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ABSTRACT 

 

Accurate species identification is challenging, especially in groups with subtle taxonomically 

diagnostic characters such as lichens. Molecular-based techniques have shown to be a valuable 

tool for accurate specimen identification in fungi, in particular the use of DNA barcoding has 

become popular. Specifically, the internal transcriber spacer (ITS) region has been shown to 

successfully discriminate a broad range of fungal species. In this study, the utility of the ITS DNA 

barcode for use as a species diagnostic tool in the cosmopolitan lichen-forming fungus, Parmelia 

(Parmeliaceae) was investigated. Sixty-eight ITS sequences were generated from specimens 

collected from five sites around the province of KwaZulu-Natal and analysed. Phylogenetic 

analysis indicated that unlike European Parmelia species that form strong monophyletic clades, 

what appeared to be morphologically very similar Parmelia species in KwaZulu-Natal are 

paraphyletic or polyphyletic. No barcode gap was detected between the intra and interspecific 

distances.  This suggests that the taxonomy of Parmelia lichens in South Africa needs to be 

thoroughly revised. The molecular data presented in this study provides evidence of previously 

hidden species-level diversity in Parmelia and as such contributes to the knowledge and 

understanding of the biodiversity of lichenized fungi in South Africa. The thermotolerance of 

Parmelia collected from different sites along an altitudinal gradient around Kwa-Zulu Natal was 

invesigated Chlorophyll fluorescence was used to assess the performance of lichen photobionts 

following stress, while ion leakage that of the mycobiont. For heat tolerance, results suggested that 

tolerance was correlated with the climatic conditions in which the lichens grow. Material from the 

coastal site of Hawaan were more heat tolerant than that from the three Midlands sites. Counter to 

our expectations, the coastal collections were more cold tolerant than those from the other sites. 
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However, the genus clearly contains genetic variation with respect to stress tolerance, suggesting 

that it may have the potential to adapt to climate change. 
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CHAPTER 1: LITERATURE REVIEW 

 

1.1 Lichens 

Lichenized fungi are a mutualistic association between a fungal partner (mycobiont) and a 

photosynthetic partner (photobiont). The photosynthetic taxon is either a cyanobacterium or a 

green alga, or in some cases both (Mitrović et al., 2011; Biosca et al., 2016). Lichens exist in four 

different morphological forms, namely: fruticose, foliose, crustose and gelatinous (Watson, 1929). 

These morphological forms allow lichens to successfully grow in different habitats around the 

world (Kosanić et al., 2015). The fungal component of the association provides water, shelter and 

minerals for the photobiont which in turn performs photosynthesis (Nguyen et al., 2013). This 

symbiotic partnership has been successful within the Ascomycota, as there are more than 18 000 

lichen species currently described out of a total of 28 000 species of Ascomycetes worldwide 

(Leavitt et al., 2012b). Lichens play important ecological roles, such as stabilizing bare soils, 

contributing to nitrogen fixation (Mark et al., 2016; Leavitt et al., 2012a), and serving as food for 

reindeers (Kanz et al., 2015) and small invertebrates such as spiders (Mukherjee et al., 2010). 

Additionally, because lichens are sensitive to environmental changes, they are often used as 

biomonitors of air pollution (Nascimbene et al., 2010; Boch et al., 2013). Even though they are 

successful and widely distributed, the genetic structure of a typical lichen population, and the 

distribution patterns of lichen species remain poorly explored (Amo de Paz et al., 2011). Trying to 

understand population structures using phenotypic-based approaches has proven hard because of 

morphological convergence or parallelism (Del-Prado et al., 2010; Leavitt et al., 2012a). The result 

has been that real species biodiversity is often underestimated or inaccurate (Del-Prado et al., 2010; 

Leavitt et al., 2013a). Modern revisions that include genetic data have revealed previously 
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overlooked lineages (Kroken and Taylor, 2001), increasing our understanding of factors that drive 

diversification, biogeographical distribution and evolutionary patterns (Kress et al., 2015). 

 

1.2 South African lichen biota 

“Many groups of lichens were poorly studied, and it was difficult to find a competent lichenologist 

to work on them”- Almborn (1987). Although written about southern African species over thirty 

years ago, unfortunately, this statement is still true today as many southern African species-rich 

regions remain unexplored (Maphangwa, 2010). In South Africa a comprehensive checklist on 

lichen biota was last produced by Ethel Doige (Doige, 1950). It is estimated that the South African 

biota consists of about 2500-3000 taxa, but only 1750 have been reported (Fryday, 2015). An 

online checklist by Feuerer (2013) is available but the problem with this list is that some taxa and 

microlichens are not included, and it only reviewed literature published up to 2002 (Fryday, 2015). 

However, there are other checklists published by Jürgens and Lohman (1995), and Schultz et al. 

(2009). It is clear that much work still needs to be done on South African lichen biodiversity, 

especially amongst microlichens (Crous et al., 2006). 

 

1.3 Traditional vs molecular based approaches in Parmeliaceae  

Parmeliaceae (Ascomycota, Lecanorales) is the largest family of lichenized fungi (Molina et al., 

2004; Divakar et al., 2005). It comprises large well-known genera such as Parmelia and Usnea. 

To date, this family is known to consist of 2726 species placed in 79 genera (Thell et al., 2012). 

Members of the Parmeliaceae occur widely in the southern hemisphere, with centers of 

distributions in southern Africa, Australia and South America (Thell et al., 2012). When 
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Eschweiler (1824) first described the Parmeliaceae family, he made use of the structure of the 

apothecia (Del-Prado et al., 2010) and ever since, this morphological character has become the 

most important for delimiting this family (Thell et al., 2012). However, there have been challenges 

with circumscriptions made on phenotypically-based methods. First, the characters used for 

separation are not always consistent (Eriksson and Hawksworth, 1998). Furthermore, specimens 

need to be in a state where the characters used for identification are clearly visible, which may 

exclude juvenile or fragmentary samples (Leavitt et al., 2011). Second, some species are 

phenotypically cryptic – in other words, the presence of distinct species that are morphologically 

similar is masked (Crespo and Pérez-Ortega, 2009; Bickford et al., 2007). In addition, lichens can 

be phenotypically plastic, resulting in their morphology being influenced by the environment 

(Pérez-Ortega et al., 2012). Third, there are semi-cryptic species that lack similar morphological 

characters but share the same ecology and geographical patterns (Crespo et al., 2010). Lastly, some 

groups are taxonomically challenging i.e. some lichen structures are difficult to discern. For these 

reasons, morphological-based analyses may be inaccurate, and often underestimate diversity 

(Pino-Bodas et al., 2012), as cryptic species may be overlooked, with certain lineages “hiding” 

within well described, recognized lineages (Kelly et al., 2011). In a survey of the Parmeliaceae, 

Elix (1993) concluded that while generative characters are constant, a combination of vegetative 

and chemical characters should be used to delineate genera in this family. Since then, no attempt 

has been made to try and circumscribe the genera in Parmeliaceae (Thell et., 2012). Unfortunately, 

there are many species in which identification remains questionable due to the ambiguity of key 

features. Therefore, the use of morphological characters alone to identify lichenized species, 

sometimes even to the level of genus, can prove difficult (Crespo and Lumbsch, 2010). 
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Molecular data provides an alternative to phenotypic-based approaches (Crespo et al., 2002). As 

in other groups, in lichens, molecular techniques have helped understand evolution and species 

delimitation, improving species circumscription (Lumbsch and Leavitt, 2011). Furthermore, in 

lichenized fungi molecular research has provided a tool for accurate species identification (Leavitt 

et al., 2013b). Accurate and improved species recognition and estimation of diversity are important 

as they help us understand biogeographical patterns, diversification (Leavitt e al., 2013a; Leavitt 

et al., 2012b) and address more fundamental biological questions (Del-Prado et al., 2010). Linking 

genetic data with information such as GPS coordinates and environmental variables could also 

help us to better understand the distribution and diversity in lichenized fungi (Leavitt et al., 2013b). 

However, the success of DNA-based approaches is dependent on the availability of a strong and 

well-curated reference sequence database from expertly identified specimens (Seifert, 2009). 

Molecular-based studies carried out so far have shown that most clades in this family are 

monophyletic and has allowed the better delimitation of genera (Divakar et al., 2016). However, 

although the taxonomy of Parmeliaceae is steadily being amended as result of increased 

publications with sequence data, there are still many genera that require attention. 

 

1.4 The effects of climate change on lichens 

Human activities such as urbanization, habitat destruction and burning fossil fuels have resulted 

in a large increase in the emission of greenhouse gases such as carbon dioxide (CO2), a major 

factor that is contributing to global climate change (Karl and Tranberth, 2003). The consequence 

of the emission of greenhouse gases is that heat is trapped in the atmosphere, causing the 

“greenhouse effect” (Hungate et al., 2003; 

www.nws.noaa.gov/os/brochures/climate/Climatechange.pdf). Climate change can be defined as 

http://www.nws.noaa.gov/os/brochures/climate/Climatechange.pdf
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the changes in global climatic patterns that are taking place as a result of human activities (Hungate 

et al., 2003). A report compiled by the Intergovernmental Panel on Climate Change (IPCC) 

predicted that temperatures over the next 30-50 years will rise between 3-5°C. The heat waves we 

will experience in future will be even more intense than those that we are currently experiencing 

(Hungate et al., 2003). Precipitation will increase because of increased evapotranspiration, sea 

levels will rise, changes in vegetation will occur, and droughts, and wildfires will become more 

common (Karl and Tranberth, 2003). Therefore, it is important to monitor changes in climate to 

be able to forecast the response of species, and for general conservation purposes (Ellis et al., 2007; 

Allen and Lendemer, 2016). 

Lichens lack a cuticle and are perennial organisms. For reasons that remain unclear, they are 

extremely sensitive to certain pollutants such as sulphur dioxide (Conti and Cecchetti, 2001). As 

a result, they respond rapidly to climate change, and the resulting habitat changes that it causes 

(Aptroot and van Heck, 2007; Stapper and John, 2015). Apart from air pollutants, the distribution 

of lichens is also influenced by humidity, light and temperature (Stapper and John, 2015). 

According to Kershaw (1985), the exact reasons why increased temperatures are harmful to lichens 

are unknown but are likely to include severe physiological damage in the cell membrane (Pisani 

et al., 2007). As discussed above, the IPCC suggested that temperatures are likely to increase 2.0-

4.5°C between the years 1990-2100 because of climate change (Hungate et al., 2003). Because of 

the difficulty in definitively ascribing damage to specific climatic shifts, it is important to 

determine the sensitivity of organisms’ components to climate change to enable early detection of 

injury caused by climate change (Parmesan and Yohe, 2003). A 1°C increase in annual temperature 

can drastically change lichen distribution (Pisani et al., 2007), and therefore some species have 

been  used as indicators of temperature shifts. For example, Flavoparmelia caperata has been used 
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as an indicator of increased temperatures in Denmark (Søchting, 2004). A study in the Netherlands 

showed that warm temperature species are now increasing, and cold-tolerant species are either 

decreasing or disappearing. It seemed clear that climate change was the driving force behind the 

trend observed (Aptroot and van Heck, 2007; Stapper and John, 2015). This work was the first 

long-term study on the biological monitoring of terrestrial systems, and the conclusions of this 

study were that climate change may be affecting lichen populations globally (Aptroot and van 

Heck, 2007). It seems clear that climate change can cause shifts in the boundaries between biomes, 

resulting in changes in species assemblages, habitat loss and potentially extinction (Leavitt et al., 

2014; Allen and Lendemer, 2016). Therefore, detailed monitoring of sensitive environments is 

needed to understand the significance of these climatic shifts (Leavitt et al., 2016). 

 

1.5 Temperature stress 

Perhaps the greatest effect of climate change on lichens will be an increase in temperature. 

Increased temperatures have, and will continue to, caused profound effects on all terrestrial 

ecosystems, resulting in changes in the length of the seasons available for growing and reproducing 

(Steinhäuser et al., 2016). With climate change, extreme temperature events are likely to become 

even more intense (Hatfield and Prueger, 2015; Steinhäuser et al., 2016), and harsh temperatures 

may affect the most important physiological processes of plants such as respiration, 

photosynthesis, and primary and secondary metabolite production (Awasthi et al., 2015). Plants 

can survive environmental changes either by migrating to favorable habitats, or acclimatization  

through increased heat tolerance (Kai and Iba, 2014; Steinhäuser et al., 2016). The ability of 

organisms to adapt to changes in their environments is essential for them to be able to persist in 
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changing environments. Without these survival strategies, loss of species may result, which in turn, 

will degrade the whole ecosystem (Steinhäuser et al., 2016). 

Lichens are known for their ability to tolerate a wide range of harsh environments (Nash, 1996), 

such as conditions that occur in Antarctica, deserts, and high alpine regions. Lichens form the 

dominant ground cover on about 8% of the Earth’s land surface (Ahmadjian, 1995). One of the 

reasons for the success of lichens is that they are poikilohydric (Kranner et al., 2008). Poikilohydric 

organisms can tolerate desiccation, but as soon as water becomes available resume metabolic 

activity (Smith et al., 1997; Li and Wei, 2016). As they lack a cuticle, heat stress will cause rapid 

drying, and when dry they show high resistance to extreme temperatures (Kappen and Lange, 

1972; Gauslaa and Solhaug, 1999; Solhaug et at. 2018). 

 

a. Response to low temperatures 

Lichens are tolerant to low temperatures (Solhaug et al., 2018). Becquerel (1950) showed that  

Xanthoria parietina could survive freeze drying to absolute zero. However,  hydrated  lichens are 

not all resistant to cold temperatures. Tolerance is species dependent; and also depends on the 

micro-environment in which a lichen grows. For example, Usnea dasypoga  collected from tropical 

mountains of Argentina showed great resistance and normal respiration following freezing of up 

to -78°C, but surprisingly collections from temperate regions that received the same treatment as 

the latter were less tolerant (Kappen and Lange, 1970, 1972). In general, these authors found that 

tolerance to low temperatures was poorly correlated with habitat temperature. For example, high 

tolerance to cold was found in a great number of lichen species found in areas where this tolerance 
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would not be expected such as the Negev desert in Israel and central Europe  (Kappen and Lange, 

1972). 

Solhaug et al., (2018) attempted to explain the distribution of two Lobaria species (L. virens and 

L. pulmonaria) based on freezing tolerance by comparing the short- and long-term effects of 

freezing of these species. The short-term viability (FV/FM and membrane leakage, assessed as a 

“conductivity index”) of the coastal L. virens were greatly affected by chilling, consistent with the 

distributional pattern of this species. Interestingly, the long-term indicators of stress (relative 

growth rate) of the two species was unaffected, meaning that it is impossible to definitively 

conclude that the tolerance to freezing temperatures determines distribution.  

 

b. Response to high temperatures 

Warm temperatures increase evaporation, and it can be difficult to distinguish the effects of 

desiccation and heat stress in lichens. According to Thomas (1939), the photobiont is more 

sensitive than the mycobiont but in some cases, both symbionts are equally sensitive. When moist, 

many lichen species seemed to be sensitive to temperatures ranging between 20°-30°C. For 

example, spores of Xanthoria parietina did not germinate at temperatures higher than 24°C 

(Thomas, 1939). By contrast, the temperature of dry lichen thalli in open habitats ranges between 

50°C and 60°C for crustose and foliose lichens (Ahmadjian and Hale, 1973). Thermal tolerance 

also differs from species to species, for example, Cladonia pyxidata species occurring in the 

southwest of Germany can be heated up to 66°C, but this temperature is lethal to other species 

(Kappen, 1973). In the case of black hydrophilous lichens, thalli of these lichen species can be 

become overheated by direct sunlight because of their colour. Therefore dark-coloured species 
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such as Ephebe canata occurring on irrigated rocks or soil gutters in strongly insolated areas are 

threatened by heat damage (Wirth, 1972).  

 

c. Mechanisms of tolerance to temperature stress 

Tolerance to cold Stress 

Various physiological mechanisms to cold resistance by animals, plants and fungi have been 

proposed, and it is likely that some of these have been selected for in lichens (Robinson, 2001). 

Lichens are normally rich in trehalose and sugar alcohols (Roser et al., 1992), and these mixes 

have been proposed to act as general cryoprotectants in fungi (Hoshino et al., 2003). Freezing 

temperatures in lichens result in the release of RNase enzymes from the cell wall of both the 

mycobiont and photobiont (Fontaniella et al., 2000). The presence of the two polyols, ribitol 

produced by the photobiont and mannitol produced by the mycobiont, delays solubilization of the 

RNases (Fontaniella et al., 2000). The recently discovered antifreeze proteins (AFPs) (Griffith and 

Yaish, 2004) are uncommon proteins: they have numerous, hydrophilic ice-restricting areas that 

seem to work as inhibitors of ice recrystallization and ice nucleation (Duman et al., 1993). These 

proteins are known from microbes, fungi, plants and invertebrates. Although there are no published 

reports from lichens, interestingly, a United States patent was recently enlisted asserting that an 

AFP from a lichen, with a clear sub-atomic weight of from 20 to 28 kDa, might be utilized as a 

part of keeping food from solidifying (Beckett et al., 2008). In the meantime, the lichens that have 

AFPs additionally contain extracellular proteinaceous ice nucleators that trigger solidifying at high 

below zero temperatures (Kieft and Ruscetti, 1990). These have significantly higher atomic masses 

than AFPs, and either give cold protection assurance from the discharged warmth of combination 
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or on the other hand set up a defensive sheath of extracellular ice in freeze tolerant species. Clearly, 

lichens can manage ice formation on and in their thalli very well (Beckett et al., 2008).  

Tolerance to heat stress 

In free-living fungi, both heat and cold shock induce the synthesis of set of proteins called heat-

shock proteins (HSPs) (Tiwari et al., 2015). These proteins occur almost everywhere in the cell 

e.g. mitochondria, nucleus, cell membrane (Kregel, 2002) and are involved in many processes, 

such as in protein folding, replication, transcriptional and signal pathways (Verghese et al., 2012). 

These proteins can be induced by different stresses such as temperature, osmotic, oxidative or pH 

(Tereshina, 2005). The overexpression of HSPs12 induces thermotolerance in S. cerevisiae by 

causing the accumulation of trehalose (Pacheco, 2009), and trehalose accumulation protects cell   

membranes and acts as a reserve carbohydrate that may be utilized during stress (Hounsa et al., 

1998). 

No data are available on the presence of heat shock proteins in the mycobionts of lichenized fungi 

to act against various stresses, but as these proteins exist in free-living fungi, they are likely to be 

important in lichens. In photobionts however, a transcriptomic approach was recently used to study 

the effect of desiccation on Treboxia (Carniel et al., 2016). This study showed that HSPs are 

constitutively expressed in lichen photobionts, and also indicated that other tolerance mechanisms 

are upregulated during desiccation stress e.g. aquaporins, antioxidants i.e. ROS related systems 

(Kranner et al., 2008) and genes related to the photosynthetic apparatus. A similar study on 

mycobionts would undoubtedly provide useful information on mechanisms of heat tolerance in 

lichens. 
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1.6 DNA barcoding 

DNA barcoding is a molecular technique making use of a standard DNA region as a rapid tag for 

taxon identification (Hollingsworth, 2007; Valentini et al., 2008). The mitochondrial gene 

cytochrome c oxidase (COI) is often used for animals as the standard DNA region, matK and rbcL 

for plants, and internal transcriber spacer (ITS) was recently proposed as a marker for fungus 

(Kaur, 2015; Schoch et al., 2012). DNA barcoding was first used by the science community in 

1993, but initially was not extensively used. However, in 2003 a group of researchers from the 

University of Guelph, led by Paul Hebert, published a paper titled “Biological identifications 

through DNA barcodes” (Hebert et al., 2003). This publication resulted in a more widespread 

adoption of the technique. DNA barcoding uses molecular data to cluster together organisms with 

the same genetic makeup into groups that represent species (Kanz et al., 2015). For DNA barcoding 

to be successful there must be a gap between the inter- and intraspecific genetic distances. This 

gap is referred to as the barcoding gap (Meyer and Paulay, 2005), and is important for testing the 

accuracy of the technique and separating distinct species (Čandek and Kuntner, 2015). DNA 

barcoding aims to improve the accuracy of species identification (Leavitt et al., 2013b), address 

issues where the taxonomy is unstable (Kanz et al., 2015, Divakar et al., 2016) and establish a 

good reference database against which unknown samples can be compared (Leavitt et al., 2013b). 

DNA barcoding is applied in such diverse fields such as the identification of medicinal plants, the 

control of agricultural pests, the protection of endangered species, and monitoring water quality 

(Kaur, 2015). As in other groups of fungi, molecular data has helped understand evolution and 

species delimitation in lichenized fungi (Leavitt et al., 2013a).  
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1.7 Challenges associated with DNA-based techniques  

As much as DNA-based approaches have the potential to aid species identification and discovery, 

there are still concerns about these approaches as there is only a limited number of well sampled 

datasets available to test its performance (Meyer and Paulay, 2005). In theory, all species show 

variability at the molecular level, and therefore it is important to define and establish a threshold 

that will highlight genetic differentiation for distinct groups of species (Kanz et al., 2015). DNA 

barcoding is most effective when there is only a small overlap between closely related sister 

species (Meyer and Paulay, 2005). There are problems with sequencing DNA using the Sanger 

technique especially in lichenized fungi. The lack of characters used for delimitation in lichens 

results in challenges when designing efficient primers sufficient enough to reduce fungal 

contamination (Hodkinson and Lendemer, 2013). Therefore, amplicon pools derived from Sanger 

techniques usually fail to produce reliable results or readable sequences especially for lichens 

(Lendemer, 2012). Also, the use of high-throughput sequencing HTS has raised questions as to 

whether Sanger-based analyses underestimate within lichen photobiont diversity (Eva et al., 2013). 

The questionable performance of Sanger techniques which normally yields unambiguous 

photobiont sequence per individual, however, has never been formally tested (Paul et al., 2018). 

DNA-based methods work effectively with thoroughly, well sampled and documented clades with 

previously recognized traditional characters (Meyer and Paulay, 2005). Therefore, for DNA 

barcoding to work and be used as a tool, there is a certain criterion that has to be met by the samples 

used and the correct technique must be applied to obtain valid results. 
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1.8 Use of ITS gene as a barcode marker 

The Internal Transcriber Spacer (ITS) was proposed as the primary marker for fungi by the 

Consortium of DNA Barcoding (Schoch et al., 2012), and ever since it has been used more than 

any other DNA region (Kelly et al., 2011; Leavitt et al., 2014; Mark et al., 2016). ITS has been 

extensively used to test for species boundaries and the correlation between genetic and 

morphological diversity in many fungal taxa (Del-Prado et al., 2010; Kelly et al., 2011). In 

particular, Del-Prado et al., (2010) and Divakar et al., (2010) used the ITS for species delimitation 

in the Parmeliaceae. While modern revisions may uncover hidden lineages and facilitate accurate 

species identification and delimitation, the taxonomy of lichens is nowhere near complete, and is 

being continually updated as new research is carried out (Leavitt et al., 2013a). 

 

1.9 DNA barcode gap 

As mentioned above, the “DNA barcoding gap” is the gap between intra and interspecific 

divergences or variation (Meyer and Paulay, 2005). The interspecific variation needs to exceed the 

intraspecific genetic distance in such a way that there is a clear gap that will allow for the 

identification of unknown individuals to their species with, of course, negligible errors (Hebert et 

al., 2003; Barret and Hebert, 2005). Errors may occur when a group possesses semi-species pairs 

with incomplete lineage sorting (Hebert et al., 2004). As a result, to separate two species a 

threshold has been proposed, which is suggested should be 10 times greater than that which occurs 

within species (Hebert et al., 2004). Differences above this threshold would indicate the existence 

of a new taxon (Meyer and Paulay, 2005), while differences below this threshold would indicate 

that the specimens belong to the same species (Wiemers and Fiedler, 2007). So, the presence of a 
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DNA barcode gap would enable the identification of species previously undescribed (Hebert et al., 

2004; Smith et al., 2006).  

There are few possible errors that could occur when using a predefined DNA barcode gap; a false 

positive occurs if populations within one species are genetically distinct, for example when there 

are high levels of genetic diversity below species level or interrupted gene flow in allopatric 

populations (Wiemers and Fiedler, 2007). In such cases, depending on the morphological variation 

and species concept to be applied, such populations may be called “cryptic species”. In contrast, a 

false negative occurs when there is little or no sequence variation in the barcoding fragment 

between biospecies (Wiemers and Fiedler, 2007). Therefore, checking for the existence of false 

negatives is crucial for the barcoding approach, because such an error would reveal cases where 

DNA barcoding would prove less powerful than other holistic approaches used for delimitation 

(Wiemers and Fiedler, 2007). When a barcode gap is present (Figure 1A) then there is a difference 

between the inter and intraspecific genetic variation. When there is an overlap i.e. no barcode gap, 

then the inter and intraspecific genetic distances are continuous (Figure 1B). 
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Figure 1: The DNA barcode gap formed by the (A) intraspecific variation shown in yellow, the 

distribution of interspecific divergence shown in red and (B) the overlap of the intra-intraspecific 

variation. Figure adopted from Meyer and Paulay (2005). 

1.10 Barcode of Life data system (BOLD) 

BOLD is a platform that provides an online database that is used for collection and management 

of specimens (e.g. voucher specimens), molecular data (sequences, primers) and analytical tools. 

This platform is freely available to researchers interested in DNA barcoding all over the world 

(Barcode of Life Data Systems Handbook, 2013). BOLD provides a variety of tools such as: 

“Database” (which includes BIN database, public data portal, primer database etc.), “Taxonomy” 

(which contains distribution maps, images and any other information necessary for taxon), 

“Identification” (this tool gives access to plant, animal and fungi search engines based on gene 

markers), “Workbench” and “Resources” (Barcode of Life Data Systems Handbook, 2013). 
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For access to public sequences (as in this study) or specimen data, the public data portal can be 

used for that, it also provides access to geographical distributions, sample ID, institution keywords 

etc. The public data portal tool allows you to search using any kind of keywords combination e.g. 

Lepidoptera, Canada, this search will show you all Lepidoptera records collected in Canada. 

Results will also display BINs, record lists and will also show public records (Barcode of Life Data 

Systems Handbook, 2013). A search for specimen record will show information on identifier, 

collection data such as location, taxonomy, specimen image, specimen details and sequence 

information. Sequence data stored on the public data portal stores information about sequence data 

for specimens such as forward and reverse sequences. This information allows for the search of 

sequence data information for different markers, sequence trace files on this page can be viewed 

and downloaded (Barcode of Life Data Systems Handbook, 2013). 

BOLD allows for different types of submissions to the platform, and each submission has its own 

process and requirements. One type of submission is “Specimen data submission” where you are 

required to create an excel file that you will use for submission. “Specimen submissions” must be 

accompanied by images, these must be formatted according to requirements listed on the BOLD 

systems and one must familiarize themselves with image licensing and use. “Sequence 

submission” includes assembling the package such as making sure the file contains sequences that 

are aligned and in a FASTA file format then you can upload that file into the system. A new 

workbench for sequence data submission now includes an option to do sequence contigs using an 

online Sequence Editor (Barcode of Life Data Systems Handbook, 2013) 

1.11 Problem statement 

Most taxonomic classifications of lichens are based on traditional approaches where a taxonomist 

will classify plant species according to characters such as morphology or chemical properties. As 
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data about taxa has accumulated, the taxonomic statuses for many species have changed due to 

additional information and therefore a revision is required. Molecular methods are the latest 

technology used to identify and reclassify species. Lichen species tend to be morphologically 

similar, and “cryptic diversity” (when species cannot be clearly separated using morphological 

characters) is common in this group. As a result, misidentification and inaccurate taxonomic status 

is common amongst lichens (Crespo and Lumbsch, 2010). The genus Parmelia is a model study 

system, because, as discussed above (section 1.3), identification through morphology-based 

methods is challenging because of the unavailability of diagnostic characters (Divakar et al., 2016). 

The first aim of this study is to test for the ability of ITS sequences to accurately identify species 

in the genus Parmelia, by estimating overlaps within and between species. Second, the stress 

tolerance of a widespread Parmelia species (or group of species) collected from sites with different 

environmental conditions around Kwazulu-Natal will be estimated. These experiments will help 

us understand how adaptable this species is, and therefore how the species will be affected by 

changes in weather patterns caused by climate change, as most lichen species are known to be 

sensitive to climatic shifts (Insarov and Insarova, 1996; Insarov and Schroeter, 2000). 

This study therefore combines two disciplines. The first is conservation genetics, where the ability 

of a barcode to clarify species boundaries, facilitate specimen identification and estimate the level 

of biodiversity will be tested in the genus Parmelia from South Africa. To achieve this, sequencing 

the ITS region will be used to test for the presence of a DNA barcode gap.  

The second approach was ecophysiological. It was hypothesized that lichens collected from the 

coast i.e. warmer sites would be more tolerant to heat and more susceptible to cold than lichen 

species collected from other sites i.e. inland sites. Ecophysiological techniques were used to test  

the thermotolerance and cold tolerance of lichen species collected from different sites along an 
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altitudinal transect in KZN. It was hoped to use the results of these experiments to predict the 

likely effects of climate change on lichen communities. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Sample collection 

Healthy thalli of lichens from the genus Parmelia were collected from February 2017- April 2018 

from five different sites along a longitudinal transect in KwaZulu-Natal, South Africa (see map, 

Figure 3). For the thermotolerance (physiological) experiments, all material was collected in 

summer or early autumn. Collections were made along a series of plateaus over a distance of 345.5 

km from the north coast to the mountainous regions of Drakensburg (Figure 2). From the five sites, 

68 Parmelia specimens were collected (see Table 7). Specimens were identified as belonging to 

Parmelia based on morphological characters described by Hale Jr. (1987). Loosely, material keyed 

out to Parmelia perlata (sensu lato) (Figure 2). Therefore, the characteristics  used to collect the 

lichen material were specimens that had a well-developed foliose thallus, a dark (presumably 

melanised) lower surface with rhizines, an upper side that varied from pale grey when dry to a 

greenish colour when damp, well developed soralia, and a tan-coloured marginal zone (Purvis et 

al., 1992; van Herk et al., 2004; Allen, 2008; Frahm et al., 2010). This method of collection was 

used for lichen material to be used for both physiology and molecular studies (DNA barcoding) 

experiments. Sequences for a range of Parmelia species were downloaded from BOLD systems 

and GenBank. Accession numbers for these are given in Table 8. 
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Figure 2: Parmelia perlata (sensu lato) species used in this study. 

 

Table 1: Table showing the five sites, GPS coordinates and altitude where the lichen material was 

collected. 

Collection sites GPS coordinates Altitude Location Dates of 

sample 

collections 

Hawaan forest 

(uMhlanga, Durban), 

RSA 

-29.7128816°S, 

29.9133356°E 

 

0 m Coastal Jun 2017 

uMlalazi nature 

reserve (Mtunzini), 

RSA 

-28.9541203°S, 

31.766569°E 

30 m Coastal Nov 2017 

Jan/Feb 

2018 

University of 

KwaZulu-Natal 

(Scottsville, 

Pietermaritzburg), 

RSA 

-29.6258172°S, 

30.4019928°E 

688 m Inland Mar 2017 

Jul 2017 

Oct 2017 

Fort Nottingham 

nature reserve (Fort 

Nottingham), RSA 

-29.4145055°S, 

29.9133356°E 

1491 m Inland/Afromontane Feb 2017 

Jun 2017 

Jan/Feb 

2018 

Apr 2018 

Monks Cowl 

(Drakensberg), RSA  

-29.0485156°S, 

29.4064394°E 

1600 m Montane April 2017 

June 2017 
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Mar 2018 

 

 

 

Figure 3: Map showing the five sites in KwaZulu-Natal where the Parmelia species were collected. 
Map by: Adie and Lawes (2011). 
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2.2 Monthly max and min temperatures of the 5 sites where the lichen material used for this 

study was collected 

Table 2: Table showing weather by month // weather averages of uMhlanga rocks (site near Hawaan 

forest) 

  January February March April May June July August September October November December 

Avg. Temperature 

(°C) 

24 24.3 23.7 21.7 19.4 17.3 16.8 17.9 19.3 20.6 21.8 23.2 

Min. Temperature 

(°C) 

20.3 20.6 19.7 17.3 14.3 11.7 11.3 12.7 14.8 16.7 18 19.5 

Max. Temperature 

(°C) 

27.7 28.1 27.7 26.2 24.6 23 22.4 23.2 23.8 24.5 25.6 27 

Avg. Temperature 

(°F) 

75.2 75.7 74.7 71.1 66.9 63.1 62.2 64.2 66.7 69.1 71.2 73.8 

Min. Temperature 

(°F) 

68.5 69.1 67.5 63.1 57.7 53.1 52.3 54.9 58.6 62.1 64.4 67.1 

Max. Temperature 

(°F) 

81.9 82.6 81.9 79.2 76.3 73.4 72.3 73.8 74.8 76.1 78.1 80.6 

Precipitation / 

Rainfall (mm) 

118 116 120 72 59 34 32 42 60 92 111 111 

The difference in precipitation between the driest month and the wettest month is 88 mm. During 

the year, the average temperatures vary by 7.5 °C. 

 

Table 3: Table showing weather by month // weather averages of Mtunzini (site near uMlalazi nature 

reserve) 

 

  January February March April May June July August September October November December 

Avg. Temperature 

(°C) 

24.7 24.7 24.1 21.9 19.6 17.2 17.1 18.4 19.8 21 22.4 23.9 

Min. Temperature 

(°C) 

20.3 20.4 19.6 17.2 14.3 11.4 11.2 12.9 14.8 16.4 17.9 19.4 

Max. Temperature 

(°C) 

29.2 29.1 28.7 26.7 24.9 23.1 23 24 24.9 25.7 26.9 28.5 

Avg. Temperature 

(°F) 

76.5 76.5 75.4 71.4 67.3 63.0 62.8 65.1 67.6 69.8 72.3 75.0 

Min. Temperature 

(°F) 

68.5 68.7 67.3 63.0 57.7 52.5 52.2 55.2 58.6 61.5 64.2 66.9 

Max. Temperature 

(°F) 

84.6 84.4 83.7 80.1 76.8 73.6 73.4 75.2 76.8 78.3 80.4 83.3 

Precipitation / 

Rainfall (mm) 

125 133 146 78 74 45 42 51 69 98 121 122 

Between the driest and wettest months, the difference in precipitation is 104 mm. Throughout the 

year, temperatures vary by 7.6 °C. 
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Table 4: Table showing weather by month // weather averages of Pietermaritzburg (site where 

University of KwaZulu-Natal is situated) 

 

  January February March April May June July August September October November December 

Avg. Temperature 

(°C) 

22 22.2 21.4 19 15.7 12.9 12.9 15 17.1 18.8 19.9 21.4 

Min. Temperature 

(°C) 

16.6 16.9 15.7 12.6 8.2 4.2 4.2 6.9 10 12.7 14.4 15.8 

Max. Temperature 

(°C) 

27.5 27.6 27.1 25.5 23.3 21.6 21.7 23.1 24.3 25 25.5 27.1 

Avg. Temperature 

(°F) 

71.6 72.0 70.5 66.2 60.3 55.2 55.2 59.0 62.8 65.8 67.8 70.5 

Min. Temperature 

(°F) 

61.9 62.4 60.3 54.7 46.8 39.6 39.6 44.4 50.0 54.9 57.9 60.4 

Max. Temperature 

(°F) 

81.5 81.7 80.8 77.9 73.9 70.9 71.1 73.6 75.7 77.0 77.9 80.8 

Precipitation / 

Rainfall (mm) 

140 123 113 64 31 12 12 28 48 87 115 124 

The variation in the precipitation between the driest and wettest months is 128 mm. The variation 

in annual temperature is around 9.3 °C. 

 

Table 5: Table showing weather by month // weather averages of Howick (site near Fort Nottingham 

nature reserve) 

 

  January February March April May June July August September October November December 

Avg. Temperature 

(°C) 

20.5 20.5 19.4 16.9 13.7 10.7 10.6 13 15.5 17.5 18.2 19.8 

Min. Temperature 

(°C) 

14.7 14.7 13.5 10.2 6.1 2.4 2.3 4.9 8.1 10.9 12 13.9 

Max. Temperature 

(°C) 

26.4 26.4 25.3 23.7 21.3 19 18.9 21.2 22.9 24.1 24.5 25.7 

Avg. Temperature 

(°F) 

68.9 68.9 66.9 62.4 56.7 51.3 51.1 55.4 59.9 63.5 64.8 67.6 

Min. Temperature 

(°F) 

58.5 58.5 56.3 50.4 43.0 36.3 36.1 40.8 46.6 51.6 53.6 57.0 

Max. Temperature 

(°F) 

79.5 79.5 77.5 74.7 70.3 66.2 66.0 70.2 73.2 75.4 76.1 78.3 

Precipitation / 

Rainfall (mm) 

133 128 114 51 24 15 16 21 37 83 109 130 

The difference in precipitation between the driest month and the wettest month is 118 mm. The 

variation in temperatures throughout the year is 9.9 °C. 
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Table 6: Table showing weather by month // weather averages of Monks Cowl 

 

  January February March April May June July August September October November December 

Avg. Temperature 

(°C) 

19.9 19.5 18.4 15.9 12.8 9.3 9.5 12.5 15.3 17.1 18 19.2 

Min. Temperature 

(°C) 

14.2 13.9 12.4 9.1 4.9 1.1 0.9 4.2 7.7 10.3 11.8 13.3 

Max. Temperature 

(°C) 

25.6 25.2 24.5 22.7 20.8 17.6 18.1 20.9 23 23.9 24.3 25.2 

Avg. Temperature 

(°F) 

67.8 67.1 65.1 60.6 55.0 48.7 49.1 54.5 59.5 62.8 64.4 66.6 

Min. Temperature 

(°F) 

57.6 57.0 54.3 48.4 40.8 34.0 33.6 39.6 45.9 50.5 53.2 55.9 

Max. Temperature 

(°F) 

78.1 77.4 76.1 72.9 69.4 63.7 64.6 69.6 73.4 75.0 75.7 77.4 

Precipitation / 

Rainfall (mm) 

180 167 149 64 26 11 10 24 40 76 123 162 

There is a difference of 170 mm of precipitation between the driest and wettest months. 

Throughout the year, temperatures vary by 10.6 °C. 

 

2.3 Storage and selection of lichen material 

Lichen material was partially cleaned in the laboratory and placed in a growth cabinet under low 

light conditions (20 µmol m2 s-1) at 17°C for up to 4 d until the beginning of experiments. After 

cleaning, material was sometimes dried, in this state, the lichens’ water content is below 10% and 

in this desiccated state, lichens are able to survive unharmed for longer periods of time and 

metabolic activities can be restored within seconds upon rehydration (Kappen, 1988 and 

Hogenner, 2003) and were then stored at -24oC until required. Generally, freezing is recommended 

as a storage method for lichens that will be used for physiological experiments (Larson, 1978; 

Jensen and Feige, 1987). Freezing ensures that thalli remains healthy for physiological 

experiments and measurements such as integrity of cell membrane (ion leakage), assimilation 

pigments (chlorophyll a), and chlorophyll a fluorescence emission (Fv/Fm) (Paoli et al., 2013). 

Freezing preserves the viability of lichens (Yamamoto et al., 1998) and frozen samples can be 

moved back and forth between room temperature and freezing without losing viability (Honegger, 
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2003). Before any physiology experiments, frozen material was thawed, hydrated and stored in the 

growth cabinet for 24 h. 

Lichen thalli had varying morphology, colour and size of lobes, therefore necessitating random 

assignment of the lobes to the different treatments. For experiments involving chlorophyll 

fluorescence measurements, 20 x 1 cm discs per site were used. For experiments that involved 

measuring ion leakage, 0.3 g x 25 replicates per site were used. 

 

MATERIALS AND METHODS FOR PHYSIOLOGY EXPERIMENTS 

2.4 Thermotolerance 

The response of the lichens to heat stress was tested for the mycobiont (ion leakage assay: 

conductivity index) and the photobiont (chlorophyll fluorescence; FV/FM and ETR). 

2.4.1. Heat tolerance of the photobiont (FV/FM and ETR) 

After overnight acclimation as described above, heat stress was given at a temperature of 35°C for 

4 h in the darkness, with FV/FM measured before heat stress (“time zero”), and during the 

experiment at 1 h intervals.  

Chlorophyll fluorescence was measured using two chlorophyll fluorometers: Hanstech FMS 2 

(Hanstech instruments, King’s Lynn, England) and an OS-30p chlorophyll fluorometer (Opti-

Sciences Inc., Hudson, USA). The Hansatech is a modulated device that allows the calculation of 

ETR, while the Opti-Sciences device simply measures FV/FM. FV/FM is the maximum 

photochemical efficiency of photosystem II, and ETR is the electron transport rate, an 

approximation of the rate of photosynthesis (Kalaji et al., 2014). A saturating flash was initially 
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given to determine FV/FM. In experiments where ETR was measured, thalli were then exposed to 

PAR at 30 µmoles m–2 s–1 for 10 min, after which fluorescence had reached a stable value. Another 

saturating flash was then applied, and FV/FM and ΦPSII were calculated as:  

FV/FM = (FM – FO)/FM. Where FM is the maximum fluorescence (reaction centres closed) and FO is 

the minimum fluorescence (reaction centres open), and: 

ΦPSII = (FM’ – Ft)/FM’. Where Ft is the stable fluorescence signal in the light, and FM’ is the 

maximum fluorescence when a saturating pulse is given in the light and ETR (electron transfer 

rate) = ΦPSII x 0.5 x PFD. 

2.4.2. Heat tolerance of the mycobiont (Conductivity - µS/cm) 

To assess the effect of heat on the mycobionts, material was acclimated as described above, and 

then 25 replicates of 0.3 g of hydrated lichen material placed under a thermal stress of 40°C for 8 

h, and ion leakage assessed in material stressed for 0, 2, 4, 6 and 8 h. Controls were immersed in 

distilled water for 5 minutes, and then immediately boiled. Conductivity was measured as initial 

(before boiling) and final (after boiling) with a water conductivity meter (Mettler-Toledo AG, 

Analytical Schwerzenbach, Switzerland). After heat stress, the lichen material was then immersed 

in 10 ml of distilled water for then was gently shaken for 30 min. After the removal of the lichens, 

the electric conductivity of the solution was measured (initial conductivity, or conductivity lost 

due to stress: Cv) in µS cm-1. Lichens were then boiled in 5 ml of H2O for 30 min, 5 ml of H2O 

added, and conductivity (Cf) again measured. The average of the two blanks was always subtracted 

from solution measurements. Damage to membranes was assessed as the initial conductivity 

expressed as the percentage of the total conductivity lost, calculated as follows: 100*Cv/(Cv+Cf) 

(n=25). 
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2.5 Freezing tolerance 

 Experimental design 

The aim of this experiment was to investigate the freezing tolerance of lichen species growing in 

contrasting localities with different environmental conditions to estimate how the material from 

the communities will behave under extreme cold conditions. Out of the five sites we chose 

uMlalazi nature reserve which is warm, humid and with a high average temperature throughout 

the year (see Table 2). The other site was Fort Nottingham nature reserve which is montane with 

summer rainfalls and cold winters with snow sometimes. So, out of the five sites used here, these 

two would enable us to compare relatively warm with relatively cool. 

Before the start of experiments, 100 x 1 cm discs of thalli were acclimated as above then two 

experiments were run simultaneously, using -24°C and -75°C with lichen material from two sites: 

Fort Nottingham nature reserve (inland) and uMlalazi nature reserve (along the coast). As a 

control, unstressed material was kept in the growth cabinet under conditions described above.  

The maximal quantum yield of PSII photochemistry (FV/FM) and the electron transport rate (ETR) 

were measured before and after freezing using 20 randomly selected discs from each site. Thalli 

were placed in plastic petri dishes with moist filter paper, and then sprayed with H2O in the 

beginning and end of the experiment as recommended by Solhaug et al., (2018). The short-term 

effects of freezing were measured after 24 and 48 h and the long-term effects were measured after 

7 d; each treatment had a separate set of discs. After the freezing stress, the discs were thawed, 

then dark adapted for 10 min, then a FMS 2 fluorimeter (Hanstech Instruments Ltd, Kings’s Lynn, 

England) was used to measure fluorescence parameters. 
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2.6 Statistical analysis 

The significance of differences (P < 0.05) between the different sites and treatments (for cold 

tolerance) were checked by a one and two-way analysis of variance (ANOVA) using the 

Bonferroni and Turkey’s HSD tests for post-hoc comparisons for both the chlorophyll fluorescence 

parameters and cell membrane integrity. Data not meeting the assumptions of normality for a 

parametric test (K-S or Shapiro Wilk W-test) at the 95% confidence interval were log-transformed 

to correct skewed distribution. All statistics analysis were performed using IBM SPSS v25. 

 

MATERIALS AND METHODS FOR MOLECULAR STUDIES (DNA BARCODING) 

2.7 DNA extraction, Polymerase Chain Reaction (PCR) and sequencing 

Following freezing, the lichen material was thawed, hydrated and left in room temperature to air-

dry for 24 h. then DNA was extracted from a small portion of a healthy lichen thallus using the 

Zymo Research Quick-DNATM Plant/Seed Miniprep Kit (ZYMO research, USA). To reduce the 

possibility of contamination and inhibition due to other lichen substances, a method adapted from 

Divakar et al. (2016) with slight modification was used. Instead of using liquid nitrogen to dry the 

lichen material as per Divakar et al. (2016), in this study we simply air-dried our material at room 

temperature for 24 h. before use (this method/technique was only applied on lichen material used 

for molecular studies (DNA barcoding) and not for the physiology experiments. Dry thalli were 

soaked in acetone for 2-3 h then air dried overnight. The thallus was then chopped into small pieces 

and ground in lysis buffer for 5 min at room temperature prior to extraction. Amplification of 

nuclear ribosomal ITS was performed using fungal-specific primers ITS1F (5′-

CTTGGTCATTTAGAGGAAGTAA-3′) (Gardes and Bruns, 1993), ITS4A (3’-
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CGCCGTTACTGGGGCAATCCCTG-5’) (Larena et al., 1999). Each 12.5 µl PCR reaction 

contained: 7.7 µl dH2O; 1 µl 10x Dream Taq green buffer; 1.25 mL, 1 µl (mg ml-1) Bovin Serum 

Albumin (BSA); 1 µl MgCl2 (25 Mm); 0.25 µl of each (10 µM) primer; 0.05 µl DreamTaq DNA 

polymerase (Fermentas, South Africa); 0.25 µl deoxynucleoside triphosphate (dNTP) (10 µM) and 

(0.5-1 ng) DNA template. Negative controls (no template reactions) were included to check for 

contamination of reagents. PCR cycling conditions were the following: 95°C initial heating step 

of 3 min, followed by 35x cycles of 95°C for 30 s, 30 s at 65°C and 1 min at 72°C then a final 

extension step of 10 min at 72°C.  

 

The PCR products were viewed on a 2% (w/v) TBE agarose gel stained with Ethidium Bromide 

(0.2mg, EtBr). PCR products were sized using a 100bp molecular weight ladder (Soils, BioDyne), 

which was also loaded onto the gel. The expected product size of ITS was 500-700bp. Gels were 

viewed under an ultra violet light using the FOTODYNE Incorporation gel imager. Successfully 

amplified products were excised from the gel and submitted for sequencing at the Central 

Analytical Facility (CAF), Stellenbosch University, South Africa. BLASTn 

(https://blast.ncbi.nlm.nih.gov) searches were conducted against GenBank to verify all sequences 

obtained. 

 

2.8 Sequence alignments, phylogenetic analysis and genetic distances estimates 

The electropherogram of the each ITS sequences generated was checked using BioEdit v7.2.6.1 

(Hall, 1999). Sequences were aligned using ClustalX 2.1 (Larkin et al., 2007). Alignments were 

checked manually to ensure homology. The sequences generated from this study (n=68) (Table 7) 

were aligned with 60 previously published ITS sequences (Table 8) downloaded from GenBank 
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(https://www.ncbi.nlm.nih.gov/genbank/) and BOLD Systems (http://boldsystems.org/). We 

downloaded sequences by searching for genus name on the database and every sequence for that 

genus name was downloaded. The final aligned data matrix included 128 taxa and 521 aligned 

characters. 

 

2.9 Phylogenetic analysis  

Phylogenies were constructed using two model-based approaches, maximum likelihood (ML) and 

Bayesian inference (Bayes). The best-fit substitution model (GTR+G) for the ITS data set was 

estimated using the Akaike Information Criterion (AIC) in jModel Test v. 0.1.1 (Darriba et al., 

2012). The program Garli v2.0 (Zwickl, 2008) was used to perform ML analysis. Branch support 

values for each node were estimated using 1000 bootstrap (BS) replicates. These trees were viewed 

and edited on the program FigTree v.1.4.3 (Drummond and Rambant, 2007).  

 

The program MrBayes v. 3.1.2 (Ronquist and Huelsenbeck 2003) was used to perform the Bayes 

analysis. For this analysis, two separate runs were conducted, each run consisting of four parallel 

MCMC chains. Chains were run for 20 million generations with a sampling frequency of 300. 

Once the runs were completed, convergence of the two runs was checked using Tracer v1.6 

(Rambaut and Drummon, 2012). Convergence was assumed when all the effective sampling size 

(ESS) values exceeded 200. The first 4 million (20%) trees were removed from the tree file as 

burn-in. A 50% majority rule consensus tree was generated using the Consense module available 

in Phylip v3.6.9.5 (Felsenstein, 2005). Branch support was assessed using posterior probability 

values. 

 

https://www.ncbi.nlm.nih.gov/genbank/
http://boldsystems.org/
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2.10 DNA barcode gap analysis 

The best-fit model (GTR+G) was used to generate pairwise distances in RaxmlGUI v. 1.5b1 

(Silvestro and Michalak, 2012). Intra- and interspecific distances were then plotted to visualize the 

DNA barcode gap. To test for the statistical separability of the intraspecific and interspecific 

distances, the Jeffries-Mutusita Distance (J-M) function was calculated in R Studio (https://www.r-

project.org/). Jeffries-Mutusita Distance (J-M) function is a widely used statistical tool to assess 

the potential seperability two classes (Trigg and Flasse, 2001). The J-M test has a threshold of 

1.414, so anything equal to or greater than 1.414 suggests statistical separability (Trigg and Flasse, 

2001). 
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Table 7: Specimens of Parmelia from which new sequences were obtained from this study loosely, keyed out to Parmelia perlata (sensu lato) 

Specimen ID Locality GPS coordinates 

uMlalazi_001 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_003 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_004 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_005 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_006 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_007 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_008 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_009 Mthunzini -28.9541203°S, 31.766569°E 

uMlalazi_010 Mthunzini -28.9541203°S, 31.766569°E 

NT_HF_001_ITS_ uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_002 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_003 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_004 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_005 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_006 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

HFor_007 uMhlanga, Durban -29.7128816°S, 31.0927580°E 

NT_HF_010_ITS_ uMhlanga, Durban -29.7128816°S, 31.0927580°E 

UKZN_001 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_002 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_003 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_004 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_007 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_009 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_010 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_013 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_014 Pietermaritzburg -29.6258172°S, 30.4019928°E 
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Table 7: cont… 

Specimen ID Locality GPS coordinates 

UKZN_015 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_001 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_003 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_004 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_005 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_007 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_008 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_009 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_010 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_011 Pietermaritzburg -29.6258172°S, 30.4019928°E 

M. Cowl_001 Drakensburg -29.0485156°S, 29.4064394°E 

M. Cowl_002 Drakensburg -29.0485156°S, 29.4064394°E 

M. Cowl_003 Drakensburg -29.0485156°S, 29.4064394°E 

M. Cowl_004 Drakensburg -29.0485156°S, 29.4064394°E 

M. Cowl_005 Drakensburg -29.0485156°S, 29.4064394°E 

M. Cowl_006 Drakensburg -29.0485156°S, 29.4064394°E 

FN_001 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_002 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_003 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_004 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_005 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_006 Fort Nottingham -29.4145055°S, 29.9133356°E 

UKZN_007 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_008 Pietermaritzburg -29.6258172°S, 30.4019928°E 

UKZN_009 Pietermaritzburg -29.6258172°S, 30.4019928°E 

FN_007 Fort Nottingham -29.4145055°S, 29.9133356°E 
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Table 7: cont… 

Specimen ID Locality GPS coordinates 

FN_008 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_009 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_010 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_011 Fort Nottingham -29.4145055°S, 29.9133356°E 

FN_012 Fort Nottingham -29.4145055°S, 29.9133356°E 

HFor_008 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_009 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_010 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_011 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_013 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_014 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

HFor_015 uMhlanga, Durban -29.7128816°S, 29.9133356°E 

uMlalazi_011 Mthunzini -28.9541203°S, 31.766569°E 
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Table 8: Specimens of Parmelia downloaded from GenBank and BOLD systems with localities, accession number and publication sources  

Specimen ID  Locality GenBank accession numbers References 

P. reticulatum Unknown EU266116 Han et al., 2007 (unp.) 

P. reticulatum Argentina EU853257 Adler et al., 2008 (unp.) 

P. tinctorum Unknown EU643593 Lei et al., 2008 

P. tinctorum Unknown EU643592 Lei et al., 2008 

P. subtinctorium Unknown GU593037 Hur, 2010 (unp.) 

P. tinctorum Unknown JF831050 Hur, 2010 (unp.) 

P. tinctorum Unknown HQ650684 Schmull et al., 2011 

P. austrosinense Unknown HQ650683 Schmull et al., 2011 

P. reticulatum Uruguay AY251450 Thell et al., 2004 

P. cetratum Uruguay AY251449 Thell et al., 2004 

P. sp. Feuerer s.n. Chile AY251448 Thell et al., 2004 

P. tinctorum Yemen AY251443 Thell et al., 2004 

P. crinitum Yemen AY251442 Thell et al., 2005 

P. fistulatum Argentina AY251415 Thell et al., 2004 

P. fistulatum Uruguay AY581057 Blanco et al., 2004 

P. pilosum Uruguay AY581056 Blanco et al., 2004 

P. haitiense Australia AY581055 Blanco et al., 2004 

P. hypoleucinum Morroco HM017035 Del-Prado et al., 2010 
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Table 8: cont… 

Specimen ID Locality GenBank accession numbers References  

P. norsticticatum South Africa GU994576 Crespo et al., 2010  

P. pseudoreticulatum Spain HM017053 Del-Prado et al., 2010  

P. pseudoreticulatum Spain, Balearic Islands JN166399 Del-Prado et al., 2011 (unp.)  

P. pseudotinctorum Chamoli, India KF129421 Roca-Valiente et al., 2013  

P. reticulatum Morocco HM016953 Del-Prado et al., 2010  

P. reticulatum Spain HM016954 Del-Prado et al., 2010  

P. reticulatum Morocco HM017057 Del-Prado et al., 2010  

P. reticulatum Spain HM017060 Del-Prado et al., 2010  

P. reticulatum Spain, Canary Islands JN166381 Del-Prado et al., 2010 (unp.)  

P. species Unknown HM016957 Del-Prado et al., 2010  

P. species Unknown HQ335207 Zhang and Shi, 2010 (unp.)  

P. subtinctorium China KC978853 Dong, 2013 (unp.)  

P. tinctorum Unknown KF129455 Roca-Valiente et al., 2013  

P. aff. cetratum Lucking 15116A Costa Rica, Puntarens AY642850 Divakar et al., 2005  

P. aff. cetratum Lucking 15096 Costa Rica, Puntarens AY642849 Divakar et al., 2005  

P. aff. cetratum Lucking 15593A Costa Rica, Puntarens AY642848 Divakar et al., 2005  

P. cetratum Uruguay, Maldonado AY642847 Divakar et al., 2005  

P. clavuliferum Spain, Pontevedra AY642846 Divakar et al., 2005  

P. reticulatum Kenya AY642845 Divakar et al., 2005  

P. reticulatum Spain, Canary Islands AY642844 Divakar et al., 2005  

P. pseudoreticulatum Portugal, Estremadura AY642842 Divakar et al., 2005  

P. pseudoreticulatum Portugal: Estremadura AY642841 Divakar et al., 2005  

P. pseudoreticulatum Portugal, Estremadura AY642839 Divakar et al., 2005  
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Table 8: cont… 

Specimen ID Locality GenBank accession numbers   References 

P. reticulatum Portugal, Portalegre AY642838 Divakar et al., 2005 

P. reticulatum Portugal, Evora AY642837 Divakar et al., 2005 

P. reticulatum Portugal, Evora AY642836 Divakar et al., 2005 

P. reticulatum Portugal, Evora AY642835 Divakar et al., 2005 

P. reticulatum Spain, Tenerife, Canary Islands AY642834 Divakar et al., 2005 

P. clavuliferum Spain, Pontevedra AY642833 Divakar et al., 2005 

P. clavuliferum Spain, Cies islands AY642832 Divakar et al., 2005 

P. reticulatum Spain, Cies islands AY642831 Divakar et al., 2005 

P. pseudoreticulatum South Africa, Eastern Cape AY642830 Divakar et al., 2005 

P. pseudoreticulatum South Africa, Eastern Cape AY642829 Divakar et al., 2005 

P. pseudoreticulatum South Africa, Eastern Cape AY642828 Divakar et al., 2005 

P. reticulatum Portugal, Santarem AY642827 Divakar et al., 2005 

P. reticulatum Portugal, Santarem AY642826 Divakar et al., 2005 

P. reticulatum Spain, Tenerife, Canary Islands AY642825 Divakar et al., 2005 

P. clavuliferum 

China: Chu Xiong County, Yunnan 

Province AY642824 

 

Divakar et al., 2005 

P. clavuliferum 

China: JianChuan County, Yunnan 

Province AY642823 

 

Divakar et al., 2005 

P. clavuliferum 

China: Chen Xirg County, Yunnan 

Province AY642822 

 

Divakar et al., 2005 

P. reticulatum 

Spain, Parque Natural de los Alcornocales, 

Malaga AY642820 

 

Divakar et al., 2005 

P. reticulatum China: Lu Nan County, Yunnan Province AY642819 Divakar et al., 2005 

 

  



51 
 

References 

Adie, H., Lawes, M.J., 2011. Podocarps in Africa: temperate zone relicts or rainforest 

survivors? 

Allen, A., 2008. Lichen specialties of Lundy: an overview. Journal of the Lundy Field Society, 

1, 33–40. 

Blanco, O., Crespo, A., Elix, J.A., Hawksworth, D.L., Thorsten Lumbsch, H., 2004. A 

molecular phylogeny and a new classification of parmelioid lichens containing 

Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53, 959-975. 

Crespo, A., Kauff, F., Divakar, P.K., del Prado, R., Pérez-Ortega, S., de Paz, G.A., Cubas, P. 

,2010. Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, 

Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59, 

1735-1753. 

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new 

heuristics and parallel computing. Nature Methods 9, 772. 

Del-Prado, R., Cubas, P., Lumbsch, H.T., Divakar, P K., Blanco, O., de Paz, G. A., Crespo, A., 

2010. Genetic distances within and among species in monophyletic lineages of 

Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics 

and Evolution 56, 125-133. 

Divakar, P.K., Blanco, O., Hawksworth, D.L., Crespo, A., 2005. Molecular phylogenetic 

studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the 

confirmation of P. pseudoreticulatum as a distinct species. The Lichenologist 37, 55-

65. 

Divakar, P.K., Leavitt, S.D., Molina, M.C., Del‐Prado, R., Lumbsch, H.T., Crespo, A., 2016. 

A DNA barcoding approach for identification of hidden diversity in Parmeliaceae 



52 
 

(Ascomycota): Parmelia sensu stricto as a case study. Botanical Journal of the Linnean 

Society 180, 21–29. 

Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling 

trees. BMC Evolutionary Biology 7, 214. 

Felsenstein, J., 2005. PHYLIP (phylogeny inference package) Distributed by the author. 

Department of Genome Sciences, University of Washington, Seattle), Version, 3. 

Frahm, J.P., Schumm, F., Stapper, N.J., 2010. Epiphytische Flechten als Umweltgütezeiger: 

eine Bestimmungshilfe. BoD–Books on Demand. 

Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetes – 

application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113–

118. 

Hale Jr, M.E., 1987. A monograph of the lichen genus Parmelia Acharius sensu stricto 

(Ascomycotina: Parmeliaceae). 

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis 

program for Windows 95/98/NT. In Nucleic Acids Symposium Series 41, 95–98. 

Honegger, R., 2003. The impact of different long‐term storage conditions on the viability of 

lichen‐forming Ascomycetes and their green algal photobiont, Trebouxia spp. Plant 

Biology 5, 324-330. 

Jensen, M., Feige, G.B., 1987. The effect of desiccation and light on the 77 K chlorophyll 

fluorescence properties of the lichen Peltigera aphthosa. Bibliotheca Lichenologica 25, 

325–330. 

Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Elsheery, 

N.I., 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical 

issues. Photosynthesis research, 122, 121–158. 



53 
 

Kappen, L., 1988 Ecophysiological relationships. In CRC Handbookof Lichenology, Vol. 2 

(Galun, M., ed.), Boca Raton: CRC Press, 37-100. 

Larena, I., O., Salazar, V., González, M.C., Julián V., Rubio., 1999. Design of a primer for 

ribosomal DNA internal transcribed spacer with enhanced specificity for 

ascomycetes. Journal of Biotechnology 75, 187–194. 

Larkin, M.A., Blackshields, G., Brown N.P., Chenna, R., McGettigan, P.A., McWilliam H., 

Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. 

Higgins, D.G. 2007 Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, 

England) 23, 2947–2948. 

Larson, D.W., 1978. Patterns of lichen photosynthesis and respiration following prolonged 

frozen storage. Canadian Journal of Botany 56, 2119–2123. 

Paoli, L., Munzi, S., Pisani, T., Guttová, A., Loppi, S., 2013. Freezing of air-dried samples of 

the lichen Evernia prunastri (L.) Ach. ensures that thalli remain healthy for later 

physiological measurements. Plant Biosystems 147, 141-144. 

Purvis, O.W., 1992. Lichen Flora of Great Britain and Ireland. Natural History Museum 

Publications in association with the British Lichen Society. 

Rambaut, A., Drummond, A.J., 2012. Tracer v1. 4. 2007. Computer program and 

documentation. Retrieved from a http://beast.bio.ed.ac.uk/Tracer. Date assessed:26 

May 2016. 

Roca-Valiente, B.E.A.T.R.I.Z., Divakar, P.K., Ohmura, Y., Hawksworth, D.L., Crespo, A., 

2013. Molecular phylogeny supports the recognition of the two morphospecies 

Parmotrema pseudotinctorum and P. tinctorum (Parmeliaceae, Ascomycota). Vieraea, 

41, 333-348. 

http://beast.bio.ed.ac.uk/Tracer


54 
 

Ronquist, F., Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics 19, 1572–1574. 

Schmull, M., Miadlikowska, J., Pelzer, M., Stocker-Wörgötter, E., Hofstetter, V., Fraker, E., 

Kauff, F., 2011. Phylogenetic affiliations of members of the heterogeneous lichen-

forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, 

Ascomycota). Mycologia 103, 983-1003. 

Silvestro, D., Michalak, I., 2012. raxmlGUI: a graphical front end of RAxML. Organisms, 

Diversity and Evolution 12, 335-337. 

Solhaug, K.A., Chowdhury, D.P., Gauslaa, Y., 2018. Short-and long-term freezing effects in a          

coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria). Cryobiology 82, 

124–129. 

Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L., Stenroos, S., 2004. Monophyletic groups within 

the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences. 

Mycological Progress 3, 297-314. 

Thell, A., Herber, B., Aptroot, A., Adler, M.T., Feuerer, T., Kärnefelt, I., 2005. A preliminary 

phylogeographic study of Flavopunctelia and Punctelia inferred from rDNA ITS-

sequences. 

Trigg, S., Flasse, S., 2001. An evaluation of different bi-spectral spaces for discriminating 

burned shrub-savannah. International Journal of Remote Sensing 22, 2641–2647. 

van Herk, C. M., Aptroot, A., Sparrius, L. B., Spier, J. L., 2004. Paleispark Het Loo bij 

Apeldoorn, een ware hotspot voor epifytische korstmossen. Buxbaumiella 69, 9–16. 

Yamamoto, Y., Kinoshita, Y., Takahagi, T., 1998. Factors affecting discharge and germination 

of lichen ascospores. Journal of the Hattori Botanical Laboratory 85, 267-278. 



55 
 

Zwickl, D. J., 2008. GARLI (Genetic algorithm for rapid likelihood inference), version 0.96. 

URL http://www. bio. utexas. edu/faculty/antisense/garli/garli. html [accessed on May 

2008]. 

  



56 
 

CHAPTER 3: THERMOTOLERANCE OF PARMELIA SPECIES FROM 

CONTRASTING LOCALITIES IN KWAZULU-NATAL 

 

1. Introduction 

Considering the predicted changes caused by climate change, such as the increase in average 

temperatures, severe droughts and intense rainfall (Karl and Tranberth, 2003) different regions 

with varying environmental conditions are predicted to react differently to these sudden 

changes in climate. As discussed in Chapter 1, Aptroot and van Heck (2007) showed that 

species found in cold regions are in danger of declining in numbers and potentially extinction 

because of failure to adapt to new climatic conditions. In light of this, the current study hopes 

to shed some light on how extreme temperatures will affect lichen species occurring in different 

regions: coast (warm and humid), inland (summer rainfalls and extreme cold winters which 

may sometimes include snow) and montane regions within KZN. The experiments carried out 

in this study will allow us to investigate how lichens from these different regions will react to 

the possible “extreme” temperature we might experience as a result of climate change, with the 

prediction that lichen species from the “warm” sites normally in the coast will have higher 

tolerance to high temperatures than lichens from places like the Drakensburg and vice versa 

with cold tolerance. Results from these experiments will allow us to predict how lichen 

communities occurring in different regions will be affected by climate change.  

The aim of the work presented here was to test if variations exist in the heat and cold tolerance 

of lichens collected from different sites along an altitudinal transect in the province of 

KwaZulu-Natal, with the aim of predicting the likely effects of climate change. Here we used 

a variety of techniques to assess the tolerance of symbionts to different stresses. Techniques 

such as chlorophyll fluorescence (Chl) have been widely used to assess viability, recovery and 
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performance of lichen photobionts following stress (Green et al., 1998). Furthermore, 

measuring the loss of membrane integrity through conductivity index has also been suggested 

as reliable tools to measure the effects of stress on lichen mycobionts (Solhaug et al., 2018). 

Ion leakage has been previously used as a tool to investigate the effects of desiccation in mosses 

(Beckett, 2001) and lichens (Buck and Brown, 1979). In some cases, the use of ion leakage as 

a viability of measure has proven to be a faster and a more sensitive indicator of damage of the 

mycobiont compared to other methods e.g. measuring respiration (Fields and St. Clair, 1984; 

Shirazi et al., 1996). Therefore, the stress tolerance of photobionts was assessed by measuring 

chlorophyll fluorescence parameters, and ion leakage (measured as electrical conductivity/ 

conductivity index) to assess the performance of the lichens mycobiont and photobiont 

respectively under high and freezing temperatures. 

 

2. Results 

2.1 Thermotolerance (chlorophyll fluorescence) 

Treating samples of Parmelia at 35°C for 4 h greatly reduced FV/FM in lichen material collected 

from all sites except the coastal location (Figure 4). Clearly, the photobionts in the lichens from 

the coastal site (Hawaan forest) were more tolerant to heat stress compared to the photobionts 

from all the other sites. Using the Bonferroni test for post-hoc comparisons, the Parmelia 

samples from the four different sites at 35°C for 4 h resulted in Hawaan forest showing a 

significant difference from the other three sites (p<0.05) for the investigated parameter (FV/FM). 
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Figure 4: The effect on maximal quantum yield of PSII photochemistry of treating hydrated 

Parmelia sp. at 35°C for 4 h. Samples were collected from Hawaan forest (open circles), Monks 

cowl (triangles down), Fort Nottingham (triangles up) and Pietermaritzburg (squares). Values 

are given ±S.E, n=20. 

 

2.2 Conductivity index (cell membrane integrity and ion leakage)  

Loss of cell membrane expressed as ion leakage (µS cm-1) was log transformed to meet the 

normality requirement for a one-way ANOVA.  Ion leakage increased significantly with time 

for all Parmelia species collected from the four different sites (Figure 5) but was lowest from 

the coastal site: Hawaan. As with FV/FM, the post-hoc comparison for conductivity was 

significant (p<0.05) for the Parmelia lichens collected from the four sites. 
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Figure 5: The effect on conductivity index (µS/cm) of treating Parmelia sp. at 40°C for 8h. 

Samples were collected from Monks cowl (triangles down), Pietermaritzburg (squares), Fort 

Nottingham (triangles up) and Mtunzini (circles). Values are given ±S.E, n=25. 

 

2.3 Freezing tolerance (chlorophyll fluorescence)  

Both the short (24 and 48 h) and the long-term (7 d) effect of freezing were assessed by 

exposing the lichen material collected from Fort Nottingham (inland) and uMlalazi (coastal) to 

-24 and -75oC freezing temperatures. Freezing had little effect at either temperature on ETR 

(Figure 4A, B), and freezing at -24oC had little effect on FV/FM (Figure 3A). However, freezing 

at -75oC significantly reduced FV/FM in the material from both sites, with the material from the 

colder Fort Nottingham being slightly more sensitive (Figure 3B). A two-way ANOVA results 

showed that at -75°C there was a significant difference between the two sites (p<0.05), 

suggesting that the species are behaving differently in response to temperature but no 

significance difference between treatments at -24°C.  
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Figure 6: The effect on FV/FM of treating hydrated Parmelia sp. at -24°C (Fig 6A) and -75°C 

(Fig 6B) for up to 168 h. Samples were collected from Mtunzini (open circles) and Fort 

Nottingham (triangles up). Values given ±S.E, n=20. 
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Figure 7: The effect on ETR of treating Parmelia sp. at -24°C (Fig 7A) and -75°C (Fig 7B) for 

168 h. Samples collected from Mtunzini (open circles) and Fort Nottingham (triangles up). 

Values given ±S.E, n=20. 

 

3. Discussion 

By exposing Parmelia species to high and freezing temperatures, short-term viability 

parameters such as FV/FM, ETR and membrane integrity were impaired. The reductions in the 

chlorophyll fluorescence parameters indicated that the photobiont was affected by both 

freezing and heat treatments, while the increased ion leakage indicated heat damage to the 

mycobiont (Yemets et al., 2015). Results presented here show that both the photobionts and 

mycobionts of the closely related members of Parmelia from warm coastal localities are more 

heat tolerant than those from inland or montane sites. However, the photobionts display only 

very small differences in freezing tolerance. It would appear that Parmelia possesses an ability 

to acclimate to changes in temperature, which should mean that members of this genus will be 

able to adapt to future increases in temperature.  

0 24 48 168

Time (h)

0

2

4

6

8

10

12

E
T

R

0 24 48 168

Time (h)

0

2

4

6

8

10

12

E
T

R



62 
 

The work presented in this chapter indicated that both the photobiont (assessed by measuring 

photosynthesis) and mycobiont (assessed by measuring ion leakage) of the Parmelia species 

collected here differ in their tolerance to thermal stress (Figures 4 and 5). Thermal stress caused 

a decline in the lichen’s health (FV/FM and ion leakage) over a 4 h and 8 h experimental periods 

at 35°C and 40°C respectively. While material from the three Midlands sites behaved similarly, 

material from the warmer coastal site of Hawaan was clearly more heat tolerant. The 

differences in heat tolerance could be because of phenotypic acclimation or genetic (ecotypic) 

variation; to test out these possibilities, one would have to carry out transplant experiments or 

possibly carry out these experiments at different times of the year. There have been relatively 

few studies on difference in tolerance to heat within a single species of lichen.  In a study by 

Tegler and Kershaw (1981), the heat tolerance of Cladonia rangiferina was assessed at 

different times of the year. While net photosynthesis in a late winter collection was reduced 

after 7 d at 35°C, in a mid-summer collection the same treatment had no deleterious effects. 

These results suggest that phenotypic acclimation to warm temperatures can occur in lichens. 

Phenotypic adaptation in mosses were reported by Lange (1955) in the genera Ctenidium, 

Fissidens and Syntrichia. For example, the temperature required to cause stress in Ctenidium 

increased by 15°C between winter and summer. Both these studies indicate that there can be a 

10°C or more difference in heat tolerance between the winter and the summer. Similar data 

exist for higher plants. Larcher (2000) reports that seasonal changes in heat resistance in 

Angiosperms can occur in response to time of year. Season variation of heat tolerance is often 

of the "summer type" where increases in resistance are associated with increases in ambient 

temperature. Thus, it is clearly possible for phenotypic acclimation can take place in higher 

and lower plants. While the material used in the present study was all collected in summer or 

early autumn, it would be interesting to test whether season variations in heat tolerance occurs 

in Parmelia. Apart from seasonal variations within a single population, a few studies have 
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compared heat tolerance in different populations of the same species collected at the same time 

of year. MacFarlane and Kershaw (1980) showed that two populations of Peltigera canina 

significantly differed in their response to heat stress (when air-dried). While one population 

was affected at 35°C, the other was only affected at 45°C. These varying levels of thermal 

sensitivity in the different populations of P. canina were correlated exactly with their ecology 

(MacFarlane and Kershaw, 1980). Interestingly, not all studies have shown differences in heat 

tolerance of a lichen species from different habitats. Shirazi et al., (1996) found no differences 

in heat tolerance in Lobaria species sampled from a mountain and a valley. 

By comparison to heat tolerance, only very small differences in freezing tolerance were 

observed in this study (Figures 3 and 4). Lichens with Trentepohlia and Dictyochloropsis 

photobionts are considered to be more susceptible to freezing stress compared to lichens 

associated with other green algal photobionts (Kallio and Heinonen, 1971; Kappen, 1973; 

Lange, 1953; Nash et al. 1987). For example, in the study of Nash et al., (1987) lichens with 

Trentopohlia exhibited a significant reduction in net photosynthesis following 6 h at -12, -20 

and -46°C treatments, accompanied by a decrease in total chlorophyll content. By contrast in 

lichens with Treboxia as their photobiont, damage only occurred when temperatures of -46°C 

were used. As lichen genus used in the present study, Parmelia, has Treboxia as a photobiont, 

it was probably not surprising that all collections had an inherently high tolerance to freezing. 

However, differences in the freezing tolerance of the mycobionts of lichens, assessed by ion 

leakage, have been reported between lichen species within the same genus (e.g. Lobaria 

(Solhaug et al. 2018)).  The effects of freezing stress on the mycobiont the Parmelia species 

were not tested in the present study. Anecdotal observations suggest that while the material 

from the inland regions e.g. Drakensburg and Fort Nottingham experiences frost during the 

winter, the material from the coast almost certainly never does. Therefore, future work should 

determine if there are differences in the freezing tolerance of the mycobiont. However, results 
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presented here suggest that the sensitivity of the photobiont to freezing does not differ between 

the different sites.  

4. Conclusion 

The results of our study showed that both the photobiont and the mycobiont of Parmelia lichen 

species collected from the coast can better tolerate a temperature stress of 35°C for 4 h 

compared to those collected from inland sites. These temperatures are common in KwaZulu-

Natal, especially in summer, although unless rainfall or other forms of precipitation was 

occurring at these temperatures’ thalli would quickly dry. Possibly in future, FV/FM could be 

used as a parameter to assess the tolerance of the photobiont to high temperatures in both dry 

and moist state. However, there is little difference in the sensitivity of the photobionts of 

different populations to freezing, consistent with earlier literature indicating that the photobiont 

of this lichen, Trebouxia, has an inherently high tolerance to freezing. Taken together, results 

suggest that should global warming occur, these types of species are unlikely to go extinct as 

they seem to adapt well to changes. While more work is needed to test the freezing tolerance 

of the mycobiont, the photobiont at least shows an extraordinarily high resistance to freezing, 

consistent with earlier reports in the literature. 
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CHAPTER 4:  DNA BARCODING OF PARMELIA (PARMELIACEAE) 

SPECIES: MOLECULAR APPROACH TO ACCURATE SPECIMEN 

IDENTIFICATION OF SPECIES FROM KWAZULU-NATAL 

 

 

1. Introduction 

Species delimitation is important for evolutionary and ecological biologists (Kress et al., 2015). 

However, it is challenging to establish diagnostic characters and suitable analytical methods to 

delimit species (Parnmen et al., 2012), as morphological-based approaches are proving 

inadequate for some groups (Crespo and Perez-Ortega, 2009). This is a major limitation 

especially for groups with simple morphologies such as fungi where characters used for 

delimitation may not always be available or visible during certain life stages (Crespo and 

Lumbsch, 2010). This is especially true for lichens as obtaining an accurate estimate of the 

number of lichen species is complicated by several factors such as unclear taxonomic status of 

certain groups (Sipman and Aptroot, 2001; Feuerer and Hawksworth, 2007), and under 

collection and description of lichens in some regions. This is particularly true for tropical areas 

where it has been estimated that 50% of lichens are understudied (Aptroot and Sipman, 1997). 

Furthermore, in some groups only subtle morphological characters separate species (Divakar 

et al., 2016). Morphological and chemical characters in lichens are commonly used as 

taxonomic characters without a clear concept of their evolutionary origins. The evolution of 

some taxonomic characters in lichens have been examined in some studies (Blanco et al., 2006) 

but high plasticity has been demonstrated within life cycle of some fungi making them difficult 

to study (Wedin et al., 2004). This is unfortunate, given the importance of these characters in 

lichen symbiosis and their frequent use in taxonomy (Blanco et al., 2006).  

The genus Parmelia belongs to the largest family of lichenized fungi, Parmeliaceae 

which was established by Acharius in 1803. This family contains a large number of foliose 
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species with lecanorine apothecia including diverse genera such as Xanthoria, Lobaria, 

Cetraria, Parmelia and Physcia (Hale Jr.,1987). Traditionally, two large genera (Parmelia and 

Cetraria) are distinguished as core groups in the Parmeliaceae;  these more or less correspond 

to the Parmeloid and Cetraroid groups (DePriest, 1999). Morphological and chemical 

characters used to delimit Parmelia include foliose thallus, shape of the lobes e.g. adnate or 

sub-irregular, presence of pseudocyphellae, a black lower surface with simple or branched 

rhizines (Crespo et al., 2007 & 2010b), and the presence of atranorin or chloroatranorin in the 

cortex (Hale Jr., 1987). Currently, Parmelia is a widely distributed genus with three centers of 

distribution, one in the boreal temperate regions of Europe and North America, a second in 

eastern Asia and a third in Australasia (Ferencova et al., 2014). The Parmeloid group consists 

of ~1500 taxa which are placed in Parmelia sensu lato (Hale and DePriest, 1999).  

Crespo et al., (2001) demonstrated monophylly of parmeloid lichen groups using a 

mitochondrial rDNA gene, a result parallel to that found by Mattson et al., (2004) who used 

four different mitochondrial loci. However, the relationship amongst major clades of 

parmeloids remain unexplored and poorly studied (Blanco et al., 2006). Despite the use of 

molecular techniques in resolving taxonomic confusion or accurate specimen identification in 

parmeloid lichens - a group widely known for morphologically complex lichenized fungi 

(Henssen and Jahns, 1974) with disjunct cosmopolitan distribution and high chemical diversity 

(Thell et al., 2012), species delimitation remains challenging especially when phenotypic-

based methods are used. Therefore, this genus provides a good study system for testing the 

utility of DNA barcoding as a method of clarifying species boundaries, accurate identification 

and estimating the level of biodiversity (Divakar et al., 2016).  

In this study, using South African members of Parmelia, tested for the utility of DNA 

barcoding as a rapid tool for accurate specimen identification. Gene markers such as β-tubulin 

and translation elongation factor 1-α (tef-1α) together with ITS have been used for fungal 



70 
 

phylogenetics (see Walker et al., 2012) but in this study only ITS was used as a gene marker.  

To achieve our aim the standard DNA barcode marker, internal transcriber spacer (ITS) region 

of the nuclear ribosomal DNA (Schoch et al., 2012) will be used. Combining data collected 

from Parmelia specimens collected along an altitudinal transect in KZN with data available 

from previous studies on GenBank, this study had two main objectives. The first aim was to 

examine the diversity of the South African Parmelia along an altitudinal transect. The second 

aim was to test for the accuracy of species delimitation of DNA barcoding on the South African 

Parmelia genus, by testing for the presence of a DNA barcode gap, to see if these specimens 

are separable and can be identified to species-level. Although this study was a small-scale study 

focused in one province, conclusions and outcomes drawn from this study will be used in the 

future research of lichens in South Africa such as improving our knowledge on the diversity 

and taxonomy of lichenized fungi. 

2. Results 

2.1 Data description 

DNA was extracted from 105 Parmelia perlata (sensu lato) specimens. The ITS gene region 

was successfully amplified and sequenced from 68 specimens. The 68 barcodes were >500 bp 

in length and contained no contamination, misidentification or stop codons. These sequences 

are considered barcode compliant by the Consortium for DNA barcoding. These new sequences 

were aligned with 60 sequences downloaded from GenBank and BOLD (Table 2). The 

sequences were easily aligned with no insertions and or deletions. After trimming, the final 

alignment dataset was 519bp in length (Table 1), contained 364 variable characters of which 

267 were parsimony informative (PI). Consistency (CI) of and retention index (RI) values were 

0.550259 and 0.838722 respectively, indicating the presence of high numbers of homoplasious 

characters (Farris, 1989). High homoplasy results in “true” phylogenetic signal being obscured 
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(Brandley et al., 2009). In such cases, the use of model-based phylogenetic methods are 

warranted.  

 

2.2 Phylogenetic analysis 

The same topologies were recovered from the ML and Bayes analysis, for this reason only the 

most likely tree is shown (Figure 8) with both bootstrap and posterior probability values 

annotated onto the branches. Branches with bootstrap values ≥ 65% and posterior probability 

values ≥ 0.95 were considered well supported. Generally, branches supporting lineages were 

better supported than branches along the backbone of the phylogeny e.g. the branch leading to 

the taxon of samples that were collected from Fort Nottingham. The barcode marker ITS, is 

known to resolve species-level associations well, but does less well when examining higher-

level relationships such as associations among different genera. The phylogenetic analysis 

indicates that despite the lichens collected in KZN being morphologically similar, they do not 

form a single monophyletic lineage. Instead at least five separately evolving lineages are seen 

in the phylogeny (Figure 8). What is also clear from the phylogeny is that the phylogenetic 

structure seen in the South African samples is strongly influenced by geography, with 

individuals from the same locality grouping together.  
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uMlalazi nature reserve 

Hawaan forest 

Pietermaritzburg 

Fort Nottingham 

Monks cowl 

- BS≥ 75% and PP≥ 

0.95    

 - BS≥ 75% 

      - PP≥ 0.95 

Figure 8: Maximum likelihood topology of Parmelia analysed in this study (left) and 

map of sampling localities (right). The 68 specimens collected from five sites around 

KZN are colored by locality: turquoise blue (uMlalazi nature reserve), yellow 

(Hawaan forest), purple (Pietermaritzburg, UKZN), red (Fort Nottingham nature 

reserve), green (Monks cowl). The only support values  BS≥65% and posterior 

probability≥0.95 are annotated onto the tree 
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2.3 DNA barcode analysis 

Interspecific (between) species genetic distances (0.00-0.451) overlapped completely with 

intraspecific (within) distances (0.00-0.07) and therefore no gap was not detected between the 

two taxonomic classes (Figure 9). This was also confirmed by the J-M value for this dataset 

(1.05), which was far below the threshold (1.414) for separability, therefore suggesting that the 

two classes from this study are not separable based on the ITS data alone.  

 
 

Figure 9: Histogram showing the number of observations/frequencies of the pairwise intra- and 

inter-specific genetic distances based on a GTR+G model. The area graph shows and overlap 

between the intraspecific and the interspecific genetic divergence. 
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2. Discussion 

Despite the recent increase in lichenized fungi descibed, a large number of lichen-forming 

groups still remain unexplored (Amo de Paz et al., 2011; Sérusiaux et al., 2011). Because 

phenotypically-based methods have proven difficult to work with in groups such as lichens 

(Kroken and Taylor, 2001; Divakar et al., 2010), DNA barcoding has been suggested to provide 

a quick accurate species identification for lichens, which are amongst the most taxonomically 

challenging groups (Del-Prado et al., 2016). As discussed in Chapter 1, for DNA barcoding to 

be successful, a well-curated reference library is needed, and the standard marker selected for 

the group should also be able to separate species and as such a DNA barcode gap has to be met.  

 

In the current study, the ability of ITS DNA barcoding for the identification of species 

belonging to the lichen-forming genus Parmelia collected across a wide geographical range in 

the province of KZN was tested for. Results from the phylogenetic analysis of the nuclear ITS 

sequence data shows that the traditionally circumscribed Parmelia species are in some cases 

polyphyletic (Figure 8). The phenomenon of species and even genus level polyphyly is not 

unusual in Parmeliaceae and also in other groups of fungi (Divakar et al., 2010). Such patterns 

have been previously observed in many groups of lichen-forming fungi (see Kroken and 

Taylor, 2001; Högnabba and Wedin, 2003; Myllys et al., 2003; Molina et al., 2004; Divakar et 

al., 2007). This unstable taxonomy also led to a lack of DNA barcode gap for the ITS data used 

in this study, as without clear species boundaries there is a complete overlap in inter- and 

intraspecific genetic distances. This limits the utility of barcoding in this group (Kvist, 2016). 

This highlights the need for a careful taxonomic re-examination of the genus. In this case, the 

DNA data may provide a valuable tool for highlighting unique lineages that can be examined 

further by taxonomic experts.   
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Most specimens in this study show a much higher intraspecific divergence compared to the 

previously proposed threshold of 0.015-0.017 substitutions per site suggested by Del-Prado et 

al., (2010). Fourteen specimens exceeded this threshold (Figure 9), and the presence of such 

high intraspecific genetic distances, suggests the possibility of a hidden lineage or 

unrecognized species. Based on this result, additional research is required to accurately identify 

or characterize species-level diversity (Leavitt et al., 2014) for Parmelia species from 

KwaZulu-Natal.  Instead of relying on standard general thresholds like that of Del-Prado’s et 

al., (2010), thresholds can be estimated directly from the data. Deep divergences within the 

South African Parmelia species should be examined by using additional genetic markers. 

Meyer and Paulay (2005) stated that if the intra-interspecific divergence overlaps and give rise 

to polyphyletic or paraphyletic clades, when such overlap is “real” (i.e. not as a result of poor 

taxonomy), then the gene marker in question is not reliable to distinguish between those 

species. It seems most likely that in our study the overlap is “not real” because it is a result of 

poor taxonomy. This is because the ITS gene marker has previously proven to successfully 

discriminate and delimit a wide range of Parmelia species (see Del-Prado et al., 2010; Divakar 

et al., 2005; Leavitt et al., 2013, 2014; Molina et al., 2004, 2011; Kelly et al., 2011). Although 

our results are in accordance with previous studies (see Divakar et al., 2016) in using ITS to 

develop a DNA barcode, however, it should be noted that examples exist where attempting to 

use the ITS as a marker were not successful; for example, in Cladonia and Physcia (Myllys et 

al., 2001 The absence of a barcode gap in Cladonia was explained by hybridization, incomplete 

lineage sorting and radiations (Pino-Bodas et al., 2012). ). In a study by Kelly et al., 2011, the 

lack of a barcode gap in Cladonia was explained by the presence of species complexes in which 

morphological characters between taxa overlap (Fontaine et al., 2010). In this study, 

delimitation attempt also failed in Cladonia gracilis (an easy-to-identify species) suggesting 

that ITS variation may not always be able to track species delimitation in the genus Cladonia 
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(Kelly et al., 2011). Studies by Kolteko and Piercey-Normore, (2010) revealed that some 

species of Cladonia can’t be resolved by the use of ITS or alternative molecular analysis and 

this due to the likelihood that morphological characters used for delimitation could reflect 

variation in environmental conditions (phenotypic plasticity) or homoplasious as a result of 

convergence evolution/morphology (Fontaine et al., 2010). ITS as a gene marker has also been 

found to have drawbacks such as a lack of sequence variation amongst closely related sister 

species (Xu et al., 2000). The absence of a DNA barcode gap in the South African Parmelia 

genus can be explained by the lack of research in lichens in the country (Fryday, 2015), 

incomplete, unreliable checklists or reference libraries (Fryday, 2015), convergence 

morphology (Parnmen et al., 2012), high cryptic diversity (Thell et al., 2012), lack of modern 

revisions through the use of DNA-based techniques (Fryday, 2015) to mention but a few. 

Hybridization, radiation, incomplete lineage sorting, the presence of complexes with a genus, 

overlapping of morphological characters used for delimitation, phenotypic plasticity, 

homoplasy and convergence morphology in the genus Cladonia might also be used to explain 

the presence of a DNA barcode gap in the South African Parmelia genus. In addition, the 

drawbacks associated with ITS such as the absence of variation within this gene marker could 

also account for the absence of the barcode gap  

As mentioned above, the gene marker β-tubulin is also used for phylogenetic studies in lichens. 

In a study by Thell et al. (2002), ITS and β-tubulin were used to clarify the taxonomical position 

of cetraroid lichens within the family Parmeliaceae and identify monophyletic groups the 

lichens. Results from the study showed that ITS and β-tubulin sequences showed congruency 

and a correlation between molecular-based data and morphological analysis (conidial shape). 

In another study by Park et al. (2018), the gene markers ITS and β-tubulin sequences showed 

that Korean Stereocaulon species were monophyletic and therefore were placed back in their 

previous phyletic classification. The latter study also revealed two Stereocaulon species that 
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were polyphyletic; these species were morphological and geographically widespread. 

Högnabba (2006), used ITS and β-tubulin to analyse the phylogenetic status of the genus 

Stereocaulon. Results from this study revealed that morphological analysis of the genus may 

not specifically agree with molecular data. Despite the success of ITS and β-tubulin in some 

phylogenetic studies, results are not always as expected. For example, in a study by Articus et 

al. (2002) the two genes were unable to support the separation of two Usnea species. Results 

from this study showed that the two species form a monophyletic cluster of intermixed species 

and not two species with consistent morphology. In the current study using β-tubulin was also 

attempted for use for phylogenetic analysis but was unsuccessful as it kept identifying 

microlichens or photobiont partners. 

 

The use of conspecific species from different sites did cause a significant increase in the 

intraspecific divergence when ITS was used. These results contrast with those of Divakar et al. 

(2016), where they reported that the inclusion of P. saxatilis from distant geographical regions 

such as Antarctica, Asia and Europe, did not result in any significant increase in the 

intraspecific divergence. This presence of substantial regional variation of ITS sequences may 

suggest that a compelling identification framework cannot be developed for the mycobiota of 

Parmelia without requiring extensive geographical surveys of Parmelia in South Africa. The 

samples from the Parmelia genus included in our study show high cryptic diversity (Divakar 

et al., 2016), which is a phenomenon that has been previously reported in lichen-forming fungi 

and the Parmeliaceae family (reviewed by Lumbsch and Leavitt, 2011; Crespo and Lumbsch, 

2010). This increasing number of cryptic lineages in fungi is a major issue for current fungal 

taxonomy (Hawksworth et al., 2001; Crespo and Perez-Ortega, 2009). So, using a molecular 

barcode technique can help increase our understanding of the diversity, taxonomy and 

biogeography of the cosmopolitan lichen-forming genus (Kress et al., 2015).  
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A large number of lichens are used as bioindicators in forest and ecological continuity, 

biomonitoring of air pollutants and environmental disturbances (Zedda et al., 2011) or 

monitoring climate change (Aptroot and van Heck, 2007). Therefore, it’s important to have a 

strategy to quickly and accurately identify species (Hawksworth, 2010). Our results showed 

that Parmeliaceae species cannot be successfully discriminated using the nuclear ITS region 

alone, this finding is similar to previous studies (See Leavitt et al., 2014; Divakar et al., 2005) 

that also did not support monophyletic clades. The intraspecific genetic distances of the 

Parmelia genus in this study exceeded the proposed intra-interspecific genetic distances 

threshold (Fig. 3). But unlike previous studies where Parmelia demonstrated monophyly 

(Crespo et al., 2001; Divakar et al., 2005), the Parmelia species found in KZN showed distinct 

well-supported polyphyletic/paraphyletic clades. However, additional research is required to 

assess species boundaries and the potential of distinct lineages within these Parmelia species 

occurring in KwaZulu-Natal.  

 

3. Conclusion 

In summary, the current study is an example of the complex problems that occur in species 

delimitation and recognition. It also provides a realistic example of species-polyphyly proving 

that traditional-based methods can underestimate “real” species diversity true. This study also 

revealed the presence of previously hidden lineages, meaning further detail taxonomic research 

or revision is required. Divakar et al. (2010) used morphology, molecular data and geographic 

data to provide a more robust approach to delimitation of species phylogeny. So, future 

research can the method mentioned above and use more than one marker previously used for 

lichens e.g. rbcl, beta-tubulin or matK, there might be an improvement in our results. So, in 
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conclusion, the results from this study have set a stage for a detailed future investigation to 

improve our knowledge the biodiversity and taxonomy of lichens. 
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CHAPTER 5: GENERAL CONCLUSION AND RECOMMENDATIONS 

 

DNA barcoding of KwaZulu-Natal Afromontane forest Parmelia (Parmeliaceae) species: A 

molecular approach to accurate specimen identification and sensitivity to climate change. The 

present study was a combination of two disciplines; in Chapter 3 using chlorophyll 

fluorescence parameters and conductivity we assessed the tolerance of the symbionts of lichens 

to heat and cold stress, to determine the likely effect of climate change or global warming on 

these sensitive species. In Chapter 4, we made use of DNA barcoding to test for the 

effectiveness of the nuclear ITS gene as a standard marker to identify Parmelia species from 

KZN.  

High elevation species will continue to face habitat loss and potential threat of extinction as a 

result of climate change (Allen and Lendemer, 2016). The effects of climate change on lichen 

distributions have been previously documented by Aproot and van Herk (2007) and Søtching 

(2004). Results from the present study suggest that with increased temperatures, coastal lichen 

species have a better chance of survival than those growing in inland sites. This is because 

species collected along the coast were more tolerant to heat than species collected from inland, 

more high-lying areas. Presumably, these species could move their distributions inland should 

temperatures rise, while those in montane areas would have nowhere to go. This research then 

improves our understanding on the behavior of species collected from different localities in 

response to high temperatures that would possibly experience as a result of global warming. 

Our results are consistent with other studies that have shown either phenotypic variation in heat 

tolerance (e.g. studies comparing the thermotolerance of the same site at different season or 

more likely genetic differences (e.g. studies comparing different populations). However, 

although genetic difference may be more likely in the present study, it is not possible to separate 

genetic variation from phenotypic adaptation. Future research should test for phenotypic 
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plasticity, to determine if a change in the environment (e.g. transplanting montane material to 

the coast) could cause acclimation to temperature stress. Because lichens from high elevations 

have shown sensitivity to increased temperatures, future studies could focus on monitoring 

changes in distribution and growth of lichens from these sites as early warning indicators of 

climate change.  

 

Studies that involve modern revisions through the use of molecular data are now being 

conducted all over the world, particularly in places such as America and Europe. However, 

such studies are limited in Africa, which is surprising given that southern Africa may be 

particularly species-rich. As discussed in Chapter 4, South African lichen taxonomy is poorly 

explored or understood, and traditional methods of identification are proving inadequate or 

unreliable for this purpose. Therefore, DNA barcoding was explored as a rapid tool for species 

identification and resolving taxonomic problems (Blanco et al., 2006). Using ITS as a barcode 

marker, results from our phylogenetic analysis showed that unlike other Parmelia species that 

demonstrated monophyly, species of this lichen-forming genus from KZN are polyphyletic. In 

testing for the presence of a barcode gap, our nuclear ITS data sequences do not provide 

evidence for a gap, with a clear overlap between the inter- and intraspecific genetic classes. 

The significance of this overlap was further supported by the J-M separability test. The absence 

of the barcode gap limits the effective use of DNA barcoding as a tool for species identification, 

suggesting the need for a careful taxonomic revision of genus Parmelia in South Africa. The 

paraphyletic clades and the absence of a barcode gap can be explained by the lack of modern 

revision and research in lichens of South Africa, hence unstable taxonomy and high levels of 

cryptic diversity. Although our study was conducted on a small regional scale, outcomes from 

this study will be used in the future research of lichens in South Africa such as improving our 

knowledge on the diversity and taxonomy of lichen-forming fungi. 
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Future recommendations 

Although testing temperature tolerance at different times of the year appears attractive, there 

are a number of difficulties associated with this. First, the inland populations were collected in 

summer, so their heat tolerance would be expected to be optimal. Their heat tolerance is already 

lower than the coastal populations, but the difference could have been greater if material had 

been collected in winter. Second, there is only a small amount of annual variation in 

temperature on the coast, with low temperatures only rarely occurring, so it would be expected 

that heat tolerance does not greatly vary throughout the year. A better approach may be to use 

transplant experiments where can take material collected at the coast and transplanted it inland, 

and test if individuals lose heat tolerance (or vice versa). Alternatively, material could be kept 

cold in a growth cabinet in the lab and any loss in heat tolerance could be monitored. Further 

work could include testing if temperature adaptation occurs in ways other than simply 

“tolerance” e.g. how does respiration / photosynthesis vary as a function of temperature in the 

different populations? This would enable us to test if the coastal populations are generally 

better adapted to warm conditions. A transcriptomic approach could also be used to 

investigation how coastal populations achieve greater tolerance to high temperatures. For 

example, one obvious possibility would be to test whether HSPs are differently induced by 

temperature shocks in different populations.  

The use of DNA barcoding can be improved by sequencing additional markers such as β-

tubulin or tef-1α previously used for lichen groups. 
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