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Abstract 

 

 Golden-lined whiting Sillago analis and yellow-fin whiting Sillago 

schomburgkii were collected from waters within Shark Bay, which is located at ca 

26ºS on the west coast of Australia. The number of circuli on the scales of S. analis 

was often less than the number of opaque zones in sectioned otoliths of the same fish. 

Furthermore, the number of annuli visible in whole otoliths of S. analis was often less 

than were detectable in those otoliths after sectioning. The magnitude of the 

discrepancies increased as the number of opaque zones increased. Consequently, the 

otoliths of S. analis were sectioned in order to obtain reliable estimates of age. The 

mean monthly marginal increments on sectioned otoliths of S. analis and 

S. schomburgkii underwent a pronounced decline in late spring/early summer and then 

rose progressively during summer and autumn. Since these trends demonstrated that 

opaque zones are laid down annually in the otoliths of S. analis and S. schomburgkii 

from Shark Bay, their numbers could be used to help age this species in this marine 

embayment.  

 The von Bertalanffy growth parameters, L∞, k and to derived from the total 

lengths at age for individuals of S. analis, were 277 mm, 0.73 year-1 and 0.02 years, 

respectively, for females and 253 mm, 0.76 year-1 and 0.10 years, respectively. 

Females were estimated to attain lengths of 141, 211, 245 and 269 mm after 1, 2, 3 

and 5 years, compared with 124, 192, 224 and 247 mm for males at the corresponding 

ages. The maximum ages recorded for females and males were 6 and 8 years, 

respectively, and the maximum lengths for females and males were 320 and 283 mm, 

respectively. The von Bertalanffy growth parameters derived from the total lengths at 

age of individuals of S. schomburgkii were 346 mm, 0.47 year-1 and -0.09 years, 
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respectively, for females and 294 mm, 0.59 year-1 and -0.06 years, respectively, for 

males. Females initially grew at a similar rate as males, attaining total lengths of 139, 

216, 265 and 296 mm after 1, 2, 3 and 4 years, compared with 136, 206, 245 and 266 

mm for males at the corresponding ages. The maximum ages recorded for females and 

males were 10 and 9 years, respectively, and the maximum lengths for females and 

males were 383 and 299 mm respectively. The likelihood ratio test demonstrated that 

the growth curves of the females and males of both S. analis and S. schomburgkii in 

Shark Bay were significantly different (P < 0.001). Since, throughout the full range of 

ages, the differences between the estimated lengths at age for S. schomburgkii in the 

subtropical environment of Shark Bay and those recorded previously for this species 

over 800 km further south in temperate waters never exceeded 5%, any differences in 

the estimated lengths at age are too small to be of any biological significance.  

Monthly trends exhibited by the gonadosomatic indices and prevalence of the 

different gonad maturity stages demonstrate that S. analis and S. schomburgkii both 

have protracted spawning periods from October to April and from August to March, 

respectively. Hyndes and Potter (1997) found females and males of S. schomburgkii 

with mature and spent ovaries at stages V-VII in six months, i.e. October to March, in 

temperate waters over 800 km further south on the lower west coast of Australia. 

Higher average water temperatures are thus accompanied by a longer spawning 

period. 

Since the distributions of the oocyte diameters in the ovaries of mature 

females of both S. analis and S. schomburgkii in Shark Bay are essentially continuous, 

and as mature ovaries contain oocytes at different stages in development, including 

“intermediate” stages such as the cortical alveolar stage, these species have 
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indeterminate fecundity. Thus, implicitly, S. analis and S. schomburgkii are also 

multiple spawners. 

 The females and males of S. analis typically attain maturity (L50) at 216 and 

184 mm, respectively, and maturity is typically reached by the end of their fourth 

years of life. The L50s for female and male S. schomburgkii were 237 and 192 mm, 

respectively, and maturity is typically attained by the end of their fourth and third 

years of life, respectively. The above L50s for the females and males of 

S. schomburgkii in Shark Bay are very similar to those estimated by Hyndes and 

Potter (1997) for this species in temperate waters on the lower west coast of Australia. 

There are indications that the length at maturity for S. analis and S. schomburgkii in 

Shark Bay may have decreased during the last 30 years, which may represent a 

response of these two Sillago species to fishing pressure. Preliminary mortality 

estimates suggest that, in Shark Bay, S. analis is more heavily fished than 

S. schomburgkii.  
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Chapter 1 

Introduction 

 

1.1  Ageing 

Reliable determinations of age are essential for fisheries management, and the 

procedures used to obtain such determinations must be sound and provide valid 

results (Casselman, 1987). Accurate determination of age and growth can be used to 

provide reliable stock assessments of a species and thereby assist in conserving the 

stocks of this species and their sustainable utilisation (Booth et al., 1995). Accurate 

information on age is essential for reliable calculations of growth rate, mortality and 

productivity, ranking it among the most important of biological variables from a 

fisheries point of view (Campana, 2001).  

 

1.1.1 Ageing structures 

Several calcified structures in fish undergo periodic changes in growth during 

the year, and thus produce “annually” formed growth zones that can be used for age 

determination, e.g. otoliths, scales, fin rays/ spines, cleithra, and opercula (Demory, 

1972; Casselman, 1973; Rooper et al., 2000; Kocovsky & Carline, 2000; Sipe & 

Chittenden, 2001). Whilst all of the above structures have been used to age fish, 

otoliths are the most widely used (Beamish, 1979; Maceina & Betsill, 1987; 

Hyndes et al., 1992; Fowler & Short, 1998). The occurrence of annual rings in hard 

structures is associated with differences in the proportions of protein and calcium 

deposited during alternating slow, i.e. autumn/winter, and fast, i.e. spring/summer, 

phases of growth (Campana & Neilson, 1984). In general the opaque zones represent 
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periods of slow growth, whereas translucent zones represent periods of fast growth 

(Campana & Neilson, 1984). 

 Scales used to be the most widely employed structure for determining the age 

of a fish, because they can be obtained without killing the fish and are the least time 

consuming to collect and the least expensive to prepare (Pannella, 1974; Kocovsky & 

Carline, 2000). The use of scales in ageing studies, however, poses problems. One of 

these problems is that, because scale growth is proportional to body growth, the 

annuli become closely apposed on the edges of scales of older fish, which makes the 

identification of all of these annuli in older fish difficult (Borkholder & Edwards, 

2001). Another source of error is that scales tend to be resorbed during periods of 

food deprivation or severe stress. Further misinterpretation of growth rings on scales 

may arise from damage to this external structure (Campana & Neilson, 1984; 

Hammers & Miranda, 1991; Rooper et al., 2000). For these reasons, the use of scales 

has often been shown to underestimate the age of fish (Boxrucker, 1986; Beamish & 

McFarlane, 1987). 

Of the three pairs of otoliths that occur in teleost fish, the sagittae, which are 

usually the largest, are the most commonly used in ageing studies (Campana & 

Neilson, 1984). Otoliths are considered the best structure for age estimation for most 

species, in part, because otolith growth is not directly linked to somatic growth 

(Kocovsky & Carline, 2000). Thus, it has been shown that, for several species otolith 

growth becomes “uncoupled” from somatic growth as the latter slows, with otolith 

growth continuing in an incremental manner independent of somatic growth. Otoliths 

are also an internal structure and are not thus subject to damage in the same way as 

scales (Campana, 1990; Casselman, 1990).  
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However, the use of otoliths also has problems. The annuli become very 

closely apposed at the edge of the otolith in older fish and thus, difficult to distinguish 

from one other. Furthermore, as a fish becomes older, the centre of the otolith 

becomes thicker and observing annuli in this area also becomes more difficult 

(Beamish & McFarlane, 1987). Because of this problem, many researchers section 

otoliths in order to be able to detect more readily all of the growth zones that are 

present (Beamish, 1979; Hyndes et al., 1992). Sectioning of otoliths enhances the 

ability to differentiate between the outer opaque and translucent zones and often 

reveals one or more additional inner opaque zones in older fish (Hyndes et al., 1992) 

 

1.1.2 Ageing validation 

One of the requirements for ageing a species is that the ageing method is 

validated. Validation of an absolute age is equivalent to determining the accuracy of 

an age estimate (Campana, 2001). A variety of methods can be used to validate that it 

is appropriate to use the number of annuli on the hard structures of fish for ageing 

purposes. These include analysis of cohorts in length-frequency and age composition 

data, analysis of the changes in the edge of the ageing structure, i.e. marginal 

increment analysis, the use of known-age fish through marking and tag and release 

programs (Bagenal & Tesch, 1978), captive rearing, radiochemical dating, and 

elemental and isotopic cycles (Campana, 2001).  

The trends exhibited by modes in sequential length-frequency distributions 

may be used to determine the number of age classes present when, at any one time, 

the population consists of a series of discrete age groups. Each group is thus 

represented by a mode in the length-frequency distribution (Cadwallader, 1978). 

However, as growth slows as the individuals become older, the length distributions of 
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the different age classes increasingly overlap and thus their modes are no longer 

discrete (Cadwallader, 1978).   

Marginal increment analysis is the most commonly used method for validating 

that the growth zones in calcified tissue are formed annually. The marginal increment 

on each otolith is the distance between the outer edge of the outermost opaque zone 

and the edge of the otolith (Maceina & Betsill, 1987; Campana, 2001). The popularity 

of marginal increment analysis can be attributed to its modest sampling requirements 

and low cost. However, this is one of the most difficult validation methods to carry 

out properly, due to the technical difficulties associated with viewing a partial 

increment affected by variable light refraction, through an edge which becomes 

increasingly thin as the margin is approached, as well as light reflection off the curved 

surface of the edge (Campana, 2001). Validating that the opaque zones in otoliths are 

formed annually is carried out by analysing the trends exhibited throughout the year 

by the marginal increments. The marginal increment is usually presented as a 

proportional state of completion (Campana, 2001). 

The release of known age and marked fish and their subsequent recapture is 

probably the most rigorous method for the age validation for many species, since the 

absolute age of the recaptured fish is known without error (Campana, 2001). Natural 

markers, i.e. caused by a natural phenomena in the wild (radiocarbon dating, bomb 

radiocarbon, 14oC), may be used to validate ageing or marks may be produced by a 

variety of manipulations in the field or laboratory, including modification of food 

available, water temperature and light, and the exposure to a variety of chemicals such 

as tetracycline (Quinn et al., 1981; Fowler, 1990; Francis et al., 1992; Newman et al., 

1996; Fowler & Short, 1998; Cappo, et al., 2000), acetozolamide, or strontium 

(Brothers, 1987). 
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 The prevalence and impact of inaccurate age determinations on the accuracy 

of estimates for various population parameters studies cannot be overstated and there 

are many instances in which ageing error has contributed to the serious 

overexploitation of a population or species. The problem is usually one of age 

underestimation, rather than overestimation (Campana, 2001).   

 

1.2  Reproduction 

 Reproductive studies of a species are typically aimed at determining the size 

and age at first maturity, the timing and duration of the spawning period, and 

fecundity, all of which require knowledge of the stage of gonadal development in 

individual fish (West, 1990). Reproduction is obviously an essential link in the life 

history of fish, with the perpetuation of any species depending on successful 

reproduction (deVlaming, 1983). 

 

1.2.1 Gonadal assessment  

There are several methods for determining the spawning period of a species 

including gondal size, macroscopic staging and histology. Gonadal size alone is not a 

very useful measure because, irrespective of any maturation process, gonad size will 

increase in size as the size of the fish increases (West, 1990). Thus, gonadal indices 

(gonad weight relative to body weight) were introduced as a simple and objective 

measure of gonadal development (e.g. Le Cren, 1951). Gonad weights provide an 

easily measured record of changes in gonad condition (Crossland, 1977). Macroscopic 

staging of gonads is one of the most widely-used techniques for assigning a gonad to 

a particular stage in development. Macroscopic staging is the assignment of a 

numerical stage based on the external appearance of the ovary and the characteristics 
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of its oocytes, as viewed with the naked eye (West, 1990). Gonad staging on a 

descriptive scale allows a rapid quantitative assessment of the breeding state of fish 

(Crossland, 1977). The main macroscopic criterion as to whether oocytes are mature 

is whether they are visible through the ovarian wall and are opaque. However, 

accurate macroscopic staging of gonads requires considerable experience on the part 

of the researcher (West, 1990). Histological examination of ovaries allows for greater 

accuracy when assigning a particular developmental stage to an ovary through the 

examination of whole oocytes. In most studies, ovaries are classified according to the 

most advanced type of oocyte present, regardless of how numerous they are (West, 

1990). 

 

1.2.2 Maturity 

 Because growth rates of individuals and the reproductive potential of a fish 

population may be linked by the size and age at which individuals reach sexual 

maturity, it is essential to include these parameters in any investigation of population 

dynamics and stock assessment models (Cole, 1954; Beacham, 1982; Hannah, et al., 

2002). Length at first maturity is a very important parameter, particularly for 

commercially and recreationally important fish species, as it is frequently used as a 

basis for setting the minimum legal lengths at capture of a fish species. 

 

1.2.3 Determinate and indeterminate fecundity 

 Fecundity estimates are a fundamental component of fishery science. 

Fecundity estimates are important because, when combined with estimates of the 

abundance of eggs released by mature females, they can be used to estimate the 

biomass of a stock (Hunter et al., 1992). Annual fecundity is defined as the total 
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number of eggs spawned by a female in a single year and is related to the size of the 

female (Hunter et al., 1985; Hunter, et al., 1992). Just prior to spawning, females with 

a determinate fecundity will have a fixed number of advanced-yolked oocytes that are 

separated from the other less developed oocytes by a distinct gap in size. These eggs 

can either be spawned in batches or all at once (Nichol and Acuna, 2000). Batch 

fecundity, defined as the number of eggs released at one time by a female fish, can be 

estimated from counts of hydrated oocytes as long as the female has been caught 

during the hydration period and there is no evidence of recent ovulation or spawning 

(Hunter et al., 1985; Hunter, et al., 1992). Fish species with indeterminate fecundity 

possess ovaries that are characterised by the presence of oocytes that form continuous 

size distributions, reflecting the continuous maturation of oocytes throughout the 

spawning season. These species will typically develop multiple groups of oocytes 

with size distributions that overlap (Nichol & Acuna, 2000). 

 

1.3  Nearshore Habitats  

Shallow water environments are important habitats for many fish species. 

They are found in estuaries (Dando, 1984; Potter et al., 1990; Potter & Hyndes, 

1999), seagrass beds (Bell & Pollard, 1989; Ferrell & Bell, 1991; Jenkins et al., 

1997), protected embayments (Blaber & Blaber, 1980; Lenanton, 1982; Wright, 

1988), sandy surf-zones (Ayvazian & Hyndes, 1995; Clark et al., 1996) and 

mangroves (Bell, et al., 1984; Robertson & Duke, 1987). Shallow water habitats are 

particularly important nursery areas for many fish as they are typically productive and 

contain warm water temperatures, and thus facilitate a faster rate of metabolism and 

thus growth. They also reduce the likelihood of predation from large piscivorous fish 

(Bell, et al., 1984).  
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The value of estuaries as fish nursery areas has been attributed to the fact that, 

because they are very productive ecosystems, they enable fish to grow rapidly and 

thereby become less susceptible to predation. Furthermore, since the prevalence of 

large carnivorous fish is lower in estuaries than open marine waters, the degree of 

piscivorous predation on the juveniles of marine fish species will presumably be less 

in estuaries than in their natal environment (Blaber, 1980; Blaber & Blaber, 1980; 

Russell & Garrett, 1983).   

 Fish assemblages associated with seagrass beds consist mainly of small, 

inconspicuous species and juveniles of larger species (Bell & Pollard, 1989). The 

structural complexity associated with seagrass beds provides protection from 

predators and supplies food through the production of an abundant epifauna on the 

blades or indirectly through the generation of detritus (Ferrell & Bell, 1991).   

 Nearshore sandy beach environments provide an important alternative habitat 

to estuaries (Lenanton, 1982). The use of surf zones by large numbers of juvenile 

fishes is almost certainly related to the fact that these areas contain rich food resources 

in the form of zooplankton and provide protection from predation through the 

shallowness, turbidity and turbulence of these waters (Lasiak, 1986). Large 

accumulations of detached macrophytes often occur in these nearshore regions, which 

also provide a source of food and shelter for the juveniles of some fish species 

(Lenanton, 1982; Robertson & Lenanton, 1984; Lenanton & Caputi, 1989). 

Mangrove habitats have long been considered major feeding sites for juvenile 

fish and crustaceans because they produce large quantities of detrital material. 

Mangrove creeks afford shelter to small fishes because they are too shallow for most 

piscivorous fish (Robertson & Duke, 1987). The pneumatophores and exposed roots 

of mangroves lining the creek banks provide both further shelter from predators, such 
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as birds, and increase the surface area available for epiphytic algae. Since plankton 

and other invertebrates are channeled through drainage creeks during ebb tides, the 

availability of such food types in these creeks provide is greater than in unvegetated 

habitats (Bell et al., 1984).  

 Although many fish species use nearshore habitats as juveniles, some species, 

such as Sillago bassensis, Sillago vittata, Sillago burrus and Sillaginodes punctata, 

move offshore into deeper waters when they become adults. Others remain in 

nearshore areas for the whole of their lives, such as Sillago analis, Sillago 

schomburgkii, and Sillago ciliata. Alternatively, other species, such as Sillago robusta 

never use inshore areas, and thus spend their entire lives in offshore waters (Lenanton, 

1970; Morton, 1985; Weng, 1986; Hyndes et al., 1996b; Hyndes & Potter, 1996, 

1997). When various teleost species are found in the same environment, the potential 

for interspecific competition is often reduced by the partitioning of resources amongst 

those species. Thus, such co-occurring species may feed on different types of food, 

occupy different habitats or utilize resources at different times (Schoener, 1974; 

Helfman, 1978; Ross, 1986). 

  

1.4  Golden-lined, Sillago analis, and yellow-finned, Sillago schomburgkii, 

whiting 

The perciform family Sillaginidae (whiting and sand smelts) contains three 

genera, three subgenera and thirty-one species of small to moderate size. The 

members of this family are found mainly in shallow coastal waters of the Indo-

Pacific, where they contribute to both the commercial and recreational fisheries. 

Sillaginids are highly-valued as food in many tropical and temperate waters. Two of 

the three genera in the family Sillaginidae, namely Sillaginodes and Sillaginopsis, are 
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monotypic, whereas the third genera, Sillago, includes twenty-nine species (McKay, 

1992).  

 One Sillago species, the golden-lined whiting (Sillago analis), also known as 

the rough-scale whiting, inhabits tropical environments from 7-30°S (McKay, 1992; 

Allen, 1997). It is found in the south-western Pacific and south-eastern Indian Oceans 

and occurs northwards from Shark Bay, Western Australia, throughout the Northern 

Territory and Queensland, and southwards to Moreton Bay. This species is also found 

on the southern coast of New Guinea, where it is commonly referred to as Sillago 

nierstraszi (McKay, 1992; Allen, 1997). The main diagnostic feature of this species is 

its possession of 16-18 dorsal softrays. The lower part of the body is light silver, 

whilst the dorsal surface is slightly darker in colour. A dull golden silver to golden 

yellow stripe is present below the lateral line of this species. The pelvic and anal fins 

are pale yellow to bright yellow and the pectoral fin has a darker ‘dusting’ of fine 

black and/or brown spots. Sillago analis attains a maximum total length of 450 mm 

(McKay, 1992, Allen, 1997).   

The golden-lined whiting spends its entire life cycle in the protected nearshore 

waters of marine embayments (Hyndes and Potter, 1997). The juveniles of this 

species, together with the yellow-fin whiting (Sillago schomburgkii), occur in shallow 

waters around mangroves. In contrast, mature S. analis prefer muddy, tidal streams 

(McKay, 1992). Sillago analis is a nocturnally-feeding carnivore (Brewer and 

Warburton, 1992) and its ‘preferred’ prey is bivalve molluscs, such as Mesodesma 

eltanae (Gunn & Milward, 1985), and the siphon tips of the bivalve Glauconome 

virens (Brewer & Warburton, 1992). Other prey include polychaetes, brachyurans, 

penaeids, thalassinids, mysids, amphipods, copepods, alphaeids and many other 

crustaceans (Brewer & Warburton, 1992; Gunn & Milward, 1985; McKay, 1992). 
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During a study by Lenanton (1970) of the whiting fishery in Shark Bay (26ºS), 

a large marine embayment, it was found that S. analis spawned over a relatively long 

period from November to March. The mean total length at maturity for females and 

males was estimated to be 210 and 180 mm, respectively.  

The yellow-fin whiting (Sillago schomburgkii) is endemic to Australia, and 

inhabits subtropical and temperate waters between 20 and 36°S. This species is found 

in the eastern Indian Ocean, southwards from Dampier to Albany in Western 

Australia, and also occurs in the St Vincent and Spencer Gulfs in South Australia. It is 

not known whether it occurs in the intervening waters. The main diagnostic feature of 

S. schomburgkii is its possession of 19-22 dorsal softrays. This species attains a 

maximum total length of 420 mm and a maximum age of 12 years (Hutchins & 

Swainston, 1986; McKay, 1992). 

Sillago schomburgkii generally frequents inshore waters over sand banks, bars 

and spits, and congregates in sandy hollows (McKay, 1992) and, like S. analis, 

remains in sheltered nearshore waters throughout its entire life cycle (Hyndes & 

Potter, 1997; Hyndes et al., 1997a). At high tide, S. schomburgkii move in schools 

across sand flats and retreat to the slopes of banks when the tide falls. Juveniles 

inhabit either mangrove-lined creeks or protected inshore areas, over muddy bottoms 

or seagrass (McKay, 1992). Like several other whiting species, crustaceans and 

polychaetes are the prey that are most frequently ingested by S. schomburgkii 

(Hyndes et al., 1997a). 

 During his study on whiting in Shark Bay, Lenanton (1970) found that 

S. schomburgkii spawned between September and March and that, on average, the 

females and males of this species mature at total lengths of ca 230 mm and 200 mm, 

respectively. In contrast to these findings for Shark Bay, Hyndes and Potter (1997) 
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found that, in nearshore waters on the lower west coast of Australia (ca 32ºS), 

S. schomburgkii spawn between October and February and reach maturity at a similar 

size to that found by Lenanton (1970) for individuals of this species in Shark Bay, i.e. 

230 mm and 200 mm females and males, respectively. 

 

1.5 Shark Bay 

Shark Bay is situated ca 800km north of Perth at ca 26°S, 114°E in Western 

Australia, and was inscribed on the World Heritage List in 1991. The Shark Bay 

World Heritage Property that encompasses the westernmost point of Australia 

occupies a total area of 2.2 million hectares, 71% of which consists of marine habitat 

containing more than 1500 km of mostly pristine coastline (Walker et al., 1988; 

Marsh, 1990).  

Shark Bay stretches from the north end of Bernier Island (24°45’S, 113°10’E) 

to the south end of Freycinet Harbour (26°36’S, 113°41’E). Shark Bay is a large 

(13 000 km2), shallow (mainly <15 m) basin with an average depth of 9 m and a 

maximum depth of ca 29 m (Walker et al., 1988; Marsh, 1990). The bay is enclosed 

by Bernier, Dorre and Dirk Hartog Islands and is subdivided internally by dune ridges 

and submerged banks or sills into numerous inlets, gulfs and basins (Marsh, 1990). 

Shark Bay is characterised by two important features: extensive intertidal and shallow 

subtidal sandflats with seagrass beds containing a remarkable number of species of 

plants and a gradient of increasingly saline water which reaches 65 ppt in the distal 

parts of the bay farthest from the open sea (Black et al., 1990). 

The total area of mangroves in the Shark Bay region, from Miaboolia Beach 

north of the Gascoyne River to South Passage, Shark Bay, is 1700 hectares, excluding 

the mangrove area of Dubaut Inlet. This area includes saltmarsh, front-flats and back-



 20

flats. The two main species of mangroves in the Gascoyne region are Avicennia 

marina and Aegialitis annulata (Johnstone, 1990; Pedretti & Paling, 2001). 

 
 

1.6  Shark Bay Beach Seine and Mesh Net Managed Fishery 

Seine netting for scale fish in Denham, Shark Bay, started in the late 1920s. 

Pearl luggers in Denham supplemented their income by shipping fish to Singapore 

and the eastern states. With the availability of road transport (1942), freezer storage 

(1948) and later, an air service, the market flourished. The number of men and boats 

and the annual catch continued to rise until about 1963. In the late 1960s, research 

indicated that the whiting stocks were declining as a result of overfishing (Shaw, 

2000). Recommendations were made for the fishery to be managed, which resulted in 

a reduction in the number of fishing units from of 17 in 1964 to nine at the current 

time (Shaw, 2000).  

In the Shark Bay Beach Seine and Mesh Net Managed Fishery, each unit has 

one primary vessel, a maximum of three netting dinghies and a team of no more than 

three fishers. Most of the whiting are caught between April and September, when the 

high tides allow netting on the majority of the shallow banks. Since the winds are 

usually lighter in these months of the year, it is usually easier to fish during this 

period (Shaw, 2000). 

The Shark Bay Beach Seine and Mesh Net Managed Fishery takes a mixed 

catch of whiting (Sillaginidae), sea mullet (Mugil cephalus), tailor (Pomatomus 

saltrix) and yellowfin bream (Acanthopagrus latus). Whiting is the main target 

species in Shark Bay, with the overall catch consisting primarily of two species of 

whiting, i.e. S. schomburgkii and S. analis (Anon., 2002). 
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This fishery, although relatively small-scale, makes a significant contribution 

to the Denham economy and community. The commercial production during the 2001 

season was 259 tonnes (all finfish), of which 115.3 tonnes were whiting. The 

estimated annual value for the 2001 season was $750 000 (all finfish), of which 

whiting accounted for $414 000 (Anon., 2002). 

 

1.7 Aims of study 

 The overall aims of this study were to determine the size and age 

compositions, growth rates and aspects of the reproductive biology of Sillago analis 

and Sillago schomburgkii in Shark Bay and to compare these results with those 

recorded by Lenanton (1970) for Shark Bay and by Hyndes and Potter (1997) for the 

lower west coast of Australia. Although some very useful information was provided 

by Lenanton’s (1970) study on the life cycles of these two whiting species in Shark 

Bay, the present study provides data produced using methods and techniques that 

were unavailable when these fish were previously studied. The specific aims of the 

present study were to determine the following for Sillago analis and Sillago 

schomburgkii: 

1. The most appropriate structure for ageing these fish and whether growth zones 

are formed annually. 

2. Length and age compositions and growth rates.  

3. Time and duration of spawning. 

4. Total lengths (i.e. L50) and ages at which females and males first attain 

maturity. 

5. Whether these species are multiple spawners and whether they have 

determinate or indeterminate fecundity. 
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6. Whether there is evidence that either species is suffering high fishing 

mortality.  

7. Compare the results obtained for these two species in the present study with 

those obtained by Lenanton (1970) during the late 1960s and 1970s to 

determine whether any aspect of the biology of the two species of whiting 

have changed as a response to a marked reduction in fishing pressure.  

     8.  Finally, aspects of the biology of Sillago schomburgkii in Shark Bay will be 

compared with those in other regions in Australia to determine whether 

differing environmental effects influence the biological characteristics of this 

species. 
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Chapter 2 

Materials and Methods 

 

2.1 Sampling regime 

2.1.1 Location and timing 

Sampling for juvenile and adult Sillago analis and Sillago schomburgkii was 

concentrated in nearshore, shallow waters at Herald Bight and Dubaut Inlet on the 

western side of Peron Peninsula, Shark Bay, situated on the mid-west coast of 

Australia (Map 1). These two sites contain intertidal mangroves and creeks and are 

bordered by open sand flats (Plate 1). Herald Bight has a total mangrove area of ca 

100 ha (Johnstone, 1990). The total area of mangroves at Dubaut Inlet is unknown. 

Additional opportunistic samples of juveniles and adults were obtained from Bush 

Bay, Uendoo Creek, Oyster Creek, and Cape Peron and South Passage respectively 

(Map 1). Sampling for both juvenile and adult fish was always conducted during the 

day. 

 

2.1.2 Sampling methods 

Samples of juvenile S. analis and S. schomburgkii were obtained using a 

21.5 m seine net, which comprised two 10 m long wings, each consisting of 6 m of 

9 mm mesh and 4 m of 3 mm mesh, and a 1.5 m long pocket of 3 mm mesh. The net 

fished to a maximum depth of 1.5 m and covered an area of ca 116 m² (Plate 2). Four 

replicate seines were dragged on each sampling occasion at each site. The seine net 

was deployed in a circle in both mangrove inlets and along mangrove edges on the 

bordering sand flats at Herald Bight and Dubaut Inlet (Plate 3). Six opportunistic 
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seine net samples were also obtained at each of Uendoo Creek, Bush Bay and Oyster 

Creek in September and November 2002 and January, February, June and July of 

2003. Sampling was carried out in the same way as described above for replicate 

sampling.  

Adult fish were sampled using gill nets at Herald Bight and by rod and line 

fishing at Dubaut Inlet on each sampling occasion and opportunistically at other sites 

around Cape Peron (Map 1). The four gill nets used were 21 m in length and each 

consisted of three equal sized panels with different mesh sizes (i.e. 50, 75, and 100 

mm mesh). The gillnets fished to a maximum depth of 1 m. Gill nets were set 

perpendicular to the mangroves bordering the sand flats. One end of the gill net was 

attached to the mangroves while the other end was either attached to a stake that was 

hammered into the sediment or tied to a weight and float (Plate 4). A total of four 

replicate samples were collected on each sampling occasion, two on the sand flats and 

two in the inlet in every second month from December 2001 through to August 2002 

at Herald Bight. Gill nets, the same as above as well as a further four nets, each 

consisting of a single panel of 50 mm mesh, were also set opportunistically during 

September and November of 2002, and January, February, March of 2003 at Herald 

Bight. When sampling using rod and line, size 8 and 10 long shank hooks were used. 

Coral prawns were found to be the most suitable bait. Fish were also obtained from 

the wholesale fish market in Shark Bay and from retail fish markets in Perth, when 

available, to supplement samples.  
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2.2 Environmental data 

 Water temperature was recorded on each sampling occasion at Herald Bight 

and Dubaut Inlet using a Yellow Springs Instruments Salinity, Conductivity and 

Temperature meter (Model YSI 30). 

 

2.3 Laboratory procedures 

 The total weight (TW) and total length (TL) of each S. analis and 

S. schomburgkii were recorded to the nearest 1 g and 1 mm, respectively. 

 

2.4  Age and growth 

2.4.1 Age determination and ageing techniques 

The sagittal otoliths of each individual of both Sillago species were removed, 

cleaned, dried and stored in labeled envelopes. A preliminary examination of both 

whole and sectioned otoliths from fish of various sizes was conducted to determine 

whether the clarity of the opaque zones was improved by sectioning. Whole otoliths 

were placed in a small black dish and covered with methyl salicylate and examined 

under reflected light using a dissecting microscope. The number of opaque zones that 

were visible on each otolith was recorded. The same otoliths were then mounted in 

clear epoxy resin and cut transversely through their primordia into ca 0.6 mm sections 

using an Isomet Buehler low-speed diamond saw. The sections were ground with fine 

wet and dry carborundum paper (Grade 1200) and mounted on glass microscope 

slides with DePX mounting adhesive and a cover slip. Subsequently, each slide was 

placed on a black surface and viewed in the same manner as whole otoliths, and the 

number of visible opaque zones was recorded. Since the opaque zones typically were 

more clearly visible on sectioned otoliths, the otoliths of all fish were sectioned for 
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ageing purposes. The number of opaque zones on each otolith was recorded. To 

determine if there was any reader bias in the ageing of these fish, comparisons were 

made between the number of opaque zones that could be observed on sectioned 

otoliths of 100 fish from a wide size range by the author and an experienced reader of 

otoliths (Alex Hesp – Murdoch University Fish and Fisheries Research Centre). 

Scales were removed from a subsample of 100 S. analis and 80 

S. schomburgkii, representing individuals in each 10 mm size class from 70 to 

290 mm and 70 to 350 mm, respectively, to determine whether scales could be used 

for ageing these two Sillago species. A minimum of five scales were removed from 

just behind the pectoral fin on the left-hand side of each fish, dried and then stored in 

labelled envelopes. These scales were later placed between two glass microscope 

slides that were taped together with cellulose tape and viewed using the computer 

package Leica Image Manager 1000 (Leica Microsystems Ltd., 2001), which obtained 

the image via a video camera (Leica DC 300) attached to a Leica M275 dissecting 

microscope using reflected light. The scale with the clearest circuli was used for 

providing counts of the growth zones of each fish. Counts of the number of circuli on 

each scale and the number of opaque zones on the corresponding sectioned otolith of 

each fish were recorded.  

 

2.4.2 Age validation 

Whenever possible, a minimum of 20 otoliths per month for both Sillago 

species were used for age validation. The distance between the primordium and both 

the outer edge of the otolith and the outer edge of the single zone when only one zone 

was present and between the outer edges of the two outermost opaque zones when 

two or more opaque zones were present were all measured along the same axis, i.e. 
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perpendicular to the opaque zone (e.g. Hyndes et al., 1992, 1996a). The marginal 

increment, i.e. the distance between the outer edge of the single or outermost opaque 

zone and the periphery of the otolith has been calculated for each otolith. 

Measurements were recorded to the nearest 0.1 mm using a dissecting microscope 

with a graticule in the eyepiece under reflected light. Since the number of otoliths 

containing ≥ four opaque zones was far less than those with one, two and three zones, 

the marginal increment values for all otoliths with ≥ four opaque zones in each month 

have been pooled (see results section). 

The trends shown by the mean monthly marginal increments on otoliths with 

differing numbers of opaque zones were examined to determine whether the marginal 

increment underwent a single decline and rise each year, and thereby demonstrated 

that one opaque zone was formed annually and that the number of opaque zones could 

thus be used to ascertain determining the ages of S. analis and S. schomburgkii.  

 

2.4.3 Growth 

A birth date was assigned to S. analis and S. schomburgkii, based on the 

estimated peak time of spawning, which was determined from the monthly trends 

exhibited by gonadosomatic indices, gonadal maturity stages and oocytes stages. von 

Bertalanffy growth curves were fitted to the lengths of individuals of both sexes at the 

estimated age at the time of capture by using SPSS (SPSS Inc., 2001). The lengths at 

age of juvenile fish of both Sillago species < 80 mm TL, which could not be sexed 

macroscopically, were alternately allocated to the female and male data sets used for 

calculating the von Bertalanffy growth curves. The von Bertalanffy growth equation 

is 

]ex1[ )( ottk

t pLL
−−

∞ −= , 
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where Lt is the length (mm TL) at age t (years), L∞ is the mean asymptotic length 

predicted by the equation, k is the growth coefficient (year-1) and to is the hypothetical 

age (years) at which fish would have zero length if growth had followed that predicted 

by the equation. The growth equations for female and male S. analis and 

S. schomburgkii in Shark Bay were compared using a likelihood-ratio test (see 

Kimura, 1980). The hypothesis of a common growth curve for the two sexes, was 

rejected at the α = 0.05 level of significance if the test statistic, calculated as twice the 

difference between the log-likelihood obtained by fitting a common growth curve for 

both sexes and by fitting separate growth curves for each sex, exceeded ( )q
2

αχ , where 

q is the difference between the numbers of parameters in the two approaches (e.g. 

Cerrato 1990). The log-likelihood, λ, for each curve, ignoring constants, was 

calculated as 







−=

n
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2
λ , where n refers to the sample size, ln is the natural 

logarithm, and ss refers to the sum of the squared residuals between the observed and 

expected lengths at age.  

 A likelihood-ratio test was also used to compare the growth curves derived by 

Hyndes and Potter (1997) for each sex of S. schomburgkii at ca 32oS on the lower 

west coast of Australia and those derived in the present study at ca 26oS in Shark Bay. 

The question of whether the lengths at age of the growth curves of S. schomburgkii 

for the two latitudes differed at each of the ages 1, 2, and 3 years was explored by 

reparameterising the von Bertalanffy growth equation in terms of the lengths at two 

reference ages (Schnute, 1981) and the growth coefficient k. Growth curves were 

fitted simultaneously to both data sets, using a penalty function to ensure that the 

difference between the calculated values of t0 for the two curves was negligible. For 

each of the specified reference ages, 1, 2, 3, and 4 years, separate curves were first 
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fitted to the data sets for the two different latitudes. Subsequently, these growth 

curves were constrained such that the length at this reference age was common to both 

curves. The difference between the log-likelihoods for these two analyses was tested 

using the likelihood ratio test to determine whether the length of the specified age 

differed between the two data sets. 

2.5 Mortality 

2.5.1 Natural mortality 

 Natural mortality (M) was calculated using three empirical methods, namely 

those of Pauly (1980), Ralston (1987) and Rikhter and Efanov (1976). Pauly (1980) 

developed a relationship between natural mortality rate, M, and the growth parameters 

k and L∞ in the von Bertalanffy growth equation and temperature, T, using data from 

175 fish stocks. In order that the 95% confidence limits were calculated a linear 

regression was refitted to Pauly’s (1980) data. The resulting regression model using 

natural logarithms, is 

lneM = -0.0152 – 0.279lneL∞ + 0.6543lnek + 0.4634lneT , 

where T = mean annual surface temperature (ºC) and L∞ (mm) and k (years-1) are the 

von Bertalanffy growth parameters. An estimate of M was determined for S. analis 

and S. schomburgkii in Shark Bay by inserting estimates of L∞ and k, derived from 

their respective growth equations, into the regression model above. The mean annual 

surface water temperature in Denham, Shark Bay (22.5ºC), was determined from data 

obtained by the Australian Oceanographic Data Centre (http://www.AODC.gov.au). 

 An estimate of M and its confidence limits were also calculated by refitting a 

linear regression to Ralston’s (1987) data. The refitted version of Ralston’s regression 

equation is 

M = 0.0189 + 2.06 k, 
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where k (years-1) is the von Betalanffy growth coefficient. 

 A further estimate of M was calculated using the regression equation 

developed by Rikhter and Efanov (1976) who found M to relate to the age at which 

50% of fish first attained maturity. Their equation is: 

M = (1.521/Tm50
0.72) – 0.155, 

where Tm50 is the age at which 50% of S. analis and S. schomburgkii first attained 

maturity. The value of Tm50 was estimated using the following equation, 

Tm50 = t0 – 1/k ln(1-Lm50/L∞), 

where t0, k and L∞ are the von Bertalanffy parameters and Lm50 is the estimated length 

at 50% maturity (Rikhter and Efanov, 1976). 

 For all these natural mortality rates, M and its 95% confidence limits were 

calculated for females and males. The final M was calculated by finding the mean of 

the female and male mortality rates, and conservative estimates of the confidence 

intervals were derived from the lowest and highest values of the corresponding 

confidence limits for females and males. 

 

2.5.2 Total mortality 

 To determine the age at full recruitment for each species, a preliminary age 

frequency histogram was plotted for the commercial catch data. Normally, only age 

classes following the ‘peak’ on the descending limb of such a ‘catch curve’ are used 

in following analyses for calculating Z (Ricker, 1969; 1975). This approach was used 

for S. schomburgkii, however in the case of S. analis, this was not possible for 

yielding a reliable estimate of Z, as there were limited data. Therefore, in the case of 

S. analis, the age classes above, and that which included the peak, were all used to 
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estimate Z. Thus, the value for Z for S. analis is considered as a preliminary estimate, 

which may represent a slight underestimate for the true value for Z. 

 An estimate of total mortality (Z) was obtained by using the age composition 

data for commercial samples of S. analis and S. schomburgkii from Shark Bay 

collected during the study. For a fish stock that experiences a constant level of Z from 

the age of full recruitment (into the fishery), a=tc years, the estimated proportion, tap ,
ˆ , 

at age a is 
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( )[ ]∑
=

−−

−−
=

A

tj

c

c
ta

c

Ztj

Zta
p

exp

exp
ˆ

, , where A is the maximum observed age. It was 

assumed that the level of annual recruitment is constant. It was also assumed that the 

age composition for fish of ages tc ≤ a ≤ A observed in year t, represents a random 

sample from a multinomial distribution with uniform selectivity from the age of full 

recruitment. Ignoring constants, the log-likelihood, λ , of the age compositions was 

calculated as [ ]ta
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=λ , where na,t is the observed number of fish of age a in 

year t. The parameters of the model were estimated by maximizing the log-likelihood, 

using the SOLVER routine in Microsoft TM Excel. For each species, the data were 

randomly resampled and analysed to create 1000 sets of bootstrap estimates. The 

point estimate of Z was taken as the median of the 1000 bootstrap estimates. The 95% 

confidence limits were calculated as the 2.5 and 97.5 percentiles of the corresponding 

predicted values.  

 Values of Z were also estimated by using the observed maximum age (tmax) for 

S. analis in all samples, as well as solely for the commercial samples, and in the case 

of S. schomburgkii in all samples, employing the following regression equation for 

fish by Hoenig (1983), 

ln(Z) = 1.46 – 1.01 ln(tmax). 
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When calculating total mortality using catch curve analysis and Hoenig’s (1983) 

method, data for females and males were pooled. 

 

2.6    Reproduction 

2.6.1 Macroscopic identification  

 The sex of each fish > 80 mm was determined macroscopically. The gonads of 

each fish were removed, weighed to the nearest 0.01g, and allocated macroscopically 

to one of the following stages of maturity, based on the criteria of Laevastu (1965): Ι 

= virgin; ΙΙ = maturing virgin; ΙΙΙ = developing; ΙV = maturing; V = mature; VІ = 

spawning; VІІ = spent; VIII = recovering.  

 

2.6.2 Gonadosomatic indices 

Gonadosomatic indices (GSI) were determined from the following equation  

(W1/ (W2 – W1)) x 100, 

where W1 = gonad weight and W2 = body weight. The indices were calculated using 

data fro fish ≥ the estimated L50 at first maturity, i.e. 230 and 190 mm for females and 

males, respectively (see section 2.6.4).  

  

2.6.3 Ovary histology 

Ovaries of up to 10 large females collected in each month were placed in 

Bouin’s fixture for 24 h, dehydrated in 70% ethanol and then embedded in paraffin 

wax. Transverse sections (6 µm) of the mid-region of each ovary was stained with 

Mallory’s trichrome. The terminology for the oocyte stages follows that given by 

Khoo (1979).  
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2.6.4 Sexual maturity  

Lengths of both sexes at first maturity were estimated by fitting a logistic 

regression to the proportion of those fish, which, in each 10 mm class interval of 

S. analis and each 20 mm class interval of S. schomburgkii, possessed, during the 

spawning period of the species, gonads at stages III to VIII and were thus likely to 

have spawned during that period. The curve was fitted using SPSS (SPSS Inc., 2001). 

The logistic equation is 

PL = 1/[1 + e (a + bL)] 

where PL is the proportion of fish with mature gonads at length interval L and a and b 

are constants. The L50, which represents the length at which 50% of the individuals 

possessed gonads at stages III to VIII, was calculated from the equation L50 = -a/b.  

 From preliminary examinations of both S. analis and S. schomburgkii caught 

during their respective spawning periods, it was found that the majority of female fish 

≥ 230 mm and male fish ≥ 190 mm would reach stages III-VIII and therefore be 

mature. Thus, trends shown by the gonadosomatic indices and gonadal development 

(see results section) were determined using female and male fish of both these species 

≥ these lengths.  

 

2.6.5 Spawning mode  

 To determine whether S. analis and S. schomburgkii had determinate or 

indeterminate fecundity, sections of four randomly-selected mature ovaries from fish  

that were caught during the spawning period and were ≥ 230 mm total length (length 

at first maturity) were examined. The circumferences of 100 randomly selected 

oocytes were measured to the nearest 0.1 µm using a high-resolution projection screen 

attached to an Olympus BH-2 compound microscope. These circumferences, which 



 34

were recorded only for oocytes that had been sectioned through their nuclei, were than 

used to calculate the diameters of the oocytes. 
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Chapter 3 

Results 

 

3.1  Environmental measurements 

3.1.1 Environmental measurements for Herald Bight and Dubaut Inlet 

 The mean monthly water temperatures for sampling regions in Shark Bay 

declined from a maximum of ca 29ºC in mid summer to ca 26ºC in mid autumn and 

then to a minimum of ca 17ºC in late winter, before rising to ca 27ºC in late spring 

(Fig. 3.1).  

 

3.2  Age composition and growth of Sillago analis 

3.2.1 Scales vs sectioned otoliths 

Although the number of growth zones detected in sectioned otoliths were 

sometimes the same as those that were observed in scales, this frequently was not the 

case (Fig. 3.2). Furthermore, in these latter cases, the number of opaque zones visible 

in sectioned otoliths was generally greater than the number of circuli visible in the 

scales of the corresponding fish and, in one case, the difference in the number was as 

great as three (Fig. 3.2).  

 

3.2.2 Whole otoliths vs sectioned otoliths  

The number of opaque zones that could be detected on the otoliths of S. analis 

after sectioning were the same as those on otoliths that contained either no opaque 

zones or only a single opaque zone (Fig. 3.3). However, this was frequently not the 

case when the number of opaque zones that could be detected in sectioned otoliths 
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was more than one. In such cases, the number of opaque zones visible in whole 

otoliths was always less than that which could be detected in sectioned otoliths of the 

same fish. Furthermore, the magnitude of such discrepancies increased as the number 

of opaque zones increased, with a maximum difference of three opaque zones being 

recorded in the fish with the greatest number of annuli (Fig. 3.3).  

 

3.2.3 Marginal increment analysis 

 The mean monthly marginal increments for sectioned otoliths of S. analis with 

two opaque zones remained at 0.48 to 0.58 between July and October, before 

declining precipitously to a minimum of 0.19 in November and then increasing 

progressively to 0.57 in March and remaining at about this level in the immediately 

ensuing months (Fig. 3.4). The mean monthly marginal increments for otoliths with 

three and or ≥ 4 opaque zones, respectively, followed essentially the same trend as 

that just described for otoliths with two opaque zones. Although no fish with otoliths 

containing one opaque zone were caught in either October or December, the mean 

monthly marginal increments for the otoliths of such fish in the other months of the 

year followed a similar trend to that just described for fish with a greater number of 

opaque zones (Fig. 3.4). The presence of a single pronounced decline and rise in the 

mean monthly marginal increment during the year demonstrates that a single opaque 

zone is formed annually and that the number of opaque zones in the sectioned otoliths 

of S. analis can thus be used to assist in ageing this species (Fig. 3.4).  
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3.2.4 Length-frequencies and age composition of Sillago analis 

 Since S. analis were not able to be sexed until they had reached lengths of 

ca 80 mm, the lengths at age of 0+ juveniles below this length were alternately 

allocated to the length-at-age data sets for females and males (Figs 3.5 and 3.6). 

Substantial numbers of early 0+ juveniles, ranging in length from 21-79 mm, were 

first caught in June (Fig. 3.5). By November, when the 0+ cohort was, on average, 10 

months old, this species had attained an average length of 110 mm (range = 71-

159 mm). By the end of their second, third and forth years of life, females had 

attained an average length of 170, 240 and 260 mm, respectively, and males had 

attained an average length of 160, 220 and 250 mm, respectively (Fig. 3.5).  

 

3.2.5 von Bertalanffy growth curves for Sillago analis 

 The von Bertalanffy growth curve fitted well the lengths at age of both female 

and male S. analis (Fig. 3.6), as is demonstrated by the relatively high values for the 

coefficient of determination (R2), i.e. 0.80 and 0.86, respectively, and values for to that 

were close to zero (Table 3.1). The growth coefficient (k) and asymptotic length (L∞) 

of females were 0.73 years–1 and 277 mm, respectively. Female S. analis attained 

lengths of 141, 211, 245 and 269 mm at 1, 2, 3 and 5 years of age, respectively 

(Fig. 3.6). The maximum length and age recorded for female S. analis was 320 mm 

and 6 years, respectively.  

In comparison with females, the value for k for male S. analis was slightly 

higher, i.e. 0.76 years–1, and that for the L∞ was slightly lower, i.e. 253 mm (Table 

3.1). Male S. analis attained lengths of 124, 192, 224 and 247 mm at 1, 2, 3, and 5 

years of age, respectively (Fig. 3.6). The maximum length and age recorded for males 

was 283 mm and 8 years, respectively. 
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Table 3.1. von Bertalanffy growth parameters L∞, k, and t0 including upper and lower 
95% confidence limits, derived from length at age data for Sillago analis caught in 
Shark Bay, Western Australia. R2 = coefficient of determination, n = sample size. 
 

von Bertalanffy parameters 

  L∞ (mm) k (year
-1

) t0 (years) R
2
 n 

Female Estimate 276.6 0.731 0.024 0.805 693 

 Upper 282.7 0.797 0.095   

 Lower 270.4 0.665 -0.047   

Male Estimate 253.2 0.757 0.105 0.862 425 

 Upper 259.3 0.826 0.169   

 Lower 247.2 0.689 0.041   

 

3.2.6 Growth rates 

 The likelihood ratio test demonstrated that the growth curves of female and 

male S. analis were significantly different (P < 0.001). The difference between the 

predicted lengths of female and male S. analis, expressed as a percentage of the 

lowest value of L∞ for the two growth curves, at ages 1, 2, 3, and 4 was 6.5, 7.2, 8.0, 

and 8.5%, respectively, and was always > 5% throughout the full range of ages.  

 

3.2.7 Mortality estimates of Sillago analis 

 The point estimates for the instantaneous coefficient of natural mortality, M, 

for S. analis, derived by taking the mean of the values estimated for female and male 

using the regression equations refitted to the data of Pauly (1980) and Ralston (1987) 

were similar, i.e. 1.55 and 1.44 year-1, respectively. However, the confidence intervals 

for these point estimates were very broad (Table 3.2). In contrast, the point estimate 

of M for S. analis derived for the separate sexes using the equation of Rikhter and 

Efanov (1976) was considerably lower, i.e. 0.78 year-1, than those derived from the 

empirical equations of Pauly (1980) and Ralston (1987) (Table 3.2).  
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 The point estimate for the instantaneous coefficient of total mortality, Z, i.e. 

0.99 year-1 derived using the regression equation refitted to Hoenig’s (1982, 1983) 

data for fish, was lower than all the point estimates calculated for M using Pauly’s 

(1980) and Ralston’s (1987) refitted regression equations, but higher than the point 

estimate calculated for M using Rikther and Efanov’s (1976) equation (Table 3.2). 

However, the point estimate for Z, i.e. 1.95 years -1 for S. analis, calculated from catch 

curve analysis employing the resampling approach was higher than that derived using 

the refitted Hoenig (1983) equation, and also higher than all of the estimates for M. 

The confidence intervals for Z calculated from the catch curve analysis were far 

narrower than those calculated using the method of Hoenig (Table 3.2).  

 

Table 3.2. Mortality estimates (year-1) of Sillago analis in Shark Bay calculated using 
different methods. M = natural mortality, Z = total mortality, N = no value could be 
obtained. 
 

Method of analysis M or Z Estimate Lower 95% Upper 95% 

Refitted Pauly (1980) M 1.55 0.44 4.53 

Refitted Ralston (1987) M 1.44 0.93 1.98 

Rikther and Efanov (1976) M 0.78 N N 

Refitted Hoenig (1983) Z 0.99 0.32 3.10 

Catch curve analysis Z 1.95 1.70 2.27 

 
 

3.2.8  Length weight relationship 

 The relationships between total length (TL) in mm and total weight (TW) in g 

for female and male S. analis are shown in Figure 3.7 and described by the following 

regression equations.  

Females  ln TW = 3.001(ln TL) -11.711 (R2 = 0.994, n = 742)  

Males   ln TW = 2.983(ln TL) -11.611 (R2 = 0.996, n = 429), 

where R2 is the regression coefficient and n is the sample size. 
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3.3  Age and Growth of Sillago schomburgkii 

3.3.1 Scales vs sectioned otoliths  

The number of growth zones detected in sectioned otoliths that were the same 

as those that were observed in scales occurred only when either no opaque zones or a 

single opaque zone was visible in sectioned otoliths of S. schomburgkii (Fig. 3.8). The 

number of growth zones detected in scales consistently was shown to be less than that 

in sectioned otoliths when one or more opaque zones were visible, and in one case the 

difference was as great as four (Fig. 3.8).  

 

3.3.2 Marginal increment analysis 

 The mean monthly marginal increments for sectioned otoliths of 

S. schomburgkii with one opaque zone remained at 0.40 to 0.49 between July and 

October before declining markedly to a minimum of 0.19 in November and then 

increasing progressively to 0.34 in March and to 0.44 in June (Fig. 3.9). The mean 

monthly marginal increments for otoliths with two, three or ≥ 4 opaque zones 

followed essentially the same trend as that described above for otoliths with one 

opaque zone (Fig. 3.9). As was the case for S. analis, the mean monthly marginal 

increments for otoliths of S. schomburgkii declined markedly only once during the 

year and then rose progressively, demonstrating that the opaque zones are formed 

annually and can thus be used to age this species.  

 

3.3.3 Length-frequencies and age composition of Sillago schomburgkii 

 Since S. schomburgkii were not able to be sexed until they had reached lengths 

of ca 80 mm, the lengths at age of 0+ juveniles below this length were alternately 

allocated to the length-at-age data sets for females and males. Small numbers of early 
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0+ juveniles, which ranged between 11 and 79 mm, were first caught in January 

(Fig. 3.10). By April, when individuals of the 0+ cohort were, on average, 4 months 

old, they had attained an average length of 80 mm (range 61-129 mm). By the end of 

their first year of life, S. schomburgkii had reached an average length of 120 mm. By 

the end of their second, third and forth years of life, female S. schomburgkii had 

attained average lengths of 210, 270 and 300 mm, respectively, and male 

S. schomburgkii had attained average lengths of 200, 250 and 270 mm, respectively 

(Fig. 3.10). 

 

3.3.4 von Bertalanffy growth curves for Sillago schomburgkii 

 von Bertalanffy growth curves fitted well the lengths at age of both female and 

male S. schomburgkii, as is demonstrated by the relatively high values for the 

coefficient of determination (R2), i.e. 0.91 and 0.86, respectively, and values for to that 

were close to zero (Table 3.3). The growth coefficient (k) and asymptotic length (L∞) 

of females were 0.47 years -1 and 347 mm, respectively. Female S. schomburgkii 

attained lengths of 139, 216, 265 and 296 mm at 1, 2, 3, and 4 years of age, 

respectively (Fig. 3.11). The maximum length and age recorded for females was 

383 mm and 10 years, respectively. 

 In comparison with females, the value for k was slightly higher, i.e. 

0.59 years -1, and that that for the L∞ was slightly lower for males, i.e. 294 mm (Table 

3.3). Male S. schomburgkii attained a length of 136, 206, 245 and 266 mm at 1, 2, 3, 

and 4 years of age, respectively (Fig. 3.11). The maximum length and age recorded 

for males was 299 mm and 9 years, respectively. 
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Table 3.3. von Bertalanffy growth parameters L∞, k, and t0 including upper and lower 
95% confidence limits derived from length-at-age data for Sillago schomburgkii 
caught in Shark Bay, Western Australia. R2 = coefficient of determination, n = sample 
size. 
 

von Bertalanffy parameters 

  L∞ (mm) k (years
-1

) t0 (years) R
2
 n 

Female Estimate 346.7 0.470 -0.089 0.907 900 

 Upper 355.9 0.500 -0.521   

 Lower 337.5 0.439 -0.126   

Male Estimate 293.8 0.589 -0.059 0.862 829 

 Upper 305.6 0.644 -0.203   

 Lower 282.2 0.534 -0.098   

 

3.3.5 Growth rates 

 The likelihood ratio test indicated that the growth curves of female and male 

S. schomburgkii in Shark Bay were significantly different (P < 0.001). The difference 

between the predicted lengths of female and male S. schomburgkii, expressed as a 

percentage of the lowest value of L∞ for the two growth curves, at ages 1, 2, 3, and 4 

was 0.9, 3.6, 7.0, 9.9%, respectively. 

 The likelihood ratio test also indicated that the growth curves of female and 

male S. schomburgkii on the lower west coast and Shark Bay were statistically 

different between the two regions (P < 0.001). The difference between the predicted 

lengths of male S. schomburgkii, expressed as a percentage of the lowest value of L∞ 

for the two growth curves, at ages 1, 2, 3, and 4 was 3.3, 3.0, 4.2, 5.7%, respectively, 

and remained > 5% throughout the full range of ages greater than 4. However, there 

was little biological difference, i.e. < 5 %, for females, between the two regions at 

ages 1, 2, 3, and 4 which showed values of 4.2, 3.0, 1.5, 0.1, respectively, and 

remained < 5% throughout the full range of ages. 
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3.3.6  Mortality estimates of Sillago schomburgkii 

 As was the case for S. analis, the point estimates for the instantaneous 

coefficient of natural mortality, M, for S. schomburgkii, derived using the regression 

equations refitted to Pauly (1987) and Ralston (1980) were very similar, i.e. 1.23 and 

1.11 year-1, respectively. However, the confidence intervals for these point estimates 

were also very broad (Table 3.4). The point estimate of M for S. schomburgkii derived 

using the equation of Rikhter and Efanov (1976) was considerably lower, i.e. 0.76 

year-1, than those derived from the equations of Pauly (1980) and Ralston (1987) 

(Table 3.4).  

 The point estimate for the instantaneous coefficient of total mortality, Z, i.e. 

0.68 year-1, derived using the regression equation refitted to Hoenig’s (1982, 1983) 

fish data, was lower than all of the point estimates calculated for M (Table 3.4). 

However, the point estimate for Z, i.e. 0.81 year-1, calculated using catch curve 

analysis was similar to that derived from the refitted Hoenig (1983) equation and the 

estimate for M derived using the Rikther and Efanov (1976) equation, but was 

substantially lower than the estimates of M calculated from the refitted Pauly (1980) 

and Ralston (1987) equations. Whilst the confidence intervals for Z and M derived 

from the empirical methods were always very broad, those for the estimate of Z 

obtained using catch curve analysis were far narrower (Table 3.4).  
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Table 3.4. Mortality estimates (year-1) of Sillago schomburgkii in Shark Bay 
calculated using different methods. M = natural mortality, Z = total mortality, N = no 
value could be obtained. 
 
 

Method of analysis M or Z Estimate Lower 95% Upper 95% 

Refitted Pauly (1980) M 1.23 0.31 3.54 

Refitted Ralston (1987) M 1.11 0.64 1.63 

Rikther and Efanov (1976) M 0.76 N N 

Refitted Hoeing (1983) Z 0.68 0.23 2.05 

Catch curve analysis Z 0.81 0.71 0.92 

 

3.3.7  Length weight relationship 

 The relationships between total length (TL) in mm and total weight (TW) in g 

for female and male S. schomburgkii are both shown in Figure 3.12 and described by 

the following regression equations.  

Females  ln TW = 2.001(ln TL) -11.761 (R2 = 0.997, n = 907)  

Males   ln TW = 3.012(ln TL) -11.812 (R2 = 0.995, n = 841). 

where R2 is the regression coefficient and n is the sample size. 

 

3.4  Reproduction of Sillago analis 

3.4.1 Gonadosomatic indices 

The mean monthly GSIs of female S. analis ≥ 216 mm, i.e. the L50 of females 

at first maturity (see section 3.4.4), rose sharply from ca 0.7 in July to a peak of ca 4.2 

in January and then fell precipitously to ca 1.0 in April and to ca 0.7 in June 

(Fig. 3.13). The mean monthly GSIs for male S. analis ≥ 184 mm, i.e. the L50 of males 

at first maturity, followed similar trends to those of females, rising sharply from 

ca 0.3 in July to reach a peak of ca 2.1 in February and then falling precipitously to 

ca 0.9 in April and to ca 0.2 in June (Fig. 3.13). 
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3.4.2  Gonadal development of Sillago analis in Shark Bay 

 All females of S. analis that were caught during July and August and were 

≥ L50 at first maturity, possessed ovaries at stage II, i.e. maturing virgin/resting 

(Fig. 3.14). The frequency of stage II ovaries in female fish declined progressively to 

25% in November and then to between 3 and 5% between January and March. Stage 

III (developing) and IV (maturing) ovaries first appeared in September and stage V/VI 

ovaries (mature/spawning) in October. The prevalence of both stage III and IV 

ovaries declined after December, with the result that few fish with ovaries at these 

stages were caught from January to March. Most ovaries were at stage V/VI in 

January and February and stage VII (spent) ovaries were first found in March 

(Fig. 3.14). Although no stage V/VI ovaries were found in May and June, several fish 

with stage VII and VIII (recovering/spent) ovaries were found in these two months.  

The trends exhibited in sequential months by the prevalence of the different 

stages in gonadal development of the males of S. analis, that were ≥ L50 at first 

maturity, were similar to those just described for females (Fig. 3.14).  

 The above trends strongly indicate that virtually all females and males with 

ovaries and testes, respectively, at stages III and above in October to November will 

progress through to maturity in the immediately ensuing months (Fig 3.14). Thus, in 

the following section, the regression analysis used for determining the L50 at first 

maturity employed the prevalence of fish possessing gonads at stages III to VIII in 

January to March, the main spawning period. 
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3.4.3  Description of macroscopic and histological stages of ovarian development 

 Descriptions of the macroscopic development of ovaries and testes and the 

histological stages of ovaries for S. analis and S. schomburgkii are shown in Table 

3.5. 

 

3.4.4 Length and age of Sillago analis at first maturity 

 The ovaries of all females, that were caught during the spawning period, 

i.e. January to March (see section 3.4.2) and were between 100 and 179 mm in total 

length, were immature (stage I/II) (Fig. 3.15). Fish with ovaries at stages III to VIII 

were first recorded in the 180-189 mm length class, in which they accounted for just 

5% of all fish. The percentage of fish with ovaries at stages III to VIII increased in a  

logistic manner, with 15, 75 and 100% of fish in the 200-209, 220-229, 240-249 mm 

length classes, possessing ovaries at these stages, respectively. The L50 at which 

female S. analis first reach maturity was estimated to be ca 216 mm (Fig. 3.15; Table 

3.6). 

 The percentage of males in successive length classes of male S. analis, which 

possessed testes at stages III to VIII, increased in a similar logistic manner to that just 

described above for females with the corresponding ovarian stages, except that 

“maturity” was reached at a smaller size (Fig. 3.15). Thus, although all males between 

100 and 169 mm possessed testes at stages I to II, over 30% of males in the 170-

179 mm length class and 66 and 100% in the 190-199 and 210-219 mm length 

classes, respectively, possessed testes at stages III to VIII. Furthermore, the L50 at 

which male S. analis first reach maturity was estimated to be ca 184 mm (Fig. 3.15; 

Table 3.6). 
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Table 3.5. Description of the characteristics used to distinguish macroscopic gonadal 
development stages of female and male Sillago analis and S. schomburgkii and the 
corresponding histological characteristics of these stages for females. N.B. 
Macroscopic stages are adapted from Laevastu (1965) and Lenanton (1970), while 
histological stages are modified from Wallace and Selman (1981) and Mayer et al. 
(1988.) 
 
Stage Macroscopic stage (female and male) Histological stage  

(female) 

I 
Virgin 

Male and female gonads very small, tucked 
up between swim-bladder and ventral cavity 
wall. Female gonads colourless and 
transparent. No eggs visible. Male gonads 
black and strand-like. 

Oogonia, chromatin 
nucleolar and 
perinucleolar oocytes. 
Oocytes organised into 
neat rows. 

II 
Maturing 
Vigin/ 
resting adult 

Ovaries light red in colour, but still 
translucent. Eggs invisible to the naked eye. 
Testes black and strand-like. Length of 
gonads half the length of the ventral cavity. 

Previtellogenic oocytes 
present. Late 
perinucleolar oocytes 
present. Highly organised 
oocytes. 

III 
Developing 

Ovaries opaque, rose to light pink in colour. 
Small eggs visible through ovary wall. Testes 
dark purple and larger in size. No longer 
strand-like. Gonads take up 1/2 of ventral 
cavity. 

Previtellogenic oocytes 
present. Cortical alveoli  
oocytes first appear. 
Oocytes organised. 

IV 
Maturing 

Ovaries orange in colour with more opaque 
eggs visible. Red capillaries thickening. 
Testes light purple in colour. Larger in size. 
Milt present under pressure. Gonads take up 
2/3 of ventral cavity 

Cortical alveoli oocytes 
dominant with 
previtellogenic oocytes 
also present. A few yolk 
granules oocytes first 
appear. Ovary starting to 
become tightly packed. 

V 
Mature 

Ovaries large, take up majority of ventral 
cavity and are yellow in colour with thick red 
capillaries running down the length of each 
lobe. Individual eggs easily discernable with 
naked eye. Testes large, filling ventral cavity, 
are light purple with white edges to lobes. 
Milt present under light pressure  

Tightly packed yolk 
granule oocytes fill 
ovary. Cortical alveoli  
oocytes also present, 
although not as numerous 
as in stage V. Small 
numbers of 
previtellogenic oocytes 
present. 

VI* 
Spawning 

Testes occupying large percentage of ventral 
cavity. Lobes completely white in colour. 
Testes easily perforated. Milt free flowing  

 

VII 
Spent 

Ovaries and testes one third the size of stage 
V. Ovaries light red in colour. Capillaries still 
present, although not a thick as in stage V. 
Testes pale purple in colour. Small amount of 
milt still present if squeezed. 

Spaces in ovary. Oocytes 
disorganised. Ovary wall 
very thick. 

VIII 
Recovering 

Both ovaries and testes flaccid in appearance. 
Ovaries deep red in colour. A few remnant 
 eggs may still be visible. Milt also present 
under pressure. Gonads occupy 1/2 of the 
ventral cavity. 

Oocytes within ovary 
disorganised. Scar tissue 
and atretic oocytes 
present. Previtellogenic 
oocytes present. 

*N.B. No stage VI (spawning) ovaries were observed in the study. 
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 No female or male S. analis had attained maturity by the end of their first year 

of life, and only a few individuals of either sex had reached maturity by the end of 

their second year of life. By the end of their third year of life, 20% of females and 

61% of males were mature. Virtually all females and all of the males had reached 

maturity of the end of their fourth year of life (Fig. 3.16).  

 

 
Table 3.6. Length at maturity (L50 and L95) estimates and 95% confidence limits 
derived for Sillago analis caught in Shark Bay, Western Australia. 
 

  L50 (mm) L95 (mm) 

Female Estimate 215.7  238.2  

 Upper 219.4  245.9  

 Lower 211.9  230.4  

Male Estimate 183.9  209.8  

 Upper 187.7  218.3  

 Lower 179.8  201.4  

 

 

3.4.5 Oocyte diameter frequency distributions of mature Sillago analis  

 The oocyte diameter distributions for mature ovaries (i.e. stage V/VI) removed 

from four individuals of S. analis captured during the spawning season in three out of 

the four cases, were continuous (Fig. 3.17). The two stages of previtellogenic oocytes, 

i.e. chromatin nucleolar and perinucleolar stage oocytes, when combined, always 

produced a prominent modal class at between 40 and 79 µm. Cortical alveoli stage 

oocytes, ranging between 80 and 239 µm in diameter, were present in each of the four 

ovaries. The yolk granule stage oocytes in those ovaries ranged in diameter from 200 

and 439 µm (Fig. 3.17).   
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3.5 Reproduction of Sillago schomburgkii 

3.5.1  Gonadosomatic indices (GSI)  

The mean monthly GSI of female S. schomburgkii ≥ 237 mm, i.e. the  

L50 at first maturity of females (see section 3.5.3), rose from 1.2 in July to 4.2 in 

August and then ranged between this value and 2.4 through to December, before 

declining precipitously to 0.8 in January and remaining at < 1.3 through to June (Fig. 

3.18). 

The mean monthly GSI of male S. schomburgkii ≥ 192 mm, i.e. the  

L50 at first maturity of males (see section 3.5.3), rose from 1.1 in July to 4.0 in August 

and then declined to 1.3 in September. The mean monthly GSI of males then rose 

slightly to 2.0 in December, and then declined to 0.2 in February and remained < 1.0 

until June (Fig. 3.18). 

 

3.5.2  Gonadal development of Sillago schomburgkii in Shark Bay 

Most of the female S. schomburgkii, that were caught in June and were ≥ L50, 

possessed stage II (maturing virgin/resting) ovaries (Fig. 3.19). Very few females 

contained stage IV ovaries in June and none of those caught in this month possessed 

ovaries at stages V/VI. However, > 50% of the females caught in August possessed 

stage V/VI ovaries. Fish with ovaries at this stage predominated in September and 

December. Fish with stage VII (spent) ovaries were first found in January and, 

together with some fish with stage VIII (recovering/spent) ovaries, were also present 

in February, March and April (Fig. 3.19).  

The trends exhibited in sequential months by the prevalence of the different 

stages in gonadal development of the males of S. schomburgkii that were ≥ L50 at first 

maturity, were similar to those just described for females (Fig. 3.19) 
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The above trends demonstrate that virtually all of the females and males with 

ovaries and testes, respectively, at stages III and above in November will progress 

through to maturity in the immediately ensuing months. Thus, as was the case for 

S. analis, the regression analysis used for determining the L50 at first maturity 

employed the prevalence of fish possessing gonads at stages III to VIII in November 

to March, the main spawning period. 

 

3.5.3 Length and age of Sillago schomburgkii at first maturity 

 The ovaries of all female S. schomburgkii, that were caught in November to 

March, and measured between 100 and 179 mm, were at stages I-II, i.e. immature 

(Fig. 3.20). Females with ovaries at stages III-VIII were first found in the 180-

199 mm length class, where they accounted for 4% of all female fish. The percentage 

of females with stages III-VIII ovaries increased in a logistic manner. Thus, 7, 65, 85 

and 100% of fish in the 200-219, 220-239, 260-279 and 300-319 mm length classes, 

respectively, possessed ovaries at stages III-VIII. The L50 of female S. schomburgkii 

at first maturity was estimated to be 237 mm (Fig. 3.20; Table 3.7). 

 The percentage of males in successive length classes with testes at stages III-

VIII increased in a logistic manner similar to that just described above for females 

with ovaries at the corresponding stages, except that maturity was reached at a smaller 

size (Fig. 3.20). Thus, while all males between 100 and 159 mm possessed testes at 

stages I-II, 12% of those in the 160-179 mm length class and 36, 87 and 100% of 

those in the 180-199, 200-219, 220 to 299 mm length classes, respectively, were at 

stages III-VIII. The L50 of male S. schomburgkii at first maturity was estimated to be 

192 mm (Fig. 3.20; Table 3.7). 
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Table 3.7. Length at maturity (L50) estimates and 95% confidence limits derived for 
Sillago schomburgkii caught in Shark Bay, Western Australia. 
 

  L50 (mm) L95 (mm) 

Female Estimate 237.5  283.1  

 Upper 245.7  299.9  

 Lower 229.3  265.8  

Male Estimate 192.1  217.9  

 Upper 196.2  229.6  

 Lower 187.6  208.1  

 

 No females or males at the end of their first year of life and only 2 and 21% of 

females and males, respectively, at the end of their second year of life had possessed 

gonads at stages III to VIII. However, the vast majority of females and of males, i.e. 

85 and 100% respectively, at 4 years of age possessed such gonads (Fig. 3.21).  

 

3.5.4  Oocyte diameter frequency distributions of mature Sillago schomburgkii  

 The two stages of previtellogenic oocytes, i.e. chromatin nucleolar and 

perinucleolar stage oocytes, when combined, always produced a prominent modal 

class at between 20 to 99 µm. Cortical alveoli stage oocytes, ranging between 100 and 

219 µm in diameter, were present in each of the four ovaries. The yolk granule stage 

oocytes ranged in diameter from 240 and 459 µm (Fig. 3.22).   
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Chapter 4 

Discussion 

 

4.1 Ageing structure and age validation 

4.1.1 Scales 

 Although Lenanton (1970) used counts of the number of circuli on scales in an 

attempt to age Sillago analis and Sillago schomburgkii, circuli were found not to be 

clearly demarcated in the scales of the individuals of these species that were examined 

during the present study. This was particularly the case with those fish in which ≥ 3 

opaque zones could be seen in their otoliths. Consequently, the use of the number of 

circuli on scales in the present study would have tended to yield underestimates of the 

ages of the individuals of these two species. Furthermore, in his study, Lenanton 

(1970) found that most of the scales of those S. schomburgkii and S. analis that had 

reached maturity showed evidence of erosion. Thus, the number of circuli may have 

become reduced and therefore have led to underestimates of the age of these species 

in his study. 

 The tendency for the ages of S. analis and S. schomburgkii to be 

underestimated through the use of scales parallels the findings of studies on several 

other species (e.g. Starck & Schroeder, 1970; Boxrucker, 1986; Beamish and 

McFarlane, 1987). This can result, under certain environmental conditions, from 

circuli not being formed on scales until after the completion of the second year of 

growth by a fish (Lentsch & Griffith, 1987). Alternatively, Casselman (1987) found 

that circuli were not deposited around the entire scale of the largest and oldest trout 

(Salvelinus namaycush). Such partial circuli are difficult to distinguish from “false” 
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rings, i.e. those that are not formed annually (Casselman, 1990). Furthermore, 

different scales from the same fish often contain different numbers of circuli and thus 

yield different estimates of the age of that fish (Sipe & Chittenden, 2001). The above 

cases show that the number of circuli on the scales of fish frequently yields an 

unreliable estimate of the age of fish. In contrast, the number of annuli on otoliths 

generally provides an accurate measure for ageing fish (Beamish & McFarlane, 1987; 

Campana, 2001). 

 

4.1.2 Otoliths 

 A similar trend to that recorded for the scales of S. analis was found when 

otoliths were viewed whole, i.e. the number of annuli visible was sometimes less than 

those which, on the basis of an examination of sectioned otoliths, were known to be 

present. Previous work had also shown that it was necessary to section the otoliths of 

S. schomburgkii in order to be able to detect all of the annuli that are present in this 

hard structure in this species (e.g. Hyndes & Potter, 1997).  

 The present study demonstrated that, when two or more opaque zones were 

present, the number of annuli visible in the whole otoliths of S. analis was often less 

than that in corresponding otoliths after sectioning. The magnitude of the 

discrepancies increased as the number of opaque zones increased, with a maximum 

difference of three opaque zones being recorded in the fish with the greatest number 

of annuli. Sectioning of otoliths enhances the ability to differentiate between the outer 

opaque and translucent zones, and also often reveals one or more additional inner 

opaque zones, particularly in older fish (Hyndes et al., 1992; Lowerre-Barbieri et al., 

1994). For example, Fowler and Short (1998) showed that the counts of annuli 

obtained using the whole otoliths of Sillaginodes punctata could be misleading and 
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that it was necessary to section otoliths to be able to obtain an accurate count of the 

opaque zones. Furthermore, the trends shown by the marginal increment in some 

long-lived fish become clear only after the otoliths have been sectioned (Campana, 

1984; Collins et al., 1988; Hyndes et al., 1992). 

  

4.1.3 Marginal increment analysis 

 The mean monthly marginal increments on the otoliths of S. analis underwent 

a single marked decline and subsequent conspicuous increase during the year, and the 

same was true for those of the otoliths of S. schomburgkii (Hyndes &Potter, 1997), 

demonstrating that a single opaque zone is formed annually on the otoliths of these 

two species. Thus, the number of annuli on sectioned otoliths can be used to age these 

species. In both Sillago species, the outermost opaque zone in the otoliths becomes 

delineated in either November or December, i.e. late spring/early summer. This 

demonstrates that this narrow opaque zone is formed over the cool winter and early 

spring months when growth is greatly reduced, and that the wide translucent zone is 

formed when more rapid growth occurs during the warm summer and autumn months. 

A narrow opaque zone is also typically formed during spring or early summer in the 

otoliths of other fish species in south-western Australian waters, e.g. the West 

Australian dhufish Glaucosoma hebraicum (Hesp et al., 2002), the Australian herring 

Arripis georgiana (Fairclough et al., 2000), the black bream Acanthopagrus butcheri 

(Sarre & Potter, 2000) and the western yellowfin bream Acanthopagrus latus (Hesp et 

al., in press). It also parallels the situation found with numerous teleosts elsewhere in 

the world, e.g the weakfish Cynoscion regalis (Lowerre-Barbieri et al., 1994), and the 

red snapper Lutjanus campechanus (Wilson & Nieland, 2001). The use of marginal 

increment analysis has been widely accepted as an appropriate method for validating 
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that annuli are formed only once in each year on the hard structures of fish and, in 

such cases, can thus be used for ageing fish (Maceina & Betsill, 1987; Hyndes et al., 

1992; Campana, 2001; Escot & Grando-Lorencio, 2001).  

 

4.2 Length and age compositions and growth rates 

 The fact that the growth coefficients (k) for the females and males of S. analis 

in Shark Bay, i.e. 0.73 and 0.76 year-1, respectively, were greater than those of 

S. schomburgkii in this environment, i.e. 0.47 and 0.59 year-1, respectively, 

demonstrates that the length of the former species reaches its asymptote at a faster 

rate. Furthermore, the asymptotic lengths (L∞) of the females and males of S.  analis, 

i.e. 276.6 and 253.2, respectively, were both far less than the corresponding values for 

the two sexes of S. schomburgkii, i.e. 346.7 and 293.8, respectively. Therefore, the 

patterns of growth of these two morphologically similar and congeneric species differ 

markedly, even when the two species are sympatric. However, the length at first 

maturity is strongly correlated with the asymptotic length in sillaginids in general 

(Hyndes & Potter, 1997). The fact that the S. analis attains maturity at a smaller size 

than S. schomburgkii, which has a greater asymptotic length, is thus consistent with 

the above correlation. Furthermore, the pattern of growth of S. schomburgkii in the 

subtropical embayment of Shark Bay was remarkably similar to that in the very 

different environment of the coastal waters of temperate Western Australia, 

approximately 800 km further south, in which the temperatures in the warmer months 

of the year are about 3oC lower (Hesp, 2003). This suggests that the pattern of growth 

in this species is, to a large extent, genetically fixed.   

 As with other sillaginid species (see Hyndes & Potter, 1996, 1997; Hyndes et 

al., 1997b), the L∞s and maximum lengths of the females of both S. analis and 
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S. schomburgkii were greater than those of their males. The attainment of a larger size 

by females would be of selective advantage to this sex as it would facilitate the 

production of the optimal amount of eggs, whereas there would not be the same 

selection pressures to produce extremely large numbers of sperm by the males.  

 

4.3 Spawning time and period  

 Since mature (stage V) ovaries were found in some female S. analis in each 

month between October and April (Fig. 3.14), this species could potentially spawn 

throughout these seven months. However, the prevalences of stage V ovaries were 

very low in the first and last of these months and mature males were not caught until 

December. It is thus proposed that the majority of spawning occurs predominantly 

between December and March, which is very similar to the conclusion by Lenanton 

(1970) that the spawning period extends from November to March. The conclusion 

that spawning is typically completed by the end of March is supported by the high 

prevalences of stages VII (spent) and VIII (recovering spent) in large female fish 

caught between April and June and by the decline in the GSIs of both the males and 

females of S. analis to low levels after March.  

 The presence of mature (stage V) ovaries and testes in some of the large 

females and males of Sillago schomburgkii, respectively, in each month sampled 

between July and April suggests that this species spawns over this very protracted 

period of nine months. However, the prevalence of female fish with mature gonads 

was very low in the first and last of those nine months and thus spawning probably 

occurred mainly in the seven months between August and March. The mean monthly 

GSIs of females and males of S. schomburgkii did not show the same progressive 

increase and then decline as those exhibited by the two sexes of S. analis, which 
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would be consistent with the presence of a more protracted spawning period. The 

above estimated spawning period for S. schomburgkii in Shark Bay is also similar to 

that estimated by Lenanton (1970) for this species in this large embayment, i.e. 

September to March. 

  In contrast to the above findings for S. schomburgkii in the subtropical 

environment of Shark Bay, Hyndes and Potter (1997) found females and males of this 

species with ovaries at stages V-VII (i.e. mature, spawning or spent) in only six 

months, i.e. October to March, in temperate waters over 800 km further south on the 

lower west coast of Australia. The presence of a longer spawning period of 

S. schomburgkii in Shark Bay than in the cooler waters further south parallels the type 

of variation found amongst the populations of other species in which the distribution 

has a wide latitudinal range. For example, the bay anchovy Anchoa mitchilli spawns 

for about a month in the temperate part of its range off the east coast of northern 

America and over the entire year in the more southern and warmer waters of its 

distribution (Vouglitois et al., 1987; Castro & Cowen, 1991). The more restricted 

spawning period of certain species of fish at higher latitudes has often been 

considered to reflect the fact that, at these latitudes, the amplitude in temperature is 

greater than at lower latitudes, and that this therefore leads to a more seasonal 

occurrence in the abundance and quality of food required by larval fish (Conover & 

Kynard, 1984). However, the difference between maximum and minimum monthly 

temperatures is greater in Shark Bay than in more southern temperate waters (Hesp, 

2003) and yet spawning occurs over a longer period in that subtropical embayment. It 

is thus proposed that the presence of a longer spawning period of S. schomburgkii in 

Shark Bay than in temperate waters is related to the presence of higher water 

temperatures for a more protracted period. However, this trend is not exhibited by the 
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tarwhine Rhabdosargus sarba which has a very similar spawning period in Shark Bay 

and on the lower west coast of Western Australia (Hesp and Potter, in press). 

  

4.4 Maturity 

 The lengths at which female and male S. analis were estimated to attain 

maturity (L50), i.e. 216 and 184 mm, respectively, were both slightly less than the 

mean lengths of 225 and 209 mm, respectively, estimated for the attainment of 

maturity by Lenanton (1970). Furthermore, the L50s of 237 and 192 mm, estimated for 

the attainment of maturity by the females and males S. schomburgkii, respectively, in 

Shark Bay were also slightly less than the mean lengths of 250 and 235 mm estimated 

for maturity by Lenanton (1970) in this same environment. 

 It should be noted that, as a different method than that employed in the present 

study was used by Lenanton (1970) to determine the length at first maturity of the two 

species of whiting in Shark Bay, it is possible that the above interspecific differences 

in the estimates of length at first maturity between the two studies may not be “real”. 

However, if these differences are “real”, they indicate that the lengths at which female 

and male S. analis and S. schomburgkii first attain maturity in Shark Bay has declined 

during the last 30 years. Since several studies have shown that, during heavy fishing 

pressure, the size at first maturity often declines, as has been shown, for example, to 

be the case with the cod Gadus morhua and the American plaice Hippoglossoides 

platessiodes (Beacham, 1983a,b), it appears relevant that both S. analis and 

S. schomburgkii have been fished continuously in Shark Bay by commercial fishers 

during this 30 year period and that such fishing pressure may have been sufficiently 

strong to have led to a decline in catches over this period (Shaw, 2000). Reductions in 

the length at maturity of fish species which have been subjected to heavy fishing 
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pressure have been attributed to the effects of strong selection pressures in favour of 

those fish that mature at a small length and young size (Beacham, 1983b, c). The 

smaller size of the males than females of both S. analis and S. schomburgkii at 

maturity, parallels the findings for various other species of sillaginid, e.g. S. bassensis 

and S. robusta (Hyndes & Potter, 1996), S. sihama (Jayasankar, 1991) and also 

species in other teleost families, e.g. the Australian herring Arripis georginana 

(Fairclough et al., 2000). 

 The L50s derived during the current study for the females and males of 

S. schomburgkii at first maturity in Shark Bay, i.e. 237 and 192 mm, respectively, are 

very similar to those estimated by Hyndes and Potter (1997) for this species in 

temperate waters on the lower west coast of Australia. This similarity in the size at 

first maturity of S. schomburgkii in the very different environments of Shark Bay and 

temperate coastal waters in south-western Australia indicates that, as with the 

similarity in the pattern of growth of these two species (see above), the size at first 

maturity is also, to a large extent, genetically fixed.    

  

4.5 Spawning Mode 

 Since the distribution of the oocyte diameters in the ovaries of mature females 

of both S. analis and S. schomburgkii in Shark Bay are essentially continuous, and as 

mature ovaries contain oocytes of various different stages in development, including 

“intermediate” stages such as the cortical alveolar stage, these species have 

indeterminate fecundity sensu Hunter et al., (1985). Thus, implicitly, S. analis and 

S. schomburgkii are also multiple spawners, i.e. individual females release oocytes on 

more than one occasion during a spawning period (de Vlaming, 1983). This 

conclusion was also reached by Lenanton (1970) for those species in Shark Bay and 
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by Hyndes and Potter (1997) for S. schomburgkii on the lower west coast of Australia. 

Multiple spawning also occurs in other species of sillaginid, e.g. Sillago bassensis 

(Hyndes & Potter, 1996), Sillago ciliata (Morton, 1985) and Sillago sihama 

(Jayasankar, 1991).  

The adaptive significance of multiple spawning in fish is that it enables 

reproductive output to be increased (Fox & Crivelli, 1998; Burt et al., 1988). Since 

fecundity is limited by body size, the release of eggs in batches over time enables the 

total number of eggs that can be produced in a spawning season to be increased 

(McEvoy & McEvoy, 1992). Furthermore, since, in the case of fish species that only 

spawn once in a spawning season, stochastic changes in, for example, food abundance 

could result in the loss of the annual reproductive output of that species, multiple 

spawning is often considered as a bet-hedging strategy (Lambert & Ware, 1984). By 

dispersing annual egg production in time, there is an increased chance that, at least 

some of the juveniles survive to reach maturity. Multiple spawning may also reduce 

competition for spawning sites by partitioning their use in time (Weddle & Burr, 

1991). 

 

4.6 Mortality  

The estimates for natural mortality (M) varied greatly according to the type of method 

used, as has frequently been found to be the case for other species of fish (e.g. Vetter 

1988, Burton, 2001, Hesp et al., in press). The point estimates for M, that were 

derived from both the Pauly (1980) and Ralston (1987) equations, have been shown to 

exceed the values for total mortality (Z) derived from the Hoenig (1983) equation for 

western yellowfin bream in Shark Bay (Hesp et al., in press) and several other species 

elsewhere (e.g. Samuel & Mathews, 1987; Burton 2001). However, natural mortality 
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cannot exceed total mortality. Since the estimates derived for M for both Sillago 

species using the Rickter and Efanov (1976) equation were less than those derived for 

Z, they are far more likely to reflect the true situation regarding natural mortality in 

the populations of these two species in Shark Bay.  

There is yet another problem in that the value for Z obtained by catch curve 

analysis (1.95 year-1) for S. analis is nearly twice that obtained using Hoenig’s (1983) 

equation for fish. Since catch curve analysis uses all of the data on the age 

composition in the samples obtained from a population, it provides a better estimate 

of Z than the frequently used Hoenig’s (1983) equation for fish, which employs only 

the value for the maximum age of fish in the samples and empirical data for other fish 

populations (Hesp et al., in press).  

 Since the value derived for Z from catch curve analysis for S. analis is well 

over twice that of the estimate of M for derived from the Rickter and Efanov (1976) 

equation, this species would appear to be heavily affected by fishing pressure. 

However, the corresponding values for Z and M for S. schomburgkii are very similar 

which implies that this species is only lightly fished. Although this suggests that the 

impact of fishing pressure is far greater on S. analis than S. schomburgkii, this may 

reflect a greater vulnerability of this species to fishing through such factors as a more 

restricted distribution.  

 The number of fishing units in Shark Bay Beach Seine and Mesh Net 

Managed Fishery has declined, through regulatory action by the Department of 

Fisheries, from 17 at its peak in 1964 to nine at the current time (Shaw, 2000). This 

decrease in the number of fishing units suggests that the overall fishing pressure on 

targeted fish species may have declined. However, since advancements in technology 

are likely to have led to an increase in the efficiency of fishing, a decrease in the 
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number of fishing vessels would not necessarily mean that fishing pressure has 

decreased. Indeed, in recent years, although fishing effort (i.e. boat days) has 

decreased from a maximum of ca 1750 boat days in 1991 to ca 1250 boat days in 

2002, the annual catch (tonnes) of whiting has remained essentially the same (Anon., 

2002). 
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