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ABSTRACT
The Fundamental Groups of the Complements
of Some Solid Horned Spheres
by
Norman William Riebe
Utah State University, 1968

Major Professor: Dr. Lawrence O. Cannon
Department: Mathematics

One of the methods used for the construction of the classical
Alexander horned sphere leads naturally to generalization to horned
spheres of higher order. Let M,, denote the Alexander horned sphere.
This is a 2-horned sphere of order 2. Denote by M3 and My, two
2-horned spheres of orders 3 and 4, respectively, constructed by such
a generalization.

The fundamental groups of the complements of M;, M3, and M, are
derived, and representations of these groups onto the Alternating
Group, Ag, are found. The form of the presentations of these funda-
mental groups leads to a more general class of groups, denoted by Gk,
> 2. A set of homomorphisms ¢£:Gh > Gz, k > £ > 2 is found, which
has a clear geometric meaning as applied to the groups G2, G3, and G".

Two theorems relating to direct systems of non-abelian groups
are proved and applied to the groups Gk. The implication of these
theorems is that the groups Gk, k > 2 are all free groups of countably
infinite rank and that the embeddings of M,, M3, and My in E3 cannot
be distinguished by means of fundamental groups.

(33 pages)




INTRODUCTION

" the best known and one of the

The classical "horned sphere,
first wild surfaces in E3, was defined by Alexander. Several authors
have studied Alexander's horned sphere and related surfaces. In 1966,
L. O. Cannon gave a general definition for the solid horned sphere
M in E3.1 Certain of the horned spheres are defined in such a way
that the complementary domain (E3 - M) is not simply connected. The
question arises as to which, if any, of the horned spheres are equiv-
alently embedded in ES3.

One means available for testing this property is the use of
algebraic techniques to examine the fundamental group, m(E3 - M), of
the complementary domain. Let M, M' be two horned spheres; m(E3 - M),
T(E3 - M"), respectively, their fundamental groups. If it can be shown
that the groups m(E3 - M) and 7(E3 - M') are not isomorphic, then it
follows that the spaces (E3 - M) and (E3 - M') are not homeomorphic
and that M, M' are not equivalently embedded in E3.2 On the other
hand, if the fundamental groups are isomorphic no conclusion can be
drawn.

Let M, denote Alexander's horned sphere. M, is often called a
2-horned sphere, and it is obtained by a limiting process in E3. This

limiting process is sometimes thought of as the construction of a pair

1L. 0. Cannon, '"Sums of Solid Horned Spheres," Transactions of
the American Mathematical Society, CXXII, No. 1 (March, 1966), p. 203-
228.

2Richard H. Crowell and Ralph H. Fox, Introduction to Knot Theory
(New York: Blaisdell Publishing Company, 1965), p. 13-30.




of interlocking, unknotted, '"loops' at each stage. The process suggests
the possibility of using three, four, or more interlocking loops to
construct other 2-horned spheres. See Figure 1 for a 2-horned sphere
constructed with four loops.3 This horned sphere can be called a
2-horned sphere of order 4, and we denote it by M,. Observe that a
horned sphere with three loops can be obtained from My simply by
omitting one of the loops from the sphere in Figure 1 at each stage
of the limiting process. Such a horned sphere can be regarded as a
2-horned sphere of order 3, and we denote it by M3. Furthermore, M,
is obtained from M, by omitting one loop from each side at each stage
of the limiting process.

In this paper, we restrict attention to the horned spheres M,
M3, and M,, and the fundamental groups of their complementary domains,
G2 = n(E3 - Mp), G3 = n(E3 - M3), and G* = w(E3 - M), respectively.
These fundamental groups will be derived, and representations of them
onto the Alternating Group on five elements, Ag, will be found. The
form in which these groups will be presented will suggest a more
general set of groups related to GL, 4= 2,3,4, which will be denoted
Gh, k > 2. A general set of homomorphisms of G{2 onto GE, for all
positive integers k and £, k > £ will be derived. As applied to the

groups GL, L= 2,3,4, the homomorphisms will describe algebraically

the process of omitting loops outlined above.

3Let PQ represent that portion of a solid cylinder enclosed by

the dotted lines in the figure. PQ is to be carried into each of the
solid cylinders PiQ' by a homeomorphism h, which maps each disc P

onto P, and Q onto . The horned sphere M, is obtained by iteration
of this process a countably infinite number of times in such a way that
the diameter of hn(PQ) approaches zero for increasing n.




Figure 1. A 2-horned sphere of order 4 constructed by generalizing the

Alexander horned sphere.




In addition to these derivations, two theorems relating to direct
systems of non-abelian groups will be proved. The application of
b k
these theorems to the groups G will imply that G is a free group

[
of countably infinite rank. Thus, it will follow that G is isomorphic

4
to G, for all h, £ > 2, and that the embeddings of Mp, M3, and My

cannot be distinguished by their fundamental groups.




DERIVATION OF THE FUNDAMENTAL GROUPS OF THE
COMPLEMENTS OF THE 2-HORNED SPHERES

OF ORDERS 2, 3, AND 4

The 2-horned sphere of order 2

Let M,C E3 be the Alexander horned sphere. Blankenship and Fox
have derived a presentation for the fundamental group G2 = 7(E3 - M),
and have shown that the group is locally free and not finitely
generated.4 A relabeling of the graph, together with a slightly
different projection, results in the presentation given here which is
more suggestive of a general form.

The complementary domain of M, is homeomorphic to the complement
of an infinite graph whose projection is shown in Figure 2. From the
graph of Figure 2, a presentation of G2 may be read by a standard
method.5 The generators of the group are x, a, and all elements X,

a s ba’ where o is an element of the set of all finite sequences of

the integers 1 and 2. That is, a = P1P2:+ P> where X = X(a) the length
of the sequence, p; = l or 2, for all 1 <i < A. Thus, if A(a) =1,
then a = 1 or 2; if A(a) = 2, then a will denote one of the elements

11, 12, 21, or 22. We will further use the notation ai, defined as
follows: if o is a sequence of length A(a) = n, then ai will denote a

sequence of length n + 1 such that the first n elements are the same as

4w. A. Blankenship and R. H. Fox, '"Remarks on Certain Pathological
Open Subsets of 3-Space and Their Fundamental Groups,' Proceedings of
the American Mathematical Society, I (October, 1950), p. 618-624.

5Crowell and Fox, p. 72-86.




Figure 2. Projection of the infinite graph whose complement is homeomorphic to the space E3 - M. o




the sequence a; the last element will be i, where i = 1 or 2. Thus,

if o = 12212, say, then al will denote the sequence 122121, and o2

will denote 122122. For the sake of convenience, we also define a

sequence of length zero, so that if A(a) = 0, then X, = X, and a, = a.
The defining relations are of three types.

At the crossings (see Figure 3):

~1 p=-1 =)

a . a _, a e
al a2 al a2

a ., a_ . a—} b‘I = ]
L2 al 0.2 o

Figure 3. Graph for reading relations at the crossings in E3 - Mp.

At the points of order 3 (see Figure 4):

~1 _
Xa bal hal 1

~1 =1 -
haz aa ba? 1

Figure 4. Graph for reading relations at points of order 3 in E3 - Mp.




Around each singular point (see Figure 5):

s »(o ) o} = =

Figure 5. Graph for reading the relation around each singular point
in Ej - Mz.

By straightforward substitution, these relations reduce to:
= X =il = i 6
X X X X © X LX“I’ xﬂzj'
Thus, the following presentation is obtained:7
= |z = S0 ¢ =1 - =
o’ &= P1P2 P,» Py or 2, A(a) >0 X, [Xﬂl’ Xﬂzj‘
See page 15 for a representation of this group into the 3-cycles

of S5 (and hence onto the Alternating Group, Ag).

The 2-horned sphere of order 3

Let M3 C E3 be the 2-horned sphere of order 3 as described in the
introduction. By the same method used above for G2, we can derive a
presentation for the fundamental group, G3 = 7 (E? - M3), of the com-
plementary domain of M3. Figure 6 shows a projection of a general
singular point in the infinite graph whose complement is homeomorphic

to the space E3 - Mj.

6 - - - -
The notation [u, v] = uvu~!v~! will be used consistently.

cf., Crowell and Fox, p. 40, for the presentation notation used
here.




Figure 6. Projection of the graph of a general singular point for reading the relations in G3 =n(E3 - M3). o
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The generating elements of G3 are: X, ¥y 2, a, and all elements

b c,., where B is a member of the set of all finite

B> B

sequences formed from the integers 1, 2, 3. That is B = P1P2:+:Py>

Xg» Yg» 2g» dps

where A = A(B) the length of the sequence, pi =1, 2, or 3, for all
1 <i< A. As before, we define Bi as that sequence of length
A(B) + 1 formed by adjoining to B on the right one of the integers

1, 2, or 3, and if A(B) = O, XB =X, Yo=Y, a_ = a.
The defining relations can be read from Figure 6 as follows:

Q
>

At the crossings there are six relations:

1, (1,3 = (2,1), (1,3), or (3,2)

Y}
o
7w |
—
-
]

]

Hocd e naR ey 1, (1i,3) (2,3), (1,2), or (3,1)

Xg bgy X5, = 1
g3 X33 yél =L
sz Xéz zB =1
Vg Zg 95 = !

Around each singular point:

Again by straightforward substitution these relations reduce to:

-1 -

X,

X.iSx X SISt b o :
g 3L e 2

B3 sB 1 ER3

Thus, G3 has the presentation:

L - - -
First reading the graph clockwise for the 'outer'" crossings; then,
clockwise for the '"inner'" crossings.
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(o]
w
I

m(E3 - M3)
= le, B = P1P2:+-Py» Py = 1,2, or 3, A(B) > O
x; = ["31’ Xg, Xgall
This group also has a representation onto the group Ags as shown on

pages 14 and 15.

The 2-horned sphere of order 4

Let M, C E3 be the 2-horned sphere of order 4 as described in the
Introduction. As before, the complementary domain E3 - M, is homeo-
morphic to the complement of an infinite graph, the projection of a
general singular point of which is shown in Figure 7.

The generating elements of G = n(E3 - M,) are x, u, v, w, z, a,
and all elements xY, uY, vY, wY, ZY’ aY, bY’ CY’ dY’ where y is an
element of the set of all finite sequences of the integers 1, 2, 3, and
4, As before, y = P1P2++«Py> Py = 1,2,3, or 4, x = Xx(y) the length of
the sequence; yi is a sequence of length A(y) + 1 formed by adjoining
to y on the right one of the integers 1, 2, 3, or 4; and if A(y) = O,
xY = x, uY = u, etc.

There are 12 defining relations arising from the crossings and 6

from the points of order 3 as follows:

At the crossings:9

-1 =1 = =
a g d jalj bl =1, where (1,3) = (2,3), (3,2), (4;3), or (1,4)
-1 4-1 = 1, where (i,3) = (3,1), (4,2), (1,3), or (2,4)

a c a .
yi vl vi ¥3

a~l c-1 = 1, where (i,j)

9First, reading the graph clockwise for the "outer" crossings;
second, counterclockwise for the "middle" crossings; third, counterclock-
wise for the "inner" crossings.




Figure 7.

Projection of the graph of a general singular point for
reading the relations in G* = w(E3 - M,).

12
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At the points of order 3:

b, x~1 =21 =1

Y 4 Yu

z w-!la-l=1
Y Y Y

Around each singular point:

These relations can be solved for x in terms of the x 4 to obtain:
Y Y

o1 Twr 5 - : PN e [ |
X = X X X X X X X o
Y Y1 Y2 Y3 Y4 Y2 el styirneay 3

]
b
%

ke
~
| B

Thus, G*' has the presentation:
G* = m(E3 - My)

- ’:\'Y, Y = P1P2---P)> P; = 1,2,3,4, A(y) > O:

T [XYI *y2” *y3 XYu]|

This group has a representation onto Ag as shown on pages 14 and 15.




REPRESENTATIONS OF G2, G3, AND G“ ONTO Ag

Consider the following list of 3-cycles and commutators in the

10
Symmetric Group on five elements, Sg:

(123) = [ (124),(135)] = [(124),(125) (132)] = [ (154)(125),(125)(132)]]
(124) = [(123),(145)7] = [(123),(125) (142)] = [(153)(125),(125) (142)]]
(132) = [(135),(124)] = [(135), (154)(125)] = [(125)(132),(154) (125)]
(135) = [(132),(154)] = [(132),(124)(152)] = [(152)(135),(124)(152)]]
(142) = [(145),(123)7] = [(145),(153) (125)] = [ (125)(142),(153)(125)]]
(145) = [(142),(153)] = [(142),(123)(152)] = [ (152)(145),(123)(152)]
(153) = [(154),(132)] = [(154),{152)(135)] = [(124)(152),(152)(135)]]
(154) = [(153),(142)7] = [(153), (152)(145)] = [(123)(152),(152) (145)]]
(125) = [(123),(154)] = [(123),(124) (152)] = [(153) (125),(124)(152)]
(152) = [(154),(123)] = [(154),(153)(125)] = [(124) (152),(153) (125)]]

It is to be noted that the set of 3-cycles in the first column above

is closed under the 'commutations' in the second through fourth columns.
Thus, it is clear that a representation onto these 3-cycles exists for

G2 as follows: map x € G2 onto any one of the 3-cycles in the first col-
umn, then map x;, x, onto the corresponding elements in the commutator in
the second column. Since the first two columns are closed under ''commu-
tation,'" it is clear that an inductive definition for a mapping exists.
That is, X will be mapped to some element of the first column; X1 and

X 5 will be mapped to the elements in the corresponding commutator in the

second column. Therefore, there is a representation of G2 into Ss.

1OThe multiplication of elements here is from right to left.

1
Note that only the first eight elements of column one are needed
for the representation.




15

In a similar way, the remaining columns can be used to obtain
representations of G2 and G* into Ss.

The following products are sufficient to show that the elements
(123), (124), and (135) generate all the 3-cycles of Sg:
(123) (135) = (235)
(152) (124) (125) = (145)

(123) (142) = (143)

(153) (145) (135) (354)

(123) (135)(132) = (152)

(124) (145) = (152)

(123) (124) (132) = (234)

Since the 3-cycles of Sn generate the Alternating Group An’ it follows
that the 3-cycles in the list on page 14 generate all of A5.12 Thus,

a representation is shown to exist for each of the groups G%, G3, and

G* onto As.

12 T M _ e oy
Joseph J. Rotman, The Theory of Groups: An Introduction (Boston,
Massachusetts: Allyn and Bacon, Inc., 1965), p. 38.




DEFINITION OF Gi2 AND CONSTRUCTION OF

HOMOMORPHISMS OF Gi2 ONTO GK

FOR k > £ > 2

Definition of G

For each integer n > 0 and each integer k > 2, we define the
following sets:
A" = {a: a = P1P2..+P_»> a sequence of integers, A(a) = n,

piei{l, 2, 3, ... ,k}}

Thus, Aﬁ consists of all sequences of the integers 1, 2, 3, ... , k of
k
length n, and Gn is a set of elements in one to one correspondence
k
with the elements of An’ i.e., a «— Xa' Gn can then be regarded as a
n 13

set of generators for a free group of rank k . Let *Gi denote the

free group generated by the elements of Gﬁ. Now define the following

set:
Rh = {x‘l[x X ale olelsl X X ~ o' j: X 1s a generator
n a al a2 ai’® “a(i + 1) ak a
k
* : *
of Gn’ Xaj is a generator of Gn +1°
[ kR 14 .
A : i =[R2 \

oo

Let Fh - 8 *GE denote the free product of the groups *Gﬁ, for
n:

fixed k,lS and let G, be a group with the following presentation:

13William S. Massey, Algebraic Topology: An Introduction (New York:
Harcourt, Brace, and World, Inc., 1967), p. 102-105. (cf., Rotman,
p. 235-241; Crowell and Fox, p. 31-35.)

The notation [k/2] is used to denote the "bracket" function: the

largest integer less than or equal to k/2.

15Massey, p. 97-100; cf., Rotman, p. 247-249.
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k 7 k. k
Gy = |nk:)0 bn' nFZJO Rnl

We note also, that each *Gg is a free group, and hence Fk is also a

free group. For k = 2, k,) Gﬁ is simply the set of all X, where
n=20

a ranges over the set of all finite sequences of the integers 1,2.
” k

k_) R_ is then a set of elements x_[x , x ]. It is clear then,

n="o 0 ¢} al” a2

16

that for k = 2, G = G2. Similarly, G} = G and G} = G%. Since

there will be no confusion, hereafter we will write Gk for G&.

k
Homomorphisms of G _onto GKL for i 0= 2

Our objective is to obtain an homomorphism ¢£:G > GZ, onto,
for each k > £ > 2. That such an homomorphism exists is immediate
from Theorem 3, page 25. However, the homomorphism constructed here
has a particularly nice geometric interpretation.
Theorem 1. Let k > 2 > 2, there exists a homomorphism ¢£ of G’2 onto GZ.
Proof: If k = £, let ¢E be the identity homomorphism. So let k > £.
First, we define a map fﬁ: Fk > FK of Fh onto FK as follows: let i =
[ﬁ/g],j =[€/2]. Since kR > £, i > j. Let any x, € Fh be given, where a =
P1P2.--P» 1 S Py < k. 1I1f P> 1 <m < n, is one of the integers that
makes up the sequence a, it is clear that 1 < pm <js, j+1lcx P, <1i,
i+ 1< P < i+L-j,ori+L€-3j+1c< P, < k. (a) Suppose that
for some P, Ve have j + 1 < P, < iori+ €-j+1c¢< P = k. Then

define fﬁ(xa) =1€ Fz. (b) Suppose that for each P, either 1 < Pos j

6In the presentation of a group, it is understood that the rela-
tions may be written in a number of different ways. In our case here,
it is understood that x, = [xal, xazj and xal [Xal, xazj are equivalent.
c.f., Crowell and Fox, p. 37-38; Wilhelm Magnus, Abraham Karrass, and
David Solitar, Combinatorial Group Theory: Presentations of Groups in
Terms of Generators and Relations (New York: Interscience Publishers,

1966), p. 7.
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or i+ 1 < P < i+ £ - j. Define fi(xa)= yBEZF{ where A(B) = n, and

B = 9192---9 as follows: if 1 < P < j, then q, = pm; if i+1 < P <

- . . " 17,
+ £ - =3j-1i+p.
i f - j, then q, =3 i+0p
We assert that this definition of ff is a one to one mapping of a

subset Hh’C G!Z onto GK, where
n n n

= { e - - 1
Hn x € Gn.a P1P2+- P > 1 < P

IA
.
o}
a1

i+1¢< P S i+2- 3}

k £
which extends to a homomorphism from *G; onto *Gn (or to an isomorphism
: k
when restricted to *H:) for each n.

Letjpge G;. Then B = 9192---9 > and for each Qs l1 <m < n, we have

1< q, < £. The inverse image of y3 is then X where o = P1P2+ <P -

. - . = + 41— 3 .
Either P Qs for 1 < Q. < j, or P 9 i j, for j + 1 < q, < L.

i i k
Clearly, then, x is a unique element of Gn' Also, it is clear that

(o
£

/A L
fb is onto, and so it is a one to one correspondence between Hn and Gn'

By the definition of a free group, the mapping fi extends to a

k

£ ) nd k.
N > G, for each n, and its restriction to *Hn is

homomorphism fﬁ*: *G
an isomorphism. Since Ff2 is a free group, and ff* is defined for each
A

. . £
positive integer n, it is clear that fh*:F -+ F~ is a homomorphism onto.

k £ L k
Furthermore, since *Hn = *Gn under fk* restricted to *H , it is clear
n

that * *HE = Fz.

n=20

17For example, suppose kR =5, £ = 2, then,
X13311 > Y12211 X12331 > 1
X13312 > 1 X13413 > 1
X13313" > Y12202 Xo5413 > 1
X13314 > 1
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Let f;+ be defined above, and let
T

r = x_l—x SO oG oS o X /. o faae X
a a “al a2 ai’ “a(i + 1) ak-

be any element of R;, for any integer n > 0.

If :ik(x}) = 1, then a = P1P2-- P> l < P, < k, and by the defini-
tion of fz, either j + 1 < P, & i,ori+1+2~-4 < P, S k, for some
l <m < n. But then fﬁ (xls) =1, 1 <s <k, for each element of the
commutator above. Thus ffAfr ) = 1.

If f,,(x ) =y. # 1, then,

b * 3
fr (r ) = £ DIES(x ). el el ), Frx Ye wen JEC(x )]
R* R %a "=k "al R "ai’?’ "R "a(i + l) "ok’
=Yg :y;zvg;' e Vg fé(xxij L i 'fé(xai)’
Va5 + 10t VarfkCa(t + 14 - 300 t0 'fﬁ(xa&)]
=TF 0 T < Yg5° Y83 + 1)° -Yg¢ ]

and f;*(r ) € Qi.
Therefore, fé*(R;) © R;, for each n, and hence
{ Yy ok 2
£ ( R)C R
= J\;)O il nk;)O Iy
Thus, fﬁ* is a presentation map which extends to a homomorphism ¢h:

k 2

G - G, which makes the following diagram commutative

where q& and qﬂ denote the natural homomorphisms onto the quotient

group.

18Crowell and Fox, p. 4l.
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(]

£
Since fh* is onto, it follows that is also onto.

RS

~

This completes the proof.

n

The geometric meaning of the homomorphisms ®f

The geometric meaning of these homorphisms for G2, ¢3, and G* can
be seen from Figures 1, 6, and 7. The homomorphism @%:G3 + G* has the

B’ aB’

effect of ignoring all loops (horns) x3, a3, b3, and all loops x
bB’ where B is any sequence containing the integer 3. Furthermore,
the homomorphism tells us that G2 is contained as a subgroup of G3.
:G* + G2 has the effect of ignoring all loops (horns) xy, ay, bY’
c_, and dy’ where the sequence y contains any integer 2 or 4. That is,
it has the effect of ignoring one loop on each side. Similarly, ¢5:
G* + G3 has the effect of ignoring all loops Xy’ aY, bY’ CY, and dY’
where y contains the integer 2; thus, ignoring one loop on the '"left."
Because these homomorphisms exist, it is clear that it is
unnecessary to produce a non-trivial representation into a known group

to show that G , R > 2 is non-trivial. We simply produce a represen-

) k
tation for G2 onto some group K, and the non-triviality of G follows

from the homomorphism <1>E_:G!2 - G°.




DIRECT LIMITS OF SYSTEMS OF GROUPS AND THEIR

APPLICATION TO {G:k > 2)

Preliminary comments

The original question of whether E3 - M and E3 - M' can be dis-
tinguished by their fundamental groups has not yet been answered in
this paper, although the preceding discussion does help with examining
their structure for Mi’ i=2, 3, 4.

It is clear that each of the groups GPa is obtained by a limiting
process using the free groups {*GE: n > 0} and the set of relations
{RE: n > 0}. Discussions of the properties of direct limits of groups
are available such as that in Eilenberg and Steenrod.19 However, the
discussions are usually for abelian groups, and the proofs make use
of the commutative property.20 Therefore, it was decided to extend
this theory for the non-abelian case and to apply the extended theory
to the groups Gh.

The following exposition follows closely the development in

Eilenberg and Steenrod.

Direct limits of groups

Definition 1. A direct system of sets {X,p} over a directed set M
is a function which relates to each o € M a set Xq and to each pair

a,B8 € M such that a < B, a map oi:Xa > XB’ defined as follows:

19Samuel Eilenberg and Norman Steenrod, Foundations of Algebraic
Topology (Princeton, New Jersey: Princeton University Press, 1952),
p. 212-232.

ZOIbid., p. 6 and 221; cf., the proof of Lemma 4.4.




pa is the identity map, and for a < 3 <y, p
o

Definition 2. Let {G,m} be a direct system over the directed set M,

. B . .
where each G is a group and each n~ is an homomorphism. Let | * G
- L a€ M @
21
denote the free product of the groups in {G,7}. Let a < B, and let
ga€ G;' The element g_lnB(g ) will be called a relator, and

( Q Q Qa

R={gln°(g): a<B8inM, g €£GC_}
Q a Q Q Q

the set of all relators. Let Q be the normal subgroup of * G
o€ ! @

generated by R. Then the direct limit of {G,n} is the factor group

G = *G/Q
c€ M ¢
Definition 3. Let n:| |* Gm + G be the natural homomorphism. Then
a€ M °
anu = ﬂl:Gl > G is a homomorphism which will be called the projection
of G
o
Lemma 1. If a < B, then “V““ =
-1.8B B
Proof. L € G, and . 1 = 1. =
roo et g € G, and a <8 n(ga ﬂa(ga)) 1. Thus, nna(ga)
n(g ), but by the definition of projection, we have = nB(g ) =7 (g).
a B a “a a “o
Lemma 2. Ifu € 6; thereis an c€ Mandag € Gl,such that = (g ) = u.
a 0 Q Q

Proof. u is an image of some V€ * Ga under n. That is, n(v) = u.

Since * Ga is a free product, v is a finite product of elements of

the Ga: v=g g

- oL 3 (CAE Since M is directed, there is
a] Qo a oL

k
an a > ai, for all 1 < i < k. Define

wiw e (g Y (g Yo sae om Cge)
o] a1 (

a9 (0 X)) o

Bl B
Then
-1 o -1 -1_0C a
AR5 (B e O T S N R (g, )
OLk a1 O] O xk Uk
21 L e . . .
EacthGOl is identified in B * G by its image under the
al M
injection map: i :G -~ | % Gi, defined by
ol 0 e r (

=
iw(g”) =g s o= B

il’ .L‘# 5]
\

22
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n(v-lv)) = n(g;l-

—Jj1 -1_C 0 ] o
1 .gdz)n(gaivdl(gal))n(ruz(ga?). cee T, (ga ))

k "k

But the image of a relator is the identity, and so the whole right
member is the identity. Thus, n(v~lv;) = 1, and n(v;) = n(v) = u.
By definition, wv; €.GJ, thus n(v;) = "J(Vl) = u.

Lemma 3. Let g € GY and "Y(g) = 1. Then there is a §€ M such that
§ > y and T;(g) = 1.

Proof. Since = wicy, Y(g) = n(g) = 1. Thus g€ Ker(n) = Q.

If g is considered as an element of T_T} GL, it has at least one

expression as a product of conjugates of relators:

g = aro= gyt (g 1 . dus 8.2 N(g )a” (D)

for some positive integer nj; a. . M, where a, < B.; a. * :
P g . al., 816 o J-] 1° al € GC!’

gflvfi(g, ) E£R; for all 1 < i < n. Now a, is a reduced word in
1% %
elements of the G .

Thus a,; is a finite product of elements bij’
) A

where bi € G, for some cje M. Let Eie M be chosen such that

] Z .
J
Ei > Cj for all elements bij in a,. Let € M be chosen such that
S > v, e Bi’ and Ei’ for all 1 < i <n. Since § > v, ni(g) is defined;

thus, g as expressed in (1) must also have an image in Gd' Let nd(ai)
denote the result of all the mappings Wz (bij) for each bij in a, . Then
|
§ = § § ~1,..6 _B1 S, -1
Wy(g) m (al)“al(gal)n81“al(gul)“ (a7').
[ 5 e SN eI 8 -1
(nn)"A (g-)n, = n(g ) (a=’). (2)
= Sl o VD T n

The whole right member of (2), clearly, is a product of elements in

G Consider a general relator in (2). By Definition 1 and the

5°
properties of each mapping as a homomorphism, we have

T

it ) =1 (g ) 0 (g ) =1
- Mty ol | i R s

Q o

(g=1)n°
1 Sy B
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Thus each relator collapses to the identity, and so the whole right
member of (2) collapses to the identity. Therefore, ni(g) = 1 as
required.

Lemma 4. na(ga) = nB(gB) if and only if there exists a YE M,

Y > a,B, such that ﬂl(ga) = ﬂg(ge).

Proof. Suppose 3 exists such that wl(ga) = ng(ge). The elements
1Ty -1_Y t

g, ﬂa(gm)’ 8g NB(gB) € Q. But then

-1

B

since by hypothesis, the product of the two middle factors is the

) &y Y L=l
g, ﬂa(ga)-lg(g )ge g, g8€ Q

identity. Thus, n(g-!)n(g,) = n (g=!)n (g,) =1, and 7 (g ) = =,(g,)
L . L 4 » » L . e

L

as required.

Suppose na(ga) B nB(gB). Chose 6€ M such that § > a, B .

8§, _1,.6
Let g na(ga )nB(gB). Then
= (o1 6 - - -

ms(8) = mem ., (85 )ﬂdns(gg) = ﬂa(gu )nB(gB) = ]
by Lemma 1. By Lemma 3, there is a y > §, such that ng(g) = 1. Thus

S,y = Y. 8, 1, Y8 o +Y (o=1Y=Y =
Wy(g) N ﬂdna(ga )HGWB(gB) - na(ga )HB(gB) =1
and y is the required element of M.
Theorem 2. If {G,n} is a direct system of groups over the directed
set M, and for each a < B € M, ni:Ga + G_. has kernel one [or is a

B

homomorphism onto], then for each a,na:GOL + G has kernel one [or is a
homomorphism onto].

Proof. Let g € Ga such that g € Ker(na). By Lemma 3, there is an
element §€ M, § > a, such that ni(g) = 1. Since nz has kernel one

by hypothesis, g = 1. Thus Ker(na) = {1}.

™

a:Ga > GB is a homomorphism onto for each a < B.

Let u € G and 6 € M. By Lemma 2, there is a y € M and gY€ GY such that

Suppose that =

is onto, so there is a

ﬂY(gY) = u. Let £> vy, §. By hypothesis, ng
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€ _ € )
gée Gé such that “5(g5) = ﬂy(gy)' Thus, by Lemma 4, ﬂé(gd)

“Y(gY) = u, so that me is also onto.

Theorem 3. Let {G,n} be a direct system of groups over a directed

set M, where each Ga is a free group, the Ga are pairwise disjoint,

and each ﬂ?:GV1 > GB’ o < B, has kernel one. Then E, the direct limit,

O

is a free group.

Proof. By Theorem 2, ﬂa:Ga » G has kernel one for each a € M.

p—

By Definition 3, m_ = an‘, where n: [* G - G = Al |- G‘//Q is
“ > tEM @ a€E M ©
the natural homomorphism onto the quotient group. Thus n also has
kernel one. Since n is onto by definition, it is an isomorphism onto,
and * G = G.
a€E M ¢

Each Gq is a free group by hypothesis, and the Gn are pairwise

disjoint, so it follows that e * Gl is a free group.22 Thus,
ae M ¢
G= [ [*¢ , a free group, so that G is also free.

a € D o

Application to the groups Gh

Theorem 3 can be applied directly to our groups G{2 (see pages
k
16 and 17 for the definition). Clearly, G = Fh/Q, where Q is the
v k
normal subgroup of Ff2 generated by L_) Rit: IF ¥ E:Rk, then
=0 1 n n

r = x;I[xalxaz. S0c °xai’ xa(i #BH° ~°s 'xahj

A(@) = n, and r can be thought of as defining a function

“2 + 1(Xa) = [Xal' cee X Xa(i + 1) e 'Xahj'

{n: n > 0} is a directed set. Furthermore, it is clear that there is

. . e n .k k
an inductive definition nm:*Gm > *Gn, for 0 < m < n, and that because

m+ 1 n N k
T has kernel one, so does L By definition, the groups *Gn are

2
Massey, p. 103.




pairwise disjoint. Thus all the hypotheses of Theorem 3 are satisfied,
and it follows that Gh is a free group.

It is clear that Gh is generated by the elements nn(xa), A(a) =
n, n > 0, and that the number of such elements is countably infinite
for all k > 2.

Therefore, since G& and GE are both free groups of the same card-
inality for all k, £ > 2, it follows that Gf2 =~ GE.

In particular, the groups Gk, k =2, 3, 4, are all isomorphic
and thus the spaces E3 - Mi’ i= 2, 3, 4, cannot be distinguished by

their fundamental groups.
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