Binghamton University

The Open Repository @ Binghamton (The ORB)

Research Days Posters 2023

Division of Research

2023

The Influence of Colored Light on Mexican Jumping Bean Larva (Laspeyresia saltitans) Activity

Amber Tuske Binghamton University--SUNY

Faith Summers Binghamton University--SUNY

Andrés Rojo Binghamton University--SUNY

Annie Wong Binghamton University--SUNY

Cassandra Puglisi Binghamton University--SUNY

Follow this and additional works at: https://orb.binghamton.edu/research_days_posters_2023

Recommended Citation

Tuske, Amber; Summers, Faith; Rojo, Andrés; Wong, Annie; and Puglisi, Cassandra, "The Influence of Colored Light on Mexican Jumping Bean Larva (Laspeyresia saltitans) Activity" (2023). *Research Days Posters 2023*. 96.

https://orb.binghamton.edu/research_days_posters_2023/96

This Book is brought to you for free and open access by the Division of Research at The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Research Days Posters 2023 by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact ORB@binghamton.edu.

BACKGROUND

Organisms are exposed to variations in wavelengths of light throughout the course of each day, and colored light is comparable to the various light conditions of species.¹ Cydia saltitans, commonly known as the Mexican jumping bean larva, is known for its tumbling and jumping movements that occur when a larva moves inside its symbiotic seed (Sebastiania pavoniana or Sapium biloculare) (Fig. 1 and 5).² The environmental factors that cause the motion of Mexican jumping bean larvae are mostly unknown. We investigated how exposure to light affected larval movement.

Hypothesis:

• Shorter-wavelength light (e.g., purple, blue) will result in greater larval activity levels because shorter-wavelength sunlight is more common mid-day, when larvae often must move out of direct light to avoid thermal damage.

Fig. 1: The shrub, Sebastiania pavoniana, from which Mexican jumping beans originate.

The Influence of Colored Light on Mexican Jumping Bean Larva (Cydia saltitans) Activity

Faith Summers, Amber Tuske, Annie Wong, Cassandra Puglisi, Andrés Rojo Faculty Advisor: Dr. Lindsey Swierk Department of Biological Sciences

RESULTS

- Light treatment affected whether or not C. saltitans larvae moved during the 10-minute trial (χ^2_3) = 38.506, P < 0.001), with movement occurring more often when larvae were exposed to longer wavelength (redder) light
- Whether or not larvae moved was also affected by trial date ($\chi^2_3 = 147.39$, P < 0.001)

Fig. 4: The displacement of the Mexican jumping bean larvae, measured in millimeters, for each of the four weekly trials, which were completed on 11/1/2022, 11/8/2022, 11/15/2022, and 11/22/2022. Asterisks donate statistical significance among groups (P < 0.001). Error bars are +/- 1 SE.

 $\chi^2_3 = 4996.7, P < 0.001$

Mexican jumping bean larvae showed the greatest activity when exposed to long wavelength (red) light (Fig. 3) and their activity decreased over the course of the experiment (Fig. 4).

Fig. 3: The displacement of the Mexican jumping bean larvae, measured in millimeters, resulting from the various light conditions, purple (short), green (medium), red (long wavelength) or white light (control). Displacement under white light was found to be significantly different from displacement under purple or red light (P < 0.001). Error bars are +/- 1 SE, and lower-case letters indicate significant differences.

 $\chi^2_3 = 481.75, P < 0.001$

DISCUSSION

We found there was a significant difference between the activity levels of the red and purple treatment groups when compared with the control. C. saltitans displayed the most activity under the longer-wavelength red light (~700 nm), and the least activity when exposed to the shorter-wavelength purple light (~380 nm). C. saltitans activity under the white light was intermediate to that of red and purple light and most similar to that of green light. Longer wavelength light has better penetration through materials (e.g., the seed), which may explain greater C. saltitans activity. This is consistent with other published studies, such as in birds, where red light was able to best penetrate the photoreceptors in their skin and skulls.³ Additionally, we found that there was a significant difference between activity levels and week, where average displacement decreased at later dates.

CONCLUSION

- light

Fig. 5: Mexican jumping bean seeds (A) and a C. saltitans larva (B).

Acknowledgments: We thank J. Talavera for assistance and the Fall 2022 Biol 375 students for their comments.

 Results suggest that light stimulates jumping behavior in Mexican jumping bean larvae • Different wavelengths stimulate different levels of activity

• Red light has a longer wavelength, which can more easily penetrate the exterior seed and better reach the larva inside

 Future investigation of other types of light, such as infrared or ultraviolet, could further clarify the responses of *C. saltitans* to different wavelengths • Possible future research may determine the physiological mechanisms leading to response to

Endler, J. A. (1993). The color of light in forests and its implications. Ecological Monographs, 63(1), 1–27. https://doi.org/10.2307/2937121

Bertone, M. A., Gibson, J. C., Seago, A. E., Yoshida, T., & Smith, A. A. (2022). A novel power-amplified jumping behavior in larval beetles (Coleoptera: Laemophloeidae). PLOS ONE, 17(1). https://doi.org/10.1371/journal.pone.0256509

Solangi, A. H., Rind, M. I., Solangi, A. A., & Shahani, A. N. (2004). Influence of lighting on production and agonistic behaviour of broiler. Journal of Animal and Veterinary Advances. 3(5), 285-288. https://doi:10.1017/S0021859600041289