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INTRODUCT ION

It is needless to point out the necessity and the
importance of the study of Pfaffian differential ex-
pressions and equations. While it is interesting to con-
sider from the pure mathematical point of view, their
applications in many branches of applied mathematics are
well known. To mention a few, one may observe that they
arise in connection with line integrals (example, deter-
mination of work). They provide a more rational formu-
lation of the foundations of thermodynamics as ‘developed
by the Greek mathematician Caratheodory. They also arise
in the problem of determining the orthogonal trajectories.
In many branches of engineering and other physical sciences
they appear with problems concerning partial differential
equations.

An expression of the form

2A B (X Xg .0 x,) dxy (1)

where the F; (i = 1,2.......n) are functions of some or

all of the n independent variables X} )Xgyeoooon Xy

is called a Pfaffian differential form or expression in n
variables. Similarly the relation

4

}Fidxi =0 (2)
(&

J
is called a Pfaffian differential equation.
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equations when observed from the pure mathema

of view.

du(x,y,z) = P(x,y,z) dx + Q(x,y,z) dy + R(x,y,2) dz then

the equation (3) is said to be exact, and the solution is

possible to find a function rk(x,y,9>, called the inte-

grating factor, and a function u(x,y,z) such that

?
;up ix + 1\-* Q v}{: ;~ t—"‘\\ dz = du

ase we say that the eqt

®)
o)

In such a
If the equation is integrable, it is always possible to

find a solution.

A necessary and sufficient t the equation

1

(3) is integrable is that the relation

p( \Q s <_>H ) 5 Q( S’R - Jp ) U R( ;Jp JQ ) =0

dZ 3y X 5T R oy X
holds.

If the equation is integrable, it is not necessary
to determine the integrating factor in order to obtain
the solution. In fact the determination of the integrating
factor is more complicated than finding the solution of the
problem itself.

When equation (3) is found to be integrable, various

methods are available to find the solution. We shall
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SURVEY OF WELL KNOWN METHODS

4 )
L]

When the Pfaffian differential equation (3) is exact,
the following methods are available to determine the

solution.

Methods for an exact Pfaffian differential equation

Method 1. If the equation (3) is found to be exact,

then there exists a function f(x,y,z) such that
of o of £
=P ==Q L =R
X dY %

and the solution is found through a system of partial

differential equations.

Method 2. 1If the equation (3) is exact, then the
solution can be obtained through the application of the
formula

T - s
Jp(x,y,y)dz 4 Q(xO,y,T)?; + R(xo,yo,z)ﬁz - C

h &
= j o «; o

wvhich is based on the properties of line integrals.

Method 3. By inspection. It may sometimes by

possible to obtain the solution of a Pfaffian differential
equation by inspection.

Method 4. Variables separable. If it is possible to

write the differential equatioa (3) in the form
P(x)dx + Q(y)dy + R(z)dz = 0

the solution is given by the equation




' ” 7
| P(x) dx & JQ(y)dy + // R(z)dz = C

where C is an arbitrary constant.

Methods for a Pfaffian differential equation which is
integrable, bul not exact e

I1f the equation (3) is integrable, but not exact,
the following methods are available in order to find the
solution.

Method 5. One variable separable. If one of the

variables, say z, is separable, the equation can be
brought to the form
P(x,y)dx + Q(x,vy

dy + R(z) = O

In this case the condition of integrability reduces to

which means tha

=

P dx + Qdy
an exact differential, say du,
so that the given equation reduces to
du + R(z)dz = O
and the solution is
u + '[R(z)dz = C

where C is an arbitrary constant.

Method E. Homogeneous equations. If the equation

(3) is homogeneous, that is, P,Q,R are homogeneous functions
in X,y,z of the same degree, then the substitutions

Yy =ux , 2 = 9gyx
render the new equation in x,u,v separable in x and can

be solved by the method

[#1]




Method 7. Natani's method. In this method we treat

one of the variables, say z, as though it were a constant

and solve the resulting differential equation

Suppose the solution of this equation is
Pl

((D(X,}’,?") = Cj

where C, is a constant. The solution of equation (3) is

swhor o ~ X nnctandtd aned I ST TS LD CS hico 1114 3 AN
where Co is a constant and we can express this solution

in the form

where \f(z) is function of z alone. To determine the

function Vv (z), we notice that if we give to the variable
Es fixed value (say &), then

{ v 7)) = - fR)Y

t..(b \ & ,¥v,Z2) = \f (‘: \8/'

is 2 solution of the differential equation
{ 1 7 Y 1v ( . » Yrr -~ 5
Q( X,y,z) dy + R(X,y,z) dz = 0O (9)

Now we find a solution of this equation in the form

by the method of first order differential equations.
Since equations (8) and (10) represent general
solutions of the same differential equation (9), they
must be equivalent. I1f we, therefore, eliminate the
variable y between equations (8) and (10), we get an
expression for the function t(z). Hence we obtain the
solution of the equation (3) on substituting the ex-

pression for V¥ (x)




o0

Note: We may conveniently choose a value for
such as 0 or 1 so that the equation (9) can be easily

solved.

Method 8. Reduction to ordinary differential

* ; : i 5.7 :
equations (Mayer's Method). If the condition of inte-

grability is satisfied, by this method we reduce the
problem of finding the solution of a Pfaffian differential
equation of the type (3) to that of integrating one
ordinary differential equation of the first order in two
variables.
If the equation (3) is integrable, it has a solution

of the form

£f(x,y,2) = ¢ (11)
which is a one-parameter family of surfaces in three
dimensional space. These integral surfaces will be
intersected in single infinity of curves by the plane

z2=x14ky (12)
where k is a constant. The curves thus formed will be
solutions of the differential equation

p(x,y,k)dx + q(x,y,k)dy = 0 (13)
obtained by eliminating z from the equations (11) and
(12).

Suppose the general solution of equation (13) is

4(x,y,k) = constant. (14)

*Goursat, E. Differential Equations; translated by
E. R. Hedrick. New York: Ginn and Co., 1916. New York:
Dover Publications, 1959, p. 229,




Since a point on the axis of the planes (12) is deter-
mined by y = 0, x = c(a constant), if the curve (14)
passes through this point, we must have
P(x,y,k) = ¢P(c,0,k) (15)

When k varies, equation (14) represents a one-parameter
family of curves through this point y = 0, x = c. By
varying ¢ we obtain the family of curves through each
point on the axis of equation (12). Eliminating k between

ations (15) and (12) we get the general surfaces in

the form

ln ¥, Lf(

which are solutions of the Pfaffian differential equation

Note: This method is better than Natani's method in
the sense that it involves the solution of only one
ordinary differential equation in two variables. But this
ordinary differential equation in two variables is often
more difficult to solve than the equations in Natani's
method.

ygthod 9. Bertrand's method.* In this method we

first solve the linear partial differential equation

dQ 3R, df, JR AP, f, Q. 2f _ g
X(0)= (G539 9+ G2+ (-9 2% = o (16)

If u and v are two independent integrals of equation (16)

*Goursat, E. Differential Equations; tramnslated by
E. R. Hedrick. New York: Ginn and Co., 1916. New York:
Dover Publications, 1959 p. 232.
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(20) we obtain two function A

dP, »u , oP 2Q\ 22U . , o
-2yt Gy - 3¥) 5z -0 A7)
L e T e
- e ik e LR Rl

integrability is satisfied,
ap 1 o ¥ 4 ap bQ e (19)
57) T J\\(—)*—y- :’1—X) 0 \1Y)
2P, 3P - 3q
D7 R DX
, (18), and (19), we get
0 (20)

and M such
I

By virtue of equation (21), equation (3) will reduce to

A du ilLk

]

dv

= 0

(22)




SLHCC.\/LL depends only on the variables u and v, equation
(22) is a differential equation in u and v, and it can be
solved.

Thi

n

method is preferable when the equation is

symmetric in x,y and z.




MAIN RESULTS

Quasi-homogeneous functions

efinition. We shall call a function f(x,y,z)

quasi-homogeneous in x,y and z of order m, if there

pP,a,r such that

P <c+4 ry — . Mg
£( xtP,yt?.zt ) = ¢ f(x,y,z)

and call p,q,r the dimensions of
Theorem 1. 1f £f(x,y,2z) is a quasi-homogeneous

in Xx,y,z of order m, then

by

~~
N

s
i

(ol

I\?l

/ =
il it s OO IR .
where p,q,r are dimensions of x,y,z respectively.
Proocf. By definition,
4 » K I‘ o |1 - v v L
£f( xtP,yt9,2t¥) = ¢® £(x,y,2)
1 ; -Q/ 0 e -1/
Let tP = 1/x so that t% =« x VP, t* = x"%/P

Substituting these in the above identity, we get

£(1, y x VP, 2z xT/P) = x /P g(x,y,2)

Multiplying by x™'P  we obtain
xm/p i(l,y X’"q/p’ - X*I’/D) = £(x,v.2)

which is the desired result.

X,y,z respectively.

to

exist




Extension of Euler's theorem
Theorem 2 I1f x,y,z are of dimensions p,q,r
respectively and f(x,y,z) is quasi-homogeneous function

order m then

-
PX 5%
Proof. By

(x,y,

that is,
1ih,?,
where
u =y
Now
Qﬁ - B (B

Q
ba

of

theorem 1,

m/p

Z) = X

. on/p
w) iz gy

p)/p

f(1,u,v) + x

1

’1"' qy Y =

and

¥

i

( -q

Y

-(atp)/p|, m/p y£(

]

Ex(m—p)/p

£(1,4,v)

"2 RN ¢
rz 57 = mf(x,y,z)

£ - -q/p w—T 7/ Pr
f(l,y x C Z X )
£{1,a,v)

e -r/p

Vv = 7 3

m/p of(1,u,v)r
——— |

Ju

,U,v),_ . -r, _~-(r4p)/
e () &

q x(lH—Q“Iﬁ)//{J‘_iii(l,Ll,v)
' du

{mi /
";> x \ia q), E'J

Df(1,u
ou

{1,

u,v)

- P
T X(m“r"P)/p ZJf(l,u,v)
P 3V
of - x z/gi’f,u,v} x~4/P
Jy o
nd 2% = x®/P 2£(1,u,v) -r/p

ov

x(mnr)./p a.

oV
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Therefore,

PR == v W 3y T Y25z

= n xB/p £(1,u,v) - q x(m-q)/p y?i(l,u,v)
m-q)/p_d>f(1,u,

T X(m~r)/p M(1,u,v) Lyg
u

\ s = [ \l
P ou ; ok

(m-r)/p ,3(1,u,v)

Ly x\B=T)/D ,01(1,u,v)
- ov
= m xm/p f(1l,u,v)
= mf(x,y,2z2).
Hence,
px _;i Fqy 53 r Tz 55 = m f(1,y,2)

Definition of quasi~-homogeneous Pf uLIlwd HlJfornntl 11
equation

P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = O
is said to be quasi-homogeneous of order m, if P,Q,R are
quasi-homogeneous functions in x,y,z of orders m-p, m-q,
and m-r respectively.

Solution of a quasi-homogeneous Pfaffian differentia
equation 3

Consider a quasi-homogeneous Pfaffian differential
equation

P(x,yz)dz + Q(x,y,z)dy + R(x,y,z)dz = O (24
of order m where p,q,r are dimensions of Xy Sz

respectively.




Then, by definition, P,Q,R are quasi-homogeneous
functions of orders m-p, m-q, and m-r respectively.

Then by theorem 1,

Pix,y,2 x(m=-p)/p G N (25)

N
N’
(]
i

- (m-q)/ ~-q/ -r?p

Q(x,y,z) = x Q(1l,yx L ZX ) (26)

D < ¥ (2‘1“1‘\) / T ) 2 | =t W//!"} ~T /'/ )\ o«

R(x,y,z2) = x T Rl vz i i, 2K p) (27)
If we set

BRI 7 © s r/p A

y = ux 1 s T p (28)
we have

/,A (] Y - ) ’/ )
dy = x9P qu 2 % x (2-P) Pudx (29)
and
S g r (r-p)/p
dz = x'/P gy L= xt P)/E vdx (30)
|4

By virtue of equations (25), (26), (27), (28), (29), and

(30), equation (24) reduces to

(m-p)/ oo L m-q)/ - : /P g
X EACE P 8,v) a4 x (B-2). Q(1l,u,v) (x9/P du

(a-p)/p m-r) / /
+ % x ' 17P) /Py qx) 4 e F)ie R(1,u,v) (xF/Pgv 2
r (r-— /%
%= X P)/p vdx) = 0

That is,

m-p)/ : m-q) /o /y
p x( p)/p P(1l,u,v) dx % p x 42/p Q(l,u,v)xq’ du <

-p)/p

(m-q)/p
X Q(l,u,v) x (q-1 udx

q




_:_ p x(m~r)/ ) R(l,u,v) xr/*,dv

L r x (m=-T) /1 R(1,u,v) x{2-P)P 4 4z = 0

That is,

x(m-p)/p[>pp(1,u,v) +quQ(l,u,v) +rv R(l,u,v)}

[ dax
+ p xm/'Q(l,u,v}du $+ p x®/D R(1l,u,v) dv = 0
Dividing by
xm/p[pp(l,u,‘f) + qu Q(l,u,v) + rv R(l,u,v)J
we get
x(®-P)/P 4y pQ(1,u,v)du at
Sy pP(1,u,v) + quQ(l,u,v) ¢ rvR(1l,u,v)
1 R(1,u,v) dv
- P TRNEE e
pP(1,u,v) + quQ(l,u,v) ¢ rv R(1,u,v)
That is,
dx , = o
= A(u,v)du + B(u,v)dv = 0 (31)
where
A(u,v) = p Q1,u,v)
PP(1,u,v) + q u Q(1,u,v) + r v R(1,u,v)
and

P R(l,U,V)

pP(l,u,v) 4+ q u Q(1,u,v) + r v R(1,u,v)




Now equation (31) can be easily solved since one of the

variables is separated from the other two.

A necessary condition for the quasi-homogeneity of a

Pfa¥fian differential equation

A necessary condition may be obtained as follows:

2 Arl e
Y= @ myE e
JT,A
N,y . =
L Tl TR e e
R L Cyx X y Z
K=/

so that the equation (3) is of the form

- j

, n, / ”L 5
= [0} /2 y’ — y fa L
P Eax oy e g > dx + 2ﬁ<bjx s SR ) dy

< ) § /
=i / J=u
Vs 5, " it
1 { ¥ ex el dr,. = 0 (32)
k=1 /
where t,,iJ,bK are coefficients and the indices
of ) e ek Ak £ ) Vi
Al g (¢ /x 1 f’ Sjis/ ¢ oy < Kk’ K

) g/ J

] )
are integers or fractions, positive or negative or zero
If we replace x by xtP,y by yt9 and z byzt® the powers

of t in the different terms of equation (32) are given by

Pk, 2 gfe 4 1% L %1,3,.....8
PArs qpid wu J = 1,8,. ... (33)
P i ¥ q 7/« ':" T 5 k = N ns




Now we have ny 4 ng v+ N3 linear expressions in p,q and

r. In order that equation (32) is quasi-homogeneous of
order n, we must have P,Q,R as quasi-homogeneous functions
of orders n-p, n-q, n-r respectively. In other words the
power of t in each term of P in n-p, the power of t in
each term of Q in n-q, and the power of t in each term of
R is n-r.

Thus we have nj) + n, ¢+ n3 linear equations.
2 :

(+ DR g g HLUE o e O w18 e
\i p ¥ (»L(J#/) q % ‘l,/ x -n = O J = i;‘(‘ly n, it‘;

L P 7 4 T {5+)r -n=0 k= 1,2,...n00

K '3 ! K o

Since we have ny; + No v N3 equations in four
unknowns p,q,r and n, these equations in general may not
be consistent, but if they are consistent then there
exist unique values of p,q,r and, therefore, of n.

Thus a necessary condition that the given equation
is quasi-homogeneous is that the above n; + ng + ng
linear equations are consistent.

If the n; ¢ no + ng3 equations are consistent, we

may as well divide each one of them by p and unique

values of q/p, r/p, n/p may be obtained.

N’




Example

Consider the Pfaffian differential equation

3

4=

(5x3 4 2y4 + 2y£2 1 223)dx (4xy” + 2xyz)dy

(xy2 i 2xz)dz = 0

e

Here

3Q = G 3 L ();{ bp 1 Op QQ
M oy TR -5 1Ry -2
= (5x° 1 2y* 1 2y4z 4 223) (2xy-2xy)
2 (4xyS L 2xyz) (y2 + 2z-2y2-4z)

Condition of integrability is satisfied.

The equations (34) give

4p -n = (
P+ =B = 0

o]




P+2q+r -n =0
P+ 2r -n = 0

In order that these equations are consistent, we must

have

4 = pit4g=p +2g +r =p + 3r
Loal R - o
Therefore,

29 = 1 nd 3p = 4q

;{‘ a llh e

then

q = 3/4

~ S /0
r = o // &

The substitution is

/4 /9
T RS b

The given equation reduces to
Lo « 0 o / 9/ o
o - . 3/2 3/2
(5x° 4 2udx3 1 2u%x9/% £ yx37% 1 2¢2xd)ax

+ (4x uSX‘Lj/4 1 oxuxs’ 4vx3/2) (x3/44 '

/9 a /c 5 v
 (xu?x®/2 3/2) (v 3 x1/2ax 1 x3/2 qy) = 0

-

2XvXx




That is

. i >
+ Su“v & 5v9)dx + x"(4u” & 2uv)du

That is
dx | (4u3 4 2uv)du (v’ 1 3ndv. o
x ' 5(1 + u? : u?v ¢ vz) 5(1 + ud } uv + v2)

That is

5
—— = o, 11 Egt =
X 5(1 + u” $ u®v + v°)
Integrating,
, | 4 2, 2
log x + sviog(l ! u® + u VvV + v°) = constant.
That is,
= 0
< 4 2 ¢ =
x°(1 + u* 4 uv 2 v2) = C
E 4 2 2

M
S
~
| N
f=
e
|
\J
-j
N
Nt
i
Q

Lo b’ . 3 ¢
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b
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