
 
 

 

 

 

BROADENING THE GENETIC BASE OF PAPAYA VIA INTERGENERIC 

HYBRIDIZATION WITH WILD RELATIVES 

 

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF 

HAWAIʻI AT MĀNOA IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE 

DEGREE OF 

 

MASTER OF SCIENCE 

 

OF 

 

TROPICAL PLANT AND SOIL SCIENCES 

 

DECEMBER 2016 

 

 

 

By 

 

Gregory T. Hoover 

 

 

 

 

 

Thesis Committee: 

Richard Manshardt, Chairperson 

Teresita Amore 

Stephen Ferreira 

Kenneth Leonhardt 

 

 

 

 

 

Keywords: Papaya, Vasconcellea, Crop wild relatives, Intergeneric hybridization, 

Embryo rescue, Polyploidy 



ii 
 

 ACKNOWLEDGEMENTS 

 

Thank you to my committee members, Teresita Amore, Stephen Ferreira, Kenneth 

Leonhardt, and to Kheng Cheah (College of Tropical Agriculture and Human 

Resources, Tropical Plant and Soil Sciences Department) for all their help and advice, 

to Karen Selph (School of Ocean and Earth Science and Technology, Flow Cytometry 

Facility), Tina Carvalho, (Pacific Biosciences Research Center, Biological Electron 

Microscope Facility), Jason Okamoto (Daniel K. Inouye U.S. Pacific Basin Agricultural 

Research Center, Tropical Plant Genetic Resources and Disease Resistance Unit) for 

their assistance, and most especially to committee chair, Richard Manshardt (College of 

Tropical Agriculture and Human Resources, Tropical Plant and Soil Sciences 

Department) for his continued support throughout this project.  



iii 
 

ABSTRACT 

 

Pre-breeding of papaya by hybridizing it with wild relatives could yield new traits 

of value to papaya production, both for agricultural (e.g. disease resistance) and 

consumer oriented (e.g. flavor components) traits. Hybrids between papaya and its 

closest major relatives, the Vasconcellea, ultimately result in sterile progeny.  Here, 

inducing tetraploidy is proposed as a method of overcoming that sterility.  Crosses were 

made between papaya and several Vasconcellea species by utilizing embryo rescue 

techniques.  These hybrids were then treated with a mitotic inhibitor, oryzalin, to 

produce plants with tetraploid tissues.  Thus far, flowering has occurred in interspecific 

hybrids, resulting in the production of larger, yet well formed, pollen grains. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Papaya (Carica papaya L.) is a widely grown fruit tree bearing large, sweet fruits. 

It is an important fruit crop throughout the tropics, consumed as either a fruit, if ripe, or a 

vegetable, if unripe. It is fast growing, with deeply lobed leaves on long petioles, bearing 

cauliflorous fruit on typically unbranched stems within 9 months of planting. In 

cultivation, papaya is often gynodioecious, producing either female or hermaphrodite 

plants, with the hermaphrodite fruit being the market standard due to its pyriform shape, 

which is preferred by consumers 

 Papaya is the only member of its genus.  The largest genus in the papaya family, 

Caricaceae (order Brassicales), is the Vasconcellea genus, whose members possess a 

number of valuable traits.  It would therefore be desirable to allow for the transfer of 

genetic material between the species.  Hybridization of papaya and Vasconcellea is a 

wide cross, however, meaning that the species are rather distantly related.  As such, the 

technique of embryo rescue was required for the production of hybrids.  In this 

technique, tissue culture methods are employed to retrieve embryonic material from 

otherwise inviable seeds, and from this material, generate complete plants.   

However, even when hybrids are produced between papaya and Vasconcellea, 

they tend to be infertile.  This sterility is the second problem which much be addressed 

in order to make full use of the genetic resources found in the Vasconcellea.  One 

possible method of overcoming this challenge is the use of induced polyploidy.  If the 

problem resulting in infertility is due to mispairing of the homeologous chromosomes of 

the two species, than doubling the chromosomes, thereby forming amphidiploid plants 

in which each set chromosome functions independently of the others, with a similar 

pairing partner during meiosis, may restore some of the fertility of the hybrids.  This was 

done by treating the hybrid meristems with oryzalin, a mitotic inhibitor which prevents 

the cells from properly dividing chromosomes between daughter cells, resulting in 

genome doubling. 
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1.2 Research Objectives 

         The objective of this research is to develop interspecific hybrids within 

Vasconcellea and intergeneric hybrids between Carica and Vasconcellea, and to raise 

these hybrid materials to the tetraploid level via oryzalin treatment.  With such a hybrid 

produced, the fertility of an intergeneric amphidiploid hybrid of papaya and a wild 

relative of the Vasconcellea genus can be evaluated.  The significance of this work is to 

unlock the potential of using wild genetic resources in papaya improvement.  This could 

lead to the introduction of new desirable traits, including tolerance of abiotic stresses, 

resistance to diseases like Phytophthora or papaya ringspot virus, and novel flavor 

components.  This work will also demonstrate the possibility of using induced polyploidy 

as method to restore fertility in Carica x Vasconcellea wide crosses and elucidate the 

nature of the hybrid sterility of these intergeneric hybrids. 

 

Summary of objectives: 

 Produce intergeneric Carica x Vasconcellea hybrids and interspecific 

Vasconcellea hybrids 

 Confirm hybrids using isozyme markers and characterize morphology & fertility of 

hybrids 

 Produce allotetraploid hybrids via oryzalin induced chromosome doubling and 

determine effects on fertility 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

         Along with banana, pineapple, and mango, the papaya is one of the most 

important of the tropical fruit crops.  The world production of papaya was 12.4 million 

tonnes in 2013 (FAO, 2016).  It is cultivated throughout the tropics, with the top five 

producers being India, Brazil, Indonesia, Nigeria, and Mexico.  In the United States, 

which ranks 30th in world papaya production producing 12515 tonnes, papaya 

production is based principally in the states of Hawaiʻi and Florida, with some minor 

production occurring in California (Warnert, 2004) and Texas (Sauls, [date unknown]).  

In Hawaiʻi, there is 28.6 million pounds of papaya production on 2000 acres worth $9.7 

million (NASS, 2011) 

 Papaya is commonly consumed as a sweet fruit, in which manner it can be 

consumed fresh, dry, or canned.  The skin color is yellow when ripe, although the flesh 

color can be either red or yellow, with the yellow flesh color being dominant.  There is 

great size variation in the fruits, with smaller, single serving varieties, commonly referred 

to as ‘Solo papayas’ being the standard in some parts of the world, and large, several 

pound varieties being the standard elsewhere.  The most well-known Hawaiian 

varieties, including the ‘Rainbow’, ‘Sunset’, ‘Laie Gold’, and ‘Kapoho’ varieties, are solo 

types.  The fruit can also be consumed under ripe as a savory vegetable in the form of 

green papaya salad, a common custom in southeast Asian countries, whereby the 

papaya is shredded and mixed with ingredients such as chili, lime, peanut, and shrimp.  

Additionally, its seeds possess a peppery taste reminiscent of other pungent flavors 

found in the Brassicales order, which can be crushed and used to make papaya seed 

dressing. 

However, the genetic base of papaya is narrow (Kim et al., 2002), with its closest 

relatives existing only in other genera, and has been further selected to have further 

reduced diversity (Moore, 2013).  This limits access to useful genetics, and required 

less conventional methods of solving problems, for example, to counter ringspot virus 

required transgenic methods (Gonsalves et al., 2004). 
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Genepools can be thought of as existing in three pools: primary, secondary, and 

tertiary (Harlan and de Wet, 1971).  Primary genepools are easily accessible, and 

commonly found within the same species.  Secondary genepools are those which are 

more difficult to access, such as traits found in other closely related species.  In other 

crop species, tapping into the secondary genepools has yielded beneficial traits.  In 

lettuce (Lactuca sativa), black aphid resistance has been brought in from L. virosa via 

the bridge species L. serriola (Dieleman and Eenink, 1980).  In tomato (Solanum 

lycopersicum), resistance to late blight has been brought in from S. pimpinellifolium 

(Gardner and Panthee, 2010).  In common bean (Phaseolus vulgaris), work is being 

done to bring abiotic stress resistance to common bean from P. acutifolius (Porch, 

2013).  In broccoli (Brassica oleracea var. Italica) and cabbage (B. oleracea var. 

capitata) work has been done to bring in resistance to powdery mildew from B. carinata 

(Tonguç 2004).  In squash (Cucurbita pepo) resistance to powdery mildew has been 

introgressed from C. martinezii (Whitaker and Robinson, 1980).   

  However, in all these cases, the hybrids are interspecific.  Such crosses are not 

possible with papaya, as Carica is a monospecific genus.  In the case of papaya, the 

only source of novel genetic material must be acquired from the tertiary genepool, the 

most distantly related and hardest to access possible source of genes.  While breeders 

have long made attempts to work with the existing gene pool within the papaya family in 

the Vasconcellea genus, these efforts have been met with limited success due to the 

infertility of the hybrid progeny. 

  

2.2 Overview of Relevant Species and Attempts to Hybridize Them 

Papaya is the sole member of the Carica genus of the family Caricaceae.  The 

family contains five other genera: Cylicomorpha, native to Africa, and the most basal of 

the family; Jarilla; Jacaratia; Horovitzia, a monotypic genus; and Vasconcellea, the 

largest genus of the family which was once classified as Carica. The family is thought to 

have origins in Africa and drifted into South America (Carvahlo and Renner, 2012).  One 

point of distinction between the Vasconcellea and Carica is that Carica possess a 

single, hollow seed cavity within the fruit, while Vasconcellea has a seed cavity filled 
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with placental tissue.  Both Carica and Vasconcellea have nine chromosomes.  In this 

project, there were nine species of Vasconcellea available. 

 Vasconcellea pubescens A. DC. (syn. V. cundinamarcensis), sometimes called 

the mountain papaya, is so named for its fuzzy, pubescent leaves. Along with virus 

resistance, it is suitable for cultivation due to its aromatic qualities, and is grown on a 

small scale in South America (NAP, 1989). The species is also able to tolerate light 

frost.  As the current genetically engineered variety was developed using a specific 

strain of PRSV, it does not always display resistance to other strains of the virus 

(Tennant et al., 1994). Although there is no present evidence of resistance breakdown 

in transgenic papaya, this is a concern, and there exists the potential for resistance 

breakdown if ever a virulent strain of the virus by some means comes to the growing 

regions.  

Hybridization with a naturally resistant species could lead to a more durable 

resistance, and as such, species such as V. pubescens are desirable targets from 

which to produce a successful hybrid.  Additionally, this species has favorable eating 

quality when processed.  Although lacking in sweetness when fresh, sweetened canned 

products are produced in Chile from this species.  These canned Chilean papaya 

products are highly delectable, with a firm, pleasant mouthfeel, and a flavor somewhat 

reminiscent of jackfruit or mango.  The leaves (Fig. 1) and fruit (Fig. 2) appear similar to 

that of a papaya, although the stems and veins of the leaves possess pubescence.  The 

fruits are smaller, more heavily ridged, and very aromatic. 
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Figure 1. Vasconcellea pubescens growing at Lālāmilo, Hawaiʻi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ripe Vasconcellea pubescens fruits 

 



 

7 
 

Vasconcellea quercifolia A. St.-Hil. is the second species with virus resistance. It 

is sometimes called the oak-leafed papaya. This species is arborescent.  The fruit of 

this species is small and yellow, with a high seed to flesh ratio, and is lacking in flavor, 

however, it has a high brix.  Flowers are a greenish color. 

Vasconcellea stipulata (V.M. Badillo) is the last species with virus resistance. It is 

so named for the stipules on the trunk of the plant, which are modified to form spines. 

The fruit possess a desirable, lime-like aroma. It is a mountainous species, which gives 

it suitability to high altitude cultivation (NAP, 1989).   V. pubescens, V. quercifolia, and 

V. stipulata were the species of primary interest, as these three possess the most 

desirable characteristics.  The flower color is yellow. 

 Vasconcellea parviflora A. DC. is a small, pachycaul plant. The small flowers are 

an ornamental shade of pink. The fruit is described as edible although it is too small be 

of value. A short plant, it is deciduous, and displays drought resistance.  The fruit of the 

plants utilized in this project were mildly palatable, with a taste reminiscent of dried 

tomato paste. 

Vasconcellea monoica (Desf.) A. DC., sometimes called “col de monte”, has the 

unique trait of being monoecious, with a central female blossom surrounded by a 

number of male blossoms on each inflorescence (Badillo, 1993). In places where it is 

cultivated, both the fruit and the leaves are consumed, as is indicated by its name, 

which means “cabbage of the mountain” (NAP, 1989). It has some resistance to papaya 

bunchytop disease, a disease of papaya in the Caribbean.  Fruits are egg-shaped, with 

yellow skin, and yellow flesh.  The fruit of the plants utilized in this project were not 

palatable.  Flowers are white. 

Vasconcellea goudotiana Triana & Planch is a tall, branching plant. While V. 

goudotiana is not resistant the ringspot virus, the plant displays resistance to 

Phytophthora, another disease of papaya.  Fruits are described as having variable 

quality, with the best described as being ‘apple like’ in their flavor.  Fruits can be either 

yellow, or a deep red wine color, both with pale yellow flesh.  Flowers are white, with 

some red pigmentation on the calyx. 

 V. × heilbornii (V.M. Badillo) is assumed to be a hybrid complex of other 

Vasconcellea species. It is commonly called a ‘babaco’, and is known for having mild, 
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pleasant fruits. It is seedless in female plants and as such requires asexual propagation 

through cuttings. It is cultivated on a small scale.  As it is assumed to be a hybrid of 

PRSV resistant species, it too should have resistance.  It potentially may also give flavor 

attributes to its progeny, however the fruit quality of this plant could not be evaluated as 

only a male was available, producing small white flowers. 

 Vasconcellea glandulosa (V.M. Badillo) and V. pulchra (V.M.Badillo) were also 

available for hybridization attempts, however, these are fairly unremarkable species.  

The practical use of hybrids derived from any these species remains to be seen.  A 

female V. horovitziana (V.M. Badillo), which has the unique feature among the family of 

being a liana, was also established, however, it never flowered and could not be utilized 

in any hybridization attempts.   

 Additionally, a Caricaceae outside of the Vasconcellea genus was used when 

available: Horovitzia cnidoscoloides (Lorence & R. Torres).  H. cnidoscoloides is a 

recently named species. Like Carica, Horovitzia is monotypic. The species name means 

nettle-like, in reference to the nettle like trichomes on the leaves. Little has been 

reported on this species, and it is not known if it is resistant to the ringspot virus. There 

are no known reports of attempted hybridization of Carica and Horovitzia, although 

genetic studies have indicated that it has more recently diverged from Carica than 

Vasconcellea (Carvalho and Renner, 2012), which suggest that it may be more apt to 

successfully hybridize with Carica. 

Hybridization attempts within the Caricaceae have been made for over a century.  

Horovitz and Jimenez report early extensive work in hybridization among multiple 

Vasconcellea, as well as C. papaya x V. pubescens (Horovitz and Jiménez, 1967).  

Mekako also made numerous crosses within the Vasconcellea, however reported 

Vasconcellea’s incompatibility with papaya (Mekako and Nakasone, 1975).   Wenslaff 

did produce hybrids between Carica and Vasconcellea, however, with limited fertility 

(Manshardt and Wenslaff,1989).   Numerous hybrids have been produced at Griffith 

University in Australia between papaya and Vasconcellea, including hybrids with V. 

goudotiana, V.parviflora, and V. quercifolia (Drew, 1998).  Backcrossing has been 

attempted with some of the resulting progeny with some success (Drew, 2011).  Despite 

the effort, there has yet to be an example of a commercial improvement in papaya 
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through transfer of genes from wild relatives, due to the resulting sterility of the hybrids, 

which consequently prevents the use of Vasconcellea genes in papaya improvement. 

 

2.3 Induced polyploidy and fertility 

Although they possess the same number of chromosomes (2n=2x=18), a lack of 

meiotic pairing may be a cause of the sterility of intergeneric Carica x Vasconcellea 

hybrids; a doubling of the chromosomes may allow each set a partner for proper pairing 

and division, resulting in restored fertility.  Chromosome doubling has been used to 

restore fertility in some intergeneric hybrids, such as in the intergeneric ornamental tree 

xChitalpa (Olsen, 2006) and in okra interspecific hybrids (Reddy, 2015).  In the well-

known case of the intergeneric hybrid grain triticale, attempts had been made for almost 

a century to hybridize wheat and rye, however the hybrids had little to no fertility.  It was 

not until the hybrids underwent chromosome doubling that the fertility was restored and 

triticale could become a viable crop (Ammar, 2004).   
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CHAPTER 3: WIDE CROSSING OF CARICA PAPAYA L. AND VASCONCELLEA 

SPECIES AND RESCUE OF HYBRID EMBRYOS 

3.1 Introduction 

Embryo rescue is a tissue culture technique used to establish otherwise 

nonviable hybrid offspring.  In the normal development of a seed, endosperm develops 

in the seed to serve as a reserve of nutrients for the embryo, to give it sufficient energy 

to produce photosynthetic organs and survive independently.  However, in cases where 

normal endosperm development does not occur, the only means of allowing an embryo 

further growth is to grow it in vitro.  In a wide cross between species separated by 

diverging evolutionary pathways, such developmental abnormalities as endosperm 

failure are common.  Therefore, it may be that the only way to produce wide crosses is 

to make use of embryo rescue. 

In this process, fully formed embryos or partially developed embryonic material 

have potential to develop into fully formed plants.  A fully formed or nearly fully formed 

embryo may be able to germinate normally when given a source of energy to substitute 

for the endosperm it naturally lacks.  An immature or poorly formed embryo may be 

cultured on media designed to encourage further development, or to undergo alternative 

routes of plant development, such as the production of somatic embryos, which in turn 

are able to develop and germinate to form plants. 

Embryo rescue has been utilized to facilitate the hybridization among numerous 

crop plants and their relatives, including papaya (Drew, 1998).  While some interspecific 

hybrids in the Caricaceae are able to be produced without the use of embryo rescue 

(Horovitz and Jiménez, 1967, Mekako and Nakasone, 1975), or occur spontaneously in 

the wild (Badillo, 1993), there has been no report of successful hybridization between 

papaya and any other species without the use of embryo rescue. 

 

3.2 Materials and Methods 

3.2.1 Plant material origin and establishment 

Plant material of wild species was obtained from 2014-2016 from the USDA 

Tropical Plant Genetic Resources and Disease Research Unit of the Daniel K. Inouye 
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Pacific Basin Agricultural Research Center in Hilo, Hawaiʻi, as either woody cuttings, 

seeds, or immature seedlings (Table 1).  Woody cuttings 3-4 inches in length of both 

terminal and non-terminal sections were rooted in Oasis™ Rootcubes (Smithers-Oasis, 

Kent, OH) after being dipped in Hormex Rooting Powder #3 (IBA 0.3%)  (Maia Products 

– Hormex, Westlake Village, CA), and placed in plastic boxes to maintain high humidity 

on a south facing windowsill.  Non-terminal cuttings had the apical end wrapped in 

Parafilm (Bemis, Oshkosh, WI).  Cuttings of V. pubescens, V. stipulata, V. quercifolia 

failed to root, but V. x heilbornii, V. glandulosa, and V. pulchra rooted readily. 

Seeds of V. stipulata, V. goudotiana, V. monoica, and V. parviflora were soaked 

overnight in water, and placed in vermiculite, which was kept moist, in a greenhouse.  

Germination typically occurred within a month.  In the case of V. stipulata, germination 

was only rapid when using fresh seed taken right out of a fruit.  In contrast, a long 

dormancy period prevented ready germination of V. quercifolia and V. pubescens.  This 

was overcome by removing and growing the embryos in culture. 

To overcome the dormancy problem, seeds were placed in a solution of 1.05% 

sodium hypochlorite with liquid detergent as a surfactant, and kept submerged for an 

hour.  Afterward, they were removed in a sterile flow hood, rinsed with sterile water, 

dissected, and embryos placed on the charcoal media (see Chapter 3.2.3. Embryo 

Rescue).  Germination of these was greatly expedited to less than two months, and 

within three months seedlings were established out of culture.  The germination rate of 

these cultured embryos was only around 25%, with most embryos, even those 

undamaged by the extraction, failing progress; this was nonetheless an improvement 

over the total lack of germination when attempting standard seeding procedures. 

Material from Horovitzia cnidoscoloides, a closely related species with leaves 

resembling nettle leaves, was also obtained, however, cuttings did not root and seeds 

died of fungal pathogens shortly after germination. 

Plants which were established were grown in greenhouse conditions or field 

planted, with the exception of V. pubescens.  V. pubescens did not tolerate the warm 

(>30 C°) conditions of the greenhouse, and required cooler (23 C°) indoor conditions on 

a south facing windowsill in an air-conditioned lab to survive. 
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 Multiple inbred (Table 2) and hybrid papaya genotypes were used as parents in 

cross-pollinations with wild relatives.  Papaya were grown at the Waimānalo Experiment 

Station in Waimānalo, Oʻahu, and at the Magoon Horticulture Facility in Mānoa, Oʻahu.  

Additionally, several feral papaya plants of unknown origin, which were growing at the 

University of Hawaiʻi at Mānoa Campus in Honolulu, Hawaiʻi, were used. 
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Table 1. List of species and type of material received 

Species Propagative material Plants established 

Vasconcellea pubescens Cuttings, seeds, pollen 2 

Vasconcellea stipulata Cuttings, seeds 7 

Vasconcellea quercifolia Plants, cuttings 16 

Vasconcellea goudotiana Seeds 8 

Vasconcellea monoica Plants, seeds 5 

Vasconcellea parviflora Plants, seeds 14 

Vasconcellea xheilbornii Cuttings 2 

Vasconcellea glandulosa Cuttings 3 

Vasconcellea pulchra Cuttings 3 

Horovitzia cnidoscoloides Cuttings, seeds, pollen 0 
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Table 2. Papaya inbred and hybrid genotypes used as parents in cross-pollinations with 

wild relatives 

Big Island x Sekaki Big Island x Laie Gold Sekaki x Kapoho Line 8 

Sekaki x Kapoho Sekaki x SunSet (Line 34 x Sekaki) x Laie Gold 

SunUp x Rainbow Big Island x SunSet Sekaki 

Big Island Kapoho Kapoho Line 8 

Line 58 Line 34 Laie Gold F2 

SunUp Sunrise Sekaki x Laie Gold 
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3.2.2 Crossing procedure 

Papaya was typically used as the female parent owing to a lack of flowering 

female Vasconcellea plants.  In some instances, however, female Vasconcellea flowers 

were readily available, and in these cases hermaphrodite papaya pollen was used both 

due to lack of male papaya flowers and in order to carry the desirable hermaphrodite 

gene into the interspecific progeny.  Male Vasconcellea flowers were removed from 

their inflorescences after anthesis, and their five petals were removed to expose the 

anthers.  Female papaya flowers were manually opened just prior to anthesis to ensure 

receptivity and pollinated immediately to avoid unintended cross-pollination.  Multiple 

male or hermaphrodite flowers were used for pollinations in all instances where material 

was available, typically between 5-10 flowers.  The flowers were gathered into bundles, 

and anthers were rubbed on the stigma of the papaya flower to encourage pollen 

shedding.  Pollen-bearing flowers were left in contact with the stigmatic surface within 

the corolla of the female flower.  After pollination, papaya flowers were covered with 

glassine paper bags (Brown Paper Goods, Waukegan, IL) and tied around the floral 

pedicel to prevent pollen contamination from other sources (Fig. 3).  Ties with pre-

attached metal rimmed paper tags (Avery-Dennison 14313, Brea, CA) were used for 

identification purposes.  Pencil was used to mark the tags, as it is less prone to fading in 

strong light than ink. 

Figure 3. Bagged and tagged pollinated female papaya flowers 
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3.2.3 Embryo rescue 

Fruits were allowed to develop on the tree for a minimum of three months, but 

sometimes until maturity at five months.  To prepare the fruits for embryo rescue, they 

were surface sterilized before being introduced into the sterilized flow hood.  Fruits were 

immersed in 1.05% sodium hypochlorite, with the addition of several drops of liquid 

detergent as a surfactant, for a minimum of 30 minutes.  The fruits were rinsed with 

95% ethanol, flamed, and placed on a sterile petri dish within the laminar flow hood.  

Autoclaved forceps and scalpels were used to open the fruits. 

Concerning sterility of the culture, it should be noted that papaya has been 

reported to harbor endophytic bacteria which sometimes proliferate in tissue culture.  A 

bacterial contaminant, was recurrently encountered among rescued embryos and in 

vitro transfers for a period of time.  This problem was eliminated by taking additional 

sterility precautions, including autoclaving tools for 40 minutes (at 120°C and 20 psi) 

before every use, and bleaching and changing the alcohol in the tool holder.  

Autoclaving for 20 minutes was unsuccessful at eliminating the contaminant. 

 Ovules were opened in a sterile dish with the aid of a dissecting microscope, and 

any embryonic material was removed and placed in tissue culture.  Media were 

contained in Magenta boxes which had been vented by drilling holes in the lid and 

covering with Micropore tape (3M Health Care, St.Paul, MN).  Three types of media 

were used, depending on the degree of development of the embryo obtained (Table 3).  

All formulations were based on Murashige & Skoog medium with organics (Murashige & 

Skoog, 1962). 

The standard embryo rescue medium contained activated charcoal.  This was 

used as the general, all-purpose media.  Activated charcoal is used in tissue culture to 

adsorb secondary metabolites, which are secreted by the plant and which could hinder 

growth if an excess build-up were to form, as well as to shade the roots (Pan and van 

Staden, 1998).  The second type contained coconut water, which contains a natural 

mixture of hormones, including cytokinins, which are used to promote embryo 

development.  The third type contained the synthetic auxin 2,4-D, which is used to 

induce somatic embryogenesis, and has been used in papaya tissue culture for that 

purpose at 5 ppm (Fitch, 1993).  Each type could be used for a different potential 
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embryonic material: the charcoal media for normal, well developed embryos, to promote 

normal germination; the coconut water media for less mature embryos, which may 

benefit from further development; the 2,4-D media for poorly formed embryonic masses, 

which may produce somatic embryos rather than be directly germinated. 
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Table 3. Tissue culture media ingredients 

Media type Sucrose Gelrite MS Strength Additives 

Standard 30 g/L 2.8 g/L 1.0 x Charcoal, 10 g/L 

Coconut 60 g/L 2.8 g/L 0.5 x Coconut water, 100 ml/L 

2,4-D 60 g/L 2.8 g/L 0.5 x 2,4-D, 5 ppm; Glutamine, 400 

mg/L 
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Embryos were kept in the dark until they had grown upright and begun to open 

their cotyledons, at which time they were placed on shelves under four 40-watt 

fluorescent bulbs. When they appeared to have developed sufficient root mass and leaf 

area to sustain themselves outside of culture, they were lifted from their Magenta boxes, 

placed in dishes of water, and the media was scraped away using forceps and a 

spatula.  Plants were then potted in sterilized vermiculite which had been watered with 

full strength MS solution, enclosed in clear plastic bags, and placed in indirect natural 

light on a south facing windowsill (Fig. 4).  After several days, the bags were cut open to 

allow for a gradual decrease in humidity and an adjustment to normal conditions, with 

the cuts being further widened every 2-3 days, until no moisture condensation was 

visible inside the bag. 

Figure 4. C. papaya x V. goudotiana being acclimated from culture 

 

 

Plants remained indoors and in vermiculite until they had begun to develop new 

growth, and typically until root growth could be observed at the bottom of the container.  
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At this point, they were transferred to Sunshine Mix #4 (Sun Gro Horticulture, Agawam, 

MA) and vermiculite and fertilized as needed with soluble fertilizer (Miracle-Gro® Water 

Soluble All Purpose Plant Food, 24-8-16) (Scotts, Marysville, OH) or slow release 

fertilizer (Osmocote, 14-14-14) (Scotts, Marysville, OH). 

 

3.3 Results 

3.3.1 Intergeneric Carica x Vasconcellea hybridization 

No intergeneric crosses produced endosperm within the ovules.  Fruit size and 

ovule development were not necessarily correlated with embryo development, as some 

crosses produced an abundance of ovules which were lacking embryonic material.  

Ovules that did develop, particularly in papaya, tended to be located primarily toward 

the stigma end of the fruit (Fig. 5).  Particularly on the crosses made onto Vasconcellea, 

fruit abortion was common.  Embryos displayed a wide range of variation, with some 

crosses yielding polyembryonic masses, others yielding reasonably well formed single 

embryos of differing stages of development, and still others producing small, solid white 

masses of embryonic material. 

Figure 5. Papaya fruit showing typical ovule placement 
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C. papaya x V. monoica 

The female papaya parent was a vigorously growing feral tree.  Crosses 

produced well developed embryos which were commonly polyembryonic.  Despite the 

relative ease of making the hybrid, the embryos which germinated in culture inevitably 

senesced shortly after the production of true leaves, typically appearing to melt from the 

apex, commonly producing somatic embryos from the roots (Fig. 6).  This happened in 

almost all instances, regardless of how healthy plants appeared when younger. 

Figure 6. C. papaya x V. monoica hybrid displaying somatic embryogenesis 

from the roots 

 

C. papaya x V. parviflora 

Despite the production of embryos, which tended to be small and immature, and 

which could be either solitary or polyembryonic, most of the retrieved material failed to 

produce anything similar to a well-developed plant, even in cases where more 

developed embryos were produced.  Although large masses of callus were produced by 

the embryonic materials (Fig. 7), all of it failed to develop into organized tissues.  A 

small number of embryos germinated, but none produced any leaves beyond the 

cotyledons. One exception was able to produce a single, small, green leaf; however, it 

undertook no further development, and later senesced.  Six crosses were made onto 
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papaya, and 94 were made onto V. parviflora using hermaphrodite papaya pollen. While 

the former cross was able to generate embryos, the reciprocal yielded no embryonic 

material. 

 Figure 7. C. papaya x V. parviflora, typical callus formation 

 

C. papaya x V. goudotiana 

Plants were generated by removing embryos, which were well formed and often 

polyembryonic, from generally well formed ovules.  Media transfers were dependent on 

the growth and progress of individual plantlets, however, the general process was to 

place the embryos on coconut water for 5 months, during which growth was commonly 

disorganized and resulted in the production of a small amount of somatic embryos.  

Well developed, germinated embryos, when placed on charcoal media, quickly 

developed, and within 3-4 months were ready to be transferred into light.  Although 

there were some instances of root rot upon being taken out of culture, most plants 

continued to display hearty growth. 

Reciprocal crosses were also made, using pollen from ‘Kapoho’ hermaphrodite 

papaya flowers, with two plants resulting. In contrast to the crosses using papaya as the 

female parent, the fruit of the V. goudotiana maternal parent for this cross was opened 

only 25 days following pollination, following the early abortion of the fruit.  These 

crosses were grown via ovule culture, without the removal of embryos, exclusively on 

charcoal media.  Germination was slow, taking 6 months before change was observed, 
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and growth in culture was also slow, taking about a year before it was removed from 

culture. 

 

C. papaya x V. pubescens 

Of 59 attempted cross-pollinations, in one fruit small, white, globular stage 

embryos were found within well-developed ovules.  The embryonic material was placed 

on 2,4-D media, upon which the embryos gave rise to multiple plants, callus, and 

somatic embryos.  After two months, material which had developed into organized 

plants were placed on the charcoal media.  Four months later they were transferred into 

the light (Fig. 8).  Plants placed in light tended to quickly develop strong root and shoot 

growth, so that after one additional month, they could be taken out of sterile culture and 

adapted well to autonomous survival. 

 

Figure 8. C. papaya x V. pubescens.  This plant survived to grow 

vigorously out of culture. 
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C. papaya x V. stipulata 

Crosses produced generally well formed embryos, which were able to germinate 

into well-formed plants when placed on charcoal media.  Germination was rapid, and 

plants were transferred to the light in two months, and into vermiculite in another two 

months. 

 

C. papaya x V. quercifolia 

There were two successful crosses out of 71 attempts.  These were well formed 

embryos, which germinated in charcoal media.  The first of which displayed callus 

production and growth abnormalities in early development, but later growth appeared 

normal.  The second germinated rapidly, within two weeks, and upon being placed in a 

lighted environment, developed normally.  These are currently still in culture. 

 

C. papaya x V. x heilbornii 

Embryonic material, which was not distinguishable from ovule wall at the time of 

removal, was placed on charcoal media for five months, after which developing plantlets 

were transferred to the light, where they remained for another month before being 

moved out of sterile culture. 

 

Minor crosses 

Crosses were made using V. glandulosa as the female parent with 

hermaphrodite papaya pollen.  This cross was only made onto the Vasconcellea parent, 

as no male of the species was present.  Of 99 crosses, none yielded embryonic material 

or hybrid plants (Table 4).  Two crosses were made using V. pulchra as a male parent 

onto papaya; both failed.  Eight crosses were made using Horovitzia cnidoscoloides 

pollen, but these also failed completely (Table 4). 
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Table 4. Intergeneric crosses and successes* 

Female 

parent Pollen parent Crosses Successes Success rate 

C. papaya V. goudotiana 8 4 50% 

C. papaya V. monoica 7 2 22% 

C. papaya V. parviflora 6 0 0% 

C. papaya V. pubescens 59 1 2% 

C. papaya V. pulchra 2 0 0% 

C. papaya V. quercifolia 71 2 3% 

C. papaya V. stipulata 33 2 6% 

C. papaya V. x heilbornii 17 1 6% 

C. papaya H. cnidoscoloides 8 0 0% 

V. glandulosa C. papaya 99 0 0% 

V. goudotiana C. papaya 10 1 14% 

V. monoica C. papaya 4 0 0% 

V. parviflora C. papaya 94 0 0% 

V. quercifolia C. papaya 16 0 0% 

*Successes defined by number of unique hybrid yielding fruits 
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3.3.2. Interspecific Vasconcellea hybridization 

V. parviflora x V. pubescens 

Ovules were well developed, however, did not appear to have embryos, only 

large amounts of what seemed to be endosperm.  This was placed on charcoal and 

coconut water media.  Two months later, developing plantlets were present on the 

coconut water media.  These were transferred to charcoal media, before being placed in 

the light, as development progressed, and ultimately into vermiculite. 

 

V. glandulosa x V. pulchra 

Ovules contained fully formed embryos with endosperm.  Several excised 

embryos rapidly germinated in culture in charcoal media.  One which was seeded in 

vermiculite also germinated under greenhouse conditions, however much more slowly, 

possibly owing to the dormancy period common in the wild species. 

 

V. monoica x V. stipulata 

Ovules of this cross contained endosperm and well developed embryos, such 

that they were very similar to non-hybrid seed, but the ovules were smaller.  Embryos 

germinated readily on charcoal media, within two weeks. 

 

V. monoica x V. parviflora 

 Ovules contained polyembryonic clusters, which were able to germinate on 

charcoal media. 

 

V. parviflora x V. monoica 

 Ovules contained undifferentiated tissue, which was grown on 2,4-D media, and 

later transferred to charcoal media to germinate. 

 

V. parviflora x V. goudotiana 

Development of ovules appeared normal, with endosperm, and these were 

placed in charcoal media.  Germination was slow, taking 4 months. 
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V. quercifolia x V. parviflora 

These hybrids were produced in 2012-2013 by previous researchers.  Ovules 

were plated and subcultured on charcoal medium.  Plantlets were ready for transfer to 

potting mix in about 6 months.  

 

V. quercifolia x V. parviflora F2 

This cross was made by sibbing male and female V. quercifolia x V. parviflora F1 

plants.  Placed on the charcoal media, this hybrid took seven months to develop in 

darkness. 

 

3.4 Discussion 

Crosses were made using a variety of materials within the Caricaceae, focusing 

predominantly on intergeneric crosses between Carica and Vasconcellea.  Successful 

crosses yielded embryonic material which was able to generate an autotrophic plant.  

Due to the partial incompatibility of some of the interspecific crosses, and all of the 

intergeneric crosses, embryo rescue was employed in order to generate hybrids.  

Ultimately, a variety of successful interspecific crosses, and five viable types of 

intergeneric hybrids were produced.  The intergeneric hybrids include: C. papaya x V. 

pubescens, C. papaya x V. goudotiana, C. papaya x V. x heilbornii, C. papaya x V. 

stipulata, and C. papaya x V. quercifolia.  Of these, C. papaya x V. x heilbornii has not 

been reported previously in the literature.  Two additional interspecific crosses, V. 

goudotiana x C. papaya and C. papaya x V. monoica, were established outside of 

culture; however, these lacked vigor and subsequently died. 

Crosses displayed varying degrees of cross compatibility.  In the interspecific 

crosses, V. glandulosa x V. pulchra, V. monoica x V. stipulata, and V. parviflora x V. 

goudotiana, fruit and ovule development appeared normal, and largely indistinguishable 

from intraspecific crossing, with embryo and endosperm development being relatively 

normal.  In others, compatibility was lower, as was the case of V. parviflora x V. 

pubescens, where the fruit appeared normal but embryo development was not, and 

embryo growth was slow and sporadic.   
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In intergeneric crosses, while all Carica x Vasconcellea attempts displayed a 

lower degree of cross compatibility, there was still variation.  The ability of crosses to 

produce well developed embryos did not necessarily ensure the success of the cross.  

Hybrids between C. papaya and V. parviflora and V. monoica were able to produce 

torpedo stage embryos, but, these crosses were generally not successful in producing 

viable hybrid plants.  In the case of the C. papaya x V. monoica material, although 

embryos were able to proliferate and germinate in culture, they ultimately had the habit 

of dying back, occasionally showing further production of embryos afterwards along the 

roots.  Development rarely occurred beyond the cotyledons, and only two plants 

capable of being removed from culture were produced.  In C. papaya x V. parviflora, 

almost no organized tissues, were produced at all, only callus.  The few examples of 

organized tissue which were produced inevitably died.  This is in stark contrast to other 

reports of C. papaya x V. parviflora, which has produced well-formed flowering plants 

(O’Brien, 2009) and has been described as being sufficiently fertile to be used as a 

bridging species for the introgression of traits from other Vasconcellea into papaya 

(O’Brien and Drew, 2009). 

Conversely, C. papaya x V. pubescens produced only globular stage embryos, 

and many of the fruits of this cross aborted before substantial fruit development, yet 

these hybrids proved to be vigorous and healthy.  Additionally, fruit development also 

did not necessarily correlate with the development of embryonic material; papaya in 

particular was commonly able to produce mature, ripened fruits without any 

development of ovules. 
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CHAPTER 4: CONFIRMATION OF HYBRIDS AND DESCRIPTION OF 

MORPHOLOGY AND FERTILITY 

4.1 Introduction 

Although morphological differences could oftentimes be readily observed in the 

hybrids, such as the pink flower color of V. parviflora or the pubescence of V. 

pubescens, hybrid phenotypes are not always predictable from parent characteristics or 

diagnostic of hybrid status.  Reproductive sterility may be used to support morphological 

identification of hybrids. Several potential sources of error, such as accidental cross 

pollination, mislabeling, or potential apomictic seed development could lead to 

obfuscation of putative hybrids, thus necessitating more objective measures of 

parentage.  Isozyme markers were used to acquire objective proof of the hybrid origin of 

reported crosses. 

Isozymes are enzymes which show molecular variation across, and even within, 

taxa.  This variation allows taxa to be distinguished as separate, or in this case, offering 

molecular confirmation of the parentage of hybrids.  By extracting proteins and 

separating isozymes by gel electrophoresis, the true origin of a putative hybrid can be 

confirmed in isozyme banding phenotypes containing species-specific alleles of both 

parents.  This method was used to acquire objective proof of the hybrid origin of 

reported crosses. 

 

4.2 Materials and Methods 

4.2.1 Greenhouse acclimation of hybrids 

Plants were acclimated to the greenhouse by first placing them under a dual 

layer of shadecloth (2x 50% reflective shade, or 25% ambient light) for a period of a 

week, and then moving them under a single layer.  The greenhouse was located at the 

University of Hawaiʻi Magoon Horticulture Facility in Mānoa, Oʻahu. 
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4.2.2 Isozyme testing of hybrids 

The histidine-citrate buffer (700 ml) for the electrophoresis gel and trays was 

prepared containing 65 mM L-histidine and 7 mM citric acid and adjusted to pH 6.5.  A 

potato starch gel (13.3% wt:vol) was prepared by mixing 53.2 g potato starch and 400 

ml of a 1:3 of dilution of the electrophoresis buffer and water (100 ml buffer stock and 

300 ml water).  This was brought to a boil, while being mixed well using a mechanical 

stirrer, and air bubbles were removed in a vacuum flask.  This was then poured into the 

gel mold and left overnight to cool in a refrigerator at 4 C°. 

Isozyme extraction buffer was prepared according to Aradhya et al. 1998.  This 

slurry was mixed well.  A 30-well Plexiglas grinding block was prepared for the 

extraction by pre-cooling it in the -20 C freezer and loading each well with 0.5 ml of 

extraction mixture and two, 6-mm dia. leaf discs, punched out with a hole punch. The 

grinding block was kept on ice, while the discs were ground with a glass rod until the 

contents of the well appeared green throughout and the leaf material was completely 

pulverized.  Wicks of paper (Whatman Grade 3MM Chr Chromatography Paper) were 

cut into thin rectangles and inserted in the wells for 10 minutes to absorb the mixture.  

Two wicks were used per well. 

 Wicks were inserted into the gel by making a cut with a scalpel along the long 

side of the gel, and wicks were inserted into the gel using forceps, making sure that the 

wicks reached the bottom of the gel.  Gels were run for 5 hours at 225 volts and 65 

milliamps, keep cool in a refrigerator, wrapped in plastic wrap with a plastic box of ice 

on top.  After 10 minutes, the current was momentarily turned off and the wicks were 

removed to allow for better current flow. 

After stopping the current, the gel was removed and cut into sections.  Placed 

face up on a cutting tray, nylon thread was run along removable plastic slats, such that 

the gel was cut into four thin horizontal slices.  The top section was discarded.  The 

remaining sections were placed in trays containing substrates appropriate to the 

enzyme system to be tested (Table 5).  Components common to all systems were 20 ml 

0.2M Tris-HCl, pH 8.0), 20 ml deionized water, 1 ml MTT (a tetrazolium dye), 1 ml 

phenazine methosulfate (PMS), and 1 ml nicotinamide adenine dinucleotide (NAD).  

After 90 minutes incubation at 37°C, gels were removed, washed lightly with DI water, 
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and a placed in a fixative solution of 10 parts methanol to 10 parts DI water to 1 part 

glacial acetic acid. 

  



 

32 
 

Table 5. Isoyzyme system specific ingredients 

System System specific ingredients 

MDH 2.5 ml malate solution 

PGM 1.0 ml MgCl2, 1 ml G6PDH, 40 mg Glucose-1-phosphate 

PGI 1.0 ml MgCl2, 1 ml G6PDH, 20 mg Fructose-6-phosphate 

IDH 1.0 ml MgCl2, 40 mg Isocitric acid, Na3 salt, 1.0 ml NADP (replaces NAD) 
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4.2.3 Pollen testing of hybrids 

Only four hybrids produced male flowers: C. papaya x V. goudotiana, V. 

goudotiana x C. papaya, V. quercifolia x V. parviflora, and V. quercifolia x V. parviflora 

F2.  An estimate of the fertility of the hybrid pollen can be made by staining with 

acetocarmine and observing the amount of symmetrical, deeply red-staining pollen 

grains compared to the amount of small, irregularly shaped and colorless pollen grains 

produced.  This was done by staining pollen with acetocarmine.  Anthers were removed 

from two flowers and placed on a glass slide.  Two drops of acetocarmine stain in 45% 

acetic acid were dripped on the anthers, and the anthers were repeatedly mashed into 

the dye for several seconds before being removed and covered with a glass cover slip.  

Nail polish (Sally Hansen Hard as Nails) was used to seal the coverslip.  An Olympus 

BX-51 compound microscope with Optronics MacroFire camera 

(www.pbrc.hawaii.edu/bemf/) was used to record images of the slides at 200x or 400x 

magnification, and ImageJ software (https://imagej.nih.gov/ij/) was used to analyze the 

images.  Pollen grains which appeared normal in size and shape and which were able 

to take up the dye, were considered to be viable pollen grains, while those which were 

abnormal and could not uptake the dye were considered to be inviable. 

 

4.3 Results 

4.3.1 Characterization of intergeneric Carica x Vasconcellea hybrids 

C. papaya x V. monoica 

Although an abundance of material proliferated in vitro, only two hybrid plants 

were able to be established outside culture.  One developed three-lobed leaves (Fig. 9), 

while the other developed five-lobed leaves.  Both displayed a marked lack of vigor, and 

subsequently died while still less than 10 cm tall.  This hybrid has been reported 

previously (Malaguti, 1957), but not characterized, perhaps due to its difficulty surviving. 

http://www.pbrc.hawaii.edu/bemf/
http://www.pbrc.hawaii.edu/bemf/
http://www.pbrc.hawaii.edu/bemf/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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Figure 9. C. papaya x V. monoica 

 

C. papaya x V. goudotiana 

This hybrid was generally strong growing and vigorous.  Leaf shape appeared 

intermediate to the parents, similar to papaya, but somewhat more deeply lobed, like V. 

goudotiana (Fig. 10).  Petioles commonly displayed red pigmentation, which was also 

present on the trunks (Fig. 11).  Cuttings of this hybrid were generally able to root well.  

Flowering occurred earlier than either parent, sometimes when the plants were less 

than 60 cm tall and only four months old, but these precocious flowers inevitably 

aborted.  Flowers were a cream color (Fig. 12-13). 

Sex expression in the hybrids did not conform to a truly dioecious system, such 

as would be expected in the instance of a heterozygous male parent pollinating a 

homozygous recessive female.  While the female flowers were normal females (Fig. 

14), the “male” plants produced almost all hermaphrodite flowers.  The inflorescences 

were mostly normal in the male (i.e., long and pendulous), although possessing more 

bracts at the nodes of the inflorescence than either parent.  Most flowers were only 

modestly hermaphroditic, with a small ovary and stigma at the base of the flower below 

the anthers.  However, terminal flowers tended toward being more hermaphroditic, with 

anthers subtending the stigma, and much larger ovaries (Fig. 15-16).  These flowers 
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also were able to produce fruit when pollinated, unlike the more male-like lateral 

hermaphrodite flowers.  Female flowers had morphology similar to the Vasconcellea 

parent, with petals open at the base. 

Fruits almost always aborted prior to ripening; ripened fruit of the female was 

both insipid and lacking sweetness.  As these hybrid plants were pot grown, 

environmental factors may have played some role in this; nonetheless the complete lack 

of any eating quality to speak of indicates no immediate horticultural utility.  Fruits were 

yellow skinned and yellow fleshed, with closed locules similar to the Vasconcellea 

parent (Fig. 17-20). 

Reciprocal crosses were much less vigorous than hybrids made onto female 

papayas.  Leaf morphology was similar, although appeared less deeply cut.  One was 

moved to the field, where it suffered rot towards the base and died.  The other remained 

in greenhouse conditions, where is lost all leaves and died.  Although it began flowering 

before being transferred to the field, only the field-planted hybrid flowered; it possessed 

hermaphrodite flowers.  PCR testing confirmed this plant inherited a Sequence 

Characterized Amplified Region (SCAR) DNA marker that has been shown to be tightly 

linked to a locus in the papaya genome determining hermaphrodite sex expression 

(Deputy et al, 2002; Qingyi Yu - personal communication).  The flowers were born close 

to the plant on compact inflorescences, and appeared similar to the non-terminal 

flowers of the male plant described previously (Fig. 21).  One reason for the lack of 

vigor in these plants may be that there exist cytoplasmic factors incompatible with the C. 

papaya nuclear genome.  An alternative possibility might be that the presence of the 

papaya hermaphrodite gene may have deleterious effects in intergeneric hybrids. 
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Figure 10. Leaves of parent species and hybrids.  V. goudotiana (left two), C. papaya x 

V. goudotiana (center two), C. papaya (right) 
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Figure 11. C. papaya x V. goudotiana displaying lacy foliage 

Figure 12. From left to right, V. goudotiana male flower, C. papaya x V. 

goudotiana male-like hermaphrodite flower, C. papaya hermaphrodite 

flower 
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Figure 13. From left to right, V. goudotiana male flower, C. papaya x V. goudotiana 

male-like hermaphrodite flower, C. papaya hermaphrodite flower 

Figure 14. C. papaya x V. goudotiana female flower 
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Figure 15. Terminal flower of C. papaya x V. goudotiana male-like 

hermaphrodite inflorescence, displaying characteristic 

hermaphrodite flower 

 

Figure 16. C. papaya x V. goudotiana male-like hermaphrodite 

terminal flower cut open 
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Figure 17. Fruit of C. papaya x V. goudotiana male-like 

hermaphrodite 

 

Figure 18. Cross section of ripe fruit of C. papaya x V. goudotiana 

male-like hermaphrodite 
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Figure 19. Ripe fruit of C. papaya x V. goudotiana female 

 

 

Figure 20. Fruit of C. papaya x V. goudotiana female, halved 
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Figure 21. V. goudotiana x C. papaya hermaphrodite inflorescence 

 

C. papaya x V. pubescens 

Upon being planted out, these hybrids continued to displayed vigorous growth.  

Leaf morphology appeared intermediate between the species, with light colored 

venation similar to that of V. pubescens (Fig. 22-23).  The leaves, although not the 

stem, possessed small amounts of the pubescence characteristic of V. pubescens. 
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Figure 22. Leaves of parent species and hybrid.  V. pubescens (left), C. papaya x V. 

pubescens (center), C. papaya (right) 

Figure 23. C. papaya x V. pubescens 
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C. papaya x V. stipulata 

Plants displayed generally poor vigor upon removal from culture.  Leaves had 

five lobes (Fig. 24).  The eponymous stipules of the male parent could not be observed 

in the hybrid progeny.  Plants tended to senesce from the apex and produce lateral 

shoots, which also lacked vigor.  

 

Figure 24. C. papaya x V. stipulata 
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C. papaya x V. x heilbornii 

Plants displayed good vigor.  Leaf morphology was more heavily serrated along 

the margins than papaya leaves, a trait of the male parent (Fig. 25). 

 

Figure 25. C. papaya x V. x heilbornii 

 

4.3.2 Characterization of interspecific Vasconcellea hybrids 

V. parviflora x V. pubescens 

Leaves appear similar to V. pubescens, however possessing less pubescence, 

and less deeply lobed.  The relative thickness of the roots and base of the plant seems 

to indicate the plant has the potential for developing a pachycaul trunk, like the V. 

parviflora parent.  Additionally, the plant appears to display the heat intolerance of the 

V. pubescens species, since it lost all leaves when transferred to a greenhouse in the 

summer months, but rapidly recovered when brought back to a cooler indoor 

environment.  
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V. glandulosa x V. pulchra 

Four plants were produced.  Leaf morphology did not display intermediate 

characteristics, but rather, took the form of one parent or the other.  One flowered, a 

female, possessing flowers which were not distinguishable from the female parent. 

 

V. monoica x V. stipulata 

Healthy, vigorous plant with five lobed leaves, like the V. stipulata parent, and 

small stipules. 

 

V. monoica x V. parviflora 

Leaves appeared as an intermediate between the two parents.  A single plant 

flowered, a male, which had pink, V. parviflora-like flowers. 

 

V. parviflora x V. monoica 

This cross displays good health, but is not yet producing mature leaves. 

 

V. parviflora x V. goudotiana 

This cross displays good health, but is not yet producing mature leaves.  

However, it does appear to produce the red tinted petioles of V. goudotiana. 

 

V. quercifolia x V. parviflora 

Plants had large, arborescent growth similar to the V. quercifolia parent, while the 

flowers were a bright pink, similar to the parviflora parent.  Leaves appeared as an 

intermediate of the two parents (Fig. 26).  Male and female plants were present. 
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Figure 26. V. quercifolia x V. parviflora female (left) and male (right) 

 

4.3.3 Fertility of hybrids 

 4.3.3.1 Intergeneric hybrid backcrosses 

Using C. papaya x V. goudotiana F1s and reciprocals as female parents, 

attempts were made to backcross the pollen of papaya or V. goudotiana onto the F1 

hybrids.  In all cases, this failed (Table 6), and typically no ovule growth was present, 

but there were two exceptions.  In one case, a single black ovule was found in a 

backcross on the male-like hermaphrodite plant; however, it was empty.  In another, a 

large number of ovules were found in a backcross on the hybrid female plant.  Placed in 

charcoal media, these ovules continued to develop into large, white ovules.  However, 

upon dissection, no embryonic material could be found inside. 

4.3.3.2 Intergeneric hybrid pollen stainability  

In general, pollen quality of all intergeneric hybrids was poor.  Hybrid plants 

showed reduced pollen production, and the pollen which was observed microscopically 

was frequently smaller, abnormal, and clearly inviable (Fig. 27).  The male C. papaya x 

V. goudotiana plant did not appear to produce any pollen grains which developed 
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beyond the early stages of development.  The reciprocal cross did produce distinct 

pollen grains, however, these were severely misshapen and did not stain. 

 

  

C. papaya x V. goudotiana V. goudotiana x C. papaya 

  

C. papaya V. goudotiana 

Figure 27. Pollen stains of intergeneric hybrids and parents, 200x 
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Table 6. Intergeneric backcrossing attempts and successes 

Female parent Pollen parent Crosses Successes Success rate 

C. papaya x V. 

goudotiana F1 ♀ C. papaya 13 0 0% 

C. papaya x V. 

goudotiana F1 ♀ V. goudotiana 1 0 0% 

C. papaya x V. 

goudotiana F1 ♂* C. papaya 27 0 0% 

C. papaya x V. 

goudotiana F1 ♂* V. goudotiana 3 0 0% 

*Refers to the male-like hermaphrodite plant 
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4.3.3.3 Interspecific hybrid backcrosses and F2 generations 

Using V. quercifolia x V. parviflora F1s, attempts were made in several ways to 

produce progeny.  This cross had both flowering males and females, allowing crosses 

to be made with and onto F1 plants.  In both cases, neither was successful (Table 7).  

However, although there were fewer attempts due to the seeming unlikelihood of 

success, one sibling cross did produce a viable embryo (see chapter 3). 

Vegetative growth of the V. quercifolia x V. parviflora F2 was very similar to the 

F1, and flowers were also a bright pink, although they seemed to possess some lighter 

streaking when closely observed.  Flowers were able to visibly shed pollen, unlike the 

F1 parents.  One note of interest is that the flowers are potentially rich in papain, a 

protease found both Carica and Vasconcellea which is commonly used as a meat 

tenderizer.  Contact with the sap of the flowers of this plant, unlike the flowers of the 

parents plant or pure species, resulted in irritation lasting several days.  When crossed 

onto V. parviflora, ovules produced endosperm, and backcross plants resulted from 

embryo rescue (Fig. 28). 

4.3.3.4 Interspecific hybrid pollen stainability 

V. quercifolia x V. parviflora displayed greater fertility than the intergeneric 

hybrids, however, fertility was still poor, as demonstrated by both pollen staining and 

backcrossing attempts.  The single resulting progeny, the V. quercifolia x V. parviflora 

F2 plant, showed a partial recovery of fertility (Table 8, Fig. 29).  In addition, it displayed 

visible pollen shedding, unlike the F1 parents. 
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Figure 28. V. quercifolia x V. parviflora F1 (left), F2 (center), and backcross (right) plants  
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Table 7. Interspecific backcross and sib attempts and successes 

Female parent Pollen parent Crosses Successes Success rate 

V. quercifolia x 

V. parviflora F1 

V. parviflora 11 0 0% 

V. parviflora V. quercifolia x 

V. parviflora F1 

81 0 0% 

V. quercifolia x 

V. parviflora F1 

V. quercifolia x 

V. parviflora F1 

3 1 33% 
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Table 8. Interspecific hybrid stainable pollen 

Species 

Stainable pollen 

grains 

Non-Stainable 

pollen grains 

Percent 

stainable 

F1 157 1353 10.40% 

F2 1095 648 62.82% 

V. parviflora 1109 147 88.30% 

V. quercifolia 888 25 97.26% 
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V. quercifolia x V. parviflora F1 pollen V. quercifolia x V. parviflora F2 pollen 

  

V. parviflora pollen V. quercifolia pollen 

Figure 29. Pollen stains of interspecific parents and hybrids, 200x 

  

 

  



 

55 
 

4.3.4 Hybrid confirmation by isozyme analysis: 

Isozyme testing gives clear confirmation that hybrid plants are what they are 

claimed to be.  Several isozyme systems were used.  The best, most consistent results 

came from malate dehydrogenase, phosphoglucose isomerase, and 

phosphoglucomutase systems.  The isocitrate dehydrogenase system did not produce 

distinctions. 

Malate dehydrogenase (MDH) is a dimeric system, i.e., the enzyme is a dimer, 

produced by two subunits.  This is useful for isozyme tests as it can result in bands 

indicating the presence of both homo-dimers and an intermediate hybrid hetero-dimer.  

In the case of the intergeneric Carica x Vasconcellea hybrids, MDH hetero-dimer bands 

appeared in all tested individuals, indicating clear hybrid origins.  The Vasconcellea 

isozyme variant appeared nearly identical in V. goudotiana, V. pubescens, V. stipulata, 

and V. x heilbornii (Fig. 30). 

In the interspecific hybrids, V. quercifolia and V. parviflora had differing MDH 

bands, which allowed for the V. quercifolia x V. parviflora plants to display a hetero-

dimer band.  The V. quercifolia x V. parviflora F2 plant had MDH banding identical to 

that of the F1, as did the V. parviflora x [V. quercifolia x V. parviflora F2 ] backcross plant 

(Fig. 31). 

Phosphoglucose isomerase (PGI) is also a dimeric system.  In C. papaya and V. 

pubescens, tested plants were homozygous, with the C. papaya and V. pubescens 

alleles being indistinguishable, while in V. goudotiana and V. stipulata, tested plants 

were heterozygous.  Consequently, the tested C. papaya x V. pubescens plants were 

unable to be confirmed as hybrids using this system.  C. papaya x V. goudotiana and C. 

papaya x V. stipulata plants may have been able to be identified, however, tested 

hybrids appear to have received the same allele from both parents, making them also 

unverifiable with this system.  In C. papaya x V. x heilbornii, however, the parents were 

homozygous for different PGI alleles, both of which appear in the putative F1, 

demonstrating a hybrid origin (Fig. 32). 

 Phosphoglucomutase (PGM) is a monomeric enzyme system.  In tested 

intergeneric hybrids, bands from both species could be found.  Tested C. papaya plants 

displayed different bands, indicating differing alleles for this enzyme.  C. papaya x V. 
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goudotiana possessed two bands from each parent species.  In C. papaya x V. 

pubescens, only three bands appeared, as one allele from V. pubescens was identical 

to one that appeared in C. papaya.  In C. papaya x V. x heilbornii, four bands appear, 

two from each parent, however, not all papaya bands appear, indicating that the papaya 

parent used in that cross was heterozygous for that PGM.  The C. papaya x V. stipulata 

hybrid displays one band from V. stipulata and two from C. papaya, and lacks two from 

V. stipulata and one from C. papaya, however, the plants used were not the parents of 

the hybrids.  Due to this intraspecific diversity of alleles, this particular enzyme system 

does not confirm that the C. papaya x V. stipulata plants are hybrids (Fig. 30). 

 In the interspecific hybrids, the PGM system shows that the V. quercifolia x V. 

parviflora F1 hybrids possess all three bands indicated in the parents.  However, the V. 

quercifolia x V. parviflora F2 and V. parviflora x [V. quercifolia x V. parviflora F2] 

backcross display only the V. parviflora bands (Fig. 31)
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MDH 

 

PGM 

 

Lanes 1. V. goudotiana 
2. C. papaya x V. goudotiana 
3. C. papaya x V. goudotiana 
4. C. papaya 
5. C. papaya x V. pubescens 
6. V. pubescens 

7. V. x heilbornii 
8. C. papaya x V. x heilbornii 
9. C. papaya 
10. C. papaya x V. stipulata 
11. V. stipulata 
12. C. papaya x V. stipulata 

 

Figure 30. Intergeneric isozyme gels 
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System Gel 

MDH 

 

PGM 

 

Lanes 1. V. parviflora 
2. V. quercifolia x V. parviflora F1 
3. V. quercifolia x V. parviflora F1 
4. V. quercifolia x V. parviflora F1 
5. V. quercifolia x V. parviflora F1 
6. V. quercifolia x V. parviflora F1 
7. V. quercifolia x V. parviflora F2 

8. V. quercifolia 
9. V. quercifolia 
10. V. parviflora x [V. 

quercifolia x V. parviflora 
F2] 

11. C. papaya x V. goudotiana 
12. V. parviflora  
13. V. goudotiana 

Figure 31. Interspecific isozyme gels 
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PGI 

 

Lanes 1. V. monoica x V. parviflora 
2. V. goudotiana 
3. C. papaya x V. goudotiana 
4. C. papaya 
5. C. papaya x V. pubescens 
6. V. pub pubescens 
7. V. x heilbornii 

8. C. papaya x V. x heilbornii 
9. C. papaya 
10. C. p x V. stipulata 
11. V. stipulata 
12. V. glandulosa 
13. V. glandulosa x V. pulchra 
14. V. pulchra 

Figure 32. PGI gel 
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4.4 Discussion 

In general, all hybrids possessed reduced fertility.  Several possessed poor vigor 

(C. papaya x V. monoica and C. papaya x V. stipulata), although several crosses were 

hardy and fast growing (C. papaya x V. goudotiana, C. papaya x V. pubescens, and C. 

papaya x V. x heilbornii).  Of interest, in the case where crosses were made both 

directions using Carica and V. goudotiana, the direction of the cross impacted the vigor, 

in that the hybrids resulting from female Vasconcellea crossed with hermaphrodite 

papaya pollen showed diminished vigor.  Nonetheless, the pollen of this cross, while still 

inviable, did appear to be further developed. 

Two papaya crosses, C. papaya x V. monoica and C. papaya x V. x heilbornii are 

previously unreported.  The sex expression of the C. papaya x V. goudotiana plant 

exhibited co-dominance of expression in the genetically male plant, resulting in the 

production of largely hermaphrodite flowers on a clearly male inflorescence.   

Isozymes are useful and practical for confirming hybridity.  All assayed hybrids 

were confirmed to be what they were thought to be, both by isozyme testing and by 

physical phenotypes.  Although it is likely that crossing V. glandulosa x V. pulchra was 

successful, the fertility of the cross, morphology of the progeny, and isozyme results 

cast doubt on whether the parents are in fact separate species or just mislabeled 

accessions of the same species. 

 The V. quercifolia x V. parviflora F2 possessed MDH bands confirming that it had 

parentage of both species, however, lacked indication of V. quercifolia parentage in the 

PGM system.  This indicates a selective loss of V. quercifolia genetics.   

Despite most hybrids displaying strong vegetative growth, the previously reported 

sterility of hybrids was present in all of crosses which flowered.  Even in flowers where 

there was some fertility, fertility was still poor.  A degree of fertility was recovered, 

however, in the F2 plant, which was one of many attempts to produce an F2. 

Of some interest, the ability to form hybrids did not correlate with phylogenetic 

positioning.  V. parviflora was able to cross with V. goudotiana and V. pubescens, but 

not V. stipulata, despite being described as most closely related to V. stipulata 

(Carvalho and Renner, 2012).  Additionally, both V. parviflora and V. stipulata were able 
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to produce hybrids with V. monoica.  V. quercifolia is described as being most closely 

related to V. glandulosa, however, that cross was unsuccessful.  



 

62 
 

CHAPTER 5: INDUCTION OF PLOIDY CHANGES 

5.1 Introduction 

Changes in ploidy have had significant impacts on the evolution and natural 

history of organisms, as well as in crop domestication and breeding.  Some crops, such 

as cotton (Wendel and Cronn, 2003), rapeseed (Chalhoub et al., 2014), and coffee 

(Clarindo and Carvalho, 2008), are the result of natural polyploid events occurring in 

their ancient or recent evolutionary history, while others, such as seedless triploid 

watermelons (Andrus, 1971) and Gravenstein apples, are man-made.  With this in mind 

ploidy manipulation can be seen as a tool for crop improvement.   

Polyploids can be categorized on the basis of the origin of their chromosome 

sets.  An allopolyploid is a plant with additional sets of chromosomes where the 

additional sets originate from a separate species.  This is in contrast to an 

autopolyploid, where all chromosomes originate from the same source.  A tetraploid 

papaya would be an autotetraploid, as all chromosomes are Carica papaya.  A 

tetraploid Carica x Vasconcellea hybrid would be an allotetraploid, as for every set of 

four homeologous chromosomes, one pair of chromosomes are Carica chromosomes, 

and the other pair are Vasconcellea chromosomes.  Such a hybrid would also be 

referred to as an amphidiploid, as the chromosomes originating in each species would 

preferentially pair with each other, behaving in a diploid-like fashion within the nucleus.  

Production of allotetraploid Carica x Vasconcellea hybrids by doubling diploid hybrids 

was the goal of this work. 

Oryzalin was the agent chosen to be utilized in induced polyploidy.  Oryzalin is a 

mitotic inhibitor which has the ability to disrupt the cell division process by arresting the 

development of spindle fibers.  Under normal circumstances, spindle fibers pull apart 

chromosomes during anaphase of mitosis, and the original cell divides into two 

daughter cells.  However, if the spindle apparatus is disrupted by oryzalin, the doubled 

chromosomes do not migrate to the poles and cell division fails to occur, resulting in a 

single cell with doubled chromosomes. Colchicine is an alternative agent, however, it is 

generally considered to be a more dangerous mutagen than oryzalin. 

To practically utilize the oryzalin, meristem treatments were used.  There are 

three tissue layers present in the meristem: the L1, the L2, and the L3 layers.  Each of 
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these is the origin of different types of tissues found in the plant.  The goal of a 

meristematic treatment is to convert all three layers in the meristem, or at the very least, 

to convert the L2 layer, which is the layer from which reproductive tissue originates. 

An alternative methodology would be to first generate tetraploid parents and 

cross-breed those.  This would allow for greater genetic diversity in the offspring, as 

there would still be two possible chromosomes which could be inherited from each 

parent.  For example, pre-doubling chromosomes to get A1A1A2A2 in species A and 

B1B1B2B2 in species B has the potential to yield a hybrid with chromosomes of A1A2B1B2 

(or eight other potential combinations).  In contrast, making hybrids of A1A2 x B1B2 = 

A1B2 (or three other potential diploid (2x) combinations) and doubling afterwards can 

only yield plants with the identical homologous chromosomes of A1A1B2B2 (or three 

other potential tetraploid (4x) combinations). 

 

5.2 Materials and Methods 

5.2.1 Chromosome doubling procedure 

A 30 ml solution of deionized water and Murashige & Skoog basal salts was 

prepared.  The purpose of the MS salts was to provide divalent cations to facilitate 

proper gelling of the gelrite.  Gelrite (2.8 g/L) and full strength MS salts (4.43 g/L) were 

combined in deionized water and brought to boiling in a microwave.  Typically, only 30 

mL was made at a time, as the gel block treatments use very little volume.   After 

boiling, oryzalin was added, followed by 1%  (vol. : vol.) dimethyl sulfoxide (DMSO).  

Concentrations of oryzalin were either 0.5% or 1% active ingredient.  Care should be 

taken to avoid combining undiluted oryzalin and DMSO, as this was found to result in an 

exothermic reaction.  The source of the oryzalin used was a commercially available 

herbicide formulation (Quali-Pro Oryzalin 4 Pro) containing 41% active ingredient.  This 

made the exact ingredients, to produce 30 ml of the 1% oryzalin treatment, equal to 732 

µl of 41% oryzalin, 300 µl DMSO, 90 mg gelrite, and 130 mg MS salts. 

After incorporating the oryzalin and DMSO, the hot gelrite mixture was allowed to 

cool prior to application to avoid scalding damage to the meristems.  Meristems were 

treated when the mixture would solidify in the narrow opening end of the Pasteur pipette 

used for application, indicating that the temperature of the mixture was just above the 



 

64 
 

solidification point during application.  The glass pipette was inserted as close to the 

meristem as possible, and the gel was applied onto the meristematic region (Fig. 33-

34). 

Treated plants were enclosed in either clear plastic bags or clear plastic boxes 

with moistened paper towels to retain humidity and prevent the gel from desiccating.  In 

cases where plants would not fit in bags or boxes, moist paper towels were placed near 

the meristem and plastic wrap was used to cover the treatment point. 

After treatment, gel blocks were removed with cotton swabs in cases where the 

gel was still very moist, or with fine tweezers for dryer blocks, followed by spraying of 

the meristems with a thin stream of water.  In some treatments, plants were allowed to 

keep the same gel block throughout the treatment, which lasted 2-5 days; in other 

cases, the gel block was removed and reapplied daily. 

In addition, several plants were treated in the field to see if meristems of well-

established plants could be converted to tetraploid.  Plants were treated as above, with 

moistened cotton swabs affixed to the stems near the treatment point, and wrapped with 

aluminum foil to prevent overheating.  Treatment lasted for 5 days, although the gel 

likely desiccated after one day. 

Figure 33. Oryzalin treatments on papaya seedlings 



 

65 
 

 

Figure 34. Oryzalin treatment on an individual hybrid plant 

 

5.2.2 Flow cytometry: 

Flow cytometry was used to confirm polyploidy.  Samples of plant nuclei were 

prepared using CyStain PI Absolute P DNA Staining Kit (Partec, Munster, Germany).  

Two leaf disks (~7 mm dia.) were removed per plant with a hole punch and placed in a 6 

cm plastic petri dish, to which 0.5 ml of the Partec kit’s extraction buffer was added.  

Disks were taken from different leaves to better determine if oryzalin treatment had 

produced a sectoral mixoploid.  Using a razor blade, leaf disks were chopped for 60 

seconds, and the liquid strained through a 50 μm Celltrics filter (Partec, Munster, 

Germany) into a tube.  Partec staining buffer (2 ml), RNAse (6 μl), and propidium iodide 

(12 μl) were added to the tubes.  The tubes were vortexed briefly.  As the propidium 

iodide is light sensitive, tubes were wrapped in aluminium foil to minimize light 

exposure, and the tubes were kept on ice in a covered container.  A Beckman-Coulter 

EPICS XL flow cytometer (www.soest.hawaii.edu/sfcf) using 15 mW argon ion laser 

(488 nm excitation wavelength) running Beckman-Coulter’s Expo32 MultiComp software 

was used to analyze samples.  The fluorescence, forward, and side scatter signals were 
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collected using a 610 BP filter.  Histograms were produced in FlowJo software (Treestar 

Inc., www.flowjo.com). 

 

5.3 Results 

In the oryzalin treatments of papaya, four tetraploids were produced (Table 9, 

Fig. 35).  Tetraploid papaya had no observable differences in leaf shape, however, the 

leaves did feel thicker and more leathery to the touch.  Additionally, vigor was markedly 

diminished in the tetraploids.  Mixoploid vigor was equivalent to the diploid plants, 

although these were not tested a second time to ensure that the diploid tissue was not 

outgrowing the tetraploid tissue.  Leaf morphology did not appear to be noticeably 

different in the tetraploids.  In the treatment of the interspecific or intergeneric hybrids, 

several mixoploid and tetraploid plants were produced (Fig. 36-38), although in some 

plants which were later re-tested, the proportion of tetraploid tissue had diminished, or it 

was no longer detectable (Fig. 36-37). 
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Table 9. Doubling treatments and results 

Treatment Species Plants 

treated 

Mixoploids 

(2x + 4x) 

Tetraploids 

(4x) 

2 days, 0.5% C. papaya 49 8 4 

3 days, 1% C.papaya x V. goudotiana, 

C. papaya x V. x heilbornii,  

C. papaya x V. stipulata,   V. 

monoica x V. parviflora 

7 0 0 

4 days, 1% C. papaya x V. pubescens, 

C.papaya x V. goudotiana, 

C. papaya x V. x heilbornii, 

V. monoica x V. parviflora, 

V. parviflora x V. monoica,  

V. monoica x V. stipulata 

25 8 2 

4 days, replaced 

daily. 1% 

C. papaya x V. pubescens, 

C.papaya x V. goudotiana, 

C. papaya x V. x heilbornii, 

V. monoica x V. parviflora 

11 5 2 

5 days, replaced 

daily, 1% 

C. papaya x V. goudotiana 2 1 0 

5 days, outdoors V. quercifolia x V. parviflora, 

C. papaya x V. goudotiana 

13 1 0 
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Figure 35. Papaya diploid control (left) and tetraploid (right), showing diploid gate 

 

  

Figure 36. V. quercifolia x V. parviflora mixoploid sector (left), and same plant two 

months later (right) 
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Figure 37. C. papaya x V. pubescens, 4x (left) and same plant 2 months later (right) 

 

Figure 38. C. papaya x V. goudotiana mixoploid showing 

multiple peaks 

 

In the interspecific plants, one V. quercifolia x V. parviflora hybrid was found to 

have sectoral mixoploidy.  Flowers from this section appeared to be larger toward the 

base (Fig. 39), and were able to produce pollen which was double that of the smaller 

flowers from the diploid section (Table 10, Fig. 40). 
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Figure 39. V. quercifolia x V. parviflora flower from the mixoploid 

sector (left) and three from the opposite side (right) 

  

Figure 40. V. quercifolia x V. parviflora diploid (left) and tetraploid (right) pollen, 400x 

magnification 
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Table 10. Pollen grain stainability and cross-sectional area from diploid and potentially 

tetraploid flowers 

Species 

Average cross 

sectional area 

Grains 

measured 

Stainable 

pollen 

Non-stainable 

pollen 

Percent 

stainable 

V. quercifolia x 

V. parviflora 830 µm2 75 156 1353 10.40% 

V. quercifolia x 

V. parviflora 

mixoploid 1611 µm2 86 54 319 14.48% 

V. quercifolia 901 µm2 18 888 25 97.26% 

V. parviflora 1222 µm2 18 1109 147 88.30% 
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5.4 Discussion: 

In no plants was any mortality of the meristem observed with the exception of 

one: a V. monoica x V. parviflora hybrid, which was in the group that was treated for 

four days with 1% oryzalin daily.  In all others, although there was clear distortion of 

leaves near the growth point, there was no obvious instances of necrosis of the 

meristem.  There was however instances of young leaves near the meristem abscising 

if the oryzalin could not be removed, and an instance of a dry streak of oryzalin leaving 

a scar on the base of a treated plant after being left unremoved for a two weeks. 

One plant, a C. papaya x V. pubescens hybrid, was confirmed by flow cytometry 

to be tetraploid.  This plant continued to display good vigor above the treatment point.  

Two side shoots originating below the treatment point had greater vigor.  However, after 

initial testing, despite the clear tetraploid results, later testing indicated that the plant 

was mixoploid, with a ratio of 2 diploid:1 tetraploid counts (Fig. 37).  A second plant, a 

C. papaya x V. goudotiana, was indicated by early tests to similarly be tetraploid (Fig. 

38).  Several others showed tetraploid and higher peaks, indicating a potential presence 

of octoploid tissue.  These may also have ability to produce tetraploid flowers if the L2 

layer was among the tissue converted.  Additionally, there was a large degree of 

conversion in a V. quercifolia plant, which could be used to attempt hybridization at the 

tetraploid level. 

In another instance, a section of a V. quercifolia x V. parviflora hybrid produced 

diploid and tetraploid tissue in a 1:1 ratio on one section of the plant.  This was 

determined by doing separate flow cytometry analysis on leaves around the plant, and 

the ratios correlated with position (ie the positioning of the ratios was consistent with 

one side of the meristem being converted, not random).  However, later sampling of this 

plant showed a loss of tetraploid tissue (Fig. 36).  In this instance, it appears that 

mixoploid tissue in the plants is outgrown by diploid tissue.  This converted sector was 

however able to flower, and the pollen from these flowers had twice the cross-sectional 

area of the pollen from diploid sectors (Table 10, Fig. 40).  This is consistent with the 

pollen are of tetraploids of other species (Hecker, 1988, Randolph, 1935), and indicates 

that the L2 layer of this plant was successfully converted to the tetraploid level in that 

sector.  However, in terms of stainable pollen percentage, this pollen was no more 
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viable than the diploid material.  This suggests that, in the case of interspecific hybrids 

within Vasconcellea, doubling may be insufficient for fertility restoration. It should be 

noted however that actual fertility can only be determined by crossing attempts, which 

have not yet been attempted using these materials. 

 

5.5 Conclusion: 

Carica was able to successfully hybridize with 5 of the 9 species used.  Embryo 

rescue was required in all instances.  These hybrids were generally vigorous, although 

lacking in fertility.  Sex expression was abnormal in the intergeneric flowering plants, 

with female characteristics being present in the genetically male plant.  This is similar to 

previous reports of C. papaya x V. pubescens plants appearing as two types of 

ultimately female plants, but differs from reports indicating that C. papaya x V. parviflora 

hybrids are capable of producing male and female flowers. 

Oryzalin doubling methods had a clear effect on the ploidy of tissue, as 

determined by flow cytometry.  The main difficulty was in creating a complete 

conversion of meristem tissue to tetraploid.  For future work in the production of 

tetraploids, it may take additional efforts to ensure the generation of completely 

converted meristems.   Possible avenues for this include removing developing leaves 

near the meristem to allow for greater contact of the gel to the meristem and ensure 

greater penetration of the oryzalin.  Additionally, as there were instances of sectoral 

conversion, determining sections of converted plants and encouraging lateral bud 

growth from those sections may yield results. 

A sibling cross between V. quercifolia x V. parviflora F1 displayed an increase of 

fertility.  This F2 hybrid appeared to be more like the pollen parent (V. parviflora) than 

the maternal V. quercifolia.  A possible explanation for this could be that two unreduced 

gametes produced a spontaneous autotetraploid, however, flow cytometry indicated the 

plant to be diploid.  This suggests the possibility that the F2 plant is a rare segregant in 

which a favorable combination of parental genetics has produced a relatively stable 

genomic combination, capable of producing backcross offspring to V. parviflora. The 

greater presence of V. parviflora isozyme alleles suggest disruptive selection tending 

toward that parental species. 
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One oryzalin-treated interspecific V. quercifolia x V. parviflora F1 male produced 

pollen from a sector with tetraploid leaf tissue. The pollen grains displayed larger size 

consistent with tetraploidy, but showed no increase in stainable percentage. However, 

fertility can only be determined in terms of the number and nature of progeny obtained 

from backcrossing to the parent species or to other allotetraploids.  Flowering of male 

intergeneric hybrids with tetraploid tissue will permit the determination of whether 

similarly enlarged pollen grains occur in the wider crosses between Carica and 

Vasconcellea, and whether these are fertile in crosses to the parent species or to other 

intergeneric allotetraploids. 
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