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1. Introduction 

Hermit crabs inhabit a wide range of environments, from polar to tropical seas and 

from the supratidal to deep ocean canyons. They play important roles as predators, 

scavengers, detritivores and even filter-feeders (Schembri, 1982), and their manifold 

symbioses can enrich the biodiversity of their habitats (Reiss et al., 2003). In the 

Northern Adriatic Sea, which is characterized by high-biomass macrobenthic 

assemblages termed multi-species clumps (Fedra et al., 1976), hermit crabs exhibit a 

high density (1.88 individuals m-2). Paguristes eremita (Linnaeus, 1767) is the 

dominant hermit crab species, followed by Pagurus cuanensis (Bell, 1845) 

(Stachowitsch, 1977). According to the crab´s size, small P. eremita individuals 

mostly inhabit the shells of Aporrhais pespelecani (Linnaeus, 1758), larger individuals 

shells of Murex brandaris (Linnaeus, 1758) and Hexaplex trunculus (Linnaeus, 1758) 

(Stachowitsch, 1980). 

Hermit crab-occupied shells are important islands of hard structures for the 

attachment of epifauna in soft-bottom benthic communities (Brooks and Mariscal, 

1986). There, empty shells are likely to be buried in the substrate unless they are 

used by hermit crabs as protection (Creed, 2000; Stachowitsch, 1977). Hermit crabs 

are therefore ecosystem engineers: through their use of gastropod shells they affect 

the abundance and distribution of invertebrates  Guti rrez et al.      ; Jones et al.  

1994; 1997; Williams and McDermott, 2004). Paguristes eremita harbours more than 

110 symbionts (in the sense of living together of unlike organisms, without implication 

of positive or negative influence; De Bary, 1879) including epizoic and endolithic 

species (Stachowitsch, 1980). The large number, size and diverse assemblage of 

species (Stachowitsch, 1980; Williams and McDermott, 2004) make it a stable yet 

mobile microbiocoenosis (Stachowitsch, 1977). Such assemblages influence the 

period that a shell can function as a hermit crab house due to two simultaneous 

processes. A constructive process involves species which strengthen and extend the 

lifespan of a shell, e.g. encrusting forms, ascidians or the sponge Suberites 

domuncula (Olivi, 1792). A deconstructive process weakens the shell and decreases 

the time it can be utilized, e.g. boring polychaetes, the sponge Cliona sp. or the 

bivalve Gastrochaena dubia (Pennant, 1777). This led to a new perspective and 

classification of hermit crab symbionts based on their function in prolonging or 
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shortening the period of usefulness of empty gastropod shells as the key resource for 

hermit crabs. When deteriorated shells are deposited by the hermit crabs, most 

symbionts survive and grow further: formerly occupied gastropod shells form the 

basis of many established multi-species clumps and therefore play a crucial role in 

structuring the overall community (Stachowitsch, 1980). 

Coastal shallow seas face the greatest anthropogenic threats due to the impacts 

of accelerated human activities (Jenkins, 2003). Eutrophication, coupled with water 

column stratification, has been recognized as one of the gravest threats. This is 

manifested in low dissolved oxygen levels (Diaz, 2001). Hypoxia (DO concentrations 

< 2 ml l-1) and anoxia have spread exponentially since the 1960s and today are a key 

stressor in shallow marine ecosystems (Diaz and Rosenberg, 2008). The 

susceptibility of benthic animals to hypoxia varies, but all initially respond with 

atypical behaviour as well as physiological adaptations (Diaz and Rosenberg, 1995; 

Gray et al., 2002; Wu, 2002). Lengthier hypoxia and even lower values trigger mass 

mortalities of the benthic fauna (in the Adriatic; Stachowitsch, 1984), affecting 

extensive areas and leading to so-called dead zones (Diaz and Rosenberg, 2008). 

Hypoxia changes not only the structure and function of benthic communities but also 

has impacts on all scales, from altering biogeochemical processes (Conley et al., 

2009) to decreasing the provision of ecosystem services (Sala and Knowlton, 2006). 

In addition, ocean warming is estimated to reduce survival times of organisms, 

leading to an increased vulnerability to low DO concentrations (Vaquer-Sunyer and 

Duarte, 2010a). 

The Northern Adriatic Sea is one of nearly 400 recognized dead zones worldwide 

(Fig. 1). As a shallow, semi-enclosed water body with abundant nutrient discharges, 

mainly from the Po River, coupled with meteorological and climatic conditions, the 

Northern Adriatic Sea exhibits most attributes that are associated with the 

development of low oxygen events  Justić et al.  199 ). It can therefore serve as a 

model for a sensitive ecosystem that is periodically affected by oxygen deficiency 

(Crema et al., 1991). Due to the difficulty of predicting oxygen depletion events, the 

EAGU (experimental anoxia generating unit) was developed to simulate anoxia on a 

small scale and to document behavioural responses, inter- and intraspecific 

interactions, and mortalities in situ (Stachowitsch et al., 2007). 

 



3 
 

 
 

Fig. 1. Worldwide distribution of eutrophication-associated “dead zones”. Affected systems match with 
the global human footprint (Diaz and Rosenberg, 2008). 

 

 

First results on selected species and species groups have already been published for 

the Adriatic (Haselmair et al., 2010; Riedel et al., 2008a; 2008b). Crustaceans are 

sensitive to anoxia (Vaquer-Sunyer and Duarte, 2008), but our observations indicate 

that hermit crabs may be somewhat more tolerant. This relative tolerance would have 

implications for survival of short-term hypoxia and the recolonization of affected 

areas. Considering the important role that hermit crabs play in this community, only 

little is known about their responses to hypoxia (Côté et al., 1998; Riedel et al., 

2008b; Shives and Dunbar, 2010; Stachowitsch, 1984). The present study is 

designed to fully document the behaviour of hermit crabs during oxygen crises and to 

correlate behaviour and mortality with specific oxygen thresholds. 
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2. Materials and methods 

2.1. Study site 

The study site is located 2.3 km off Cap Madona (Piran, Slovenia) in the Gulf of 

Trieste (45° 32´ 55.68´´ N, 13° 33´ 1.89´´ E) close to the oceanographic buoy of the 

Marine Biology Station Piran at a depth of 24 m (Fig. 2). 

 

 

 
 

Fig. 2. Overview and detailed map of the study site Piran, Slovenia (from Haselmair, 2008). 

 

 

The Northern Adriatic Sea is characterized by high biomass epifauna communities, 

so that it in some respects resembles Paleozoic, stationary suspension-feeding 

communities rather than modern infauna-dominated assemblages (McKinney, 2007; 

Zuschin and Stachowitsch, 2009). This can be attributed to a range of factors 

including productivity, nutrient levels, sediment input and availability of hard 

substrata. 

This sublittoral bottom consists of poorly sorted silty sand with high-biomass 

aggregations of macrobenthic organisms termed multi-species clumps (Fedra et al., 

1976). These multi-species clumps or bioherms are formed by biogenic structures, 

mainly mollusc shells which serve as a basis for sessile species, mostly serpulid 
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tubeworms, ascidians, sponges, anemones and bivalves (Zuschin et al., 1999). Multi-

species clumps provide a substrate for semi-sessile and vagile species such as the 

brittle star Ophiothrix quinquemaculata (Delle Chiaje, 1828), the holothurian Ocnus 

planci (Brandt, 1835) and the sea urchin Psammechinus microtuberculatus 

(Blainville, 1825) as well as crustaceans such as Pilumnus spinifer (Milne-Edwards, 

1834) and Pisidia longimana (Risso, 1816). Filter- and suspension-feeding species 

dominate. Based on the 3 dominant taxa (O. quinquemaculata, the sponges Reniera 

spp., and the ascidians Microcosmus spp.), this benthic community was named 

Ophiothrix-Reniera-Microcosmus community (Fedra et al., 1976). The sediment 

surface between the patchy distribution of multi-species clumps is characterized by a 

low epifaunal density (Zuschin et al., 1999). This interspace is dominated by 

predators and deposit feeders such as gastropods, the bivalve Chlamys varia 

(Linnaeus, 1758), the brittle star Ophiura ophiura (Linnaeus, 1758) and the hermit 

crabs P. eremita and P. cuanensis. 

2.2. Experimental design and sampling 

The experimental anoxia generating unit (EAGU) is an underwater device designed 

to artificially create hypoxia and anoxia on a small scale (0.25 m2) on the seafloor. It 

enables the documentation of the behaviour of macrobenthic organisms to oxygen 

depletion and increasing H2S.  

The EAGU is composed of a cubic aluminium frame or an interchangeable 

plexiglass chamber, both measuring 50 x 50 x 50 cm (for more details see 

Stachowitsch et al., 2007). A separate instrument lid is placed on top of one of these 

two different bases. This lid houses a time-lapse camera, two flashes and a data 

logger with sensor array to record DO, H2S and temperature (Unisense®) (Fig. 3). 

Oxygen was measured 2 and 20 cm above the sediment to capture potential 

stratification, and the H2S sensor was located 2 cm above the sediment. PH was 

measured manually with a WTW TA 197-pH sensor daily during control dives. Photos 

were taken automatically every 6 min, and sensor data were logged every minute. 

The EAGU was deployed in two configurations. First  in the “open” configuration  

the aluminium frame was positioned above an aggregation of benthic organisms for 

 4 h to document behaviour under normoxic conditions. Then  in the “closed” 

configuration, the aluminium frame was exchanged with the plexiglass chamber and 
os 
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deployed above the same assemblage to identify responses to decreasing DO 

concentrations. The chamber allows no water exchange with the water column. 

Anoxia was induced within 1 – 2 d due to natural respiration rates of the enclosed 

organisms. The “closed” configuration was maintained for another 1 – 2 d to detect 

the reactions of more tolerant species. Remaining organisms (living and dead) were 

then collected for preservation in a 4 % formalin:seawater solution, and species and 

biomass were determined. The fieldwork was conducted in September 2005 and 

from July to October 2006. 

 

 

Fig. 3. Experimental anoxia generating unit (EAGU) consisting of a plexiglass chamber and the 
instrument lid atop. ch: camera housing, dl: datalogger, eb: external battery, fl: flashes, mb: metal 
brackets, os: oxygen sensor, pc: plexiglass chamber, sp: sensor port. (Photo: Gregor Eder; 
Stachowitsch et al., 2007). 
 

 

Transects (30 m long, 0.5 m on each side) were laid in September 2010 to determine 

the abundance of hermit crabs. Either one or both sides of the transects were 

evaluated, yielding a total of 9 transects of 0.5 m width covering an area of 135 m2. 

Pagurids were collected by hand using scuba diving techniques along transects. The 

samples were transported to the laboratory in 1 mm2 mesh bags placed into buckets 

with fresh seawater. The lengths and species of the occupied shells (±0.1 mm) were 

measured. The hermit crabs were then released into the sea. 
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2.3. Data analysis 

This study focused on the behaviour of the hermit crab P. eremita (formerly named  

P. oculatus) by evaluating two deployments in the open configuration. Eight 

deployments were evaluated in the closed configuration. 

Overall, 6705 images were evaluated yielding a documentation time of 670.5 h 

(45.5 h open, 625 h closed configuration). Behaviour was analysed image by image 

and recorded in categories (Tab. 1). In the open configuration, all visible individuals 

within the camera´s field (inside and outside of the aluminium frame) were evaluated. 

In the closed configuration, hermit crabs were evaluated only inside the plexiglass. If 

4 or fewer hermit crabs were present in an experiment, all were evaluated. If more 

individuals were present, those 4 individuals that were visible throughout the 

experiment were selected. Additional criteria for selection included range of sizes, 

occupied shell species and symbionts. Three housing categories are distinguished: 

small crabs in A. pes-pelecani shells; large crabs in M. brandaris or H. trunculus 

shells; crabs occupying the sponge S. domuncula (crabs of various sizes). 

The hermit crabs themselves are typically only partially visible (i.e. antennae, 

eyestalks). Thus, the image evaluation was based on the locomotion and/or position 

changes of the shell. Shell locomotion was equated with crab locomotion. 

Displacement (i.e. major/minor locomotion) in small and large crabs was equated to 

shell displacement. For individuals in large S. domuncula, it was equated to 

estimated crab length. When a hermit crab left its shell, the evaluation was based 

solely on the animal’s behaviour. Behaviours were documented as long as living 

organisms were visible and clearly identifiable, i.e. until mortality or until poor visibility 

due to decomposition of other benthic organisms. Mortality was recorded 2 h after 

the last observed locomotion or body movement. “Hours after hypoxia and anoxia” 

refer to the total time span measured between 2 ml l-1 DO (mild hypoxia) and the 

evaluated behaviour, whereby the anoxia component is provided separately (time 

between 0 ml l-1 DO (anoxia) and the behaviour). Day and night were defined 

according to sunrise and sunset of the corresponding day of the deployment. 

Deployment 11 was chosen to graphically depict the sensor and hermit crab data 

because it was one of the longest experiments and it was also used for evaluations in 

the open configuration (Fig. 4). 
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Tab. 1. Behaviours and reactions of hermit crabs investigated, including categories and sub-
categories. 
 

Category/sub-category Criteria 

 

Visibility 
 

 

visible Hermit crab, its shell or parts thereof visible. This includes shell largely 
covered by other organisms (e.g. crab under brittle star aggregation, 
i.e. outline recognizable, no exit tracks). 
 

non-visible Neither crab nor its shell or parts thereof visible (e.g. hidden behind a 
multi-species clump). 
 

Location 
 

 

on sediment Crab/shell located on sediment or on bivalve shells on sediment. 
 

elevated Crab/shell on multi-species clump (no contact with sediment). 
 

Horizontal locomotion  
 

no locomotion No displacement. 
 

minor  Displacement <1 shell length or <1 body length (if crab outside shell). 
 

major  Displacement ≥1 shell length or ≥1 body length  if crab outside shell). 
 

turn Turning movement without displacement. 
 

Body movement Crab movement without displacement (retraction into or stretching out 
of shell; appendage movements: chelipeds/legs; slight shell 
movements if crab not visible). 
 

Body posture 
 

 

normal Biologically normal body postures. One or more of the following visible: 
eyes, cheliped(s), leg(s), antennae. If crab not visible, shell aperture 
slightly elevated (i.e. not flat on sediment surface). 
 

extended Soft (posterior) part of carapace (and occasionally also anterior part of 
abdomen) visible. 
 

out 
 

Crab fully emerged/shell abandoned. 
 

Shell position 
 

 

upright Aperture facing down. 
 

overturned Aperture facing up. 
 

Interaction 
 

Visible interaction of crab, its shell, or a symbiont with another organism. 
Includes:  
 

• organism on top of shell, 
• hermit crab on organism that shows reaction   
• interaction not directly visible but reconstructed based on track 
  and/or reactions between two images. 
 

Excludes organisms used by crab solely as a substrate, e.g. crab 
climbs up on or over a sponge or ascidian. 
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2.4. Statistical analysis 

The behavioural categories were assigned to dissolved oxygen categories: normoxia 

 ≥ .  ml l-1), mild hypoxia (2.0 – 1.0 ml l-1), moderate hypoxia (1.0 – 0.5 ml l-1), severe 

hypoxia (0.5 – 0.01 ml l-1), and anoxia (0 ml l-1). 

The non-parametric Kruskal-Wallis test was used to determine behavioural 

reactions due to declining oxygen concentrations. The Mann-Whitney U-test was 

performed to compare a behaviour between different oxygen categories (for 

significances see Appendix 1: Tab. 2 – 6). To detect differences in behavioural 

responses between day- and night phases, cross tables were computed and the 

Pearson Chi-square test was performed (for significances see Appendix 1: Tab. 7). 

To identify which factor (length of the closed configuration, duration of hypoxia and 

anoxia, and development of H2S,) affected mortalities and survivorship, linear 

regressions were used. H2S concentrations were transformed using a log (x + 1) 

transformation (for significances see Appendix 1: Tab. 8). For statistical analyses the 

software package SPSS 17.0 was used. 
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3. Results 

3.1. Sensor data 

During the normoxia phase of the deployments (open configuration), DO values 

varied from 2.6 to 5.6 ml l-1 on the bottom (2 cm above the sediment) and from 2.8 to 

8.9 ml l-1 20 cm above the sediment. The values were typically higher 20 cm above 

the sediment (exceptions: deployments 6, 7, 9, 11). DO curves at the two heights 

intersected in deployments 9 and 11. In all deployments, the subsequent closed 

configuration caused an immediate and constant decrease in DO concentrations 

(Fig. 4). Anoxia was generated within 1 to 3 d. It was induced faster in deployments 

7, 8, 10 and 11 (after 17.4 to 33.5 h) and slower in deployments 9, 12 and 13 (after 

51.7 to 69.8 h). In deployment 2 an intermediate oxygen peak developed. H2S was 

created in all deployments: in those with short anoxia (8, 9, 10, 12), concentrations 

increased up to 21 µmol l-1; when anoxia lasted for at least 2 d (2, 7, 11, 13) the 

values rose up to 304 µmol l-1. The temperature remained constant in each 

deployment (range across deployments: 18.5 to 21.4 °C) and bottom water salinity 

was 38 ‰  for more details see Haselmair et al. 2010). 

 

 

 
 
Fig. 4. Sensor data of deployment 11. Ox1 (blue): oxygen sensor on the bottom, Ox2 (green): oxygen 
sensor 20 cm above the sediment, H2S (red): hydrogen sulphide concentrations. Note that lower 
sensor had higher DO values here (atypical) but that bottom layer water became hypoxic first. 
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3.2. Hermit crab abundance 

 Transects 3.2.1.

Transects covering 135 m2 contained 330 hermit crabs, yielding an average of 2.4 

individuals 1 m-2. The dominating species was P. eremita (n = 296; 90 %), followed 

by P. cuanensis (n = 24; 7 %). The remaining 3 % (n = 10) consisted of Pagurus 

prideaux (Leach, 1815) and unidentified individuals. Most P. eremita (smaller 

individuals) occupied shells of A. pespelecani (n = 176; 60 %), with larger individuals 

in M. brandaris (n = 24; 8 %) and H. trunculus (n = 37; 13 %). The remaining crabs 

inhabited 20 Cerithium sp. (7 %), 20 Gibbula sp. (7 %), 9 Fusinus sp. (3 %) and 10 

unidentified shells (3 %). Of the latter, 9 shells were completely covered by the 

sponge S. domuncula and not identifiable. 

 Normoxia (open EAGU configuration) 3.2.2.

The two deployments evaluated in the open configuration yielded 25 and 26 hermit 

crabs (deployment 9 and 11, respectively), i.e. a total of 51 individuals entered the 

camera´s field (inside and outside of the aluminium frame) at some point. 

 Rapidly sinking values/hypoxia/anoxia (closed EAGU configuration) 3.2.3.

In the closed configuration, eight deployments were evaluated. The density of hermit 

crabs varied from 0 to 11 individuals (only one deployment contained no crabs). 

Twenty-five individuals were evaluated (see selection criteria above): 9 inhabited     

A. pespelecani, 11 M. brandaris or H. trunculus, 3 S. domuncula-covered shells and 

2 unidentified shells. In certain cases, differentiation between M. brandaris and        

H. trunculus was not possible due to damaged shells and/or to dense symbiont 

cover. 
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3.3. Behaviour during normoxic conditions 

During the open configuration, the normal behaviour of hermit crabs was observed. 

Crabs were mainly located on the sediment (85 % of observations) between multi-

species clumps or partly hidden under their edges. Typically their shells were 

positioned upright (96 %) and they exhibited a normal body posture, i.e. some 

extremities – eyes, chelipeds, legs and antennae – were visible (92 %). Locomotion 

occurred in 23 % of observations. While during the day, slightly more major than 

minor locomotion occurred (17 and 14 %, respectively), during the night minor 

locomotion (9 %) dominated over major locomotion (5 %). More locomotion was 

documented during the day than during the night (total, including turns: 33 and 15 %, 

respectively). Body movements were recorded in 22 %. In the open configuration, 

interactions (both inter- and intraspecific; see 3.4.8.) were documented in 49 %. The 

number of interactions differed between day and night (36 and 58 %, respectively). 

After switching to the closed configuration, certain behavioural patterns 

decreased or increased rapidly, although oxygen concentrations were still normoxic. 

These behavioural changes are attributed to the exchange of the open aluminium 

frame with the plexiglass chamber, which altered the water currents. During the 

initial, closed configuration, hermit crabs were on multi-species clumps more 

frequently during the day and especially the night (32 and 45 % of observations 

versus 11 and 18 % during the open configuration). Total locomotion during the 

initial, closed EAGU remained at the same value (23 %) as during the open 

configuration, but the distribution of minor and major locomotion changed. During the 

day, the initial, closed EAGU triggered a small increase of major locomotion (from 17 

to 21 %) and a slight decrease of minor locomotion (from 9 to 7 %). Total locomotion 

was 30 % during the day and 12 % at night; the diurnal rhythm persisted. Interactions 

during the day remained similar in the initial, closed configuration (38 %), but during 

the night they increased to 73 % (from 58 %). 

In the following section the statistics performed for normoxia include all 

evaluations >2 ml l-1 DO (i.e. both in open and initial, closed configuration). 
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3.4. Responses to decreasing dissolved oxygen concentrations 

Decreasing DO values triggered a sequence of altered and atypical behaviours in 

hermit crabs. 

 Location changes 3.4.1.

During normoxia, hermit crabs were located on the sediment in 76 % of all 

observations (Fig. 5a; for all significances see Appendix 1: Tab. 2). Hypoxia triggered 

avoidance, i.e. migration to the higher multi-species clumps (Fig. 6). At mild hypoxia, 

the crabs (47 % of all observations) moved up to such clumps. A similar percentage 

(48 %) was on the clumps during moderate hypoxia. This value fell to 39 % during 

severe hypoxia and anoxia (Fig. 5a). 

The responses differed considerably according to the type of the occupied 

housing (large shells, small shells, S. domuncula). The three categories differed in 

the time spent on the respective substrates (sediment/multi-species clumps) in each 

oxygen category (for all significances see Appendix 1: Tab. 3 – 6). Initially, small 

crabs were located on the sediment (64 % of all observations) during normoxia    

(Fig. 5b). During mild hypoxia, those on multi-species clumps highly significantly 

increased (56 %) Slightly less than half (46 %) spent their time on clumps during 

moderate hypoxia, rising to 52 % during severe hypoxia and decreasing to 39 % 

during anoxia. Large crabs, in contrast, spent most of the time on the sediment in all 

oxygen categories. During normoxia, they were almost exclusively on the sediment 

(94 % of observations; Fig. 5c). Mild hypoxia triggered some movement onto clumps 

(19 %), with a peak during moderate hypoxia (30 %), followed by a continuous 

decrease (15 and 9 % during severe hypoxia and anoxia, respectively). During 

normoxia, crabs in S. domuncula remained mostly on the sediment (70 %; Fig. 5d). 

Mild hypoxia caused movement onto clumps in 97 %, a value that remained constant 

during moderate hypoxia. This value fell somewhat during severe hypoxia (93 %) and 

anoxia (85 %), but these animals spent most time on elevated substrate. 

Housing-related differences were also detected in the number of vertical up and 

down movements (i.e. movement from sediment onto elevated substrate or vice 

versa, not vertical locomotion on elevated substrate). Most crabs in small shells (7 of 

9) spent some time on multi-species clumps. In contrast, 5 of 11 large crabs 

remained exclusively on the sediment throughout a deployment. The remaining large 
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individuals moved up and down at most 2 times per deployment. All 3 crabs in 

S. domuncula, however, climbed on multi-species clumps, and 2 of them remained 

there through anoxia until the end of the deployment. 

Finally, the location at the end of the evaluation differed according to housing. 

Most small (9 of 10 individuals) and large crabs (9 of 11) returned to the sediment. 

Two of 3 individuals in S. domuncula, however, remained on multi-species clumps 

until the end of the deployments. 

 

 

 
 
Fig. 5. Hermit crabs on multi-species clumps (mean percentage) related to five oxygen thresholds:   
(a) all individuals, (b – d) specific responses. (n): number of evaluated crabs in closed configuration.   
N: number of photographs evaluated in each oxygen category. 
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Fig. 6. Paguristes eremita (pa) in Aporrhais pespelecani shell on top of ascidian Phallusia mammilata 
(ph) at 13.6 h after anoxia (18.3 µmol l

-1 
H2S) in deployment 11. The holothurian Ocnus planci (op) on 

left. 
 

 Decreased locomotion 3.4.2.

Most horizontal locomotion was observed during normoxic conditions (23 %; Fig. 7a). 

Mild hypoxia caused a decrease (14 %). Locomotion further decreased during severe 

hypoxia (4 %), with very low values throughout anoxia (5 %). 

Locomotion in crabs in S. domuncula was lower in all oxygen categories 

compared to crabs in shells (Fig. 7c). The decrease from normoxia (17 % of all 

observations) to severe hypoxia (1 %) was constant and steep, and during anoxia 

this value remained the same (1 %). 

 

 
 
Fig. 7. Total locomotion (mean percentage) of hermit crabs related to five oxygen thresholds: (a) all 
individuals, (b/c) specific responses. (n): number of evaluated crabs in closed configuration. N: number 
of photographs evaluated in each oxygen category. 
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 Altered activity pattern 3.4.3.

Locomotion occurred in episodes, reflecting activity peaks. Initially, more locomotion 

was recorded during the day than at night. Oxygen depletion reduced these 

episodes, which is represented in a smaller activity peak during early anoxia (Fig. 8). 

All crabs that emerged from their shells (except for one individual; see below), 

however, moved around shell-less on the sediment or multi-species clumps. This is 

reflected in an increase in the last activity peak (Fig. 8). This last phase of locomotion 

was initiated directly at or shortly after emergence, after a mean of 55 h (SD = 9.4) of 

combined hypoxia and anoxia (mean anoxia duration = 26.9 h; SD = 14.2). The 

duration of this phase ranged from a single change of location (minutes) to 13.9 h 

(mean = 3.7 h; SD = 4.1). Within this period a mean of 15 changes of location 

occurred (range: 1 to 40). 

A diurnal activity pattern was observed during normoxia, with highly significantly 

different numbers of locomotion during the day and night (Appendix 1: Tab. 7). 

During mild hypoxia, no difference in locomotion was recorded between the day and 

night. During moderate and severe hypoxia a diurnal pattern was present, again with 

significant differences between day- and night phases. At anoxia, no diurnal rhythm 

was detected. 

 

 

 
 
Fig. 8. Average number of locomotions per hour during deployment 11. n = 3 crabs in open, n = 4 in 
closed configuration. White and black bars represent day and night, respectively. White and black 
arrowheads show emergence from shell and death, respectively (50 % of individuals). 
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 Changes in body movements 3.4.4.

Initially, during normoxia, locomotion and body movements accounted for a similar 

percentage of observations (23 and 26 %, respectively; Fig. 7a and 9a). At mild 

hypoxia, locomotion decreased but body movements started to increase highly 

significantly (51 % of observations) and reached a peak at moderate hypoxia (68 %; 

Fig. 9a). Then, body movements continuously dropped at severe hypoxia and anoxia 

(42 and 34 %, respectively). At anoxia, in contrast, locomotion amounted to only 5 % 

of observations (Fig. 7a). In most crabs (20 of 25 individuals) body movements lasted 

longer than locomotion (mean = 25.2 h; SD = 24.1; range: 18 min to 81.4 h). The 

remaining 5 crabs moved around shell-less on the substrate, and locomotion ceased 

at about the same time as body movements. 

Whereas the pattern in sponge-inhabiting individuals was the same as for hermit 

crabs in shells, mild hypoxia triggered a steeper increase of body movements (70 % 

of observations) and a higher peak during moderate hypoxia (91 %, Fig. 9c). 

 

 

 
 
Fig. 9. Hermit crab body movements (mean percentage) related to five oxygen thresholds: (a) all 
individuals, (b/c) specific responses. (n): number of evaluated crabs in closed configuration. N: number 
of photographs evaluated in each oxygen category. 
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 Atypical body posture: extension from shell 3.4.5.

During normoxia, the normal body posture (e.g. eyes and antennae, occasionally 

chelipeds, visible from above) was documented in 93 % of observations. Extension 

from the shell and other atypical postures were rare (7 %; Fig. 10a). Eight individuals 

were extended 19 times for a short period (maximum 9 images) while examining the 

sediment or empty, damaged shells. Interactions (both inter- and intraspecific) 

caused 3 individuals to stretch out of their shell towards the opponent (maximum 2 

images). With decreasing DO concentrations, extension continuously increased until 

anoxia (44 % of observations), with a first jump at mild and a second major jump at 

moderate hypoxia (15 and 34 %, respectively; Fig. 10a). 

This pattern was more distinct in crabs inhabiting S. domuncula: values were 

higher during moderate hypoxia (57 %) and anoxia (55 %; Fig. 10c), but the major 

jump also occurred at moderate hypoxia. 

 

 

 
 
Fig. 10. Extended body posture (mean percentage) related to five oxygen thresholds: (a) all 
individuals, (b/d) specific responses. (n): number of evaluated crabs in closed configuration.              
N: number of photographs evaluated in each oxygen category. 

 

 

Extension occurred in two peaks mostly (Fig. 11b). The second peak is higher and 

longer than the first. In the intervening period, body posture returned to normal     

(Fig. 11a). The decrease after the second peak reflects increased total emergence 

from the shell rather than return to normal posture (Fig. 11c). 
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(a) Normal body posture 
 

 
 

 

 

(b) Extended body posture 
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(c) Outside of shell 

 

 
 
Fig. 11. Body postures (average number of the selected behaviour per hour) during deployment 11.   
n = 3 crabs in open, n = 4 in closed configuration. White and black bars represent day and night, 
respectively. White and black arrowheads show emergence from shell and death, respectively (50 % 
of individuals); grey arrowhead indicates death of all individuals. 

 

 

 Atypical shell position: overturned 3.4.6.

Initially, most occupied housings (97, 98 and 98 % of observations during normoxia, 

mild hypoxia and moderate hypoxia, respectively) were normally positioned, with the 

aperture facing down (Fig. 12a). As DO values dropped further, an increasing 

number of shells was overturned (Fig. 13), with a highly significant increase at severe 

hypoxia (17 %) and another highly significant increase at anoxia (24 %; Fig. 12a). 

The initiation and the number of overturned shells differed according to housing. 

Small crabs (17 %) and crabs in S. domuncula (38 %) showed an increase at anoxia 

(Fig. 12b/d), most evident in S. domuncula (Fig. 12d). Large shells (Fig. 12c) were 

overturned earlier, often at severe hypoxia (26 %). 
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Fig. 12. Overturned hermit crab shells (mean percentage) related to five oxygen thresholds: (a) all 
individuals, (b – d) specific responses. (n): number of evaluated crabs in closed configuration.             
N: number of photographs evaluated in each oxygen category. 
 
 
 

 
 

Fig. 13. Paguristes eremita (pa) extending from an overturned Murex brandaris shell (mu) at 16.1 h 
after anoxia (36.7 µmol l

-1
 H2S) in deployment 11. Note extended anemone (Cereus pedunculatus, ce) 

at top. 
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 Emergence from shell 3.4.7.

Paguristes eremita remained inside its shell from normoxia to severe hypoxia. 

Anoxia, however, triggered the emergence of 13 of 25 individuals (52 %) (Fig. 14). 

Hermit crabs emerged between 38.9 and 71.3 h of combined hypoxia and anoxia 

(mean = 52.8 h; SD = 8.5), whereby anoxia duration ranged from 10.3 to 48.6 h 

(mean = 24.4 h; SD = 11.8). During emergence, 77 % of the crabs were positioned 

on the sediment and 62 % of shells were still upright (Fig. 15). Once they abandoned 

their shell, the crabs moved around. An exception was one individual (in 

M. brandaris, deployment 11) that returned to its shell after 34.0 h of anoxia. Two 

images (12 min) before emerging, nearly the whole abdomen was visible. The crab 

remained emerged for 4 images (24 min) and moved around on top of its upright 

shell. It then turned around and partially inserted its abdomen back into the aperture. 

This crab remained inside for 2 images (12 min) before finally emerging again and 

climbing on an exposed infaunal sea urchin Schizaster canaliferus (Lamarck, 1816). 

Emergence was clearly a precursor to mortality: eight of 13 crabs (62 %) that 

emerged from their shell died. Three of the remaining emerged crabs survived due to 

relatively brief durations of anoxia in the respective deployments. The final two 

individuals disappeared and could not be further evaluated. 

 

 

 
 

Fig. 14. Dead Paguristes eremita (pa) (curved abdomen visible on bottom) next to its abandoned shell 
(overturned Aporrhais pespelecani (ap) at top left). Note typical serpulid-encrusted aperture. 
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Fig. 15. Location and shell position during emergence of the crabs (n = 13); percentage of individuals 
indicated.  

 

 

 Inter- and intraspecific interactions 3.4.8.

Short interactions and reactions were difficult to observe because photographs were 

taken in 6-min intervals. Inter- and intraspecific interactions were observed in 50 % of 

photographs at normoxia (Fig. 16a). During mild hypoxia this behaviour highly 

significantly increased (57 % of observations) and remained at a stable level during 

moderate and severe hypoxia (57 and 56 %, respectively) until anoxia caused a 

major drop (25 %). Intraspecific interactions occurred in all oxygen categories. 

The pattern of interactions differed according to housing category. In crabs in 

small shells the increase occurred at mild hypoxia (from 53 to 67 %) followed by a 

subsequent decrease until anoxia (19 %; Fig. 16b). In large crabs the normoxic value 

was retained (43, 45 and 47 % during normoxia, mild and moderate hypoxia, 

respectively) until severe hypoxia triggered an increase (63 %; Fig. 16c) and anoxia 

initiated a drop (29 %). In contrast, the initial interactions were higher in sponge-

inhabiting crabs (61 and 63 % during normoxia and mild hypoxia, respectively; 

Fig.16d). A clear increase occurred at moderate hypoxia (92 %), with the value at 

anoxia dropping to the same value (29 %) as in large crabs. 
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Fig. 16. Hermit crab interactions (mean percentage) related to five oxygen thresholds: (a) all 
individuals, (b – d) specific responses. (n): number of evaluated crabs in closed configuration.            
N: number of photographs evaluated in each oxygen category. 

 

 

During normoxia and mild hypoxia, more interactions occurred during the night than 

day (Fig. 17a/b). This behaviour changed at moderate hypoxia, with more 

interactions occurring during the day. More interactions during severe hypoxia were 

recorded during the night, and this pattern changed again during anoxia, with more 

interactions during the daytime phases. The day/night differences were highly 

significant during normoxia, moderate hypoxia and anoxia, and significant during mild 

and severe hypoxia (Appendix 1: Tab. 7). 
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Fig. 17. Hermit crab interactions (mean percentage) related to five oxygen thresholds: (a) during the 
day, (b) during the night. (n): number of evaluated crabs in closed configuration. N: number of 
photographs evaluated in each oxygen category. 

 

 

These day/night differences were also visible over the course of the individual 

deployments. In deployment 11, for example, the two major peaks (one during 

normoxia, one during anoxia) describe interactions that occurred at nighttime       

(Fig. 18). The final, small peak represents an interaction with the infaunal sea urchin 

S. canaliferus (see below). 

 

 
 
Fig. 18. Average number of interactions per hour during deployment 11. n = 3 crabs in open, n = 4 in 
closed configuration. White and black bars represent day and night, respectively. White and black 
arrowheads show emergence from shell and death, respectively (50 % of individuals). 
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 The spectrum of interspecific interactions 3.4.9.

Interspecific interactions with the following organisms were recorded: the brittle stars 

O. quinquemaculata and Ophiura spp., the crabs P. longimana, P. spinifer, 

Nepinnotheres pinnotheres (Linnaeus, 1758), Macropodia sp., the anemone Cereus 

pedunculatus (Pennant, 1777), the holothurian O. planci, the sea urchin 

P. microtuberculatus, the infaunal sea urchin S. canaliferus , the ascidian 

Microcosmus sulcatus (Coquebert, 1797), the gastropods H. trunculus and 

M. brandaris, the bivalve Corbula gibba (Olivi, 1792), the zoanthid Epizoanthus 

arenaceus (Delle Chiaje, 1823), infaunal worms, shrimps, a limpet and serpulid 

tubeworms. 

Oxygen depletion triggered atypical interactions with the infaunal sea urchin      

S. canaliferus, which emerged from the sediment at severe hypoxia and interactions 

occurring during anoxia: one with a hermit crab and one with a sea anemone 

Calliactis parasitica (Couch, 1842), which was attached to a hermit crab shell. In one 

case, S. canaliferus was used by the crab as an elevated substratum. The crab was 

in contact with a S. canaliferus for 5.3 h. The crab then emerged from its shell and 

climbed on top of the sea urchin (Fig. 19a), where it remained for 1.8 h. A moribund, 

immobile state on the sediment with partly body movements followed and the crab 

died 15.9 h after the interaction. The interactions mainly involved crabs still inside of 

their shells, except for the above case. 

In response to decreasing DO concentrations, the crabs P. longimana often 

positioned themselves on occupied shells. During mild and moderate hypoxia, 11 and 

15 interactions, respectively, occurred with individuals or aggregations of                 

P. longimana on shells. During severe hypoxia and anoxia, 43 such interactions took 

place: P. longimana remained on the shell for extended periods (maximum 23.2 h). 

Aggregations of up to 9 of P. longimana individuals were recorded. Ophiura spp. – a 

species normally partially buried in the sediment – is another example in which shells 

served as elevated sites. During severe hypoxia and anoxia, Ophiura spp. was 

commonly observed on hermit crabs. 

Most interspecific interactions (241) occurred with the brittle star                         

O. quinquemaculata. Initially, some brittle stars showed escape reactions when 

approached by a hermit crab: the brittle stars interrupted their filter-feeding posture 

and changed location. Other brittle star individuals did not react, and slight contact of 
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the arm tips and the crabs was recorded several times. This contact lasted between 

6 min to 17.3 h, whereby the larger value reflects moribund individuals of                 

O. quinquemaculata. A common brittle star response to hypoxia was that such 

escape reactions ceased entirely. At mild hypoxia, the number and duration of 

interactions increased. During severe hypoxia, moribund brittle stars commonly clung 

to hermit crab-occupied shells: some were positioned on top of the shells and 

completely covered them with their arms (Fig. 19b/c). The longest coverage of a 

hermit-crab-occupied shell by a brittle star lasted for 21.7 h. Interactions with           

O. quinquemaculata ceased during anoxia because the brittle stars had died. 

Interactions with H. trunculus took place during normoxia, ceased during mild 

hypoxia, re-occurred at severe hypoxia and were the highest during anoxia. 

Interactions with S. canaliferus were also recorded late in the deployments. 
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Fig. 19. Atypical interactions: (a) shell-less hermit crab Paguristes eremita (pa) on top of emerged 
infaunal sea urchin Schizaster canaliferus (sc) at 35 h after anoxia (243.2 µmol l

-1
 H2S) in deployment 

11. Note abandoned, overturned Murex brandaris (mu) shell on the sediment. Bent-over Cereus 
pedunculatus partially extended from tube on right. (b) brittle star Ophiothrix quinquemaculata (oq) 
individuals cling to Suberites domuncula-covered shell inhabited by P. eremita (pa) during severe 
hypoxia (0.38 ml l

-1
 DO, no H2S) in deployment 9. (c) aggregation of O. quinquemaculata individuals 

and hermit crabs (pa) on a multi-species clump during mild hypoxia (1.26 ml l
-1

 DO, no H2S) in 
deployment 10. 
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3.5. Mortality 

Overall, 36 % of the hermit crabs (n = 9) died, all of them during anoxia. These 9 

individuals were observed in 3 different deployments (2, 7, 11). These deployments 

were among those in which anoxia occurred faster and lasted longer (exception: 

deployment 2 with an intermediate oxygen peak). Hermit crabs died between       

52.2 and 73.5 h after combined hypoxia and anoxia (mean = 60.9 h; SD = 7.8), 

whereby anoxia durations ranged from 18.4 to 62.1 h (mean = 37.7 h; SD = 16.6). At 

anoxia, H2S began to develop. Mortality occurred at H2S values ranging from 116.5 to 

248 µmol l-1 (mean = 128.1 µmol l-1; SD = 9.8). Mortality was highly significantly 

affected by the development and values of H2S and significantly affected by the 

duration of anoxia (Appendix 1: Tab. 8). 89 % of crabs were positioned on the 

sediment and 56 % of shells were overturned when the crabs died (Fig. 14/20). Eight 

of 9 crabs (89 %) were outside their shell at death. The first shell-less individuals died 

2.3 h and the last 18.4 h after emergence (mean = 8.4 h; SD = 5.1). 

 

 

 
 
Fig. 20. Dead individuals (n = 9); percentage of individuals with respect to location, shell position, and 
crab posture. 
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Three of 25 individuals could not be evaluated fully (deployment 2: duration 81.1 h 

after anoxia), i.e. only until 20.1, 34.1 and 45.8 h of anoxia. Two were already outside 

their shells and disappeared behind multi-species clumps. Poor visibility prevented 

evaluating the third crab, which was still inside its shell toward the end of the 

deployment. 

3.6. Survival 

52 % of observed individuals (n = 13) survived the experiment (5 different 

deployments: 8, 9, 10, 12, 13). Hermit crabs survived 30.2 to 78.0 h of hypoxia and 

anoxia (mean = 58.8 h; SD = 14.15), whereby anoxia durations ranged from 

8.5 to 25.1 h (mean = 20.8 h; SD = 4.9). The corresponding H2S concentrations were 

between 0 to 126.1 µmol l-1 (mean = 42.2 µmol l-1; SD = 48.2) at the end of 

deployments. Most of the survivors were on the sediment (69 %), with upright shells 

(69 %) and inside their shell (77 %). The duration of hypoxia and anoxia and 

development of H2S varied in different deployments, whereby survivors were typically 

present only in those that stopped after briefer anoxia and lower H2S concentrations. 

Three of 13 individuals survived relatively high H2S concentration of 121.1 µmol l-1 

and 25.1 h of anoxia. These values were below the mean H2S concentrations of 

128.1 µmol l-1 and mortality time of 37.7 h after anoxia. The remaining 10 crabs 

survived the end of the deployment with a maximum 24.2 h of anoxia and relatively 

low H2S concentrations (maximum 21.0 µmol l-1). Deployments with surviving 

individuals were too short to induce death. 
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4. Discussion 

4.1. Responses to decreasing dissolved oxygen concentrations 

This study provides a new and detailed account of the full range of hermit crab 

behaviours during declining DO- and rising H2S concentrations and correlates the 

specific responses with oxygen thresholds. The reactions to decreasing DO 

demonstrate a succession of atypical behaviours, ultimately leading to mortality   

(Fig. 21). 

In situ observations and time-lapse films confirm that P. eremita typically remains 

on the sediment surface between multi-species clumps (Stachowitsch, 1979). As 

oxygen levels decreased, however, the hermit crabs tended to migrate from the 

sediment onto multi-species clumps. Ultimately, most returned to the sediment before 

death. Avoidance of hypoxic areas is a common strategy of crustaceans (Diaz and 

Rosenberg, 1995; Pihl et al., 1991; Renaud, 1986). In the Neuse River Estuary 

(North Carolina, USA), trawl collections showed that the blue crab Callinectes 

sapidus migrated horizontally from deeper to shallower, better oxygenated sites (Bell 

and Eggleston, 2005). Large numbers of the West Coast rock lobster Jasus lalandii 

migrate shoreward during hypoxic conditions at high tides in the greater Elands Bay 

region (West coast, South Africa; Cockcroft, 2001). They, however, cannot return fast 

enough during ebb tides, leading to mass strandings. Hypoxic bottom water affects 

the vertical distribution of fish and crustaceans (mantis shrimp Squilla empusa and 

blue crab C. sapidus): migrations in the water column have been documented to 

avoid unfavourable conditions (Hazen et al., 2009; Pihl et al., 1991). 

Hermit crabs responded similarly to a wide range of bioherm-associated 

crustaceans from the Northern Adriatic Sea, which first emerge from their hiding 

places and then escape either horizontally or vertically onto elevated substrates 

(Haselmair et al., 2010). In the Northern Adriatic Sea, sublittoral sediment bottoms 

are flat and extensive. Accordingly, hypoxia can affect several hundred to thousands 

of km2 (Stachowitsch, 1984) making it unlikely that benthic invertebrates can reach 

more oxygenated sites by escaping horizontally. Multi-species clumps represent the 

only elevated structures on the sediment surface, and oxygen concentrations in the 

deployments were generally higher 20 cm above bottom than on the bottom. This 

reflects the normal declining oxygen gradients within the benthic boundary layer and 



33 
 

increasing concentrations into the water column (Diaz and Rosenberg, 1995; 

Jørgensen, 1980). Migration onto multi-species clumps, therefore, may provide a 

refuge for hermit crabs from short-term hypoxia. 

Mild hypoxia induced such initial avoidance behaviour in hermit crabs. The same 

threshold for this behaviour was reported in most bioherm-associated crustaceans 

apart from the more tolerant pea crab N. pinnotheres (a symbiont in bivalves and sea 

squirts; Schmitt et al., 1973 in: McDermott, 2009;) and the nut crab Ebalia tuberosa 

(Haselmair et al., 2010). The blue crab Callinectes similis actively detects and avoids 

DO below 2.3 ppm (Das and Stickle, 1994). The penaeid shrimp Metapenaeus ensis 

moves away from oxygen-depleted water (0.5 mg l-1 DO), seeking normoxic 

conditions (3.0 mg l-1 DO; Wu et al., 2002). The white shrimp Penaeus setiferus and 

the brown shrimp Penaeus aztecus avoid hypoxic conditions below 1.5 and 2.0 ppm 

DO, respectively (Renaud, 1986). Physiological mechanisms to actively detect 

dropping oxygen concentrations (and thus impending hypoxia) (Breitburg, 1992) and 

to orientate towards more favourable conditions (Bell et al., 2003) are essential to 

successfully avoid hypoxia. For example, the deep-water hermit crab Parapagurus 

pilosimanus adjusts its orientation and movement according to oxygen gradients and 

currents (Rowe and Menzies, 1968). 

The density of P. eremita was high during the recent transect survey on this 

Northern Adriatic sediment bottom (2.4 individuals m-2), slightly higher than in an 

earlier sampling (1.9 m-2; Stachowitsch, 1977). Paguristes eremita is a highly mobile 

crustacean with an average speed of 1.8 m h-1 (Stachowitsch, 1979). Based on 

earlier time-lapse films, these crabs were estimated to move 21.6 m per day but 

remained within a defined radius (based on the high tagging relocation rate). 

Locomotion is non-directed, apparently determined by multi-species clumps on the 

sediment and by intraspecific encounters. Shorter interruptions of locomotion 

involved examining or feeding on structures on and under the sediment; longer 

breaks during the night indicated a resting phase. Hermit crabs responded to         

2.0 ml l-1 DO with reduced locomotion, and at 0.5 ml l-1 DO locomotion ceased     

(Fig. 7a). This pattern was only briefly interrupted by “escape movement” after 

emergence from the shell. Juvenile Norway lobster Nephrops norvegicus also alter 

their behaviour pattern (Eriksson and Baden, 1997). The first response to 30 % 

oxygen saturation is generally prolonged inactivity, decreased walking and digging, 
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with escape bursts of swimming; this may correspond with the initial less-active 

behaviour of hermit crabs.  

Most crustaceans try to escape by first increasing their locomotion, later 

becoming immobile at species-specific thresholds. Reducing locomotory activities is 

a typical mechanism to save energy that is needed for respiration (Johansson, 1997; 

Mistri, 2004). Bioherm-associated crustaceans in the Northern Adriatic Sea increase 

their locomotion threefold with declining oxygen, followed by decreased activity 

between 1.0 and 0.5 ml l-1 DO (Haselmair et al., 2010). In the brackish-water shrimps 

Palaemonetes varians (Hagerman and Uglow, 1984) and Crangon crangon 

(Hagerman and Szaniawska, 1986), ~50 % oxygen saturation caused restless 

swimming followed by immobility at <10 mmHg DO and 30 % oxygen saturation, 

respectively. The position of crabs on multi-species clumps and their decreased 

locomotion were concurrent events at this threshold. The clumps are relatively small 

(decimetre range), restricting locomotion if the crabs want to stay on them. We 

therefore interpret decreased locomotion and immobility as a combination of saving 

energy and the restriction to relatively small elevated sites. 

The overall activity pattern of hermit crabs changed with decreasing oxygen 

concentrations. Paguristes eremita follows a diurnal activity pattern. It is mostly active 

during the day and moves less during the night: lengthy stops during the night 

suggested a resting phase (Stachowitsch, 1979). Thus, during a 12-h daytime phase, 

the number of individuals moving within the time-lapse camera’s field of vision in that 

study was fivefold compared to nighttime. During normoxia, the activity pattern we 

observed here corresponds with that reported by Stachowitsch (1979). At the 

beginning and end of oxygen decline – during mild hypoxia and anoxia – no such 

day/night rhythm was exhibited. During moderate and severe hypoxia, the diurnal 

activity pattern was detected again. When DO dropped below 2 ml l-1, crabs tried to 

avoid the unfavourable conditions, causing them to be active both day and night. 

During anoxia, hermit crabs were moribund, which resulted in no difference in 

locomotion between day- and nighttime. This irregular activity pattern is hypoxia-

induced and interpreted as a response to environmental stress. Altered activity 

patterns have been reported in bioherm-associated crustaceans, for example          

P. longimana. That crab has a cryptic lifestyle and its visible presence is restricted to 

nighttime (Haselmair et al., 2010). From moderate hypoxia on, however,                  

P. longimana was exposed and visible both day and night. 
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As opposed to locomotion, hermit crab body movements steadily increased as DO 

values fell from 2.0 to 0.5 ml l-1. Thereafter, during severe hypoxia and anoxia, body 

movements decreased. General body movements combined with movements of the 

pleopods (Lancester, 1988) or abdomen (Gerlach et al., 1976) create water currents 

to deliver sufficient gill respiratory current in the hermit crab Pagurus bernhardus; 

pleopod movements also remove faeces from inside the shell. Hypoxia triggers 

increased pleopod beating in the Norway lobster N. norvegicus to create a sufficient 

water flow through the burrow (Gerhardt and Baden, 1998). Brief injection of hypoxic 

water (2 ppm DO), however, did not change the pleopod beating rate in the hermit 

crab Dardanus arrosor (Innocenti et al., 2004). In addition to pleopod movements, 

increased frequency of scaphognathite beating under declining oxygen 

concentrations has been described in certain crustacean species (McMahon, 2001). 

Accordingly, body movements in P. eremita are interpreted as a response to hypoxic 

stress but may also create an additional water movement inside the shell. 

Decreasing oxygen concentrations initiated a sequence of atypical crab postures 

along with an altered shell position: extension from the shell during mild hypoxia, 

overturned shells during severe hypoxia and emergence beginning approximately 

24 h after anoxia. Extension from the shell increased (percentage of observations) up 

until anoxia, and nearly 50 % of all crabs were extended at anoxia. The number of 

overturned shells increased throughout anoxia. Both phases exposed the crab more 

to potential predators. Before emergence, crabs showed only body movements, but 

no locomotion. Emergence from the shell was associated with an escape reaction in 

all except 1 of 13 emerged individuals and occurred after a mean of 26.9 h after 

anoxia. This involved a spurt of locomotion lasting on average 3.7 h. Hermit crabs 

are confronted with additional costs involved with carrying their shells (Herreid and 

Full, 1986). In the land hermit crab Coenobita compressus, for example, the oxygen 

consumption rate is the same in motionless crabs outside or in shells. During slow 

locomotion, however, the crabs in shells require twice as much oxygen as shell-less 

individuals. Emergence along with increased locomotion is therefore interpreted as a 

last attempt to escape in an energy-saving mode. During the prolonged duration of 

anoxia at which this behaviour occurs, the risk of predation is probably low: most 

predators, with the exception of muricid gastropods and anemones such as 

C. pedunculatus are moribund, dead or have left the area (fishes). 
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Hermit crabs have been reported to emerge from their shells after exposure to 

various environmental stresses: hypoxia (Riedel et al., 2008b; Stachowitsch, 1984), 

extreme thermal stress (Bertness, 1982), high temperature and desiccation (Taylor, 

1981), when pursued (Greenaway, 2003) and during dredging (Young, 1979). 

Intertidal organisms such as the hermit crab Pagurus samuelis are commonly 

subjected to disturbances in the form of flooding and sedimentation, which lead to 

oxygen deficiency in the surrounding areas (Shives and Dunbar, 2010). In a 

laboratory study the hermit crab reacted to burial by sediment with emergence from 

the shell. An upwards-facing aperture was the precursor for emergence after burial-

induced hypoxia. Not all shells occupied by P. eremita were overturned: nearly two-

thirds the crabs emerged from normally positioned shells. Hypoxic conditions can 

impact other shell-related behaviours. Such conditions change the benefits 

associated with different shells, altering shell selection: investigation of new shells is 

shortened and crabs inhabit significantly lighter and smaller shells (Côté et al., 1998). 

This change reduces the internal spaciousness of the shell, increases predation and 

impacts reproduction. Nonetheless, these drawbacks are apparently outweighed by 

the reduced energy costs. 

4.2. Housing-specific responses 

The size and weight of the different shells probably caused certain housing-specific 

responses of hermit crabs. Avoidance behaviour onto multi-species clumps and the 

amount of interactions differed according to housing category: crabs in S. domuncula 

spent the most time on such clumps and also had the most interactions, followed by 

small and then large individuals. Large shells were overturned already during severe 

hypoxia, while small shells and S. domuncula-covered shells were first overturned 

during anoxia. Tolerance and responses of crustaceans generally vary between 

adults and juveniles, e.g. the juvenile Norway lobster N. norvegicus is more sensitive 

to hypoxia (Eriksson and Baden, 1997). Additionally, oxygen consumption is 

dependent on weight (Bridges and Brand, 1980), thus probably contributing to 

different size-related responses. Larger individuals climb less onto elevated substrate 

during decreasing DO and may save energy by remaining on the sediment due to 

their higher shell weight. The pronounced upward movement of crabs in                   

S. domuncula shells may be interpreted as an attempt to keep the sponges alive, 
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although only few such individuals were evaluated. The escape of sponge-inhabiting 

crabs onto multi-species clumps, which are common refuges from hypoxia in this 

community, may explain the increased interactions (see below). The sea anemone  

C. parasitica, frequently attached to large shells, provides protection from predation 

(Williams and McDermott, 2004) and thus decreases interactions in large crabs. 

Behavioural reactions of crabs in S. domuncula differed the most, including 

additional intensified body movements, extension from shell and decreased 

locomotion. The oxygen content in the tissue of the symbiotic sponge is only 50 to  

60 % that of the surrounding water (Gatti et al., 2002). The aperture of the occupied 

shell is typically closely surrounded by the sponge, reducing the opening of the shell. 

The tightly enclosed crab may be sealed off more from the ambient conditions. Such 

reduced water exchange may prompt the crab to extent more often during moderate 

hypoxia and anoxia and increase body movements during mild, moderate and severe 

hypoxia. 

4.3. Atypical interactions 

Interactions with other species increased during exposure to <2 ml l-1 DO, but then 

decreased during anoxia. Hypoxia led to a series of atypical events. These included 

dampened reactions upon an encounter (no avoidance, shorter flight distances of 

other organisms), interactions with normally hidden or buried organisms, interactions 

with other organisms aggregating on elevated substrates, and even organisms 

climbing onto crab-occupied shells. 

Interestingly, peaks of interactions do not correspond with the activity rhythm of 

crabs, e.g. locomotion peaks. During normoxia, most of the interactions occurred at 

night, whereas hermit crabs are day-active. At mild hypoxia, interactions increased 

and remained at a stable level throughout severe hypoxia. Crab locomotion, 

however, first decreased during mild hypoxia and then again during severe hypoxia. 

During anoxia, interactions were halved and hermit crabs were mainly immobile 

 exception: “escape movement” after emergence). Most interactions may be 

explained by initiation by nocturnal organisms, by increased activity of other 

organisms during the day and by the artefact of long-lasting contact with and 

between moribund organisms. 
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To avoid low DO, for example, one hermit crab climbed onto the sea urchin 

S. canaliferus, an atypical substrate. Such emerging infauna species broadened the 

range of potential interactions (Pados, 2010). 

Conversely, the occupied shells themselves became an atypical substratum for 

other species such as the crab P. longimana and the brittle stars Ophiura sp. and 

O. quinquemaculata. Individuals of P. longimana emerge from their hiding places 

during mild and moderate hypoxia, use any available elevated structures, leading to 

aggregations on ascidians, for example (Haselmair et al., 2010). Normally, Ophiura 

lacterosa and O. quinquemaculata escape when hermit crabs approach, pointing to 

predator-prey relationships (Stachowitsch, 1979; Wurzian, 1982). This reaction upon 

an approach, however, disappeared, and during severe hypoxia and anoxia Ophiura 

spp. individuals even positioned themselves on the shells. During decreased DO 

concentrations, hermit crabs and other organisms were located on multi-species 

clumps, and such unusual aggregations on restricted areas increase the chances of 

interactions. For example, O. quinquemaculata typically aggregates on multi-species 

clumps (Stachowitsch, 1979). These brittle stars ceased to react to the crabs during 

mild hypoxia, and moribund individuals commonly clung to shells during severe 

hypoxia.  

Elsewhere, hypoxia-induced migrations of organisms can lead to concentrations 

in oxygenated refuge habitat, increasing the number of biological interactions 

(Lenihan et al., 2001). The ultimate effect of a spatial overlap with competitors or 

predators under such conditions, however, is affected by the relative tolerance of 

predator and prey to anoxia (Breitburg et al., 1994; Kolar and Rahel, 1993; Riedel et 

al., 2008a). In the Northern Adriatic, for example, an atypical interspecific interaction 

event was documented involving the symbiotic sea anemone C. parasitica attached 

to a hermit crab shell and the brittle star O. quinquemaculata: the highly tolerant sea 

anemone consumed the moribund brittle star during low DO (Riedel et al., 2008a). 

Crustaceans are known to be less tolerant than anemones, and P. eremita, for 

example, when suffering from hypoxia, was never observed to consume moribund 

prey. 

During anoxia, the number of interactions decreased and involved for example 

the more tolerant gastropod H. trunculus and the emerged sea urchin S. canaliferus. 
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4.4. Mortality and tolerance 

Among the hypoxia-sensitive crustaceans (Gray et al., 2002; Theede et al., 1969),   

P. eremita is relatively tolerant to oxygen deficiencies and H2S. Hermit crabs first died 

during prolonged anoxia (mean = 37.7 h). During a mass mortality event in 1983 in 

the Gulf of Trieste, few crabs were alive on the 5th day after the onset of 

hypoxia/anoxia, and on the 7th day no living individuals were observed (Stachowitsch, 

1984). Previous studies with hermit crabs have mainly involved laboratory 

experiments and dealt with short-term exposure to low DO, mainly focusing on 

survival. Pagurus spp. survived 0.6 mg l-1 DO for one hour and was then returned to 

normal oxygen conditions (Marshall and Leverone, 1994). Other hermit crabs 

survived burial (and the related, induced hypoxia) for 12 h (Shives, 2010). The 

intertidal hermit crab Clibanarius vittatus typically survived 5.5 h in oxygen-free 

seawater: only 1 of 5 tested individuals died (Wernick and Penteado, 1983). 

A general critical DO concentration for the onset of benthic mortality is 1 ml l-1, 

with wide-ranging mortality at about 0.5 ml l-1 (Diaz and Rosenberg, 1995). These 

thresholds, however, might be underestimated for crustaceans: recent approaches 

suggest a median lethal concentration (LC50) of 2.45 mg l-1 DO (SD = 0.14), with a 

median lethal time (LT50) of 55.5 h (SD = 12.4; Vaquer-Sunyer and Duarte, 2008). 

Generally, susceptibility to hypoxia varies among taxonomic groups, with 

crustaceans and fishes being among the sensitive organisms while molluscs, 

cnidarians and priapulids are relatively tolerant. Beyond this broad pattern, tolerance 

differs among species within a particular taxonomic group. Bioherm-associated crabs 

such as P. longimana and Galathea spp. are sensitive, while E. tuberosa and          

N. pinnotheres are more tolerant, the latter two dying last (after 34.2 and 78 h of 

anoxia, respectively; Haselmair et al., 2010). 

Mortality in hermit crabs was attributable significantly to the duration of anoxia 

but highly significantly to the development and level of H2S. The tolerance of 

organisms to oxygen depletion alone is difficult to study because anoxia is generally 

accompanied by the presence of H2S (Vismann, 1991). The occurrence of H2S is an 

additional impact that reduces survival time by an average of 30 % (Vaquer-Sunyer 

and Duarte, 2010b). H2S blocks the activity of cytochrome c oxidase, which explains 

its toxic character at nanomolar to low micromolar concentrations for most aerobic 

organisms (Bagarinao, 1992). Hermit crabs died at a mean of 128.1 µmol l-1 H2S. In 
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the examined benthic community, however, mortalities could often be attributed to 

oxygen depletion alone: many organisms, including the crab P. longimana, died 

before H2S developed. N. pinnotheres tolerates low H2S concentrations (maximum 

19.2 µmol l-1; Haselmair et al., 2010). Mud-shrimps (Thalassinidea), for example, 

burrow in the sediment and are physiologically adapted to an environment that is 

hypoxic and exhibits extremely high sulphide concentrations (Johns et al., 1997). 

Tolerance to oxygen depletion depends on the physiological and behavioural 

adaptations to hypoxia (Wu, 2002). Hermit crabs showed visible responses to low 

DO: avoidance by seeking better-oxygenated multi-species clumps and altered 

behaviour to reduce energy consumption, including immobility and emergence from 

shells. Hermit crabs, when exposed to hypoxia, attempt to maintain oxygen delivery. 

Clibanarius vittatus, for example, is an “oxygen conformer” with decreased oxygen 

uptake during declining concentrations. Below 5 % oxygen saturation, respiration 

rates remain at a steady level, indicating an elevated ventilation (Wernick and 

Penteado, 1983). The hermit crab P. samuelis responds to hypoxia by meeting the 

demands for aerobic respiration with anaerobic fermentation, which is indicated by 

increasing lactate levels in the hemolymph, such as during hypoxia caused by burial 

(Shives, 2010). Increased duration of burial increases the chance of mortality, but 

large stored energy reserves in the form of glycogen likely prolong survival. 

One hypothesis might be that hermit crabs, being enclosed in relatively tight 

fitting, impermeable calcareous shells, have evolved – in analogy to sediment-

burrowing crustaceans – to be somewhat more tolerant to low DO concentrations 

than other, free-living crustaceans. 

4.5. Symbionts 

The sea anemone C. parasitica is a well-known hermit crab symbiont (Williams and 

McDermott, 2004). Behavioural reactions of C. parasitica have been documented in 

detail in earlier EAGU deployments (Riedel et al., 2008a; 2008b). During normal 

oxygen conditions, the tentacle crown is open and directed downwards, towards the 

sediment: it sweeps across the bottom when the crabs move (Fig. 6; Stachowitsch 

1980). The sea anemone responds to hypoxia by directing the open tentacle crown 

upwards (Riedel et al., 2008a; 2008b). As oxygen decreases, individuals start 

rotating their crown. During anoxia, the tentacle crown is contracted and again faces 
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down. Ultimately, some of these sea anemones detach from the shell substrate 

(Jørgensen, 1980; Riedel et al., 2008a; Sagasti et al., 2001). In the Northern Adriatic, 

C. parasitica individuals survived between 28 and 35 h of anoxia. Other studies 

demonstrated that anemones are especially resistant, surviving prolonged exposure 

to anoxia (Jørgensen, 1980; Wahl, 1984). This tolerance is attributed to a 

combination of switching from aerobic to anaerobic pathways, metabolic depression 

and elongation to increase the surface area for gas exchange (Sassaman and 

Mangum, 1972; Shick, 1991). 

Reactions of other symbionts were documented during the mass mortality in 

1983 (Stachowitsch, 1984). During normal oxygen conditions, colonial ascidians 

(Didemnidae) form rigid colonies around the whole shell. During that event, these 

ascidians drooped to the sediment. Most symbionts were apparently dead on the 2nd 

day after the onset of that event, apart from C. parasitica and the zoanthid 

E. arenaceus. One day later, the dead symbiotic sponge S. domuncula changed its 

colour and spherical shape, also drooping. Epizoanthus arenaceus, another common 

symbiont (Ates, 2003; Stachowitsch, 1980), was among the survivors one week after 

the event. 

A laboratory study revealed that another known hermit crab symbiont, the 

barnacle Balanus improvisus (Williams and McDermott, 2004), reacts to hypoxia by 

vertically extending its feeding appendages without the normal movement of feeding 

(Sagasti et al., 2001). These authors also demonstrated that bryozoans, a common 

shell-inhabiting group, are tolerant to hypoxia by forming a resting state. 

4.6. Conclusions 

Hypoxia and anoxia have changed the community structure in the Northern Adriatic 

Sea. After mass mortalities, the typical, designating genera have become less 

abundant whereas the number of hermit crabs increased (Kollmann and 

Stachowitsch, 2001). The present study sheds light on the reactions of hermit crabs 

to such low dissolved oxygen events and helps explain their success in this benthic 

community. 
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Hermit crabs respond with a succession of atypical behaviours including: 

 

• avoidance of low DO by seeking higher multi-species clumps 

• decreased locomotory activity to save energy  

• altered activity patterns 

• changed level of body movements 

• atypical body posture: extension from shell 

• moribund phase: immobile crabs in overturned shells 

• emergence from shell along with an “escape movement” 

• atypical interspecific interactions 

• mortality 

 

The relative tolerance of hermit crabs to anoxia, coupled with their high mobility and 

their great range of symbionts, indicates that they play an important role in recovery 

after oxygen depletion (Stachowitsch, 1979). Hermit crabs, as scavengers and 

predators, are attracted by discards and moribund benthos after disturbance by trawl 

fishery (Groenewold and Fonds, 2000; Rumohr and Kujawski, 2000). A similar 

process can be expected after anoxia-induced community disturbance. This 

highlights the significance of hermit crabs as potential survivors of short-term hypoxia 

and as recolonizers of affected areas. Hermit crab shells also represent important 

structures for larval attachment after low oxygen events, especially since most non-

motile structures become covered by sediment (Stachowitsch, 1984). The magnitude 

of restructuring will depend in part on the susceptibility of symbionts. Tolerant 

symbionts such as sea anemones may survive deposition of the shell and result in 

the establishment of new multi-species clumps (Stachowitsch, 1979), thereby 

accelerating recovery. After small-scale or patchy anoxias, crabs with complete 

undamaged symbiont communities may move in from the unaffected surroundings 

and colonize the denuded areas. Such processes may be crucial in the world’s 

increasing number of anoxia-related “dead zones”. 
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6. Abstract 

Hermit crabs play an important role in the Northern Adriatic Sea due to their 

abundance, wide range of symbionts, and function in structuring the benthic 

community. Among the crustaceans, which are a sensitive group to oxygen 

depletion, the hermit crab Paguristes eremita is relatively tolerant. A specially 

designed underwater device (EAGU – experimental anoxia generating unit) was 

deployed to artificially create and document small-scale hypoxia and anoxia (0.25 m2) 

on a sublittoral soft bottom in 24 m depth in the Gulf of Trieste. This approach 

successfully simulated typical seasonal low dissolved oxygen (DO) events in the 

Northern Adriatic Sea, and enabled studying the behaviour and mortality of 

P. eremita. 

The crabs exhibited a sequence of atypical responses and ultimately mortality, 

which was correlated with five oxygen thresholds. Initially, at mild hypoxia             

(2.0 to 1.0 ml l-1 DO), hermit crabs showed an avoidance response by moving onto 

better oxygenated, elevated substrata. This was accompanied by a series of 

responses including decreased locomotory activity, increased body movements and 

extension from the shell. During a moribund phase at severe hypoxia 

(0.5 to 0.01 ml l-1 DO), crabs were mostly immobile in overturned shells and body 

movements decreased. Anoxia triggered emergence from the shell, with a last brief 

“escape movement” of shell-less crabs. The activity pattern of normally day active 

crabs was altered during mild hypoxia and anoxia. Atypical interspecific interactions 

were initiated: the crab Pisidia longimana increasingly aggregated on hermit crab 

shells from mild hypoxia to anoxia, and a hermit crab used the emerged infaunal sea 

urchin Schizaster canaliferus as an elevated substrate during anoxia. Response 

patterns partially varied according to the housing of crabs; small and large shells, and 

the sponge Suberites domuncula. Mortality occurred after extended anoxia (~1.5 d) 

and increased hydrogen sulphide levels (H2S ~128 µmol). Hermit crab shells are 

heavily overgrown by symbionts, forming mobile aggregations of benthic organisms 

which structure the overall community. The tolerance of certain symbionts (e.g. the 

sea anemone C. parasitica) may influence and accelerate community recovery after 

oxygen crisis. 

This study emphasizes the important role of relatively tolerant hermit crabs in this 

benthic community as potential survivors and recolonizers of affected areas. 
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7. Zusammenfassung 

Einsiedlerkrebse bewohnen eine Vielzahl an Lebensräumen, von polaren bis zu 

tropischen Meeren, vom Supralitoral bis zu Tiefseegräben. Sie spielen sowohl als 

Räuber, Filtrierer, Aas- und Detritusfresser eine wichtige Rolle (Schembri, 1982). Die 

vielfältigen Symbiosen der Einsiedlerkrebse erhöhen die Biodiversität ihrer 

Lebensräume (Reiss et al., 2003). Die Weichbodengemeinschaft der Nordadria ist 

durch Aggregationen von Makroepifauna, sogenannten Biohermen, gekennzeichnet. 

Diese Bioherme besitzen meist sekundäre Hartbodenelemente als Basis, 

hauptsächlich Schalen und Schalenstücke (Stachowitsch, 1977) und weisen eine 

sehr hohe Biomasse auf (Fedra et al., 1976). Einsiedlerkrebse haben in dieser 

epibenthischen Lebensgemeinschaft eine hohe Dichte (1.88 Individuen m-2). 

Paguristes eremita (Linnaeus, 1767) ist die dominierende Einsiedlerkrebsart, gefolgt 

von Pagurus cuanensis (Bell, 1845) (Stachowitsch, 1977). Ihrer Größe entsprechend 

bewohnen kleine Individuen Gastropodenschalen von Aporrhais pespelecani 

(Linnaeus, 1758), während größere Individuen Schalen von Murex brandaris 

(Linnaeus, 1758) und Hexaplex trunculus (Linnaeus, 1758) bevorzugen 

(Stachowitsch, 1980). 

Gastropodengehäuse der Einsiedlerkrebse stellen wichtige sedimentfreie und 

harte Strukturen für die Anhaftung von Epifauna in benthischen Weichböden-

gemeinschaften dar. Leere Schalen werden meist rasch zusedimentiert, sofern sie 

nicht Einsiedlerkrebsen als Gehäuse und Schutz dienen (Creed, 2000; Stachowitsch, 

1977). Einsiedlerkrebse können aufgrund dessen als Ökosystem-Ingenieure 

bezeichnet werden: Durch die Benutzung der Gastropodenschalen beeinflussen sie 

die Abundanz und Verbreitung von Invertebraten  Guti rrez et al.      ; Jones et al.  

1994; 1997; Williams and McDermott, 2004). Der Aufwuchs von P. eremita besteht 

aus mehr als 110 epizoischen und endolithischen Arten (Stachowitsch, 1980). Die 

hohe Anzahl, Größe und vielfältige Artenzusammensetzung des Aufwuchses 

(Stachowitsch, 1980; Williams and McDermott, 2004) stellen eine stabile und 

dennoch mobile Mikrobiozönose dar (Stachowitsch, 1977). Die Zusammensetzung 

der Symbionten beeinflusst die Funktionsfüchtigkeit des Gehäuses und somit die 

mögliche Dauer der Bewohnbarkeit des Krebs'. Ein konstruktiver Prozess umfasst 

Gehäuse verstärkende Arten, welche die Lebensdauer der Schale verlängern, z.B. 

Seescheiden oder der Schwamm Suberites domuncula (Olivi, 1792). Ein destruktiver 
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Prozess, ausgelöst durch Gehäuse zerstörende Arten, schwächt die Schale und 

verringert die Dauer ihrer Bewohnbarkeit, z.B. der Schwamm Cliona sp. oder die 

Bivalve Gastrochaena dubia (Pennant, 1777). Dies führte zu einer neuen Einteilung 

der Einsiedlerkrebssymbionten, welche auf deren Einfluss auf die Tragedauer und 

Funktionstüchtigkeit des Gehäuses basiert (Verlängerung oder Verkürzung). 

Einsiedlerkrebse verlassen beschädigte Gehäuse. Nach der Deponierung des 

Gehäuses sind Überleben und eine weitere Entwicklung einiger Symbionten möglich: 

Ehemals von Einsiedlerkrebsen bewohnte Gehäuse bilden die Basis vieler 

bestehender Bioherme. Aufgrund dessen spielen Einsiedlerkrebse eine wichtige 

Rolle in der Strukturierung dieser gesamten Lebensgemeinschaft. 

Innerhalb der marinen Ökosysteme sind seichte Küstengewässer am meisten 

von anthropogenen Einflüssen gefährdet. Eutrophierung sowie Stratifikation der 

Wassersäule können zu einem verminderten Gehalt an gelöstem Sauerstoff (DO) am 

Meeresboden führen und wurden als Umweltproblem erkannt (Diaz, 2001). Hypoxie 

(DO < 2 ml l-1) und Anoxie (kein Sauerstoff) haben seit den 1960er Jahren weltweit 

exponentiell zugenommen und sind heute bedeutende Stressfaktoren in seichten 

marinen Ökosystemen (Diaz and Rosenberg, 2008). Die Empfindlichkeit der 

benthischen Organismen in Bezug auf Hypoxie ist unterschiedlich, generell reagieren 

anfangs alle mit atypischen Verhaltensweisen sowie physiologischen Anpassungen 

(Diaz and Rosenberg, 1995; Gray et al., 2002; Wu, 2002). Lang andauernde 

Sauerstoffkrisen betreffen großflächige Gebiete auf dem Meeresboden und führen zu 

Massensterben der benthischen Fauna (in der Adria; Stachowitsch, 1984), 

sogenannte „Todeszonen“ (Diaz and Rosenberg, 2008). Hypoxie verändert nicht nur 

die Struktur und Funktion von benthischen Lebensgemeinschaften, sondern führt zu 

Beeinträchtigungen auf allen Ebenen: von der Veränderung biogeochemischer 

Prozesse (Conley et al., 2009) bis zur Verringerung der Bereitstellung von 

Ökosystemdienstleistungen (Sala and Knowlton, 2006). Durch die Erwärmung der 

Ozeane werden zusätzlich verringerte Überlebenszeiten der Organismen und eine 

erhöhte Empfindlichkeit gegen niedrige Sauerstoffkonzentrationen vorhersagbar 

(Vaquer-Sunyer and Duarte, 2010a). 

Aufgrund der besonderen Gegebenheiten, die wesentlich zur Entstehung von 

Sauerstoffkrisen beitragen, zählt die Nordadria zu den weltweit nahezu 400 

anerkannten „Todeszonen“ (Diaz and Rosenberg, 2008). Folgende Faktoren spielen 

dabei eine wesentliche Rolle: 
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• ein seichtes Binnenmeer mit vermehrtem Nährstoffeintrag und 

• Stratifikation der Wassersäule im Sommer  Justić et al.  199 ). 

 

Die Nordadria dient daher als Vorzeigemodell für ein empfindliches Ökosystem, das 

jahreszeitlich von Sauerstoffkrisen betroffen ist (Crema et al., 1991). Das Auftreten 

letzterer ist jedoch schwer voraussagbar. Um die Auswirkungen der Sauerstoffkrisen 

auf die benthischen Lebensgemeinschaften zu untersuchen wurde ein spezielles 

Unterwasserinstrument  der EAGU  „experimental anoxia generating unit“), 

entwickelt (Stachowitsch et al., 2007), welches kleinflächig Hypoxie und Anoxie 

erzeugt. Der EAGU ist mit einer Unterwasserkamera und mehreren Sensoren 

(Sauerstoff, Schwefelwasserstoff, pH-Wert, Temperatur) ausgestattet, um den Ablauf 

bei einer Sauerstoffkrise umfassend aufzeichnen zu können. Zuerst wird ein 

Metallrahmen über die zu untersuchenden Bioherme und Organismen gestellt, um 

das Verhalten während normoxischer Verhältnisse aufzuzeichnen. Danach wird der 

Rahmen durch eine Plexiglaskammer ausgetauscht. Aufgrund der Respiration der 

eingeschlossenen Organismen sinkt allmählich der Sauerstoffgehalt. Mithilfe des 

EAGUs ist es möglich eine Sauerstoffkrise zu simulieren und Verhaltensreaktionen, 

intra- und interspezifische Interaktionen und Mortalitäten der Organismen zu 

untersuchen. 

Diese Studie beschäftigt sich mit den Auswirkungen von abnehmendem 

Sauerstoffgehalt auf das Verhalten des Einsiedlerkrebses P. eremita. Die 

Verhaltensänderungen wurden mit fünf Sauerstoffgrenzwerten in Bezug gesetzt und 

stellten eine Abfolge von atypischen Reaktionen und letztlich Mortalität dar.  

 

• Normoxie (≥2,0 ml l-1 DO): Bei Normoxie wurde ein für Einsiedlerkrebse 

typisches Verhalten festgestellt. 

 

• Milde Hypoxie (2,0 bis 1,0 ml l-1 DO): Während dieser versuchte P. eremita 

geringe Sauerstoffkonzentrationen zu vermeiden und flüchtete auf höher 

gelegene, sauerstoffreichere Bioherme. Dieses Verhalten wurde von einer 

Reihe von Reaktionen begleitet: verringerte lokomotorische Aktivität, erhöhte 

Körperbewegungen und ein Herausstrecken aus der Schale, sodass Teile des 

weichen Carapax' oder sogar des Abdomens sichtbar wurden. 
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• Moderate Hypoxie (1,0 bis 0,5 ml l-1 DO): Zuvor initiierte Verhaltens-

änderungen waren auch während moderater Hypoxie sichtbar. 

 

• Fortgeschrittene Hypoxie (0,5 bis 0,01 ml l-1 DO): Diese war von einer 

subletalen Phase gekennzeichnet. Die meist unbeweglichen Krebse befanden 

sich in umgedrehten Gehäusen mit nach oben gerichteten Öffnungen und 

reduzierten ihre Körperbewegungen. 

 

• Anoxie (0 ml l-1 DO): Während Anoxie verließen Einsiedlerkrebse ihre 

Gehäuse und versuchten zu flüchten. Nach längerer Anoxie (~1,5 Tage) und 

einer erhöhten Schwefelwasserstoffkonzentration (~128 µmol) lösten diese 

beiden Faktoren den Tod der Krebse aus. 

 

Der Tag-Nacht-Rhythmus der normalerweise tagaktiven Einsiedler war während 

milder Hypoxie und Anoxie verändert. Atypische interspezifische Interaktionen 

wurden beobachtet z.B. von milder Hypoxie bis Anoxie war die Krabbe Pisidia 

longimana (Risso, 1816) meist auf Einsiedlerkrebsgehäusen aggregiert, während 

Anoxie benutze ein Einsiedlerkrebs einen hervor getretenen infaunalen Seeigel 

Schizaster canaliferus (Lamarck, 1816) als Zufluchtsort. 

Einsiedlerkrebse sind im Vergleich zu den meist wenig hypoxieresistenten 

Crustaceen relativ tolerant gegenüber Sauerstoffkrisen. Diese relativ hohe Toleranz 

der Einsiedlerkrebse sowie deren hohe Mobilit t deuten darauf hin  dass diese eine 

wichtige Rolle in der Wiederbesiedelung nach einer Sauerstoffkrise spielen 

(Stachowitsch, 1979). Einsiedlerkrebse, welche Aasfresser und Räuber sind, werden 

nach Störungen durch Schleppnetzfischerei von sterbenden benthischen 

Organismen angezogen (Groenewold and Fonds, 2000; Rumohr and Kujawski, 

2000). Ein ähnlicher Prozess könnte auch nach Störungen durch Anoxie induziert 

werden. Dies unterstreicht die Bedeutung der Einsiedlerkrebse als Überlebende kurz 

andauernder Hypoxie und Wiederbesiedler der beeinträchtigten Gebiete. Die 

Gehäuse der Einsiedlerkrebse könnten wichtige Strukturen für die Anhaftung von 

Organismen und Larven nach Sauerstoffkrisen darstellen (Stachowitsch, 1984). Das 

Ausmaß und der Erfolg dieser Wiederbesiedelung könnten von der Empfindlichkeit 

der Symbionten beeinflusst werden. Tolerante Symbionten wie z.B. die Seeanemone 
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Calliactis parasitica (Couch, 1842) könnten überleben, die Ablagerung des Gehäuses 

zum Aufbau neuer Bioherme beitragen (Stachowitsch, 1979) und damit die 

Wiederherstellung beschleunigen. Solche Prozesse könnten angesichts der 

weltweiten Zunahme an „Todeszonen“ entscheidend sein. 
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10. Appendix 1 

Tab. 2. Results of the Mann-Whitney U-test for behavioural differences in the number of observations 
in the five oxygen categories: all P. eremita individuals. Category: selected behaviour. Comparison 
refers to oxygen categories: 1: normoxia; 2: mild hypoxia; 3: moderate hypoxia; 4: severe hypoxia; 5: 
anoxia. Bold: highly significant (P < 0.001); Underlined numbers: significant differences (P < 0.05). 
 

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Elevated location 1 vs. 2 4172295.0 26963671.0 -18.435 <0.001 

 
1 vs. 3 3303076.0 26094452.0 -18.087 <0.001 

 
1 vs. 4 15036146.0 37827522.0 -18.179 <0.001 

 
1 vs. 5 19040138.0 41831514.0 -18.987 <0.001 

 
2 vs. 3 1025682.0 2316103.0 -0.814 0.416 

 
2 vs. 4 3904744.0 17767489.0 -5.450 <0.001 

 
2 vs. 5 4924616.0 27059147.0 -5.728 <0.001 

 
3 vs. 4 3101630.5 16964375.5 -6.007 <0.001 

 
3 vs. 5 3911612.5 26046143.5 -6.266 <0.001 

 
4 vs. 5 17482790.5 39617321.5 -0.198 0.843 

Locomotion 1 vs. 2 4962632.0 6253053.0 -7.448 <0.001 

 
1 vs. 3 4055879.0 4897632.0 -5.889 <0.001 

 
1 vs. 4 14400455.0 28263200.0 -29.326 <0.001 

 
1 vs. 5 18359644.0 40494175.0 -30.688 <0.001 

 
2 vs. 3 1030046.0 2320467.0 -0.829 0.407 

 
2 vs. 4 3782920.0 17645665.0 -15.239 <0.001 

 
2 vs. 5 4818967.0 26953498.0 -14.366 <0.001 

 
3 vs. 4 3017552.5 16880297.5 -15.668 <0.001 

 
3 vs. 5 3844369.0 25978900.0 -14.772 <0.001 

 
4 vs. 5 17386940.0 31249685.0 -1.960 0.050 

Body movement 1 vs. 2 4064110.0 26848735.0 -19.544 <0.001 

 
1 vs. 3 2512007.5 25296632.5 -29.956 <0.001 

 
1 vs. 4 14944837.5 37729462.5 -18.411 <0.001 

 
1 vs. 5 20523117.5 43307742.5 -10.849 <0.001 

 
2 vs. 3 858251.5 2148672.5 -9.571 <0.001 

 
2 vs. 4 3842036.5 17704781.5 -6.450 <0.001 

 
2 vs. 5 4465084.5 26599615.5 -12.190 <0.001 

 
3 vs. 4 2502095.5 16364840.5 -17.267 <0.001 

 
3 vs. 5 2846900.5 24981431.5 -22.874 <0.001 

 
4 vs. 5 16236065.5 38370596.5 -8.163 <0.001 

Extended 1 vs. 2 4800899.0 27585524.0 -18.406 <0.001 

 
1 vs. 3 3040763.0 25825388.0 -37.116 <0.001 

 
1 vs. 4 12309435.0 35094060.0 -44.969 <0.001 

 
1 vs. 5 13230037.0 36014662.0 -56.102 <0.001 

 
2 vs. 3 842483.5 2132904.5 -12.152 <0.001 

 
2 vs. 4 3411827.5 4702248.5 -14.875 <0.001 

 
2 vs. 5 3758219.5 5048640.5 -21.928 <0.001 

 
3 vs. 4 3407792.5 4249545.5 -0.131 0.896 

 
3 vs. 5 3859531.5 4701284.5 -7.028 <0.001 

 
4 vs. 5 15700907.5 29563652.5 -11.476 <0.001 

Shell overturned 1 vs. 2 5381289.0 6671710.0 -1.741 0.082 

 
1 vs. 3 4363443.0 5205196.0 -0.693 0.488 

 
1 vs. 4 15175215.0 37959840.0 -28.030 <0.001 

 
1 vs. 5 17498268.0 40282893.0 -37.554 <0.001 

 
2 vs. 3 1037319.5 2327740.5 -0.794 0.427 

 
2 vs. 4 3580187.5 4870608.5 -15.764 <0.001 

 
2 vs. 5 4124890.5 5415311.5 -20.476 <0.001 

 
3 vs. 4 2905022.5 3746775.5 -13.847 <0.001 

 
3 vs. 5 3348528.0 4190281.0 -18.166 <0.001 

 
4 vs. 5 16205530.0 30068275.0 -9.914 <0.001 
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Table 2 (continued)      

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Interaction 1 vs. 2 5077117.0 27861742.0 -4.562 <0.001 

 

1 vs. 3 4091141.5 26875766.5 -4.315 <0.001 

 

1 vs. 4 16660417.5 39445042.5 -6.800 <0.001 

 

1 vs. 5 16684991.5 38819522.5 -30.725 <0.001 

 

2 vs. 3 1039321.0 2329742.0 -0.113 0.910 

 

2 vs. 4 4224001.0 18086746.0 -0.063 0.949 

 

2 vs. 5 3631590.0 25766121.0 -24.960 <0.001 

 

3 vs. 4 3404174.5 17266919.5 -0.194 0.846 

 

3 vs. 5 2923870.0 25058401.0 -23.221 <0.001 

 

4 vs. 5 11921272.0 34055803.0 -35.555 <0.001 

 

 

Tab. 3. Results of the Mann-Whitney U-test for behavioural differences in the number of observations 
in the five oxygen categories: P. eremita in small shells. For explanation see Tab. 2. 
 

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Elevated Location 1 vs. 2 585239.0 3802155.0 -8.928 <0.001 

 
1 vs. 3 523541.5 3740457.5 -3.922 <0.001 

 
1 vs. 4 2207417.0 5424333.0 -10.834 <0.001 

 
1 vs. 5 2899071.0 6115987.0 -2.075 0.038 

 
2 vs. 3 118211.5 222864.5 -3.353 0.001 

 
2 vs. 4 572819.0 2716304.0 -1.809 0.071 

 
2 vs. 5 562794.0 3334629.0 -7.529 <0.001 

 
3 vs. 4 443444.0 548097.0 -2.417 0.016 

 
3 vs. 5 501430.5 3273265.5 -2.706 0.007 

 
4 vs. 5 2119033.0 4890868.0 -8.688 <0.001 

Shell overturned 1 vs. 2 720210.0 887541.0 -1.593 0.111 

 
1 vs. 3 576341.0 680994.0 -0.443 0.658 

 
1 vs. 4 2542298.0 5759214.0 -3.992 <0.001 

 
1 vs. 5 2673782.0 5890698.0 -11.524 <0.001 

 
2 vs. 3 130500.0 297831.0 -0.871 0.384 

 
2 vs. 4 569074.0 736405.0 -3.753 <0.001 

 
2 vs. 5 597620.0 764951.0 -7.487 <0.001 

 
3 vs. 4 455576.0 560229.0 -2.527 0.012 

 
3 vs. 5 478919.0 583572.0 -6.027 <0.001 

 
4 vs. 5 2259008.0 4402493.0 -7.127 <0.001 

Interaction 1 vs. 2 631648.0 3848564.0 -6.036 <0.001 

 
1 vs. 3 573944.0 3790860.0 -0.377 0.707 

 
1 vs. 4 2319724.0 4463209.0 -7.852 <0.001 

 
1 vs. 5 1959096.0 4730931.0 -24.900 <0.001 

 
2 vs. 3 115087.0 219740.0 -4.219 <0.001 

 
2 vs. 4 446057.0 2589542.0 -10.829 <0.001 

 
2 vs. 5 352524.0 3124359.0 -23.002 <0.001 

 
3 vs. 4 413510.5 2556995.5 -4.901 <0.001 

 
3 vs. 5 347904.0 3119739.0 -16.021 <0.001 

 
4 vs. 5 1882249.0 4654084.0 -16.536 <0.001 
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Tab. 4. Results of the Mann-Whitney U-test for behavioural differences in the number of observations 
in the five oxygen categories: P. eremita in large shells. For explanation see Tab. 2. 
 

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Elevated location 1 vs. 2 521290.0 1994476.0 -10.454 <0.001 

 
1 vs. 3 385845.0 1859031.0 -16.065 <0.001 

 
1 vs. 4 1964127.0 3437313.0 -9.981 <0.001 

 
1 vs. 5 2208185.0 3681371.0 -4.647 <0.001 

 
2 vs. 3 187081.5 435241.5 -4.603 <0.001 

 
2 vs. 4 860546.5 4090157.5 -2.413 0.016 

 
2 vs. 5 849606.5 4434109.5 -7.310 <0.001 

 
3 vs. 4 646512.0 3876123.0 -8.412 <0.001 

 
3 vs. 5 632779.5 4217282.5 -13.611 <0.001 

 
4 vs. 5 3195400.0 6779903.0 -6.653 <0.001 

Shell overturned 1 vs. 2 603174.0 2076360.0 -1.561 0.118 

 
1 vs. 3 511368.0 1984554.0 -1.695 0.090 

 
1 vs. 4 1602744.0 3075930.0 -23.232 <0.001 

 
1 vs. 5 1591590.0 3064776.0 -25.457 <0.001 

 
2 vs. 3 210090.5 458250.5 -0.117 0.907 

 
2 vs. 4 658806.5 906966.5 -15.245 <0.001 

 
2 vs. 5 654298.5 902458.5 -16.812 <0.001 

 
3 vs. 4 558868.5 737371.5 -14.088 <0.001 

 
3 vs. 5 555056.0 733559.0 -15.551 <0.001 

 
4 vs. 5 3257588.0 6487199.0 -3.370 0.001 

Interaction 1 vs. 2 591624.0 2064810.0 -0.926 0.355 

 
1 vs. 3 489667.5 1962853.5 -1.867 0.062 

 
1 vs. 4 1730899.5 3204085.5 -13.259 <0.001 

 
1 vs. 5 1972870.5 5557373.5 -9.612 <0.001 

 
2 vs. 3 205206.0 453366.0 -0.847 0.397 

 
2 vs. 4 728486.0 976646.0 -8.870 <0.001 

 
2 vs. 5 790026.0 4374529.0 -8.172 <0.001 

 
3 vs. 4 635587.5 814090.5 -7.282 <0.001 

 
3 vs. 5 651174.0 4235677.0 -8.758 <0.001 

 
4 vs. 5 2220481.0 5804984.0 -25.161 <0.001 
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Tab. 5. Results of the Mann-Whitney U-test for behavioural differences in the number of observations 
in the five oxygen categories: P. eremita in S. domuncula. For explanation see Tab. 2. 
 

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Elevated location 1 vs. 2 42720.0 571626.0 -19.392 <0.001 

 
1 vs. 3 30842.0 559748.0 -17.350 <0.001 

 
1 vs. 4 81938.0 610844.0 -22.434 <0.001 

 
1 vs. 5 250280.0 779186.0 -25.837 <0.001 

 
2 vs. 3 23513.0 55898.0 -0.282 0.778 

 
2 vs. 4 54088.0 151549.0 -1.936 0.053 

 
2 vs. 5 122224.0 719002.0 -5.101 <0.001 

 
3 vs. 4 39418.5 136879.5 -1.962 0.050 

 
3 vs. 5 89034.0 685812.0 -4.587 <0.001 

 
4 vs. 5 220458.0 817236.0 -4.509 <0.001 

Locomotion 1 vs. 2 123104.0 155489.0 -2.244 0.025 

 
1 vs. 3 84748.0 102139.0 -3.990 <0.001 

 
1 vs. 4 190804.0 288265.0 -8.558 <0.001 

 
1 vs. 5 475600.0 1072378.0 -12.354 <0.001 

 
2 vs. 3 22288.0 39679.0 -2.081 0.037 

 
2 vs. 4 50341.0 147802.0 -6.124 <0.001 

 
2 vs. 5 125428.0 722206.0 -7.713 <0.001 

 
3 vs. 4 39180.0 136641.0 -3.457 0.001 

 
3 vs. 5 97584.0 694362.0 -3.491 <0.001 

 
4 vs. 5 239442.0 336903.0 -0.872 0.383 

Body movement 1 vs. 2 73233.0 602139.0 -13.179 <0.001 

 
1 vs. 3 33383.0 562289.0 -17.035 <0.001 

 
1 vs. 4 125252.5 654158.5 -16.094 <0.001 

 
1 vs. 5 554348.0 1083254.0 -0.645 0.519 

 
2 vs. 3 18620.0 51005.0 -5.347 <0.001 

 
2 vs. 4 55538.5 87923.5 -0.232 0.816 

 
2 vs. 5 79507.0 676285.0 -12.832 <0.001 

 
3 vs. 4 32671.5 130132.5 -5.487 <0.001 

 
3 vs. 5 36717.0 633495.0 -16.731 <0.001 

 
4 vs. 5 136027.5 732805.5 -15.767 <0.001 

Extended 1 vs. 2 109730.0 638636.0 -11.987 <0.001 

 
1 vs. 3 41678.0 570584.0 -24.452 <0.001 

 
1 vs. 4 168373.0 697279.0 -16.368 <0.001 

 
1 vs. 5 256678.0 785584.0 -27.647 <0.001 

 
2 vs. 3 14066.0 46451.0 -8.862 <0.001 

 
2 vs. 4 50536.0 82921.0 -2.957 0.003 

 
2 vs. 5 85543.0 117928.0 -11.010 <0.001 

 
3 vs. 4 28428.0 125889.0 -7.333 <0.001 

 
3 vs. 5 99387.0 696165.0 -0.541 0.588 

 
4 vs. 5 172042.5 269503.5 -10.140 <0.001 

Shell overturned 1 vs. 2 130175.0 162560.0 -0.862 0.389 

 
1 vs. 3 95325.0 112716.0 -0.737 0.461 

 
1 vs. 4 212943.5 741849.5 -7.401 <0.001 

 
1 vs. 5 350130.0 879036.0 -21.773 <0.001 

 
2 vs. 3 23622.0 41013.0 0.000 1.000 

 
2 vs. 4 52451.0 84836.0 -4.096 <0.001 

 
2 vs. 5 86106.0 118491.0 -11.789 <0.001 

 
3 vs. 4 38409.0 55800.0 -3.513 <0.001 

 
3 vs. 5 63054.0 80445.0 -10.209 <0.001 

 
4 vs. 5 164787.0 262248.0 -12.346 <0.001 
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Table 5 (continued)      

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Interaction 1 vs. 2 128332.0 657238.0 -0.499 0.618 

 

1 vs. 3 65928.0 594834.0 -8.200 <0.001 

 

1 vs. 4 158593.0 687499.0 -11.500 <0.001 

 

1 vs. 5 381916.0 978694.0 -14.796 <0.001 

 

2 vs. 3 16692.0 49077.0 -7.012 <0.001 

 

2 vs. 4 40139.5 72524.5 -9.085 <0.001 

 

2 vs. 5 92002.0 688780.0 -10.108 <0.001 

 

3 vs. 4 40600.5 138061.5 -0.406 0.684 

 

3 vs. 5 37578.0 634356.0 -16.347 <0.001 

 

4 vs. 5 91518.0 688296.0 -22.014 <0.001 

 

 

Tab. 6. Results of the Mann-Whitney U-test for behavioural differences in the number of observations 
in the five oxygen categories: P. eremita in shells. For explanation see Tab. 2. 
 

Category Comparison Mann-Whitney U Wilcoxon W Z P-value 

Elevated location 1 vs. 2 3399254.0 19772757.0 -8.963 <0.001 

 
1 vs. 3 2706929.0 19080432.0 -10.111 <0.001 

 
1 vs. 4 12570529.0 28944032.0 -10.016 <0.001 

 
1 vs. 5 15166898.0 31540401.0 -5.548 <0.001 

 
2 vs. 3 730623.0 1645251.0 -1.378 0.168 

 
2 vs. 4 3156628.0 14794528.0 -2.182 0.029 

 
2 vs. 5 3479195.0 18944336.0 -5.291 <0.001 

 
3 vs. 4 2521110.5 14159010.5 -3.721 <0.001 

 
3 vs. 5 2775051.0 18240192.0 -6.650 <0.001 

 
4 vs. 5 12843330.5 28308471.5 -4.630 <0.001 

Body movement 1 vs. 2 3526634.0 4441262.0 -7.037 <0.001 

 
1 vs. 3 2966681.0 3584397.0 -4.855 <0.001 

 
1 vs. 4 11081900.0 22719800.0 -28.424 <0.001 

 
1 vs. 5 12943926.0 28409067.0 -28.053 <0.001 

 
2 vs. 3 734807.0 1649435.0 -1.458 0.145 

 
2 vs. 4 2906296.0 14544196.0 -14.395 <0.001 

 
2 vs. 5 3390235.0 18855376.0 -12.649 <0.001 

 
3 vs. 4 2330330.0 13968230.0 -15.888 <0.001 

 
3 vs. 5 2719158.0 18184299.0 -14.172 <0.001 

 
4 vs. 5 13270690.0 24908590.0 -2.568 0.010 

Extended 1 vs. 2 3037512.0 19411015.0 -15.499 <0.001 

 
1 vs. 3 1943652.0 18317155.0 -25.364 <0.001 

 
1 vs. 4 11972517.0 28346020.0 -14.542 <0.001 

 
1 vs. 5 14311744.0 30685247.0 -11.553 <0.001 

 
2 vs. 3 620512.0 1535140.0 -8.628 <0.001 

 
2 vs. 4 2992956.0 14630856.0 -5.433 <0.001 

 
2 vs. 5 3329688.0 18794829.0 -7.757 <0.001 

 
3 vs. 4 1993732.5 13631632.5 -15.500 <0.001 

 
3 vs. 5 2199289.5 17664430.5 -17.841 <0.001 

 
4 vs. 5 12983092.5 28448233.5 -3.368 0.001 
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Tab. 7. Results of the Pearson х
2
-test for differences between day- and night phases of the selected 

behaviour in the five oxygen categories: all P. eremita individuals. For explanation see Tab. 2. 
 

Category Oxygen category х
2 

df P-value 

Locomotion 1 279.048 1 <0.001 

 2 0.695 1 0.404 

 3 4.485 1 0.034 

 4 7.589 1 0.006 

 5 0.465 1 0.495 

Interaction 1 452.560 1 <0.001 

 2 7.892 1 0.005 

 3 22.849 1 <0.001 

 4 9.880 1 0,002 

 5 18.397 1 <0.001 

 

 

Tab. 8. Results of linear regressions to identify factors affecting mortality and survival of P. eremita. 
Bold: highly significant (P < 0.001); Underlined numbers: significant differences (P < 0.05). 
 

Factor Unstandardized Coefficients 
Standardized 
Coefficients 

t P-value 

 B Std. Error Beta 
  

Closed configuration -0.002 0.013 -0.061 -0.157 0.877 

Hypoxia duration 0.029 0.018 0.710 1.569 0.135 

Anoxia duration -0.012 0.005 -0.339 -2.250 0.038 

H2S concentration -0.337 0.074 -0.907 -4.541 <0.001 

 

 


