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Abstract Systematic comparisons of the ecology

between functionally similar fish species from freshwater

and marine aquatic systems are surprisingly rare. Here, we

discuss commonalities and differences in evolutionary

history, population genetics, reproduction and life history,

ecological interactions, behavioural ecology and physio-

logical ecology of temperate and Arctic freshwater core-

gonids (vendace and ciscoes, Coregonus spp.) and marine

clupeids (herring, Clupea harengus, and sprat, Sprattus

sprattus). We further elucidate potential effects of climate

warming on these groups of fish based on the ecological

features of coregonids and clupeids documented in the

previous parts of the review. These freshwater and marine

fishes share a surprisingly high number of similarities. Both

groups are relatively short-lived, pelagic planktivorous

fishes. The genetic differentiation of local populations is

weak and seems to be in part correlated to an astonishing

variability of spawning times. The discrete thermal window

of each species influences habitat use, diel vertical migra-

tions and supposedly also life history variations. Complex

life cycles and preference for cool or cold water make all

species vulnerable to the effects of global warming. It is

suggested that future research on the functional interde-

pendence between spawning time, life history characteris-

tics, thermal windows and genetic differentiation may

profit from a systematic comparison of the patterns found

in either coregonids or clupeids.

Introduction

Fishes are the most diverse group of vertebrates, and

almost all aquatic systems (apart from ground-water) sup-

port their populations. They have developed an astonishing

variety of life styles, feeding modes, morphological adap-

tations and physiological specializations. However, a major

distinction seems to exist between fishes living in fresh-

water and those living in marine environments. This dis-

tinction is less a biological reality and more a difference in

the traditional conceptualisation by the researchers who

work within these two different aquatic habitats. This

division has likely arisen and continues to be supported by

the physical separation of working groups between marine

and freshwater research institutes, which prevents contin-

ued exchange of ideas and fruitful collaborations across

aquatic borders. Our contribution aims to bridge this
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division by explicitly comparing groups of fish residing in

either of these two main aquatic habitats to find com-

monalities and fundamental differences. By merging teams

of freshwater and marine researchers, the aim of this syn-

thetic work is to identify research gaps and future topics

common across aquatic habitats.

We focus on dominant pelagic planktivores, the core-

gonids in freshwater lakes and the clupeids in marine and

brackish waters. Both groups of fish are of high importance

to commercial and recreational fisheries (Nyberg et al.

2001; Stockwell et al. 2009; Geffen 2009; Dickey-Collas

et al. 2010). We refer in particular to the temperate, boreal

and Arctic zones, with a comparison between freshwater

ciscoes (Coregonus spp.) living in lakes, and the Baltic and

North Sea herring (Clupea harengus) and sprat (Sprattus

sprattus). We give more examples for the species of the

European temperate zone, because the authors’ long

research history on these groups facilitates a detailed

understanding of the ecology and evolution of these fishes.

We explicitly add reference and comparison to Siberian

and North-American coregonids for some patterns or pro-

cesses, but do not cover the species from these geograph-

ical areas with similar detail. The emerging reason for our

comparison, to be demonstrated by this review, is a sur-

prisingly high number of biological features that are shared

by coregonids and clupeids, not least a similar morphology

and coloration (Fig. 1). We start by reviewing results on

evolutionary history and population genetics to elucidate

the local variability of the focal fish groups. We continue

reviewing reproduction and life history, ecological inter-

actions, behavioural ecology and physiological ecology.

Finally, we elucidate potential effects of climate change on

both groups of fish, thus mirroring the general theme of the

AQUASHIFT priority program (see this Special Issue of

Marine Biology for more examples). Generally, we start by

discussing aspects of the biology of coregonids and then

report on similar aspects of clupeids. We close each part by

a summary, in which we explicitly compare the two groups

and suggest future research topics.

Evolutionary history and population genetics

In the European temperate and boreal zones, only a few

species of pelagic planktivorous coregonids can be found.

Especially in deep lakes with a low number of other

competing fish species, coregonid populations are known

to segregate in their niches, mainly by specializations to

either littoral, pelagic or profundal habitats. Ecological

segregation is often observed for populations of whitefish

(Coregonus lavaretus) (Østbye et al. 2005; Kottelat and

Freyhof 2007; Hudson et al. 2011; Kahilainen et al. 2011b).

Typically, a smaller planktivorous form residing in the

pelagic area lives sympatrically with one or two larger

benthivorous forms found in littoral or profundal zones

(Siwertsson et al. 2010). However, because usually only

one morph is strictly pelagic, we do not consider popula-

tions of C. lavaretus in more detail here.

The other widely distributed European pelagic Coreg-

onus species is vendace (Coregonus albula) (Fig. 1) that is

common in deep, oligo- to mesotrophic lakes of Scandi-

navia and northern Germany, Poland and Russia (Kottelat

and Freyhof 2007; Mehner et al. 2007a). Vendace spawn in

late autumn in most of the lakes. In a few lakes of Scan-

dinavia, Russia and Germany, spring-spawning ciscoes are

found, primarily sympatric with vendace. Lake-endemic

spring-spawning species with viable populations are

C. lucinensis (Fig. 1) from Lake Breiter Luzin (Germany)

(Thienemann 1933), C. fontanae from Lake Stechlin

(Germany) (Schulz and Freyhof 2003), C. trybomi from

Lake Fegen (Sweden) (Svärdson 1979) and C. kiletz and

C. ladogae from Lakes Onega and Ladoga (Russia),

respectively (Pravdin 1936). Similar spring-spawning spe-

cies usually referred to as C. trybomi have existed or still

exist in some lakes of Finland and Karelia (Airaksinen

1968) and may have gone extinct in three other Swedish

lakes (Kottelat and Freyhof 2007).

Studies on genetic differentiation between these popu-

lations of sympatric and allopatric ciscoes are rare. By

studying enzyme gene variability of Finnish populations,

Vuorinen et al. (1981) concluded that autumn-, winter- and

spring-spawning populations do not form monophyletic

units. More detailed genetic analyses by using a range of

marker sets revealed a complex phylogeographical history

of the German sympatric populations (Schulz et al. 2006;

Mehner et al. 2010b). Spring-spawning ciscoes were

genetically most closely related, but formed a separate

cluster together with their sympatric vendace populations

relative to other allopatric vendace populations. This pat-

tern suggests the potential of parallel sympatric speciation

in both lakes, but the genetic signature modified by sec-

ondary contacts and partial hybridization with other

Coregonus lineages (Mehner et al. 2010b). Furthermore,

there was a significant isolation-by-distance pattern in the

genetic differentiation between German vendace popula-

tions (Mehner et al. 2009). Therefore, partial isolation and

local adaptation in the often small lakes contribute to the

evolutionary history of Coregonus populations despite the

relatively short time since last glaciation.

Well-defined cisco species from Siberia and Northwest

America encompass least cisco (Coregonus sardinella),

Bering cisco (C. laurettae) and Arctic cisco (C. autum-

nalis) (Turgeon and Bernatchez 2003; Politov et al. 2004),

the latter also occurring in Ireland (Harrod et al. 2001).

Only C. sardinella are primarily living in lakes, whereas

C. laurettae and C. autumnalis are anadromous (Brown
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et al. 2007), and C. atumnalis phenotypically resemble more

the European whitefishes than ciscoes (Kottelat and Freyhof

2007). A centre of coregonid diversity in North America are

the Laurentian Great Lakes, with eight species recognized

(Scott and Crossman 1973; Todd and Smith 1992) from

which longjaw cisco (C. alpenae) and deepwater cisco

(C. johannae) have gone extinct. Four of the other six species

(C. zenithicus, C. reighardi, C. kiyi, C. nigripinnis) are

threatened or vulnerable, whereas only bloater (C. hoyi) and

lake herring (C. artedi) (Fig. 1) occur in abundant popula-

tions. Recent analyses by mitochondrial and microsatellites

markers elucidated that genetic variation between the cisco

populations in the Great Lakes reflected geography rather

than taxonomy, and hence, it was recommended that a single

taxon (C. artedi sensu lato) be recognized, covering all cisco

species in the Great Lakes (Reed et al. 1998; Turgeon et al.

1999; Turgeon and Bernatchez 2003). In the Great Slave

Lake (NT, Canada), C. artedi, C. zenithicus and C. sardinella

coexist (Vecsei et al. 2011).

The mechanisms and strength of genetic differentia-

tion between populations differ between freshwater and

marine fishes because marine environments present fewer

Fig. 1 Photographs of a number of coregonids and clupeids

discussed in this paper. From top to bottom Coregonus albula (Lake

Breiter Luzin, 120 mm total length (TL), picture: Jörg Freyhof);

Coregonus artedi (Lake Superior, 386 mm TL, picture: Gary

Cholwek); Coregonus lucinensis (Lake Breiter Luzin, 122 mm TL,

picture: Jörg Freyhof); Coregonus hoyi (Lake Superior, 212 mm TL,

picture: Zach Woiak); Clupea harengus (Western Baltic, 285 mm TL,

picture: Sophie Bodenstein); Sprattus sprattus (Bornholm basin of

Baltic Sea, 123 mm, picture: Holger Haslob)
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geographical barriers to dispersal and higher levels of

connectivity. Accordingly, effective population sizes are

large resulting in limited genetic drift, and hence, low

levels of genetic population structure are common among

marine fish species (DeWoody and Avise 2000; Puebla

2009). Surprisingly, few studies exist on cases of eco-

logical divergence and sympatric speciation in marine

fishes similar to those often observed in the more iso-

lated freshwater systems (Puebla 2009), although local

adaptation and limited dispersal cannot be excluded to be

important also in marine systems (Jørgensen et al. 2008).

The Atlantic herring (Clupea harengus) (Fig. 1) might

be a good example. This species exhibits a complex

population structure with several divergent populations

referred to as subspecies, stocks or groups (Iles and

Sinclair 1982; McQuinn 1997a). Significant, albeit weak,

genetic differentiation has been found between local

stocks (Larsson et al. 2010), but the greatest differences

were detected between the highly saline North Sea and the

brackish Baltic Sea subpopulations (Bekkevold et al.

2005; Ruzzante et al. 2006; Larsson et al. 2007).

A striking similarity to coregonids is the variation of

spawning times of herring populations, with spawning

peaks in spring, autumn and winter all occurring in the

Atlantic and the adjacent North and Baltic Seas. In the

Western Baltic, spring- and winter spawning populations

of herring locally coexist (Bekkevold et al. 2007). The

herring stocks from the Northwest Atlantic can be divided

into northern and southern groups and have different

spawning times. The northern group is found from the

Gulf of St Lawrence to the south coast of Greenland and

spawns in spring. The southern population occupies the

area south of the Gulf of St Lawrence to the Virginia

coast and spawns in autumn (Klinkhardt 1996; Stephenson

et al. 2009).

Genetic analyses by microsatellites revealed two dif-

ferent processes by which winter spawning may have

arisen from the otherwise dominant spring-spawning mode.

In one population from inner Danish waters, a founder

effect from a distant winter-spawning population was

likely. In contrast, ‘spawning time switching’ (McQuinn

1997b) from spring to winter spawning has been suggested

for the herring population close to the island of Rügen

(Germany), as suggested by low differentiation between

spring- and winter spawners (Bekkevold et al. 2007).

No genetic differences between spawning populations

have been found for sprat (Sprattus sprattus) (Fig. 1), the

other common pelagic clupeid in European temperate

marine ecosystems (Limborg et al. 2009). This is in part

surprising because sprat show distinctly separate spawning

grounds in the Baltic Sea (Arkona, Bornholm and Gotland

basins) as well as seasonally changing circulation patterns,

which could provide regionally self-sustaining populations.

Similarly, no significant genetic differentiation exists

between North Sea and Baltic Sea populations of sprat

(Debes et al. 2008). In contrast, strong genetic differenti-

ation exists between Atlantic and Mediterranean or Black

Sea stocks, coinciding with different temperature prefer-

ences of the respective populations with subspecies rec-

ognized (Debes et al. 2008).

Summary and comparison

Evolutionary significant units can be found in both core-

gonids and clupeids of the temperate and Arctic zones that

are considered valid species in European, Siberian and

Northwest American coregonids (Turgeon and Bernatchez

2003; Kottelat and Freyhof 2007), discrete phenotypes of

one lineage (C. artedi) as the result of incipient processes

of parallel diversification in the Great Lakes (Turgeon and

Bernatchez 2003), and subspecies or stocks in clupeids

(McQuinn 1997a). Among the coregonids, genetic differ-

entiation is primarily driven by geographical distance. If

different lineages came into secondary contact after last

glaciation, introgression and hybridization promoted

adaptive radiations along ecological gradients (Turgeon

and Bernatchez 2003; Mehner et al. 2010b). If combined

with allochrony of spawning times, populations in geo-

graphically isolated lakes split into discrete species

(C. fontanae of Lake Stechlin, C. lucinensis of Lake Breiter

Luzin) (Mehner et al. 2010b). In contrast, genetic differ-

entiation remained weak in less-isolated systems where

the populations still show overlapping spawning times

(C. artedi sensu lato of the Great Lakes).

The situation is less clear for clupeids where the popu-

lations show only weak genetic differentiation, and where

genetic exchange between the stocks is likely due to dis-

persal and straying into various reproductive areas from

populations that coexist at feeding grounds (McQuinn

1997a; Gaggiotti et al. 2009). Therefore, the Atlantic her-

ring stocks are considered to form a meta-population

(McQuinn 1997a). Furthermore, there is no clear corre-

spondence between spawning time and genetical identity,

because both ‘spawning-time switching’ within popula-

tions and founder effects from extant populations have

been shown to form local populations with deviating

spawning times (Bekkevold et al. 2007). Only the latter

process may produce genetical distinctness between spring-

and autumn spawners and hence can be assumed to facil-

itate local adaptive ecological divergence similar to the

processes known for coexisting spring- and autumn-

spawning coregonids.

Overall, the pelagic fish species covered in this review

mirror the gradient of ecological speciation typically found

in fishes (Hendry 2009). Systems vary from continuous

adaptive variation without reproductive isolation in the
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clupeids, over discontinuous adaptive variation with minor

reproductive isolation in the Great Lakes ciscoes, to

adaptive differences with reversible reproductive isolation

in the sympatric European ciscoes and the allopatric

Siberian and Northwest American ciscoes. Recent evidence

for hybrids between vendace and European whitefish

(Kahilainen et al. 2011a) supports that irreversible repro-

ductive isolation has not yet been achieved in these post-

glacial diversifications of species.

Reproduction and life history

Despite its broad distribution range, comparative over-

views on the life history and reproduction of vendace are

rare. Vendace is a relatively small, short-lived species with

a plastic life history strategy (Bøhn et al. 2004; Gregersen

et al. 2011). Maximum length and age are reported to be

25–30 cm and 5–7 years, respectively, in the majority of

lakes (Schultz 1992; Bøhn et al. 2004), although fish older

than 10 years have been found in single lakes (Salonen

2004). Age at maturation is between 2 and 5 years, with

males usually reproducing earlier than females (Sandlund

1992; Bøhn et al. 2004). An increased investment into

spawning in cold years with low zooplankton abundance

has recently been demonstrated (Gregersen et al. 2011).

Spawning occurs along the shores, usually in 4–10 m

depth, but spawning depth can vary between 1 and 20 m

with shallowest spawning observed in the most humic lakes

(Heikinheimo et al. 2006). Eggs sink to the bottom.

Vendace spawn between early autumn and early winter

(late October to November in Scandinavia, December in

Northeast Germany) at water temperatures of ca. 6–7 �C

(Koho et al. 1991; Nyberg et al. 2001). Larvae hatch in

early spring a few days after ice-off in the lakes and spend

the first 4–6 weeks close to surface, primarily inhabiting

littoral areas (Karjalainen 1992; Nyberg et al. 2001; Karj-

alainen et al. 2002; Urpanen et al. 2005). This is assumed

the most critical phase due to the limited habitat extension

and hence high density of larvae. Juveniles of 20–30 mm

length move into the pelagic zone and continue to be

strictly pelagic over their lifetime. It has to be noted,

however, that in some lakes, vendace larvae are exclusively

pelagic already immediately after hatch (Karjalainen et al.

2002). An early nearshore phase and migration to deeper

areas at about 15–20 mm fish length has been documented

also for larval Coregonus artedi (summarized by Stockwell

et al. 2009).

Year-class strength (YCS) of mature coregonids can

vary up to 20-fold (Helminen et al. 1993; Helminen and

Sarvala 1997; Nyberg et al. 2001; Stockwell et al. 2009),

whereas even higher inter-annual variation has been doc-

umented for densities of young-of-the-year fish (Mehner

et al. 2011a). Recruitment success of vendace is only

moderately proportional to the size of the spawning stock

(Helminen et al. 1997; Karjalainen et al. 2000). The

abundances of spawners and recruits are best characterized

by a compensatory relationship (Valtonen and Marjomäki

1988; Marjomäki 2004). In contrast, larval density at age of

3 weeks and YCS of mature fish are strongly correlated,

indicating that the critical period occurs during the first

weeks after hatching (Viljanen 1988; Huusko and Sutela

1998; Karjalainen et al. 2000; Marjomäki et al. 2004).

Large-scale synchrony in population abundances of core-

gonids suggests that there is an important density-inde-

pendent mechanism influencing recruitment (Marjomäki

et al. 2004; Bunnell et al. 2010), most likely driven by the

temperature development during winter and early spring

and date of ice break (Nyberg et al. 2001; Mehner et al.

2011a).

There is little information available on the life history of

sympatric coregonids in European lakes (subsequently

referred to as ciscoes, including C. fontanae, C. lucinensis

and C. trybomi). These species are characterized by

spawning in spring and early summer, with the spawning

time extending from late April until July (Table 1).

C. fontanae is smaller than the sympatric vendace in Lake

Stechlin (maximum length about 15 cm) (Anwand et al.

1997), whereas C. lucinensis (Scharf et al. 2008) and

C. trybomi are presumably only slightly smaller than

vendace. Hatching dates and ecology and distribution of

early life stages are widely unknown for these species.

Adults of spring-spawning species are pelagic and co-occur

locally with vendace where sympatric, but may display

vertical segregation from vendace (Mehner et al. 2010a).

Among the ciscoes from the Great Lakes, only the allo-

patric C. artedi population of the Lac des Écorces (Quebec,

Canada) is a spring-spawner that hatches in later July and

has low size after first summer and matures at age 3

(Henault and Fortin 1989, 1993). The other ciscoes of the

Great Lakes and Siberia are autumn to winter spawners

with comparable maximum size or age, and age at matu-

ration, as found for vendace (Table 1). Interestingly,

C. reighardi was originally described as spring-spawning

species, but a switch towards autumn spawning has been

reported in the Great Lakes (Scott and Crossman 1973).

The life history of clupeids in temperate marine systems

is well studied. Sprat is a batch spawner and exhibit high

spawning activity in different months depending upon the

latitude. At the lower latitudinal limit in the Mediterranean

(Adriatic) Sea, sprat generally spawns during the winter

months (October to April) with peak spawning in

November and December at water temperatures between 9

and 14 �C (Dulcic 1998). At the northern latitudinal limit,

sprat spawns between March and August in the Baltic Sea

(Elwertowski 1960; Parmanne et al. 1994; Baumann et al.
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2006a) and a bit later (May through August) in the North

Sea (Wahl and Alheit 1988). Observations in the Baltic

detected spawning females as early as January (Haslob

et al. 2011), and in 2003, a second spawning peak was

observed in autumn, both related to exceptional inflow

events of warm North Sea water penetrating deep basins

such as the Bornholm Basin (Kraus et al. 2004). Another

possible explanation for this second spawning peak is the

fact that sprat are able to extend their spawning period by

directly channelling energy from food consumption into

reproduction and not only relying on the energy stored until

maturation (Blaxter and Hunter 1982).

In the Baltic, sprat spawning primarily occurs within

deep basins, but occurs in both coastal and offshore waters

in the North Sea (Whitehead 1985) and the time of peak

spawning, relative fecundity and batch fecundity vary

significantly between years and regions (Wahl and Alheit

1988). Batch fecundity is positively correlated with water

temperature during the pre-spawning period (Haslob et al.

2011). Salinity changes during the spawning season can

modify the buoyancy of the eggs and yolk sac larvae

(Petereit et al. 2009). Higher salinity at fertilization

increases the specific gravity of eggs and therefore induces

a deeper vertical distribution. The resulting variability in

vertical distribution can affect the mortality of the sprat

eggs by altered temperature and oxygen conditions (Pete-

reit et al. 2008) and a changing overlap of predators and

prey. Model simulations by Hinrichsen et al. (2005) have

shown that larvae drift to the nearshore juvenile nursery

grounds on the Swedish or Polish coastline. The drift

depends on wind direction and forcing thus leading to a

mixing of the juveniles from the different spawning stocks.

Adult sprat are generally mature at 2 year though some

members of the population may spawn at 1 year (Bailey

1982). After the spawning season in the Baltic, adults of

sprat leave the deep basins to feed in shallower, coastal

waters. Age-0 juveniles join adult schools in the autumn

and return with adults to the spawning grounds in late

winter. In the North Sea, the spawning and migration

dynamics of sprat as well as herring can be considered a

marine estuarine opportunist strategy (Thiel and Potter

2001; Guelinckx et al. 2006).

Atlantic herring spawns in coastal and shelf regions

across the northern Atlantic Ocean while its sister species

(Pacific herring, Clupea pallasi) spawns in similar habitats

throughout the northern Pacific. Atlantic herring displays

remarkable flexibility in its spawning phenology utilizing

every season depending upon the specific ecosystem such

as summer (northern Baltic), spring (Norway), autumn

(northern North Sea) and winter (southern North Sea) (see

Hufnagl and Peck 2011, their Fig. 7). In the North Sea,

four different stocks (Shetland/Orkney, Buchan, Banks,

Downs) have been described, which differ in growth rates,

migration routes (Harden Jones 1968) and recruitment

patterns (Dickey-Collas et al. 2010). In the North Sea,

herring show anti-clockwise migration patterns with the

Table 1 Overview on maximum length (Lmax, cm), maximum age (Amax, years), age at maturity (Amat, years), spawning months and dominant

diet for temperate and arctic freshwater coregonids inhabiting lakes, and for marine clupeids

Species Lmax (cm) Amax (y) Amat (y) Spawning months Diet

Coregonids

Coregonus albula 25 (43) 6 (19) 2 (5) Oct–Dec Planktonic

Coregonus fontanae 15 3 2 Apr–Jul Planktonic

Coregonus lucinensis 20 6 2 Apr–Jul Planktonic/benthic

Coregonus trybomi 20 na na Apr–May na

Coregonus artedi 25 (47) 7 (17) 3 (6) Nov–Dec Planktonic

Coregonus hoyi 25 (38) 7 (12) 3–4 Dec–Mar Planktonic/benthic

Coregonus kiyi 25 (35) 7 (10) 3–4 Oct–Dec Benthic

Coregonus zenithicus 28 (43) (11) 4–6 Sep–Nov Benthic

Coregonus reighardi 25 (36) (8) na Oct–Nov (Maya) Benthic

Coregonus nigripinnis 33 (39) (14) 4–5 Sep–Jan Benthic

Coregonus sardinella 23 (47) 11 (22) 3 (7) Sep–Nov Planktonic/benthic

Clupeids

Clupea harengus 30 (45) 15 (22) 3 (6) Jan–Dec Planktonic

Sprattus sprattus 12 (16) 5 (20) 2 Feb–Jul Planktonic

Average values are given together with maximum reported values (in parentheses) where available. Data were compiled primarily from

taxonomic handbooks (Scott and Crossman 1973; Kottelat and Freyhof 2007) and online sources (www.fishbase.org)
a C. reighardi was considered a spring-spawner according to earlier descriptions (Scott and Crossman 1973)

na no data available
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fish leaving the overwintering grounds in the eastern North

Sea (Norwegian coast) to move westwards to the feeding

grounds. Spawning starts on the east coast of Scotland in

August/September and continues to September/October for

the herring spawning in the Dogger Bank area. October to

January is the spawning time for the Downs and Channel

herring (Harden Jones 1968; Blaxter and Hunter 1982).

Once entrained as juveniles to a spawning ground by

joining migrating adults, the majority of the spawning

group returns to the same grounds from year to year

(homing) (Stephenson et al. 2009).

In the eastern North Sea, the Norwegian Sea, the Skag-

errak and the Baltic Sea, spawning primarily takes place in

spring, but with smaller autumn- and winter-spawning

population components occurring locally (Blaxter and

Hunter 1982). Spring spawners are also more abundant in

the western Atlantic herring stocks in colder waters where

the larvae have to grow during summer to reach the juvenile

stage in late summer or autumn. Autumn spawners in the

western Atlantic are found in southern areas where larvae

spend a longer time in colder winter waters before they

reach metamorphosis in spring. This represents two strate-

gies to cope with different environments during early

development of the offspring (Messieh 1975; Melvin et al.

2009). In the northwest Atlantic, herring utilizes spawning

areas from Labrador to Cape Hatteras (Messieh 1988;

Safford and Booke 1992; Armstrong and Cadrin 2001).

Autumn spawners mostly deposit eggs on specific

spawning grounds in deeper offshore areas, whereas

spring-spawning herring utilize shallow near-coast habitats

(Klinkhardt 1996). As opposed to sprat, herring are single-

batch spawners spawning only one batch per year in

schools with the composition of the school changing over

time, since individuals appear and disappear from the

spawning ground (Blaxter and Hunter 1982; Axelsen et al.

2000; Skaret et al. 2003; Geffen 2009). Individual females

leave the school, deposit their ‘‘sticky’’ demersal eggs

mainly on plant material (like Fucus, Laminaria, Zostera)

on the sea floor in the Baltic and mainly on gravel and rock

and mussel beds in the North Sea (Geffen 2009) and are

followed by one or more males which fertilize the newly

spawned eggs (Aneer 1982). After spawning, there is a

mixing in the central North Sea when the fish migrate

easterly to the overwintering grounds near the Norwegian

coast and the Skagerrak. Cushing (1975) modified the

‘‘triangle of migration’’ (Harden Jones 1968) by including

the early life stages and linking their larval drift patterns to

circulation features.

Herring show a very flexible life history strategy with

embryos and larvae from the different herring stocks

experiencing different salinities, temperatures and day

lengths as well as predator fields and food availabilities on

their spawning grounds (Klinkhardt 1996; Geffen 2009).

The composition of mesozooplankton communities in the

Baltic Sea changes regionally due to differences in ambient

salinity and temperature (Möllmann et al. 2000). Thus,

herring and their offspring will be faced with different food

sources in the different spawning regions (Möllmann et al.

2005). Autumn and winter spawners have larger eggs than

spring and summer spawners (Blaxter and Hempel 1963;

van Damme et al. 2009). The eggs of the spring spawners

are larger than those of the summer spawners, a strategy

used to compensate for the greater variability in the pro-

duction cycle during the spring-spawning phase (Blaxter

and Hunter 1982). Survival of the offspring in autumn/

winter in a season of low productivity is possible, since

herring larvae are able to survive long periods of little or no

growth and the larger size of the larvae affects their sur-

vival chance (Johannessen et al. 2000; Geffen 2009).

Summary and comparison

The life histories of coregonids and clupeids are strikingly

similar with both groups maturing early in life, having low

to moderate longevity and maximum sizes not exceeding

about 30–35 cm (Table 1). Likewise, both groups often

utilize nearshore areas for spawning, the eggs of coregonids

and herring are attached to substrates or sink to the shallow

bottom, and the early larvae can occur in shallow nearshore

areas. The benefit from this benthic spawning strategy is

that growth of the larvae occurs in a very specific region at a

very specific time without large dispersal losses after long

incubation periods (Blaxter and Hunter 1982). After the

nearshore phase, older larvae leave their initial feeding

habitat, and either migrate over short (freshwater corego-

nids) or passively drift long (marine clupeids) horizontal

distances to their pelagic habitats where they spend the

juvenile and adult phases before returning to the nearshore

habitats for spawning. Baltic sprat are an exception in that

they also utilize offshore, deeper areas for spawning with

larval drift to shallower areas.

Another important characteristic for both groups is that a

high variety of spawning times (from autumn over winter

to spring and early summer) are utilized by distinct popu-

lations (particularly herring and ciscoes) and that spawn-

ing-times appear to have evolved as an adaptation to

intense competition and local conditions at the spawning

grounds (in both groups) or within larval/juvenile nursery

areas (in clupeids) (Gaggiotti et al. 2009). A systematic

understanding of the correspondence between spawning

time, spawning duration, fecundity and egg size, larval

mortality and the abiotic conditions at the spawning loca-

tion (temperature, salinity) might be a promising research

avenue within the framework of the plasticity of life history

strategies in fishes. This approach could benefit from an

explicit comparison of coregonids and clupeids.
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Inter- and intraspecific ecological interactions

Coexisting populations of coregonids have repeatedly been

used as model organisms to study competitive interactions

within the process of ecological speciation (Østbye et al.

2006; Bernatchez et al. 2010; Siwertsson et al. 2010). Most

of these populations follow the typical benthic-pelagic

segregation, but other types of ecological divergence are

also found (reviewed by Hudson et al. 2007). Ecological

segregation along the depth gradient within the pelagic area

is less frequently reported than the benthic-pelagic diver-

gence, but is nevertheless described in a few lakes.

Examples include ciscoes in Lake Nipigon, North America

(Turgeon et al. 1999), and coexisting vendace and white-

fish in Lake Skrukkebukka, northern Norway (Gjelland

et al. 2007).

Vendace has a high number of gill rakers and is regarded

a specialist zooplanktivore (Hamrin 1983; Viljanen 1983;

Northcote and Hammar 2006), although recent observa-

tions suggest some flexibility in diet choice (Liso et al.

2011). Due to its efficient zooplankton foraging, vendace

may outcompete and hence exclude other planktivorous

fish species from the pelagic area (Beier 2001; Bøhn and

Amundsen 2001) and cause changes in the zooplankton

community (Karjalainen and Viljanen 1993; Helminen and

Sarvala 1997; Amundsen et al. 2009). A strong influence of

planktivory on the zooplankton community has also been

found for C. artedi (Rudstam et al. 1993). Inter-cohort food

competition in vendace populations is strong, in particular

during the warmer summer months, and hence, population

dynamics of vendace in many lakes is characterized by bi-

annual cycles (Hamrin and Persson 1986; Helminen et al.

1993; Helminen and Sarvala 1994; Karjalainen et al. 2000).

A recent comparison of several lakes (Kahilainen et al.

2011b) illustrated that the predation efficiency for zoo-

plankton increased with the number of coregonid (vendace

and whitefish) forms that coexist in a lake. Along this

gradient of planktivore efficiency, the zooplankton com-

munities were modified accordingly, resulting in smaller-

sized prey in the lakes containing the most efficient

planktivorous forms with highest number of gill rakers

(Kahilainen et al. 2011b). In contrast, for sparsely rakered

forms, this reduction in prey size has probably reduced the

opportunity to utilize the zooplanktivorous niche in these

lakes. As a result of this eco-evolutionary feedback

between predators and prey, the formation of intermediate

phenotypes has decreased and resource segregation among

the coregonids increased (Kahilainen et al. 2011b). In this

context, almost nothing is known on the competitive

strength of the spring-spawning Coregonus species. In

Lake Stechlin, both vendace and Fontane cisco are truly

pelagic and utilize the same planktonic food source

(Helland et al. 2008), suggesting strong exploitative

competition. Similar feeding efficiencies for zooplankton

in vendace and Fontane cisco from Lake Stechlin (Ohl-

berger et al. 2008a) suggest no advantage of vendace over

cisco in exploiting pelagic zooplankton resources.

Competition and niche partitioning between the North-

American ciscoes in the Great Lakes have not been thor-

oughly studied, but recently Gamble et al. (2011a) simu-

lated a food web of the pelagic fish community in Lake

Superior. This study showed that the dominant planktivores

in the lake are cisco (C.artedi) and kiyi (C. kiyi). Addi-

tionally, a third coregonid species, bloater (C. hoyi), also

inhabits the pelagic area. In spite of some seasonal varia-

tions, the three species appear to largely overlap in diet,

with Mysis as the most important prey, similar to the

dominance of Mysis in the diet of C. lucinensis in the

German Lake Breiter Luzin (Scharf et al. 2008). Yet, cisco

has a more flexible diet compared to the other species

which includes more calanoid copepods, Daphnia and

Bythotrephes (Gamble et al. 2011a). This is probably

related to the fact that cisco also exhibits more variation in

the seasonal diel migration than the other coregonids.

Another recent study examined trophic niche partitioning

among all deepwater coregonids in the Great Lakes, based

on stable isotopes of both historical and contemporary data

(Schmidt et al. 2011). These results indicate that within all

lakes, individual species have occupied distinct ecological

niches. The ecological distinctness has been dynamic, but

yet maintained over time in spite of ecological distur-

bances. The study suggests that segregation in habitat depth

seems to be the major driver of the niche divergence among

coregonids in the Laurentian Great Lakes.

Great Slave Lake, Canada, consists of several coregonid

populations that have remained more intact compared to

those in the Laurentian Great Lakes, thanks to fewer

human-induced changes. Also here the taxonomy is not

resolved, and the ecological diversity is not well described.

It seems, as if the lacustrine cisco (C. artedi) might have

overlapping diet or habitat with some of the other forms in

the pelagic area (Muir et al. 2011). In Barrow Lake, Can-

ada, cisco is reported to coexist with shortjaw cisco

(C. zenithicus). Shortjaw cisco mainly eats Mysis, and only

limited amounts of copepods and cladocerans (Steinhilber

et al. 2002).

Also in marine environments, pelagic clupeids are

known to influence zooplankton dynamics, which conse-

quently regulate competitive interactions among planktiv-

orous fishes. For example, variations in herring condition

have been explained by plankton availability, partly regu-

lated by both intraspecific (density-dependence) and

interspecific competition with sprat (Möllmann et al. 2005;

Casini et al. 2010). Sprat is a strict zooplanktivorous spe-

cialist, while herring may feed upon zooplankton and

benthic food organisms as large juveniles and adults.
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Hence, the interspecific competition between sprat and

herring is likely strongest at smaller size (Casini et al.

2004). However, the diet overlap between herring and sprat

does not only change ontogenetically, but also varies sea-

sonally and with prey abundance and composition (Casini

et al. 2004).

As mentioned above, ecological divergence and local

adaptations seem to be highly important in both freshwater

coregonids and marine clupeids, and in both systems

genetically distinct spawning populations likely have

resulted, at least in part, from competitive interactions.

However, while comparisons of sympatric populations of

coregonids mostly have focused on variation in feeding

habitat resulting from competition among adults, studies of

sympatric herring populations have mainly described var-

iation in spawning behaviour, probably related to compe-

tition between younger stages. Although a comprehensive

mechanistic understanding has not yet been achieved, it has

been proposed that competition for a suitable substratum

for eggs and for food among larvae could be involved in

the spawning time divergence in herring (Jørgensen et al.

2005).

A similar competition among younger life stages may

have been important in the development of the segregated

spawning periods between the coregonids in Lake Stechlin

(Helland et al. 2008, 2009). Although adults of vendace

and Fontane cisco show only subtle ecological differences,

their larvae most likely share much less ecological simi-

larities. Because the larvae of the two species hatch at

different times of the year, autumn- and spring spawners

probably face highly dissimilar environments (e.g. tem-

perature, predation risk, food abundance) during their first

weeks of life (Nyberg et al. 2001). Development of

reproductive isolation in sympatry cannot happen without

simultaneous reduction in the competition, to allow the

divergent populations to coexist (Coyne and Orr 2004).

Asynchrony in timing of spawning and hatching may

contribute directly to the coexistence of sympatric popu-

lations, through temporal partitioning of resources and

habitat.

Predatory interactions are functionally similar for core-

gonids and clupeids. Substantial mortality of coregonids is

found during the larval phase, primarily induced by perch

(Perca fluviatilis) predation (Helminen and Sarvala 1994;

Huusko et al. 1996). Juvenile and adult coregonids are

important prey items of the few pelagic piscivores, such as

perch, brown trout (Salmo trutta) or lake trout (Salvelinus

namaycush) (Heikinheimo 2001; Valkeajärvi and Marjo-

mäki 2004; Hrabik et al. 2006; Gamble et al. 2011a, b).

Cod is the main predator on sprat and herring in the

Baltic Sea (Sparholt 1994). It could be shown that sprat and

herring stocks substantially benefited from the decreased

predation pressure imposed by cod and from concurrently

low rates of fishing mortality (Köster et al. 2003). In the

Baltic Sea, predation on eggs of herring and sprat is tem-

porally variable and seems to depend upon the extent of

vertical overlap between adults and eggs (Köster and

Möllmann 2000a, b). Sprat larvae were only occasionally

discovered in low numbers in the stomachs of clupeid

(herring and sprat) predators, suggesting low predation

mortality of larvae by clupeids (Köster and Möllmann

1997). The feeding impact of medusae and chaetognaths on

fish early life history stages in the Baltic is also very low

(Barz and Hirche 2005). Another predator for sprat in the

Baltic are piscivorous seabirds, for example the common

guillemot Uria aalge that directly affects the sprat popu-

lation in the Baltic and is indirectly affected by the fishery

strategies on sprat and cod (Österblom et al. 2006).

In marine systems, herring and sprat form important

trophodynamic links between lower (zooplankton) and

upper (piscivores) trophic levels. In different regions, the

populations of both sprat and herring exhibit out of phase

oscillations with populations of their key predators sug-

gesting strong top-down control. Examples of this tight

coupling between populations of sprat and herring and

those of gadoid predators include sprat and Atlantic cod

(Gadus morhua) in the Baltic Sea and herring and haddock

(Melanogrammus aeglefinus) on Georges Bank in the

northwest Atlantic (Richardson et al. 2011). Although

heavily exploited in fisheries, multispecies virtual popula-

tion analyses suggest that removal of these clupeids by

predators exceeds that by commercial fisheries (Tyrrell

et al. 2008).

Similarities between coregonids and clupeids can be

found also with respect to host–parasite interactions. The

dominant parasites of coregonids are cestodes, primarily

transmitted via copepods that are part of the planktonic diet

of coregonids (Hoff et al. 1997; Pulkkinen et al. 1999;

Pulkkinen and Valtonen 1999). In Atlantic herring, 41

marine parasite species including metacercaria, nematodes

and gastrointestinal trematodes were found (Arthur and

Arai 1984; MacKenzie 1987). Transmission of most of

these parasites seems to be restricted to the coastal waters.

Tolonen and Karlsbakk (2003) studying the parasitic

assemblage in Norwegian spring-spawning herring found

very similar assembly as in other North Atlantic fish stocks.

In Baltic herring, 31 parasitic species have been recorded

and 23 species in the North Sea (MacKenzie 1987). Para-

sitic infestation with the larvae of Anisakis simplex (nem-

atode) was shown for sprat and herring in the Baltic Sea

varying significantly with geographical region. Highest

infection rates were found in areas of low salinity, low

temperature and reduced oxygen conditions. Sprat was

less affected than herring (Grygiel 1999) indicating

differences in susceptibility to diseases between herring

and sprat. Endoparasitic infections with metacercaria,
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larval nematodes and larval cestodes in herring were ana-

lysed for their use in stock identifications. The study

showed a remarkable stability in the parasite fauna over

time and showed a significant difference in the prevalence

and infection of the parasite infracommunities validating

the use of parasites as biological tags and as a method for

stock discrimination (Campbell et al. 2007).

In the North Sea, herring larvae are known to suffer

mortality due to both endo- and ectoparasites including

nemotodes and cestodes, and certain copepod species,

respectively (Rosenthal 1967). Heath and Nicoll (1991)

reported that larvae infected by the cestode (Scolex pleu-

ronectis) had nearly a 50 % reduction in feeding incidence

(24 %) compared to those that did not contain endopara-

sites (44 %). Furthermore, no larvae smaller than 15 mm

contained these endoparasites, whereas incidences of

infection increased with increasing body size in larvae

[15 mm and were highest in coastal waters. Those authors

speculated that this biological mechanism may interact

with changes in drift trajectories to affect YCS of herring in

the North Sea. More recent work (Lusseau et al. 2009)

utilized the prevalence of endoparasites as an index of

larval feeding incidence, overwinter survival and YCS.

Summary and comparison

In both clupeids and coregonids, planktivory is the domi-

nant feeding strategy, although single populations may

show locally deviating strategies with an enhanced uptake

of benthic animals or even fish. However, a complete

switch to benthivory, as often observed in one of the

coexisting freshwater whitefish populations, has been

documented only in the deepwater forms of C. artedi s.l of

the Great Lakes (Table 1). Therefore, there is a fixed

connection of niche dimensions between pelagic habitat

use and planktonic feeding strategy. The dominant plank-

tivory may intensify intra- and interspecific competition

because there is no further specialization and niche segre-

gation possible (in contrast to the variety of benthivorous

or piscivorous feeding strategies). This limited niche seg-

regation along the diet axis in the pelagic habitat may

contribute to forced microhabitat segregation along the

depth and temperature gradients as found in pelagic core-

gonids. However, it may also explain why divergent

selection operates primarily on the early life stages in both

groups. The result, spawning-time switching, might be the

most efficient strategy to reduce competition by avoidance

of simultaneous occurrence of comparable life history

stages and similar-sized individuals. The primarily pelagic

life style of coregonids and clupeids also results in preda-

tor–prey and host–parasite interactions that are functionally

comparable. There is growing evidence that these ecolog-

ical interactions likewise contribute to local adaptation of

populations (Fraser et al. 2011). However, these interac-

tions and their correspondence to ecology and life history

of the species are much better studied in the marine than in

the freshwater species.

Behavioural ecology

Diel vertical migration (DVM), one of the most striking

patterns of rhythmic population behaviour, has been

repeatedly documented from planktivorous coregonids.

The regular DVM consists of the occurrence of fish in

relatively dark and cold hypolimnetic areas during day-

time, an ascent into warmer metalimnetic waters during

dusk, a night-time occurrence in metalimnetic waters, and a

descent back into deep layers during dawn. DVM in cor-

egonids has been reported from several lakes (Dembinski

1971; Hamrin 1986; Hrabik et al. 2006; Stockwell et al.

2010). Ascent and descent are proximately triggered by the

change of illumination threshold during dusk and dawn

(Jurvelius and Marjomäki 2008; Busch and Mehner 2009).

The ultimate causes of coregonid DVM have been widely

discussed with some controversy, but most researchers

suggest that fish leave the well-lit near-surface layers

during daytime to avoid visually oriented predators (Hrabik

et al. 2006; Gjelland et al. 2009). Interestingly, however,

evidence for high predation risk of coregonids in shallower

layers of lakes could rarely be found, because the density

of piscivores was in most cases surprisingly low (Hrabik

et al. 2006; Stockwell et al. 2010; Mehner et al. 2010a).

Therefore, a genetically fixed migration has been discussed

as a response to the ‘ghost of predation past’ (Mehner et al.

2007b; Jurvelius and Marjomäki 2008).

An additional ultimate cause of DVM was put forward

for the coregonids of Lake Stechlin, where hydroacoustic

observations of population depths at night revealed strong

seasonal fluctuations, with fish occurring in deeper water in

spring and autumn than during the summer months

(Mehner et al. 2005, 2007b). There was a significant cor-

relation between population depths and vertical tempera-

ture gradients (Mehner et al. 2007b; Busch and Mehner

2009), suggesting that fish seek layers with metabolically

optimum temperatures at night (Mehner et al. 2010a).

However, a bioenergetics benefit of DVM for Lake

Stechlin coregonids could not be demonstrated. Busch

et al. (2011) used a bioenergetics model to explore that the

regular DVM is not the most efficient strategy. They sug-

gested that multiple factors, rather than bioenergetics effi-

ciency alone, are the evolutionary basis to explain DVM. In

addition, no growth advantage (that should be expected

when bioenergetics efficiency is assumed to drive DVM)

was found for vendace switching in experiments between

high and low temperatures relative to fish held at constant
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temperatures (Mehner et al. 2011c). However, fish per-

forming DVM may benefit from predation avoidance

without compromising their metabolic balance and hence

growth rates (Mehner et al. 2011c).

Regular DVM is also well described from populations of

Atlantic herring and sprat in the North and Baltic Seas

(Nilsson et al. 2003; Cardinale et al. 2003; Axenrot et al.

2004; Orlowski 2005). The utilization of DVM by sprat in

the Baltic appears to have changed in the last decade.

Previously (in the 1990s), sprat larvae in the Bornholm

Basin performed a normal DVM, being captured during the

day in deeper water layers (e.g. below the thermocline,

40 m) and at night in surface waters. In contrast, a con-

sistent lack of DVM was observed when sprat were re-

sampled in the same system from 2002 to 2005 (Voss et al.

2007). The lack of DVM in recent years is hypothesized to

be due to changes in the abundance of copepod species that

have different depth preferences. Specifically, the abun-

dances of Acartia and Temora species which prefer war-

mer, surface waters have increased, whereas the abundance

of Pseudocalanus which inhabits deeper, colder, more

saline depths has decreased (Voss et al. 2007). Biophysical

modelling results of larval feeding and growth that inclu-

ded these decadal changes in prey fields and water tem-

peratures suggested fitness benefits related to the change in

larval DVM behaviour (Hinrichsen et al. 2010). Modelled

larvae that maintained the originally normal DVM in recent

years could not meet energy requirements due to the poor

foraging environment at depth.

A variety of mechanisms have been proposed to modify

DVM of herring larvae such as hydrographic characteris-

tics (mixed or stratified water body), tidal influences

(Stephenson and Power 1988), the combination of light and

turbulence (Heath et al. 1988), dependency of light and

food availability (Munk et al. 1989) and predator–prey

relationships (Bailey and Houde 1989; Houde 1989). For

North Sea herring, Heath et al. (1991) and Haslob et al.

(2009) observed that herring larvae had a distinct vertical

migration to upper water layers during the day and more

homogenous depth distribution during the night with larger

larvae showing a more pronounced behaviour. The size-

dependent vertical distribution pattern of the herring

appears to be due to the vertical distribution of their prey

organisms (Munk et al. 1989). Since herring larvae are

visual predators that cannot feed at low light intensities

(Blaxter 1962), they have to swim to the upper water layers

to be able to feed, a behaviour that will be influenced by the

degree of mixing or stratification present within the water

column. During the summer in deep Baltic basins, the

adults of both sprat and herring perform DVM with fish

moving towards surface layers (upper 20 m) at dusk and

back to daytime depths of 60–80 m at dawn (Stepputtis

2006).

Reverse migration patterns with an ascent into shallower

layers during dawn and a descent during dusk have recently

been documented for young-of-year herring in a brackish

bay of the Baltic Sea (Jensen et al. 2011). Furthermore, the

vertical distribution at midday was bimodal, suggesting

two alternative migration strategies in these small herring,

somehow similar to a pattern found in coregonids in Lake

Stechlin (Mehner and Kasprzak 2011). Similar to the larval

sprat example, the change in DVM pattern was consistent

with bioenergetics-based predictions of net energy gain. In

the case of herring, the occurrence in warmer water during

the daytime facilitated rapid digestion at intense feeding

phase, whereas herring do not feed at night and hence save

energy by descending into colder layers (Jensen et al.

2011). These bioenergetics-based explanations of behav-

ioural patterns are expanded upon in the next section.

Summary and comparison

Diel vertical migrations are common behavioural strategies

in both coregonids and clupeids. This commonality sug-

gests that the vertical gradients of the pelagic habitats in

both freshwater and marine ecosystems create comparable

selective forces on habitat-choice behaviour. The primary

gradients triggering DVM seem to be illumination strength

as the proximate factor, and temperature that may be

considered as both proximate (guiding the fish into pre-

ferred habitats) (Levy 1990) and ultimate (fitness advan-

tage at increased bioenergetics efficiency of growth) (Brett

1971) factor. However, vertical distributions of prey, intra-

and interspecific competitors, and predators are locally

variable, and hence, a single unique evolutionary causation

of DVM across all populations and habitats cannot be

achieved. In turn, this variety of local conditions may

explain why DVM patterns have been found to be both

seasonally and annually highly variable in some of the

studied populations and may respond to drastic change in

environmental factors (Hinrichsen et al. 2010). The indi-

vidual variability within population-wide migration pat-

terns and its evolutionary causation has just started to be

explored (Mehner and Kasprzak 2011). During early

ontogeny, physostome fishes such as clupeids and core-

gonids must ascend to surface waters and gulp air to fill

their swim bladders. Thus, ontogenetic changes in depth

distribution are also related to this functional, morpholog-

ical constraint (Blaxter and Batty 1984).

Physiological ecology

Abiotic gradients contribute to the structuring of freshwater

and marine fish assemblages. Factors of major interest are

temperature and oxygen, and additionally salinity in
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marine ecosystems. Ecological specialization along these

gradients, in response to strong competition that involves

traits not related to feeding strategies, has been discussed to

contribute to speciation in fishes (Mehner et al. 2011b).

Often, these traits are directly or indirectly related to

spawning time and location, thermal habitat use and

energetic trade-offs.

Vendace and Fontane cisco in Lake Stechlin display

an ecological and physiological segregation with respect

to water depth and thermal habitats, which is as well

associated with differences in spawning time. The sister

species show differences in metabolic rates with respect

to temperature (Ohlberger et al. 2008b) and thermal

preferences (Ohlberger et al. 2008c) that correspond to

the ecological divergence in habitat use (Helland et al.

2007, 2008) and suggest different energetic strategies.

Ohlberger et al. (2012) demonstrated that the scaling of

metabolic rate with body mass is temperature-dependent

in both vendace and Fontane cisco in contrast to other

species. This intra-specific temperature dependence of

metabolic rates most likely represents a plastic response

of energy metabolism to the changing thermal conditions

and suggests a more pronounced competitive superiority

of small compared to large individuals at lower tem-

peratures. Differences in size-dependent competition may

thus be related to the species’ thermal habitats (Ohlber-

ger et al. 2012). Ciscoes in the Great Lakes occupy

different water depths and can be grouped into pelagic

(C. artedi, in part C. hoyi) and deepwater phenotypes

(C. kiyi, C. zenithicus, C. reighardi, C. nigripinnis),

corresponding to their primary diet (Table 1). The

adaptive diversification of the deep-water ciscoes is

associated with different physiological abilities to occupy

different water depths, which has been related to body

size, mass-specific metabolic rates and buoyancy char-

acteristics (Clemens and Crawford 2009).

Thermal windows supporting the survival of embryos in

the laboratory as well as threshold (warm and cold) tem-

peratures avoided by adults in the field have been investi-

gated in coregonids (Dembinski 1971; Crowder and

Crawford 1984; Hamrin 1986; Tapaninen et al. 1998) and

clupeids (Reid et al. 1996; Peck et al. 2012) (Fig. 2).

Embryos of coregonids such as C. clupeaformis and

C. albula can tolerate colder temperatures but have more

narrow thermal windows compared to both the embryos of

both clupeids considered in this review (sprat and herring).

Adult clupeids can exploit a wider range of water tem-

peratures and can grow well at warmer temperatures than

adult coregonids. Preferred temperatures often coincide

with those optimal for growth (e.g. Jobling 1981), but this

depends heavily upon the acclimation characteristics of

specific populations (e.g. Pörtner and Peck 2010). Tem-

peratures preferred by juvenile (P*) C. albula and adult

(P) C. hoyi (8–10 �C) are half those at which sprat juve-

niles obtained maximum growth rates (GMAX) in the lab-

oratory and field (Peck et al. 2012) (see Fig. 2). This brief

review of the thermal constraints of Coregonus congeners

and clupeids (sprat and herring) reinforces the notion that

the life stages of coregonids are more constrained to colder

water habitats compared to these clupeids but that both

groups display ontogenetic expansion of thermal habitat

during the late larval/early juvenile phase and have similar

thermal ecologies at spawning (e.g. preferred/optimum at

8–12 �C).

Both clupeids tolerate a wide range of salinities and

hence are both abundant in brackish waters of the Baltic

Sea and marine waters of the North Atlantic. The tran-

sition zone between the North Sea and the Baltic Sea is

an area with a strong salinity gradient spanning from 30

to 34 % in the North Sea to 6–8 % in the Baltic proper,

with levels decreasing even down to 3 % in the inner-

most (northeastern) parts of the Baltic (Gaggiotti et al.

2009). Thus, changes in salinity levels may shape fish

growth rates both indirectly by changing the zooplankton

community structure and abundance and/or directly via

effects on growth physiology and metabolism (Cardinale

et al. 2002). It appears likely that adaptation to the

varying salinity at the spawning location contributes to

ecological divergence between herring populations, but

there are no physiological studies to support this

hypothesis.

Fig. 2 Thermal windows supporting the survival of embryos in the

laboratory as well as threshold (warm and cold) temperatures avoided

by adults in the field for three species of coregonids and two species

of clupeid fishes. The range in temperatures preferred by juvenile or

adult coregonids and that corresponding to maximum growth (in

sprat) are also indicated. Data sources are listed in the text
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Summary and comparison

The study of metabolic divergence of coexisting pelagic

populations requires further investigations, because tem-

perature seems to be important for vertical micro-habitat

segregation, bioenergetics efficiency of growth, body size

and life history. It would be promising to explore whether

temperature conditions during spawning season and at

spawning location, egg size, growth rate, size at matura-

tion, maximum size, optimum metabolic temperature and

final temperature preferendum correspond across the cor-

egonid and clupeid populations of the temperate zone. This

would suggest a functional interaction between life history,

metabolism and environmental conditions, as recently

proposed (Killen et al. 2010).

Potential effects of climate change

Studies addressing the effects of global climate change on

coregonids in lakes are relatively rare (Magnuson et al.

1990; Elliott and Bell 2011). It is generally assumed that

the thermal guild of cold-water stenothermal fish to which

coregonids belong is most vulnerable to global warming

(Graham and Harrod 2009). This assumption is primarily

based on the predicted decline of suitable habitats for

coregonids in lakes due to warming and de-oxygenation of

deeper water layers (Jacobson et al. 2010; Elliott and Bell

2011). Nyberg et al. (2001) discussed that the YCS of

autumn-spawning coregonids whose larvae hatch in early

spring is expected to decline with warming, whereas the

YCS of spring spawners might increase because the later-

hatching larvae of spring spawners can more precisely

match the temporally shifting peak of zooplankton prey in

late spring. The coexisting coregonid species in Lake

Stechlin were an appropriate study system to test this

assumption. In contrast to the prediction, densities of

young-of-the-year vendace in June were higher after warm

winters. However, metalimnetic temperatures in June

affected densities of juvenile and adult vendace and Fon-

tane cisco in opposite direction. Cisco densities were

higher in warm years, whereas high vendace densities were

primarily found when June temperatures were cold.

Metalimnetic temperatures seem to modify the competition

strength between the interacting coregonids, because high

densities of cisco forced vendace to occupy shallower and

hence warmer waters at night, whereas high vendace

densities forced cisco to stay deeper and hence in too cold

water (Mehner et al. 2011a).

By using a coupled lake physics and bioenergetics model,

growth rates of vendace and Fontane cisco were simulated

for a predicted global change scenario in the year 2100

(Busch et al. 2012). Two behavioural strategies were

distinguished, with coregonids either performing behav-

ioural thermoregulation (keeping their temperatures at night

constant), or fish performing migrations with fixed ampli-

tudes (keeping their depth at night and hence illumination

threshold constant). In almost all simulations, coregonids

were predicted to increase their growth rates, even by

assuming that zooplankton densities might decline by about

10 %. The reason for this unexpected outcome is the opposed

temperature development of hypolimnetic and metalimnetic

water layers in Lake Stechlin predicted for the warming

scenario. Whereas epi- and metalimnetic layers between 0

and 18 m will warm, layers deeper than 20 m will cool down

by up to one degree. Accordingly, fish will experience colder

water during their daytime residence that reduce their met-

abolic expenditures, and the energy saved will more than

balance the slightly reduced feeding rates from the lower

prey densities. However, if fish would follow behavioural

thermoregulation under these warming conditions and keep

their currently observed temperatures at night, their vertical

microhabitat segregation will completely collapse because

layers with preferred temperatures for vendace and cisco will

then largely overlap. Accordingly, temperature development

of the main habitats is coupled with biotic interaction

strength, a pattern that has only recently emerged as a main

research area (Kordas et al. 2011).

Clupeid fish have been one of the best bio-indicators of

climate-driven changes in marine systems, exhibiting

strong changes in stock size and distribution because of

their short lifespan and tight coupling to zooplankton

dynamics and mesoscale hydrodynamic features sensitive

to physical forcing (Lluch-Belda et al. 1992; Alheit et al.

2005; Tourre et al. 2007). Similar to the climate discussion

of coregonids in lakes, climate change will affect sprat and

herring (and other marine fish) in both direct and indirect

ways. Direct effects include changes in water temperature,

causing species-specific impacts due to differences in

thermal windows supporting growth and survival (Pörtner

and Peck 2010). Sprat occurs at the northern boundary of

its geographical distribution in both the Baltic and North

Seas suggesting that additional warming (when considered

in isolation of other factors) would benefit these popula-

tions (MacKenzie and Köster 2004). On the other hand, at

its lower latitude limit, sprat has shown dramatic declines

in recent decades such as the disappearance of the

spawning population in the Northwest Mediterranean

(Calvo et al. 2011). These changes are consistent with the

inter-stock, dome-shaped relationship between recruitment

and water temperature experienced during spawning

(MacKenzie and Köster 2004). Herring, which occurs with

sprat at the lower latitudinal extent of its range in the North

and Baltic Sea, will also likely experience losses in the

productivity of specific spawning stocks in southern

regions due to climate warming (as discussed below).
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Compared to lake systems, climate change may have

potentially more complex impacts in open marine systems

due to losses in connectivity between key habitats. Many

marine fish, including clupeids, have evolved complex life

history strategies that help promote philopatry, habitat

connectivity, life cycle closure and population persistence

(Harden Jones 1968; Sinclair 1988). Herring displays

spawning site fidelity, an adaptive strategy that has likely

evolved to place progeny within environments providing

favourable transport to areas promoting high rates of

feeding, growth and survival during early life (Cushing

1975). Sprat also displays specific preferences for

spawning areas such as deep Baltic Basins and the Ger-

man Bight in the southern North Sea. The YCS of sprat,

herring and other marine clupeids has been correlated to

atmospheric climate oscillations such as in the North

Atlantic (NAO) and Pacific (PDO) (Gröger et al. 2010).

These oscillations are not only highly correlated to

changes in water temperature but also the strength and

direction of regional wind fields causing changes in the

drift trajectories of early life stages (Peck et al. 2009),

potentially disrupting the connectivity between essential

habitats. In the Baltic, sprat year-class strength has been

strongly and significantly correlated to the spawning stock

biomass and a drift index (Baumann et al. 2006b) with

high year classes resulting when larvae are retained near

spawning grounds. Recent biophysical modelling work on

sprat in the North Sea comparing different NAO years

predicted very little change in potential larval survival;

despite differences in drift trajectories and water temper-

atures North Sea sprat larvae matched well (spatially and

temporally) with modelled prey fields (Daewel et al.

2008).

In North Sea herring, year-class success of autumn

spawners appears to be regulated by processes acting

during the early life, as larvae drift from western spawning

grounds to eastern juvenile nursery areas (Nash and Dic-

key-Collas 2005). Using a physiology-based foraging and

growth model constructed for larval herring, Hufnagl and

Peck (2011) estimated the ability for herring to switch

spawning times (or spawning areas) in response to climate-

driven changes in key factors (temperature, prey fields).

The model suggested that climate-driven changes in bot-

tom-up factors will affect spring- and autumn-spawned

herring larvae in different ways. It is unlikely that autumn-

spawning herring will be able to avoid unfavourable con-

ditions by delaying their spawning time or by utilizing

more northern spawning grounds because of limitations in

day-length to larval growth and survival. Conversely, for

spring spawners, the success of earlier or later spawning

will be tightly constrained by match–mismatch dynamics

between larvae and their zooplankton prey (Hufnagl and

Peck 2011).

Summary and comparison

Climate warming may affect both fish groups comparably.

The most sensitive ontogenetic stages seem to be the fish

larvae because of their exposed nearshore habitats in which

changes in temperature will occur more pronouncedly than

in the much larger pelagic volumes of lakes and seas (see

Mehner 2000). Furthermore, volumetric densities of larvae

are highest, their daily food demand is highest during

ontogeny, and their ability to detect and avoid predators is

poorly developed (Houde 1987; Mehner and Thiel 1999;

Bochdansky et al. 2008). Therefore, abiotic and biotic

factors at nearshore habitats that respond to global warm-

ing will have the strongest effect on year-class strengths of

coregonids and clupeids, in particular because early life

stages have narrower thermal windows than juvenile or

adult fish (Pörtner and Peck 2010). For the marine clupeids,

the passive transport of late larvae to their juvenile habitats

over large distances might be another important phase that

can presumably be neglected in coregonids due to the

immediate connection of nearshore and pelagic habitats in

lakes. Given the potential decline of suitable thermal

habitats and limited dispersal opportunity, coregonids in

lakes will face changes in competitive interactions and

competition strength with changes in the thermal regime

(Mehner et al. 2011a).

Because warming may modify autumn, winter and

spring seasons differently, the variability of spawning

times will cause a response that is specific to each popu-

lation. In this context, spring-spawning herring seem to be

more robust against warming, a pattern that was predicted

also for freshwater spring spawners relative to the more

vulnerable autumn spawners (Nyberg et al. 2001). A sys-

tematic comparison of locally coexisting populations with

non-overlapping spawning times could be therefore a

promising approach to achieve mechanistic understanding

of the most important factors that make pelagic fish pop-

ulations sensitive to global change.

Conclusions

Our review has explored commonalities and differences in

pelagic fish species inhabiting either freshwater or estua-

rine and marine systems. The potential effects of global

change on populations of these fishes will arise from

changes in either indirect (trophodynamic) or direct (abi-

otic, physiological) factors. The severity of impacts will

depend to some extent on whether species have the

capacity to adapt to these changes via behavioural modi-

fication and phenotypic selection.

However, the interplay between genetic differentiation,

spatiotemporal distribution, ecological interactions, life
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history and metabolic specialization has differing research

deficits in clupeids and coregonids (Fig. 3). Whereas in

coregonids, the interaction of thermal windows and bio-

energetics with habitat choice and vertical migrations is

well understood (Fig. 3a), these effects are less explored in

clupeids. Clupeids show large-scale migrations between

reproductive and feeding areas, and individual homing and

straying is likely important for genetical population dif-

ferentiation (Fig. 3b). In contrast, the spatial and temporal

organization of spawning in coregonids is not really

understood, in particular for the rare spring-spawning

species.

A central research theme for both groups can be found in

the interplay between life history and physiological

Fig. 3 Conceptual graphics

showing the interplay of

processes related to genetic

differentiation, spatiotemporal

distribution, metabolic

specialization, life history and

ecology of coregonids (a) and

clupeids (b). Solid arrows
indicate good scientific

understanding of links. Stippled
arrows indicate links that are

suggested to be studied in the

next years. Seasonal migrations

are not described in coregonids,

and hence, this box is coloured

in grey
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specialization, and the resulting genetical differentiation by

ecological divergence (Fig. 3a, b). Furthermore, the effect

of host–parasite interactions on local adaptation in this

context is not understood. It will be important to study

whether hybrids between species or populations that differ

in spawning season are fertile, and whether they display

additive genetic effects with respect to the thermal win-

dows of their parental populations. This may offer insight

into the processes that enforce speciation, for example

through fitness disadvantages of hybrids relative to their

parents. It cannot be excluded that hybridization between

metabolically specialized parents is a possible outcome of

effects of global warming, for example by induction of

temporal overlap of previously distinct spawning times, or

habitat temperatures intermediate between those currently

dominating in the native habitats.
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