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Summary 
 

Regenerative medicine holds great potential as a therapeutical tool that can be used 

to tackle the rising incidence of neurodegenerative diseases and other brain disorders. There 

are still multiple challenges that need to be addressed before successful clinical translation. 

One of the most promising fields of regenerative medicine is cell replacement therapy. 

However, current cell conversion protocols have low efficiency and the generated cells lack 

molecular and functional features described in vivo. Another aspect hindering the 

development of more effective therapies is the lack of knowledge about specific regulatory 

mechanisms behind disease onset and development. To address these issues, single-cell 

RNA sequencing data has been used to advance the development of computational and 

experimental strategies that improve the identification of therapeutical targets and disease-

related mechanisms at the cell subpopulation level. 

In this PhD dissertation, we focused on developing novel single-cell based 

computational and experimental methods that advance the development of regenerative 

medicine approaches. TransSynW is a computational platform that leverages single-cell 

RNA-sequencing to identify transcription factors that can improve cellular conversion 

protocols. This method prioritizes pioneer transcription factors, addressing the limitations 

posed by incomplete epigenetic remodeling observed on the cells generated by current 

conversion protocols. We applied this method to distinct cellular systems, such as cell types, 

subtypes and phenotypes, and well-recapitulated known conversion TFs. Moreover, we were 

able to validate the biological significance of our predictions using a manually curated 

database of molecular interactions. We applied TransSynW to develop novel direct 

reprogramming protocols based on endogenous and ectopic regulation of conversion TFs, 

aiming at generating subpopulations of dopaminergic neurons. 

Based on single-cell sequencing data from low-grade glioma and glioblastoma 

patients, we found that tumor cells derived from the perivascular lineage are uniquely present 

in glioblastoma patients. To be able to identify this lineage in patients’ samples, we identified 

PROX1 and FOXC1 as specifically expressed in radial glia and perivascular derived tumors, 

respectively. These transcription factors have the potential to become important biomarkers 

in disease prognosis.  



 

xvi 

Finally, we delved into disease modelling and developed RNetDys, a multi-omics 

pipeline that can decipher the impact of disease-associated single nucleotide polymorphisms 

in the impairment of cell type specific regulatory mechanisms. We applied this pipeline to 

five diseases with a genetic background and validated the significance of the identified 

impairments against literature-based evidence. 

In summary, this PhD dissertation focuses on overcoming major challenges in 

cellular conversion protocols, identifying potential prognostic biomarkers, and deciphering 

the role of disease-associated single nucleotide polymorphisms in the impairment of 

regulatory mechanisms. The novel findings of this PhD dissertation have potential 

applications in the different fields of regenerative medicine, such as cell replacement therapy 

and disease modelling. 

 

 

 

 



 

1 

1. Introduction 
 

1.1. Central nervous system organization 

The nervous system is a complex structure that controls our everyday actions by 

processing and responding to any perceived stimuli. These responses can be classified in 

somatic and autonomic functions. Somatic responses encompass the voluntary control of our 

movements through the connection of the neuronal system to the skeletal muscle while 

autonomous responses regulate our physiological involuntary processes, such as breathing, 

heartbeat, and digestion 1,2. This system can be divided into two main regions: i) the central 

and ii) the peripheral nervous systems. 

The central nervous system (CNS) comprises two major organs of the human body: 

the brain and the spinal cord. These structures are enveloped by the meninges and are 

protected by the cranial cavity in the skull and by the spinal canal in the vertebral column, 

respectively 3. Likewise, the CNS encompasses the white matter, composed of 

oligodendrocytes and axons ensheathed by myelin, and the gray matter which consists 

mostly of neuronal somas (cell bodies). In the brain, the gray matter is located in the outer 

part while the white matter can be found in the inner portion. In the spinal cord, the location 

of these regions is inversed. 

The brain is our most intricate and enigmatic organ (Figure 1). It has the capability 

to process and interpret information transmitted by multiple signals throughout the body to 

accordingly determine the most suitable response 4. This structure can be divided in three 

main sections: i) the cerebrum, ii) the cerebellum, and iii) the brainstem. The cerebrum is 

the major component of the brain (around eighty percent), and it can be subdivided into 

cerebral cortex, hippocampus, and amygdala 4. Together, this structure is responsible for the 

highest neural abilities, such as cognition, visual processing, language, and memory, as well 

as for further specialized faculties, for instance consciousness and perception 4,5. The main 

role of the cerebellum is to control motor functions by establishing the communication 

between cerebral cortex, spinal cord, and muscle 4. It regulates coordination, timing, and 

precision of our everyday movements. 

The brainstem is positioned at the bottom of the brain, and it links the cerebrum to 

cerebellum and spinal cord 6. Unlike the cerebrum, this structure is small, only accounting 
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for around three percent of the brain’s weight 7. The brainstem can be divided into three 

major parts: i) the medulla oblongata, ii) the pons, and iii) the midbrain (Figure 1) 6. The 

nerve tracts connecting the brain to the spinal cord, in addition to the ones linked to several 

organs, all pass through the medulla oblongata, making this part of the brainstem responsible 

for autonomic functions, such as breathing and blood pressure. The pons bridges the 

connection between the medulla oblongata and the midbrain 4,6. Here, the nerves that go 

through it connect to the cerebellum, regulating muscle coordination. In addition, the pons 

also relays nerves that connect to the head and face, contributing for the control of eyeball 

movement, facial expression, and salivation. 

The midbrain serves as a connection center that transmits motor and sensory signals 

between spinal cord, pons, and cerebral cortex (Figure 1) 6–8. Two of its main regions are the 

cerebral peduncles and the tegmentum. Each of the cerebral peduncles creates a lobe on the 

lower part of the tegmentum. The connecting parts consist mostly of substantia nigra (SN), 

a nucleus of dopaminergic neurons (DANs) that has a crucial function in regulating reward 

and motor movement 9. The SN is the main input into the circuitry of the basal ganglia, a 

group of subcortical structures that regulate, among other functions, cognition, emotions, 

and voluntary movement. The SN is subdivided into pars reticulata and compacta (SNpc), 

the latter presenting a darker coloration due to the elevated levels of neuromelanin derived 

from dopamine synthesis 9,10. The SNpc is the primary region of the brain responsible for 

dopamine production, a crucial neurotransmitter that impacts movement, cognitive 

functions, and emotional responses. In particular, the SNpc is connected to the striatum, one 

of the main components of the basal ganglia, by DANs forming the nigrostriatal pathway 

(Figure 1). Degeneration of the DANs forming the nigrostriatal pathway in the SNpc is 

profoundly involved in the onset of the motor deficits seen in Parkinson’s Disease (PD) 11. 
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Figure 1: Schematic representation of the brain. This structure can be divided in three 
main sections: cerebrum, cerebellum, and brainstem. The brainstem can be divided into four 
major parts, including medulla oblongata, pons, and midbrain. Within the midbrain, we can 
find the substantia nigra (SN), a nucleus of dopaminergic neurons (DANs) that has a crucial 
function in regulating reward and motor movement. In particular, the SN pars compacta is 
connected to the striatum by DANs, forming the nigrostriatal pathway. 

 

1.1.1. Classification and function of the major brain cell types 

Our brain is composed of two main types of cells: i) neurons and ii) glial cells. 

Neurons are the building foundations of the brain, being responsible for the entire network 

of communication of the nervous system. Glial cells are non-neuronal cells whose main 

functions are to provide support to the metabolically demanding neuronal functions, 

structural maintenance, and to facilitate synapse transmission 12. Thus, the crosstalk between 

neurons and glial cells is of the upmost importance for the correct functioning and regulation 

of brain homeostasis. 

1.1.1.1. Neurons 

Neurons are elongated, asymmetric cells that have the capacity of being 

electrically excitable 13. Due to this ability, neurons’ primary function is to respond to 

external stimuli by generating electrical impulses, named action potentials, and conduct them 

throughout the body’s neuronal network. The morphology of these cells is very distinct, with 

a round cell body (soma) and branching cellular processes that extend into opposite 
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directions, forming dendrites and axons. The neuronal morphology is held together by a 

complex network of microtubules 14. One of its main structural components is beta tubulin 

III (TUBB3). This protein is expressed specifically in neurons during early development and 

is commonly used as a positive marker 14,15. 

Dendrite arborization allows for multiple signals from different cells to be 

received and processed by an individual neuron. If the sum of these electrical impulses 

exceeds a threshold, the neuron will fire and transmit an action potential down its myelinated 

axon (Figure 2) 13,16. Once the pulse reaches the axon terminal, the electrical signal is 

converted into a chemical one that can then be transmitted to the target neuron or effector 

cell. This chemical signal is sent along the axon terminal of the presynaptic neuron to the 

dendritic branches of the postsynaptic neuron through the space in between these neurons, 

also called a synapse 16,17. In these structures, the chemical pulse is transmitted from the 

presynaptic to the postsynaptic neurons by the release of neurotransmitters. These molecules 

can propagate two types of messages: i) excitatory and ii) inhibitory. Excitatory 

neurotransmitters induce the depolarization of the cellular membrane, resulting in the 

generation and conduction of the action potential to the postsynaptic neuron. On the other 

hand, inhibitory pulses promote hyperpolarization of the postsynaptic membrane, leading to 

the blockage of the propagation of the action potential. There are two neurotransmitters 

worth mentioning, glutamate and γ-aminobutyric acid (GABA), as they are responsible for 

excitatory and inhibitory synaptic function, respectively. 

Glutamate has been described to have a central role in the plasticity of the nervous 

system, namely in the synapse connections involved in memory storage 17,18. This 

neurotransmitter is involved in the pathogenesis of multiple neurodegenerative diseases, 

namely Alzheimer’s Disease (AD) and PD 19. Glutamate excitotoxicity is triggered when 

this neurotransmitter is not cleared from the synaptic cleft by the glial cells, specifically 

astrocytes, increasing its extracellular concentration 19,20. This effect is a major contributor 

to neuronal cell death of glutamatergic neurons observed in AD patients 19,21. Moreover, 

mutations in PD-associated genes can cause a dysregulation in glutamate mediated synapses, 

which leads to glutamate excitotoxicity 22,23. This excitotoxic process has been associated to 

DAN degeneration in several parkinsonian mouse models 21,24,25. 

 On the other hand, GABA is the neurotransmitter targeted for the treatment of 

neurological disorders such as epilepsy (EPI) 26. Reduction of GABA mediated inhibitory 
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pulses in the cerebral cortex leads to electrical patterns like the ones observed upon an 

epileptic episode 26,27. Additionally, chemical agonists of GABA have been shown to be 

antiepileptic while GABA antagonists promote epileptic seizures 28,29. 

Finally, dopamine is another major neurotransmitter that has a vital role in 

multiple brain functions, such as motor movement and reward pathways. The synthesis of 

this neurotransmitter requires a specific amino acid, phenylalanine, and is dependent on the 

action of an enzyme only present in DANs, the L-tyrosine hydroxylase (TH) 30. The 

depletion of dopamine releasing neurons is closely related to the onset of PD 31. Indeed, the 

most administered treatment for the symptoms of PD is the prescription of levodopa, a small 

molecule that is converted to dopamine in the brain 32. 

Together, all these neurotransmitters are released in the more than 1014 synapses 

present in our brain, reflecting the capacity of neurons to transmit millions of impulses in a 

split second 33. To maintain this unparallel processing power, glial cells play an essential 

role in meeting the high metabolic demands arising from neuronal functions and sustaining 

a microenvironment suitable for an efficient transmission of this massive amount of 

information. 

1.1.1.2. Astrocytes 

Astrocytes are specialized, star-shaped cells that provide essential support to the 

neuronal tissue. These glial cells extend long cellular processes from their soma that branch 

out into the processes called endfeet 34. Astrocytes are the most abundant cell type in the 

brain, and they can be identified by the presence of glial fibrillary acid protein (GFAP), a 

uniquely expressed filament protein 34,35. Depending on their anatomical position and 

morphology, this class of glial cells can be divided into two subtypes: i) fibrous or ii) 

protoplasmic. Fibrous astrocytes are located in the white matter and display thin and 

elongated processes that connect to nodes of Ranvier, the short myelin gaps in neuronal 

axons 36,37. In contrast, protoplasmic astrocytes reside in the gray matter and display a 

globoid morphology composed of numerous irregularly ramified processes which enclose 

the synapses 36,37. This coupled organization allows astrocytes to establish a unique crosstalk 

with neurons, vital for the maintenance of the neuronal microenvironment, namely through 

shuttling and recycling of metabolites and neurotransmitters. 

In the synapses, electrical impulses transmitted by neurons are transformed into 

chemical ones, in a process mediated by neurotransmitters. Clearance of these chemicals, 
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especially glutamate, is essential for correct transmission of countless signals and to prevent 

excitotoxicity. Astrocytes use glutamate transporter 1 and the glutamate-aspartate 

transporter to clear glutamate from the synaptic cleft (Figure 2). Glutamate is metabolized 

into glutamine by an astrocyte-specific enzyme named glutamine synthetase 38. Additionally, 

pyruvate carboxylase, an enzyme essential to the replenishment of glutamate, is uniquely 

expressed in astrocytes, allowing the synthesis of glutamine from glucose 39. Astrocytes then 

shuttle the glutamine back to the neurons, where it is converted again into glutamate in an 

energy-dependent process mediated by the enzyme glutaminase 38,40.  

Astrocytes are able to effectively recycle neurotransmitters and uptake glucose 

due to their ideal position: their processes surround synapses while their endfeet connect 

with vascular cells, such as pericytes 41. Pericytes are mural cells embedded within the 

capillaries that are known by their stem cell-like attributes and by their role in regulating the 

brain’s blood flow and the blood brain barrier (BBB).  

Due to their connection to the circulatory system, astrocytes uptake glucose when 

glutamate is released into the synaptic cleft (Figure 2) 42. Several studies have shown that, 

due to the differences in the metabolic rate, astrocytes and neurons use complementary 

metabolic pathways to oxidize glucose 43–45. Astrocytes have a lower metabolic rate and 

direct access to glucose therefore they preferentially choose the glycolytic pathway which 

leads to the production of lactate that is shuttled to neurons though the monocarboxylate 

transporter 1 42,46,47. Neurons have a high metabolic rate therefore lactate enters as a substrate 

in the tricyclic acid cycle to produce adenosine 5′-triphosphate 42,43,47. Together with 

regulating oxidative stress and contributing to synaptogenesis, astrocytes have a pivotal role 

in sensing brain homeostasis and their unique position makes them the ideal cell type to 

provide metabolic support to neurons and to maintain neuronal excitability and synaptic 

transmission. 

Astrocytes also play a role in neuroinflammation. Upon brain insult, astrocytes 

can become reactive through a process named astrogliosis and release a variety of effector 

molecules, such as cytokines, growth factors and signaling molecules 48,49. The major 

hallmarks of this process are the upregulation of GFAP, cellular hypertrophy and 

proliferation 49. Astrogliosis can be triggered by mild occurrences, such as mild trauma, viral 

and bacterial infections, or by more severe events such as neurodegeneration and ischemia. 

If the brain injury is very severe (e.g., stroke, neurodegenerative disease or acute infection), 
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astrocytic scars start forming. The scar formation consists of the aggregation and 

intertwining of the processes of the recently generated and elongated reactive astrocytes, 

forming compact borders that highlight the areas of severe tissue damage or necrosis 50.  

Similar to the macrophage nomenclature, reactive astrocytes have been classified 

as A1 and A2 types, depending on their functions 51,52. A1 astrocytes lose most of their 

physiological functions and promote neuronal death and toxicity. Specifically, A1 astrocytes 

have been shown to promote formation of weaker synapses when compared to healthy 

astrocytes. Notably, A1 astrocytes have been detected in several neurodegenerative diseases 
52,53. It was reported that in AD, the majority of the astrocytes located in the prefrontal cortex 

express high levels of GFAP and an A1 type marker, C3 52. Furthermore, it has been shown 

that inhibiting the formation of A1 astrocytes reduces the degeneration of DANs and 

improves motor function in a PD model 53. On the other hand, A2 astrocytes seem to have a 

neuroprotective role as they have been shown to promote tissue repair and neuronal survival 
52. Specifically, A2 astrocytes release TGFβ, an anti-inflammatory cytokine, that has been 

reported to play a neuroprotective role and promote synaptogenesis 54. 

Astrogliosis is a complex multifactorial mechanism, triggered as a first line of 

defense to repair brain damage. However, upon severe injury, this process can get 

exacerbated and lead to the formation of A1 astrocytes which have been described to be 

involved in the development of neurodegenerative diseases 51,52. Notably, it has been 

described that A1 astrocytes can be converted into the A2 type, healthy astrocytes, and even 

neurons 55–57. Inducing cellular conversion of A1 astrocytes is a strategy that could be applied 

to regenerative medicine therapies for neurodegenerative diseases. 

1.1.1.3.Microglia 

Microglia represent the main immune cell type in the brain and play an essential 

role in containing neuroinflammation and infection. These immune cells reside in the brain 

and have a remarkable morphological plasticity, which allows them to navigate and access 

injury sites easily and phagocytose any harmful elements 58,59. Under normal conditions, 

microglia have highly branched and fine processes, which allows them to effectively monitor 

the parenchyma of the brain for signs of cellular injury or pathogens. Once these cells find 

damage-associated molecular patterns, molecules derived from invaders or cellular damage, 

microglia become activated and change their morphology 60. Their cell bodies increase in 

size and their processes are completely retracted, acquiring an amoeboid configuration 61. 
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The conventional classification system consists of two microglial states of activation: i) the 

M1 or classic and ii) the M2 or alternative 62. These phenotypes have opposite functions. In 

the M1 state, microglia releases proinflammatory cytokines and reactive nitrogen and 

oxygen species, while M2 is an anti-inflammatory state where microglia release trophic 

factors instead 62. Recently, it has been described that these two phenotypes are just part of 

a spectrum of activation profiles, some even specific to certain neurological diseases 63,64. 

The main functions of microglia are elimination of pathogens, apoptotic cells and 

toxins, synaptic pruning, myelin maintenance, and tissue surveillance (Figure 2) 58. 

However, this brain cell type has also been shown to have a role in the development of 

several neurodegenerative diseases. In AD for instance, the rate of clearance of amyloid beta 

plaques by the microglia is not fast enough to prevent their overactivation. This leads to a 

sustained release of inflammatory cytokines that promote the persistent neuroinflammation 

observed in AD 65,66. In PD, the role of microglia remains elusive, but some studies show 

that the extensive death of DANs associated with the disease can lead to an increase in the 

release of proinflammatory cytokines by activated microglia, leading to an exacerbated 

neuroinflammatory response 67–69. 

Under physiological conditions, microglia’s spectrum of activated states greatly 

contributes to the maintenance of brain homeostasis. However, when an exacerbated 

inflammatory response is triggered, it can promote the development of different brain 

diseases. Understanding and characterizing their heterogenic responses to the different 

diseases is important to discover more effective therapeutical targets.  

1.1.1.4. Oligodendrocytes 

Oligodendrocytes are glial cells responsible for myelinating the neuronal axons in 

the CNS. These cells go through three different phases: i) migration and proliferation of 

oligodendrocyte precursor cells, ii) branching of their network of processes, and iii) selection 

of a neuronal axon, myelin encasing and maintenance of this axon’s ensheathment 70. 

Oligodendrocytes only produce myelin once their maturation process is complete, which 

happens in phase three. Once the oligodendrocyte processes connect to an axon, their cellular 

membrane starts expanding, wrapping around it (Figure 2) 71. Then, the membrane contracts, 

ejects cytoplasm and myelin is produced. This lipidic membrane insulates neuronal axons in 

segments, increasing the speed at which the action potentials travel along the neuronal 

network 72. 
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Demyelination is a hallmark of the development of Multiple Sclerosis (MS) 73. 

During the onset of this disease, the immune system targets the myelin in the neuronal axons 

in response to several myelin antigens. Due to age-related changes and limitations inherent 

to post-mitotic oligodendrocytes, remyelination starts failing as the disease progresses, 

leaving demyelinated axons vulnerable to neurodegeneration 74,75. Recently, it has been 

shown that oligodendrocytes exhibit different functional states in the presence of MS 

injuries 76. 

Oligodendrocytes are essential to the correct functioning of the brain as they are 

the sole providers of myelin and maintainers of the myelin sheath. When this lipid membrane 

is damaged or even lost, neurons are left exposed to neurodegeneration. It is therefore 

important to expand our knowledge about this cell type and the complex mechanisms behind 

myelin wrapping so we can address the impact of these processes on brain-related diseases. 

As we have seen, neurons and glial cells have a very intricate and fine-tunned 

relationship (Figure 2). While neurons take care of the transmission and processing of 

information, glial cells have their unique roles to support neuronal function and structure, 

such as transport and release of neurotransmitters, regulation of inflammation and formation 

of myelin sheaths. Better understanding these processes and how these brain cell types 

coordinate their specialized functions would allow us to use this knowledge for developing 

new therapies and discover new targets for the treatment of neurological diseases. 
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Figure 2: Crosstalk between brain cell types. Neurons are electrically excitable cells 
responsible for the entire communication network of the nervous system. The electrical 
signals are converted into chemical ones that are transmitted from the presynaptic to the 
postsynaptic neuron by the release of neurotransmitters, such as glutamate. Glutamate 
released by the presynaptic neuron is removed from the synapse by astrocytes, where it is 
converted into glutamine. Additionally, astrocytes express pyruvate carboxylase which 
allows for the synthesis of glutamine from glucose. Finally, glutamine is then transported to 
the presynaptic neuron, where it is converted to glutamate that is released upon new electrical 
stimulus via synaptic vesicles. When glutamate is cleared from the synaptic cleft, astrocytes 
uptake glucose from the circulatory system. Glucose is then metabolized via the glycolytic 
pathway, leading to the production of lactate which is shuttled to neurons. Lactate enters as 
a substrate in the tricyclic acid cycle (TCA), producing a reduced form of nicotinamide 
adenine dinucleotide (NADH), which is then used by the electron transport chain to produce 
adenosine 5′-triphosphate 77. One of the main functions of microglia is synaptic pruning. In 
physiological conditions, microglia express CX3C motif chemokine receptor 1 (CX3CR1) 
which binds to the neuronally expressed fractalkine (FKN), activating these receptors and 
mediating the release of neuromodulators that promote synaptic plasticity 78. Finally, 
oligodendrocytes are essential to the correct functioning of the brain as they are the sole 
providers of myelin. This lipidic membrane insulates neuronal axons in segments, increasing 
the speed at which the action potentials travel along the neuronal network. 
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1.1.2. Deciphering brain complexity at the cell population level 

Classifying cell populations in the brain has been a long-term objective in the field 

of neuroscience. The high level of complexity and relationships inherent to the brain cell 

types hold the key to understand the correct functioning of this organ. Since the classification 

of the first brain cell type, multiple other cell types and subtypes have been described. This 

has been helping us understand how this biological system and their unique properties are 

able to regulate intricate physical and cognitive activities. Parameters such as morphology, 

location, electrophysiology, synaptic properties, and expression of marker genes have been 

used classify the newly observed brain cell types 79 Nevertheless, there are still countless 

highly specialized cells that remain undescribed. Traditional techniques can only analyze 

one neuronal phenotype at a time, often in an incomplete manner, which has been slowing 

down the acquisition of new knowledge. Fortunately, with the advent of next-generation 

sequencing (NGS), discussed in the next section, we have now considerably advanced the 

uncovering of brain dynamics, from cellular lineage development to disease onset. 

On a larger scale, it is now possible to generate cell type atlases of the human 

brain, such as the Allen Human Brain Atlas 80. A comprehensive atlas of the developmental 

human ventral midbrain and of the human motor cortex have also been generated 81,82. 

Revealing not only the cell types, but also characterizing the cell subtypes in the brain would 

greatly advance our knowledge, especially the understanding of the molecular mechanisms 

behind disease development. For instance, a recent study has characterized the different 

cellular subtypes of DANs, where they could clearly see that a particular subtype seems to 

be more vulnerable to the effects of PD 83. Two transcriptomically unique reactive astrocytes 

subtypes have been shown to have different responses in an AD model 84. Novel high-

throughput methods also helped to characterize temporal and spatial differences in disease 

specific microglia states 85. Finally, transcriptomic profile of oligodendrocytes allowed the 

identification of predominant subpopulations of this cell type in MS samples, which may 

constitute a new target for the development of novel therapeutical approaches for MS 76. 

As a result of major advancements in throughput, resolution, and robustness of 

NGS technologies, we are now able to expand the classification of genetic and phenotypic 

cell subtypes in the brain. This has revolutionized the current understanding of brain 

organization and contributed for the characterization of dysregulated mechanisms often 

associated to disease development. 
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1.2. Next-generation sequencing techniques for characterizing cell 

population heterogeneity 

In 1953, Dr. James Watson, Dr. Francis Crick, Dr. Maurice Wilkins, and Dr. 

Rosalind Franklin published three separate scientific articles that are considered to be some 

of the greatest achievements in human history 86–88. Together, these articles characterized 

the structure of the so-called “molecule of life”, the Deoxyribonucleic Acid (DNA), and 

marked a new age in scientific research. Due to the huge potential of this molecule to uncover 

the mechanisms behind cellular function and dysregulation, multiple efforts have been made 

to sequence it and extract the important information within. After devoting his scientific 

career to developing a method for DNA sequencing, Dr. Fred Sanger, in 1977, described a 

protocol that involved the incorporation of labelled primers with a chemical modification 

that stopped the extension of the synthesized strand 89. The fragments obtained from all the 

chain-terminating reactions were separated in polyacrylamide, visualized by X-rays, and the 

DNA sequence was assembled. Although this method came into immediate use by the 

scientific community, it had its drawbacks. The read length obtained from Sanger 

sequencing is limited to the number of nucleotides that can be amplified for a given primer. 

For sequencing longer DNA fragments, a new primer is designed in a way that it binds to 

the end of the known sequence, obtained from the previous step, and Sanger’s protocol is 

repeated. This highly limits the throughput, making it impossible to sequence long DNA 

sequences, such as the human genome. Several improvements were proposed, namely 

shotgun sequencing and fluorescence labeling, which led to the development of automated 

Sanger sequencing devices that could sequence up to 1000 bases daily 90,91. Consequently, 

the availability of sequencing data grew exponentially, encouraging the foundation of data 

repositories and search algorithms, such as GenBank and BLAST, respectively, that are still 

indispensable tools for current scientific research 92,93. 

Together, all these advancements contributed to lowering the time and the cost of 

sequencing the human genome from 2.7 billion to 10 million dollars, a major milestone in 

the scientific history 94. However, there were still some limitations to be addressed. The 

overlap-based assembly process required a very high processing power and the assembly of 

repetitive sequences often resulted in errors being introduced, since it was very difficult for 

the assembly programs to distinguish between repeated copies from flawed base calls and 

differences of a single base 95. Despite all efforts to address these challenges, any technical 
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advancements resulted in minimal benefits, making it soon clear that the efficiency and 

scalability had reached its peak and new technologies had to be developed. 

To address this, NGS platforms were developed. The key difference between 

Sanger’s and NGS, besides its improved accuracy, is multiplexing. With NGS, we scale up 

from one fragment at a time to a library of millions of DNA templates, bonded to universal 

adapters and immobilized on a solid surface of microfluidic channels (Figure 3) 91. This 

setup completely exposes the complex library to the DNA polymerase and other reaction-

catalyzing reagents, allowing for the amplification of multiple DNA fragments in a single 

reaction. After several steps of amplification, a signal for each of the fragment’s sequencing 

reactions can be digitally detected by the NGS instruments, generating sequencing data for 

the DNA library of interest. Essentially, NGS platforms perform detection and sequencing 

at the same time. This massive parallel sequencing approach significantly reduced the time 

and costs of DNA sequencing and gave us access to large amounts of data, ushering us into 

the “big data” era. NGS platforms and their continuous improvements led to an exponential 

growth of both our sequencing scale and throughput, contributing for our increased 

knowledge of living systems at the genome-wide level. In addition, these technologies 

helped the characterization and understanding of the vast molecular diversity and 

heterogeneity of multiple tissues and cellular systems such as cell types, subtypes, and 

phenotypes. 

 

 

Figure 3: Next-Generation Sequencing (NGS) workflow. NGS protocols can be divided 
into three steps: (A) nucleic acid extraction, (B) library preparation, and (C) DNA 
sequencing on microfluidic channels. The immobilized DNA sequences are amplified and a 
signal for each of the nucleotides can be digitally detected by the NGS instruments, 
generating sequencing data for the DNA library of interest. Created with BioRender.com. 
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Bulk sequencing was one of the first applications of NGS technology. These methods 

can be applied to the study of the genome, transcriptome, and epigenome of millions of cells 

in distinct biological conditions. Among the several applications of bulk sequencing, RNA-

sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using sequencing 

(ATAC-seq), and Chromatin Immunoprecipitation (ChIP) sequencing (ChIP-seq) are the 

most commonly used technologies. One of the main applications of bulk RNA-seq is to 

identify differentially expressed (DE) genes between two distinct conditions, for instance, 

disease and control, to understand the molecular pathways involved in the development of 

specific conditions 96. This technology has been essential in several areas of research, 

including cancer biology, discovery of new biomarkers, immunotherapy, and clinical 

applications 97–99. On the other hand, ATAC-seq and ChIP-seq provide information at the 

epigenetic level. ATAC-seq determines accessible chromatin regions whereas ChIP-seq 

identifies loci in the genome that are enriched for DNA-binding proteins, such as 

transcription factors (TFs), and histone modifications 100,101. Together, these technologies 

are widely used for characterization of epigenetic profiles, both by identification of genome 

wide open chromatin regions and mapping of global protein-DNA binding sites 102,103. These 

methods have contributed to the understanding of the epigenetic landscape associated with 

unique cell types, lineages, and differentiation in both physiological and disease 

conditions 103–106. 

Bulk sequencing has, however, a major limitation. In order to draw conclusions from 

a bulk experiment, one must assume that the tissue or cellular culture of interest is mostly 

homogeneous. Indeed, the findings from these studies result from averaging the captured 

information among all the cells in a given biological sample. It is well established, both at 

the experimental and theoretical level, that heterogeneity is a characteristic common to most 

of the tissues and cellular systems 107,108. In fact, the level of heterogeneity is predicted to 

increase as we move towards a molecular state, while homogeneity decreases 109. Therefore, 

the assumption derived from bulk studies that cells derived from one tissue have 

homogeneous genetic profiles has been masking the natural cellular heterogeneity in our 

cultures of interest 110–112. It soon became clear that developing a platform with a higher 

resolution and obtain a picture of each individual cell would hold the key to fully characterize 

unique cellular populations and understand how they affect the homeostasis of a specific 

tissue. 
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1.2.1. Single-cell RNA-sequencing 

Single-cell NGS technologies provide us with rich datasets that can dissect 

cellular heterogeneity at a genetic, transcriptomic, and epigenetic level. Understanding this 

heterogeneity is vital to know how a biological system develops, how it is regulated, both at 

a homeostatic and disease state, and how it responds to exposure to different stimuli. Indeed, 

single-cell data shows that cells in a particular tissue are much more heterogeneous than 

previously thought. This allowed for a deeper classification of previously known cellular 

populations by uncovering new subpopulations and the characterization of their interactions 

and phenotypic responses to a given perturbation 113–115. 

While DNA can provide information on common variants and mutations for a cell 

population, much of the cellular heterogeneity is observed at a phenotypic level and reflected 

on the transcriptome of each individual cell. Due to its unique position in the flow of genetic 

information, Ribonucleic Acid (RNA) can reveal not only modifications on the functional 

elements of the DNA code but also capture changes at the level of gene expression, splicing 

variants, and other post-transcriptional modifications. Therefore, RNA can be considered 

one of the central sources of cellular heterogeneity and thus cellular transcriptomics became 

one of the best studied fields at the single-cell level 116. Single-cell RNA-seq (scRNA-seq) 

can comprehensively profile the transcriptome of multiple individual cells. The high 

resolution and statistical descriptive potential of such datasets give us an in-depth picture of 

gene expression at the single-cell level and allow us to identify rare and unknown cellular 

subpopulations 117,118. scRNA-seq has been a staple method for characterizing tissue and 

tumor cellular heterogeneity, cellular lineages, fates, and trajectories, identifying disease 

specific cellular populations and respective drug resistances and susceptibilities 114,119–123. 

In general, scRNA-seq protocols follow a common methodological backbone that 

consists of i) isolation of viable single-cells or nuclei, ii) reverse transcription of messenger 

RNA (mRNA) transcripts, iii) complementary DNA (cDNA) amplification, iv) library 

preparation, and v) NGS sequencing (Figure 4) 124. Currently, most of the available protocols 

can be divided into two main categories: full length or 5’- and 3’-end transcript coverage. 

Full-length protocols such as SMART-Seq2 and MATQ-seq are preferable to study the 

transcriptional profile of a specific cellular population, in particular its splicing variants, 

allele specific expression, isoform quantification, and lowly expressed genes due to their 

high sensitivity 125–128. On the other hand, 3’-end protocols such as Chromium, Drop-seq, 
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and inDrop, can capture a larger amount of cells with a lower sequencing cost 129–131. While 

some full-length methods rely on plate-based techniques, most of the 3’-end technologies 

use microfluidic droplet-based systems 127,128. Droplet-based platforms require less sample 

volume and capture more cells per assay, making them more suitable for massive analysis 

of single-cell expression profiles than plate-based technologies 132–134. Moreover, droplet-

based platforms also allow for sample multiplexing 135. Multiplexing approaches are based 

on the hashing technique, which consists of incorporating antibody or lipid-based labels that 

are unique for each sample before pooling them in one sequencing reaction136,137. This 

approach increases throughput, decreases the amount and consequently the costs of reagents, 

significantly reducing the cost of library preparation due to the increase of cells processed 

per reaction 135. Together with their simple application and optimization, droplet-based 3’-

end technologies are currently the most popular cell isolation pipelines for describing the 

cellular heterogeneity of uncharacterized tissues. 

Although scRNA-seq technologies are potent tools to characterize tissue 

heterogeneity, there are still major challenges at the technical level. When compared to bulk 

experiments, the amount of captured RNA per cell is lower and the experimental method is 

more extensive, which causes scRNA-seq protocols to have a higher technical bias and 

variation. In order to address this issue, several methods have incorporated the use of cellular 

barcodes with Unique Molecular Identifiers (UMIs). These are used to identify unique 

mRNA sequences so that each of them is only counted once, preventing PCR amplification 

bias during the analysis of the generated data 138,139. 

Each scRNA-seq experiment produces high dimensional raw data leading to the 

generation of massive volumes of complex data, driving the development of novel 

computational methods capable of processing, storing, and analyzing it 140. Due to the low 

quantity of processed cells, this sequencing technology has low capture efficiency and high 

number of dropouts (unsuccessful detection of truly expressed gene transcripts), technical 

noise, and biological variation 128. Together, all these factors promoted the development of 

algorithms, software tools, and packages for the pre-processing and downstream analysis of 

the generated data 140. 

scRNA-seq data analysis follows a standard workflow: quality control (QC), read 

mapping and alignment, gene expression quantification, normalization and biases correction, 

dimensionality reduction and clustering (Figure 4). QC can be done to evaluate sequencing 
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quality, by using for instance FastQC, and eliminate low mapping reads as they probably 

result from RNA degradation 141. After gene expression quantification, QC is also performed 

to filter out low-quality data, such as damaged, dead or aggregated cells. This can be 

achieved by discarding genes that have minimal expression across cells and cells that have 

single gene counts 142. Furthermore, assessing the percentage of mitochondrial genes per 

cell, which should not be higher than 10%, reveals if there is a leakage of cytoplasmic 

mRNA, an indication of a ruptured cell 143. 

Normalization is performed in order to minimize count and amplification biases. 

Due to the high heterogeneity and inherent sparsity derived from the numerous dropouts 

present in scRNA-seq data, new normalization algorithms were developed 144. scTransform 

pipeline from the Seurat framework is a state-of-the-art normalization algorithm for UMI-

based data and it uses negative binomial regression model 145. Furthermore, this pipeline also 

removes potential batch effects, which may introduce biological variability and technical 

errors that cause the expression of certain genes to be systematically different when 

compared to others 146. 

Since scRNA-seq quantifies the gene expression profile of each captured cell, 

count matrices have inherently high dimensionality. However, only a few biologically 

relevant dimensions can define the expression profiles for each cell 147,148. Therefore, feature 

selection and dimensionality reduction are performed to identify the most informative 

features (components) in the data that enable us to analyze and visualize it in a low 

dimensional space 149. Seurat is currently the state-of-the-art platform used to perform these 

steps in scRNA-seq 150. Based on the assumption that the variation observed at the biological 

level can be explained by genes that have high cell-to-cell variability, feature selection is 

performed to identify highly variable genes (HVG). Then, Principal Component Analysis 

identifies the components that capture most of the variability of the dataset using HVGs as 

an input. To identify the cellular (sub)populations present in the data, Seurat uses a K-nearest 

neighbor graph-based clustering method. Finally, this pipeline uses t-distributed Stochastic 

Neighbor Embedding and Uniform Manifold Approximation and Projection to visualize the 

identified clusters. 
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Figure 4: Single-cell RNA-sequencing (scRNA-seq) workflow. The first step on a scRNA-
seq protocol is the isolation of viable single-cells or nuclei. Currently, most of the available 
protocols can be divided into two main categories: full length, such as SMART-Seq2, or 3’-
end, such as Chromium. Full-length methods rely mostly on plate-based techniques, while 
3’-end technologies use droplet-based systems. Once each cell or nucleus is in a single well 
or droplet, the protocol follows a general workflow consisting of reverse transcription of 
mRNA into cDNA sequences, cDNA amplification, DNA library preparation, and NGS 
sequencing. scRNA-seq data analysis follows a standard workflow: quality control, read 
mapping and alignment, gene expression quantification, and downstream analysis. 
Dimensionality reduction is the pillar of this analysis since it is used to identify novel clusters 
of cell subtypes. These cell subtypes can then be characterized by the identification of marker 
genes using differential expression analysis or by inferring their trajectory based on 
pseudotemporal ordering. Created with BioRender.com. 

 

Once the cellular (sub)populations are identified, the downstream analysis is vast 

and complex (Figure 4). scRNA-seq downstream analysis consists of identifying genes and 

pathways that are enriched in each cellular (sub)population and the corresponding gene 
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regulatory networks (GRNs). Seurat is commonly used to identify marker genes in each 

cluster, Single-Cell Regulatory Network Inference and Clustering (SCENIC) is one of the 

state-of-the-art algorithms for network reconstruction and CellNet, Mogrify or TransSynW 

can be used to identify cellular conversion TFs 151–154. We can also perform cluster 

annotation, lineage tracing, and trajectory inference. scMap is a well-known tool for 

literature-based cell type annotation while velocyto and Monocle2 are the most used tools 

for trajectory inference 155–157.  

Although scRNA-seq technologies allowed us to study the uncharted territory of 

tissue and cellular heterogeneity and its underlying mechanisms, transcriptomics alone does 

not explain the intricate gene expression profiles characteristic of each cellular population. 

Indeed, it has been shown that epigenetic profiles, composed of active enhancers, expression 

of specific DNA binding proteins and open chromatin areas, also play a role in defining 

individual cell types. Therefore, being able to integrate scRNA-seq with other omics data 

would allow us to obtain a more representative depiction of the unique biology of each 

cellular population. 

 

1.2.2. Leveraging the combination of multi-omics data 

Single-cell transcriptomics data unravels the cellular heterogeneity of a tissue by 

capturing cellular subpopulations that express specific gene profiles. However, gene 

expression is a complex process which is tightly regulated by other mechanisms, such as 

epigenetic features 158. Combining transcriptomic information together with available data 

on epigenetic marks, such as chromatin accessibility, TF-DNA binding interactions and/or 

histone modifications, can comprehensively describe how the epigenetic landscape 

modulates gene expression to explain cellular heterogeneity. 

In that regard, the combination of scRNA-seq information with ChIP-seq data has 

been widely used to characterize the regulatory mechanisms behind specific gene expression 

patterns 159,160. ChIP-seq is a bulk sequencing method that focuses on identifying DNA-

binding proteins, such as TFs, as well as histone modifications 100. Briefly, ChIP starts with 

crosslinking proteins bound to DNA regions, followed by DNA fragmentation and 

immunoprecipitation of protein-DNA complexes using antibodies specific to the protein or 

histone modification of interest. Finally, the linkage between the precipitated DNA and 

protein is removed and the released DNA is sequenced. In summary, ChIP-seq can provide 
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direct evidence of TF binding to DNA sequences, such as promoters and enhancers, an 

indicator of gene transcription. This data has been extensively used as a gold standard for 

validating regulatory relationships between TFs and target genes, including the ones 

predicted by GRN-based methods 161,162. 

Another layer of epigenetic information relates to spatial organization of 

chromatin. It has been shown that the physical proximity between promoters and enhancers 

increases the transcription levels of tissue specific genes 163,164. Therefore, Hi-C was 

developed to capture the conformation of chromatin in a three-dimensional space 165. Data 

provided by this technique elucidated regulatory relationships between enhancers and 

promoters and has been used to develop computational methods that can infer these 

regulatory interactions 165–168. 

Chromatin accessibility is also an important epigenetic feature that is related to 

activation of gene expression 169. ATAC-seq is a technique used to profile opened chromatin 

regions across the genome and provide some insights about the regulatory mechanisms 

behind unknown gene expression events 101,170. This method uses hyperactive Tn5 

transposase to simultaneously cut and introduce adaptors in accessible chromatin regions 

which will be used to recognize the DNA fragments for amplification and sequencing. 

Finally, the sequencing analysis maps these DNA fragments to the genome and identifies 

“peaks” corresponding to areas of open chromatin. This technique has been extensively used 

to profile active regulatory regions involved in cell type specific gene expression 171,172. 

Important resources have been developed to leverage the combination of these 

types of epigenomics data. ChIP-Atlas is a comprehensive and most up-to-date database that 

integrates several layers of epigenetic information, such as ChIP-seq, ATAC-seq, and 

bisulfite sequencing (BS-seq) for multiple organisms, including human 162,173. In addition, 

GeneHancer is an extensive human database that combines bulk multi-omics data, namely 

ChIP-seq and Hi-C, to identify connections between enhancers and their target genes 174. 

Furthermore, computational methods leveraging the combination of single-cell multi-omics, 

namely scRNA-seq and single-cell ATAC-seq (scATAC-seq), have been extensively used 

to characterize the regulatory landscape of specific cell (sub)types 159,175,176. 

As seen, multi-omics approaches have the potential to extend our knowledge on 

the epigenetic processes regulating gene expression and to provide a comprehensive image 
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of the regulatory landscape and respective mechanisms underlying specific cellular 

functions. 

 

1.3. Computational methods to model cellular systems 

Advancements in NGS technologies, namely in scRNA-seq and its integration with 

other omics data, opened new doors to the development of computational methods that can 

accurately model the intricate molecular interactions underlying the functioning of complex 

processes in biological systems. To understand a given molecular process, one has to 

characterize the interactions between molecules and the effect of these interactions on 

individual pathways and processes 177. After determining these features, it is possible to 

classify the overall impact of each molecule on the biological system in study. However, the 

dynamics of cellular systems can be convoluted since their molecular processes are 

extremely intertwined and, thus, difficult to isolate and characterize.  

Computational modelling can guide our understanding in biological systems by 

mimicking their dynamics. Computational methods make use of mathematical algorithms to 

model molecular interactions and provide insights on how complex biological systems 

behave under physiological conditions or upon perturbation. These models have been used 

to describe several types of complex molecular processes, such as regulation of gene 

expression, signaling pathways, and protein folding 178–180. Understanding the full 

complexity underlying each of these processes and how they relate with each other provides 

crucial insights to better understand cellular systems not only at a physiological level, but 

also in disease development. 

 

1.3.1. Gene regulatory network inference 

Regulation of gene expression is one of the most complex and vital processes in 

cellular systems. Gene expression levels can be measured by quantification of mRNA, a 

molecule which production is tightly regulated at many different levels 181. First, chromatin 

availability is controlled by epigenetic marks, such as histone acetylation and DNA 

methylation, which modulate the accessibility of regulatory elements, such as promoters and 

enhancers 182,183. Second, the binding of TFs to these regions as well as other cofactors 

controls the transcription of DNA sequences by regulating the recruitment of the 

transcriptional machinery towards the transcription starting site 184,185. In eukaryotic systems, 
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produced pre-mRNAs undergo processing modifications, such as capping, polyadenylation, 

and splicing, a process that leads to the production of distinct mature mRNAs from the same 

initial transcript 184–186. Once the final mRNAs are produced, they are transported by RNA 

binding proteins to the cytoplasm where they are either translated by ribosomes or degraded 

by exoribonucleases 181,187. Together, these regulatory processes mediate the activation or 

repression of specific genes, which is reflected in the expression of the corresponding 

proteins, conferring to the cellular system the ability to perform specific functions. 

The interplay between all these regulators of gene expression can be modelled as 

a GRN, a network describing the regulatory interactions among genes 177. In that regard, the 

topology of GRNs depicts the specific interactions between TFs and genes (Figure 5). GRNs 

are normally represented as directed graphs, with source nodes representing TFs and directed 

edges describing their regulatory interactions with target nodes (genes) 188. Furthermore, 

GRNs can also provide information regarding the type of interaction between nodes, 

specifically activation or repression. Exploiting the topology of GRNs can guide the 

identification of hubs or master regulators, that display a high degree of connectivity, and 

provide additional mechanistic insights about a given cellular system 189,190. 

GRNs can be generated using literature-based evidence and/or prior knowledge 

databases, such as MetaCore from Clarivate Analytics, a manually curated database of 

molecular interactions 191. However, the data provided in these resources can be noisy as it 

derives from the collection of evidence described in distinct experimental conditions, cell 

types and tissues. Therefore, GRNs solely based on prior knowledge might lack information 

regarding the specific condition (e.g., healthy or disease) and cell (sub)type, which is 

important to understand the behavior of a particular cellular system (e.g., disease). 

GRNs can be inferred directly from experimental data by identifying significant 

relationships between genes to accurately capture the dynamics of gene regulation in a 

specific biological context. To detect statistically relevant regulatory interactions among TFs 

and genes, measurements such as correlation or mutual information can be used 192,193. One 

of the state-of-the-art GRN inference strategies, named SCENIC, uses scRNA-seq data to 

infer putative TF-gene regulatory relationships 151. This approach uses GENIE3, a method 

based on random forest and coexpression, to detect regulatory interactions and then refines 

these interactions using TF-motif enrichment analysis 151,194. Most of the currently available 

GRN inference methods are based on scRNA-seq data, allowing for the generation of highly 
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contextualized biological networks and providing crucial information for specific conditions 

or cell (sub)types 148,177. 

However, GRN inference methods perform poorly overall when benchmarked 

against ChIP-seq data, the gold standard strategy to assess the accuracy of the predicted TF-

gene regulatory interactions 195. Indeed, one of the major drawbacks for these methods is 

that they solely rely on the single-cell data, which is known to be noisy 177,195. In addition, 

the measurements and assumptions used to capture these regulatory interactions usually 

produce a high number of false positive edges. The combination of these limitations lowers 

the performance of GRN inference methods in predicting accurate regulatory relationships 

between TFs and genes.  

 
Figure 5: Gene regulatory network (GRN) representation. GRNs shows intricate 
regulatory interactions between TFs and genes. These networks are represented as directed 
graphs, with edges connecting source and target nodes. Interactions between nodes can be 
classified as activation or repression. GRNs can help to identify master regulators based on 
a high degree of connectivity. Created with BioRender. 
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The integration of prior information in GRN inference, such as currently available 

repositories of ChIP-seq data, would improve the accuracy of these methods in modelling 

transcriptional regulatory landscapes 161,162,195. Indeed, several GRN-based approaches have 

been developed to integrate different layers of information 175,196–198. In that regard, a GRN 

inference approach integrates several layers of multi-omics data, such as bulk RNA-seq, 

ATAC-seq, and ChIP-seq, to identify cellular conversion factors that successfully improve 

cell differentiation protocols 196. Furthermore, GRNs have also been used to study cis-

regulatory interactions in cellular (sub)populations based on the analysis of scRNA-seq and 

scATAC-seq data obtained from the same cell 175.  

Leveraging the information obtained from the combination or integration of multi-

omics data has been shown to be a promising strategy to develop computational methods 

that can accurately model the behavior of different cellular systems and characterize the 

inherent cellular heterogeneity 193,198.  

 

1.3.2. Transcriptional synergy as an emergent feature of cellular identity 

The identity of a given cellular system has been described to be determined by 

specific sets of TFs that regulate unique gene expression profiles which, in turn, are 

responsible for conferring distinct features to the cellular system 199. The precise 

identification of these groups of TFs, named identity TFs, is still a challenge 79. Multiple 

computational methods have been developed to address this limitation by leveraging the 

high-resolution power of scRNA-seq data 154,200,201. One of the main strategies used to 

determine identity TFs is the characterization of master regulators in GRNs 189,190. However, 

these methods only capture pair-wise relationships between TFs and genes, and do not 

account for the potential multifactorial interaction among them 154,201. 

TFs have been shown to synergistically regulate gene expression 202–204. The main 

regulators of pluripotency and cellular identity in embryonic stem cells (ESCs), NANOG, 

POU5F1, and SOX2, have been shown to co-occupy the same promoter regions 202. Also, it 

was shown that ISL1 directly interacts with LHX3 and with PHOX2A to control the cellular 

identity of spinal cord and brain motor neurons, respectively 203. In hematopoietic stem cells, 

GATA2, RUNX1, and SCL have been described to act as identity TFs for this lineage and to 

synergistically interact as protein complexes to bind to adjacent DNA sequences 204. 
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Literature evidence supports the existence of transcriptional synergy mechanisms 

that profoundly regulate cellular identity. Synergistic activity is one of the suggested models 

to explain how just a few identity TFs are able to regulate the expression of such complex 

and identity-specific gene programs 203,205. This model proposes that transcriptional 

regulators, such as TFs, act cooperatively by binding to the same regulatory elements in 

order to induce cell type or subtype-specific gene expression profiles (Figure 6) 206. It is also 

proposed that these transcriptional regulators assemble in a protein complex to perform their 

regulatory functions and thus it is not possible to predict their effects by considering only 

their individual activity. 

Based on this concept, computational methods have been using Multivariate 

Mutual Information (MMI) to capture these synergistic interactions among TFs 191,200,201,207.  

𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴; 𝐵𝐵; 𝐶𝐶) = 𝐼𝐼(𝐴𝐴; 𝐶𝐶) + 𝐼𝐼(𝐵𝐵; 𝐶𝐶) − 𝐼𝐼(𝐴𝐴, 𝐵𝐵; 𝐶𝐶) 

Considering the TFs A, B, and C, MMI quantifies the additional information obtained about 

C that cannot be described by the sum of the knowledge obtained from the pair-wise 

interactions between A and C (i.e., I(A;C)), and B and C (i.e., I(B;C)) 207,208. The information 

measured by MMI is based on Shannon’s entropy which is calculated, in this case, from the 

TF’s gene expression values obtained from RNA-seq data 209. Since entropy is an uncertainty 

measurement, an information gain equals a reduction on the uncertainty and, therefore, a 

negative MMI value 208,210. To use this concept as a synergy measurement, one has to assume 

that a negative MMI value indicates a synergetic relationship between the TFs since the 

information of A and B together gives more knowledge about C (i.e., I(A,B;C)) than the sum 

of the pair-wise interactions of C with A and with B (Figure 6). Based on this principle, 

TransSyn, a scRNA-seq based computational algorithm, was able to capture synergistic TFs 

that control the identity of the human medial floor plate midbrain progenitors, which are 

precursors of DANs 201. 

Focusing on the inherent characteristics of TFs, namely how they cooperate to 

control cellular identity, is a promising strategy to improve the generation of homogenous 

and functional cellular (sub)populations and the development of regenerative medicine 

applications, such as cell replacement therapy (CRT). 
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Figure 6: Synergistic interaction between transcription factors (TFs). Mechanisms of 
cooperative interaction include binding of TFs to the same regulatory region and assembly 
of TF complexes to regulate the expression of cell (sub)population specific gene programs. 
Multivariate Mutual Information (MMI) can capture these synergistic interactions. A 
negative MMI indicates a synergetic interaction between TFs A, B, and C because the 
information captured by A and B gives more knowledge about the C than the sum of their 
pair-wise interactions. Created with BioRender. 

 

1.4. Cellular identity and computer guided strategies for cell 

replacement therapies 

During normal development, pluripotent cells start differentiating and acquiring an 

individual cellular identity by gradually committing to specialized cellular lineages until they 

become fully differentiated into functional cellular (sub)populations 211. Cellular identity is 

defined by the activity of specific genes that maintain the functional and phenotypic features 

of a given cellular system 199. Specific sets of TFs, named identity TFs, promote the 

expression of this unique transcriptomic profile 212–214. This distinctive profile leads to the 

production of individual proteins and to the activity of pathways that confers to the cells of 

a given population their distinct functions. However, gene expression is also determined by 

another layer of information. Chromatin configuration is key for the expression of certain 

genes. Even when the right combination of identity TFs is expressed in the cell population 

of interest, if the chromatin availability is not favorable to the expression of the TF’s target 

genes, the transcriptional program will not be fully activated 215,216. Thus, combining the 
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expression of identity TFs together with epigenetic modifiers seems to hold the key for 

improving current cellular conversion protocols. 

 

1.4.1. Transcriptional and epigenetic regulatory mechanisms 

Every cell contains approximately the same DNA sequences 158. However, each 

organism has different cell types that carry out unique functions which are determined by 

specific variations in gene expression 77. For this reason, fine tuning of gene expression is 

essential for appropriate cellular development and differentiation. This process is tightly 

regulated both at the epigenetic and transcriptional level 217,218.  

Histone modifications and DNA methylation are two of the main mechanisms 

behind the control of chromatin conformation 216. The nucleosome is the central unit of 

chromatin, and it comprises a core octamer of histones proteins, named H2A, H2B, H3 and 

H4, wrapped around by DNA 77. These core histones are vulnerable to covalent 

modifications in the lysine (K) and arginine residues, namely acetylation and methylation 
182. Acetylation of histone’s lysine residues is mediated by histone acetyltransferases. This 

process removes the positive charge of histone tails, decreasing their binding strength to the 

negatively charged DNA, inducing chromatin opening and making DNA binding sites 

available for transcriptional activation 183. Histone methylation has bimodal effects on gene 

expression, depending on the methylated residue 219. For instance, methylation of histone H3 

at the K9 and K27 residues is linked to gene repression while methylation of the residues 

K4, K36 and K79 is associated with gene activation. DNA methylation is mostly linked to 

repression of gene expression, and it involves methylation of cytosine residues located 5’ of 

a guanosine (CpGs) by DNA methyltransferases 220,221. The regions of the DNA where CpGs 

occur at a higher frequency are denominated by CpG islands. These loci are usually not 

methylated and associated to promoters which implicates them as regulators of gene 

expression. The combination of these epigenetic modifications confers to each cell type a 

unique chromatin conformation which strongly conditions the expression of cell type 

specific genetic programs 222. 

Transcriptional regulation is also essential for the maintenance of cellular identity 
199. TFs are the central regulatory factors that control gene expression. These proteins 

recognize short sequences of DNA in regulatory elements, such as promoters and enhancer 

regions, where they bind. TFs are composed of several domains, which gives them the ability 
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to connect to RNA polymerase II, chromatin remolding factors, cofactors, other TFs and 

transcriptional regulators 223. Depending on the overall function of the bound factors, the TF 

complex can behave as an activator or repressor of gene expression 185. Although about fifty 

percent of the known TFs are expressed in all cellular populations, it has been shown that a 

small group of specific TFs is fundamental for the activation of cell type specific gene 

expression profiles 224–226. These sets of identity TFs have been identified in multiple cellular 

systems. For instance, SOX2, KLF4, c-MYC, and OCT3/4 have been extensively used to 

reprogram somatic cells into induced pluripotent stem cells (iPSCs) 227. MYOD1 has been 

shown to induce direct reprogramming of fibroblasts to myoblasts while regulating the 

expression of FOXA2 and OTX2 promoted the differentiation of neuroepithelial stem cells 

to medial floor plate midbrain progenitors 201. 

Since these sets of TFs are responsible for controlling cellular identity, one of the 

most widely used experimental methods to convert between cellular populations is to 

promote their overexpression. However, it has been shown that, if the chromatin 

conformation is not favorable to the binding of identity TFs, the conversion process will be 

hindered 228. Recently, a specific subset of TFs named pioneer factors (PFs) has been 

characterized 229. These proteins have been shown to be main regulators of cellular 

differentiation and development due to their unique ability to bypass epigenetic constrains 

and promote conversion between cellular identities 230–232. Unlike traditional TFs, PFs can 

bind to their recognition sites in regulatory elements even if these regions are under closed 

chromatin 230. PFs induce chromatin opening mechanisms and, consequently, gene 

expression, by first priming and then promoting the activation of enhancers 233–235. One of 

the main features of this group of TFs is their ability to bind to nucleosomal DNA (Figure 

7A) 236. This binding loosens the interaction between core histones and DNA, which is 

followed by a reduction in DNA methylation and an increase in H3K4 methylation (Figure 

7B) 230,237. These effects occur rapidly, priming the enhancer for its activation 237,238. Upon 

suitable stimuli, such as the presence of hormone-responsive factors or the expression of 

identity TFs, PFs recruit other elements, such chromatin remodeling complexes and non-

pioneer TFs, that contribute to the full activation of enhancers (Figure 7C) 239–241. This 

activated state is characterized by depletion of nucleosomes, recruitment of the coactivators 

p300 and CREB-binding protein, and acetylation of H3K27, all markers of an opened 

chromatin conformation 229,242. Once the stimulus has ceased, the activated enhancers lose 

these features, but remained primed by PFs (Figure 7D) 229.  
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Figure 7: Pioneer factor (PF) mechanism of action. (A) PFs start by scanning the genome 
for their recognition sites in regulatory elements, such as enhancers, even if these regions 
are under closed chromatin. (B) Once bound, PFs prime the enhancer by promoting 
chromatin opening mechanisms, such as reduction in DNA methylation and an increase in 
H3K4 methylation. (C) Upon suitable stimuli, such as the presence of hormone-responsive 
factors, PFs recruit other elements, namely chromatin remodeling factors (CRF) and non-
pioneer TFs, resulting in the full activation of the enhancer. This activated state is 
characterized by depletion of nucleosomes, H3K27 acetylation and recruitment of the 
coactivators p300 and CREB-binding protein. Once the chromatin is fully opened, the 
transcriptional machinery is recruited to the promoter site and gene expression is initiated. 
(D) When the stimulus is ceased, the activated enhancer loses these features, but remains 
primed by PFs. Created with BioRender.com. 

 

In summary, PFs are able to bind and open previously inaccessible regions of the 

chromatin through priming and activation of enhancers. It has been shown that cell type 

specific enhancers are the primary regulators of cellular identity in cell populations that 

derive from similar lineages 237,243. Identity TFs and PFs have been shown to play an 

important role in defining cellular identity by facilitating the expression of cell type specific 

genetic programs and, consequently, improving cellular conversion protocols 229. 
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1.4.2. Identification of cellular conversion transcription factors 

In 1957, Dr. Conrad Hal Waddington postulated his view on cellular development 
244. He proposed that, during normal development, ESCs progress down a unidirectional path 

that leads them to a fully mature and differentiated state. This idea consisted of a marble 

rolling down from the top of a hill, representing the pluripotent state, to a valley, which 

depicts the restriction that occurs as cells differentiate. This model, referred to as 

Waddington’s “epigenetic landscape”, represents the classical view of lineage specification 

and cell fate commitment. However, after iPSCs were obtained from fully differentiated 

cells, it was shown that the somatic state can be reversed to pluripotency 227. Furthermore, 

when fibroblasts were directly converted to myoblasts, it was shown that cellular conversion 

between somatic cell types was possible without going through the pluripotent state 245. 

Later, fibroblasts were also shown to be able to be directly reprogrammed into neurons, a 

somatic cell type that originates from a separate germ layer 246. Together, these studies 

showed that, although applicable under normal development, the unidirectionality of 

Waddington’s model could not explain the vast cellular plasticity. 

The processes of inducing the conversion in between cellular populations were 

divided into three classifications, namely differentiation, reprogramming, and direct 

reprogramming. Reprogramming is defined as the conversion from a somatic cell to iPSCs 

and direct reprogramming is the conversion between two somatic cell types. These 

conversion protocols highly rely on the expression of identity TFs which override the gene 

expression profile of the initial cell type, promoting stable structural and functional changes 

characteristic of the cell type of interest 227,247. Identification of these identity TFs, which 

will be referred to as conversion TFs in this dissertation, is essential to enhance the 

conversion between cellular populations. 

The development of novel computational methods opens doors to an efficient 

characterization of conversion TFs due to their ability to swiftly screen over the thousands 

of known TFs 248,249. The majority of these computational models use gene expression data 

as an input 152–154. In particular, GRNs have been extensively exploited to capture conversion 

TFs 152,153,250. Most GRN-based methods start by generating a DE profile between source 

and target cell types based on gene expression data 251. Then, they built the regulatory 

network around the overexpressed genes and determine its hubs 152,153. In graph theory, hubs 

are identified based on their connectivity degree, meaning the node’s outdegree and indegree 
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189. In a directed graph, like GRNs, outdegree corresponds to the number of targets a given 

node is regulating, while indegree corresponds to the number of nodes regulating it. Nodes 

with the highest outdegree in the network are usually classified as hubs or master regulator 

TFs 189,190. The central role of these main regulators in controlling specific gene expression 

profiles and consequently cellular identity, makes them the most suitable candidates to 

induce cellular conversion 193,252. 

GRN-based methods have been used successfully to promote the transition 

between cellular populations 152,153 . For instance, Mogrify identified the TFs necessary to 

convert human fibroblasts into keratinocytes which were further converted into vascular 

endothelial cells 153. CellNet determined POU2AF1 and EBF1 as TFs that improve the 

conversion from human B lymphocytes into macrophages and identified FOXA1 and HNF4α 

to be inducers of the conversion from mouse fibroblasts to hepatocytes 253. 

These strategies are merely based on bulk population studies, where the 

measurements of gene expression are averaged over a heterogeneous population of cells. 

Therefore, their individual variability at the transcriptional level is masked within the culture 

or tissue of interest, making the resolution of the data a limitation for optimization purposes. 

Ground-breaking developments in gene expression profiling at a single-cell level allowed us 

to classify cells into distinct subpopulations, and to characterize the TFs that drive cellular 

transitions 154,200,201. The generation of single-cell based GRNs led to the discovery of HOX 

and SOX as key players in the regulation of the hematopoietic lineages and the identification 

of ESRRB, NANOG, and TBX3 as identity regulators of naïve mouse ESCs 200,254,255. 

Additionally, a synergy-based measure of information theory has also been used 

to determine conversion TFs between cell subtypes and phenotypes using single-cell 

transcriptomics data 201. This method identified FOXA2, OTX2, and LMX1A as identity TFs 

that promote the conversion of neuroepithelial stem cells into medial floor plate midbrain 

progenitors which further differentiate into DANs 201. Based on the same concept, another 

method prioritizes PFs during the identification of conversion TFs 154. PFs have been 

extensively demonstrated as being facilitators of epigenetic modifications that lead to the 

expression of genes inaccessible to TFs without pioneer features 233–235. Leveraging this 

subset of TFs has the potential to further improve the outcome of cellular conversion 

protocols.  
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Specific cellular subpopulations and phenotypes, such as midbrain DANs, have 

been shown to play a critical role in disease development due to their selective loss or 

dysregulation 31,256. Identifying cell subpopulation-specific conversion TFs holds a great 

potential for application in the development of CRT, since it would allow us to shift and 

enrich cell preparations in these subpopulations. 

 

1.4.3. Direct cell reprogramming techniques 

Direct reprogramming protocols facilitate the conversion between somatic cellular 

populations without transitioning through a pluripotent state. This technique has a major 

potential in clinical application as it allows cellular conversion to occur directly in the 

damaged tissue 257. This process avoids proliferation of immature cells and diminishes the 

risk of tumor formation, has a shorter protocol time, and does not require 

immunosuppression 258. Direct reprogramming protocols are an attractive alternative to stem 

cell-based CRT. Expressing the necessary genetic programs that induce conversion into 

different cell types requires precise changes in gene expression over a broad set of genes. 

The most commonly used strategy in these protocols involves the overexpression of 

conversion TFs using viral vectors, such as lentiviruses and adenoviruses. At first, the 

selection of these TFs was based solely on developmental biology studies 227,246,259. 

Currently, with the development of scRNA-seq technologies and computational algorithms 

that decipher cellular identity, these TFs can be identified more precisely 152–154. 

Ectopic gene expression of the selected TFs has been widely used to directly 

convert between differentiated cell types. This strategy induced the conversion of mouse 

fibroblasts into cardiomyocytes by overexpression of Mef2c, Tbx5, and the PF Gata4, and 

into myoblasts by using the PF MyoD 245,259. Overexpression of Pou3f2 and Myt1l together 

with the PF Ascl1 successfully induced the generation of glutamatergic neurons from mouse 

hepatocytes 260. However, this approach has some disadvantages. Besides containing the 

cDNA of the gene of interest, the vectors used in these protocols must also contain the 

necessary elements for promoting transgene expression. Due to the insert DNA size limit 

associated to viral vectors, it becomes very difficult to multiplex the expression of three or 

more genes in one single vector. This limitation forces the delivery of the conversion TFs in 

different vectors which might decrease the homogeneity of the induced gene expression and, 

therefore, reduce the efficiency of the direct reprogramming protocols. 



 

33 

Alternatively, endogenous gene regulation mediated by Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)-based systems has been shown to be an 

attractive tool for direct cellular reprogramming. Briefly, this approach relies on the 

recruitment of CRISPR associated protein 9 (Cas9) to genomic sequences defined by short 

guide RNA (gRNA) molecules 261. These molecules target the coding region of a specific 

gene and recruit the CRISPR complex to induce a double strand break in the DNA, 

permanently silencing the expression of the target gene. On the other hand, a catalytically 

inactivated version of Cas9 (dCas9) can be fused to a strong repressor or activator complex 

and used to regulate gene expression instead 261. In this approach, gRNAs target primarily 

DNA regions within the promoter of the gene of interest, recruiting the CRISPR-dCas9 

complex to control the transcription or accessibility of a target gene.  

Since the CRISPR targeting system is based on gRNAs, these approaches have a 

high multiplexing capacity. Furthermore, these systems are highly flexible, since they can 

be used to silence, repress and/or activate endogenous gene sets 262–264. For instance, 

CRISPR-Cas9 mediated deletion of MyoD induced the conversion of mouse myoblasts into 

brown adipose tissue while upregulation of Ascl1, Pou6f2, and Mytl1 genes using CRISPR-

dCas9 coupled to the activator complex VP64 facilitated the generation of neurons from 

mouse fibroblasts 262,263. Moreover, using a CRISPR-dCas9 dual transactivator system, it 

was possible to directly reprogram mouse astrocytes into GABAergic neurons in vivo by 

overexpressing Ascl1, Lmx1a, Neurod1, and Nr4a2 265. 

Direct reprogramming protocols have been successfully used to generate a wide 

range of functional cellular populations. Although the limited efficiency of these protocols 

still poses problems, these advancements open doors to improving the efficiency and 

functionality of the generated cells 266. Together with the ability of generating cellular 

populations in situ, direct reprogramming holds great potential in the development of CRT 

and regenerative medicine. 

 

1.4.4. Application in regenerative medicine for brain diseases 

The goal of regenerative medicine is to promote tissue regeneration and repair. 

CRT focuses on creating functional and faithful cell types that can be used to repair damaged 

tissues. However, reproducing the target cells’ phenotype still poses problems. One of the 

major limitations of this process is the characterization of TFs that induce an effective 
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conversion into the cellular population of interest. The application of computational 

modeling to the identification of these conversion TFs greatly benefited the field. 

Developing models to identify conversion TFs based on different methods, such 

as DE gene profiles, GRNs, and synergy-based measure of information theory, has 

significantly decreased the amount of resources and time spent in selecting and/or screening 

TFs for their conversion potential 152,153,201. Furthermore, with the advancements in scRNA-

seq based computational methods and the identification of unknown subpopulations, the first 

steps have been taken to further developing computational models that can predict 

conversion TFs to generate specific cellular subpopulations (Figure 8). Being able to 

generate these cell subtypes would have a profound application in different fields of 

regenerative medicine, such as disease modelling, screening for neuroprotective drugs, and 

especially in the development of CRTs. 

Generating the cell (sub)types of interest has great potential in CRT applications 

targeting brain-related disorders since a major hallmark of these pathologies is neuronal 

degeneration (Figure 8) 267. Advancements in strategies to replenish these cells and the 

identification of the degenerative mechanisms involved in the disease would increase our 

ability to regenerate a tissue 268. 

Direct reprogramming protocols are one of the main strategies being explored for 

CRT, since they have the key advantage of being able to be performed in situ, avoiding the 

transplantation process. Directly converting glial cells, such as reactive astrocytes, into 

neurons would allow the replacement of this cell type 84,269. Simultaneously, there would be 

a reduction of the excess of reactive glia, a hallmark in several brain-related pathologies, 

such as AD and PD, promoting the reestablishment of the balance between astrocytes and 

neurons in the brain 270. Notably, human astroglia were successfully reprogrammed into 

induced DANs (iDANs) by overexpression of LMX1A, micro-RNA 218 and the PFs ASCL1 

and NeuroD1 in vitro 271. The generated iDANs were capable of expressing midbrain-

specific TFs and characteristic dopaminergic markers. In vivo, this combination of TFs was 

also successful in generating iDANs from mouse astrocytes and rescuing motor symptoms 

in a PD mouse model  271. In the same disease model, direct reprogramming of mouse 

astrocytes into GABAergic neurons using CRISPR-dCas9 technology partly corrected 

impaired motor and behavioral functions in mice 265. Together, these studies demonstrate the 

potential of in situ applications in CRT for the treatment of PD. 
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Figure 8: Direct reprogramming strategies based on single-cell RNA-sequencing and 
their applications in regenerative medicine. With the advent of single-cell technology, it 
is possible to dissociate a tissue sample into single cells and characterize the gene expression 
profile of each cell. Based on the similarity between these expression profiles, cells can be 
clustered into distinct subpopulations. By analyzing the gene expression pattern of the target 
subpopulation, we can determine the molecular features, such as conversion TFs, that would 
be required to generate this cell subpopulation. Conversion TFs can be applied to direct 
reprogramming protocols that induce the conversion between somatic cell types without 
transitioning through a pluripotent state. Due to their promising in situ application, direct 
reprogramming protocols have become an attractive alternative to stem cell-based cell 
replacement therapy (CRT). One of the major CRT applications would be to replenish 
neuronal subtypes lost during the onset of neurodegenerative diseases, such as Parkinson’s 
Disease (PD). Being able to generate, for instance, dopaminergic neurons would not only 
advance CRT, but also allow to model the effects of PD on these cells and to screen for 
neuroprotective drugs. Created with BioRender.com. 
 

Besides integrating PFs in cellular conversion protocols, this subset of TFs also 

has other potential therapeutical applications. Promoting the overexpression of ASCL1 in 

glioblastomas has been shown to decrease the tumorigenicity capacity and stem-like features 

of the tumor as well as to promote neuronal differentiation 272. 

Characterizing disease-associated mechanisms behind the destabilization of 

cellular identity would extend our knowledge of disease onset and progression 273,274. For 

instance, stress factors associated with PD were shown to disrupt the expression of the 

transcriptomic profile of human DANs, which led to the loss of their cellular identity 256. 

The development of computational methods that leverage the high resolution of scRNA-seq 



36 

to provide mechanistic insights associated with cell (sub)type specific dysregulation would 

extend our understanding of disease progression and accelerate the development of novel 

strategies for regenerative medicine. 

1.5. Characterization of cell type specific dysregulated mechanisms 

Cellular mechanisms, such as transcriptional regulation, signaling pathways, and 

protein production are complex molecular processes that maintain the correct functioning of 

the cell. Dysregulation of these mechanisms can trigger disease onset and development 275–

277. For instance, dysregulation of protein folding, oxidative stress, and secretory pathways

are some of the molecular processes involved in the development of neurodegenerative

diseases, such as AD and PD 275,276. Another clear example of how cellular dysregulation

can promote disease onset is cancer. Dysregulation of cell proliferation, signaling pathways,

and cell cycle are some of the hallmarks related with the development of tumor cells and

cancer progression 277.

Dysregulated mechanisms in disease do not affect all cellular populations equally 278–

282. For instance, in neurodegenerative diseases, astrocytes become reactive, inducing

changes in their secretory pathways and proliferation 49,278. Neurons experience alterations

on their protein folding processes which contributes to their death 281. On the other hand,

DANs in PD are severely affected by protein misfolding, oxidative stress, and impaired

cellular transport, prompting the selective degeneration of this cellular subpopulation during

the development of this pathology 282.

The dysregulation of these mechanisms may arise due to variants on the genome 

found both in coding and non-coding regions 283,284. If these alterations induce the 

dysregulation of gene expression above a certain threshold, specific cellular mechanisms 

will be impaired, which ultimately leads to the disruption of cell function and disease onset 
284. These modifications can affect the coding region of the gene, which causes the

production of a nonfunctional, mutant protein that will affect the cell’s phenotype 285. On the

other hand, these variants can also be present in the regulatory regions of a gene, such as

promoters and enhancers, which will impair the regulation of gene expression 283. Indeed, it

has been shown that the majority of single nucleotide polymorphisms (SNPs) occur in

regulatory elements, mainly enhancers 286. This observation can help explain why alterations

in the DNA sequence of regulatory regions have been shown to be related with changes in
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gene expression detected in disease 283,287. Based on this evidence, it becomes clear that 

deciphering cell type specific dysregulated mechanisms would allow us to better understand 

disease and determine relevant targets for the development of novel therapies.  

 

1.5.1. Dysregulation in gene expression mechanisms 

Gene expression regulation is a key biological process that is responsible for 

controlling the expression of specific gene profiles that confer to the cell its characteristic 

functions. Modelling the transcriptomic landscape of cellular systems and characterizing its 

molecular interactions and responses upon perturbation can guide our understanding of these 

processes in health and disease states. 

The main driver of gene expression dysregulation is the occurrence and/or 

accumulation of genetic variants in the coding and regulatory regions of a gene 288. These 

alterations can be classified as i) mutations, including insertions, deletions, and substitutions, 

ii) or polymorphisms 289. For a variant to be classified as a polymorphism, it must be present 

in the genome of at least one percent of a population. The most common polymorphisms are 

SNPs. To identify these genetic variants, Genome Wide Association Studies (GWAS) have 

been extensively used to profile the genomes of individuals under different phenotypical 

conditions 290. These studies provide information on SNPs identified in genomic loci that are 

significantly associated with a particular trait, such as a disease 290,291. Until now, GWAS 

has identified more than fifteen different risk variants for PD associated to SNCA and LRRK2 

genomic loci 292. 

Most of the SNPs unveiled by GWAS are located in non-coding regions of the 

genome, specifically in enhancers 287. The enrichment of SNPs in regulatory regions 

suggests that these variants are involved in impairments at the gene regulatory level. This 

relationship can be analyzed using expression Quantitative Trait Loci (eQTLs) studies 293. 

An eQTL is defined as a genomic locus that has a statistically significant association with 

the variance of expression of a given gene 294. eQTL analysis can identify eQTLs located 

closer or further away from the modulated genes. eQTL studies performed at a genome-wide 

level provided additional insights into the connection between the presence of SNPs and the 

disruption of cellular functions in autoimmune disorders 295. 

Given the effect of SNPs in the regulation of gene expression and their prevalence 
in enhancer regions, integrating this information in GRNs would give us a more 
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comprehensive view of the complex mechanisms behind dysregulation in disease. Recent 
studies have been focusing on studying the impact of disease-related SNPs in tissue specific 
regulatory landscapes by building networks based on enhancer-gene interactions 296–298. The 
effect of SNPs on the binding affinity of TFs to regulatory elements has also been studied 
299,300. Being able to generate GRNs that can convey a complete view of impaired regulatory 
interactions mediated by TFs and enhancers of regulated genes would provide key 
mechanistic insights to unravel dysregulation in disease. 

 

1.5.2. Potential in understanding complex disease onset and development 

GRNs have been used as a map of molecular interactions to provide crucial 
insights on dysregulated transcriptomic mechanisms in disease 301. Comparing GRNs built 
based on gene expression data obtained from healthy and disease conditions is one of the 
main strategies used to identify transcriptional regulators involved in disease-related 
mechanisms 302. By analyzing the changes that occur between the two GRNs, it is possible 
to capture regulatory interactions impaired in disease, the master regulators involved in these 
impairments, and the associated genes. Thus, this analysis can provide us with important 
therapeutical targets 303. For instance, RGS2 was identified as the main regulator of LRRK2 
activity by generating a GRN centered in LRRK2 using transcriptomics data from PD 
patients 304. In that same study, RGS2 was also identified a promising therapeutical target for 
individuals with the LRRK2 mutation, since this signaling gene has been shown to have a 
protective role against neuronal toxicity. 

Several strategies have also been developed to characterize the impact of disease-
related SNPs in regulatory networks. Fine mapping identifies genetic variants that have a 
strong functional association with a given trait, such as a disease 305. Recently, a study fine 
mapped SNPs to GRNs in order to identify the master regulators involved in pathways 
dysregulated in disease 300. Another study characterized impaired mechanisms associated 
with genetic variants linked to type 1 diabetes based on cell (sub)population specific GRNs 
306. Finally, a network-based approach leverages single-cell data to characterize the impact 
of disease-associated genetic variants in cell (sub)types and trajectories 307. 

Despite these recent advances, GRN-based approaches lack insights on impaired 
mechanisms mediated by enhancers and TFs affected by disease-related SNPs. Developing 
such methods based on single-cell data would allow us to profoundly characterize 
dysregulated mechanisms associated to disease at the cell (sub)type level and identify 
potential targets for gene therapy. 
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2. Scope and Aims 
 

2.1. Scope 

As the world population ages, neurodegenerative diseases become more prevalent in 

society, calling for an immediate action in the development of effective treatments. Since 

neurodegeneration is a major hallmark of these disorders, regenerative medicine holds great 

potential in proving the first treatment against neuronal death and provide a cure for brain 

diseases. However, multiple challenges still need to be addressed before regenerative 

medicine strategies can be translated to clinical applications. The advent of single-cell 

technologies provided high resolution data that paved the way towards the development of 

novel computational platforms that can address these issues. In this PhD dissertation, we 

leverage single-cell data to achieve two major goals: i) developing computer guided 

strategies for the generation of specific neuronal subtypes with a phenotype similar to what 

is found in the adult brain, ii) and unveiling additional molecular insights underlying the 

development of brain diseases. 

 

2.2. Aims 

This PhD dissertation aimed at developing innovative computational and 

experimental approaches that can address current obstacles in regenerative medicine, at 

providing potential biomarkers that can improve disease prognosis, and identifying 

regulatory mechanisms impaired during disease development. 

Aim 1: Identification of novel conversion TFs that improve the efficiency and 

generation of functional cell (sub)types. To achieve this aim, we developed TransSynW, a 

single-cell based computational approach that prioritizes PFs in the identification of cell 

conversion TFs. It has been shown that the conformation of the chromatin is one of the major 

obstacles to the generation of functionally mature cell (sub)types. However, current 

computational platforms do not consider the impact of epigenetic features in the generation 

of partially reprogrammed cells. Our method addresses this limitation by prioritizing PFs in 

the identification of cell conversion TFs. PFs are able to bind to closed areas of the chromatin 

and induce the expression of their target genes. By adding this novel feature, we are 

promoting chromatin reorganization, facilitating the binding of TFs to regulatory regions, 
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inducing the expression of cell (sub)type identity genes. TransSynW is a user-friendly 

computational platform that we believe will improve the success of cellular conversion 

protocols and lead to the generation of novel cell (sub)types for regenerative medicine. 

Aim 2: Establish a pioneer protocol that leads cell conversion towards specific 

subtypes. We develop a direct and sequential reprogramming protocol to enrich cell cultures 

in specific subtypes of DANs. Replacing the DAN population lost during the development 

of PD has been shown to alleviate the motor symptoms associated to this disease. Some 

studies suggest that reactive astrocytes, which arise during the development of PD, can play 

a role in neurogenesis. Therefore, CRT has been an area of focus in the development of 

potential treatments for neurodegenerative diseases, such as PD. Current direct 

reprogramming protocols have been able to convert astrocytes into DANs, but with low 

efficiency and without control over DAN subtype specification. Our protocols are based on 

ectopic and endogenous expression of TransSynW’s conversion TFs. These strategies aim 

at generating a homogenous cell preparation of a single DAN subtype which can be further 

used in the development of clinical applications.  

Aim 3: Identify specifically expressed TFs to determine important prognosis 

biomarkers. In this study, we focused on identifying specifically expressed TFs cellular 

lineages found in glioblastoma (GBM). GBM is one of the most aggressive types of cancer. 

It has been shown that the cellular lineage from which the tumors derive has an impact on 

their properties and determines distinct molecular characteristics. The cellular lineage of 

origin and molecular mechanisms associated to mesenchymal GBM, the most aggressive 

subtype of GBM, still remain elusive. We identified and validated specifically expressed 

TFs in the two main cellular lineages of origin found in GBM, providing potential prognosis’ 

biomarkers and therapeutical targets. 

Aim 4: Provide additional mechanistic insights on the impact of disease-associated 

SNPs in the impairment of regulatory interactions. To achieve this, we developed RNetDys, 

a multi-omics pipeline to identify regulatory mechanisms impaired due to disease-associated 

SNPs. These have been found mostly at enhancers regions which have been described to 

control regulatory mechanisms at the cell (sub)type level. RNetDys builds cell (sub)type 

specific GRNs using a combination of scRNA-seq, scATAC-seq, and prior knowledge data 

to identify specific dysregulated interactions due to the presence of any SNP. This pipeline 

identifies impaired mechanistic interactions mediated by TFs and enhancers of regulated 
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genes, providing important mechanistic insights in disease development with potential 

applications in gene therapy. 

 

2.3. Originality 

The projects presented in this PhD dissertation address two main challenges in the 

development of clinical applications for brain diseases. They focus on improving cellular 

conversion protocols by targeting the epigenetic landscape, achieving control over subtype 

specification, identifying cellular lineage-specific TFs, and deciphering the role of disease-

associated SNPs in the impairment of regulatory mechanisms. The findings described on this 

PhD dissertation leverage single-cell data to develop novel computer guided strategies with 

potential applications in regenerative medicine. Additionally, we identify novel therapeutical 

targets and molecular mechanisms underlying the progression of brain diseases, opening 

doors to the development of clinical applications. 
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3. Materials and Methods 
 

A detailed description of the materials and methods applied to obtain the outcomes 

included in this PhD dissertation can be found in each of the sections of the Results chapter 

(chapter 4). A brief summary of the methodology applied in each of the published articles 

and manuscripts included in this dissertation is presented below. 

In section 4.1, we performed an extensive a literature review concerning 

transcriptomics-based computational approaches that address current limitations in 

identifying cellular identity TFs at the subpopulation level, cell fate determinants, and 

lineage specifiers in the scope of stem cell biology. 

In section 4.2, we developed a computational method, TransSynW, to identify cell 

conversion TFs for cellular populations described in scRNA-seq data. TransSynW starts by 

identifying specifically expressed TFs in the target cellular population by Jensen-Shannon 

divergence (JSD). In this context, JSD measures the difference between the observed and 

the ideal gene expression value of a given TF 191,308. If a TF is specifically expressed in a 

cellular population, its expected expression value after normalization should be 1 in this 

population and 0 in the background populations. The lower the difference between the 

expression levels of a TF and 1, more specific the TF is for the target cellular population. 

Then, TransSynW selects the set of specifically expressed TFs in the target cell population 

with the highest synergy. The same synergy-based calculation is performed to identify the 

non-specifically expressed PFs. The identified sets of TFs and PFs are then ranked by 

expression fold change in relation to the starting cellular population. Finally, TransSynW 

identifies marker genes for the target cellular population by determining specifically 

expressed genes based on JSD. We validated our method by cross-referencing the identified 

TFs and markers against literature-based evidence and validated the biological meaning of 

the newly identified TFs and markers using a manually curated database for molecular 

interactions. 

In section 4.3, we developed novel strategies to directly reprogram human astrocytes 

into neuronal subtypes by regulating the expression of novel conversion TFs at the 

endogenous and ectopic level. TransSynW was applied to a previously published scRNA-

seq dataset that characterized the human fetal ventral midbrain tissue to obtain the 

conversion factors for each of the identified DANs subtypes. This method was also used to 
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determine the conversion factors for a two-step reprogramming protocol. First, we identified 

the TFs that induce the conversion of astrocytes into DANs, and then the TFs responsible 

for the specialization into DAN subtypes. For the experimental protocols, we adapted a 

previously established CRISPR-dCas9 system to induce the overexpression of the predicted 

conversion factors at the endogenous level. Briefly, we engineered a cell line of human 

astrocytes to constitutively express dCas9 and infected these cells with lentiviruses 

containing gRNAs targeting each of TFs together with an activator sequence. We also 

promoted the expression of our target TFs using an inducible lentiviral expression system 

containing the corresponding cDNAs. To evaluate the results of our direct reprogramming 

protocols we performed real-time polymerase chain reaction and immunofluorescence 

assays for TUBB3 and TH, a neuronal and a dopaminergic marker, respectively. 

In section 4.4, we profiled the transcriptome of GBM and low-grade glioma cells at 

the single-cell level and identified the cellular lineages of origin in each of the patients using 

a novel neural network approach. Based on these results, we determined the specifically 

expressed TFs in the two main cellular lineages identified in GBM samples using JSD 

followed by synergy measurement. The specific expression of the identified TFs was 

validated by immunofluorescent assays in patient-derived GBM xenografts. 

In section 4.5, we developed RNetDys, a multi-omics systematic pipeline to identify 

impaired regulatory interactions due to disease-associated SNPs. Based on the combination 

of healthy scRNA-seq and scATAC-seq with prior knowledge data, this pipeline builds cell 

(sub)type-specific GRNs to profile the regulatory landscape of our target cellular 

(sub)populations. Based on the constructed GRNs, RNetDys identifies impaired regulatory 

interactions by mapping disease-associated SNPs and evaluating their impact in the binding 

affinity of TFs to regulatory regions. As part of the output, we provide a ranked list of TFs 

mediating the impairment of the regulatory mechanisms based on the topology of the 

network, the binding affinity score, and the minor allele frequency score calculated for each 

SNP involved in the dysregulated mechanisms. We examined the accuracy and precision of 

RNetDys by benchmarking against state-of-the-art methods. We validated our method by 

collecting SNPs associated with AD, PD, EPI, and diabetes from a publicly available 

database and infer the relevance of the identified dysregulated interactions against literature-

based evidence, GWAS, and eQTL studies. 
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4. Results 
 

4.1. Computational Methods to Identify Cell-Fate Determinants, 

Identity Transcription Factors, and Niche-Induced Signaling 

Pathways for Stem Cell Research 

4.1.1. Preface 

The advent of NGS technologies increased access to large amounts of data in 

different omics areas, such as transcriptomics, epigenomics and genomics. Computational 

biology leveraged this data and developed more accurate, precise and sophisticated 

algorithms that unravel complex molecular relationships between biological systems. This 

is particularly relevant in stem cell research, where in the recent years transcriptomics-based 

approaches allowed us to characterize important cellular phenotypes and understand which 

factors are responsible for their identity, cellular fate, and how the cellular microenvironment 

(niche) contributes for maintaining or shifting of cellular phenotypes.  

Here, we provide a comprehensive review of several computational methods, based 

on bulk and scRNA-seq data, that address the mechanisms behind cellular conversion, 

differentiation, and niche specific pathways. These methods rely on synergistic activity to 

determine core identity genes, network modelling to detect cell fate determinants, 

identification of signaling molecules responsible for maintaining cellular phenotypes. We 

elaborate on how these methods can contribute to address current challenges on the stem cell 

field and propose how they can be improved to further contribute to important milestones in 

stem cell research. 

In this chapter, I described the methods that determine identify TFs, characterize 

signaling pathways in cellular niches, and discussed their impact and potential in the stem 

cell field. The published book chapter is reprinted on the next pages (RightLinks license 

number 5324211238457). 
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Chapter 4

Computational Methods to Identify Cell-Fate Determinants,
Identity Transcription Factors, and Niche-Induced Signaling
Pathways for Stem Cell Research

Muhammad Ali, Mariana Messias Ribeiro, and Antonio del Sol

Abstract

The large-scale development of high-throughput sequencing technologies has not only allowed the
generation of reliable omics data related to various regulatory layers but also the development of novel
computational models in the field of stem cell research. These computational approaches have enabled the
disentangling of a complex interplay between these interrelated layers of regulation by interpreting large
quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of
complex gene–gene interactions has been successfully used for understanding the mechanisms underlying
stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate
determinants and signaling molecules controlling such processes. This chapter will provide an overview of
various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating
the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-
fate decisions. Furthermore, we discuss how these computational methods provide the right framework for
computational modeling of biological systems in order to address long-standing challenges in the stem cell
field by guiding experimental efforts in stem cell research and regenerative medicine.

Key words Gene regulatory networks, Stem cell research, Cellular reprogramming, Cell-fate deter-
minants, Lineage specifier, Core identity TFs, Systems biology

1 Introduction

The human body comprises different organs, constituted by differ-
ent cell types, that are supposed to perform dedicated tasks. These
cells can be divided into different categories based on, e.g., their
ability to differentiate and their function in the body. For example,
cells that have the ability to renew themselves and differentiate into
any kind of cells are called stem cells—a prominent example is the
mammary stem cells (MaSCs) that are known to form the two main
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cellular lineages of the human mammary gland [1, 2]. Stem cells
further give rise to progenitor cells that have a limited spectrum of
differentiation as they can only differentiate into particular
specialized cell types. For instance, basal and luminal progenitor
cells differentiate into basal/myoepithelial cells that exhibit con-
tractile capacity and luminal cells capable of producing milk, respec-
tively [2]. Although underlying genetic material is the same in each
cell of the body, it is the cross-talk between the epigenetic and
transcriptional regulatory machinery that controls the identity of
different cell types by only allowing specific regions of the genome
to be accessible for the transcriptional machinery and being tran-
scribed. Cell identity specification is considered to be determined
by cell-specific gene-expression programs that are tightly controlled
at the chromatin level. It is widely understood that cell identity is
mostly regulated by the action of transcription factors (TFs) that
are very particular in their tendency to recognize and bind to
specific genomic sequences and regulate transcription [3, 4]. In
order for a cell-specific gene-expression program to be expressed,
the genomic regions corresponding to the cell type-specific TFs and
their distal regulatory regions must be in euchromatin state, har-
boring active chromatin modifications. Although the number of
TFs that are generally expressed in a cell type is considered to be the
half of all known TFs [5], a small group of them, commonly known
as core TFs, are suggested to be critical for defining the cell iden-
tities [6–9].

In some particular cases during cellular differentiation, the
expression levels of two inter-dependent genes or TFs determine
the fate of the cell through a toggle switch. A toggle switch consists
of two genes or TFs that repress each other in a mutual fashion.
Usually, this regulatory motif is active during differentiation of a
stem/progenitor cell (parent state) into two different lineages
(daughter states) and is thought to act as a memory device, being
able to choose and maintain cell-fate decisions [10]. In this biomo-
lecular battle, overexpression of each TF corresponds to one of the
two mutually exclusive daughter cell fates, where one TF inhibits
the other TF and subsequently activates its lineage-determining
target TFs and genes. In contrast, a stabilized expression of both
TFs maintains the stem/progenitor state [11, 12]. These parent
and daughter cellular states are characterized by stable gene-
expression programs, determined by underlying gene regulatory
networks (GRNs) and the constituent subnetworks (GRN motifs)
that are functionally important. A toggle switch is in fact a classical
GRN motif that constitutes a molecular mechanism determining
the cell-fate decisions and providing stability to transcriptional
programs of binary cell-fate choices. A well-known example is the
mutual inhibition of an erythroid determinant GATA1 and a mye-
loid determinant SPI1, two TFs responsible for the development of
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erythroid and myeloid blood cells from common myeloid progeni-
tors in the hematopoietic stem cell (HSC) system [13, 14].

The natural ability of stem cells to generate more specialized
cell types in a coordinated manner and accurately regulate their
activity makes them indispensable for maintaining the tissue
homeostasis [15]. This intricate decision of either self-renewing
or differentiation into different cell fates is controlled by multiple
cell-intrinsic and extrinsic factors. One such important factor is the
interactions between stem cells and their in vivo microenviron-
ment, also known as a niche. In their niche, stem cells receive the
stimuli that determine their behavior, such as maintaining the
dormant state (quiescent state), or either induce self-renewal or
differentiate into a particular cell fate (active state) [16]. These
stimuli include external cues such as cell–cell and cell–matrix inter-
actions which are translated by the niche into intracellular signaling
events that activate and/or repress genes and transcriptional pro-
grams. The hypothesis of a specialized stem cell niche was postu-
lated by Schofield in 1978 in his description of the hematopoiesis
process [17]. He hypothesized that a cellular niche has a defined
anatomical location where a stem cell must be associated with other
cells in its environment. This environment determines the stem cell
behavior and losing its association with the cellular niche results in
the differentiation of stem cells. To this end, molecular signaling
pathways in the niche are recognized as important modulators of
stem cell maintenance and function. These signaling pathways are
redundant in different niches but have different roles according to
the specific niches. For example, integrins, heterodimeric trans-
membrane extracellular matrix (ECM) receptors, consisting of var-
ious α and β subunits, have been implicated in the control of stem
cell maintenance and progenitor cell differentiation in various
embryonic and adult tissues [18, 19]. In particular, α2-, α6-, β1-,
and β3-integrin subunits have been shown to serve as surface
markers for the isolation of MaSCs populations from basal and
luminal mammary epithelial layers, suggesting the important role
of ECM in MaSCs microenvironment [20, 21]. Therefore, elucida-
tion of molecular signaling pathways that maintain different stem
cell niches, cellular phenotypes, and integrity of the organism is of
broad interest and paramount to the design of effective treatments
for various human pathologies that are associated with defects in
the normal cellular differentiation process.

Challenges exist to identify these properties and single-cell
technologies can help with the modeling for addressing these chal-
lenges. During the last decade, various experimental techniques
have enabled the large-scale generation of high-throughput
biological data across different regulatory levels (genomics, epige-
nomics, and transcriptomics) that led to the development of
computational approaches in the field of systems biology and
stem cell research. The development of these genome-wide
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transcriptomic and epigenetic profiling techniques has enabled
more generic endeavors to predict candidate TFs that control cell
identity. In this regard, computational methods have been devel-
oped to perform genome-wide transcriptomic and/or epigenomic
analysis across multiple cell types to identify core TFs critical for cell
identity TFs [3, 7, 22–26]. For example, D’Alessio et al. [3] pre-
sented a computational approach that relies on transcriptomic data
for predicting cell identity TFs and generated an atlas of candidate
core TFs for a variety of different human cell types and tissues.
Briefly, this computational method searches for the two fundamen-
tal characteristics of core TFs: cell-type-specificity and relatively
high expression levels. The algorithm they proposed quantifies
both these properties by using an entropy-based measure of Jen-
sen–Shannon divergence [27]. They also demonstrated the experi-
mental validation of their core TFs predictions made for
reprogramming human fibroblasts into functional retinal pigment
epithelial (RPE) cells that possess the morphological and gene-
expression features similar to those derived from healthy indivi-
duals. Although many computational methods have addressed
this challenge of identifying cell identity TFs and several of them
have also experimentally verified their predictive power, they all
share some important limitations. Foremost, they are unable to
systematically integrate the regulatory information from the epige-
netic and transcriptomic levels, which has been shown to mediate
cell-type-specific gene-expression programs via intricate and
interconnected regulatory links as well as controlling the homeo-
stasis of differentiated or pluripotent cells [28, 29]. Most of these
methods rely only on transcriptomic data and ignore the fact that
cell-type-specificity is also determined by the epigenetic program
which is characterized by accessible chromatin regions, active
enhancers, and differential binding of regulators [30–32]. Further-
more, these global attempts are broad in their scope as they assess
their predictive power using scalable methods and do not system-
atically evaluate whether predicted factors are sufficient to establish
cell identity. In addition, most of the existing methods focus mainly
on quantifying the differences between different cell identities and
less on the direct identification of TFs and co-factors controlling
cell identity.

Similarly, several computational approaches use transcriptomics
data for predicting cell-fate determinants during the cellular differ-
entiation process [6, 22, 26, 33, 34]. For example, Okawa et al.
presented a computational framework that models the cell differ-
entiation process in the form of GRNs and predicts cell-fate deter-
minants and their GRN motifs [34]. The proposed tool predicted
the overexpression of Esr1 and Runx2 for the induction of neuro-
nal and astrocytic lineages, respectively, from themouse neural stem
cells (NSCs). Their in silico predictions were also experimentally
verified, showing the application of the tool in stem cell research
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and regenerative medicine. However, similar to the computational
methods aiming for predicting cell identity TFs, these methods are
also limited in their usage of bulk transcriptome data while under-
mining the crucial information from the epigenetic layer of regula-
tion. In addition, none of these methods systematically addresses
the problem of cell differentiation efficiency and fidelity, a long-
standing challenge in stem cell biology. Unlike most of these
approaches that rely on bulk transcriptomic data and large quanti-
ties of background or training data sets, only a couple of these
methods are able to predict cell-fate determinants at an increased
resolution of different cell subpopulations using the single-cell
transcriptomic data [35, 36].

The advancements in single-cell sequencing techniques have
offered the quantification of expression levels of genes and TFs at
single-cell resolution, allowing more reliable measurements of
absolute gene-expression levels for a given cell type and its subpo-
pulations. This revolutionary technique has opened new gateways
for the development of computational methods that can elucidate
complex molecular interaction networks and predict lineage speci-
fiers within a heterogeneous cell population. Similarly, the identifi-
cation of conserved signaling pathways that provide an accurate
description of individual cell behavior while being in a heteroge-
neous niche requires the accurate characterization of all cellular
subpopulations. To this end, sensitive full-length single-cell tran-
scriptome profiling will serve as a basis for the development of
single cell-based computational frameworks that can identify
niche determinants of different stem cell systems. As the key role
of the cell niche in health as well as in several infectious [37] and
degenerative diseases [38] is evident, the identification of niche
determinants holds the potential to further advance our under-
standing of underlying disease mechanisms and it can possibly aid
in the development of novel therapeutic strategies. Moreover,
modeling core GRNs using single-cell data could allow the identi-
fication of subpopulations with the highest conversion propensity,
thus helping in overcoming the barrier of limited efficiency in
directed cellular conversion experiments. Furthermore, single-cell
data can help in designing novel experimental strategies to achieve
more efficient cellular conversions by predicting cell identity TFs
that can initially prime a cell population and then subsequently
induce the desired cell type conversion. Thus, guiding experimental
attempts for achieving effective in vivo cellular transitions, where
limited conversion efficiency is a critical barrier for its application in
regenerative medicine.

An overview of currently available computational tools
designed to address the above-mentioned three major challenges
in stem cell biology is provided in Table 1. Also, a detailed descrip-
tion of state-of-the-art single cell-based computational methods
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Table 1
An overview of currently available computational tools designed to use bulk and single-cell
transcriptomic and/or epigenetic datasets for addressing challenges in stem cell research, such as
predicting cell-fate determinants, lineage specifiers, and identity TFs required for cellular
conversions

Method name Input data Description Reference

CellNet Gene-expression (microarray-
based) data from 56 published
reports and predefined GRNs

A network biology platform designed to
assess the fidelity of cellular
engineering and generate hypotheses
for improving cell derivations.

[7]

Mogrify Gene-expression data of
173 human cell types and
134 tissues

A computational framework that
combines gene-expression data with
regulatory network information to
predict the reprogramming factors
necessary to induce desired cellular
conversion.

[6]

D’Alessio
et al.

504 gene-expression profiles,
representing 106 cell and
tissues types

A computational approach for
identifying candidate TFs that
control cell identity.

[3]

Crespo et al. Gene-expression data and
predefined GRNs

A computational tool that generalizes
the concept of TF cross-repression to
predict core TFs for cell conversion.

[39]

Davis et al. Gene-expression data and
chromatin modification ChIP-
seq profiles

A computational method for predicting
TFs that convert adult cell identity.

[25]

SLICE Single-cell RNA-seq (scRNA-seq)
data

A computational tool that
quantitatively measures cellular
differentiation states based on single-
cell entropy and predicts cell
differentiation lineages.

[36]

SeesawPred Gene-expression data and
predefined GRNs

A web application for predicting cell-
fate determinants from
transcriptomics data.

[33]

Okawa et al. Gene-expression data and
predefined GRNs

A computational algorithm for
predicting cell-fate determinants and
their GRN motifs.

[34]

Okawa et al. scRNA-seq data and predefined
transcriptional regulatory
network (TRNs)

A computational tool for predicting
lineage specifiers for different cell
subpopulations in binary-fate
differentiation events.

[35]

Ravichandran
et al.

Gene-expression data, predefined
TRNs, and signaling
interactome network

A computational approach for
identifying niche determinants of
cellular phenotypes.

[40]

TransSyn Single-cell RNA-seq (scRNA-seq)
data

A computational platform for the
identification of cell population

[41]

(continued)
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developed to address these challenges is provided below with their
schematic workflow described in Fig. 1.

Cellular differentiation is an intricate process where a less
specialized cell type (a stem/progenitor cell, e.g., myoepithelial
progenitor cell) evolves into another more specialized cell type
(a specific cell, e.g., myoepithelial cell). Despite the recent advances
in transcriptomic profiling techniques and increasing research
efforts, identification of TFs that determine cell fates during stem
cell differentiation (cell-fate determinants) remains a challenge.
Identification of cell-fate determinants becomes more challenging
for closely related daughter cell types that originate from a common
progenitor state such as differentiation of luminal progenitor cells
to ductal and alveolar cells [43]. Furthermore, the existence of
different cell subpopulations within a particular cell population
also hampers our understanding of cellular differentiation processes
because of closely related but different gene-expression programs
and underlying transcriptional regulatory networks (TRNs) that
characterize these states. Therefore, the development of appropri-
ate computational tools is absolutely necessary to utilize the single-
cell transcriptomic data for characterizing subpopulation-specific
TRNs and identifying TFs that determine specific lineage
commitment.

The increasing importance of single-cell gene-expression data
in stem cell biology has triggered the development of computa-
tional approaches that provide TRN-based modeling of stem cell
differentiation at the subpopulation-specific levels and identify line-
age specifiers for different cell subpopulations. One prominent
example of such a computational framework is the SeesawPred
(see Note 1) [33, 35], a web application that models the cell
differentiation process in the form of gene regulatory networks
(GRN) and predicts cell-fate determinants. One important feature
of this computational method is its flexibility to take into account
the single-cell as well as the bulk transcriptomic data for predicting
the cell-fate determinants. The application of this computational
method to three different stem cell systems predicted already
known and experimentally validated lineage specifiers. In addition,

Table 1
(continued)

Method name Input data Description Reference

identities by defining their synergistic
transcriptional cores.

SigHotSpotter Single-cell RNA-seq (scRNA-seq)
data and signaling interactome
network

A computational web application that
predicts key signaling molecules
(hotspots) responsible for controlling
cell phenotype.

[42]

Computational Tools for Stem Cell Research 89



the experimental validation of two predicted cell-fate determinants
confirmed that overexpression of Runx2 and Esr1 in mouse NSCs
induces astrocyte and neuronal differentiation, respectively
[34]. Furthermore, this tool was also employed to interrogate the

Fig. 1 Workflow of single cell-based computational methods for addressing current challenges in stem cell
research. (a) SeesawPred workflow overview. This method uses scRNA-seq and a prior knowledge network
(PKN) to predict cell-fate determinants, based on a GRN model of cell differentiation. Differentially expressed TFs
(DEGs) are identified and the normalized ratio difference (NRD) is calculated for each TF pair. TFs are filtered
based on the NRD score and then subdivided based on the provided PKN. The predicted network is pruned using
the Boolean GRN formalism and the SCCs identified. Based on the identified SCCs, the final score for each TF pair
is calculated and the TF pairs are ranked. The highest-ranking TF pairs are classified as cell-fate determinants
and can then be applied in cell differentiation protocols. (b) TransSyn workflow overview. This method identifies
the most synergistic transcriptional cores of a given population based solely on scRNA-seq data. Based on
multivariate mutual information (MMI), TransSyn performs a dynamic search for the most synergistic core by
progressively adding TFs to the core, one at a time. The search finishes when the MMI no longer decreases when
adding a new TF to the current combination (there is no more increase in the synergy). This last TF combination
is identified as the most synergistic core and it can then be applied to cell conversion protocols. (c) SigHotSpotter
workflow overview. This method predicts key signaling molecules (hotspots) by integrating scRNA-seq data and
a pre-compiled signaling interactome in a probabilistic Markov chain model. Based on the compatibility score of
the predicted high probability molecules with the respective downstream TFs, SigHotSpotter identifies and ranks
signaling hotspots that can then be used to maintain and control a cell phenotype
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differentiation of cardiac progenitor cells to more specialized cell
types during normal and abnormal cardiogenesis to study the
devastating consequences of disruption in specific cellular subpo-
pulations [44]. The experimental validation of its in silico predic-
tions shows the potential of SeesawPred to guide differentiation
experiments in stem cell research and regenerative medicine. The
version of SeesawPred that relies on single-cell transcriptomic data
is described here [35, 44], whereas the one that uses the bulk
transcriptomic data is freely available at https://seesaw.lcsb.uni.
lu/.

SeesawPred has been applied to multiple scRNA-seq and bulk
transcriptomic datasets, predicting cell-fate determinants and their
GRN motifs in multiple stem cell differentiation systems [34, 35,
44]. The application of this approach in stem cell research with
therapeutic potential has been demonstrated in cardiogenesis to
reveal the basis for organ level developmental defects. The pre-
sented computational method revealed the key lineage-specifying
TFHand2 as a specifier of outflow tract (OFT) cells. Furthermore,
it predicted that Hand2-null OFT-fated cells have disrupted speci-
fication, which was subsequently experimentally verified [44]. In
addition, SeesawPred was also used to predict the cell-fate determi-
nants for astrocytic and neuronal lineages from the mouse NSCs.
SeesawPred predicted the master regulator Runx2 and Esr1 over-
expression for astrocytic and neuronal fate, respectively [34]. More-
over, the application of this computational framework to three
different stem cell systems predicted already known and experimen-
tally validated lineage specifiers in stem cell subpopulations
[35]. For this purpose, three binary-fate stem cell differentiation
systems were selected for which high-quality single-cell gene-
expression data were available. Precisely, the lineage specifiers
were predicted for inner cell mass (ICM), hematopoietic stem
cells (HSC), multipotent progenitor (MPP), common myeloid
progenitor (CMP), and lung alveolar bipotential progenitor
(BP) differentiations. Briefly, SeesawPred predicted the Gata6 and
Klf2 to be cell-fate determinants for the primitive endoderm
(PE) and epiblast (EPI) differentiation from the inner cell mass
(ICM), which is in full agreement with independent experimental
observations [45, 46]. Similarly, in line with existing experimental
reports, Hes1 [47] and Pou6f1 [48] were predicted as lineage
specifiers for the alveolar type 1 (AT1) and alveolar type 2 (AT2)
subpopulations from the differentiating lung alveolar BP. Taking
these facts together, the presented approach addresses crucial chal-
lenges in stem cell research as it has the ability to guide experimen-
talists in the design of new strategies for stem cell therapies and
treatment with potential application in regenerative medicine.

On the other hand, recent advances in single-cell RNA
sequencing (scRNA-seq) has provided us with a large compilation
of high-resolution datasets that reflect the cellular heterogeneity
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within a cell population. The high resolution and statistical power
of this data has significantly advanced our ability to classify cells into
distinct subpopulations, based on their gene-expression profiles.
The identity of these cell subpopulations can vary from well-
known cell types, subtypes, to uncharacterized subpopulations
that, without the scRNA-seq technology, would have remained
unknown. Maintaining the identity of different cell populations
has been linked to specific sets of TFs [9]. Moreover, the scRNA-
seq advent opened doors for the characterization of TFs that act
synergistically in order to induce cell transitions between cell popu-
lations [41]. Thus, identification of such core TFs is of utmost
importance for characterizing and converting any cell population.
The quest to advance our knowledge of core TFs identification and
characterization of their crucial role in cellular conversions has
prompted the development of new computational methods [6–9]
that aim at deciphering the underlying regulatory mechanism and
interactions responsible for cell identity and transitions.

One such state-of-the-art computational platform is TransSyn
(see Note 2), a tool for the identification of cell population iden-
tities by defining their synergistic transcriptional cores [41]. This
method is based on the assumption that a cell population identity
arises from the synergistic activity of specific TFs that stabilize the
expression levels of genes characteristic of that cell population.
TransSyn method does not rely on GRNs nor depends on any
prior knowledge, and it only requires a scRNA-seq dataset of
distinct populations as input. Hence, TransSyn determines cell
population identities and promotes the design of experimental
strategies by means of predicting core TFs necessary for converting
the cell population under consideration to different other cell
populations.

As a proof of concept, TransSyn predicted synergistic transcrip-
tional cores recapitulated known identity TFs in 85% of the cases
and known synergistic TF interactions related to cell identity
[41]. Furthermore, TransSyn cell subpopulation-specific synergis-
tic transcriptional core successfully drove the experimental conver-
sion of human hindbrain neuroepithelial cells (hNES) into medial
floor plate midbrain progenitors (hProgFPM), which later differ-
entiated into midbrain dopaminergic (mDA) neurons [41]. Trans-
Syn is freely available at https://sourceforge.net/projects/
transsyn/.

TransSyn has been applied to multiple scRNA-seq datasets,
predicting synergistic transcriptional cores of 186 cell populations
[41]. The predicted synergistic transcriptional cores frequently
contained TFs known to maintain the respective cell population
identities. For instance, the pluripotency factors Pou5f1, Sox2, and
Nanogwere predicted as the most synergistic transcriptional core in
human embryonic stem cells (ESCs). Indeed, these TFs are known
to maintain the ESC phenotype and were described to act
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synergistically through enhancer clusters [49]. Also, Phox2a and
Isl1, which have been described to act synergistically to define
cranial motor neurons from mouse ESCs [50], were predicted as
part of the synergistic core of human fetal oculomotor and troch-
lear nucleus population. Finally, Tal1, Runx1, Gata2, and Fli1,
identified as the synergistic transcriptional core of blood cell pro-
genitors, have been shown to act synergistically by interacting at a
protein level, stabilizing their cofactor binding to DNA and
controlling the cell population identity [51, 52].

TransSyn predictions not only capture the synergy between TFs
but also recapitulate several known TFs interactions that control
cell population identities. For instance, Eomes, Otx2, Zic3, Foxa2,
and Hnf4a were identified in the synergistic core of embryonic
visceral endoderm subpopulation. These TFs have been described
to regulate each other and multiple downstream targets specific to
that cell population [53, 54]. In addition, Gata1 and Ikzf1, known
to functionally regulate each other and maintain the identity of
embryonic blood cells [55, 56], were identified in the synergistic
TF core of the embryonic erythrocyte population [52]. Differentia-
tion towards vascular endothelial cell fate is regulated by Id3 and
members of the Krüppel-like family of TFs [57, 58], which were
included on the predicted synergistic transcriptional core for this
population. For mouse enteroendocrine cells, the synergistic TF
core consisted of Foxa1, Foxa2, Insm1, Lmx1a, Neurog1, Neurog3,
Nkx2.2, and Pax4, all known to play an important role in the
functioning of this cell type [59–62]. Finally, the synergistic tran-
scriptional core obtained for fetal dopaminergic neurons contained
Nurr1 and Foxa1, both known for controlling mDA identity and
neurogenesis [63, 64].

In order to demonstrate TransSyn efficacy in cell conversion
protocols, this computational platform was used to predict the
synergistic core of hProgFPM [41]. The results included Foxa2,
Otx2, and Lmx1a, TFs which were previously described as impor-
tant for mouse dopaminergic neuron (mDA) development [64–
66]. Since Otx2 is known to induce Lmx1a expression [67], an
experiment was designed to shift the identity of hindbrain hNES
cell line towards hProgFPM targeting only Foxa2 and Otx2
[41]. These two TFs were induced by treatment of hNES with
two small molecules: smoothened agonist and Dickoppf1 for
Otx2 and Foxa2, respectively. Anteriorization and acquisition of
midbrain identity were shown by an increase in the number of
Otx2 positive cells and the increased ratio ofOtx2/Gbx2 expression.
In addition, increased levels of Foxa2 and decreased levels of Pax6
and Irx3 were observed, which reveals efficient ventralization. Fur-
thermore, cells obtained by targeting these two TFs generated a
significant increase in both Th gene expression and Th positive
cells, which were also positive for Lmx1a, Nurr1, and Pbx1,
known markers of midbrain identity [63, 66, 68]. Th positive
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cells also expressed Map2, a mature neuronal marker, and were
observed to acquire long processes and varicosities, usually found
in mDA neurons. Taken together, such an extensive validation of
TransSyn proves its ability to facilitate the design of novel strategies
for conversion of cell subpopulation identities with potential appli-
cations in regenerative medicine.

Finally, cell rejuvenation strategies are essential to prevent aged
and disease cell niches to impair normal cellular function [69–
71]. Characterizing and controlling these cell subpopulation phe-
notypes has great potential for developing novel regenerative med-
icine strategies. The statistical power and increasing number of
scRNA-seq datasets have been helping us to profile distinct cell
subpopulations. However, the lack of computational methods
that use scRNA-seq data to identify key factors involved in the
maintenance of a specific cell phenotype and controlling cell reju-
venation remains a challenge.

In order to bridge this gap in the literature, researchers have
introduced SigHotSpotter, a computational web application that
integrates scRNA-seq with a probabilistic Markov chain model of
signal transduction to predict key signaling molecules (hotspots)
that are responsible for the control of a cell phenotype [42]. This
method is based on the assumption that in steady-state, single-cell
gene expression can be representative of the corresponding protein
level [72]. SigHotSpotter integrates signaling and transcriptional
networks in order to identify specific signaling hotspots that are
involved in sustaining the transmission of external niche signals.
These hotspots are predicted based on the highest sustained signal
flux instead of their interference in the dysregulation of the entire
signaling pathway. In fact, signaling molecules matching these
characteristics have been shown to be more likely to transmit stable
signals involved in niche maintenance, rather than transient but
strong signals, normally related to changes in cell phenotype
[73]. Furthermore, SigHotSpotter ranks the predicted hotspots
according to their compatibility towards the downstream TFs.
This will help experimentalists in prioritizing their targets for fur-
ther studies and prompt the development of cell rejuvenation stra-
tegies for counteracting the loss of activation potential in niche cells
due to aging or disease.

SigHotSpotter was applied in silico to four different cell sys-
tems where it accurately recapitulated signaling molecules known
to be involved in maintaining specific cell phenotypes [42]. Namely,
SigHotSpotter predicted that the inhibition of Gsk3β and Map2k1
is responsible for the maintenance of the mouse ESCs in a naive
pluripotency state. SigHotSpotter also identified specific signaling
pathways involved in fibroblast switching from neonatal to mature
state, a process that was shown to prompt the maturation of cardi-
omyocytes in vivo [74]. Furthermore, the Markov chain applied in
this method identified Spr5 as the signaling hotspot mediating a
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switch from canonical to non-canonical Wnt activity, inducing
quiescence in the aging mice brain [75]. SigHotSpotter is available
at https://SigHotSpotter.lcsb.uni.lu and its source code can be
accessed at https://gitlab.com/srikanth.ravichandran/
sighotspotter.

SigHotSpotter has been applied in four different cell systems
based on scRNA-seq datasets from mouse ESCs, hair-follicle stem
cells (HFSCs), hematopoietic stem cells (HSCs), and oligodendro-
cyte progenitor cells [42]. The method correctly predicted signal-
ing hotspots with known experimental validation in those cell
systems. For instance, SigHotSpotter accurately predicted the inhi-
bition of Gsk3β and Map2k1 in ESCs under 2i culture conditions.
Indeed, different culture conditions are known to maintain ESCs in
different phenotypic states. In particular, 2i culture media, which
contains selective inhibitors for Gsk3β and Map2k1, is known to
maintain ESCs in a naive pluripotency state while leukemia inhibi-
tory factor (LIF) alone is known to maintain ESCs in a primed
pluripotency state [76]. In addition, Gsk3β and Bmpr1a, compo-
nents of, respectively, the Wnt and BMP signaling pathways were
identified as inhibited hotspots in HFSCs. Accordingly, Wnt and
BMP signaling pathways were reported to play a role in the activa-
tion of quiescent HFSCs to generate specialized mesenchymal cells
necessary to induce the hair cycle [77]. In young long-term HSCs,
Map2k1 andMap3k1, proteins of the ERK signaling pathway, were
predicted as activated signaling hotspots together with Gsk3β, a
protein regulated by the PI3K signaling pathway. The other two
members of the PI3K signaling pathway, Akt1 and Icam1, were
identified as inhibited in the same phenotype. Notably, long-term
HSCs have been described to be the main cell type involved in the
production of blood cells, a process where ERK and PI3K pathways
were identified as key regulators of the balance between HSCs
dormancy and activation [78–81]. Finally, Notch1 and Gsk3β,
that have been reported to inhibit oligodendrocyte differentiation
and myelination as inhibited, were also predicted as inhibited in
OPCs, while Fyn, a protein reported to be involved in oligoden-
drocyte migration, was predicted as activated in this cell type [82–
84].

The Markov chain applied in this method was used to predict
niche signals responsible for age-dependent changes in NSCs
[75]. The results predicted Sfrp5, an antagonist of the
non-canonical Wnt signaling pathway, as a key signaling intermedi-
ate for old quiescent NSCs. Sfrp5 was inhibited in vivo by admin-
istering a neutralizing antibody for 14 days. Sfrp5 inhibition
significantly decreased the number of proliferating cells in an old
mice brain when compared to IgG-treated control old mice. This
result indicates a reduced NSC activation, showing that Sfrp5
antagonization leads to increased Wnt canonical activity and,
thus, quiescence in the aging mice brain. Furthermore, this shows
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that NSCs activation is regulated by a switch from canonical to
non-canonical Wnt activity, a new finding that highlights the
importance of this method in characterizing different cell
phenotypes.

Recently, SigHotSpotter was also applied to further understand
the signaling pathways involved in fibroblast identity in mouse
heart development [74]. The results identified Foxo, mTOR, and
VEGF signaling pathways as specific for neonatal fibroblasts while
cell adhesion, estrogen, and TGFβ signaling pathways were identi-
fied only in mature fibroblasts. These results suggest that fibroblast
switching from neonatal to mature state prompts the in vivo matu-
ration of cardiomyocytes.

In conclusion, in recent years stem cell therapy has become a
very promising and important scientific research topic. Advances in
this area allowed for a deeper understanding of human disease and
prompted the design of novel strategies for tissue regeneration,
namely in cell transplantation. The advent of single-cell technology
continues to expand our knowledge about molecular mechanisms
underlying cell conversion and differentiation, the characterization
of cell phenotypes in different conditions, and intrinsic molecular
dysregulations in different pathologies. By applying single-cell
technology to stem cell research, multiple computational methods
were developed to accurately identify key factors in cell conversion,
explain differences between cell phenotypes, and predict signaling
molecules controlling these processes. To sum up, the discussed
computational models provide mechanistic insights into biological
processes and generate new predictions that guide experimental
research. However, stem cell therapy still has challenges to over-
come. For instance, cells transplanted from a different tissue or
obtained from in vitro experiments are not always successfully
integrated into the patient’s tissue [85]. In addition, most in vitro
reprogramming and differentiation protocols often have a low
conversion efficiency, making it more expensive and time-
consuming to collect enough target cells for clinical use or further
research. Furthermore, in vitro cell conversion protocols often
generate non-functional and immature variants of target cells, fail-
ing to obtain the desired cell phenotype and functionalities.

Computational modeling can help address these limitations by
developing network-based models that combine GRNs with the
hierarchical organization of cell identity TFs, in order to predict
specific cell type and subtype identity TFs that lead to in vitro
generation of functionally mature target cells [85, 86]. Moreover,
these methods can be further used to elucidate mechanisms under-
lying the dysregulation of cell differentiation associated with, for
instance, congenital disorders [44]. Integrating different types of
single-cell data in multiscale computer models would allow for a
more thorough characterization of a biological system and help
experimentalists in designing novel strategies for stem cell therapy.
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For instance, combining scRNA-seq and single-cell sequencing
assay for transposase-accessible chromatin (scATAC-seq) would
provide a better characterization of novel cell types and phenotypes,
which would lead to the development of more accurate models for
predicting cell-fate determinants.

Modeling biological systems at the tissue level, based on cell–
cell or receptor–ligand interactions, could help elucidate the basic
processes involved in tissue regeneration and homeostasis and lead
to novel predictions of cell–cell interactions that sustain tissue
regeneration. For instance, recent scRNA-seq computational meth-
ods focused on modeling stem cell niche interactions by integrating
scRNA-seq with signaling and transcriptional networks
[42, 87]. These approaches acknowledge the fact that predicting
key signaling molecules that mediate niche signals responsible for
maintaining cell phenotypes is of the utmost importance for stem
cell rejuvenation therapies that focus on reverting impaired cell
function and improve tissue repair processes in degenerative and
age-related diseases. Furthermore, modeling cell-cell communica-
tion networks based on scRNA-seq data has helped in predicting
key cell–cell interactions involved in the regulation of tissue homeo-
stasis [88–90]. By comparing these reference cell-cell interactomes
with the networks of injured or diseased tissues, a computational
model could identify which interactions are dysregulated and help
develop novel strategies for reverting tissue degeneration. More-
over, multiscale modeling can improve the prediction of relevant
cell–cell interactions in tissue homeostasis. To this end, integrating
phosphoproteomics data with scRNA-seq would help to identify
signaling pathways that maintain stem cell phenotypes while com-
bining scRNA-seq with imaging data could further improve our
understanding of cell-cell communication.

In summary, stem cell research can greatly benefit from the
increased resolution of scRNA-seq and its integration with new
single-cell technologies, such as proteomes, epigenomes, and spa-
tial information in order to have a more comprehensive classifica-
tion and characterization of cell types, their interactions, and
function. Closer collaboration between computational researchers
and experimentalists can further stimulate advances in stem cell
research. For example, by joining efforts they could come up with
a more generic and integrative model that will provide an accurate
and deeper insight into the molecular mechanisms underlying the
regulation and control of stem cell homeostasis and its dysregula-
tion in disease, therefore, accelerating the translation of our
biological knowledge to clinical application.
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2 Materials

2.1 SeesawPred:

Cell-Fate Determinants

1. SeesawPred requires as an input the gene-expression profiles of
the stem/progenitor and two daughter cell types.

2. A prior knowledge network (PKN) that contains interactions
between the TFs (see Notes 3 and 4).

2.2 TransSyn: Cell

Identity TFs

1. scRNA-seq gene-expression matrix with column names labeled
according to which population each cell belongs, and the rows
contain gene-expression values (see Note 5).

2. List of all known TFs of the species from which the gene-
expression matrix was obtained. TFs should be labeled with
the same nomenclature used in the gene-expression matrix
mentioned in item 1 (see Note 6).

2.3 SigHotSpotter:

Niche-Induced

Signaling Pathways

1. Two scRNA-seq gene-expression matrices from the same cell
type in different conditions, such as ESCs cultured in 2i and
LIF culture media (condition 1 and condition 2). scRNA-seq
gene-expression matrices should have columns representing
cell data or replicates and row names labeled according to
Gene Symbols nomenclature. Gene-expression matrices data
should be normalized or in read counts (TPM/FPKM).

2. Differential expression file containing only the significantly
differentially expressed TFs, where “1” denotes upregulated
TFs in condition 1 and “�1” denotes upregulated TFs in
condition 2. The differential expression file should have Gene
Symbols on the first column and differentially expression infor-
mation on the second column (see Note 7).

3. Pre-compiled, species-specific signaling interactome network,
including receptor/ligand information, a list of TFs and TF
interactions (see Notes 8 and 9).

3 Methods

3.1 SeesawPred:

Cell-Fate Determinants

1. The computation of differentially expressed TFs between two
daughter cells.

2. The reconstruction of Boolean TRNs from differentially
expressed TFs by retrieving interactions from the MetaCore
(Clarivate Analytics) database and then prune this network by
discarding interactions incompatible with Booleanized gene-
expression data of two daughter cells (see Note 10).

3. The computation of statistically significant normalized ratio
difference (NRD) TF pairs to identify pairs of TFs whose

98 Muhammad Ali et al.



expression ratios showed a significant change in daughter cells
in comparison with the stem/progenitor cells (see Note 11).

4. The identification of strongly connected components (SCC) in
the TRN of parental cell subpopulation.

5. TF pairs that are present in the parental SCC and whose TFs are
differentially expressed in daughter cell subpopulations are
considered candidate opposing lineage specifier pairs (see
Note12).

6. The NRD TF pairs are then tested for significance and filtered.
The criteria for keeping a TF pair is that it has to be: (1) differ-
entially expressed between the two daughter cell types, (2) con-
stitute significant NRD TF pair on significance test among all
TFs, and (3) show high absolute NRD values in both daughter
cell types (|NRD| > 0.5) (see Note 13).

7. Finally, SCCs with significant NRD TF pairs which satisfy the
presented criteria are considered the final predictions.

3.2 TransSyn: Cell

Identity TFs

1. Discard unclassified populations or populations with less than
three cells in the dataset.

2. Filter gene-expression matrix for TFs-only based on the TF list
in item 2 of the Subheading 2.

3. Classify TFs as expressed if their expression values are higher
than or equal to 1 in RNA-seq FPKM/RPKM/TPM values,
higher than or equal to 10 in normalized read counts, or higher
than or equal to 1 in UMI counts. TFs that are below these
expression cut-offs are to be considered not expressed (see
Note 14).

4. Select target cell populations for transcriptional synergistic core
identification.

5. Calculate the fraction of cells expressing each TF per selected
population. Keep the top 10% most frequently expressed TFs
that are also expressed in more than 70% of the cells. If the
number of TFs is more than 150, calculate the coefficient of
variation and select the top 150 TFs (see Note 15).

6. Convert the zero gene-expression values into one. Log 10-
transform the gene-expression values. Convert the gene-
expression values with mean equal to zero into one. Discretize
obtained gene-expression values using the Freedman–Diaconis
rule (see Note 16). For FPKM/RPKM/TPM values and nor-
malized read counts, set the input for the Freedman–Diaconis
rule to the number of cells plus 1. For UMI counts, set it to the
number of cells plus 6. Set the range of gene-expression values
to be between 0 and the maximum value of each cell
population.
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7. Compute Shannon’s entropy of each TF based on the discre-
tized values and normalize these values by the theoretical max-
imum entropy (see Note 17).

8. Calculate multivariate mutual information (MMI) [91] for all
combinations of three TFs using the total number of cells in
each population. Select the top 1% lowest MMI combinations
(see Note 18). Rank these combinations by total correlation
(TC) and select the top 1% highest combinations.

9. Use the selected TC combinations as the initial seeds for the
dynamic heuristic search of high-level synergistic TF cores. Add
new TFs to each seed combination, one by one, and compute
the new MMI. Select the combinations that show lower MMI
(less than 0.05) than the seed and compute TC. Select the top
ten best TC combinations as seed for the next iteration. The
heuristic search is finished when no new combination has a
lower MMI (more synergistic) than the seed or when the
number of TFs within a combination reaches 15 (seeNote 19).

10. Compute the TC of the final combinations obtained in step 9.
Calculate MMI for the 20 best TC combinations. If MMI is
lower, rank new combinations by TC. Otherwise, rank combi-
nations from step 9 by TC to obtain the final synergistic
transcriptional cores. If there is a tie between combinations,
they are ranked according to the highest summed mean gene
expression and the top three combinations are kept as the final
synergistic transcriptional cores.

11. Identify the cell conversion TFs by calculating the mean gene
expression for the TFs in each synergistic transcriptional core
and ranking them based on the fold change between the target
cell population and the starting cell population (remaining
populations in the dataset).

3.3 SigHotSpotter:

Niche-Induced

Signaling Pathways

1. Model the signal transduction process from the niche to intra-
cellular signaling pathways as a finite discrete time-
homogeneous Markov chain, where the signal originates from
the niche and propagates successively through a finite set of
signaling molecules (see Note 20).

2. Use the mass action principle to construct the state transition
probability matrix, assuming that the probability of interaction
between two molecules is proportional to the dot product of
their corresponding gene-expression values (seeNote 4). Tran-
sition probability values should only be calculated from inter-
actions present in the signaling interactome (see Note 21).

3. Establish a cut-off parameter that determines the percentage of
cells for which both interacting molecules must be expressed
for the interaction to be considered in theMarkov chain model.
For instance, if the cut-off is set to 30%, then interactions
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among two molecules are only considered if both genes are
simultaneously expressed in at least 30% of the cells in the
scRNA-seq.

4. Calculate the stationary distribution of the transition probabil-
ity matrix by finding the eigenvector of the transposed transi-
tion probability matrix with an eigenvalue equal to 1 [92]. This
computation gives the steady-state probability distribution of
where the signal will be present, at any time point (see Note
22).

5. Establish a percentile parameter that determines the top frac-
tion of molecules classified as high probability signaling mole-
cules, which will be used for the following calculations.

6. Classify TFs as interface TFs and non-interface TFs.
Non-interface TFs are defined as TFs that do not have an
incoming edge from a signaling molecule. Interface TFs are
defined as TFs that have an incoming edge from a signaling
molecule. Filter this list for differentially expressed
non-interface TFs (ntDETFs).

7. Evaluate the concordance between the overall effect of the high
probability signaling molecules (activation or inhibition) on
the expression status of the downstream ntDETFs (up- or
downregulated). Trace all directed shortest paths from the
high probability signaling molecules to the ntDETFs. Based
on these results, calculate the weight for each shortest path,
which is obtained from the product of the steady-state prob-
abilities of the nodes contained in the path and its sign. If the
number of inhibitor edges is even and the ntDETF is upregu-
lated, the sign of the shortest path is equal to 1. However, if the
ntDETF is downregulated, the sign is equal to �1. If the
number of inhibitor edges is odd and the ntDETF is down-
regulated, the sign of the shortest path is equal to 1. On the
other hand, if the ntDETF is upregulated, the sign is equal to
�1 (see Note 23).

8. Calculate the compatibility score for a given signaling molecule
and a target ntDETF based on the shortest path weight
obtained on the previous step. The compatibility score is
defined as the fraction of the sum of positive edge weights
relative to the sum of absolute edge weights. This score pro-
vides a quantitative measurement between a high probability
signaling molecule and a target ntDETF. Calculate the overall
compatibility score of a signaling molecule for a given pheno-
type/condition by computing the mean of the compatibility
scores over all ntDETFs.

9. Based on the compatibility scores obtained on the previous
step, identify the active and inactive signaling hotspots (see
Note 24). Construct the signaling network around these
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hotspots by computing all the shortest paths from the niche-
node to the predicted signaling hotspots, and then from the
hotspots to the ntDETFs (see Notes 25 and 26).

4 Notes

1. The SeesawPred algorithm was written in R and the web inter-
face has been developed using the Shiny web technology.

2. AnimalTFDB [93] database can be a useful resource to obtain
the species-specific TF list.

3. A literature-based manually curated PKN can be retrieved from
the MetaCore (Clarivate Analytics) database or any other
source of user’s choice.

4. TransSyn algorithm was written in C++ and wrapped in R using
Rcpp and gtools R packages.

5. It is recommended to use the same population classification
and to not reprocess the raw data and gene-expression values
defined in the original dataset.

6. AnimalTFDB [93] database can be a useful resource to obtain
the species-specific TF list.

7. AnimalTFDB [93] annotation can be useful to define TFs.
Differentially expressed TFs can be identified by using a t-
test. Shortlist the set of obtained differentially expressed TFs
by using Benjamini–Hochberg correction and a cut-off for the
adjusted p-value lower than 0.05.

8. We recommend using Omnipath [94] and ReactomeFI [95]
databases to construct the signaling interactome network, since
they contain information about the directionality of the inter-
actions and their regulatory nature. For example, given a gene
A and a gene B, we can know if A and B interact with each other
or if it is a unidirectional interaction, and if these interactions
are activations or inhibitions. Gene Ontology classification of
the plasma membrane (GO:0005886) and receptor activity
(GO:0004872) can be used to compile a list of receptors/
ligands. Transcriptional interactions can be obtained from
Zaffaroni et al. [96] which contains a high number of manually
curated TF interactions from MetaCore (Clarivate Analytics).

9. In order to account for the niche influence on the intracellular
signaling and to model sustained signaling, it is recommended
to introduce an external niche-node which should be
connected to all receptors and ligands as well as all the TFs
nodes in the signaling interactome. This step ensures a contin-
uous signal transmission from niche to TFs through signaling
intermediates, based on the assumption that, once a signal
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reaches a TF, this signal starts once again from the external
niche-node. Also, it is recommended to remove non-receptor/
ligand nodes that have zero in-degree and non-TF nodes that
have a zero out-degree since these nodes do not contribute to
sustain the signal transduction.

10. The PKN retrieved fromMetaCore contains direct interactions
between the TFs obtained from different interaction cate-
gories, such as binding, transcriptional regulation, and influ-
ence on expression.

11. The required input of SeesawPred web application is a
tab-separated value file where columns represent gene-
expression (microarray or RNA-Seq) replicates of the stem/
progenitor cell type and the two daughter cell types labeled as
“Progenitor,” “Daughter1,” “Daughter2,” respectively, and
the rows are labeled according to the TF symbols.

12. The PKN retrieved fromMetaCore or defined by the user must
also be a tab-separated value file containing the list of TF–TF
interactions that serve as potential links in the network.

13. Example input files for two cellular differentiation systems
(mouse NSCs differentiation into neurons and astrocytes, and
Mouse Hematopoietic Stem Cell (HSC) differentiation to ery-
throid and myeloid) are provided in the online web application
of SeesawPred.

14. If for a given dataset setting the cut-offs to the recommended
values results in too many expressed TFs, making the following
computation steps impracticable, the expression cut-off can be
set to 10 instead. If the input dataset is binarized, TFs with
mean counts lower than 1 can be discarded.

15. The maximum number of TFs used for the subsequent com-
putations are suggested to be set to 150 since running the
algorithm becomes infeasible for a standard desktop computer
if this number is higher than that.

16. The Freedman–Diaconis rule was implemented using the R
nclass.FD function.

17. Normalizing the TF entropy using the theoretical maximum
entropy enables a direct comparison between different TF
entropies.

18. MMI measures the information gained by adding a variable
(in this case, a TF), which cannot be explained by the sum of
the information given by the subsets of variables. Thus, when
MMI is negative it means that the TFs are synergistically inter-
acting with each other because the information given by the
TFs together is higher than the sum of the information given
by the TFs separately. MMI is calculated with all cells in each
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population in the dataset, except for the ones in the population
for which MMI is being computed.

19. The suggested maximum number of TFs per synergistic core is
15 because continuing the computations with higher numbers
is often very demanding and it has been observed that, at that
point, most TFs are shared among different combinations.

20. According to this model, the probability of a given signal to
propagate frommolecule A tomolecule B on the next time step
only depends on where the signal is currently present and not
on where it was on the previous time steps. Thus, the transition
probability of a signal to propagate from molecule A to B is
defined by a transition probability matrix, calculated based on
the scRNA-seq expression matrix.

21. The transition probability value between two molecules is cal-
culated by dividing the dot product of their corresponding
single-cell gene-expression vectors (defined as interaction
weight) by the sum of the product of the interaction weights
between their neighboring molecules.

22. The transition probability matrix will be stochastic since only
the interactions present in the signaling interactome will have a
non-zero transition probability calculated from the data. The
others will have zero probabilities. Since the interaction proba-
bility for any two molecules is proportional to the scalar prod-
uct of their gene-expression values, this probability will be
higher only when both the molecules are highly expressed in
the same cell and expressed in a large number of cells for that
population.

23. The compatibility of the shortest path from a high probability
signaling molecule to a ntDETF is determined by the sign. If
the sign of the shortest path is negative (�1), it means that the
signaling molecule and ntDETF are incompatible and so the
weight will be negative. If the sign of the shortest path is
positive (1), the signaling molecule and ntDETF are compati-
ble, therefore the weight will be positive.

24. The compatibility score is equal to 1 if all shortest paths
between a signaling molecule and a target ntDETF are com-
patible, making this signaling molecule an active signaling hot-
spot. If the net effect of the signaling molecule is entirely
incompatible with the expression status of the downstream
TFs, the compatibility score is equal to 0 and the signaling
molecule classified as an inactive signaling hotspot.

25. We recommend using the Igraph implementation of Dijkstra’s
algorithm [97] to calculate the shortest paths network. This
network will show how the signaling hotspots meditate the
transmission of the signal from the external niche-node to the
ntDETFs.
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26. We recommend to output a list of the top ten active and
inactive signaling hotspots for each phenotype and a complete
list of all ranked predictions, together with the shortest path
network of the predicted signaling hotspots in SIF format so it
can be easily visualized in, for instance, Cytoscape [98].
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4.2.  TransSynW: A single-cell RNA-sequencing based web 

application to guide cell conversion experiments 

4.2.1. Preface 

Cellular conversion strategies are crucial to generate specific cell types that can 

potentially open new avenues for the development of regenerative medicine therapies. 

Recent developments in gene expression profiling at single-cell level provided the means to 

characterize cellular heterogeneity and identify TFs that promote conversion between 

cellular (sub)populations. However, conversion TFs might not be able to regulate all their 

target genes if chromatin conformation makes them inaccessible. PFs are a subset of TFs 

that have been shown to be able to overcome these limitations and bind to condensed areas 

of the chromatin to induce the expression of their target genes. Adding PFs to cellular 

conversion protocols has been shown to improve the success of these approaches. 

We developed TransSynW, a computational platform that leverages the high 

resolution of scRNA-seq data to identify cellular conversion TFs for any cellular 

(sub)population characterized in this data. The identified sets of conversion factors include 

specifically expressed TFs as well as non-specific PFs for each target cell (sub)type. 

Prioritizing PFs among the identified conversion TFs will promote chromatin remodeling, 

which we foresee to improve the success of cellular conversion protocols. Additionally, 

TransSynW identifies marker genes for each of the target (sub)populations, allowing 

researchers to evaluate the performance of cellular conversion protocols. When applying 

TransSynW to distinct cellular systems, we show that our results well-recapitulated known 

cellular conversion TFs and marker genes. Moreover, literature search and cross-reference 

with a database of molecular interactions showed the biological significance of the newly 

identified conversion TF and markers. TransSynW is a user-friendly platform that has the 

potential to improve the outcome of cellular conversion protocols for regenerative medicine. 

In this study, I implemented and developed the computational method and interface, 

collected the data, performed the application and literature validation of the precited TFs and 

markers, and the benchmarking. The published article is reprinted on the next pages 

(RightLinks license number 5324211471553).  
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Abstract

Generation of desired cell types by cell conversion remains a challenge. In particular,

derivation of novel cell subtypes identified by single-cell technologies will open up

new strategies for cell therapies. The recent increase in the generation of single-cell

RNA-sequencing (scRNA-seq) data and the concomitant increase in the interest

expressed by researchers in generating a wide range of functional cells prompted us

to develop a computational tool for tackling this challenge. Here we introduce a web

application, TransSynW, which uses scRNA-seq data for predicting cell conversion

transcription factors (TFs) for user-specified cell populations. TransSynW prioritizes

pioneer factors among predicted conversion TFs to facilitate chromatin opening

often required for cell conversion. In addition, it predicts marker genes for assessing

the performance of cell conversion experiments. Furthermore, TransSynW does not

require users' knowledge of computer programming and computational resources.

We applied TransSynW to different levels of cell conversion specificity, which reca-

pitulated known conversion TFs at each level. We foresee that TransSynW will be a

valuable tool for guiding experimentalists to design novel protocols for cell conver-

sion in stem cell research and regenerative medicine.

K E YWORD S

cellular therapy, clinical translation, differentiation, direct cell conversion, genomics,

reprogramming, synergy, transcription factors

1 | INTRODUCTION

Cell conversion is fundamental to many biological processes. Control

of cell conversion has significant relevance in stem cell research. For

example, generation of functionally specific cells by cell conversion is

of clinical interest for cell replacement therapies. However, several

roadblocks need to be overcome for achieving optimal cell conversion,

such as the accurate characterization of cell populations and the iden-

tification of cell conversion factors. Single-cell RNA-sequencing

(scRNA-seq) technologies have made it possible to address these

challenges. Due to the greater amount of scRNA-seq data generated

across the world, experimental researchers are increasingly expressing

their interest in deriving novel functional cell types.

Here, we present TransSynW, a scRNA-seq based web applica-

tion for identifying cell conversion transcription factors (TFs) applica-

ble in stem cell and clinical research (Figure 1A). It prioritizes pioneer

factors (PFs) in the prediction of conversion TFs. Evidence suggests

that PFs have a key role in chromatin opening, a process often

required for cell conversion.1 Indeed, including PFs on cell conversion

protocols has been shown to improve their outcome.1 Furthermore, it
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predicts marker genes for each target cell type, enabling researchers

to assess the fidelity of experimentally converted cells. In addition, it

is user-friendly, and it does not require users' computer programming

or computational resources. We also created a comprehensive video

tutorial for guiding users through the web interface.

The application of TransSynW to various cell systems well-

recapitulated known cell conversion TFs and made novel predictions,

including the phenotypic conversion between cells in organoids and their

in vivo counterparts. Moreover, predicted marker genes were consistent

with experimentally known ones. These results highlight the applicability

of TransSynW to a wide range of cell conversion experiments.

2 | RESULTS

2.1 | Method overview

The TransSynW algorithm first identifies specifically and nonspecifically

expressed TFs, and selects the combination that exhibits the highest

synergistic interactions among them (see Methods) (Figure 1B). Nota-

bly, here we considered for the nonspecific part only PFs that have pre-

viously been reported to be involved in cell conversion protocols

(Table S1). Predicted conversion TFs are then ranked by the expression

fold change between the target and starting cell populations and users

can prioritize the TFs for experimental follow-ups based on this ranking.

(A)

(B)

F IGURE 1 A, Application of TransSynW to stem cell research and regenerative medicine. B, Schematic overview of TransSynW algorithm
(see also Methods). First, transcription factors (TFs) most specifically expressed in the selected target cell population (specific TFs) and
nonspecifically expressed pioneer factors (PFs) are computed. The most synergistic combination of specific TFs and nonspecific PFs is then
identified. The predicted set of TFs are ranked by expression fold change between target and starting cell populations. In parallel, top
10 candidate marker genes for target cell population are computed by JSD

Significance statement

The study proposes a computational web application, Tran-

sSynW. To the best of the author's knowledge, it is the only

computational tool that can identify cell conversion tran-

scription factors (TFs) for any cell population in single-cell

RNA-sequencing data. TransSynW does not require prior

biological information, computer programming, and users

computational resources. In addition, TransSynW prioritizes

pioneer factors among predicted conversion TFs to facilitate

chromatin opening often required for cell conversion. Fur-

thermore, TransSynW predicts marker genes for assessing

the performance of cell conversion experiments. Thus, Tran-

sSynW will be a staple tool for guiding experimentalists to

design novel protocols for cell conversion in stem cell

research and regenerative medicine.
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We compiled the scRNA-seq data of starting cell types frequently used

in cell conversion experiments from various scRNA-seq platforms

(Table S2). For optimal results, users are recommended to use starting

and target cell type data obtained from the same scRNA-seq platform

or, if not available, from the closest sequencing platform. In general, it is

recommended to select at least one PF and one specific TF from the

predicted conversion TFs. It may be advisable to select more factors if

the phenotypic difference between the starting and target cell types is

large. Finally, TransSynW also predicts potential marker genes of the

target cell populations. This feature enables researchers to select

markers for assessing the performance of their cell conversion

experiments.

TABLE 1 Predicted specific transcription factors (TFs) and nonspecific PFs

Cell type Specific TFs Nonspecific PFs
Annotation in
data

Data source
(PubMed ID)

(1) Conversion into broad cell type

Myoblast MYF5, MYOD1, PAX7, GLIS3, PAX3 CEBPB, IRF8, PBX1 1,3,4,5,7 30283141

Keratinocyte TRP63, GATA3, NFIB KLF4, GRHL2, CEBPA 0-16 30283141

Cardiomyocyte NKX2-5, TBX5, PROX1, ZFP579, NR0B2 GATA4, MEIS1, PBX1 9,14 30283141

Hepatocyte NR1I2, ZFP750, ZFHX4, HNF1A, ZBTB48 HNF4A, FOXA3, FOXA2 4,5,10,11,12,15 30283141

HSC HLF, HOXA9, GATA2, TAL1, MYCN CEBPB, CEBPA, PBX1 0,4,8 30283141

Neuron EOMES, NEUROD6, EGR4, RARB, DLX6 FOXG1, NEUROD1, PBX1 9,10,12 30283141

Oligodendrocyte/OPC NKX6-2, OLIG1, SOX10, OLIG2, NFE2L3 SOX2 0,6,11 30283141

Macrophage RUNX3, BATF3, BATF, NFE2, E2F1 SPI1, CEBPA, ARID3A Different tissues 30283141

Beta cell NKX6-1, PDX1, MAFA, OVOL2, MNX1 NEUROD1, ISL1, FOXA2 0,8,9,11,17 30283141

NSC ZFP275, ASCL1, TCF3 FOXG1, SOX2, PBX1 All young NSCs 30827680

(2) Conversion into subtype

Dopaminergic neuron NPAS4, MYT1L, EBF3, POU6F1, BNC2 FOXA2, ASCL1, GATA3 hDA 27716510

Medial floorplate progenitor LMX1A, SP2, NR2F6, LMX1B, HMGA2 FOXA2, ASCL1, SOX2 hProgFPM 27716510

GABAergic neuroblast GATA3, SOX14, MYT1L, BNC2, ZBTB38 ASCL1, SOX2, PBX1 hNbGaba 27716510

Oculomotor neuron PHOX2B, PHOX2A, ISL1, RXRG, NR2F2 FOXA2, ASCL1, “PBX1 hOMTN 27716510

Serotonin neuron FEV, GATA3, SOX1, DPF1, LMX1B GATA2, PBX1 hSert 27716510

CD4+ central memory T cell RBSN, RFX3, NR4A1, KLF9, ID3 GATA3, CEBPB TCM 29352091

CD8+ memory T cell EOMES, BACH2, KLF7, MYC, ID3 CEBPB, GATA3 4,6,11,13 31754020

Memory B cell KLF13, LMO4, PCBD1, KLF10, ZBTB38 IRF8, SPI1, CEBPB Memory B cell 31968262

(3) Phenotype conversion

Primed mESC 1 LIN28A, MYC, ID1, FOXP1, ID3 POU5F1, ESRRB, KLF4 FBSLIF 25471879

Naive mESC 1 ZFHX2, MEIS2, ZIC2 POU5F1, ESRRB, KLF4 2iLIF

Primed mESC 2 LIN28A, FOXP1, SOX4 SOX2, POU5F1, KLF4 mES_lif 26431182

Naive mESC 2 SPIC, MITF, MEIS2 ESRRB, KLF4, POU5F1 mES_2i

Active NSC CENPS, EGR1, INSM1, MXD3, E2F1 ASCL1, SOX2, PBX1 All young aNSCs 30827680

Quiescent NSC DBP, EPAS1, ID2 FOXG1, PBX1, ASCL1 All young qNSCs

Fetal hepatocyte ZGPAT, KLF11, ZBTB20 GATA4, HNF4A, CEBPA Fetal hepatocyte 30500538

Organoid hepatocyte HES6, LEF1, THAP8, SOX9, HTT FOXA2, HNF4A, MEIS1 Fetal hepatocyte

organoid

Adult hepatocyte 1 KLF9, CEBPD, KLF6 FOXA2, HNF4A, CEBPB Hepatocyte 31292543

Adult hepatocyte 2 SCAND1, NR3C1, EDF1 HNF4A, FOXA2, PBX1 Hepatocyte 30348985

Adult excitatory neuron MLXIPL, PEG3, HLF, BHLHE40, KLF9 FOXG1, CEBPB, PBX1 adult_Ex 31619793

Organoid excitatory neuron NEUROG2, SOX11, SOX4, CSRP2,

CARHSP1

FOXG1, PBX1 hOrga_EN

Adult inhibitory neuron PEG3, MLXIPL, HLF, PPARGC1A, KLF9 FOXG1, SOX2, PBX1 adult_In 31619793

Organoid inhibitory neuron SIX3, PAX6, ID4, KLF10, MEIS2 ASCL1, SOX2, SOX9 hOrga_IN

Note: Experimentally validated conversion TFs are marked in bold. TFs are ordered from left to right by fold change to MEF/HFF. Cluster IDs annotated to

same cell types in PanglaoDB were merged prior to analysis. Macrophage data from different tissues (heart, kidney, lung, muscle, brain, pancreas, skin

spleen, trachea) were merged. See Table S3 for literature evidence for predicted conversion TFs.
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2.2 | Application to various cell conversions

To demonstrate the applicability of TransSynW, we applied it to dif-

ferent cell systems, which encompassed conversions into broad cell

types, subtypes, and phenotypic states (Tables 1 and S3). For example,

in the first category, FOXA2, FOXA3, and HNF4A were predicted for

the hepatocyte, which, together with HNF1A predicted in the specific

part, are known for hepatocyte conversion.2 The predicted TFs for

the beta cells included NKX6-1, MAFA, PDX1, and NEUROD1, which

have been shown to induce beta cell conversion.3-5 Moreover, in both

cases the predicted marker genes recapitulated commonly used ones

(Tables 2 and S4). Indeed, many predicted conversion TFs are known

to regulate each other and the predicted marker genes (Figure 2A,B),

supporting the biological relevance of synergistic interactions cap-

tured by TransSynW.

Next, we analyzed different subtypes of neurons, as they are one

of the most well studied subtypes. Among the predicted TFs for dopa-

minergic (DA) neurons, MYT1L, ASCL1, FOXA2, and GATA3 have

TABLE 2 Predicted marker genes with documented evidence

Cell type Predicted marker gene with evidence Reference (PubMed ID or website)

(1) Conversion into broad cell type

Myoblast CALCR, FGFR4, DES, ANKRD1, FITM1 12223412, 26440893, 26492245,

24644428, 8120103

Keratinocyte KRT5 22028850

Cardiomyocyte NPPA, MYH6 27123009, https://www.rndsystems.

com/cn/research-area/cardiac-stem-

cell-markers

Hepatocyte SRD5A2, FGF21 25974403, 28515909

HSC ESAM, LHCGR, SLC22A3, TIE1, ANGPT1,

RBP1

https://www.rndsystems.com/cn/

research-area/hematopoietic-stem-cell-

markers

27365425, 27225119

Neuron HTR2C, NTNG1, HS6ST3 30078709

Oligodendrocyte/OPC MAG, CLDN11, PLEKHH1, ASPA, TRF 29024657

Macrophage FOLR2, F13A1, LYZ2, PF4, MGL2, MMP13,

CLEC10A

28576768, 29622724, 25477711,

Beta cell INS1, INS2, G6PC2 22745242, 15133852, 25322827

NSC NUDC, TUBA1B, TUBA1A 21771589, 29057214, 29281841

(2) Conversion into subtype

Dopaminergic neuron ALDH1A1, TH 30096314, http://www.abcam.com/

neuroscience/neural-markers-guide

Medial floorplate progenitor WNT1, MDK 31080111, 24125182, 11750071

GABAergic neuroblast GAD2 http://www.abcam.com/neuroscience/

neural-markers-guide

Oculomotor neuron PRPH, FGF10, SLIT3, EYA1 24549637, 9221911, 20215354,

31080111

Serotonin neuron TPH2, SLC6A4 http://www.abcam.com/neuroscience/

neural-markers-guide

CD8+ memory T cell SELL, CXCR5, DRC1 29236683, 18000950, 30243945

Memory B cell TNFRSF13B, CD27 Company ebioscience, miltenyibiotec

(3) Phenotype conversion

Primed mESC 1 BMP4 26860365

Active NSC CENPF 29727663

Quiescent NSC GJA1 29727663

Fetal hepatocyte FGB, CYP2E1 28166538, 29622030

Adult hepatocyte 1 CYP3A4 26838674

Adult hepatocyte 2 APOA1 28166538

Adult excitatory neuron CCK 12815247

Adult inhibitory neuron CCK, PVALB, CRH 12815247, 2196836, 2843570

Note: See Table S4 for full list of predicted marker genes.
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been shown to generate DA neurons.6-8 The predicted TFs for the

medial floorplate progenitor, LMX1A and FOXA2, are consistent with

the previous attempt to derive this cell subtype.9 ASCL1 is sufficient

to convert fibroblasts into GABAergic neurons.10 Consistently, the

predicted TFs for GABAergic neuroblasts contained ASCL1 and no

other TFs known to generate other neuronal subtypes. The predicted

(A)

(C)

(D) (E)

(B)

F IGURE 2 Transcriptional regulatory interactions among predicted conversion transcription factors (TFs) and marker genes for, A, hepatocyte
and B, beta cell. Interaction data were retrieved from MetaCore from Clarivate Analytic in May/2020. C, Experimental strategy to improve cell
conversion protocols for GABAergic neurons (Gaba) and medial floorplate progenitor (ProgFPM) based on TransSynW predicted core TFs. Dashed
outlines represent nonvalidated TFs in the literature. D, Processing time vs number of cells in input scRNA-seq file (n = 3). Target population size was
fixed to 8% of total size. E, Processing time for Rds files vs number of cells in target population (n = 3). Input population size was fixed to 10 000
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TFs for oculomotor neuron included ISL1, PHOX2A, and PHOX2B

which have been reported to generate motor neurons via a synergistic

interaction.11,12 FEV, GATA2, and LMX1B were predicted for seroto-

nergic neurons, which are among the TFs used for deriving this cell

subtype.13 We considered memory T and B cells as subtypes of their

naive counterparts. Although a defined set of TFs for generating T

cells has not been reported, the nonspecific PFs for both CD4+ and

CD8+ T cells contained GATA3 and CEBPB, suggesting that these fac-

tors are primary candidates for experimental validation. Indeed,

GATA3 is implicated in CD8+ memory T cell conversion.14 Among the

specific TFs, ID3, MYC, BACH2, and EOMES are reported to initiate

CD8+ memory T cell conversion.15-17 The known marker genes, such

as SELL and CXCR5, were also identified. Finally, the nonspecific PFs

for the memory B cells included IRF8 and SPI1, which together are

implicated in the generation of B cell memory.18

Another type of cell conversion is phenotypes of a same cell type.

The predicted nonspecific PFs for the two mouse embryonic stem

cells (mESC) datasets are known to induce pluripotency.19-21 The spe-

cific conversion TFs predicted for both primed mESC populations

were LIN28A and FOXP1. LIN28A is known to induce the transition

from naive to primed mESCs.22 FOXP1 is implicated in maintaining

pluripotency under non-2i conditions.23 Whether FOXP1 induces a

transition from a naive state to a primed state calls for further investi-

gations. MEIS2 was predicted for both naive mESC populations. Little

is known about its role in mESC regulation and hence it constitutes a

novel candidate gene. The nonspecific conversion PFs for both active

(aNSCs) and quiescent (qNSCs) consisted of known NSC-conversion

TFs (eg, ASCL1, SOX2, FOXG1). The specific TFs for aNSCs contained

EGR1 known to activate EGFR and accelerate proliferation of NSCs,24

and E2F1, which is a cell cycle regulator linked to EGFR signaling in

NSCs.25 The conversion TFs for qNSCs included ID2, a BMP effector

that has been inferred to regulate qNSCs.26 Furthermore, CENPF and

GJA1 are implicated as markers for late-aNSCs and qNSCs, respec-

tively.27 Next, the scRNA-seq data of organoid28 and in vivo hep-

tocytes28-30 were analyzed. The nonspecific PFs included general

hepatocyte conversion TFs (eg, HNF4A, FOXA2, GATA3). Among the

specific TFs for the in vivo hepatocytes were ZBTB20, KLF6, KLF9,

CEBPD, and NR3C1. ZBTB20, KLF9 are important for hepatocyte

proliferation,31 whereas KLF6, CEBPD, KLF9, and NR3C1 regulate

hepatic glucose and lipid metabolism,32-34 suggesting that the deriva-

tion of in vivo hepatocytes might require sustained cell proliferation

and proper metabolization of glucose and lipids. Known hepatocyte

marker genes, such as FGB, CYP2E1, CYP3A4, APOA1, were

predicted only for the in vivo hepatocytes but none for the in vitro

ones. Finally, TransSynW was applied to in vivo and organoid excit-

atory and inhibitory neurons.35 TFs predicted only for the in vivo

excitatory and inhibitory neurons contained many common TFs

(PEG3, KLF9, HLF, and MLXIPL), suggesting a common maturation

mechanism. KLF9 is known to be necessary for late-phase matura-

tion of neurons.36 BHLHE40, which was only predicted for the

in vivo excitatory neurons, is implicated in the regulation of neuronal

excitability.37 Moreover, a few known markers (CCK, PVALB, CRH)

for excitatory/inhibitory neurons were predicted only for the

adult samples. It would be of interest to experimentally test if

predicted conversion TFs could indeed convert organoid cells into

functional ones.

Taken together, we demonstrated that TransSynW can be effec-

tively applied for identifying conversion TFs for a wide range of cell

types. An example experimental strategy for using TransSynW

predicted conversion TFs is shown in Figure 2C.

2.3 | Processing speed

The processing speed of TransSynW was assessed using text file, Rds

file and a sparse matrix saved as Rds file (sparse-Rds). The time

required for the upload of the data was not considered for this analy-

sis. Thus, depending on the users internet connection speed, the over-

all processing time may vary to a certain degree. Rds files were the

most efficient in processing 10 000 cells (6 minutes) (Figure 2D). In

addition, up to 40 000 cells were successfully processed with Rds

files, whereas only 25 000 cells in the other formats. This is in accor-

dance with the respective file sizes (Table S5). If users wish to use

datasets larger than 40 000 cells, we recommend to down-sample

them. Next, we benchmarked the execution time against the target

cell population size in 10 000 cells. The processing time peaked at

11 minutes for 3500 cells (Figure 2E). Afterwards, it started decreas-

ing due to the reduced size of the background populations. Our gen-

eral recommendation to users is to use Rds files for datasets with

more than 10 000 cells.

3 | DISCUSSION

We have introduced a scRNA-seq based web application, TransSynW,

for unbiased identification of cell conversion TFs, following the

increasing interest from experimental researchers in generating novel

functional cell types identified by scRNA-seq. TransSynW does not

require prior biological knowledge, computer programming and com-

putational resources. Moreover, TransSynW identifies potential

marker genes for target cell types, which researchers can use for

assessing the performance of conversion experiments. Furthermore,

prioritization of PFs well recapitulated known conversion TFs in vari-

ous systems, and predicted novel ones. We foresee that TransSynW

will be a valuable tool for the experimental community, particularly for

the generation of novel cell populations for stem cell research and

regenerative medicine purposes.

4 | MATERIALS AND METHODS

4.1 | Implementation

TransSynW is written in HTML, JavaScript (frontend), PHP and

Bash (backend), and runs on a virtual server hosted by Luxembourg

Centre of Systems Biomedicine (LCSB, University of Luxembourg).
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The frontend allows users to upload all required data, which are then

parsed to the backend as different variables. In the backend bash

script, the variables are parsed to the TransSynW main R script as

different arguments. The output files are compressed into a .zip folder

and sent to the user-specified E-mail address.

4.2 | Identification of conversion TFs

The main algorithm is based on the notion that conversion TFs consist

of a combination of TFs that are specifically expressed in a target pop-

ulation and TFs that are more broadly expressed in the background

population, and that these TFs synergistically interact with each

other.38 The algorithm follows four major steps.

• Step 1: Identification of candidate TFs.

TransSynW first normalizes the data by the total RNA counts. Then

TFs whose expression value is 0 across all cells in the target cell

population are discarded. Next, it selects top 300 lowest CV (coef-

ficient of variation) TFs as potential candidate TFs, since using

more than this number of TFs often resulted in an out-of-memory

error during the subsequent computation and conversion TFs usu-

ally exhibit low expression variation.

• Step 2: Identification of most specifically expressed TFs.

The set of TFs that are specifically expressed in the target popula-

tion is determined by Jensen-Shannon Divergence (JSD). JSD is

computed for each TF in each cell and the summed JSD value for

each TF over all cells is calculated. The top 10 lowest summed-JSD

TFs are selected as the most specifically expressed TFs.

• Step 3: Identification of most synergistic set of specifically expressed TFs.

Next, TransSynW identifies the most synergistic subset of TFs among

the most specifically expressed TFs by computing MMI.39

MMI Sð Þ= −
X

T⊆S
−1ð Þ Tj jH Tð Þ,

where S = {X1, X2, …, Xk}, T is a subset of S, jTj denotes the cardinal-

ity of T, and H is Shannon's entropies. Negative MMI values imply

a synergistic interaction among the TFs.39 TransSynW first com-

putes MMI of all sets of three TFs among the most specifically

expressed TFs. Then a new TF is added to this set and MMI is com-

puted again. If MMI is synergistic, then the next TF is added to the

previous set, and so on. This iteration continues until either MMI

no longer shows synergy, or when the maximum core size is

reached. Here, the maximum core size was set to five.

• Step 4: Addition of PFs.

The specific TF set from step 3 is extended with the nonspecific part,

consisting solely of PFs. Every subset of three PFs is added to the

specific part. MMI is computed for each set of all TFs and the most

synergistic combination is selected as the final conversion TF set.

The final conversion TFs are ranked by the expression fold

change calculated between the target cell population and starting cell

population.

4.3 | Identification of marker genes

The marker gene set (Table S6) was collected from the following

sources; extracellular proteins and membrane receptors,40 cytoskele-

tal genes (http://www.informatics.jax.org/), metabolic genes (https://

www.vmh.life/#human/all) and CD markers for immune cells (www.

abcam.com/CDmarkers). These genes are relatively easily accessible

for experimental validation. TransSynW identifies the top 10 candidate

marker genes among this compiled set by computing JSD. Literature

evidence for predicted markers were collected either manually or

from CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/).

4.4 | PF set

Information on PFs that have previously been reported to be involved

in cell conversion protocols was manually collected from literature.

The list is available in Table S1.

4.5 | scRNA-seq data of starting cell populations

scRNA-seq data of starting cell types were collected from Cell Ranger,

GEO and Array Express databases, log 2 transformed and mean gene

expression was calculated and compiled in TransSynW (Table S2).

4.6 | scRNA-seq dataset of target cell populations

scRNA-seq data used in this study were obtained from the following

sources.29-31,35,41-48 For References 43, 48, the reprocessed data

were retrieved from PangloaDB,49 as the cell annotation was more

accurate than the original one.
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4.3. Strategies for in vitro direct reprogramming of astrocytes by 

overexpression of novel identity transcription factors 

4.3.1. Preface 

 Loss of neurons is a hallmark transversal to the several types of neurodegenerative 

diseases. For instance, PD is characterized by the selective loss of DANs of the SNpc. To 

replace lost neuronal populations, CRT strategies, such as direct reprogramming, emerged 

as promising approaches due their potential in situ application. Several direct 

reprogramming protocols were successful in converting astrocytes into distinct types of 

neurons, including DANs. However, these protocols lack control over subtype specification, 

which results on the generation of a heterogeneous cellular preparation, with different 

phenotypes and levels of functionality. 

 We developed a direct reprogramming strategy that leverages the multiplexing 

capability of a previously established CRISPR-dCas9 system to induce the endogenous 

expression of multiple conversion TFs. To identify these conversion factors, we applied 

TransSynW to a previously published scRNA-seq dataset of the human midbrain tissue. By 

applying these protocols, we were able to convert human astrocytes into TUBB3-positive 

cells. We also established a sequential reprogramming protocol which is divided into two 

steps. First, we induced the expression of conversion TFs to obtain DANs, and then we 

overexpress the TFs identified to be involved in subtype specialization. Based on the ectopic 

expression of the conversion TFs identified by TransSynW for this two-step protocol, we 

were able to convert human astrocytes into cells with a neuronal-like morphology. After 

performing further optimization studies, these cellular conversion approaches have the 

potential to overcome current limitations and advance the field of regenerative medicine. 

In this study, I applied TransSynW to obtain the conversion TFs, validated the 

gRNAs that promote overexpression of the target TFs, engineered the DNA vectors and 

lentiviruses, implemented the CRISPR-dCas9 and cDNA-based approaches, performed the 

direct and sequential reprogramming, and validated the overexpression of the target TFs and 

marker genes. 
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Abstract 

One of the main goals of regenerative medicine is to create functional and mature cell types 

that can replace damaged tissues. In that regard, direct reprogramming is a promising 

approach to replace the loss of neuronal cells in neurodegenerative diseases, such as 

Parkinson’s disease. Here, we applied a computation tool, TransSynW, to a single-cell RNA-

sequencing dataset from the developing human ventral midbrain tissue to predict the most 

suitable transcription factors (TFs) to directly reprogram human astrocytes into three 

subtypes of midbrain dopaminergic neurons (DANs). We also predicted conversion TFs for 

a novel sequential reprogramming protocol to make first generic DANs and then DAN 

subtypes. To induce the endogenous expression of candidate TFs in vitro, we used a 

programmable CRISPR-dCas9 system. Although most of the TFs could be efficiently 

expressed, one required treatment with epigenetic modifiers, and others could not be 
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expressed using this system, even after testing multiple guide RNAs. These results indicate 

that the success of the CRISPR-dCas9 system in cellular conversion protocols is partially 

limited by epigenetic mechanisms. Based on the ectopic expression of TFs, we developed a 

direct and a sequential approach to convert human astrocytes into neuronal-like cells. 

Optimization approaches to generate midbrain DAN subtypes are suggested. We also discuss 

current limitations as well as potential therapeutic applications. 

 

Introduction 

Neurodegenerative diseases are characterized by a continuous loss of neuronal function and 

structure in the brain (Hung et al., 2010). The selective loss of nigrostriatal dopaminergic 

neurons (DANs) in the substantia nigra (SN) pars compacta is one of the hallmarks of 

Parkinson’s Disease (PD) (McGregor & Nelson, 2019). Due to the intricate mechanisms 

behind neuronal loss and the lack of regenerative ability of the midbrain, it has not been 

possible to develop a treatment to efficiently prevent or reverse the damage caused by disease 

(Sivandzade & Cucullo, 2021). Cell replacement therapy (CRT) has emerged as a promising 

approach to fight neurodegenerative diseases. Indeed, clinical trials have shown that the 

motor symptoms of PD patients can be alleviated by grafting embryonic midbrain tissue 

containing DANs (Lindvall et al., 1988). In a few cases, patients have been able to stop 

taking their levodopa medication and remained asymptomatic for 15 years (Kefalopoulou et 

al., 2014), achieving near-normal levels of dopaminergic innervation after 24 years (Li et 

al., 2016). More recently, pluripotent stem cells have been used to generate DANs and 

successfully rescue motor deficits in animal models of this disease (Kikuchi et al., 2017; 

Kim et al., 2021; Kirkeby et al., 2017). This work has led to the initiation of clinical trials in 

PD (Barker et al., 2013; Doi et al., 2020; Kim et al., 2021; Piao et al., 2021; Schweitzer et 

al., 2020; Tao et al., 2021). However, current differentiation protocols generate multiple cell 

(sub)types and selective generation of subtype specific midbrain DANs has not yet been 

achieved. 

Direct reprogramming of glial cells, such as astrocytes, into induced DANs (iDANs) 

emerged as a promising therapeutic strategy to replace DANs in animal models of PD 

(Rivetti Di Val Cervo et al., 2017). The main advantage of this approach is its potential in 

situ application, which bypasses the need for an external source of cells, extensive ex vivo 

cultivation, and the transplantation procedure (H. Wang et al., 2021). Several studies 
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successfully reprogrammed astrocytes into distinct types of functional neurons by 

overexpressing different combinations of transcription factors (TFs) (Berninger et al., 2007; 

Heinrich et al., 2011; Rivetti Di Val Cervo et al., 2017; Torper et al., 2015). More recently, 

CRISPR-dCas9 based systems have become an increasingly attractive tool for direct 

reprogramming (Black et al., 2016; Giehrl‐Schwab et al., 2022; C. Wang et al., 2017). These 

approaches rely on the delivery of dCas9, an activator and short guide RNA (gRNA) 

molecules to induce the expression of genes from their endogenous locus. The small size of 

the gRNAs facilitates the expression of multiple TFs simultaneously (Dominguez et al., 

2016). In this paper, we adapted a programmable CRISPR-dCas9 system (Zalatan et al., 

2015) with RNA scaffolds that encompass not only the gRNAs, but also the activator 

sequences that act as recruiters of the transcriptional machinery towards the promoter region 

of the target TFs. 

The advent single-cell RNA-sequencing (scRNA-seq) has enabled the discovery of 

previously unsuspected cell heterogeneity in multiple tissues. In a pioneering study, La 

Manno et. al. identified three different subtypes of human DANs in the fetal ventral 

midbrain, named hDA0, hDA1, and hDA2 (la Manno et al., 2016). This study defined TF 

combinations expressed in each cell (sub)type, opening the door for the design of cell 

conversion strategies. However, the question of which of the multiple factors expressed in 

each cell (sub)type are sufficient for conversion of one cell type into another still remains to 

be answered.  

In this study we applied TransSynW, a recently described computational tool, to identify the 

best combination of TFs to convert between cell subtypes (Ribeiro et al., 2021). Using this 

tool and scRNA-seq of the human ventral midbrain (la Manno et al., 2016), we identify the 

most suitable TFs to convert astrocytes into three subtypes of midbrain DANs. We hereby 

report variable success in direct in vitro reprogramming of human astrocytes into neurons 

and we propose strategies to improve the conversion of astrocytes into specific subtypes of 

DANs. 
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Results 

Identification of the candidate conversion transcription factors to generate 

dopaminergic neuron subtypes 

The application of TransSynW to scRNA-seq data of the developing human midbrain (La 

Manno et al., 2016) revealed that the most favorable TFs for the conversion of astrocytes 

into human DAN subtypes were: EBF2, EN1, FOXA2 and MYT1L for hDA0; ASCL1, EBF3, 

FOXA2 and NPAS4 for hDA1; and BNC2, PBX1 and POU6F1 for hDA2 subtypes (Figure 

1A and Table 1). Interestingly, it was previously shown that the distinct expression of SOX6 

and OTX2 regulates the specification of DAN subpopulations in the midbrain (Panman et 

al., 2014). Specifically, SOX6 is selectively expressed in DANs located in the SN while 

OTX2 expression is confined to the ventral tegmental area. When evaluating the expression 

of these TFs in the DAN subtypes identified in the human midbrain scRNA-seq dataset, 

hDA2 was found to share the expression of SOX6, amongst other features, with SN DANs 

(la Manno et al., 2016). Since PD is characterized by the loss of DANs in the SN, the hDA2 

subtype is an interesting target for CRT strategies for PD.   

Sequential cell conversion strategies have been shown to generate cells with higher 

functionality and improved efficiency (Bonora-Centelles et al., 2009; Gaeta et al., 2013; X. 

Liu et al., 2013; Morris et al., 2014). To test this approach, we developed a two-step 

reprogramming protocol and examine whether it is possible to generate DANs of the hDA2 

subtype with enhanced functionalities and/or efficiency. In the first step of this protocol, 

TransSynW was applied to the scRNA-seq dataset to identify the conversion factors for 

generating generic DANs, without subtype identity. Then, TransSynW was used to 

determine the specific conversion factors leading to their specialization into the hDA2 

subtype (Figure 1B). For this sequential strategy, we used a combination of three TFs to 

make generic DANs (ASCL1, NR4A2, and PBX1) followed by the induction of three other 

TFs to make the hDA2 subtype (FOXA2, POU6F1, and SOX6) (Table 1). 

As positive control for the newly predicted conversion TFs, we overexpressed a combination 

of factors that has been previously shown to reprogram astrocytes to DANs both in vitro and 

in vivo (Rivetti Di Val Cervo et al., 2017), namely the TFs ASCL1, LMX1A and NEUROD1 

(NeAL), together with miR218 (referred to as NeAL218). 
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Establishment of a CRISPR-dCas9 activation system to directly reprogram human 

astrocytes in vitro 

To achieve a reliable CRISPR-dCas9 activation (CRISPRa) in astrocytes, we engineered an 

immortalized human fetal astrocyte cell line to stably express dCas9 (hIA-dCas9). The 

expression of dCas9 was confirmed by immunocytochemistry (Supplemental Figure 1A). 

Next, RNA scaffold lentiviruses (LVs) containing gRNAs and an activator were employed 

to activate the endogenous expression of the selected TFs as described (Konermann et al., 

2015; Zalatan et al., 2015). Specific gRNAs were found to induce the expression of most of 

the target genes in hIA-dCas9 by 48 hours after LV infection, including ASCL1, EBF2, EN1, 

FOXA2, LMX1A, NEUROD1, NR4A2, NPAS4, and SOX6 (Figure 1C). However, the 

expression of BNC2, MYT1L, PBX1, and POU6F1 could not be increased despite testing 

multiple gRNAs. 

Previous studies have shown that chromatin regulators can act as barrier to reprogramming, 

and that by adding small molecules capable of modifying the epigenetic state, it is possible 

to improve cell conversion (Basu & Tiwari, 2021; Becker et al., 2017; Jin et al., 2021; Rivetti 

Di Val Cervo et al., 2017). We therefore included an overnight treatment with the histone 

deacetylase inhibitor valproic acid (VPA), and the DNA methyltransferase inhibitor 

(DNMTi) 5-aza-2’-deoxycytidine (Dec), prior to lentiviral infection (Huangfu et al., 2008; 

Pennarossa et al., 2013). Notably, by adding these chromatin remodeling agents, the 

expression of MYT1L increased and we thus had the complete set of gRNAs necessary to 

reprogram astrocytes into hDA0 and hDA1 subtypes (Table 1, Figure 1C). 

Direct reprogramming of human astrocytes stably expressing dCas9 into hDA0 and 

hDA1 subtypes 

To directly reprogram human astrocytes into hDA0 and hDA1 subtypes, we infected hIA-

dCas9 astrocytes with RNA scaffold LVs encoding the validated gRNAs for each of our 

target genes. Each DNA construct encompassed the gRNA sequence to target a single TF as 

well as the activator (PCP-p65-HSF1). After LV infection, cells were cultivated and treated 

as previously described (Rivetti Di Val Cervo et al., 2017) with some minor modifications 

(Figure 2A and Methods). The expression of endogenous TFs being targeted by the 

programmable CRISPR-dCas9 system was examined four days after LV infection (Figure 

2B). We found that the expression of EBF2, EN1, and MYT1L (required for hDA0 

conversion) and that of EBF3 (for hDA1) were lower than expected. To evaluate the 
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efficiency of each of the different TF combinations in directly reprogramming astrocytes, 

the presence of TUBB3 and TH was determined. All the protocols tested gave rise to 

TUBB3-positive cells (Figure 2C). TUBB3-positive cells in the control condition (NeAL) 

exhibited long processes and neuronal-like morphology. However, when we examined the 

expression of the dopaminergic marker tyrosine hydroxylase (TH), no positive cells were 

observed in either the control or any of the experimental conditions. Since expression levels 

of the TFs in the control experiments were acceptable (Figure 2B), the main difference with 

the experiments by Rivetti Di Val Cervo et. al. and the ones in the next section (Figure 3) 

was the use of the cell line hIA-dCas9 instead of the unmodified hIA cell line. We suspect 

that changes associated to the generation of the hIA-dCas9 cell line (i.e insertional 

mutagenesis, growth at clonal dilution, higher passage number, etc.) may have negatively 

affected the capacity of this cell to reprogram. The unexpected absence of a positive 

reprogramming control means that we were not able to ascertain whether the predicted TFs 

can promote the conversion of astrocytes into iDAN subtypes. 

Reprogramming of human astrocytes into dopaminergic neurons or into hDA2 

neurons by TF overexpression 

To overcome the limitations associated to the inability of the CRISPR-dCas9 system to 

activate BNC2, PBX1, and POU6F1, and the problems with the hIA-dCas9 astrocytes, we 

decided to ectopically express the TFs predicted for reprograming hIA astrocytes into hDA2 

neurons. For this purpose, we engineered inducible lentiviral expression vectors containing 

the coding sequences (cDNA) of the TFs determined for the direct and sequential hDA2 

protocols (Figure 3A, Supplemental Table 1). As control, we used the NeAL218 

combination, as described (Rivetti Di Val Cervo et al., 2017).  

In the direct reprogramming protocol, the hIA cell line was infected with a LV encoding the 

reverse tetracycline transactivator together with distinct LVs encoding the conversion factors 

determined for the hDA2 subtype (Table 1). Ectopic gene expression was induced four days 

after LV infection by treating the cells with doxycycline and the rest of the protocol was 

performed as previously described (Figure 3B and Methods). 

In the sequential protocol, we first used LVs containing the cDNA sequences for ASCL1, 

NR4A2, and PBX1 to reprogram astrocytes into DANs (Figure 3B, Supplemental Table 1). 

Two days after the beginning of the doxycycline treatment, we infected cells with the second 

set of conversion TFs (FOXA2, POU6F1, and SOX6) to induce the hDA2 subtype. Transgene 
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expression was confirmed four days after doxycycline treatment by immunofluorescence 

(Supplemental Figure 1B) and quantified by RT-qPCR (Figure 3C). The gene expression 

levels obtained were comparable to those previously found to be sufficient to induce hIA 

astrocyte conversion into DANs (Rivetti Di Val Cervo et al., 2017).  

Next, we evaluated the efficiency of the direct and the sequential hDA2 conversion 

protocols. Preliminary immunocytochemical analysis of the NeAL218 control cells at the 

end of the protocol revealed the presence of TH-positive cells exhibiting neuronal 

morphology (Figure 3D). In contrast, none of the two hDA2 protocols (direct or sequential) 

gave rise to any TH-positive cells. However, while the direct hDA2 protocol did not 

significantly change the morphology of the cells, the sequential hDA2 approach gave rise to 

cells exhibiting neuronal-like morphology, similar to the one obtained with the NeAL218 

combination. These results, albeit very preliminary, confirm previous results indicating that 

it is possible to generate iDANs by overexpression of NeAL218 (Rivetti Di Val Cervo et al., 

2017). On the other hand, the preliminary nature of the experiments does not allow 

determining whether the TFs predicted by TransSynW have contributed to change the 

phenotype of the cells towards the acquisition of hDA2 neurons. Further experiments would 

be necessary to confirm whether this is the case. 

 

Discussion 

Neurodegenerative diseases are characterized by the progressive loss of specific neuronal 

subpopulations. For instance, cholinergic neurons are the most affected during the 

progression of Alzheimer’s Disease while DANs in the SN are the selectively lost during the 

development of PD (McGregor & Nelson, 2019; Niikura et al., 2006). So far, the treatment 

for these diseases mostly focuses on symptom management since the underlying cause of 

neurodegeneration is largely unknow and we lack therapeutic tools capable of addressing 

pathogenic mechanisms. An alternative approach is the development of treatments that can 

modify the course of disease, such as CRTs. Despite advances in the field, it is still not 

possible to replace the cell subtype lost during the development of PD. Generating the 

specific subtype of DANs lost in the ventral tier of the SN pars compacta still remains a 

challenge and a goal of CRT for PD. In this study, we focused on the development of two 

novel direct and one sequential reprogramming strategies to generate the DAN subtype lost 

in PD. We applied TransSynW to determine the most suitable combination of TFs to convert 
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astrocytes into human embryonic DANs of the hDA2 subtype which is thought to give rise 

to SN DANs.  

Direct reprogramming protocols published so far have aimed at converting astrocytes into 

DANs by either delivering TFs through ectopic overexpression of cDNAs (Rivetti Di Val 

Cervo et al., 2017; Torper et al., 2015) or by inducing endogenous expression with 

CRISPRa-based systems (Giehrl‐Schwab et al., 2022). In both cases, the success of the 

strategy largely depends on the levels of expression of TFs, either in vitro or in vivo. In vitro 

delivery of TFs generally offers better control of gene expression and results in high levels 

of expression and conversion to DANs (Giehrl‐Schwab et al., 2022; Rivetti Di Val Cervo et 

al., 2017; Torper et al., 2015). In contrast, in vivo studies generally achieve lower levels of 

expression and shown variable results. To date, in vivo delivery of TFs by LV has been the 

only successful method at reprogramming adult endogenous astrocytes into iDANs (Rivetti 

Di Val Cervo et al., 2017), while both adeno-associated virus and CRISPRa delivery systems 

converted astrocytes into GABAergic neurons, despite using the same TFs as in vitro 

(Giehrl‐Schwab et al., 2022; Torper et al., 2015). Similarly, in our experiments, we observe 

that the LV system gave rise to iDANs, while the CRISPRa system did not, which is 

consistent with previous findings.  

Other factors may have also contributed to the discrepancies in reprogramming when 

employing the cDNA overexpression versus the CRISPRa systems. For instance, we suspect 

that differences in the strength of heterologous and endogenous promoters as well as in copy 

number of the target genes might have an influence in our results (Chavez et al., 2016; 

Fontana et al., 2020; Pang et al., 1999). To address this issue, alternative activator domains, 

such as SAM, SunTag, VPR or SPH systems (Clow et al., 2022; Konermann et al., 2015; 

Tanenbaum et al., 2014; H. Zhou et al., 2018) and alternative module strategy, such as the 

Casilio platform (Cheng et al., 2016), should be considered in future CRISPRa-based 

strategies. Additionally, engineering a polycistronic lentiviral vector encoding multiple 

gRNAs would allow for a more consistent expression of all the TFs in each infected cell. 

Moreover, the same gene could be targeted with multiple gRNAs (Chavez et al., 2016; Perez-

Pinera et al., 2013; Shakirova et al., 2020) and both transcriptional and epigenetic control 

mechanisms could be regulated simultaneously in order to achieve higher levels of 

endogenous gene expression. 
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Additional factors may also limit the efficiency of the application of the CRISPRa system in 

reprogramming. It has been shown that epigenetic mechanisms associated to closed 

chromatin conformation can impair the binding of Cas9 to its targets and therefore 

compromise its function (Baumann et al., 2019; Jensen et al., 2017). This may explain why 

we were unable to regulate the endogenous expression of four TFs (BNC2, MYT1L, PBX1, 

and POU6F1). In support of this possibility, treatment with the epigenetic modifiers VPA 

and Dec allowed the upregulation of MYT1L in the hIA-dCas9 cells. However, treatment 

with zebularine, a strong DNMTi (L. Zhou et al., 2002), did not improve the expression of 

the remaining genes (data not shown). As multiple epigenetic marks can regulate gene 

expression, a better strategy for the future would be to characterize the epigenetic landscape 

of hIA-dCas9 cells by ATAC-seq and ChIP-seq. Upon identification of the chromatin 

barriers limiting the expression of these genes, epigenetic regulators could be recruited to 

specific locations in the chromatin using CRISPR-dCas9 systems. Factors such as Tet1, an 

enzyme controlling DNA demethylation, or p300, a histone acetyltransferase (Baumann et 

al., 2019; Delvecchio et al., 2013; X. Liu et al., 2013; Rada-Iglesias et al., 2011; Shrimp et 

al., 2018) could then be recruited to specific locations to enable transcription of the gene of 

interest. 

With regards to the TFs predicted by TransSynW, experiments based on ectopic expression 

allowed us to evaluate the possible usefulness of the hDA2 reprogramming strategy, 

independently of the issues associated to the CRISPRa system described above and in the 

results section. In the direct hDA2 protocol ASCL1, BNC2, and FOXA2 were overexpressed. 

While ASCL1 and FOXA2 have been previously expressed in the context of reprogramming, 

BNC2 was tested for the first time. Interestingly, BNC2 has been found to be constitutively 

expressed in endogenous midbrain DANs (la Manno et al., 2016), and mutations in this gene 

have been associated with the development of PD (Hook et al., 2018). However, we observed 

that upregulation of BNC2 induced cell death in our cultures (Supplemental Figure 1B and 

C). Notably, in the context of cancer, BNC2 downregulation has been connected to the 

development of hepatocellular, ovarian, and squamous cell carcinoma (Akagi et al., 2009; 

Cesaratto et al., 2016; Chahal et al., 2016; Wu et al., 2016). Accordingly, BNC2 has been 

described as a tumor suppressor gene and its upregulation is known to prevent cell 

proliferation (Akagi et al., 2009; Cesaratto et al., 2016). The mechanisms behind the 

regulation of cell proliferation by BNC2 remain elusive, however it has been shown that 

BNC2 physically interacts with both p53 and retinoblastom (pRb) proteins (Benevolenskaya 
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et al., 2005; J. Liu et al., 2020; NCBI Entry: BNC2, 2022). This is of relevance for our study 

because the hIA cell line was immortalized with the Simian virus 40 large T antigen, a 

protein that forms complexes with p53 and pRb (DeCaprio et al., 1988; Lane & Crawford, 

1979; Lin & Simmons, 1991). We speculate that by overexpressing BNC2 and promoting its 

interaction with p53 and pRB we may have inadvertently reversed the immortalization of 

the cell line, resulting in senescence and cell death. Future experiments should thus test this 

hypothesis by using non-immortalized astrocytes to examine whether BNC2 can indeed 

contribute to hDA2 conversion.   

In the two-step reprogramming protocol, we tested two sets of TFs (first ASCL1, NR4A2, 

and PBX1, and then FOXA2, POU6F1, and SOX6). Cells undergoing this protocol acquired 

neuronal-like morphology, suggesting a possible shift towards a neuronal fate, but did not 

acquire a TH-positive phenotype. Since cells reprogrammed with control factors (NeAL218) 

became both neuron-like and TH-positive, our results suggest that some of the factors 

currently used in the control protocol may be required. Future experiments should thus 

examine whether a combination of NeAL218 and subtype-specific TFs may allow 

conversion of astrocytes into DAN subtypes. For these experiments, longer differentiation 

times should be examined to allow for additional maturation and detection of functionality, 

such as dopamine release or electrophysiological properties defining DANs. 

It would also be of importance to perform a more detailed characterization of gene 

expression at the single cell level during conversion. These experiments may contribute the 

resolve several key questions such as: Do astrocytes lose their original astrocyte phenotype 

during reprogramming? Do the reprogrammed cells acquire complete or partial neuronal 

phenotypes? Do converted cells resemble endogenous human midbrain neurons? What is the 

conversion trajectory? What are the combinations of TFs and their expression levels giving 

rise to either GABAergic neurons (Giehrl‐Schwab et al., 2022; Torper et al., 2015) or DANs 

(Rivetti Di Val Cervo et al., 2017)? This information will be very valuable both to understand 

the reprogramming process and to further improve future protocols and strategies for the 

conversion of astrocytes into neurons. 

Finally, applying these conversion protocols in vivo and developing novel systems that 

would ensure the safety and efficacy of the application of these strategies in patients will be 

essential to achieve clinical translation. 
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Material and Methods 

Cell culture 

hIA were a gift from Dr. Eugene O. Major, National Institute of Health (10Bl, a SVGmm 

single-cell clone). These cells were cultured and expanded in Eagle’s Minimum Essential 

Medium (EMEM, ATCC #30-2003) with 20% Fetal Bovine Serum (FBS, Gibco #10270106) 

previously heat-inactivated for 30 mins at 56°C, and 50µg/mL of gentamicin (Gibco 

#15750060). hIA were maintained in a 5% CO2 incubator at 37 °C and used for experiments 

for a maximum of four passages. 

Transformation and plasmid purification 

Plasmids were transformed into Stbl3 chemically competent E. coli (Invitrogen #C737303) 

by heat shock and spread on agar plates containing 100µg/mL of ampicillin (Sigma #A5354). 

Plates were incubated at 37°C overnight and individual colonies were picked for further 

validation. Plasmid purification was performed using NucleoSpin Plasmid (Macherey-Nagel 

#740588.250) and NucleoBond Xtra Maxi EF (Macherey-Nagel #740424.50) when isolating 

lentiviral vectors. Purified plasmids were sent for Sanger sequencing using Eurofins 

Genomics’ TubeSeq Service to confirm the correct assembly. 

Lentiviral production 

LVs were produced in HEK293FT cells (Invitrogen #R70007), cultured in Dulbecco's 

Modified Eagle Medium (DMEM with GlutaMAX Supplement, Gibco #31966021) with 

10% FBS and 500µg/mL of geneticin (Gibco #10131027). HEK293FT cells were used for 

lentiviral production for a maximum of ten passages. On the day before the transfection, 

5.0x106 HEK293FT cells were plated in a T-75 flask (6.6 x104 cells/cm2). On the following 

day the cells were transfected using 2.5mg/mL of polyethylenimine (PEI, Polysciences 

#23966-2). The lentiviral vectors of interest were co-transfected with 2nd generation 

packaging plasmids psPAX2 (Addgene #12259) and pMD2.G (Addgene #12259) in a ratio 

of 5µg:5µg:2.5µg of DNA, respectively. After an overnight incubation, the culture medium 

containing the transfection mix was removed and fresh medium without geneticin was 

supplied to the cells. Two days after transfection, the culture medium was collected and 

stored at 4°C and fresh medium without geneticin was supplied to the cells. Three days after 

transfection, the culture medium was pooled together with the one collected on the previous 

day and centrifuged at 3000rpm to pellet cell debris. Supernatants were further cleared 
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through a 0.45µm filter and concentrated by ultrafiltration. Briefly, the filtered supernatants 

were added to Amicon filter tubes (Amicon Ultra-15, PLHK, membrane Ultracel-PL, 100 

kD, Millipore # UFC910024) and centrifuged at 4750rpm in two rounds of 45 minutes each, 

at 4°C. The remaining volumes were aliquoted and kept at −80°C. LVs were subsequently 

titrated in hIA (10Bl, a SVGmm single-cell clone) using the Lenti-X Provirus quantitation 

kit (Takara Bio, #631239) according to the manufacturer's instructions. 

Generation of the hIA-dCas9 cell line 

The lentiviral vector pGH125_dCas9-Blast was purchased from Addgene (#85417). This 

lentiviral plasmid was packaged as previously described. hIA cells (10Bl, a SVGmm single-

cell clone) were transduced overnight with pGH125_dCas9-Blast LV in their culture 

medium supplemented with 4μg/ml of polybrene (Sigma #H9268). Selection of dCas9-

expressing cells was done by treating the transduced cells with 5 ug/mL of blasticidin (Gibco 

#A1113903) for ten days. hIA-dCas9 were cultured and expanded in the same culture 

medium as hIA and cryopreserved in FBS with 10% DMSO. hIA-dCas9 were maintained in 

a 5% CO2 incubator at 37°C and used for experiments for a maximum of four passages. 

Identification of conversion TFs 

For determining the most suitable conversion factors to generate subtypes of DANs, namely 

hDA0, hDA1, hDA2, the scRNA-seq expression matrix and cluster annotation files were 

obtained from NCBI’s Gene Expression Omnibus (GEO) data repository using the accession 

#GSE76381 (la Manno et al., 2016). As a starting cell population, we used the bulk RNA-

sequencing data of hIA from the GEO data repository using the accession #GSE93528 

(specifically, GSM2454244, GSM2454245, GSM2454246 and GSM2454247) (Rivetti Di 

Val Cervo et al., 2017). For each cell subpopulation, TransSynW (Ribeiro et al., 2021) 

identified eight conversion TFs, namely five TFs and three PFs, ordered by increased 

expression fold change to hIA. The criteria used to select which combination of conversion 

factors to apply in our protocols was done based on fold change ranking and literature 

research on the molecular mechanisms each of the TFs is involved.  

For the direct reprogramming protocol, the above-mentioned files were uploaded on 

TransSynW web interface and the target subpopulations hDA0, hDA1, and hDA2 were 

selected. As a background, we used all the identified cell (sub)populations in this scRNA-

seq dataset. For the sequential protocol, we started by analyzing the hierarchical clustering 

of the scRNA-seq data, also provided by TransSynW (Supplemental Figure 2). To obtain the 
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conversion factors to generate DANs, we used as background the cell populations located 

on two hierarchical levels above, namely hGaba, hNbGaba, hNbML5, and hSert. For the 

target cell population (DANs), we merged the data from the hDA0, hDA1, and hDA2 

subpopulations using TransSynW. To obtain the specific TFs to specialize DANs into hDA2, 

we used as background the hDA0 and hDA1 cell subtypes and run TransSynW selecting the 

hDA2 subpopulation. 

gRNA design 

gRNAs were designed using the computational tools CRISPick and CHOP-CHOP (Doench 

et al., 2014; Labun et al., 2019). gRNAs were designed for CRISPRa, using the human 

GRCh38 reference genome, considering the protospacer adjacent motif sequence of 

SpyoCas9 (NGG), the tracrRNA GTTTV (V = not T), and the default target regions of each 

tool (Chen et al., 2013). The selected gRNA sequences are listed in Supplemental Table 2. 

Cloning of RNA scaffold lentiviral expression vectors 

Oligo annealing 

Complementary oligo sequences containing overhangs for the Esp3I restriction site were 

obtained for each of the tested gRNAs and annealed using T4 ligase buffer (New England 

BioLabs #B0202S). The reaction was incubated in a thermocycler for 30 minutes at 37°C, 

followed by 5 minutes at 95°C and a final ramp rate of 6°C per minute to 25°C.  

Golden Gate assembly 

The RNA scaffold backbone vector contains the PCP-p65-HSF1 activator complex under 

the regulation of the elongation factor 1α promoter, followed by the gRNA region. This 

region comprises the bivalent PP7 RNA hairpin recruiter and a unique Esp3I cloning site for 

gRNA insertion, driven by the human U6 promoter. Briefly, the RNA scaffold constructs 

contain a single target-specific gRNA together with a bivalent PP7 RNA hairpin that recruits 

the RNA-binding protein PCP fused to the transcriptional activators p65 and HSF1. This 

vector was synthesized by the CRISPR Functional Genomics facility (SciLifeLab), and its 

DNA sequence can be obtained upon request.  

Golden Gate assembly was performed using 25ng/µL of the RNA scaffold backbone vector, 

50nM of the annealed oligo and catalyzed by the restriction enzyme Esp3I (New England 

BioLabs #R0734S) and the T7 ligase (Enzymatics #L6020L). The thermocycling protocol 

consisted of 15 cycles of 5 minutes at 37°C and 5 minutes at 20°C.  
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Transfection of gRNA plasmids 

hIA-dCas9 were transfected using Lipofectamine 2000 (Invitrogen #11668019). Prior to 

transfection, lipofectamine was diluted in OptiMEM (Gibco #31985070) and incubated for 

20 minutes at room temperature. In the meantime, DNA was also diluted in an equal volume 

of OptiMEM. After the lipofectamine incubation, this mix was added to each of the DNA 

solutions and incubated for another 20 minutes at room temperature. Finally, the total 

volume of lipofectamine-DNA mix was added in small drops to each well. For each 12-well, 

600ng of DNA were transfected with 1µL of lipofectamine in a total of 500µL of OptiMEM. 

After four hours, the transfection medium was removed, and fresh culture medium was 

added to the hIA-dCas9. Two days after transfection, the cells were harvested for RNA 

isolation. 

PCR amplification 

gRNA regions that were able to induce the highest expression of the target TFs were PCR 

amplified using the Q5 Hot Start High-Fidelity 2x Master Mix (New England BioLabs 

#M0494S) with the primers below. 

gRNA-lenti_F: 5’ GGATTAATTAAGAGGGCCTATTTCCC 3’ 

gRNA-lenti_R: 5’ CCAAGAATTCAAAAAAAGCACCGA 3’ 

The activator sequence PCP-p65-HSF1 was amplified from the RNA scaffold backbone 

vector using the same method with the primers below. These primers were obtained from 

NEBuilder Assembly Tool. 

PCP-Puro_F: 5′ AGATCCTAGAGTCGACCCGGACCATGTCGCGGAGG 3’ 

PCP-Puro_R: 5’ CGTCGCTTGGTCGGTCATTTCGTTCAGGCACCGG 3’ 

All PCR products were purified from agarose gel using QIAquick Gel Extraction 

Purification kit (Qiagen #28706) according to manufacturer’s instructions. 

Restriction enzyme assays 

All restriction enzymes and purification kits were used according to manufacturer’s 

instructions. lentiCRISPR v2-dCas9 was purchased from Addgene (#112233) and used as 

the lentiviral backbone for cloning the PCR amplified regions described above. First, the 

lentiviral backbone was digested using NheI-HF (New England BioLabs #R3131S) and 
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BamHI-HF (New England BioLabs #R3136S). The digested product was purified from an 

agarose gel using QIAquick Gel Extraction Purification kit. The same enzymes were used 

to digest the purified PCR product containing the amplified activator sequence PCP-p65-

HSF1. The resulting product of the enzymatic digestion was purified using QIAquick PCR 

Purification kit (Qiagen #28104). The purified PCR product containing the activator 

sequence and the digested lentiviral backbone were ligated using Gibson assembly to form 

the modified vector (lentiCRISPR-PCP-p65-HSF1). 

Purified PCR products containing the selected gRNA regions were digested using PacI (New 

England BioLabs #R0547S) and EcoRI-HF (New England BioLabs #R3101S) and the 

resulting products were purified using QIAquick PCR Purification kit. lentiCRISPR-PCP-

p65-HSF1 vector was digested using the same enzymes and purified from an agarose gel 

using QIAquick Gel Extraction Purification kit. Each of the selected gRNA regions was 

ligated to lentiCRISPR-PCP-p65-HSF1 plasmid, forming the final lentiviral vectors used for 

LV production.  

DNA ligation 

DNA fragments were ligated using Quick Ligation kit (New England BioLabs #M2200S) 

using 0.020pmol of vector DNA and a molar ratio of 1:3 vector/insert. The reaction was 

incubated at room temperature for 10 minutes and chilled on ice prior to transformation. 

Gibson assembly 

Gibson assembly was performed to ligate the purified PCR amplified activator sequence 

(PCP-p65-HSF1) with the NheI and BamHI digested lentiviral backbone using the 

NEBuilder HiFi DNA Assembly Master Mix (New England BioLabs, #E2621S). NEBuilder 

Assembly Tool was used to design the overlapping primers required for this method. A molar 

ratio of 1:2 vector/insert and 0.02pmol of vector DNA were used for this reaction, which 

was incubated in a thermocycler for 20 minutes at 50°C and chilled on ice prior to 

transformation. 

Design of the inducible cDNA lentiviral expression vectors 

FUW-tetO-MCS was purchased from Addgene (#84008) and was used as the lentiviral 

backbone for constructing the inducible cDNA expression vectors. cDNA sequences were 

obtained from NCBI’s Consensus CDS platform. Each inducible vector contains two target 

TF coding regions with an incorporated Kozak sequence, followed by a fluorescent reporter 



 

104 

(Figure 3A, Supplemental Table 1). The coding sequences are separated by P2A and a T2A 

sequences preceding the fluorescent reporter. For cDNAs larger than 3.2 kb, such as BNC2, 

the inducible plasmids only contained a single cDNA sequence separated of a fluorescent 

reporter by a P2A sequence. The expression of the cDNAs is under the regulation of a 

tetracycline-inducible promoter. The assembly of these inducible cDNA lentiviral 

expression vectors was outsourced to BioCat GmbH. 

Direct reprogramming protocol 

CRISPRa-based protocol 

hIA-dCas9 were transduced overnight with the generated RNA scaffold LVs (MOI 25) in 

EMEM supplemented with 20% FBS and 4 μg/ml of polybrene (Sigma #H9268). After 

transduction, hIA-dCas9 were treated with 3ng/mL TGFβ1 (PeproTech #100-21) for 36 

hours, followed by a culture medium change to KON2 medium and an overnight treatment 

with 0.5mM VPA (Sigma #P4543) and 0.25mM Dec (Sigma #189826). KON2 medium is 

composed of KnockOut DMEM (Gibco #10829018) with 15% KnockOut Serum 

Replacement (Gibco #10828028), and supplemented with N2 (Gibco, #17502048), 150 uM 

of ascorbic acid (AA) (Sigma #A4544), and with the following growth factors (GFs): 

1ng/mL TGFβ3 (R&D Systems #243-B3), 2mM LM-22A4 (Tocris #4607), 2ng/mL GDNF 

(R&D Systems #212-GD), 10ng/mL NT3 (R&D Systems #267-N3), and 0.5mM db-cAMP 

(Sigma # D0627) as previously described (Chung et al., 2010; Nolbrant et al., 2020). Next, 

hIA-dCas9 cells were treated with dual SMAD inhibitors, namely 2uM of SB431542 (SB) 

and 0.25uM of LDN193189 (LDN), for 36 hours. Finally, the culture medium was changed 

and supplemented with midbrain patterning signals, specifically, 0.6uM of CT99021 (CT) 

and 0.5uM of purmorphamine (Pur) and replaced every 2 days until the end of the protocol. 

cDNA-based protocol 

hIA were transduced overnight with the generated cDNAs LVs (MOI 5 for BNC2 LV and 

MOI 15 for remaining LVs) in EMEM supplemented with 20% FBS and 4μg/ml of 

polybrene (Sigma #H9268). After four days, 2μg/mL of doxycycline (Sigma #D9891) were 

added to the culture medium to activate the expression of the transgenes. The remaining 

protocol was followed as described above. In the sequential protocol, the hIA were infected 

with second set of cDNA LVs two days after transgene activation with doxycycline. 
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RT–qPCR 

Total RNA was extracted using TRIzol reagent (Invitrogen #15596026) according to 

manufacturer’s instructions. RNA concentration and quality were measured by 

spectrophotometry at UV light and 260:280 ratio, respectively, using Nanodrop 2000 

(Thermo Scientific). RNA samples were treated with DNaseI RNase-free (Thermo Scientific 

#EN0521) according to manufacturer’s instructions. Reverse transcription of 500μg of 

DNAse-treated RNA was performed with High-Capacity RNA-to cDNA kit (Applied 

Biosystems #4387406) according to manufacturer’s instructions. The reverse transcribed 

cDNA was amplified using Fast SYBR Green Master Mix (Applied Biosystems #4385616) 

in a StepOnePlus real-time PCR system (Applied Biosystems). Primers used are listed in 

Supplemental Table 2. Data analysis is based on the ΔΔCt method with normalization of the 

mRNA expression levels to the housekeeping gene GAPDH. All qPCR reactions were 

performed in technical triplicates. 

Immunocytochemistry 

Cells were briefly washed with Dulbecco′s Phosphate Buffered Saline (DPBS, Gibco 

#14190094) and fixed with 4% paraformaldehyde for 15 minutes at room temperature. 

Subsequently, the cells were washed with Phosphate Buffered Saline (PBS, Gibco 

#70011069) two times for 10 minutes, permeabilized and blocked in a solution with 0.1% 

Triton X-100 and 10% normal donkey serum (Jackson ImmunoResearch #017-000-121) in 

PBS for 30 minutes at room temperature. Then, cells were incubated overnight with the 

primary antibodies at 4ºC in a humidified chamber. The primary antibodies were diluted in 

10% normal donkey serum in PBS as follows: rabbit anti-TH 1:800 (Pel-Freez #P40101) 

and mouse anti-TUBB3 1:2000 (Promega #G7121). After incubation with the primary 

antibody, cells were washed two times for 10 minutes and incubated for one hour at room 

temperature with Alexa Fluor secondary antibodies, diluted 1:1000 in 10% normal donkey 

serum in PBS. Cells were again washed as described and the nuclei were stained with 300nM 

of DAPI for 5 minutes. After a new washing step, cells were kept in a 50/50 solution of PBS-

Glycerol. Fluorescence images were acquired under 5x, 10x and 20x magnifications using a 

AxioScope.A1 fluorescence microscope with integrated camera AxioCam HR (Carl Zeiss) 

and a Zeiss LSM980-Airy confocal microscope. The attained images were analyzed with the 

ImageJ software, version 1.53q for Windows. 
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Tables 
 

Table 1. Selected conversion TFs for direct and sequential reprogramming protocols 

from human astrocytes into different cell subtypes. TF combinations selected to obtain 

DANs subtypes were determined using TransSynW computational method (Ribeiro et al., 

2021). As control TF combination, we used the validated conversion TFs in Rivetti Di Val 

Cervo et al., 2017. 

 

Protocol Target TFs/PFs Target cell subtype 

Control (Rivetti Di Val 

Cervo et al., 2017) 

ASCL1, LMX1A, NEUROD1 DANs 

Direct reprogramming 

(TransSynW) 

EBF2, EN1, FOXA2, MYT1L hDA0 

ASCL1, EBF3, FOXA2, NPAS4 hDA1 

ASCL1, BNC2, FOXA2 hDA2 

Sequential reprogramming 

(TransSynW) 

ASCL1, 

NR4A2, PBX1 

FOXA2, 

POU6F1, SOX6 
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Figures 

 
Figure 1. Identification of conversion TFs to directly reprogram hIAs into DAN 

subtypes and validation of their activation by gRNA expression. (A) TransSynW 

identification of TFs to generate hIAs into hDA0, hDA1, and hDA2 using a direct 

reprogramming protocol, using on a previously published scRNA-seq dataset (la Manno et 

al., 2016). (B) TransSynW application to a two-step sequential reprogramming protocol to 

obtain first TFs that induce the cell conversion of hIAs into DANs, and then the TFs to 

promote their specialization into hDA2, based on the same scRNA-seq data. (C) Activation 

of the endogenous gene expression of the conversion TFs in hIA-dCas9 by RT-qPCR two 

days after lentiviral transduction (n=3, biological replicates). On the right, MYT1L gene 
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expression is activated in the presence of 0.5 mM of VPA and 0.25 mM of Dec. Activation 

of CRISPR-dCas9 mediated gene expression is represented as fold change between hIA-

dCas9 transduced with and without gRNAs. Gene expression values are normalized to 

GAPDH, and error bars depict mean ± standard deviation between biological replicates. 

 

 
Figure 2. CRISPRa system induces direct reprogramming of hIA-dCas9 into TUBB3-

positive cells. (A) Direct reprogramming protocol mediated by CRISPR-dCas9 system 

adapted from Rivetti Di Val Cervo et al., 2017. (B) Multiplexed endogenous gene expression 

activation of the TF combinations NeAL, hDA0, and hDA1 in hIA-dCas9 by RT-qPCR four 

days after lentiviral transduction (n=3, biological replicates). CRISPR-dCas9 gene 

expression activation is represented as fold change between hIA-dCas9 transduced with and 

without gRNAs. Gene expression values are normalized to GAPDH, and error bars depict 
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mean ± standard deviation between biological replicates. (C) Fluorescence microscope 

pictures of directly reprogrammed hIA-dCas9 show immunoreactivity for TUBB3, a 

neuronal marker, ten days after lentiviral transduction. Scale bar, 50µm. 
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Figure 3. Sequential reprogramming protocol induces direct reprogramming of hIA 

into neuronal-like cells. (A) Schematic representation of the tetracycline-regulated cDNA 

expression system. The induction of our target TFs cDNAs and reporter genes is regulated 

by a tetracycline response element (TRE). A Kozak sequence was introduced before the 

coding regions and each coding sequence will be separated by a self-cleaving 2A peptide. 

Ectopic gene expression of up to three coding sequences can be promoted using this vector 

design. (B) Direct and two-step sequential reprogramming protocol to convert hIA into 

hDA2, adapted from Rivetti Di Val Cervo et al., 2017. (C) Ectopic gene expression 

activation of the TF combinations NeAL218, Direct hDA2, and Sequential hDA2 in hIA by 

RT-qPCR four days after doxycycline (dox) induction (n=3, biological replicates). Gene 

expression is represented as fold change between hIA transduced with and without cDNAs. 

Gene expression values are normalized to GAPDH, and error bars depict mean ± standard 

deviation between biological replicates. (D) Confocal pictures of directly reprogrammed hIA 

show immunoreactivity for TH ten days after dox induction. NeAL218 condition shown 

expression of TH and the hDA2 sequential protocol generated cells with neuronal 

morphology. Scale bar, 100µm. 
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Supplemental Tables 

Supplemental Table 1. List of cDNA combinations used in the direct and sequential 

reprogramming protocols to obtain hDA2 subtype. cDNA sequences were cloned in the order 

presented below. EGFP, mCardinal, tdTomato and TagBFP are fluorescent reporters. 

TF combination cDNA constructs 

NeAL218 ASCL1, NeuroD1, TagBFP LMX1A, miR218, mCardinal 

Direct hDA2 ASCL1, FOXA2, mCardinal BNC2, TagBFP 

Sequential hDA2 ASCL1, PBX1, 
tdTomato 

NR4A2, 
mCerulean3 

FOXA2, 
mCardinal 

SOX6, 
POU6F1, EGFP 
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Supplemental Table 2. List of gRNA oligonucleotide sequences used in the CRISPR-dCas9 

mediated direct reprogramming protocols, and respective computational design tools. 

Target 
Gene Target Sequence Oligo 1 Oligo 2 gRNA 

designer 

ASCL1 AGCCGCTCGC
TGCAGCAGCG 

CACCGAGCCGCT
CGCTGCAGCAG
CG 

AAACCGCTGCTG
CAGCGAGCGGC
TC 

CRISPick 

BNC2 GCCCGCGCGC
GCCCTCGCCG 

CACCGGCCCGC
GCGCGCCCTCGC
CG 

AAACCGGCGAG
GGCGCGCGCGG
GCC 

CRISPick 

EBF2 AGTCCCGGCA
ACGCAGAGCG 

CACCGAGTCCCG
GCAACGCAGAG
CG 

AAACCGCTCTGC
GTTGCCGGGACT
C 

CRISPick 

EBF3 
CAGTCAGTCG
GCGAGCGCGG
CGG 

CACCGCAGTCA
GTCGGCGAGCG
CGGCGG 

AAACCCGCCGC
GCTCGCCGACTG
ACTGC 

CHOP-
CHOP 

EN1 TGAAGGCAAA
AAGTGTGCCT 

CACCGTGAAGG
CAAAAAGTGTG
CCT 

AAACAGGCACA
CTTTTTGCCTTC
AC 

CRISPick 

FOXA2 GAGGGAGCGC
GAGAGAGGGA 

CACCGGAGGGA
GCGCGAGAGAG
GGA 

AAACTCCCTCTC
TCGCGCTCCCTC
C 

CRISPick 

LMX1A GAGCACCACG
GCCCCGCCAC 

CACCGGAGCAC
CACGGCCCCGCC
AC 

AAACGTGGCGG
GGCCGTGGTGCT
CC 

CRISPick 

MYT1L AAAGCCTAGG
AGAGGATGAG 

CACCGAAAGCC
TAGGAGAGGAT
GAG 

AAACCTCATCCT
CTCCTAGGCTTT
C 

CRISPick 

NeuroD1 AGAACGGGGA
GCGCACAGCC 

CACCGAGAACG
GGGAGCGCACA
GCC 

AAACGGCTGTG
CGCTCCCCGTTC
TC 

CRISPick 

NPAS4 GAGCCCCCCT
CCCCAGTCAG 

CACCGGAGCCC
CCCTCCCCAGTC
AG 

AAACCTGACTG
GGGAGGGGGGC
TCC 

CRISPick 

NR4A2 GTCCAGGGAG
CGCGGCAGCG 

CACCGGTCCAG
GGAGCGCGGCA
GCG 

AAACCGCTGCC
GCGCTCCCTGGA
CC 

CRISPick 

PBX1 GGGGCAAAGG
GAAGGGGAGG 

CACCGGGGGCA
AAGGGAAGGGG
AGG 

AAACCCTCCCCT
TCCCTTTGCCCC
C 

CRISPick 

POU6F1 GGAGCCAGGA
GCGAGGGGTG 

CACCGGGAGCC
AGGAGCGAGGG
GTG 

AAACCACCCCTC
GCTCCTGGCTCC
C 

CRISPick 
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SOX6 TCATCTTGCCT
GTGTTGTCT 

CACCGTCATCTT
GCCTGTGTTGTC
T 

AAACAGACAAC
ACAGGCAAGAT
GAC 

CRISPick 

 

 

Supplemental Table 3. List of human primers used for RT-qPCR. 

Target Gene Forward Primer Reverse Primer 

ASCL1 GCAGGAGCTTCTCGACTTC
ACC 

AAAGATGCAGGTTGTGCGA
TCA 

BNC2 TCAGCAGCCTGATGCTCTA
TGG 

GCCGTGCAGTATGTGTGCA
GTACC 

EBF2 TAGGAAGAGGACCAACTCT
GAAA 

CGACATTAGCGTCCACCAC
TC 

EBF3 CCGCTAACTCTCCCTACGG
C 

AAAATGCCGTGTGTGCTGC
T 

EN1 TCGCAGCAGCCTCTCGTAT
G 

CCTGGAACTCCGCCTTGAG
T 

FOXA2 CCGTTCTCCATCAACAACC
T 

GGGGTAGTGCATCACCTGT
T 

GAPDH GAAGGTGAAGGTCGGAGT
CA 

GACAAGCTTCCCGTTCTCA
G 

LMX1A GATCCCTTCCGACAGGGTC
TC 

GGTTTCCCACTCTGGACTG
C  

MYT1L CTCGGCAAAATCGCTGAGG
AT 

TCCAGACTATTGGAGGTAT
TGCT 

NEUROD1 AGCCCCAAGGTCCTCCAA CGTGCTCCTCGTCCTGAGA 

NPAS4 CAGATCAACGCCGAGATCC
G 

GACGCCCTTGCGAGTGTAG
AT 

NR4A2 ACCACTCTTCGGGAGAATA
CA 

GGCATTTGGTACAAGCAAG
GT 

PBX1 TAAAAAGCCTTGGTGCTTC
CCA 

GCTCGTCCATCTCCAAAGG
CTA 

POU6F1 GCCTACAGCCAGTCAGCCA
TCT 

GTTCCGCAGTTCAGCTTCG
TTT 

SOX6 TACCTCTACCTCACCACAT
AAGC 

ACATCGGCAAGACTCCCTT
TG 

ASCL1-
NEUROD1-BFP 

GTCTCACGGCAGCATCTTC
T 

CGGACATCACTCTCTCGTG
G 

BNC2-BFP TTCGGCGAGACAAAGAGC
AT 

TCGCTGTCGGTCTTAGAGG
A 

LMX1A-miR218-
mCardinal 

CCACCTGCACTGTAACCTG
A 

TCTGTCCACGAAGTACACG
C 
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FOXA2-
mCardinal 

GAAGCTGAGAGGCGTGAA
CT 

GTACAGTGTCTCGGTGGTG
G 

EN1-tdTomato GGAACAAAGTACCCCGAG
CA 

TGCTGGGAATCGGTCTTCA
C 

MYT1L-EGFP AACTACGATGAGCTGGTGG
C 

GGAGTTCATCTCGCTCTCG
G 

FOXA2-EBF2-
mCerulean 

ATGTGTAGGGTGCTGCTGA
C 

TCGGAGGGGGTCTCATTTC
T 

ASCL1-EBF3-
mCardinal 

GTACTCCAACGGCGTGAGA
A 

CGGGATTCTTATCCTGGCC
C 

FOXA2-NPAS4-
EGFP 

TCTTCTTCAAGGACGACGG
C 

CAGCTCGATCCTGTTCACC
A 

ASCL1-PBX1-
tdTomato 

ATGTGAGGCCGTGATGATC
C 

CTCGTTCAGGATCTCGGTG
G 

ASCL1-FOXA2-
mCardinal 

GACGGCTGCCTGATCTACA
A 

TCTTCTTCTGCATCACGGG
G 

NR4A2-
mCerulean 

GCTGATCTTCTGCAATGGC
G 

GGAGGAGAACTCCACGAT
GC 

SOX6-POU6F1-
EGFP 

GACGCCATGACACAGGATC
T 

GCTTGTTGTGCATGATGGG
G 
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Supplemental Figures 
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Supplemental Figure 1. Efficiency of lentiviral transduction. (A) Fluorescence microscope 

pictures show immunoreactivity for Cas9 in hIA-dCas9 cell line. Scale bar, 100µm. (B) Confocal 

pictures show lentiviral transduction efficiency of ectopic expression of conversion TFs two and four 

days after doxycycline induction and (C) difference in surviving cells two days after lentiviral 

transduction of BNC2 expression vector with different MOIs. Scale bar, 200µm. 

 

 

 
Supplemental Figure 2. Hierarchical clustering of scRNA-seq data used for identifying 

conversion TFs for the two-step sequential reprogramming protocol. Hierarchical clustering 

analysis was performed based on Pearson correlation coefficients for each of the cell subtypes in the 

scRNA-seq dataset (la Manno et al., 2016). Red lines show the different branches used to perform 

the identification of conversion TFs using TransSynW.  
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4.4. Neural network learning defines glioblastoma features to be of 

neural crest perivascular or radial glia lineages 

4.4.1. Preface 

GBM is one of the most aggressive types of brain tumor and patients are often given 

a poor prognosis due to the lack of effective treatments. High tumor heterogeneity is one of 

the major obstacles to the identification of potential therapeutical targets. Characterizing the 

molecular profile of the cellular populations present in GBM samples at the single-cell level 

can elucidate important mechanisms underlying the development of this type of cancer. The 

Cancer Genome Atlas (TCGA) was able to classify GBM tumors into three main subtypes 

based on their molecular profiles. The mesenchymal subtype is highly resistant to currently 

available therapies and patients with this subtype have lower life expectancy. It has been 

shown that the cellular lineage of origin of GBM tumors can determine important molecular 

characteristics. However, the molecular mechanisms behind the development of the 

mesenchymal subtype remain elusive. Therefore, identifying the cellular lineage from which 

this GBM subtype derives can help stratify GBM in different subtypes and significantly 

improve disease prognosis. 

To address this issue, we performed scRNA-seq of patient-derived GBMs to 

characterize their cellular lineages of origin. We found the perivascular (PeriV) lineage to 

be specifically present in GBM and the molecular features of the mesenchymal subtype to 

be very similar to the ones of this cell lineage. We validated PROX1 and FOXC1 as a 

specifically expressed TFs in tumors derived from radial glia (Rgl) and PeriV lineage, 

respectively, in patient-derived xenografts. These findings provide potential biomarkers to 

more accurately predicted GBM patients’ prognosis. 

In this study, I performed the data analysis for identifying the specifically expressed 

TFs in the PeriV and Rgl cellular lineages, which results can be found on Figure 4 of the 

published article. This article is reprinted on the next pages (AAAS Author License to 

Publish (standard), section III.A.2). 
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Neural network learning defines glioblastoma features 
to be of neural crest perivascular or radial glia lineages
Yizhou Hu1†, Yiwen Jiang1†, Jinan Behnan1, Mariana Messias Ribeiro2, Chrysoula Kalantzi1, 
Ming-Dong Zhang1, Daohua Lou1, Martin Häring1, Nilesh Sharma1, Satoshi Okawa2, 
Antonio Del Sol2,3,4, Igor Adameyko5,6, Mikael Svensson7,8, Oscar Persson7,8, Patrik Ernfors1*

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated 
progenitor cells has not been considered. We deeply single-cell RNA–sequenced glioblastoma progenitor cells of 
18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation 
of glioblastoma cells to normal brain cell types. A novel neural network–based projection of the developmental trajectory 
of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial 
glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations 
in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can 
arise from the brains’ vasculature, and patients with such glioblastoma have a significantly poorer outcome.

INTRODUCTION
Glioblastoma is the most common brain tumor (1), and it has an 
invariably poor prognosis despite aggressive therapy. A combination 
of high-throughput genomic and epigenetic data with bioinformatic 
analyses has provided a comprehensive view of genetic mechanisms 
underlying glioblastoma oncogenesis and progression (2,  3). 
Analyzing transcriptional intertumor heterogeneity within The Cancer 
Genome Atlas (TCGA) project identified three main subtypes, which are 
tightly associated with genomic alterations: TCGA-classical, TCGA-
proneural, and TCGA-mesenchymal (TCGA-mes) (4). However, there 
is also notable intratumoral heterogeneity where different cells from 
the same tumor can be classified into different TCGA subtypes (5).

Gliomas are believed to arise from one of the two major types 
of neural cells of the brain: neuronal or glial by a reactivation of 
stem-like developmental gene programs. This cancer stem cell (CSC) 
hypothesis implicates a hierarchical continuum of differentiating 
cells within the tumor, with the CSC at the apex, having tumor-
initiating and -propagating properties with resistance to therapy (6). 
Single-cell RNA sequencing (scRNA-seq) studies support this con-
jecture, and transcriptional profiles of various types of gliomas are 
consistent with neural progenitor–like, oligodendrocyte precursor 
(OPC)–like, or astrocytic-like cells (5, 7–10). Introducing identical 
glioblastoma driver mutations into human glial or neuronal progenitor 
cells results in molecular distinct subtypes, highlighting the importance 
of the originating cell lineage for tumor phenotype and stratification 
(11, 12). However, less is known of the cellular origin of the highly 
malignant glioblastoma with mesenchymal features (5, 13).

Thus, previous computational cell-of-origin classifications mapped 
most glioblastoma to neuronal and glial cell types (5, 9, 10) and 
additional studies have identified possible mechanisms for these to 
transition into mesenchymal-like glioblastoma. However, the rela-
tion of mesenchymal glioblastoma to alternative nonneural progenitor 
cells residing in the brain has not been explored. Perivascular mural 
cells of the brains’ blood vessels are of neural crest origin (14, 15). 
As blood vessels descend into the brain parenchyma during develop-
ment, vessel-attached neural crest–derived cells differentiate into the 
different perivascular cell types, with those remaining behind dif-
ferentiating into leptomeningeal cells (14, 16). Recently, a previously 
unknown perivascular fibroblast (vFB)–like cell type was identified 
(17), which appears to function as a restricted stem-like cell type that 
generates pericytes and mesenchymal smooth muscle cells (SMCs) 
in both the developing and adult brain (18, 19).

Here, we deeply sequenced 4073 glioblastoma progenitor cells 
from 18 patients and integrated data from an additional 8443 tumor 
cells from 16 patients with low-grade glioma and 60,979 tumor cells 
from 66 patients with glioblastoma in the analysis. A novel neural 
network–based projection was used to learn the transcriptional features 
from normal brain cell types and thereafter used to assign individual 
tumor cells as well as deconvoluted bulk tumors at the level of both the 
cellular steady state and the developmental trajectory dynamics. Our 
analysis revealed two principal cell lineage patterns in glioblastoma—
neural and perivascular. The most undifferentiated adult naïve cell type 
correlate in the neural cell lineage pattern was radial glia (Rgl), and in 
the vascular, it is the vFB cell type. Patients with perivascular glio-
blastoma exhibited significantly poorer survival. Animals with xeno-
grafts of naïve human perivascular cells harboring targeted genetic 
changes observed in glioblastoma present with tumors, indicating that 
the brain perivascular cells are competent to initiate brain tumors.

RESULTS
Neural network classifier maps glioblastoma tumor 
progenitor cells to two principally different endogenous cell 
lineages of the brain
We enriched tumor progenitor cells from 18 patients of high-grade 
glioblastoma for scRNA-seq (data file S1) and validated the 
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tumorigenicity of these cells by intracranial orthotopic xenografts 
with follow-up histological analyses (fig. S1A). Fourteen of the 
18 patient samples reduced overall survival in the xenograft experi-
ment (fig. S1B). A total of 4073 high-quality single cells (median 
2.87 million total reads per cell; fig. S1C) were included in a copy 
number variation (CNV) analysis, confirming alterations associated 
with brain tumors (data file S1) and subsequently clustered. Excluding 
a cluster of CD45+ immune cells, the remaining 19 clusters were 
assigned into TCGA subtypes by a neural network classifier trained 
by the original TCGA data and subsequently named after TCGA 
subtype names (MS1-8, CL1-8, PN1-2, and NL1) (fig. S1D). Most 
clusters dominantly differed among individual patients, except 
for two cell clusters of TCGA-mes subtypes (MS3 and MS5) that 
spanned across different patients (fig. S1E, left). The cell clusters 
were organized into two clouds of coclustered cells when using 
Uniform Manifold Approximation and Projection (UMAP). Cells 
of the TCGA-mes subtype were in one cloud, while cells of all other 
TCGA subtypes were located in another cloud (Fig. 1A and fig. 
S1E, right).

To identify the endogenous brain cell-type correlates of the 
patients’ glioma cells, we applied the machine learning classifiers 
with learned transcriptional features from normal brain reference 
cell types derived from the neurogenic niche of the developing 
mouse brain (20). After comparing four classifiers driven by logistic 
regression, support vector machine, vanilla neural network, and 
node-level graph neural networks, we decided to use a vanilla 
neural network classifier for further studies according to the prediction 
accuracy, time consumption, and overfitting control, as described 
in Materials and Methods. The classifier accuracy was further 
validated by an independent integrated dataset of normal cells from 
human embryonic midbrain (21) and cortex (fig. S1F) (22), and a 
randomized expression matrix (fig. S1G). Throughout the study, we 
refer to previously annotated cell types as “reference” cell types, and 
such closely related reference cell types were annotated in this study 
into cell lineages on the basis of the known differentiation trajectories. 
Using this neural network classifier, most tumor cells of the TCGA-
mes subtype were assigned to the reference pericytes and vascular 
leptomeningeal cells (VLMCs), both of the perivascular lineage, 
while tumor cells of other TCGA subtypes were similar to reference 
neuronal or glial cells (i.e., reference Rgl, neuroblasts, astrocytes, 
oligodendrocyte cells, and immature granule neurons) (Fig. 1B and 
fig. S1H). Cells that failed to assign into one single cell type were 
located in the center of the radar plot, indicating cells of unknown 
cell type or a transcriptional plasticity of multiple cell types.

The neural crest–derived perivascular cells (reference pericytes 
and VLMCs) of the brain and the reference radial glia–derived 
neural cells (all neuronal and glial cell types of the brain) represent 
entirely different developmental cell lineages. When stratifying 
patients into either an Rgl-lineage type or a perivascular (PeriV)–
lineage type based on the dominant cell percentage of one type and 
nonsignificant cell percentage of the other type in each patient, we 
did not observe significant differences of overall survival in the 
xenograft experiment (fig. S1, A and B). To further increase the 
resolution of reference brain cell types, we applied the machine 
learning classifier with learned transcriptional features from human 
developing brain cell types (23) and validated the observation of the 
existence of both Rgl-lineage–type and PeriV-lineage–type glio-
blastoma cells (fig. S1I). Thus, these results suggest that glioblastoma 
cells share molecular features with either the Rgl-lineage [including 

Rgl-like tumor progenitor cells; a neuronal sublineage including 
neuroblasts and neurons; an oligodendrocyte-sublineage (Olig-
sublineage) including oligodendrocytes and its precursors, the OPCs 
and newly formed oligodendrocytes (NFOL); and an astrocyte-
sublineage including differentiating and adult astrocytes] or the 
PeriV-lineage including perivascular cells and VLMCs.

Analysis of the differentially expressed genes between Rgl-lineage– 
and PeriV-lineage–type glioblastoma cells that were also expressed 
in their respective naïve cell types (i.e., normal reference brain Rgl 
and PeriV cells) revealed the existence of mutually exclusive ex-
pression between lineages but highly shared features with their 
corresponding endogenous reference cell types of each lineage in 
glioblastoma cells (Fig. 1C) and in the naïve cell types of the develop-
ing mouse brain (fig. S1J).

Perivascular lineage–type tumors exclusive to  
high-grade glioma
The previously analyzed cells were from high-grade glioma. We 
therefore made use of scRNA-sequenced cells obtained from resected 
and dissociated high- and low-grade gliomas (5, 7, 9, 10, 24–26) to 
validate our results and to compare the cell-type composition of 
PeriV- and Rgl-lineage tumor cells between high- and low-grade 
gliomas. A total of 8443 cells from low-grade glioma and 65,052 cells 
from glioblastoma originally defined as tumor cells were applied 
for the neural network classifier described in Fig. 1B. We found that 
low-grade glioma contains tumor cells with higher cell-type simi-
larity to native reference cell types (high cell-type probability) than 
high-grade glioblastoma (Fig. 1, D and E, left, and fig. S1K, left). To 
exclude the fact that this result is caused by variability of sequencing 
quality between platforms of scRNA-seq, and to exclude a bias due 
to required threshold in the similarity scoring, we also validated this 
observation using only data generated from the same technical 
platform and applied different threshold requirements (fig. S1K, 
right). Low-grade glioma cells were most similar to reference Rgl, 
OPCs/NFOLs, and astrocytes, which together accounted for 99.48% of 
all tumor cells (Fig. 1D, right). In contrast, almost all glioblastomas 
were composed of multiple cell types, including high similarity to 
reference pericytes/VLMCs, to Rgl (i.e., Rgl-like tumor cells), as 
well as substantial numbers to the more differentiated progenies 
(astrocytes of the Astro-sublineage; OPC, NFOLs, and oligo-
dendrocytes of the Olig-sublineage; neuroblasts and immature 
granule cells “Granule” of the Neuronal-sublineage) (Fig. 1E, right). 
Among the glioblastoma cells, 11.1% were assigned to the reference 
PeriV-lineage, while none of the low-grade glioma cells were assigned 
to these (Fig. 1F and fig. S1L). Thus, the existence of glioma assign-
ing to the PeriV-lineage reference cells is specific to high-grade 
glioma among all 100 patients.

Rgl-lineage glioblastoma cells acquire higher cellular 
plasticity after mesenchymal transition but rarely transition 
into PeriV-lineage cell types
The acquisition of a mesenchymal transcriptional profile in glio-
blastoma cells can be forced by the microenvironment or by an 
intrinsic transition under certain selective pressure (13). To examine 
whether the PeriV-lineage tumor cells can transition from Rgl-lineage 
glioblastoma cells, we applied the neural network classifier on a 
recent published scRNA-seq dataset containing spontaneous mouse 
glioblastoma that was initiated from glial fibrillary acidic protein 
(GFAP)–expressing cells (27). In this model, a mesenchymal cell 
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Fig. 1. Cell-type assignment of high- and low-grade glioma revealed that perivascular lineage tumor cells are present only in high-grade glioma. (A) UMAP visualization 
of patient-derived glioblastoma cells. Color coding based on cell clusters. The contours of two main clouds of cells outlined with a dashed line and labeled with TCGA 
subtypes on the top. CL, classical; MES, mesenchymal; PN, proneural. (B) Radar plot visualization of the cell-type scores of glioblastoma cells in relation to the trained 
reference brain cell types. Color coding based on cell clusters (left) or cell-type lineages (right, blue: Rgl-lineage; green, PeriV-lineage). The position of each dot indicates 
the cell-type score between that cell and the trained reference cell types, which are indicated outside each wheel bend. Abbreviations are as in fig. S1F. (C) Heatmap of 
differential gene expression between PeriV-lineage and Rgl-lineage glioblastoma cells. Selected gene symbols are at the bottom. Color bar indicates the expression intensity 
at the top left. (D and E) Left: Radar plots show the cell-type scores of low-grade glioma and glioblastoma cells in relation to the trained reference brain cell types. Right: 
Donut charts show the quantitative distribution of cell type–defined glioblastoma cells. The inner donut layer represents the reference cell types that tumor cells are 
assigned to, and the outer layer represents the normal cell-type lineages. (F) The distribution of low-grade glioma and glioblastoma cells to defined reference cell-type 
lineages. ***P < 0.001. (G) Scatter chart represents the significant cell-type score of control (Ctrl) and oncostatin M (OSM)–treated glioblastoma multiforme (GBM) cells 
against each defined reference brain cell type. “Cell type defined” represents glioblastoma cells with high cell-type scores above the cutoff, and “cell type undefined” 
represents cells with low scores. Dot colors are indicated at the top. *P < 0.05.
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transition from the GFAP+ Rgl-lineage could be induced by 
oncostatin M (OSM) (27). Thus, if the identified PeriV-lineage glio-
blastoma represents a transition from the Rgl-lineage through this 
mechanism, we expected to identify PeriV-lineage glioblastoma 
cells in this dataset. Nearly all GFAP-derived glioblastoma cells 
were assigned to reference Rgl-lineage cells (Rgl, neuroblasts, and 
granule cells), but none to pericytes/VLMCs (fig. S1M). Because 
OSM induced a mesenchymal transition of these glioblastoma cells 
(27, 28), we compared three glioblastoma cell lines with or without 
OSM treatment in our classifier of TCGA subtypes and observed that 
OSM significantly increased mesenchymal features and inhibited 
proneural features (fig. S1N), in line with previous findings. Never-
theless, our classifier of endogenous reference brain cells did not 
recognize the OSM-transformed mesenchymal cells as PeriV cells, and 
instead assigned these mesenchymal cells into an undefined state 
(Fig. 1G and fig. S1O). These results corroborate that OSM initiates 
plasticity of glioblastoma cells including initiation of mesenchymal 
features and that this mechanism could account for some glioblastoma 
classified as mesenchymal. However, our results suggest that glio-
blastoma with perivascular features as defined using our classifier 
cannot be explained by an OSM-driven cell state transition.

Clinical relevance and CpG methylation of PeriV-lineage 
and Rgl-lineage glioblastoma
To explore the clinical relevance of tumors with PeriV-lineage 
and Rgl-lineage signatures, we scored the data of 161 bulk RNA-
sequenced glioblastoma from the TCGA using the classifier. However, 
the bulk data reflect transcriptional features of multiple cell types 
(fig. S2A) that are highly heterogeneous, consistent with previous 
results (5). To identify the dominant cell types, the bulk data were 
transformed (29) and deconvoluted into single-cell resolution (fig. 
S2B) (30), and the deconvoluted data were then scored and visual-
ized in a radar plot (Fig. 2A). The majority of the TCGA classified 
glioblastoma subtypes (TCGA-mes, TCGA-proneural, TCGA-classical, 
and TCGA-neural) were robustly assigned into four endogenous 
reference brain cell types: 19 tumors were assigned to reference cells 
of the PeriV-lineage (perivascular cells and VLMCs) and the remain-
ing tumors were assigned to Rgl-lineage reference cells, including 
53 to astrocytes, 32 to Rgl, and 9 to OPCs/NFOLs, accounting for 
70.19% of all tumors. The lack of assignment of tumors to reference 
granule and neuroblast cells in bulk sequenced data likely reflects 
that these differentiated cells are rare in the tumors and might 
therefore become dwarfed when bulk-sequenced. In line with previ-
ous results obtained from scRNA-seq data, 9 of 10 top scRNA-seq 
enriched marker genes of PeriV-lineage–type and Rgl-lineage–type 
reference cells (data file S2) were found to be differentially expressed 
between PeriV-lineage–type and Rgl-lineage–type glioblastoma 
tumors sequenced in the TCGA framework (Fig.  2B). We next 
examined the relation between PeriV- and Rgl-lineage tumor types 
to TCGA subtypes by cross annotation. PeriV-lineage glioblastoma 
was overwhelmingly composed from the TCGA-mes subtype (Fig. 2C, 
top). In contrast, only 44.4% of TCGA-mes subtypes were of the 
PeriV-lineage, while the rest were most similar to the reference 
Rgl-lineage (including Rgl-like cells and cells in sublineages of Rgl) 
(Fig. 2C, bottom), indicating that the TCGA-mes subtype might 
consist of two different transcriptional states, one but not the other 
showing high similarity to the reference PeriV cells. The TCGA-
classified proneural and glioma cytosine-phosphate-guanine (CpG) 
island methylator phenotype (G-CIMP) subtype mostly shared features 

with reference Rgl, while TCGA-classical and TCGA-neural subtypes 
mostly shared features with reference astrocyte cells (fig. S2C). To 
exclude that this finding was a result of a distortion due to analysis 
of bulk RNA-sequenced data, we classified the merged set of all 
scRNA-seq high-grade glioblastoma cells into TCGA subtypes and 
thereafter cross-annotated the cells of the TCGA-mes subtype to 
native reference brain cell types (Fig. 2D and fig. S2D). This analysis 
confirmed that glioblastoma cells of the TCGA-mes subtype are 
mainly assigned to PeriV cells, with most of the remaining cells 
showing the greatest similarity to reference Rgl and astrocytes of the 
brain. Furthermore, we re-examined glioblastoma cells from a public 
dataset (7) in our classifier of endogenous brain cells. In this study, 
tumor cells were assigned as “glial progenitor cancer cell,” “oligo-
lineage cancer cell,” “astrocytic cancer cell,” “mesenchymal cancer cell,” 
and “neuronal cancer cell” on the basis of the similarity to develop-
ing brain cell types (7). Our classifier confirmed these previous 
results (Fig. 2E) and, in addition, corroborated that their annotated 
mesenchymal cancer cells are assigned to either PeriV-lineage or 
Rgl-lineage reference cells (Fig. 2F).

In the bulk RNA-sequenced glioblastoma of the TCGA, 106 of 
113 cell type–defined IDH1 wild-type (wt) glioblastoma patients with 
survival information were used for survival analysis. Glioblastoma 
with a dominant PeriV-lineage–type phenotype predicted markedly 
shorter survival than the Rgl-lineage type, and 18 of 19 patients’ life 
spans were <24 months (Fig. 2G). This observation was further 
validated when stratifying the Rgl-lineage into sublineages on the 
basis of assignment to the dominating reference cell types (Rgl-like, 
Astro-sublineage, and Olig-sublineage) (fig. S2E).

We next explored the mutational burden among the glioblastoma 
defined by PeriV-lineage– and Rgl-lineage–type signatures. Thirty-two 
genes with high frequency of mutation were significantly enriched 
(fig. S2F and data file S3). PeriV-lineage–type and Rgl-lineage–type 
glioblastoma carried a shared enrichment in mutations of TTN, PKHD1, 
TP53, PTEN, and FLG genes, and a differential mutational burden 
with NF1 gene strongly associated to the PeriV-lineage type and 
EGFR gene to the Rgl-lineage type, especially the astrocyte subtype.

In addition to the transcriptional level, we tested if the methylation 
status can be used to predict the lineage-based classification of 
glioblastoma. We first enriched the differential methylation sites 
with PeriV-lineage–type and Rgl-lineage–type signatures. Hierarchical 
clustering using these signature methylation sites confirmed a clas-
sification congruent to transcription for nearly all patients (Fig. 2H, 
fig. S2G, and data file S4). Examining the signature methylation 
sites revealed that tumors of the PeriV-lineage type displayed, for ex-
ample, increased methylation of GFAP gene and S100B gene, while 
MGMT gene and STAT6 (signal transducer and activator of transcrip-
tion 6) gene were more unmethylated, indicating a suppression of glial 
genes and an enhanced malignant expression pattern. In agreement, 
STAT6 has been shown as a unique marker and driver of meningeal 
hemangiopericytoma, a type of brain tumor that originates from peri-
cytes (31). Thus, the methylation signatures reflected the innate cell-
type features of PeriV-lineage– and Rgl-lineage–type glioblastoma.

We examined if the methylation status can predict tumor type 
using machine learning. A neural network classifier was generated by 
training transcriptionally defined PeriV-lineage– or Rgl-lineage–type 
glioblastoma with the methylation signatures. Similar to the hierar-
chical clustering (Fig. 2H), the methylation-based classifier assigned the 
majority of tumors to the corresponding transcriptionally defined 
PeriV-lineage–type and Rgl-lineage–type glioblastoma with high 
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accuracy (fig. S2H). Next, we used this trained classifier for scoring 
559 glioblastomas from a merged TCGA/DKFZ dataset (data file S4) 
and evaluated patient survival. Consistent with previous studies, 
isocitrate dehydrogenase 1 (IDH1)–mutant glioblastoma predicted 
a better outcome. In the remaining 288 IDH1 wt patients that include 
life span information, the PeriV-lineage type predicted the poorest 
patient survival with 0% 2-year survival (Fig. 2I). We also applied the 
same classifier for an independent dataset of 151 patients from 
the CGGA (Chinese Glioma Genome Atlas) (32) and further evaluated 
the IDH1 wt patient survival. A comparable survival to that of the 
TCGA/DKFZ studies was observed. Although the difference was not 
significant, none of the glioblastoma patients with PeriV-lineage–
type signatures were alive after 2 years (fig. S2I).

Perivascular lineage–type glioblastoma consists of cells 
similar to vFBs, pericytes, and vascular SMCs
To examine whether cells of PeriV-lineage glioblastoma cells can be 
assigned to a specific perivascular cell type, we used a high-quality 
dataset of reference brain vascular cells, generated by Smart-seq2 
scRNA-seq (17). Thus, we trained a neural network classifier with 
learned features from this dataset (fig. S3, A and B), and then 
assigned the merged dataset of low- and high-grade glioma cells to 
the reference vascular cell types. Consistent with our previous finding 
(Fig. 1), glioblastoma cells that were previously assigned to pericytes/
VLMCs (fig. S3C, left) were robustly assigned to one of the three 
perivascular cell types: the immature stem-like vFBs, SMCs, and 
pericytes. Bulk sequenced data from TCGA were robustly assigned 

Fig. 2. Tumor subtype assignment, methylation status, and survival of deconvoluted bulk tumor data from TCGA/DFKN. (A) Radar plot visualizes the cell-type 
scores for deconvoluted bulk glioblastoma in relation to trained reference brain cell types. Colors represent the TCGA-defined subtype of each tumor. (B) Violin swarm 
plot of the original gene expression of selected marker genes in the PeriV-lineage and Rgl-lineage of TCGA glioblastoma; blue background represents Rgl-lineage tumors 
and green background represents PeriV-lineage tumors. Dot colors represent the defined reference brain cell types of each tumor in (A). The dashed line in each violin 
plot represents the distribution quartiles. P value of Student’s t test on top. Abbreviations are as in fig. S2C. (C and D) Pie plots representing the composition of TCGA-classified 
subtypes in the PeriV-lineage (C, top), cell-type sublineages identified in the TCGA-mes subtype (C, bottom) of bulk glioblastoma, or cell-type sublineages identified in the 
TCGA-mes subtype of scRNA-seq glioblastoma cells (D). (E) Radar plot visualizes cell-type scores of state-defined glioblastoma cells in relation to trained reference brain 
cell types. (F) Dot plot represents the percentage of the defined cell states of glioblastoma cells in each originally defined cell-type state. Dot sizes from small to big 
represent the percentage from low to high. (G) Patient survival of isocitrate dehydrogenase 1 (IDH1) wild-type glioblastoma from the TCGA assigned as belonging to the 
Rgl-lineage and PeriV-lineage. (H) Heatmap representing the differential methylated site–based hierarchical clustering of the TCGA glioblastomas assigned to the 
PeriV-lineage and Rgl-lineage type. Selected target genes of the methylated sites are listed at the bottom. Color bar indicates the expression intensity at the top left. 
STAT6, signal transducer and activator of transcription 6. (I) Patient survival of glioblastoma from TCGA assigned to Rgl-lineage, PeriV-lineage, IDH1-mutant types, and 
nonclassified based on methylation.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversit du L

uxem
bourg on June 10, 2022



Hu et al., Sci. Adv. 8, eabm6340 (2022)     8 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 18

to vFBs (fig. S3C, middle). In contrast, low-grade glioma cells were 
rarely assigned to any vascular cell types (fig. S3C, right).

Reconstruction of glioblastoma cells along 
the developmental trajectory of the radial glia and neural 
crest cell lineages
Meningeal cells as well as the brain perivascular cell types arise from 
mesenchymal neural crest cells (15, 19) attaching to blood vessels 
descending into the brain parenchyma during development (19). 
We therefore next examined the similarity of glioblastoma cells to 
cranial neural crest and neural tube cells captured from the devel-
oping mouse embryo at the time when neural crest cells delaminate 
from the neural tube (33) to meningeal cells (34) and to perivascular 
cells (17), as well as cells of the Rgl-lineage including adult Rgl, 
neuroblasts (35), oligodendrocytes, and astrocytes. All these data 
were generated using the Smart-Seq2 platform. On the basis of our 
previous analyses, these cell types together represent the endogenous 
cell types that glioblastoma displays similarities to. To track the 
developmental location of each glioblastoma cell along the lineage 
trajectory of brain cells, we developed a neural network–based 
projection model, SWAPLINE (Single-cell Weighted Assignment 
and Projection on developmental LINEages) (fig. S3D). We first 
visualized the normal reference brain cell types in a UMAP (Fig. 3A). 
Each cell-type cluster’s position in the UMAP reflects its transcrip-
tional status in the relatively flattened topology in partition-based 
graph abstraction (PAGA) and the predicted cells must be assigned 
according to the limited PAGA nodes supervised by machine learn-
ing (fig. S3E). Nevertheless, the result is consistent with previous ex-
perimental lineage tracing studies, confirming the validity of the 
model. Consistently, all assigned tumor cells via SWAPLINE ex-
hibited marker expression consistent with their position and naïve 
reference cell types (see below). This UMAP was later used as refer-
ence map for the projection of glioblastoma cells onto the brain’s 
normal differentiation trajectories.

The accuracy of the SWAPLINE model was tested and confirmed 
using the independent sets of human brain cells (fig. S3, F and G) (21, 22). 
SWAPLINE assigned cells correctly in the lineage trajectories, while un-
related control cells (endothelial cells and microglia) were filtered out 
automatically in the model because of low scores. Next, we applied the 
model to project each glioblastoma cell into the differentiation trajecto-
ries of brain cell types (fig. S3H). The relative tumor cell position in rela-
tion to the background map plot of reference developmental/endogenous 
cell types was visualized (Fig. 3B). To disentangle the transcriptional 
roadmap of glioblastoma cells, we generated a statistical ensemble of 
principal branching tree trajectories (36) from the high-dimensional 
transcriptional space (Fig. 3C). The main tree structure summarized 
glioblastoma cell distribution and comprehensively showed the progres-
sion of glioblastoma cells along each developmental lineage trajectory. 
Two main glioblastoma lineage structures were observed with differenti-
ated cells at termini, after which each branch was named. One lineage 
was organized around a shared center of Rgl reference cells with branches 
of cancer cells toward reference astrocytes (Astro-sublineage glio-
blastoma cells), neuroblasts (Neuronal-sublineage glioblastoma cells), 
and oligodendrocyte cells (Olig-sublineage of glioblastoma cells). Here, 
reference Rgl from two developmental stages was included (adult Rgl and 
developmental Rgl). The other lineage structure was the PeriV-lineage 
represented as a single line structure, with PeriV-lineage glioblastoma 
cells positioned from the most undifferentiated early reference migra-
tory neural crest cells to differentiated reference perivascular mural cells.

Cross-annotation of patients and lineage branches revealed that 
all patients dominantly contained glioblastoma cells assigned either 
to the reference Rgl-lineage (Astro-sublineage, Neuronal-sublineage, 
or Olig-sublineage) or to the reference PeriV-lineage cells (fig. S3I). 
For patients with an Rgl-lineage–type glioblastoma, all subbranches 
coexisted in all patients, although at different proportions, reveal-
ing the intratumor lineage heterogeneity among patients with an 
Rgl-lineage signature.

To further explore the most similar cell type of PeriV-lineage 
glioblastoma cells along the differentiation trajectory from un-
differentiated reference migratory neural crest cells to differentiated 
reference perivascular mural cells, we constructed a new cranial 
neural crest cell reference dataset via integrating the migrating 
cranial neural crest cells, neural crest mesenchymal progenitor cells 
(33), meningeal cells (34), and brain perivascular cells (17), which 
should represent all known neural crest derivatives in the brain 
region. After training with this reference dataset in the neural net-
work model, we found that the PeriV-lineage tumor cells are most 
similar to vFBs and migrating neural crest cells (fig. S3J).

The existence of two lineages in glioblastoma cells was further 
confirmed by SWAPLINE lineage reconstruction for two inde-
pendently published glioblastoma datasets, including (5) (fig. S3, K 
to N) and (7) (fig. S3, O to R). Moreover, we applied SWAPLINE 
assignment for glioblastoma cells with or without OSM treatment 
and found that almost all cells were assigned to Rgl-lineage cells 
(fig. S3, S and T), indicating that the cell-type state of glioblastoma 
cells remains conserved even after the OSM-induced transition to a 
more mesenchymal-like state. However, OSM-treated cells exhibited 
an increased feature of delaminating neural crest cell (fig. S3U) and 
reduced feature of radial glia, suggesting that the mesenchymal signa-
ture induced by OSM reflects features of the epithelial-mesenchymal 
transition of premigratory neural crest cells (37).

Next, we enriched pseudo-time marker genes that associated 
with each branch trajectory (data file S5), and the normalized 
expression of the selected marker genes along the Rgl-lineage 
branches was visualized in the branching tree (Fig. 3D). For example, 
STMN2 and SOX10 were specifically expressed in glioblastoma 
cells at the distal part of the neuronal- and Olig-sublineages, respec-
tively, suggesting the existence of stable transcriptional status along 
these two branches. In contrast, Rgl-like tumor cells and glioblastoma 
cells at the distal part of the Astro-sublineage and Rgl-enriched 
SOX9 and GFAP were, albeit at lower levels, also expressed across all 
branches, indicating lack of unique markers for these glioblastoma 
cells. Consistently, RGS4, which is transiently expressed during 
neural crest differentiation (38), was also expressed in PeriV-lineage 
glioblastoma, specifically enriched in the progenitor-like cells of 
such tumors (Fig.  3E), while expression of lumican (LUM) and 
actin alpha 2, smooth muscle (ACTA2) was consistently enriched 
in glioblastoma cells corresponding to the more differentiated brain 
vFBs and SMCs, respectively.

Cell cycle and differentiation potential along differentiation 
branches of glioblastoma cells
Tumor initiation and propagation requires cell division. In our 
dataset and two independent glioblastoma datasets (5, 7), cycling 
tumor cells were mainly observed at the region of reference Rgl and 
between the reference migrating neural crest and vFB cells, while 
tumor cells in all branch termini were relatively quiescent (fig. S4, A 
to C). These observations suggest that the mitotic hyperactivity 
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Fig. 3. Relation of glioblastoma cells to the developing central nervous system and neural crest. (A) Plot of reference cells. UMAP visualization of cell clusters 
from the developing central nervous system and neural crest lineages (17, 33–35). Abbreviations are as in fig. S3E. (B) Projection of all glioblastoma cells to the refer-
ence plot. Reference cells are indicated by “×” and glioblastoma cells are indicated by “dot,” which represent the projected developmental position of the individual 
glioblastoma cells to native reference cell types. (C) Principal tree plot summarizing the developmental status trajectory of the glioblastoma cells. Lineages are indi-
cated by colors and text. Abbreviations are as in fig. S3M. (D) Visualization of normalized expression in tumor cells of pseudo-time marker genes for branches in the 
Rgl-lineage. (E) Left: Heatmap shows the normalized expression of pseudo-time genes according to the voltage peak along the neural crest trajectory. Right: Projection 
of the normalized expression in tumor cells of selected marker genes on the branching tree plot. Dark purple to yellow represents the minimal to maximal expression. 
(F) Quiver visualization of RNA velocity of glioblastoma cells on the branching tree plot. The arrow of each glioblastoma cell points to the direction of future status, 
extrapolated from RNA velocity estimates. (G and H) SWAPLINE projection and branching tree visualization of glioblastoma cells onto developmental mouse brain and 
neural crest reference plot from the mouse developmental brain atlas (16). Abbreviations are as in fig. S4J. (I) Marker gene expression in glioblastoma cells and visual-
ized in the branching tree projected on the reference developmental mouse brain plot. Dark blue to red represents the minimal to maximal gene expression. Abbre-
viations are as in fig. S4J. (J) Quiver visualization of RNA velocity of glioblastoma cells onto developmental mouse brain and neural crest reference plot.
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of progenitor-like tumor cells is a general rule for tumors with an 
Rgl-lineage–type and PeriV-lineage–type transcriptional signature. 
Mitotic events developmentally couple with cell differentiation and 
fate decision (39). RNA velocity analysis (40) revealed that the main 
trend of differentiational status change along each sublineage branch 
was from the progenitor region to differentiated termini (Fig.  3F 
and fig. S4D). Both the neuroblast and the oligodendrocyte branch 
of glioblastoma cells showed reduced differentiation at the develop-
mental terminus, consistent with pseudo-gene results in Fig. 3D. Tumor 
cells at the terminus of the astrocyte branch exhibited lineage rever-
sal, indicating bidirectional glioblastoma cell differentiation along 
the reference Rgl to astrocyte differentiation trajectory. In the 
PeriV-lineage, the main differentiation trend of glioblastoma cells 
was from reference migrating neural crest cells to perivascular cells. 
We also found that some of the most undifferentiated glioblastoma 
cells assigned to the PeriV-lineage displayed differentiation vectors 
toward reference spinal cord Rgl cells.

The most undifferentiated glioblastoma cells are expected to be 
enriched at the regions of the reference Rgl and neural crest cells 
(fig. S4E). To enhance the resolution of the reference map for a 
subsequent annotation of the most undifferentiated stem-like glio-
blastoma cells, we extracted these cells according to the density 
estimation and performed a zoom-in projection on the recently 
released mouse developmental brain atlas (16) again using the 
SWAPLINE projection (fig. 3G and fig. S4, F to I). The summarized 
tree structures and RNA velocity estimation further disentangled 
the progression of glioblastoma progenitor-like cells along each 
embryonic developmental brain lineage (Fig.  3,  H  to  J, and fig. 
S4J). Confirming the above results, some tumor cells clustered with 
reference Rgl cells as well as along branches of reference cell differ-
entiation into astrocytes, neuroblasts, and oligodendrocytes. Other 
glioblastoma cells were mainly located at the reference embryonic 
neural crest/VLMC region of the map with a branch toward reference 
perivascular cells. Reference cell lineage markers further confirmed 
that the tumor cells assigned to a developmental position also ex-
pressed the expected markers of naïve cells in that differentiation 
branch of the embryonic brain (Fig. 3I and data file S5). Furthermore, 
the relation of glioblastoma cells to these reference embryonic 
developmental lineages was further validated by SWAPLINE lineage 
reconstruction for two independent published glioblastoma data-
sets from (5) (fig. S4, K to M) and (7) (fig. S4, N to P), with similar 
results. To enhance the resolution of the reference brain cell types, 
we applied the machine learning classifiers with learned transcrip-
tional features from early human developing brain cell types (fig. 
S4Q) (41), further validating our observation (fig. S4R). Combined, 
these results indicate that heterogeneity in glioblastoma can be 
explained by two main cell-type lineages of the brain, the radial glia 
and the PeriV-lineage, with tumor cell transcriptional programs at 
large recapitulating normal transcriptional routes of differentiation.

The direct lineage relationship of glioblastoma cells to develop-
mental and adult brain cells indicates that transcription factors 
(TFs) that define cell types and thereby drive differentiation in the 
developing brain also contribute to the diversity of glioblastoma 
cells along the lineage trajectories. Thus, we divided our tumor cells 
into six lineage clusters according to their lineage branches and 
progenitor feature relationship to reference cells. Subsequently, we 
enriched the differentially expressed TFs from each glioblastoma 
lineage cluster as described in fig. S4E. Next, we applied the same 
enrichment for the published glioblastoma dataset (5), as well as for 

the annotated reference dataset of normal brain cell types (20). By 
comparing these three datasets, we identified unique TFs defining 
Rgl-lineage (30 TFs) and PeriV-lineage tumor cells (6 TF genes: 
FLI1, FOXC1, STAT6, KLF2, TFAP2C, and MSC) shared with normal 
development and a few glioblastoma-specific factors within each of 
the lineages (Fig. 4, A and B, and data file S6). Next, we applied 
SCENIC for identifying gene networks regulated by master TFs 
(regulon activity) in both Rgl-lineage and PeriV-lineage cells. After 
comparing the enriched TFs, 20 master TFs were identified with 
significant regulon activity (fig. S4S). The Rgl-lineage consisted of 
14 TF regulons, including some known Rgl-specific TF genes, such 
as HES5, RFX4, and SOX10. We identified six TF regulons specific 
for PeriV-lineage, including STAT4, STAT6, TFAP2C, FOXC1, FLI1, 
and MSC. Furthermore, analysis showed that shared features between 
the two lineages (PeriV and Rgl) all relate to the cell cycle, including five 
cell cycle–regulating TFs (FOXM1, MIS18BP1, MYBL1, MYBL2, and 
WDHD1) (Fig. 4C and data file S6). Two lineage-specific TFs, PROX1 
for Rgl-lineage and FOXC1 for PeriV-lineage, were validated in the 
tumor tissue of patient-derived xenografts (Fig. 4D). SOX2 and POU3F2 
are driver genes in glioblastoma-propagating cells (42) that are induced 
during oncogenesis since they are not expressed in normal peri-
vascular cells but present in migrating neural crest (43). Therefore, 
we also validated these two genes as lineage-shared TFs (Fig. 4E).

Initiation of PeriV brain tumors from perivascular cells
Mouse models have indicated that glioblastoma can efficiently be 
initiated from the glial and stem cell compartments of the brain 
(11). The notable similarity of PeriV-lineage–type tumor cells to 
endogenous reference perivascular cells suggests that perivascular 
cells can also be susceptible for malignant transformation. To test 
whether perivascular cells might initiate brain tumors when carrying 
genetic alterations mimicking glioblastoma, we first investigated the 
expression profiles of the spontaneous glioblastoma tumors from 
both Nes-CreERt2 Pten/Trp53/Nf1 KO mice and NG2-CreERt2 
Pten/Trp53/Nf1 KO mice (11, 12). Nestin is predominantly expressed 
in neural stem cells (i.e., radial glia cells), but NG2 is typically 
expressed in oligodendrocytes as well as in perivascular cells in 
the mouse brain (44). Thus, we hypothesized that tumors from 
NG2-CreERt2 Pten/Trp53/Nf1 KO mice can arise from either naïve 
oligodendrocytes or perivascular cells of the brain, while tumors 
from Nes-CreERt2 Pten/Trp53/Nf1 KO mice should arise only from 
radial glia cells. Hierarchical clustering revealed that two of the seven 
sequenced tumors derived from NG2+ cells were PeriV-lineage and 
the other five were Rgl-lineage. Furthermore, none of the seven 
glioblastomas induced from Nes+ cells carried any perivascular sig-
nature pattern (fig. S5A).

Platelet-derived growth factor (PDGF) acting through PDGF 
receptors induces proliferation and migration of perivascular cells 
(45). We therefore estimated the tumorigenesis potential of human 
brain perivascular cells by introducing PDGFB and depleting 
CDKN2A (p16INK4A and p14ARF) in primary human brain peri-
cytes (PeriPDGFB/CDKN2A) and introducing PDGFB and co-depleting 
NF1/TP53 in human primary brain vFBs (fibroblastPDGFB/NF1/TP53) with 
green fluorescent protein (GFP) introduced into both cell types (fig. 
S5, B to D). These alterations led to marked increases in in vitro 
growth compared to naïve cells and significantly promoted the 
colony formation in vFBs (Fig. 5, A and B, and fig. S5E). To explore 
the consequences of these genetic alterations on cell identity, we 
scRNA-sequenced vFBs with and without the alterations. We observed 
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comprehensive CNV changes in genetically modified vFBs (Fig. 5C 
and fig. S5F), with the significant deletion of Chr.4q, 1q, 9q, and 
18q, and amplification of Chr.12q and 5q, indicating that a few 
founding mutations can lead to large genetic alterations. In particular, 
the alterations of Chr.18q and 5q have been identified in mesenchymal 
glioblastoma (5) and meningioma (46)—another type of brain 
tumor derived from the neural crest lineage. SWAPLINE projection 
of the control and genetically modified vFBs in the developmental 
adult reference plot revealed a marked dedifferentiation of the modi-
fied vFBs toward reference neural crest progenitors (Fig. 5, D and E). 
Consistently, more G2-M cycling cells were observed in modified 
vFBs (Fig. 5F and fig. S5G). By comparing the transcriptional profile 

between control and modified vFBs, we identified 773 up-regulated 
and 638 down-regulated genes (data file S7). Pathway enrichment 
revealed that “cell cycle and chromatin reorganization” and “neural 
crest differentiation” were significantly increased, while “HOX 
gene–related tissue patterning” was suppressed, indicating a 
dedifferentiation toward a neural crest stem cell state and a loss of 
anterior-posterior positioning information (Fig. 5G and data file S7). 
The cells were introduced into the brain in the orthotopic mouse 
model to test for tumor initiation. Both the modified pericytes and 
vFBs generated tumors, and the mice exhibited poorer tumor-
associated survival than the control group receiving naïve cells (fig. 
S5H). Consistently, none of the control groups transplanted with 

Fig. 4. Conserved TF signatures between naïve brain and neural crest cells with Rgl- and PeriV-lineage glioblastoma. (A to C) Violin plot of TF expression shared 
between tumor cells and normal reference cell types (A), of TFs unique to glioblastoma cells (B), and of TFs shared between Rgl- and PeriV-lineage glioblastoma cells (C). 
y axis, the relative expression level; x axis, TF gene names. Cell types and lineages are indicated at the top of the chart. Gray columns represent the significantly differential 
expression. “Diff” indicates tumor cells at the distal differentiation of the sublineage trajectories and “Hub” indicates stem-like cells of the Rgl and perivascular lineages 
corresponding to native radial glia and neural crest cells, respectively. (D and E) Validation of PROX1 and FOXC1 mRNA expression in Rgl-lineage– and PeriV-lineage–type 
patient-derived glioblastoma xenografts, respectively (D). Validation of SOX2 and POU3F2 mRNA expression in both PeriV-lineage–type and Rgl-lineage–type 
patient-derived glioblastoma xenografts, LUM was used as a marker of PeriV-lineage tumor (E). Tumor lineage type and gene names are at the top. Each bottom figure is 
a higher magnification from the gray frame of the top figure. Scale bars, 50 m.
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Fig. 5. In vivo initiation of tumors from perivascular cells. (A and B) In vitro proliferation (A) and colony formation (B) of brain vFB with/without carrying genetic alterations 
of patient-derived glioblastoma [genetically modified (GM), green]. Means ± SD, three independent measurements. Student’s t test, ***P < 0.001. (C) CNV analysis of 
control (blue) and GM fibroblasts (green). (D) Projection of control and genetic modified fibroblasts to the reference plot of normal reference cell types from Fig. 3A. 
(E) Quantification of the differentiation status of control (blue) and GM fibroblasts (green) along the developmental trajectory of in vivo differentiation of reference 
perivascular cells. The y axis represents the normalized cell density of projected fibroblasts in (D). The x axis represents the linearized developmental position between 
differentiated brain perivascular cells and neural crest progenitors. (F) Quantification of cycling phases of control (Ctrl) and GM fibroblasts. (G) Gene expression of top 
significant pathways enriched by up- and down-regulated genes in GM fibroblasts as compared to the naïve fibroblasts. (H and I) Representative fluorescence (H) or 
hematoxylin and eosin (I) staining of the coronal section from mouse xenograft of GM fibroblasts. Magnified tumor regions boxed. Green, GFP; red, anti-human lamin 
(LAM) A/C; blue, 4′,6-diamidino-2-phenylindole (DAPI). Scale bars (H and I): 1000 m, whole section; 100 m, magnified figures. (J) In vivo mRNA expression of indicated 
marker genes in xenograft tumor tissues of genetic modified fibroblasts. Human LUM and PDGFRB were used to label tumor cells. Gene names and color are indicated in 
each panel. Scale bars, 10 m.
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the corresponding naïve cell types had a confirmed brain tumor by 
histological analysis, while all genetically altered perivascular cells did. 
Fluorescence staining confirmed that the brain tumors were of human 
cell origin (anti-human lamin A/C and GFP; Fig. 5, H and I, and fig. S5, 
I to K). Both PeriPDGFB/CDKN2A mice and fibroblastPDGFB/NF1/P53 mice 
exhibited extensive neoplastic growth and most animals displayed a 
diffuse and infiltrative phenotype. The xenograft tumor tissue exhibited 
cellular mitotic activity (Ki67), altered microvascular patterns (CD31), 
and abnormal remodeling of extracellular matrix proteins (fibronec-
tin and collagen VI) (fig. S5L). Furthermore, the expression of PeriV-
lineage tumor marker genes (POU3F2, FOXC1, SOX2, and LIF) in the 
tumor tissue of the grafted mice was observed, while Rgl-lineage 
genes NEUROD1 and OLIG2 were rarely observed (Fig.  5J). We 
observed some tumor cells coexpressing the neural crest progenitor 
marker SOX10, in line with our in silico observation of a cellular 
dedifferentiation in transformed tumor cells (Fig. 5, D and E).

DISCUSSION
scRNA-seq has provided unparalleled insights into the molecular 
nature of glioblastoma cells and has offered new means to explain 
the cell of origin, tumor phenotype, cell heterogeneity, and patient 
outcome (47). In this study, we combined the application of a neural 
network classifier and the trajectory analysis of native brain cells to 
identify the relation of glioblastoma cells to normal brain cells. Our 
results identified that some glioblastomas display high similarities to 
radial glia and its progenies (Rgl-lineage), consistent with previous 
studies assigning tumor cells to neural cell types using a list of 
defined marker genes, hierarchical clustering, or reference cells in 
principal components analysis (PCA) (5, 7, 8, 10, 26). Unexpectedly, we 
identified the remaining glioblastoma to be similar to perivascular 
cells (PeriV-lineage), and consistently, tumor cells were robustly 
allocated along one of the two cell lineages. Furthermore, we 
validated the tumor-propagating ability of naïve brain perivascular 
cells. According to our neural network classification of scRNA-seq 
data as well as deconvolution of bulk data, glioblastoma of a 
PeriV-lineage type represents a proportion of the TCGA-mes 
subtype. Furthermore, consistent results were obtained on patient 
survival using gene expression– or methylation-based patient stratifi-
cation into Rgl-lineage or PeriV-lineage. Patients with a PeriV-
lineage–type signature show significantly poorer survival than those 
with an Rgl-lineage type. Combined, our results suggest the existence 
of a subgroup of glioblastoma with similarities to perivascular cells 
of the brain, which is distinct from the Rgl-lineage.

Although transcription can be affected by both mutations driving 
transformation as well as the microenvironment (5), the originating 
cell lineage can represent an important determinant of glioblastoma 
molecular characteristics (12). Among the conserved markers 
expressed in most cell types of each of the lineage (Fig. 1C), there 
is a high expression in Rgl-lineage cells of PTPRZ1 and SLC1A3, 
which previously have been shown to contribute to glioblastoma 
initiation and progression (10). Furthermore, the expressions of 
PeriV-lineage markers, LUM and platelet-derived growth factor 
receptor beta (PDGFRB), have also been previously evidenced in 
glioblastoma (48, 49). Because glioblastoma tumors exhibit cells with 
features consistent with precursor populations, shared developmental 
determinants of the progenitor cell fates could contribute to onco-
genesis. Cell cycle analysis along the lineage trajectories revealed both 
Rgl-lineage and PeriV-lineage tumor cells to be rapidly dividing 

with markedly reduced proliferation of the more differentiated cells 
within each lineage. When we identified shared features between the 
two progenitor cell populations, nearly all shared genes were cell 
cycle–regulating transcriptional activators. This suggests that a major 
shared feature in the progenitor cells of the two lineages (PeriV- and 
Rgl-lineage) involves cell cycle control. Thus, transcriptional determi-
nants contributing to oncogenesis in the two different lineages unrelated 
to cell cycle control are for the most part unique to each lineage and 
coincides with those in normal brain lineage trajectories.

RNA-velocity analyses show that the main flow in glioblastoma 
is from progenitor cells to differentiated cell types, and hence, 
glioblastoma develops along conserved neurodevelopmental gene 
programs, in agreement with a recent similar analysis (7). However, 
unlike that study, we find lineage reversal of tumor cells in the 
astrocyte branch of differentiation as well as of PeriV-lineage tumor 
cells carrying similarity to reference vFB cells. This difference may 
be a consequence of the fact that we performed a comprehensive 
RNA velocity with all assigned glioblastoma cells on the lineage 
branching tree plot, instead of on selected individual patients or 
selected reference brain cell types, thus overall increasing resolution. 
Furthermore, the standard dimensional reduction (such as PCA 
and t-distributed stochastic neighbor embedding) in a previous 
analysis could be too strict for estimating RNA velocity across 
tumor patients, due to the individual variance (5, 10). Instead, a 
score-based branch plot may better reflect the roadmap of develop-
mental programs for cancer studies (50). The finding of lineage 
reversal of some more differentiated cells is consistent with a high 
degree of plasticity observed in glioblastoma cells (5, 8, 10) and 
suggests that, within glioblastoma, tumor cells with astrocyte and 
vFB features along with the glioblastoma resident progenitor popu-
lations can be originators of the cancer cell hierarchy and, thus, 
driving cancer growth. This is also consistent for the PeriV-lineage–
type glioblastoma in experimental data, since recapitulating in 
perivascular cells genetic changes of glioblastoma is sufficient to 
initiate tumors with perivascular cell expression features in orthotopic 
grafted mice, including a derepression of the stemness maintenance 
factor SOX2 (51).The profound impact of a limited set of TFs on the 
fate of perivascular cells is illustrated by the direct reprogramming 
of pericytes to neurons through a neural stem cell intermediate 
by forced expression of SOX2 and the proneural ASCL1 TF (52), 
suggesting that re-expression of SOX2 alone is sufficient for a de-
differentiation of pericytes to a stem-like cell state from which 
ASCL1 induces neurogenesis. Thus, our results are consistent 
with the notion that some glioblastoma can originate from neural 
crest–derived leptomeningeal and perivascular cells. It appears that, 
within these, a few acquired mutations can start a process involving 
genetic instability and re-expression of developmental TFs shifting 
differentiated perivascular cells into more progenitor-like cells within 
the differentiation trajectory of the neural crest.

MATERIALS AND METHODS
The reagents, software, and public datasets are listed in data file S8. 
The machine learning models, training datasets, testing datasets, main 
lineages, sublineages, and assigned cell types are listed in data file S9.

Human GC cultures
Surgical tissue samples and clinical information for glioma patients 
were obtained from Karolinska Hospital in accordance with the 
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protocol approved by the regional ethical review board. An informed 
written consent was obtained from all patients. We have used 
18 human glioblastoma cell lines between passages 1 and 5. Tumors 
were classified by a neuropathologist on the basis of the World 
Health Organization classification. Human glioblastoma tissues were 
cultured as previously described (53) with some modification. The 
tissue was minced with a scalpel, digested in Accutase/TrypLE (1:1) 
at 37°C for 15 min, and triturated through 18G and 21G needles. 
The dissociated cells were resuspended in NeuroCult NS-a basal 
medium (STEMCELL Technologies) with the addition of 1% B27 
(Invitrogen), 0.5% N2 (Invitrogen), and 10 ng/ml each of EGF and 
fibroblast growth factor 2 (PeproTech), plated on laminin-coated 
Primaria dishes (Corning), and cultured as adherent cells.

Lentiviral-based genetic modifications of human pericytes 
and fibroblasts
Human brain vascular pericytes (HBVPs) and human brain vascular 
adventitial fibroblasts (HBVAFs) were purchased from ScienCell 
and cultured following the instructions provided by the company. 
The lentiviral construct, shCDKN2A pGFP-c-shLenti vector, was 
purchased from OriGene Technologies, and shNF1/P53 dual shRNA 
(CS-LvRU6GP) expressing GFP and pEZ-Lv151 vector expressing 
PDGFB were purchased from GeneCopoeia. The viral particles 
were produced in 293T cells through cotransfection of pMD2.G 
and psPAX2 at a ratio of 4:2:3. Supernatants were harvested 48 and 
72  hours after transfection and concentrated using Lenti-X Con-
centrator solution (ClonTech). Viral pellets were resuspended in 
phosphate-buffered saline (PBS) and stored at −70°C until further 
use. HBVPs or HBVAFs were infected for 48 hours and then selected.

Colony formation assay
A total of 1 × 104 cells were mixed in 1.5 ml of 0.4% agarose as the 
top layer with a bottom base of 1.5 ml of 0.6% agarose, cultured in a 
six-well plate. The 0.4% and 0.6% agarose are the mixtures of low–
melting point agarose and NeuroCult NS-a basal medium above. 
Every culture well is photographed for at least two views randomly; 
then, the pictures were counted for colony numbers after 20 days. 
The average counts were taken as counts of one sample. Triplicate 
wells were included in each analysis and at least three independent 
experiments were conducted.

Intracranial transplantation
Animal experiments were performed in accordance with the rules 
and regulations of Karolinska Institute and approved by the local 
animal ethics committee. Intracranial transplantation of human 
germinal center (GC) cultures was performed in neonatal nonobese 
diabetic–severe combined immunodeficient (NOD-SCID) mice as 
previously described (54). Human GCs were dissociated in TrypLE, 
and the number of cells was determined using a Coulter Counter 
(Coulter Electronics). Stereotaxic injections of 2 × 105 genetic-modified 
HBVP or HBVAF cells in 4 l of Dulbecco's PBS were performed on 
8- to 10-week-old female NOD-SCID mice. The coordinates were 
0.5 mm anterior of bregma, 1.1 mm lateral, and 2.5 mm ventral. 
Injected mice were monitored every second day and euthanized 
upon symptoms of disease. After euthanizing the mice, their brain 
was collected and fixed with 4% paraformaldehyde in PBS for over-
night. The tissue was then washed with PBS and incubated with 
15% sucrose for 24 hours, and 30% sucrose for another 24 hours. 
After that, the tissue was embedded into optimal cutting temperature 

compound (Sakura Biotech) in a Cryomold (Sakura Biotech) and 
frozen using liquid nitrogen. The frozen tissue blocks were stored 
in −80°C. Ten- to 12-m-thin cryo-sections of xenograft tumor tissue 
were prepared on Superfrost Plus slides and slides were either 
stored in −80°C or processed immediately for immunofluorescence, 
fluorescence in situ hybridization, or hematoxylin and eosin staining.

Immunofluorescence analysis of mouse brains
Frozen sections were blocked in PBS containing 0.2% Triton X-100 
(PBS-T), 3% bovine serum albumin, and 5% normal goat serum and 
incubated with primary antibodies for 1 hour at room temperature 
or at +4° for 4 hours in a humidified chamber. The sections were 
then washed with PBS-T three times and incubated with secondary 
antibodies (1:500) at +4° for 4 hours. After finally washing three 
times in PBS-T, sections were mounted in Immu-Mount (Thermo 
Fisher Scientific) containing 4′,6-diamidino-2-phenylindole. The pic-
tures were taken using an LSM 700 confocal microscope (Carl Zeiss).

Fluorescence in situ hybridization (RNAscope)
Transcripts were detected using the RNAscope assay for fresh-frozen 
tissue (Advanced Cell Diagnostics). The probes were designed and 
provided commercially by Advanced Cell Diagnostics Inc. For the 
complete list of probes and genes, see Resource and Reagent List. 
The staining was performed using the RNAscope Fluorescent 
Multiplex Reagent Kit (catalog no. 320850), reagents, and probes 
according to the manufacturer’s instructions. Imaging was performed 
using LSM 700 confocal microscopes (Carl Zeiss).

Single-cell isolation and cDNA synthesis
A Fluidigm C1 Autoprep System microfluidic chip was used to 
capture the cells. Immediately after the image acquisition, cell lysis, 
reverse transcription, and polymerase chain reaction (PCR) ampli-
fication were performed as previously described (55). The amplified 
cDNA was harvested with 13 l of Harvest Reagent and cDNA 
library quality was measured on an Agilent Bioanalyzer.

Preparation of sequencing library and Illumina sequencing
For patient-derived glioblastoma cells, we used 5′ single-cell–tagged 
reverse transcription sequencing (STRT-seq). Cell barcoding and 
fragmentation were performed in a single step using Tn5 DNA 
transposase (“tagmentation”) as described previously. One microliter 
of Dynabeads MyOne Streptavidin C1 beads (Invitrogen) was 
resuspended in binding and blocking buffer (10 mM tris, 250 mM 
NaCl, 5 mM EDTA, and 0.5% SDS) at the ratio of 1:20 and then 
added to each well. After incubation at room temperature for 15 min, 
all wells were pooled, and the beads were washed once with 100 l 
of washing buffer (10 mM tris–150 mM NaCl and 0.02% Tween 20), 
once with 100 l of QIAGEN Qiaquick PB, and then twice with 
100 l of washing buffer. Restriction was performed to cleave 3′ 
fragments: The beads were incubated in 100 l of restriction mix 
[1× NEB CutSmart and PvuI-HF enzyme (0.4 U/l)] for 1 hour at 
37°C. Last, the beads were washed three times with the washing 
buffer, and then resuspended in 30 l of ddH2O and incubated for 
10  min at 70°C to elute the DNA. AMPure beads XP (Beckman 
Coulter) were used at 1.8× volume and eluted in 30 l to remove 
short fragments. The molar concentrations of the libraries were 
determined with KAPA Library Quant qPCR (Kapa Biosystems) 
and the size distribution was evaluated after PCR (12 cycles) using 
an Agilent Bioanalyzer. Sequencing was performed on an Illumina 
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HiSeq 2000 with C1-P1-PCR2 as read 1 primer and C1-TN5-U as 
index read primer. Reads of 50 base pairs (bp) as well as 8-bp index 
reads corresponding to the cell-specific barcodes were generated. 
For genetic-modified perivascular cells, the scRNA-seq was performed 
by using Chromium Single Cell 3′ Reagent Kits (10x Genomic, 
version 3) according to the manufacturer’s instruction.

Bioinformatics preprocessing, copy number analysis, 
and clustering
For STRT-seq, the reads were aligned by STAR using GRCh38.p12 
genome assembly and processed as described previously (55). The 
cells harboring less than 1000 detected transcripts or less than 
450 detected genes were filtered out. After these quality control 
procedures, 4073 cells were left with the median detected protein 
coding genes of 3531 counts. For 10x scRNA-seq, data preprocessing 
was performed via Cell Ranger. The copy number analysis was per-
formed with CONICS following the instruction (56). Briefly, genes 
expressed in <5 cells were excluded. After centering the gene ex-
pression in each cell around the mean, the z-score of the centered 
gene expression was calculated across all cells. Next, the bimodal 
distribution of gene expression in any regions across cells was 
determined by a Gaussian mixture model mode, and the regions 
containing more than 100 expressed genes were identified for the 
next step. Then, the reported mixture models were chosen follow-
ing the criteria of the Bayesian information criterion >5 and the 
P value of likelihood ratio test <0.05. To detect the existence of 
CNVs, the threshold of posterior probabilities was set as 0.55, and 
the gain or loss was determined by comparing the average expression 
in the normal cells. The heatmap visualizations of chromosomal 
alterations were generated in every single cell across the genome for 
all calculated patients.

Before clustering, we removed the cell cycle–related genes and 
then computed the coefficient variation (CV) (SD divided by the 
mean) versus the predicted CV (estimated by a nonlinear noise 
model) and applied the fit of noise distribution to select the most 
variable features that are greater than the expected CV. Support 
vector regression (SVR) from scikit-learn package was used for this 
analysis. The most variable features were used for calculating the 
top 20 PCs, and the top 10 nearest neighbors, 0.5 minimum distance, 
and Euclidean distance were used for UMAP.

The most variable genes were then used for cell clustering via 
different algorithms including the DBSCAN algorithm (Seurat V1.2) 
and the Louvain method for community detection with a resolution 
value of 1 (Seurat V3.0+) (55, 57). Furthermore, we applied several 
rounds of clustering, zoom-in clustering, and cluster recombining 
to make sure that all clusters are biologically meaningful and exhibited 
significant markers. Eventually, cells were grouped into 20 clusters, 
and the marker genes of every cluster were determined via enrich-
ment score as described in (44). The enrichment score Ei,j for gene 
i and cluster j was defined as

	​​ ​E​ i,j​​ = ​ (​​ ​ 
​​ i,j​​ + 1

 ─ ​​ i,​ _ j ​​​ + 1 ​​)​​​(​​ ​ 
​​ i,j​​ + 2

 ─ ​​ i,​ _ j ​​​ + 2 ​​)​​​​	

Here, i, j represents the score of nonzero expression for the cells 
in this cluster, and ​​​ i,​ _ j ​​​  ​represents the score of nonzero expression 
for the cells that are not in this cluster. i, j represents the mean 
expression for the cells in this cluster, and ​​​ i,​ _ j ​​​​ represents the mean 
expression for cells that are not in the cluster. A small value of the 

constants 1 and 2 is added to prevent the divisor from having a 
value of zero.

Scoring analysis of cell-type identity
For this analysis, our goal was to score the probabilistic cell identity 
of each cell relative to the defined cell types at the transcriptional 
level (21). We built an L2-regularized logistic regression model, a 
C-support vector classification model, and a vanilla neural network 
model (PyTorch framework with Skorch package) for classification 
tasks and trained the model to learn the general prototypes of 
defined cell types. To train the model, we removed the cell cycle–
related genes, and then computed the CV (SD divided by the mean) 
versus the predicted CV (estimated by a nonlinear noise model), 
and applied the fit of noise distribution to select the most variable 
features that are greater than the expected CV. SVR from the scikit-
learn package was for this analysis. The overdispersed genes were 
further ranked by two heuristics for the cell-type specificity of both 
fold change and enrichment score change (44). For TCGA subtype 
classification, the originally defined TCGA subtypes were used as 
reference cell types, and the originally identified marker genes of the 
four subtypes were manually added as feature genes for training 
the neural network classifier. For the lineage classification based on 
the differential methylation sites, the defined lineages at the tran-
scriptional level were used as the reference cell types, and the iden-
tified differential methylation sites were used as the features for 
training the neural network classifier. The cross-species alignment 
was performed as described in (21). To compare the data from 
UMI-based platforms and the Smart-seq2 platform, data were scaled 
by SD owing to the potentially larger gene variation in Smart-seq2 
(58). Subsequently, the ranked marker genes of the defined cell types 
were log-transformed and scaled by Minmax normalization, and 
then used for the different learning models:

1) The L2-regularized logistic regression model was as described 
in (59).

2) To test the adequate strength of the regularization in the 
C-support vector classification model, the C regularization param-
eter and three kernel types, “linear,” “sigmoid,” and “rbf,” were 
inspected via GridSearchCV. The classifier accuracy was estimated 
by a k-fold cross-validation, of which the dataset was randomly split 
(25% test_size). The value of the C regularization parameter and the 
kernel type were chosen corresponding to the maximum point of 
the learning curve reaching the accuracy plateaus.

3) The neural network model contains an input layer with the 
number of neuron nodes being the same as the number of marker 
genes, a hidden layer with the number of neuron nodes being the 
same as 20% of marker gene numbers, and an output layer with the 
number of neuron nodes being the same as the number of defined 
cell types. Linear regression was performed between each layer, and 
30% of dropouts were set to reduce the overfitting. Rectified linear 
unit (ReLu) was used as the activation function of the hidden layer, 
and Softmax was used for the output layer to evaluate the probabili-
ties. Nesterov momentum was used as a stochastic gradient descent 
(SGD) optimizer. To choose the adequate regularization strength, 
the classifier accuracy and the loss value were inspected against 
epoch numbers. The classifier accuracy was estimated by a k-fold 
cross-validation, of which the dataset was randomly split (k = 3). 
The learning rate, epoch number, and momentum were chosen 
corresponding to the maximum point of the learning curve reaching 
the accuracy plateaus.
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4) The node-level graph neural network (GNN) model contains 
an input layer with the number of node features being the same as 
the number of marker genes, two hidden layers with the number of 
neuron nodes being the same as 25% of marker gene numbers, and 
an output layer with the number of neuron nodes being the same 
as the number of defined cell types. The edge indexes were selected 
as the top 10 nodes upon K-nearest neighboring (KNN) calcula-
tion of the top 30 principal components.

GCNConv (message passing) was performed between each layer, 
and 20% of dropouts were set. ReLu was used as the activation func-
tion of the hidden layer, and Softmax was used for the output layer 
to evaluate the probabilities. Momentum  was set to 0.9 in the SGD 
optimizer. To choose the adequate regularization strength, the classifier 
accuracy and the loss value (CrossEntropyLoss) were inspected 
against epoch numbers. The learning rate, epoch number, and 
momentum were chosen corresponding to the maximum point of 
the learning curve reaching the accuracy plateaus.

We set the same learning steps for all four models and found 
that the learning accuracy and running period were 97.62% and 
1390.83 s for the L2-regularized logistic regression model; 97.59% 
and 3084.81 s for the C-support vector classification model; 99.6% 
and 131.14 s for the vanilla neural network model; and 99.13% and 
349.81 s for the node-level GNN. Thus, the ready vanilla neural 
network model was further used to predict the probabilities of each 
cell belonging to each trained reference cell type. The permutation 
test of dataset was applied to qualify the significance of the predic-
tion, and the P value was calculated by false discovery rate. The 
prototype threshold of a defined cell type was determined as the 
larger value of significant probability (P < 0.05) and dominant 
probability (>60). If the probability of a predicted cell to one cell 
type is over this cell type’s prototype threshold, this predicted cell 
was considered as “cell type defined” and was assigned to this 
cell type. Data were visualized in the radar plot. The radar plot 
consists of a sequence of equiangular polygon spokes with the distal 
vertex representing each trained reference cell type. The distance 
between the polygon center and each vertex of the polygon represents 
the relative probabilities of each trained reference cell assigned to 
the defined reference cell types. Thus, the position of each predicting 
cell was calculated as a linear combination of the probabilities 
against all reference cell types and then visualized as the relative 
position to all vertices of the polygon.

Deconvolution of bulk tumor RNA sequencing
A bulk tumor tissue contains both the malignant cells and various 
microenvironment cells that disturb the transcriptional profile of the 
endogenous tumor cells. In addition, the intratumor heterogeneity 
of glioblastoma tissue further blurs the expression matrix. To 
enrich/denoise the gene expression of the dominant tumor cells 
from glioblastoma bulk tissue, we applied the deconvolution method 
via the power-law transformations and the autoencoder of con-
volutional neural network (CNN) (60). The RNA-seq data of TCGA 
were obtained from the UCSC Cancer Browser, and our scRNA-seq 
data were used as the reference dataset for deconvolution. Genes in 
the reference dataset were prefiltered by the count frequency as 
described in BACKSPIN (55), and then used for the deconvolution 
of bulk tissue. Each gene was scaled by Minmax normalization and 
visualized by a curved line plot; the x axis represents the cell/sample 
that was sorted by the expression value of the gene. Thus, we ob-
tained the distribution of gene expression of these datasets and 

visualized them in a curve line plot. The mean values of all curves 
were calculated for the least squares polynomial approximation via 
Numpy, and the square root was used as weights to find the  value 
of the curve. By comparing the  values of both bulk tissue data and 
reference glioblastoma single-cell data, the expression matrix of 
bulk sequencing was fit to the same distribution of single-cell se-
quencing via power-law transformations (fig. S2B, step 1).

Next, the CNN autoencoder was applied for denoising the trans-
formed datasets. The autoencoder contains two layers of convolution 
and four layers of transposed convolution in the PyTorch frame-
work. The hyperbolic tangent activation function (Tanh) was used 
as the activation function between each layer, and sigmoid was used 
for the output layer. The mean squared error between each element 
in the input (MSELoss) was evaluated against the epoch. The learning 
rate and epoch number were chosen corresponding to the mini-
mum point of loss_value curve after reaching the loss_value plateaus 
(fig. S2B, step 2). After the training of the reference glioblastoma 
scRNA-seq data, the model was performed for the deconvolution of 
the transformed dataset of glioblastoma bulk tissue. The deconvo-
luted dataset was scaled and visualized in a curve line plot as 
described above for evaluation and subsequently used for further 
analysis.

Single-cell Weighted Assignment and Projection 
on developmental LINEages
The aim of SWAPLINE is to place each test cell into a trajectory 
position of normal developmental lineage(s), via combining both 
KNN and the scoring of probabilistic cell identity. The workflow is 
described in fig. S3D.

To construct the reference lineage trajectory, the endogenous 
mouse brain cell types were from developmental brain atlas (16) or 
collected from different datasets generated via the Smart-seq2 
scRNA-seq platform, including adult Rgl/neural stem cells, neuro-
blasts (35), meningeal cells derived from neural crest (34), neural crest 
and neural tube cells captured from the developing embryo (33), 
and oligodendrocytes, astrocytes, and perivascular mural cells (17). 
These cell types should together represent possible endogenous brain 
cell types to which glioblastoma cells display similarities. Meningeal 
cells, embryonic neural crest cells, and perivascular mural cells 
theoretically belong to neural crest lineage in brain, while other cell 
types follow the CNS neural development. UMAP was used to build 
the reference plot that reflects the transcriptional relations among 
all reference cell types. PAGA analysis (61) further confirmed the 
lineage relations among the reference cell types. Subsequently, two 
steps of quantification were applied in parallel: First, we used all 
these reference cell types to perform the cell scoring of probabilistic 
similarity. Next, we divided the prototype probabilities into two 
groups according to the developmental lineages of the reference cell 
types: a neural crest lineage and a CNS neural lineage as described 
above. For each predicted cell type, the mean value of the prototype 
probabilities of the two lineage groups was used to estimate the 
lineage similarity of this predicted cell type, the higher lineage 
probability assigned, and the predicted cell type into this lineage for 
further lineage-specific SWAPLINE analysis. Since there are two 
major lineages in the reference cells during neural/neural crest 
development, we assigned each predicted cell type into its normal 
developmental lineage by referring to the top N (N = 3 or 4 here) 
closest reference cell type in PAGA. For each lineage, the top 
connected reference cell types and predicted cells were used for 
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probabilistic scoring. The permutation test was applied as the 
negative control and background noise. Second, we used KNN to 
evaluate the putative position of each predicted cell corresponding 
to every reference cell types in the UMAP. Briefly, we first calculated 
the top principal components of all cells following the Elbow method, 
and then used these principal components to access the pairwise 
distances of Euclidean metric among all cells. For each predicted 
cell, we selected the top 25 nearest cells in each reference cell type 
and calculated the median UMAP coordinates of these top nearest 
cells. Thus, we obtained the KNN putative positions of the predicted 
cells in each top N connected reference cell type. Furthermore, the 
prototype probabilistic score of each cell was normalized to the 
median value of randomized probabilities that were generated from 
the permutation test and further rescaled by Minmax. The cells with 
global prototype similarity (putatively low-quality cells or extreme-
ly high-plasticity cells) were excluded if one predicted cell’s SD of 
probability among prototypes was lower than the permutation test. 
Subsequently, a linear combination of both KNN putative positions 
and cell probabilities of top N related and connected reference cell 
types represents the developmental trajectory position of each 
predicted cell: Let N be the total number of prototypes, let pm be the 
probability of a cell belonging to prototype m, let cmj be the coordi-
nate of nearest neighboring cell j of the predicted cell from prototype 
m, and let k be the top closest constant; the predicted coordinates of 
test cell ​​ → a ​​ upon the origin of coordinates then was defined

	​​​  → a ​ = ​ ∑ 
m=1

​ 
N

  ​​ ​p​ m​​​(​​ ​ 1 ─ k ​ ​∑ 
j=1

​ 
k
  ​​ ​c​ mj​​​)​​​​	

Disentangling trajectory analysis of the branching tree
The principal branching tree was constructed to elucidate the fun-
damental lineages of glioblastoma cells via a simplified elastic 
principal graphs. Elastic principal graphs are a generalization of the 
elastic map algorithm for approximating principal manifolds from 
the data with a given topology (36). A principal manifold is an 
undirected graph (B) composed of nodes (N) and edges (E). The 
nodes are embedded into the data space by minimizing both the 
approximation error (mean squared distance) to the data points 
and the elastic energy [U(B)], defined as

	​​ U​​ Ф​(D, B ) = ​  1 ─ Num ​ ​ ∑ 
j=1

​ 
∣N∣

​​ ​  ∑ 
Pn(i)=j

​​​ min {​‖​D​ i​​ − Ф(​N​ j​​ ) ‖​​ 2​, ​​T​ r​​​​ 2​}+ ​U​​ Ф​(B)​	

k-star in graph G defines a subgraph that contains k + 1 nodes, 
n0,1,...,k ∈N, and k edges {(n0, ni)|i = 1, ..., k}. D represents the struc-
tured data points, and Num is the number of data points.  (Nj) is 
the map Ф: N → Rm, which represents an embedding of each j node 
in the data space. The data point partitioning Pn was defined as 
Pn(i) = arg minj = 1…|V| (Di − (Vj))2, and it provides an index of a 
node that is the closest to the ith data point in the graph. Each 
iteration provides the initial guess of , the partitioning Pn(i) is 
computed, and U  (D, B) is minimized via exploring new node 
positions in the data space. Tr represents the trimming radius, a dis-
tance dropout parameter in the limit, of which the data points were 
used for graph optimization. For the comprehensive evaluation, we 
set Tr as infinite here. The edges among the nodes define the elastic 
energy, which serves as a penalty for the graph embedding. The 
elastic energy is manifested by two main factors: the stretching and 
non-equal distance of node-to-node positions [​​U​E​ Ф​(B)​, weighted by 

the ] and the deviation from harmonic embedding [​​U​R​ Ф​(B)​, weighted 
by ], defined as

	​​ U​​ Ф​(B ) ≔ ​ U​E​ Ф​(B ) + ​U​R​ Ф​(B)​	

​​U​E​ Ф​(B ) ≔ ​ ∑ 
​E​ i​​

​ ​​ {  + (max(2, ​k​ ​E​ i​​(0)​​, ​k​ ​E​ i​​(1)​​ ) − 2 ) }​‖Ф(​E​ i​​(0 ) ) − Ф(​E​ i​​(0 ) ) ‖​​ 2​​	

	​​ U​R​ Ф​(B ) ≔   ​∑ 
​S​ i​​

​ ​​ ​​(​​Ф(​S​ i​​(0 ) ) − ​ 1 ─ ​k​ i​​
 ​ ​ ∑ 
j=1

​ 
 ​k​ i​​

 ​​ Ф(​S​ i​​(j ) ) ​)​​​​ 
2

​​	

An elastic principal tree contains selected families of k-stars Sk. 
Each graph edge E(i) has two nodes E(i)(0) and E(i) (1). Sk

(j)(0) to 
Sk

(j)(k) denote the nodes of a star Sk
(j) in the graph, and Sk

(j)(0) rep-
resents the center node that links to all other nodes. According to 
the equation, the elastic energy is regulated by two weighted factors: , 
regularizing the overall length of the edges, and , the deviation of 
the star nodes from harmonic embedding. Thus, we evaluated the 
construction of a principal tree upon different combinations of  
and . Besides these two, the parameter  independently regulates 
the appearance of branches via perturbing the edges of higher-order 
star nodes. To avoid excessive branching, we use a small value (0.01) 
here according to the formal description. As the SWAPLINE coor-
dinates of each glioblastoma cell represent its status within the 
developmental trajectory of normal brain cells, we use the SWAPLINE 
coordinates to perform the low-dimensional construction of the 
principal branching tree. To test the robustness of the principal 
graph, we inspected different combinations of the elastic stretching 
(; range, 0.001 to 0.02) and the deviation from harmonicity penalty 
(; range, 0.05 to 0.5). A total of 2565 rounds of the principal graph 
were tested and visualized. To obtain the minimum branching and 
the maximum elastic stretching, we chose the principal tree pro-
duced with  = 0.01 and  =0.2 for subsequent analyses; alternatively, 
the principal tree can be obtained from the PCA of the parameter tests 
described above. Each edge of the principal tree was smoothened by 
one-dimensional interpolation via the interp1d package from SciPy. 
In addition, the small branch with only one single link between two 
nodes was merged into the neighboring larger branch. Next, we 
used the Shapely package to project all cell dots onto the principal 
edge by evaluating the shortest distance at the two dimensions and 
adjusted the cell positions to keep the same intercellular distance 
along each branch. To identify the branching related genes, we 
separated the principal tree to five branches according to the branch 
point and the branch lineage. For each branch, the smoothed ex-
pression for each gene along the branch was determined by using a 
Gaussian filter or a generalized linear model (SciPy package). 
Significant branching genes were determined by three heuristics: (i) 
significant distribution based on the cumulative distribution func-
tion comparing the branching position and the smoothed expression, 
(ii) significant correlation (Spearman’s) between the branching 
position and the smoothed expression before and after peak value, 
and (iii) the gene expression should fit the criteria that at least 5% of 
the cells express two molecular counts and at least 20% of the cells 
express one molecular count. All smoothed expression was normal-
ized to the central branching point for further comparison.

Analysis of cell cycle
A list of genes has been assigned to two major phases (S and G2-M) 
of the cell cycle (9). The significant phase activation was evaluated 
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by comparing the expression of phase-related genes and the expres-
sion of random genes as described in Seurat, with small modification. 
Briefly, the overdispersed genes of a dataset were evaluated by esti-
mating the mean and coefficients of variation. The overdispersed 
cell cycle genes were selected for phase scoring, and the rest of the 
genes were ranked by the expression and separated into 25 intervals 
according to the rank. In each interval, we selected the first 50 genes 
for randomization and thus generate the random gene matrix. The 
phase scores were generated by estimating the differential mean ex-
pression of the phase genes and the randomized genes. Phase G0-G1 
was decided if the expression of phase genes was lower than ran-
domized values. The activation of other phases was decided by the 
larger value of the phase score. Thus, each cell was assigned to different 
phases of the cell cycle and subsequently projected to the plot.

Comprehensive RNA velocity of all glioblastoma cells 
on STRT-seq/STRT-seq-2i
Spliced and unspliced counts of glioblastoma cells were quantified 
as described by La Manno et al. (40) using the RNA velocity package, 
with modification for 5′ STRT-seq. We extracted the barcode and 
UMI with the fault tolerance of 1 base mismatch from the FASTQ 
file. Meanwhile, we added the first 4 bases of the transcript sequence 
to the original 6 bases of UMI to generate 10 new bases of UMI for 
each read. The barcode tag and UMI tag were defined via SAMtools 
(pysam). The reads were aligned by STAR using GRCh38.p12 ge-
nome assembly and processed as described previously (55). We 
calculated spliced and unspliced counts using the built-in package 
of Velocyto (session of “any technique-advanced use”) with masking 
expressed repetitive elements. A total of 2451 cells were selected 
with the criteria of 200 unspliced molecules and 200 spliced mole-
cules, and most variable genes were filtered with the criteria of four 
minimum unspliced molecules detected in a minimum of three cells. 
PCAs were selected according to 0.55% ratio of variance explained by 
each of the selected components. Data were smoothened via balanced 
KNN imputation with K = 500, b_sight = 4*K, b_maxl = 3*K. The 
variance normalizing transform was performed in log value. The 
time step for extrapolation is 5, and kernel scaling was set as 0.05 in 
calculating the transition probability to project the velocity direc-
tion on the embedding. The embedding scatter plot was forked 
from the branching tree plot as described above, and the branching 
tree plot widened along each axis for better visualization.

Extraction of core/hub glioblastoma cells via  
density estimation
To estimate the density of glioblastoma cells in the lineage plot, the 
coordinate of each cell in both scatter plot and branching tree plot 
was stacked vertically and applied for kernel-density estimation 
using Gaussian kernels. Bandwidth vector was generated via the rule 
of thumb of Scott. Relative density was calculated by comparing the 
overall density in the plot. Cells with the top 50% density were 
defined as hub/core cells, and the rest of the cells were defined as 
branch cells.

SCENIC analysis
To infer the TFs and their target gene networks, SCENIC analysis 
was performed according to the authors’ vignette. Briefly, the 
TF-targeted gene sets were identified via the following criteria: first, 
coexpression with TFs and, second, enriched in the direct motif of 
the TF. Then, the regulon activities were scored and binarized to 

determine whether the gene sets of each regulon were significantly 
enriched in cells.

Quantification and statistical analysis
Statistical analysis between groups was performed using two-tailed 
Student’s t test. Kaplan-Meier survival was calculated via log-rank 
test. Experiments were representative of at least three independent and 
biological replicates. Error bars in figures represent means ± SEM.  
P values were indicated in figures or marked as *P < 0.05 and 
**P < 0.01.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm6340

View/request a protocol for this paper from Bio-protocol.
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4.5. RNetDys: identification of disease-related impaired regulatory 

interactions due to single nucleotide polymorphisms 

4.5.1. Preface 

Gene expression is regulated by complex mechanisms at the transcriptomic and 

epigenomic level. The accessibility of promoter and enhancer regions is controlled by 

chromatin conformation which may restrict the binding of TFs to these regulatory regions 

and the recruitment of the transcriptional machinery. The dysregulation of these mechanisms 

has been linked to disease onset and development. 

SNPs have been characterized as genetic risk factors due to their association to 

disease-related genes. However, how SNPs affect the regulation of gene expression and 

promote disease development is still unclear. The majority of the characterized SNPs has 

been found in enhancers which are described to have a cell type-specific function. Providing 

additional mechanistic insights regarding the impact of SNPs in the impairment of regulatory 

interactions would allow for a deeper understanding of disease development and advance 

gene therapy approaches. 

We developed RNetDys, a systematic pipeline based on multi-omics data that 

characterizes impaired regulatory mechanisms due to disease-associated SNPs. This pipeline 

combines scRNA-seq, scATAC-seq, and prior knowledge data to infer cell (sub)type 

specific GRNs. We determine impaired regulatory interactions by mapping disease-

associated SNPs to the regulatory regions in the inferred GRN. We collected SNPs 

associated to five diseases and validated the relevance of our results by cross-referencing 

with GWAS, eQTL and literature-based evidence. RNetDys is a user-friendly systematic 

pipeline that leverages multi-omics data to identify regulatory mechanisms impaired due to 

disease-associated SNPs, providing promising targets for the development of gene therapies. 

In this study, I collect the datasets used for benchmarking, performed data analysis 

for the generation of healthy cell (sub)type specific GRNs, curated the table reporting the 

impaired regulatory interactions in each of the case studies, and performed the validation of 

impaired interactions (Figure 4, Figure S2-7, and Table S2-4 of the manuscript). 

 

  



 

144 

  



 

145 

4.5.2. Preprint 

 

RNetDys: identification of disease-related impaired regulatory 

interactions due to SNPs 

  

Céline Barlier1, Mariana Messias Ribeiro1, Sascha Jung2, Antonio del Sol1,2,3,* 

  

1 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 

Esch-sur-Alzette, Luxembourg 
2 CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology 

Park, 48160 Derio, Spain 
3 IKERBASQUE, Basque Foundation for Science, Bilbao, 48012 Bilbao, Spain 

* To whom correspondence should be addressed: Antonio.delsol@uni.lu 

 

Abstract 

Motivation: The dysregulation of regulatory mechanisms due to Single Nucleotide 

Polymorphisms (SNPs) can lead to diseases and does not affect all cell (sub)types equally. 

Current approaches to study the impact of SNPs in diseases lack mechanistic insights. 

Indeed, they do not account for the regulatory landscape to decipher cell (sub)type specific 

regulatory interactions impaired due to disease-related SNPs. Therefore, characterizing the 

impact of disease-related SNPs in cell (sub)type specific regulatory mechanisms would 

provide novel therapeutical targets, such as promoter and enhancer regions, for the 

development of gene-based therapies directed at preventing or treating diseases. 

Results: We present RNetDys, a pipeline to decipher cell (sub)type specific regulatory 

interactions impaired by disease-related SNPs based on multi-OMICS data. RNetDys 

leverages the information obtained from the generated cell (sub)type specific GRNs to 

provide detailed information on impaired regulatory elements and their regulated genes due 

to the presence of SNPs. We applied RNetDys in five disease cases to study the cell (sub)type 

differential impairment due to SNPs and leveraged the GRN information to guide the 
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characterization of dysregulated mechanisms. We were able to validate the relevance of the 

identified impaired regulatory interactions by verifying their connection to disease-related 

genes. In addition, we showed that RNetDys identifies more precisely dysregulated 

interactions linked to disease-related genes than expression Quantitative Trait Loci (eQTL) 

and provides additional mechanistic insights. 

Availability: RNetDys is a pipeline available at https://github.com/BarlierC/RNetDys.git 

Contact: Antonio.delsol@uni.lu 

 

Introduction 

Gene regulation is largely controlled by the binding of transcription factors (TFs) to 

regulatory elements, such as promoters and enhancers, to control cell (sub)type specific 

functions. Notably, it has been shown that most of these functions are strongly regulated by 

enhancer activity (Latchman, 2011; Andersson et al., 2014). Therefore, the impairment of 

the regulatory interactions between TFs and enhancers of regulated genes can lead to 

dysregulations that trigger pathological gene expression changes that contribute to disease 

development (Lee and Young, 2013). In that regard, Single Nucleotide Polymorphisms 

(SNPs) have been shown to be associated with regulatory dysregulations driving complex 

diseases, such as diabetes and Alzheimer’s disease (AD) (Hiramoto et al., 2015; 

Akhlaghipour et al., 2022). Standard approaches such as Genome-Wide Association Studies 

(GWAS) and expression Quantitative Trait Loci (eQTLs) have been used to study the 

association between SNPs and genes (Visscher et al., 2017; Bryois et al., 2022; Gazal et al., 

2022). In particular, GWAS successfully deciphered thousands of disease-related SNPs 

(Claringbould and Zaugg, 2021). GWAS showed that the majority of these SNPs were found 

in non-coding regions, particularly in enhancer regions, and thus were most likely involved 

in gene regulation (Nica and Dermitzakis, 2013). Moreover, eQTLs have been useful to 

provide further insights in understanding the influence of SNPs in diseases by associating 

them to their target genes, based on the statistical association of gene expression variation to 

these genetic polymorphisms (Jeng et al., 2020). However, these approaches only provide 

information on SNP-gene relationships. Leveraging multi-OMICS data to construct and 

exploit the regulatory landscape in order to gather additional mechanistic insights would 

significantly contribute to a better understanding of the impact of disease-related SNPs on 

gene regulation and disease development. Notably, GRNs have been widely used to gain 
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insights into diseases (Emmert-Streib et al., 2014; Ament et al., 2018; Bakker et al., 2021) 

but the characterization of underlying regulatory mechanisms dysregulated due to SNPs and 

the cell (sub)types specifically impaired remains elusive. The resolution of cell (sub)type 

specific regulatory mechanisms impaired due to SNPs in disease would provide additional 

mechanistic insights and pave the way towards the development of gene-based therapies for 

disease prevention and treatment (Uddin et al., 2020). 

We present RNetDys, a multi-OMICS pipeline that identifies impaired regulatory 

mechanisms due to the presence of disease-related SNPs at the cell (sub)type level. In 

particular, RNetDys combines scRNA-seq, scATAC-seq, ChIP-seq and prior-knowledge to 

build comprehensive cell (sub)types or state specific GRNs that are leveraged to capture 

impaired interactions due to disease-related SNPs. Compared to existing strategies to study 

SNPs (Farh et al., 2014, Yu et al., 2022; Nathan et al., 2022), this pipeline provides a 

comprehensive view of the impaired regulatory landscape, including interactions mediated 

by TFs and enhancers of regulated genes and activation or repression mechanisms to provide 

additional mechanistic insights. In particular, RNetDys provides the binding affinity score 

of impaired TFs, the type of mechanism dysregulated, and a list of ranked TFs based on their 

importance in the impaired network topology, the strength of the binding impairment and 

the frequency of SNPs occurring in the global population. 

We applied RNetDys in five disease case studies and showed that it was able to accurately 

capture impaired regulatory interactions and provide additional mechanistic insights by 

leveraging the information obtained from the GRN inference. 

 

Material and methods 

General workflow of RNetDys 

We implemented a systematic pipeline integrating different type of OMICS data to decipher 

impaired regulatory mechanisms due to SNPs in disease by leveraging the GRN information. 

The pipeline was divided in two main parts composed of the cell (sub)type specific GRN 

inference and the capture of impaired regulatory interactions due to disease-related SNPs to 

gain regulatory mechanistic insights for the disease. 
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 Cell (sub)type specific regulatory interactions inference 

The cell (sub)type specific regulatory network inference was based on a multi-OMICS 

approach that used single cell transcriptomics and single cell chromatin accessibility, not 

necessarily matched, as well as prior-knowledge, including ChIP-seq data and reported 

enhancers interactions. First, using the scRNA-seq we selected genes that were conserved at 

least in 50% of the cells for further analyses. Then, we ensured the accessibility of the 

corresponding promoter regions using scATAC-seq data and predicted TF-promoter 

interactions by intersecting the ChIP-seq TF-binding evidence with the open promoter 

regions using BEDTools (Quinlan and Hall, 2010). Then, we performed a peak correlation 

using the scATAC-seq data and carried out a statistical test, as well as a BH multiple 

correction, to select the significant interactions such as p-adjusted value < 0.05. The 

identified enhancer-promoter interactions were then intersected with GeneHancer 

(Fishilevich et al., 2017), used as a backbone, and interactions involving active promoters 

were kept. Then, TF-enhancers interactions were inferred by intersecting the ChIP-seq and 

scATAC-seq data. Finally, the regulatory interactions were signed to distinguish activations 

from repressions by computing the Pearson correlation between TFs and genes using the 

scRNA-seq dataset (Fig. S1). Correlation scores for enhancer-promoter interactions were 

computed such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸𝑎𝑎→𝐺𝐺𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑥𝑥→𝐺𝐺𝑏𝑏
𝑥𝑥

 

 With corV corresponding to the correlation value, E denoting the enhancer and G 

corresponding to the gene. And, correlation scores for TF-enhancer were computed such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐸𝐸𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐺𝐺𝑥𝑥
𝑥𝑥

 

 With corV denoting the correlation value, E corresponding to the enhancer and G to the 

gene. Finally, positive correlation scores were considered to be activations whereas negative 

ones were considered to be repressions. Further details are provided in Supplementary 

Information. 

Identify candidate impaired regulatory interactions 

Using the cell (sub)type specific GRN inferred in healthy condition, we then contextualized 

the GRN towards the disease condition. The contextualization required a list of SNPs for the 

disease studied and the cell (sub)type GRN of interest. The SNPs were mapped to the GRN 
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by using their coordinates and interactions for which a SNP was falling into a TF binding 

region of an enhancer or promoter were considered as candidates to be impaired in the dis-

ease. We then performed a TF binding analysis using PERFECTOS-APE (E. Vorontsov et 

al., 2015) to refine the candidate interactions by selecting the ones having at least one binding 

site significantly impaired by the SNP (Supplementary Information). Finally, we ranked TFs 

by their involvement in the regulatory impairments based on the network topology and the 

MAF score of SNPs such as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅 ×
𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅

 × ��|𝐴𝐴𝐴𝐴|𝑖𝑖𝑟𝑟 × �𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑟𝑟 × �𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 �� 

Where RE denote the number of regulatory elements regulated by the TF, NG corresponds 

to the number of downstream genes across RE, AI denotes the binding affinity impairment 

log2FC and i corresponds to the SNPs and r the regulatory element. 

Prior-knowledge collection and processing 

RNetDys relied on prior-knowledge data that were collected and processed to be integrated 

in the pipeline. The ChIP-seq bed files were downloaded from ChIP Atlas (Oki et al., 2018) 

for human hg19 and hg38 assemblies. Bed files were annotated using HOMER (Heinz et al., 

2010) with the latest GTF file for each assembly. Enhancer regions and their connected genes 

were obtained from the GeneHancer database (Fishilevich et al., 2017). Of note, GeneHancer 

database provided information for hg38 coordinates and hence, we used LiftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert these coordinates for hg19 to 

provide more flexibility to our pipeline. 

 Data collection and analysis 

First, to perform the benchmarking analysis, we collected 20 publicly available scRNA-seq 

and 11 scATAC-seq datasets from six human cell lines including BJ, GM12878, H1-ESC, 

A549, Jurkat and K562 (Table S1). Then, we collected scRNA-seq and scATAC-seq healthy 

data from pancreas and brain tissues to extract cell (sub)types using Seurat (Hao et al., 2021) 

and Signac (Stuart et al., 2020), and then generated the GRNs (Supplementary information). 

Finally, we collected SNPs from ClinVar (Landrum et al., 2018) for five diseases including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I (T1D) 

and type II (T2D) to perform the network contextualization towards the disease condition. 

Notably, SNPs were defined as being single nucleotide variants found at least in 1% of the 
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global population such as MAF >= 0.01 (Supplementary Information). In addition, we 

performed an outdegree analysis for three main TFs involved in the regulatory impairments. 

The outdegree ratios were computed by scaling each TF outdegree by the maximum 

outdegree in each cell (sub)type. 

Validation and comparison to state-of-the-art 

We first assessed the performances of RNetDys in identifying cell (sub)type specific 

regulatory interactions and compared them to state-of-the-art GRN inference methods (Aibar 

et al., 2017; Chan et al., 2017; Kim, 2015; Huynh-Thu et al., 2010) (Supplementary 

Information). First, we benchmarked the performances of each method to infer cell (sub)type 

specific TF-promoter interactions. The gold standards (GS) were compiled using cell line 

specific ChIP-seq from Cistrome (Mei et al., 2017) by selecting only the highest quality data. 

Then, we assessed the performances of RNetDys for capturing cell (sub)type specific 

enhancer-promoter regulatory interactions compared to Cicero, a widely used method to 

identify cis-interactions based on scATAC-seq data (Pliner et al., 2018). The GS networks 

were built using promoter capture Hi-C data from 3DIV (Yang et al., 2018) for three of the 

human cell lines. For both benchmarking analyses, we computed the precision (PPV) and 

F1-score (F1) to assess the performances such as: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

  and  𝐹𝐹1 =  2×𝑇𝑇𝑇𝑇
2×𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 

With TP = True Positive (predicted and found in the GS), FP = False Positives (predicted 

but not in the GS) and FN = False Negatives: (not predicted but in the GS). 

We then compared the ability of RNetDys to precisely capture gene-disease relationships in 

cell (sub)types, compared to eQTL (Bryois et al., 2022). First, we downloaded Online 

Mendelian Inheritance in Man (OMIM) Morbid Map (Amberger et al., 2019), filtered for 

gene-disease interactions reported in the five diseases in study (AD, EPI, PD, T1D, and 

T2D), and removed the interactions reported as provisional. Then, we matched these gene 

interactions to the SNP-associated genes identified by eQTL and RNetDys. The ratio of 

matched genes in eQTL and RNetDys was calculated by dividing the number of matched 

genes by the total of genes identified in each of the methods across all cell (sub)types. 
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Results 

RNetDys, a multi-OMICS pipeline to decipher impaired regulatory mechanisms 

We implemented RNetDys, a systematic pipeline based on multi-OMICS data to decipher 

impaired regulatory interactions due to SNPs in diseases by leveraging the information of 

cell (sub)type specific GRNs (Fig.1).  

RNetDys is an integrative approach relying on single cell transcriptomics and single cell 

chromatin accessibility from a specific cell (sub)type or state, as well as prior-knowledge 

information including extensive ChIP-seq data (Oki et al., 2018) and reported enhancer-

promoter relationships (Fishilevich et al., 2017). The pipeline is composed of two main parts: 

(i) the cell (sub)type specific GRN inference and (ii) the identification of impaired regulatory 

mechanisms due to SNPs in diseases (Fig. 1, Fig. S1). The first part consists of the GRN 

inference for a healthy cell (sub)type or state based on scRNA-seq and scATAC-seq data as 

an input. Notably, the two single cell datasets do not need to be matched but they need to 

contain the same cell (sub)type. The second part takes as an input a cell (sub)type or state 

specific GRN and a list of SNPs of particular interest for the disease studied (Visscher et al., 

2017; Landrum et al., 2018). In particular, the SNPs provided could have been described as 

related to the disease of interest in prior-knowledge databases (Landrum et al., 2018) or 

identified by genotyping analyses (Nielsen et al., 2011). As a result, RNetDys provides the 

impaired regulatory mechanisms, the corresponding SNPs, the affinity scores of TF having 

their binding site impaired, and a list of ranked TF regulators based on their involvement in 

the observed impairments (Fig. 1). 

RNetDys is more accurate to infer cell (sub)type specific GRNs  

RNetDys mainly relies on the cell (sub)type specific regulatory landscape to identify 

impaired regulatory interactions due to disease-related SNPs. Therefore, we assessed the 

performance of RNetDys in predicting cell (sub)type specific GRNs (Fig. 2). In this regard, 

we performed the benchmarking of both TF-gene and enhancer-promoter interactions, 

compared to current methods. We showed that our approach overcame the state-of-the-art 

GRN inference methods for predicting cell (sub)type specific TF-gene interactions with an 

average precision of 0.20 and average accuracy of 0.28 (Fig. 2A, B).  

This assessment highlighted the strength of combining different regulatory layers with prior-

knowledge to provide predictions with a higher confidence. Moreover, we showed that 
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RNetDys outperformed Cicero in capturing cell (sub)type specific enhancer-promoter 

interactions with a median precision of 0.76 and median accuracy of 0.72, supporting the 

confidence provided by the prior-knowledge leveraged by our approach (Fig. 2C, D). This 

analysis demonstrated the accuracy of the cell (sub)type specific GRN information leveraged 

by our pipeline to capture impaired transcriptional regulatory mechanisms due to SNPs in 

diseases. 

RNetDys provides additional insights into the mechanistic dysregulation enhanced by 

SNPs 

Validation of the SNPs impairment and comparison to state-of-the-art approaches 

We applied RNetDys to five diseases, including AD, PD, EPI, T1D and T2D, by collecting 

disease-related SNPs from ClinVar (Landrum et al., 2018) and cell (sub)type specific GRNs 

generated from human pancreas and brain tissues. First, we supported the relevance of 

predicted SNP-gene interactions identified by RNetDys using available GWAS data from 

ClinVar database and recently published cell-type specific eQTL information (Bryois et al., 

2022). Across the five diseases, we were able to find support for 90% of the SNP-target gene 

relationships identified by our pipeline (Table S4). Furthermore, by using cell type specific 

eQTL data, we were able to validate the occurrence of certain SNPs and their impact on the 

predicted target genes in specific cell types. For instance, our results show that the PD-

associated SNPs rs11538371, rs2072814 and rs8137714 are found to be linked to TIMP3 in 

astrocytes (Table S4). In fact, TIMP3 is an inhibitor of metalloproteinases, enzymes secreted 

by astrocytes (Yin et al., 2006), that are implicated in several PD-associated processes such 

as dopaminergic neuron degeneration, neuroinflammation, and proteolysis of α-synuclein 

(Sung et al., 2005; Choi et al., 2011; Annese et al., 2015). Second, we evaluated the precision 

of RNetDys in capturing gene-disease relationships at the cell(sub)type level using the 

OMIM database (Amberger et al., 2019) (Fig. S2). When compared to the eQTL data, we 

observed that the genes captured by our approach as being impaired due to the presence of 

SNPs are more often linked to disease than the genes captured by eQTL. Although eQTL 

captures a larger number of SNP-gene interactions, few of them are actually described to be 

involved in the disease, thus explaining the low ratio. On the other hand, RNetDys identifies 

more genes linked to each SNP that have been described as related to the disease, 

demonstrating the higher precision of RNetDys compared to eQTL. 
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Cell (sub)type differential dysregulation in diseases 

Then, we studied the differential impairment across cell (sub)types in the five diseases as it 

has been reported that some cell (sub)types were more involved in disease mechanisms 

(Muratore et al., 2017; Kamath et al., 2022). We observed that cell (sub)types shared few 

impaired interactions in the studied diseases, especially in EPI and PD (Fig. 3). Interestingly, 

in EPI, astrocytes, OPCs and inhibitory neurons seem to be the most impaired cell types. 

This is consistent with literature evidence that shows that modifications in GABA receptors, 

which are expressed in inhibitory neurons, are closely linked to epilepsy (Tanaka et al., 

2012). Furthermore, impairment of antiquin expression, encoded by the gene ALDH7A1, in 

astrocytes has been described to be linked with dysregulation of neurotransmitter shuttling 

and recycling, one of the major causes of neurological deficits (David et al., 2009; Jansen et 

al., 2014). Finally, studies showed that myelinated neuronal axons are damaged in epileptic 

patients and the ability of OPCs to proliferate is reduced in samples obtained from patients 

with dysplasia (Luo et al., 2015; Donkels et al., 2020). 

Insights into the cell (sub)type specific regulatory impairments 

We finally aimed at exploiting the GRN information provided by RNetDys to further analyse 

the regulatory impairments of cell (sub)types (Fig. 4, Fig. S3-S6). We observed that in AD 

(Fig. 4), the same enhancers were involved in all cell (sub)types specific networks with an 

impact on the expression of APP and presenilin 1 (PSEN1). Alterations in the expression of 

these genes are primarily linked to the development of AD (Dewachter et al., 2002; Matsui 

et al., 2007). Furthermore, recent studies have shown that not only neurons, but also 

astrocytes and microglia to be involved in the accumulation of β-amyloid plaques (Palop and 

Mucke, 2010; Frost and Li, 2017). However, the impairment of the TFs and enhancers 

regulating these two genes seems to be different across cell (sub)types (Fig. 4). Indeed, most 

of the SNPs in astrocytes and microglia would induce a repression of APP whereas this gene 

seems to be activated in other cell (sub)types (Fig. 4). It has been described that these two 

cell types provide protective effects, with microglia facilitating the clearance of β-amyloid 

overproduced by neurons in AD (Fakhoury, 2018). 

To provide better insights on the main regulatory TFs behind disease dysregulation, we 

ranked the impaired TFs based on network topology and impact of each involved SNP (see 

Methods). Notably, we could observe that certain TFs, such as CREB1, MXI1, and STAT3, 

are ranked as top regulators across different brain diseases and diabetes (Table 1). To 
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investigate this, we evaluated the outdegree distribution of these TFs and we observed 

different outdegrees values across cell (sub)types, which demonstrates that our ranking has 

no bias towards highly connected TFs (Fig. S7). CREB1, MXI1, and STAT3 participate in 

common cell mechanisms involved disease development, such as cell death and 

inflammation. However, each of these TFs has been described to play a different function in 

these mechanisms in different diseases. 

For instance, MXI1 has been shown to be involved in the aging of the neurovascular unit, 

which contributes for the progression of AD (Zhao et al., 2022). On the other hand, the same 

TFs seems to be part of the unique transcriptomic signature of T2D, which we can also 

observe in our results as this TF does not show as a key regulator in T1D (Table 1) (Cubillos-

Angulo et al., 2020). Finally, MXI1 was found to be one of the main regulators involved in 

impaired regulatory interactions for PD, apart from dopaminergic neurons (Fig. S3). MXI1 

has been described to be involved in the mitochondrial homeostasis, dysregulated in PD and 

known to be involved with neurodegeneration (Lestón Pinilla et al., 2021; Malpartida et al., 

2021). 

CREB1 has been extensively shown to regulate gluconeogenesis through the coactivator 

PGC-1, playing a vital role in the regulation of efficient glucose sensing and insulin 

exocytosis and in the development of diabetes (Herzig et al., 2001). Our results show this 

TF to be the main regulator involved in AD and EPI in all cell (sub)types, apart from 

astrocytes (Table 1, Fig. 4, Fig. S4). CREB1 is a TF responsible for regulating the major 

pathways that mediate neurotrophin-associated gene expression, a group of proteins that 

promotes survival and neuronal development (Shaywitz and Greenberg, 1999). Indeed, 

increased CREB activity promotes hyperexcitability, one of the main triggers of seizures, 

while reduced levels seem to prevent epilepsy (Zhu et al., 2012; Wang et al., 2020) (Fig. S4). 

PSEN1 has been shown to be a downstream target of CREB1 (Cui et al., 2022), which further 

supports the results obtained by our pipeline as CREB1 was predicted to regulate PSEN1. 

PSEN1 upregulation leads to myelin dysfunction in OPCs in cases of familial AD (Desai et 

al., 2011). Notably, our pipeline predicts a decrease in CREB1 binding affinity to the 

promoter and enhancer regions of PSEN1 in the presence of rs1800839, potentially 

elucidating one of the possible mechanisms behind PSEN1 upregulation previously observed 

in AD (Fig. 4). 
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Finally, STAT3 was overall found to be the main regulator involved in impaired interactions 

of T1D and T2D (Table 1, Fig.s S5 and S6). In the pancreas, STAT3 has been shown to 

regulate insulin secretion and islet development (Saarimäki-Vire et al., 2017). In addition, 

in T2D, exacerbated STAT3 signalling has been shown to lead to insulin resistance in 

skeletal muscle of diabetic patients (Mashili et al., 2013), supporting its importance as a 

regulator of the dysregulations involved in the disease. In neurodegenerative diseases, 

STAT3 activation has been shown to promote astrogliosis, which is reflected in our results 

by an increase of the binding affinity of this TF to distinct regulatory regions (Fig. 4A and 

Fig. S4A) (Toral-Rios et al., 2020). 

 

Discussion 

The study of cell (sub)type or state specific regulatory interactions impaired due to disease-

related SNPs is required to pave the way towards the development of gene-based therapies 

to prevent or treat diseases (Rao et al., 2021). In addition, the comprehensive view of the 

regulatory landscape, including interactions mediated by TFs and enhancers of regulated 

genes, is critical to study dysregulated mechanisms in diseases (Emmert-Streib et al., 2014; 

Chiou et al., 2021). In that regard, existing strategies to study the impact of SNPs do not 

exploit the GRN information to provide additional mechanistic insights into the disease-

related dysregulations (Rao et al., 2021; Bryois et al., 2022). In addition, recent studies have 

shown that specialized group of cells, including cell types, subtypes and phenotypes, are not 

equally involved in diseases (Nathan et al., 2022; Kamath et al., 2022). However, current 

approaches have been mainly focused on cell types, lacking ability to identify dysregulated 

mechanisms at deeper levels of resolution. RNetDys is a systematic multi-OMICS pipeline 

to decipher cell (sub)type or state specific regulatory interactions impaired due to SNPs in 

diseases. This pipeline exploits the high-resolution of single cell to infer a comprehensive 

regulatory landscape, leveraged to identify impairment due to SNPs. We applied RNetDys 

to five disease cases and showed that cell (sub)types specific regulatory mechanisms were 

not equally impaired, suggesting their differential involvement in the studied diseases. 

Moreover, we validated the relevance of some impaired regulatory mechanisms using 

GWAS and eQTL data (Landrum et al., 2018; Bryois et al., 2022). In that regard, we 

provided additional mechanistic insights into the regulatory mechanisms dysregulated and 

identified the main TF regulators involved. Notably, the presented analysis was performed 
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using SNPs retrieved from ClinVar, but RNetDys could be of great use to provide valuable 

regulatory mechanistic insights by using SNPs derived from genotyping studies. In the 

present study, we were able to predict known and unreported cell (sub)type specific SNP-

gene interactions, hence showing how our pipeline could facilitate the discovery of 

regulatory impairments. To conclude, we foresee RNetDys to be a valuable tool to 

comprehensively identify cell (sub)type specific regulatory mechanisms impaired due to 

SNPs and aid the development of strategies for therapeutic intervention in diseases. 

 

Data and Material availability 

RNetDys is a pipeline publicly available at https://github.com/BarlierC/RNetDys.git. 

The repository of generated regulatory networks, results and scripts used in this study are 

available at https://gitlab.com/C.Barlier/RNetDys_analyses. 
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Tables 

Table 1. TF regulators involved in impaired regulatory mechanisms. 

DISEASE CELL (SUB)TYPE RANKED TFS* 

AD 

Astrocyte MXI1, STAT3 

Excitatory neuron CREB1, USF2, MXI1 

Inhibitory neuron CREB1, MXI1, STAT3 

Microglia CREB1, USF2, MXI1, IKZF1 

Oligodendrocyte CREB1, MXI1 

OPCs CREB1, MXI1, ETV1 

EPI 

Astrocyte MXI1, STAT3, BCL6, ZFX, RXRA 

Excitatory neuron CREB1, MXI1 

Inhibitory neuron CREB1, STAT3, STAT1, MXI1 

Microglia CREB1, MXI1 

Oligodendrocyte CREB1 

OPCs CREB1, BCL6, MXI1, STAT1, ETV1 

PD 

Astrocyte MXI1, BCL6 

Dopaminergic neuron STAT3 

Excitatory neuron MXI1, CREB1 

Oligodendrocyte MXI1 

OPCs BCL6, MXI1, ETV1 

T1D 

Alpha cell STAT3, STAT1, RXRA 

Beta cell STAT3, CREB1 

Delta cell STAT3, CREB1 

T2D 

Alpha cell STAT3, RXRA, STAT1, CREB1, ATF2, EHF 

Beta cell CREB1, STAT1, STAT3, PDX1, ETS1, ATF2, RXRA, MXI1 

Delta cell CREB1, STAT1, STAT3, PDX1, ETV1, EHF, ATF2 

Gamma cell STAT3, CREB1, STAT1, ETV1, EHF, ATF2 

* TFs are ranked by their order of importance in the detected impaired regulatory mechanisms. 
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Figures 

 

Fig. 1. General workflow of RNetDys to decipher regulatory dysregulation in diseases. 

RNetDys is composed of two main parts including (1) the cell (sub)type specific GRN 

inference using scRNA-seq, scATAC-seq and prior-knowledge, and (2) the identification of 

candidates impaired regulatory interactions using the GRN and a list of SNPs, followed by 

the TF-binding affinity analysis. The part one provides the cell (sub)type or state specific 

GRN describing the regulatory interactions mediated by TFs and enhancers of regulated 

genes. The part two provides the list of candidate impaired regulatory interactions in the cell 

(sub)types, the SNPs that were mapped to these interactions and the TFs for which the 

binding ability might be impaired and regulatory TFs ranked based on their importance in 

the impairments. 
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Fig. 2. Performances of RNetDys and comparison to other methods. (A, B) TF-promoter 

regulatory interactions performances assessed using (A) the PPV and (B) the F1-score 

metrics. Performances were assessed for RNetDys, state-of-the-art methods and metrics on 

20 datasets from six human cell lines. (C, D) Enhancer-promoters regulatory interactions 

performance assessment using (C) the PPV and (D) the F1-score metrics. Performances were 

assessed for RNetDys and Cicero on 6 scATAC-seq datasets from three human cell lines. 
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Fig. 3. Cell (sub)type differential regulatory impairment in diseases. Heatmaps showing 

the distribution of impaired interactions due to disease-related-SNPs across cell (sub)types 

for Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I 

(T1D) and type II (T2D). The colors of the heatmap represent the number of SNPs impacting 

the regulatory interactions. Astro: astrocytes, Ex: excitatory neurons, Inh: inhibitory 

neurons, Mic: microglia, Oligo: oligodendrocytes, OPCs: oligodendrocyte progenitors, 

DAn: dopaminergic neurons. 
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Fig. 4. Cell (sub)type specific regulatory impairment in AD. Network visualization of 

impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons, (C) inhibitory 

neurons, (D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are represented as 

diamonds in light red, enhancers as yellow rectangles and genes in blue rectangles. Arrows 

represent activations and T edges represent repressions. The weight of edges from TFs 

correspond to the strength of the impairment, with the thinnest translating a weaker binding 

affinity and a large edge being a strong increase in binding affinity. The color of the edges 

from TFs represents the log2FC with green being a decreased affinity and red an increased 

one. 
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Supplementary Information 

Supplementary Methods 

RNetDys workflow 

Cell (sub)type and state specific GRN inference  

The GRN inference part of RNetDys relies on the combination of multi-OMICS data 

including single cell datasets (scRNA-seq and scATAC-seq) and prior-knowledge (ChIP-

seq and GeneHancer).  First, a quality control is performed on the scRNA-seq and scATAC-

seq in which any rows (gene or peaks) or columns (cells) having a sum of zero is removed 

from further analyses. Then, the following steps are computed to infer the cell (sub)type or 

state specific regulatory interactions: 

(1) TF-Genes interactions: First, using the scRNA-seq data, we pre-selected genes 

conserved at least in 50% of the cells for candidate interactions. Indeed, we consider 

genes expressed in the majority of the cells to be representative in the specific cell 

(sub)type. In addition, from the scATAC-seq peaks matrix, coordinates are extracted 

to identify accessible promoter regions. Notably, a gene promoter region was 

identified from the ChIP-seq collected from ChIP-Atlas (Oki et al., 2018), using 

HOMER (Heinz et al., 2010) annotations by filtering peaks related to gene types 

annotated as protein coding, and defined as a region between 1500bp upstream and 

500bp downstream. A promoter is considered as accessible if its gene has been 

considered as expressed (conserved at least in 50% of the cells) and at least one 

ATAC peak is overlapping. The overlap between promoter regions and the peaks 

coordinates was performed using BEDTools (Quinlan and Hall, 2010) with the 

parameter -f = 0.48 in reciprocal mode (-r). We identified the overlap parameter f = 

0.48 as being the one with the highest probability to capture a real cell (sub)type 

accessible promoter region. The procedure used to select 0.48 is described in 

“Identification of accessible gene promoter regions” of the Supplementary Methods. 

Finally, the resulting overlapping between promoter regions and chromatin 

accessibility allow us to predict the cell (sub)type or state specific TF-Genes 

interactions. 

(2) Enhancer-Promoters interactions: First, we identified open enhancer regions by 

intersecting the ChIP-seq data and the scATAC peaks coordinates using BEDTools 
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with the parameter -F 1.0 selecting open enhancer if 100% of the region is accessible. 

Then, we splitted the scATAC peaks matrix such that one matrix contains accessible 

promoter regions, obtained previously, and the other one accessible enhancer 

regions. We then computed the correlation between the two matrices, using the 

Pearson metric with the propagate R package (Andrej-Nikolai Spiess, 2018) that 

requires few computational resources to perform correlation of large matrices. Z-

scores and corresponding p-values using a one-sided test on a normal distribution is 

performed for each pairwise correlation generated. Then, a Benjamini-Hochberg 

multiple test correction was performed on the computed p-values. The network was 

generated by selecting enhancer regions as sources, and promoter regions as targets, 

filtering the edges such as p-adjusted value < 0.05 and keeping promoters for which 

genes were found in the TF-Genes network. Notably, only positive correlation could 

be find as being significant as a negative correlation between accessibility peaks 

translate an absence of interaction between enhancers and promoters. We then 

retrieved the genes corresponding to the promoter regions using the ChIP-seq data 

used by RNetDys. Finally, the enhancer-promoter correlation network is intersected 

with all GeneHancer (Fishilevich et al., 2017) reported connections. 

(3) TF-Enhancers interactions: First, enhancers present in the Enhancer-Promoter 

network are selected. They are then intersected with the ChIP-seq data, using 

bedtools and -F 1.0, such as if 100% of the TF peak fell inside the enhancer region, 

then this TF is interacting with the enhancer. 

All the interactions of the comprehensive network were then signed based on the scRNA-

seq dataset using the Pearson correlation metric between TFs and genes. For TF-Genes 

interactions, the correlation value defined the sign of the interactions such as positive 

correlations are most likely activation whereas negative ones are most likely repression. 

Then, signs for Enhancer-Promoter interactions were determined by computing the sum of 

correlation values for the TFs binding to the enhancer regulating the specific promoter/gene 

with the correlation corresponding to the TF-gene relationship (Figure S1) such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸𝑎𝑎→𝐺𝐺𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑥𝑥→𝐺𝐺𝑏𝑏
𝑥𝑥

 

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 
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Finally, signs for TF-Enhancers were computed by summing, for each TF binding to the 

enhancer, the TF-genes relationship correlation values for each gene/promoter regulated by 

the enhancer (Figure S1) such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐸𝐸𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐺𝐺𝑥𝑥
𝑥𝑥

 

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 

Contextualization towards the disease state to identify candidate impaired interactions  

Based on a GRN from a healthy cell (sub)type or state, the regulatory network was 

contextualized towards the disease condition of interest based on a list of SNPs. First, 

promoter regions coordinate for which a TF binding site has been identified is retrieved from 

the ChIP-seq data. Then, provided SNPs are mapped to these regions and enhancer regions 

of the GRN using bedtools under the condition that the SNP falls exactly inside one of the 

regions (parameter -F 1). This step allows the identification of candidate impaired regulatory 

interactions, including TF-genes and enhancer-promoters, for the specific cell (sub)type. 

Finally, a TF binding affinity analysis is performed on the SNP impacted regions. The fasta 

sequences for impacted enhancer and promoter regions were retrieved from 

genome.ucsc.edu accordingly with the genome assembly, 50bp upstream and downstream 

were selected from the SNP position and the SNP [ref/alt] alleles were added to the sequence. 

Then, we used PERFECTOS-APE (E. Vorontsov et al., 2015) to perform the TF motif 

binding affinity analysis for each SNP on each region found to be involved in regulation. 

Then, using the cell (sub)type specific GRN, TFs that were binding specifically on the 

impaired promoter or enhancer were retrieved as well as their dysregulated affinity score. 

Notably, we used PERFECTOS-APE with the following modified parameters: --pvalue-

cutoff 0.05 --fold-change-cutoff 2. Finally, we ranked the TFs to prioritize the regulators that 

are impaired due to SNPs and hence are most likely to play a role in the dysregulations 

observed in the disease condition. The rank of each TF regulator was computed as follow: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅 ×
𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅

 ×  ��|𝐴𝐴𝐴𝐴|𝑖𝑖𝑟𝑟 × �𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑟𝑟 ×  �𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟�� 

With RE: number of regulatory elements regulated by the TF, NG: number of downstream 

genes across RE, AI: binding affinity impairment log2FC, i: SNPs, r: regulatory element. 
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Identification of accessible gene promoter regions 

We intersected ChIP-seq peaks related to gene promoter regions with ATAC peaks from 

scATAC-seq data to identify accessible cell (sub)type promoter regions using bedtools. In 

order to define the best threshold to use for the overlapping between the ChIP and ATAC 

peaks, we collected ChIP-seq from ChIP-ATLAS and compiled four human cell line specific 

ChIP-seq gold standards (BJ, GM12878, H1 ESC and K-562). We then used all the ChIP-

seq collected from ChIP-ATLAS (specific) and considered a ChIP peak to be a true positive 

(TP) if it was found in the cell line specific GS and a false positive (FP) if it was not found 

in the GS. We computed the percentage of overlaps between ATAC peaks and TPs or FPs 

ChIP-peaks independently. Then, we computed the delta probability distribution such as: 

ecdf(TPs overlap) - ecdf (FPs overlap), and selected the highest point = 0.48. Indeed, 0.48 

corresponded to the reciprocal threshold for which the probability to capture a TP (cell 

(sub)type specific ChIP peak) was the highest and was used as default by the RNetDys (Fig. 

S8). 

Generation of the cell (sub)type specific GRNs in healthy condition 

We collected scRNA-seq and scATAC-seq data from human pancreas and brain tissues 

(Table S2). The scRNA-seq datasets were processed using Seurat v4 (Hao et al., 2021) and, 

the gene expression and peaks matrices for each cell (sub)type were extracted for each tissue 

using Signac (Stuart et al., 2020). Annotations were used from their original studies for all 

tissues.  

- Pancreas: we performed the peak calling with MACS2 (-q 0.05 --call-summits) for 

each cell (sub)type and the peak matrices were extracted for the cell (sub)types 

having a corresponding scRNA-seq matrix by using the FeatureMatrix function 

provided by Signac. We then used Seurat to extract all the cell (sub)type scRNA-seq 

matrices. 

- Brain: several datasets were collected to match scRNA-seq and scATAC-seq data in 

order to extract cell (sub)types and states for different brain regions (Table S3). 

scATAC-seq fragment files were obtained after request to the authors and the general 

peaks matrix as well as metadata were retrieved from the public repository of their 

study (Corces et al., 2020). Each brain region-related scATAC-seq cell (sub)types 

clusters were annotated using Signac and Seurat with their matched scRNA-seq 

dataset (Table S3), whereas the cell type annotations were kept from the original 
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study (Corces et al., 2020). We performed the peak calling with MACS2 (-q 0.05 --

call-summits) for each cell (sub)type in each brain region. The peak matrices were 

extracted for the cell (sub)types having a corresponding scRNA-seq matrix by using 

the FeatureMatrix function provided by Signac. We then used Seurat to extract all 

the cell (sub)type scRNA-seq matrices. First, we processed the frontal cortex data, 

imputed the dropouts using MAGIC due to the high rate of zeros (van Dijk et al., 

2018) and used the annotations provided by the authors to extract the cell (sub)types 

(Lake et al., 2018). Of note, excitatory subtypes were merged as excitatory neurons 

and inhibitory ones as inhibitory neurons to match with the scATAC-seq. Then, we 

extracted the cell (sub)types of the substantia nigra for healthy patients while keeping 

the annotations provided by the authors (Smajić et al., 2022).  

Each cell (sub)type GRN was generated using the extracted scRNA-seq and scATAC-seq 

datasets with the GRN inference part of RNetDys using the default parameters.  

GRN inference benchmarking and comparison to state-of-the-art 

We first assessed the performances of RNetDys to capture cell (sub)type specific TF-Gene 

interactions and compared to state-of-the-art methods including CLR (Zhang et al., 2016), 

GENIE3 (Huynh-Thu et al., 2010), SCENIC (Aibar et al., 2017), PIDC (Chan et al., 2017) 

and ppcor (Kim, 2015). All methods were used with default parameters to infer the TF-Genes 

networks and applied to 20 single cell RNA-seq datasets collected from six human cell lines 

(A549, Jurkat, K-562, GM12878, H1 ESC, BJ). Of note, only genes expressed at least in 

50% of the cells for each scRNA-seq dataset were provided to the methods to be consistent 

for the comparison with RNetDys. In addition, predicted (un)directed GRNs were formatted 

to obtain TF-gene networks by filtering the Source (regulator) such that it contains any 

human TFs or co-TFs reported in Animal TFDB (accessed on the 08/04/2022)(Hu et al., 

2019). Notably, due to large computational resources or a running time higher than two days, 

five networks could not be generated, including scRNA-seq datasets of one K562, one 

GM12878 and three H1-ESCs. RNetDys was used with default parameters on the 20 scRNA-

seq datasets and scATAC-seq datasets retrieved for each of the six human cell lines (Table 

S1). We benchmarked the inferred networks against cell line specific GS standard networks 

compiled from the Cistrome database and computed the precision (PPV) and accuracy (F1-

score). Of note, more than one network was generated by RNetDys for each scRNA-seq 

dataset used for other methods, depending on the number of scATAC-seq datasets. We hence 
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computed the median PPV and F1 score over the networks to have one metric by scRNA-

seq, as we had for each state-of-the-art method. We then assessed the performances of 

RNetDys in capturing cell (sub)type specific enhancer-promoter regulatory interactions. 

State-of-the-art methods used for the TF-Gene benchmarking did not account for enhancers, 

as they solely relied on scRNA-seq, and hence we performed a comparison using Cicero 

(Pliner et al., 2018), a widely used strategy to identify co-accessibility between regulatory 

regions based on scATAC-seq. We applied RNetDys on twelve combinations of scRNA-seq 

and scATAC-seq datasets for three human cell lines (Table S1) for which we could compile 

reliable cell line specific gold standard networks from 3DIV database (GM12878, H1 ESC, 

BJ/IMR90). We used Cicero on the scATAC-seq datasets using default parameters and 

annotated the enhancer and promoter regions using the ChIP-seq leveraged by RNetDys. 

Notably, not significance score was provided on the interactions and hence, accordingly with 

Cicero guideline we selected interactions with a co-accessibility score greater than zero. 

Finally, we benchmarked the predicted networks against the human cell line specific GS 

networks to compute the PPV and F1-scores.  

Compilation of the gold standard networks 

We compiled two types of GS networks, both directed, to assess the performances and 

validate the specificity in identifying cell (sub)type specific regulatory interactions:  

(1) TF-Genes GS networks: for each human cell line, we collected high quality ChIP-

seq data specific to the cell line from Cistrome (Mei et al., 2017). The highest quality 

was defined as peak data passing all the quality control available in Cistrome. 

(2) Enhancer-promoter GS networks: for each human cell line, we collected Promoter 

Capture Hi-C data from 3DIV (Yang et al., 2018) database. We then filtered the GS 

networks to retain enhancers found in GeneHancer and gene promoter regions 

defined in the ChIP-seq data retrieved from ChIP-Atlas using BEDTools (Quinlan 

and Hall, 2010). 

Cell (sub)type specific regulatory mechanisms impaired in diseases 

We performed a general study of cell (sub)type specific impairment in diseases by using 

prior-knowledge SNPs to validate the relevance of the captured interactions. We first 

collected single nucleotide variants from ClinVar (Landrum et al., 2018) and extracted SNPs 

such as the SNV was found at least in 1% of the global population (MAF >= 0.01). Of note, 

MAF scores were retrieved for each SNV using BioMart R package and the ‘hsapiens_snp’ 
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dataset. Then, we extracted the SNPs for each disease by selecting the ones that have been 

reported as being related to the disease in ClinVar and, we performed a systematic extraction 

using regex with the disease name as pattern. Finally, for each cell (sub)type and each 

disease, we applied RNetDys using the cell (sub)type GRN and the list of SNPs to capture 

candidate impaired regulatory interactions, TF binding impairment information and the 

ranked regulators. Notably, SNPs related to AD were mapped to the brain cortex networks 

whereas SNPs related to PD were mapped to the midbrain networks. 
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Supplementary Figures 

Fig. S1. Strategy to compute the sign of the regulatory interactions. The scRNA-seq dataset is 

used to compute the correlation between the TFs and genes of the GRN. TF-Gene interactions are 

directly signed using the correlation values. Enhancer-Promoter interactions are signed by summing 

the correlation values between the TFs binding to the enhancer and the regulated gene/promoter. TF-

Enhancer interactions are signed by computing for each TF the sum of the correlation values between 

the TF and the genes regulated by the enhancer. 
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Fig. S2. Comparison of the precision in the identification of gene-disease interactions between 

eQTL and RNetDys. Ratio for the captured genes reported as linked to the disease according to 

OMIM is represented in y axis. Each boxplot represents ratios across all cell (sub)types for AD, EPI, 

PD, T1D and T2D. 
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Fig. S3. Cell (sub)type specific regulatory impairment in PD. Network visualization of impaired 

regulatory interactions for (A) astrocytes, (B) excitatory neurons, (C) dopaminergic neurons, (D) 

oligodendrocytes and (E) OPCs. TFs are represented as diamond in light red, enhancers as yellow 

rectangles and genes in blue rectangles. Arrows represent activations. The weight of edges from TFs 

correspond to the strength of the impairment, with the thinnest translating a strong lack of binding 

affinity and a large edge being a strong increase in binding affinity. The color of the edges from TFs 

represents the log2FC with green being a decreased affinity and red an increased one. 
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Fig. S4. Cell (sub)type specific regulatory impairment in EPI. Network visualization of impaired 

regulatory interactions for (A) astrocytes, (B) excitatory neurons, (C) inhibitory neurons, (D) 

microglia, (E) oligodendrocytes and (F) OPCs. TFs are represented as diamond in light red, 

enhancers as yellow rectangles and genes in blue rectangles. Arrows represent activations and T 

edges represent repressions. The weight of edges from TFs correspond to the strength of the 

impairment, with the thinnest translating a strong lack of binding affinity and a large edge being a 

strong increase in binding affinity. The color of the edges from TFs represents the log2FC with green 

being a decreased affinity and red an increased one. 
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Fig. S5. Cell type specific impairment in T1D. Network visualization of impaired regulatory 

interactions for (A) alpha cells and (B) beta and delta cells. TFs are represented as diamond in light 

red, enhancers as yellow rectangles and genes in blue rectangles. Arrows represent activations. The 

weight of edges from TFs correspond to the strength of the impairment, with the thinnest translating 

a strong lack of binding affinity and a large edge being a strong increase in binding affinity. The 

color of the edges from TFs represents the log2FC with green being a decreased affinity and red an 

increased one. 

 

 

 

 

Fig. S6. Cell type specific impairment in T2D. Network visualization of impaired regulatory 

interactions for (A) alpha cells, (B) beta cells, (C) delta cells and (D) gamma cells. TFs are 

represented as diamond in light red, enhancers as yellow rectangles and genes in blue rectangles. 

Arrows represent activations. The weight of edges from TFs correspond to the strength of the 
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impairment, with the thinnest translating a strong lack of binding affinity and a large edge being a 

strong increase in binding affinity. The color of the edges from TFs represents the log2FC with green 

being a decreased affinity and red an increased one. 

 

 
Fig. S7. Distribution of the outdegree ratio for specific TFs across cell (sub)types. Histogram 

showing the frequency of outdegree ratios across all cell (sub)types for three TFs. The outdegree 

ratio of (A) MXI1, (B) CREB1, and (C) STAT3 in each specific cell (sub)type is represented by 

coloured vertical lines in the histograms. Astro: astrocytes, Ex: excitatory neurons, DAn: 

dopaminergic neurons, Inh: inhibitory neurons, Mic: microglia, Oligo: oligodendrocytes, OPCs: 

oligodendrocyte progenitors, Alpha: alpha cells, Beta: beta cells, Delta: delta cells, Gamma: gamma 

cells. 
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.  

Fig. S8. Threshold selection to define accessibility of promoter regions. Delta probability between 

true positives and false positives. The peak of the distribution, equal to 0.48, corresponds to the 

highest probability to capture a true accessible promoter region in the cell (sub)type. 

 

Supplementary Tables 

Table S1. Single cell datasets used for validation and comparison 

Accession Number Cell line Type of 
data 

TF-Promoter 
benchmarking 

Enhancer-Promoter 
benchmarking 

GSE100344 BJ scRNA-seq  X X 
GSE113415 BJ scRNA-seq  X X 
GSE160910 BJ scRNA-seq  X X 
GSE166935 BJ scRNA-seq  X X 

scOpen* BJ scATAC-seq X X 
GSE99172 BJ scATAC-seq X X 
GSE81861 GM12878 scRNA-seq  X X 

GSM3596321 GM12878 scRNA-seq  X X 
GSM4156602 GM12878 scRNA-seq  X X 
GSM4156603 GM12878 scRNA-seq  X X 

scOpen* GM12878 scATAC-seq X X 
GSE99172 GM12878 scATAC-seq X X 
GSE64016 H1-ESC scRNA-seq  X X 
GSE75748 H1-ESC scRNA-seq  X X 
GSE81861 H1-ESC scRNA-seq  X X 

GSM5534158 H1-ESC scRNA-seq  X X 
scOpen* H1-ESC scATAC-seq X X 

GSE99172 H1-ESC scATAC-seq X X 
GSE81861 A549 scRNA-seq  X  

GSM3271042 A549 scRNA-seq  X  
GSM3271043 A549 scATAC-seq X  
GSM4224433 A549 scATAC-seq X  
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GSE105451 Jurkat scRNA-seq  X  
10x platform** Jurkat scRNA-seq  X  

GSE107816 Jurkat scATAC-seq X  
GSE81861 K562 scRNA-seq  X  
GSE90063 K562 scRNA-seq  X  

GSE113415 K562 scRNA-seq  X  
GSM1599500 K562 scRNA-seq  X  

scOpen* K562 scATAC-seq X  
GSE99172 K562 scATAC-seq X  

*scOpen: https://github.com/CostaLab/scopen-reproducibility 

**10x platform: https://www.10xgenomics.com/resources/datasets/jurkat-cells-1-standard-1-1-0 

 

Table S2. Collected datasets to generate healthy cell (sub)type GRNs. 

System Accession Type of data 

Pancreas 
GSE85241 scRNA-seq 

GSM558939 scATAC-seq 

Brain 
GSE157783 (Healthy) scRNA-seq 

GSE97942 scRNA-seq 
GSE147672 scATAC-seq 

 

Table S3. Matching of the scRNA-seq and scATAC-seq brain datasets. 

scATAC-seq Brain Regions scRNA-seq Brain Region 
Matched Brain region abbreviation 

Substantia Nigra Human Midbrain (GSE157783, Healthy) SUNI 
Middle Frontal Gyrus Frontal Cortex (GSE97942) MDFG 

 

Table S4. Literature-based validation of the predicted impaired regulatory 
interactions. 

PD 

Source (TF or 
enhancer) 

Gene RSID 
Cell 

(sub)pop 

GWAS Cell type 
specific e-QTL* 

SNP 
Linked 
to gene 

PMID 
SNP Linked to 

gene 

chr22:32473200-32478044 TIMP3 rs11538371 Astro    x 

chr22:32473200-32478044 TIMP3 rs2072814 Astro    x 

chr22:32473200-32478044 TIMP3 rs8137714 Astro    x 

chr4:41255600-41259401 UCHL1 rs5030732 DAn x 
 

28253266, 
25370916, 
22839974 

x 

STAT3 UCHL1 rs5030732 DAn x x 

NFKB1, STAT3 PRKAG2 rs117728810 DAn x   x 

NFKB1, STAT3 PRKAG2 rs66628686 DAn x   x 
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STAT3 PRKAG2 rs77902041 DAn x   x 

chr4:41255600-41259401 UCHL1 rs11556273 Ex x   x 

chr4:41255600-41259401 UCHL1 rs5030732 Ex x   x 

chr4:41255600-41259401 UCHL1 rs9321 Ex x   x 

CREB1 UCHL1 rs11556273 Ex x   x 

chr22:32473200-32478044 FBXO7 rs2072814 Oligo x   x 

chr4:41255600-41259401 LIMCH1 rs5030732 Oligo    x 

chr4:41255600-41259401 LIMCH1 rs9321 Oligo    x 

chr22:32473200-32478044 FBXO7 rs11538371 OPCs x   x 

BCL6 FBXO7 rs11538371 OPCs x   x 

chr22:32473200-32478044 FBXO7 rs2072814 OPCs x   x 

chr22:32473200-32478044 FBXO7 rs8137714 OPCs x 
18513678 

x 

BCL6 FBXO7 rs8137714 OPCs x x 

chr12:40222200-40227694 LRRK2 rs112643657 OPCs x     

AD 

Source Target RSID Pop 
GWAS 

Cell type 
specific e-QTL* 

Linked 
to gene 

PMID Linked to gene 

chr14:73135401-73138601 PSEN1 rs1800839 Astro x  
28821390, 
11389157 

x 

STAT3 PSEN1 rs1800839 Astro x x 

chr21:26166164-26172001 APP rs45476095 Astro x 
21654062 

  

MXI1 APP rs45476095 Astro x   

chr14:73135401-73138601 APP rs459543 Astro x     

MXI1 APP rs459543 Astro x 
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 Ex x  
28821390, 
11389157 

x 

CREB1 PSEN1 rs1800839 Ex x x 

chr21:26166164-26172001 APP rs45476095 Ex x 21654062   

chr21:26166164-26172001 APP rs459543 Ex x 
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 Inh x  
28821390, 
11389157 

  

CREB1, STAT3 PSEN1 rs1800839 Inh x   

chr21:26166164-26172001 APP rs45476095 Inh x 21654062   

chr21:26166164-26172001 APP rs459543 Inh x 
 

21654062, 
16685645 

  

chr21:26166164-26172001 APP rs1800839 Mic      

chr21:26166164-26172001 APP rs45476095 Mic x 21654062   

chr14:73135401-73138601 APP rs459543 Mic x 
 

21654062, 
16685645 

  

CREB1 PSEN1 rs1800839 Oligo x 
 

28821390, 
11389157 
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chr21:26166164-26172001 APP rs45476095 Oligo x 21654062   

chr14:73135401-73138601 APP rs459543 Oligo x 
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 OPCs x  
28821390, 
11389157 

x 

CREB1 PSEN1 rs1800839 OPCs x x 

chr21:26166164-26172001 APP rs45476095 OPCs x     

chr21:26166164-26172001 APP rs459543 OPCs x     

EPI 

Source Target RSID Pop 
GWAS 

Cell type 
specific e-QTL* 

Linked 
to gene 

PMID Linked to gene 

chr5:126592200-
126596201 ALDH7A1 rs144272515 Astro x   x 

ZFX ALDH7A1 rs144272515 Astro x   x 

chr3:64223200-64226459 PRICKLE2 rs697287 Astro x   x 

chr3:64223200-64226459 PRICKLE2 rs900641 Astro       

chr3:64223200-64226459 PRICKLE2 rs142388795 Astro x     

STAT3 PRICKLE2 rs142388795 Astro x     
chr5:126592200-

126596201 
ALDH7A1 rs146562077 Astro x     

STAT3 ALDH7A1 rs146562077 Astro x     

chr3:64223200-64226459 PRICKLE2 rs150393747 Astro x     

STAT3 PRICKLE2 rs150393747 Astro x     
chr6:145733617-

145737579 
EPM2A rs2235482 Astro x     

BCL6, STAT3, ZFX EPM2A rs2235482 Astro x     
chr6:145733617-

145737579 EPM2A rs374338349 Astro x 
11735300 

  

BCL6 EPM2A rs374338349 Astro x   
chr5:126592200-

126596201 
ALDH7A1 rs60720055 Astro x     

chr5:126592200-
126596201 ALDH7A1 rs72857097 Astro       

STAT3 KCTD7 rs77341088 Astro x     
chr5:126592200-

126596201 ALDH7A1 rs900640 Astro x     

STAT3 ALDH7A1 rs900640 Astro x     

ZFX ALDH7A1 rs900640 Astro x     

chr3:64223200-64226459 PRICKLE2 rs697287 Ex x   x 

CREB1 GABRB3 rs20317 Ex x 

 
30074174, 
24999380, 
25025424 

x 

CREB1 KCTD7 rs117194263 Ex x     

chr3:64223200-64226459 PRICKLE2 rs142388795 Ex x     

CREB1 PRICKLE2 rs142388795 Ex x     

chr7:66625550-66632156 KCTD7 rs35526611 Ex x     

CREB1 KCTD7 rs35526611 Ex x     
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CREB1 GABRB3 rs20317 Inh x 

 
30074174, 
24999380, 
25025424 

x 

CREB1 KCTD7 rs117194263 Inh x     

CREB1, STAT3 PRICKLE2 rs142388795 Inh x     

STAT3 PRICKLE2 rs150393747 Inh x     

MXI1 KCNC1 rs2229007 Inh x     

chr7:66625550-66632156 KCTD7 rs35526611 Inh x     

CREB1 KCTD7 rs35526611 Inh x     

STAT3 CACNB4 rs61736804 Inh x     

STAT1 SCARB2 rs72857097 Inh x     

STAT3 KCTD7 rs77341088 Inh x     

chrX:47619001-47620600 SYN1 rs187134574 Inh x   No data on chrX 

STAT3 SYN1 rs187134574 Inh x   No data on chrX 

CREB1 KCTD7 rs117194263 Mic x     
chr4:122920756-

122924601 SPATA5 rs35430470 Mic x     

chr7:66625550-66632156 KCTD7 rs35526611 Mic x     

CREB1 KCTD7 rs35526611 Mic x     

CREB1 KCTD7 rs117194263 Oligo x     

CREB1 GABRB3 rs20317 Oligo x 

 
30074174, 
24999380, 
25025424 

  

chr7:66625550-66632156 KCTD7 rs35526611 Oligo x     

CREB1 KCTD7 rs35526611 Oligo x     

CREB1 RBFOX1 rs7187508 Oligo x     

chr3:64223200-64226459 PRICKLE2 rs697287 OPCs x   x 

CREB1 KCTD7 rs117194263 OPCs x     

chr3:64223200-64226459 PRICKLE2 rs142388795 OPCs x     

CREB1 PRICKLE2 rs142388795 OPCs x     

chr7:66625550-66632156 KCTD7 rs35526611 OPCs x     

CREB1 KCTD7 rs35526611 OPCs x     

CREB1 SCN9A rs4369876 OPCs x 
 

23292638, 
21698661 

  

CREB1 RBFOX1 rs7187508 OPCs x     

chr4:76205669-76215919 SCARB2 rs72857097 OPCs x     

STAT1 SCARB2 rs72857097 OPCs x     

chr12:42468600-42471319 PRICKLE1 rs74081707 OPCs x     

T1D 

Source Target RSID Pop 
GWAS 

Cell type 
specific e-QTL 

Linked 
to gene PMID Linked to gene 

chr20:44397802-44420654 TTPAL rs113308087 Alpha     
No data 

chr20:44397802-44420654 TTPAL rs1800961 Alpha     
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chr20:44397802-44420654 TTPAL rs736823 Alpha     

CREB1, STAT3 KCNJ11 rs1800467 Beta x 
25733456, 
26937418, 
25247988 

STAT3 KCNJ11 rs2285676 Beta x 
32930968, 
29903275, 
27249660 

CREB1, STAT3 KCNJ11 rs41282930 Beta x 
25247988, 
22289434, 
15115830 

STAT3 KCNJ11 rs5210 Beta x 
32693412, 
33101408, 
30641791 

CREB1, STAT3 KCNJ11 rs1800467 Delta x 
25733456, 
26937418, 
25247988 

STAT3 KCNJ11 rs2285676 Delta x 
32930968, 
29903275, 
27249660 

CREB1, STAT3 KCNJ11 rs41282930 Delta x 
25247988, 
22289434, 
15115830 

STAT3 KCNJ11 rs5210 Delta x 
32693412, 
33101408, 
30641791 

T2D 

Source Target RSID Pop 
GWAS 

Cell type 
specific e-QTL 

Linked 
to gene 

PMID Linked to gene 

chr20:44397802-44420654 TTPAL rs113308087 Alpha     

No data 

chr20:44397802-44420654 TTPAL rs1169288 Alpha     
chr12:120977075-

120985314 ANAPC5 rs1169289 Alpha     

chr20:45334860-45349300 PIGT rs147593522 Alpha     

STAT3 ABCC8 rs1799859 Alpha x 
28587604, 
26740944 

chr20:44397802-44420654 TTPAL rs1800961 Alpha     

chr4:26318200-26324401 RBPJ rs186895314 Alpha x   

chr20:44397802-44420654 TTPAL rs2072792 Alpha     

ATF2 RBPJ rs73245775 Alpha x   

STAT3 ABCC8 rs757110 Alpha x 
32660410, 
32468916, 
32930968 

chr20:45334860-45349300 SYS1 rs147593522 Beta     

PDX1, STAT3 ABCC8 rs1799859 Beta x 
28587604, 
26740944 

chr4:26318200-26324401 RBPJ rs186895314 Beta x   

chr20:45334860-45349300 SYS1 rs2072792 Beta     

*https://zenodo.org/record/6104982#.Yq2eUy0RryY 
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5. Discussion and Perspectives 
 

The human brain is a complex organ that the research community has been striving 

to understand. Deciphering the intricate relationships among the multiple brain cell types 

and the underlying molecular mechanisms can significantly contribute to the development 

of more effective treatments for brain diseases. 

The emergence of single-cell technologies paved the way for a more in-depth 

characterization of the brain’s cellular heterogeneity by unveiling previously undefined 

cellular subtypes 81,83,309. Computational approaches have been leveraging the high 

resolutions of this data to uncover new biological insights that can further demonstrate the 

crucial role these specialized cell subtypes play in the development of the most common 

brain diseases 76,83–85,310. Identifying cellular identity TFs at the subtype level has been one 

of the focuses of these algorithms due to the potential importance of these TFs in improving 

the development of regenerative medicine applications. Being able to successfully generate 

a cellular subpopulation of choice can have vital applications in different fields, namely 

CRT, disease modelling, and drug discovery 311. Furthermore, identifying disease-specific 

or disease-prevalent cellular populations has the potential to be used as a diagnostics and 

prognosis tool, providing key information to better guide the prescription of more adequate 

and effective treatments to patients 312–314. 

In a world where the incidence of brain diseases is rising, being able to characterize 

the regulatory mechanisms behind the development of these disorders has become crucial 

for detecting the most suitable therapeutical targets and for the development of successful 

clinical applications 315. Understanding how modifications at the genome level (e.g., 

mutations, SNPs) can impair the regulatory landscape and drive healthy cellular populations 

towards a pathological state can further improve the development of personalized gene 

therapies 316.  

This dissertation addresses two open challenges in the development of clinical 

applications for brain diseases. On the one hand, we leverage the determination of cellular 

identity TFs to develop novel computer-guided experimental strategies with potential to 

advance CRT and to identify potential biomarkers that can provide a more accurate disease 

prognosis. On the other hand, we delve into disease modelling to identify impaired 
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regulatory interactions due to the presence of SNPs, unveiling promising therapeutical 

targets. 

 

5.1. Regulating pioneer factors to improve cellular conversion 

 Cellular identity is strongly regulated by specific TFs that drive the expression of 

gene programs which control characteristic functions of a given cellular system 199,212–214. 

Identifying these identity TFs would aid the characterization of any cellular (sub)population, 

improve the efficiency of cellular conversion protocols, and obtain functional cell (sub)types 

for regenerative medicine. Initial computational approaches relied on bulk RNA-seq data to 

characterize identity TFs at the cell type level which contributed to the development of 

successful cellular conversion strategies 152,153.  However, determining identity TFs at the 

cell subtype level relies on the identification of more subtle transcriptomic differences 

between target cell subpopulations and the cellular background in which they reside. Recent 

developments in gene expression profiling at single-cell level provided high resolution 

datasets that reflect this diversity between cellular subpopulations. Novel computational 

methods based on scRNA-seq enable an accurate characterization of identity TFs, potentially 

improving cellular conversion at the subpopulation level 154,200. 

Due to their key role in controlling cell identity, ectopic expression of these identity 

TFs has been the most widely used strategy to convert between cell (sub)types 259,269,271. 

However, the generated cells do not completely recapitulate the functionalities and maturity 

features of their in vivo counterparts, hindering their potential use in CRT 216,317,318. One of 

the major reasons behind this partial reprogramming is an incomplete reorganization of 

epigenetic marks 216. If the epigenetic profile of the starting cellular population is not 

favorable to the binding of the identity TFs, the generation of fully converted cell (sub)types 

might be compromised 228. 

In section 4.2 of this dissertation, we address this issue by developing TransSynW, a 

network-free, single-cell based computational approach that determines cell conversion TFs 

by identifying transcriptional regulatory cores. Based on a previously published method, 

TransSynW uses transcriptional synergy to identify cell (sub)population specific TFs and 

non-specifically expressed PFs 201. PFs have a unique ability to bind to closed areas of the 

chromatin and promote the expression of their target genes 229. Moreover, PFs bind and 

activate specific enhancers, prompting chromatin opening mechanisms and, consequently, 
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gene expression 233–235. Due to these characteristic features, PFs have been extensively 

described as one of the main determinants of cellular differentiation and used successfully 

to convert between cellular identities 230–232. It has been proposed that TFs can act 

synergistically to induce the expression of cell identity specific gene expression programs 

by binding to the same enhancer regions 203,205,206. Indeed, some of the TFs that have been 

described to act synergistically, namely GATA2, ISL1, POU5F1, and SOX2, have been 

classified as PFs 202–204,229. By combining these findings, we demonstrate that the 

measurement of synergy can be applied to determine not only identity TFs, but also PFs. 

TransSynW also identifies marker genes for each target cellular (sub)population, 

enabling researchers to validate the accuracy of their experimental conversion protocol. To 

illustrate the applicability of our method, we applied TransSynW to several cellular systems, 

including cell types, subtypes, and phenotypic states, and performed an in silico validation. 

By crosschecking our predicted TFs and markers with literature evidence, we show that our 

computational tool well-recapitulated most of the previously described marker genes and 

TFs used to successfully generate the analyzed cellular (sub)populations. Moreover, we used 

Metacore, a manually curated database of molecular interactions to further validate the 

newly identified conversion TFs and markers. We were able to observe that our novel 

conversion TFs have been described to interact with known conversion factors and marker 

genes. These findings support the biological relevance of our method in identifying 

conversion TFs for a wide range of cellular (sub)populations with potential applications in 

regenerative medicine. 

Further experimental validation of our method could be done to support our findings. 

For instance, the generation of fully functional DANs has great potential clinical applications 

in CRT 258. Our method identified, among others, NPAS4 and PBX1 as novel TFs to obtain 

DANs. NPAS4 has been reported to play a neuroprotective role in DANs upon exposure of 

these cells to a nigrostriatal toxin 319. PBX1 has been described as a key PF in controlling the 

neurogenic process behind the generation of DANs 320,321. Regulating the expression of these 

TFs could improve the quality of the generated neurons and their applications in novel 

regenerative medicine applications. 

TransSynW relies on synergy-based measurement to identify conversion TFs. 

TransSynW identified ISL1 and PHOX2A as capable of generating oculomotor neurons. 

Indeed, these TFs have been shown to form complexes and act synergistically to generate 
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motor neurons 203. Nonetheless, additional experiments could be performed to demonstrate 

the broad applicability of TransSynW. For instance, the generation of ChIP-seq data for the 

TFs identified by our computational approach could help revealing if these factors bind to 

the same regulatory elements. This strategy has been used to show the co-occupancy of the 

same promoter regions by NANOG, POU5F1, and SOX2 in human ESCs 202. Moreover, co-

immunoprecipitation followed by Western-Blot could be used to capture a TF and identify 

its interacting proteins using specific antibodies. This methodology has been used to detect 

protein-protein interactions between ID3 and PAX5 322. Another alternative would be to use 

Förster resonant energy transfer technique to detect cooperative binding between two TFs 

by using specific fluorescent proteins and appropriate readouts 323. 

Another distinctive feature of TransSynW is the prioritization of PFs to promote 

epigenetic modifications that can facilitate the expression of the target cellular 

(sub)population gene program. To examine to which extent PFs remodel the epigenetic 

landscape, we could generate scATAC-seq data and perform single-cell BS-seq on the 

generated cellular (sub)populations to examine the changes in chromatin accessibility and 

DNA methylation, respectively 324. 

TransSynW relies on a precompiled list of TFs to determine cell conversion factors 

for any population identified in scRNA-seq data. We chose AnimalTFDB, currently the most 

complete TF database, to obtain a comprehensive and up to date list of human and mouse 

TFs 325. Due to the lack of precompiled resources, we manually curated a list of PFs based 

on extensive literature research. Therefore, to ensure the accuracy of our method, periodical 

literature searches should be performed to keep these precompiled lists up to date. 

Besides scRNA-seq data, we could expand our method and make use of publicly 

available ChIP-seq data, such as ChIP-Atlas, to complement our results 162,173. Once we 

identify the conversion TFs, we could use this prior knowledge to determine the regulatory 

regions binded by the identified TFs. In addition, this would provide mechanistic insights to 

help elucidating how the TFs regulate cellular identity, including their putative synergistic 

activity. Recently, ChIP-Atlas was updated to contain not only ChIP-seq, but also ATAC-

seq data 173. Therefore, we could also leverage the available bulk ATAC-seq data to have a 

general overview of the chromatin conformation at our starting cell population at the cell 

type level. Then, we could examine if the identified open chromatin areas match the binding 

regions of our predicted conversion TFs. With this, we could a priori identify which 
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epigenetic barriers we might need to address in order to facilitate the regulation of our target 

conversion TFs. In summary, adding these layers of epigenetic information would make our 

results more accurate and robust. 

Finally, another major roadblock in the translation of cellular conversion protocols 

to clinical applications is the functionality and similarity of the generated cells with those 

observed in the healthy tissue 311. Recent efforts have focused on pinpointing genes that are 

responsible for regulating different maturation stages of a given cell (sub)type to attempt to 

overcome this issue 326. We could extend our method to contain a database of genes that have 

been previously reported to be involved in the maturation process of specific cell (sub)types 

by text mining published literature. In addition to our current output, we would provide the 

user with a list of cell (sub)type specific maturation factors to aid the generated cells to attain 

the desired phenotype. These maturation factors could be ranked by their impact on network 

topology, using the scRNA-seq data provided by the user to generate the regulatory network 

and contextualize the collected maturation factors 301,327. Adding these functionalities to our 

method could prompt the development of improved cellular conversion protocols and 

accelerate clinical applications.  

 

5.2. Generating neuronal populations for regenerative medicine 

Direct reprogramming is one of the most promising approaches in regenerative 

medicine. This method allows for in situ conversion between fully differentiated cell types 

which has major implications in the development of potential clinical applications 257,259,271. 

Cellular conversion targets one of the hallmarks of neurodegeneration, that is the loss of 

neurons and their function. For this reason, cellular conversion strategies have become one 

of the major focuses of CRT 258,328. 

It has been shown that replacing the lost DANs in PD patients can alleviate the 

associated motor symptoms 329. Moreover, astrogliosis has been described to occur upon the 

presence of α-synuclein aggregates in PD 330,331. During this process, reactive astrocytes 

rewire their molecular landscape and undergo tightly regulated functional and morphological 

changes, such as cellular proliferation and hypertrophy 48. Some studies have shown that 

astrocytes close to a lesion site can display stem cell-like features similar to the ones 

observed in radial glia cells, and that blocking Notch signaling in the striatum induces a 

dormant neurogenic program in astrocytes 332,333. Therefore, direct reprogramming of 
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astrocytes is a promising strategy to generate DANs for CRT 258. Current direct 

reprogramming protocols have mostly relied on the overexpression of specific TFs to 

successfully generate DANs 271,334,335. However, these approaches have low efficiency and 

generate DANs with different levels of functionality 336. 

In section 4.3 of this dissertation, we developed direct reprogramming protocols to 

convert human astrocytes into specific DAN subtypes (hDA0, hDA1, and hDA2). As 

mentioned in the previous section, one of the major roadblocks hindering the success of 

cellular conversion strategies comprises the lack of binding of conversion TFs to the 

regulatory regions of their target genes 216. This obstacle is particularly relevant in direct 

reprogramming protocols since the chromatin conformation of the starting cell population 

might be incompatible with the binding of conversion factors 216,228. Therefore, we applied 

TransSynW, the computational tool presented in section 4.2 of this dissertation, to identify 

the most suitable conversion TFs for our experimental goals 154. This computational method 

addresses the above-mentioned issues by prioritizing PFs in each set of conversion factors. 

The combination of specific TFs with PFs has been extensively shown to promote 

conversion between somatic cell types 245,259,260,271. Notably, the overexpression of ASCL1, 

an established PF, has been shown to promote accumulation of non-CG methylation, a 

unique characteristic of the neuronal epigenome 337. Taken together, this literature evidence 

supports the applicability of this computational platform to our experimental design.  

We applied TransSynW to determine the necessary conversion TFs to generate 

DANs subtypes using a direct and a sequential reprogramming protocol. To overexpress the 

identified conversion TFs, we adapted a previously established CRISPR-dCas9 platform to 

simultaneously activate the expression of specific TFs from their endogenous locus 338. We 

observed that it was not possible to activate the expression of some of these conversion 

factors, even upon treatment with epigenetic modifiers. To examine whether closed 

chromatin modifications are acting as barriers to the activation of gene expression, we could 

perform ATAC-seq on hIA-dCas9 to characterize its global profile of chromatin 

accessibility. To identify the mechanisms behind the putative close conformation of the 

promoter regions of our target TFs, we could perform ChIP-seq to assess the presence of 

histone modifications associated with gene repression, such H3K9me3 and H3K27me3, and 

BS-seq to map DNA methylation patterns 339,340.  
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The implemented CRISPR-dCas9 platform used here shifts the recruitment of 

regulatory effectors from the dCas9 to the RNA scaffold, allowing for different regulatory 

functions at distinct loci 338. Hence, upon characterization of the chromatin barriers we are 

facing, we could use this CRISPR-dCas9 system to induce targeted epigenetic modifications 

in each of our target TFs. For instance, we could replace the current activation domains in 

the RNA scaffold by Tet1, a 5-methylcytosine hydroxylase involved in DNA demethylation, 

and design gRNAs for the promoters of the TFs which expression was identified to be 

impaired by this mechanism 264,341. On the other hand, we could promote the expression of 

p300, a histone acetyltransferase that induces the activation of enhancers as well as 

remodeling of the nucleosome, and target its action to specific genomic loci 342–344.  

Regardless of the constrains mentioned above, we were able to validate gRNAs that 

induce the overexpression of the conversion TFs in the hDA0 and hDA1 combination. By 

applying these conversion factors in our direct reprogramming protocol, we were able to 

obtain neuron-like, TUBB3-positive cells. The generated cells did not present 

immunoreactivity for TH. Similarly, another study using CRISPR activation (CRISPRa) to 

directly reprogram mouse astrocytes into DANs in vivo also reported lack of TH expression 

on their generated induced neurons 265. They suggest that the lower levels of expression 

induced by the CRISPRa system, when compared to the ectopic expression protocols, may 

shift the dopaminergic fate towards a GABAergic phenotype, which they verify by 

immunocytochemistry 265,335. To examine if this stands for our protocols, we could examine 

the presence of GAD65/67, a GABAergic marker, and evaluate the electrophysiological 

properties of the generated cells. 

To be able to perform the direct and sequential protocol to obtain the hDA2 subtype, 

we constructed an inducible lentiviral expression system encoding the cDNA sequences of 

our target TFs. Here, we observed that the sequential protocol generates cells with a 

neuronal-like morphology, but neither of the protocols produced cells expressing TH. This 

is in contrast with our positive control (NeAL218 271), which generated TH-positive cells 

with neuronal morphology but no specific cell subtype identity. This result suggests that a 

combination of NeAL218 with the predicted TFs to generate hDA2 may be required to 

achieve cells of this cell subtype. 

All the attempted protocols are based on the overexpression of specific conversion 

factors. However, it has been shown that downregulation of specific genes also induces 
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cellular conversion. A pioneer study showed that suppressing PTBP1 in human and mouse 

astrocytes leads to the generation of DANs that can reinnervate the nigrostriatal pathway in 

vivo 345. Moreover, the depletion of this RNA binding protein in a PD mouse model 

apparently led not only to the reconstruction of the nigrostriatal circuit, but also to the 

restoration of the levels of dopamine and to the alleviation of motor symptoms. The proposed 

mechanism for this contested study 346–349 is that PTBP1 depletion results in an increase of 

the expression levels of miR-124 345,350. This leads to the activation of the neuronal gene 

program through inhibition of the transcriptional repressor REST, facilitating neuronal 

conversion. However, it remains unclear how tissue-specific neuronal phenotypes are 

specified. 

Future studies could leverage the high flexibility of the CRISPR-dCas9 system used 

in our experiments to simultaneously induce the expression of TFs and downregulation of 

specific genes, such as PTBP1, and potentially improve the outcome of our conversion 

protocols. We could replace the current activation domains in the RNA scaffold by KRAB, 

a transcriptional repression domain, and design gRNAs for the promoter of PTBP1 351–353. 

In addition, TransSynW’s conversion TFs are ranked by fold-change by comparing the levels 

of expression of these TFs with the ones in the starting cellular (sub)population 154. By using 

this computational tool, we could obtain more information about TFs that could be 

downregulated to generate the target cell (sub)types.  

It has been shown that during the direct reprogramming of human fibroblasts into 

motor neurons, overexpressing miR-124 first erases the fibroblast identity at both 

transcriptional and epigenetic level, and only induces a neuronal fate afterwards 354. 

Therefore, besides forcing the expression of the desired cellular identity, we could also erase 

the identity of the starting cell type. To achieve this, we could determine the identity TFs of 

our initial cellular population using TransSynW and downregulate these TFs using either 

CRISPR inactivation or RNA interference systems 351,355. 

Once the difficulties faced during the experimental setup are addressed, the generated 

subtypes could be characterized by scRNA-seq. To maximize the number of input cells for 

scRNA-seq, we could use a multiplexing technology to label each of our protocols 

individually and then pool all the samples together before library preparation 136. By profiling 

these cell subpopulations at the transcriptomic level, we would provide a new in-depth layer 

of scRNA-seq data that we could use to identify additional molecular features relevant to 
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these cell subtypes. Moreover, we could compare the gene expression profile of the 

generated cell subpopulations to the newly identified DAN subpopulation that specifically 

degenerates during the development of PD for potential clinical applications 83. 

We could further characterize these cellular subtypes using functional assays and in 

vivo studies. To assess the functionality of the generate cells, we could evaluate the presence 

of not only TH, but also its colocalization with ALDH1A1 and DDC, other specific markers 

of DANs 271. Additionally, evaluating the presence of MAP2 and SYN1, markers of mature 

neurons, and the transport channels KCNJ6 and SLC6A3 would provide a full 

characterization of the functionality and maturity of the generated cells. Additionally, 

evaluating the ability of the generated cells to release dopamine could be quantified by high 

performance liquid chromatography and their electrophysiological signature (e.g., sag 

rectification, pace-maker activity) by calcium imaging assays 265,271. 

To translate our findings to an in vivo setup, we first have to ensure that the cellular 

conversion is only taking place in astrocytes. To achieve this, we could change our 

expression system from LVs to adeno-associated viruses (AAVs) by using the recombinant 

AAV2/5 serotype, which has been shown to have a tropism for astrocytes 265,356,357. 

Alternatively, we could condition the expression of our conversion factors by placing them 

under the control of the GFAP promoter, an astrocyte-specific marker, using Cre-Lox 

recombination 271. These strategies could be used simultaneous when using a CRISPRa 

system 265. A recent in vivo study used the recombinant AAV2/5 serotype to deliver gRNAs 

and the activator sequence specifically to astrocytes and placed dCas9 expression under the 

control of a GFAP-Cre activation system 265. The disadvantage of this system is that the 

expression levels were variable, and astrocytes did not convert to DANs but rather 

GABAergic neurons, despite using TFs capable of making DANs in vitro. Alternative 

strategies will need to be explored in the future. 

The most interesting application of our findings would be to evaluate the capacity of 

our protocol to replenish the lost DAN population in a PD model. To examine this, we could 

use adult mice unilaterally lesioned with 6-hydroxydopamine (6-OHDA), which induces the 

degeneration of DANs in the ventral midbrain 358. Besides the functional assays mentioned 

previously, we would need to examine the recovery of the motor function in 6-OHDA-

lesioned mice to evaluate the functional success of our in vivo studies. Behavioral tests, such 

as drug-induced and spontaneous rotation, gait analysis, limb usage, and axial symmetry are 
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some of the assays that could be performed to evaluate the rescue of motor 

symptoms 265,321,359. 

When performing direct reprogramming protocols, there is the inherent risk to 

deplete the initial cell population. Since astrocytes are the major metabolic supporters of 

neurons, depleting this cell population could undermine the applicability of this strategy in 

clinical trials 336. However, it has been shown that A1 reactive astrocytes are characterized 

by the upregulation of complement cascade genes and by the secretion of neurotoxins that 

lead to the destruction of synapses and consequent neuronal death 51,360. Several studies have 

profiled the transcriptome of this cell subtype and identified potential marker genes of this 

cellular population, namely C3 and SERPING1 51,361,362. Indeed, SERPING1 upregulation 

has been associated with DANs death in a PD mouse model 363.  

Although further studies would be necessary to clarify if this gene is uniquely 

expressed on A1 astrocytes, this or other potential marker genes could be used to selectively 

target A1 astrocytes with our cellular conversion protocols. Briefly, we could condition the 

expression of the conversion TFs by placing them under the promoter of a marker gene of 

A1 astrocytes and limit their activation to this cellular subpopulation. This approach would 

prevent the depletion of the astrocyte population at the injection site, opening the door to the 

development of pioneer CRTs in which a deleterious cell (A1 astrocyte) would then be 

converted into a cell lost by disease (DANs). These strategies would thus simultaneously 

prevent further damage and promote repair by replacing the cells damaged by 

neurodegeneration, with immediate applications to PD. 

 

5.3. Leveraging cellular lineage to determine prognosis biomarkers 

Along the differentiation process, cells progressively commit to a specific lineage 

and start specializing until they acquire a fully differentiated and functional state. However, 

these mature cells still retain some plasticity and can, upon specific stimuli, dedifferentiate 

and attain a new cellular identity 227,364. This process has been described to occur under 

physiological conditions, such as tissue repair, but also during the development of several 

disorders, including neurodegenerative diseases and tumor formation 365–369. Specifically, 

tumorigenesis has been one of the major focuses of the study of cellular plasticity. During 

this process, fully differentiated cells lose their identity and start to gain stem-like properties, 

such as the ability to self-renew and generate mature cell types of any type of tissue 370,371. 
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However, it has been shown that the developmental origin of these stem-like cells has an 

impact on their properties and determines some distinct molecular characteristics, 

particularly in GBM 372,373. 

GBM is the most common and severe type of glioma with poor prognosis and low 

life expectancy 374. Based on the combination of different layers of NGS data, it has been 

possible to classify GBMs into three different subtypes: i) classical, ii) proneuronal, and iii) 

mesenchymal 375,376. Among these subtypes, the mesenchymal subtype presents the most 

aggressive and therapy resistant features 376. However, the cellular lineage of origin of this 

subtype and its associated molecular mechanisms have not been elucidated 377,378. 

Identifying those could provide important biomarkers and therapeutical targets for the 

development of more successful clinical applications. 

In section 4.4 of this dissertation, we profiled the transcriptome of low-grade gliomas 

and GBM cells, including progenitors, from several patients to study their cellular lineage 

patterns. We see that around half of the analyzed GBM progenitors present molecular 

features similar to the Rgl lineage, as previously described 379–381. The remaining GBM 

progenitors presented a molecular profile analogous to the PeriV lineage, which was 

uniquely identified in GBM samples when compared to the low-grade gliomas. Furthermore, 

when compared to the TCGA classification of GBM subtypes, the molecular profile of 

tumors derived from the PeriV lineage shared most of its features with the mesenchymal 

subtype 382. Indeed, patients with GBMs derived from the PeriV lineage presented 

significantly lower survival than the ones with a Rgl origin.  

In our study, most of the tumor cells derived from the PeriV lineage were identified 

as pericytes and vascular leptomeningeal cells. These cell types are normally located near 

the blood vessels and the endfeet of astrocytes and have been described to have a role in the 

remodeling of the brain’s vasculature 383,384. In particular, pericytes have been described to 

be involved in regulating blood flow and maintaining the BBB 385,386. Recent studies 

identified a novel subtype of PeriV cells that presents stem-like characteristics and can give 

rise to pericytes and mesenchymal cells in the adult brain 387–389. The combination of these 

features with the inherent angiogenic role of the PeriV cell lineage can explain the increased 

severity of GBM with this origin. 

Identifying the cell lineage of origin in GBM, specifically by stratifying them in Rgl 

and PeriV origin, can have profound implications in the prognosis of the disease and in the 
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prescription of adequate treatments. To address this, we identified PROX1 and FOXC1 as 

specifically expressed in Rgl and PeriV cell lineages, respectively, and validated their 

expression in patient-derived xenografts. In summary, our results identified the PeriV 

cellular lineage as uniquely present in GBM, characterized the molecular profile of this cell 

lineage as very similar to the mesenchymal subtype, and determined PROX1 and FOXC1 as 

potential biomarkers for disease prognosis. 

PeriV cells can be found not only in the brain, but also across almost all tissues in 

our body. Given our findings associating cells of this origin with a poorer prognosis in GBM 

patients, it would be interesting to investigate the presence of this cell lineage in other types 

of tumors. Pericytes have been extensively described as regulators of tumor 

microenvironment, by contributing to higher permeabilization of blood vessels, promoting 

tumor progression, and the ability to evade immunosurveillance 390–392. Therefore, finding 

cells derived from the PeriV lineage in other types of tumors could be an opportunity to find 

common therapeutical targets and enable the translation of effective therapies across tumor 

types. It has been shown that breast and high-grade ovarian tumors have common molecular 

signatures, namely inactivation of BRCA1 and BRCA2, mutations in the ATM gene, and RB1 

loss 382,393,394. These studies serve as a proof of concept that different cancer types can have 

a shared etiology and consequently similar therapeutical applications. 

In this study, we focused on identifying specifically expressed TFs in GBM derived 

from PeriV origin. However, specific epigenetic marks, namely DNA methylation patterns, 

have also been shown to play a role in GBM development 395,396. Methylation of the MGMT 

gene has been shown to be correlated with a better prognosis in patients with GBM 397,398. 

Complementing current treatments with temozolomide, an alkylating compound that 

methylates DNA, has been the preferential therapeutical approach to significantly improve 

patients’ prognosis 399,400. Furthermore, the presence of a specific DNA hypermethylation 

profile, named glioma CpG island methylator phenotype, has been correlated with a better 

survival of GBM patients 401. 

PFs have been shown to act as chromatin remodelers by regulating DNA methylation 

across different types of cancer 402. The overexpression of ASCL1 in GBM cells has been 

shown to reduce the stem-like features and tumorigenicity of the tumor 272. Other epigenetic 

marks, such as histone modifications and chromatin conformation, have also been shown to 

play a fundamental role in the development of GBM 396,403. Using epigenomic profiling 
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methods, such as BS-seq to map DNA methylation patterns and ChIP-seq to profile the 

histone acetylation and methylation profiles, could unveil unique epigenetic modifications 

in PeriV lineage GBM 339,340. Performing these studies could not only identify biomarkers 

for GBM patient’s stratification, but also provide novel therapeutical targets for the 

development of improved treatments.  

 

5.4. Deciphering the role of disease-associated single nucleotide 

polymorphisms in the impairment of regulatory interactions 

The regulation of gene expression is a complex process that involves fine-tuning of 

both transcriptomic and epigenetic mechanisms which activate or repress genes upon stimuli 
217,218. To activate gene expression, chromatin remodeling mechanisms promote an open 

conformation by controlling the accessibility of specific regulatory elements, such as 

promoters and enhancers 217. Then, TFs bind to these available regions and recruit the 

transcriptional machinery, containing RNA polymerase II, initiating gene transcription 184. 

Dysregulation of these mechanisms due to the impairment of specific regulatory interactions 

can lead to modifications in gene expression that might lead to disease onset 218. 

Mutations in DNA sequences have been extensively described to be connected to 

disease pathogenesis in cancer, brain diseases, and diabetes 218,404,405. SNPs are the most 

common variants in our genome and have been described to affect gene expression by 

changing TF binding affinity, mRNA stability, and by disrupting protein binding domains 
406,407. SNPs have been extensively characterized as risk factors of disease onset and several 

methods, such as GWAS and eQTL analysis, were developed to associate these variants to 

disease causing genes 408–411. 

Most of the profiled SNPs are in non-coding regions of the DNA, especially 

enhancers 287. These have been described to act in a cell type specific manner to control 

regulatory mechanisms essential for activation of gene expression profiles 412. Recent studies 

have focused on characterizing cell type specific regulatory landscapes and illustrating how 

SNPs affect cell type specific biological functions 175,413. However, these methods do not 

provide mechanistic insights regarding specific regulatory interactions that are impaired due 

to the presence of disease-related SNPs. Therefore, characterizing the impact of these 

nucleotide variations on the regulatory landscape would allow for a better understanding of 
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the pathological mechanisms behind the disease and open doors for the development of novel 

gene therapy applications 316. 

In section 4.5 of this dissertation, we presented RNetDys, a computational pipeline 

based on multi-omics data, that identifies regulatory mechanisms impaired due to disease-

associated SNPs. This systematic approach builds cell (sub)type specific GRNs based on the 

combination of scRNA-seq, scATAC-seq, and prior knowledge data, including ChIP-seq 

and GeneHancer database 162,174. We showed that the use of multi-omics data improves the 

accuracy of our method in predicting regulatory interactions when compared to state-of-the-

art approaches. Furthermore, RNetDys can be applied to any cellular system characterized 

in both scRNA-seq and scATAC-seq datasets, independently of whether the information is 

captured on the same cell. 

RNetDys relies on prior knowledge to infer the GRNs, therefore, only previously 

described regulatory mechanisms mediated by TFs and enhancers of regulated genes can be 

predicted as impaired by the presence of SNPs. In that regard, we included ChIP-Atlas and 

GeneHancer databases to provide complete and up to date information about TF binding 

sites and promoter-enhancer interactions 162,174. To ensure the accuracy and consistency of 

our systematic pipeline, a regular literature search to evaluate whether these resources can 

be complemented with novel findings should be performed. GeneHancer is a manually 

curated database of exclusively human enhancer interactions 174. Therefore, our pipeline can 

only be applied to human data. To address this shortcoming, RNetDys could be extended to 

also include EnhancerDB, a resource that compiles enhancer interactions reported in mouse 

data 414. Our method considers only cis-regulatory interactions, the most common regulatory 

mechanism controlling activation of gene expression 415. Although scarcer, trans-regulatory 

interactions have also been described to have a stronger effect on enhancers when compared 

to promoters. Once the necessary computational resources are available, it would be valuable 

to include trans-regulatory interactions in our methodology to provide further insights on 

enhancer-specific regulatory mechanisms.  

 Histone methylation (H3K4me1 and H3K4me3) and acetylation (H3K27ac) are 

specific epigenetic marks that can be used to evaluate if an enhancer is active 416. We could 

not integrate this information in our pipeline since the profiling of these chromatin signatures 

at the single-cell level is still incomplete 417. Instead, we assume that an enhancer is active if 
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it is accessible, at least one of its binding TFs is expressed, and one of its regulated genes is 

also expressed 77,412 . 

RNetDys uses inferred networks to identify specific dysregulated interactions due to 

the presence of any SNPs. This pipeline identifies impaired mechanistic interactions 

mediated by TFs and enhancers of regulated genes. It also provides additional information 

about the type of the regulatory interaction (activation or repression), the impact of SNPs on 

the binding affinity of each TF, and a list of TFs ranked by their effect on the impairments. 

Our method relies solely on TF binding sites reported in ChIP-seq data to provide 

additional mechanistic insights behind the identified dysregulated interactions. Besides 

keeping our ChIP-seq data up to date, we could also expand our pipeline to include an 

algorithm that predicts the generation of novel TF binding sites due to the presence of a 

given SNP 418.  

RNetDys was applied to diseases known to have a strong genetic component, such 

as AD, PD, EPI, and diabetes. Here, we were able to accurately identify dysregulated 

interactions associated with several disease-associated SNPs and provide further insights on 

the mechanisms behind these impairments. Based on these results, we show that RNetDys 

is a systematic pipeline that can leverage multi-omics data to decipher cell (sub)type specific 

mechanisms underlaying impaired regulatory interactions due to disease-associated SNPs. 

For this application, we used SNPs reported in ClinVar, a database with associations between 

human SNPs and phenotypes 419. However, our pipeline could also be applied to patient-

specific SNPs extracted from genotyping data which would provide a more contextualized 

and targeted analysis of the involvement of these SNPs in dysregulated mechanisms. 

Due to the high variability of the human genome, characterizing the impact of a 

single SNP in the regulatory landscape and in the onset of a disease is still difficult. Mice 

strains have extremely low genetic variance. Thus, a possible experimental validation of our 

method could consist of in vivo experiments using mice models. Based on CRISPR 

technology, we could insert a single SNP previously identified by our method to impair key 

regulatory mechanisms and characterize their impact on the onset of the respective 

disease 420. 
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5.5. Outlook 

The successful application of regenerative medicine strategies into clinical practice 

highly depends on the generation of high quality and functional cell (sub)types. Currently, 

the low efficiency of cellular conversion protocols as well as the lack of molecular and 

functional features in the generated cells in vitro is one of the major roadblocks to clinical 

translation of these approaches. Moreover, studying and characterizing the molecular prolife 

of specific cellular populations could accelerate the identification of robust biomarkers that 

can be used as therapeutical targets for clinical applications. The lack of disease modelling 

approaches that can provide further mechanistic insights regarding the impact of SNPs on 

disease onset and development has been delaying the identification of suitable targets for 

gene therapy. Leveraging single cell technology and its combination with other omics data 

is a promising strategy to advance the development of pioneer methods that can address 

these issues. 

The aims of this PhD dissertation were to develop single-cell based computational 

and experimental strategies that would improve cellular conversion protocols by addressing 

epigenetic constrains and achieving control over subtype specification. We also aimed at 

identifying cellular lineage-specific TFs to provide potential prognosis biomarkers and 

decipher the role of disease-associated SNPs in the impairment of regulatory mechanisms. 

This dissertation provides the following contributions to the scientific research community: 

- Implementation of a computational platform that identifies novel cellular 

conversion TFs for the generation of cell (sub)types: TransSynW is single-cell 

based computational method that leverages transcriptomic information to identify 

conversion TFs for any cellular population identified by scRNA-seq. This method 

prioritizes PF among the determined conversion factors to address epigenetic 

constrains that are often related with the low efficiency of current cellular 

conversion protocols. We were able to well-recapitulate known conversion TFs in 

different cellular systems and predict novel TFs that have the potential to improve 

the outcome of cellular conversion protocols. We confirmed the biological 

relevance of our findings by cross-referencing our novel TFs with a manually 

curated database of molecular interactions. TransSynW is hosted in a user-friendly 

web interface that is freely available at https://transsynw.lcsb.uni.lu/. 
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- Identification of marker genes for any cellular (sub)population characterized 

in scRNA-seq: TransSynW further exploits scRNA-seq data to identify marker 

genes for any target cell (sub)type. We were able to well-recapitulate known 

markers in different cellular systems and predict previously unknown genes that 

allow researchers to evaluate the performance their cellular conversion protocols 

more precisely. 

- Implementation of direct reprogramming strategies to convert human 

astrocytes into TUBB3-positive cells based on the endogenous regulation of 

novel conversion TFs: We adapted a previously established CRISPR-dCas9 

system to promote the cellular conversion of human astrocytes by overexpression 

of specific conversion TFs. Lentiviral-based deliver of gRNAs and transcriptional 

activators resulted on the generation of TUBB3-positive cells. Optimization of TF 

overexpression and targeting epigenetic mechanisms can improve the maturation 

level of the generated cells. 

- Development of a two-step reprogramming approach to generate neuronal-

like cells from human astrocytes: We developed a novel direct reprogramming 

approach that consists of the initial overexpression of TFs that promote the 

conversion of human astrocytes into DANs. This step is followed by upregulation 

of TFs that induce the specialization of DANs into the target subtype. The 

application of this approach resulted in cells with a neuronal morphology and 

further optimization can unlock the potential of this protocol in generating cellular 

subtypes with high efficiency and functionality. 

- Identification of potential lineage-specific biomarkers in GBM with 

implications in disease prognosis: Based on the transcriptomic profile of GBM 

and low-grade glioma cells, we determined that the PeriV lineage is specifically 

present in GBM samples. We identified PROX1 and FOXC1 as TFs specifically 

expressed in GBM derived from Rgl and PeriV lineage, respectively, and 

validated their expression in patient-derived xenografts. 

- Development of a multi-omics approach that infers GRNs specific for any cell 

(sub)type: RNetDys is a systematic pipeline that leverages the combination of 

single cell transcriptomic and epigenomic data with prior knowledge information 

to comprehensively characterize the regulatory landscape for any cell 

(sub)population. This method systematically identifies TFs and enhancers of the 

regulated genes involved in specific cell (sub)type regulatory mechanisms. 
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RNetDys is a user-friendly pipeline that is freely available at 

https://github.com/BarlierC/RNetDys. 

- Implementation of a systematic pipeline that identifies impaired regulatory 

interactions related with disease-associated SNPs: Given a list of disease-

associated SNPs, RNetDys identifies the corresponding impaired regulatory 

interactions at the cell (sub)type level. This pipeline provides additional 

mechanistic insights for each of the dysregulated interactions by leveraging the 

GRN information. 

In summary, the findings described in this PhD dissertation leverage single cell data 

to develop novel computer guided experimental strategies with potential applications in 

regenerative medicine and reveal therapeutical targets and complex molecular mechanisms 

associated to the onset of brain diseases.  
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