparous and iteroparous life-history strategies. Early concep-
tual and mathematical models of optimal semelparous reproduction 
were generally simple and deterministic and were designed to predict 
a single “threshold” value that optimized life-history characters such as 
size at first reproduction (Bell, 1980; Young, 1981). Threshold models 
of this type include senescence-threshold models based on the Penna 
aging model (Piñol & Banzon, 2011), as well as development-threshold 
models such as age-structured life-history models. Age-structured 
models treat age at reproduction, and hence parity, as a discrete vari-
able, and assess the evolutionary consequences of the degree of over-
lap between juvenile (i.e., prereproductive) and adult (reproductive) 
classes in a population (Wikan, 2012). Among the best known of these 
are Leslie models, which predict either few evolutionary stable states 
for semelparous organisms (Cushing, 2009, 2015; Cushing & Henson, 
2012; Cushing & Stump, 2013) or even that populations should con-
sist entirely of individuals of a given age class (Rudnicki & Wieczorek, 
2014). Still other threshold models make similar predictions for sur-
vival traits (Da-Silva, Martins, Bonato & Dos Reis, 2008).

Some of the assumptions made by threshold models may be re-
solved by incorporating a wider range of possible life histories. For 
instance, Rees et al. (1999) showed that those deterministic age-
structured models, which rest on the assumption that parity is discrete, 
consistently overestimate time at first reproduction in monocarpic 
plants. This result is the problem of the discrete conception writ large: 
Empirical data does not conform to model predictions because empiri-
cally, the concentration of reproductive effort in time is not as extreme 
as would be predicted by if the annual-semelparous life history were 
as extreme as it was predicted to be (see also Marshall and Keough, 
2007). Such variability—caused by developmental plasticity and sto-
chastic variation in the timing of cues—confounds threshold models, in 
which semelparous reproduction is held to be optimized closely within 
a given environment and has therefore prompted the formulation of 

new modeling approaches that consider a range of semelparous strat-
egies in response to environmental heterogeneity (reviewed in Metcalf 
et al., 2003).

Recent mathematical models also fall into several types, each 
with a particular ecological focus. Integral projection models, which 
incorporate random fluctuations in environmental parameters related 
to reproduction, were developed to more accurately predict time 
to first reproduction and size at reproduction, both in iteroparous 
species (e.g., Kuss, Rees, Aegisdottir, Ellner & Stocklin, 2008) and in 
semelparous species with a prolonged semelparous reproductive epi-
sode (Ellner & Rees, 2006; Rees, Sheppard, Briese, and Mangel, 1999; 
Sletvold 2005). Time-lagged integral projection models attempt to ac-
count for the temporal discounting of reproductive value as well as 
size-specific effects on reproductive effort (Kuss et al., 2008). Newer 
age-structured stochastic models incorporate continuous variation in 
life-history traits to predict optimal timing of reproduction; while these 
resemble earlier models that treat parity wholly as a discrete variable, 
the life-history traits in these models are treated continuously (Davison 
& Satterthwaite, 2016; Oizumi, 2014; Oizumi & Takada, 2013).

Several recent models have been developed to predict reproduc-
tive trait values given other (measured or measurable) life-history pa-
rameters. This modeling methodology is intuitive and compatible with 
the idea that parity is a continuous trait. For example, Kindsvater et al. 
(2016) used a stage-structured model to assess the degree to which 
trait covariation constrained life-history adaptation in salmonids. 
Other kinds of data-driven models fall into two main types: (1) mod-
els that highlight the importance of phenotypically plastic reaction 
norms as maximizing fitness despite stochastic variability in environ-
ment (e.g., Burd et al., 2006); and (2) models that emphasize the innate 
variability in reproductive characters within species (Austen, Forrest 
& Weis, 2015; Drouineau, Rigaud, Daverat & Lambert, 2014). Both of 
these ideas may be useful in modeling selective pressures on a contin-
uum of modes of parity. Moreover, rather than using a single model to 
characterize semelparous investment in flowers and offspring, authors 
are now proposing a “meta-modeling” approach to annual plant repro-
duction, recognizing that semelparous reproduction can be fine-tuned 
by natural selection through phenotypic plasticity (Hughes & Simons, 
2014a).

Because parity may be most fruitfully understood as the con-
centration of reproductive effort in time, another class of model that 
may prove to be useful is the dynamic state variable model (DSVM). 
DSVMs are powerful dynamic optimization models used to character-
ize mechanistic relationships in ecology and have the benefit of being 
able to be solved computationally (Clark & Mangel, 2000). Developing 
a DSVM can offer insight into the relative impact of underlying causal 
processes (in this case, the underlying patterns of genetic regulation 
of reproductive traits) on the concentration of reproductive effort, 
and, ultimately, on a state variable of interest (in this case, total plant 
fitness). Because the model follows the value of a state variable, the 
effects of multiple fitness components can be considered at once. 
Moreover, by parameterizing a DVSM with phenotypic data, ecolo-
gists can determine the additive and multiplicative contributions of 
variation at different gene loci, or between related phenotypes of 
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interest. This is an important advantage insofar as continuous models 
of parity should, where possible, include mechanistic detail. DSVMs 
are compatible with this approach: They can integrate a wide range of 
functional, spatial, structural, behavioral, or environmental limitations 
constraining investment in reproduction and can generate testable 
predictions by determining optimal reproductive decision schedules 
(Peterson & Roitberg, 2010; Skubic, Taborsky, McNamara & Houston, 
2004; Yerkes & Koops, 1999). Although the specification of mathe-
matical models is complex, and a thorough articulation and validation 
of a mathematical model of continuously varying parity is beyond the 
scope of this review, this approach offers hope for a simple, iterative 
improvement of the discrete-conception threshold and age-class mod-
els that have been validated in the past.

4.3 | Molecular regulation of parity

The third implication of understanding parity as a continuously vary-
ing trait is that life-history models should be rooted in mechanistic de-
tail, and identifying the mechanistic basis of different modes of parity 
(e.g., the contributions of individual genes and/or molecular pathways 
responsible for initiating and continuing reproduction) should be an 
important priority for evolutionary ecology. These models should sup-
plement and extend the theoretical predictions of extant conceptual 
models. Integrating theoretical ecology with molecular biological data 
was not possible when early life-history models were developed, but 
since parity is determined by the onset and completion of reproduc-
tive episodes, and recent advances in molecular ecology have made 
it possible to understand the physiological and genetic basis of the 
timing of these events in many systems, developing an approximate 
integration of molecular detail and theoretical explanation is, in many 
systems, an achievable goal. Numerous examples of continuously 
expressed physiological processes result in continuous patterns of 
reproduction, and hence support the continuous conception of par-
ity (Table 3). In this section, I will briefly explain how parsing out the 
contributions of a single gene can improve our understanding of how 
modes of parity can vary continuously. To do so, I will discuss an im-
portant example: the control of the initiation of flowering in response 
to vernalization as it is regulated by FLOWERING LOCUS C (FLC) and 
its orthologues in the Brassicaceae.

In Arabidopsis, continuous variation in parity—that is, the timing of 
floral initiation and the duration of flowering—is determined by con-
tinuous expression of flowering-time genes, including FLOWERING 
LOCUS T (FT) (Imaizumi & Kay, 2006; Kardailsky, 1999; Kotake, 
Takada, Nakahigashi, Ohto & Goto, 2003; Simon, Rühl, Montaigu, 
Wötzel & Coupland, 2015; Turck, Fornara & Coupland, 2008; Yanovsky  
& Kay, 2002), FRIGIDA (FRI) (Johanson et al., 2000; Le Corre, Roux & 
Reboud, 2002; Michaels, Bezerra & Amasino, 2004; Schläppi, 2006; 
Shindo et al., 2005; Stinchcombe et al., 2004), FLOWERING LOCUS 
C (Amasino, 1996; Bastow et al., 2004; Chiang, Barua, Kramer, 
Amasino & Donohue, 2009; Coupland, 1995; Imaizumi & Kay, 2006; 
Kim et al., 2007; Michaels & Amasino, 1999; Michaels, He, Scortecci, 
and Amasino, 2003; Michaels et al., 2004; Sheldon, Rouse, Finnegan, 
Peacock & Dennis, 2000), GIGANTEA (GI) (Fowler et al., 1999; Jung 

et al., 2007; Mizoguchi et al., 2005), and CONSTANS (CO) (Koornneef, 
Alonso-Blanco, Peeters & Soppe, 1998; Putterill, Robson, Lee, Simon 
& Coupland, 1995; Redei, 1962; Samach et al., 2000; Suárez-López 
et al., 2001; Valverde et al., 2004). Through different pathways, GI and 
CO activate the floral integrator gene FLOWERING LOCUS T (FT), which 
transcribes a protein that activates floral identity genes in the shoot 
apical meristem (Tiwari et al., 2010; Turck et al., 2008). In contrast, 
FLC—along with FRI, which regulates FLC transcription—represses 
flowering until exposure to cold silences its expression.

Although much is known about flowering in the Brassicaceae, here 
I concentrate on FLC, since continuous differences in FLC expression 
cause continuous variation in the duration and timing of semelparous-
annual reproduction in A. thaliana (Burghardt, Metcalf, Wilzcek, 
Schmitt & Donohue, 2015; Wilzcek et al., 2009). This variation causes 
continuous differences in parity. For instance, throughout Europe, par-
ity in wild populations of Arabidopsis thaliana is strongly determined 
by climate and/or latitude: Toward the colder margins of its range, in 
northern Finland, plants show a fast-cycling summer semelparous-
annual life history, while populations near the Mediterranean show a 
winter-annual life history, and populations in intermediate locations 
(e.g., the UK) display intermediate life histories (Ågren & Schemske, 
2012; Méndez-Vigo, Picó, Ramiro, Martínez-Zapater & Alonso-Blanco, 
2011; Thompson, 1994). Laboratory studies have identified FLC as a 
gene responsible for this life-history variation. For example, Wilzcek, 
Roe, Knapp, Cooper, Martin, Muir, Sim et al. (2009) introgressed a 
functional FRI allele into A. thaliana ecotypes with nonfunctional al-
leles. They predicted that this genetic modification—which causes 
the upregulation of FLC—would see plants transition from a summer-
annual to winter-annual life history. Instead, plants with functional FRI 
alleles flowered only 10 days later than those with nonfunctional FRI 
alleles, causing the authors to note that their results “suggest that A. 
thaliana ecotypes cannot simply be divided into two discrete classes 
of winter-annual and rapid-cycling genotypes. Rather, most ecotypes 
may be capable of both life histories” (p. 933). This prediction is consis-
tent with recent data from studies of the impact of FLC on the life his-
tories of A. thaliana ecotypes sourced from different parts of its native 
range. While populations varying at the FLC locus show substantial 
local adaptation with respect to important life-history traits—includ-
ing those, such as length of duration of reproduction, which underlie 
mode of parity—most ecotypes adopt new life histories when translo-
cated to radically different environments (Ågren, Oakley, Lundemo & 
Schemske, 2016; Dittmar, Oakley, Ågren & Schemske, 2014). In this 
way, studying the regulation of FLC also provides a useful study of 
how seasonality can supervene on reproduction, since plants from 
the same genetic background can show starkly different life histories 
when subjected to different seasonal schedules (Ågren & Schemske, 
2012; Postma & Ågren, 2016).

Where the prevalence of different FLC alleles differs between pop-
ulations grown in similar environments, differences in FLC expression 
can result in different flowering phenologies, and even different modes 
of parity (Banta & Purugganan, 2011; Johanson et al., 2000; Michaels, 
Bezerra, and Amasino, 2004; Schläppi, 2006). This probably an adap-
tive response; life-history models of the natural genetic variation 
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at the FLC and FRI loci have shown that FLC expression explains 
a relatively high level of variation in fitness (Burghardt et al., 2015; 
Donohue, Burghardt, Runcie, Bradford & Schmitt, 2014; Springthorpe 
& Penfield, 2015). Moreover, empirical studies suggest that such fit-
ness differences may account for the latitudinal cline in Arabidopsis 
life history found in natural populations (Caicedo, Stinchcombe, Olsen, 
Schmitt & Purugganan, 2004). Thus, it seems that local adaptation of 
different modes of parity results from populations experiencing stabi-
lizing selection for climate-appropriate FLC alleles (Postma & Ågren, 
2016).

While fitness differences are tightly linked to phenotypic variation, 
major plant phenotypes such as flowering phenology are highly plas-
tic in Arabidopsis. The genetic and epigenetic regulation of FLC reg-
ulates the timing of important life-history transitions, determining a 
plant’s reproductive schedule, and hence its mode of parity (Albani & 
Coupland, 2010; Turck & Coupland, 2014). However, environmental 
factors such as seed maturation and germination temperatures can 
interact with plant genotypes to produce “clusters” of phenotypi-
cally similar, yet genotypically distinct, plant phenologies (Burghardt, 
Edwards & Donohue, 2016). Environmental variation can therefore 
facilitate the adoption of multiple flowering phenologies (e.g., summer 
annual, winter annual, rapid cycling)—and thus modes of parity—from 
a single Arabidopsis ecotype (Méndez-Vigo et al., 2011; Simpson & 
Dean, 2002).

Understanding how the FLC locus regulates the concentration of 
reproductive effort in time is a conceptually important example of how 
genetics can be an important source of new data for next-generation 
models of the evolution of modes of parity. FLC is not an isolated ex-
ample of a single locus strongly influencing parity. Although a compre-
hensive description of all genes linked to parity in all species is beyond 
the scope of this article, a few notable examples from a variety of 
well-studied taxa are presented in Table 3. Genes linked to traits un-
derlying parity, including reproductive maturation, stress response, 
reproductive phenology, and senescence, have also been the subject 
of ongoing research (Albani, Castaings, Wötzel, Mateos & Wunder, 
2012; Amasino, 2009; Bastow et al., 2004; Blümel, Dally & Jung, 2015; 
Castaings, Bergonzi, Albani, Kemi & Savolainen, 2014; Costantini, 
Battilana, Lamaj, Fanizza & Grando, 2008; Danon, Delorme, Mailhac 
& Gallois, 2000; Eulgem, Rushton, Robatzek & Somssich, 2000; Finch 
& Rose, 1995; Garcia De Leaniz, Fleming, Einum, Verspoor & Jordan, 
2007; Hall, Luquez, Garcia, St Onge & Jansson, 2007; Kenyon, 2011; 
McBlain, Hesketh & Bernard, 1987; McCormick, Tsai & Kennedy, 2011; 
Partridge, 2010; Rion & Kawecki, 2007; Schneider & Wolf, 2008; 
Selman & Withers, 2011; Sheldon et al., 2000; Thomas, 2013; Thomas, 
Huang, Young & Ougham, 2009; Tower, 1996; Wang, Cheng, Leng, Wu 
& Shao, 2015; Wang, Farrona, Vincent, Fornara, et al. 2009; Wang, 
Farrona, Vincent, Joecker, et al. 2009; Xin, Qiu, Shan, Shan & Liu, 2008).

5  | CONCLUSIONS

We still know far too little about why the evolutionary transition from 
semelparity to iteroparity (or vice versa) is as common as it is, or under 

which ecological conditions intermediate strategies—such as faculta-
tive semelparity—will thrive. Models rooted in the conception of parity 
as a binary trait do a good job of accounting for the fitness differ-
ences between discrete semelparous-annual and iteroparous peren-
nial alternative strategies, and, even when they do not make accurate 
quantitative predictions, they have heuristic value (e.g., they permit 
the consideration of the impact that factors such as density depend-
ence and environmental stochasticity will have on parity). However, 
systems characterized by only these possibilities—and no others—are 
special cases, and thus their insights. In most cases, the life-history 
question at hand is subtle: Why does a given species evolve a faculta-
tive strategy, or why does another show intraspecific variation in the 
length of its semelparous reproductive episode?

1.	 The main conclusion of this work is that parity should be un-
derstood as the concentration of reproductive effort in time 
and should therefore be treated as a continuous trait rather 
than a discrete one. This generalization of parity offers several 
notable advantages for life-history theory. First, treating parity 
as a continuous trait allows us to treat parity as a distinct 
life-history syndrome, itself the result of correlated selection on 
a suite of continuously varying traits affecting the concentration 
of reproductive effort in time, and which may show finely graded 
correlated variation within species or populations. This is ad-
vantageous because parity is a composite trait, and the act of 
reproducing at a given time, for a given duration, etc. involves 
the recruitment and coordination of many independent traits, 
each of which may affect the expression of others. A similar 
integrative approach has proven to be valuable in studying other 
multifactorial composite traits, such as dispersal and risk spreading 
(Buoro & Carlson, 2014). Second, whether they share a common 
genetic basis or not, obvious or visible life-history characters 
may not be primary targets of selection, and evolution of such 
traits may occur as an epiphenomenon of selection on (one or 
many) other apparent or nonapparent underlying traits.

2.	 Next, the question of parity should be separated from the ques-
tion of seasonality; this is a source of abundant confusion. The 
question of the concentration of reproductive effort within a 
reproductive episode is simply not the same as the question of 
the optimal pattern of the distribution of risk in and among sea-
sons. These questions are undoubtedly related: Reproductive 
characters of long-lived semelparous species are generally easier 
to model than characters of short-lived species, and while envi-
ronmental heterogeneity plays an important role determining 
the optimal allocation of reproductive effort in annual-semelpa-
rous species, long-lived semelparous species can afford to be 
“choosier” about when they reproduce, and therefore have been 
shown to more closely approximate model predictions. This may 
be especially true when, as in many long-lived perennial-iterop-
arous species, the relationship between age and cost of repro-
duction is nonlinear. Thus, developing models that accurately 
model the fitness dynamics of short-lived semelparous species 
should be a priority.
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3.	 Third, life-history theorists should work to extend the insights 
from abstract discrete-conception conceptual and mathematical 
models to next-generation models that treat parity as a continu-
ously varying trait. Considering only annual-semelparity and per-
ennial-iteroparity as discrete alternatives, although a useful 
simplification for many models, is biologically accurate only in a 
limited number of special cases, and the continuous conception of 
parity is more likely to approximate the eco-evolutionary dynamics 
of natural systems that show intraspecific or plastic variation in the 
expression of parity.

4.	 Lastly, treating parity as a continuous variable that represents a 
syndrome of associated traits makes it easier to integrate life-his-
tory studies with mechanistic details deriving from molecular ecol-
ogy, insofar as composite life-history traits such as parity are 
unlikely to be the result of a simple presence or absence of a single 
gene or allele. Instead, parity is likely to be the product of complex 
systems of genetic, translational, and post-translational regulation. 
Systems in which discrete modes of parity are found may there-
fore reflect those cases where continuous variation in underlying 
traits is masked by the supervening effect of developmental 
thresholds that can trigger reproduction (or not).
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