THDLAN 解RLWE COPREOD

ALIGARH ETUSLIM UNIVERSITY
FOR THE DECRESE OH
Dector or Pituomerit

HI

 MAMDAFAB OAMP

STUDIES ON THE SYST METICS AND THE BIOLOGY OP SOME INDIAN MARINE COPEPODS

ABSTRACT

A study on the systematics and biology of marine copepods of southeast coast of India was taken up in view of its bearing on fishery biology and its scientific interests. There were two principal objectives, namely, a faunistic survey of the copepods of southeast coast of India and a study of the biology of the more common planktonic copepods of the Gulf of Manner. The work was initiated in December 1958 and continued unto September, 1961. During this period intensive field collections and laboratory studies were carried out. The thesis embodies the results of these investigations. Part of the results, pertaining to some new species and genera, has already been published.

A review of the works on the systematics of Indian marine copepods is hardly necessary here. Attention may be invited here to the recent publications referred to in the introduction to Part I of the thesis. A perusal of the literature would show that much of these earlier works on the taxonomy and distribution of copepods is devoted to species gathered from the open seas and from the neighbourhood of oceanic islands of the Central Indian Ocean. Krishnaswamy's investigations on the copepods of the Madras Coast represent the first exhaustive study of its kind in this country and the present work is another attempt in the same direction.

Our knowledge on the biology of Indian marine copepods is extremely scanty. A brief review of the leterature is given in Chapter 3 of Part II of the thesis. It may, however, be added that the studies carried out in Indian
waters amount to very little compared to the monographic treatises that exist on this subject in other parts of the world. What is known on the biology of Indian marine copepods concerns mainly with seasonal distribution, breeding etc., of a lew numerically dominent species. No planktonic calanoid copepod has so far been studied so as to its complete developmental cycle and little is known on the diurnal vertical movements of copepods in Indian waters. During the present study some useful information has been obtained on both these aspects.

The thesis is divided into two parts, the first part dealing with the systematics and the second with the biology.n Following salient features are incorporated under the systematics.

One hundred and eighty three species of copepods belonging to the orders Calanoida, Harpacticoida, Cyclopoida and Monstrilloida are identified. This includes twentythree new species and four new genera. Of these the descriptions of fourteen new species and two new genera are already published. The unpublished species are listed below:
Ridgewayia krishnaswamyi n. sp., Parapeltidium nichollsi n. sp., Porcelidium unicus n. gp., Echinolaoponte tropica n. sp., Indomyzon gasimi n. gen. et n. sp., Sewellopontius rectiangulus n. gen. et. n. sp., Sabelliphilus foliacea n. sp., Pseudanthessius anormalus n. sp. and P. brevicauda n. sp.

Besides these the undescribed males of the following seven species of copepods are known for the first time and are described:

Ridgewayia typica Thompson \& Scott, Euryte brevicauda Sewell,
Asterocheres orientalis Sewell, Cryptopontius graciloides Ummerkutty, Peltidium angulatum Thompson \& Scott, Porcellidium ravanae Thompson \& Scott and P- scotti Pesta
Twentyfive species are reported for the first time after their discovery. Six Western-Facific species and six Eastern Atlantic species are recorded for the first time from Indian Ocean. In addition to these, an interesting species of Cyclopoid copepod, so far known only from the west coast of Africa, has been obtained. The cyclopoid family Asterocheridae is split into two subfamilies, viz., Asterocherinae nov. and Cletopontiinae nov. while reasons are formulated for abandoning the division of Entomolepidae into subfamilies as was done by an earlier author (Josef Eiselt, 1959). Brief considerations are included on the classification, specificity of association and distribution of copepods.

The second part dealing with the biology includes the following:
(i) It has been possible to work out for the first time from the Indian region the complete developmental cycle of two calanoid copepods, viz., Pseudodiaptomus aurivilli Cleve and Labidocera bengalensis Krishnaswamy.
(ii) Attempts have been made to study the nature of vertical movements of planktonic copepods of the Gulf of Mannar.
(111) Breeding and related aspects of ten species of planktonic copepods of the Gulf of Mannar are studied. The data obtained are compared with those gathered by earlier workers and interesting points are discussed. Based upon their breeding habits the copepods of the

Gulf of Manner are tentatively placed in three groups.
Copepods constitute the largest item of the zooplankton, being present in all the seas and oceans. Good amount of research has been done on their taxonomy and biology in temperate and polar waters. The information available on these organisms in tropical and subtropical areas is. rather limited. This is particularly true of the Indian Ocean where the chief source of knowledge has been the scientific reports of the few oceanographic expeditions that visited this area. It is believed that the studies an embodied in the present thesis would help, to/appreciable extent, to further our knowledge of the systematics and the biology of the marine copepods of the Indian region.

(A.N.P.Ummakuls)

ERETACB

A btudy on the matematics and the biology of marine copepods of the aouth-east coast of India was taken up at the suggestion of Dr. S. Jones, Director, Contral Marine Fisheries Research Institute, in view of its bearing on fishery biology and ite scientific interests. There were twe principal objectives, namely, a fanistic aurvey of the copepods of south-east coast of India and a study on the biology of the more common planktonio copepoda of the Gulf of Mannar. The work was initiated in Deeember 1958 and continued upto September 1961. During this period intensire field collections and laboratory studies were carried out. The present thesis embodies the resulte of these inveatigations. Part of the results, pertaining to some new species and genera, has already been publiehed and is included here as published material.

A review of the works on the systematios of Indian marine copepods is hardly necessary here and attention may be invited to the recent publications referred to in the introduction to Part I of this theais. A perusal of the Ifterature would show that muoh of these earlier works on the taxonomy and distribution of copepods is devoted to speaies gathered from the open seas and from the neighbourhood of the oceanic ialands of the Central Indian Ooean. Krishnaswany's inveatigetions on the copepods of the Madras Coant represent the first exhaustive study of ite kind in this country. The present work is another attempt in the same direction.

Our knowledge on the biology of Indian marine copepods is extremely saanty. A brief review of the iiterature is given in Chapter 3 of Part II of this thesis. It may, however, be added here that the studies carried out in Indian waters amount to very little compared to the . monographia treatises that exist on this subject, in other
parts of the world. that in known on the biology of Indian marine copepoda conoerne mainly seamonal diatribution, breeding to., of a few mumerioally domintat speeies. Ho planktonic calanoid copepod has so far been atudied se an to its complete developmental cyole and little is known on the diurnal vertical movements of oopepods in Indian watere. Draring the present atudy some useful intormation has been obtained on both these aspeots.

The prosent work im alvided into two parte, the first part dealing with the systemation and the second with the blology. Following aslient features are incorperated under the systenatice:

One hundred and eighty three specien of copepede belonging to the order: Calanoida, Harpacticoida, Cyclopoida and Monstrilloida are identified. This inoludes twenty three new species and four new genera. Of these, the deseriptiona of fourteen new apecies and two new genera are already published. Twenty five species are reported for the first time after their discovery and the undescribed males of seven species of copepode are described. Six Western Paoific species and alx Bastern Atlantic specien are recorded for the firet time from the Indian Ocean. In addition to these, an intereeting species of eyclopola copeped, so far known only from the mest coast of Africa, has been obtained. The Cyclopoid fanily Asterooheridae is split into two aubfamilies yie., Aeteroeherinae nov. and cletopontiinae nov. wille reasone are formulated for abanoning the division of Entomolepidae into mubfemilee as was done by Josef Eiselt (1959). Brief congiderations are included on the classification, specifioity of association and distribution of copepods.

The second part; dealing with the biology, inoludes the following:
(i) It has been possible to work out for the first tise from Indian region the complete developmental oyele of two
(iv)
enlanoid copepods, Fig- Esendodiaptomue guririlii Glove and Iabidocera bengelongis Xriohnaewamy. These two species are fairly como in the plankton of the southeast of India.
(ii) Attempts have been made to study the nature of diurnal vertical movements of planktonic copepods of the Gulf of Manner.
(iii) Breeding and related aspects of tun apeaiea of planktonic copepods of the Gulf of denar are studied. The data obtained are compared with those gathered by earlier authors and the interesting points are disouseed. Based upon their breeding habits the copepod of the Gulf of Manner are tentatively placed in three groups.

Copepods constitute the largest item of the zooplankton, being present in all the seas and oceans. Good amount of research has been done on their taxonomy and biology in temperate and polar waters. The information available on these organism in tropical and subtropical areas is rather limited. This is particularly true of the Indian Ocean where the chief source of knowledge has been the scientific reports of the few oceanographic Expeditions that visited this ares. It is believed that the studies embodied in this thesis wotyd help, to an appreciable extent, to further our knowledge of the systematics and the biology of the marine copepods of the Indian region.

AOKHOLEDOEMETTS

I mi very grateful to Dr. 8. Jonem, Director, Central Marine Fishories Researoh Inatitate, for hia guidanee and unfailing enoouragement throughout the course of this atudy and aleo for providing facilition at this Institute. I wimh to exprese my gratitude to Dr. S. Z. Qasim of the Departmont of Zoology, Muslin Univeraity, Aligarh, for hie zeen intereet in the wort constructive eritioimm and many holpirul mageem tiong. I am muoh thankful to Dr. A.G. Nicholla, officer-1nCharge, Miahoriea Division, Tamania, Australia, who wan kind enough to go through Part I of this thenim and offor valuable comments. Wy grateful thanks are due to Dr. R. Raghi Prasad, Deputy Direotor of this Inatitute for kindly going through Part II of this theale and auggeating improvemente. I thank Dr. R.Y. Nair, Dr. E.G. Silae and Mr. P.R.S. Tampi for many diacuesions during the preparation of thit thoais. I wioh to record my thank to the Ministry of Seientific fesearoh and Gultural Affairs, Government of India, for the award of a Senior Reaearoh Iraining Seholarship during the temare of whioh the investigations were oarried out. Pinally, I thank all my colleagues at the Central Marine Pieneriea Researoh Institute for their generous co-operation and many cordialities.

OOMTETMS

Preface	11
Aornowledgemente	\ldots	\ldots	\ldots	.	

Thesie: Studies on the Systematics and the Biology of some Indian Marine Copepods
Part I The Systematic Account 1
Part II The Biology 228
Chapter 1. Developmental Oycle 229

- 2. Diurnal Vertical Migration 266
n 3. Breeding and Related Aepect: 285
Published papers:Studies on Indian Copepode 1. Parslepeop-gyllug mamnarenais, a new genue and apeciesof oyclopold copepod from the Gulf of Mannar.J. Mar: biol. Ass. India, II(1) 114-123

Studies on Indian Copepods 2. An account of the morphology and Iife-history of a harpacticoid copepod, Tisbintra lonesi sp. nov. from the Gulf of Mannar. Fbid., II(2) : 149-164

Studies on Indian Copepods 3. Hearchinotodelphra indicus, a new genus and species of Arohinotodelphyid copepod from Indian Seas. Ibid., II(2) : 165-178
Studies on Indian Copepods 4. Deseription of the female and redeseription of the male of Peeudodiaptomus ardjuna Brohm (Copepoda, Calanoida) with notes on the distribution and affinities of the epecies. Ibid., II(2) : 179-185
Studies on Indian Copepods 5. On eleven new epecies of marine cyolopoid copepods from the aouth-east coast of India. Ibid.: III (1 \& 2): 1-50

PAR포 I

THE SYRTzMATIO AOCOUNT

Part I. SyBtezatic Acoount

Intraduction

It if harily neceseary here to review the ilterature on the sygtematic mocounts of Indian marine copepode. Much werk has been done in this dreation and attention nay be invited to the monographic treatment that have recently been published (Sewell, 1929-32; 1940; 1947; 1948; 1949; Kxishnaawamy, 1953a, b, e; 1956; 1957). These publications not only serve more or leas as sumariee of the works that have ao far been dono in our watere but also provide extensive bibliographiee. It, however, appeare that we are far from having a full knowledge of Indian marine copepods. Thie ie anply proved by the fact that the present investigations have brought to light everal mpeeies that have not been so far recorded from Indian waters and several others that are entirely new to selence.

Cyclopold copopeds constitute the largest number in the present study, oalanoidi , harpacticoide and monstrilloids coming next in order. Firat group han the 110n's ahare in the number of apecies that are new to seience as well as now to our watere. Sighteen new epeeiee of oyelopoids are obtained during thome tudies, besides three other speoies which appear to be new. Sixteen cyolopoid apeeles are recorded here as first rediscovery after their creation and another mix speciea
are recorded for the 1irst time from Indian and neighbouring waters. It may be added that four new genera had to be ereated to accommodate four of the new species.

Among oalanoide only a ingle new specien could be detected while five species are reoorded for the firat time from the south-east coast of India. The oalanoid fann of this area is not very impreasive, only fiftyeight apecies being reported in the present work.

Harpacticoide, too, present a sinilar picture. Of the tourly nine
A Cuty species that are included in this work there are four species whioh are new and other which appear to be new. Beaides these, light species have been found for the firat time after their discovery.

Only two epeoies of monstrilloid are obtained. Both are caught from the plankton in which they appeared ocoastionally. One species is newly recorded from the south east coast of India.

In the present work, species that have been tully described by earlier authors, espealally by those who worked in Indian and neighbouring areas are briefly alluded to, mentioning only points of interest. All the new apecies as well as the newly recorded species are desoribed in detail. Males of the following species are deseribed for the first tine:

1. Ridgewsyia typiaa Thompson \& Scott, 1903
2. Buryte brevicauda Sewell, 1949
3. Asterocheres orientalis Sewell, 1949
4. Gxyptopontiug exaoiloidee Ummoricutty, 1961
5. Peltidium angulatum Thompson \& Seott, 1903
6. Porcelliditn ravenee Thompon \& Soott, 1903
7. P. seotti Pesta, 1935

Material and Methods

Copepods included in the present study are based on (a) regular surface tow-net collections made with organdie and bolting eilk nets in the Gulf of Mannar in early hours of the morning (see 玉eotion II for detalle of area etc.); and (b) wayings of weede and invertebrates which were gathered from inshore waters as well as from dredginge made at 1-2 fathom depth. Altogether about 150 plankton amples, colleoted from April 1959 to Maroh 1961 were analysed. The ghore collections were made chiefly Irom June 1960 to Jamuary 1961. The methods of collection adopted are described in an earlier publication (Ummerkutty, 1961).

Hotes on the Olassification

G.0. Sars (1903) divided the mbeless Copepode into seven oxders, Xig., Calanoida, Harpaetiooida, Cyclopoida, Hotodelphyoida, Monatrilloida, Callgoida and Lernaeoida (Lernaeopodoida). This syoter has been adhered to by great many of subsequent workers because it is simple and complete, furnishing a place for every valid genus. Wilson (1932) extended it to include the argulide whioh were regarded as representing the eighth order, thue elininating the usual diviaion of Copepoda into Encopepoda and Brachiura. However, these two groups are now considered as subelasses of the Class Orustaces, rather than
subdivisions of a single aubolase. Braohiurang, therefore, do not eome under our considerations.

Lang (1948) ham suggented some important revieione to the exiating taxonomic aysten proposed by Sare. The uee of the order Hotodelphyoida is abandoned by Lang who made it clear thet the division between eyclopoids and notodelphyoids is artificial, eapecially a in view of the discovery made by him of some intereating copepods which he assigned to a new family, Aroninotodelphyidae (Hang, 1949). Arohinotedelphyide are conaidered to hold an intermediate position between the families Cyolopinidee of Oyolopoida and Hotodelphyidec of Notodelphyoida. Wh the exception of the families Enterocolidae and Anomopsyllidae, the notedelphyoids, he held, constitute a readily recognisable series with the gnathostomous cyclopoids. He proposed to incorporate the family Enterocolidae with poecilostomous oyclopoids while the eystematie position of the family Anomopsyllidae is left uncertain. He divided the non-paramitic copepode inte four groupt, Viz., Gymoplea, Podoplea, Progymoplea and Propodoplea. Pormer two term were first propomed by Giebbrechet (1898) who employed then to denote the calanoide and non-calanoide respectively. Gymoplea as proposed by Lang include all calenoide exacpt Platyeopildae and "allied families" whioh are placed by him in Progymplea. Podoplea comprises two seetione,

Harpmeticoida and Gyolopoide. Propodoplea is proponed to contain Mesophridiee and "its allied" which were wo far included within the Harpacticoide. As M,S. Wilson (195s) pointed out, Lang'哑 system, however, has the nomenclatural defect of eliminating entirely the much-used term Calanoida, wich, though equivalent to Giesbreoht' t term Gymnoplea has long been preferred and extensively used.

Ae to the intermal orgenisation of calanoids, they were grouped by Gienbrecht under two divisions, Amphascandria and Heterarthrandria. A third division, Isokerandria, was added by Sare to accommodate a group of rather anomalous genera which shared some of the charaoters of both the earlier divisione but differed from them in some other charactery. Sewell (1932) argued that these divisions should be maintained for, in a large number of apeciee of the genera grouped under Amphascandria there is a brueh of long hairs on imer aspects of firet basal segment of (second) antenna wile no such growth has been observed in any of the Heterarthrandria and Isokerandria. The latter two divieions are separated from each other by the presence or absence of genioulation of the right male antennule. Gumey (1931), however, haw clearly shown that relisnoe on the character of single organ could produce only an unatural grouping. He proposed an alternative axrangement; certain assooiations of fanilies whion might be regarded as superfamilies, Contropagina, Calanina, Paracalanina, Temorina, Diaixina and Pontellina are the six groups
he recognised, the Iamilies Arietellidae, Pseudocyolopidae and Candaciidae having been dealt with in an undefined group of "unoertain position". As Gurney himeelf has indioated Candsciidae and Arietellidee are related to the superfamily Pontellina. Gurney appears to have included in Pseudocyolopidae the genus Platyoopis G.O. Sare, 1911 whioh he spoke of as "related to Pandacyolopg". But both M.S. Wilson (1946) and Lang (1948) have abundently made clear that Platyoopin is different from all other calanoide. 3.S. Wileon (1946) further pointed out that within Oentropagina there are nome genera like Isteg Boick, 1865, with highly modified fifth legs and redueed endopods, and stated that both Ridgewayildee, new family created by her to eacommodate Bidxewayis Thompson \& Soott, 1903, as well as Pseudocyolopidae exeluding Platycopin are referable to that superfanily.

Megacalanidae, oreated by Sewell (1947), should probably be placed under Calanina for, though the male right antennule is genioulate, structure of the fifth pair of lego is typieally calanid. Pleminger (1957) reviewing the family Tharybide has drawn attention to the close similaritien that exiat between Phaemidae and Seolecithricidae of ParaCalanina and Disixidae and Tharybidae of Diaixina and suggented that all these four familiea should be kept under Paracalanina instead of separating them into two superfamilies as waid done by Gurney.

Most of the speoialists on calanoids egree that the system proposed by Gurney presente a more exact relationahip between families than the one propounded by the earlier worlers.

Arong the Podoplea, harpacticoide form a compaet group and could be presented in a series of families which are inter-related by morphological gradationa. Cyolopeids have been grouped, as opined by Sars and supported by Lang and others, into three divisions, Yiz., Gnathostoma, Siphonoetoma and Poeoilostoma.

The definition of gnathoetomous cyclopoids has greatly changed, and at present that group contains not only species originally assigned to it by Sars and subsequent workers but also apecies which formerly belonged to the order Motodelphyoida. This enlarged group is aplit up inte two tribes, Cyolopolda gnathostoma cyclopinidiforme and Cyolopoida gnathostoma notodelphyidiformee. Broaly apeaking these two tribes correspond to the original Oyclopoide gnathostoma and Notodelphyoida respeotively. A family of copepods, Archinotodelphyidae, has recently been diseovered (Lang, 1949) and is considered to constitute connecting Link between these two tribes, inclining more towarde the notodelphyidiformes. A representative of this family has now been obtained from Indian waters (Umerkutty, 1960 c). Siphonostomoun oyclopoide form coherent group, and aceording to the original definition are characterieed by the presence of an oral siphon. However, both Gienbrecht
and Sarb have recognised Caneerillidae as an exception to this rule. Recentiy some more lamilies have been added (Moropontiidee Gooding, 1957; Stellioonitidae and Fanampidae Humes and Oressey, 1958 \& 1959) where, as in canceri111ds, the aiphon is absent or reduced to a very short extension of the Iabrum and the labium. The facte, that all these are parasitic on echinoderms and that they share many common features in contrast to the rest of siphonstomes, suggest that the members of these families have taken an altogether different evolutionary tracic. This view necesearily demande aplitting up of Cyolopoida siphonostoma into two groupe, one with a well-developed siphon and the other with aiphon highly reduced to a pad or even absent.

Lang (1948) divided Oyclopoide poecilostoma alvo into two triben, 耳ig., poccilostoma lichomolgidiformee and poecilostome enterocolidiformes. He was led to hold thie view beceuse he believed that reduction of mouth parts of Interocolidee (ineluded by Sars in Hotodelphyoide) iaplied that the latter is more related to the poecilostomes than to gnathostomes. However, IIIg (1958) does not share this view. To quote: "The existence of the ophioseidid genera In the notodelphyid series possessing incubatoria offers possible objection to Lang's consideration of the enterocolids poecilostomes. By the loss of mouthparts, the ophioseidide might be considered to qualify as pocoilostomes, but the derivation of these genera seems so obviously demonstrable from the notodelphid stock that other ascignment would be purely arbitrary. Since the outstanding
oharacter of the poseilostomes is this more or less negative feature and the existence of a convergent parallel is available, the quastion arises whether the poecilostomes are not in fact an artificial, polyphyletic grouping. There are grounds in the definitions of some of the familias to offer support to this suspician. It seems entirely possible that further discoveries among the ascidicolous copepods may yet provide the links that can cannect the enterocolids to the parental gnathostomes took" (p.477). Although Illg threw doubte to the very validity of the poecilostomes as a single phyletic unit, he himseli stated that "the question should remain an open one until further facts are available" (p. 477).

Aotes on the speaificity of association

A note may be added here on the apecificity of association of copepods with other invertebretes and weede. During oollections attempts were made to wash the different groups of hosts (holothurians, starfishee, polychaetes etc.) separately so as to study the copepods associated with partioular groups. Mo attention was paid to the species-composition of hosts and no experimental study was undextaken in the laboratory as an extension of field observations.

In the present study only three calanoid species were found to frequent the weedy coastal regions, Ridxequie bypioug Thompson \& Soott, B. Krighnaswamy n. sp. and Pseudooyelops obtugus Brady and Rotertson. Stray individuals of all these species were aldo captured from the pienkton on few
occasions. Comenting on the habitat of apecien of the genue 䭪dgewayia, W. W. Wilmon (1958) observed: Mhe warn shallow water of tropical and subtropioal reata and rooky shores, particulerly among ielands is, therefore, suggested as a common habitat of the genue". E. obtueus has also been reported from a simar habitat. It is obvious that these animals are not truly pelagic and find their austenance among the decaying vegetable matter of the inshore Iittoral areas, But they do not appear to have any special preference for particular species of weads.

Several epeoies of harpacticoids were captured from among the weede that wers afloat in the sea and thoy are indicated in the text. Majority of harpacticoids, however, were gathered from washinge of the littoral weeds. As solitary monospecific algal colonies were not found to occur in this area, it was not possible to observe whether the copepods living among them will have any preferential relationship, A single species of harpaotiooid, Gamelle (Canuella) scotti Sewell. 1940 was obtained from washings of the callianassid orustacean, Upogebia darwini,

Several cyolopoid copepode are found to Iive in assooiation with other invertebrates. Recently meny papers have been published on thia type of asaociation (Monod and Dollfus, 1932; Sewell, 1949; Bocquet, 1952; Gooding, 1957: Humes, 1957, 1958; Humes and Creseey, 1958a, b fo; etc.). In the present study true speoificity was found only in the case of few species: Liohomolaup serfetipen Ummerkutty, Antheaging pimage Humen, Stephopontiun tyoicus Thompmon a

Scott, Stellicomes tumidulus Humes \& Cressey and S. guineensig Humes \& Cressey.
I. Eexratipes was found to occur only in association with the comon pteroid of this area, Ptoreides esperi Herklots. Adult males and females as well as several young stages were found clinging to the pinnules, and would fall to the bottom if the pteroid is dipped into a beaker of dilute formalin. A, pimas desoribod Irom Madagasoar as parasiter of Pinna sp. is found to ocour in good numbere in association with the same host genus. S. tyalous was obtained from the body cavity of Holothuria gira. It wae Pirst reported by Thompaon \& Scott from washings of dredged invertebrates which included the holothurians also. It is likely that the specimens they obtained would have been waned out from holothurians. Stelicomed tumidnlug and S. guineonsis appeax to have strong bonde of assooiation with the animale from whioh they are gathered. The two opecies of Stellioomes Humea Cressey are captured from the body surface of the starfish, Penthaceros hedemanni. The original material of theae epecies have also been obtained fron starfish washinge. Both the epeaies are recorded for the first time outside the type lecality and their oceurrence in very similar situations, assoeiated with the ame groups of honta would point to the existence of certain mutual relations between the copepode and their hoste.

Sewell (1940, 1948 (1949) has discuseed in detall the distributional patterns of copepods in Indian waters. It is not intended here to deal with the several important factors that are involved in, or the intricate patterns displayed by the distribution of these minute creatures. It is, however, thought fitting to invite attention to a few apecies whose presence in Indian waters appears to be quite interesting. Below are listed those species which are either entirely new records to Indian waters (Indicated with I.F.) or new records to the south east coast of India (Indicated with S.I.C.).

Specien	Previous record and mode of existance.	Present record and mode of existence.
1. Encalanue pseudosttemustur (S.I.C.	Arabian Sea (Sewell) Medras Coast (Krishnasway), Planktonic	Gulf of Mannar, planktonie
$\text { 2. Eqeudodiantomug } \frac{\text { grajuna }(5.1 .0 .)}{\text { gran }}$	Salsette Is., off Bombay (Brehm), planktonic	Oulf of Mannar, Palk Bay, planktonic
3. Gabidocera peqti-	Widely distributed in Indian, Pacific and Atlantio oceans (Sewell), planktonic	Gulf of Mannar, planktonic
4. Acartia tortani-	Coaut of Burma, Morthemn Bay of Bengel, Hooghly River (Sewell) planictonie	Palk Bay, planktonio
5. Alteutha interruota	East Atlantio (Sars)	Gulf of Hannar, among weeds
6. Peitidiun gurivilili	Malay Archipelago (Cleve)	Gulf of Mannar, among weeds
7. Parapeltidium $\frac{\text { 1Ronstoni }}{\text { (I.W.) }}$	Malay Arohipelago (A. Soott), from dredged invertebrates	Gulf of Mannar, planktonic and anong weeds

	Malay Archipelago (A. Seott)	Palk Bay, among weed
$\text { 9. } \frac{\text { Poreg 111dium }}{\frac{\text { ghevigernm }}{(3.1 .0 .)}}$	$\begin{aligned} & \text { Hawai1 (Pesta), } \\ & \text { Madras (Krishni- } \\ & \text { swery) } \end{aligned}$	Paik Bay, Gule of Mannar, among weeds
$\text { 10. } \frac{\text { Scute21.dium }}{\frac{\text { hoagicugnm }}{\left(1, W_{+}\right)}}$	```East Altantic (Sare)```	Gulf of Mannar, among weeds
11. Xouthons maldivise	Maldive Archipelago (Sewell), among weeds	Palk Bay, gmong weeds
12. $\frac{\text { Eohinolapphonte }}{\text { horride }}$ (S.I.C.)	East Atlantic (Sars), Madras Coast (Kriahnaewaray)	Gulf of Mannar, among weeds
13. Doropygue pulex	Widely aistributed in sll the oceans (IIIg), in Ascidians	Pali Bay, in Ascidians
14. Guryte brevieauds	Haldive Archipelago (Sewell), mong weeds	Gulf of Mannar, Palk Bay, anong weed
15. Asterocheres	Maldive Archipelago (Seweli), among weeds	Gult of Mannar, Palk Bay, among weede
16. A. $\frac{\text { indicus }}{\text { (S.I.C.) }}$	Jhon Murrey Exped., Station 45. among Alcyonariana	Gulf of Mannar, Palk Bay, anong weede
$\text { 17. A. } \frac{\text { latum }}{\text { (I.W.) }}$	Eagt Atlantic (Sars)	Gule of Mannar, Falk Bay, among weede
3. Soottooheras	South Australia (Moholls)	Palk Bay, among weede
$\text { 19. } \frac{\text { Stellicomee }}{\frac{\text { tumidulus }}{\left(I_{*}\right.}}$	Madagascar, in association with starfishes	Guli of Mannar, Paik Bay, in association with starfishes
$\text { 20. S. guineensis } \quad\left(\text { I. in. }^{\text {an }}\right.$	Cape Sierra Leone, Fest Africa, among starfishes	Palk Bay, among starfishes
$\text { 21. } \frac{\text { Dermatonyson }}{\text { nigripes }}(\text { B.I.C.) }$	Widely distributed in Indian and Atlantic oceans, among weeds and invertebrates	Palk Bay, among weeds
$\text { 22. Agontiophorus } \frac{\text { scutatus }(I . W,)}{\text { wate }}$	```East Atlantic (Sare)```	Palk Bay, among weeds
23. $\frac{\text { Gryotopontius }}{\text { brevifurcatua }}$ (S.1.C.)	```Tast Atlantic (Sara), Madras Coast (Krish- swamy)```	Gule of Mannar, among weeds

$\text { 24. } \frac{\text { Hemserglape }}{\text { gnetinghin }} \text { (I.W.) }$	South Australia (M1ehol1s)	Gulf of Mannar, in the callinasaid burrow
$\text { 25. H. } \frac{\text { indioue }}{(\mathrm{S} . \text { I.C. })}$	Micobar Islands (8ewell). wead wathinge	Gulf of Mannar, in callinaseld burrows
$\text { 26. } \frac{\text { Hippomolequ }}{\frac{\text { (ubis }}{(8 . I . C .)}}$	```Sues Canal (Thown. * Seott), Madras (Krimhnuewawy), planktonie```	Gulf of Mannar, planktonic
	Coast of Prance (Camu), among polyohaetem	Paik Bay, anong polychaetes
$\text { 28. Anthonetur } \frac{\text { nimge }}{\text { (I.w.) }}$	Madagasear (Humas). in association with Pinna 8p.	Gulf of Mannar, in association with Pinna ep.
	Malaive Archipelago (Sewell), weed washing	Palk Bay, weed wanhinge
30. Katherxe regelise	Suen Ohamel (Gurney)	Gulf of Memar, planktonic
31. Peond (18ntheosing	Bast Atlentic (Sars)	Gulf of Mannar, among weeds
$\frac{\text { Thamaleus }}{\text { buphntue }}(\text { I.F. })$	$\begin{aligned} & \text { Malay Archipelago } \\ & \text { (A. Scott), } \\ & \text { planktonie } \end{aligned}$	Guif of Mannar, planktonio

The following species have been identified. Those marked with an asterik (*) are reoorded for the firet time after their original deseriptions.

OAIAHOIDA

CAIANIDAE

Genus Qanthooalanue A. Seott, 1909

1. Q. papper (Giesbrecht), 1888.

Genus Undinule A. Scott, 1909
2. I. daruini (Jubbock), 1860.
3. U. Fulgapis (Dana), 1849.

RUCALAMIDAE
Genus Enenlanue Dana, 1853
4. E. attenuatye (Dana), 1849.
5. E. Alongetus (Danc) 1849.
6. I. paenconttonuatuan Sevell, 1947.
7. E. mona@hu: Giesbreoht, 1888.
8. E. araytug, Gleabreoht, 1888.
9. E. auboreagu Gieabrecht, 1888.
10. E. meronatue $G_{1 e s b r e c h t, ~} 1888$.

Genue Rhinaalenua Dana, 1853
11. I. \#esutus Giesbrecht, 1868.
12. R. gormutue Dana var. typice Schmaun, 1917.

Genue Meovnocerf Thompson, 1888
13. M. elang Thompson, 1888.
paraoalaniddas
Genus Paracal mun Boeck, 1864
14. ․ aculeatue G1eabrecht, 1888.
15. P. parvien (Olaus), 1863.

Genus Acrocalenus Gieabrecht, 1888
16. A. gracilis Giesbreoht, 1892.
17. A. longioauda Giesbreoht, 1888.
18. A. monechus Giesbrecht, 1898.
19. A. albber Gieabrecht, 1888.
gUCHAEPIDAR
Genus 典品heete Philippi, 1843
20. E. marina (Prestandiea), 1833.

SCOLICITHRICIDAE
Genus Seoleosthrix Brady, 1883
21. S. Amae (Irabbook), 1856.

CEMTHOPAGIDAB
Genus Ceztronagen Kroyer, 1849
22. G. doreispinatue Thompson \& Soott, 1903.
23. G. furcatue (Dana), 1849.
24. C. tenuiremis Thompson \& Soott, 1903.
25. G. exainit OLembrecht, 1899.
26. Q. trinpinome Sowell, 1914.

RIDGIEAYIIDAB

Genus Bidceraria Thomp. \& Scott, 1903
27."… troteg Thompmon scott, 1903.
28. ㅍ. Kxishngawaivi n.sp.

PSBUDODIAPTOMIDAE
Gemul Reoudodiaptoman Hermok, 1884
29. ㄹ. (Pseudodiaptoman) aurivilit Cleve, 1902.
30. P. (2.) axdtuna Brehm, 1953.
31. R. (Sohmackeris) serriceudata (T. Seott), 1894.
32. P. (g.) mpnandalei Sowel1, 1919.
temoridar
Gemu Temore Baird, 1850
33. 2. turbingta (Dana), 1849.
34. F. Giagandate Gieabreoht, 1809.
35. I. etylifera (Dana), 1849.
lugiour idas
Genus Luatoutis Glesbreoht, 1898
36. L. Elavicomic (Olaus), 1863.
arigerllidas
Genus Yetacelenue Oleve, 1901.
37. H. aumivil14 Cleve, 1901.

PGEUDOCYCLOPIDAE
Genus Peoudoovclopg Brady, 1872
38. P. obtugne Brady \& Roberteon, 1873.
var. typica Sewell, 1932.
var. Letisetonne Sewell, 1932.
var. agmaetrica nov.
CAMDACIIDAB
Gemul Gandegia Dana, 1846
39. G. trungeta (Dana), 1849.
40. G. gatula (Giesbrecht), 1889.

PONTELLIDAE
Genus Labidocers Lubbook, 1853
41. I. goutifrons (Dana); 1849.
42. I. aesta (Dana), 1849.
43. I. 2xoyert (Brady), 1883.
44. I. pave Giesbrecht, 1899.
45. I. peatinate thompson \& Scott, 1903.
46. In. bengalensig Krishnaswamy, 1952.
47. I. minute Giesbrecht, 1899.

Genue Pontella Dana, 1846
48. P. gecupifer Brady, 1883.
49. P. Ganes var. eglonien Thompion \& Soott, 1903.

Gemu Pontellopais Brady, 1883
50. I. herlenmi Thompson \& Scott, 1903.
51. E. Mempony A. Scott, 1909.

Gome Galenonis Dana; 1852
52. ©. 日urivil11 01eve, 1901.
53. C. ellintioa (Dana), 1849.
54. Q. thompani A. Scott. 1909.

ANARTMDAB
Genve Agartin Dana, 1846
55. A. exythraen G1esbrecht, 1889.
56. A. tortaniformis Sewell, 1912.

TORTANIDAE
Genus Tertiany Gieebrecht, 1898
57. T. Eareipatus ((1esbrecht), 1889.
58. T. Exacilis (Brady), 1883.

HRRACHIOODA
LONGIPZDIIDAR
Gemus Enongipedie Olaus, 1863
59. I. coxonata Claus, 1863.
60. I. meberi A. Seott, 1909.

Genue Gquyel2a T. \& A. Soott, 1893
61. G. (Gmanin) Inreigern 8ary, 1903.
62. G. (C.) saotti Sewel1, 1940.
63. ©. (C.) perplexa T. A A. Seott, 1893.

BCTIMOSOMIDAE
Gemu Mioxogetella Brady \& Roberteon, 1873
64. M. masen (Dang) 1853.

TAOHIDLIDAE
Genus Exterping Norman, 1903
65. E. acutifrons (Dana), 1848.

MAOROSETGLLIDAS
Genu: Marosetella A. Scott, 1909
66. H. great1is (Dana), 1852.

CLITEMMIBSMRIDAE
Genus Clytemmestra Dana, 1847
67. C. rostrata (Brady), 1883.

PELTIDIIDAE
Genus Alteuths Baird, 1845
68. A. interrupth Goodsix, 1843.
69. Altenth m.

Genu: Peltidiun Philippi, 1839

71. ․ Eneckang Thompson \& Soott, 1903.
72. *2. anculatum Thompson \& Scott. 1903.
73. E. ovale Thompson \& Scott, 1903.
74.(7) 2. genixius

Genus Rarapeltidius A. Scott, 1909.
75. \#P. shonatoni A. Seott, 1909. 76.*P. gerratipas(Thompson \& Scott), 1903.
77. ․ nichollei n. 6p.

Genus Alteuthella A. Scott, 1909
78. A. pelluelda A. Scott, 1909.
TRGASTIDAE
Genue Terasten Horman， 1903
79．T．黠mtug Sewell， 1940.
Gemus Engagten Monard，192母
80．Synusetos ep．PORORLEIDIIDAE
Gerus Porcelliduw O1aus， 1860
81．${ }^{\text {EP }}$ ．Kavense Thompeon S Scott， 1903.
82．․ 日cuticandatux Thompson \＆Soott， 1903.
83．FP．seotti Pesta， 1935.
84．E．ILmbriatux Clauw， 1860.
85．P．olavizerum Pesta， 1935.
86．P．unicut n．op．
87．Porcal11dum op．
HARPACTICIDAE
Gemus Harpectioys M．Eswards， 1838
88．H．11ttorelis G．0．Sars，1910．
89．H．Qlaugi A．Soott，1909．TISBLDASGenus Sigbe Lilljeborg， 1853
90．I．furcate（Baird）， 1837.

91．T．Joneni Ummerikutty， 1960.
Genue Sputellidusum Olaus， 1866
92．S．longisougum（Philippi）． 1840.
93．S．D1uwapur Brady， 1899.
THALESTRIDAB
Gonus Ehyncothalestris G．0．Sars， 1905
94．R．rufocinata（Norman）， 1880.
95 Genus Xouthous Thompaon， 1883
Gemus Eadsatylopur A．Soott， 1909
96．E．Etristus Sewell，1940．
DIOSACCIDAE
Genus Biompocue Boeck， 1872
97．B．truneatue Gurney， 1927.

```
    Gonu* Amphistconsis Gurney, 1927
    98. A. gentatuk (Thompson & Seott), 1903.
    99. A. hirsutug (Thompson & $eott), 1903.
100. A. Slngtug (OLaus), 1866.
                                    LAOPHONTIDAE
    Cenus Lgophonte Philippi, }184
101. I. (Laophonte) hixguti, Thonpson & Soott, 1903.
102. I. (I.) maceni Sewel1, 1940.
    Genus 真hinolaophonte Nioholls, }194
103. E. harrida (Norman), 1876.
104. Estropics n: sp.
                                    CANPHOCAMPTIDAR
                            Gemus Orthopsylus Brady & Robertmon, 1873
105. 9. Minegris (Claum), 1866.
                                    LOURMMILDAE
                            Genus fourinita Filson; 1924
106. I. Ermata (Olaus), 1866.
                                    METIDAE
                            Genus Matie Philipp1, 1843
107. M. Jownequmbi forma minor Sewell, 1940.
    forma major Sewell, 1940.
OYOLOPOIDA
Section Gnathostoma
                                    OITHONIDAE
                            Genus 01thons Baird, 1843
108. 0. Linesxis Giesbrecht, 1891.
109. 員 Yobuath Giembrecht, 1891.
110. Q. Eigide Glesbrecht, 1898.
111. D. Dlumitera Baira, 1843.
112. O. Betlrere Dans/, 1849.
113. Q. nang Glesbrecht, 1892.
                                    CYOLOPINIDAE
                            Genus Oxolopina Claue, 1865
114. .. Eracilitis Claus,1863
```

Gomp Buxtif Philippi, 1843
115. E. Yobnets Giesbreaht, 1900.
116. HE . brexionde Sowe11, 1949.
117. Earrte ep.

ABEHIMOTODELPHYIDAE
Genue Hearchinotadelphris Unmerirutty, 1960
118. I. Indiens Umerikutty, 1960.

HOTODELPHYIDAE
Genus Deropyrye thore11, 1859
119. D. Hilex Thore11, 1859.

Section Siphonostoma
ASTHROOHERIDAE
Genus Astarooheres Boeck, 1859
120.*A. Hgior Thompeon \& Soott, 1903.
121.*A. 펴Nㅗ Thompson Seott, 1903.
122. A. marnarensis Thompion \& Seott, 1903.
123. A. dentatur Giesbrecht, 1899.
124.*A. oxientelis Sewell, 1949.
125. *A. indicyin Sewe11, 1949.
126. A. Latur (Brady), 1880.
127. Astarocherese mp. (1)
128. Asterogheres ep. (11)

Genus geottocheren Gienbrecht, 1897
129.*S. Latur Hicholle, 1944.

Genus Dexnatowyson Claus, 1889
130. D. Migxtene (Brady), 1880.

Gome Asteropontius Thompson \& Scott, 1903
131.*A. typieus Thompson \& Seott, 1903.
132. A. 11ttoralis Umericutty, 1961.
135. A. gevel11 Unmerikutty, 1961.

Genue Indowyon n. gen.
134. I. geatmi n. gen. t. n. ap. ACORTIOPHORIDAS
Genus Acontiophorus Brady, 1880

BHIOMOLEPIDAE
Genu: Paralepeopsylius Umerkutty, 1960136. I. mannarensis Ummerikutty, 1960.DYSPORTIIDAEGemie Sarellopantius n. gen.137. S. rectienculue n. gen. et. n. sp.Genue Griptoponting Giesbrecht, 1899
138. ©. brevifureatua Giesbrecht, 1899.
139. C. areciloides Ummerikutty, 1961.
140. C. orientalis Umerkutty, 1961.BMELLICOMITIDAEGenue Stellicomat Humes \& Cxessey, 1958
141.*́. turidulne Humes \& Cressey, 1958.142.*S. gripenatis Humes \& Oressey ; 1958.HANASPIDAEGemue Stephopontius Thompeon : Scott, 1903
143.*R. tridars Thompson \& Scott, 1903.Section Poecilostoma
OLAUBIDIIDAS
Gemul Hemicxelopis Boeck, 1873
144.*H. 를tralig Mioholle, 1944
145. *H. indicus Sewell. 1949.
146. H. intermediun Umerkutty, 1961.
Gemue Hippomolqus G.0. Sare, 1917
147. H. Gubis (Thompson \& Scott), 1903.
Geman Hernillodes Canu; 1888
148. H. Laoterieis Canu, 1888.LIOHOMOLGTDAE
Subtamily Sabelliphilinae
Genu Anthenaine Della Valle, 1879
149.*A. pinnae Humes, 1958.
Gemus Preherxmannella Sewell, 1949
150.*卫. brexiaaude Sewell, 1949.
151.*ㄹ. Serendibica (Thompeon * Scott), 1903.
152. E. Rolisces n. sp.

Subfanily Lichomolginae
Gema Pasucoantheasius Olauw, 1889
153. P. Sguracti Cank, 1891.
154. P. Liber (Brady a Robetton) 1875.
155. P. 2ngnhentus Fumes \& Cressey, 1959.
156. I. snormalus n. op.
157. P. breviamain n. mp.

Geme Kallexiagurhey, 1927
158. *K. resalis Guxney, 1927.
459. Genus Magsochiron Brady, 1872
159. M. (Earamagrechiron) parvus A. seott, 1909.
160. M. (Macreohiron) sigida Jmaerkutty, 1961.

Genu: ISehomalang Thorell, 1860
161.TL. gise Thompson S Soott, 1903.
162. I. holotharise Unmerkutty, 1961.
163. I. Bermatineg Jmberkutty, 1961.
164. I. Indiens Umerkutty, 1961.
165. I. brevifurcate Unmexkutty, 1961.
166. Itohomelene ep.

ONOAEIDAB
Genus Omeses Philippi, 1843
167. O. ennifers Giesbrecht, 189s.
168. Q. Hedia var. major Sewall, 1947.
var. minor Sewell, 1947.
169. Q. mediterrenes Claus, 1866.
170. Q. Tempati Philippi, 1843.
171. Q. elevei Fruchtl, 1923.

SAPPHIRINIDAS
Gemul Sapoixiza Thompson, 1829

173. S. nicromaculata Clauv, 1863.
174. S. oxatolanceolata Dana, 1849.

Gemu Conilis Dana, 1849
175. Q mirabilia Dana, $1859 . ~_{\text {ma }}$
CORTCAAIDAS
Gama Grytanys Dana, 1845
176. g. (Droentrenme) גempistrili Dana, 1845.

178. 日. (Geranila) tibinla Gienbreeht; 1892.
179. Q. (Comranvus) Engotorme Dana, 1845.

181. G. (O.) gatur F. Dabl, 1894.
YOHSTEIKLOLDA
HOHETRLELIDAE
Conax Oxplasen Thomperan; 1888
182. Q. mintme (A, 8ooth) 1909.
183. G. txantern Wolfonden, 1906.

```
            OALA年OIDA
                                    CALMuTDAS
    0.0. 8are. 1903. p.8.
        Gomu gmathegelmmat A. Soptt. 1909
    A. Seott. 1909, D. 9.
1. g. numpz (acenbreht), 1088.
    G1embreoht, 1888, p. 331.
    Bewe21, 1929. D. 25.
    Kcimhneswamy, 1953n, p, 25.
```



```
oftan in good mumbore. It appeare to breed astively twiee a
year; In June-July and Ootober-December when large mumbert of
copepedites and adulte are prosent in plankton. Kxiehmacwany
(10g. git.) haw alxeady noted ite abundanee in the monthe of
NovambermDeoombor both in Kruwadal as well as in Madras
watere. Sitat fanale 1.3 mm. and male 1.13 ma.
Dintwhytion - Videly dietributed in Indian and Paodie ocean* and alao in the Mediterrmean ma.
Genuw 品diny A. Scott, 1909
A. Soett, 1909: F. 17.
2. I. Anspint (Tabbeck), 1860.
Jubbook, 1060, D. 179, p2. 29, 7iga. 4 5.
Sewall, 1929, D. 42.
Sewe11; 1947. pp. 18-20.
Verveest, 1946; pp. 77-83.
Kriohnandey, 1953n. P. 110.
Mstext 1 mantred - Fow opeoimens asptured in Angut
1959 are all females. Siser 2.7 \#n.
Dietrabution - Known from Paoific, Indian and Atlantic oceanm.
```

Roname - Sowell (1929) reoognient three varieties,
 I have been able to obtain only the firet variety. 3. ㅌ, mulcarik (Dana), 1849.

Dana, 1849, p. 22.
Seme21, 1929; p. 31.
Krishneewery; 1953a, p. 109.
Material examing - In the Gulf of Monar the maximum number of this apecies is present during the monthe of YayJuly 1960 when good mubare of copapoditee are alao noticed. Sise: ver. gieabrechti female 2.5 mm , and male 2.1 mm var. typian and vax. gellanion are alittle maller.

Distribution - Comopolitan, being present in all the three great oceane.

mucalaridar

0.0. Barn, 1903, p. 12.

Genue Meslanus Dana, 1853
Q.0. Sars, 1925, p. 21.
4. E. attomuntua (Dana), 1849.

Dena, 1849; P. 18.
Seweil, 1947, pp. 30-40.
Vervoort, 1946. pp. 95-103.
Exiahnawamy, 1953a, Dp. 110-111.
Material examinad - This apecies is found in good number in June 1959, Large number of copepodite are present in the following monthe until in Soptember-0etober the speoien is rarely seen. Siser female 4.1 mm, and male 3.28 mm .

[^0]5. E. elongaty (Dana), 1849.

Daza, 1849, P. 18.
Sewell, 1929, p. 49.
Vexvoort, 1946, pp. 84-94.
Sewoll, 1947, pp: 43-45.
Krimhnaavaay, 1953a, p. 111.
Materigl oxamined - This species is neververy common. A few specimens are oaptured in Auguet 1959 along with other epecies of this genua. Size: fenale 4.21 mand ande 3.40 mm .

Diatribution - Throughout the Indo-Paotifo.
Ramarke - Vervoort (lag. git.) doen not reoognige any difforence between E. SLongatue (Dana) and g. bunchid Johnson. "In my opinion Johnson': specien certainly have no apoelfic value. It sees beat to distinguish between an Atlantic form with laterally produced thoracie margins, aeymmotrical first antenne and slightly spinulated on the dorsal surface and a Facific form with a swoothly rounded lateral thoracie margine, symetrical firet mitenna and without any indieation of epinulea" (p. 93). This view has been aupported by Sewell (1949) who thue remarked on the apecies he oollected during the John Kurray Expedition "All the apeaimens belonged to the variety firet deseribed by Gieabrecht (1895, p. 246) and later noted by Esterly (1905, p. 132, 1ig. 6b) in which the lateral posterior margin of the fifth thoracio segmont is rounded and doen not exhibit the small apines of the typical form. Both of these recorda come from the Pacific. ooean and it would appear possible that this variety is in mality an Indo-Pacific form (p. 44). The present material belongs to this Indo-Paetifo group.

Tanaka (1956) has, however, preferred to treat the two form as two speoles, 旦. elongatue and E, buphit.
6. E. papudoatkemutug sewell, 1947.

Sewell, 1947, pp. 40-43, 11gw. 7 A and 8 Am. Krichnaeway, 1956, p. 452.

Matorial oxamined - A ungle apeoimen of this apecies If obtained in August 1959. Sise: female 3.3 min.

Distribution - Maldive Islande, Arabian sea, Madram coast and the Gult of Manar.
7. E. mpaphus Giembreoht, 1888.

Gienbreeht, 1888, p. 333.
Sewell, 1929, p. 51.
Sewell, 1947, P. 46.
Material_exatinad - This specien is also oaptured during Auguet 1959 in emall numbers mostiy admixad with other larger copepode of this area. Sivet fomale 2.28 man. and male 1.96 man.

Dietribution - Recorded from Atiantio and Indian oceans.
8. E. arambug Gieabreaht, 1888.

Gieebreckt, 1888, p. 333.
Sewe 11, 1929, p. 50.
Vervoert, 1946, pp. 112-15.
Sewell, 1947, p. 46.
Kyifhnetwayy, 1953a, p. 111.
Matorial examined - Rare individuale are aught almoet
every month, moet of them being in the fifth copepodite
stage. The breeding of this speoies appeare to ooincide
with that of 羕 attmuatur and takeo place mainly twice a year, July-August and November-Decembor. Siset fomale 2.9 mm . $<9 \mathrm{~m}$, man male 2.4 mm.
Biatribution - Atlantie and Indo-Paoifie.

Remextw－According to Vervoort，I．gentane desoribed by Mamkawe（1921）is identical with ge grateus：The＂eyee＂ deseribed by that author very probably are the epote where mucles from the first entenn or the mouthparte are internaly ettached to tho integumentum，and whioh are diatinotiy visible In neariy all apeoimens of 显，greatug and othor apeoiea of the genus Sucalanue by traneparency of the carapace＂．（p．114）

9．I．mbergsus Giesbreaht， 1888.
GLembreoht，1888，p．334．
Sewe11，1929；pp，5i－57，11ge．14－17．
Fervoort，1946，pp．108－112，11ge．8e to．
Sewell．1947，P．47．
Krishnewamy，1953a，p． 112.
Material oxminat－This apecion is obtained in good numbere in Auguet and Hovember 1959．Sise： 10 male 2.3 mm ． and male 1.8 mm ．

Digtribution－Greatly diatributed in Indian，Pacifio and Atlantic oseans．

Gianbreoht，1888，g． 334.
8甲we11，1929，1．51．
ふewell．1947，p．46．
Material cxaminod－A few female pecimens of this geecies are obtained from plankton near Haxe Island in Auguet 1959．Sles temale 2.21 mo．

Diatribution－Found in Atiantio，Indian and Pacifio oceans．

$$
\text { Gemus Ghingalenyin Dana, } 1853
$$

G．0．Sars，1903．p．14．
11．E．nagutut Giestrecht， 1888.
Qienbreaht，1888，p． 334.

Sohname Lehnhoter, 1927, pp. 368, 384-86, Sige. 3, 15-19, 21 26.
Stener * Hontachel, 1937, pp. 138-50, 151-58, 14ge, 67-72, 74-79.
Terroort, 1946, ppe 122-26.
8ewel2, 1947. 0p. 49-50.
Yaterial exentind - This apecies oceurs only eporadieally. Large numbers of males, fenales and late copepodites are obtained In the lat weok of August 1959. In the midale of Deomber, three sixth nauplis. and a few third and fourth copepeditee are obtained. Bise: female 4.8 mm , and male 4.3 mm .

Diatribution - Recorded from all the great oceanis.
Remaxta - Sohmaus and Lehnhofer (Log. att.) have clearly
 contrelled in abundance by deap water ourrents. In Indian coean it in an inhebitant of the Indian Tropioal Intermeaiate Gurrent.
12. 5. sormutus Dane forma trotes Sohmane 1917.

Dana, 1853, p. 1083, 1855, pl. 76, Eige. 2 a-d.
Sohmenn, 1917, p. 312, IIge, 5-11.
Schanm a Lehnhofer, 1927, pp. 359, 360, 365-68, 379-82, 18. 1, 2, 8-14, 22 25.

Vervoort, 1946, pp. 116-22.
gowe11, 1947, p. 48.
Kriehnaewany, 1953a, p. 112.
Meterinl examined - Two specimens (fourth copepedite and a fifth copepodite) are colleoted along with the preeeding epeoies. sies fourth copepodite 3.1 ma and $1 i f t h 4.0 \mathrm{~mm}$

Distribution - Throughout the Indo-Pacifie and South Atlantie oceana.

Remante - Thie variety ia confined to the Indo-Pacifie whil forma stlantion Schmaus is observed in the Atlantic
ceen. Like the eariler speoien thit is also a ceep water form, adulte for the most part being found at depthe below 200 meters. Hewevar, beth species oceur and breed in surface as well as in deeper waters (Xide Sewell, 1947; wisen, 1932). Genu: Mermecera Thompson 1888
Wisen, 1932, p. 36. 13. M. Slang Thompsen, 1888.

Thompen, 1888, p. 150, p1. 11. Sawell, 1929, p. 61. Krishnaewary, 1953a, p. 113.

Motexial examined - Twe female mecimens are collected frem plankton of Here Island in Soptember 1959. Sises Pemale 1.03 man.

Distribution - Widely dietributed in Indian, Pacific and Atlantic oeeanm.

paracatanidas

6.0. Saxa, 1903, p. 16.

Genue Paracalemus Roeck, 1864.
0.0. Sare, 1903, p. 17.

Sewell, 1929. p. 61.
14. ․ geuleatue Giewbreoht. 1888.

Gienbreoht, 1888, p. 332.
Sewe11, 1929, pp. 62-66, 11ge. 20 \& 21.
Verveert, 1946, pp. 127-28.
Sewell, 1947. p. 51.
Krishnaewamy, 1953a, p. 114.
Matericlexamized - This if a common speoies of this
area and is obtained nmost throughout the year. A study of the breeding habita of this peaies is included in the secend part of this thesis, Sizet female $1.20-1.23 \mathrm{~mm}$ and male 0.81 - 0.85 mm.

Mintribution - Distributed in the tropical and abbropical regions of all the oceans.
15. P. paryun (Olaus), 1863

Claue, 1863, p. 173, pl. 26, figs. 10-14; pl. 27, Pigt.1-4. Sewell, 1929, pp. 68-71.
Sewell, 1947, pp. 51-52.
Krishnaawamy, 1953a, pp. 113-14.
Yaterial examined - This is another very oommon apeoien and can be obtained throughout the year. Sizes female 0.65 me. and male 0.58 mu.

Diatribution - Distributed in all the oceans.
Homark - Wolfonden (1906) recognisea twe varieties, one found in M. Atlantic and called by him var, berealie and the other found in the Indo-Paoific and named var. Indicus. The present material belongs to the latter aategory.

Genu: A0reoglanus Giesbrecht, 1888.

Wolfonden, 1906, pp. 999-1000.
16. A. areoilit Gienbreoht, 1888.

G1enbreaht, 1888, p. 332.
Welfonden, 1906, pp. 1003-1004, pl. XCVII, figs. 23-24. Sewell, 1929, pp. 79-80, fig. 31.
Sewell, 1947, p. 53.
Kriohnanwamy, 1953a, p. 115.
Matexial examined - This is a rare species captured only on three oooasions, January 1959, April 1959 and January, 1960. They oocur in very small numbere and only females are oaught. Sisez femalez 1.19 mm .

Distribution - Widely recorded from the warm watera of Indian and Paoific oceans.

```
17. As lentigegni年 Giesbreght; 1888.
```



```
        11-12, 23-24.
    Sewell, 1929, pp. 82-83, fig. 33.
    Kriehnanvany, 1963a, pp. 114-15.
```

Matexisl oxaring - Thi: apeois is obtained in mall numbers during Ooteber 1959 and July 1960. Sise: female 1.16 man and male 1.31 mm.

Diatribution - Widely distributed in the tropical and subtropical areas of the oceans.
18. A. Hencehus Giembrecht, 1888.

Gienbrecht, 1888, p. 333.
Wolfenden, 1906, pp. 1002-1003, pl. KOVII, 1ige. 27-28, 49, Sewell, 1947, p. 53. Krichnaewamy, 1953a, pp. 115-16.

Mgtertal examined - This is a ommon acrocalanid of this area and it obtained throughout the year. Sige: female 0.81 mm. and male 0.69 mm .

Distribution - Recorded from Various localities in the Indo-Paaifio.
19. A. sibber Giesbrecht, 1888.

Gienbrecht, 1888, p. 332.
Wolfenden, 1906, p. 1003, pl. XCVII, fig. 38.
Sewell, 1929, pp. 80-81, fig. 38.
Vervoort, 1946; pp. 136-37.
Krishnamwamy, 1953a, p. 115.
Material exsmined - This is common epecies occurring in bundence duriag July-August and Hevember-Fobruary months. In mall numbers it is prosent throughout the year. Sises female 1.05 mim and male 0.93 man.

Distribution - Widely distributed in Indian and Pacifio
oceans and in the Mediterranean sea.

EUOLABETDAS
Q.0. 8are, 1903, pp. 36-37.

Gonum Bochats Philippi, 1843
6.0. Sary, 1903, p. 37.

Sewell, 1947, pp. 110-12.

Prestandrea, 1853, p. 12.
Sewell, 1929, P. 148.
Sewe11, 1947, 1yp 113-15.
Krichneatway, 1953\%, p. 177.
Matexial expmined - A fow apecimenc are obtained
during Hovember 1959. All opecimens are fifth copepodite fomales. Sizet 3.1 mm .

Dietrimation - Rocorded from Indian, Atlantic and Pacifie oceans.

SCOLESOLTHRIOIDAB
G.0. Sars, 1903, 9. 49.

Gonus Soelocithrix Brody, 1883.
Wilson, 1932, p. 81.
21. I. drnes (Inabook), 1856.

Lubbeak, 1856, y. 21, pl. 9, 11ge. 6-9.
Sewell, 1929, p. 209.
Material examined - A aingle male apecimen of this
specias is taken from plankton in June 1959. Sisesmalet 1.9 ma. the
Distribution - Minit is mpost widely dietributed $^{\text {mot }}$ apecies of the genue" (Vilson, 1950).

CEATHOPAGIDAS
G.0. Sars. 1903, p. 73.

Gonve Contrepages Xroyer, 1849
G.0. Sare, 1903, \%. 74.

Sewell. 1929. p. 227.
Wileon, 1932, p. 85.
22. G. Corsimpinaty县 Thompeon Seott, 1903.

Thompeon \& Soett, 1903, p. 247, p1. 1, IIge. 19-25.
Sewel1, 1919, p. 228.
Kriehnamany, 1953a, y. 120.
Mgterial examing - This species is present in geod numberg Iren Movember to Pebruary. It commences to appear In the begiming of November and by the end of the menth beth sexek warm the waterg. Intensive breeding seems to take place in January as judged from the presence of cnormous number of younger stages, Sige: fomale 1.48 mm . and male 1.35 mm .

Diatribution - So far recoxded from the castern and western stas of Indian Peninsula as well as from the Malay Archipelage.
23. C. fureatue (Dana), 1849.

Dana, 1849, p. 25. Sewell, 1932, p. 229. Krimhnaswary, 1953a, p. 117.

Materina axamed - This is a common peoies of this area and is found throughout the year. Sige: female 1.8 mm . and male 1.6 mm .

Diatribution - Has a wide dietribution throughout the tropical belt" (Sewell, 1932, p. 229).
24. G. tenuiremis Thoripaon \& Scott, 1903.
thompsen Saott, 1903, p. 247, pl. 1, figs. 14-18. Sewell. 1932, pp. 230-52. Krishnaswamy, 1953a, p. 120.

Ysterial examined - This is a rare speciee occurrine motiy during oolder nonthe of the year, December-January. Adulte and younger tages are caught near Hare Island.

Sise temale 1.8 min. and male 1.6 man.

Diftribution - Reoordod from the Arabian sea, Bay of

 Bengal and the Gulf of Mannar.25. C. oxainit Giosbreoht, 1889.

Giesbreoht, 1889, p. 811.
Sewell, 1947, p. 163.
Krimhnamway, 1953a, p. 122.
Matertal examined - Thie is another not very oommon species. However, sporadic appearance of quite a good number of individuals ie noticed in November 1959.

Siset fomale 1.63 mm , and male 1.37 ma.

Distribution - Widely distributed in the tropical and ubtropieal arees of oceans.
26. O. Eriderinotur Sowell, 1914 .

Sewell, 1914, pp, 223-24, P1. XVIII, IIgs. 3-8.
Krinhanwamy, 1951, p. 76, 1ig. 2.
Kriehnavary, 1953a, p. 121.
Material examinca - Sowoll (100. cit.) oreated this peoies frem this geographian area on the basis of a single female speoimen. Krishnaswany (1951) subsequently desoribed the male. I have obtainod this copopod almost throughout the year in amall numbers. The maximum number of this speoies ia found in January, both in 1959 and 1960. Siset fomale 1.52 me, and male 1.21 mm.

Dintrimution - Recorded from the Guif of Mannar and Madran coast.

RIDGEWAYIIDAS

```
M.S. W11%on, 1950, pp. 176-77.
```

Genue Ridearayia Thompson \& Soott 1903
Thompwon \& Scott, 1903, p. 245. M.S. Wilson, 1950, pp. $140-42$.
27. E. typies Thompan \& Seott, 1903.

Thompan \& Scott, 1903, p. 245, pl. I, figs. 1-13. M.S. Wilson, 1950, pp. 142-43.

Material examined - Fifteen fomales and thirteen males of this species ocourred in the washinge of weeds collected both from the Gulf of Mannar and the Palk Bay during the monthe of September-0ctober 1960.

Deneriptive notea - Thompson \& Scott (10c. site) gave the desoription of female of this apecien. Some additional notes, however, are given here to provide detailed informations of the various appendages. Male is desoribed for the first time.

Female:Animal is quite robust, with a rather cyiindrical prosome which is 6 -segmonted, gracefully rounded anterioriy and ending poeteriorly in angular corners. The partition between the first two segments is indistinct. First promomal segment is very large and contains in it the widest part of body. Last segment, in dorsal view, terminates in angular cornors and in lateral view, the inner edge of this segment is broken by a hook-1ike notch. The area between this notoh and posterior tip is very thin and transparent with two minute hairs. The genital segment (P1. II, 2) looke rather hexagonal in dorsal view and is anjmintrical with the right postero-lateral comeryreduced inte a aping-like atructure. In ventral view a pair of genital aportures are seen on the genital segment (pl.II,3).

They are aymetrioally arranged, and occupy only a little more than half the width of segment. Next three urosomal segments diminieh both in length and width to posterior side. Hind margins of second and third segrente are ontire. In first eegment the mid-dorsal area ie slightly produced into a dome, while in last oegment the mid-doreal area ia elevated into a pair of symmetrical, triangular struetures, each carrying stout, sharp, conical spines. Caudal ramu is simple and rectangular, the narrow distal margin oarrying one aub-terminal apine, ahorter than the ramus on the outer side, one mall subterminal seta on the dorsal side and four long setae on the apical margin. The middle two setae are clearly jointed at proximal area. Second eeta from inner side is the longest, almost twice the length of the entire urosome. Pine setae are present on inner margins of caudal rami.

Antennule is $25-j o i n t e d$, reaching to the posterior margin of the penultimate prosomal segment. The propertionste lengthe of the conatituting aegmenta and the number of setae and aesthetasics borne by them are presented belows

Antenna, maxillule, maxilla and maxilliped heve been exeellently aketohed by thompeon S Soott and need no commonta except that they have obviounly confuced the exopod and the andepod of antenna. Thompson a Scott have aleo figured firet, eecond, fourth and fifth pairs of legs. In third leg, the ondopod if Eimilar to that of second leg and the exopod to that of lourth leg. Piret leg (P1. II, 4) bhows several distinctive modifications: Outer spines of exopod are vexy slender and sharp. Outer apioal spine is short, but imer apieal spine is subequal to the last two exopod segments. Dietel to the spine, a flat digitiform preoeas fringed all along the matire marging, is present in first and second segmente. In third segment there is no indication of this specialised atructure. A long eensory Iflament is present between the digitiform procens and the spine of second exopod segment. There is ourved, sieiclemshaped apine on the inner dietal margin of second protepod eegment. Firet protopod segment of firet leg doee not bear any eeta. The next three pairs of lege show little peoufarities. The netae of all the lega are jointed, only the datal parte bearing eetules. The omamentation of swimaing lege is presented below:

In fifth leg only exopod is 3-egegented, endopod being 2-segmented. Firit protopod segment in witheut any geta, second protoped segment carries one seta on the midde outer margin. First exopod segment carries on its outer distal angle a seta which is equal in length to the eegment itself. Second megment also carries aimilar seta, but a little ahorter. At almoet midde of inner margin of that oegment a eeta is present. Third segment is just as long as the second and carriee an apioal, an inner and twe outer epines; on the imer margin there are four setae. Apioal spine is the longest and proximal outer spine the shortest. First segment of endopod is devoid of any sete, while distal segment carries two outer, two apical and three inner setae. The proximal mos imner pine is borne at about one-third of length of the segment. All the aetae on both rami are jointed, the setules being present only on the distal parts. Size: 0.8 min. - 0.82 mm .

Male: The differenoes between femal and male are manifested in the genioulation of right antennule, fifth legs and in the segmentation of urosome.

Left antennule 18 non-geniculate and 25-jointed as it is in the female. In the number of setae and aesthetasks as well as in their arrangemente, the left antennule ia very similar to the female antennule. The geniculate right antennule (pl. III, 1) is 22-jointed. First eleven promimal aegments roughly correspond to their counterparte of the ferale antennule, but there is a profusion of aesthetasks, especially in the more proximal segmente. In twelfth segment,
imer margin is highly shortened with the result that the thirteenth segment looks as if it is directly in contact With the eleventh eegment. However, a clear, diagonal demareation separate the twelfth and the thirteenth segments. Four apical joints are elongated. The third segment from apex is notched at about one-third of its length of both margins, while the fourth segment (P1. III, 2) Ehows very Pina dentition. Proportionate lengths of the Farious segments and the setae and the aesthetams borne by them are presented below:

1	2	3	4	5	6	7	8	9	10	11	12
7.8	9.8	3.1	2.1	2.6	2.35	2.6	2.6	1.55	2.8	1.55	2.1
18	38	2 a	2 a	2 as	2 a	2 a	1 s	1 s	1 a	1 s	1 a
1 a	3 a	3 a	1 a	1 a	1 a	1 a	1 a	1 a	1 a	-	2 a

13	14	15	16	17	18	19	20	21	22
3.6	3.6	3.4	3.4	3.1	5.2	10.1	10.1	8.8	$7.75=$
2 a	2 a	2 a	2 a	1 a	1 a	3 a	2 a	2 a	4 a
1 a	1 a	1 a	1 a	-	-	1 a	1 a	-	1 a

Pifth legs (P1. III,3) are dietinctly modified, both the lege being biramous. In right leg, exopodia 2 -jointed, it
while in left leg is 3 -segmented. Endopod in both legs are 1-segmented and protopod 2-segmented. Protopod is similarly constructed in both legs. Basal protopod segment does not bear any seta or spine, distal segment carries one sets on ite outer distal angle in both the legs. First aegment of right exopod bears on its distal outer angle a spine whioh is long as the segment itself. A number of bristles are present on its distal margin. Second segment is larger then the firet and is peculiarly produced inwards inte a beak-like atructure at its distal end. At base of
this beak there is a conical spine. A large spine similar to that of first gegment is present on the second sogment also; but it originates at about the middle of outer margin. Firgt two segments of left exopod are normal, both bearing epines corresponding to those of the right leg, at the dietal outer angles. First segment, however, is one and a half times longer than the other. Last exopod eegment (P1. III, 4) is highly modified and very short. A number of ill-defined processes and spines are brone on that segment, the exact Iunotional importance of which in uncertain.

Right endepod is longer than the left. It is rather cyindrical struoture, terminating in one apical and one subapioal epinew. There are three aetae on the inner margin, firgt eeta tacing its origin at about one third of proximal length and the other two being more or leas equispaced. Left endoped is much aimpler in atruoture than the right, It ie cylindrieal in shape, terminating in one apical pine. Bndopod is a little longer than exepod.

Urosome 1s 5-segmented and figured (P1. II, 5). The segments are columar and diminish both in length and width ponteriorverde, Last segment in much reduced in size and can be meen only on careful examination. Caudal raud borne on this segment are rather rectangular, about one and a half timeg longer than wide and bearing fine hairs on their imer marging. Size: $0.76 \mathrm{man}-0.78$ min.
28. D. krishnogumyi n. 8p.

Material examinal - Forty one specimens (twenty females and twentyone males) of this speoies ocourred along with the
preceding species in the weed washinge of the Gulf of Mennar and the Palk Bay during the months of September-Oetober 1960. Holotype, allotype and paratypes are deposited in the Reference Collection Huseum of the Central Marine Fisheries Reaearch Indtitute, Mandapan Camp.

Descrintive noteg - This species is named after Dr. S. Krishnaswamy of the Madras University in recognition of the valuable contributions he has made towards enhancing our knowledge of Indian copepods.

Pemale: In general appearance this apecies is aimilar to the preceding one, but has a slenderer, more spindle-shaped body (PI. IV, 1), the ratio of prosome and urosome being 72:28. There are aix segments in prosome and four in urosome. ea there are in the prsceding species, but variations are seen in the relative lengths of the constituting segments and also in the fait that the partition between cophaloseme and firct pedigerous segment is much more distinct. In urosome (P1. V, 1) genital segment is symmetrical, barrel-like and largest of ail egments. The relative lengthe of different urosomal segnents and oaudul remi are as follows:
$44.317 .1 \quad 15.75 .8 \quad 17.1=100$
In lateral view the genital segment is moderately bulging ventralwards with a slight depression at posterior one third length, indioating the genital apertures (Pl. V, 3). The latter are net more wide apart than in the preceding spectes and they occupy a little more than half the width of genital segment. Bach caudel ramus bears one subapical spine on
outer eide, one aubapical seta on ventral side and four setae on terminal margin. The midde twe setae are jointed at base and bear setules only in Custal two third of their lengths. The longest seta is aboyt twice as long as the entire a uronome.

Antennule (P1. $V, 4)$ is 26-fointed, reaching te posterior and of prosome. The relutive lengths of constituting segments and the number of setae and aesthetasks borne by them are presented below:

1	2	3	1	5	6	7	8	9	10	11	12
4.75	6.75	3.5	3.25	3.0	3.0	3.25	2.75	2.5	2.25	2.25	2.8
2.	28	28	2s	1\%	28	2s	2 s	2 s	2%	28	2s
-	1a	-	1 a	1 a	1 a	1 a	1a	1 a	12	1 a	a
13	14	15	16	17	18	19	20	21	22	23	24
2.7	3.5	3.75	3.0	3.25	3.5	4.0	3.5	3.5	3.5	3.5	7.0
28	13	2\%	18	18	2 s	28	23	18	18	28	23
12	18	13	13	18	12	18	-	1 a	-	-	-

25	26
7.5	7.75

Aatema (P1. V. 5), mandible (P1. V, 6), maxillule (P1. III, 5), maxilla (P1. IV, 2) and maxilliped (P1. IV, 3) are normal. Differences noticed in the number of setae, apinules etc. between the present species and the eariler ones have been commented upon later (vide infra).

All Pive pairs of legs are biramous, and the rame 3-segmented except the ifith endopod which is 2-segnented. The ornamentation of the first four pains of swimming legs is * presented below:

	Pretopod			Hapoped					Eroped							
	1		2	1			2		3		1					3
	Si	30	4188	\$1	se	81	Se	81	$8 t$	Se	81	Se	81	Se	81	St Se
P_{1}	0	0	10	1	0	2	0	4	1	1	1	I	1	1	4	I II
P_{2}	1	0	00	1	0	2	0	4	2	2	1	1	1	I	5	III
P_{3}	1	0	10	1	0	2	0	4	2	2	1	I	1	I	5	I III
P_{4}	1	0	00	1	0	2	0	3	2	2	1	I	1	1	5	I III

In firet leg (pl. IV, 4) apatulate process is present, dietal to the external marginal spine in both firat and second eegments. The process on the eccond segment is moh larger than that on the firat. Fine hairs are present on jointe between endopodal megmente of aceond and third lege. Bazal protopodal segment of firet leg does not bear any seta or epine. In the next three pairs of lege a seta is present on that eegment. Second protoped esment does not bear any aeta in first, second and fourth legs. In third leg, however, a very small epine is present on the outer margin of that segment.

Fifth lege (Itgr P1. V, 7) are biramou*, expped 3-megmented and endoped 2-megmented. Proximal protoped megment ie without any seta while diatal eegrent carries a seta. There is much sinilarity in the atructure of exepods and endopode of fifth legs of this opecies and those of the preceding speaies. As in that species all the setae are jointed and the mines stoutly built. The chiof difference consists in length of the epine on inner dietal margin of terminal segment of exopod. In in I. typics it is only as long as the terminal epine; \angle. KpiehnaEmani it is almost double the length of the terminal mine. A. WIl be hown later, thie feature is of great importance as the former condition is found only in that species, while in all other known peeies of this gems the spine on the distal
imer margin of terminal exopod egment of fifth log is only as long as the terminal spine of the same aegaent. Sige: 0.77 me.

Males The mexual dimorphimin of male is expressed ae unul in the organisation of antennule, fifth leg* and uresome.

Might antennule is geniculate and 23-segmented. The point of genioulation is between twentieth and twentyfirst segments, three
se that there are/egment beyond the geniculation. Pesterier margin of the thirteenth eegment is highly shortened, almost te a peint, so that the egment is triangular, two lateral sides serving as partitions between the contiguous segments and base having as the anterior margin. The twentieth megment carries a row of apinules arranged along its length towarde anterior Face . The proportionate lengthe of constituting segments and the number of setae and aeathetaske borne by them are as follow:

1	2	3	4	5	6	7	8	9	10	11	12	13
6.8	5.2	2.8	3.6	3.2	3.2	3.6	3.6	2.8	2.4	2.0	2.0	2.0
$2 a$	$3 s$	$2 a$	$2 a$	$-2 a$	$2 s$	18	28	$1 a$	$2 a$	$2 a$	$2 a$	$2 a$
-	$2 a$	-	$1 a$									

14	15	16	17	18	19	20	21	22	23
4.4	3.6	2.8	3.2	2.8	4.0	9.7	10.1	8.2	8.0
18	18	10	18	10	18	$1 a$	48	$2 a$	48
$1 a$	$1 a$	-	$1 a$	-	-	$1 a$	$1 a$	-	$2 a$

In fifth leg (P1. IV, 7) protopode are without any eeta or apine. Distal protopod segment of each leg oarries an outer seta at ite distal end. Right exopod in 2-jointed. The proximal segment is morter and carries on its distal outer margin a tout, long ppine which is a little shorter than the length of eegments. Seeond eegment of exopod connints of a broad proximal half and a narrow 車 digitiform
diatal half. The latter is broken by a notoh on outer side, a little beyond the mid-region. A stout, large opine is prosent at the junetion of proximal broader and diatal navrewer ix> haiven. Ieft exopod is j-begmonted, firet segment being the are
largent. Firet two segmente O^{\prime} normal type, oach bearing a large epine serrated on both margine. The apine on seoond segmont is one and a quarter times lenger than that on firet egmont.: The laet eegment is very short and diffuse, oarrying several peculiar processes and one tout spine. Some of these processes de not have well-defined edgea and give fleeey appearance.

Left ondoped is rather simple, oylindrical with conical, sharp apinou precess at the aper. It also oarries an levated ridge on ventral faee, juit a little beyond the mid-leagth. Right endopod is albo cylindrical terminating in an obtuse rather round ond. It oarrien three setac on distal hail of imer margin and conical, narrow apinous proces eubapically on ventral face.

Urosome (P1. V, 2) 14 5-Begmented, segments being eolumar; their proportionate longtha along with that of caudal rani are as followe
$\begin{array}{lllllll}17.75 & 23.00 & 17.75 & 17.75 & 6.00 & 17.75 & =\end{array} 100$
The segments dininimh in width to pesterior eide; structure of caudal setae are exactiy as in the female.

Bomarke - M.s. Wileon (1956) enliwte the following
as valid specien of the genue kidgerayia: g. emalig (Gurney), 19z2
S. Hypioa Thompan \& Scott, 1903; S. greailic M.S. Wileon, 1958; I. ghoomakeri K.S. Wilaon, 1958; and g. marki (Baterigy), 1911. The firet speoies was know only frem male and the seoond only from female. A sixth species described by Krishnaswary (1953a) under the name gnesis ap. an well as the copepodite atage of a soventh which M.S. Wilson obtained from Tortugan were left out beomee of insufficiont information and non-availability of adulte respeotively. In her very detailed diseusion, she has pointed out the olose relationships that exist between the three apeaies which whe grouped am American apecies, and ahowed that marked differences exist between these forme on the one hand and I. typios on the other. Both ganalit and the apeciet described by Kriahnaawamy are, for the most part, excluded from the main discussion both of them were known only from the male and, even in the available informations, there are eeveral pointe which need either elaberation or confirmation.

In the present tudy two apecies are included, g. trpica and apecies which appeare to be new, both being represented by both mexes. A detailed merutiny of the figure of the now speoien showe that it is related to the three American apecies on the one hand and g. typioa on the other. In fact, in some characters, eapecially those of male, it is somewhat intermediate betweon R. trpica and the American apecies. A comparison of male of R . typios whth the figures and desoriptions given by Krishnaswany for the apeoies he desoribed from Madras whows that he nuat have been dealing with the same specien. The most etriking feature whieh mupporte this view is that both in

Krishnaswayy's apecimon as well at in the male of g. troica, the right ondopod of fifth leg reaches beyond apex of the relatively mortened right exoped, while in all other apecies of this genus ondoped is distinctiy ehorter than exoped. The ocourrence of these materiale in the same geographic area slso renders indirect oupport. However, eome differences are noticed between the two materials: (i) Apieal seta of the terminal endopod segment of first log looks more like a apine in Krishnaswamy's figure. It is not deseribed in the text. But, as M.S. Wilson has pointed out, in the figure of fifth leg, both epines and processes are solidiy inked, so that they oannot be distinguished from one another. (ii) Distal protopod segment of left fifth leg of male is shown to carry a sota in Xriahnaswan's spocimen. Ye such seta is seen either in … typices or in any other apecies that has so far been deseribed under this genus, (iii) Distal protopod segment in both right and left fifth legs carries a small spine in the male of ㅌ. typiga. These spines are not shown in the figure given by Kriehnaswany; however, they could easily be overlooked as they are extremely small.
S. aanalis cannot be considered here any more than was possible for M.S. Wilson. The Tortugas species deseribed by her also is excluded, as the adult form is yet to be dearibed. Taking inte consideration only those species which are known from both sexes, the members of Ridgewarda appear to be divisible inte three group:s
(a) R. typioa
(b) E. Erishngswervi
(o) The Anerioan apecien (g. marici, I. graeilis and g. shoemakezi)

The differences oxisting between thene three groups are prosented in Table I. It is held, however, that these difforences do not necossarily warrant the aplitting up of the gemes into three indopendent entities.

The three Amerioan species are not quite so uniform in etructure as they appear to be. In B. marki the Iemele antennule male is 25-jointed and the genioulate $L^{\text {antemule }} 23$-jointed, with four segmente after the point of genioulation, while in ․ shosmakeri one segment each is added to the geniculate and non-geniculate antennules, the number of segments after the point of genioulation, however, remaining the same, In R. aracilie the female antennule is 26 -jointed, while the male geniculate antennule in 23 -jointed, having only three segments after the point of geniculation. The presence of a seta on the right endopod and the non-jointed nature of caudal seta of \mathbb{E}. ghoemakery are, again, triking features approaching the conditions found in E. typiag and E. kriahngamerat.
M.s. Wilson's disoussions on the structure of various appendages of the members of this genus is quite exhaustive, and it is not desired to make any duplications here. It may, however, be stated that in the light of our present knowledge it is proper to keep all these forme in a single genus. It is iikely that more representatives may be brought to light if intensive search is made in the littoral ares of the warm waters. Purther, even when profound differences exist, it is
Table I. The tructural difference between the three groups of the genus Bindgemayla

星. troica	I. kxishnasmexy	The Amerionn speates
The genital segment of female is anymatrical.	The genital segment of femsle is oymetrical.	Similar to E. krichnasmanyi.
The Pemale antemnule is	The female sintonnule is	The female antennule is
25-jointed, male genieulate	26-jointed, male geniculate	25-or-26-jointed, male geni-
entennule 22-jointed with	antennule 23-jointed with	culate anternule 23-0r
three segmente after the point of geniculation.	three segmente after point of geniculation.	24-jointed with three or four segmente after point of geniculation.
Terminal and subterminal spines of third aegment of fifith exopod of femele are about the same sise.	Terminal spine on thind segment of fifth exopod of female is deuble the size of the subterminal spine.	Similar to B. Eximhnoswemy
Right endoped of fifth leg of male lenger than right exopod.	Right endopod of fifth leg of male shorter than right exopod.	Similar to R. Kribhngswamy.
Three setae on inner margin and blunt terminal spine on right endopod.	Similar to E. typias.	Pight endopod loes not bear any aeta or spine except in ㅇ. Shoemakeri which carries a mingle seta on outer margin.
Genital apertures are moderately wide apart.	Similar to R. typica.	Genital apertures, wherever known, are quite close together.
Widdle two caudal setae jointed at their bases.	Similar to R. tepiea.	Madle two caudal setae jointed or non-jointed at their bases.

noticed that there is some amount of gradations in the structural details between the various representatives.

The genue Aldgewsyig occupies a unique position among calanoids, not only in the segmentation of the non-geniculate antennule, but also in the position of the opecialized hinge in the genieulate antennule. "It in not too aurprising to find calanoid copepods with 26-segmented antennules, but the differonces in the hinge position is unoxpected" (盾. S. Wilson, 1956, p. 167). Even when the non-geniculate antennule is 25-jointed, as in g, typios and I. napig, this reduction is brought about by fueion of two segments in the proximal region. The position of the hinge in geniculate antennule does not change.

Within the genus, number of segmenta in antennule and etructural detalls of fifth lege eerve as the man features of Identification. The asymmetry of gonital oegment, the pesition of genital apertures, the jointed or non-jointed nature of caudal aotee and the etruotural detaile of maxiIlule and maxila also facilitate additional pointe of difference, The last two struotures are fully illustrated for the new epecies. It may be noted that in the atructure of beth these appendages the new epeaies exhibite more Kinship with the speciea recorded from the American water: than with those that are found in the Indian and neighbouring waters.

PSRUDODIAPTOMIDAE

Sewell, 1947. p. 164.
Gomu Pamadodianteman Hermick, 1884
W11sen, 1932, p. 101.

$$
\begin{aligned}
& \text { Sewel1, 1932, pp. } 233-234 . \\
& \text { Sewel1, 1956, p. 167. }
\end{aligned}
$$

Mareh (1933) removed a number of species of the genus Paendadigntomie to an older genus Sohmackeria Poppe and Richard. Johnson (1939) oreated a subgenue Paendodiaptallous and atated that a eubgenoric atatus will express itn "close relationahip to the known Pseudodiaptomus species". Sewell (1956), considered
however, all these as three subgenera of Herriok's original genus Psondodiaptomus g. 1at. While Paoudodiaptallous Johnson is clearly defined by the segmentation of urosome and by the pecularities noticed in some appendages, the distinctions between other two aubgenera are very ambiguous. There ia very little to distinguish between the females of these two subgenera. According to Mareh (19c. git.) the subgenue Sohmackeris is characterised by the preaence of a vestigeal endoped in the form of a process or a spine in both right and left legs of male, and has the posterior corners of prosome rounded in both sexes. Pgendodiaptomus g. str. is said to have the vestigeal endoped only in right fifth leg of male and to have the poaterior corners of prosome angular. It is doubtful whether the combination of these two characters could so much be insisted upon, for, there are some apecies such as E. Ealinus Giesbreoht, P. hickmani Sewell, P. grdjuna Brehm and P. nudus Tanaka wich cut right through the gbove two characters. The last named specien is particularly notable in that the male fifth legs are remarkably olose to those of Schmackeris serricoudats T. Soott, but unlike latter, the poaterior corners of prosome of P. nudus is distinctiy
angular. It is, therefore, obvious that these two charaeters oannot be taken to separate the speaies of this group of animala into two genera. If we are to depend only on the structure of Pifth legs, then little distinction can be made between the females of these two groupy. Angular or obture nature of the posterior end of prosome is too insignificant to be taken as of generic value. Pending further studies regarding these forms, I have followed Sewell (1956) in recognizing Fgeudodiaptomug E* atr., Sohmackerig and Pseudodistallous as three ubgenera of the original genus Pgendodiaptomue Herrick s. 1at.
29. P. (Pgeudodieptome) aurivil11 Cleve, 1901. Oleve, 1901, pp. 48-50, pl. VI, figs. 11-22, pl. VII, figs.1-2. Thompson \& Scott, 1903, p. , pl. II, figs. 24-26. Frucht1, 1924, pp. 51-53.
Sewel1, 1932, pp. 240-41.
Krishneswamy, 1953a, pp. 122-23.
Material examined - This is a common species of this area. A detailed tudy on development and biology of thia apecies is given in later part of this thesis. Size: female 1.3 man. and male 1.19 mm .

Distribution - Malay Archipelago, Southern Eurua, Bay of Bengal, Arabian sea and the Gulf of Mannar.

Remarics - There is some amount of uncertainty as to the distinotions between this species and \underline{P}. Eertoni Pruchtl, 1924. Aocording to Fruchtl (10c. git.) the spines guarding genital aperture of female of P. aurivillinare borne on an elevation; they project prominentiy in postero-ventral direction. In P. mortonf these spines are held almost parallel to the ventral marcin of genital segment, and in effect are directed only
backwards. The chiel difference between the males of theae two species, according to Fruchtl and Sewell, lies in the etrueture of fifth legs and consists of the differential orientation of constituting parts. Sewell (10g. git.) has given the sketches of male fifth legs of the twe species. However, the orientation of constituting elements of both these figures differs mf for that of the figure of male fifth legs of \mathcal{P}. qurivilif as given by Thompon \& Scott (100. eit.).

Present example agrees fully with the female of P. aurivilli as distinguished by Fruchtl, and the mele fifth legs correspond more with the figure given by Thompson \& Seott than with these given by Sewell for the two speoies. It is desirable to reexamine the whole question and Iind whether aurivilii and mertoni represent two species at all or they are conspecific with geogrephic variations within the same species. Kasturirangan (1962) has expressed the opinion that they are probably one and the same species and that we may have to drop the term mertoni, retaining aurivilli which is the older name.
30. ․ (Pgeudodiaptomus) ardjuna Brehm, 1953.

Brehm, 1953, pp. 313-15.
Umeericutty, 1960d, pp. 179-85, 1ig. I.
Material examinod - Several male and female specimens are obtained frem the plankton in the colder months, February-March 1960. They have also been captured frem the Marine Fish Farm adjoining the Central Marine Pisheries Research Institute, Mandapan Caup. Size: female 1.31 mus, and male 1.20 mun.

Digtribution - Bombay coast, Gulf of Mannar and the Palk Bay.
31. P. (Sohmackeris) Berriogudata (T. Seott), 1894.
T. Scott, 1894, p. 40, pl.i1, fige. 43-48, pl.iii, fige. 1-7. Sewell, 1932; p. 235.
Sewell, 1947, p. 164.
Krishnamwany, 1953a, pp. 123-24.
Material examined - This is also rather common species of this area occurring almost throughout the year, but in emall numbers. Size: female 1.29 mm , and male 1.18 mm .

Distribution- "It would thus appear to be an Indian ocean form that has managed to get round the Oaye of Good Hope into the Gulf of Guinea where it was originally taken" (Sewell, 1947).

```
32. P. (Sopmpokeria) emandalei Sewell, 1919.
```

Sewell, 1919,p. 5, pl. X, fig. 9. Sewell, 1924, p. 787, pl. XIIV, fig. 2. Brehm, 1953, pp. 306-308, figg. 68-71.

Material examined - Several apecimens of both soxes are obtained from plankton oolleated from the Warine Pish Farm of the Contral Marine Pisherias Research Institute, Mandapam Camp during the monthe of April-May 1960. Size: fernale 1.15 mm . and male 1.0 mm .

Mistribution - Chilka Laice, Madras coast, Hombay coast, and the South east coast of India.
temoridae
G.O. Sare, 1903, pp. 95-96.

Genus Temora Baird, 1850
Wi1son, 1932, p. 103.
Sewell, 1932, pp. 244-45.
33. I. turbingte (Dana), 1849.

Dana, 1849, p. 12.
Sewell, 1947, p. 165.
Kriahnaswamy, 1953a, pp. 124-25.

Material examined - This is a oomon species occurring throughout the year in fairly good numbere. Size: female 1.25 man. and male 1.12 man.

Distribution - Widely distributed in the tropical and temporete water of Facific, Indian and Atlantic oceans. 34. T. discaudata Gieabrecht, 1889.

Giesbrecht, 1889, p. 814.
Sewell, 1947, pp. 164-65.
Krishnanwaxy, 1953a, p. 125.
Material examined - This species occurs only rarely and is found mostly in the colder months. Sizes female 1.56 man. and male 1.49 mm.

Distribution - Widely distributed in the tropical and temperate regions of Indian and Pacific oceans as well as in the Mediterranean sea.
35. I. Stylifera (Dana), 1849.

Dans, 1849, p. 13.
Sewell, 1932, p. 246.
Krishnaswary, 1953a, pp. 125-126.
Material examined - This is the rarest temorids in the area investigated and is caught in July-August 1960. In size it is intermediate betweon the two carlier speoies, the female measuring 1.5 mm , and male 1.23 mm .

Diatribution - Widely distributed in the tropical and temperate regions of Indian and Pacific oceans and in the Hediterranean sea.

LUCICUTIIDAE
Sewell, 1947, p. 173.

Genus Lucicutia Giesbreoht, 1898
Wison, 1932, p. 128.
36. I. Havioornie (Olaus), 1863.

Claus, 1863, p. 183, pl. 32, 11ge. 1-7.
Sewell, 1947, p. 174.
Meterial examined - A single mele cpecimen of this copepod is obtained in Decenber 1960. Size: 1.33 mm .

Digtribution - Widely distributed in Indian, Pacific and Atlantic ooeans.

Bemarks - Parran (1920) called attention to the existence of two very olosely related species, I. flavicomis (Cleus) and and L. Eemming Farren which differ in aize $L^{i n}$ certain detaile of structure. Sewell (10c. cit.) atates that the true Inavicornit is the smaller of the two, females of this species measuring $1.47 \mathrm{man} .-1.58 \mathrm{~mm}$. and males $1.44 \mathrm{~mm} .-1.56 \mathrm{~mm}$. Sewell's single female specimen measured 1.46 mm . and the apecimen disoribed by Krishnaswany measured 2.5 mm . This last one is particularly notable in its very large aize. The present hale is much smaller but agrees in all detalls with the true flayicornis.

ARIETBLLIDAE

G.O. Sars, 1903, pp. 123-24.

Genus Metacalanus Oleve, 1901.
Cleve, 1901, p. 43.
37. M. 胃urivilli Oleve, 1901.

Cleve, 1901, p.43, pl. IV, Pige. 16-25, pl. V, fige. 1-6. Sewell, 1932, p. 330.
Krishnaswamy, 1953a, p. 127, fig. 6.
Material exsmined - This is a very common apecies of
this axea and is present almost throughout the year. Sise:
female 0.6 mm , and male 0.5 mm .

Distribution - Malay Archipelago, Madras coat and the Gulf of Manner.

PSBUDOCYCLOPIDAE
G.0. Sars, 1903, p. 129.

Genus Pseudocyclops Brady, 1872
G.0. Sars, 1903, p. 130.
38. P. obtueus Brady and Robertson, 1873

Brady \& Robertson, 1873, p. 128, pl. vil, figs. 4-7.
Sewell, 1932, pp. 330-31, fig. 108.
Material examined - Several male and female specimens of this species are captured from the weed washings of the Gulf of Manner and Pall Bay during the months of August-November 1960.

Descriptive notes - Sewell (lac. git.) has added a new variety, var. Latisetosus \$ewell, besides the typical form of Brady \& Robertson which may be termed as var. typicus. These two forms and a new variety are found in the present collection. The differences between these forms are mainly in the structure of caudal setae. In var. typicue caudal setae are of normal structure. In var. Ietisetogus Sevell, second and third caudal setae from the inner side are thickened and flattened and about half way lone their lengths, the width is suddenly diminished. Lateral margins of proximal portions of these setae are armed with numerous small spines. In var. asymetrioa right
nov. (P1. XIII, 17) the caudal setae of left and sides are not similar. On right side they correspond exactly with what is described by Sewell for Latisetosus. On the left side, second and third setae from the inner side are highly flattened,
 the constriction in the midale. Difierenoes are aleo noticed in the timature of itith lege. In male, ifith lege differ Iren these matohed by gara for tyoione as woll as Iron thoae setched by Sewell for 1atiaetage. Sowell has not ILgured the female IIfth legs for the latter, but has etated: Whe ilfth pair of lege ahow cortain mall differencen of stracture from that of the typical form" but in the matn ohnsaoter they egree with euficient olosenes to render $1 t$ undesinable te oreate a new spectes for this form. (p. 331)
 ditere Iren that of var. typiens in the following pinte: (a) In the oemplete separation of ilret and second segments of endepod (b) in the presence of a lateral projection on outor margin of bamal endopod sogment (o) in having long, aintinct stete on endopodal egmentsg and (a) in having blaxtionlate setae on oxopodal segmente. Eises
Var. twniove female 0.81 mand anale 0.76 mme Tar. Intiegtanys female 0.80 me and maleo.7sis. vax. gnxmetrics femele 0.80 mu. and male 0.76 me.

Dintwington - Hecoraed Irem the Atlantic ocean
Sues Canal, Arebian sea and the Gulf of Mannar. Sewoll does not mention the area from where he collected var. Istitetegug.

CAIDAOIIDAB
6.0. Saxe 1903, D. 132.

Gemu Cendest Dens, 1846
wileon, 1932, p. 138. Sewel1, 1932, p. 334.
39. . Irumesta (Dana) 1849.

Sowell, 1932, p. 338.
Krimhnaswaxy, 1953a, p. 129.
Material otiming - This opecien is fairly oommon in the Gulf of Mannar. Hamerous late oopepodite atages have been found in the winter monthy indieating a breeding period.

Sise: female 1.49 mm . and male 1.29 mm .
Diatribution - Widely distributed in Indian/oceans and its offehoote, having been recorded from Philippines, Malay Arohipelago, S. Burma, Peraian Gulf, Maldive Arehipelage, Madras coast and the Galf of Mannar.
40. C. oatula(Giesbreoht) 1889.

Giesbrecht, 1892, p. 425, p1. 22, figs. 27-28.
Sewell, 1932. p. 335.
Material examined - A single female example of this speoies is obtained frem piankton in March 1960. Size: 1.67 mm .

Distribution - Recorded frem Malay Arohipelage, coast of Burma, Arabian mea, Red mea, Maldive Arehipelage, oost of Africa and the Olif of Mamar.

POMTELLIDAE
G.0. Sars, 1903. p. 137.

Genu: Lebidocers Labbook, 1853
G.0. Sarn, 1903, p. 141.

Wileon, 1932, p. 144.
Sewell, 1932, pp. 350-51.
41. L. acntifrona (Dana), 1849.

Dana, 1849, p. 30.
Sewell, 1947, p. 249.
Matexial oxaminea - Several female specimens occurred In plankton oollected in July 1960. Sizet 3.3 ma.

Diatribution - Widely distributed in Indian, Atlantic and Wett Pacille oceans.
42. I. sente (Dana), 1849.

Dena, 1849, p. 30.
Sowil. 1932, pp. 351-58, f1g. 116.
Sewell, 1947, pp. 248-49.
Kri mhnaswary, 1953m, p. 139.
Material examined - This apecies occurred in plankton in several timen during July-September, 1960. Siget female 3.6 mm . and male 3.1 min.

Distribution - "This speciea appears to be widely diatributed throughout Indian seas and has also been taken in brackish wators of the Chilka lake in whioh it appeared to be actively breeding. Gurney has recorded ite oscurrence in the Suez Canal. (Sewell, 1932, p. 365).
43. L. Lroveri (Brady), 1883.

Sewell, 1932, pp. 302-303.
Krishnaewany, 1953a, pp. 132-33.
Hetarial examined - A few female apecimone are caught in Maroh, June and September 1960. Sizet 2.32 m. (var. gtylifera))

Distripution - Eailern and western seas of Indian Penineula.

Remarks - Sewell (log. Git.) enliated four varieties: var. gallengis Thompen \& Seott, var. Etvilfera Thompaon \& Seott, var. burmanios Sewell and var. bideus Sewell. Wolfenden (1906) has recognized var, similis from the Maldives. Krishnaswamy (loc. git.) identified var. gallengie and a new unnamed variety from Madram coast and the Gulf of Mannar. He has also noted that considerable differencee exist in the projections on abdominal segmente of this speoies.
44. I. paxe Giembrecht, 1889.

Alebrecht, 1889. p. 27.
Sewel1, 1944, P. 234, 12. XX, H. 1-3.
Sewall, 1932, pp, 365-372, t1ge, 121-123.
Xrishnawazy, 1953a, p. 131, IIg. 12.
Materiel examined - This is a rare species and ocourred only, few eccasions during the entire period of two yeare. Sise: 1.65 mm . and male 1.43 mm .

Distribution - Widely dietributed in Indien ocean.
45. I. pectinata Thompson \& Scott, 1903.

Thompson \& Seott, 1903, p. 252, pl. 11, Ifge. 10-14. Sewell, 1912, p. 370, pl. XKIII, fige. 8-9.
Sewel1, 1952; pp. 372-74, 11g. 124.
Krishnaswary, 1953a, pp. 135-36.
Material examined - This is a common species of the area inventigated and is obtained almost throughout the year.

Size: female 2.1 mm . and male 1.83 mm.

Distribution - Arabian sea, Bay of Bengal and Gulf of Mamar.
46. I. bengelengig Krishnawary, 1952.

Krishnagwary, 1952, po 332, figs. 12-15.
Krishnaewany, 1953a, p. 134.
Material examined - This is another common pecien of the genus in the inshore waters of the Gulf of Mannar. A complete account of the life eycle of this species is given eleowhere in this thesis. Size: female 1.48 mm . and male 1.27 man.

Distribation - So Iar reoorded Irom Madras coast and the Gulf of Mannar.
47. I. 鲑pute Glesbreoht, 1889.

Gieebrecht, 1889, p. 27.
8ewe11, 1947, P. 249-50.
Kriahnaswamy, 1953a, p. 134.
Material examined - A few spocimens of this species are caught in plankton collected in the first week of May 1960. Sise: female 2.11 mm. and male 1.58 mm .

Distribution - Recorded from Indian ocean and its offshoots and from west Pacific.

Genus Pontelle Dans, 1946

ilison, 1932, p. 149.
Sewell, 1932, p. 374.
48. P. securifer Brady, 1883.

Brady, 1883, p. 96, pl. 45, fige. 1-9.
Seweli, 1947, p. 250.
Kriehnamwany, 1953a, pp. 136-37.
Yaterial examined - This apecies frequente the area under investigation almost every month, although in small numbers. Preaence of apermatophore-carrying femalea in December indicates a breeding period. Size: female 3.6 mm . and male 3.0 mm .

Diatribution - Reported from Pacific, Atlantio and Indian oceans.
49. I. danae var. ceylonica Thompson \& Scott, 1903.

Gfesbrecht, 1889, p. 28.
Thompeon \& Scott, 1903, p. 252, pl.II, figs. 1-5. Sewell, 1932, pp. 375-76, 11g. 125.
Kri mhnaswany, 1953a, p. 136.
Material examined - Two female speoimens are obtained
from plankton in January 1960. Siset 3.1 mm .
Distribution - Throukghout Indo-Pacific.

Remaxk - Sewell (100, 01t.) has pointed out that the apecimens gathered by A. Beett in the Halay Archipelago was intermediate in atructure between the Pacific form and var. coylonias of the Indien coast and that they form a seriea rather then separate varieties. In shape of body the typical Padific form tapers gradually from second to last prosomal segments, while in the forms present in our waters prosome is nearly the same width throushout, Another variation noticed 1e the shape of genital segment, the Bacific form having a quadrate segment while in the Indian forms it is more elobular.

Genua Pontellopais Brady, 1883
Wilson, 1932, p. 157.
Sowell, 1932, p. 384.
50. ㄹ. herdmani Thompan \& Scott, 1903.

Thompen \& Scott, 1903, p. 253, pl. II, fige. 15-17. Seweil, 1932, pp. 385-86. Kriahnaswamy, 1953a, p. 137.

Material examined - A few male and female specimen of this species are captured in September 1960. Female specimens are arem carrying spermatophores. Size: female 2.1 mm . and male 1.81 mm .

Distribution - So far recorded only from the east coast of India.
51. P. meorenye A. Soott, 1909.
A. Scott, 1909, p. 173, pl. LIV, fige. 1-10. Sewell, 1912, p. 375, pl. XXIV, fig. 5.
Sewell, 1932, p. 387.
Material examined - A single female speoimen of this speoies is taken from plankton collected in third week of January 1960. Size: 1.8 mm.

Diatribution - Malay Arohipelago, Bay of Bangal and the Gulf of Mamar.

Genus Caienopis Dana, 1852
A. Soott, 1909, p.

Sewell, 1932, pp. 340-41.
A. Scott (loc, oit.) has discussed in detail and made a comparative tudy of all the apecies of this genus. The three species ocourring in our waters can very easily be separated by the size, the relative leneths of prosome and urosome and by the presonce of absence of cophalic hooks. No structural peculiarities are notioed in any species, distinct from thowe given by 4. Scott. However, one abnormal male of \mathbb{Q}. thompeoni is found and this is briefly described.
52. Q. gurivilit cleve, 1901.

Cleve, 1901, pp. 40-41, pl. III, figs. 11-19, pl.IV, figa.1-2. A. Soott, 1909, p. 181, pl. XLVIII, figs. 16-20. Sewel1, 1932, p. 341.
Trishnaswany, 1953a, pp. 138-39.
Material examined - This is a common species of our waters and is picked almost throughout the year. \$ize: female 1.25 man. and male 1.1 mm .

Distribution - Widely distributed in the Indo-Pacific. 53. C. elliptios (Dana), 1849.

Dana, 1849, p. 27.
A. Scott, 1909, p. 176, pl. XIVIII, 1igg. 1-5.

Sowell, 1947, p. 248.
Krishnatwayy, 1953a, p. 138.
Material examinod - This is another common apeeien of this genus frequenting our waters. Because of ite very large sise and occasional appearence in large numbers, it seems to have some importance among the plankton copepods of this area.

Bise: fomale 2.0 mm and male 1.68 mm.

Distribution - Widely dietributed in the whole of IndoPacific, Suez Canal and the Moditerramean sea.
54. E. themponi A. Seott, 1909
A. Soott, 1909, p. 178, p2. XHIX, 11ge. 1-18. Sewel1, 1932, pp. 342-50, figs. 112-15. Kriahnaewamy, 1953a, p. 139.

Material examing - mis is also a common secies of this area and id taken not only in plankton of the Gulf of Mamar and Paik Bay but also ha that from the Marine Fish Farm adjoining the Oentral ilarine Risherien Research Ingtitute. This species is particularly abundant during the colder monthe. Size: ferale 2.35 mm , and nale 2.18 mm .

Abnormal male - An abnormal rale apecimen (P1. XIII, 20) is obtained from plankton collected in the last week of December 1959. All appendages including the right geniculate antemnule of this specimen are nomaliy constructed, but urosome is very abnormally developed. Here, the five segments are clearly tracable, but the orientation and size are ouriously distorted. The animal, in live condition, moved frealy without chowing any sign of discomfort. However, it died in the laboratery on the second day. It is not diffioult to find representative of a ingle speciee with a mort abdomen, showing a telescoped condition of the abdominal segnents, and more or less normal apeoimens, where the abdominal segments have the position they apparently had in the living atate" (Verveort, 1946).

```
    Distribution - Recorded from the Malay Archipelago,
Bay of Bengel and the Gulf of Mamnar.
```


acaerilidae

```
G.O. Sars, 1903, p. 147.
Genus Acartia Dana, 1846
W11son, 1932, p. 159. Sewell, 1932, pp. 391-92.
55. A. (Odontacartig) erythrsea Giesbrecht, 1889.
Giesbrecht, 1892, p. 508, pl. XXX, 11ge. 5, 19, 32, pl. XLIII fige. 12, 13 \& 55.
Steuer, 1923, p. 118, figs. 142-45.
Sewell, 1947, p. 252.
Krishneawazy, 1953a, pp. 139-40.
Material examined - This is the of the commoneat of calanoid oopepods of our waters, ocourring almost throughout the year and in good numbers. Sizet female 1.28 mm , and male 1.16 mm .
Distribution - Widely distributed throughout Indian ocean and its offshoots.
56. A. (Aoartiella) tortaniformia Sewell, 1912.
Sewell, 1912, p. 346, pl. XXI, IIge. 1-10.
Steuer, 1923, p. 100.
Sevell, 1932, p. 393.
Material oxamined - Several male and female spocimens of this copepod are obtained from Palk Bay near the Marine Pioh Farm in July 1960. Size: female 0.8 mm , and male 0.68 mm .
Distribution - Coast of Burma, off Chittagong, East Fakistan, Hooghly river and the Gulf of Mannar.
Sewell, 1932, p.
Genus Tortanus Giewbrecht, 1898
Wilson, 1932; D. 166.
Sewell, 1932, p. 399.
```

Sewell (10c. oit.) divided this genus into two subgenera, Fig., Tortame g. 日隹, with fourth and lifth thoracio segmente separate and Atortus with fourth and ilfth thoracio segmenta completely fused. The two speoie recorded here belongs to the first subgenus. Both are essily recognized by the peculiarly asymmetrical ouudal rani. Pemsile of gracilis is characterised by symmetrical fifth legs, while female forctpatus is distinguished by asymotrical fifth legs, left leg being twice the length of the right. Males are separated by the shape of caudal rami. 57. 2. (Lortanus) forcipatus (Giasbrecht), 1889.

Giesbreoht, 1889, p. 26.
Sewell, 1932, p. 399.
Krishnaswary, 1953a, pp. 140-41.
Material examined - Aithough rare, this species occurs quite often in the inshore waters of this area. Large numbers of copepodite stages are noticed in Deoember and January, indicating a possible breeding period. Sige: female 1.82 mm. and male 1.51 mm .

Distribution - Red sea, Malay Archipelago, Madras coast, Maldive Archipelago and the Guif of Mannar.
58. I. (Iortamal gracilis (Brady), 1883.

Brady, 1883, p. 71, p1. 3, figs, 1-14.
Soveli, 1932, p.
Kriehnaswamy, 1953a, p. 141.
Material examined - This is raror than the preseding species, but is often obtained at admixed with it. Size: female 1.73 mm . and male 1.42 mm .

Distribution - Red sea, Malay Archipelago, Madras coast, Maldive Archipelago and the Gulf of Mannar.


```
    LONGIPEDIIDAE
    G.0. Sare, 1903-11, p. 8.
    Lang, 1948, pp. 152-53.
        Genue Lomgipedie Claus, 1863
    G.0. Sare, 1903-11, p. 9.
    Micholls, 1941g p. }383
    Lang, 1948, p. 153.
```

59. I. coronate Olaus, 1893.
Claus, 1858, p. 111, pl. XIV, figs. 14-24.
Sewell, 1940, p. 131.
Lang, 1948, p. 155, Abb. 99.
Xrimhaswazy, 1957, p. 8.
Material examined - Three female specimens are obtained
from the weed oollections of the Gule of Mannar in October 1960.
Size: 1.1 mm.

Digtribution - Widely recorded from the Indian and Atlantic oceans.
60. I. weheri A. Scott, 1909.
A. Scott, 1909, p. 196, pl. LIX, figs. 9-12. Sewell, 1940, pp. 130-32, fige. 1 A-F. Lang, 1948, p. 155, Abb. 100, 4. Krighnaewary, 1957, pp. 8-9.

Msterial examined - A few pecimens of both sexes are captured from the weed wasinings along with the preceding specien. Size: ferale 0.75 mm . and male 0.67 mm .

Diatribution - Tidely distributed in Indian ocean and the Mediterpanean sea.

Remarks - The salient features of the two epeoies disoussed in this paper are given below:
L. goxonate
(i) Size: fenale 1.1 mm .
(ii) Proportionate lengthe of prosome and uromome is $53: 47$.
(iii) Widest part of the body is at level of second prosomal segment.
(iv) Third segment of exopod of first leg with four epines and one seta.

L. weberi

Size: fomale 0.75 mm . and male 0.67 mm .

Proportionate lengths of prosome and urosome is 64:36.

Widest part of the body is at junction of middle and ponterior thirds of cephalosome.

Third segment of exopod of first leg with four spines and two setae.

CAMUELLIDAE

Lang, 1944, p. 4.
Lang, 1948, p. 160.
Genus Canuella T. \& A. Soott, 1893.
G.0. Sars, 1903-11, p. 16. Lang, 1948, p. 162.

Subgenue Canuella Sewell, 1940
Sewell, 1940, p. 134.
61. ©. (C.) furciserg Sars, 1903.
G.0. Sars, 1903-11, p. 18, P1. X.

Sewell, 1924, p. 807, pl. XIIX, fig. 1.
Lans, 1948, p. 164, Abb. 102, 2.
Rrishnaswawy, 1957, pp. 9-10.
Material examined - A single ferale specimen is obtained from plankton in the second week of June 1959. Size: 1.18 mm ,

Distribution - Recorded from Atlantic ocean, Mediterranean sea, Mioobar Island, Madras coast and the Gulf of Mannar.
62. C. (C.) Scotti Sewell, 1940.
A. Scott, 1909, p. 197, pl. LXIV, figs. 1-6.

Sewell, 1940, P. 136, fig, 2 A-H.
linterial examined - About forty female and five male specimens of this species are captured from the washings of the callianassid orustacean Upogebia darwini. The callianssids
are collected by breaking large unbmerged coral otonee which harbour the former in their numerous holes.
is
Deacriotive noten - This species reported from Malas Archipelago by A. Soott (100. git.) under Ganuelle gurtioand Thompson \& Scott. Sowell, however, pointed out that there are differences exiating between g. curtiosude Thompson \& Seott and the species deseribed from Halay Archipelage by A. Soott and named the latter Ganuella scotti Bowell.

Female: Hemale hat been thoroughly described by A. Soott (lea. aft.) and Sewell (loc. ait.). However, the following structural peoularitiee may be noted: (1) First post-genital segment (third segment in the 5-zegmented urosome) carrien a pair of dorso-lateral and a pair of ventro-lateral spines which are set in mall pits, symmetrically arranged near the posteriox margin of segments. (ii) A pair of ventre-lateral spinea is moticed in a similar position in the genital segment alwo. (1ii) Innermost apical caudal seta in mach produced in the proximal half. This has been sketched by A. Scott, but not mentioned in the text, probably as he was confusing his material with g. aurtiogudg Thompson \& Scott. (iv) The animal is slightly larger than that recorded by earlier workers, the size being 1.3 mm .

Kale: A. Soott (loc. git.) gave the size of male as 0.94 mm . whioh ia much less than that of female. However, he did not deacribe the male. In the present case, differences in size between the two sexen is very negligible. Sexual dimoxphism

1. expreased both in antennule and the in ureseme. Antennule (P1. VI, 2) in highly modified and the segmentation is soareely discernible. However, the pooterior margin in constrieted at IIve placea, thue indicating six eegmente, The penultimate eegrent is developed into a highly ohitinous, rather rectangular strueture with aharp angular corner at the anterodiatal angle. The distal half of antonnule carries profuse number of setae and aesthetamke while the proximal half carrien only setac. Urosome (PI. VI, 1) is 6-segmented. Piret segment carries fifth legs which are very amall, each consiating of only four netae borne on lour elevated knobs. The genital segment (Pl. VI, 3) carries the genital quature which is represented by pair of lappets, terminoting in atrong epines. In the apace between two 1 mipy preacat. In lateral view the lagpeta projectiag downwards With a spine Airected backwards. There are four pest-genital egmente whioh dininieh both in langth and width to poeterior side. Dermelatoral and ventrolateral mpines are present in the case of flyat two postggaital egmenta, and are comparable to those of 1omale. Caudal rani are only a little longer than last abdoninal segment. Size: 1.28 mim.

Distribution - Malay Arohipelage, Micobar Islands and the Gulf of Mannar.
63. . (G.) pexplexg T. A. Scott, 1893.
T. A A. Scett, 1893, p. 92.
G.0. Sare, 1903-11. pp. 17-18, p1. VIII, IX.

Mtomal examined - A single female apeoinen ocourred in
plankton of the Gule of Manmar in Ooteber 1959.
Deacriptive notes - Caudal rami are greatly divergent as in the preceding epecies, but is easily dietinguishod by the fact that the longth of ramus does not exceed the joined length of last two ablominal aegmente. The ratio of prosome and urosome is $54: 46$. The genital segment is long with olear dorsal transverse suture, but if diatinctly shorter then the last three segnents combined. Sisei female 1.2 mm .

Dietribution - Hritish Isles. Horwegian coast and the Gulf of Hamar.

EOTHOSOMIDAE

$$
\begin{aligned}
& \text { G.0. Sare, 1903-11, p. } 28 . \\
& \text { Lang, 1948, p. 189. }
\end{aligned}
$$

Gomu: Meresetella Brady A Roberteon, 1873
G.0. Sarw, 1903-11, p. 43. Lang, 1948, p. 230.
64. ․ Te Teas (Dana), 1853.

Dana, 1853, p. 1189, 1855, pl. 83, fig. 10. Lang, 1948, p. 232. Johnson, 1942, pp. 231-32, p1.I, f1ge. 1-5. Exithnamamy, 1957, p. 13.

Material examined - A fow mpoimens of both sexe are obtained from plankton of the Gulf of Mannar in Movember 1959. Sise: female 0.8 min. and male 0.6 mm .

Distribution - This copoped has world wide digtribution being found in all the graat oceans.

TAOHIDIIDAE

$$
\text { Gonus Zaterping Morman, } 1903
$$

$$
\begin{aligned}
& \text { G.0. Sare, 1903-11, p. 327. } \\
& \text { 6.0. Sare, 1921, pp. 96-97. } \\
& \text { Jang, 1948, 1. } 285 .
\end{aligned}
$$

65. I. scatifrons (Dana), 1848 .

Dana, 1853, p. 1192, 1855, pl. 83, figs, 11 a-b. G.0. Sars, 1921, pp. 97-99, pl. LXIIII. Kriehnamamy, 1957, p. 14.

Material examined - This is one of the common planktonic harpacticoids of our waters and is oaught throughout the year. Sise: female 0.67 mm . and male 0.64 mm .

Distribution - This is a very cosmopolitan species being present in all the oceans.
macrosetellidas
A. Scott, 1909, p. 230.

Gemu Marosete11a A. Scott; 1909
A. Scott, 1909, p. 230.
66. M. Eracilis (Dana), 1853.

Dana, 1853, p. 1198, 1855, pl. 84, 11g. 3. Lang, 1948, p. 770, Abb. 311, 4. Krishnagwamy, 1957. p. 14.

Material examined - This apeoies is caught quite ofton in plankton of the Gulf of Mannar both during 1959 and 1960. Sizes female 1.16 mm . and male 1.15 mm .

Distribution - Widely distributed in the wame regions of all the oceair.

A. Scott, 1909, p. 200. G.O. Sars, 1921, p. 99. Lang, 1948, p. 460.
67. Q. roatrate (Brady), 1883. Brady, 1883, p. 77, pl. 4, figs. 1-2, pl. 24, fige.12-15.

Lang, 1948, p. 461, Abb. 195, 1. Kri hhnawwaw, 1957, p. 16.

Haterial examinad - Thi mpecies is obtained from plankton almoet throughout the year, but in small numbers. Sizes Iemale 0.72 man. and male 0.62 mm .

Distribution - Widely dietributed in the Indian, Pacific and Atlantic oceans.

palpidildas

G.0. Sars, 1903-11, D. 61.

Nicholla, 1941a, pp. 386-87. Lang. 1948, p. 426.

Gomue Alteuthe Baird, 1845
G.0. Sare, 1903-11, py. 61-62. Micholle, 1941a, p. 387.
68. A. interfupta (Goodsir), 1843

Geodeif, 1843, $\mathrm{p} .326, \mathrm{pl}, \mathrm{XI}, \mathrm{fig}, 10$. G.0. Sart, 1903-11, pp. 62-64, ple. XXXVI a XXXVII.

Material oxamined - One Iomale and one male pecimons tirst
are obtained frem plankton in the week of January 1960.
Dencxiptive noter - Bedy in Plattened and oharacteristioally peltidild. Rostrum is marked and rounded. Posterior half of first aegment is the widest part of body which tapers posteriorwarde. Urosome is mort and Ilattened with poiterior corners of firet three megmente conioally produced. Caudal ram almost as long as wide, with six eetae, one of which is dilated at the base. Antennule is 8-segmented. In antenna exopod is 2-segmented. Oral appendagea and first to third awdming lege are typical of the genue. In fourth leg, basal endopod segment has an imner seta and terminal exopod segment has three outer apines. In Iifth leg preximal joint $75 S 6$
is very howt onrrying three metae, two on outer and one on inner side. Distal joint is quite large, flattened and provided with three atrong apical pines of varying longthe; diatal eegment also bearn three outer pinea whioh are equispaced from the middle to the diatal and and minner seta. In male, antennule in genioulate and uromeme 5-megmented. There ia pair of eixth lege on gonital egment. Size female 0.86 mm. and male 0.80 mm .

Distribution - Britieh Ielen, Baltio seas, coant of Pramee, Mediterranean sea, Yorwegian coamt and the Guif of Mamar.
69. Alteuthe 0.

Materinl expmined - A angle fomale pecimen of thit copepod is oaptured from wead weahinge of the Gulf of Mamar in Deeomber 1960. This appears to be different Irem all other known species of the genue Altenthe. However, due to dearth of material the peoies oould not be fully atudied.

Denariptive notit - The calient features are presented below. The animal is dorse-vontrally depressed slightiy vanted doreally and about two times as long as broad. Firet prosemal segment carries minute pitted apines along its marging and in the largent of ail body segmenth. Ite anterior aide is rather truncate while its poterior margin is arescent-shaped, the concavity omoothly fitting into the convex anterior margin of next aegment. Rest of
the bedy segmente gradually aiminich in width te poeterier side. Margine of all the segmonte are ohitinised.

Antennule if 7-jeinted, the constituting eegmonte having the following relative lengths:

1	2	3	4	5	6	7

16	24	15	13	8	10	14	\cdots	100

The presence of a slender, long easthotank on fifth eegment and profusion of setae on the last terminal sagment are notable features. Other mouth-parta are aimilar to those of Alturths sewelli Krishnaswawy, 1952.

Mret leg is slender, endoped being only two-thira as long as the exopod which beare five terminal appendagen. In fourth leg, the turminal exopod segment carries only twe outer spines whioh are long and elender. Fifth leg is 2-jointed, the dintal segmonte being much longer than the proximal which bears two spines, one on either side. The diatal segment is broad in 1ts proximal half and oarries five Epines, three marginal and two terminal. The latter are stout and blunt, the innor epine being more than twice at long as the euter.

Caudal ram are chort, each ramus being hardly at long as wide and carrying four setat and a spine. Sise: 0.44 mm .

Eemark - Ae only a ingle specimen is available whioh not is Ceposited and disseoted, it has not been poscible to make a critical study which should await until more specimens are avallable.

Genu: Reltidium Philippi, 1839

G.0. Sars, 1803-11, pp. Hioholle, 1941a, p. 386.
70. E. aurivilis (Cleve), 1901.

Cleve, 1901, pp.50-51, pl. VII, IIg. 3-10. Wioholls, 1941a, pp. 391-92.

Material sxamined - Three female speciment are obtained from the washings of the dredged weeds in Movember 1960.

Descriptive notes - Body (P1. VI, 7) is rather slongate ovate. The pattern of ohitinising band is show in the figure. Ponterior lateral margin of first body segment (P1. VI, 8) carrlea two highly traneparent spines and a small sensory filsaent. The spines are inserted in cubical pite which enereach inte the chitinoun margine. A number of other pite which do not carry apines and which reach only half the thioknems of the chitin bands are also meen. Oresome in only 1-segmented and is not viaible trom dorsal side. Caudal raai are partly visible from dorsal side and are tonger than broad.

Antennule (P1. VI, 9) is 6-jointed, the aegmente having the following relative lengthe:

1	2	3	4	5	6
24.5	28.5	20.0	12.3	3.7	11.0

Third and fourth megments bear each an aesthetakk. Outer margin of firet segment carries a number of hairs. Pourth, fifth and aixth segments are provided with profuse number of setae. In antenna, exopod consists of two secments. Mandible, maxillule, maxille and maxilliped are quite typical of the genus.

Pirat leg (PI. VI, 10) is plumpy and well developed. Protopod
segments are with chitinised and hairy margins, second segment
carrying one outer (at just a little before the mid-length) and an inner (at distal angle) spinem. Exopod is 3-segmented, first segment with one outer distal and eecond eegment with one outer and one faner spines. In third aegment there are two stout, large and three mall spines. Basal region of some of apines are overlapping. In endopod, basal segmont oarries one spine at inner distal angle; distal segment carrien one apioal seta, one subapical seta on the outer aide and three spines, which are rather modified, on the inner margin. Second, third and lourth lege are typioal of the gemat. Fifth lega (P1. VI, 11) are each 2-segmented. Basal megment carries a single broad-based seta on outer distal angle and twe eotae on inner distal angle. Second segment carries three mpines on inner margin and two setae on apex. The distalmost apine on the inner margin is mow-like and rather stout. Sizes 1.15 ma. (egg-carrying female).

Femarka - Oleve (1901) described this species under the name Reticuling auxivilil, apparently being unaware of the genus Poltidium Philippi; 1839. There is no subsequent record of thia copepod from anywhere. The species in very inadequately described, and the acompanying figures are too sketehy to be acurate. The reforence of the present material to Cleve's apeoies, therefore, is done with some preservations. "The thick carapace prevented the close oxamination of all the organa, etill, it will, no dobbt, be easily reeognized, for whioh reason I do not hesitate to dencribe it, however, incomplete and perhaps in somo detail:
exreneeus the deseription may be". (Oleve, 1901, p. 50.). The large number of speciem that have Eince then been aded and the increasing degree of refinement in taxenomie work: make the identifioation of Cleve'm opecion very dificult, If not impossible. The only courme available would have been to zenxamine the oingle original opeoinen whioh unfortunately doen not appear te have been deposited anywhers. The present pocies is reforred to P. garivilit (Oleve) chicfly because of the following reasoni:
(1) The etrueture of firet lege is very identieal in P. marivilii, P. Elegang Wolfenden, 1906 and in the present Torm with five appendages in the toxminal segment of firet ondopod. According to Hiohelith review of the genus, eligens and euxivilli are the only two know speaies in which the end segment of first ondoped has five appendages. Hewever, the preacat material it certainly not the former specien, for, there are aeveral dietinet features diagnostic to that speoies, ineluding the segmatatien of antomnule and the axramgement of setae and apines on Iifth leg.
(2) Dietal segment of fifth leg (Cleve does not mow partition between distal and proximal segrente, although the conetriction between then it olearly indicated) of gurivilit beary throe marginal and two apical spines. The letter are thin and setemike, while marginal opines are thiok bearing denticlet. A aimilar situation is meen in the present material.
(3) Cleve figures antennule an 5-aegmented. The relative

J
Th of fourth segment in, however, equal to the combined relative longth of fourth and fifth segments of the presont material. It may also be added that the division between these segmente could be overlooked as there is no abrupt reduotion in their widthe.
(4) Size is comparable. Cleve's'speoimen measured 1.0 mm . and the present material measures 9.15 mm .
(5) Abdomen is 1 -eegmented in beth cases and is only partly visible from the doraal aide.

Thore are other imilarities, too, wuch at the chape of anterior ond, ohitinization of firet segment ote. Becauee of the evidencel cited above the present material is thought to be the ame an P. gurivilit (Oleve).

It is pointed out cariler that guriviliif is close to olegame, both having five appendagen in terminal segment of firat ondopod and five apines in terminal segment of fifth leg. The material undor examination reveals mome more similaritions (i) In both, the poiterior part of latoral margin of firgt body segment carries apine which are implanted in pitt. In elerang there is one and in gurivilil, an jus rapresented by the present material, twe auch pite. (1i) Antemnal etrueture is absolutely ulmilar in both osses. (iii) Thore is some resemblance alse in the general shape of body and in ornameatation of first egment.

It appeare that Hioholis' grouping together of elerape and ampirilit, bating on the number of spinea and setae on torminal segment of first ondopod in net mocidontal; they are
probably clobely related species.
71. E. Epectonus Thompeon seott, 1903.

Thompeen : Seott, 1903, p. 274, pl. XIII, fige. 12-17. Hicholls, 1941e, p. 397, 11ge. 5e \& 8. Lang, 1948, p. 434, Abb. 185, 4.

Haterial examined - Soveral male and ferale pecimena at well as copepodites are obtainad from the washinge of floating weeds from the Gulf of Mannar in December 1959. Size: female 1.1-1.2 man and male 0.75-0.90 mm

Diatribution - Bouth Australin, Oape Oomorin and the Gulf of Mannar.
72. ㄹ. angalatur Thempeon \& Soett, 1903.

Thempen \& Seett, 1903, pp. 273-74, pL. XIII, fige.7-11.
Yatexial examina - Several fomales, male and fifth copepodites of this species occurred in the washinge of littoral weeds both from the Guif of Mannar and Palk Bay during the monthe of July - October 1960.

Descriptive notes - Thi in the first record of this opecies after its oreation. Originally obtained from waminge of dredged invertebrates, the prenent record is from the wakhinge of littoral weede. Thit apecies is oharacterised, as is indicated by its name, by the angular growthe of mid-dorsal line of all the body segments. Thompson \& soott (1ee. eft.) desoribed the female in detail; additional notee on male are given below.

General shape of body is mimilar to that of female, inoluding the well developed dorsal oreste along the mid-dorsal line. The charaoteriatic darkening of the ring-like chitinoue
band on either side of anterior part of firgt body eegment is present here also. Abdemen (P1. VII, 3) is 1-segmented, and partly covered by last prosomal segment. Qaudal ramus is alightly more than twice as long as broad.

Antennule (PI. VI, 12) is 7-jointed and genioulate. The segmente are rather awollen, gecond segment carrying conioal spines on outer aide. Fourin and fifth eegmente oarry long aesthetasks. All other appendages are similar to those of fomale. The two rami of first legs, howevar, are very narrow, as has been noted in all described males of this genue. Purthur, the protopod segmente are relatively longer and thinner, Iorminal segment of firut leg oarriea two apiaal spinee and two modified opines on imer aide. Distal segment of fifth leg (P1. VII, 4) aarriea three spines on inner margin and two on epex. The proximal two marginal spines are stout and dentioulate. A pair of aixth lege (P1. VII 35) is present. Each sixth leg is Eimplo, rather elongate with thre apical spines which are longer than the appondage iteelf. The aixth leg does not reach end of urosome. Sizet fenale 1.30 min and male 1.0 mm

Distrimition - Guif of Mannar.
73. R. ovele Thompmon \& Seett, 1903.

Thomption \& Scett, 1903, p. 273, pl. IIII, f1ge. 1-6. Sewell, 1940, P. 143, f1g. 5, A-G.

Material examing - A single female pecimen is gathered fron plankton of the Guif of Mannar in July 1960.

Distribution - Miohobar Ialande, Maldive Arohtpelago and the Gulf of Mannar.
74. ́. aizerent Brady, 1915.

Kicholla (1941a, p. 392.
Material examined - A single male speoimon of this copepod is obtained from weed wabhings of the Gulf of Mannar in Hovember 1960. Size: 1.1 min.

Diftribution - 8. Africa (9) and the Gulf of Mannar.

Remarks - It is quite uncertain whother the species dealt with here in ainereum. Brady appearg to have desoribed this species (I have not seen Brady's original paper) from fomale only and Hicholls does not include ginereum in his key to the males of Peltidium. The diagnostic features of the present material are, however, illustrated (PI. VII, 12-17).

Genue Parapeltidivi A. Scott, 1909
A. Scatt, 1909, p. 212. Hicholle, 1941a, pp. 398-99.
75. ․ Johnstont A. Scott, 1909.
A. Scett, 1909, pp. 212-13, pl. LXV, IIge. 1-5.

Meterial examined - A aingle male specimen of this copepod is obtained from plankton in December 1960.

Desariptive notes - A. Soott (10e. oit.) based his description on aingle specimen which he considered as a female. Nicholls (1941e) has, however, pointed out that the epecimen examined by A. Scott could be a male. "...... *...there are no apecifically female characters deseribed
or portrayed, whereas the first leg is obviously that of a male and although supporting male charaotere are lacking, ale yet in peltidium males with wmodified antennae are known. A very atrong chitinisation of the fifth leg may perhaps be regarded as a male oharacter". (pp. 398-99) ... The present material corresponds with the description and figures given by A. Soott exeept that a pair of rudimentary sixth legs is present. Each aixth leg is represented by an exceedingly amall rectangular atructure which bears a pair of terminal setae. The sirth lege are arranged on the vontral ide of the last urosomal $\mathbf{x g}$ segmont, parallel to ite lateral marging. Sizes 0.9 man.

Distribution - Malay Arohipelage and tre Gulf of Mannar.

Remarks - It is posaible that A. Scott would have overlooked the sixth legs, as they are extremely amall and are almost affixed to the ventral side of the last urosomal aegrent. It is interesting to note that both the original specimen as well as the present material are obtained from plankton.
76. R. gerfatur (Thompson \& Soott), 1903.

Thompaon \& Scott, 1903, p. 274, pl. XIII, fige. 18-22.
Material examined - A single specimen is captured from the washinge of weeds from Palk Bay off Mandapam in July 1960.

Beneriptive noten - This species is easily reoognised by the serrate margins of all body segmonts except the first. The animal is extremely flat with dorsal medial lines of all the presomal segments being elightiy elevated to erestmike structures. The ornamentation of ifret and lamt segments are quite complicated while that of the other megmente are rather simple. The clear four-angled anterior region is alse charsoteristic. Uromome is not Fisible in dorssl view, oxcept for the rod-like caudal rami. Antennule, antenna, maxilla, maxilliped and first and fifth legs are figured by Thompson \& Soett. Mandible, maxillile and four paire of molming lege are typical of the genus. Sise: fomale 1.6 mm

Distribution - Gulf of Mannar. This is the first record of this species after its discovery.

Remarta - Thompeon \& A. Seett (1903) assigned this species to Peltidium. Fioholls (1941a) removed it to Parapeltidium because of the 1-segmented nature of fifth lege. 77. P. niehol1si n. sp.

Matexial oxamined - Six adult females and PIve adult males of this speaies ocourred in the washinge of ilttoral weede colleoted Irom Palk Bay in July 1960. Holotype, allotype and paratypes are depcsited in the Reference Collection Museun of the Central Marine Fisheries Research Institute, Mandapam. Camp.

Descrintive notes - This species is named after Dr. A.G. Micholls of Australia whese contributions to the
knowledge of the copepod faum of the Indo-Pacifio are highly valuable.

Female - The body is ovoid, very stout, the dead specimens always beins bent as sketched (P1. VIII, 1 : 2). There are apparently six segments, the abdomen being more or less hidden from dorsal view. First segment is the widest part of the body, and is only a little less than the length of madm rest of the body. The mid-dorsal areasof all segmenta are elevated to moderate sized erests. The margins of all segments as well as median orests are highly chiti nised and have beautiful bluish violet tinge. Abdomen is 2-segmented and completely covered from cormal view. Caudal ramas is short, twice as long as wide, each ramus carrying one marginal and five apical setae, all of which are spine-like.

Antennule (PI. IE, 3) is T-segmented and very short. First and second segments are subequal; third and fourth sagments are moh smaller each of them bearing fairly long aesthetask. Laet three segments are very small, all oarrying a good number of setae except sixth which carries only twe setae. Small sensery filaments are also distributed on the segments. The relative lengths of the constituting segmente are given below.

1	2	3	4	5	6	7	
35.2	29.0	14.0	7.5	3.4	2.5	8.4	$=100$

Antenna (P1. IX, 3) is 3-segmented with a very rudimentary exoped attached to the middle of second joint. There are a number of sensery filaraents on this segment. The setae and
the apines berne by antennae are sketched. Mandible oxaotly resembles that of P . gristatus Hicholls. Maxillule, maxilla and maxilliped are figured (P1. VIII, 4, $5 \&$ P1. IX, 2). .

In firat legs (P1. VIII, 7), exopod 1s 3-segmented and ondopod 2-segmented. Protopod segments are long, the second segment bearing a seta on outer margin at mid-length and a seta on inner distal angle. Baal exopod segment carries a seta on distal inner angle; middle exopod segment carries two spines, one on either side, both in the distal part; terminal exopod segment is provided with two long, stout spines and four sensory appendages. In endopod the basal segment carries an inner seta in the distal angle; distal segment carries two apical spines and one imer spine. Near the base of latter, there are also three sensory appendages. The next three paire of lege (PI. VIII, 8, 9 and P1. IX, 4) are typical of the genus. Pifth leg (P1. VIII, 9) is 1-segmented. The basal part corresponding to the proximal segrent of the genus Peltidium carries, as in that genus, a brosd based seta on outer side. On inner side it carries a spine and a seta. Distal part of fifth leg bears two spines on outer, two on apical and one on inner nargin. The fifth legs are highly chitinised. Size: 1.35 mm .

Male: Male differs from female in the structure of antennule, and first pair of legs and also in the presence of a sixth pair of legs.

Antennule (P1. IX, 1) is 7-jointed, segments having the following relative lengths:

1	2	3	4	5	6	7
30.0	30.0	13.6	8.2	6.4	3.6	$8.2=100$

The segnents are rather stout and bear larger number of sotee than in the female. Third and fourth segments, as in female, oarry aesthetasks.

Protopod segments as well as the two rami of first pair of legs (PI. III, 6) are muoh namrower, but bear the same number of setae and spines as in female. The only difference, however, is that the inner marginal spine of distal endopod segment is longer and thinner than that of the female.

A sixth pair of legs is present. They are set parallel to the lateral margins of urosomal segments (Pl.VIII, 11). Bach leg consiste of a long, flat strip with two apical setae. margin
Sixth leg just exceeds the posterior of first $^{\text {ur }}$ uromal segment. Size: male 1.15 mm .

Genus Alteuthella A. Scott, 1909
A. Scett, 1909, pp. 208-209.
78. A. pellucide A. Scott, 1909.
A. Scott, 1909, pp. 209-210, pl. LXVI, figs. 13-20.

Material examined - Two female specimens of this oopepod are obtained from weed washings of the Guif of Mannar in November 1960.

Degcriptive notes - The present material corresponds with the excellent desoription and figures given by A. Soott.

Twe additional structural peculiaritiea may be added here. The posterior margine of third, fourth and fifth pedigerous eegments are lined with smooth denticulations which are seen only when carefully examined. A few amooth apines, embedded in oonioal pits are present along both margins of the first prosomal segment. Sise: 0.71 mm . (See Pl. VI, 4-6).

Diatribution - Malay Archipelago and the Gulf of Mannar.

tegastidar

G.0. Sare, 1903-11, pp. 67-68.

Genus Tegastes Norman, 1903
G.O. Sars, 1903-11, pp. 68-69.
79. I. minutug Sewell, 1940.

Sewell, 1940, pp. 147-48, fig. 7 A-C.
Irishnaswary, 1957, p. 19.
Material examined - A single female specimen of this species occurred in June 1960 in the littoral weed washings of Palk Bay. Size: 0.3 mm .

Distribution - Maldive Archipelago and the Gulf of Mannar. Genu: Syngastes Monard, 1928
Monard, 1928, p. 336.
Sewell, 1940, p. 148.
Lang, 1948, p. 482.
80. Syngastes 8p.

Material examined - A single female specimen of this copepod occurred in the weed washings of Palk Bay in June 1960.

Deacriptive notes - It is typically tegastid in shape
(Pl. VI, 13) with highly thickened skeleton. In lateral view caudal ramus is lobular, carrying four sotae.

Antennule (P1. VI, 14) is 8-segmented, eonstituting eegments having the following proportionate lengthe:

1	2	3	4	5	6	7	8

$\begin{array}{llllllll}23.2 & 26.7 & 19.5 & 12.0 & 3.8 & 4.4 & 3.0 & 7.4\end{array}=100$ The aesthetask on the fourth segment is about three-fourth as long as the entire appendage. Third and fourth segments are partly calcified. In antema (P1. VI, 15), endopod is 2-segmented, the trums terminal segment bearing a claw and two setae. Exopod in 1-aegmented and short, oarrying three setae. Other oral appendages are similar to those of the genus.

In first leg (P1. $X, 1$), proximal protopod segment is very short, less than half the length of second segment, which carries a single seta in outer distal angle. The twe rami are subequal, outer ramus carrying four setae and inner five watae arranged as figured. Second and third lege are normal, exopod being 2-segmented and endopod 3-segmented in both the cases. In fourth leg (P1. VI, 16) exopod if 3-segmented and endopod 2-segmented. The former is however, just as long as the latter. The second seta on inner margin of terminal exopod segment is modified inte a large spine which is longer than the entire ramus. In endopod the two Begments are subequal in length, the basal segrent carrying one spine and distal segment/ four spines. Protopodsfof second, third and fourth legs are similar to those of first leg, but the ecoond segment does not oaryy any seta. Fifth leg could net be beerved. Size: 1.08 man.

Remarke - Sewell (leo. oit.) stated that the genus Syngastes contains eight apecies, divisible into three groups, depending upon the number of segments in the female antennule. Antennule is 5-segmented in S. macrognathus Monard and S. aognelinus Monard. It is 6-segmented in S. oleusi (Thompon), S. 1.mburni (Thompson \& Soott) and S. tyfnam (Thompson \& Soott), A 7-segmented antennule is found in S. chalmerai (Thompon * Soott) and S. donnani (Thompson \& Scott) and S. Indious Sowell. An unnamed apeciea with 8-segmented antennule is reported by Kriehnaswamy (1957) who obtained a single specimen of that species from the present geographical locality. The species dealt with in this paper agrees with his species in possessing an 8-segmented antennule, but is not referred to that apecies because of the following differences:

Present species
Antennule carries the aesthetask on fifth segment.

Bxopod of antenna 1-segmented. Bxopod of antenna 2-segmented.
Second segment of maxilliped long, Second segment of maxililiped bearing a group of long haire near short without haire. the proximal end.

Rami are subequal in first leg.

Bxopod is just half of endopod in fourth leg.

Siset 1.08 mm .
Besides these, there are also differences in the shape of body and relative longths of the antennular segments. Pifth leg, however, could not be observed in the present case.
G.0. Sare, 1903-11. p. 74-75.

Lang, 1948, p. 417.
Genus Percellidium Claus, 1860
G.0. Sare, 1903-11, p. 75. Lang, 1948, p. 417.
Hicholls, 1941a, pp. 403-405.
81. ․ Trevanae Thompson Scott, 1903.

Thompmon \& Seott, 1903, pp. 275-76, pl. XII, 19-22.
Material examing - Bighteen female (aeveral carrying
egge) and thirteen male specimens occurred in the collections of littoral weed washings of the Gulf of Mannar during AuguetSeptamber 1960.

Deseriptive notes - The male of the apecies is described here for the first time. Some additionsl notes are given on the female also for thim is the firat record of the species after its discovery.

Female: Body is elongate ovate, with a truncate rostrum at the anterior end. Posterior projections of the genital segment (P1. VII, 2) do not reach half the length of caudal rami whioh are taken into posterior ide. Each lateral margin of firat segment carries three pitted spines, that of the second and third segment one spine each. Dorsal surfaces of all segments, fifth legs and caudal rami are provided with oalciferous spots. Margins of the segments are thiokened. Right caudal ramus is slightly longer than the left. Each raman carries six setae (Thompan \& Scott Pigured seven eetae).

In third endopod, the first seta of second segment and second sta of third segment are modified into spines.

Thoy are quite trong, rather flattened and bear apinules along their distal inner margins. Second seta of third segment of third endopod has been shown by the earlier authore to be thicker than the endopodal setae. But in the present study all the seven species examined showed modifioations of these two setae to a great degree, in both aexes. Both are pine-like with oomb-like opinular arrangement on the distal halves of their inner margins. Pifth leg (Pl. VII, 4) is folisoeous and two and a half times as long as broad. Its outer margin is oiliated and carries one apine at ita mid-length and another at poeterior end. There chitinous ridge in the medial line along the entire length of fifth leg. A atrong spine is borne on the proximal and of the ridge. Pifth leg not only exceede oaudal rami but also grows round them. sizes 0.7 mm .

Male: Male is excually dimorphic and displays struetural variations in antennule, fifth legs and urosome.

Antennule (P1, VII, 3) is 4-segmented and geniculate. The constituting segments are quite stout but unlike several species, they are separated clearly. Third segment carries a pair of bulbous growths on anterior margin and an aesthetask on distal end. There is also a calcified crest on proximal side of the segment. All segments carry profuse number of setae; in first segment the anterior margin carries a number of long hairs.

Fifth leg (P1. VII, 5) is different from that of female.

It is much smaller in size, and appears to be 2-segmented, the proximal segment bearing a spine. Distal oegment is somewhat 5-sided, tapering to posterior side. Each posterolateral margin of this segment carries six plumese, conical structures whose basal regions give a knotty appearence. Along the antero-lateral and the inner margins chitinous ridges are present; the ridge on the former margin is ciliated on both sides,

In uroneme (P1. VII, 5) the prolongation of genital segment exceeds the latter. Caudal remi are quite small, as long as wide and carry each one diffuse sensory structure and four spines. There is calcification along the marging傫 of caudal rami. Sizez 0.64 mm ,

Diatribution - Gulf of Mannar.
82. P. gcuticaudatum Thompson \& Scott, 1903.

Thompson \& Scott, 1903z p. 275, pl. XII, Pigs. 15-18. Gurney, 1927, p. 494, Hig. 128.
Sewell, 1940, p. 151.
Kriahnaswayy, 1957, p.
Materigl examined - Twelve females (some of them being berried) and fifteen males wixi are obtained from the washinga of inshore weeds from the Gulf of Mannar and Palk Bay during October-November 1960.

Degeriptive notes - Gurney (100. oit.) noted a red colour in the pecimens he gathered from Sues Canal. In the present instance a pink colour is observed, but is confined to dorsal medial area and posterior margins of prosomal segments as well as the entire urosome. The most salient

Pature of thit speoies is, as indicated by the specific name, the acutely pointed caudal rami. Each ramus earriea four spines, two on ventral face in proximal region, one on posterior acute point and one on outher margin juet where it makes an angle with posterior margin. This is what exactly Thompon \& Scott found in their specimens. Gurney, however, ohowed two apines in that position for his Suez Canal example and Sewell observed a group of three spines in specimens he collected from the Maldives. The projections of genital segment reach middle of caudal rami. The modifications of the spines into setse on second and thixd segmente of third endopod are noticed in the present species also.

Male shows sexual dimorphism. Antennule has, undergone a great degree of geniculation than in the preceding speoies. The aegments are highly swollen and bent upon one another. Third segment earries on its proximal area, a spatulate structure one side of which is closely applied to the segment itself. The aesthetask is very short and has a peculiar shape. Pifth leg is more or less similar to that of preceding species, but of larger relative widh. Caudal ramus is one and a quarter
4 minill times longer than wide and carries five spines.
The projection from genital egment does not exceed the posterior margin of anal segment and fifth leg reaches only to one third of the proxinal length of caudal rami.

Sizetferale 0.64 mm . and male 0.58 mm .
Diatribution - Gule of Mannar, Suez Canal and the Maldive Archipelago.
83. P. Hoatti Pesta, 1935.

Thompson \& Scott, 1903, p. 275, pl. XII, figs. 1-10. Pesta, 1935, p.
Micholle, 1941a, pp. 403-04.
Material examined - Nineteen females and twelve males of this speciea are captured from the waed washinge of the Gulf of Mannar and Palk Bay during July-August 1960. Several females are ovigerous.

Desoriptive noteg - The female has been thoroughly described by earlier workers. Male is described here for the first time. Sizes female 0.57 mm . and male 0.49 mm . Hale: It is very similar (PI. VII, 8) to the male of P. iimbriatum, but differs from it in some structural details: (i) In antennule (P1. VII, 9) first segment is longer than that of tire P. Eimbriatum. (ii) Third segment dieplays lese calcifioation and less ornsmentation then in P. fimbriatur. (iii) A pair of thorn-like elevations is present, one on either lateral margin of anal segment, while in R. fimbriatum they are absent.

Remarks - This apecies is very similar to P. fimbriatum Claus and was, in fact, referred to that speoies by Thompson \& Seott (1903). Pesta (1935), however, suggested its recognition as a separate species and renamed it P. scotti. Hicholls (1941a) agreed with Pesta's suggestion and discuseed few more points of difference between the two forms. I have been able to collect and examine both fimbriatum and sootti, and I have no hesitation in recognising their specifio valldities. Hiaholls (100. oit.) observed: WThe position of
the imer seta on the first endopod is probably due to faulty observation since the point of attachment of this seta is always hard to make out". (p. 403). Figures given by Thompson : Scott showed the origin of the seta at about twothird the length of inner margin while in the present speaimene 1t is olearly at the point of the proximal bent, on inner margin as in all other species. The differences between the two species are presented below:
P. Aimbriatum Claua

The ratio of widthe of proximal and dietal areas of caudal rami is 48:52.

Lateral margins of posterior half of first prosomal segment are parallel.

The ratio of greatest length and greatest width of caudal ramus is 71:29.

The postero-lateral projections of genital segment are distinotly rounded (P1. VII, 10).

Pirst endopod meh larger then other endopods, segments being rather swollen.

Fifth legs do not reach ends of the projections of genital segment. (P1. VII, 10)

ㄹ. Hontti Pesta
The ratio of widths of proximal and distal areas of caudal rami is 37:63.

Lateral margins of posterior hall of firet prosoral segment slightly converge so that they are not parallel.

The ratio of greatest length and greateat width of caudal xxat ramus is 64:36.

The postere-lateral projections of genital segment are distinetl; angular foraing agraoeful treangles (P1. VII, 6).

First endopod normal, segments not swollen.

Fifth lege extend beyond end of the prejeotions of genital segment (PI. VII, 6).

Distribution - The distribution of this species cannot at present be determined precisely, for some authors did not recognize its validity. Thompson \& Scott referred this species to flebriatum. We do not know whether the species recorded by Sowell Irem Hocobar Ielands represents fimbriatum or scotti for,
for he make no mention of Peata' ouggeetion, nor doen he give any deacription of m the apeciee. Kriehnamany (1953e (1957) who reported 2tmbrigitus Irow Krusadat Idande has refurred both to Pegtata' and to MLeholle' paper. bat ald not make olear whether the apeoies he examined wan gootti or Atmbxistum.
84. F. timbriatun 01aus, 1863 .
G.0. Sars, 1905-11, pp. 76-77, p2. XLIV (xD. Hioholle, 1941a, pp, 405q406, tig. 12.

Materinl gxamined - Eight ovigerous fomales are oaptured in September 1960 from the weed washinge of the Gulf of Mamar. Sise: femal. 0.58 ma.

Distribution - British Iales, Homegian Coast, Moditerranean Eea, S. Australia and the Oulf of kannar.
85. 1. Ahevix quix poate. 1935.

Pesta, 1935, p. 377, fig. 7.
Lang, 1948, D. 425, Abb. 183.4.
Krishnavwamy, 1957. pp. 23-24, 818. 3.
Matering exanined - Pifty fonales and thirty ons malos and many copepolites of this apeoies are obteined from weed Wanings of the Gulf of Hannax and Palk Bay Auring July Auguat 1960. Several females are ovigeroun and males are found to be attached to copepoditea elther in the fourth or rifthetage.

Denoriptive notes - The fernie agrees fully with the desaription given by Krishnagwany. Siset female 0.53 men.

Hale is ecxually dimorphie showing modisications in antemule, fifth lege and wroasme. In antenmule there are oniy four jointe whioh are all highly modified with calaified
marging. There is a thick, short aesthetask broken on margins, on third segment. In urosome, posterior prolongation of genital segment exceeds the anal segment only by one fourth the length of caudal ramus. Posterior tip of the prolongation is sharply conical. Caudal ramus is squarish, the length and breadth being equal. On ventral face of ramus there are twe equippaced setae, one at one third and the other at two third the length. Posterior margin of ramus oarries one zeta and four digitiform processes. Pifth leg corresponde to that of other representatives of this genus. It is calaified along the margins and carries six appendages in the distal margin. Size: male 0.48 mm .

Distribution - Pacilic ocean, Madras coast and tre Gulf of Mannar.
86. P. unicus n. sp.

Uaterial examined - Two hundred female and one hundred and fifty male specimens and several copepodites, nost of them in fourth and fifth stages, are obtained from the sponge and weed washings of the Gulf of Mannar and Palk Bay during July-October 1960. Holotype, allotype and paratypes are deposited in the Reference Collection Museum of the Central Marine Msheries Research Institute, Mandapan Gamp.

Desoriptive notes - The name of the species has reference to the combination of unique characters that are distinct from other representatives of the genus.

Remale: The yellow colour of this species, bright in iffe and immediately after killing and faint after days of formalin
preservation, is very characteristic. Body (P1. X, 15) is elongate ovate and typically of the porcellidild type with a aquared rostrum at aterior side. The ratio of length and width of body is approximately $1.5,1.0$. Second segment is as broad as the first, but other body segments smoothly narrow down to posterior side. Genital segment (PI. X, 12) 1s expanded backwards, the expansion reaching three fourth the length of caudal rami. Each expansion sharply tapers and terminates in a fine spinule. Abdominal segment is inserted between genital segment and caudal rami and is very short. Its anterior margin is bordered by a ohitinous band on either end of which a stout bsokwardly direoted spine is present. Caudal rani are thin and aylindrical, carrying three setae terminally and two setae ventrally.

The antennule is 6-joined, the segmenta having the following proportionate lengths:

1	2	3	4	5	6
27	33	17	11	8	$4=100$

Other cephaloeomal appendages and first pair of lege are normal. Next three pairs of lega (P1, $X, 16-18$) are remarkable in possessing only two external spines on the terminal exopod segments. The ornamentation of the three pairs of legs is presented below:

\mathbf{P}_{2}	0	1	0	A	1	0	2	0	1	2	1	1	I	1	I	2	2	$I I$
\mathbf{P}_{3}	0	0	0	0	1	0	2	0	2	2	1	1	I	1	I	3	2	$I I$
\mathbf{I}_{4}	0	0	0	0	1	0	I	0	I	2	1	1	I	1	I	3	2	$I I$

As in all other species of this genus, the inner etae on the terminal segment of second endopod, the proximai seta on the second segment of third endopod and the terminal seta of the terminal segrent of the sare leg are modified. Inner distal margins of these setae carry a number of sharp bristles giving a comb-like appearence. Another important feature of this spesies is the modification of inner setae on second and third segmente of fourth endopod into spine-like structures with bristles on their margins. Pifth leg (P1. $X, 12$) is 2-segmented and rather hexegonal. Pirst segment is short, bearing one seta; distal segment has a pronounced caloiferous ridge, running along its entire length and dividing it into two halves. Outer margin of distal segment carries a number of spinules on the entire pontem rior two third of its length. This epinular area is divisible into more or less equal halves by a sete. A number of fine sensory hairs also are present on outer margin of distal segment. Size: 0.75 mm .

Male: General shape of body (P1. X, 11) is identifal to that of female, but anterior margin of first prosomal segment is highly concave. This appears to be an adaptation to facilitate greater degree of clinging power during pairing. Posterior ond of fifth copepodite female fits very well into this concavity of
the male prosome.
Antennule (P1. X, 13) is geniculate and apparently 5-segmented. An aesthetask is borne on the fourth aegnent. The segments are highly shortened and their margins oalcified. Wumerous bristles are borne on the margins of second segment. Pifth leg is very mall and 2-segmented. Pirst segment is devold of any seta or spine. Second segment is pentagonal, the outer nargin being diviaible into proximal and distal halves. The former is bordered by a thick ridge carrying numerous fine brietles. The distal half carries one geta in 1ts proximal part and three spines in its distal part. The margins of these apines are not tatgriz fringed as they are In other species. In urosome (P1. X, 14) a genital segment and anal segment are quite short. Pormer just exceeds the anterior margin of latter. Caudal rami are short and squarish with three setae on posterior margin and one on ventral face. The sides of rami are oalcified. Sizes 0.63 mm .

> Remark登 - Mioholis (10c. oit.) reviewed this genue
and considered the following twelve species as valids
P. Lecanoldes Claus, 1889;
I. sootti Pesta, 1935;
P. acuticaudatum Thompson \& Scott, 1903;
P. tenuioauda Claus, 1860;
P. brevicaudatus Thompson \& Scott, 1903;
P. Ravanae Thompson \& Soott, 1903;
P. affing Quidor, 1906;
P. Interxuptum, G.M. Thompson, 1883;
P. etimbriatum ClauB, 1863;
․ matrale Brady, 1910;
E. fulrum G.M. Thompson, 1883; and
P. gharceti Quidor, 1906.
P. perrulum and P. gvatum Haller, 1886 are left out beasuse of insufficient description. P. clavigerum is considered by him to be mnonymous with P. Lecanoides Lang (1948), however, considered them to be valid and separate, but synonymised \underline{P}. anatrais and P. affine, thus bringing the total number of species gain to twelve. In the present collection seven species are represented, two of which appear to new. One of them is named unicue while the other is left unnamed as only one specimen is available to me. It should be added that papere by Claus, Quidor and G.M. Thompson are not available to me and that I have heavily drawn from the discusaions provided by Nicholls. (Micholls, 1941a)
P. unious is diagnosed as follows: (a) One of the most salient features of this species is the presence of only two marginal spines on outer side of terminal segment of second, third and fourth expods. However, in all other respects these legs are typically porcellidild, including the presence of modified setae on second and third segments of third endopod. (b) Anterior margin of prosome is clearly concave in male while in female it is amoothly convex with a distinct rostrum. (a) The postero-leteral projections of genital segment of female are quite large, extending upto three fourth the length of caudal rami. These expansions taper to finely angular comers.

In male they just exceed the posterior margin of anal segment. (d) Oaudal rand of female are cylindrioal and thin, each ramus bearing two spines on ventral face and three along the posterior margin which is smoothly rounded. In male the caudal rami are short and squarish, esch ramus bearing one ventral and three apioal spines. (e) Fifth legs of female are foliaceous and reach behind the oaudal rami, but do not meet behind. Posterior side of fifth leg is rounded, giving the appendage a five-cornered appearance. A thick longitudinal ridge almost divide this into two halves. Outer margin of fifth leg carries a number of spinules in its distal twothird region. In male fifth leg is 4-sided. Proximal half of outer margin is almost parallel to inner margin, while distal half deeply steepens to merge with the posterior margin whioh is highly reduoed. Along the proximal half of outer margin an elevated thickening is present bearing spinules. The steepening posterior half carries four spines, the proximal-most being long and stout while the other spines are crowded towards the terminal area. None of the spines has fringes in its margins. A few fine bristles are found on the inner margin.
87. Porcellidium sp.

Material examined - A single egg-carrying female specimen of this copepod is obtained from the weed washings of Gulf of Mannar in Deoember 1960.

Descriptive notes - The expansions of genital segment
(21. IX, 6) are very large, foliaceous, reahing almost the tip of caudal rami. Posterior margin of the expansion is provided with line bristies. A little proximal to this area several hairs are arranged in a radiating faohion.

Caudal rami are thin and long, with flat posterior margins which bear each three long setae and a number of small setules. On ventral face, each ramus carries a selitary seta in the proximal region. The marging are highly calcified.

Fifth lege are almost alike with those of P. fimbriatum, but its length in relation to the expansion of genital segment is a little leas. The adult animal as well as the various appendagee are figured (P1. IX, 5-13). Sizes 1.0 mm.

Remarke - The specimen under study is very clese to P. figbriatur and the chief points of difference between these consist in the size in the atructure of caudal rami and in the shape of the expansions of genital segment. In somespects it also resembles R. fulvum, but it differs fron the latter species in the proportionate length and breadth of the body. However, no opinion is given here as to the opecificity or otherwise of the mputang apecimen as it necessarily requires a more detailed atudy.

HARPAOTICIDAS

$$
\begin{aligned}
& \text { G.0. Sars, 1903-11, p. } 48 . \\
& \text { Lang, 1944, pp. 9-10. } \\
& \text { Lang, 1948, p. } 307 . \\
& \text { Subramily Harpacticellinae } \\
& \text { Lang, 1948, p. } 307 .
\end{aligned}
$$

G.O. Sara, 1903-11, D. 49. Lanc, 1948, p. 309.
88. ㅌ. Littorelis Sare, 1911.
G.O. Sars, 1903-11, suppl. p. 363, pl. 8. Sewell, 1924, p. 810, pl. 1, f1g. 1.
Lang, 1948, p. 328, Abb. 149, $42152,1$.
Krishnaswary, 1957, p. 26.
Material examined - Several male and fomale speoimens of this aopepod are obtained from washings of floating weeds in June 1960 from the Gulf of Mannar. Size: female 0.62 and male 0.50 mm .

Distribution - British Isles, Horwegian coast, Chespeake Bay, Chilka Lake, Nicobar Islands and the Gulf of Mannar.
89. H. claugi A. Scott, 1909.
A. Soott, 1909, p. 201, pl. LXI, flga. 9-12 A. Sewell, 1940, pp. 153-56, figs. 9-10.
Lang, 1948, pp. 335-37, Abb. 153, 2.
Krishnaswany, 1957, p. 25.
Materiel examined - A single female specimen is obtained along with the preceding species from the floating weeds of the Gulf of Mannar. Size: 0.63 mm .

Distribution - Malay Arehipelago, Hicobar Islands and the Gulf of Mannar.
tisbldas
G.0. Sare, 1903-11, p. 78.

Lang, 1948, p. 358.
Subfamily Tiabinae
Lang, 1948, pp. 364-68.

Genus Tlabe Lilljeborg, 1853

Q.0. Bars, 1903-11.

Lang, 1948, p. 364.
90. T. furcate (Baird), 1850.

Baird, 1850, p. 210, pl. XXY, 1igs. 1,2, pl. XXX, fige. 1-6.
G.0. Sars, 1903-11, pp. 88-89, pl. LI \& LII, fig. 1. Lang, 1948, D. 369. Abb. 163, 1, 164.
Sewell, 1940, p. 159.
Krishnaawauy; 1957, D. 29.
Material examined - Several specimens of both eaxes are obtained from weed washings of the Gulf of Mannar in November 1960. Size: female 1.1 mm , and male 0.78 mm .

Distribution - Widely distributed in Atlantie, Indian and Paoific oceans.

Genua Tlebintre Sowell, 1940
Sewell, 1940, p. 161.
Umerkutty, 1960b, p. 156.
91. 2. Jonent Ummericutty, 1960.

Ummerkutty, 1960b, pp. 149-56.
Material examined - Several specimens of both sexes are captured from the Gulf of Mannar in April 1960. Size: female 1.1 mm . and male 0.67 mm .

Diatribution - Guif of Mannar.
Genus Soutellidium Claus, 1866
G.0. Sars, 1903-11, pp. 82-83. Lang, 19\$8, p. 386.
92. S. Lengigaudum (Philippi), 1840.

Philippi, 1840, p. 189, pl. IV, fig. 1. G.0. Sare, 1903-11, pp. 83-84, pl. XUIX. Sewell, 1940, p. 169.

Material examined - Several male and fomale specimens are obtained from weed washings of the Guif of Mannar in

December 1960. Sizet Pemale 0.73 ma, and male 0.59 mm .

Distribution - Widely distributed in Atlantic; also reported from Mediterranean sea, Maldive Archipelage, New Zealand ceast and the Gulf of Mannar.

Bemark - This apecies is readily recognized fren the related epecies, B. Dlumamur Brady by the following features: (1) Eecond free prosemal segment is narrower then first and third segments (P1. $X, 19 ; 20$). Ihis character is apecially pronounced in female. (ii) Posterior margin of last segment is smooth a_{n} founded in plumosum while it is angular in the preent case. (1i1) In first leg the third exopod segment carries ("four pulvinular recurved spines ancompanied by a slender ciliated aetal. In plumegun there are two setae and four opines. (iv) Basal segment of first leg bears a single seta on the outer diatal angle while on the distal inner angle there are also two amall accessory setac. In plumesum these accessory setae are absent. (v) Apical seta of the distal segment of fifth leg (P1. X, 21) is stout and short whereas it is quite long and like other setae in plumosur. 93. S. Dlumany Brady, 1899. Brady, 1899, p. 45, pl. oil, figs. 16-21, 23-25. Sewell, 1940, pp. 173-76, figs. 17-18. Lang, 1948, p. 392, fig. 171, 3. Krishnaswary, 1957, pp. 30-31, fig. 4.

Matemial examined - Five female specimens of thia copeped are obtained from weed washings of the Gulf of Mannar in Hevember 1960. Size: 0.8 mm .

Distribution - South Pacific, Hicobar Islande, Cape Comorin and the Gulf of Mamar.

THAJBSTRIDAS
G.0. Sars, 1903-11, p. 102.

Lang, 1948, p. 141.
Gemus Rhynohothalestris Sare, 1905
Q.O. Sare, 1903-11, p. 119.
94. R. rufognata (Horman) Brady, 1880.

Brady, 1880, p. 125, pl. LVII, fige. 1-9.
A. Scett, 1909, p. 215, p1. LXII, fige. 12-16.

Sewell, 1940, pp. 184-85.
Material examined - Two female specimens of thim oopepod are aaptured in plankton in May 1960 from the Gulf of Mannar. Sise: 1.12 mo.

Distribution - Thi species has a very wide distribution, having beon recorded from Indian and Atlantie oceang.

Genua Xouthous Thompson, 1883
Thompeon, 1883, p. 103.
Sewell, 1940, pp. 196-97.
95. x maldivise Sewell, 1940.

Sewell, 1940, pp. 198-200, 11g. 30.
Material examined - A single female apecimen is captured from weed washings of the Gulf of Mannar in December 1960.

Demorintive noteg - General shape of the body agrees closely with that of other members of the genus being highly plattened and quite elongate ovate with prosomal segrents olearly demarcated from each other and without rostrum. Proportionate lengths of presome and urosone are 65:35. Lateral margins of prosomal segments are quite smooth and entire from dorsal view. In ventral view, however, the margins
carry a number of small spines as hown in the figure (P1. VIII, 12). A little anterier to the posterior of margins of prosomal segments rows of fine apinules are observed in lateral view. Antennule (PI. XVII, 7) is 6-segmented, the segmente having the Iollowing relative lengthe:

1	2	3	4	5	6
22	24	18	16	12	$8=100$

There is a fairly long aesthetasic on fourth segment. All other appendages are exactly as described by Sewell. In the structure of fifth leg the present speoies is muoh siniliar to S. Laticandata and X. asmula both Thompson \& Scott. But, as Sewell has already pointed out, whereas in both X . latiesudats and X . asmula the distel segment does not extend beyond distal margin of the proximal segmant, in the present fors, margin of proximal segment Hes at a level that is leas than half the length of distal the free segment. In this character it agrees With K. purporycingtus, but in the latter a proximal segment is fringed with six eetae and not with broad, flat pines, forming a palisade, as it is in X. maldivien. Sise: female 0.6 ma.

> Distribution - Maldive Archipelago and the Gulf of Mannar.
dIOsACCIDAB
G.0. Sars, 1903-11, p. 114. Lang, 1948, pp. 592-96.

Conus Zndeatrloput A. Scett, 1909
A. Seett, 1909, p. 219.

Sewell. 1940, p. 200.
96. E. Btriatus Sewell, 1940.

36,
Sowell, 1940, pp. 211-13, Pig. LA-J.
Krishnaswayy, 1957, pp. 35-36.
Material examined - A single male specimen of this
cepeped is obtained from the weed washings of the Gulf of August
Mannar in $f^{1960 . ~ S i z e: ~} 1.1$ min.
Diatribution - Hicobar Islands and the Gule of Mannar. DIOSACCIDAB
G.0. Sars, 1903-11, p. 114.

Lang, 1948, pp. 592-96.
Subfamily Diosacoinae
Nicholle, 1941b, p. 67.
Genus DLosaccus Boeck, 1872.
G.0. Sare, 1903-11, p. 145.
97. D. truncetus Gurney, 1927.

Gurney, 1927, p. 513, 1is. 136.
Sewell, 1940, p. 20.
Kxiehnaswany, 1957, pp. 40-41.
Material examined - A single lemale speoimen is taken
from the floating weeds of the Gulf of Mannar in January 1960.
Size: 1.0 mm .

Distribution - Burma coast, Port Said, Madras coast and the Gulf of Mannar.

Sublamily Amphiascinae
Nioholls, $1941 \mathrm{~b}, \mathrm{p} .68$.
Genue Amphiacopais Gurney, 1927
Gurney, 1927, p. 150. Hioholls, 1941b, p. 74.
98. A. dentatug (Thompson \& Scott), 1903.

Thompson \& Scott, 1903, p. 268, pl. IX, f1gs. 1-10. Sewell, 1948, p. 286.

Katerial examined - 3ix female and one male speoimens
 washings of the Gulf of Mannar in September. Size: female 1.12 min. and male 0.82 mm .

Distribution - Micobar Islands and the Gulf of Mannar. 99. A. hixyutu息 (Thompson Scott), 1903.

Thompson \& Scott, 1903, p. 269, pl. IX, Pigs, 19-24. Sewell, 1940, pp. 247-49, f1ge. 50-51. Erishnasvamy, 1957, p. 46.

Material examingd - Three female and two male specimens of this species ace obtained in the weed washings of Palk Bay in September 1960. Size: female 1.23 ma . and male 0.87 mm .

Distribution - West Australis, Andaraan Islands, Maldive Archipelago, Burmuda and the Gule of Mannar.
100.A. sinatua (01aus), 1866.

Olaus, 1866, p. 27, pl. III, figs. 8-12.
Sewell, 1940, p. 256, 1ige. 54-55. Nicholls, $1941 \mathrm{~b}, \mathrm{p} .414, \mathrm{Iig} .17$.
Krishnaswary, 1957, pp. 44-45.
Material exemined - Two female specimens of this copepod are gathered from the weed washings of Palk Bay in Auguat 1960. Size: female 0.95 mm .

Distribution - This apecies appears to have a wide distribution ma has been recorded from Indian, Atlantic and Paoific ocems.

LAOPHOMIIDAE
G.O. Sare, 1905-11, p. 234. Nicholls, 1941b, pp. 92-95.

Genus Leophonte Philippi, 1840
G.O. Sars, $1903-11$, p. 234. Nicholls, 1941b, pp. 97-100.

Subgenus Laophonte Nicholls, 1941
Nicholla, 1941b, 99-100.
101. ․ (L.) hirsuta Thompson \& Scott, 1903.

Thompmon \& Scott, 1903, p. 226, pl. VIII, fige. 1-8. Krishnaswazy, 1957, pp. 66-69, Pig. 14.

Material examined - Humerous specimens of both
sexes as well as several copepodite atages are obtained from the sponge and weed washings both from the Gulf of Mannar and Paik Bay during July-August 1960. Stze: female 0.58 mm . and male 0.49 mm .

Distribution - Suez Ganal and the Gulf of Mannar.
102. L. (L.) macani Sewell, 1940.

Sewell, 1940, pp. 319-22, 1ig. 73.
Krishnaswamy; 1957, p. 71.
Saterial examined - Two female specimens of this inttoral
copepod are obtained from weed washings of the Gulf of Mannar $^{\text {m }}$ mix in Cotober 1960. Size: 0.49 mm .

Distribution - South Arabia and the Gulf of Mannar.
Gonus Bohinolaophonte Kicholls, 1941
Mioholls, 1941, p. 95.
103. E, horride (Horman), 1876.

Horman, 1876, p. 206.
G.O. Sars, $1903-11$, pp. 246-47, pl. CLXVI \& CLIVII.

Hioholla, 1941b, p. 95.
Kyi shnaswary, 1957, pp. 63-64, fig. 13.
Material examined - A aingle damaged female is obtained from the washings of dredged weeds of the Gulf of Mannar in Movember 1960. Size: 0.98 mm .

Diatribution - British Isles, Greenland, Polar Islands, Norwegian coast, Madras coast and the Gulf of Mannar.
104. E. tropies n. ap.

Haterial examined - Mumerous specimens of both sexes of this oopopod are gathered on several occasions from the Gulf of Mannar and Palk Bey, mostly from weed washings. They are also found to live in association with aponges. Holotype, allotype and paratypes are deposited in the Reference Collection Museum of the Central Marine Fisheries Research Institute, Mandapam Camp.

Desoriptive notes - Pour valid species are recognized under the genus Echinoleoponte and the present material appears to be the fifth species to be described. The name of the apecies has reference to the locality of occurrence.

Pemale: The cephalosome (P1. XI, 11) exhibits a tripartite division - anterior and posterior regions and an intervening midale region with lateral wings - . There are four pedigerous segments besides the cephalosome. First three segments are more or less of equal dimensions, while the last one ls larger then the others. Genital gegment is quite large and is much wider than long. The three abdominal segments diminish both in
length and width to posterior side. Caudal ramus is lese two than twice ac long as wide, bsaring six setae win of which are much longer than the others and widened in the proximal region. In lateral view (P1. XI, 2) the postero-doraal margins of cephalogome are produced into spines. Similar apine-like projections are noticed also in some of the prosomal and urosomal segmonts.

Antennule (P1. XI, 3) is 6-segmented, the fourth segment bearing a Iairiy long eesthetask. Following are the proportionate leng the of the constituting segments:

1	2	3	4	5	6

$19.2 \quad 29.8 \quad 31.2 \quad 7.1 \quad 2.8 \quad 9.9=100$ Antenna (PI. XI, 4) is 2-3egmented; the exopod is 1-megmented, very short with four setae and is borne on outer margin of the basal antennal segrent; the latter bears two setae, one each on its distal outer and inner corners; the second antemal sagment beark four apical and one abbapioal spines, besides a small setae in the inner distal region. The spines have bent appearance with serrated medial areas. Mandible (P1. XI, 5) if quite normal with a masticatory blade and 1-segmented palp. Maxillule (P1. XI, 9) and maxilla are typical of the genus. In maxilliped the terminal claw is characteristically inourved and the setae at distal margins of first and second segments are moderately developed. Inner margin of second segment is finely cillated.

In first pair of legs (P1. XI, 8) both endopod and exopod are bimerous. Bndopod is quite well developed, basal segment bearing one seta and second segment bearing a stout terminal claw and an acoessory seta. Bxopod is very tragile, just exceeding half the length of basal ondopod segment. There are five setac on the distal segment, three apical and two outer, while the proximal segment bears an outer seta. In protopod the basal segment is devoid of any seta, while the proximal segment has a seta on each margin. The ornamentation of the swiming zese lega 2-4 is given below: (See also pl . $\mathrm{XI}, 10,11 \& 13$). $1_{2}^{\text {Protopod }}=1_{1}^{\text {Endopod }}{ }_{2}^{\text {Ex }}{ }_{2}^{\mathrm{pod}}$ 3
Si Se Si Se Si Se Si St Se si Se Si Se Si St Se
 $\begin{array}{lllllllllllllllll}P_{3} & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & I & 1 & I & 1 & 2 & \text { II } \\ \mathbf{P}_{4} & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & I & 1 & I & 2 & 2 & \text { II }\end{array}$

Fifth leg (P1. XI, 11) is very similar to that of other representatives of the genus. The proximal segment, however, is quite large, its inner projection reaching almost the whole length of the distal segment. Proximal segment bears a single seta on the outer and four setae on the inner margin. Distal segment bears three aetae on the outer side. Size: $0.85-$ 0.95 mm.

Hele: Male is sexually dinorphic showing modifications in antennule, third, fourth, fifth and sixth lege and urosome. Antennule is geniculate and apparantly 5-segmented. As in femaie, the aesthetask is borne on fourth iegment which is much swollen with thickened sargin. Terminal segment is short and narrow, but carries large number of setae along 1ts
margins. Bropod of third leg is very powertully developed With all the jointe considerably thickened and having the apine very ooarse and setae of inner edge ohort and opiniform; endopod of third leg is of the usual structure. In fourth leg, too, exopod is much coarser than in female, the setae of inner edge being apiniform. Hifth leg ie muoh different from that of female. Each leg is reotangular in shape; bamal segment is indicated by aroad based seta; distal segment carries unequal setac at the apex. Sixth leg almo is reotangular in shape, carrying at its apex two setae one of whioh is strong and spine-1ike. In urosome there is an additional segmant, and the genital segment is not as large as it is in female. Size: $0.65-0.75 \mathrm{~mm}$.

CAWHHOCAMP IDAE

Lang, 1948, p. 899.
Gonus Oxthopsyl1ug Brady \& Roberteon, 1873 Q.0. Sare, 1903-11. D. 288.
105. Q. Iinearis (Claus), 1866.

Olaus, 1866, p. 22, pl. II, IIgs. 1-8. G.O. Sars, 1903-11, p. 289, pl. CXCIX. Sewell, 1940, p. 343. Krishnaswayy, 1957, 1. 74.

Material oxamined - A ingle female apecimen of this speciea is taken fron the weed washinge of the Gulf of Mannar in Hovember 1960. Size: 0,84 man.

Diatribution - This is a very widely distributed species and has been taken from Indian, Athantic and Antarotic oceans. LOURINIIDAE
Sewell, 1940, p. 328. Lang, 1948. p. 1215.

Abstract

Genus Lourinis Wilson, 1924 Sewell, 1940, p. 326. Leng, 1948, p. Fioholla, 1941a, p. 23. 106. I. armata (Claus), 1856.

Claus, 1866, p. 25, pl. II, 1ige. 15-24. Thompson St Soott, 1903, p. 265, p1. VII, Iige. 11-23. Sewell, 1940, pp. 328-32, 11ge. 77-78. Kriehnaswany, 1957, pp. 79-80.

Matexial examined - Several male and female specimens of this copepod are gathered from the weed washinge of the Gulf of Mannar in June 1960. Size: Pemale 1.1 man. and male 0.90 m.

Distribution - This species has been widely reported from the Indo-West Pacific and Atlantic oceane.

Romarizs - This epecies was originally demeribed by Olaus (1866) under the name Jurinis grmata. Thompson \& Scott, (1903) apparently unaware of Claus'a paper oreated Ceylonia aculeata for the same species. Wison (1924) pointed out that both these generic names are preocoupied and proposed Lourinis and Ceyloniells respectively under the impression that they were different genera. Subsequent workers, however, showed that Lourinis arpata and Cexloniella aculeate are synomymous and the speoifio nam should be Coylonielia armata (Claus), as thia genus has priority. "Though Ceyloniella has diatinct page priority over Lourinia the proper name, accordIng to the prevailing International Rules of Zoologieal Momenclature, if that used by the first reviser (i.e. Monard, 1927, p. 173) who used the nawe Lourinie grmata (Claus, 1866)".

Lang (1948) has distinctly established this, and Mioholls (in a personal communication) agrees with this, quoting supports from Vervoort.

Meridar

G.0. Sars, 1903-11, p. 344.

Genus Matis Philippi, 1843
G.0. Sars, 1903-11, p. 344. Gurney, 1927, p. 567.
107. M. Joussemumed (Richard), 1892.

Riohard, 1892, p. 69.
Sewell, 1940, pp. 346-51, fig. 86. Xrishnawwany, 1957, p. 80.

Material exa mined - Several apecimena are obtained from plankton as well as from weed washings of the Gulf of Mannar and Palk Bay during June - September, 1960. Size: forma major, $0.72-0.76$ mam. $;$ forma ginot, $0.45-0.51 \mathrm{~mm}$.

Distribution - This apecies has a very wide distribution having been taken from Indian, Atlantic and Pacific oceans.

> OYOLOPOIDA

Section ontaphosmoma
orthomidas
G.0. Sare, 1913-18, p. 4.

Genus Oithone Baird, 1843
G.0. Sare, 1913-18, pp. 4-5. Wileon, 1932. P. 311.
108. Q. Iinearis Giesbrecht, 1891.

Giesbreaht, 1891, p. 475
Wolfonden, 1906, p.1025, pl. XCI, fig. 49.
Kryshnaswamy, 1953b, p. 63.
Matexial examined - This species is obtained in small
numbers very often. It is an inconspicuous item of plankton not only because of its rarity, but also because of its small size. Sizet female 1.13 mm.

Diotribution - Maldive Archipelago, Madras coast, the Guif of Mannar
109. Q. rebugte Giesbrecht, 1891.

Giesbreoht, 1892, p. 475
Rosendorn, 1917, pp. 29-32, 1ign. 16 a-e.
Krishnasway, 1953b, pp. 63-64, 11g. 1.
Matexial examined - This is another rare oithonid of this area, appearing in mall numbers on few occasions in the Gulf of Mannar. Size: female 1.41 mm.

Distribution - Fidely distributed, having been recorded from all the great oceans,
110. O. rigide Gienbrecht, 1897.

Giesbrecht, 1897, p. 324, pl. V, İgs. 10-15.
Rosendorm, 1917, p. 39.
Sewe11, 1947, pp. 256-57.
Kriahnaawayy, 1953b, p. 65.

Materigl examined - Thie ia a common epeaies and in eaptured throughout the year. Sise: female 0.76 mm , and male 0.60 mom.

Distribution - "This speoies appears to be widely distributed throughout the northern region of the Indian ocean". (Sewell, 1947).
111. Q. Dlumifera Baird, 1843.

Baird, 1843, p.
Rosendorn, 1917, pp. 10-12, f1g. 1 a-d.
Sewel1, 1947, pp. 255-56.
Krishnaswawy, 1953b, p. 64.
Material oramined - This opecies occurs in mall numbers quite often in plankton of the Gulf of Mannar. Sigez female 1.15 mm.

Dintribution - Similar to that of preceding epeoiea.
 O. Epinimontris and Q. atlantiea by Rosondorn (1917) and Kiefer (1929). Wilson (1932) and Sewell (1947) admit the synonymy of the latter two species, but consider plumifere as a separate species. Sewell (10c. alt.) pointed out that there are only three setae on the ondopod of the mandibular palp of Q. plumifera while four setae arise from that position in g. gninirostris ($=0$. atjantiag).

Farren (1913) pointed out that in some of his examples the plumose setae were not present on the posterior legs. He inferred that they would have been broken off. Sewell (10e. git.) carefully examined several examplee he obtained fron John Murray collections and found no aign of their being
broken of of any foathering. "It asems probable that the plumose termination is a variable character and may in mome cases be wanting" (Sowell, 1947, p. 255).
112. O. Botigera (Dana), 1849.

Dana, 1849, ${ }^{p}$.
Hosendora, 1917, pp. 20-24, fige. $10 \mathrm{a}, 11 \mathrm{~b}$.
Sevell, 1947, p. 257.
Krishnamwamy, 1953b, p. 64.
Material examined - This species ocours often in plankton of the Gulf of Mannar. Sige: female 1.23 mm .

Distribution - Widely distributed
Remarka - Sowell (Loc. git.) considers this speoies to be synonymous with Q. tropioa Molfenden and Q. pelagica Parren, for the presence and the location of the club-shaped setae on basal segment of awiming leg is not a constant feature. 113. Q. nana Giesbrecht, 1892.

Giesbrecht, 1892, p. 538, pl. IV, fig. 8, pl. XXXIV, figs. 10, 11, 20, 21-26, 34, 35.
Wilson, 1932, pp. 316-17.
Sewe11, 1947, p. 254.
Material examined - This is a common apecies and is eaptured throughout the year from plankton of the Gulf of Mannar. Sizes female 0.54 ma.

Diatribution - This is another widely distributed species, occurring in all the three great oceans.

CYOLOPIMIDAE
Lang, 1946, p. 3.
Sewell, 1949, pp. 20-24.
Lindberg, 1952, pp. 311-25.
Kyishnaswamy, 1957, pp. 132-33.
Genus Gyclepina Claus, 1863
G.0. Sars, 1913-18, pp. 10-11.

Wilaon, 1932, p. 317.
114. ․ aractile Claus, 1863.

Claus, 1863, p. 104, pl. X, f1gs. 9-15. G.O. Sare, 1913-18, pp. 11-12, pl. IV.

Materkal examined - Sight female and two male apeoimens are gathered from the weed washinge of the Gulf of Mannar in March 1961. Size: female 0.48 mm . and male 0.39 mm .

Distribution - Arctic ocean, North Atlantic, Baltic sea, Mediterranean sea, Black sea, Gulf of Oman and the Gulf of Mannar.

CYCLOPIDAE
G.O. Sars, 1913-18, pp. 22-23. Sewell, 1949, pp. 26-30.

Genus Raryte Philippi, 1843
G.0. Sars, 1913-18,pp. 23-24. Sewell, 1929, pp. 30-31.
115. E. Fobuata Giesbrecht, 1900.

Gieabreaht, 1900, p. 58, pl. IV, Pige. 1-14, 16 * 18. G.0. Sars, 1913-18, pp. 24-26, pl. XII. Sewell, 1949, pp. 31-33, 1ig. 2.

Material examined - Fumerous malea and females and a few fifth copepodites are obtained from weed washings of the Gulf of Mannar and Palk Bay during September-October 1960.

Degoxiptive notes - Sewell has redesoribed the female of this species in some detail: The present material corresponds in all detaila with his deacriptions. However, some fresh sketches are given here to facilitate comparison with other species that are discussed in the present worr (P1. XIV, 2,3). Male (P1. XIV, 1) showe the usual points of eexual dimorphism. Antennule is 16-jointed and genioulate. Urosome is 6-segmented, the genital segment oarrying at each of its postero-lateral
cornerg a pair of epines of unequal lengthe. The epinge are borne on a small prominance which represents the sixth pair of lege. Caudal ramas is four times longer than wide and is only a little shorter than the last two abdominal segments combined. Size: female 0.80 mm . and male 0.61 mm .

Dietribution - Maldive Archipelago, Suez Oanal, Gulf of Naplea, Norwegian coast and the Gulf of Mannar.
116. E. breviosuds Sewell; 1949.

Sewell, 1949, pp. 33-35, fig. 3.
Material examined - Numerous female and two male specimens as well as a few fifth copepodite stages of this epecies are caught during September - Movember 1960 from amongst the weeds of the Gulf of Mannar and Palk Bay.

Descriptive notes - Female of this species is desoribed by Sewell (10c. git.). Male is degcribed here for the first time.

Female: Prosome is apparentiy 5-segmented, the fusion between cephalosome and first pedigerous segment being incomplete. The genital segment which is a result of coslescence of two segments is broader in its proximal part, and is a iittle ahorter than the three abdominal segments combined. Caudal rami and last abdominal segment are of equal length. The epine on the outer lateral margin of fifth leg (Pl. XIV, 4) Is almost as long as the outer apical epine; the inner apical spine is a little longer than both the other spines; the apieal seta is slender.

Male: Like other apecies of the genus, wale (PI, XV, 1) differs from female in the malier sise and the sexual dimorphism which is manifested in antennule and urosome. The former is 16 -segmented (ㅋ․ XIV, 5), the segmente having their relative lengthe as follows:

1	2	3	4	5	6	7	8	9	10	11	12
15.9	6.3	6.8	3.2	3.1	2.6	2.6	3.2	4.7	3.7	3.7	5.2
13	14	15	16								
4.2	9.5	10.5	13.8	$=100$							

Segments of the proximal region are provided with several setae. There is an asthetask from the last aegment. Antennule is strongly hinged and it reaches to the posterior margin of first prosomal segment. Urosome (Pl, XV, 2) is 6-segmented. The genital segment is of uniform breadth throughout and is broader than other abdominal segments winich are columnar. the former carries on each of its postero-lateral corners a prominence which bears two unequal setae. Caudal rami are slightly longer than the last abdominal segment.

Sizez female 0.75 mm . and male 0.56 mm .
Digtribution - Maldive Arohipelago and the Gulf of Mannar. This is the first record of this species outside its type loality.
117. Euxyte sp.

Material examined - Numerous female specimens and a few fifth copepodites of this species oocurred in the collections made during September-0otober 1960 from the weed washinge of the Gulf of Mannar and Palk Bay.

Deneriptive notes - In 1ife, a beautiful pinkieh tinge is seen over the whole length of caudal rami, margins of prosomal and urosomal segments, joints of the segments of swiming legs and along the mid-dorsal cephalosome. In formalin preserved specimens the bright pink colour fades out and raxid persists only in caudal rami.

Prosome is apparently 5-segmented, the funion between cephalosome and first pedigerous segment being incomplete. The latter eegment is however, much narrower than the cephalosome and second pedigerous segment. In urosome (P1. XVI, 1) the genital segment is equal to the three abdominal segmente joined together. Caudal ramus is four and a half times longer than wide and is a little shorter than the last two abdominal segmente combined together. There are six setae on each ramus two of which are jointed at base. The rostrum is incurved and ratiner broad. The labrum is a wavy structure with about nine stout teeth in the middle conoavity and several, thin, incurved teeth on either convex sides.

Antennule (P1. XVI, 2) is 21-segmented, the constituting segmente having the following relative lengths:

1	2	3	4	5	6	7	8	9	10	11	12
15.4	8.0	5.0	3.0	2.5	3.2	1.8	3.0	3.6	4.3	4.3	4.3
13	14	15	16	17	18	19	20	21			
3.6	3.0	5.0	3.6	3.6	4.0	5.4	5.4	8.0	100		

Antenna (P1. XVI, 3), the oral appendages and swimming legs are very close to those of the earlier species. Fifth leg is reatangular, about three times as long as wide. A striking
difference from the earlier two speciea in noticed in the lengths of epines on fifth leg. The opine on outer margin of distal segment is just as long as the outer terminal spine; the imer terminal spine, as in other species, is the longest; the aeta on apex is slender and rather sharg. Size: 0.75 mm.

The fifth copepodite stage resembles the adult very closely including the structure of fffth pair of legs, but differs from it in the organization of antennule and urosome. Antennule is 16-segmented and thered seems to be no sexual distinction at this stage. The relative leng the of the constituting segments of antennule are as follows:

1	2	3	4	5	6	7	8	9	10	11	12
11.1	8.4	5.8	6.5	6.2	5.2	3.9	7.1	3.9	3.2	3.5	4.5
13	14	15	16								
10.5	5.8	6.5	7.9 m	100							

 only slightly wider than the other segments and carries on each of its postero-lateral corners a pair of spines. Caudal rami are quite short, hardly twice longer than wide and distinctiy shorter than the i last abdominal segment. Caudal setae are fully developed. Size: 0.62 ma.

Remarkg - Sewell recognized only four species in this genus 耳iz., E. Fobusta Giesbrecht, E. Iongicouda Philippi, E. curticornis 0.0. Sars and E. brevicauda Sewell. Two other species that have been described earlier namely E. propinqua Brady and E. gimilis T. Scott are considered by Gurney as synonymous and by Sowell ("as alight variations of E. Fobuate".

A third form described still earlier by Thompon (1883) from Tew Zealand under the name E. longioauda var. antarctios is, according to Sewell, almost certainly not a variety of that species. He thinks that Thompson's material comes muoh nearer to E. robusta, as the caudal ramus figured by Thompson, is four timea longer than wide which is much shorter than that of E. Iongicauda.

Sewell (1949) did not make any mention of E. minor T. Scott. G.0. Sars (1921) has reported this speoies from the Norwegian coast. "This form was considered by Scott and also by myself as only a variety of E. longioguda. I am however, now of the opinion that it should more properly be regarded as a separate though olosely allied species" (Sars, loo. att., p. 107). According to Sars E. minor is different from E. longicauda in the size, in the more slonder form of the body, in the thin nature of genital segment and in the less divergent ovisacs. Kiefer (1929) includes this form in E. longicauda, but lang (1946b, pp.1,2) distinguishes it as separate species by the relatively longer abdomen and divergent caudal rami. Gooding (1957) follows T. Scott (1905) and considers it as a variety of E. longioauda. In any case both these species constitute a closely related group, separate from other species of the genus. E. brevicauda probably represents the other extreme with short caudal rami, while both E. robuata and the species described in this work are somewhat intermediate in position. Grandori (1925) has described another species, E. longiseta, from the Mediterranean. I could not consult this important paper and therefore no comparison is possible between the species described here and E. longiseta Grandori.

The available evidences indicate that the present epecies represents a new species. Though it is close to E. Fobuste in the proportions of caudal rami and in the structure of cephalosomal and thoracic appendages still the differences between then are substantial and are listed below:
E. robusta Giesbrecht

Prosome is oval both in dorgal and lateral views.

First pedigerous segment is more or less fused with cephalosome.

Pirst prosomal segment is more than twice as long as all other prosomal segments combined, the ratio being 5:2.
The proportions of urosomal segments and caudal ramus are as follows:

$$
14.0,32.0,11.3,8.7,13.0,
$$

$$
21.0=100
$$

In fifth leg the relative lengths of outer marginal, outer apical and inner apical opines are:

$$
38.5,32.7,28.8=100
$$

In life, caudal rami are dirty brown in colour. Formalin

Euryte sp.
Prosome is oval only in dorsal view; in lateral view the posterior half is much narrower than the anterior half. The fusion between the first pedigerous segment and the cephalosome is incomplete and the former is distinct ffom the latter.
Firet prosomal aegment is just one and a half times as long as the rest of prosomal segments combined, the ratio being $3: 2$.

The proportions of urosomal segments and caudal ramus are as follows:
$15.0,29.0,13.5,11.0,12.5$, $19.0=100$

In fifth leg the relative lengths of outer marginal, outer apical and inner apical spines are:
$39.2,35.3,25.5=100$
In life, caudal rami are pinkich in colour and this persists even in formalin preserved specimens.
E. longigaud is separable irom all other apecien by ite ©xceedingly long a audal rami, "equalling in length the lat three segments oombined". E. gurtigornie is distinct not only because of the very short antennule but al so because of the structural deviations noticed in the maxilliped. E. robuste and E. brevicauda are represented in the present collection, and opportunity has been availed of to make a detailed sorutiny of these species as well as the unnamed species treated in thie work. It appears that this last species is quite distinet from all other forma. It resemble E. robasta in the proportions of caudal rami and in the otructure of the cephalosomal appendages and swimming legs. It resembles E. brevlcauda in the general shape of body and in the incomplete fusion of cephalosome and first pedigerous segnent.

I have not seen the descriptions of E. Longicauda var. antarotics, E. propinqua or E. similis. All these three forms are reported from the Antarctic and the neighbouring areas. Both Gurney who synonymised the latter two forms and Sewell who went further and regarded all the three as slight variations of E. robusta, did not have the material at their diaposal for examination. It is probable that the epecies described above is the same as the one reported from the Souther waters by Thompson, Brady and T. Scott.

ARCHINOTODELPHYIDAE

> Lang, 1949, pp. 1-2. Umerkutty, $1960 \mathrm{c}, \mathrm{p} .177$. Genus Nearchinotodel phys Ummerkutty, 1960 Ummerkutty, $1960 \mathrm{c}, \mathrm{pp} .165-78$.
118. I. indicus Ummerkutty, 1960.

Umankutty, 1960c, pp. 165-78, Pige. 1-4.
Material examined - Reforence may please be made to copy of the above publication attached with the thesis.

Distribution - The Gulf of Mannar.

HOTODELPHYIDAS
I11g, 1958, pp. 470-79.
Genus Doropyeus Thorell, 1859
Illg, 1958, pp. 518-24.
119. D. pulex Thorell, 1859.

Thorell, 1859, pp. 46-49, pl. VI, fig. 8. G.O. Sars, 1921, pp. 42-43, pl. XX. IIIg, 1958, pp. 525-30.

Material exanined - Five female (two of them carrying ompty pauches and othersegg-filled ones) and one male speoimens are obtained from the branchial ohambera of Molaule ap. from Palk Bay in July 1960. Size: female 1.5 mm , and male 1.2 mm .

Diatribution - This is a very widely distributed speoies, occurring in all the oceans in association with diverse species of ascidian hosts. "The recorded distribution of this species is the most wide spread no far maphimber compiled for Hotodelphyid. The list of hosts is also the most diverse and extensive known" (IIIg, log. ait., p. 530).

Section SIPHOHOSTOMA
ASTRROCHERTDAE
G.0. Bara, 1913-18, p. 83.

Nicholls, 1944, p. 16.
Sewell, 1949, p. 47.
Gemus Anterogheres Boeck, 1859
G.0. Sare, 1913-18, p. 84.
120. A. Haior Thompeon \& Scott, 1903.

Thompson a Scott, 1903, p. 287, p1. XVIII, figs. 21-28.
Materiel examined - Several specimens of both sexes are obtained from the Gulf of Mannar sponges during SeptemberOetober 1960.

Descriptive notes - Thompson \& Seott (10c. Ait.) has given excellent diagrams of cephalosomal appendages and fourth and fifth lege of the adult female as well as urosome and antemnule of the adult male. The siphon is very broad and short, pyriform in shape and only extending to the ineertions of maxillipeds. The ornamentation of awimming legs is presented below:

The epine on proximal segment of first exopod is rather short, hardly reaching the middle of the next eegment. The spine on this latter segment gives the appearence of bifurcation because of the presence of a small outgrowth at its base. The basal protopod segment of first leg carries a apine. Sise: female 1.15 mm . and male 1.05 mm .

Distribution - The Gulf of Mannar. This is the first record of this apecies after it was oreated by Thompson \& Soott.
121. A. 至nor Thompson \& Scott.

Thompson \& Scott, 1903, p. 288, p1. XVIII, fige. 29-31,
Material examined - Several apecimens of both sexes are gathered from the Gulf of Mannar aponges, along with the preceding speoies. Sise: female 0.83 mm . and male 0.71 mm .

Diatribution - The Gulf of Mannar. This is the ifirst record of this speoies after its oreation by Thompson \& Soott.

Remarke - This is tery olose to the preceding species In the struatural details including the ornamentation of awiming legs. "The distinguishing characters of this species are the differences in the proportional lengthe of the abdominal jointe and furea, the latter being about half the length of the last abdominal joint". (Thompson \& Scott, 1903)
122. A. mannarensis Thompson \& Seott, 1903.

Thompson \& Soott, 1903, p. 287, pl. XIX, fige. 11-20. Sewell, 1949, pp. 50-51.

Material examined - Three fomale specimens of this copepod are obtained from the washings of sponges from the Gulf of Mannar in October 1960.

> Desoxiptive notes - The specimens (P1. XVII, 1-2)
agree entirely with the descriptions given by earlier workers. The ornamentation of swimming lega is presented belows

Diatribution- Maldive Arohipelago and the Galf of Mannar.

```
123. A. dentatug Giesbrecht, 1897.
```

G1erbreaht, 1897, p. 9. Thompson \& 8eott, 1903, p. 287.

Material examined - Several specimens of both sexes are captured from the weed and aponge washings of the Gale of Hannar and Palk Bay during July - September 1960.

Desariptive notes - This species is fully illustrated (Pl. XVIII, 1-9) and the ornamentation of awimaing legs is given below:

Protopod
Endopod
Bropod

	Si^{1}		$8 i^{2}$		$81^{1} \mathrm{~s}$		81^{2}			3	Se	$\mathrm{Si}^{1}{ }_{\mathrm{s}}$		$8 i^{2} s$			3	Se
P_{1}	1	0	1	1	1	0	2	0	3	2	1	,	I	1	I	2	2	III
2	1	0	0	1	1	0	2	0	3	2	1	1	1	1	I	4	1	III
P_{3}	1	0	0	1	1	0	2	0	3	2	1	1	1	1	I	4	1	III
P_{4}	1	0	0	1	1	0	2	0	2	2	1	1	1	1	I	4	I	III

In sise this species is very small, female varying between $0.53-0.63 \mathrm{~mm}$. and male botween $0.45-0.50 \mathrm{~mm}$.
124. A. oxdentalis Sewell, 1949. Sewell, 1949, pp. 51-53, fig. 9 a-J.

Material examined - Several males and fomales of thi copepod are obtained frow wabhing of dredged weede of the Gulf of Mannar in Deoember 1960.

Descriptive notes - Sewell (10c. cit.) gave a detailed account of female. Male is deseribed here for the first time.

Male (Pl. XVII, 5) retains the general appearence of female, but is slightly smaller in size. Prosome is only a iittle mote than twice the size of urosome. The latter is 5-segmented (P1. XVII, 6), the genital segment being tuch longer and wider than all other segments. It carries a pair of epines on its postero-lateral corners. Caudal raid, as they are in female, are wider than long. Antennule (P1. XVI, 6) is 17-segnented and geniculate. The setae borne on different segments are extremely short and bristle-like except one seta on the apical segment. The aesthetask on penultimate segment is fairly long, being more than one third of the appendage. The relative lengths of different antennular segments are presented belows

1	2	3	4	5	6	7	8	9	10	11	12
11.3	2.8	3.5	2.8	2.8	4.0	4.0	3.6	3.6	1.6	5.7	5.1
13	14	15	16	17							

$6.3 \quad 6.8 \quad 13.5 \quad 11.3 \quad 11.3=100$
All other appendages are similar to those of female except the fifth leg. The latter hardly reaches one fourth of the genital segment while in female it is half the length of that sogment. Again, it is very slender in male, whereas in female fifth leg is stout and cylindrical. The outer caudal seta of fifth k leg is inaignificant in male. Size: fomale 0.68 min. and male 0.61 ma.
Digtribution - Maldive Archipelago and the Gulf of

Mannar. This is the first record of this species outside its type locality.
125. A. indiens Sowell; 1949.

Sowell, 1949, pp. 53-56, fig. 10.
Material oxamined - Seven female apeoimens of this species are obtained from the weed washings of the Gulf of Mamar in December 1960.

Desoriptive notes - Some points of difference are noticed between the Maldive example and the present epecimens. The sogments nine and ten of antennule are incompletely divided in the Maldive specimens, while they are completely separate in the present example (PI. XV, 7). In fifth leg, two Sewell showe only terminal setae. In the present case, three setae are distinctiy seen(PI. XIX, 1-2). A pair of rather strong setae is present on the ventral side of genital segment, guarding the genital apertures. In all other characters the present example agrees fully with Sewell's description and figures. Size: female 0.61 mm.

Distribution - Maldive Archipelago and the Gulf of Manar. This specien also is reported from outside of its type locality for the first time.
126. A. Latum (Brady), 1880.

Brady, 1880, p. 56, pl. LXXXIX, fig. 12; pl. XC, figs.11-14. G.0. Sars, 1913-18, pp. 90-91, pl. LVI.

Material expminedSeveral apeoimens of this species are captured from the sponge and weed washings of Palk Bay and the Gulf of Mannar.

Descriptive notes - This speciea is very easily
recognized by the angular nature of the poatero-lateral corners
of prosomal megments (PL. XIX, 3). First prosomal segment is diatinotly wider than long. The length and width of genital segment is more or less the same (P1. XIX, 4). Lateral margins of this segment are broken by indentation, and are lined with apinules and bristles. Last abdominal segment is a little longer than caudal rami. The distal segment of fifth leg carry three apical setae, the middie one of which is very amall. In the figure given by 9.0 . Sars (109. oit.) this seta is not shown. Sise: female 0.68 mm .

Distribution - British Isles, Gulf of Haplas, Morwegian coast and the Gulf of Mannar. This is the first time that this Northern species is recorded from Indian waters.
127. Aaterocheras sp.(i)

Materiel examined - A singlefemale specimen of this speciea is obtained from washinge of the mud-covered coral stones in Palk Bay in August 1960.

Deacriptive noteg - Prosome and urosome (P1. XII, 1) are clearly marked, the former being very conspicuous, much wider and longer than the latter. First prosomal segment is the largest and the widest of body segments. Second and third segmente diminish both in length and width to posterior end side. All these three segmenta/in angular corners on posterior side. Fourth prosomal segment is very emall, just half as Iong and half wide as the preceding segment. Urosome consists of four segmente, the fifth leg-bearing segment, the genital segment and two abdominal segments. They deorease in breadth gradually posteriorwards. In length, the genital segment is
the longest, while the other three segments are subequal and mach shorter than the genital egment. The latter is wider in ite proximal hale. At the function of proximal and distal halves there are tufts of hairs on elther side. Caudal ramus is much longer than last abdominal segment and if alightly broader on the hinder side. Each ramas bearw five setae, the medial seta being moh longer than the entire urosome. As unual, two of the setac are jointed at base. The relative leng the of urosomal segments and caudal ramus are:
$17.8,32.2,14.5,13.3,22.2=100$
The relative lengthe of prosome and urosome are $1: 1.5$. Prosome is slightly longer than its own width.

Antennule (PI. XII, 2) 1s 20-segmented and is divided into proximal wide and diatal narrow regiona, composed of nine and eleven segments reapeotively. Mhere is an aegthetask on eighteenth segment, while setae are borne on all segments. The antennular segments have the following relative lengthe:

1	2	3	4	5	6	7	8	9	10	11	12
11.3	3.6	3.3	2.4	2.4	2.3	1.8	2.3	2.0	1.6	2.1	5.2
13	14	15	16	17	18	19	20				
6.0	8.4	7.5	9.0	9.2	8.4	3.4	$7.8=$	100			

Anterns is 4-segmented, the second segment bearing rudimentary endopod which is like a spherical bud with a single apical seta. Third aegment is the longest, about equal in length to the Iirst and second segments combincd. Last segment is
the emallett and beare two upieal gpince, one of them being very long, about halt the length of antonna. Siphon (P1. XI, 3) is very tout and ohort. Ite wider proximal region narrow dow to the posterior tip whioh is trilobed. Mandible (P1. XII, 4 consists of the masticatory blade and a biartioulate palp. The latter is only one fifth as long as the blade and bears two apical setec of unequal lengths. The combined lengthe of the palp and its longer seta is equal to that of the blade. Maxillule (P1. XII, 5) is bilobed, both lobea borne on a partially divided protopod. The two lobes are very much unequal in sise and each beare apical setae of verying lengthe. Maxilla (P1. XII, 6) which is composed of a very small proximal and a large diatal eegment, carries a long tapering claw on apex. Maxilliped (P1. XII, 7) is 4-aegmented, the distal two segmente being much saller and hel at on angle to the axis of proximal two segments. The fourth aegment bears a long tapering claw and amall seta on ite apex. Mrst and third segments of maxilliped each bears a small seta in the diatal part. The second segment is devoid of any socessory etructure.

Your pairs of awimming lege are biramous (P1. XII, 8-9), each rama being trimerous. Plret lege are the mallest while the other lege are nore or lass of equal bize. The ornamentation of mwiming lege ia prosented below:

Romarks - Asterogheres paterocheres Sare reachen nearer

 to the present apeoies than any other known member of the genus. However, detailed description is given above because the present species appear to differ from all known forms In a fev inportant detaile: (i) Oaudal ramas is much longer than last abdominal segment. Sars (log. ait.) in his definition of the genus mentioned that the caudal rami are comparatively short and a study of the forms that have been described after his "Acoount" reveals that the last urosomal aegments always exceeds the oaudal rami in longth. (ii) The length-width ratio of the ranas iteelf is atill more atriking. While in all recorded species the oaudal rami are hardly more than twice as long as broad, in the present case the length-width ratio is $3.5: 1$. (iii) The proportionate sizes of prosome and urosome are 62.5:37.5. This is different from what is deacribed for all eariier speciesWhere prowom is found to be gencrelly twioe as long at urosome. (IV) the proportionate leng the of the antenmular segment and the ornamentation of swimaing legs are as given in the text.

It is likely that the present speoies is an undescribed form.
128. Asterocheres sp.(1i)

Material examined - A single female specimen of this copepod is obtained from washings of asteroids of the Gulf of Mamar in December 1960.

Descriptive notes - Prosome is squarish, 4-segmented and one and a half times longer than urosome (P1. XIX, 5). First segment constitutes three fourth of the entire prosome and is Clearly broader than long. Next three segments abruptly diminish both in length and width. Urosome (P1. $X X, 2)$ is 4-segmented and much narrower than prosome. The first segment carrying fifth pair of legs is very short. The genital segment is long and is divided into three parts of about equal lengths; proximal part is the widest and carries the genital apertures on its ventral side; the middle part is less broad, but is clearly mariced off from other dividions by harp, angular corners, and carries a few hairs on its distal margins; the distal division is the narrowest and tapers towards the posterior side. Two abdominal segments are of about equal diamensions and are columer. Oaudal ramd are longer than the last abdominal
segrant and three times as long as wide. Both inner and outer margins of the ramus are atraight; there are five caudal setae, two of which are longer then the othere and are jointed at base.

Antennule (P1. XIX, 6) is 20-segmented and stoutiy built. There is an aesthetask on eighteenth segment. The constituting antennular segments have the following relative lengths:

1	2	3	4	5	6	7	8	9	10	11	12

$13.04 .0 \quad 4.0 \quad 3.0 \quad 3.5 \quad 3.5 \quad 3.0 \quad 4.0 \quad 5.0 \quad 3.0 \quad 4.0 \quad 5.0$
$\begin{array}{llllllll}13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
$\begin{array}{llllllll}5.0 & 5.0 & 6.5 & 6.0 & 6.5 & 5.5 & 4.0 & 6.5\end{array} \quad 100$
Other cephaloaomal appendages (P1. $\mathrm{XX}, 1$) are typically asterocherid. Antenna is 5-segmented with a vestigeal exopod on second segment. Siphon is very short and stout, hardly reaching the base of maxilla. Mandible has a well developed 2-segmonted palp and a long, narrow masticatory blade. In maxillule the differenco of size between the two lobes is negligibly small. Maxilla has its terminal al claw longer than the basal segment. Maxilliped is 5-segmented with a atrong claw.

Your pairs of swimming legs (II. XIX, 7-9) are biramoun, the raril being 3-begmented. The ornamentation of swimming logs is presented below:

The constituting segments of lege are atout and the lateral spines of exopode are beautifuliy spindle-shaped with dentate margins. Fifth leg is normal. The proximal segment is represented by a seta on the outer lateral margin. The distal segmont is quite developed with a narrow proximal area and broad distal area, the latter aarrying three unoqual terminal setac. Size female 0.61 mm .

Remarke - The species denlt with above appears to be new to soience. However, as only a single female apecimen is available I have chosen to leave it unnamed. The following are the oharacteristic features of the species: (i) First prosomal segmont is one and one quarter times broader than long. Anterior and is amothly rounded while posterior end is rather etraight. Hext three promomal segments together is only about one fourth of first segment, the segment gracefully diminishing both in length and width to posterior side. (ii) In urosome, the genital segment is very ahort, forming a narrow strip between the last prosomal segment and fifth leg-bearing segmentin. Genital segment is characteristioally divided into three equal parte.

Proximal part is the widest and enoloses the genital apertures in it. Midale part is a Iittle less wide, but distinctly marked off by angular ant corners. The posterior half of lateral margins of this nidde part carries four stout spinules on each side. Distal part is the narrowest and does not carry any appendage. Next two urosomal segmenta are more or lesa of equal sise and equarish. Each caudal rame is two and a haif times longer than wide. (iii) Antennule is 20-begmented, their relative lengthe and arrangement of aetae and aesthetaeks being given in the text. (iv) The setal formala of awimning legs is as show earlier. One notable feature about lege is the stout rounded nature of exopodal spines. Even the epine on the firet segment of firat exopod whioh, in other species of the genus exceeds the length of second segment of the sams leg, is apindle-shaped in the present case with amooth terminal end. Pifth leg is rectangular with little difference in width between proximal and distal halves. There are three long setac on the terminal aegment. (v) There is a high degree of calcification not only in the eegments of antennule but also in other appendages as well as aleng the margins of various segments of the copeped body. (vi) It is obtained from waehinge of the atarfish, Pentgoeros hedemannt (Lutken).

Genue Soottocheren Giesbrecht, 1897
G.0. Sars, 1913-18, pp. 106-107.
129. S. Latue Nicholle, 1944.

Hieholls, 1944, pp. 18-20, fig. 7.

Yaterisl examined - Few Iemale epecimens of this copepod are obtained from inghore watere of the Gulf of Mannar during September-Movenber 1960. Sizes female 0.98 m .

Diatribution - South Australia and the Gulf of Manar. This is the first time that this species is recorded outside its type looality.

Remarke - I have not seen the desoriptions of either S. styliferg or S. longifuras. However, the present speciea has been assigned to S. Latus because it corresponds in all respects with Fioholle's species. It may be mentioned here that both S. longifurge Giesbreoht and S. Elongetog (T. a A. Scott) have been recorded Irou this area by Thompson a Soott (1903).

> Cenue Mermatomyon 0laus, 1889
> 6.0. Sari, 1903-18; p. 95 .
130. D. nigriper (Brady), 1880.

Brady, 1880, p. 54, pl. IXXXIX, 11g. 1-11. G.O. Sare, 1913-18, pp. 95-97, pL. LIX \& LX.

Matexial examined - Two female specimens of this oopepod occurred among the aponge washings of the Gulf of Mannar in October 1960.

Dencriptive notes - In almost all respects the present example corresponda to the excellent demaription and figures given by Sars (100. cit.) and is fully 11lustrated here (PI. XXI, 1-3). The only point of difference noticed is the slight variation in the relative length of antemular sogments (P1. $X X, 5$) and it is
presented below for comparison:

1	2	3	4	5	6	7	8	9	10	11	12
11.2	4.7	7.0	3.5	4.7	3.5	4.7	4.1	3.0	3.5	5.2	4.7

13	14	15	16	17	18	19
(Morwegian example, after Saxa)						

$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
$\begin{array}{lllllllllll}10.7 & 3.6 & 6.5 & 2.6 & 2.2 & 2.2 & 5.6 & 3.3 & 3.0 & 3.6 & 5.1\end{array} 5.1$
$\begin{array}{lllllll}13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$ (Present example)
$4.46 .0 \quad 6.0 \quad 6.3 \quad 8.0 \quad 5.1 \quad 10.7 \times 100$
Sise: female 0.92 mm .

Distribution - British Isles, Gulf of Naples,
Spitebergen and Morwegian coasts and the Gulf of Mannar. This is the first record of this species from Indian watere.

Genus Asteroponting Thompson \& Scott, 1903 Thompan \& Soott, 1903, p. 288.
131. A. typicus Thompson \& Scott, 1903.

Thompson \& Scott, 1903, pp. 288-89, pl. XIX, 1igs. 1-10.
Material examined - Threo female specimens of this copepod occurred in washings of dredged weeds from the Gulf of Mannar in November 1960. Size: 0.7 mm .

Diatribution - The Gulf of Mannar. This is the firet time that this epecies is reported after its discovery.

Romarke - The speoimens examined by Thompson : Seott were much larger meamuring 0.96 min. As both these are reported within the same geographical area, it is obvious that great range of variation in size of body ocours in this speoies. In general appearance it has great resemblance
to Asteroohores mannerensis. However, it is easily distinguishable from the latter by the aifferences in the relative lengths of urosomal egments as well as by the generio dietinctions. The IIgures given by Thompen \& Scott are excellent and the present material agrees with then in all details (P1. XX, 3-4).
132. A. Ifttorglis Ummerkutty, 1961

Unmerkutty, 1961, pp.4-6
Material examined - Several Pemale apeciment are oaptured in September 1960 from washings of weeds frow the Gulf of Mannar. Sizes female 1.2 mm .

Diatribution - The Gulf of Mannar.
133. A. sewelli Ummerkutty, 1961.

Ummerikutty, 1961, pp.7-10
Material examined - Besides the type apecimens no further exampleh of this copepod is obtained. Size: female 1.1 mm .

```
Distribution - The Gulf of Mannar.
    Genua Indomyon n. gen.
Diegnosie: Body cyolopoid. Cephalosome fused with
``` first pedigerous segment to form the cophalothorax. Urosome 4-Begmented in female and 5-begmented in male; caudal rami swollen in proximal region and caudal setae non-jointed. Antennule 20-segmented in female, 17-segmented and genioulate in male. Mandibular palp 1-jointed. Siphon very short and broad. Other mouthparta typically astarocherid. Setae and spines of swimaing legs greatly reduced.

Second endopod segment of first leg with one eta; the corresponding egments of other lege without any eeta. Fourth endopod Iragile and setation highly reduced. Fifth leg with a single agment, bearing three unequal apical setae; the proximal segment represented by a single lateral seta.

Type apeaies Indomyson gegimin. np. Type locality: Off Mandapan, Gulf of Mannar. 134. Indomyzon gasimi n. gen. et. n. sp.

Material examined - Ten femal es (one of them earrying egg sacs), olght males and five fifth copepodites of this species are obtained from washings of the staffish Pentaceron hedemanni (Iutiken) from the Gulf of Mannar in December 1960. Holotype, allotype and paratypes are deposited in the Reference Collection Museun of the Central Marine Fisheries Rosearch Ingtitute, Mandapare Canp.

Descriptive notes - The present species is obtained during a collection trip to the Hare Island along with Dr. S.Z. Qasim of the Department of Zoology, Aligarh Musilm University. Dr Qasim's constant encouragement and continued interest in the present investigations have been quite inspiring and I have great pleasure in naming the present species in his honour.

Fennle: The animal (P1, XXII, 1) in very easily recognized by the rather reotangular shape of prosome. Latter is
oqual to urosome (P1. XXI, 4) in length. Seoond, third and fourth segments of prosome diminish both in length and width to posterior side. Pirst urosomal segment is moderately developed and oarrien fifth pair of lega. The genital segment is quite large, equal to the combined wise of the second and third segments. It is broader in its anterior half and bears a seta each, on ventral side near to the genital aperture. Anterior and posterior haives of the genital segment smoothly merge with each other. There are no setae at their junction. Х Thirl urosomal segment is double the size of the fourth, but both segments are of about the same width. Caudal rami are pecullarly shaped; while the inner margin of the ramas is etraight, the proximal half of outer margin is bulged. At the posterior margin five setae are borne, none of them being fointed at base. Caudal ramus is longer than the last abdominal segment and is almost twice as long as wide.

Antennule (P1. XXII, 3) is strongly built with a high degree of calcification along the margins of sogmonts. There is a fairly long aesthetask on eighteenth segment. The relative lengths of the constituting segments are as follows:
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
12.7 & 5.0 & 3.6 & 3.6 & 4.5 & 3.2 & 4.5 & 5.0 & 2.7 & 2.7 & 3.2 & 5.0 \\
13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & & & \\
6.4 & 6.4 & 5.5 & 4.5 & 5.5 & 6.0 & 4.5 & 5.5 & \(=100\) & & &
\end{tabular}

Antenna is 5-segmented, the second aegment oarrying a mudmentary exopod with two terminal setae. The penultimate segment bears two marginal setae while the last segment has two terminal setae. Siphon is very short, hardly reaching the point of origin of maxillipeds. It is broad in its proximal half gradually narrowing down to distal end. Mandibular palp is uniartioulate with terminal setae of unequal lengths. The masticatory blade tapers to a fine point, and is four times longer than the palp. Kaxillule is mall and bilobular. Both the lobes carry apical setae, and the size difference between the two lobes is negligibly small. Maxilla is apparently 1-segmented with ther terminal claw almost as long as the segment. The latter is very short and strong. Maxilliped is 5-segmented; second segment is the longest and is only a little less than the combined length of other segments; first and Pourth segments have esch a solitary eeta in the distal angle, while the last segment has an apical seta and a claw. The latter is very fragile and just as long as the terminal aegment.

Four pairs of swimaing legs (P1. XXI, 5) P1. XXII, 4-6) are biramous, each ramus being composed of three segments. However, setae and spines on different segments are highly reduced. No: notable features are the complete abse nee of seta on second endopod segment of second, third and fourth legs, the presence of only one inner seta on first
and second segments of first endopods and firat megment of second and third endopods and the highly reduced nature of fourth endopods. The ornamentation of awiming lega is given belows
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Protopod \\
12
\end{tabular}} & \multicolumn{3}{|c|}{Badopod} & \multicolumn{4}{|c|}{\({ }_{2}^{\text {Bropod }}\)} \\
\hline S1 & 80 sise & Si Se & si se & Sist se & Si se & Si se & Si & se \\
\hline \(\mathrm{P}_{1} 1\) & 011 & 10 & 10 & 321 & 1 I & 1 I & 3 & III \\
\hline \(P_{2} 1\) & 011 & 10 & 0 & 32 & 0 & 1 I & 4 & III \\
\hline \(\mathrm{P}_{3} 1\) & 001 & 10 & 00 & 22 & 0 & 1 I & 4 & III \\
\hline \(\mathrm{P}_{4} 0\) & 00 & 00 & 00 & 0 I & 0 I & 1 I & 3 & II \\
\hline \multicolumn{9}{|r|}{The proximal sogment of fifth leg (P1, XXII, 2) is fused} \\
\hline \multicolumn{9}{|c|}{with the body of the animal and is indicated by the} \\
\hline \multicolumn{9}{|r|}{presence of a seta. The distal segment is quite developed,} \\
\hline \multicolumn{9}{|c|}{rectangular in shape with three apical setae of unequal} \\
\hline \multicolumn{9}{|c|}{longths. It reaches beyond one third of the genital} \\
\hline \multicolumn{9}{|c|}{segrent. Stzer temale 0.62 m} \\
\hline
\end{tabular}

Hale: In appearance male (P1. XXI, 7) is very similar to female. However, uromome (P1, XXI, 6) is olearly 5-segmented, and the genital segment is very moh bromened earrying at its postero-lateral angles the aixth pair of lege; each sixth leg consist of two unequal etae borne on a prominence. In length it is equivalent to the next two abdominal segments joined together. Oaudal rami are very similar to those of female. The proportionate lengthe of prosome and urosome are also identical to those of that sex. Antemnule (PI. XXII, 8) is 17 -jointed and genieulate. The sixteenth segment bears an mesthetak
which in cqual to the length of the last three antermulax segments. The tenth segment, as it is in female, is with profuse number of etae. The relative lengthe of antennular segmente are given belew:
\begin{tabular}{lccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
7.0 & 4.5 & 4.5 & 3.0 & 4.0 & 3.5 & 4.5 & 5.0 & 4.5 & 2.0 & 4.5 & 10.0 \\
13 & 14 & 15 & 16 & 17 & & & & & & & \\
5.0 & 6.5 & 12.0 & 11.0 & \(8.5=100\) & & & & & &
\end{tabular}

Other cephalosomal mppendages and awiming lege are exactly similar to those of female. Pifth legs are, however, moh maller and narrowar. Sizet 0.57 ma,

Remarke - Sewell (1949) has discussed the arrangement of eetae and spines of the swimming lege and has given a Beries of ormamentation formulae for the different genera included in the faally Asterocheridae. He observed thet throughout the family there is a tendenoy towards the reduction of total number of setae and apines. In most of the genera the reduotion of spines and setas has taken place In exopod and endopod segments of the fourth leg, while the third leg also has been affected in some casee like

Rhmeoryson, Dormatorymon and Oallogheres. There has been little reduction in the number of setac and spines on firat and second paire of legs except in Alaterepontius where the situation is as follow:

The specimens under present study are unique in that the
the reduction of setae and spines has proceeded to an extreme case, effecting both exopods and ondopode of all the pairs of lege to a greater degree than is found in other genera. Purther, fourth endopod is much smaller and fragile as compared with the cxopod of the same leg as well as with the rami of other legs. The present material cannot be acommodated into any of the existing genera, and is, therefore, considered here to represent a new genus.

Attention may be drawn here to some very interesting genern which were discovered sixty years ago by Thompan \& Soott from Ceyion side of the Gulf of Mannar. Besides Asteroponting in which we have already seen a greater reduction in the number of setac and spines of swimaing lege, they also described four other siphonotomatous genera vis., Stephopontius, Boropontius, Gletopontius and Lepoopsylius. The systematic position of the first genus is disoussed later (vide infra); the last genus has recently been placed under Entomolopidae by Josef Biselt (1959). Of the remaining two genera, Doropontius has been correctly placed by Wilson (1932) under Asterocheridee. Cletonontiuk has been included under Dyspontiidae by Ficholla who has obviously followed ilmon (op oit.) who assigned a similar position to this genus. Both these authors appaar to have been misled by the nature of fourth swiming leg which completely lacks the endopod,thuis displaying mperficial resemblance to some dyepontild genera. The real syetematic position of this genue, however, has clearly been indicated
by Its authore who observed: "The oharactere of this genue do not agree in all respects with any of the known anblamilie: of the Asterocheridae, and a new subfamily, may therefore, be required for ite reeegtion." (Thompson \& Scott, 1903,p. 292) Thompeon Seott were apparentiy refarring to the family as conceived by Giesbrecht with subfamilies Asterooherinae, Dyapontilnae and Cancerillinae contained therein. These abfamilies were later upgraded, and in mome cases aplit up, into more then one family by G.0. Sare (1913-18). A mtudy of various appendages of Oletoponting, however, shows that this genus cannot, with certainity, be accommodated into any of the families proposed and definad by Sars, nor to those that have since then been added. In the atructure of antennule, antenna, mandible, maxiliule, maxilla, maxilliped and fifrt awimang legs, this copepod is typioally asterocherid.

Second swimming leg and siphon are not desoribed by Thompeon \& Scott. The structure of third swinming legs comes nearer to that of Indomyson with the following formulat
\(\begin{array}{lllllllllllllllllll}P_{3} & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 3 & 1 & 1 & 1 & I & 1 & I & 4 & 1 & I I\end{array}\) In Iourth leg, as noted, the ondopod is absent. The ornamentation of that leg is as follows:

The fifth legs are clearly 2-Begmented, and the body in flat and ovoid with a very short urosome.

Clotopontius is discussed in detail because it is felt that the diacovery of the new genus Indomygon throws mose light
on the oyetematic position of the former genus. Both are asterocheride with a greater tendency to reduction of setae and spines of swiming lege. In Indonyzon the fourth leg is fragile with first two segment devoid of setae and mines and with only one oeta and one apine on the terminal segment. In Cletopontiua the endopod is entirely absent. Firet and second aegments of fourth exopods are similar in both cases. Terminal segment of fourth exopod has two setae and two spines in Gletopontius, while there are three setae and four spines on that segment in Indomyzon. Pinally in both genera the second segment of third endopod carries only one seta, a character never met with in any other asterocherids.
sub.
Following Thompson \& Seott's suggestion new family is, therefore, proposed here to accommodate both Cletopontius and Indoryzon.

Fanily Asterocheridae Giesbrecht g. str.
Gubfamily Asterocherinae nov.
All four pairs of legs are biramous, rami being 3-segmented. Second endopod segment is provided with two inner eetee in all the four pair of legs.

Subfamily Oletopontilnae nov. First three pairs of legs are biramous, rami being 3-segmente In fourth leg ondopod is present or absent; when present setae and spines are reduced. Second endopod segment is with one or two setac in first and second legs and with one or no seta in third and lourth legs.

ACONTIOPRORTDAR
0.0. Bars, 1913-18, p. 109.

Genus Acontiophorys Brady, 1880
G.0. Sars, 1913-18, p. 110.

Nichoile, 1944, p. 20.
135. A. scutatug (Brady \& Robertson). 1873.

Bredy, 1880, p. 69.
G.O. Sara, 1913-18; p. 110.

Material examined - Five female and two male specimens of this peaies are obtined from night shore collections from among weeds in Palk Bay during Auguet 1960.

Deseriptive noteg - Some notes are added here to the excellent description and figures given by Sars. Antennule (P1. XXIII, 5) in 11-segfmented, the fourth segment bearing a pretty long aesthetask. However, the relative leng ths of constituting segments in the present material displays slight variations from those given by Sars:
\(\begin{array}{llllllllllll}\text { Present } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\) \(\begin{array}{llllllllllll}\text { apecimen } & 20.0 & 17.3 & 3.8 & 3.8 & 3.9 & 11.2 & 6.6 & 5.2 & 5.8 & 5.2 & 17.2\end{array}=100\) Norwegian \(\begin{array}{lllllllllllllll}\text { specimen } & 18.2 & 19.2 & 4.9 & 3.7 & 6.2 & 12.0 & 4.9 & 6.2 & 7.3 & 8.5 & 8.3 & =100\end{array}\) Antenna (P1. XXIII, 6), mandible (P1. XXII, 7), maxiliule (P1. XXIII, 8), maxilla (P1. XXIII, 9) and maxilliped (P1, XX, 6) are sketohed. In antenna, the exopod extends to ai a little beyond middle of the end segment of endopod. Siphon reaches almost to the tip of caudal rami. Swimming lege have the following ornamentation:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Protopod} & \multicolumn{5}{|c|}{Indopod} & \multicolumn{5}{|c|}{Bropod} \\
\hline \[
81^{1} 86
\] & \[
51^{2} 50
\] & \[
8 i^{1} \mathrm{Se}
\] & \[
81^{2} \mathrm{Se}
\] & Si & \[
3
\] & 88 & \[
31^{1} \text { se }
\] & \[
s^{2} 8 e
\] & S1 & \({ }_{3}^{3}\) & Se \\
\hline \(\mathrm{P}_{1} 10\) & 11 & 10 & 20 & 3 & 2 & 1 & 1 I & 1 I & 3 & 2 & III \\
\hline \(P_{2} 10\) & 01 & 10 & 20 & 3 & \(\underline{1+1}\) & 1 & 1 I & 11 & 4 & I & III \\
\hline \(\mathbf{P}_{3} 10\) & 01 & 10 & 20 & 3 & I & 1 & 11 & 1 I & 4 & \(I\) & III \\
\hline \(\mathbf{P}_{4} 10\) & 01 & 10 & 20 & 2 & I & 1 & 1 I & 1 I & 3 & I & III \\
\hline
\end{tabular}

Pifth leg is represented by a well devoloped subreetengular segment, bearing five setas, two on the inner, two on the on outer and one the apioal margins. Basal segment which is fused with \(N\) corresponding body aegment is repreaented by a single seta. Siset female 0.8 mm .

Male shows aexual Aimorphiam. Antennule (P1. XXIII, 12) Is genioulate and 10 -segmented. Pifth legs are constructed on the ame pattern as in female, but looke more robust. Urosome (RI. XXIII, 11) is 5-segmented, the second segment oarrying a pair of long setae on each of its postero-lateral angle*, The uromomal segmentsgredually diminish in width to posterior side. This situation agrees well with the generic diagnosis given by G.O. Bare who tated: "Iail composed in female of three, in male of four segments, none of then produced at the posterior corners." However, the male described by Michells (1944) for A. gengandicus has its first urosomal segment swollen lateraliy in the fabhion of many asterocherids.

Distrimution - British Isles, Coast of Irance,
Mediterranean, Norwegian coast and the Gulf of Mannar. This 1* the first time that this epeoies is recorded from Indian waters
gamarks - It is with some hesitation that the present example is referred to A. soutatue (Brady 4 Robertson). Three points of difference are notioed in the present example from the detailed account given by Sarsí \(A\). Equtatuy: (i) The last two segments of antennule have different relative lengths. (ii) madopod of antenna exceede the middle of distal segment of exopod in the present example, whereas in the Horwegian specimens it hardiy reaches middle of distal exopod segmentm. (iii) Present example is amaller in size.

Pive species are described in this genus. A. arnatus
 separable because of the sixteon-segmented nature of antennule. A. zealendicus Nioholls is characterised by (a) a siphon whioh ie one and a quarter times longer than the body; (b) caudal rami which are only twice longer than wide; and (c) exopod of antema which reaches beyond the middle of terminal segment of ondopod. In the last character the present material agrees with A. gealandiyous, but differs conaiderably in the first two characters. A. antennatus Hansen differe from the present material in some waye: (i) siphon ie much shorter; (ii) distal segment of antennal endopod is twice as long as proximal segment; and (iii) caudal ramus is four timen longer than wide.

It is felt in the present circumstances that it is best to refer thie example to \(A\). goutatus.
A. antenmatug deserves some comments. In the first instance these is ground to doubt whether the two specimen was
one of which double the sise of the other, obtained by Hansen, belonged to aingle species. Bealider the aize, the two specimens also differed in the length of aliphon and in the comparative dimensions of caudal rami. These characters are of specific importance and Hansen himself has stated that the length of siphon ia one of the two oriteria on which A. antennatug could be distinguinhed from A. soutatua. Micholls (10g. eit.) has made use of the ptoportionate dimensions of caudal rami to distinguish his new species, zealandious from Brady's gatatuk. Hansen's statement that: " The strong difference in length and slenderness of the caudal rawi between the two specimens is ourioun, but mey be due to age" is vague and doee not help to solve the problem. However, the fact that Hansen had at his disposal only two epecimens behoves ue to be cautious on passing judgements on the specificity or otherwise of these examples.

\section*{EnTOMOLBPIDAE}

Brady, 1899, pp. 48-54.
Biselt, 1959, pp. 656-59.
Genus Paralepeoperilus Ummerkutty, 1960
Ommerkatty, 1960, pp. 105-06.
136. ․ ㅍamarenaia Ummerkutty, 1960.

Unmerkutty, 1960, pp. 106-11, Pige. 1-2.
Matorial oxamined - One rale and two femele opecimens of this species are ought from sponge wanhinge of the Gulf
of Mamar in Deeember 1960. Size: female 1.2 mm. and male 0.93 sm .

Diatribution - The Gulf of Mannax.
Momarks - Jomef Eiselt (1959) has revived the family Shatomolepidae which was almost buried in literature and has added a new species to this group. He divided the family into two mbiamilies, Entomolepinae to include Kepeopsyllug Thompson seott and Bntomolepig Brady and Parmulodinae to include Pgrmplodes Wilson. The latter genus was incorrectly placed by ite author under Olausidiidae.

Paralepeopsyllus belonge to the family Entomolepidae but it is difficult to assign to any of the subfanilies proposed by fiselt (loc. eft.). The present genus almost cuts across the two subfamilien and in oome point aiffers from both, for instance, in such features as the uniarticulate mandibular palp and the absence of fourth and fifth best
legs. It appears that we would not divide the family at the present state of our knowledge and would wait until more related forms are know.

\section*{DYSPONTITDAB}
G.0. Sars, 1913-18, p. 117. Hoholla, 1944, pp. 23-24.

Genus Sewellopontius n. gen.
Biagnosis - Body typieally dyspontilid, depressed with well developed median dorsal cresta on first three prosomal egmente; latter with epimeral plates. Last prosomal gegment highly reauced. Urosome 5-segrented in female and 6-segmented in male. Genital segment mach
wider than other urosomal eegmenta in both sexes and provided With postero-lateral expansions, exceeding posterior margin of the eegment. Antennule 9-aegmented in female, 10-megmented and geniculate in male. Antenna 3-segmented with rudimentary exopods on firet eegment. Siphon quite well developed. Maxiliule, maxilla and maxilliped of the dympontild type. Firet three paire of lege biramous, lourth pair uniramous; rami of all four pairs of legs trimerous. Setation of ifst pair of legs highly reduced: in endopod three segments provided with 1, 1, 5 setee; in exopod proximal segment without any seta or spine, second segment with one inner Beta and last gegment with three setae and two spines. Fifth leg represented by a seta.

Type apecien: Sewellopontiug reotimpulus n. sp. Type Looelity: Off Mandapam, The Gulf of Mannar.
137. Serellepontius retiangulug n. gen. at. n. mp.

Material examined - Mifteen male and twelve female specimens of this speoies are obtained from washings of dredged weeds of the Guif of Mannar in September 1960. Holotype, allotype and paratypes are deposited in the Reference Oolleotion Museuv of the Oentral Marine Pitheries Heasaroh Institut e, Mandapam.

Dasariptive notea - This genue is named in honour of Dr. R.B.S. Sowell, F.R.S., of Cambridge Univergity whose untiring sciontific works have enormously onhanced our knowledge of the copepod fauna of Indian waters. The specifio name is derived from the general shape of the body.

Fenale: Prosome and urosome are composed of four and five segments (PL. XXYY, 1) respectively. First three prosomal eegments are large, provided with mat epimeral plates. Last segment is highly reduced and is only partially visible in dorsal view. In urosome (Pl. XXIV, 2) the fifth leg-bearing segment is vexy mall, forming a narrow strip proximal to the genitel segment. The latter is very large with lateral expansions, whioh grow postriolaterally exceeding the length of second urosomal segment. Lateral rargins of the genital aegreents are characteristically broken into three divisions in both sexes. The relative lengths of prosome and urosome are \(77: 23\) and the relative lengthe of urosomal segments and eaudal rami are: \(10.5,41.0,13.0,12.0,14.5,9.0=100\). Caudal ranue ie wider than long, bearing pive setae, two of which are jointed at base. The rostrum is conieal, incurved, reaching the base of antennae.

Antennule (P1. XXIV, 3) is 9-jointed with a faint marking of the tenth. The relative lengths of the constituting segments are given below:
\begin{tabular}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
\(\begin{array}{llllllllll}18.8 & 22.4 & 6.0 & 8.2 & 4.4 & 10.0 & 6.0 & 7.1 & 17.1 & =100\end{array}\)
The terminal segment bears an aesthetask which is about half the length of antennule. The setae borne by various segments are very short. Antenna (P1. XXIV, 4) is 3-segmented, first segment being the longest and last two segments being more or less of equal size. The end segment
bears one small lateral and two larger unequal terminal setae. Siphon is Lairly long, reaching almost to the point of origin of first pair of legs. Mandible is too slender to be distinguished from siphon. In maxillule (P1. XXIV, 5) the outer lobe bears two subapical setae. Maxilla (P1. XXIV, 6) form a grasping organ, the terminal claw being larger than the whole basal part and being distinctly jointed at proximal end. Maxilliped (P1. XXIV, 7) is apparently 4-segmented, the terminal segment bearing a serrated spine. A seta is present on inner distal margin of first segment, and a few hairs on its outer margin. Second maxilliped segment has a stout amall spine on 1ts two third length on the inner margin. The last segment carries a suall accessory spine along with the serrated one.

The omamentation of tho swiming legs is given below: (see also P1. XXY, 3-5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Protopod} & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Bxopod} \\
\hline & 81 & Se & 81 & Se & 81 & Se & 81 & Se & S1 & St & Se & S1 & Se & \$1 & Se & 81 & St & Se \\
\hline \(\mathrm{P}_{1}\) & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 3 & 2 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & II \\
\hline \(\mathrm{P}_{2}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & \(\underline{I+1}\) & 1 & 1 & \(I\) & 1 & I & 5 & 1 & II \\
\hline \(\mathrm{P}_{3}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & I+1 & 1 & 1 & I & 1 & I & 5 & I & II \\
\hline \(\mathrm{P}_{4}\) & 0 & 0 & 0 & 0 & & & & ge & & & \({ }^{7}\) & 1 & I & 1 & I & 5 & I & II \\
\hline
\end{tabular}

The constituting segments of legs \(\mathrm{Lr}^{\text {rather slender and long, }}\) and spines of exopods are stoutly built. Fifth leg is represented by a seta borne on ventro-lateral corner of first uronotal segment. Sime: female 1.22 ma.

Hale (PI. XXIV, 8) has a more compact appearame, the prosomal legment. leming little gap between them. In urosome there are aix legments. First segment bearing the fifth lege is considerably smaller than other segmente. The genital segment is very large with lateral expansions Whioh are brokon inte three parte as they are in the femsie. Hext four segments are more or leas of equal dimensions and form a colum. is

Antennule (P1. XXY, 2) is 10 -segmented and genioulate. All the segmenta carry one or more aesthetask. The aesthetank on terminal segment is larger and thicker and correaponds to that of female. The relative lengthe of the antennular segments are given below:
\begin{tabular}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}
\(\begin{array}{llllllllll}19.6 & 19.0 & 5.7 & 5.1 & 5.7 & 3.8 & 6.3 & 14.5 & 6.3 & 14.0\end{array}=100\) All other appendages are sinilar to thoe of female. Sise: 0.83 mm .

Bematite- G.0. Sars (1913-18) licted the following seven genera as belonging to the family Dyspontildae:

Drepontiug Thorell, 1859;
Gxyptopontiua Giesbrecht, 1889;
Arstopontius, G.O. Sare, 1915;
Bredrentine Giembrecht, 1895;
Oxibrepentius Giesbreant, 1899;
Pteropontius Giesbrecht, 1895; and
Sentrenontiug Gieebrecht, 1889.

Hiaholle (1944) who bxiefly reviewed thit family inoluded in his mey the following additional generas

Dimenpentilit Whoholls, 1944;
Uroxenis Brady, 1910 :
Yetamontius Hansen, 1923;
G1etepentius Thompson Scott, 1903; and
Lepeopy 1 Ius Thompeon \& Seott, 1903.
It is obvious that the last two genera are not dyapontilds at all. Iepecpylilus has been removed by Josef fieclt (1959) to Intomolepidae and Gletopontiug is shown to belong to Aeterocheridae (yide gupra). To the remaining ten genera, Danodes Wilson, 1942 may be added. This is rather aberrant gater genus which lack the typical dyspontilid appearanoe. However, an examination of oephalosomal and thoracio appendagea of this gemis shows real affinities with dyspontile.

Sevellopontiugn. gen. is related to Drepontius and Gxyptopontius on the one hand and Pteropontius on the other and 1s somewhat intermediate between these forms. All these four genera are characteriaed by the complete absence of化
endopod in four leg. Pteropontinis is easily recognized by both
having \(L\) rami of first lege 2-segmented. The other three genera are diatinguished irom one another by the number of setae and spines on the terminal segment of first exopod. In Dxppenting the terminal segmont of first exopod oarries two mpines and
 three apines and four or five setae; and in the present case the reduction has gone much further, there being only two spines and three setae on terninal eegment of first exopod.

Genus Gryptopontiue G1embreoht, 1899
G.O. Sarm, 1913-18, p. 120. Hicholle, 1944, pp. 24-25,
138. G. brevifurantus \(G 1\) esbrecht, 1899.

Gienbreoht, 1899, p. 109, pl. 1, fig.7, pl. 8, fige. 1-12. G.O. Sars, 1913-18, pp. 120-22, pl. LXXI. Hioholla, 1944, p. 24.
Krishnaswamy, 1954; p. 26.
Material examined - A single edult female of this species ocourred in weed washinge of Palk Bay in June 1960. Sise: 0.78 ma .

Gult 2 Mexico,
Distribution - Bay of Haples, Norwegian coast, Madras coast and the Gulf of Mannar.
139. . . Eraciletides Umerkutty, 1961.

Ummerkutty, 1961, pp. 11 - 13 .
Material examined - Several male and female speoimens of this species are obtained from weed washings of the Gulf Hovember
of Mannar in \(h^{1960 .}\)
Descriptive notes - A detailed description of female hat been given in the reference quoted. Male is described here for the firet time.

First prosomal segment (P1. XXIII) \()\) is longer than wide and narrower than that of female. Second and third segments of prosome are short and curved backwards and downwards as they do in female. The last segment is extremely short. Urosome (PI. XXIII, 2) is 6-segmented and similar to that of the males of related species exoept in relative lengthe.

Antennule (P1. XXIII, 3) is 10-segmented and genioulate.
All the segments from first to sixth bear very slender aesthetasks. That on the terminal segment is quite thick
but less long then the slender aesthetames of other segments. The relative lengthe of antennular aegments are given below:

140. C. oxientalis Umerkutty, 1961.

Unmerkutty, 1961, pp.13-18.
Material examined - Pew female and male specimens are caught near the Pamban Bridge in the Gulf of Mannar in December 1960. Sise: female 1.05 mm , and male 1.0 ma.

Dlatribution - The Gulf of Mannar.

STELLICOMITIDAE
Humes \& Oressey, 1958, p. 395.
Genus Etellicomas Humes \& Oressey, 1958
Lumes \& Oreseey, 1958, p. 395.
141. S. tumidulus Humes * Oressey, 1958.

Huses \& Cressey, 1958, pp. 395-97, fige. 1-17.
Materigl examined - About 100 inilviduale of both sexee are obtained in June 1960 from washings of the common asteroid, Pentaceroe hedemanni (Butken). Sises female \(0.35-0.39\) mim. and male \(0.30-0.32\) mm.

Eistribution - Madagascar and the Gulf of Mannar. This is the first record of the epecies outside its type 200ality.
142. S. Eqingensis Humes © Creseey; 1958.

Huaes \& Cresey, 1958, D. 397, 11.ge. 18-31.
Material examined - About eighty opecimens of both sexe are captured along with the preceding epeciea from washinge of Pentgaeros hedemanni (Luticen) during June 1960 from the Gulf of Mamar. Size: female \(0.36-0.40 \mathrm{~mm}\). and male \(0.31-0.33 \mathrm{~mm}\).

Distribution - Cape Sierra Leone, West Afriea and the Gulf of Mannar. This is the first record of thia copepod outside its type Looality. The oceurrence of this South Atlantic apecies in Indian waterg is quite interesting. Probably it is of auggentive 1 ts wide distribution.

\section*{hanaspidab}

Huaes * Creseey, 1959. p. 209.
Genue Stephopontive Thompson s Scott, 1903
Thompeon \& Seott, 1903, p. 293.
Humes \& Gressey, 1959, D. 212.
143. B. typien Thompion \& Soott, 1903.

Thompson Seott. 1903, p. 293, pl. XX, 11g. 19-31.
Material examined - Bight females and seventeen males (three of them in paired condition) are obtained from washinge of Holothuria atra fron the Gulf of Mannar in December 1960.

Descrintive notes - Thompan \& Scott (100. git.) reported the sizes of the two sexes as 6.7 and 8.0 mm . reapeatively. Thit is, as Humes a Creasey have pointed out, obviously a topographical error. In their figures of adult female and male Thompan s Scott have given a magnification scale. According to this seale, male is smaller than female, their respeotive
sises being 0.5 mm , and 0.65 mm . This is the same sise range as that of the preaent example.

Pemale - Prosoms (P1, VII, 6) 1: 3-regmented. Pirst segment is the cephalethorax, having been formed by fueion of cephalosom and first pedigerous segment. Second segment is the result of fusion of second and third pedigerous aegmente and bear thoee lege. Lest segments oarries fourth pair of lege. An elongated, rather pindle-shaped process is borne on each of the postero-lateral comers of the last zemt prosomal segment. At about the junction of this eegment with urosome (P1. VII, 7) a pair of foliacoous structures is borme, one on either घide. They can be compared to the somewhat similar etructures found in Horopontiug ovoides Gooding.

There is a pair of egg sacs, each egg tac is oylindrion, a little incuived containing 5-7 egge, mil arranged one above the other. The oephalosomal appendages (PL. YII, 10) and firist, second and fourth pairs of lega correspond to the excellent Iigures given by thompson s Scott. Third leg (F1. VII, 11) 1s uniramous and similar to fourth leg. Bat it differs from the latter in possessing three spines and four setae on the second exopod segment. Fifth leg is foliaoeove and uniarticulate without any accessary process, Urosome is a reetangular mass, with a slight indioation of division into two aegmonts. Fifth legs are borne on the antero-lateral corners of the proximal segment. Caudal rami are a pety small sub-spherical structures borne on the posterior aide of urosome, one on either aide. Bach ramus carries four setae
which are ilattened and non-jointed. These structural details are not seen in dorsal view as they are covered by a transparent flap.

Mele: Male (P1. VII, 6) diffors from female in the smaller sise, in the geniculation of antennule and in the presence of sixth pair of lege and in the structure of urosome.

Antennule (P1. VII, 9) is a highly modified structure, apparently 2 -segmented, but possibly containing more segmente. The first segment is simple, carrying three setae on anterior margin; the second segment is covered by a transparent flap on dorsal side. In ventral view it is seen to terminate in three lobes, all carrying a number of terminal setae. Both segments are highly calaified. Urosome (Pl. VII, 8) is 3-segmented, the division between first and second segments being indistinct on ventral side. The sixth leg consists of a small rounded lobe, bearing three setae. It is borne on the postero-lateral oorners of mis second urosomal segmenth. Sise female 0.66 mm . and male 0.55 mm .

Distribution - Thompson \& Scott (lop- eit.) reported this apecies from the Ceylon Pearl Banks and the present record is the first redisoovery of this species.

Remarke - Stephopontiue Thompson \& Scott is related to Nanaspis Hunes \(x\) Gransey and could fit into the definition of the family Hanaspidae as given by the latter authors. However, substantial differences exist between these two genera and it would appear that they could be kept in two separate cubfamilies, The differences between the two forms are listed belowi

Hencenin Eumes * Oressey

Prosome ie 2-wegmented. Firat

Last gegment of prosome does not earry any accessory appendage.

Urosome ta in both sexes coneists of a logless firat segment, genital aegment and an abdowinal segment. Genital eegment bears a pair of sixth lege.

Geniculate male antennule is 6-jointed.

Exopods of second and third lege are each 3-jointed.
segment is the cephalosome and
second aegment is the result
of tueion of al the four pedisegment is the cephalosome and
second aegment is the result
of tueion of al the four pedisegment is the cephalosome and
second eegment is the result
of fueion of all the four pedigercus egments.

Eteplepontius Thompson : seott

Promome 1: 3-segmented. First segment is the cephalothorax formed by the fueion of cephalonome and first pedigerous megment. Second segment is the result of fusion of next two pedigerous segments. Last segment is the actual laat pedigerous segment.
carries Last segment of prosone two paire of expanded structures, one pair on each aide in Pemale: in mele no such appendage is seen.

Urosome is incompletely 2-segmented in female and incompletely 3-segmented in male. First segment oarries foliaceous fifth lege. The genital segment carries aixth pair of lege in male. The geniculate male antennule is 2-jointed.

Exopode of second and third lege are each 2-jointed.

Humes : Creasey (2oc. cit.) have sufficiently established the closeness of these two genera and the present redescription would throw more light to this aspect. The morphological similarities, as well as the same host-parasite relationships (both are reported from holothurians) are augestive of a
real evolutionary kinship between thes forme.

Humes \& Oreasey (Iog.eit.) have disoussed the interrelations between Mamapidae, 8tellicomitidae, Maropontildae, and Canderililidae. The discovery in recent years of these several new families of copepods, living in association with Echinoderms have brought to light a highly specialised group of aiphonostomatous cyolopoids. It is difilcult to clearly assess the syatematic positionf of these copepods in relation to other siphonostomes. It has already been indicated that a division of aiphono tomes into two tribes, based upon the well developed or poorly developed nature of the oral siphon as well as on the non-prehensile or prehensile nature of antenna may be required (vide gupra).

\section*{Section POBCILOSTOMA}

CLAUSIDIIDAR
Q.O. Sare, \(1913-18\), p. 144.
Niohollw, \(1944, \mathrm{pp}\),

Genu: Hemioyclops Boeck, 1873
G.0. Saxe, 1913-18, p. 145. Light \& Hartman, 1937, pp. 173-84. Gooding, 1960, pp. 159-95.
144. H. guatrelis Micholla, 1944.

Hicholls,1944, pp. 48-49, figg. 20-21.
Material examined - Two female mpecimens of this copepod are obtained from washinge of dredged weede from the Gulf of Mannar in August 1960.

Deaoxptive notes - The present material (P1. II, 18) corresponds in all details with the excellent figures and desoriptions offered by Micholls. The ornamentation of swimaing
is presented below as the formula given by Nohools does not distinguish between spines and setae.

Protopod Endopod Exopod

The setae and spines are arranged in Lnore for less continuous series around the margins of the distal segmenta of these lege so that it in difficult to decide how many are terminal and where the inaer and outer begin or end \({ }^{n}\). (Mcholls, 1944) In the oase of terminal segment of endopod and exopod of
 as 5, 1 and 6, 2 reapectively, whereas in the preaent case it is seen to be 3, III and 4, IV respectively. This does not appear to be very serious difference as Hicholls himeelf has stated: "On the end segment of the third exopod the figures given are five, four but on the other leg of that pair there are five setae but only three epines". It appears that the conversion of setae of swimming legs into spines is not sa moh uncommon within the same species of this genus. Size: female 1.34 min.

Distribution - South Australia and the Gulf of Mannar. This is the first record of this species outstace ite type 10cality.
145. H. indtcus Sewell, 1949.

Sewell, 1949, pp. 69-72, fig. 16.
Material examined - Two female specimens of this copepod obtained from washings of dredged weeds in November 1960 from the Gulf of Mannar.

Desoriptive notel - This species (P1. II, 16) is easily distinguished from the following and preceding species by the fact that while the genital segment in those two species are long and divisible into wider proximal and narrower distal areas in \(\underline{H}\). indicus the genital segment is vergshort with clear no demarcation between proximal and distal halves. Further, the present specimen is much mailer with more compact body. Sewell has given detailed account of both male and female. The ornamentation of swiming legs is aki added here in tabular form:

Distribution - Micobar Islands and the Guif of Mannar. This is the first time that this species is recorded outside its type locality.
146. H. Intermediue Umerkutty, 1961. Onmerkutty, 1961, pp. 18-25.

Meterial examined - Besides the type apecimens no further examplea are available. Sizes 1.9 mm . (female).

Distribution - The Gulf of Mannar.
Genus Eippotolnu 0.0. Barm, 1917
Q.0. Sare, 1913-18, pp. 147-48.
147. H. Subia Thompmen Sccit, 1903.

Thompson \& Seott, 1903, p. 284, pl. III, figs, 18-27. Krishnaewawy, 1953b, p. 66, tig. 7.

Material examined - A few ifth copepodite atagea are caught from plankton in December 1960. Size: 1.63 mm.

Distribution - Suea Canal, Madras coast, and the Gule of Mannar.
\[
\text { Genus Hersiliodes Canu, } 1888
\]

Booquet \& Stock, 1957a, pp. 215-18.
148. (?) H. Isctericia Canu, 1888

Boequet Stock, 1957a, pp. 215-18.
Material exarained - A single female specimen is gathered from washings of mud-covered coral stonee where polychaetes are also found to inhabit. It is captured from Palk Bay in July 1960.

Degariptive noter - The general shape of body (PI. XXVI, 1) is that of harpacticoid with ilttle demarcation between prosome and urosome. The former is apparently 4 -segmented with a mall rounded rostrum anteriorly. Urosome is cylindricel, 5-segmented and longer than prosome, relative lengths of the two areas being \(40: 60\). Firgt urosomal (fifth leg-bearing) segment is as wide as third prosomel segment and is the widest of all
urosomal segments. Last abdominal segment (P1. XXII, 2)
1: longer than caudal ramus in the proportion of 52 : 48 . Each ramas carries one ata on the ventral face naar proximal area and five setae on apex, two of which are jointed at base. The longest candal seta is only one and a half times longer than caudal ramas.

Antemule (P1. \(X X V, 6)\) is 6-jointed with the following relatige lengths:
\(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\)
\(20.524 .622 .0 \quad 9.6 \quad 11.0 \quad 12.3=100\)
None of the antemnular segments bears any aeathetask. Antema (P1. XXI, 7) is 4-segmented. First segment is a little more than half the length of next three segments combined and beare a seta. Second segment also bear a seta and is gmaller than first segment. Third aegment carries four appendages, one of whioh is a claw and other setae. Terminal segment are carries seven appendages, four of which quite stout and spine-1ike. Mandible (P1. XXY, 8) is stout with a terminal claw. Just proximal to this claw, there is a long serrated appendage and two equally long setae. The inner rounded margin of mandibular base carries a number of setae. Maxillule (Pl. XXV, 9) is bilobed, the imer lobe oarrying three setae and the outer five setae. Maxila (PI. XXV, 10) 1: 2-megmented. Pirgt segment bears two plumose setae on inner distal margin. Seoond aegment terminates in apine which is serrate on inner aide. A mall rod-like procese With spines on etther side, is borne on the inner margin of
this distal segment at about its midiength. Yaxilliped (P1. XXV, 11) In trimerous and stoutly built. Pirgt segment carries two plumose setae on inner distal margin; second segment carriee a single plumose seta in a sidiar poition and third segment beare a stout olaw, equal in length with two distal segmente of maxilliped and four spines, two distal and two proximal to the base of large olaw.

Firet four pairs of owimaing lege (P1, XXVI, 4-7) are biramous, the rami being 3 -segmented. The ornamentation of uwimang lege is given below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Protopod} & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Eroped} \\
\hline & 1 & & 2 & & 1 & & 2 & & & 3 & & 1 & & 2 & & & 3 & \\
\hline & 81 & 8 & 81 & 80 & 81 & 8 8 & & 8 & st & \(8 t\) & se & 31 & Se & 81 & se & 81 & \%t & Se \\
\hline \(\mathrm{P}_{1}\) & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 3 & 1 & II & 0 & I & 1 & 1 & 4 & 1 & III \\
\hline \(\mathrm{P}_{2}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 1 & II & 0 & I & 1 & 1 & 5 & 1 & III \\
\hline \(\mathrm{P}_{3}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 1 & II & 0 & I & 1 & I & 5 & 1 & III \\
\hline \(\mathbf{P}_{4}\) & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 2 & II & II & 0 & I & 1 & I & 5 & \(I\) & II \\
\hline
\end{tabular} Fifth leg (P1. XXYII, 1) is 2-segmented; firet segment is very short; and bears a very short seta; distal segment bears one subapioal seta and three spines, one of then being apieal and other two marginal, arranged on the diatal one third of outer margin. Sises femsle 1.65 m.

Distrimition - Coast of Prance (?) and the Gulf of Mannar.
gemariat - I an not quite certain whether the apecies described above could be referred to E. Iecterleta Cans. Boequet a stook (1957) in their redescription of arelated
speetes, H. cylindraces (Pelsencer) indicated the syonymy 01 G. Leateriaid and ©. pelsenceri Canu. There is a roferonce to another apecies H. puffini Cam in Sewell (1949). However, as descriptions of these species are not available to me, it is not possible to state to which of these peciee the present material belongs. It is provisionaliy referred to E. Lacteriois, because like the latter it is found to live in association with polychaetes.
LIOHOMOLGIDAE
G.0. Sars, 1913-18, pp. 149-50.
Subiamily Sabelliphilinee
Gurney, 1927, p. 463.
Sewell, 1949, pp. \(72-75\).

Genus Antheraius Della Valle
G.0. Sare, 1913-18, p. 181.

Sewell, 1949, 1. 76. Stock, 1959, p. 50.
149. A. pimae Humes, 1958.

Hazes, 1958, pp. 279-90, fige. 1-35.
Moterial examined - Several apecimene belonging to both eexes are captured frow waininge of Pima ep. from the Gulf of Mannar in December 1960. The washing is done in dilute magniaiun ulphate solution for several hours.

Deneriptive notes - Prosome is moderately bread and urosome narrow with caudal ran which are about four times longer than wide. The last segment of antenna is distinotly longer then the penultimate segment. There are three pines and four etae on terminal megment of fourth exopod. Fifth leg is quite broad, the length-width ratio being \(1.7: 1.0\).

The ornamentation of swimang legs is presented below as Humes (loc. oit.) in his table did not diatinguish between apinee and setae:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Protopod} & \multicolumn{5}{|c|}{Endopod} & \multicolumn{7}{|c|}{Eropod} \\
\hline & 1 & 2 & 1 & 2 & & 3 & & 1 & & & & & 3 & \\
\hline & 8180 & 84.8 & Sise & \$1 80 & Si & St & Se & 81 & Se & 81 & 8 & 31 & St & Se \\
\hline \(\mathbf{P}_{1}\) & 10 & 01 & 10 & 10 & 3 & \(I\) & II & 0 & 1 & 1 & I & 4 & \(I\) & III \\
\hline \(p_{2}\) & 10 & 01 & 10 & 20 & 3 & I & II & 0 & I & 1 & \(I\) & 5 & 1 & III \\
\hline \(\mathbf{P}_{\text {\% }}\) & 10 & 0.1 & 10 & 20 & 2 & II & II & 0 & 1 & 1 & 1 & 5 & \(I\) & III \\
\hline \({ }_{4}\) & 10 & 01 & 10 & 20 & \(\pm\) & II & II & 0 & I & 1 & I & 5 & I & II \\
\hline & Sise & fomal & 1.43 & n. and & & - & 1.1 & & & & & & & \\
\hline
\end{tabular}

Dhatribution - Madagamear and the Gulf of Mannar. This is the first record of this mpecien outaiae ith type 100allty.

Genu: Preherfmannel1a Sewell, 1949
Sowell, 1949, 7. 82. Humes Creeeey, 1959 , p. 25.
150.2. brationadis Bene11, 1949.

Eewell, 1949, pp. 82-85, Pig. 19.
Materiel examing - Six femal specimens of this copepod are obtained frow weed weahinge of the Gulf of Mannar in September 1960.

Denoriptive notes - The apecies is eabily identified by the vexy short eaudal rami, the peculiar ornamentation of awiming leg, the non-prehensility of antenna and the angular nature of posterior margins of body egements. The omamentation of ewimaing legs is presented belowz
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Protopod} & \multicolumn{5}{|c|}{Endopod} & \multicolumn{5}{|c|}{Bxopod} \\
\hline & 1 & & 2 & 1 & & 2 & & 3 & & 1 & 2 & 3 & \\
\hline & & Se & Si 80 & Si & & Sise & S1 & st & Se & Si So & Si se & Si st & Se \\
\hline \(P_{1}\) & 1 & 0 & 01 & 1 & 0 & 10 & 4 & 1 & 1 & 0 I & 1 & 4 I & III \\
\hline \(\mathrm{P}_{2}\) & 1 & 0 & 0 & 1 & 0 & 2 & 3 & I & II & 0 I & 1 I & 5 & III \\
\hline \(P_{3}\) & 1 & 0 & 0 & 1 & 0 & 20 & 2+1 & 1 & II & 0 I & 1 I & 5 & II \\
\hline \(\mathrm{P}_{4}\) & 1 & 0 & 0 & 1 & 0 & 1 & II & I & II & 0 I & 1 I & 5 & II \\
\hline
\end{tabular}

In fifth leg the proximal segment is produced into a downward projection which looks like a beak. Sise: 0.91 min.

Distribution - Maldive Archipelago and the Gulf of Mannar. This is the first report of this epecies outside its type locality.
151. ․ . serendibica (Thompson \& Scott), 1903.

Thompson \& Scott, 1903, pp. 281-83, pl. XVII, fig. 11
Material examined - Two female specimens of this copepod occurred in washings of weeds collected from the Gulf of Mannar in September 1960.

Deacriptive notes - Only antennule, antenna and the dorsal habitat of this species have been sketohed by Thompson a Soott and they correapond in all details with those of the present material. Mandible, maxillule, maxilla and maxilliped are highly reduced and correspond very much with those of the preceding species. It may be noted that unlike in that speciea antenna is prehensile and that the prehensility is attained by the development of a atrong spine on the penultimate segment of that appendage. The ornamentation of swmaning legs is as follows:

Pifth leg is rectangular with two setae at apex. Bize: 1.20 mm .
Diatribution - The Gulf of Mannar. This is the first rediscovery of this species.

Genum Sabelliphilug M. Sars, 1862
G.0. Sars, 1913-18, pp.
152. S. telineen n. ep.

Material examined - Six female and thirteen male apeoimens of this copepod are obtained from the body cavity of Holethurie atre from the Gulf of Mannar in Movember 1960.

Desoriptive notes - This species derives its name from the pecullar, flattened, leaf-like structures that are present on the distal outer angle of the basal protopod segment, Botic both in weoond and third legs.

Remale: The body (PI. XXYII, 3) is elongate and narrow with the demarcation between prosome and urosomerather inconepiououci Oephalosome is fused with first pedigerous segment, but trace of division is still viaible. Urosome is composed of five segmente, the genital segment being equivalent in length to the three abdominal segments joined together. Caudal ramas is a little longer than lat abdominal egment and bears four setae terminally and a single seta on its outor margin at about midlength. The longent apical seta, second from imer side,

16 oharacteristically incurved in its distal half. Female bears a pair of egg aees which reaches the middle of oaudal ram and are gracefully cylindrical.

Antemule (P1. XXVII, 7) is 7-segmented and short, hardly reaching the poaterior margin of eephalosome. The constituting antennular segments have the following relative lengths:
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
12.3 & 18.8 & 11.5 & 46.0 & 23.7 & 7.3 & 10.3 & \(\mathbf{1} 100\)
\end{tabular}

A notable feature abott entennule is the presence of a digitiform epine on the qutcro-disial corner of second segment. Antema (PI. XXVII, 4) is 4megmented and prehensile. It is a ilttle shorter than antennule, but is much more stoutly built. The first and aecond eegment each bearsa seta. The third segment bears a ske strong clam and three spines. The last segment carries eight setae of varying lengths. Other mouthparts (P1. XXVIII, 1-3) are typically lichomolgid, being highly reduced.

411 four pairs of awimaing legs (P1. XXVII, 5); P1. XXVIIX, 4-6) are biramoue, the ramus being 3-segmented. The rami are all of equal longth and the constituting segmente are rather stout. Second and third lege differ conapieuously in
Irom first and fourth in that the former two the diatal
outer angle of basal protopod segment is arawn out, on its posterior face, into large foliaceous structure. This structure in second leg ia almost as large as the ramus, but in third leg it is a little shorter. In first three pairs of
legs the seta on 1nner distal angle of basal protopod segment if c highly flattened. In fourth leg it ie normal. The ornamentation of the swiming leg is shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Protopod} & & \multicolumn{5}{|l|}{Madopod} & \multicolumn{5}{|c|}{Exiopod} \\
\hline Sise & \(\mathrm{si}_{3}\) & so & & So & & Se & Si & \(8{ }^{\text {st }}\) & se & sise & Si Se & 81 & 3 & \\
\hline \(\mathrm{P}_{1} 10\) & 0 & 1 & 1 & 0 & 1 & 0 & 4 & & 1 & 0 I & 1 I & 4 & I & III \\
\hline \(\mathrm{P}_{2} 1{ }^{\text {* }} \mathrm{F}\) & 0 & 1 & 1 & 0 & 2 & 0 & 3 & I & II & 0 I & 1 I & 5 & I & III \\
\hline \(\mathrm{P}_{3} 1\) * \({ }^{\text {P }}\) & 0 & 1 & 1 & 0 & 2 & 0 & 2 & I & I & 0 & 1 I & 5 & I & III \\
\hline \(\mathrm{P}_{4} 10\) & 0 & 1 & 1 & 0 & 1 & 0. & 1 & I & I & 0 I & 1 I & 5 & 1 & II \\
\hline
\end{tabular}

In fifth leg (P1. XXVII, 6) the basal gegment is fused with the body and is indicated by a seta. The distal segment is stout, cylindrical, alnost twice as long as wide and bearing two setae of unequal leng the terminally. Sise: 0.79 mm .

Male: Hale (P1. XXVII, 2) show sexual dimorphism. Drosome 1a 6-segmented and consists of the fifth leg-bearing segment, the genital segment which beara the rudimentary sixth pair of legs and four abdominal segments. Caudal rami and setae are identiosl to those of female.

Marilliped (PI. XXYIII, 11) is geniculate and large with a well developed terminal claw while other mouthparts and antennule and antenna are quite normal. First four paire of legs (P 1 . XXYIII, 7-10) exhibit very interesting modifiations. The second and third segments of endopods of all 3gs are indistinctly separated. The constrictions them, however, are clear enough and the sum of setae nes borne by these segments is similar to that of female. penon is observed in all five male speoimens, which are for examination.

Bemarks - The species desoribed above differs from 11 the known representatives of the subfamily Sabelliphilinae in the following characters: (i) The ornamentation of ewimming is legs unique and is as given in text. (ii) Foliaceous outgrowths are developed on proximal protopod eegmente of econd and third legs. (iii) Differences are noted between the two sexes in the segmentation of endopod and exopod of swimming lege.

It is dificult in view of thime unique charaeters to assign the present speoies to any partioular genus. However, there are two known genera Sabeliphilus M. Sras and Diogenidius C.L. Edwards which should be considered for accomodating it. The present material agees with Sabelliphilus in eeveral morphologioal characters, including the general shape of body and the prosence of alaw on third antennal segment, but it differs from it not only in the charaoters listed above but also in the otructure of antonna. The latter is prehensile in both in cases. In Sabelliphilus the prehensility is attained by the development of atrong teeth on second segment and stout claws on third and fourth eegmenta. In the present material, however, antenna is simpler; there is single claw on third segment and several epine-ilke setae on fourth segment; there is no teeth on second segment. The genua Diogonidium also differs from gabelliphilus \(^{\text {in }}\) the struoture of antenna.

In the former genue no teeth is present on second segment and the prehensility is attained by the aubohelate ourved olaw
and short spine on fourth segment. In these two points it also differs from the present species, but it agrees with the latter in the habitat, both being found in association with a holothurian.

It is probable that all these three forms represent only a single flexible genus whose members live not only in association with sabellids but also with a variety of other hosts. A strong aupport to this proposition is the fact that in recent years several lichomolgid seecies have been reported with a Wide range of host proference. The life in association with tube-dwelling polyohaeten is not probably very difterent from the life inside the body cavity of a holothurian. Nicholls (1944) has indioated that the number of setac and spines on swimang lege cannot be solely relied upon, for generic distinction among the poectlontomes and Sewell (1949) has included under his now genus Preherrmannella several forms, some of them with a prehensile antenna and others without such antenna. It is, therefore, obvious that the structure of antenna alone camnot be taken as the criterion of generic separation. The foliceous outgrowths of awiming lege of the present material and the teeth on second antemal gegment of Sabelliphilug appar to be only of specific importance. The aberrent nature of Sabolliphilue has already been recognized by G.O. Sars (1913-18). When dealing with such aberrant representatives, care should be taken not to lay too much stress on such characters. It would seam probable that the genus Diogenidium is synonymous with Sabellinhilus. The former

Liver in assealation with holothurians, and the latter with Sabellids. Although the provent species differw from both these genera in some etructural details, it has been placed under Sabelliphilug in the belief that all these form constitute a aingle olosely related group which, however, hes diverged in some atruotural peouliarities, In order to meet the demande of their habite.

Subfamily Lichomolginae
Gurney: 1927, p. 463.
Sewel1, 1949. pp. 91-96.
Cenus Peridhenthogsive Clawe, 1889
6.0. Sare, 1917, p. 166.

Hicholle, 1944, pp. 54-55.
I118, 1950, pp. 129-30.
153. Fa samxath Cant, 1891

Caru, 1891, p. 243, pl. XXY. 0.0. Sare, 1913-18, pp. 171-72, pl. XCVI.

Mgtorinl examined - A single female apecimen of this copepod is gathered from echinoid washinge of the Guif of Mamar in September 1960.

Desoxiptive notes - G.O. Sars (1pe. elt.) rendered exeellent deseription and IIgures and the present atamples corrempond very clemely with them. A lew points of difforence may be reported. Proximal part of the genital segment is slighty broader than what is found in the Norwegian example. Further, the spines ahown on proximal and ventral sidea of that eegment by Sare are very inconepicuow . The relative lengthe of urosemal segments are Amilar. In Antemule alight variations in the relative lengthe are noticed.

However, the number and nature of setae borne by different segmente are midlar.

Antema, mandible, maxillule and maxilla are built in the same pattern as in other representives of the genus. Maxilifped terminates in a olaw which is accompanied by a atout seta. A ifttle proximal to this terminal claw, on anterior face, is another stout olaw, accompanied in its turn by a small seta. The opecimens from Norwegian coast differ in this latter character: inutead of a etrong claw the anterior face aarries a very long seta.

The ornamentation of awiming lega is fully identical
in the two examples and is given below:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
180
\] & \[
s_{0}
\] & & & se & \[
\frac{818}{18}
\] & & & & & & & \[
{ }_{\mathrm{se}}^{\mathrm{I}}
\] & \[
\underset{1}{ }
\] & Se & \[
81
\] & I & \\
\hline 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & II & I & & 0 & I & 1 & I & 5 & 1 & \\
\hline 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & II & I & & 0 & 1 & 1 & 1 & 5 & 1 & \\
\hline 10 & 0 & 1 & & & & & & & & & 0 & I & 1 & I & 5 & 1 & \\
\hline
\end{tabular}

Endopod of fourth leg in the present example is a little shorter than the combined length of two proximal protopod segmenta, whereas in the Iorwegian example it is shown to be a ifttle longer. Pifth leg in both oases consist of a strong backwardly directed apine and two small setae.

Sise: fomale 1.1 mm .

Distribution - Coast of Prance, Morwegian coast and the Gulf of Mannar. This is the firet report of this Atlantio speoies from Indian waters.

Remarkat - The availability of only a single apecimen makes me hesitant to refer the present material to \(\underline{P}\). seuveged and the minor differencen noticed in the etruature of maxiiliped and genital segment add to this difficulty. But a careful tudy of all known species show that the present form come nearent to that apeoigt. The differencen mentionad do not allow sufficient ground to separate them and the occurrence of the present material in assooiation with an echinoid eupports this ooncluaion.
154. Preliber (Brady A Robertson), 1875.

Brady, 1880, p. 44; P1. WXXXVI, figs, 1-13. Thompan Sontt, 1903, g. 277. G.J. Sars, 1913-18, p. 169, p1. xerv. Sewell, 1949, p. 121.

Matertal exanined - Several specimens of both sexes of this copepod are gathered during January-February 1961 from wahinge of cohinoide from the Gulf of Mannar. Sise: female 1.2 ma. and male 0.85 mm.

Dietribution - Britieh Leles, Morwegian Coast, Micobar Ialands and the Gulf of Mannar.

Humes \& Oressey, 1959, pp. 75-81, f1gs. 31-56. Ummerkutty, 1961, pp. 25-29.

Matertal examined - Humerous specimons of both sexen of this species are obtained from eohinold washinge of the Gulf of Mannar during Ootober-December 1960. Sisez female 1.2 mm. and male 0.87 mm .

Distribution - Madagaecar and the Gulf of Mannar.
Bomarka - This apeeies waw desoribed by me (Umeorkutty, 1961) under the name Paouchantheasina getilis n. sp. Subsequently I have come acrose a paper by Hume toremey (1959) who had desoribed it under the name Pacalpanthessius Lugulemtua Humes \& Cressey. I have no coubt about thoir oynonyny, but by the time I received the above aited account by Cumes a Cressey, my paper had already gone to the pross. Acoording to the rule of priority this apecien whould now be known as Ermdtanthassiua Inculentue Humes \& Creasey. 156. ‥ anomenius n. sp.

Material oxamined - Iwentyfive female specimen of this copepod are gathered from the starfieh washings of the Gulf of Mannar in Ausust 1960. Holotype, andye and paratypee ft are deposited in the Reference Colleation Kuseum of the Central Marine Fisheriea Research Institute, Mandapan Camp.

\section*{Degariptive notes - The specific name of this form} is derived from the nature of the structure of the flifth pair of legs, caudal rami and genital aegment. These etructures are found to show great deviations from what is generally observed for other species of this gerua. Excepting for the prosence of a rudimentary epine, the fifth leg of this species is very similar to that of Hesomolaue aristatue Sewell.

Fenale: Prosome (P1. XXIX, 1) is broadly oval, cephalosome contributing more then half the eize. Posterior margin of oophalosome in the wideet part of body, next three iree
metmonal segments diminishing both in length and width to posterior side. Urosome (P1. XXIX, 9) is 5-segmented, IIret eegment bearing the IIfth pair of lege. Genital -egment in very broal and is longer than the entire length of three abdominal segmente joined together. The narrower posterior division of genital segment is very short compared to the broad anterior part. Oaudal rail are peculiar. They are hardiy as long as broal and are distinctiy thorter than the last abdominal segment. Caudal setae are fairly long, the middle two aetae being jointed at base.

Antennule (P1. XXIX, 2) is T-segmented, segmente bearing the following relative lengthe:
\begin{tabular}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
16.5 & 30.7 & 8.0 & 17.0 & 14.2 & 6.8 & \(6.8=100\)
\end{tabular}

Antema (PI. XXIX, 3) is 4-segmented, terminal segment bearing two spines and a few setse. Firat and second segments axe eah with a eingle mall seta and the third with two aetse and sevaral hairs. Mandible and maxillule show little peculiarities. In maxilla (P1. XXIX, 4) both the terminal lappet and the procese just proximal to it caryy spimules on their anterior marging. Maxilliped (P1, XXIX, 5) is apparently 2 -segmented. The firet segment is neked, the second carries one seta at its mid-posterior margin and two etout epines on 1 te innermost part (actual apex of the appendage).

Swiming lege are on the whole normal. The i-segmented ondopod of fourth leg (P1. XXIX, 8) 1e alightly awollon

In the proximal region, but no knob or notoh are present. The second endopod segment of first, second and thira legs (P1. ExIX, 6-7; 21. EXX, 1) it produced at its outer angle into a beak-1ike atructure. The following is the ornamentation of awimaing legs:

Protopod Endopod Eropod
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
S 1^{1}
\] & Se & 81 & Se & \[
81
\] & 8 & \$1 & * & & & & & & 81 & 3 & 81 & t & 8. \\
\hline \(\mathrm{P}_{1}\) & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 4 & 1 & I & 0 & I & 1 & I & 4 & I & III \\
\hline \(\mathrm{P}_{2}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 1 & II & 0 & \(I\) & 1 & I & 5 & \(I\) & III \\
\hline 3 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & I & II & 0 & 1 & 1 & \(I\) & 5 & I & III \\
\hline \(\mathbf{P}_{4}\) & 0 & 0 & 0 & 1 & & & & I & & & & 0 & I & 1 & I & 5 & I & II \\
\hline
\end{tabular}

Fif legs are rather modified; the spine is highly reduced and is seen only if observed ventrally; on the uppar and lower sides of this reduced spine are borme two setae, the moh longer lower one being jointed at base. Sise: 0.75 mma .

\section*{Male: Unknown.}

Remance - The most salient features of \(\underline{g}\) - gnormalus n. ep. are given below: (1) Genital segment is alightly broader than long, the narrow posterior division being very short compared to the anterior broad division. (ii) caudal ramus is slightly broader than long and is distinotiy shorter than last urosomal egments. (iii) endopod of fourth leg is alightly swollen in the proximal half but does not dieplay any notoh or knob. (iv) Pifth leg consista of a very highly reduced spine seen only from the ventral siae and two unequal setae, one of which is jointed at base.
157. P. mrertcaude n. ap.

Material exemined - Your female specimens of this copopod are obtained from cohinotd waming of the Gulf of Mannar in Oetober 1960. Holotype and paratypes are depouited in the Reference Colleotion Museum of the Central Marine Piaherien Hesearoh Institute, Mandapam Camp.

Deseriptive notes - The specific name of this spocies has reference to the very short nature of caudal rami.

Yemale: Promone (P1. XXX, 2) is large and ovoid and very distinatis eeparated from urosome. First pedigerous segment 1s fused with cephalosome and the combined eephalothorax is broader then long; it is the widest part of the prosome. The next two eegments diminish gradually both in length and width. The postero-lateral edges of both these segments are prolonged backwarde. Last prosomal segment is very mall and partly overlapped by the preceding eegment. Pirst urosomal segment (Pl, XXX, 3) is normal. The genital megment ia awollen in anterior half but the demarcation between the two parte is not very pronounced. Guarding the genital apertures there is a pair of sharp apines. The next three urosomal segments are small and their combined length is just half that of the genital segment. Caudal ramue is short, its length and width being subequal.

Antennule is 7-jointed and aimilar to that of the preceding speciee. Antenna (P . XXXI, 1), mandible, maxillule (P1. IXX, 4) maxilia (P1. XXI, 5) and maxilliped (P2. XXX, 6)
are at figured. They do not thow many peculiarities except that they are foutiy built. In antenns the third eegment is exceedingly shart. Mandible has a chitinous rod-1ike precess extending postero-laterally the distal end of the prooess shows fine denticulation. The terminal spines of maxillule are atrong and broad based. In maxilla teeth on the apical lash are very strong, somewhat like in thase apeciea that belong to the genus Macrochiron.

Ornamentation of swiming lege is presented bolowt

The fourth endopod (P1. XXX, 7) is half the length of exopod. Its inner margin is broken twiee, one at two third and other at one third lengthe, both accompanied by notches. The first two third lengths of inner margin is lined with fine setae. Fifth leg consists of graceful spindle-shaped spine with serration all along the two margins and two short setas. One of the setae is close to the base of spine while the other is a little above. Size: 1.13 mp.

\section*{Male: Unknown.}

Remark - P. breviagnda n. ap. is diagnosed as followe: (i) First promomal megment is very large and broader than long. (ii) Second and third segments gradually disinith both in length and width and produoed backwarde
at their postero-lateral oorners. (iii) Last prosomal segment is short and overlapped partly by the preceding segment. (iv) Caudal ramue is very chort, length and width being subequal. (v) Oephalosomal appondagen are stoutly built, especially maxillule and maxilla. (vi) The endopod of fourth leg is hall as long as exopod. Ite inner margin is broken by notches, one at one thi rd and the other at two third lengthe, (vii) Pifth leg consists of a spindle-shaped epine and two setae. (viii) The proximal half of genital segment is broad and its wiath only a little less than the length of the segment.

Genus Kalleria Gumey, 1927
Gurney, 1927, p. 470.
158. ㅈ. regalis Gurney, 1927.

Gurney, 1927, p.
Material examined - A single female specimen occurred In weed washing of the Gulf of Manar in November 1960. Size: 1.1 mm .

Dietribution - Sues Canal and the Gulf of Mannar. This appoar: to be the first report of the apecies outeide its type locality.

> Genus Mearoehiron Brady, 1872
> G.O. Sars, 1913-18, p. 163.
> Subgenus Paramoroohiron Sewell, 1949
> Sewell, 1949, p. 108.
> Monod \& Dollfus (1932) do not recognise the generie Valldity of the genus Macrochiron Brady. Aecording to them
it is a subgenus of Hichomolsut Thorell while Stellicola Kossman is considered an another subgenue of the same genus,

Sewell (1949) not only recognized Macrochiron as a valid genus but divided the latter into two sub-genera: Mgorochiron E, str. characterised by 1-segmented nature of the fourth endopod and Paramaoroohiren oharacterised by 2-segmented nature of the fourth endopod. According to him Masrochiron is distinguished from Lichomolsu: chiefly by a long fifth leg and by a maxilla whome basal part is conspicuously dilated. Although Sewell's olassification has been followed here, it does not appear that Sewell's system represente the final answer to the proper assignment of the vast complex of lichomolgid group of oyclopoide.

Stock (1957) expreased the opinion that the name Magrochiron should be used at generic level for the conoeption of a limited number of species, all agreeing in the possession of a complexiy built 3 -segmented antenna. The species that do not possess this festure were transferred by him to Lichomolque or other related genera. He, however, recognized that those apecies that are removed to hichomolgun could well be grouped into a subgenus for they all are characterised by the following features: (i) Mandible has the lappet conspicuously dilated at base, while ite armature consists not only of cilii but also orest-like ridges, denticulations eto. (ii) Maxillipeds of female are well developed, 3-segmented with at least one longer and one shorter seta on the eecond
agement and a cheiliorm structure on the third segment. (iii) The third segment of fourth leg usually has three outer spines, though some species have only two.

It would appear that until more forms are desoribed and the already known forms are better understood, it is difficult to reach an agreeable arrangement.

Subgenus Paramacrochiron Sewell, 1949
Sewell, 1949, p. 108.
159. M. (ㄹ.) pervin (K. Soott), 1909.
A. Scott, 1909, p. 269. pl, LXIX, f1gs. 1-7.

Sewell, 1949, p. 109.
Material examined - Several females and few fifth copepodite males of this speaies are gathered from plankton of the Gulf of Mannar in July 1960. Sises femele 1.14 mm . and fifth copepodite male 1.02 mm .

Diatribution - Malay Archipelago, Hicobar Islands and the Gule of Mannar.

Subgenue Macrochiron Sewell, 1949
Sewell, 1949, p. 99.

Ummerkutty, 1961,pp.29-34
Material examined - Two female specimens are taken from sponge washinge of the Gulf of Marnar in December 1960.

Size: ferale 1.25 rma.

Distribution - The Gulf of Mannar.
Genue Lichomolgus Thorell, 1860.
G.0. Sars, 1913-18, p. 150.

Sewell, 1949, p. 96.
161. (9) I. gigas Thompmon \& soott, 1903

Thompeon A Saett, 1903. 9
Material expmined - Five female apecimene occurred In etarfish washinge of the Gulf of Mamar in Beptember 1960.

Deseriptive notes - The oral appendages resemble the figures rendered by Thompson \& Scott. The proportionate lengthe of the last two segmente of antema, however, are elightiy different in the two examples. The length-width ratio of caudal ramus also is alightiy variant. The ormanentation of awiming lege is given below:

Fifth leg if rather slender and narrow with outer margin suooth and the inner wargin slightly awollin at base. There are two setae on apex of the distal segment the proximal segment is represented by a seta. Siget 1.5 mm . This is mah smaller then the specimens obtained oy Thompson \& seott who gave 2.0 man its aige.

\section*{Diatribution - Malay Archipelago and the Gulf} of Mannar.

Hemaxks - Wether the slight variations noted between the prasent example and that obtained by Thompson \& Scott are more than local variation within the species are
not clear, However, because of other similarities this example is referred to I. gires Thompeon \& Seott. 162. I. holothurise Omorkutty, 1961. Unmerkutty: 1961,pp.34-37

Material exgming - This opeoise in first recorded from inaide the body aavity of holothurian. Subsequently numerous spacimens have been taken from sponge and taxitish washings. Sisetfemale 1.2 man. and male 0.75 mm.

Distribution - The Oulf of Mamar.
163. I. eneryatipen Ummerkutty, 1961.

Ummerkut ty, 1961, pp.37-41.
Materingexamined - This apecies is exclusively ought from washinge of the common pteroid of this area, Pterociden agperi Herciote. About one hundred and twenty individuala of both aces and neveral copepodite atage are obtained from washinge seapens colleeted off Yedalai in the Gulf of Mannar during Movember - December 1960. The copepode oling to the spaces between pimules of the pteroid. Sise: Pemale 1.6 mm, and male 0.77 mm,

Ditribution - The Gulf of Mannar.
164. I. Indious Ummerintty, 1961.

Ummerkutty, 1961, pp. 44-48
Material examined - A aingle female and a fifth copepodite of this species are captured from starfioh washings from the Gulf of Mannar in October 1960. Sizet female 1.1 wm. and male 1.05 mm.

Bintribution - The Gulf of Manar.
165. ․ brevifuragh Ummericutty, 1961.

Ommericutty, 1961, pp. 41-44.
Material examined - Ho further example of this copopod is obtained after the type specimens. Sizet female 1.6 mm . and male 1.5 mm .
166. Hichomolstes sp.

Materiel examined - A single femele apecimen of this copapod is obtained from washinge of Pentaceron hedemanni (Iutiren) in September 1960 from the Gulf of Mannar.

Begoriptive notete - This specimen (PI. XXII, 2) is diatinot from all other ilehomolgide gathered during the present study. Prosome is oleariy oval and 4 -segmented. In urosome (P1. XXXI, 11) there are five aegmonte. The genital segment is quite large and is more or lese hexogonal because of lateral bulging of that segment along the mid-transverse area. The genital apertures are present in this area and they are each guarded by a pair of small spines. Each caudal ramue fis hardly as long as wide and bears six setae.

Antennule (P1. XXI, 3) is seven segmented and peouliar in having the following relative lengthes
\begin{tabular}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
23.3 & 9.0 & 21.9 & 12.3 & 10.3 & 15.0 & \(8.2=100\)
\end{tabular}

The very short second segment may partioularly be noted. It is mach shorter than half the length of either first or second segment. Antems (P1. XXXI, 4) is 4-segmented, second segment being the largest and the third the shortest.

Mandible (5 XXXI, 5), maxiliule (P1. XXXI, 6), maxille (P1. XXXI, 7) and mardiliped (P1. XXXI, 8) are all dietinctly developed. The peculiar batal ohitinous ridge of maxillule and very minute terminal spine of maxilliped may be noted.

Ornamentation of ewiming lege (P1. XXXI, 9-10) is presented below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Protopod} & \multicolumn{4}{|c|}{Badopod} & \multicolumn{5}{|c|}{mropod} \\
\hline 1 & 2 & 1 & 2 & & 3 & & 1 & 2 & 3 & \\
\hline Si Se & 81 se & Si se & Sise & Si & St & Se & si se & sise & si st & se \\
\hline \(\mathrm{P}_{1} 10\) & 01 & 10 & 1 & 5 & 1 & 0 & 0 I & 1 I & 4.1 & II \\
\hline \(\mathrm{P}_{2} 1\) & 01 & 10 & 2 & 3 & \(I\) & II & 0 I & 1 I & 5 & \\
\hline \(\mathrm{P}_{3} 10\) & 01 & 10 & 20 & 2 & I & II & 0 I & 1 I & 5 & \\
\hline \(\mathrm{P}_{4} 10\) & 0.1 & 0 & 1 & & II & & I & 1 & 5 & \\
\hline
\end{tabular}

The most important feature notable in the ornamentation if the presence of a seta on the inner side of proximal segment of fourth endopod. The rather stout nature of the constituting segments as well as the haixed margins of all ondopods are also notable. In fifth leg proximal segment is almost fused with the body and is indicated oniy by a ingle seta. The distal eogront is rectangular with a slight bulge on the posterior margin. It carries two terminal setae, one of which is mach longer than the other. Size: 0.96 mm .

Remarke - The presence of a seta on inner distal angle of the proximal segment of fourth endopod, the very short second segment of antennule and the distinatness of mouthparts are the mont sallent features of this species. In the firet charaoter it approaches the condition found in L1ahomolgue astropectinie humes \& Oressey and related forme which are included by Bocquet "A Stock under the subgenua

Stellicole. However, the present material profoundy differs from this group in the structure of antomule and antenna, in these respects agreeing with more typical member of the genus. Like the membere of subgenus Stelifools, the present apecies is also found in association with the starfish. However, the availability of a single specimen has set limitations on taking any deoision regarding its true relationship.

\section*{oncaeidae}
G.O. Sars, 1913-18, p. 190.

Gempe oncaea Philippi, 1843
G.O. Sare, 1913-18, pp. 190-91.
167. Q. gonifere Giesbreoht, 1892.

Gienbrecht, 1892, p. 591, pl. II, fig. 10, pl. XLVII, fige, 4, 16, 21, 28, 34, 42, 55 \& 56.
Farren, 1936, p. 127, figa, 25 a-1 and 26 a-c.
Sewell; 1947, pp. 259-61.
Material examined - This species occurred in the plankton quite often as stray individuals. Size: female 1.2 mm .

Distribution - The existence of a number of varieties and the confusion that prevailed in the past regarding the real determination of these, it is not possible to be absolutely certain on the diatribution of this speoies. Taken as a whole, the epecies is well represented in all the oceans.

Remarke - Sewell (1947) stated:"Included under the name 'conifora' we have either a species that in extremely plastic or more probably a number of separate apecies". He has furthor discussed in detail the variatione that have been recognized from the various geogrophical areas and presented the morphological pecularities in a tabular form. In the preaent study a detailed

1s
morphometric tuay may not oarried out as only tray individuals are caught on different ocoasions.
168. Q. 표itis Giesbrecht, 1892,

Gieabrecht, 1892, p. 591, pl. II, fig. 12, pl. XUVII, 11ge. 1, 11, 29-33, 40.
van Breman, 1908, p. 187. 11g. 200.
Sewel1, 1947, pp, 261-62.
Material examinal - Like the preceding epecies this also occurred in plankton occasionally. Both forma metor Sowell and forma minor Sewell are caught Size: female, forma masor 0.78 rm, and forma minor 0.59 mm .

Distribution - This is a comopolitan mecies occurring in all the great oceans. One interesting feature is that both forma mator and forma minor oocur together in the amo geographical area.
169. Q. moditerranes (Claus), 1863.

Giesbrecht, 1892, p. 591, pl. IV, fige.4, 16, pl. XUVII, fige. \(8-10,47\).
van Breeman, 1902, p. 107, 1ig. 199.
Sewell, 1947, pp. 262-63.
Hatexial examined - A angle female spocimen of this speeies is taken from plankton of the Gulf of Mannar in January 1961. Bize: 1.1 ma.

Distribution - This species has been recorded from Atlantic, Paoific and Indian oceans.
170. Q. Fenusta Philippi, 1843.

Philippi, 1843, p. 63, pl. 3, fig. 2.
Farren, 1929, p. 284, 11g. 33.
Sewell, 1947, pp. 263-64.
Material examined - This is the commeneet of oncaeide
that oocure in our waters. However, it occurs in only small
numbers in plankton. Size: female 1.25 mm . and male 1.0 mm

Distribution - This apeoies is roported from all the great oceans.

Bomarka - Sewoll (1947) reoognised two varieties: forma tyoiog sowell ranging from \(1.85-1.25 \mathrm{~mm}\). and forma venolla Parron ranging from \(0.85-0.95\) mim. The main pointa of morphological difference between these two forme, besides the size range consist in that the genital segment is a little longer and the last abdominal segment a \(1 i t t 10\) shorter in forma typica than the correeponding segments forma renella. It is obvious from the sise that the present material represents forma typica. 171. Q. aleved Prucht1, 1923.

Prucht1, 1929, p. 455, pl. XXVI, figg. 19-22. Sewell, 1947, p. 258.

Material examined - Three female specimens of this copepod are taken in plankton of the Gulf of Mannar in March 1960.

Size: Lemale 0.95 mm .
Distribution - Australian Barrier Reefs, Malay Archipelago, Ara Archipelago, Arabian Sea and the Gulf of Mannar.

\section*{SAPPHIRINIDAB}

Sowell, 1947, p. 264.

\section*{Genus Sapphirina Thompaon, 1829}
G.0. Sars, 1921, pp. 113-14. Sowell, 1947, p. 264.
172. S. inis Dana, 1853.

Dana, 1853, p. 1239; 1855, p1. 87, fige. 1a-d. Sewell, 1947, p. 266.

Material examined - Five female and three male specimens of this copepod are obtainod from plankton in April 1960 from the Gulf of Mannar. Stze: female 5.1 mm , and mele 5.0 mm .

Mitwibution - This is very widely distributed species being prement in Atlantic, Pacilic and Indian oceans. 173. 8. nismomeviate Clave, 1863.

Clems, 1863. 9. 152.
Wileon, 1932, pp. 372-74.
Sewel1, 1947, p. 267.
Krishnaswany, 1953b, pp. 73-74.
Material oxamined - Two female and three male apecimens are caught freely from plankton along with preceding apecies from the Gulf of Mannar in April 1960. Sizes female 1.98 mm. and male 2.15 mm .

Dintribution - This species has also a very wide distribution and is found in all the great ooeans.
174. S. ovatolanceolata Dana; 1849, var. germa Dana

Dana, 1853, p. 1251; 1855, pl. 87, figs, 15 a-o and 16 a-b.
Sewell, 1947, p. 268.
Materiel examined - A single female pecimen of this copepod if obtained along with the preceding epecies from plankton of the Gulf of Mamar in April 1960. Sizet 2.52 mm .

Distribution - Very cosmopolitan species, having been reported froil all the great oceans.

Genue Copilia_Dana, 1853
W11son, 1932, pp. 374-75.
175. C. 酉rabilis Dana, 1859.

Dana, 1849, p. 40.
Lehnhofer, 1926 , p. 136, fig. 13, 1-5.
Sewel1, 1947, p. 270.
Krishnatwayg, 1953b; p. 74.
Materiah exanined - A single male specimen of this copepod occurred in plankton of the Guif of Mannar in Ootober 1960. Size: 4.25 mm .
 and ia taken Irom all the great oceand.
cozxakzinas
Q.0. Sare, \(1913-18,19,194\).

Genus Coxyeseus Dras, 1845
G.0. Sarm, 1913-18, pp. 194-95.

Subgenu: Grocozycaene. M. Dah1, 1912
M. Dand, 1912, p. 42.
176. ‥ (U.) Iongistrile Dane, 1849

Dana, 1849, p. 36.
M. Dahi, 1912, p. 42, pl. VI, 12g. 6-13, pl. VII, IIge, 1-3.

Sowe11, 1947, PD. 277-78.
Material examing - A fow male specimens occurred in plankton of the Gule of Mannar in August 1960. Size: male 2.05 mm.

Dietribution - This species is widely aistributed in the Indo-West Paetrie.

Snbgenue Ditriohocorycgene M. Dahl, 1912.
M. Dahl, 1912, p. 31.
177. C. (D.) geiattous F. Daht, 1894.
M. Dah1, 1912, p. 74, pl. II, IIgs. 1-9.

Tanka, 1960, p. 79, p1. XXXIV, figs. 3-4.
Material examined - Beveral specimens of both sexes occurred in plankton of the Gulf of Mannar in 0otober 1960. Size: female 1.18 mm . and mele 1.10 mm .

Dietribution - This ie widely distributed in the Indo-West record
Pacifie but the present appears to be the first for this species trom the Gult of Mamnar.

Romerke - Lire other ditriehocorycaeids thi: apecies also has two setae on the peg-like rudiment of fourth endopod.
(P1. XIII, 11). In dorsal view anal segment is broader in proximal half. In male the genital segment (Pl. XIII, 10) is as long as the abdominal segment. Oaudal rami are as loag as abdominal segment in female but are slightly longer in male (P1. XIII, 12). M. Dah1 (1912) in her key to the identifioetion of apecies divided Ditriohocofycacus into two groups, first group consisting of those species in which the rami are ahort or only alightly longer then anal segment, and not two third as long ae the genital segment. G. (D.) asiatiane falls into this group.

Subgenu Goryoella Parren, 1911
Farren, 1911.
178. g. (g.) adbulua Giesbreoht, 1892.

Giesbrecht, 1892, p. 675, p1. 51, figa. 22-23.
M. Dah1, 1912, pp. \(145-18\), p1. 15, fige. 1-4, 9, 10, 25, 35 : 36.

Material examined - This is the commonest of coryoseide of this area and ia obtained in good numbers during SeptemberDecomber. Sise: female 0.93 mm.

Distribution - Mediterranean sea and the Indo-Weat Pacific.

Subgenus Gozycenug M. Dahl, 1912.
M. Dahl, 1912, p. 12.
179. C. (G.) gReoionus Dana, 1849,

Dane, 1849, p. 38.
M. Dahl, 1912, p. 13, pl. 1, fige. 1-13, pl. i1. Pige.1-4.

Material examined - Thim species occurred in rare numbers several times in plankton of the Gulf of Mannar, particularly during colder months. gizes female 1.75 mm . and male 1.50 mm .

Abnorial male - A aingle abnormal male apeoimon of this epeoies is obtained in the first weok of July 1960 from plankton of the Gulf of Mannar. This specimen diffore from the typical malen in the anymetry of caudal rami. The left ramus is distinetiy morter, having a \(25: 33\) ratio with the right rame. The apecimen is fully illustrated (R1. XIII, 1-9). The abnormality of the oaudal rami has already been noticed in other species of this gomus; but in such cases the left ramull is the longer.

DARtribution - This is a very widely dietributed apecies being present in all the great oceans.

Subgenue Onohocoryeatua M. Dahl, 1912 M. Dahl, 1912, P. 82.
180. G. (Q.) adilis Dana, 1849.

Dana, 1849, p. 37.
M. Dah1, 1912, P. 84, Pl. XII. F1g. 10-20.

Sewell, 1947, p. 284.
Material examined - Several specimens of both sexes ocourred in the plankton of the Gulf of Mamar in January 1960. Size: fomale 1.02 mm . and male 0.98 mm .

Distribution - Distributed in tropioal Atiantic and the Indo-Pacifie.

Renaris: - This species as well as the following one are oharacterised by a very large male antema. The endopod of fourth leg (P1. XIII, 13) is reprenented by a ingle seta borne dietinctily on seeond protopod eegment. In female genital aegment (P1, XIII, 14) and caudal rami are of equal longthe while in male rami are a little shorter. Ho hook
is present on male genital segment. Sewell (log. git.) noted that the two rami are, in everal inetances, of unequal lengthe, the left being larger in propertion of 20:21. 181. G. (O.) gatug F. Dahl, 1894.
F. Dahl, 1894, p. 72.
M. Dahl, 1912, p. 99, pl. XII, IIgs. 17-24.

Materiel examined - Several female apecimens of this copepod are oolleoted from plankton of the Gulf of Mamar in Oatober 1960. Size: 0.9 mm.

Distribution - This apecien appears to have a confined dietribution in the Indo-Pacific. This is the first record of this species from the Gulf of Mannar.

\section*{monstrillitbas}
G.0. Sare, 1921, pp. 7-10.
 Eamgors Malaquin and Monatrillongis 0.0 . Sars are the Iite genera, arranged chronologieally, belonging to this family. Sewoll (1949) has, however, reoognised the difficulty experionced in differentiating theme varlous genera. The only chargeters that appear to be of some use in separating the different genera are the number of segments in abdomen of Tomale and the number of setae of caudal rami, but even these charaeters are of only linited value. G.0. Bars (10g. oft.) has syonymised Hacmocers with Gymbsams. Sowell (100. ait.) argues: "If the differences between Yonatrillopsia dubia (T. Soott) and all other species in the group are sufficient as suggested by Sars to warrant the creation of a soparate gemus for its accommodation, I can see no reason for refusing to
 Thampaleat is conceived in a reatricted sense, being contined te Kroyer's original speoies. In the present study only two opecies of Gxmbsong are obtained and therefore, no effort is made at reexamining any generio validity. Attontion is draw to the detailed discussion rendered by Sewoll (100. oit.).

Genu: Oymbesers Thompon, 1888
Thompan, 1888, p. 145. Giesbreaht, 1892, p. 578. G.O. Sare, 1921. P. 19. Sewell, 1949, p. 142.
182. G. bulletue (A, Scott), 1909.
A. Seott, 1909, D. 240, Dl. LVIII, Iign. 7-8.

Material exenined - A fow male specimenc of this copepod are obtained from plankton of the Gulf of Mannar in Augant 1960. Sise: 1.6 ma.

Distribytion - Malay Archipelago and the Oult of Mannar. This is the first record of this spocies outside ite type locality.
183. Q. tropian Wolfondon, 1906.

Molfenden, 1906, pp. 1025-26, pl. XCiX, fig. 31-33
Prased, 1946, p.
Matexial examined - A single fomale apecimen is obtained
along with the preceding species from plankton of the Gulf of Mannar in Auguet 1960. Size: 1.89 mm .

Distribution - Maldive Arohipelago and the Gulf of Mannar.

\section*{SUMMARY}

One hundred and eighty three species of aopepodes belonging to the ordere Calanoida, Harpacticoida, Oyolopoida and Monetrilloida are identified and included in the present account. The following nine apeoies are entirely new to science and are desoribed in detail; two new apecies are acoomodated in two new genera:量dgarayie kriahnagrawis n. ap.,
Perepeltidium niohollad n. sp., Porcellidium mileng n. sp.,
Rohinoleoponte tropian n. sp.,
Incomyson gasinit n. gon. et. n. sp.,
Semelloponting rectiangulun n. gen. et. n. sp.,
Sabelliphilus folleces n. op.,
Egeudantheseius mormalue n. ap. and
P. brevicsuda n. sp.

Six other apecies (three Harpactieoids and three Oyclopoids)
appear to be new, but are left unnamed because of insufficient meterial.

The undesoribed males of the following pyeoies are known for the first time and their desoriptions are inoluded in the present work:
Eldgemeyis typios Thompson \& Scott, Buryte brevioaude Sowell,
Asterocheres orientalis Sewell,
Gryptopentiug graoiloides Umerkutty,
Peltidius enculatum Thompson \& Seott,
Porcollidium revense Thompson a scott and

\section*{P. geotti Pesta.}

Twentyfive species included in this thesis are reported for the first time after their discovery. Some additional morphological notes are given on these species.

Fifteen apecies of oopepods are recorded for the first time from the Northern Indian ocean, while several others are reported
\[
20^{\circ}
\]
newly from the southeast coast of India. The presence of several Atlantic species in our waters is particularly intoresting.

The Oyclopoid family Asterooheridee Giesbrecht is divided into two subfamilies, Asterocherinee nov. and Cletopbatiinae not. Arguments are put forward for abandoning the division of Batomolepidae into two subfamilies as was done by 2iselt (1959).

Brief considerations are included on the classification, specificity of association and distribution of copepods.
\begin{tabular}{|c|c|c|}
\hline Baird, W., & 1843 & Note on the Iuminous appearanee of the sea, with descriptions of some of the entomostracou insects by whioh it is oocasioned. Zoolegiat (Newmen), vol. I : 55-61, 3 Ifg. \\
\hline Boequet, ©., & 1952 & Copepoden memi-parasites dee Eohinodermen de le region de Ronceft. Description de Lichomolaug asteringe n. op. Bul1. Boa. SaO1, FT. , 77 : 495-504. \\
\hline & 1957a & Copepodes parasiten a'Invertebres des cotes de Prance. I. Sur deux genres de la famille des Claumididae, commenasur de Holluaques. - Proa. Kon. Hed. Akad. Wetensoh. Ansterdam, ser. C, vol. 60, no.2, p. 212. \\
\hline * & 1957b & Copepodes parasites d'Invertebrea des cotes de Prance. V. Le genre Synaptiphilu: Canu et Ouenot. Ihid., C. Vol. 60, no.5. p. 679. \\
\hline Brady, 0.8. , & 1880 & A monograph of the British free and semiparasitic Copepoda. Vol.2, 182 pp ., ple. 34-82. Bay 800., London. \\
\hline & 1883 & Report on the Oopapoda colleoted by H.M.S. Challenger during the Jears 1873-76. Rep. Sic. Hes. Voyage of H.M.S. Onallerger, 2001., vol.8, pt.23, \(142 \mathrm{pp} . ; 55 \mathrm{ple}\). \\
\hline & 1899 & On marine copepods of Hew Zealand. Irange Zool. Sec. Londen, XV, 2, London. \\
\hline \begin{tabular}{l}
\(\qquad\) \& \\
D. Roberteon,
\end{tabular} & 1873 & Contributions to the study of the Entomostraoa. VII- On Marine Oopepoda taken in the Weat of Ireland. Ann. Man. Mat. Kist., ser. 4, vol. 12, pp. 126-42, p14.8.9. \\
\hline Breemen, P.J. vam & ,1908 & Copepoden. In "Mordisohes Plankton", rol.4, pt.8, pp. 1-264, 251 text ifgs. \\
\hline Braham, \({ }^{\text {, }}\), & 1953 & Indieche Diaptomiden, Peeudodiaptomiden und Oledoceren. \#iten, Ost. Zoole Z. Band IV, Heft. 3. \\
\hline Canu, E., & 1892 & Lee Copepodes cu Boulonnaie. Trat. Lab. \(\frac{Z_{002} \text {, max. Wimerevx, }}{30 \text { pli.. }}\) vol. 6. \(292 \mathrm{pp} \cdot\), \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \[
25
\] \\
\hline catane 0 & 1863 & Die Irellobenden Copepoden nit besonderer Derubkeinghtigung der Faxme Dentrohlande, der Fordsee und des Mittelmeeres. \(230 \mathrm{pp}, 37 \mathrm{pls}\). Leipilg. \\
\hline * \({ }^{\text {c }}\) & 1866 & Copepoden-Fauna von Mimza. Bin Beitras sur Charakteristif der Formen und deren Abanderracgen "in Sinne Darwin' \({ }^{\text {E." }} 34 \mathrm{pp} \cdot: 4 \mathrm{pla}\). Marburg und Leipmig. \\
\hline Cleve. P. T. & 1901 & Plankton Irom the Indian Ocean and the Malay Archipelago. Kongl. Srenets Fet. Arad. Handi., 35(5): 58 pp., 8 pls. \\
\hline Dahl, F*, & 1894 & Die Copepodenfauna des unterm Amasona Ber. Haturforgeh, Ges, Pretbrug, new Ber. 8 :10-23, p1.1. \\
\hline Danl, We, & 1912 & Die Copepoden der Plankton-Expedition I. Die Corycacinen. Mit. Beruckeichtigung aller bekannten Arten. Brgebn der Planirton. Expeaition der Humbold Etiftung, vol.2, \(136 \mathrm{pp*}, 16 \mathrm{pla}\). KLeL and Leipsig. \\
\hline Dakin W*J., and A. Colefax, & 1933 & \begin{tabular}{l}
The Marine Plankton of the Coastal Waters of Hew South 謂ales. I. The chief planktonic forme and their ecamonal Lítribution. Pree. Iinn. \\

\end{tabular} \\
\hline * Dana, J.D., & 1849 & Conepectus Crustaceorum quae in orbis terrarum circumavigatione, Canio Wilkes classe Reipublicae Foederatae man duce, lexit et desoripeit Jacobus D. Dana. Pt.2. Proo. Amax. Agad. Arte and Sei., vo1.2, pp. 9-61. \\
\hline * & \[
\begin{aligned}
& 1953- \\
& 1955
\end{aligned}
\] & United States Exploring Expedition during the years 1838-1842, under the command of Charles Eilkes, U.S.M, Crustacea, 14, pt. 2: 692-2638; follo atlas, 96 pla. 1855. Philadelphia. \\
\hline Rustt, J., & 1959 & Bntamolepis ndriae n.sp., ein Deitra sur Kanntrie der kaus bekannten Gatt. ungen siphonostomer Ceyolopoiden: Intomolents. Lepeonsylius und Parmul (Oopepeda, Orust.). Aus. Stitirugeberichten. Onterr. Akad, Fiss. Abt. I 168(7). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \[
260
\] \\
\hline \multirow[t]{4}{*}{Farren, G.P.*} & 1913 & Plankton from Chriatmae Island, Indian ocean. 2, On Copepode of the genera O1thone and Paroithona. Proc, Zool. Soc. London, 181-193; p18. 27-31 (1913) \\
\hline & 1920 & On the local and aeasonal distribution of the pelag1e Copepeda of the southwest of Ireland. Publ. Cir. Cons. Explor. 度ex. 73 - 30 pp . \\
\hline & 1929 & Copepoda. British Antaretic (Merra Mova") Expeaition, 1910. Nat. Hist. Report, 2001., 8(3) 203-306, 4 ple, 37 textifg: \\
\hline & 1936 & Copepoda. In: Sol. Repte, Gr. Barrier Reef Bxpea., 1928-29, 5(3): 73-142, 30 figs. \\
\hline Mreminger A.; & 1957 & Hew Gemus and two new species of Tharybidae (Copepoda Oalanoida) from the Gule of Maxieo with remarks on the status of the family, Pigh. Ball. of U.S. Rish and Illdife fiervice, 57, Fishery bulletin 116 . \\
\hline Pruchtl, P*, & 1924 & Die Cladoceren-und Copepoden-Fauna des ArumArchipels. Arb. Zool. Ingt. Univ. Imabruek, 2, pt. 2, \(114 \mathrm{pp} ., 79\) fige. \\
\hline \multirow[t]{2}{*}{*Giesbrecht, W.,} & 1888 & Elence del Copepodi pelagiei raccolti dal tennente di vascello Gaetano Chierchia durante 11 Viaggio della R. Corvetta Vattor Pisani negli ami 1882-85, dal tenonte di vasoello Francesco Orisini nel Mar Ross, hel 1884. Atti Re Accad. Kinoei, Rome, ser. 4, vol.4, sem. 2: pp. 284-87, pp. 33038. \\
\hline & 1897 & Hotizen zur Systematik der Copepoden. 2oo1. Ans., 20 : 253-55. \\
\hline * \({ }^{\text {\% }}\) & 1898 & in Giesbrecht, w, and 0 . Schmeil, Copepoda. I, Gymoplea, Das Tierreich, Lief. 6, Orustacea. 169 pp., 31 textfige. \\
\hline * \({ }^{\text {- }}\) & 1899 & Die Asterocheriden des Golfes von Neapel und der angrengenden HeeredAbachnitte. Fauna und Fiora des Golf Von Yeapel, hongr. 25, \(\mathrm{Vi}^{2}+217 \mathrm{pp}\). . 11 pls. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline - & 1942 & Concerning the hitherto wimena males of the copepods Maropetella rosen (Dana), Xettoria gramulosa (GLesbrecht), and Gortegs parvs Tarren. Ifans Amer. Mox, Society, To1. \(5 \pi 1, \frac{10.4,430-37 .}{}\) \\
\hline Kasturirangen, L. R., & 1962 & A key to the identification of the more common planktonie copepode of Indian watera (in presa). \\
\hline Kiefor, F. & 1929 & Cruatacea Copepoda II, Cyolopoida Gnathostoma. Das Tierreioh, Iief. 53. Berlin und Leipetig. \\
\hline \multirow[t]{8}{*}{Krishnaswamy , 8*,} & 1951 & Motes on the wadeseribed males of two species of copepods. J. Wagh. Aead. Bei. : 41 (2):75-77. \\
\hline & 1952 & Some new speaiea of copepods from Madras Coast. Hec. Ind, Mug.: XIIX (3-4) i 321-36. \\
\hline & 1953a & Pelagie Copepoda of the Madras Coast. J. Madras Univ*, B, XXIII (1) \(=61-75\). \\
\hline & 1953b & Pelagie Oopepoda of the Madras Coast. Ibld. B. XXIII (2): 107-44. \\
\hline & 1953 c & Pelagic Copepoda of the Madras Gaset. Harpaeticoida. J. Zoal. Ben. India, 5(1) :64-75. \\
\hline & 1954a & A new species of Copepod from Madrag, Zool. Ang. Bd. 152 : 88-92. \\
\hline & 1954b & Three miparasitic copepods from the Madras Goast. Rec. Ind. Mus., 54(1-2) : 23-27. \\
\hline & 1957 & Studien on the oopepoda min of Madrae, University of Madras, Madran (Themia mubaitted for the degree of Doetor of Philosophy of the Madras Univeraity). \\
\hline \multirow[t]{3}{*}{Lang, K.,} & 1944 & Honographie der Harpaeticiden (vorlaufige Mitteilung) Uppaala: 39 pp. \\
\hline & 1946a & A contribution to the question of mouthpartaof Copepoda. Ark. I. Z001. vol. 38. \\
\hline & 1946b & Eigine fur die sehwedische fama neue marine "Oyolopoida Gnathosoma" nebst Bemer Kungen uber die Systomatik der unterfamilie Cyclopininae. Ibid., vol. \(38 ; \mathrm{A}(6): 1-16\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{*} & \multicolumn{2}{|r|}{\[
209
\]} \\
\hline & 1948a & Monographie der Harpacticiden (Lund). Two volumes. \\
\hline - & 1948b & Copepode "Hotodelphyoide" from the Swedish west-coant with an outline on the eystematics of the copepode. Arkiv. Tor Zool. Ba. 40 (a), 14. \\
\hline * & 1949 & On a new copepod family related to Notedelphyidae and on two new copepod species Irom South Georgia. Ibla., 42 b (4) : \(1-7,16\) figm. \\
\hline \multirow[t]{2}{*}{Inhmofer, X.,} & 1926 & Oopepoda Gopilie Dana. Wishe Brgebn con Deuteohen Tiefere Bxped ("Yelaifis) 12: 115-77. \\
\hline & 1929 & Copepoda Sapphirina Wias, Ezgeb. ("Felaivia") 25: 267-346. \\
\hline Inght, S.F. . O. Hartian, & 1937 & A review of the genera Clandidius Kommann and Hemieyclopen Boeck (Copopode, Cyolopoida), with deacription of the new species from the Horth-Eat Pacific. Univ. Oalif. Pub. Zool., XLI, Mo. 1. \\
\hline İndberg, K. , & 1952 & ```
La moue-famille des Grolopininas
Kiefer (Cruetacees copepodes).
Arkiv 1. sool., Sex. 2, Bd.4(16):
311-25.
``` \\
\hline \multirow[t]{2}{*}{Iubbock, J.,} & 1856 & On some Entomostraca collected by Dr. Sutherland in the Atlantic Ocean. Irang. Ent. Soc. Iondon. new aer., 4 :8-39. pls. 2-12. \\
\hline & 1860 & On aome oceanic Fatomostraca collected by Captain Toynbee. Srent, Iim. Soe. London, 23 ; 173-91, p1. 29. \\
\hline Marah, O.D., & 1933 & Synopsia of the oalanoid crustaceans excluaive of the Diaptomidas, found in fresh and brackioh water, ohiefly of I. America. Proe. U.S. Hat. Mite., 82 (art. 18) , 1-85. \\
\hline Marukawa, H*, & 1921 & Plankton liet and some new epecies of Copepoda from the northern watern of Japan. Bull. Inmt. Oceanogr. Moneca, no. \(384, \mathrm{pp} 15,\).4 ple. \\
\hline *Monard, A., & 1928 & Les Harpaoticoides marine de Banyule. Aroh. Zool. Bxoed, Gen. vol. 67 : 259-443. \\
\hline Monod, Th. A R. Dollfus, & 1932 & Les Copepodes paraeites de Mollueques. Ann. de Parenitol.: \(\mathbf{X}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \[
209
\] \\
\hline \multirow[t]{3}{*}{Heholls, A.G.,} & 1941a & Iittoral copepoda from South Auetralia (I) Harpaeticoida. Reg. 8. Australian Man., vol.VI(4) : 381-427. \\
\hline & 1941b & \begin{tabular}{l}
A revision of the families \\
Diosaccidae sars, 1906 and Leophon- \\
tidae T. Scott, 1905 (Copepode, \\
Harpaaticoida), Ibia., Vol. VII(1): 65-70.
\end{tabular} \\
\hline & 1944 & Littoral copepoda fron S. Axutralia; (II) Calanoida, Cyolopoida, Yotodelphyoida, Monstrilloida and Caligoida. Ib1d., vol. VIII: 1-62. \\
\hline Pesta, 0., & 1935 & Marine Hexpmotioiden aus dem Hawailsohen inselgebiet i. Beitrag. Zool. Jahrb. 8xat. vol.63 : 145-62. \\
\hline Philippi, A., & 1843 & Pernere Beobatungen uber die Copepoden des Mittelmeeren. Uber Gyolopsina. Areh. i. Whaturg. (viegmann), vol.1, Jahrg. 9, pp. 54-71, 1 table, pls.5, 4. \\
\hline Prasad, R.R., & 1956 & Purther atudies on the plankton of the inshore waterg off Mandepam. Indian J. Pinh. \(5: 1-42\). \\
\hline *Prestandrea, H., & 1833 & \begin{tabular}{l}
Sn ai alouni muovi orentacei del mari il Messina. Hefomexidi \\

\end{tabular} \\
\hline *RLohard, J., & 1893 & Heterochathe gring1dii, n. ap., Calanide nouvean provenant de ia troisione eampagne soientifique du yacht FiEfrondelle. Bril, Soe. Zool. Iranae, \(18: 151-52\). \\
\hline Roeendorn, & 1917 & Die Gattung Oithons der Deutschen Tiefaee - Expedition. Wies. Exgebn. "Yaldivis" XXII. \\
\hline \multirow[t]{4}{*}{Sars, 0.0.,} & \[
\begin{aligned}
& 1902- \\
& 1905
\end{aligned}
\] & Copepoda Galanoida. In account of the Cruatacea of llorway with short deseriptions and ifgures of all the species. Vol. 4. Bergen. \\
\hline & \[
\begin{aligned}
& 1903- \\
& 1901
\end{aligned}
\] & An account of the crustacea of Homway. Vol. 5 : Harpacticoida Bergen. \\
\hline & \[
\begin{aligned}
& 1913- \\
& 1918
\end{aligned}
\] & An account of the orustacea of Norway. Vol. 6 : Cyclopoida Bergen. \\
\hline & 1921 & An account of the crustacea of Morway. Vol. 8 : Konetrilloida and Hotedelphyoida. Bergen. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{*} & & \[
294
\] \\
\hline & 1925 & Copepoden particulierenent bathypolagiques prevenant dea campagnes seientifiques du Prince Albert Ier de Monace. Ree. Camp. Sei. Albert de Monace, 69, 126 ple. text, 408, pp. \\
\hline \multirow[t]{2}{*}{Sohmanse, H.P.,
K. Lehnhor} & 1917 & Die 蓶ingalanyi Arten, inr* Eys tematik, Entwieklung and Verbreitung, Zoole Ans. Vol.48; 305-19, 24 text IIge. \\
\hline & 1927 & Copepoda (4): Rhingalanue Dana 1852 der Deutsohen Iiefsee Expedition. Systematik und Verbreitung der Gattung. Wise. Ergebn, "Valaivia", vol. 23 , pp. \(355-400,29\) textige., tabs. ame. \\
\hline Soott, A., & 1909 & Copopoda of the Siboga Rxpedition, Part I. Free-swimaing, Iittoral and semi-parasitio Copepoda. Siboga Exped., Mon, XXIX,a, 323 pp., 69 pis. \\
\hline Scott, 2., & 1894 & Report on the Bntomostraca from the Guif of Guinea collected by John Rattray, B. Eo., Trans. Limn, Soc Iond. Zool. \((2)\), 701.6 1-161. \\
\hline \multirow[t]{8}{*}{Sowel1, R.B.S.,} & 1912 & \begin{tabular}{l}
Hotes on the surface-living Copepoda of the Bay of Bengal, \\
 313-82, p1s. 14-24.
\end{tabular} \\
\hline & 1914 & lotes on the surface Copepoda of the Gule of Mannar. Epolia rexion., 9 3 191-262, ple. 17-21. \\
\hline & 1919 & A preliminary note on some new species of Copepoda. Eec. Indian Mus. \(16: 1-18\), pls. \(9-10\). \\
\hline & 1924 & Yauns of the Chilka Lake. Grustacea Oopepoda. Mem. Indian Mus., 5 : 771-851, p1 . 44-59. \\
\hline & \[
\begin{aligned}
& 1929- \\
& 1932
\end{aligned}
\] & The Copepoda of Indian Seas. Imid. 10 : 1-407, 6 pls. \\
\hline & 1940 & Copepoda Harpacticoida. Soi. Hept., John Murray Exped., 7 : 117-382. \\
\hline & 1947 & Free-swimang planktonic copepeds. Ibla., 8 (1). \\
\hline & 1948 & Freemswimaing planktonic copopeds. Geographio aiftribution. Ibia., 8 (3). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  & 1949 & The littoral and emiparasitic Oyclopoida, Monstrilloide and Hotodelphyoide. Ibld,; 9 (2). \\
\hline * & 1956 & The Oontinental Drift and the Distribution of the Copepoda. The Presidential Addrese to the 166th Sedmeion of the Linnaen Society London. Proe, IImi Soc. London.
\[
166(1-2): 149-77
\] \\
\hline Silas, E.G., * A. H.P. Umaerk & \[
1962
\] & Parasites of Scombroid fishes. Part II. Parasitic copepoda. (Paper read in the Symposium on Scombroid fishes recently held at C.M.I.R.I.) - in Press. \\
\hline \begin{tabular}{l}
Steuer, A., * \\
E. Hentichel
\end{tabular} & 1937 & Die Verbreitung der Copepodengattungen Sapphiring, Oopilig, Mracis, In Pleurotatrin, Fhinoalamy uni Cephalophanntin Sudatiantisohen Osean, Machtrag uber die Verbreitung von Plenromarga und Bhinoalenpe und Vertikalmehmitten* Inta, Ereehn. ieutgeh at1. Drped. Miteor \({ }^{\prime \prime}\), 12(2): 101-65, 85 maps. \\
\hline Steuer, A., & 1923 & Bausteine wu einer Monographie der Copepoden-gattung Aeartia. Arb, 8001 . Inst. Unit. Innabrucs, T(5): 1-56, 5 pli. 179 textifg. \\
\hline Stook, J. \(\mathrm{H}_{*}\), & 1957 & Some notes on the genus Mearochiton Brady, 1872 (Oopepoda, cyclopdda). Ann. Max, Hat. Hiat., serz.12. vol.X, pp. 378-82. \\
\hline -' & 1959a & Copepode associated with Heapolitan Molluaca. Prbl. Stas. Zool. Hapoli., XKXI (1): \(43-58\). \\
\hline - & 1959b & Copepoda associated with Heapolitan Invertebrates. IbId., \(\mathrm{Xxx}(1)\) : 59-75. \\
\hline -* & 1960 & \begin{tabular}{l}
Sur Quelques Oopepede associes aux Invertebres des cotes da Rounsilion. \\

\end{tabular} \\
\hline Tanaka, 0.. & 1960 & Biological resulte of the Japanese Antarotic Researoh Rxped. Pelagio Copepoda, Sirahana, Takayama-Ken, Japan. 1-96, ple. I-XI. \\
\hline Thompson, I.C., & 1888 & Copepoda of Madeira and the Cannary Islands with desoriptions of new genera and species. Journe Lim. Soc. London, Zool., \(20: 145-56\), ple * 10-13. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \(\qquad\) & 1903 & Report on the Copepoda colleeted by Prof. Hordinan at Ceylon in 1902. Eep, Governm. Oeyion Pearl Oybter Pisheries, Yo1. It 227-307, ple. 1-20. \\
\hline - Thorell, T.T.T., & 1859 & Biarag till kannedomen on krubtaceer som lefva 1 arter at slagtet Asetids L. K. svenska Vot.-Aked. Handl. Bd.3, 10. 8, pp. 1-64, pls. 1-14. \\
\hline \multirow[t]{5}{*}{Unmerkutty, A.H.P.,} & 1960a & Studies on Indien Copepode. 1. Paralepeopaylun mangarenais, a new genus and peeies of oyclopoid oopepod Irem the Gulf of Mannar. J. Mar. Bhol. ABE. Indis, II(1): 114-23. \\
\hline & 1960b & Studies on Indian Copepode. 2. An account of the morphology and life-history of a harpaeticoid copepod, 黑ishintra fonesi sp. nov. from the Gulf of Mannar. Ibid. II (2) 149-64. \\
\hline & 19600 & Studies on Indian Copepods. 3. Hearohinotodelphys indious, a new gomus and apeoien of Arohinotodelphyld oopepod from Indian Seas. Ibld., II (2) : 165-78. \\
\hline & 1960d & Studies on Indian copepode. 4. Deseription of the female and redescription of the male of Peoudodiaptomun ardiune Brehm (Copepoda, Calanoida) with notes on the dietribution and affinities of the species. Ibid., II(2) : 179-85. \\
\hline & 1961 & Stuales on Inaian copepode. 5. On eleven now peciee of marine oyolopoli copepode from the south-east coast of India. Ibid., III (in prese). \\
\hline Vervoort, W., & 1946 & Bielogical reaults of the Bnellius Expedition. XV. The bathypelagic copepoda calanolda of the Enellius expedition. Families Calanidae, Eucalanidae, Paracalanidae and Pseudocalanidae. Temainokia, IIII, 10 textfige, pp. 1-181. \\
\hline Wilson, O.B., & 1932 & \begin{tabular}{l}
the copepoda of the Wood Hole region, Massachusetts. U.S. Net. Mus, Bull., \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & cen \\
\hline & 1942 & The copepode of the planition gathered during the last cruise of the Carnegie. Ogrnegie Inyt. Weth. Publ. 536, Sel. Res. Oruise 7 of the Carnerie auring 1928-1929 under the command of Captain J.P. AuIt. Blology - I, v +237 pp. 16 ohart , 136 fige. \\
\hline - & 1944 & \begin{tabular}{l}
Parasitic copepods in the United States Inational Museum, - Proc. U.S. \\

\end{tabular} \\
\hline * & 1950 & Copepede gathered by the U.S. Pusherien Steamer "Albatross" fron 1887-1909, chiefly in the Pacific ocean. Contributions to the biology of the Philippine Archipelago and adjacent regions. Smith. Inst. U. 8 . nat. Mut. Bu11., 100 , vol. 14(4). \\
\hline \multirow[t]{2}{*}{Wilson, M.8.,} & 1946 & The species of Platreopia Sars (Oopepoda, Calanoide). Smithmonian Misa, Coli., vol. \(106,9: 1-16,2\) f1gs. \\
\hline & 1958 & A review of the Copepod genue Ridzewhia (Calanoida) with denoriptions of new species from the Bry Tortugas, Morida. Eroo. U.S. nat. tas., 108 : 137-79. \\
\hline Wolfenden, R.E., & 1906 & Hotes on the colleation of Copepoda. In: The fauna and geography of the Maldive and Lacoadive hrohipelagoes, vol.2, supp1. 1, pp. 989-1040, pls. 96-100. \\
\hline
\end{tabular}

\footnotetext{
Reforences marked with an asterik (*) are not conmulted in original.
}

\section*{Sxplanation of Plate I}

Map of Mandapam area howing the varioue contres of cellection: A-C are the plankton collection stations and D-H are the hore collection station.


\section*{Bxplanation of Plate II}

Hifruxyid typice Thompson \& Soott
Mig. 1 Temale cormal view
2 fenal uroment coral view
3 tomele genital egmont ventral view with genital aperture*
4 fomale firat leg
5 male urosome and part of prosome dernal view

Hg. 6 female fourth leg

PLATE 11


Explamation of Plete III

\section*{Bidxanyis typica Thompson a Seot}

Me. 1 male right genioulate antennule
2 nale right geniculate antennule, nineteenth segment miarged
3 male fifth legs
4 male right fifth oxopod, terminal part onlarged
Magexayi kxighmavimyt \(n\). Ep.
Tig. 5 female maxilule


\section*{Explanation of Plate IV}

Fig. 1 fmiakedureamen with genital apertures
2 male dorsal view
3 fenal urosome and posterior part of proseme, Iateral view
4 fenale antennul.
5 Pemale antema
6 feme mendible
7 ferale fifth leg
8 female necond leg, exopod and protopod

PLATE IV


\section*{Bxplmation of Plate \(V\)}

\section*{Ridgewayt kmghnosuray n. op.}

Fis. 1 fonale corsal view
2 fenale maxilla
3 female maxilliped
4 fenale firet leg
5 female third leg
6 male right genioulate antomule
7 wale fifth legs
8 male fifth left exopod, terminal part onlarged
plate V


\section*{Explamation of Plate VI}
Gamalla Beotit Sowell
His. 1 mie urewome, lateral view
2 mal antemnule3 male eocond and third urosomal segmonte, ventral view
Altethelis pelineids \(A\). Soott
Fig. 4 female third, tonsth and firth pedigerous megmente, showing posterior epinular margint
5 lateral margina of prosomal megmenta
6 female urosome with fifth lege
Peltidiun aurivilli 0leve
Fig. 7 Temale dormal viev
8 female lateral margin of first prosomal sogment with pittea spines
9 female entennule
10 fomale Itrgt log
11 female fifth leg
Poltiatuw engulatu Thorpson \& Soott
Fig. 12 male antonnule
Synguten op.
Pig. 13 female lateral view
14 fomale antennula
15 fomale antenna
16 ferale fourth leg

PLATE VI


\section*{Bxplanation of Plate VII}

\section*{Peltidium angulatum Thonpson \& Soott}

Pig. 1 male lateral view
2 male first leg
3 male urosome, ventral view
4 male fifth leg
5 male aixth leg
Stephopontius typicus Thompson \& Scott
Pig. 6 female and male in paired condition (only one ovisac is show in ferale)
7 female urosome, ventral view
8 male urosome, ventral view
9 male antennule
10 female part of cephalosome showing various appendages
11 female third leg
P Peltidium cenirius
Fig. 12 male antennule
13 male antenna
14 male maxilliped
15 mal Itrat leg
16 male urosome with fifth and aixth legs
17 male doras view

\section*{PLATE VII}


Beplanation of Plate VIII
Parapeltidium nichollai n. pp.
Fig. 1 female dorsal view
2 fecale lateral view
3 ferale antenna
4 ferale maxillule
5 female maxilla
6 female first leg
7 male first leg
8 female second leg
9 fenale pifth leg
10 male ilfth leg
11 male urosone with sixth leg
Xouthoun maldiviae Sewell
Fig. 12 Pemale lateral margins of prosomal segments

\section*{PLATE VIII}


\section*{Explanation of Plate IX}

\section*{Parapeitidium nichollsi n. sp.}

Fig. 1 male antennule
2 female maxilliped
3 female antennule
4 female fifth leg
Porcellidium sp.
Pig. 5 female dorsal view
6 female urosome with fifth leg
7 female second leg
8 female third leg
9 female maxillule
10 female antennule
11 female first leg
12 ferale antenna
13 female fourth leg

PLATE IX


\section*{Explanation of Plate \(X\)}

\section*{Syngastes 3p.}

Fig. 1 female first leg

\section*{Porcellidium ravanae Thompson \& Scott}

Fig. 2 Pemale urosome dorsal view
3 male antennule
4 female fifth leg
5 male urosome with fifth leg
Porcellidium acutioaudatum Thompson S Scott
Fig. 6 female urosome with fifth leg
7 male urosome with fifth leg
8 male dorsal view
9 male antennule
Poroellidium fimbriatum Claus
Fig. 10 female urosome with Pifth leg
Porcellidium unicua n. sp.
Fig. 11 male and young female in paired condition
12 female urosome with ifith leg
13 male antennule
14 male urosome with fifth lega
15 female dorsal view
16 female second leg
17 female third leg
18 female fourth leg
Scutellidium longicaudam (Philippi)
Pig. 19 female dorsal view
20 male dorsal view
21 female fifth leg

PLATE X


\section*{Explanation to Plate XI}

Echinolapphonte tropica n. sp.
Fig. 1 female dorsal view
2 female lateral view
3 female antennule
4 female antenna
5 female mandible
6 male antennule

7 male urosene showing fifth and sixth legs
8 female firmt leg
9 female maxillule
10 female trird leg
11 famale second leg
12 female maxilliped
13 female fourth log
14 femaie fifth leg

PLATE XI


\section*{Explanation of Plate XII}

Asterocheres ep. (1)
Fig. 1 Pemale dorsal view
2 Pemale antennule
3 Female siphon
4 Female mandibular palp
5 Pemale maxillule
6 Female maxilla
7 Female maxilliped
8 Female first exopod
9 Fenale third endopod
10 Female fifth leg

\section*{PLATE XII}


\section*{Explanation of Plate XIII}

\section*{Coryoaeue spectosus Dana}

Fig. i abnormal male dorsal view
2 abnormal male lateral view, right side 3 abnormel male antennule
4 abnormal male antenna
5 abnormel male mandible and maxillule
6 ahnormal male maxilla
7 abnormal male maxililped
8 abnormal male caudal rami enlarged
9 abnormal male fourth leg
Corycsous (Ditrichoocryoseus) asiaticus F. Dahi
Fig. 10 female urosome
11 female fourth leg
12 male urosome
Corycaeus (Onchocorycaeus) agilis Dana
Pig. 13 female fourth leg
14 female urcsome
Corycaeus (Coryoella) gibbula Giesbrecht
Fig. 15 female fourth leg
Hemioyclops indicus Sewell
Fig. 16 female dorbal view
Pseudocyolops obtusus var, qeymetrias nov.
Fig. 17 male dorsal view
Hemicyclops quetralig Nioholl:
Fig. 18 female urosome and part of procone
Pseudocycloos obtusus var. seymmetrios nov.
Fig. 19 female fifth leg
Calanopia thompsoni A. Scott
Fig. 20 male (ainormai), urosome
Porcellidum sp.
Pig. 21 female ventral view
Lichomolgus sp.
Fig. 22 female fourth leg

\section*{PLATE XIII}


\section*{Explanetion of Plate IIV}

\section*{Mrite mbrite Genbreoht}

Mg. 1 male dorval viem
2 Tomale Itret, second and third prosomal megments 3 Somale urpone with Itith lege

\section*{Invite brextende Sowell}

Fig. 4 fomale fifth leg
5 male thtemule
6 mint Itith otage uremome

\section*{PLATE XIV}


Explanation of Plate XV

\section*{Buxte brextenge semell}
Fig. 1 male domen viow
2 male uretome with fifth loge
3 Infth stage antemnale

Fic. 4 fomale dormil view
5 fomale fixtt, second and third prowomal segmenta 6 Temale Itith leg

Atmrechoren Indicna Sowell
Fg. 7 fomale antennule

PLATE XV


\section*{Explanation of Plate XVI}

\section*{Faynter}

Tig. 1 fomel uromone doran view
2 Tonale antonnule
3 Temale antoman
4 Itmale Iabrun
5 Itith etage doreal view

\section*{Astreghorec exientilis Sewn 11}

Fig. 6 male antemule

Ixplanation of Plate XVII
Attorehores mamarencia Thompion Beett
Fie. 1 Temale doxan view
2 fomale urowome with fifth leg*

Fig. 3 fomale dorsal Viem
4 Pemale urosome with ilith leg 5 male dormal view
6 male uromeme with fifth leg*
Xenthore maldian Sowell
Fig. 7 female antemave


\section*{Explanation of Plate XVIIX}

Astereoherea centatua Clesbrecht
Fis. 1 fomale posterior part of prosom and uroseme, ventral viem
2 female antemane
3 fomale antenna
4 fomale mandible
5 female maxillule
6 female maxilia
7 female maxilliped
8 male ventral view
9 male antemnule

PLATE XVIII


\section*{Mxplanation of P1ate XIX}

Atterecherres indicus Sowoll
Fis. 1 female doreal view
2 female uronome with fifth legs
3
Aterecheres 2atur (Brady)
Fig. 3 female dorsal View
4 female urosone, firet and second megmente with first leg

Asterocheren ep. (ii)
Fig. 5 fomale doreal view
6 Lemale antennule
7 fonale becond leg
8 temale third log (exopod not bhoma)
9 tomale tourth leg

PLATE XIX


\section*{Bxplenation of Plate XX}

Acteroghares 0p. (ii)
Fig. 1 fomale cophalosomal appendages in atin
2 fomale part of prosome and uronome ventral viow
Anterepontiun trotous Thompson \& Seott
Fig. 3 fomale doreal view
4 temale uxesome ventral view
Bereatemese nicxtipen (Brady)
Hig. 5 fomale antemale
Aceptiophozna soutatur Brady
Fig. 6 fomale maxiliped

PLATE XX


\section*{Incplantion of Elate XI}

Bernaterven Micortpen (Braly)
IIg. 1 temale cephalomomal appentigge in sity
2 fonale firet and seoond urosemal fegmente with fifth leg 3 tomale doreal vew

Indowzen gentint m. sen. et. n. up.
Mige 4 tomis uresone with Iifth leg
5 temale second leg
6 male uroesm ventral view

\section*{PLATE XXI}


\section*{Explanation of Plate XIII}

Indomren gasimin. gen. t. n. np.
Hg. 1 fomale doreal view
2 fomale fifth leg with apine on the gonitel oguent
3 female cophalosomal appendage in ith
4 female firet leg
5 female third leg
6 temale fourth log
7 male doreal view
8 male antennule

PLATE XXII


\section*{Explanation of RIate EXIX}
Ormtopenthue aratiotine Vmarinuty
Heg 1 male comenl view2 mie uremem vantral viaw3 male eatemmule
Asenttophorus Entitur Bravy
Fis. 4 Somie ventral viow mowing the relative longthof Eiphon
5 fomale antommule
6 temale antcana
7 tomole mailla
8 Tomale maciliule
9 Tomale maxilitpod
10 fomale omadel rant and lest uxowomal megment
11 Ele urotome with tith leg*
12 male antemanie

\section*{PLATE XXIII}


\section*{Hyplenation of Rlate XXV}
gavellopentixe senthoniluy n. gen. at. n. ip.
Hg. 1 Tomale dornal view
2 female uroseme vintral view:
3 fesale antonnule
4 Iemale ontenna
5 female maxiliule
6 ferale maxila
7 female maxilliped
- male doreal view

\section*{Sxplanation of Plate XXV}

Savellopontine reotiangulue n. gen. at. m. .s.
Mig. 1 male urosome ventral view
2 male antennule
3 female firet leg
4 female third leg
5 female fourth leg

\section*{Hereiliodes 1atericia Canu}

Hig. 6 female antennule
7 temale antenna
8 female mandible
9 female maxiliule
10 female maxilla
11 female maxilliped

PLATE XXV


\section*{Explamation of Plate XXVI}

\section*{Hexailiodes 1ateriaig Oanu}

Fig. 1 female dorsal view
2 femal last uresomal segment with omadal mand
3 femele oephalonemal apporeste in aity
4 female firet leg
5 female second leg
6 female third leg
7 fomale fourth leg

PLATE XXVI


\section*{Explanation of Plate XXVII}

\section*{Herailiodes latericis Ganu}

\section*{Fig. 1 female fifth leg in stitu}

\section*{Sebelliphilue foliagen. n.}

Mig. 2 male dorsal view
3 Ienale dorsal view
4 fomale antenna
5 female firet leg
6 fomalo fifth log
7 Pemale antemnule

PLATE XXVII


Explanation of Plate XXVIII
Sabolliphilue foliaces n. ©p.
Fig. 1 female mandible and maxillule
2 female maxilla
3 female maxilliped
4 female second les
5 female third endopod
6 female fourth leg
7 male IIxst log
8 male second endopod
9 mala third endoped
10 male maxilliped

PLATE XXVIII


\section*{Explanation of Plate XXIX}

Pegudonthessius enormalus n. op.
Mg. I female doreal view
2 Pemale antennule
3 female antemna
4 female maxilla
5 female maxilliped
6 female first leg
7 Temale second ondepod
8 Temale fourth leg
9 Temale uroeene with IItth lege

PLATE XXIX


\section*{Axplanation of Plate XXX}

Pseudoenthessius gnormalue n. sp.
Hig. 1 female third leg

Pige 2 female doreal View
3 female uxpseme with Iftth legw
4 female mandible and maxilivie
5 female maxilla
6 female maxdiliped
7 Iomale Iourth ondoped

PLATE XXX


\section*{Explanation of Plate XXXI}

Pseudoanthessius brevicauda n. sp.
Fig. 1 female antenna
2

Lichomolque sp.
Pig. 2 female doreal view
3 ferale entennule
4 Pemale antenna
5 female mandible
6 female maxillule
7 female maxilla
8 female maxilliped
9 female first endopod
10 female second endopod
11 female urosome with fifth lege

\section*{PLATE XXXI}


PAET IL
檽害 BIOLOGY

Ohapter 1. Developmentel Oycle

\section*{Introduetion}

The developmontal tagen of the marine calanold copepods have beon rather well atudied in countries adjointimperate
Ing feas. In our country, however, no oulanoid opecies hes beon inventigated to ite complete development though the late oopepoaite stages of a nuber of species have been described by Sewell (1932, 1947). This Iag in studies on the development of marine calanoids is atributable to the facts that majority of them do not carry egge and that great diffieulty is experieneed in the laboratery in treeing out the life histomien from the various stages as colleoted from the plankton. In tropieal and subtropical countriea this is greatly onhanced by diffieulties enoountered in Eeeping the copepode alive for afarly long period under captivity. This unbalanced atate of affaire in our knowledge of the life eycles of maxine planktonie fama of the tropice has recently been pointed out by Bogorov (1958) who hes greatiy stressed the need for working out the developmental atages of the mameally iportant planktonic oitems. During the present inveatigations it hat been possible to etudy, in full detail, the developmental oyele of two species, Pacudodiaptomas anrivilii Cleve, 1901 and Habidocers bengalenais Krishnaswamy, 1952.

The oopepod life oyele generally inoludes six napliax etagen, the lat of which moults into the first copepodite
stage. In both the above species, however, there are only Ifve Iree-living naupliar stages, the firet atage being suppressed. In the case of ․ . ampivilif this has been experimentally established. Whether it is true or not for I. bengelensis could not be proved as the adult spermetophorecarrying females never laid egge in the laboratory. However, even with Ho. 20 bolting silk nete no naupliue which could be linked with the second nauplius of this species was obtained. This tendency to reduce the number of early developmental tages has been noticed in a number of copepods by the earlier workers (vids. Johnson, 1948).

In all other features the development proceeds in the general calanoid pattern. There are five pre-adult copepodite stages, the sexael diatinetions auch as those found in the antennule and Ifth lege comaencing to appear from the Iourth stage onwards. Beginning Irom that atage the male 1s of smaller size. The order of segmentation of the four paire of mwiming lege follows the anm pettern as that found in other calanoide that have been studied.

\section*{Preendurs}

The material used in the present study was obtained from the aurface plankton collections taken in the two stations, A and B, in the Gulf of Mannar (P1. I). Both bolting eilk and organdie nete were employed in the collection which extended from April, 1959 to Maroh, 1961. Living as well as preserved opecimens were examined for
working out the suecessive tages.
 females were freehly plaked from the plankton and kept Individualiy in separate beakery of 100 ec . and 25000. capacities. In most cases hatohing took place within 24 hourw. Batches of nauplil were removed at 8 -hourly Intervale and preserved for 1ater examinationg. However, In majority of the cased all the nauplif in the eulture dishes died on the fourth or fifth day and none lived through all the and etages. Consequently aifferent stagee freshly picked from the plankton were reared through at least one noult in the laboratory and thum the next higher stage determined. A total of five specimens of the lant naxplius moulted into the firet copepodite frow whioh it was comparatively eany to traee to the adult ttage.

Spermatophore-carrying adult females of I. bengalenals were sinilarly kept in the laboratory so as to obtain the firet namplii. Bat all atteqp in this direetion failed as the copepod died on the second or thixd day and no eggs were laid under captivity. However, during the months of April-May, 1960 mumerous adults and eariler atages of I. bengeloneis were found to ewaril the surface waters. An no other mpecies of this genus wan found to oceur during this period, it was proposed that the earlier atages noticed might belong to the same adult species.

These nauplif were freahly taken from the planicton and reared in the laboratory, eatabliahing, in all, five sequential stages. The correot identity of the larvae was then determined by rearing the last nauplius through the eritical moult to the first copepodite which was traceable to the adult of I. bengelensis.

\section*{Psendodientomen aurivil11}

This apeoies is common in Indian waters and is taken in great numbexs during the breeding periods. Johnson (1948) has described the post-embryonic development of Peondodieptoman (Pacudodiaptallous) ouxihalimus, specien which he himself oreated fow years earlier (Johnson, 1939). The developmental history of E : auxivilli ohow olose
 in the structure and segmentation of the various appendages of both naupliar and copepodite atages and in the suppression of the first nauplius, the egg hatohing into a stage which ia morphologically equivalent to the second nauplium of other calanoid species. However, profound differences exist in the pattern of segmentation of the body and in the fifth pair of lege. The most important specific feature of the nauplil appeare to be the length-breadth relationship, along with the etrueture of caudal armature and the number of setae borne on antennule. In the present species the nauplius that hatohes out from the egg has a \(62: 38\) relation between its length and breadth and this is maintained, with ilttle alteration,
through all the moults to the ifret copepodites. In the following pages struetures that have already attained adult features in the first copepodite itself are only briefly alluded to while others are deacribed in detail.

Mapliue II (P1. XXXII, 1.)
Average size 0.162 mm . Body very opaque, eye red. Generel form oval without indication of hind body. Labrum is prominent in lateral view. Caudal armature, in ventral view, oonsiste follows: The posterior tip ia bifureated with the right lobe silghtly at a higher level then the left one. A strong fairly long spinous seta is borme on the left lobe while an almot equally long fragile geta is borne on the right side. Tufte of small briatles are present at the bases of these two setac. Slightly in front of the caudal armature hairs are present in horizontel rowe.

Antennule is 3-segmented, the segmente bearing one, two and five setae respectively. The last segment also beare a number of setules on its inner margin. There is a gradual inarease in size from the chort basal to the fan-11ke terminal segment.

In antenne the protopodite is 2-segmented, the ondopodite is 1-5egmented and the exopodite 6-sogmented. The basal protopodite bears a trong manticatory procese and two short setae. The former is orientated in sueh a way
that its iree end is drected towards the labrum. The aecond protopodite segment also bears two short setae. The ondopodite is thort and atwipy bears a ingle aota on the inner lateral margin and three setae on the apex. Each of the eegrente in the exopodite is provided with one seta except the last which has two.

The segmentation of the protopodite and the endopodite of mandible is similar to that of antemna, the exopoaite, however, being only 4-segmented. In the basal protopodite the future manticatory blade is indicated by a stout mpine. The second eegment carries only two short eetac. In the endopodite two groups of setae are seen. As the aegment is more or leas circular these groupe cannot be termed as inner and terminal. The 4-begmented exopodite is hardiy longer than the ondopodite and beare five aetae. There is no trace of other appendages.

> Hauplium III (P1. XXXII, 2.)

Average sise 0.186 ma. The length-breadth ratio of this stege is 62:38. The poeterior side tapers more acutely 00 that what may be termed the posterior body is indicated, In lateral view thie is seen more harply. In The caudal armature the etrong seta on the left ade is slightiy reduced in comparative length. A thort eet. is added towards the left side on the sam lobe. The oriontation of the aifferent setae is better observed in the Lateral view where the fragile seta on the right eide is
seen projecting postero-dorsally, while the left side seta is projecting etraight backarde. The newly added seta ocoupies an intermediate position.

There is no ohange in the Iiret and second segments of antennule whioh continue to be as such through all the further otagea an well. The fan-like third segment now carries seven aetae which are arranged more or less equispaced on the terminal suboircular margin. A few setae are aeen on the inner margin in continuation with theae aetae.

The maticatory process of firet protopodite of antenna becomes stronger. An additional seta is present on the second segment. In the exopedite the full complement of eight setae are present, the firat four eegments with one seta each, the last two segments with two each. The endopolite is 1-segmented and has three setae on the lateral and four on the apioal margins.

The masticatory blade of mandible ia toothed at its free end. In the second segment of the protopodite one more seta is added, making a total of three. In the endopodite also there are two additional setae, one in the proximal group and the other in the distal. The exopodite is 5-jointed, first four segments with one seta each and the last with two setae.

Maxillules are represented by two atrong incurved epines, borne a little behind the mandiblen.

Heapline IV (P1. XXII, 3.)
Average sise 0.216 mm . In general shape thex is not man ohange from the previous atage except that the doraal ide is more convex. In the caudal armature there are four setae now, two on each lobe. The opinous seta remaing the longest and stoutest though it: length compared to that of the body is much less. There are several bristles around the caudal setat, as well as in front of it in the posterior region of naplius. The length-braadth ratio is \(62: 38\).

There are eleven setae and an aesthetask on the terminal segment of antennule, beaides, again, af haire on the lower inner margin. The setae towards the apex are longer than tho whioh are more proximal.

The change in the structure of antenna consiste in the addition of one seta each on the ifret protopodite segment and on lateral aide of the still 1-segmented endopodite and the trensformation of the masticatory process of bseal protopodite into a normal apine.

In mandible the broad protopodite segment has a aeta in addition to the fairly etrong maticatory blade. There is also addition of one sata each both on the second protopodite and on the exopodite.

Maxillule is now a bilobed structure, each lobe bearing three setae which are rather stout and arranged in radiating manner.

Tapplive 7 (21. सrxI, 4.)
Average aire 0.246 the The longth-breadth ratio 1: 63:37. The body thow traoen of tegmentation. The caudal armature is fully developed and iffers iron that of fourth stage in having one more short eeta on the right lobe, besides a number of bristles and hairs.

There are thirteen setae and an aesthetatk in the last segment of antennule. Few setulea are present on the inner lower margin.

Ther ia no change in antenna, mandible and maxi11ule. A rudimentary lobular maxille with two setae 1s present a little beyond maxillule.

Haupliue VI (P1. XXXII, 5-6.)
Average aise 0.273 mm . Vell-defined conatituenta of the future cephalosome, two pedigerous megmente and the postetior body are present. The length-breadth ratio of the larva is \(63: 37\).

The last aegrent of antennule earries sixteen setae and an aesthetank. There ia no change in the structure of antennae, mandibles, maxillules and maxillae fron that of the earlier stage. Maxilliped and first twe by pairs of legs are represented mudimentary leaf-like structures.

Copepodite I (P1. XXXII, 7-9.)
Average aise 0.45 mm . The body is composed of a prosome of four segments and arosom of two egments.

The oophalomomal aegmant it more or lees rectangular with a broad anterior ond. The posterior corners of prosome are rounded. The first and second thoraoio segments bear a pair of legs each, while the third segment carries rudinentary third legs. The firet urosomal segmant is short and at first looks a part of the pronome. But that this segment belonga to the urosome is clearly indiaated by its fate in the wabequent stages. There are five osudal netae on each ramus which bear very fine hairs.

Antennule (P1. XXXII, 10.) is composed of nine segmente which bear the following relative lengthes
\begin{tabular}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
\(18.5 \quad 12.0 \quad 16.0 \quad 7.25 \quad 6.75 \quad 8.0 \quad 9.0 \quad 9.5 \quad 13.0=100\)
There are very few setae and aesthetask on the constituting segments, though they are abundantly present in the later stages. Antenna ( \(\mathrm{P} 1 . \mathrm{XXXII}, 11\). ) has a protopodite of two segments, an endopodite of two segmente and an exopodite of three segments. This is also the pattern of segmentation noticed in the aduit. Mandible (Pl. XXXII, 12.) is fommed by biting ramue and a biramous palp. It is clear that there are two segments in protopodite, two in endopodite and four segments in exopodite, as there are in the adult. However, the lines of separation between the various aegments are indietinct. The basio pattern of adult
strueture has aleo been developed in maxilivie (11. XXXI, 13). But, here, the diatal parts of appondege, especially exopodite and ondopodite are 111-formed without elear partition. In marilia (P1. XXXI, 14) the protopodite with four ondite is clearly seen. Each ondite beary, however, only two setee, except the firet endite which oarries three setae. The egmentation of endopodite is very indietinct as it is in all the stage including the adult. Maxilliped (P1. XXXII, 15) is only 3-beguented. The firet esgment is very large with three groups of setae. The second and third segmente carry terminal setae, two and ix respeatively.

The two pairs of ewimaing legs (P1. EXXI, 16-17) are biramovie, each rarus being l-segmented. The aetal arrangematy are shown in the 1imures. The third leg ie rudimentary.

Copepodite II (P1. IXXII, 18.)
Average sise 0.54 mim. An addtional segment is present in the prosome, the urosome, again, being 2-segmented. The IIret three thoracio segments bear biramous legs while the last segment is provided with rudimantary fourth legs. The posterior corners of proseme are rounded.

\footnotetext{
Antemule (P1. XXXII, 19) 1s 14-segmented, the Begments bearing the following comparative lengths :
}
\begin{tabular}{lcccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9.63 & 9.63 & 5.30 & 4.70 & 3.77 & 4.30 & 5.01 & 5.66 & 7.20 \\
10 & 11 & 12 & 13 & 14 & & & & \\
6.40 & 8.30 & 8.70 & 9.90 & 11.50 & \(=100\) & & &
\end{tabular}

Maxilliped (P1. XXXIII, 7) is 4 -segmented. First segment reasmbes the corresponding segment of the earlier stage. The second segment which is nearly half the oise of first bears three equiapaced setae in its distal half. Lat two segment are rather mall and bear two and 0 ix setae reapeetively. First three segments, in fact, represent the sped while the thruinal segment represent e oreodit which becomes megronted in later stages.

There are three pairs of biramous miming lego (P1. XXXII, 4-6) and a rudiment of the fourth, borne by four free thoracic events. In first two legs each ramps is 2-pegmonted while in the third it is only 1-megmented. The protopodite segments do not bear any seta in any of these loge.

> Copepodite III (PL .XXXIV, 1.)

Average else 0.63 ma. In promos the full complexmont of dx segment e in present, whereas urosome continues to be 2-segmented. There is no sign of the fusion of the first two and the last two segments of proseme, feature observed in adult animals. The posterior corners are til rounded.

Antennule (21. XXXIV, 2) is 21-segmented, the constituting sogments having the following relative longths?
\begin{tabular}{lcccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
7.5 & 2.7 & 2.4 & 2.4 & 2.7 & 3.0 & 1.35 & 2.4 & 2.4 & 3.0 & 3.75 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
4.1 & 5.1 & 5.1 & 6.1 & 6.5 & 5.8 & 7.15 & 7.5 & 8.2 & \(10.85=100\) \\
Maxilliped has reached its full development. & The endopo- \\
dite is 5-segmented though some of the partitions are not \\
very discernible.
\end{tabular}

Firet four pairs of ewimaing lege (Pl. XXXIII, 8-11) mint are biramous and the fifth lege rudimentary. The rami of first three pairs of legs are 2-segmented each, while those of the fourth lega are unimarous. Basal protopodite of the firet three lege bear one seta each. Mo sexual diatinction is possible.

> Copepodite IV (P1. XXXIV, 3.)

Average size female, 0.81 mm . and male, 0.78 mm . The fusion of cephalosome and first prosomal segment as well as that of the last two prosomal segmente are indicated, though the dintinctnese of the various segments is atill very clear. Ponterior corners of the last segment are cleariy produced into symmetrical angular projections in both sexes. Urosome is 3-segmented.

Antennule (P1. XXXIV, 4) is 21-segmented in both sexes. The male antennule, however, differe in the
different relative lengthe of segments 13-17 (both Lneluaive). The segmente of fomale antennule share the Pollowing proportionate lengthe:
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}
\begin{tabular}{lllllllllll}
8.4 & 3.7 & 4.6 & 3.1 & 3.4 & 2.0 & 2.0 & 2.6 & 2.8 & 4.0 & 3.7 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & \\
4.5 & 4.2 & 7.9 & 4.9 & 4.6 & 5.1 & 5.5 & 6.7 & 7.6 & 8.7 & 100
\end{tabular}

Raxi of first four patre of lege (pl. XXXIII, 12-15) are all 2-segmented. Pifth lege (P1.XXXIII, 16-17) are similarly conotrueted in both sexes. Each leg oonsista of a single, rather elongate segment on each aide, continuous with each other at base. Beoh segment beary three apines, two at the apex and on the outer margin at about two-third of distal length. The lege of two sides are symmotrical. But male lege differ from those of fomale in that they are slightly larger than female counterparte and that the terminal spines are comparatively of larger dimansione.

Copepodite V (P1. XXXIV, 5-6.)
Average sise, female 1.0 mm . and male 0.90 mm . The fusion between cephalosome and firet pedigerous segment as well as that between last two prosomal segments are complete, though traces of division still exist in the former case. The apines on posterior corner are well-developed and bymetrical, with margins between the two apines being ohareoteristically wavy. Spinea of
last promomal eegmentj in fomale are rather aivergent while those in male are projeeting aireetly backwarde. Urosom is 3-segmented in female and 4-segmented in male.

Antennule (P2. XxxIV, 7-8) in both sexee conciets of twenty apparently free aegments. In female the constituting eegments have the following relative lengthe:
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
7.7 & 5.0 & 4.6 & 3.4 & 5.7 & 2.4 & 2.3 & 4.7 & 4.6 & 5.0 & 5.8 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
5.7 & 5.8 & 4.6 & 4.7 & 5.7 & 5.1 & 5.0 & 5.8 & 6.4 & 100 &
\end{tabular}

In male the antenular segmente share the following relative lengthe:
\begin{tabular}{llccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
8.0 & 4.5 & 5.2 & 4.0 & 4.0 & 2.6 & 2.6 & 3.2 & 3.2 & 5.2 & 5.2 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
5.2 & 4.5 & 10.3 & 5.2 & 4.5 & 5.2 & 5.2 & 5.2 & 7.0 & 100 &
\end{tabular}

Al1 the four paire of awimaing lege are well developed, the rami being 3-aegmented with IInal complement of tpines and setae (21. XXXIII, 18, 19). In female, fifth leg (PL. XXXIII, 22) 1s 2-aegmented, the batal segment of one ade merging with that of the other mide. While the basal aegment is without any accessory parta, the dietal segment beare five epine:. Two of theme apines are borne on apex while two other gpines are set one on Wther aide of this apical complex. Inner apioal epine four is very large, about time larger than the outer apical.

Firth apine is borne on the outer margin of second segment, at about ite midlength. Lege of the two sides are symatrioal. In male right leg (Pl. XXXIII, 21) is silghtiy larger than the left though both ave aongtructed on the same pattern. The male fifth leg also consiste of two segments. Basal segments of two siden are tused and do not earry any spine or eeta. The arrangement of spines on distal segment is as followe: Two spinea on apex, a little separated from one another; two apine on outer margin at about one-third and two-third leagthe respeotively. The proximal marginal spine and the outer apieal apine are of equal aise and are larger than the other two apines. There is no trace of ondopod either in right or left leg.

\section*{Adulta}

As in many sexually dimorphic apeoies the advancemade mentern my adults over fifth gtage consist in the complete development and modification of antennules and fifth lega as well as in the addition of one more segment in urosome. There is complete fusim between oophalesome and firat pedigerous segment as well as between the last two prosomal segments.

There is some doubt an to the correct nomenclature of present apeoies and this appeot is diecuseed in an earlier part where the salient feature of adult animal. have also been described.

\section*{Hobifocers byselongit \\ Thore are five napliar otages, the Invt etage} being Euppressed. (Iapplius is charecteristiceliy elongate, rather spindle-shaped with ponterior part tapering gradually and anterior part abruptiy. Anterior most part is constricted off from rest of body in the form of hood. The posterior mul end bears a namer of setae, some of which are very long. General pattem of the development of appendages is eimilar to that of the other two speeies of this genus whose developmental cycles known (Johnson, 1935). However, specific differences are cleariy expresged. An inportant charaster by whieh the napili of this apecien could be separated Iron those of other apecien appeare to be the enormous develepment of one of the setae on second protoped segrent of antenna. In other specise of Labidocers. whose naxplii have been deseribed, this seta is indistinguishable fron others and is of no apeoific significance. Distinet differences are also notioed in the number of setae borne on potterior end of body and on various appendages. The increase in aize from firet to last stage is explioitely marked and oan be uned as axfe oriterion for ready identification of various tagea. Labruw is quite well developed, narrow in the anterior half and is very parsely armed with short weak tetae.

Following the oritioal moult there are six stages the last of which is adult animal. Copepodites are only imasture adults and the ohief points of diatinetion
between them consity in the segmentation of body and metamonal appendeges. In first copepodite there ast is a total of tive segmente, four prosemal and one urosomal. Second copepodite possesses an additional urosomal eegment, the total segments being six. In third stage, urosome is atill 2-segmented while one segment is added in prosome whioh now has reached its full development of five segments. Urosome becomes 3-segmented in fourth stage and remains thue thereafter in female. In male one more urosomal segment is added in fifth stage. Thie condition persiats in adults. The lateral hook: of prosom make their appearance in second stage and are present throughout the life-cycle. Posterior corners of prosome become asymetrical in male only from fifth stage onwards. Sexual aistinotion, as usual, can be made out only from the fourth stage.

Maupliue II (PI. XXXV, 1)
Average ize 0.235 mm .
Antennule is 3-segmented, first segment being the hortest and she last the longest. Pormer bears only a single seta on distal margin. Second segment aarries two setae, one about the mid-length and the other on the distal margin. There are three apical setae on third sagment and they are all much longer than the mit other setae. Antennule is directed anteriorwards, both in preserved and living apecimens.

In antemnaprotopodite in 2-segmented and mueh longer than oxepedite or endopodite. Pirst protopodite carries a maticatory hoor and a seta, former being mach stouter than latter, although they are more or leas of the same length. Second protopodite bears two setae at about the mid-length and a aingle seta at the inner distal angle. The setae at mid-length are borne on a prominence and one of the setae in extremely large. It is always direeted at a distal Inner angle and appoare to have apecial masticatory or senmory funetion. Fndopodite is 1-segmonted, with one lateral and three apical setae. The outermost apical seta is the longest. Exopodite is apparently 5-segmented, proximal two segmente not heving been separated. Each of the segmente bears one seta exeept the terminal whioh bears two. Antenna is the longest of appendages and appesrs to play the leading role in loeomotion of the nauplius.

In mandible division of protopodite into two segments is not yet clear although the constriction between two future segments is clear enough. On the second half there are two setae. Indopodite is 1-segmented. However, the future segments are indicated by arrangements of setae. Distal segment is indicated by a group of four setae and proximal by three spines. Exopodite is 4-segmented, first and last eegments bearing two setae each and others ons ach. Mandible is usually held in m extero-posterior direction.

Omudal armature conniste mainly of two setan, one long and heavily mpinous and the other very short and rather spine-like. The point of origin of these etae is guarded by a row of four spinules.

Haupliue III (P1, XXXV, 2.)
Average sive 0. thetman. The structural advancen of second stage over the first are as follows:

Antennule - In terminal segment an additional seta appears at about mid-length. The anteriormont of the apical setae becomes quite long and carrien a number of bristles.

Antenn - Firet protopodite carriea one masticetory hook and two getae, one of which is smaller than the other. In second protopodite, one more seta ie added, borne very olose to the proximal group of two setae found in the earlier etage. In exopodite an additional meta appears on proximal segment, whioh still is undivided. Fadopodite also beare an additional lateral seta, besides the original one lateral and three apioal setae.

Mandible - Protopodite is now clearly 2-aegmented. First segment bears a single seta and ohewing process; second segment bears three spines, the distal two close together and the proxiwal separate. Bndopodite has three strong spines on inner side (representing the proximal segment) and four slender setae on outer bide.

Bxopodite has twe setae on the proximal segment, indicm ting the latent 2 -segmented nature of that eegment.

Maxillule - Bud-like structure with a few hairs appear as maxillules.

Caudal armature - There are two long setae besides a short one. The longest seta is spinous while the shortest is very stout. Spinules guarding the base of caudal setae are reduced to two. However, a group of four apinules, two of theal longer than others, are present at some distance anterior to the base of caudal setae. Midway between maxililular bud and this group of apinulen few bristies are borne on either lateral side.

Heuplius IV (P1. XXXV, 3.)
Average size 0.423 mm . Pourth stage exhibits the following morphological advancements over the third:

Anternule - There is a total of six setae on terminal segment. Three of these might still be termed apical, but it will be more appropriate to state that the six setae are linearly arranged from about mid-length to apex of the segment.

Antenna - Segmentation of proximal segment of exopodite becomes deeper, but atill remains incomplete. In endopodite one more seta appears on lateral side, the total now being three apioal and three lateral.

> Mandible - Mactioatory process mpenes on first
protopodite is larger and itt apex gives a bifid appearance. second protopodite beare on additional spine, making the total four which are all olosely arranged. In ondopodite also there is an inorease of one apine on proximal eegment.

Maxillule - Maxiliule is a clearly defined mtrueture bearing three radiating setae.

Cmadal armature - This is more or lens fully doveloped. There are four spines on posterior apex. The two setee on left side are much longer than the two on the right. The longent seta is heavily epinous. Outer of the two right side setac is apine-like and stout. Two masticetory apines found in the eariler stage is highly reduced in eise. The groups of apinules and bristien noticed carlier between maxiliule and caudal setac are almo present.
Haupliue V (21, XXXV, 4)

Average size 0.466 mm . This atage ciffers from the fourth in the following etruetural detaile:

Antonnule - The second aegment of antennule earries three setae, while it was only two in the preceding etage. Two adaitional setae appeare on last segment bringing the total number to eight. All the ake are muoh longer than before.

Antenna - This appendage reaches its full development. Six segmente are elear in exopodite which bears eight setae, mecond and last having two each and the othere
one cach. In ondopodite ons more apical seta is addea beaides a few fine haire on innor lateral margin.

Mandible - The masticatory process on firet protopodite i* quite well developed. There are five setae on second protopodite segment, arranged in a radiating way. Spines on the inner side of endopodite are moh larger and etouter, one of them oarrying mpinules on \(1 t\).

Maxillule - An additional seta appeare on inner side. Other posterior appendages are represented by blunt rudimente.

Oaudal armature - The main change is in the group of apinules that were arranged adorose the ventral auriace at some distance in front of caudal setae. These spines have been diaplaced to lateral positions, three spinea being present on each side.

\section*{Naupliue VI (P1. XXXV, 5.)}

Average ise 0.497 mm . Although aeveral appendages have reached their full development in the preceding etage itgelf, following etructural advancemente are noticed in sixth stage:

Antennule - There are ten metae on first segment, inearly set from proximal region to apex. This segment í much larger than other egments. There are also few hairs near the base of some of the setae.

Maxillule - Proximal portion is contricted from the

Aistal. There are six setae on each maxillule, all on distal half.

Maxilla, maxilliped and firet and second lege are clearly vieible although they are very mudimentary in etructure. While these appendages are mre buda in the earlier atage, here they have become flap-like struetures with sharp processel on their posterior margins. They can be snapped off by a fine needle and mounted separam tely.

Copepodite I (R1. XXXV, 6-7.)
Avarage aise 0.553 min Prosome is composed of four egments and urosome of one aegment. Pirst prosomal segment is far larger than 11 other segments joined together. It is aarrow in the middle than in anterior and posterior regions, thus indicating a future division in that region. There is no lateral hook on the eephalosome. Posterior cornera of last prosomal segment are rounded. Urosome consiats of only a mingle tegment which is rather square, bearing the aaudal rami. The latter are longer than wide and bear five setae each. The rostral apinet on cephalosome is not yet developed. In lateral view anterior end, in front of antennule, looks quite rounded. Byes are prominent.

Antennule (P1. KXXY, 8) consists of nine egmente, which bear the following relative lengths:
\begin{tabular}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1 \\
6.0 & 10.4 & 12.3 & 16.6 & 9.1 & 10.4 & 10.4 & 11.6 & 13.2 & \(=100\)
\end{tabular}

Third and fifth megnonts are devoid of eeta while other eegmonte carry one or more tetae. Anteman (P1.XXXIV, 9), mandible (P1. XXXIY, 10) and maxillule (P1. XXXIV, 11) have developed all the features of adult and are sketohed. In maxilla (P1. XXXIV, 12 ) the distal portion is only 3-segmented while it is 4 -segmented in all other copepodites and adults. A few smaller setae on the onditee of various megments are also not fully expressed. Maxilliped (P1. XXXIV, 13) is poorly developed. The mymod is unaegmented as it is in adult and beara four setae, outermost of which is the longest. In endopod only two segments are formed, diatal segment carrying two setae which are rather small.

There are two paire of biramous awimming legs (P1.XXXIV, 14-15) and a rudiment of the third. Rami of the two lege are each 1-aegmented. Protopodites are already divided but the constituent segments do not bear setae. Both firet and second endopods oarry six setae each \({ }_{\sim}^{f} 110\) exopod oarriea three setae, four pines and terminal blade in the case of first leg and three setae, three opines and a terminal blade in the oast of second legs.

Copepodite II (PI, XXXV, 9-10)
Average size 0.680 mm . There is no change in the segmentation of prosome exeept that traces of partition have appeared in first segment. An additional segment is present in urosome. The anterior uronomal begment is much smaller
then the pooterior. Lateral spines have appeared on the cephalowom and are situated at about one-third of Ite longth from anterior ond. Rostral pines are aleo developed and oan easily be seen projecting prominentiy ventralwarde.

Antennule (P1. XXXY, 11) it composed of twelve segmente gharing the following relative lengthe:
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
8.8 & 9.2 & 5.0 & 6.3 & 7.1 & 9.6 & 10.5 & 6.7 & 7.9 & 9.2 & 9.6 & \(10.1=100\)
\end{tabular} First and second segmente are devoid of aetae whereas one or more of them are borne by other segmente. Mexille (21, XXXIII, 25) has reached ith full development and resenblen that of adult except for the amaller size. In maxilliped (P1, XXXII, 26) the sympod is ivily grown with all beven aetae arranged in three groupt, first two segments containing two setae each and lat three. In endopod there are three segmente, proximal two carrying two setab each and distal three setae. The setae are all much long and widely tretohed out.

There are three biranou: awiming lege (P1,XXXIII, 1-3) and a rudiment of the fourth, whioh reaembles, in tastructure, the rudimentary third leg of earlier stage. Rxopods of first two lege are 2-segmented while endopods of these lege and both rami of third leg are only i-segmented. Mirst and second ondopode cary eight setae each whil. third ondoped hes only six setao. Proximal segment of exopod earriew one apine both in Pixat and second lege and 1s without any seta. Second exopod esgent in these twe
lege beax four setae and a terminal blade. However, the number of mpines in firet leg is three while it is two in second leg. In latt leg endopod hes six metae and exoped three setae, three spinea and one terminal blade. First protopodite oarries one seta in the case of firet two lege while it has no seta in lest leg. Second protopodite segment in devoid of any seta in any of the lete.

Oopepodite III (P1. XXXI, 6.)
Average aize 0.847 mm . Prosome has remohed ite full development of ifve segments, oephalosome and four thoracio gegmente, last of which is the result of fusion of the original fourth and fifth segments. Lateral hooke mad rostral apines look like those of adult. Posterior end of prosome is mymetrical. Urosome still consista of two segments, but there is aistinct increase in their comparative sizes.

Antennule (E1. XXXYI, 24) consists of aeventeen segrente having their relative lengths as follows:
\begin{tabular}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
6.1 & 10.3 & 2.0 & 3.2 & 3.0 & 4.0 & 4.2 & 4.4 & 4.2 & 6.2 & 6.0 \\
12 & 13 & 14 & 15 & 16 & 17 & & & & & \\
8.3 & 7.1 & 7.1 & 7.8 & 7.8 & 8.3 & \(=100\) & & & &
\end{tabular}

Second segment shows signs of division into three segmente. Setal arrangement on that eegment also is in agreement with this potential partition. All segments bear setae, but there is a profusion of it in the firet seven proximal

\section*{280}
segmente. All other oephalosomal appendages have reached the condition of adult atruetures. In maxilliped the sympod whioh is a maseive structure now bears eeven ette, three of them being of large dimenmions. All these setae carry stiff setules on them. Endopod consiata of four eegmente, fixst and second segmente bearing two setac each, third one seta and the lant three setae. The setac are all setiferous on one side. Between sympod and endopod there is a \(\quad\) pine. Although it look more a part of aympod, 1t has been interpreted an representing the first gegment of endopod whioh oan be dietinguished only with difficulty.

A11 Iour paire of awiming lege (P1. XXXVI, 13-16) are developed. Bxopode of firat three paire of lege are 2-segmented while endopode of these lege as well an both rami of fourth leg are 1-segmented. Basal protepoditen of firet three lege bear one seta each, distal segmenta are devold of any seta. Pirst endopod bears eleht setae; second and third endopods nine etae cach; and fourth endopod six setae. Basal segments of first and second exopode bear one gpine and one seta each, while that of third exopod bear only the spine. Three mpines and one terminal blade are present in distal segment of first to third exopods. In the number of tetae on dietal segment, second and third exopods are eimilar, bearing five aetae each; in first exopod diatal segment has only three setae. The 1-segmented fourth exopod beari three setae, three spines and one terminal blade.

\section*{2 Si}

Copepodite IV (P1. XXXYI, 5.)
Average size fenale, 1.10 mm and male, 1.00 mm .
Male is only a little longer than third copepodite while female is muoh larger. Segmentation of body ia similar in both the cases.

Antennule is 17 -aegmented, the conetituting segnents having their relative lengthe followa:
\begin{tabular}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3.9 & 10.6 & 4.3 & 2.6 & 5.3 & 3.6 & 4.3 & 4.3 & 6.3 & 6.6 & 7.3 \\
12 & 13 & 14 & 15 & 16 & 17 & & & & & \\
7.0 & 6.3 & 7.0 & 7.0 & 7.0 & \(6.6=100\) & & & &
\end{tabular}

Second egment ohow Eigne of Aivision into four segmente. These potential segments find their expression in fifth copepodite. In other mouth-parts the aifferencef from adult tructure consists only in sise.

Toux paire of swimang legs (P1. KXXVI, 17-20) and fifth lege are present. Exopods in four pairs of lege are 2-segmented while endopods remain 1-segmented. The number of aetae borne by four endopods are nine; ton; nine and eeven reapectively. In exopod, fixet segment bear. one seta and one spine in the case of firgt three legs and one apine alone in the case of fourth leg. Distal segment of exopod earrles three apines and one terminal blade in \(a 11\) four legs. In the number of setae borne by that segment, however, firet leg differs from the others. In the Pormer it is only four while in the latter it is five setae each.

Pifth lega (P1. EXXVI, 11-12) both in male and female are biramous and constructed more or less on the same pattorn. Firet protopodite seguent of both sidee are confluent. Second protopodite segment bears a Ine seta on its distal outer angle. Bndopod, represented by a short emooth segment is devoid of any seta. Exopod is almo 1-segmented and carries four short spines, two lateral and two apical. One of the lateral apines originatee at about the midde of segment while the other spine is borne towards outer lateral angle. Two apical spines are of unequal sises.

Pifth legs show slight signs of sexual diatinetion. In female the right and left lege are ymmetrical and of equal dimensions. But in male right leg is elightly larger than the left. This is particularly true of exopoaite: right exopodite in clearly broader and longer than that on left side.

Copepodite (P1. XXXVI, 3-4.)
Average size female, 1.36 mim. and male, 1.21 mat Pifth copepodite has assumed practically all the adult structural peculiarities and the changes that follow this stage relate mainly to semal mataration. In feralo, prosome has symotrical posterior margin; in male right posterior corner is prolonged into a digitiform growth while that on left side is conical and moh maller. Female urosore is 3-segmented, first segment (genital) being much larger then the other two oombined. It has also developed to mome
extent the charaoteristic ourvature of right lateril margin of that egment. The mumern glandular opening present on right posterior area in adult tomale is al so observed here. In maie uromome in 4-segmented. The small posteriormost eegment is added only in the next stege. Segmente of urosome diminish in aize to posterior side. Caudal rai do not show differences in the two sexes.

Pemale antennule (P1. XXXIV, 16) consists of twentythree segments, the latter having their proportionate lengthe as follows
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
3.3 & 8.9 & 1.6 & 1.1 & 0.8 & 1.9 & 1.3 & 2.6 & 2.6 & 2.2 & 3.8 & 4.5 \\
13 & 14 & 15 & 16 & 17 & 19 & 19 & 20 & 21 & 28 & 23 & \\
4.8 & 5.3 & 6.1 & 6.4 & 6.7 & 6.4 & 5.3 & 6.1 & 6.1 & 6.5 & 5.7 & 100
\end{tabular} The number of setae borne by various aegments are aimilar to that of sdult. Antenna, mandible, maxillule, maxilla and maxilliped have all attained the adult pattern of struoture.

Four pairy of swimming 1egs (P1. XXXVI, 21-23) have alao developed fully, exopods being 3 -aegnented and oncopods 2-segmented. The ormamentation of the awimaing legs is given below and is similar to that of adult.


In basio pattern of organisation, female fifth lege (P1.XXXI, 9) like those of fourth tege, resemble fifth lege of adult. on each side it consimts of a 2-megmented protopodite and two rami, both of Which are uniramous and of different izes. Endopodite is devoid of aetac; however, its apex gives aplit mppearance. Bropodite whioh is longer than ondopodite bears two equispaced lateral and two apioal spinem. The latter are much stouter and of larger sise than the former. In protopodite the basal segments are atill confluent, while the ceparate distal segment bearg long slender sets on each side.

Male is smaller then fomale and shows sexual dimorphise which is externaliy expressed in the structure of antennulea, fifth pair of lege, posterior corners of prosome and in segmentetion of urosome.

Right antennule (P1. XXXIV, 17) 1a geniculate and composed of nineteen segments. The partitions between second and fifth segment are, however, not very olear unless carefully observed. The constituent segmente show the following relative lengthes
\begin{tabular}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
4.1 & 10.2 & 1.0 & 1.3 & 2.6 & 3.3 & 2.6 & 2.3 & 3.6 & 4.3 & 3.6 & 5.1 & 7.6 \\
14 & 15 & 16 & 17 & 18 & 19 & & & & & & & \\
7.1 & 12.3 & 9.2 & 6.1 & 6.6 & 7.1 & 100 & & & & & &
\end{tabular}

Beaides setae, the segments in middle region of antennule alwo
bear a number of menthetask.
Malo fifth leg* (P1. XXXVI, 10) differ from those of female not only in structural pattern but also in that they are highly asymetrioal, right leg being larger than that of female. Each leg consiste of a 2-megmented protopodite and an 1-megmented exopodite, the endopodite entirely lacking. Balal protopolite of two sides are, again, confluent. Mistal segments do not bear eeta. Exopodite of left side beare a lateral epine which is conical and rather insignificant and two stout apical mpines. Exopodite of right aide beare two apical apines which correspond to those of left side and two lateral spines. One of these lateral apines is much long and is borne a little proximal to midde of the aegment while the other small spine ia borne at midway between the large spine and the apex.

Adulte (P1. XXXVI, 1-2.)
Average size female, 1.43 mm , and male, 1.20 mm . Krishnaswamy (1952) who first described this species has given a detailed account of the adult male and female. However, one or two minor differences in otruetural detalls are noticed and are recorded below. Krishnaswany (100. elt.) In his text mentions that there are twentytwo jointe in female antennule but figures only twenty. Probably it is because "the joints between three and five are not very clear". However, in the present case, twentytwo joints are very clear and there is indication of a twentythird segment. Purther, comparison of the lengthe of proximal eight
segments (six segment in the figure given by Krishnaswany) show that the proportionate sises of these segments do not exactly correapond in the two cases. Probably this is not a very serious variation for, the partitions between some segment: are diacernible only with difficulty. In the organiaation of male geniculate antenmie, there is full agreement between the present observations and the accounts given by Krishnagwamy.

The post-embryonic development of two species of calanoid copepods, Iaendodiaptoman gurivilli and Labidocera
 species are presented and figured.

There are only five naupliar stages, inntead of the usual six met with in several other calanoids, the first nauplius being suppressed. Last nauplius metomorphoses into first copepodite which moults five times to become adult, passing on the whole through five stages. In both species the sexual dimorphism sets in fron the fourth etage onwards and the chief difference between the fifth atage and adulta consieta in the sexual maturation and the related changen.

\section*{HEFERENOES}
\begin{tabular}{|c|c|c|}
\hline Begorov, B.*., & 1958 & Perapeotives in the mtudy of seasonal ohenges of plankton and of the number of generation at different latitudes. In "Perapective in Marine Biology" eidted by A, A. Bugmati - Traverwo. \\
\hline Campell, M.H., & 1934 & The life hiatory and post-embryonie developaent of the copepode, Galams tonmu Brady and Euchasta Jeponice Marukawa. Jour. Blol, Boori of Cenads, (1). \\
\hline Conovor, R.J., & 1956 & Oceanography of Long Ialand Sound, 1952-54. TI. Biology of Aoartis olausi and Acartis tonis. Binghen Oceanogr. Collection xy : 156-233. \\
\hline Whetrich, W. & 1915 & \begin{tabular}{l}
Die Metamorphome der freilehenden Sumawaser - copepodon. I. Die Iauplien und das erete copopodidatadiun. \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{Pairbridge, W.S.,} & 1942a & West Australien Ireshwater Calanoide (Copepede) I. Three new species of Bookelis with an account of the developmental etagen of B. gparus n. op. and key to the genus. Sourn. Roy. Soo.基 Aystra1ia, XXIX : 25-45 yle. 47-65. \\
\hline & 1942b & West Auntralian freahwater calancids (Copepoda) II. Iwo new species of Brumella With an account of the developmental tage of B. onbattenusta n. ap. Ibid., XXIX \(67-78\), ple. 79-89. \\
\hline *Grandori, \(\mathrm{R}_{*}\), & 1912 & Studi mullo meviluppo larvale del copepodi pelagiei. Redis (Pirence). \\
\hline \multirow[t]{2}{*}{Gurney, R.,} & 1931 & British Fremhwater Copepoda, Vol.I. The Ray Sooiety, Iondon. \\
\hline & 1934 & The Development of Ehinaelanue. "Discovery" Rep., vol. 9: 207-214. \\
\hline Humes, A.G., & 1955 & The post-embryonio developmental stages of a iresh-water calano1d copepoc, Soteohurs mapaghugettionsis Pearse . J. Morph., vol. 96(3): 441-72. \\
\hline \multirow[t]{2}{*}{Johnson, M.W.,} & 1934a & The life history of the copepod Tortanue disaandatue (Thompmon * 8oott). Biol, Bu21., 67:182. \\
\hline & 1934b & The developmental stages of the copepod Enilabidocora amphitrites Moinurrioh. Biol. Bub., 671466. \\
\hline
\end{tabular}



PLATE XXXII


Explanation of Plate XXXIII

\section*{Labidocera bengalensis Krishnaswamy}

Figs. 1-3 Second copepodite, first to third legs

\section*{Paeudodiaptomus gurivilil Cleve}

Fige. 4-6 Second copepodite, first to third lege
7 Second copepodite maxilliped
8-11 Third copepodite first to fourth legs
12-15 Fourth copepodite first to fourth legs
16-17 Fourth copepodite female and male fifth lege
18-19 Adult, first and second lege
20 Adult, urosome with genital spines
21-22 Fifth copepodite male and female fifth legs
23-24 Adult, Pemale and male fifth legs

\section*{PLATE XXXIII}


\section*{Explanation of Plate XXXIV}

\section*{Pseudodiaptome aurivilli Cleve}

Figs. 1 Third copepodite, dorsal view
2 Third copepodite, antennule
3 Fourth copepodite, dorsal view
4 Fourth copenodite, antennule
5 Fifth copepodite, male dorsal view
6 Fifth copepodite, ferale urosome doreal view
7 Fifth copepodite, female antennule
8 Fifth copepodite, rale geniculate antennule
9-13 First copepodite, cephalusomal appendages
14-15 First copepodite, firet and second swiming legs
16 Fifth copepodite, female antennule
17 Fifth copepodite, male antennule


\section*{Explanation of Plate XXXV}

Labidocera bengelensis Krishnaswamy

\section*{Figs. 1-5 Second to sixth naupliar stages}

6-7 First copepodite, dorsal and lateral views
8 First copepodite, antennule
9-10 Second copepodite, dorsal and lateral views
11 Second copepodite, antennule

PLATE XXXV


Explanation of Plate XXXVI

Labidocera bengalensis Krishnaswany
Figs. 1-2 Adult, female and male urosome, dorsal view
3 Pifth copepodite, female dorsal view
4 Fafth copepodite, male urosome, dorsal view
5-6 Fifth and fourth copepodites, dorsal view
7-8 Aduit, female and male fifth lege
9-10 Fifth copepodite, female and male fifth legs
11-12 Pourth copepodite, female and nale fifth leg:
13-16 Third copepodite, first to fourth legs
17-20 Fourth copepodite, first to fourth legs
21-22 Fifth copopodite, first and second legs
23 Pifth copepodite, endopod of fourth leg
24 Third copepodite, antemule

\author{
Chapter 2. Diurnal Vertical Migration
}

\section*{Introduction}

Both Russell (1927) and Cushing (1951) have reviewed this problem excellently and have shown that majority of the zooplankton species undertake extensive vertical movements in the waters they inhabit. The massive movement of these organisms, upwards and downards during the period of 24 hours, is an impressive phenomenon which must be fully studied in order to obtain a closer understanding of the biological and ecological conditions characteristic of a given species. The patterns of vertical movements may differ not only between different species, but also between different developmental stages and sexes of the same species. It may also vary in different latitudes, under different physico-chemical environments of the same latitude and also in various seasons. It is the result of a combination of several physical and physiological factors which, while acting together, produce a unique rhythm, more or less steady in a species under a partioular set of oonditiona.

The vertical movements of copepods have been subjeoted to extensive investigations in Polar and Temperate waters (Bogorov, 1946; Ussing, 1938; Wiborg, 1954; Rassell, 1925, 1926, 1928a \& b; Nicholls, 1933; Clarke, 1933; 1934a, b \& c; Farren, 1947; Bainbridge, 1952). The informations available on this subject in tropical and subtropical waters
are, however, very meagre. This is partioularly true of the Indian region where iittle work has been done in this field. The studies reported here aim at etablishing the nature of vertical migration performed by planktonic copepods in our waters. It mat, however, be noted that the investigations have been carried out at a depth of about six fathoms, and the data on which the present oonousions are based, therefore, refer to shallow waters only.

The resulta obtained indicate that the idea of diurnal vertical migration holds valid in tropical waters also, at least in some species of copepod. This atatement is based upon two types of evidences: (1) The number of individuals of a species, especially adults and late copepodite stages vary considerably in surface hauls made at 4-hourly intervals. During the dark hours there is a great inorease in their number, while a considerable reduction is observed during the bright day-light hours. This indicates that the population as a whole withdraws itself from the brightly-lit zones, although stray individuals remain present in all the layers, th irrespeative of changing light intensities. (ii) Simultaneous collections made with Olarize-Bumpus Apparatus at surface and at depth indicate that during the day time adults and late copepodites concentrate more in the deeper areas and that they extend their distribution to the upper waters only when darkness sets in, Thie alteration in distribution of populations in the two layers, coinciding with the changes in the intensity of light is consistent and falls in accordance with the idea of diurnal vertical movements.

\section*{Heterial and Method}

The material for the present tud wae collected at Station C (P1. I) in the Gulf of Mannar. It is aituated at about six milea from the Oentral Marine Pisheries Meneareh Institute and about one mile fron the Hare Island. Three series of collections were made: (1) Using both organdie and 10. 16 bolting sily nets, 4 -hourly surface hauls were made on 12 th and 13 th January, 1960 commencing at at 6 a.m. on the first day and ending at 6 a.m. on the second day. Temperature of the water both at surface and at depth were noted along with each collection and water samples were taken for determining the salinity from both hauls. Daring this first aeries of collections the weather was fair and there was moon light upto early hours of the morning. (2) Attempta to make similar collections throughout day and night did not succeed on 20th February 1960. After 6 p. m, the sea became rough, with a strong wind blowing towards the mainland and it was found difficult to continue the work in the sea. In this second series of collections data are, therefore, avallable only for the day. (3) Pour-hourly collections were made for 24 hours on 8th and 9th March 1960. The Clarke-Bumpus Apparatus was employed for making colleotions both at the surface and down below. Organdie and bolting elly half-metre nete were put to use for mailing surface haule. The aky was bright during the day and cloudy during the night.

All the collections were preserved in \(5 \%\) formalin
immediately after the haul. Subsampling for laboratory analysis was done as follows All samples were made to 250 co. by adding properly diluted formalin and a abbemple of 10 ec. pipetted out. In the case of collections obtained by ClarkeBumpus Apparatus the entire subsample was examined. However, the half-metre net collections invariably contained a much higher amount of organisms and hence it was found diffioult to subject the entire aubsample to a detailed etudy. Subsequently, further subsaupling had to be done in the case of collections made by organdie and bolting ailk nets and only a sample of 2 oc. of the original 250 oc. was examined in detail.

\section*{Volumetrio Compogition}

The volumetric composition of copepod and non-copepod was
items maxi determined in wet condition using the principle of displacement and is presented in table II. After qualitative analysis, copepod and non-copepod items of each subsample were sorted out separately and were introduced to graduated capillary tubes which contained known quantities of sea water. The volumetric value of the introduced item was then direotly found from the difference of initial and final readings of water levels.

The maximum concentration of copepode at surface was found at \(9.45 \mathrm{p} . \mathrm{m}\). The persiatent distribution of a certain percentage of copepods in the surface waters is because of early larval forms which are relatively lese rapid in changing the site than adults and late copepodites. Some of the noncopepod items of plankton show as much migratory behaviour
as copepods. Sagitte app. and Lyelfor app, both of which are well-known to display pronounced vertical movements have been found performing day and night journeys in response to light.

\section*{Gravimetric Estimation}

To give a clearer picture of the whole series of changes In diurnal migration, a gravimetric estimation is more important. A subsample of copepods contained in 2 cc. of the surface hauls made by organdie net wai dried in watch glass and weighed. Similarly a subsample of 10 cc . of each of the collections taken by Clarke-Bumpus Apparatus at surface and at 5 metre depth was dried and weighed. The data obtained are presented in tables III \& IV and figures 1 \& 2 (P1. XXXVII). In the figures copepod populations are expressed as a whole and include adults and oopepodites of both sexss. As can be seen from the figures, although the population as a whole is aubjected to up and down movements, yet a certain percentage of plankton retains their respective levels, without undertaking en=bereraz-opersee migrations, These include not only oopepodites of several species but also adults of such species as Aorocalanue monachus, Parecalanue partus and 01thone app. which are composed of smallsized individuala. It is, however, clear that there occurs a conspicuous reduction in the abundance of aopepods at the surface during the mid-day hours and this is followed by a high concentration of these creatures in surface waters during midnight.

Mumerical Comporition of Species
Pagdodiaptoman aurivilit Oleve - Figures \(3 \neq 4\) (P1.XXXVI)
show the diatributional pattern of this speaies at 5 metre level and at the surface as sampled by a Clarke-Bumpus Apparatus during March 1960 and the actual numbers of copepodites and adults caught in the surface hauls by organdie net during the 24 hour period are presented in table z . It can be seen both from figures and table that the adult population of this species displays great variation in their numberg in surface waters. After aunset as many as five times more adults are caught at surface than at noon. There seems to be iittle ohange in the distributional pattern of copepodites except, to some extent, in the case of ilith stage which shows a higher concentration at surface during late hours of the evening. The complete absence of first atage and less numbera of the next two atages in the surface hauls is probably due to sampling inadequaeies.

A sex-wise analysis of adulta does not show any difference in the pattern of response. The males dominate most of the time except during the dusk and arly morning hours when they are slightly less then the females. This is due to a greater preponderance of males in the population during breeding months (December - Maroh).

Controngges furcatus (Dana) - This apecies is composed of fairly large-sized individuals, but it occurs only in srall numbers. The members of this apecies appear to react strongly to day and night changes. During noon not a single adult animal was observed at surface in any of the three subsamples analysed, but in samples taken at \(10 \mathrm{p} . \mathrm{m}\). and at 2 a.m. twelve and sixteen individuals respectively were
caught. During the intergening hours the increase or deorease showed gradations (Pig. 5, PL. XXXVII). Due to the acarcity of this pecies in plankton it was not possible to sample it properly by the Clarice-Bumpus Apparatus and therefore no thorough observation could be made on the distribution of this species in different vertical levels.

Galanopie elliptica Dana - In this species also substantial evidence has been obtained to illustrate migratory movements. At dawn the species is represented by fow adults in the planiton, but as the day advances it gradually disappears from the surface waters and none is seen throughout the brightly-lit hours. During the night at about 10 p.m. large numbers became available at surface. However, a decline in the abundance is observed in the early hours of the following morning (by 2 a.m.). This probably may be attributed to what Oushing (1951) termed a departure from the surface at midnight. According to this view, copepods migrate upwards as darkness intensifies and reach their maximam surface distribution by about \(10 \mathrm{p} . \mathrm{m}\). In complete darkneas these organisms stop swimming and sink passively down. Thus, being unable unable to maintain their topmost level, they get distributed in layers down below. This phenomenon whioh could be termed positive geotaxis gets corbined with photokinesis. It is particularly notable in the present species probably because of its larger aize (Fig. 6, Pl. XXXYII).

Acartig axythreas Giesbrecht - This is one of the commonest species of this area and appears to have preference for upper water layers during the hours of darkness Minimum numbers are found at surface during noon while the maximum
concentration
houre later whioh condition perelete for the monthe of January of the morning. The data obtained (P1. XXXYII) and that and Harch are plotted in Pig. 7 In March only the adults for March alone are presented in table VI. the species reaches the end of that at this time of the year C. furcatug in this.species of its breeding season. As in surface waters is reached at also the maximum concentration in a alight declination. at about 10 p.m. This is followed by Clarice-Bumpus Apparatus do not substentian from collections made by derived at from the studies of or Table VI shows the distribution organdie net collections. adults of this apecies at 5 of fifth copepodites and the during the month of Maroh. Probably in this species also like several others, the Lurnal ifgration is not an obligatory phenomenon. They tend is dofig Bo get dietributed at lower layers. The chief 1es. presented in table VI are the low number of 08it the surface during noon and gradual higher Piable decreaer levels. After sunset there \(0000^{10}\) plable decrease in their numbers in areas near the phifies that the population remains fairly 4) at all levela above the bottome. In the surface here occurs a progreselve increase as the

Centropages dorgispinatus Thompson \& Sott - This mpecies showed a very irregular diatribution. Although there was an apparent withdrawal of the population away from the surface during the sun-lit hours, the population did not return to its original density in the surface waters even during the daricest hours (TableVII). Cushing (IOC. Qit.) and other earlier workers have rightly pointed out the inadequacies of the studies of selected horizontal stations in the investigations on vertical migration. Oushing has shown that neither the vessel marking the collections nor the water mass in which the collections are made remain static even for short intervala. There is always an exchange of fauna with the surrounding waters. This changing pattern becomes all the more complicated by the patchy nature of the distribution of copepods in the sea. An area where there is a swaming of copepods in the morning could be replaced in the evening by a mass of water containing little of them. The example of 0 . dorciapinatus may be a case of such an instance.

\footnotetext{
*Pgeudodiaptomas (Schnackeria) serricaudata T. Scott Within the limits of the available data for this speoies, it appears that there is an inherent, positive, migratory behaviour. The maximum number is found in the surface layer during the dawn, and then there occurs a decline in their numbers. A alight increase is noticed at dusk which is maintained upto midnight after which the species recorda appreciable increase (Table VIII). Why there should be a concentration on the surface in early morning hours, rather than during daricnese, imediately after dusk is hard to explain. In spite of the fact that migratory
FThe syetematie position adopted for this species in the present work is discussed in Part I.
}
behaviour of this species is governed by diurnal changes, yet a clear response could not be obtained. It is likely that an accidental error might have crept into the data beaanse of their patchy distribution in plankton, a feature common in copepods and has already been noted earlier.

\section*{General Remarks}

As outlined by Oushing (100. cit.) the general pattern of diurnal vertical migration of planktonic orustacea are governed by the following features: (1) Ascent towards the surface from the day depth, although animals, particularly oceanic epecies do not necessarily reach the surface, but merely rise to a higher level. (2) Departure from the surface, at or before midnight. (3) Return to surface just before dawn, (4) Descent to the day depth when the sunlight starts penetrating the water. (5) The variable day depth which recalla an uneven distribution of these animals from 音 metre in Lake Mendota to 800 metres in North Atlantic. This depends on various factors such as depth, type of water mass, the species under study, the currents and a host of others (vide Cushing, loc. ait.).

Phasell (1927) and Cushing (100. oit.) have discussed
eariler the various factors which influence the behaviour of the migrating specien pattern. These factors include sunlight, weather, water temperature, presence and abundance of phytoplankton, age of the animel concerned.etc. In addition to this, physiological factors have also been held responsible for the hazarduous vertical sojourns that these tiny creatures undertake during the course of a day.

The effect of weather is rather indirect. During a cloudy day, the penetration of light into the water is poor. It thum oreatea artieicially a aituation which is comparable to dam or dusk. A windy weather will make the aurfaoe turbulent thua making this layer physically uninhabitable.

The effeat of temperature appears to act ohiefly in the regions of thermoclines: "It is a possibility that a homogeneous group of animals (atage, sex or brood of a species) has a temporature range beyond the extremes of which the animal does not appear; a thermocilne near the limits of this range will be obvioualy more effective in mimifying migration that one in the centre of the range. As a mediator of migration temperature was shown by Eaterley (1912) to be without effect as the diurnal differences in temperature at any depth was only a small fraction of the temperature range through which the animals moved" (Oushing, p. 165). Thie view is substantiated by the present series of observations. The change in temperature between the surface and the depth during the 24 hours was very negligible (table IX).

The importance of phytoplankton in the migratory activities of planktonic copepods has recently been discounted as these animals are filter feeders and are inoaphble disoriminating between the food-abundant areas and others. The age as well as the inner physiological rhythm certainly play important roles in deciding the migratory pattern of individual species.

But the most important factor appears to be the light. The large amount of works that has been done in the boreal and
austral watera on this subject demonstrates beyond doubt that the changes in the intensities of light that ponetrate into the water during different hours of the day have direct bearing on the diurnal vertical movements of copepods". "It is now ganerally agreed that the immediate atimulus to diurnal migration is light \(\ddagger\) perhaps modified in extreme cases by temperature. The conception of an optimum light intensity inside which the copepods keep, each stage and each population, having perhaps its own optimum, has proved the most fruitful explanation of their movements"(Marshall \& Orr, 1955). Why and how the changes in light intensity come to exert such strong influence on the movements of these creatures is not clear.

The fact that in the present studies all species avoid the bright light of the sun to a great extent is in full agreement with the concluaions arrived at by earlier workers. But why the adult population does not withdraw completely from the surface during the day and why some species are quite indifferent to changing light intensities are not clearly understood. A fuller and comprehensive studies on these lines are needed in our waters.

Table II. The actual volumes of copepeds and nommeopepod items and their peroentages in the surface haula in Jamuary 1960.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date a
Time & \[
\begin{aligned}
& \text { Total } \\
& \text { volune }
\end{aligned}
\] & \multicolumn{2}{|l|}{Relative volumes in co.} & \multicolumn{2}{|l|}{Percentage} \\
\hline & in co. & Copepod & Honcopepod & Copapod & Honcopeped \\
\hline \multicolumn{6}{|l|}{12-1-1960} \\
\hline \(5.45 \mathrm{g.m}\). & 2.2 & 1.2 & 1.0 & 54.5 & 45.5 \\
\hline 9.45 a.m. & . 1.2 & 0.6 & 0.6 & 50.0 & 50.0 \\
\hline 1.45 p. \({ }^{\text {m }}\) 。 & . 1.15 & 0.6 & 0.55 & 53.0 & 47.0 \\
\hline 5.45 p . m . & . 1.3 & 0.7 & 0.6 & 53.8 & 46.2 \\
\hline 9.45 p.m. & 2.0 & 1.15 & 0.85 & 57.5 & 42.5 \\
\hline \multicolumn{6}{|l|}{13-1-1960} \\
\hline \(1.45 \mathrm{arm}\). & . 2.2 & 1.18 & 1.02 & 53.6 & 46.4 \\
\hline 5.45 mam & - 2.8 & 1.5 & 1.3 & 53.4 & 46.6 \\
\hline
\end{tabular}

Table III. The actual dry weights of copepods in the 2 co . subsample of the surface hauls made in January 1960.

Date \& time Aotual dry weight in grme.
12-1-1960
\begin{tabular}{ll}
9.45 a.m. & 0.0221 \\
1.45 p.m. & 0.0147 \\
5.45 p.m. & 0.0286 \\
9.45 p.m. & 0.0445
\end{tabular}

13-1-1960
\begin{tabular}{lll}
1.45 a. m. & 0.0950 \\
5.45 a.m. & 0.0540
\end{tabular}

Table IV. The actual dry welghte of oopepode in 100c. cubsamplea of the collections made with Clarize-Bumpus Apparatue in March 1960 at surface and at 5 metre depth.
\begin{tabular}{|c|c|c|c|}
\hline Date \({ }^{\text {a }}\) S metre & & Sux & \\
\hline Time Actual W & roen & cotual & reen \\
\hline 3-3-1960 & & & \\
\hline 9.45 a.m.0.0054 & 38.6 & 0.0086 & 61.5 \\
\hline 1.45 p.m. 0.0081 & 89.0 & 0.0010 & 11.0 \\
\hline \(5.45 \mathrm{p} . \mathrm{m}\). & 59.3 & 0.0056 & 40.7 \\
\hline \(9.45 \mathrm{p} . \mathrm{m}\). & 42.0 & 0.0086 & 58.0 \\
\hline 9-3-1960 & & & \\
\hline 1.45 a.m.0.0044 & 28.8 & 0.0109 & 71.2 \\
\hline 5.45 p , 血, 0.0042 & 30.7 & 0.0095 & 69.3 \\
\hline
\end{tabular}

Table V. Paendodiaptomus gurivil11: Actual numbers of adults and oopepodites caught in the surface hauls with organdie nets during the 24 hour period on 12th 13th January 1960.


12-1-1960
\begin{tabular}{rrrrrrrrrr}
5.45 & 0 & 1 & 4 & 26 & 22 & 73 & 38 & 121 & 50 \\
9.45 an & 0 & 2 & 5 & 22 & 16 & 32 & 32 & 34 & 17 \\
1.45 pi & 0 & 0 & 8 & 13 & 12 & 20 & 15 & 33 & 14 \\
5.45 pmin & 0 & 3 & 11 & 12 & 20 & 24 & 49 & 71 & 106 \\
9.45 p.m 0 & 0 & 6 & 12 & 19 & 44 & \(32(42) 115\) & 100
\end{tabular}

13-1-1960
\begin{tabular}{lllllllllll}
1.45 & 0 & 0 & 2 & 10 & 11 & 24 & 27 & 68 & 82
\end{tabular}

Table VI. Aoartis erythrase : Distribution of adults and fifth copepodites at 5 metro level and at surface during the month of Maroh 1960.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date & & Ith & ad & & & & & \\
\hline \(\pm\) & & eco & Sur & & & \(\times\) & S & ata \\
\hline T1me & Hal & Fema & al & na & Mal & and & H2 & Pme \\
\hline 8-3-1960 & & & & & & & & \\
\hline 9.45 am. & 0 & 0 & 0 & 0 & 2 & 4 & 3 & 4 \\
\hline 1.45 pm . & 3 & 1 & 0 & 0 & 8 & 11 & 3 & 2 \\
\hline \(5.45 \mathrm{pm}\). & 4 & 6 & 3 & 2 & 12 & 17 & 4 & 2 \\
\hline 9.45 pm . & 2 & 4 & 0 & 1 & 13 & 17 & 12 & 17 \\
\hline 2-3-1960 & & & & & & & & \\
\hline 1.45 am . & 2 & 11 & 4 & 2 & 11 & 8 & 14 & 5 \\
\hline 5.45 am . & 2 & 4 & 0 & 1 & 13 & 18 & 7 & 6 \\
\hline
\end{tabular}

Table VII. Centropaces dorsispinatus: Distribution of adulte and copepodites in the surface layer on 12 th and 13th January 1960.


Table VIII. Peeudediaptoman (Sohmackeria) serricaudata Dietribution of adults and copepodites in the surface waters on 12th and 13th January 1960.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \overline{\text { Date }} \\
& \text { Time }
\end{aligned}
\]} & \multirow[b]{3}{*}{Cop.} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Cop. Cop. II III}} & \multicolumn{2}{|r|}{Copepodite-IV} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Qopepodite-V}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Adn } 1 t}{\text { Malo Pemar }}
\]}} \\
\hline & & & & \multicolumn{2}{|l|}{Male Pemale} & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline \multicolumn{10}{|l|}{12-1-1960} \\
\hline 5.45 mm & 0 & 0 & 0 & 0 & 0 & 6 & 4 & 28 & 25 \\
\hline 9.45 am & 0 & 0 & , & 0 & 1 & 5 & 0 & 5 & 4 \\
\hline 1.45 pm & 0 & 0 & 1 & 3 & 2 & 4 & 7 & 5 & 7 \\
\hline 5.45 pm & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 7 & 8 \\
\hline 9.45 pm & 0 & 0 & 0 & 1 & 2 & 4 & 7 & 8 & 7 \\
\hline \multicolumn{10}{|l|}{13-1-1960} \\
\hline 1.45 am & 0 & 0 & 0 & 2 & 2 & 4 & 7 & 14 & 12 \\
\hline 5.45 am & 0 & 0 & 0 & 0 & - & 3 & 1 & 3 & 1 \\
\hline
\end{tabular}

Table IX. The temperature of the water mass at Etation ' \(C\) ' in the Gulf of Mannar during January, (amanam. and March, 1960.


The diurnal verticel movements of the following species of planktonic copepods are atudied:
Psoudodiaptomen guxirilli.
Contrenages furactive,
Colanopis elliption,
Acgrthe exythreae,
Centropasen doretapingtue and

It is found that all these apecies are fairly welldistributed in the surface waters from dusk to dawn, but they avoid the top layer during the brightly-lit hours of the day. The salient features of these migratory movements and the probable causen that influence them are briefly diecussed.

\section*{}
\begin{tabular}{|c|c|c|}
\hline Batnbridge, \(\mathrm{B}_{*}\), & 1952 & Underwater obmervation on the wimaing of marine zooplankten. J. Mar. bio1. Ans. U. K. : 31, 107-112. \\
\hline Begorot, B.G., & 1946 & Peculiarities of diurnal vertieal migrations of zooplankton in polar seas. J. Mar. Ros. \(6,25-32\). \\
\hline \multirow[t]{4}{*}{Clarke, G.L.,} & 1933 & Diurnal wigration of plankton in the Gulf of Maine and ite correlam tion with ohanges in submarine illumination. Blol. Bull. Wood's Hole, 65, 402-436. \\
\hline & 1934a & Further observatione on the diurnal migration of copepods in the Gulf of Maine. Ibid., 67, 432-455. \\
\hline & 1934b & The diurnal migration of copepode in St. George's harbour, Bermuda. Ibid., 67, 456-460. \\
\hline & 1934 c & Pactors affecting the vertical distribution of copepods. Eeol. Monogr. : 4, 530-540. \\
\hline Oushing, D.H., & 1951 & The vertical migration of planktonic crustacea. Biol.e. Ret.: \(26,158-192\). \\
\hline Farran, ©.P., & 1947 & Vertical diatribution of plankton (Sagitta, Galanus and Metridia) off the south cosst of Ireland. Proc. H. Irish Acad. , 51, B, 121-136. \\
\hline \[
\begin{aligned}
& \text { Marsholl, S.M. \& } \\
& \text { A.P. Orr, }
\end{aligned}
\] & 1955 & The biology of a marine copepod. Oliver \& Boyd, Edinburgh and London. \\
\hline Micholls, A.G., & 1933 & \begin{tabular}{l}
On the biology of Galanus Einmarohious. \\
Vertical diatribution and diurnel \\
migration in the clyde vea area. \\
J. Mar. biol. Ags. U.K., 19, 139-164.
\end{tabular} \\
\hline \multirow[t]{3}{*}{Musmell, F.S.,} & 1925 & The vertioal diatribution of marine macroplankton. An observation on diurnal changes. Ibli., 13, 769-809. \\
\hline & 1926 & The vertical diatribution of marine macroplankton. The apparent importance of light intensity as a controlling factor in the behaviour of certain ppecies in the Plymouth area. Ibid.. 14, 415-440. \\
\hline & 1927 & The vertioal dietribution of plankton in the sea. Biol. Rev., 2, 213-262. \\
\hline
\end{tabular}
(\%

Usaing, H.H.,

Tiborg, K. F.,

1928a The vertieal dintribution of marine macroplmakton. VI. Purther obaervations on diurnal ohanges. J. Mar. Blol. Ass. U.E., 15, 81-99.
1928b The vertical distribution of marine macroplanicton. VII. Observations on the behaviour of Oalanus Itnmarchicus. Lb14., 15. 429-454.
1938 The biology of some important plankton animals in the fjords of East Greenland. Medd. Grenland, \(100,1-108\).
1954 Investigations on zooplankton in coastal and offishore waters and north-western Hozway with apeaial reference to the copepods. pigkeridir. Skr. Hevundersok., 2, 246 pp .

\section*{Rxplanation of Plate XXXVI}

P1. 1 The actual dry weights of oopepode in a subasmple of 10 ec at Gupface and at five motre depth oollections made with a ClarireBuypue tpparatus during tarch 1960 (-msurfaees .....depth)

2 The same depth collection expreseed as percentages of the total catoh fron the two layerg of the water columa

3 Ingudodieptoman aurivilil: Distribution of adulta at murfeoc ana at ilive metre depth on 12th, 13th Jamuaxy 1960 as colleeted by bolting silk not (--surface: .......Depth)

4 Eengodiaptoman aurivili1: Diatribution of adulta at surface on 8th, \(9 t h\) Maroh 1960 and on 12 th , 13th Jamuary 1960 as oollected by organdie net ( - march; ......January)

5 Centronages furoatug Distribution of adulte at ourface on 12 th; 13 th January 1960 as collected by organdie net.

6 Enitric Calanopis elliptica: Distribution of adults at purface on 12 th; 13 th January and 8th, 9 th waroh 1960 as collected by organdie net (-m-March, ......Jamary)

7 Lasptis osythrese: Dietribution of adulte at surpace on 12th; 13 th Jamuary and on 8th, 9 th March 1960 ae collected by organdie net (-mularch; .*..... January)

\section*{PLÁTE xxxVII}


\section*{Ohapter 3. Breeding and Helated Aapeote}

\section*{Intraination}

There have been three prineipal objectiven for the present investigations: (a) determination of the breeding seasons of different copepod mecies; (b) estimation of quantitative seasonal distribution of aifferent species; and (o) determination, if possible, Lthe number of broods in a year and the longevity of broods. It is not olaimed that full anccess has been achieved in all these aims, but be
it may/ obtained on the general pattern of breeding, quantitative variations of various speaies throughout the year and the sucsession of their life oycles. It was not possible during these investigations to gather simultaneous data on the hydrology of water or on the biology of other phyte and mooplankton organisms. Ooneequently werever any correlation is formalated between these aspects and the biology of copepods, the relevant informations have been taken from earlier works. The investigations were manetan confined to adults and copepodites of all species except In the case of Pgencodiaptoman aurivilit where in addition to these, the naupliar stages mure also taken into account. The correat identification of the naupliar atagea is an extremely difficult task as the collections invariably contain various developmental atagen of several species.

Ten epecies whieh constitute the more common forms of the area investigated have been included in the present stady (eight calanoide, one harpactiooid and one oyelopoid).

From the point of view of total abundance Acartia exythraes could be said to be a most important species, though in tropical waters it is dilfeult to regard any single species as a dominent item of plankton. Some species are found throughout the year without much esesonal variations while some others display great fluotuations. Digbey (1950) in his excellent studies on the biology of the small planktonic copepods of the Plymouth area derived his conclusions on following three types of evidences: (i) oomparative abundance of different stages; (ii) thetr percentage distribution; and (iii) the size of adults. He has also pointed out the drawbacks of each of these considerations. Hevertheless a study of these factors forme an important prerequisite to an understanding of their biology as it reveala many important faots. In the present work conclusione have been drawn by taking into consideration the first two types of evidences.

\section*{Material and Methods}

The present atudy is based on the examination of 88 horizontal surface planiton hauls each of 15 minutes duration. These hauls were made from May 1959 to December 1960. All the collections were made between 5.30 and 6.30 a.m. Two hall-metre nets, one made of organdie cloth (Ga 36 stranda/cm, the mesh size 0.230 mm . ) and the other made of bolting silk No. 21 ( Ca 450 strands/cm, the mesh size 0.069 mm.) were
used. The latter type of net was employed oniy from levember 1959 to December 1960. All organiams were preserved immediately aftar collection. On several occasions duplicate hauls were also made by both nets. These were taken to the laboratory and utilized mainly for life-cycle studies etc. The duplioate hauls were also used for comparing the two sete of bree readings, In most cases they were fairly comparable to one anothor.

Collections made by the bolting silk net differed coniderably from those made by the organdie net. The former always fished a greater proportion of nauplif and early oopepodites than the latter. This is due to the difference in the meah size of the two types of nets.

For laboratory analysis the total catoh was subsampled as followay The entire quantity was transferred to a widemouthed bottle and tinn diluted upto 250 cc. by adding formalin. In the oase of organdie net collections a subsample of 2 co. was taken out by means of a graduated pippette, the
5 mm . wide. All frex organisms contained in this example aubsample were counted by employing a plankton countéing chamber. In the case of bolting silk collections, a subsample of 10 oc. was pippetted out and then was further diluted to 50 co. by adding 5\% formalin. After shaking properly a 500. subamaple was again taken and counted under a binooular microscope. Thus in the case of collections made by boliting silk net the analysed subsample is equal to fine oc of original eateh.

111 oollections which formed the basis of present amalysis were made at 8tation 'A' of the Gulf of Mannar (P1. I). The depth of this place ranged from 3 to 4 metres. Duplicate samples were taken at Station 'B' (P1. I) whioh is more or less of the same depth.

\section*{Barlier morke}

Recently a few papers have been published on the biology of plankton commenities of the Gulf of Mannar (Sundara Raj, 1935-38; Chacko, 1950; Prasad at R1. 1952; Prasad, 1954a \& b; Prased and Jayaraman, 1954; Prasad, 1956; Prasad, 1958; Kartha, 1959; Prasad \& Kartha, 1959). However, only the laet two papers deal exclueively with the sopepode while others give accounts of the composition, sequential ohanges that take place throughout the year etc. of the planktonic community in general.

Sundara Raj (1og. oft.) while making a seasonal record noticed some increase in the plankton production during colder months of the year. However, even this increase was not very significant.

Chacko (100. adt.) desoribed the plankton from the waters around Krusadai Island based on the data collected from various Stations. He gave a list of phytom and soo-planktonic organisme occurring in the area and observed; "The plankton of the waters around Krusadai is rich both in bulk and variety. Most of the important species appear to be cosmopolitan in diatribution. The maximal period of phytoplankton in from June to Hovember and that of zooplankton from October to April".

Praised at gin. (lac. git.) gave the roble of prillwinary observations on the distribution of plankton at six inshore stations in the Gulf of Manner.

Prase (1954a) dealt with the biology of phyto- and zooplankton groups but did not "identify specifically the large number of species represented in the catches because the object of this study has been to give a knowledge of only the more important elements of the zooplankton community". Some valuable information have, however, emerged from his study. He observed that the copepods show two distinct peaks in the Gulf of Manner, one during the early part of the year, Viz. January-February and the other in October. According to him the copepod populations suffer declination in March and reach their lowest ebb by about July whence they steadily increase attaining a maximum in October. This is followed by an abrupt fall in november but by December there is again a tendonoy to increase resulting in a maximum during JanuaryFebruary. This bimodal distribution of copepod populations in the Gulf of Manner was interesting, as it was quite contrary to what was found elsewhere along the Indian coasts by the earlier workers all of whom recorded a unimodal distribution (K.S. Xenon, 1931; M.A.S. Xenon, 1945; Jacob at Xenon, 1952) except Bal and Pradhan (1952) who noticed that in Bombay waters copepods show two or three peaks from May to September and that their numbers dwindle considerably from November to April.

In a later publication Prasad (1956) compared the pattern of distribution of grose copepod population in the Gulf of Mannar and the Paik Bay and observed that in the former area the fluctuations were apparently dicyclic, thus confirming the results of his earlier studies. There were slight shifts in the periods of occurrence of the maximum and the minimum population from year to year, but the general pattern more or leas remained the same.

Prased (1958) in his 'plankton calenders' summed up the works so far done on the hydrology and biology of plankton of the seas around Mandapam.

Kartha (log. ait.) attempted to study not only the seasonal abundance of the copepod populations of the Gule of Mannar and Palk Bay but also made observations on the breeding seasons of some of the more important species. Regarding the seasonal distributions he agrees with the observations of Prasad and reports a dicyclic pattern in the Gulf of Mannar. His observations on the breeding seasons were based on the relative abundence of the copepodites of various species during different months of the year. According to Kartha, more or less
spawning goes on/throughout the year, with only a slight increase during September-liovember for in these three month he lound higher copepodite population. His observations were confined to the following species:

Prasad Kartha (1959) went further and extended their investigations to the breeding of copepode in general and ite relations to the diatom cycle in partioular. Their observations could be sumped up as follows: (1) In the Gulf of Mannar breeding takes place throughout the year. Breeding intenaity is at ite lowest between May and Auguat when it is at a peak in Palk Bay and highest during September and March or April. (2) There is a greater naupliar copepodite population in the Palk Bay than in the Gulf of Mannar. However, in the earlier reports Prasad (1956) and Kartha (1959) have shom that in the latter area during the years 1951-1953 and 1953-1954 the average annual stading arop of copepods is higher compared to that of Palk Bay. The following reasons are brought forward to explain this apparent diecrepancies. They believe that during January-February there is a largesoale migration of copepode from Palk Bay where the sea is turbulent and phytoplankton productions is at an extremely low level, to the Gulf of Mannar where conditions more favourable. This migration has been held responsible for the higher average annual population in the Gulf. The fact that the meah aize of the net employed was much largerthan the size of several nauplii netted also is shom to be a factor responsible for the apparent anomaly noticed between the average annual copepod populations and the diatribution of naupliar and copepodite stages of the two areas. They also pointed out that the breeding of copepods in the Gulf from September to March ooincides with the spaming of fishes of this area with the reault that although there is aotive
breeding of copepods during this period a substantial portion of the naupliar population is being constantiy consumed by the larval fishes. The difference between the intengity of breeding at the two regions is thus explained. (3) Close relation between breeding of copepods and the diatom oycles of the two regions is discusssd and it is observed that in both the areas breeding is to a large extent dependant upon the diatom cyole.

\section*{Results of the present study}

Breeding periods
Psoudodiaptomas (Pgeudodiaptomas) gurivilili Cleve* Iarge mumbers of adult males and females as well as copepodites swarmed the surface waters in the months of December-January 1959-60. This was to some extent accompanied and lateron followed by large number of naupliar stages. The thturn abundance was maintained in Pebruary though a steep reduction was noticed from the January level. A clear and gradual declination was observed during subsequent months and in July the species vertically disappeared. The data for next four months (AugustHovember) display a gradual increase in the population. It is interesting to note that the level in November was alnost the same as for the \(\quad\) ame month of the preceding year (Pl. XXXIX, fig. 1).
A. close atudy of the data available for 1959 revealed that in the month of May a fair number of individuals, more than half of which were adults, were caught. This was followed by a decilnation in June, July and August and in September the apeciea was at itg minimam of ocourrence. The months of

October and November witnessed an abrupt upward ohange in this apecies which compares quite well with the condition found in 1960.

The percentage digtribution of adulte throws more light on the breeding pattern of this species. August-Septerber 1959 and July-August 1960 were the periods of lowest abundance of the species. During these periods only the adults were eaught both years(P1. XXXYIII, Pig. 3). During the few monthe following this low peak, the population consiated chiefly of the adults. By the end of November, both in 1959 and 1960 good numbers of adult females were observed to carry eggs and this was followed by a sudden increase of early atages in the population in December and January. This suggests that intensive spaming takes place during the monthe of DecemberJanuary. As yound stages were also found during mis subequent months, it appears that the breeding of stray individuals ape or isolated late spawners continues till about February.
2. Celpnopi thomponi_A. Seott - This speoies mows a great similarity to the earlier species in its diatributional pattern except that the non-peak period its abundance becomen also
very insignificant. It has maller peaks during the months of May-June (P1. XXIIX, Pig. 2). But this peak could be considered a continuation of the larger peak. During these monthe a fair number of first to third copepodites are present. In July and August these stages are replaced by \(g\) higher stages (fourth or fifth). The adults begin to appear in amall numbers In August and from September onwards they increase steadily and
attain the maximum in January. The early copepodites of this species are seen in the monthe of September which signifies the commencement of breeding season. During subsequent month when intensive spawning recurs the lifecycle passes in quick succession. In Pebruary and Maroh the early atages begin to disappear, thus indicating the completion of breeding season. In these monthe the species is represented prodominently by late copepodites and adults.

Although ocourring in relatively small numbers, Calanopia thompsoni appears to have some importance by virtue of its large size. If weight vaiue is taken as a oriterion the contribution of this speaies, during its peak period, to the total biomses will be found to be quite substantial. 3. Aoartia (Ocontacartia) exythraea Giesbrecht - This is one of the commonest species of this area and is found almost throughout the year. However, during the peak of OctoberJanuary, because of the swarming of so many other copepoda, its comparative importance is reduced. There are two welldefined peak periods of abundance for this species, one in April-May and the other in October-January. During the latter peak, however, the population suffers a minor decimation in November (PI. XXXIX, Fig. 3). A atudy of the percontage diatribution of the various stages show that the setback in November is more due to a lower rate of recruitment of new copepodite populations, rather than due to any real reduction in the relative abundance of later stages or adults.

Kartha (10e. git.) found two distinet peake for this species: first in March-April and the other in November-January with an additional maller peak in September. During the year 1960, these sequential ahanges appear to have shifted forward by one month. The first maximum is found in April-May, extending even upto the first first half of June. The amaller peak notioed by Kartha in September is found to occur in Oetober and almost entirely merges with the second large peak of the year. The facts that during the year 1954 no such intermediate peak was recorded by Kartha and that even when present the peak is extremely amall suggest that this smaller peak oould better be conaldered in continuation with the allround increase of the species during the colder months of the year.
4. Paracalanus aculeatus Giesbrecht - This species was found at its maximum during January-Marth whence it decreased gradually. The lowest number was observed in May. During June-July another peak was found to occur. But while in 1959 this latter peak was conspicuous it turned out to be quite insignificant in 1960 (P1. XXXIX, Fig. 4). In September the apecies reached the second minimum and during this month the popalation consisted chiefly of copepodites. By October, howevar, all the young atages have moulted either into fifth stages or adults. Incidentally this was the month when the adult population recorded its greatest percentage of abundance. This not only shows that the breeding has practically ceased a month or so earlier but may also indicate that the next aetive breeding season of the species is in the offing.

Sewell (1929) has made the suggestion that it is probable that the abundance of this apeaies and of the following is more or lese mutually exclusive. He found that when P. parvas was dominant in a particular looality P. gouleatus was almost entirely absent or present only in small numbers. The reverse situation of abundance of \(\underline{P}\). aculeatus and an absence of P. parvas was also noticed. This situation, however, does not hold valid for the present area. Two siginificant breeding periods almost corresponding in time are noticed for both species. In both cases the sumer peak was comparatively smaller. However, in the case of P. parvis an additional peak was seen in September. Thether this peak is considered separately or in continuation with the following peak (as in suggested for Aosrtia erythraea), the abundance of one species does not seem to alternate with that of the other.
5. Pargalanua parvus Olaus - Kartha (1oc. ait.) noted great variations in the trend of seasonal changes of this species. Both in 1952 and 1953 he observed only a single prolonged breeding period with its maximul in December-January. In 1954 he found a second increase with breeding activity during April-June. This was, sccording to him, mainly responsible for the total copepod peak in May-June. The data available for 1960 present a picture almost intermediate to the two extremes (Pl. XXXIX, Fig. 5). The species reaches the maximum in November-January months. A second peak which comparatively is quite insignificant is found in May-June. A third increase occurs in September, just prior to the most intensive breeding period of the jear. Probably the September peak is non-aignificant
and is comparable to that observed for Acartia erythrgeg. It is more probable that active breeding starts early in September and continues upto January or Pebruary. The steep reduction found in October is mainly due to lesser percentage of adults.

Besides the main peak during the colder months, the presence of a second peak is reported for 1954 (Kartha, 100. git.). Its occurrence in 1960 as well indicates that it is probably a regular feature of the species. Even in 1953 Kartha's figure shows a minor peak (Kartha, loc. oit. fig.3b), which is not mentioned in the text and which resemble s the second peak observed in 1960. The correspondence of the present data with these earlier reports, deris thus, is not a \(^{\text {w }}\) mere ooincidence.
6. Oalanopia gurivilit Oleve - Generally the maximal ocourrence of this species is during the months of NovemberDecember. It may however extend as far as January or even x㛁 upto February. The lowest numbers are found in May and August. There is a alight increase during the intervening months of June and July.

By Soptember the species starts fincreasing in number. This process goes on steadily until November when the species attains its annual maximum (P1. XXXIX, Pig. 6). That November is the most autive breeding month is ahom by the percentage distribution of the adults and copepodites. Copopodites which formed only 42 percent of the total population in September, now swarm the water constituting about 78 per cent. Purther, while in September the early copepodites (I - III) were entirely
absent, in subsequent monthe they contributed a major share in their total population.

Although mall, the June-July peak also indicatee a clear breeding period. From April to June practically there wae no new recruitment of early oopepodites. But in July there is a sudden appearence of these stages, forming about 60 per cent of the total population of this apecies. By August all the young ones moult to higher stages and by September the population predominentiy attains adulthood and this marks the beginning of another active breeding period.
7. Aoroaalanu gibber Giesbrecht - Kartha (100. Git.) treated three species of this genus together and stated that in the Gulf of Mannar there "waa a fairly good population from June to Auguet in 1952, with a peak in August; and July-Soptember in 1953". He further stated that "in 1954 there was a peak of short duration in Kay". The present observations differ from these records. It may be because of the fact that in the earlier acoount these different species were pooled and dealt with together.
A. gibber displays two major peaks in the year, the first in Jamuary-Pebruary extending upto Maroh and the second in June-July extending upto August. There are clear gaps between the intervening periode (PI. XL, Fig. 1). However, a percentage diatribution of different copepodite stages and adulte reveals little information aa to any change in the rate of breeding between different seasons. But it seeme probable that the speaien as a whole becomes reproductively more active and a
greater relative abundance prevails during these poriods. It is interesting to note that the peake observed for this apecies correspond to thoee recorded for Calenopit aprivilli and Pargaglamg parvus the only difference being that the June-July peak is silghtiy larger and the winter peak is shifted more towards the colder months.
8. Acrocalanus monschus Giesbrecht - The only definite thing that could be said about the diatributional pattern and breeding of this species for the year 1960 is that there was an enormous increase of the population during the months of Hovember-Pebruary, attaining the maximam in Jamary. After February there was a steep reduction, which reached 1 to minimum in March. From then onwards small fluctuating peaks were observed, almost at intervals of two months until October when the species displayed a gradual increaes. A study of the percentage distribution of various copepodites and adults does not reveal moh ezcept that in December the adult population reaches its maximum. The annual maximan population observed in January is due to aotive breeding of these adults.
A. monachus is a small species and it is possible that the sampling of the early copepodites is probably inadequate. It is also possible that during the laboratory analysis some of the copepodite stages could have been mixed up with those of a related speoies, A. gracilis. The latter is a large species and ocours only occasionally. However, when both apecies oocur together and eapecially when the population is dominated by the early copepodites, the correct identifioation becomes a difficult tank.
9. Katerpina nouttifone (Dana) - According to Sarthe (100. dit.) this species occurs throughout the year, with alight variations in its abundance and with an overall increase during the cold months. Only in 1954 he observed an additional peak during MayAugust. There is general agreement between the present data and the earlier accounts. The species started a steady increase in October and the tendency is continued unto January whence it takes a reverse direction. During Maroh-October the species undergoes considerable fluctuations (Pl. XI, Fig. 3), the yearly minimal level being recorded in the month of May. However, it is surprising that during this month the population was composed mainly by the copepodites eapeoially the earlier ones and that the largest percentage of the adults was found to occur during the preceding months of April.
10. Oithons rigida Giesbrecht. - Martha (log. att.) found that the species of the genus Oithons showed irregularity in its distribution from year to year, with, however, a constant peak in September. There is a good agreement between the present findings and the earlier records. The species attains its annual maximum during the months of December-January. Other peak e are observed almost at equal intervale in March-April, June-July and September-0atober (P1. KL, Pig. 4).

The four peaks observed in the present investigations correspond to those reported by Kartha, especially for the years 1953 and 1954. The present data differ from those of the year 1952 in that the peak e recorded in March-dpril and Junowuly in that year are considerably insignificant. It
to state that this speoies is a prolonged spawner, but with distinot periods of active breeding which are intercepted by short intervals of lesser reproductive activity.

Quantitative distribution
The oopepod population as represented by the ten species noted above of the Gulf of Mannar is the highest during the coldeat months of the year November-February. By the end of February or March almost all the speaies record varying degrees of declination (PI. XXXVIII, Figa. \(1 \not \& 2\) ). In several species the dearease is consistent during the summer months and a reversal towards the other direotion is marked in the beginning of August and September whence the increase in their numbers becomes steady. By taking all speaies together it appears that the oopepods show a unimodal pattern of distribution. However, this picture is obscured if we examine individual speoies separately. Hot only do several of them show more than one peak in a year but the peaks of different species are not often aynchronised. In all species, however, one of the annual peaks corresponds with the cold months of the yoar, thus resulting in an over-all increase of the copepodit population during that season. Prasad (1954 \& 1956) found that although the oopepod population showed an increase in October there was a reduction in November before attaining a subsequent increase resulting in a peak in December, January or Pobruary. Kartha (100, dt.) obtained more or less aimilar informations. However, Prajad and Rartha (10e. ait.) have olearly demonstrated that a olose rolationship
exists between the breeding of copepods and the diatom oyoles and that treated in general way "the maximum breeding in the Gulf of Mannar is during September to March". It is probable that the reduction of population obtained in November during certain years is not due to any real break in the reproductive activities but may be due to a alowing down of the mex new recruitments of nauplii and copepodites after the completion of an initial generation. In several species ( \(\underline{p}\). gurivilii, C. thompons, A. exythraes, P. parrus, A. gibber, O. rigide) this aisjunction is seen in the winter peak. But in several others (ㄹ. sculeatus, C. aurivilili, A. monachus, S. acutifrons) the increase Initiated furing September or October is steady and continuous, attaining a single prolonged annual meximum. Prasad (1954) who first observed dioyclicity in the distribution of copepode in the Gulf of Mannar offered the following explanetion: "It is possible that while in other localities the maximum occurrence of one or more species may overlap, there may be still others whose maxima fall in such a way as to fill the gaps and present an overall unimodal distribution. A similar phenomenon may not be taking place here thereby resulting in an apparent reduotion in population level and a bimodal curve".

Bogorov (1958) reviewed the earlier works on the study of seasonal change of plankton all over the world. He attempted te generalize the interrelationship between the abundance of plankton organisms and the clinatic changes of different latitudes. Aocording to him the fluctuations in the animal numberg in different latitudes give rise to what he terms as biological seasons": "In general the biologioal winter is
oharacterised by a minimum organdsme, especially phytoplankton and a simultaneous increase of biogenic matter (salta of nitrogen, phosphorus and other matter indiepensable to, or limiting, the nutrition of plants) determined by the decomposition of plankton and the absence of consuming phytoplankton; The biological spring is characterised by a rapid increase of plankton, eapecially phytoplankton; at this time the latter reaches its annual maximu. In boreal areas the main mass of phytoplankton consists of diatoms. Zooplankton abounds in egge, larvae and juvenile atages of development. Then comes the biological aummer accompanied by an abrupt decrease of biogenic matter accounted for by the vernal development of phytoplankton. The quantity of phytoplankton diminishes rapidly, owing to a leaser supply of nutrient salts and to increasing quantities of zooplankton, the latter feeding on the phytoplankton directly or indirectly.............. The sumaer period is characterised by mapid development of zooplankton. The dying off of zooplankton and the absence of great masses of phytoplankton result in an increase of biogenic matter toward the end of the biological summer, thus providing a basis for a second maximum of phytoplankton. The latter at this time consists mainly of peridinians. This is the biological autum period of growth of animal plankton whioh reaches its hibernating stages; phytoplankton develop hibernating pores or celle" (pp. 148-49). Bogorov then presents a soheme dividing the earth' lattitudes in to the arctic (antarotic alsop), moderate climate, subtropical and tropical regions. In the tropical seas the biological summer
laste seven monthe whereas in polar sean it is restricted to a eingle month. The winter scarcely expressed in tropice, jasts nine to ten monthe in the polar seas. The intermediate latitudes diaplay varying degrees of gradations between these two extremes (see Bogorov's Figa. 1 \& 2 for details).

If individual mpeoies are considered separately it is found that the annual maximal peaks coincide with a most active breeding periode. It has been observed that the breeding activity is a continuous process krin great many of the speoies and takes place almost throughout the year. Only a few species (o.g. P. eurivilii) there is a oessation of spaming activities during the periods of minimal occurrence. However, in all the continuous spawners there is a great reduction in the rate of produotion and the succession of broods during the non-peak periods. It appears that during this period different naupliar and oopepodite stages take longer durations than those during the peak periods when because of the highly favourable environmental conditions the reproductive activities are accelerated eonattions and that the life cycles are spent in quicker succession.

The relative differences in the distribution of the two sexes of adult animala do not exhibit any partioularly interesting trend, except that in some species the females tend to dominate almost always while in other a fifty-fifty ratio is roughly maintained. (Table XII). In apecies with strongly defined annual peaks (e.g. P. gurivilit, G. thompaoni)
the male: slightiy outnumber the females during the breeding in periode. It is also interesting to note that these apecies the females form a greater proportion of the adult population during the periods of minimal ocourrence. (Amont the late copepodite stages, the ratio of sexes is monotonousiy uniform, each sex equalling the other. A sex-wis analysis of the earlier copepodites is not possible as in these casea, there is apparently no extermal charaotera of sexual determination.

Annual number of broods and their longevity.

\section*{Psoudodigntomis (Papudodiaptoman) aurivilil and Labidocere} bengalengin have been reared in the laboratory for studying the stages of their life cycles. Galanopis thomponi, Gentrom pages furoatue and \(\underline{C}\). dorsianingtue were also tried but full aucoesa was not obtained. It was possible to trace only the copepodites of these three apecies. In none of the apecies 1t was posaible to rear the animal through the first naupliar stage to the adult. The method adopted for rearing was to select speaimens of a particular atage and allow them to moult to the next tage. In this way, by repeated observation on different stages, continuity of all stagen could be traced and maintained. In some cases the specimens survived longer then one moult, thus giving an actual indication of the time required by organism to moult from one stage to the other. However, the tine taken by plankton organisms to moult in captivity to next higher atage may not be mase same as in their natural environment. Hone of the nauplii and the early
copepodites which underwent more than one consequtive moult in the laboratory took more than \(2-3\) or rarely 4 days for the process. The late copepodites hardly lived for 4 days after their first captive moult. Probably the duration required for the next moult is longer in these \(k\) cases but may not exoeed six or 7 days. Giving an average of 3 days for the nauplius and 4 or 5 day for the copepodite, it is found that a nauplius freshly hatched and reared under captive conditions could attain adulthood in 5 or 6 weeks. This could poseibly depend on optimum conditions of the environment.

There are many types of evidences to show that the period required for the completion of the entire life cyole in much shorter during the propitious colder months. It has been found both in the earlier studies (oh. Prased, 1954 \& 1956; Kartha, 1959) and also in the present investigations that for several spocien (A. erythreas, E. parvus etc.) the winter increase is intermpted after a month or so before reaohing the maximal peak. It has been suggested by earlier workers that this interruption period is a gap between two distinct breeding periods. The present studies show that there occurs a slowing down of reproductive activities after the completion of one active initial generation. It is not a stop-gap of spaming aotivities but is more of a 'breathing apace' in a long and continuous activity. If this interpretation is acceptable it can be seen that during the favourable periods the entire life cyole requires 4 to 5 weeke for its completion.

During the non-peak periods the life activities in most of the apecies are slackened and although breeding takes place, the rate of maxie production of now stocks appears to be at a much lower rate and the nsuplii and copepodites appear to last for longer durations. 01thona rigide whioh nowe several peaks in year provides a fine example. The breeding in this species is a continuous activity. As noted earlier the species reaches its maximal abundance during December-January. Pollowing this period there is a month of recuperation before the species launches for the next generation. The latter lasts exactly for two montha before attaining maturity and for preparing the species to start on a new generation. The colder months, however, present a different picture. During this period, two or even more successiful generations are completed in rather quick series within a period of to 4 months, the generations sometimes being interrupted only by short periods of lesser activity.

It is possible that species with one annual maxdrum would have two or three broods during the active period and one or two during the rest of the year. The species with annual
two or more \(L^{\text {maximal periode would certainly have additional }}\) broods. Prasad \& Eartha (10c. aft.) observed: "In the temperate waters the usual number of broods is three or four and in cold waters the this appears to be reduced to one. It is not unlikely that in the tropical waters there are more number of broods than in the temperate and cold waters".

\section*{Pomarict}
Breeding habits of copepods of the Gulf of Mannar appear to be divisible into three categories: (1) Those breeding throughout the year with irregular variations in the frequencies so that their population ineludes not only adulta but also the various copepodites. All these stages are caught irreapective of any seasons. Aorooalanue mongohur and 0ithone gigida oxemplify this group. (2) Those breeding throughout the year but with distinot peaks during certain monthe \(s 0\) that although the various copepoditea and adults of the speoies are avadlable in every month, yet their percentage abundance displays considerable differences. Several species fall into this group: Agartis erythraes, Pargoganus gouleatus, P. parvus, Calanopia gurivilil, Aoroaslanus gibber and posaibly Euterpina agutitrong. (3) Thoas breeding only during certain seasons. Among the species studied Pgeudodiaptomue ancivilli and Calanopis thomosoni come under this group.
This grouping of copepods on the basis of breeding habits is made with some reservations and should be regarded as tentative. In the first instance it is questinable why apecies residing under oirilar environmental conditions should have differential breeding seasons. It will not be out of place to euggest that the availability of food may serve as an important factor in controling the breeding behaviour of copepods in tropical waters. The synchronisation of diatom outbursts
and nampliar development of marine invertebrates has olearly been demonstrated (Ussing, 1938; Marshall \& Orr, 1952; Barnee, 1957; Prasad Kartha, 1959). Those apecies with clear seasonal spaming habits could be said to be under the strong influence of regular periodioities of phytoplankton. The breeding of other species, irrespective of the season could be due to the fact that in tropical waters phytoplankton may be available almost throughout the year in varying quantities. This latter auggestion is, again, illustrated by Tortanus gracilis and I. Loroipatue both of whith are predatory and feed on nauplii and other minute creatures. These species are not very common in this area but whenever present they are represented not only by the adults but also by copepodites indicating continued breeding throughout the year. As the naupliar diet is invariably present throughout the year thase copepods a not find any scarcity of food, They therefore breed all the year round.

Prasad \& Kartha (100. git.) suggested "In the Gulf there is dietinctiy a greater proportion of copepodites during September to March whereas in Paik Bay their maximum is during May to September...... During January-February a large acale migration of copepods from Palk Bay where the sea is turbulent and the phytoplankton produotion is at extremely low level, to the Gulf of Mannar, where the conditions are highly favourable seems poseible". To what extent such movements could affect the copepod population of the Gulf could not be determined in the present study as no biometric study was undertaken. In any oase it is
quite interesting to find that there is so much of variation in the breeding behaviour of copepode in neighbouring waters of such olose proximity and fwee exchange of waters.

The temperature variationg in the Gulf of Mannar have recently been discussed by Prasad (1957) who noted that temperature is maintained more or less at a unfform level throughout the year except during some months corresponding to the calender winter when there is an abrupt reduction, The earlier part of these colder months represent the biological apring of this area with a great bloom of phytoplankton and the later part the biological sumer with greatest number of zooplankton. The coincidence of the breeding of copepods with this part of the year, is, therefore, natural. However, why several species should have another significant peak period during the monthe of May-July, extending even upto Auguet is not clear. This is particularly interesting in Fiew of the fact that during this period active breeding of copepods occurs in the Palk Bay.

A final word may be said about the continuity of the species throughout the year. In temperate and colder waters geveral carlier woricers have noticed (for a review see Digbey, 1950 and Marshall \& Orr, 1955) that species with well-defined seasonal breeding disappear almost altogether during the unfavourable periods. In such cases it is held that either these species migrate at lower depths during the uniavourable conditions or they never
disappear completely from the water colum but merely become scarce nough to remain unnoticed. In tropical waters the breeding appears to be a continuous process and only the intensity differs from season to season. The influence exerted by the immediate favourability or unfavourability of the environment is manifested in the breeding behaviour of the copepods in the form of seasonal rhythms.

\section*{

}
Teqow

 69nぁw
FTTFAFEN


 Envermbixa nging infogingio


FITFAFME thichar fpoprosa

adults of the different species (as collected by organdie net) during 1960 Table XI.
178703
muप






\(\frac{\text { FITHATME }}{\text { ETCKTED }}\)
64780thor
उeqqry

stanter ETHETB0858
MMPNMM=O M M M N


Firosemicy



FTTHATME smiordetpopiog
 mon=6ominting January
February
March
April
May
June
July
August
September
October
IVovember
December

The quantitative biology of the following ten species of planktonic copepode is included in the present work:

Pesucodiantoman arivilli,
Calanopis thomproni.
Agaxtia exythrean, Eaxcealanuen comlostue,
P. Dervia,

Calenopis surivilif, Agrocelamp gibbex, A. Erongobur. Eytervin e poutifronn, and Otthone riaid

There have been three principal aims (a) determination of the breeding seasons of different copepod species; (b) eatimation of quantitative seasonal distribution of different species and (c) determination of the number of broods in a year and the longevity of broods.

The wonk so far done on the quantitative biology of the planictonic copepods of the Gulf of Mannar is briefly reviewed. The present data are compared with these earlier works and points of interest are discussed.

Based upon the breeding habits the planktonio copepods of the Gulf of Mannar are divided into three groups those having a single, well-defined breeding aeason; those having more than one breeding season and those having irregular breeding periods. It may be added, however, that this division is purely tentative for it is hard to explain why organisme living under more or less similar environmental conditions should have different breeding habite.
\begin{tabular}{|c|c|c|}
\hline Bogorov, B. 6. & 1958 & Perspectives in the study of seasonal changes of plankton and of the mumber of generatione at different latitudes. In "Perspectives in Marine Biology" edited by A.A. Buzzeti-Traverso. \\
\hline Chaeko, P.I., & 1950 & Marine plankton from waters around the Krusadai Island". Proc. Ind. Acad. Sci., 31, Sec.B, 162-74. \\
\hline Digby, P.S.B., & 1950 & The biology of the gmall planktonio copepods of Plymouth. J. Mar. biol. Ass. U.K., 29; 393-438. \\
\hline Kartha, K.N.K., & 1959 & A study of the copepods of the inshore waters of Palk Bay and Gulf of Mannar. Indian J. Fish. 4 : 256-267. \\
\hline Marshall, S.M., & 1949 & On the biology of the small copepods in Loch striven. J. Mar, biol. Aas. U.K., 28, 45-122. \\
\hline A.P. Orr \({ }^{\text {a }}\) & 1952 & On the biology of Calanus fimarchicus. VII. Factors affecting egg production. J. Mar. biol. Ass. U.K., 30, 527-547. \\
\hline \& & 1955 & The biology of a marine copepod, Calanue finmarohicus (Gunnerus). O1iver \& Boyd, Edinburgh \& London. \\
\hline Prasad, R.R., & 1954a & The characteristics of plankton at an inshore station in the Gulf of Mannar near Mandapam. Indian J. Fish. . 1:1-36. \\
\hline & 1954b & Observations on the distributions and Iluctuations of planktonic larvae off Mandapam. Symposium on the marine and Ireshweter plankton in the Indopacific, 1954, 21-34. \\
\hline & 1956 & Purther studies on the plankton of the inshore watera off Mandapam. Indian J. Figh, 3: 1-42. \\
\hline & 1958 & Plankton calendars of the inshore waters at Mandapam with a note on the productivity of the area. Ibid., 5:170-1! \\
\hline & 1957 & Seasonal variations in the surface temperature of seawater at Mandapam, from January 1950 to December 1954. Ibid., 4 : 20-31. \\
\hline et al. & 1952 & Observations on the distribution of plankton at six inshore stations in the Gulf of Mannar. J. Zool. Soo. India, 4: 141-51. \\
\hline
\end{tabular}

\section*{Prasad, R.R. \& \\ K. I.K. Kartha}

Sewell, R.B.S.,

Sundararaj, B.

1959 A note on the breeding of copepods and ite relation to diatom eycle. J. Mar. biol. Ass. India, 1(1):77-84.

1929- Copepods of Indian seas.
1932 Mem. Ind. Mas. X: X:407.
1933- Administration Report for the year 1938 193438, Madras Figheries Adminiatration Reports.

\section*{Explanation of Rlate XXXYIII}

Fig. 1 Diatribution of total adult copepods of the ten species studied in the Guif of Manner during 1960 as colleated by organdie met

2 Distribution of total oopepod population (adulta and copepoditen) of the ten apeoies studied in the Gulf of Mannar during 1960 as collected by organdie net

3 Proudodiontomus eurivilit: Distribution of aduite (nalen and females) in the Gulf of Mannar during 1960 as collected by organdie not.

Calanopia thompmoni "don

Paraonamm aculeatun "do"

Paracalanue paryus "do"

7 Aeregalamus gibber "den
- Aoreoalanue monachus "an

Aogrtia errthraea "don

Suterpina equtifrome "do"

Othong rigida "do"

Galanopia aurivillis
"do"

\section*{PLATE XXXVIII}


\section*{Explanation of Plate XXXIX}
11. 1 Pseudodiaptomus aurivilli- istribution of total population (adults and copepodites) in the Gulf of mannar during 1960 as collected by organdie net.

2 Celanopia trompsoni-
3 Acartia erythraea Paracalanus

5 Paracalanus partus - -do-
6 Calanopia aurivilli- -dom

\section*{PLATE XXXIX}


\section*{Axplanation of Plate \(X\)}

\section*{Fig. 1 forponimstas Libbar - Distribution of total population (adulte and copepodites) in the Culf of sannar during 1960 as oolleoted by oreandie net.}
2. Acraoninman monahous - ..... *an
3 Eutorping moultrong - ..... "do"
4 gethom migtas - "do"
5-13 Percentage aietribution of adult fomienin different specios in the Gult of Mannarduriag 1960:
5 Paputodianterns gurivill4
6 Onvannt thrmath
7 Anvitis sprthrete

9 Earachaxpa Raxy
10 Cnlonopin aurivil12
11 Acrononlanas stibber
12 Agrocalanus ponaquy
13 0ithoniz mifida

\section*{PLATE XL}


Published Papers

Studies on Indian copepede I. Paralopeoparilus mannarensig, a new gema and epecies of eyclopold copepold from the Gule of Mannax

\title{
STUDIES ON INDIAN COPEPODS I. PARALEPEOPSYLLUS MANNARENSIS, A NEW GENUS AND SPECIES OF CYCLOPOID COPEPOD FROM THE GULF OF MANNAR*
}

\author{
By A. N. P. Ummerkutty \\ Central Marine Fisheries Research Station, Mandapam Camp
}

Thompson and Scott (1903) in their supplementary reports of the faunistic survey of the Pearl Oyster Fisheries of Ceylon reported on a number of copepods, many of which were new to science. Two of the new species, typicus and ovalis, both belonging to the genus Lepeopsyllus, which was also newly erected, were remarkable in their general resemblance to the members of the harpacticoid family Peltidiidae, especially in the shape of the body, in the posteriorward growth of the last prosomal segment and the complete overlapping of the urosome by the latter so that when viewed dorsally only the caudal rami are visible besides the prosomal region. A flattened oval or circular body as seen in Lepeopsyllus Thomp. and Scott is shared by many other cyclopoids and the prosomal segments may exhibit varying degrees of expanded growth posteriorly or laterally. But in all such instances the urosome is never fully covered over by the prosome. In Lepeopsyllus, however, the last prosomal segment grows over the urosome so that the latter is hidden by the former. Nevertheless a study of the various appendages of this copepod shows beyond doubt that it is a siphonostomous cyclopoid, very much related to dyspontiids, and understandably Thompson and Scott placed this genus under Asterocheridae of Giesbrecht which in fact is included in the Siphonostoma by Sars (1918) wherein he groups together all those cyclopoids having a siphon in the oral region. Wilson (1932) included the genus Lepeopsyllus under the family Dyspontiidae Sars, and placed it very near Dyspontius Thorell and Cryptopontius Giesb. Nicholls (1944) follows Wilson and treats it in the same way. In his brief systematic review of the different genera that should be included in the family Dyspontiidae, he states that Lepeopsyllus Thomp. and Scott is 'recognisable as belonging to this family', with no further comments. In a latter part of this paper I have tried to draw attention to all the distinctive characters of this genus which distinguish it from a typical dyspontiid. The very close affinities that exist between Lepeopsyllus and the present form described below, and their distinctness from all other cyclopoids in certain important morphological features appear to suggest the creation of a new sub-family or family for their reception ; this point is considered later (vide infra).

\section*{Paralepeopsyllus Gen. Nov.}

Body thin, scale-like, oval or circular ; prosome 3-segmented and urosome 4segmented in both sexes; in the female, however, the first two proximal segments may be only partially separated; the urosome is completely overlapped by the

\footnotetext{
* Published with the permission of the Chief Research Officer, Central Marine Fisheries Research Station, Mandapam Camp.
}
last prosomal segment ; the margin of all the prosomal segments thickly lined with papilla-like prolongations of irregular lengths, forming an ornamentation. Antennule 14 -segmented in female, 12 -segmented and geniculate in male. Antenna 5 segmented, the last segment carrying terminal spines; the second segment carries a rudimentary endopod provided with terminal setae. Siphon rather short and shield-shaped, hardly reaching about two-third the length of first prosomal segment. Mandible consists of a thin linear blade and a 1 -segmented palp carrying two terminal setae of unequal length. Maxillule with a bimerous basipod and two palpi of unequal length, both carrying tufts of setae at the apex. Maxilla 1 -segmented, strongly built and carrying a stout terminal claw. Maxilliped 5 -segmented and strongly built, the last segment having a strong apical claw. There are only three pairs of swimming legs; the first and second pairs biramous and the last pair uniramous; the rami of all the legs are 3-segmented. Caudal furca moderately divergent and cylinderical. Eggs carried in two ovisacs, attached on either side of the genital segment and covered over by the last prosomal segment.

Genotype : Paralepeopsyllus mannarensis sp. nov.

\section*{Paralepeopsyllus mannarensis sp . nov.}

Material examined: In the first week of August, 1960 eight females and five males of this copepod were obtained from the sponge washings from the Gulf of Mannar off Vedalai. None of the females in this collection was carrying eggsacs. In the last week of the same month two egg-carrying females were obtained from the same locality, but this time from crinoid beds.

The generic name of the present species refers to its systematic relationship and the specific name to the locality of occurrence. The holotype, the allotype and the paratypes are deposited in the Reference Collection Museum of the Central Marine Fisheries Research Station, Mandapam Camp and bear the registered numbers J. \(525 / 3\), J. \(526 / 3\) and J. \(527 / 3\) respectively. All the drawings have been made with the aid of a camera lucida and the description and the diagrams are based on the examination of many specimens.

\section*{Description.}

\section*{Female}

Colour. Freshly captured individuals were transparent with beautiful shining ornamentations along the prosomal margins. Formalin preserved specimens became opaque with a pale yellowish tinge; darker shades are present along the thickened areas. Body. (Fig. I, 1)-The body consists of the prosome and the urosome but the latter is entirely hidden beneath the former which actually accounts for the whole size of the animal. The prosome is oblong-oval with a clear rostral prominence on the anterior side. It consists of only three segments, the margins of all of which are greatly ornamented with papilla-like growths. The ornamentation of one lateral half roughly corresponds to that of the other half. The ornamented area appears to be thicker than the non-ornamented part. The first prosomal segment is much larger, both in length and width, than the other two segments combined. The second segment is broader than the third but distinctly shorter than the latter; it is rather crescent-like with the two lateral edges much


Fig. 1. Paralepeopsyllus mannarensis gen. et. sp. nov. 1. Adult female, habitus, ventral view.
 Mandible. 6. ㅇ siphon. 7. ㅇ Antennule. 8. ㅇ Antenna. 9. J Antennule. (The habitus of the adult male and female are drawn to scale 1, and all the appendages to scale 2 ).

\section*{A. N. P. UMMERKUTTY}
thickened ; the ornamentation of this segment is broken from that of the first segment but appears to be continuous with that of the following segment. The last prosomal segment has a peculiar shape, with the highly convex anterior margin fitting into the concavity of the preceding segment and with the posterior margin being wavy; the two lateral sides smoothly curve down to the posterior wavy margin which is less than half as long as the widest part of the same segment ; in the case of this segment the ornamentation is present both on the lateral and the posterior borders. The urosome consists of a genital segment and two abdominal segments ; the former, however, shows a partial division into first urosomal segment which in the related genus, Lepeopsyllus, bears the fifth pair of legs and the genital segment proper. It is longer than the two abdominal segments combined; the genital segment proper exhibits a proximal wider and a distal narrower regions, a spine on either side being present at about the junction of the two. The genital segment carries a pair of ovisacs, one on each side. Of the two abdominal segments the proximal is the larger but they are of equal breadth. The last abdominal segment bears a pair of caudal rami which are cylindrical, rather elongated and slightly divergent. Each of them bears four setae of unequal lengths, the longest of them being only a little longer than the ramus itself.

Antennule (Fig. I, 7)-Compared with the size of the body the antennule is rather small and consists of fourteen segments. The first five segments as a whole, are distinctly wider than the next nine and the fifth segment shows a partial division. While the segments 6-11 are subequal, other segments are of varying lengths, with the first segment as the longest. All the segments are provided with setae, often many of them on a single segment. But the arrangement of the setae does not appear to give any clue to the number of original segments that would have fused together in the formation of the present condition. The thirteenth segment bears a fairly long aesthetask. The proportionate lengths of the antennular segments are as follows:
\begin{tabular}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\(16 \cdot 4\) & \(6 \cdot 5\) & \(10 \cdot 0\) & \(5 \cdot 3\) & \(6 \cdot 4\) & \(4 \cdot 7\) & \(4 \cdot 7\) & \(4 \cdot 4\) & \(4 \cdot 7\) & \(4 \cdot 1\) & \(5 \cdot 0\) & \(7 \cdot 3\) & \(8 \cdot 2\) & \(12 \cdot 3\) & \(=100\)
\end{tabular}

Antenna (Fig. I, 8). This is 5 -segmented. The basal two segments form the basipod and the next three segments the endopod; the exopod is represented by a bud-like structure that arises from anterior margin of the second basipod segment ; the first basipod segment does not bear any accessory structure. The first endopod segment is devoid of any seta or spine but are provided with very small spinules along its distal anterior margin ; second endopod segment bears a slender spine on its posterior margin and the last segment two terminal spines of unequal length; there are a few small spinules arranged obliquely along its length on this last segment. Siphon (Fig. I, 6). This is rather short and pyriform, hardly reaching the two-third length of the first prosomal segment. Its distal part is very narrow, about one-tenth of the wide proximal. The former bears a club-shaped structure at the middle of its concave tip. Mandible (Fig. I, 5). Consists of a masticatory blade and a palp which is less than half the length of the former ; the palp has its distal one-third margin ciliated and bears two terminal setae; one of the setae is slender and short while the other is quite large, equal in length to the masticatory blade and bearing sharp spinules along its entire length on one side. The masticatory blade is slender and long, the thick basal part gradually diminishing in width to the distal tip which is serrated. Maxillule (Fig. II, 10). Is composed of a basipod which is indistinctly divided into two segments and a pair of lobes arising from it. One
of the lobes is much larger being about two and a half times thicker and longer than the other; the former bears four setae which are graduated in length and the latter five setae of varying lengths. Along the inner margin of the larger lobe there is a row of spinules. Maxilla (Fig. I, 3). Maxilla is peculiar in being uniarticulated with no trace of division. It is large, cylindrical and devoid of any seta or spine except the terminal claw; the latter is very large and stout and has a characteristic shape in the form of a reversed ' \(S\) '. There are a few minute spinules on its distal inner margin and a separate miniature claw just beyond its middle bent. Maxilliped (Fig. Li, 11). Fairly large and consists of five segments, the fifth segment bearing two terminal spines, one of which is much larger than the other. The segments are uneven in their lengths; second segment is the largest and the fourth the smallest ; the latter bears a small spine on its inner margin.


Fig. II. Paralepeopsyllus mannarensis gen. et. sp. nov. (contd.) 10. 우 Maxillule. 11. \(ㅇ\) Maxilliped. 12. ㅇ. First swimming leg. 13. ㅇ Second swimming leg. 14. ठ Endopod of first swimming leg. \(15 . \delta\) Endopod of second swimming leg.

Swimming legs (Fig. II, 12, 13). There are only three pairs of swimming legs. Fourth and fifth legs are entirely lacking. They are borne by the three prosomal segments. The first two pairs of legs are biramous while the third is only uniramous. Each ramus is composed of three segments. In the first two pairs of legs, constituting segments are rather elongate; even when it is short, the segment is distinctly longer than wide. In the first leg the exopod is shorter than the endopod while in the second leg the reverse situation is true. The basipods in both cases are stumpy and broad, the first basal bearing no setae or spine and the second basal bearing one
seta and one spine in the case of first pair of legs, and one seta alone in the case of second and third pairs of legs. In the third leg the endopod is entirely lacking; the exopod is rather slender, the segments subequal ; in the basipod the basal one is short and broad while the basal two is quite long bearing the exopod almost at right angles to its length. The setal formula for the swimming legs is given below :

Following Sewell (loc. cit.) I have used Arabic numerals to indicate setae and Roman numbers for spines.


The absence of the fourth pair of legs is the consequence of the absence of fourth prosomal segment. However, the fifth legs also are entirely lacking although the fifth leg-bearing segment is present in partial union with the following genital segment. The length of the female is 1.2 mm .

\section*{MALE}

The male (Fig. I, 2) is much smaller than the female and shows sexual dimorphism in the structure of antennule, urosome and in the endopods of first and second pairs of legs. The urosome is clearly 4 -segmented ; the first of these segments is the result of the fusion of the original fifth leg-bearing segment and the genital segment. The next three segments constitute the abdomen and are postgenital in origin. The first segment is three times wider and three times longer than the abdominal segments combined. It is barrel-like and carries a pair of spines on each of its posterior corners. The abdominal segments are subequal, the last of them bearing the caudal rami. The latter in male appears to be as long as the last two abdominal segments combined, while in the female it is definitely shorter.

Antennule (Fig. I, 9). Is geniculate and consists only of twelve segments. First segment is the largest and may be compared to the corresponding segment in the female. The last two segments also are comparable to their female counterparts for, the penultimate segment here also bears the aesthetask. The identity of other segments are not clear. All the segments are provided with setae, while segments 9-11 also carry a few spines. The proportionate lengths of the various segments are given below :
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & .7 & 8 & 9 & 10 & 11 & 12 \\
\(17 \cdot 7\) & \(3 \cdot 8\) & \(5 \cdot 5\) & \(9 \cdot 1\) & \(5 \cdot 3\) & \(4 \cdot 8\) & \(4 \cdot 3\) & \(16 \cdot 8\) & \(5 \cdot 0\) & \(10 \cdot 0\) & \(10 \cdot 0\) & \(7 \cdot 7=100\)
\end{tabular}

The variations in the structure of the endopods of the male first and second legs (Fig. II, 13, 14) are not very profound. In the first endopod it consists in the presence of spinous growths on either distal corner of the third segments while in the female this spinous process is present only on the outer corner. In the second endopod the male has its distal corners of the third segment produced into peculiar structures, the outer of these is conical and serrated on the outer margin while the inner is irregular; in the female there is no structure corresponding to this latter; but the outer conical process is the counterpart of the spine in a similar position in the female.

\section*{Discussion}

There are a number of characters which the present genus shares with the genus Lepeopsyllus Thom. \& Scott. Some of these are peculiar to these two genera while some other features are exhibited by the members of one or other related families. The characters shared by these two genera are indeed substantial, the most notable of them being the exceedingly large development of the prosomal segment, especially the last one. The nearest approach to this condition is apparently met with in the genus Micropontius Gooding, 1957 (Family Micropontiidae). But the differences between Micropontius on the one hand and Lepeopsyllus and Paralepeopsyllus on the other, are too many to establish any real relationship between them. Among other siphonostomous cyclopoids an expanded growth of the prosomal segments is possessed, to some extent, by the members of the families Dyspontiidae, Artotrogidae and Cancerillidae; but in all these cases the last prosomal segment always remains small and inconspicuous. However, in the genus Discopontius Nicholls, 1944 (Dyspontiidae) the prosome is very large and the last prosomal segment grows posteriorwards, covering not only the first urosomal segment but also a part of the genital segment. This tendency of Discopontius to a backward development of the last prosomal segment seems to indicate a genuine kinship with Lepeopsyllus and Paralepeopsyllus, for there are a number of other features which also point to this conclusion.

In Lepeopsyllus, the prosome is 4 -segmented, each segment bearing a pair of swimming legs. First segment is far larger than the entire remainder of the body ; next in size comes the last segment which, although only half the size of the first segment, still constitutes a major part of the body and grows over the urosome, fully covering the latter; second and third segments are rather thin strips, inserted between the first and the last segments. In Paralepeopsyllus, a similar situation exists, but the process of reduction has gone still further with the result that there are only three segments in the prosome, each bearing a pair of swimming legs. In size, the first segment remains the largest, accounting for more than half of the body, while the last segment is the next larger and covers the entire urosome dorsally ; the second segment forms a crescent-shaped strip of body between the first and the third segments.

The marginal ornamentation of the prosomal segments also deserves some comments: this character is peculiar to these two genera among the cyclopoids; a nearest comparable feature found among other genera, such as Micropontius, is the thickening of the edges and margins of the prosomal segments. Both are probably for imparting strength to the region, but their morphological history appears to be different. Another character not usually known for the siphonostomous
cyclopoids but is noticed in the present genus is the slight structural modifications of the first and second swimming legs of the male. The terminal segment of the endopods of these legs exhibits an expanded development as is described in an earlier part of this paper. Unfortunately this point cannot be discussed as the male is yet to be known for the related genus, Lepeopsyllus.

It has been pointed out earlier that both Wilson (loc. cit.) and Nicholls (loc. cit.) have included Lepeopsyllus under Dyspontiidae. One should presume that this was done so only because of the absence of a different family suitable for its reception, rather than by its agreement with the genuine features of a typical dyspontiid. In dyspontiid, the antennule consists of a reduced number of segments and is not divided into a proximal-wider and a distal narrower region, except in Discopontius where the first two segments are distinguished from the rest by their larger size. In fact, the division of antennule into a proximal wider and a distal narrower region is a condition usually found in Asterocheridae. Further, the geniculate male antennule of the members of Dyspontidae contains usually an equal or a larger number of segments than the corresponding structure of the female. But in Asterocheridae and in the present genus the reverse is true, namely, the geniculate male antennule is composed of a smaller number of segments than the corresponding organ of the female sex. The structure of the antenna is still more striking. It is 5 -segmented both in Lepeopsyllus and Paralepeopsyllus (although Thompson and Scott state that it is 4 -segmented, their diagrams clearly show 5 -segments) as it is in most of the asterocherids, while in all dyspontiids it invariably consists of four or less number of segments. The resemblance of these two genera with asterocherids in the structure of the antenna becomes complete when one takes into account the proportionate lengths of the constituting segments. In these forms, the second segment which bears rudimentary exopod is the largest, being equivalent to or larger than the combined size of the next three segments; while the third and first segments come next in order of size, the last two segments are extremely small and subequal; the terminal segment bears one or more strong spines. In dyspontiids the last two segments are never so small compared to the size of other segments. Further, although the second segment is still the largest, it is not equal to or longer than the combined length of the two following segments, the only exception, again, being Discopontius Nicholls.

It may be noted that the genus Paralepeopsyllus tends to exhibit certain similarities with the Artotrogidae and Cancerillidae, especially in the reduction of the posterior pairs of legs. The Artotrogidae differs from Dyspontiidae essentially in the total absence of the fourth pair of legs, in this respect approaching the Cancerillidae ; the latter is, however, distinguishable very easily by the enormous development of antennae which are unlike those in any other siphonostomous family. The reduction in the number of legs, however, need not be taken as a close relationship between Paralepeopsyllus and Artotrogidae, for they are quite separated in many other morphological features.

This tendency has been prevalent even in Dyspontiidae where the fifth leg is highly reduced in all the genera; and the endopod of fourth leg is entirely lacking in a number of genera such as Dyspontius Thorell, 1859, and Cryptopontius Giesbrecht, 1889, while in some others like Bradypontius Giesb. 1895, Arctopontius Sars, 1915, Discopontius Nicholls, 1944, Sestropontius Giesb. 1899, Metapontius Hansen, 1923 and Cribropontius Giesb. 1899 the endopod is reduced in size. In
the genus Pteropontius Giesb. 1895 not only is the endopod of fourth leg absent but the rami of the first legs are only 2 -segmented, thus exhibiting a tendency for the reduction of other appendages also. It may be only contended that this tendency for a reduction in the number of the swimming legs or their constituting segments has been present in the evolution of different groups of siphonostomous cyclopoids.

Thus it appears clear that the genera Lepeopsyllus and Paralepeopsyllus constitute a natural group, sharing many peculiar features distinct from those of all other siphonostomous cyclopoids. These two genera retain many characters of the family Asterocheridae found in such structures as the antennule and the antennae and combine them with those of the family Dyspontiidae. However, this is a little known group; Lepeopsyllus is known only from two species, typicus and ovalis, both based on one or two individuals and Paralepeopsyllus is a monotypic genus. Until more species and genera related to these are known it would probably be unfair to erect a new family for accommodating them, although their distinctness is clear enough.

Discopontius referred to above may also be briefly considered here. As pointed out earlier this genus deviates from the definition of typical dyspontiids in a number of ways: (a) in the tendency of the prosomal segments to grow posterior-wards over the urosome; \((b)\) in the apparent division of antennule into a wider proximal and a narrower distal region ; and (c) in the proportionate lengths of the antennal segments. In all these features the genus tends more towards Lepeopsyllus and Paralepeopsyllus than to any other member of the family Dyspontiidae. Probably these three genera are not true dyspontiids at all ; or the family Dyspontiidae need to be redefined to include them all.

\section*{Summary}

Paralepeopsyllus mannarensis, a new genus and species of cyclopoid copepod is described in detail; it is an inshore-dwelling form, living in association with invertebrates such as sponges and crinoids; the species is known from both the sexes.

The genus is related to Lepeopsyllus Thompson \& Scott and its systematic position is very near to that genus. The very close affinities that exist between these two genera and their distinctness from other cyclopoids appear to justify their inclusion in a separate family. The arguments in favour of and against this postulation are discussed.

\section*{Acknowledgements}

My grateful thanks are due to Dr. S. Jones for his kind encouragement and guidance ; to Dr. S. Z. Qasim, Aligarh University, for his help and deep interest in the work and to Dr. S. Krishnaswamy of the Madras University for confirming the identification of the species and for his many helpful criticisms.

\section*{References}

Gooding, R. U. 1957. On some copepoda from Plymouth mainly associated with invertebrates, including three new species. Jour. Mar. biol. Ass. U.K., 36: 195-221.

Hansen, H. J. 1923. Crustacea Copepoda, II Copepoda parasita and hemiparasita. Danish Ingolf Exped., 3 :92.

Nicholls, A. G. 1944. Littoral Copepoda from South Australia (II) Calanoida, Cyclopoida, Notodelphyoida, Monstrilloida and Caligoida. Rec. S. Australian Mus. 8 (1): 1-62.
SARS, G. O 1913-1918. Crustacea of Norway Vol. VI, Copepoda Cyclopoida. Bergen.
Sewell, R. B. S. 1949. The littoral and semi-parasitic Cyclopoida, the Monstrilloida and Notodelphyoida. Sci. Rep. Murray Exped., 9 (2) :17-199.

Thompson. I. C. And Scott, A. 1903. Report on the Copepoda. Ceylon Pearl Oyster Fisheries, Supp. Rep., Pt. I. No. 7, London.

Wilson. C. B. 1932. The Copepods of the Woods Hole region, Massachusetts. Smithsonian Inst. U.S. Nat. Mus. Bull. 158.

Studies on Indian copepod II.
An acoount of the morphology and lifehistory of a harpacticoid oopepod, Tisbintra jonesi ap. nov. from the Gulf of Mannar.

\author{
STUDIES ON INDIAN COPEPODS 2. AN ACCOUNT OF THE MORPHOLOGY AND LIFE HISTORY OF A HARPACTICOID COPEPOD, TISBINTRA JONESI, SP. NOV. FROM THE GULF OF MANNAR* \\ By A. N. P. Ummerkutty \\ Central Marine Fisheries Research Station; Mandapam Camp
}

\section*{Part I. Description of the Species}

Sewell (1940) erected the genus Tisbintra to receive a single female copepod which he obtained during the John Murray Expedition in a surface tow-netting in the Nankauri Harbour, Nicobar Islands. To my knowledge no other species has so far been added to this genus and the genotype itself, T. nankaurica Sewell, has never again been recorded (Dr. Sewell has confirmed this in a personal communication). The discovery of a new representative of this genus with many morphological deviations is, therefore, of interest; specially so, because of the light it throws on the systematic position of the genus. Below is given an account of the morphology and life history of a new copepod obtained from the Gulf of Mannar and identified as a species of Tisbintra Sewell.

The occurrence of this species was first observed by Dr. S. Jones and it was at his instance that a detailed examination was undertaken. I have, therefore, much pleasure in naming the species \(T\). jonesi.

Gooding (1957) has called attention to the fact that several terms have from time to time been used to differentiate the regions of the copepod body. Sars (1901) was the first to introduce some order by suggesting the terms cephalosome, metasome and urosome, the first two together to denote the usually broader anterior region and the last to denote the narrower posterior region respectively, irrespective of the morphological origin. Wilson (1932) adopted the nomenclature of Sars but interpreted that part of the body in front of the movable articulation as the metasome

\footnotetext{
* Published with the permission of the Chief Research Officer, Central Marine Fisheries Research Station, Mandapam Camp.
}
(which actually is the combined cephalosome and metasome of Sars) and the part behind the articulation as the urosome; but in the text he has used other terms very frequently. I have adopted the terminology suggested by Gooding (loc. cit.) which appears to have definite advantages over the earlier ones. But the term abdomen may be added to denote the post-genital segments. In an earlier paper (Ummerkutty, 1960) II used the terms basipod, exopod and endopod to indicate the basal segment-complex and the external and internal rami respectively. The first term is probably not appropriate for the basal segment-complex actually comprises what are usually termed as coxopodite and basipodite; the term 'protopod' would be a correct one. In this paper the 'endopod', the ' exopod' and the protopod have been employed not only to describe the parts of the swimming legs but also for those of the cephalosomal appendages of the adult animals. The terms ' protopodite, ' 'endopodite' and 'exopodite ' have been used only in the case of copepodites. In describing the ornamentation of the swimming legs I have followed Sewell (1949) in differentiating spines by Roman and setae by Arabic numerals.

The holotype, allctype and paratypes have been deposited in the Reference Collection Museum of the Central Marine Fisheries Research Station. All the diagrams are drawn with the aid of a camera lucida.

\section*{Tisbintra Jonesi sp. nov.}

Occurrence. The species was first observed in the marine aquarium tanks of the Central Marine Fisheries Research Station. The animal was found to creep on the glass walls and on the decaying vegetable matter on the bottom, probably feeding on them. It is of interest to note that this was one of the few copepods found to establish in good numbers in the aquaria to which it gains access through the pumping system.

In nature they were captured in the coastal plankton when the sea was in a disturbed condition. It appears that it is a bottom dweller and is brought upto the surface by water movements.

\section*{Female}

The colour. Body is transparent, tinged with faint yellow; dark shades are present in the mid-dorsal region of the metasomal segments. In mature specimens the ovary and its branches are seen as dark bands. So also is the gut when it is filled with food. The body is depressed, the anterior and posterior regions being clearly demarcated. The prosome, is rather elongate-ovate, a little less than twice as long as wide and is vaulted dorsally. Cephalosome is fused with the first pedigerous segment and is almost as long as all the metasomal segments combined. The epimeral plates of the second and third prosomal segments are well-developed, being produced laterally and posteriorly and are rounded at the edge ; that of the last segment is very small without lateral expansion. Urosome is moderately slender; the genital segment is as long as the next three segments combined and is divided dorsally along the middle (Fig. I, 1). On the ventral side the division is incomplete and there is a transverse genital aperture which is guarded by a long slender spine on each side (Fig. I, 2). The longest specimen measures 1.1 mm . and the proportional lengths of the prosome and the urosome are \(59: 41\). The second innermost furcal seta is the longest and is distinctly longer than the urosome.

Antennule (Fig. I, 3) is short, hardly exceeding the length of cephalosome and consists of 8 segments having the following proportions:
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9.5 & 25.0 & 21.0 & 22.5 & 4.0 & 5.0 & 4.5 & \(8.5=100\)
\end{tabular}

The antennule carries a large number of rather short setae and the presence of a crescent-shaped knob, just beyond the mid-length of the third segment bearing 4 radiating setae, is a characteristic feature. The aesthetask on the 4th segment is well-developed and extends far beyond the tip of the antennule. The latter is divided into proximal wider and distal narrower parts, each being composed of 4 segments ; the distal four segments are much smaller and their combined length is just a little more than \(1 / 4\) th of the proximal wider part. Antenna (Fig. I, 4) : The endopod consists of 3 segments, the terminal segment being the longest. The first segment carries a very small bristle on the outerside, at one-third of the length of the segment and a long seta at its distal inner margin. The second segment is devoid of any seta. The third segment has two stout setae on the anterior margin a little beyond the mid-length. At the apex it has one spine and five setae, 3 of which have a characteristic curve. The exopod is composed of two segments and is attached to the side of the basal endopod segment ; the proximal segment is shorter bearing one seta ; the distal one bears two setae basally and three terminally one of which is very small. Labrum (Fig. I, 5) : This is rather prominent tapering distally ; terminal edge is denticulate, coarse in the middle and finer at the sides. In addition, two fine hairs are present on either side of the denticulated area. Mandible (Fig. I, 6) : This consists of a biramous palp and a slender biting ramus. The latter is provided with several teeth at the apex and has a truncate projection on its posterolateral margin. The rami of the palp are uniarticulate and slender and are borne on a uniarticulate protopod. The two rami represent the exopod and the endopod. Maxillule (Fig. I, 7) : A palp is present but an epipodal lobe is entirely lacking. The body of the maxillule is provided with a tuft of setae at its apex, a strong solitary seta sub-terminally on the distal outer margin and 2 short setae on the ventral side; the latter actually terminate two elevated lines which converge towards the apex. The palp carries a number of setae which are arranged linearly along its inner margin from the mid-length to the apex. Maxilla (Fig. I, 8): This is two-segmented but the segmentation is not easily discernible; there is no lateral lobe on the basal segment ; the distal segment bears at its apex a long stout claw which is serrate at the distal inner edge; a process, spatulate and fringed, is present on the inner margin of the claw just beyond its mid-length; a group of 4 radiating bristles and an accessory spine are present near the base of the claw. Maxilliped (Fig. I, 9) : In the maxilliped, the third segment is not separated from the second ; the terminal claw is very slender and distinctly longer than the second and third segments combined; the accessory spine, as in the maxilla, is close to the base of the claw ; the basal segment is sparsely provided with hairs; in addition, it bears a small projection at its proximal outer margin which is provided with a tuft of hairs.

First leg (Fig. I, 10): The exopod consists of three stout segments and the endopod of two much elongated segments, both closely resembling those of \(T\). nankaurica Sewell; but the arrangements of spine on the exopod is different from that of the latter species. The marginal spine on the first exopod segment is long with a wavy appearance whereas that on the second exopod segment is short and stout, a condition generally found in species of Tisbe and in contrast to that of \(T\). nankaurica. Exopod II is of about the same length as exopod I and bears an inner seta and an outer spine ; exopod III is quadrate in form and bears two slender spines


Fig. I
1. Female, adult, dorsal view.
2. ", genital segment ventral view.
3. ", antennule.
5. ", labrum.
6. \("\) mandible.
7. " maxillule.
8. Female, maxillac.
9. ,' maxilliped.

10-14. First to fifth legs.
15. Male, adult, dorsal view.
16. ", urosome ventral view.
17. " antennule.
on its outer margin and four plumose setae at the apex. The endopod is considerably longer than the exopod and consists of only two segments of approximately equal length; the proximal segment is moderately stout, is equal in length to the three exopod segments combined and bears a single inner seta at about the junction of the middle and distal thirds; the distal segment is slender and bears a spine at about its midlength and two spines at its apex one of which is stronger and longer than the other. Both segments of endopod bear small hairs on their inner margins. Second, third and fourth legs (Fig. I, 11, \(12 \& 13\) ) are all with 3 -segmented rami and are more or less similar in appearance. However, in the second leg the proximal spine on the third segment of the exopod is markedly reduced in size. The number of setae and spines borne by different segments of the endopods and exopods are given below ( \(\mathrm{Si}, \mathrm{St}\) and Se represent the inner, the terminal and the outer margins of the segments ; and \(\mathrm{P}_{2}-\mathrm{P}_{4}\) represent the second to third swimming legs).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Protopod} & \multicolumn{6}{|c|}{Endopod} & \multicolumn{7}{|c|}{Exopod} \\
\hline & \multicolumn{4}{|l|}{\(1 \quad 2\)} & 1 & \multicolumn{2}{|l|}{2} & \multicolumn{3}{|c|}{3} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2} & \multicolumn{3}{|c|}{3} \\
\hline & Si S & S & Si & Se & Si Se & & Se & & St & & & Se & Si & Se & Si & St & Se \\
\hline P2 & 0 & 0 & 0 & 1 & 10 & 2 & 0 & 4 & I & & & I & 1 & I & 3 & I & III \\
\hline P3 & & 0 & 0 & 1 & 10 & 2 & 0 & 5 & I & 0 & & I & 1 & I & 4 & I & \\
\hline P4 & 0 & 0 & 0 & 0 & 10 & 2 & 0 & 4 & I & & & & 1 & I & 4 & I & III \\
\hline
\end{tabular}

Fifth leg (Fig. I, 14) : In the fifth leg the basal segment is produced externally in a small conical process that bears a long and a short seta and a few hairs at its tip; there is no inner expansion; the distal segment is cylindrical, narrower at the base than at the apex and is 6 times as long as broad; it bears one seta subterminally on its distal inner margin and 4 setae at the apex, one of which is smaller than the other three setae which are rather subequal.

\section*{Male}

The male (Fig. I, 15) resembles the female in general form but measures only 0.64 mm . The proportionate lengths of the prosome and urosome are \(66.6: 33.4\). The differences between the two sexes consist of the geniculate antennule, the presence of vestigeal sixth pair of legs and the six-segmented nature of the urosome of the male, besides the smaller size of the latter. Antennule (Fig. I, 17) : This forms a grasping organ and is strongly built and consists of only 7 segments having the following proportions.
\begin{tabular}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9.5 & 25.0 & 11.5 & 25.5 & 9.0 & 9.5 & \(10.0=100\)
\end{tabular}

The aesthetask is borne by the fourth segment as in the female. The antennules are not provided with as many setae as are present in the case of female.

The genital armature or sixth pair of legs (Fig. I, 16) is a broad bi-lobed flap covering the entire ventral side of the genital segment and part of the succeeding segment. It bears 3 spines on either side; the innermost is stout and backwardly directed; the outer ones are rather slender and posterolateral.

The urosome is 6 -segmented consisting of the fifth leg-bearing segment, the genital segment and 4 abdominal segments. The first segment is of about the same proportionate dimensions as in the female. The genital segment and the first abdominal segment are subequal and are the largest segments of the urosome. The last three abdominal segments diminish in size to the posterior side.
T. jonesi differs from T. nankaurica in a number of features and they are listed below:-

\section*{T. nankaurica Sewell}

Size of the female 1.23 mm . and the proportional lengths of prosome and urosome \(=62 ; 38\)

\section*{Rostrum distinct.}

Second inner furcal seta is as long as the urosome.

Genital segment in female divided laterally.
The genital aperture situated very near to the proximal end of the segment and the spines guarding the aperture hardly reaching its midlength.

The setation on the antennule very sparse.

The apical setae of the endopod of second antenna all straight.

Maxillule and its palp each tipped with a tuft of stout spine-like setae.

Maxilla is comparatively simple in structure with only a single stout terminal claw, having no serration.

Maxilliped not described or sketched by Sewell.

The marginal spine on the first exopod segment of the first leg is of moder whereas that on the second segment is considerably longer.

Exopod III of first leg bears 3 delicate setaelike spines on the outer margin and 4 plumose setae on the distal margin.

Second segment of first endopod bears a single straight spine distally.

Fifth leg long and slender with one inner and three terminal setae.
T. jonesi sp. nov.

Size of the female 1.1 mm . and the proportional lengths of prosome and urosome \(=59: 41\).

\section*{Rostrum indistinct.}

Much longer than the urosome.

Divided laterally and dorsally.
The genital aperture situated at about \(\frac{1}{d}\) the length of the genital segment away from its proximal end and the spines guarding the aperture reaching well into its \(\frac{3}{4}\) length.

Rather profuse. A characteristic crescentshaped knob bearing 4 radiating setae present on the third segment.

Three of the setae have a characteristic outward bend at their \(2 / 3\) lengths.
In addition to the terminal tuft of setae, the maxillule also bears 3 spines, one on the distal outer margin and 2 on the ventral side. The maxillular palp bears a number of setae on its inner margin arranged linearly from about the mid-length to the apex.

An accessory spine present near the base of the terminal claw which bears on its inner margin near the centre, a spatulate and fringed process. The distal end of the claw is serrate.
Maxilliped apparently with no division between the second and third segments. An accessory spine and a terminal claw present.

The marginal spine on the first exopod segment of the first leg is considerably longer than that on the second segment.

Exopod III of first leg bears 2 delicate setalike spines on the outer margin 4 plumose setae on the distal margin.

Second segment of first endopod bears 2 spines one of which is shorter than the other.

Fifth leg long and slender with one inner and four apical setae.

Notes on the Genus-The absence of male specimens of T. nankaurica and the fact that the genus has been based on a single species have naturally placed limitations on the scope of its definition as provided by Sewell. When new allied forms, not sharing all the features of the genus are discovered, the original definition would


Frg. II
1-6. Naupliar stages first to sixth. Fourth stage lateral view ; all the others ventral view.
require either modification or expansion. Alternately the new forms could be kept as a subgroup in the older genus. In the present case it appears that it is not in the fitness of things to treat T. nankaurica and T. jonesi as anything more than two species of the same genus for they both possess many common features. However, this would necessitate some alteration in the definition of the genus Tisbintra. The presence of a rounded rostral projection on the cephalosome, for instance, is considered as a generic character by Sewell. In the present species the rostrum is absent although it is undoubtedly a representative of the genus. Again, in T. nankaurica the genital segment shows transverse division only laterally and this is described as a generic character by Sewell ; in T. jonesi the division extends to the dorsal side as well. Conversely, the highly reduced proximal spine on the terminal segment of
the exopod of the second leg is described as a specific feature by Sewell. It appears that this character may well be of generic importance for it is present in \(T\). jonesi also. In view of these facts the genus Tisbintra Sewell is redefined here as follows :

Body depressed; cephalosome fused with the first segment, forming the cephalothorax ; the epimeral plates of first and second metasomal segments are produced laterally and posteriorly and are rounded at the edge; that of the third metasomal segment distinctly less wide. Urosome half as wide as the metasome ; the segment bearing the fifth leg greatly narrowed and is almost as wide as the following genital segment; the latter in female long and divided and is provided with 2 long spines, one on either side of the genital aperture; in male it is provided with a well developed genital armature; Abdomen 3-segmented in female and 4segmented in male. Caudal rami short with second inner seta much elongate; antennule slender, 8 -segmented in female, 7 -segmented and geniculate in male; endopod of antenna 3 -segmented, exopod 2 -segmented and much smaller; the mandible possesses a biramous palp and a slender biting ramus provided with several teeth distally and with a truncate projection on its posterior margin; maxillule without an epipodal lobe; maxilla and maxilliped both uncinate. Endopod of first legs 2 -segmented and prehensile, exopod 3-segmented and natatory; rami of second, third and fourth legs 3 -segmented; proximal spine on the third exopod segment of second leg markedly reduced in size; fifth leg 2 -segmented, basal segment without an inner expansion, distal segment narrow, and elongate. A single ovisac present.

\section*{Part II. Life History}

Procedure. Live egg-carrying females were picked from aquarium tanks and fresh plankton and kept in filtered sea water contained in beakers of 100 cc . and 200 cc. capacities. In most cases it hardly took more than 24 hours for the larvae to hatch out, depending on the condition of maturity of the eggs. The hatching was cent percent successful and the larvae thus hatched developed through all the naupliar and copepodite stages to the adults, the whole process taking 7 to 9 days, in normal room temperature ( \(28^{\circ} \mathrm{C}-31^{\circ} \mathrm{C}\) ), varying according to the intensity of feeding. The animals were fed on a variety of marine food items such as powdered Gracillaria crassa,* ground dried clams and a variety of fresh chopped sea weeds. All these appeared to be quite acceptable to the copepod.

Stages were picked at regular frequent intervals and preserved for subsequent study. Live specimens of the various stages also were examined. Experiments were repeated and the nauplii and copepodites were studied from different series of culture to confirm the results. Samples containing all the different developmental stages were also taken from aquarium tanks for examination and comparison. However, no nauplius or copepodite (except a few fifth stages) were obtained from the plankton.

All drawings have been made from specimens reared in the laboratory. The instars are separated only by one moult as in other copepods that have been studied. There are six naupliar and six copepodite stages, the last of which is the adult. They are described below in detail. All the diagrams were made with the aid of a camera lucida.

\footnotetext{
* Kindly supplied by Dr. (Mrs.) F. Thivy.
}

Naupliar Stages. There are six naupliar stages the last of which moults into the first copepodite. Like most of the harpacticoids the naupliar stages are bottomliving and come up to the surface waters only when they are disturbed. They are highly depressed, sub-circular in shape and transparent. They swim about gracefully and are capable of performing quick creeping movements along the glass walls of the culture jars and the pieces of algae that are introduced as food items.

\section*{Nauplius I. (Fig. II, 1)}

The first nauplius varies in length from \(0.58-0.62 \mathrm{~mm}\). and lasts for about 12 hours at \(28^{\circ} \mathrm{C}-31^{\circ} \mathrm{C}\). It has 3 pairs of appendages, the antennule, the antenna and the mandible. The antennule is 3 -segmented with the terminal segment bearing 3 setae, two at the apex and one at the mid-length, and the middle segment carrying 1 seta. In the antenna the endopodite is stoutly built and 1 -segmented, terminating in a stout claw more than half as long as the ramus itself. It also carries 2 spines, one near the claw and the other at the mid-length. The exopodite is 4 -jointed, first three of them carrying 1 seta each and the apical one 2 setae. The endopodite and the exopodite are borne on a bimerous protopodite. The protopodite I of antenna is provided with a rudimentary masticatory blade; Protopodite II bears 2 spines. Mandible consists of an exopodite of only two joints of equal length and an endopodite of one segment which is as long as the combined length of the exopodite segments. Exopodite II bears 3 setae, one of which is very long. Endopodite bears 2 fine setae and 3 spines. The caudal armature consists of 2 rather flaccid setae,

\section*{Nauplius II. (Fig. II, 2)}

The second nauplius varies in length from \(0.80-0.90 \mathrm{~mm}\). and lives for about 16-20 hrs. at normal room temperature. The structural advances over the first stage are as follows: Antennule is 3 -segmented; 2 setae are present on the second segment and an additional apical seta on the third segment; first segment is still without any seta. The masticatory blade of the antenna is well defined and is denticulate. Of the two setae present on the second protopodite, the inner one becomes longer and setiferous while the outer one is more spine-like. Mandible: The protopodite (which is still unsegmented) bears 2 setae, one of these being twice as long as the other. Maxillule appears as two strong setae, borne on a bud, one on either side just behind the mandible. Caudal armature, again, consists of 2 setae which are comparatively longer and stouter than those of the first stage. The posterior margin of the body of the nauplius gives a cleaved appearance.

\section*{Nauplius III. (Fig. II, 3)}

The length varies from \(0.10-0.105 \mathrm{~mm}\). and the duration of life is the same as in the second stage at \(28^{\circ} \mathrm{C}-31^{\circ} \mathrm{C}\). The third stage shows the following morphological advances over the second stage. Antennule : First segment now carries 1 seta and the terminal segment is with one more seta at mid-length. Mandible : Fine bristles appear in the basal inner margin, of the protopodite, just before the two setae and the long seta of the terminal exopodite segment is longer than the entire body. Maxillule : A small additional seta appears on the inner side of the large seta and a protopodite is present. Caudal armature now consists of two setae on either side, the inner one being much longer than the outer,

\section*{A. N. P. UMMERKUTTY}

\section*{Nauplius IV. (Fig. II, 4)}

The length varies from \(0.12-0.125 \mathrm{~mm}\). and lasts for about 14 to 16 hours at normal room temperature. The number of setae present on the segments of antennule remains the same except that one seta is added in the terminal segment, bringing the total number to six. Antenna: The masticatory blade is quite long and a seta is present near its base. A third seta is added to the two setae on the second protopodite segment. The exopodite becomes 5 -segmented, the first 4 segments bearing one seta each and the terminal segment 2 setae. Mandible: Terminal exopodite segment bears 4 apical and one subapical seta. The masticatory palp is stouter than in the previous stage. Maxillule is quite well-developed with 4 setae, one of which is very stout and long bearing hairs all along its length. Each caudal ramus carries 2 small setae in addition to the long seta.

\section*{Nauplius V. (Fig. II, 5)}

The fifth stage varies in length from \(0.135-0.140 \mathrm{~mm}\). and live for 14 to 18 hours at normal room temperature before moulting into the next stage. This stage is very similar to the fourth stage, but the segmentation of the posterior region becomes much more distinct. The oral appendages show little change except the maxillule which now shows signs of segmentation. Each caudal ramus carries 3 setae.

\section*{Nauplius VI. (Fig. II, 6)}

This stage varies in length from \(0.14-0.15 \mathrm{~mm}\). and lives for about 20 to 24 hours. The sixth nauplius moults into the first copepodite and is far advanced in structure than the fifth stage. The rudiment of maxillae and first and second pairs of legs are present as buds. But none of these bears any seta. The other appendages are very similar to those of the fifth stage. There are four setae on each caudal ramus and they are all longer and stouter than those of the previous stages. The distinguishing features of the sixth nauplius are the clearly segmented hind part of the body and the presence of the rudiments of the first and second swimming legs.

Copepodite Stages. There are five copepodites, the last of which moults into the adults. Like the nauplii the instars are separated by only one moult. The copepodites are active creatures most of them creeping about on the algal pieces in the culture dishes and making quick movements at slight disturbances. The segmentation of the prosome and the urosome as well as that of the swimming feet follow the general pattern of the harpacticoid development.

\section*{Copepodite I. (Fig. III, 1)}

The first copepodite is a miniature adult, but with only 5 segments, 3 prosomal and 2 urosomal and the distinction in width between the two regions is considerably small. The caudal rami is wider than long and stuffy. The furcal setae are all welldeveloped and resemble those of the adult.

All the mouth parts have made their appearances and resemble the adult structures in their basic pattern. The details of the differences from the latter are


1-3. Copepodite first to third.
4. Copepodite IV male.
5. Copepodite IV female.
6. Urosome of Copepodite V male.
7. ", \(\quad\) V female.
8. First"Cop.antennule.
9. ,, antenna.
10. ", mandible.
11. ", maxillule
12. " maxilla.
13. ", maxilliped.

Diagrams 1 to 7 of Fig. III are drawn according to Scale 1 and 8 to 27 according to Scale 2).
noted below : Antunnule (Fig. III, 8) : This is only four segmented; the third segment bears a fine aesthetask. Antenna (Fig. III, 9) : The division of exopodite into 2 segments is not discernible. In the endopodite there are only 4 apical setae and a small bristle. Maxilla (Fig. III, 12) : The spatulate process of the apical claw has not yet appeared ; the terminal edge of the claw not serrated. Maxilliped (Fig. III, 13) : No accessory spine is present; the tuft of hairs on the proximal segment is absent.

There are only two pairs of swimming legs and vestige of the third (Fig. III, I5 \(\& 16\) ). The rami of both the first and second legs are 1 -segmented. The vestigeal third leg is peg-like, bearing 3 setae. The exopodite of first leg anticipates the adult structure: the proximal spine is already much longer than the second spine, a character which the present species possesses, in contrast to the only other known species of the genus, \(T_{n}\) nankaurica. The division of the protopodite is not clear. The average length of this stage is 0.208 mm . It lives for about 18 hours under normal room temperature \(\left(28^{\circ} \mathrm{C}-31^{\circ} \mathrm{C}\right)\).

\section*{Copepodite II. (Fig. III, 2)}

The number of segments is increased to six, 4 prosomal and 2 urosomal. The general appearance is similar to that of the first stage. Antennule (Fig. III, 17) is 5 -segmented, the second one bearing the aesthetask. All other mouth parts show adult structures except the maxilla which still has not developed the spatulate process on the terminal claw. There are three pairs of swimming legs and a vestige of the fourth (Fig. III, 18, 19, \(20 \& 21\) ). The rami of the first two legs are 2 -segmented and those of the third leg 1 -segmented; the protopodites of all the three pairs of legs are clearly 2 -segmented. The vestigeal fourth leg is only a small process with three terminal setae. The average length of this stage is 0.375 and the duration of life about 20 hours.

\section*{COPEPODITE III. (Fig. III, 3)}

There are 4 segments in the prosome while a third segment is addea to the urosome. The distinction in width between the two divisions is more pronounced than in the preceding stages. Antennule (Fig. III, 22) is 6 -segmented the third segment bearing the aesthetask. The other cephalosomal appendages are very similar to those of the adult. There are 4 pairs of biramous legs and a vestige of the fifth (Fig. III, 23, 24, \(25,26 \& 27\) ). The ramii of the first three pairs are 2 -segmented and those of the fourth only 1 -segmented. The protopodite of all the four pairs of legs are clearly segmented. The protopodite II of firstlegs has not yet developed the seta on its outer margin. The fifth vestigeal segment is borne by the first urosomal segment and is each represented by only a single seta with a well defined base. The average length is 0.460 mm . This stage lasts for about 20 hours.

\section*{Copepodite IV. (Fig. III, 4 \& 5)}

Prosomal and urosomal segments are now equal in number, each region being composed of four segments. The body has all the adult features, including the lateral expansion of the first and second metasomal segments and the dimorphism of the sexes. The male is much smaller than the female being only slightly longer than the third stage :

The size of the male \(=0.490 \mathrm{~mm}\).

The size of the female \(=0.577 \mathrm{~mm}\).
The sexes are easily distinguished by the presence on the second urosomal (genital) segment of the male of a spine representing the vestige of the sixith pair of legs (the so-called genital armature, Fig. IV, 1).

The antennule is 7 -segmented in both sexes (Fig. IV, 2). The first four pairs of swimming legs are biramous, each ramus being composed of 2 segments (Fig. IV, 3, \(4,5 \& 6\) ). The fifth pair of legs (Fig. IV, 1) consists of a short peg-like structure with three apical and one basal setae. In the male the sixth pair of legs is each represented by a single seta projecting postero-laterally from the second urosomal (genital) segment. The fourth stage lives for about the same period as the third stage.

\section*{Copepodite V. (Fig. III, 6 \& 7)}

This stage has nine segments, 4 prosomal and 5 urosomal in both sexes. In the female the genital segment is not yet divided but is distinctly longer than the other segments of urosome. The two spines on either side of the genital aperture are present but are shorter than those of the adult. Length of the female is 0.832 mm . and that of male 0.535 . Antennule : This is stumpy and 7 -segmented in male (Fig. IV, 8) and normal and 8-segmented in female (Fig. IV, 7). In the latter all the adult features, including the crescent-shaped knob on the third segment have been formed.. But in the male although the proximal segments of the antennule are foreshortened it has not become completely geniculate. All the swimming legs are present (Fig. IV, 10, 11, \(12 \& 13\) ). The first four pairs of legs are biramous, the rami being 3 -segmented except the first endopod which is only 2 -segmented. The setation of the various segments are similar to those of the adult except in the fifth leg (Fig. IV, 14) where there are only 3 apical and 1 sub-apical setae whereas in the adult the corresponding numbers are 4 and 1 . The proximal spines of the third exopodite segment of the second leg is considerably reduced in size.

\section*{The Adults}

The detailed description of the adult male and female are given in the earlier part of this paper.

Remarks. Johnson and Olson (1948) have given an account of the life history of Tisbe furcata which they reared through all the stages in the Laboratory. Few more marine harpacticoids have been subjected to large amount of investigations and much detail is known about their life histories and reproduction. (Nicholls, 1935 ; Fraser, 1936 ; Gurney, 1930 \& 1932). However, the knowledge of the life histories of harpacticoid copepods from Indian waters is extremely meagre. Krishnaswamy (1950 and 1955) has given an account of the life histories of Macrosetella gracilis and Leptostacus euryhalinus. Rao (1958) described the developmental stages of Euterpina acutifons. Of these Leptostacus euryhalinus is a psammophilious copepod, the other two being planktonic in their habits.

Many previous investigators (Gurney, loc. cit ; Johnson, 1934 a \& b; 1935) have called attention to the striking similarity that exists between the nauplius larvae of marine copepods belonging to the same genus. Johnson (1935) cites the developmental stages of Labidocera, Epilabidocera and Pontella to show that this identity can be found even in the larvae of different but closely related genera and concludes


Fig. IV

that the larvae of allied genera conform each other in essential structural details. It is, therefore, not surprising to observe a very close similarity between the larvae of Tisbintra and Tisbe. In fact, that is what one should expect for these forms have not only close systematic kinship but they both occupy the same ecological niche, namely, the bottom inshore waters. A very close similarity exists between the naupliar stages of Tisbintra jonesi and Tisbe furcata. The real differences between these species, however, make their appearances from first copepodite onwards. Judging from the figures of Johnson and Olson (loc. cit.) it is clear even in the general appearance they are widely separated ; while the cephalothorax of T. furcata is almost as long as the combined length of all other four segments that of T. jonesi is just a little more than one-third the entire body length. The differences in the various copepodite stages of the two species, such as the reduced development of the proximal spine of the third segment of the second exopodite and 2 -segmented nature of the endopodite of the first leg are traceable to the conditions of the adult.

\section*{Summary}
(1) A new species of harpacticoid copepod Tisbintra jonesi is described in detail and a redefinition of the genus Tisbintra Sewell is rendered in the light of the information available regarding the male.
(2) The complete account of the life-cycle of this species is given. As in all other copepods that are studied there are six naupliar and six copepodite stages, the last of which is the adult.
(3) The striking similarities of the naupliar stages of Tisbintrajonesi with those of Tisbe furcata are briefly discussed.

\section*{Acknowledgements}

I am grateful to Dr. S. Jones for his kind encouragement and guidance during the period of this work and to Dr. R. B. S. Sewell, Cambridge University, England, for the confirmation of the identification of the species. My thanks are also due to Dr. S. Krishnaswamy of the Madras University for going through the manuscript and offering valuable criticisms, and to Dr. S. Z. Qasim of Aligarh University and Dr. R. Raghu Prasad of this Station for many helpful discussions during the preparation of this paper.

\section*{REFERENCES}

Fraser, J. H. 1936. The occurrence, ecology and life history of Tigriopus fulvus Fischer. J. Mar. biol. Ass. U.K. 20 : 523-536.

Gooding, R. U. 1957. On some copepoda from Plymouth mainly associated with invertebrates including 3 new species. Ibid., \(36: 195-221\).
Gurney, R. 1930. The larval stages of the copepod Longipedia. Ibid., 16: 461-474.
———. 1931. British Fresh-water Copepoda. Ray Society, 1.
Johnson, Martin W. 1934a. The life history of the Copepod Tortanus discaudatus (Thompson and Scott). Biol. Bull. Woods Hole, 67: 182.

Tbid. 1934b. The developmental stages of the Copepod Epilabidocera amphitrites McMurrich. Ibid., 67 : 466.

Johnson, M. W. 1935. The developmental stages of Labidocera. Ibid., 68:397-421.
et., J. B. Olson. 1948. The life history and biology of a marine Harpacticoid copepod, Tisbe furcata Baird. Ibid., 95: 320-332.

Krishnaswamy, S. 1950. Development of the harpacticoid copepod Macrosetella gracilis Dana. J. Madras Univ. B 21 : 256-271.
- 1955. Life history of the Psammophilous copepod Leptostacus euryhalinus. Ibid., B 25: 353-359.

Nicholls, A. G. 1935. The larval stages of Longipedia coronata Claus, L. scotti G.O. Sars and L. minor T. A. Scott with description of the male of L. scotti. J. Mar, biol. Ass, U.K., 20 : 29-45.

Rao, V. R. 1958. The development of the marine copepod Euterpina acutifrons Dana. Andhra Univ. Memo. Ocanogr. Ser 62, \(2: 128-131\).

Sars, G. O. 1901. An account of the crustacea of Norway, Vol. 4, Copepoda, Calanoida. Parts I \& II. Bergen Museum.

Sewell, R. B. S. 1940. Copepoda, Harpacticoida. Sci. Kep. Murray Exped., 7 (2) : 117-382.
___ 1949. The littoral and semi-parasitic. Cyclopoida, the Monstrilloida and Notodelphyoida. Ibid., 9 (2): 1-199.

Wilson, C. B. 1932. The copepods of the Woods Hole Region, Massachussetts, U.S. Nat. Mus. Bull., 158 : 1-635.

Ummerkutty, A. N. P. 1960. Paralepeopsyllus mannaerensis, a new genus and species of cyclopoid copepod from the Gulf of Mannar. J. Mar. Biol. Ass. India, 2 (1) : 105-114.

Studies on Indian copepods III.
Hearchinotodelohys indious, a now genum and species of Archinotodelphyid copepod from Indian Seas

\title{
STUDIES ON INDIAN COPEPODS 3. NEARCHINOTODELPHYS INDICUS, A NEW GENUS AND SPECIES OF ARCHINOTODELPHYID COPEPOD FROM INDIAN SEAS*
}

\author{
By A. N. P. Ummerkutty \\ Central Marine Fisheries Research Station, Mandapam Camp
}

Hansen (1923) obtained from Phallusia obliqua (=Ascidia obliqua) an interesting species of copepod which he named Cyclopina phallusiae. Hansen himself was uncertain about the correct systematic position of this copepod, for a species of the genus Cyclopina was never known to live within the ascidian. Lang (1949) suggested the creation of a new family Archinotodelphyidae to receive C. phallusiae Hansen and a new species of copepod which he gathered from Pyura georgiana Mchlsn during the Swedish Antarctic Expedition. He placed the two species in two monotypic genera, Archinotodelphys to contain his own new species and Pararchinotodelphys to include C. phallusiae. This was a fitting arrangement in view of the important and far-fetching suggestions he had already made regarding the classification of copepods (Lang, 1948).

Illg (1955) discovered a second species of Pararchinotodelphys from the branchial cavities of Styela partita caught off Marthas Vineyard, Massachussetts. He provided an excellent discussion regarding the systematic position of all the three species and that of Pseudocyclopina belgicae Giesbrecht which was considered as congeneric with Cyclopina phallusiae by Lindberg (1952). In fact Lang's account of his new family and the two genera contained therein were very short and it was Illg who enlarged our understanding of this group.

Pararchinotodelphys phallusiae was obtained during the Danish Ingolf Expedition; Lang obtained specimens of Archinotodelphys typicus from the Antarctic; and Illg reported P. gurneyi from north-west Atlantic. The archinotodelphyid copepod described below is collected from the south-east coast of India and appears to require a new genus and species to accommodate it. The male is not known for any of the earlier species. In the present case a fair number of males and females have been obtained and efforts have been made to elucidate points of sexual dimorphism in this primitive family. In describing the various morphological characters I have mainly adopted the terminology suggested by Gooding (1957) with some alterations (Ummerkutty, 1960) There is no absolute agreement between the various investigators on the homology of the constituting parts of the cephalosomal appendages of the copepoda. The terms 'protopod', 'endopod' and 'exopod' are used in this paper rather in a descriptive sense than to indicate any strict morphological origin. These terms have been employed not only to describe the constituting parts of the swimming legs but also for those of the cephalosomal appendages of the adult animals.

\footnotetext{
* Published with the permission of the Chief Research Officer, Central Marine Fisheries Research Station, Mandapam Camp.
}

Family : Archinotodelphyidae Lang (Lang, 1949, p. 3.)

\section*{Genus : Nearchinotodelphys nov.}

The prosome consists of four segments : a cephalothorax formed by the fusion of the cephalosome and the first pedigerous segment and three free metasomal segments. The urosome consists in the female of the segment bearing the fifth legs, the genital segment and three abdominal segments; in the male it consists of the fifth leg-bearing segment, the genital segment and four abdominal segments. The antennule is 15 -segmented in the female and 14 -segmented and geniculate in the male. The antenna is 4 -segmented, the last segment bearing a strong claw accompanied by a number of setae. The mandibular palp has a 2 -segmented endopod and a 4 -segmented exopod. In the maxillule the endopod is 2 -segmented while the exopod is only 1 -segmented. The maxilliped is 3 -segmented. The natatory legs have both rami 3 -segmented. The fifth legs are 2 -segmented; 4 setae are borne on the terminal segment and 1 on the basal segment.

Genotype : Nearchinotodelphys indicus sp. nov.

\section*{Nearchinotodelphys indicus sp. nov.}

Material examined-The material of the present study was obtained from the mantle cavity of a boring bivalved molluscan, Lithophaga strimineus.* The specimens were first noticed by Dr. E. G. Silas who kindly passed them over to me. There were 11 females and 10 males. A few of them were slightly damaged but the majority of them were in good condition so as to permit a thorough examination. It is interesting to note that although the two sexes were present more or less in equal numbers, no egg-carrying female or naupliar or copepodite stages were found. The type specimens, the holotype, the allotype and the paratypes are deposited in the Reference Collection Museum of the Central Marine Fisheries Research Station, Mandapam Camp and bear the registered Nos. J 511/2, J 512/2 and J 513/2 respectively.

\section*{Female}

In general appearance the female (Fig. I, 1) resembles the three other known species except that in the present case the cephalosome and the first pedigerous segment are fused to form a cephalothorax. The latter is the widest part of the body and is almost twice as wide as the last metasomal segment and three times wider than the widest part of urosome. There is a distinct cap-like rostrum, narrower at the base. There are only 3 metasomal segments, diminishing in width posteriorly. The urosome consists of 5 segments : the fifth leg-bearing segment, the genital segment and 3 abdominal segments, the last of which bears a pair of caudal rami. . The genital segment is the longest and shows signs of division laterally. The three abdominal segments are more or less of equal dimensions and distinctly smaller than the genital segment. The fifth leg-bearing is the widest of all urosomal segments; the posterior half of this segment is narrower than its anterior half which carries the fifth legs; in preserved specimens a part of this anterior half is covered over by the last prosomal segment.

\footnotetext{
* Kindly identified by Mr. K. V. Rao.
}

The caudal ramus calls for some comments. It is very different from those described for all the three known species. In the earlier species it is more or less cylindrical and at least one-half longer than the last abdominal segment and bears 4 fairly long apical setae, besides one (in Archinotodelphys typicus and Pararchinotodelphys phallusiae) or two (in P. gurneyi) short setae at some distance from the apex. In the present case, the caudal ramus is very short, just as long as the last abdominal segment and the setae are much shorter, the longest seta being only just a little more than half the length of the ramus itself. Further the setae are thicker at the base and taper posteriorly. In the earlier species the setae are long and slender and more or less of uniform thickness.

The proportionate lengths of the prosome and the urosome are \(59: 41\).
Antennule (Fig. I, 3)-Antennule is very short, extended laterally in the natural position and hardly reaching the posterior margin of the cephalothorax, if held backwards. There are only 15 segments in the antennule and the proportions of the constituting segments are given below (All segments are measured along the middle line).
\begin{tabular}{rrrrrrrrl}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
17.3 & 8.0 & 11.7 & 4.4 & 4.8 & 11.2 & 8.7 & 4.8 & \\
9 & 10 & 11 & 12 & 13 & 14 & 15 & & \\
3.5 & 3.5 & 3.5 & 7.0 & 3.0 & 3.0 & 5.6 & & \(=100\)
\end{tabular}

All the segments are provided with many setae except the 10th and 11th which are provided with one seta each. The proximal segments are much wider than the distal ones, the first segment being 8 times as wide as the 15 th and the segments between them tapering gradually to the distal end. The 7th segment shows a slight sign of lateral division, but otherwise the segments are normal. No aesthetask or sensory filament is borne by any segment. The lengths of the different segments are uneven; the first segment is the longest; second, third, sixth and seventh are of moderate length with two short segments, the fourth and fifth segments, inserted between them. Eighth to fifteenth segments are short and subequal, excepting the 12 th which is almost double the length.

Antenna (Fig. II, 7)-It is 4 -segmented. In the first segment (basal) there are two juxtaposed setae of equal length, bearing hairs throughout their lengths. This condition is found only in A. typicus among the known species. The second segment is devoid of any seta. In the third segment there are two long setae at the outer distal margin and one short seta just before the mid-length.: The last segment gives the appearance of being segmented; whether the two halves represent actual segments or the division is only apparent is not clear ; probably the division is superficial for no constriction is observed in the region of the partition. Further, the proximal half is devoid of any seta. The last segment bears five setae and one claw on the apex and a very short seta on the ventral face at about one-third the proximal length of the segment. Of the apical setae, the distal two are very long and bent towards the claw; the other three terminal setae are much shorter and rather straight. The claw is very large, broader at the base than at the apex and characteristically bent.

Mandible (Fig. I, 4)-The mandible is normal and is identical to that dey for earlier species. It is a fairly massive structure having a masticatory blade and a biramous palp. The former is denticulated at the inner edge, the teeth becoming


Thle, adult, dorsal view
1. Femapdult, dorsal view.
2. Male,

Fig. I.
3. Female, adult, antennule. 4. \(\quad, \quad \because, \quad\) mandible,


Fig. II.
6. Female, adult, maxillule.
7. ," ", antenna.
8. ", " \(\quad\) : first swimming leg.
11. Mäle, adult, fifth leg.
9. Female, adult, maxilla.
10. , \(, \quad, \quad\) fifth leg.
more seta-like on one side and stout and strong on the other. The palp of the mandible consists of a protopod and two rami. The protopod is quite large and carries only a single seta, heavily setiferous and placed towards the distal margin. The endopod is 2 -segmented, the basal segment carrying four setae. The distal segment bears nine setae which are arranged continuously along the inner, lateral and apical margins. The exopod is 4 -segmented. Each of the first three segments bears one long seta, and the last two setae. All the setae are plumose.

Maxillule (Fig. II, 6)-A protopod, an exopod and an endopod can be distinguished in the maxillule. The protopod is a complicated structure and has been discussed in detail by Illg (loc. cit.). I am inclined to accept his interpretation and the following description is offered. The protopod is apparently bimerous. The basal protopod segment probably represents in the present case a fusion of the two endites. The proximal one is rather massive, bearing medially along its margin nine setae (some of which look more like spines) of varying proportions. The proximal-most seta is striking in that it is separated from the rest and is very long having a peculiar curve. The distal endite is very small and peg-like, bearing a solitary seta at the apex. The basal protopod segment also supports at the base of the exopod a protuberance carrying a seta. This is interpreted as representing a coalesced epipod.

The distal protopod segment is rather simple, but quite expanded. Its apparently outer lateral margin bears both the endopod and the exopod. On the opposite margin it bears two groups of setae ; the proximal group consists of one long and one short seta and the distal group of four setae of more or less equal length. The endopod is 2 -segmented and the exopod is 1 -segmented. The former bears five setae on the proximal segment, arranged all along its entire inner margin and four on the distal segment set apically. They are continuous and about equispaced and show gradual increase in length from the basal to the apical setae. The exopod is rather rectangular in shape, as large as the endopod but bearing only four setae, two of them apical and the other two subapical on either side. These setae are the longest of the maxillule and are plumose.

Maxilla (Fig. II, 9)-Here the first segment bears four groups of setae, each probably representing one endite. The first group bears four setae one of which is spiniform and shorter than the others. The second endite bears a long solitary seta. On the third endite there are two long apical setae and on the fourth there are three setae two of which are very long and the third spiniform and short. The second segment is produced medially as a heavy, tapering, slightly curved spine. At the base of this spine there is a pair of small setae, a feature not found in any other known species of the genus. The distal region is 3-segmented, each segment bearing a single long seta. It is a far smaller region, forming only a fragment of the whole appendage.

Maxilliped (Fig. I, 5)-This is 3-segmented. The basal segment is the longest, being longer than the other two segments combined. It carries three protuberances on the medial margin. The first is at about the mid-length of the segment and a single seta is borne on it. The second protuberance is equidistant from the first and the third and bears four setae of varying lengths. The third one is almost at the distal medial angle of the segment and is provided with two setae. The second segment is small, less than half the length of the basal and its ornamentation consists of a single seta borne subterminally on the medial margin. The last segment is the smallest both in length and width and bears six setae graduated in length from the base to the distal end.


Fig. III.
12. Female, adult, second leg.
", fourth leg
14. Mäle, adult, antennule.
15. " " maxilliped.
16. "" ", genital segment, ventral view.

Swimming legs (Fig. II, 8 and Fig. III, \(12 \& 13\) )-These appendages exhibit a similar pattern of organisation except in the setation of the various segments which is given below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{5}{|c|}{Protopod} & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Exopod} \\
\hline & & & & & & & & & & & 3 & & & 1 & & 2 & & 3 & \\
\hline & & & Se & Si & Se & Si & S & & & Si & St & Se & & Se & Si & Se & Si & St & Se \\
\hline P1 & 1 & & 0 & I & 1 & 1 & 0 & 1 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 3 & 1 & IV \\
\hline P2 & 1 & & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 4 & 1 & IV \\
\hline P3 & 1 & & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 4 & 1 & IV \\
\hline P4 & 1 & & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 1 & I & 1 & I & 4 & 1 & III \\
\hline
\end{tabular}
(Si, St and Se represent the internal, terminal and external margins of the constituting segments and \(\mathrm{Pl}-\mathrm{P} 4\) represent the first to the fourth swimming legs. Spines are indicated by the Roman and setae by the Arabic numerals). The appendages are strongly built, biramous, each ramus being composed of three segments. In size the first legs are the smallest. It is borne by the cephalothorax, while the succeeding legs are each borne by a separate metasomal segment. In first legs the protopod I carries a single seta at the inner distal angle; the protopod II a simple spine at the distal inner angle. The segments of the endopod are subequal in size and are more or less of equal length and width. In the exopod the first segment is the longest and second the shortest; the former is narrower at the base. The second and third legs are alike in all respects. The first protopod is large and carries one seta at the distal innner angle. The second protopod segment carries a seta on its outer lateral margin. The segments of both rami resemble those of the first legs and differ only in ornamentation. - The fourth leg although built on the same pattern gives a narrower appearance of the constituting segments of both the rami. The spines of the exopod segments are specially noticeable in that they are rather slender and straight and do not possess the partial curvature of the tip, a feature present in the spines of first, second and third exopods.

Fifth leg (Fig. II, 10)—The fifth leg is borne by the first urosomal segment and is bimerous. The proximal segment is stout, broader at the base than at the apex and bears a single seta at its one-third length. The narrower tip of the proximal segment merges into the base of the distal segment which is broader at its distal region. There are four setae on the distal segment, two apical and two subapical. Of the latter, one is borne on a protuberance in the distal outer side and is very long, about two times longer than the entire fifth leg; the second seta is on the inner distal margin and is much shorter, only a little more than one-third length of the outer seta. The apex bears the shortest and the longest of the setae. The latter is one-fifth longer than the outer subapical seta and the former is extremely short, just a little more than half the length of the seta on the proximal segment of the fifth leg. All the setae bear minute hairs all along their lengths. Three bristles are found on the inner margin of the distal segment of the fifth leg.

Genital apertures (Fig. IV, 1)-The genital apertures are not described for any of the earlier species of this family. It is probably because of the limited number of specimens available to the investigators. The genital apertures in the present
species are very widely separated. They are set about one-third the proximal length of the genital segment and more or less ventro-laterally. The two apertures are connected by a narrow grove that run across the segment. The apertures are provided with minute spinules, probably guarding them.

\section*{Male}

The male (Fig. I, 2) is much smaller than the female, but is very similar to it. The differences noticed in the structural details are in the antennule, the maxilliped, the fifth leg and in the urosome. In other aspects there is absolute similarity between the male and the female except for the smaller size of the former.


Fig. IV.
17. Female, adult, genital segment, ventral view.

Antennule (Fig. III, 14)-The structure of the antennule may really be termed primitive for the geniculation found here is one of the simplest among the cyclopoids and the points of departure from the female antennule are not many. Both the left and the right antennules are built on the same pattern and each consists of only fourteen segments. The proportionate lengths of the constituting segments are as follows (All measured through the mid-line).
\begin{tabular}{rrrrllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
20.2 & 7.4 & 10.6 & 5.3 & 5.3 & 5.8 & 4.3 & 3.7 & \\
9 & 10 & 11 & 12 & 13 & 14 & & & \\
7.4 & 4.3 & 4.3 & 8.0 & 6.9 & 6.5 & \(\ldots\) & \(\ldots\) & \(=100\)
\end{tabular}

It can clearly be seen that only the first five proximal segments have the same proportionate dimensions as those of the female antennule; sixth and seventh segments which are fairly large in the female are here, only as large as the fourth and
fifth ; the eighth segment is smaller than any of the four earlier segments; the ninth segment is quite large and is equivalent to the tenth and eleventh combined; the last three segments are subequal and are geniculated. The twelfth segment bears a spine on its distal posterior margin and two fairly long setae on the same side. The thirteenth segment has a characteristic concavity on its anterior margin and bears a small straight spine at the depression and a long seta at the distal anterior angle. The last segment is profusely setated ; one seta is borne at one-third proximity, and the others at the distal region. There is a spine at half the length on the anterior margin. The length of the antennule in relation to the cephalothorax is similar to that in the female.

Maxilliped (Fig. III, 15)-This appendage shows variations from that of the female only in the proximal segment. While in the female it is longer than the combined lengths of the distal two segments, here it is distinctly smaller than that. It differs also in the setation : there is a solitary seta just beyond the one-third the proximal length and one long and two short spine-like setae at about two-third the length.

Fifth leg (Fig. II, 14)-The structural deviations of the male fifth legs are rather few. In the basal segment the position of the seta appears to have changed; it is seen just beyond the middle length. In the distal segment the setae give an entirely different appearance. While the outer subapical seta in female is about two times the length of the entire fifth leg here it is only just a little longer than the distal segment of the latter; the outer apical seta is again considerably reduced in length. Here also it remains the longest seta and is about twice as long as the outer subapical seta, but its length in proportion to that of the fifth leg itself is far less. Further both these setae lack their characteristic curved shape of the female. The reduction in length of the other two setae, namely, the inner apical and inner sub-apical, are only proportionate to that of the appendage itself. The three bristles found on the inner margin of the distal segment of the females are also present in the male.

Urosome-It is 6 -segmented, consisting of the fifth leg-bearing segment, the genital segment and four abdominal segments. The segments are graduated, the first segment being the widest. The latter and the genital segment are more or less of equal length. On the ventral side of the genital segment is present what is generally called the genital armature (Fig. III, 16) or the vestigeal sixth pair of legs. The spines of this appendage are faintly seen from the dorsal side but the structural details can be studied only from the ventral side. It is peg-like, one on either half, occupying a major portion of the ventral surface of the segment and orientated more or less diagonally. There are three spines on the posterior tip of it ; the innermost is very small and the outer two are long and sub-equal. The four abdominal segments are barrel-like and approximately of equal length. The last one bears the caudal rami which show no speciality.

\section*{DISCUSSION}

Both Lang (1949) and Illg (1955) have stated that in the species they described the prosome consists of the cephalosome and four free leg-bearing segments and that the host animal is an ascidian. The present species differs from both these conditions on which so much stress has been made by Lang (loc. cit.) when he created the new family Archinotodelphyidae and the two genera contained therein. In accordance with Cyclopinella the first leg-bearing segment is free in Archinotodel-
phys and Pararchinotodelphys. But they differ from each other in the number of segments of the urosome. While Archinotodelphys has a urosome of six segments Pararchinotodelphys has only five segments in the urosome, a feature which relates the former genus to Notodelphyidae.

In the present example the cephalosome and the first pedigerous segment are fused ; this is a character which directly relates it to many Cyclopinidiformes and Notodelphyidiformes and which is customarily held significant at a generic level (vide Sars, 1918, p. 16). The occurrence of the species in a molluscan host instead of the ascidian in unison with its relatives is another important fact in the evolution of the host-parasite relationship in this group of animals. Nearchinotodelphys indicus is also notable in that while it has developed its own specialities in many features it combines in it many morphological characters of both Archinotodelphys and Pararchinotodelphys thus making it difficult to assign it to either of the two genera. One gets the impression that if the present species does not represent a new genus the only other alternative will be to place all the four known species in a single flexible genus, Archinotodelphys Lang. It is probably more convenient and reasonable to treat the known four species as representing a single old genus with tendencies to specialize in various directions rather than to treat them as already specialized entities. The genus, in such a case, will combine in it all the characters of the family Archinotodelphyidae. However this procedure is not adopted here for the male is still unknown for the three earlier species. The degree of geniculation of the male antennule is an important criterion of generic distinction amongst the copepods and therefore, we have to await the descriptions of the males of these earlier species before proposing a merger of the existing genera as well as the present species into a single genus, Archinotodelphys Lang (1949).

Morphological specialities of \(N\). indicus--In all the discussions of the comparative morphology of the three earlier species and the present one, the male is omitted for, it is not known in the former cases. The fusion of the cephalosome and the first pedigerous segment is already discussed. In the antennule there are only fifteen segments in the female and fourteen in the male on both right and left sides. The female antennule is 17 -segmented in Archinotodelphys and 16-or 17 -segmented in Pararchinotodelphys. In the antenna the structure of the terminal claw deserves some attention. In \(P\). phallusiae it is described as one among the setae 'which in reality is somewhat small spiniform and very curved hook' (Hansen, loc. cit. p. 5). In the diagram it appears to be hardly one-third the length of the last antennal segment. In P. gurneyi it is moderately long, having the same length as the terminal antennal segment. A similar situation is found A. typicus. In all these cases the claw is rather weak. In N. indicus it is very strong and stout, being as long as the third and fourth antennal segments combined; and it has got a characteristic curved posture. It may also be noted that the distal two setae are similarly curved and are of the same length as the claw while the proximal three setae are only less than half the length and possess no special bent.

Fifth leg of A. typicus is very short, only about one and a half times as long as wide and carrying three apical and one middle seta. Basal segment does not bear any seta. In P. phallusiae too it is short, distal segment about two times as long as wide and carrying two apical and two subapical setae ; the basal segment also carries a seta. In \(P\). gurneyi the fifth leg is fairly long, the distal segment being about three times longer than wide and carrying two apical, one sub-apical and one middle seta ; the basal segment bears one seta. In all these cases the fifth leg is more or less cylindrical and the setae borne by it are as long as or a little longer than the distal segment. In the present case there is great difference in the dimensions of the proximal and distal segments of the fifth legs. While the proximal segment is very

\section*{A. N. P. UMMERKUTTY}
broad at the base tapering gradually to the distal tip, a reverse state is found true in the case of the distal segments : a narrower basal region increasing in breadth to the distal part. Further two of the setae borne by the distal segment are very long, one of them being about three times longer than the entire fifth leg and the other a little shorter.

In the structure of the caudal rami, \(N\). indicus differs from all the three other species; while it is at least one and half times as long as the last abdominal segment in all the earlier species, it is hardly as long as the last abdominal segment in the present case. Further while in the known species the setae on the ramus are fairly long, some of them being as long as or longer than the ramus itself, it is very much shortened in \(N\). indicus: the longest seta is just half the length of the caudal ramus.

Resemblances with Archinotodelphys-In Archinotodelphys the basal segment of the antenna is with two juxtaposed setae on the outer distal angle and with one seta on the inner angle. In the two species of Pararchinotodelphys there is only one fine seta instead of the two juxtaposed ones. However, in \(P\). phallusiae a stout seta is borne separately at the inner angle. In \(N\). indicus the condition is similar to that of A. typicus but the separate seta on the inner angle is lacking.

Illg (loc. cit.) has pointed out the possibility of differences at generic level in the armature of maxillule. It is doubtful whether any set limit can be placed at generic level on the structural pattern of maxillule in the family Archinotodelphyidae. However, the maxillule of the present species resembles very much that of A. typicus. In a sense \(P\). phallusiae also approximates with that of \(A\). typicus in the structure of the maxillule. The condition in the former may well be considered somewhat intermediate between \(P\). gurneyi on the one hand and A.typicus and \(N\). indicus on the other.

In P. gurneyi the maxilla is 6-segmented, the first two basal segments bearing two setiferous endites each. The third segment as in all other known species of this family is produced into a strong spine. There are four free segments in the distal region. In \(P\). phallusiae, however, the situation is different: the two basal segments are fused and together bear four endites. The process of fusion has extended to the distal region also where all the four segments are fused together forming a large segment bearing a number of setae. The middle segment bearing the spine is, however, quite distinct. In A. typicus the two basal segments are fused and together bear four endites ; the distal region, however, is 2 -segmented. Thus, in the case of maxilla also the present species has more kinship with Archinotodelphys.

Resemblances with Pararchinotodelphys:-In the number of segments of the urosome \(N\). indicus approximates more with the species of Pararchinotodelphys. In these, it is 5 -segmented and consists of the fifth leg-bearing segment, the genital segment and three abdominal segments, the last of which bears a pair of caudal rami. This is an important criterion on which Archinotodelphys is separated from Pararchinotodelphys and which the latter shares with \(N\). indicus.

The structure of the maxilliped in \(N\). indicus resembles that in Pararchinotodelphys. In both species of this latter genus it is 3 -segmented as it is in the present case. The similarity is found also in the number of setae borne by different segments.

Notes on the family Archinotodelphyidae-Lang (loc. cit.) thus defined the family Archinotodelphyidae: 'General form as in Cyclopinella G. O. Sars. First legbearing segment free. Antennae with one apical claw accompanied by a number of
setae. No brood-pouch, the eggs being carried in two dorsal sacs.' It is obvious that in order to receive \(N\). indicus into this family an important alteration is to be made in its definition. The archinotodelphyids are distinguished from the cyclopinids by the presence in the former of a claw on the terminal antennal segment ; they are separated from the notodelphyids by the facts that eggs are carried in two dorsal sacs and that no known notodelphyid antenna shows the sub-division of the terminal portion into the clear cut segments found throughout the archinotodelphyids. The fused or free state of the first pedigerous segment cannot be considered as a character of the family for in \(N\). indicus it is fused with the cephalosome while in all earlier species it is free from the latter. In the fusion of the cephalosome with the first pedigerous segment and in the extremely high development of the terminal hook of the antenna, \(N\). indicus tends more towards the notodelphyid pattern than any other related species. The cyclopinids is thought of as the parental stock and the notodelphyids as the descendant group; the archinotodelphyids are somewhat intermediate but aberrant group and 'the group as a whole exhibits a complex of primitive and advanced characters with no one member corresponding to the demonstrable archetypical requirements.' The discovery of this new species, \(N\). indicus, with many morphological deviations and combinations as well as a profound change in the host preference probably adds to the complexity of the problem of their evolutionary lineage.

The following key to the identification of the various genera and species is rendered in compliance with the systematic procedure adopted in this paper ; however, the male is omitted from the key.

\section*{Key to the identification of females:}
1. Prosome consists of a cephalosome and four free leg-bearing segments ; host is an ascidian

Prosome consists of a cephalothorax, formed by the fusion of the cephalosome with the first leg-bearing segment and three free leg-bearing segments ; host is a mollusc. \(\ldots . .\). ..Nearchinotodelphys g. nov. (only one species, \(N\). indicus sp. nov. is known).
2. Urosome consists of six segments : the fifth leg-bearing segment, the genital segment and four free abdominal segments; basal segment of the antenna carries two juxtaposed setae....................................................... 1949. (only one species, A. typicus Lang, 1949 is known).
Urosome consists of five segments : the fifth leg-bearing segment, the genital segment and three free abdominal segments; basal segment of antenna carries only one seta instead of the two juxtaposed ones........................Pararchinotodelphys Lang, 1949.
The genus consists of two species :
Antennule 17 -segmented; maxilla 3 -segmented; the terminal segment of the endopod of fourth leg bears two inner, one terminal and one outer setae (as shown in the figure)
.P. phallusiae (Hansen, 1923).
Antennule 16 -segmented ; maxilla 6 -segmented; the terminal segment of the endopod of fourth leg bears two inner, two terminal and one outer setae. P. gurneyi IIlg, 1955.

\section*{Summary}

Nearchinotodelphys indicus, a new genus and species of cyclopoid copepod, belonging to the family Archinotodelphyidae, is described in detail. Only three other species have so far been assigned to this family, all of them being known only from the female sex. \(N\). indicus is represented by both the sexes.

The points of similarities and differences between the known representatives of Archinotodelphyidae are discussed briefly : Nearchinotodelphys differs from both Archinotodelphys Lang and Pararchinotodelphys Lang in a number. of characters but also combines in it many other features of both these latter genera.

The cephalosome and the first pedigerous segment are free in all the earlier species whereas they are fused in N. indicus. Further while the ascidian has been the host of the earlier forms, \(N\). indicus is harboured by a mollusc. These characters have been incorporated in the definition of the family Archinotodelphyidae.

\section*{Acknowledgements}

My grateful thanks are due to Dr. S. Jones, the Chief Research Officer, for his direction and encouragement. I thank Dr. Paul L. Illg, Professor of Zoology, University of Washington, for his constructive criticisms of this paper. Sincere thanks are extended to Dr. S. Krishnaswamy of Madras University for many helpful discussions during the preparation of this paper and to Dr. R. Raghu Prasad of this Station and to Dr. S. Z. Qasim of Aligarh University for many valuable suggestions. I wish to thank Dr. E. G. Silas who handed over the specimens to me and to Mr. K. V. Rao who identified the molluse which harboured the copepod.

\section*{References}

Gooding, R. U. 1957. On some copepods from Plymouth, mainly associated with invertebrates, including three new species. J. Mar. biol. Ass. U.K. 36: 195-221.
Hasen, H. J. 1923. Crustacea Copepoda, II, Copepoda parasita and hemiparasita. Danish. Ingolf-Exped. 3(7) : 1-92.
Illg, Paul, L. 1955. A new species of Pararchinotodelphys (Copepoda: Cyclopoida) with rèmarks on its systematic position. J. Washington Acad. Sci., 45(7):216-224.
Lang, Karl. 1946. Einige fur die schwedische Fauna neue marine ' Cyclopoida Gnathostoma ' nebst Bemerkungen über die Systematik der Unter familie Cyclopininae. Ark. Zool. 38A(6) : 1-16.
1948. Copepoda ' Notodelphyioda' from the Swedish west-coast with an outline on the systematics of the copepods. Ibid., 40A(4): 1-36.
—_ 1949. On a new copepod family related to Notodelphyidae and on two new copepod species from South Georgia. Ibid., 42B(M): 1-7.
Lindberg, Knut. 1952. La sous-famille des Cyclopininae Kiefer (Crustaces copepodes). Ibid., ser. 2, 4: 311-325.
SARs, G. O. 1918. An account of the Crustaeca of Norway with short descriptions and figures of all the species, 6 . Cyclopoida : 225 pp . Bergen.
Sewell, R. B. S. 1949. The littoral and semi-parasitic Cyclopoida, the Monstrilloida and Notodelphyoida. Sci. Rep. Murray Exped. 9(2) : 1-199.
Ummerkutty, A. N. P. 1960. Paralepeopsyllus mannarensis a new genus and species of Cyclopoid Copepod from the Gulf of Mannar. J. Mar. biol. Ass. India, 2(1): 105-114.

Studies on Indian copepods IV.
Deacription of the female and redencription of the male of Peoudodiaptomas grajuna Breha (Copepoda, Calanolda) with notes on the distribution and affinities of the apecies

\title{
STUDIES ON INDIAN COPEPODS 4. DESCRIPTION OF THE FEMALE AND A REDESCRIPTION OF THE MALE OF PSEUDODIAPTOMUS ARDJUNA BREHM (COPEPODA, CALANOIDA) WITH NOTES ON THE DISTRIBUTION AND AFFINITIES OF THE SPECIES*
}

\author{
By A. N. P. Ummerkutty \\ Central Marine Fisheries Research Station, Mandapam Camp
}

In 1953, Brehm described a new species of calanoid copepod, Pseudodiaptomus ardjuna from Salsette Island, Thana District, Bombay. He had at his disposal only two male specimens, one of which was damaged. However, he could rightly identify it as a new species of the genus Pseudodiaptomus Herrick and gave a brief description of the male. The female of this species has not so far been described and there is no subsequent report of the male itself from anywhere. This short paper is meant to give a full account of both male and female collected from the South-East coast of India, off Mandapam.

The present study is based on the examination of numerous specimens obtained from the plankton hauls, in the Gulf of Mannar and the Palk Bay; samples were also obtained from the saline creeks leading to the Central Marine Fisheries Research Station Experimental Fish Farm. No morphological differences were noticed between the three examples; however, the present material differs in some details from the descriptions and diagrams given by Brehm for the specimens he collected from Bombay waters and these differences are discussed below. In describing the various parts of the body, I have adopted the terminology suggested by Gooding (1957) with some modifications (Ummerkutty, 1960 \& 1960a). In presenting the ornamentation of the swimming legs Sewell's suggestion (1949) to differentiate spines by Roman and setae by Arabic numerals is adopted.

All the drawings are made with the aid of a camera lucida.
Genus PSEUDODIAPTOMUS Herrick
Marsh, 1933, p. 46.
Sewell, 1956, p. 167.
Wilson, 1932, p. 101.

\section*{PSEUDODIAPTOMUS ARDJU̇NA Brehm}

Brehm; 1953; p. 313.

\section*{Female}

The body (Fig. I, 1) is rather narrow, smoothly rounded anteriorly. The prosome consists of five segments. The first segment is the cephalothorax, formed

\footnotetext{
*Published with the permission of the Chief Research Officer, Central Marine Fisheries Research Station, Mandapam Camp.
}
by the fusion of the cephalosome and the first leg-bearing segment; it is the longest of prosomal segments and is widest at its posterior margin. The second segment is rectangular with the long axis being the width of the copepod body. The third and fourth segments are rather short and subequal ; the latter is, however, wider than the former and is the widest part of the prosome. The fifth prosomal segment is armed on each of its postero-lateral corners with a sharp spine, directed backwards and slightly outwards; the right spine is slightly larger than the left one. The urosome consists of four joints, the genital segment and three abdominal segments. The genital segment is barrel-like and exceeds other urosomal segments both in length and width ; it has a well-marked ventral swelling on which is borne the genital operculum ; the latter does not bear any spine. The abdominal segments are subequal, each segment being about half as long as the genital segment. The caudal rami are narrow, cylindrical and more or less parallel. It is one and a half times longer than the last abdominal segment and bears numerous setules on its inner margin. Each ramus bears five setae, four of which are apical and one subapical on the outer side.

The antennule (Fig. I, 2) is moderately long reaching the posterior margin of the prosome. It has 23 segments which bear the following proportions (all measured through midline).
\begin{tabular}{rrrrrccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
5.5 & 4.1 & 3.0 & 3.4 & 3.3 & 1.7 & 3.0 & 4.1 & 2.2 & 3.1 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
4.5 & 4.5 & 5.3 & 5.9 & 6.0 & 6.0 & 6.9 & 5.4 & 4.3 & 4.3 \\
21 & 22 & 23 & & & & & & & \\
4.3 & 4.1 & 5.1 & \(=100\) & & & & & &
\end{tabular}

Segments 1st to 15 th and also the 18 th and the 23 rd segments bear each an aesthe task besides one or more setae ; the aesthetask is short, but very distinctly developed. The 21st segment bears a specialized seta whose inner margin carries a row of teeth at about its mid-region. This last character is also met with in a number of other species of this genus (Sewell, 1932. p. 239). The antenna (Fig. I, 3) has the usual characters of the genus : a 2 -articled protopod, a 2 -segmented endopod and a 4 -segmented exopod; it, however, differs from others in possessing two rows of small spinules on the distal inner margin of the last segment of the endopod. The mandibular palp (Fig. I, 4) is with 4 -segmented exopod, 2 -segmented endopod and a 2 -segmented protopod ; the masticatory blade normal with numerous teeth. The maxillule (Fig. I, 5) is probably the most conservative of all structures in this genus; it is quite normal and typical in the present species. The maxilla (Fig. I, 6) is apparently 3 -segmented but consists of 7 endites, the first and second segments with 2 endites each and the third with 3 endites; the endites bear 3 or 4 fairly long setae. The maxilliped (Fig. I, 7) is 7 -segmented; first and second segments are quite large and subequal and other segments are much smaller and their combined length is a little less than that of either first or second segment; the first segment bears 7 setae and a spine; the second only 3 setae and a number of minute hairs ; and each of the distal 5 segments bears two or more setae.

The four pairs of swimming legs (Fig. I, 8, 9 and 10) are borne by the first 4 prosomal segments. All the legs are biramous and constructed on identical plans.

While the second and third legs resemble each other in all the structural details, the first and fourth segments show differences both in size and in setation. The ornamentation of the swimming legs are as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & Protopod & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Exopod} \\
\hline & 12 & \multicolumn{2}{|l|}{} & \multicolumn{2}{|c|}{2} & \multicolumn{3}{|c|}{3} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|r|}{2} & \multicolumn{3}{|c|}{3} \\
\hline & Si Se Si Se & & Se & Si & Se & Si & St & Se & & Se & Si & Se & Si & St & \\
\hline \(\mathrm{P}_{1}\) & 10000 & & 0 & 1 & 0 & 3 & 2 & 1 & & I & 1 & 0 & 3 & I & II \\
\hline \(\mathrm{P}_{2}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & 1 & 0 & 2 & 0 & 4 & 2 & 2 & & I & 1 & I & 5 & 1 & II \\
\hline \(\mathrm{P}_{3}\) & 10000 & & 0 & 2 & 0 & 4 & 2 & 2 & & I & 1 & I & 5 & I & II \\
\hline \(\mathrm{P}_{4}\) & 10000 & & 0 & 2 & 0 & 3 & 2 & 2 & & I & 1 & I & 5 & I & II \\
\hline
\end{tabular}

It may be seen that the terminal exopod segment of each leg is provided with two outer spines and that the other exopod segments each bears a single outer spine except the second segment of the first pair of legs which has no spine at all. There is a single inner seta on the first and second segments of each exopod. The terminal exopod segment of first legs bears 3 setae while the second, third and fourth legs bear each 5 setae on this segment. The first endopod segment in all the four pairs of legs each carries a single seta while the second segment in these legs carries 1 seta in the first leg and 2 setae each in the next three legs. The terminal endopod segment in the first legs bears 6 setae, in the second and third legs 8 setae each and in the fourth leg 7 setae. The basal protopod segment carries a single seta in all the four legs, while the second protopod segment does not bear any seta or spine except in the fourth leg where a small spine is present.

The fifth legs (Fig. I, 11) are uniramous, symmetrical and small. On each side it consists of 4 articles; the first segment is devoid of any seta or spine ; second and third segments each bears a single setule ; the last segment bears 2 setae of unequal length and 2 flattened spinelike structures, bearing minute teeth on the inner margin. In this genus the basal two segments of the fifth leg represent the protopod and the distal two segments the exopod; the endopod is entirely lacking.

The female carries a single ovisac, rather irregular in shape and containing about 25 eggs. Length of the female is 1.31 mm .

\section*{Male}

The male (Fig. I, 12) shows sexual dimorphism in the antennule, the fifth pair of legs and in the urosome. It is smaller than the female but has the same general appearance. The spines on the posterior prosomal segments are, however, much less pronounced, although their slight asymmetry is maintained. The urosome is 5 -segmented, of uniform width and more cylindrical than in the female; first segment is the shortest and second the longest while other three segments are subequal and of moderate length.

The right antennule (Fig. 1,13 ) is geniculate while the left is quite normal and resembles that of the female in all structural details, including the specialized seta


Frg. I, 1-14 : Pseudodiaptomus ardjuna Brehm.
1. Adult, egg-carrying female, dorsal view.

Female, antennule
\(\begin{array}{lll}\text { 3. } & \text {, } & \text { antenna } \\ \text { 4. } & \text { mandible. } \\ \text { 5. } & \text { maxillule } \\ \text { 6. } & \text { m, } & \text { maxilla. } \\ \text { 7. } & \text { " } & \text { maxilliped. }\end{array}\)
8. " first swimming leg
9. ", second swimming leg.
10. ", endopod of fourth swimming leg.
11.
12. Male, adult, log.
13.
14.
14.
geniculatew.
"
of the twenty-first segment. The geniculate antennule consists of 21 segments which bear the following proportions:-
\begin{tabular}{lcccccccccc} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
& 7.8 & 5.5 & 4.2 & 2.4 & 1.8 & 2.1 & 2.1 & 1.7 & 2.5 & 2.4 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
2.1 & 1.2 & 3.5 & 5.1 & 5.6 & 6.0 & 5.8 & 12.8 & 11.8 & 8.5 & \(5.1=100\)
\end{tabular}

As the lines of separation are not exactly parallel in all cases and as the measurements are done through the midline of the segments, the proportions given for some segments are not accurate. The segments from 1st to 16 th each bears an aesthetask, except the fifth, seventh and eleventh to thirteenth segments; the latter 3 segments, however, each bears a stout spine.

Fifth legs (Fig. I, 14) are rather strongly built, asymmetrical and close together; the right leg is slightly longer than the left ; right basal one is, of moderate size with no accessory process; basal two is very large and slightly longer than wide ; it carries on its inner margin a ' \(y\) '-shaped spinous process with the arms of unequal length; this process represents the vestigeal endopod; it also carries at its distal outer corner a small spine on the anterior face. Exopod is displaced into medial line and consists of 3 segments ; the first segment is fairly large and much wider than long; three features are notable in this segment: (a) at the distal outer angle there is a spinous process which is quite long and which, in its turn, bears a smaller spine at one-sixth of its proximal length, thus giving a forked appearance to that region; (b) a small, almost conical spine, also borne on the distal outer corner, is present just below the preceding larger spine; and (c) a serrated edge is seen along the line of separation of the first and second segments ; this edge curves down after the mid-width of the segment. The second exopod segment is much longer than the first segment, but distinctly less wide; it carries a fairly long spine on its distal outer angle and a smaller spine at about the centre of the segment on the anterior face. Exopod segment 3 is modified into a stout spine; its base is bulbous, bearing a few spinules on either side.

Left basal one is smaller than its right counterpart and with no accessory spines or processes. Left basal two is quite large with its breadth larger than the length. It bears at its inner distal angle a digitiform process which is fairly long almost equivalent to the length of the entire protopod. This process probably represents the endopod. In the left side, too, the exopod is displaced to a medial line and consists of only two segments; the first segment is quite short, the greatest length and breadth being almost equal ; it bears a sharp spine at its latero-distal angle; the second segment consists of a thin plate, more or less rectangular in shape; on its outer margin it bears a spine at two-third of its length and a few minute spinules after that; on the left side the distal margin is provided with three spinules borne on small projections.

In the structure of other appendages and legs the male is identical with the female except in the smaller proportionate sizes. The length of the male is 1.1 mm .

A redescription of the male is provided above as it is found to show some variations in the structural details of the fifth legs from those of the specimens described by Brehm (l. c.). The basal II of the right leg, in Brehm's diagram is shown to have a digitiform process, instead of the ' \(y\) '-shaped process seen in the present
specimens. The bifurcated spines on the outer distal angle of the basal exopod segment of the right fifth leg in Brehm's diagram appears to be only a different view of the same shown for the present material. In the left leg the terminal exopod segment is flat and leaf-like in both ; but in Brehm's diagram the proximal part is shown to be only half as wide as the distal area, whereas in the present example it is more or less of uniform breadth throughout. It is possible that these differences are real and are probably geographic variations within the same species; it is also possible that these apparent differences do not exist at all and that Brehm's specimens exhibit deviations only because they would have been mounted and examined in a different angle. However, I feel that the species dealt with in this paper is the same as that erected by Brehm from Bombay waters.

Distribution-Until now this species is known only from the Bombay coast. Its occurrence both in the Palk Bay and in the Gulf of Mannar, off Mandapam extends its distribution to the south-east coast of India. It is likely that a careful examination would reveal its presence all along the west coast and possibly the east coast. It is an inshore dwelling species and gets into the saline creeks that are connected to the sea. In the Gulf of Mannar it is found in good numbers during the late winter months, February and March, majority of the females at that time carrying egg sacs. Rare individuals are caught almost throughout the year especially in the very inshore waters. The saline creeks, referred to above are on the Palk Bay side. They experience great variations in the salinity and temperature not only from season to season but in the different hours of the same day, depending upon the level of water present in them. Specimens were caught in April and May when usually there would be a fair amount of water in the creek. There is no information available as to its presence or absence in other months. The specimens taken from the creeks appeared to be actively reproducing as shown by the large number of ovigerous females and naupliar and copodite stages.

Notes on the affinities of the species-The genus Pseudodiaptomus was established by Herrick in 1884 to receive a brackish water species, pelagicus, taken in Mississippi Sound, North America. Although this species has not been subsequently recorded from anywhere, there has been a steady increase in the number of known species of this genus, the total number at present being thirty-six. Marsh (1933) divided the species of this genus, placing a number of them in an older genus Schmackeria Poppe and Richard, (1890) in which the 'second segment of the basipod of the left fifth foot of the male is armed ; and its inner border is with a long curved projection'; and in which the last prosomal segment of the female is rounded. Johnson (1939) obtained a new species euryhalinus, from the California Coast and created a new subgenus Pseudodiaptallus to accommodate it, so that its 'close relationship to the known Pseudodiaptomus species is well expressed '. This subgenus is easily distinguishable by the presence of only two free segments in the urosome. Sewell (1956) regards all these, namely, Pseudodiaptomus (s. str.), Schmackeria and Pseudodiaptallus as three subgenera of Herrick's original genus Pseudodiaptomus (s. lat.). However, the distinctions between Pseudodiaptomus (s. str.) and Schmackeria still appear to be far from clear, if there is any difference at all. If we accept Marsh's contention that Schmackeria has a vestigeal endopod in the form of process, spine, ete., in both right and left legs of the male and has the posterior corners of the prosome rounded in both sexes, in contrast to Pseudodiaptomus (s. str.) which is said to have the vestigeal endopod only in the right fifth leg of the male and to have the posterior corners of the prosome angular, it appears that some of the species are not assigned to their proper systematic places. Pseudodiaptomus salinus Giesb. and P. hickmani Sewell, both recorded from Indian waters, for example,
possess a vestigeal endopod in both right and left male fifth legs; Sewell, however, lists them in the subgenus Pseudodiaptomus. They can certainly be included in that subgenus if we take into account only the angular nature of the posterior corners of the prosome ; in the structure of the male fifth legs their affinities are with Schmackeria.

The present species is very closely related to \(P\). hickmani and \(P\). salinus. The fifth legs, both in the male and in the female are very identical in all these species and differ from each other chiefly in the proportionate dimensions of the constituting parts. Whether all the three species should be placed under the subgenus Pseudodiaptomus or the subgenus Schmackeria, it is not clear in the light of the present definitions given to the two groups. The genus has grown very large and the bizarre addition of the new species from time to time, many of them inadequately described, necessitates an urgent revision of the genus.

\section*{Summary}

The unknown female of a calanoid copepod Pseudodiaptomus ardjuna Brehm is described. A redescription of the male also is rendered as it is found that a few differences of structural details exist between male fifth legs of the present specimens and the male fifth legs described and sketched by Brehm (1953).

The systematic kinship of the species is briefly considered. It is very close to Pseudodiaptomus salinus and P. hickmani. A note is also given on the distribution of the species in the light of our present knowledge.

\section*{Acknowledgement}

I am thankful to Dr. S. Jones, the Chief Research Officer for his guidance and encouragement. I wish to thank Shri L. R. Kasturirangan for going through the manuscript and offering valuable suggestions.

\section*{References}

Brehm, V. 1953. Indische Diaptomiden, Pseudodiaptomiden and Cladoceren. Wien. Öst. Zool. \(Z .4,3\).
Gooding, R. U. 1957. On some copepoda from Plymouth, mainly associated with invertebrates, including three new species. J. Mar. biol. Ass. U.K., 36: 195-221.
Johnson, Martin W. 1939. Pseudodiaptomus (Pseudodiaptallus) euryhalinus, a new subgenus and species of Copepoda with preliminary notes on its ecology. Trans. Amer. micros. Soc., 58 (3) : 349-355.
Marsh, C. D. 1933. Synopsis of the calanoid crustaceans, exclusive of the Diaptomidae, found in fresh and brackish water, chiefly of N. America. Proc. U.S. Nat. Museum. 82:1-85.
Sewell, R.B. S. 1949. The littoral and semi-parasitic Cyclopoida, the Monstrilloida and Notodelphyoida. Sci. Rep. Murray Exped., 9 (2).
_ 1956. The Continental Drift and the Distribution of the Copepoda, The Presidential Address to the 166 th Session of the Linnean Society, London. Proc. Linn. Soc., Lond., 166 (1 \& 2) : 149-177.
Ummerkutty, A. N. P. 1960. Studies on Indian Copepods. I. : Paralepiopsyllus mannarensis, a new genus and species of cyclopoids copepod from the Gulf of Mannar. J. Mar. biol. Ass. India, 2 (1): 105-114.
. 1960a. Studies on Indian Copepods. 2 : An account of the morphology and life-history of a harpacticoid copepod Tisbintra jonesi sp. nov. Ibid., 2 (2) : 149-164
Wilson, C. B. 1932. The Copepods of the Woods Hole Region, Massachusetts. Bull. U.S Nat. Mus., 58 : 1-635.

Studies on Indian copepods V. On eleven new mpecies of ayciopold oopepode from the south east coast of Indis

\title{
STUDIES ON INDIAN COPEPODS 5. ON ELEVEN NEW SPECIES OF MARINE CYCLOPOID COPEPODS FROM THE SOUTH-EAST COAST OF INDIA*
}

\author{
By A. N. P. Ummerkutty \\ Central Marine Fisheries Research Institute, Mandapam Camp
}

\section*{INTRODUCTION}

Sewell (1949) has pointed out that our knowledge of the cyclopoid copepods of Indian waters, especially those inhabiting the littoral regions in association with invertebrates and sea weeds and in which the type of existence is usually referred to as 'semi-parasitic', is extremely scanty. The oldest account available on this little known crustacean group in our waters is that of Thompson \& Scott (1903) who, in their supplementary reports of the faunistic survey of the Pearl Banks of Ceylon, gave brief description of the copepods they came across. The cyclopoid copepods they dealt with were mostly obtained by examination of washings from dredged materials such as ascidians, sponges, corals, pearl oysters etc. Although the exact depth at which they were caught is not given in specific instances it is presumably from sea bottoms, at least a few fathoms deep. 'This collection of copepods have proved to be exceedingly rich and varied, containing as it does, no less than 283 species, of which 76 are new to science while at least 10 new genera are required, (Thomp. \& Scott, loc. cit.). Of these copepods, the 'semi-parasitic' cyclopoids were one of the richest groups; it was represented by 42 species of which 25 were new and no less than six new genera were required to accommodate eight of the new species. The only other exhaustive work on these tiny creatures in the Indian waters is that of Sewell (loc. cit.) who described the species obtained during the John Murray Expedition and also those he gathered during the long years of his valuable service in this country in the Marine Survey of India. He recorded 44 species belonging to this group, out of which 25 were new and 3 new genera and 2 sub-genera,

\footnotetext{
* Published with the permission of the Director, Central Marine Fisheries Research Institute.
}
had to be created to include some of the new species. Krishnaswamy (1954) recently reported three species from Madras coast ; all the three are new to our waters and one of them is new to science. Attention may be drawn here to the 2 new genera of cyclopoid copepods that have recently been reported from this area (Ummerkutty, 1960a and 1960b).

The present paper deals with the following new species of copepods :-
(1) Asteropontius littoralis
(2) A. sewelli
(3) Cryptopontius graciloides
(4) C. orientalis
(5) Hemicyclops intermedius
(6) Pseudoanthessius agilis
(7) Macrochiron (Macrochiron) rigida
(8) Lichomolgus holothuriae
(9) L. serratipes
(10) L. brevifurcatus
and (11) L. indicus.
It is of interest to note that many of the copepods recorded or discovered from the Ceylon Pearl Oyster Grounds by Thompson \& Scott about 60 years back have now been obtained by me from the Indian side of the Gulf of Mannar. A detailed account of these species will be published elsewhere.

Gooding (1957) has pointed out the undesirability of referring these animals collectively under such terms as 'parasitic', 'semi-parasitic', 'commensal' etc., for there is little definite evidence about the nature of the association and little work to this end has been done on the copepods. Sars (1918) who first referred to their parasitic existence has qualified his statement by adding that 'in most cases, however, the parasitism may be merely temporary'. The fact is that most of the species are found to occur in association with a variety of hosts and the exact relationship between the copepod and the associated invertebrate is yet to be investigated in specific cases. Because of this ambiguity in their relationships I have preferred to refer to them as 'associated with invertebrates' instead of referring them as parasitic or semi-parasitic. In the present collection only Lichomolgus holothuriae was found constantly to live inside the body cavity of Holothuria sp. Although there is no positive evidence that it is not found in association with other invertebrates, quite a number of holothurians examined yielded this copepod. P. serratipes was obtained from the washings of Pteroeides esperi Herklots, the common sea-pen of this coast. Asteropontius littoralis was obtained mostly from washings of weeds and mud-covered coral stones. Whether it has any relation with the Polychaetes observed to inhabit the same niche is not clear. Of the species discussed below, the following are represented by both the sexes.
(1) Cryptopontius orientalis
(2) Pseudoanthessius agilis
(3) Macrochiron (Macrochiron) rigida
(4) Lichomolgus holothuriae
(5) L. brevifurcatus
and (6) L. indicus

In describing the various body segments I have mainly adopted the terminology suggested by Gooding (loc. cit.) with some alterations (Ummerkutty, 1960 a \& b). In the section Siphonostoma all the cephalosomal appendages are easily distinguishable; but in the section Poecilostoma there is a reduction in the mouth-parts and the homology of the various appendages has been a source of discussion among the carcinologists. Brady (1880) considered that the mandible, the maxillule (first maxilla), the maxilla and the maxilliped are present ; and this view has been shared by great many of the subsequent workers. [Gurney, 1927; Nicholls, 1944 ; Sewell (loc. cit.) and Gooding (loc. cit.)] However, Sars (loc. cit.) held a different view. He maintained that the mandible is absent in all the Poecilostoma and what is usually described as mandible is nothing but 'a part of the foremost pair having been erroneously taken for an independent limb'. At least as far as the family Clausidiidae is concerned Nicholls (loc. cit.) has shown beyond doubt that there are four pairs of oral appendages present: 'The few specimens of Hemicyclops found in this collection have been dissected with particular attention as to whether these two anterior pairs of mouth-parts came away together or were attached separately. In each case I found no attachment between them and during dissection observed that they were independently mounted side by side on the supporting skeleton. I am, therefore, convinced that there are two separate appendages: the mandible, which has the typical shape of such an appendage though lacking a palp and having a somewhat specialized armature and the maxillule, which is here distinctly cleft, the smaller lobe armed with strong spines representing the gnathobase, the larger lobe with setae only being the palp' (p. 44). Gurney (loc. cit.) goes further and states that even in Lichomolgiade, the mandible and its 'palp' are separable and can be recognized as distinct appendages.

As to the oral appendages of lichomolgids that are dealt with in this paper it is clear that all the four pairs are present, although highly reduced in some cases. In all cases, however, the mandible and the maxillule are very closely set. The drawings of these appendages have been made together. In describing the various appendages I have confined to the usage of those terms which are currently in vogue among the copepodologists. The terms protopod, exopod and endopod are used to indicate the basal, the external and the internal components respectively. These terms have been employed to describe not only the swimming legs but also the cephalosomal appendages.

\section*{Material and Methods}

The material of the present study was obtained from the Gulf of Mannar and the Palk Bay on the south-east coast of India off Mandapam. Some of the species were found to occur in both the areas. Others were caught only in one of the two seas. All the collections were made in the inshore waters with a maximum depth of two meters and the period of collections was spread over from May to August 1960. The following method was adopted for the collection: Weeds, mud-covered coral stone, sponges, holothurians, starfishes etc. etc., were vigorously washed separately into hand-nets made of organdie cloth. Smaller mud particles were sifted out by repeated dipping of the net into sea water. The remaining portion was transferred to large glass jars and preserved in formalin. Larger non-copepod items were later hand-picked and discarded. The copepods were sorted out by examining the residue under a binocular microscope. Attempts to pick out some of the copepods alive seldom meet with success as they tend invariably to hide under some coverage, thus making it difficult to spot them. All the species are present in fairly good numbers. The type specimens are deposited at the Reference Collection

\section*{A. N. P. UMMERKUTTY}

Museum of the Central Marine Fisheries Research Institute, Mandapam Camp. The description and the diagrams are based on the examination of more than one specimen. All the drawings have been made with the aid of a camera lucida.

\section*{Section SIPHONOSTOMA}

\section*{Family Asterocheridae Giesbrecht s. str.}
(Syn. Ascomyzontidae Sars)
Sars, 1918, p. 83.
Nicholls, 1944, p. 16.

\section*{Genus Asteropontius Thompson \& Scott 1903}

Thompson \& Scott, 1903, p. 288.
Asteropontius littoralis sp. nov.
Material examined-Many specimens were collected during the months of June and July 1960. Most of the specimens were obtained from the Palk Bay off Mandapam and a few examples were also caught near the Pamban bridge, the meeting place of Gulf of Mannar and Palk Bay. The holotype and paratypes are deposited in the Central Marine Fisheries Research Institute and bear the registered Nos. J. 535/4 and J. 536/4 respectively.

\section*{Description:}

\section*{A. Female}

The body (Fig. I, 1): The general appearance is typically asterocherid. The prosome is distinctly oval and is composed of four segments. The first segment is longer than the length of all other segments combined. The latter diminish gradually in width, the last of them being less than half as wide as the first. The urosome (Fig. I, 12) is only half the length of the prosome and consists of the fifth leg-bearing segment, the genital segment and two abdominal segments. The genital segment is the largest and has its anterior region wider than the posterior ; at the junction of these two, there are tufts of hairs on either side. Urosomal segments are wider in front, gradually narrowing posteriorwards. Each caudal ramus bears six setae, one of which is distinctly longer than the entire urosome.

Antennule (Fig. I, 2) is 19 -segmented and reaches to the posterior margin of the first prosomal segment. The segments of the antennule are divisible into a wider proximal and a narrower distal region, consisting of nine and ten segments respectively. All the segments are provided with setae, more than one in many cases, especially on ninth to eleventh segments where there is a profusion of setae. The eighteenth segment bears a fairly long aesthetask. The proportions of the various segments are given below (All segments are measured through the middle line).
\begin{tabular}{ccccccccccl}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
13.2 & 2.6 & 3.1 & 4.0 & 3.5 & 3.3 & 4.4 & 4.4 & 4.4 & 1.8 & \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & \\
2.6 & 5.3 & 6.6 & 7.0 & 5.3 & 6.2 & 5.9 & 7.0 & 9.4 & & \(=100\)
\end{tabular}


Figure 1, 1-12. Asteropontius littoralis sp. nov.


\section*{A. N. P. UMMERKUTTY}

Antenna (Fig. I, 3) is 5 -segmented ; the last two segments, however, are not fully segmented. The second segment is the largest, the third, first, fourth and the fifth coming next in order. The second segment bears at about two-third of its length a rudimentary endopod which carries two small setae on the apex. The terminal antennal segment bears a fairly large spine and a stout seta at its apex. Hairs are present on the inner margin of the third segment. Siphon (Fig. I, 8) is stoutly built, pyriform in shape and only extending to the insertions of the maxillipeds; its posterior edge is marked by three sharply spine-like structures, one medial and two lateral. Mandible (Fig. I, 4) is with a very long masticatory blade and a short uniarticulate palp which bears at its apex three setae of unequal length. The blade is five times as long as the palp. This condition is not found in any other known species of this genus. Maxillule (Fig. I, 5), as usual, is composed of two lobes which are much unequal in size. Both the lobes are provided with a number of apical setae which are rather strong and finely ciliated. Maxilla and maxilliped (Fig. I, 6 \& 7) are of the usual asterocherid pattern, the only notable difference being that in the former the line of separation between first and second segments are not distinct although there is a clear constriction between them.

The four pairs of swimming legs (Fig. I, 9, \(10 \& 11\) ) are borne by the four prosomal segments. They are all biramous, each ramus being composed of three segments. In the first legs, the basal exopod segment is elongated, almost equivalent to the combined length of second and third segments. The spine on that segment also is quite long. The second and third legs are very similar to each other in structural details and are quite normal. In the fourth leg the segments of both endopod and exopod are slender and long and differ from those of the preceding legs in setation. The setal formula of the four pairs of swimming legs are given below:-(In this and in all the subsequent accounts of the ornamentation of the swimming legs the following abbreviations have been used: \(P_{1}-P_{4}\) stand for the first to the fourth swimming legs and. Si , Se and St represent the internal, the external and the terminal margins respectively of the constituting segments. The setae are indicated in Arabic and the spines in Roman numbers).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Protopod} & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Exopod} \\
\hline \multirow[t]{2}{*}{} & & & \multicolumn{2}{|l|}{2} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|r|}{2} & \multicolumn{3}{|c|}{3} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2} & \multicolumn{3}{|c|}{3} \\
\hline & & Se & Si & Se & & Se & Si & Se & Si & St & & Si & Se & S & Se & Si & St & Se \\
\hline \(\mathrm{P}_{1}\) & 1 & 0 & 1 & 1 & & 0 & 2 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 2 & 2 & \\
\hline \(\mathrm{P}_{2}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 4 & II & II \\
\hline \(\mathrm{P}_{3}\) & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 3 & 2 & 1 & 1 & I & 1 & I & 4 & II & II \\
\hline \(P_{4}\) & 0 & 0 & 0 & 1 & 1 & 0 & & 0 & 2 & & & 1 & I & 1 & I & 4 & II & \\
\hline
\end{tabular}

The fifth leg (Fig. I, 12) is quite moderate in size, reaching upto the middle of the genital segment. It consists of two segments of unequal size; the basal bears a single seta and the distal three setae, two of which are apical and the third subapical. Stiff hairs are present on the outer margin of the basal and on both margins of the distal segment. The size of the adult female is 0.8 mm .

\section*{B. Male}

Unknown.
Asteropontius sewelli sp. nov.
Material examined-Four specimens were obtained from the washings of the bottom weeds from Palk Bay in June 1960. All are females. The holotype and the paratypes are deposited in the Central Marine Fisheries Research Institute, Mandapam Camp and have the registered Nos. J. 569/5 and J. 570/5 respectively.

\section*{Description:}

\section*{A. Female}

The body (Fig. II, 1)-Like the preceding species, here also, the body is more or less oval. The first prosomal segment is, however, much wider and longer than the other three segments combined. The urosome consists of four segments, the genital segment being the largest. The latter is vase-like, with the anterior part wider than the posterior and the two areas being separated by tufts of hairs on the lateral margins. The post-genital segments are cylindrical and narrow. The caudal ramus is short and distinctly smaller than the last abdominal segment ; each ramus bears six setae, the longest of them being one and a half times longer than the entire urosome; it is 2 -segmented and profusely setiferous.

The antennule (Fig. II, 2) is fairly long reaching to the posterior margin of the first prosomal segment. It consists of nineteen segments, the first nine segments being distinctly wider and longer than the remaining segments. The eighteenth segment bears an aesthetask which is rather short. The proportionate lengths of the antennular segments are as follows :-
\begin{tabular}{lllllllllll} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
& 8.69 & 3.00 & 2.55 & 2.78 & 2.55 & 2.33 & 2.21 & 2.55 & 2.33 & \\
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & \\
1.23 & 1.47 & 5.85 & 7.36 & 8.69 & 8.69 & 9.49 & 8.68 & 9.75 & 9.81 & \(=100\)
\end{tabular}

Antenna (Fig. II, 3)-is 5-segmented and quite normal in structure. The second segment bears the rudimentary endopod; there are two short spines and a long spine on the terminal segment. Siphon (Fig. II, 4) is very short and stout, having two sharp needle-like points at the posterior tip; no medial spine is present. In the mandible (Fig. II, 5) the masticatory blade is very long and pointed while the palp is uniarticulate and rather short, bearing two setae, one of which is extremely long, being longer than the masticatory blade and ciliated on both margins. Maxillule (Fig. II, 6) consists of two lobes which are very much unequal in size, the smaller one being only one-fifth of the larger and appearing more as a process of the latter. Maxilla and maxilliped (Fig. II, 7 \& 8) are quite normal and similar to those of the preceding species. The terminal claw of the maxilla, however, is much more slender and long.

Of the four pairs of swimming legs (Fig. II, \(9,10 \& 11\) ) which are borne by the our prosomal segments respectively, the first leg is the smallest. The second and


Figure II, 1-12. Asteropontius sewelli, sp. nov.
1. Adult, female, dorsal view.
\(\begin{array}{llll}\text { 2. } & \text { ", } & \text { antennule. } \\ \text { 3. } & \text { ", } & \text { antenna. } \\ \text { 4. } & \text { ", } & \text { siphon. } & \text { mandible. } \\ \text { 5. } & \text { ", } & \text { " } & \text { maxillule. }\end{array}\)
7. Adult, female, maxilla.
8. Adult, female, maxilla.
\(\begin{array}{rlll}\text { 8. } & , " & \text { maxilliped. } \\ 9 . & ", & \text { first swimming leg } \\ 10 . & , " & \text { second swimming }\end{array}\)
\(\begin{array}{lll}10 . & ", & ", \\ \text { second swimming leg. } \\ 11 . & ", & \text { fourth swimming leg. }\end{array}\)
12. "", ", fifth leg with parts of urosome
(Diagram 1 drawn according to scale I and diagrams 2-12 according to scale II).
third legs are exactly similar in structure and appearance. In the fourth leg the constituting segments are longer than those of the preceding legs. The setal formula of the swimming legs is as follows:-


It may be seen from above that the terminal endopod segment in the second, third and fourth pairs of legs bears one seta and one spine instead of the usual single spine or single seta. The fifth leg (Fig. II, 12) is fairly long and thin and is 2 -segmented, the proximal segment being contained about four times in the distal segment ; the former bears a single seta at its postero-lateral corner and the latter three radiating setae on the apex. There are stiff hairs on either margins of the distal segment. The size of the female is 1.1 mm .

\section*{B. Male}

\section*{Unknown.}

This species is named after Col. R. B. S. Sewell, C.I.E., Sc.D., F.R.S., in recognition of the very valuable contributions that he has made towards our understanding of the Indian copepods.

Remarks-Thompson \& Scott (1903) created this genus to include two species of copepods, A. typicus and A. attenuatus which they obtained from the sponge and invertebrate washings. Since then two more species have been added, A. nicobaricus Sewell from Nicobar Islands and A. mycalei Krishnaswamy, from Madras. The genus is very closely related to Asterocheres and can be distinguished only on careful examination. Thompson \& Scott defined the genus Asteropontius as follows : 'Cephalothorax roundly ovate, five-jointed, the cephalic segment larger than the combined length of the four following segments. Anterior antenna 18-19 jointed. Abdomen 3-jointed. Outer branch of the posterior antenna 4 -jointed, a small 1-jointed branch springing from the first joint. Maxilla 2-branched. Mandible long and narrow; palp i-jointed. Maxilliped and natatory legs 1st to 5th as in Asterocheres' (loc. cit. p. 288). They remarked at the end of the description of \(A\). typicus that 'the species bears a general resemblance to Asterocheres, but the 19jointed antennae and the 1 -jointed mandible palp separate therefrom.' The antennular segmentation does not hold valid as a generic character for the number of segments in the antennule is now established to vary from eighteen to twenty in Asteropontius and fourteen to twenty in Asterocheres. The statement that the antenna is 4 -jointed and that the rudimentary endopod is borne by the basal antennal segment does not conform to their diagrams (Pl. XVIII, Fig. 13 \& Pl. XIX, Fig. 3)
which clearly show that antenna is 5 -jointed in both the species, and that the rudimentary edopod is borne by the second segment. In A. nicobaricus the antenna is 5-jointed, the proportions of the different segments being almost identical with those of the preceding two species. A. mycalei has an antenna which is 3-jointed; it appears from the diagram of the latter species that the last two segments have undergone a fusion. The fact is, however, is clear that as far as the segmentation of the antenna is concerned no distinction can be made between the two genera. Thus the only distinguishing feature of the genus Asteropontius, not shared by Asterocheres, is the uniarticulate nature of the mandibular palp.

The third segment of the first exopod also deserves some comments. Three types of conditions are met with in the present genus. In A. typicus there are four setae and two spines. In \(A\). attenuatus the number of setae are four and that of spines three; this latter condition is also found in A. nicobaricus and A. littoralis sp. nov. A third type of situation occurs in \(A . m y c a l e i\) and \(A\). sewelli sp . nov. ; here there are three setae and four spines. Thus the tendency towards an increase in the number of spines is accompanied by a reversed tendency in the case of setae.

Krishnaswamy (loc. cit.) has provided a key to the identification of the different species known upto that time. The number of segments of the antennule was the main criterion on which his key was based. It now appears that the number of setae and spines on the third segment of the first exopod also provides a good point of specific distinction and the identification key is here revised employing these two characters along with the structure of the caudal rami when it is required.

Key to the identification of the females

A. mycalei Krishnaswamy, 1954.
2. Caudal rami longer than wide, the proportions of length and width being \(5: 2 \quad \ldots . . . .\). A. attenuates Thomp. \& Scott, 1903.
Caudal rami wider than long, the proportions of length and width being \(4: 5 \ldots \ldots \ldots \ldots \ldots\)......................... 19 aricus Sewell, 1949.
3. The third segment of first exopod with four setae and two spines
A. typicus Thomp. \& Scott. 1903.

The third segment of first exopod with four setae and \(A\). littoralis sp. nov. three spines

The third segment of first exopod with three setae


Sars, 1918, p. 117.
Nicholls, 1944, p. 23.
Genus Cryptopontius Giesbrecht, 1899
Sars, 1918, p. 120.
Nicholls, 1944, p. 24.
Cryptopontius Graciloides Sp. Nov.
Material examined.-Fourteen female specimens were obtained from washings of weeds from the Palk Bay. They were captured on two occasions. No specimen was available from the Gulf of Mannar even after many searches. The holotype and paratypes are deposited in the Central Marine Fisheries Research Institute and bear the registered numbers J. 572/6 and J. 573/6 respectively.

\section*{Description:}

\section*{A. Female}

The body (Fig. III, 1).-The prosome consists of four segments and the urosome of five segments. The first prosomal segment is very large being distinctly larger than the rest of the body. It is slightly wider than long and the length-breadth proportion is \(48: 52\). Second and third segments are less wide than the first segment but still with epimeral plates which are crowded together and curved backwards. The last prosomal segment is very small without epimeral plates and partly concealed by the preceding segment. The first segment of the urosome bears the highly reduced fifth pair of legs. It is only about as large as the last prosomal segment. The genital segment (Fig. III, 8) is quite large, being equivalent in length to the combined length of the three following segments. Its anterior part is very much widened, more than twice as wide as the last abdominal segment, and bears on each side a pair of spines towards the postero-lateral margin of the widened area. Of the three abdominal segments the first is the longest, and the second the shortest. They diminish in width posteriorly. The caudal ramus is a little wider than long and bears six setae, one of which is very long, being more than twice as long as the entire urosome ; the furcal setae are plumose.

Antennule (Fig. III, 2) is 9-segmented and rather stout. The first, third and the last segments are fairly long; second segment is the shortest and is distinctly wider than long; the fifth segment is square. Other segments are of moderate length and are longer than wide. The last segment bears an aesthetask which is about twothird the length of the antennule itself. Following are the proportions of the different segments:-
\begin{tabular}{lllclllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
18.2 & 3.8 & 19.5 & 7.2 & 6.0 & 8.3 & 8.3 & 9.8 & 18.9 & \(=\) & 100
\end{tabular}

Antenna (Fig. III, 3) is 4 -segmented, the second segment carrying a rudimentary endopod bearing a single terminal seta. The second, third and fourth segments are of about equal lengths while the basal segment is distinctly shorter. The terminal segment bears three setae, one at about its mid-length on the ventral side and the


Figure III, 1-8. Cryptopontius graciloides, sp. nov.

(Diagram 1 is drawn according scale I and diagrams \(2-8\) according to scale II).
other two terminally; the terminal setae are of unequal length. Siphon (Fig. III, 4) is extremely slender and consists of a bulbous proximal portion and a narrow distal portion which is of uniform thickness throughout and which extends almost to the end of the prosome. Mandible without any palp, masticatory blade slender, styliform and long. Maxillule (Fig. IV, 1) has both lobes slender, the outer more than three-fourth as long as the inner and armed with a very short spine and a fairly long seta; the inner lobe bears on its apex a spine, and a seta, the latter being more than one and a half times longer than the lobe itself and provided with stiff hairs on the inner margin. The maxillae and maxillipeds (Fig. IV, 2 \& III, 5) are normal in structure and resemble those of the type species of the genus.

The four pairs of swimming legs (Fig. III, 6, 7 and. Fig. IV, 3) are borne by the four prosomal segments respectively. First three pairs are biramous while the fourth is uniramous, the endopod entirely lacking. While the second and third legs are similar to each other in structure and size, the first is distinctly smaller and shows differences in the setation. The setal formula of the swimming legs is given below :


The fifth legs (Fig. III, 8) are extremely rudimentary and are represented on each side by a single seta borne on a bud-like protrusion; there are a few stiff hairs on the lower margin of this bud. The size of the female is 1.3 mm .

\section*{B. Male}

Unknown. Cryptopontius orientalis sp . nov.

Material examined.-Along with the preceding species, two female examples, each carrying a pair of beautifully rose-coloured ovisacs were obtained from Palk Bay in June, 1960. A few weeks after that some more examples, about fifteen specimens, were caught near the Pamban Bridge and the latter collection.included both males and females. The type specimens, the holotype, the allotype and the paratypes are deposited in the Central Marine Fisheries Research Institute and bear the registered numbers J 658/7, J 659/7 and J 660/7 respectively.

\section*{Description:}

\section*{A. Female}

Although the ovisacs are of fine rose colour, the body is dull opaque, as in most of the cyclopoides. The oviscas also lost their colour after a few days of preservation in formalin. The body (Fig. IV, 4)-This is more robust than in the preceding


Figure IV, 1-13. Cryptopontius graciloides sp. nov.
1. Adult, female, maxillule. 3. Adult, female, fourth swimming leg.
2. ", ", maxilla.

Cryptopontius orientalis sp.nov.
4. Adult, female, dorsal view.

. Adult, female, maxilliped.
13. ," ,, antennule. ing to scale II).
species and the first prosomal segment still constitutes the major part of the body. It is wider than long and is one-quarter time longer than the entire remainder of the body. Second and third prosomal segments are less wide but are provided with epimeral plates. The last segment is very small both in length and width and is without an epimeral plate but is provided with posterior angular corners like the preceding segments. The urosome is 5 -segmented and is much similar to that of the earlier species. The anterior part of the genital segment, however, is comparatively wider. Although the three abdominal segments diminish in size posteriorly, the ratio of the length is different from that of the earlier species. The caudal rami are wider than long, each bears five setae, two of them appearing more like spines; the longest seta is one and a half times longer than the entire urosome.

Antennule (Fig. IV, 5) is 9 -segmented, the third segment showing a slight partial division. Segments \(1-3,5\) and 9 are of the same length-width relations as in the preceding species, while the fourth, sixth, seventh and eighth segments are much shorter and are only a little longer than wide. The last segment bears an aesthetask which is about three-fourth as long as the entire antennule. The proportionate lengths of the constituting segments are :-
\begin{tabular}{rrrrrrrrrl}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
22.0 & 5.1 & 19.8 & 8.8 & 6.9 & 7.8 & 6.9 & 6.9 & 15.8 & \(=100\)
\end{tabular}

Antenna (Fig. IV, 6) is 4 -segmented, the second segment bearing the rudimentary endopod. The basal segment is equivalent to the third in length and is shorter than the second and fourth which are more or less of equal dimensions. While the third segment bears a single seta, the fourth has four of them, one at about half its length and three terminally. The setae are unequal in size. Mandible is quite normal and typical of the genus. Maxillule (Fig. IV, 7) has both lobes slender, the outer two-third as long as the inner and armed with a seta and a spine; the inner lobe armed with two slender spines; at the base of the inner lobe there is another spine. Maxilla and maxilliped (Fig. IV, \(8 \& 9\) ) bear a great resemblance to those of the earlier species. A notable difference in the maxilla, however, is that the division between the first and the second segment is incomplete. In the maxilliped, the basal segment bears a pair of small spines on the outer distal margin, in addition to the one present on the inner distal margin.

First three pairs of swimming legs (Fig. V, 1, 2 \& 3) are biramous, while the fourth is uniramous, the endopod entirely missing. The legs two and three are absolutely identical in structure and size, while the first leg is smaller. The outer margins of all the segments of the exopods of second, third and fourth legs are clearly dentate. The setal formula for the swimming legs is given below:


The number of setae and spines of the third segment of first exopod is different from that of the earlier species; while in the latter there are five setae and three spines, here the number of setae is reduced to four. Further the setae on the inner side of the third endopod segment of the first leg is very small compared to that of the earlier species. Fifth leg (Fig. IV, 10) is highly reduced in size and it is represented on each side by a protrusion which bears two slender setae at its apex. The size of the female is 1.05 mm .


Figure V, 1-3. Cryptopontius orientalis sp. nov.
1. Adult, female, first swimming leg.
2. ", \(\quad\) 2. \(\quad \begin{aligned} & \text { second swimming leg } \\ & \text { fourth swimming leg. }\end{aligned}\)

\section*{B. Male}

The general body (Fig. IV, 12) of the male is more slender than that of the female. While in the former the first prosomal segment is only one-quarter time as wide as that of the second prosomal segment, in the latter it is one and a half times wider. The last prosomal segment in formalin preserved specimens is entirely concealed by the preceding segment. The urosome consists of six segments. The genital segment is very large, equivalent in length to the three following abdominal segments. But unlike in the female it is more or less of uniform width and bears on each side posteriorly three spines, two of them directed backwards and the third sidewards. The abdominal segments diminish slightly, both in width and length, towards the posterior side. The caudal ramus is wider than long and bears the same number of setae, with same proportionate lengths, as in the female. The size of the male is 1.0 mm .

Antennule (Fig. IV, 13) is geniculate on both sides. It is 12 -segmented, with the first segment being the longest and seventh the shortest. The tenth segment is somewhat dilated, exhibiting near the end, in front, a short dentiform projec-
tion. Segments 3-10 bear each an aesthetask which is fairly long. The last segment also bears an aesthetask which is corresponding to that of the female. The proportionate lengths of the different segments are given below:
\begin{tabular}{crrcccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \\
21.6 & 5.5 & 13.1 & 4.5 & 4.5 & 4.0 & 2.5 & 5.2 & 4.2 & 15.7 & 6.0 & 13.2 & \(=100\)
\end{tabular}

The setae on the antennule of the male are longer compared to those of the antennule of the female. All other appendages including the fifth legs are identical to those of the female sex; but they are relatively smaller.

Remarks-Nicholls (1944) has reviewed this genus and pointed out that it contains ten species including the four new species he added from the Australian waters. So far only one species has been reported from the Indian waters, C. brevifurcatus, recorded from Madras coast by Krishnaswamy (loc. cit.). The addition of the two present species brings the total number of known forms to twelve and shows that the genus probably is quite represented in our waters. The genus is very closely related to Dyspontius and the most reliable character by which they are distinguished is the armature of the first exopod: Dyspontius has only two outer spines on the end segment, whereas Cryptopontius has three. Wilson's definition (1932, p. 594) of the genus Cryptopontius as having the first prosomal segment longer than wide and third segment of first exopod with three spines and five setae, in contrast to Dyspontius which is said to have the first prosomal segment wider than long and the third segment of the first exopod with three spines and four setae is not correct, as is seen from a glance through the species described so far. All the species of the genus Cryptopontius are consistent in possessing three spines on the end segment of first exopod. The number of setae on that segment and the length-width ratio of the first prosomal segment, however, are not identical in all the species.

As far as the number of setae on the end segment of the first exopod is concerned, two types of situations are met with in the genus., There are five setae and three spines in the case of C. brevifurcata Giesb., C. proximus, Nicholls, C. similis Nicholls, C. gracilis Wilson and C. graciloides sp. nov., while there are only four setae and three spines in the case of C. longipes Nicholls, C. latus Nicholls and C. orientalis sp . nov. I have not been able to go through the original descriptions of the four remaining species; but the essential specific distinctions are available for the four remaining species, namely, C. thorelli Giesb., C. capitalis Giesb., C. innominatus Brady and C. tenuis Giesb. The first two species belong to the second group, namely, the group having four setae and three spines. Of the remaining two species, it is uncertain whether innominatus should be included at all in this genus. 'Brady's specimen was apparently damaged, but the urosome which he figures shows the genital segment of the same width throughout whereas it is characteristic of the genus that it should be very much widened anteriorly ' (Nicholls, op. cit. p. 25). Whether the number of setae in the case of \(C\). tenuis is four or five could not be known ; presumably it is. five as Wilson (op. cit.) has considered that number as the more normal for the genus. However, the fact becomes clear that the species of this genus are separable into two groups, namely, those having five setae in the third segment of the first exopod and those having only four setae on that segment.
C. graciloides is much related to C. gracilis but the differences between the two species are many: (i) in C. gracilis the first prosomal segment is as long as wide while here it is slightly wider than long; (ii) in C. gracilis the abdominal segments
decrease in width but increase in length posteriorly ; in C. graciloides the posteriormost segment is the longest and the middle segment the shortest ; in width, here also, they decrease posteriorly; (iii) siphon is short and stout in C. gracilis; the siphon is very long and slender in C. graciloides and (iv) size of the female 1.3 mm . in \(C\). graciloides; in C. gracilis the female measures only 1.0 mm . and the male 0.85 mm .
C. orientalis as noted earlier is close to C. longipes and C. latus in that in all these three species the terminal exopod segment of first legs carries three spines and four setae. C. longipes, however, is very easily distinguished from the other two species by the fact that in the former the first and second antennular segments are subequal and much longer than the third antennular segment while in both C. latus and \(C\). orientalis the second antennular segment is much shorter than the first and third which are subequal. C. orientalis is identified from C. latus by the following differences : (1) Female of \(C\). orientalis measures 1.05 mm . and male 1.0 mm . ; the female of C. latus is 1.30 mm . long. (2) The genital segment of \(C\). latus is shown to be very wide, about three times wider than the following abdominal segment; in \(C\). orientalis the genital segment is about two and a half times wider than the next abdominal segment. At the junction of the wider proximal and narrower distal halves of the genital segment of C. orientalis there are two stout spines, on either side directed postero-laterally. In C. latus these spines are absent. (3) In C. latus the abdominal segments are more or less of equal dimensions, with the first segment a little longer than the other two segments. In C. orientalis the three abdominal segments diminish both in width and length to the posterior side. (4) The rudimentary exopod of the antenna is without any apical seta in C. latus while it is with one apical seta in C. orientalis. (5) The larger lobe of the maxillule carries one seta alone in C. latus and two apical and one basal setae in C. orientalis (6) On the inner margin of the terminal segment of first endopod there is one seta present in the case of \(C\). orientalis whereas there is no seta in that position in \(C\). batus. (7) The rudimentary fifth leg in C. latus bears only a single apical seta while that of C. orientalis bears two apical setae.

Section POECILOSTOMA

\author{
Family Clausididae Embleton
}
(Syn. Hersilidae Canu)
Sars, 1913-1918, p. 144.
Genus Hemicyclops Boeck
Sars, 1913-18, p. 145.
Light and Hartman, 1937, p. 173.
Sewell, 1949, p. 65.
Gooding, 1960, p. 159.
Hemicyclops intermedius sp. nov.
Material examined-Two female specimens were obtained along with other weed washings from the Gulf of Mannar in July 1960. An additional single specimen was obtained from the same area in the following month. The type specimen is deposited in the Central Marine Fisheries Research Institute and bears the registered number \(\mathrm{J} / 575 / 8\).

\section*{Description :}

\section*{A. Female}

This (Fig. VI, 1) is a fairly moderate-sized species with clearly marked prosome and urosome. The prosome is elongate-ovate and comprises the cephalothorax and three free metasomal segments. The cephalothorax is quite large, contains in it the widest part of the body and is longer than the other three prosomal segments combined. The latter gradually diminish in width to the posterior side and are subequal in length. The lateral margin of the third prosomal segment gives an articulated appearance. The posterior margin of the last-prosomal segment is truncate in dorsal view. No rostral protuberance is visible dorsally. The urosome is 5 segmented and consists of the fifth leg-bearing segment, the genital segment and three abdominal segments. The first segment is small and rather six sided, each lateral margin being set apart into anterolateral and posterolateral divisions because of an expanded growth along the mid-transverse line. The fifth legs are borne on the postero-lateral margins. The genital segment is the largest and consists of an anterior wider half and a posterior narrower half which merge into each other without any trace of division between them. The abdominal segments decrease, both in length and breadth, to the posterior side. The combined length of the three abdominal segments is equal to that of the genital segment. The furcal rami are square and a little less long than the last urosomal segment. Each ramus bears five apical setae, one of which is very long, longer than the entire urosome, and one very short and subapical in position.

Antennule (Fig. VI, 2) is 7-segmented. Attachment of the basal segment to the cephalosome is at right angles to the plane of projection of the remainder of the appendage. In life the latter is held perpendicular to the main axis of the body. The relative lengths of the different antennular segments are as follows:
\begin{tabular}{cccccccc}
1. & 2 & 3 & 4 & 5 & 6 & 7 & \\
13.8 & 10.6 & 11.2 & 22.4 & 15.2 & 13.4 & 13.4 & \(=\) \\
& & & 100
\end{tabular}

The second segment is the shortest and the fourth the longest. The segments gradually diminish in their thickness to the distal tip. All the segments are provided with a number of setae, especially the second and third segments where there is a profusion of it. Many of the setae bear setules on their margins, several with setules on the lips alone. Antenna (Fig. VI, 3) is 4-segmented. It is twice bent on itself so that it looks like an inverted U-tube, with the first and the fourth segments forming the two limbs of unequal length and the middle two segments forming the base. The basal segment bears two setae on the proximal inner margin and a single seta on the distal outer corner. Three groups of 'comb rows' of setae are found on this segment; one row on the mid-inner margin and two rows on the outer margin, one each in the proximal and distal halves with some space left between the two rows. First segment is the longest. The second segment is almost as equal as the first. It bears on its outer margin at about the mid-length a stout seta which is ciliated on the outer margin. A 'comb row' of setae is present on the outer margin between this seta and the base. The inner margin is uniformly ciliated. The third segment is peculiarly orientated; its outer lateral margin is bent almost at right angle so that the proximal half of this bent side now becomes the outer lateral margin proper and the distal half becomes the apparent apical margin; the original apical margin is displaced to the position of inner lateral margin ; the real inner lateral margin is highly reduced and constitutes the insignificant proximal


Fios ure VI, 1-12. Hemicyclops intermedius sp. nov.

region of this side. The third segment bears two spines, two setae and a single group of 'comb row' of setae, all on the original outer lateral margin; the ' comb row' is 'borne on the lateral half and the setae and spine on the apical half of this original outer lateral margin. The last segment of the antenna is the smallest with all the four sides clearly marked, held at right angle to the preceding segment and rather subrectangular and wider than long; this segment bears on its apical margin seven setae four of which are long and characteristically curved, while the other three are short and slender ; one of these shorter setae is strongly ciliated on its inner margin.

All the four pairs of mouth appendages are present and they are closely compacted in typical poecilostome fashion. Mandible (Fig. VI, 4) is a small structure with the proximal half of its body proper much larger than the distal half ; the latter bears two ciliated setae on its outer (in natural position rather directed posteriorwards) distal margin; the terminal armature consists of a foliaceous flap fringed all along its borders with cilia and a broad rather conical spine which is serrated on both margins. Maxillule (Fig. VI, 5) is only as large as the mandible and is clearly bilobed towards the distal side; each lobe bears four setae, those on the inner appearing more like spines and much shorter; three of the longer setae are ciliated. Maxilla (Fig. VI, 6) is bimerous; basal segment much inflated, bearing on its distal inner face a stout solitary seta which is ciliated on.both margins. The armature of the distal segment is quite complex ; in a lateral view the apex is Yshaped with asymmetrical limbs and a thick body; below this a seta is borne on each side, the one on the inner margin being ciliated and a little shorter than that on the outer margin; on the inner face between the seta and the base of the segment is borne a subrectangular structure which is denticulated on the apical margin. Maxilliped (Fig. VI, 7) is probably the most conservative structure. It is trimerous, first two segments being subequal and large and the third highly reduced. The basal segment is armed with two long setae and the second with an inner prominence carrying two spinous setae. The terminal segment bears two claws of unequal lengths and two short setae.

All the four pairs of swimming legs (Fig. VI, 8, 9, 10 and 11) are biramous and with two segmented protopods. The rami are all trimerous but the exopod is invariably shorter. The setal formula of the swimming legs is as follows :


In the first leg the apical margin of the second protopod segment is uniformly ciliated. In the second and third legs the first protopod segment bears a group of three spinules on its outer distal margin and the second protopod segment, on its face between the exopod and endopod, a 'comb row' of spinules. In the fourth leg

\section*{A. N. P. UMMERKUTTY}
spinules on the first protopod segment are reduced to two ; the second protopod segment bears, besides the 'comb row', two small spinules on its inner distal face. Fifth leg is 2-segmented and inserted on the ventro-lateral face of the first urosomal segment, one on each side. The proximal segment bears a single seta externally and is armed at the distal external angle with a row of fine spinules. The second is typical of the genus and more than twice as long as the first segment ; it is much narrower at the base and is provided with spinules on both the outer and inner margins. It bears three rather conical broad based spines and a delicate seta between the second and third spines; the latter two spines may be termed apical in position while the first spine is sub-apical on the outer side.

\section*{B. Male}

Unknown.
Remarks-Light and Hartman (1937) reviewed this genus and considered the following species as valid :
1. H. pugettensis Light and Hartman, 1937.
2. H. aberdonensis (Scott \& Scott), 1892.
3. H. adhaerens (Williams), 1907.
4. H. callianassae Wilson, 1935.
5. H. purpureus Boeck, 1873.
6. H. thysonotus, Wilson, 1935. and
7. H. americanus Wilson, 1932.
H. elongatus Wilson, 1937 was described in the same year as Light and Hartman's review and so was not included in their list. All these species were reported to occur along the American coasts except \(H\). aberdonensis which was recorded only from Scottish seas. Gooding (loc. cit.) provided an excellent review of the American species of this genus and considered H. pugettensis and H. callianassae to be synonymous with \(H\). thysonotus; and \(H\). americanus as a synonym of \(H\). adhaerens. He added two new species \(H\). arenicola Gooding and H. subadhaerens Gooding to bring the total number of known American species again to six. \(H\). purpureus has, however, been omitted from his key for he is not sure whether Wilson's identification of this species from the Canadian waters is correct in view of 'Wilson's lapses in descriptions of other species in this genus '.

The report of the occurrence of the species of this genus in other parts of the world is rather scanty. Besides the two Ámerican species referred to above, I am aware of the following species having been reported as belonging to this genus after Light and Hartman's review :
1. H. leggi (Thomp. \& Scott), 1903 \}
2. H. tamilensis (
3. H. australis Nicholls, 1944
4. H. indicus Sewell, 1949
5. H. visendus, Humes, Cressey and Gooding, 1958
6. H. bacescui (Serban) 1956
7. H. dilatatus Shen and Bai, 1956.

Both from Ceylon; transferred to this genus as suggested by Sewell 1949.

Australia
Nicobar Islands
Madagascar.
Mediterrannean
China
H. thompsoni Canu was kept in abeyance by Light and Hartman from the genus Hemicyclops because that species was based upon two immature females found on the body of Callianassa subterrannea Montagu. However both Stock (1959) and Humes, Cressey and Gooding (1958) have recognised this as a species of Hemicyclops. There are, therefore, fifteen species including the one described in this paper known in the genus Hemicyclops.

Gooding (loc. cit.) has pointed that four of the American species namely, adhaerens, subadhaerens, arenicolae and elongatus fall into a distinct group, more or less constituting a superspecies. 'This superspecies would be characterised mainly by the separation between genital and first abdominal segments and the well-developed sixth legs in the adult females; the reduced mandibular setation and presence only of simple terminal elements on the maxilla and of setulose exopod spines on all the swimming legs in both sexes; and the attenuated 'scaly' tip of the male maxilliped' (p. 164). To this superspecies-complex should probably be added H. tamilensis for in this species also the genital and the first abdominal segments are completely free. However, we have no information about the various appendages which are of systematic importance. H. indicus and \(H\). dilatatus are separated from others easily by the subquadrate nature of the genital segment which is followed by three abdominal segments. In \(H\). leggi only the male is known and the possibility 'or otherwise that the present example represents the unknown female of that species is discussed later (vide infra).

In the remaining seven species the genital segment is quite elongate with a broader anterior and a narrower posterior regions and there are three post-genital segments. However, in bacescui, visendus, thompsoni and thysonotus the caudal ramus is distinctly long, always more than twice as long as wide and are easily distinguished from purpureus, australis and the present species, all of which have their caudal rami sub-quadrate.
H. intermedius sp. nov. is not referred to \(H\). purpureus because of the following differences:

\section*{H. intermedius}
1. The exopod of first leg has four setae and four spines.
2. Relative lengths of the antennular seg* ments :
\(13.8 ; 10.6 ; 11.2 ; 22.4 ; 15.2 ; 13.4\); \(13.4=100\)
3. The antennal segments are bent twice forming an inverted ' \(U\) '-tube
4. Caudal ramus as long as wide.
5. The basal segment of maxilla with one seta. The distal segment as described.
6. Terminal segment of maxilliped bears limited number of setae and spines.
7. Length of female 1.9 mm :
H. purpureus

The exopod of first leg has two spines and six setae.

Relative lenghts of the antennular segments:
\(10.0 ; 23.2 ; 9.4 ; 18.8 ; 13.5 ; 14.1 ; 11.0=100\)

The first segment is bent at right angles to the next three segments which are linear.

Caudal ramus slightly longer than wide.
Basal segment of maxilla with two setae. The distal segment simpler in structure.
Terminal maxilliped segment bears four setae and two spines.
Length of female 1.15 mm .

\section*{A. N. P. UMMERKUTTY}

The present species is related to \(\dot{H}\). australis but the following differences are noticeable between the two species:
H. australis
1. Size : \(1.38-1.40 \mathrm{~mm}\).
2. Prosome : Urosome \(=53: 47\)
3. Proximal half of genital segment more than one and a half times wider than the distal half.
4. The genital segment longer than the three abdominal segments combined.
5. Caudal ramus longer than the last abdominal segment.
6. Third antennular segment much shorter than \({ }^{\text {T}}\) the second.
7. In the mandible, the body proper bears a single seta on its distal inner margin.
8. In the first leg the terminal exopod segment carries six setae and two spines.
H. intermedius
1.9 mm .

Prosome : Urosome \(=51: 49\)
Proximal half of genital segment only a little wider than the distal half.

The genital segment only as long as the three abdominal segments combined
Caudal ramus not as long as the last abdominal segment.

Third antennular segment as long as the second

In the mandible the body proper bears two setae on its distal inner margin.
In the first leg the terminal exopod segment carries four setae and four spines.
H. leggi was created by Thompson \& Scott (loc. cit.) from the Ceylon side of the Gulf of Mannar and was referred to the genus Hersiliodes Canu. Sewell (loc. cit.) suggested its removal to the genus Hemicyclops. The single male specimen which they obtained from sponge washings measured only 1.5 mm . Taking into consideration this size difference of the male of \(H\). leggi and the female of \(H\). intermedius as well as the same area of the distribution (hardly 50 miles apart) of the two species, one is tempted to suggest that they represent the male and the female of the same species. However a number of difficulties come in the way. Although the male is generally smaller in size than the female in many of the species of the genus, this condition is never the rule, for in \(H\). visendus it is clearly larger than the female : the male measures 2.06 mm . while the female is only 1.87 mm . long. However, in this genus the male is known to differ from the female only in the structure of the maxilliped and the urosome. The differences observed in other structural details are considered of specific importance. Such characters are listed below:
(a) The proportionate lengths of the antennular segments are distinctly different in the two species.
\begin{tabular}{llllllll} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
H. leggi & 13.0 & 16.0 & 8.5 & 23.0 & 15.0 & 10.5 & \(14.0=100\) \\
H. intermedius & 14.5 & 10.6 & 10.7 & 22.0 & 15.5 & 13.35 & \(13.35=100\)
\end{tabular}
(b) First segment of the antenna in \(H\). leggi is bent at right angles to the remainder of the appendage; in \(H\). intermedius the antenna is bent twice on itself forming an inverted U-tube with the first and the last segments forming the two limbs and the middle segments forming the base. Further the setation of the constituent segments is also different in the two species.
(c) In the maxilla of \(H\). intermedius the basal segment bears only a single seta on its distal inner margin, while two distinct setae are borne in \(H\). leggi ; further the segment itself is very short in \(H\). leggi.
(d) The terminal endopod segment of first leg bears five setae and one spine in the present species whereas for \(H\). leggi it is shown to be only four setae and one spine.
(e) The length-breadth ratio of the fifth leg in \(H\). leggi is \(3: 2\) while it is \(2: 1\) in H. intermedius. Since Thompson \& Scott (loc. cit.) themselves have pointed that their species ' is easily recognized from any other members of the genus by the proportionate lengths of the joints of the anterior antennae and by the quadrangular fifth leg', I consider the present form as a new species.

Family LICHOMOLGIDAE SARS
Sars, 1918, p. 149.

> Sub-family Lichomolginae gurney

Gurney, 1927, p. 463.
Genus Pseudoanthessius Canu
Canu, 1889, p. 344.
Sars, 1918, p. 166.

\section*{Pseudoanthessius agilis sp. nov.}

Material examined-Numerous males and females of this copepod were captured from the sponge washings from the Gulf of Mannar in July and August 1960. On one occasion it was obtained from general invertebrate and weed washings (which of course included sponges). The holotype, allotype, and paratypes are deposited in the Central Marine Fisheries Research Institute and bear the registered numbers J. 576/9, J. 577/9, and J. 578/9 respectively.

\section*{Description:}

\section*{A. Female}

Colour is monotously whitish opaque ; but the edges of the different segments possess a beautiful tinge of violet which appears to be due to the deposit of calcium. The body (Fig. VII, 1) is very graceful in appearance, quite symmetrical and almost cylindrical. The prosome consists of four segments and the urosome of five segments. The first prosomal segment is, however, partially divided into the cephalosome and the first leg-bearing segment. The cephalothorax is the widest part of the body, being almost three times wider than the last prosomal segment. In length the cephalothorax is twice as long as that of the three following segments combined. The matasomal segments gradually diminish in width posteriorly. All the segments excepting the last prosomal segment are provided with epimeral plates. There is a clear rostral prominence on the anterior margin of the first prosomal segment. In the urosome the first segment bears the fifth pair of legs which are typically reduced. The genital segment forms a major part : it is much longer and wider than the other segments joined together and carries on each side a small spine on


Figure VII, 1-11. Pseudoanthessius agilis sp. nov.

its postero-lateral margin. First, second and third abdominal segments are subequal in length but diminish in width posteriorly. Caudal rami are parallel, distinctly exceeding the last abdominal segment in length and a little less than twice as long as wide. Each of them bears four terminal setae and a small spine on the outer margin at its mid-length.

Antennule (Fig. VII, 2) is moderately long, reaching when extended posteriorly to the end of the cephalosome. It is 7-segmented and the segments have the following relative lengths :
\begin{tabular}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
19.6 & 24.8 & 6.0 & 15.7 & 13.9 & 10.0 & \(10.0=100\)
\end{tabular}

The second segment is the largest and the third the shortest. Fourth and fifth segments are approximately of equal length; so also are the last two segments. The first segment is fairly stout and long and bears an aesthetask equal.in length to that of the entire antennule. All the segments are provided with number of setae. The antenna is well-developed and consists of four segments. First segment is devoid of any seta. The third segment bears three setae, of unequal length on its inner anterior distal margin. The last segment bears four setae of varying lengths and two stout spines; the latter are characteristically bent to the anterior side. The mandible (Fig. VII, 4) as usual, is a flat blade, produced into an elongate, tapering tip which curves outwards. The entire inner margin is lined by minute spinules. A broad, rather rectangular, chitinized flap is present near the inner base of the blade. It is tipped with fine spinules. The base of the mandible is closely associated with the base of the maxillule and are mounted on the same skeletal frame work. Maxillule (Fig. VII, 4) is simple, rather rectangular in shape, bearing three spines of unequal length on the apical margin. In the maxilla (Fig. VII, 5) the basal segment is quite pronounced and bears a seta besides the apical lash; the latter is moderately long, bent at about right angles in the distal part and bearing along its entire length slender spinules which diminish in length distalwards. The maxilliped (Fig. VII, 6) consists of two segments, the basal is the wider, but the distal is the longer; the latter bears two serrated spines at the apex and a small spinule at about two-third length. Maxilliped is rather feeble.

The swimming feet (Fig. VII, 7 ; Fig. VIII, 1, 2 and 3) are biramous, the ramus being three-segmented, except in the case of the endopod of the fourth leg which is only one-segmented. The legs are notable in that the corners and edges of the various segments are highly calcified and have a dark violet tinge. The setal formula of the swimming legs are as follows:-


\section*{A. N. P. UMMERKUTTY}

First leg is the smallest. Second and third legs are similar except for the differences in the setation of the terminal segment of the endopod. In the fourth leg the reduced endopod is half as long as the exopod and its margins are entire. The fifth pair of legs, as in other species of the genus, are replaced on each side by a spine inserted directly to the posterolateral margin of the first urosomal segment and accompanied by two small setae ; the spine is smooth, exhibiting at the base a slight dilation and is directed posteriorwards. One of the setae arises just close to the spine and the other a little upwards. The size of the female is 1.18 mm .

\section*{B. Male}

The male (Fig. VII, 9) is much smaller than the female, displaying the usual sexual differences. The prosome is more oval and compact than in the female and the first and the second prosomal segments only partly fused. The urosome (Fig. VII, 11) is 6 -segmented. The genital segment is very much widened, almost as wide as long and uniform throughout the length. At the posterolateral corners the segment becomes constricted to a bud-like structure, each of which bears two fine spines. The four abdominal segments diminish both in length and width to the posterior side. The caudal rami and setae are similar to those of the female. The maxilliped (Fig. VII, 10) is very large and prehensile, many times longer than the corresponding structure of the female. It consists, however, of the same two segments which are subequal in length. The terminal spine of the second segment is extremely large, characteristically bent inward and bears a small spine on its distal posterior margin. There is also a seta close to the base of the terminal spine. The mouth parts as well as other remaining appendages are identical to those of the female.

Remarks-A number of species that were originally attributed to this genus have been recorded from Indian waters but several of these have subsequently been transferred to other genera.

Nicholls (loc. cit.) provided an excellent key to the genus and enlisted the following species as known to the time of his writing:
1. P. liber, (Brady \& Robertson), 1875.
2. P. assimilis Sars, 1917.
3. P. sauvagei Canu, 1891.
4. P. obscurus A. Scott, 1909.
5. P. mucronatus, Gurney, 1927.
6. P. tenuis Nicholls, 1944.
7. P. gracilis Claus, 1889.
8. P. weberi A. Scott, 1909.
9. P. nemertophilus Gallien, 1935.
10. P. thorelli (Brady \& Robertson), 1875. .
11. P. dubius Sars, 1918.
12. P. concinnus Thompson \& Scott, 1903.
rllg (1950) revised the key incorporating three more species, \(P\). spinifer Lindberg, 1946, P. graciloides Sewell, 1949 and P. latus Illg, 1950 that have since then been added. The present species brings the total number of known numbers of this
genus to sixteen. The species of this genus are divisible into two groups; those in which the outer margin of the fourth endopod is entire or is simply convex; and those in which the outer margin of the fourth endopod is broken by a swelling or indentation which may become a conspicuous knob or notch. P. spinifer, P. liber, P. assimilis and the present species fall under the first group. P. spinifer, however, is easily separated by the fact that the lateral margins of the genital segment of this species are produced into conspicuous expansions. The distinctions between \(P\). liber and \(P\). assimilis on the one hand and \(P\). agilis sp. nov. on the other are many, and the most important of them consists of: (a) the general shape of the body; (b) the nature of the fusion of the first and second prosomal segments; (c) the proportionate lengths of the segments of the antennule; (d) the proportionate lengths of the segments and the size of the terminal spines of the antenna; and (e) the number of setae borne on the inner margin of the third segment of the third leg. The differences between \(P\). liber and P. assimilis have already been pointed out by Nicholls and consists chiefly the length-width relationship of the caudal rami and in the general form of the body.

\section*{Genus Macrochiron brady}

Brady, 1872, p. 433.
Sars, 1913-18, p. 163.

\section*{Subgenus Macrochiron SEWELL}

Sewell, 1949, p. 99.
Macrochiron (Macrochiron) rigida sp. nov.
Material examined-Eight females and three males were obtained from the general weed and invertebrate washings mainly sponges from the Gulf of Mannar. The holotype, allotype and the paratypes are deposited in the Central Marine Fisheries Research Institute, Mandapam Camp and bear the registered numbers J. 616/10, J. 617/10 and J. 618/10 respectively.

\section*{Description : \\ A. Female}

The body (Fig. IX, 6) is moderately slender and cylindrical with the prosome not much dilated, being regularly oblong-oval in outline and rather strongly vaulted dorsally. The prosome is 4 -segmented and the urosome 5 -segmented. The first prosomal segment constitutes the major part of the body being only a little less than equal in length to the entire remainder of the body; it is also the widest of all segnents. Second, third and fourth segments diminish in width posteriorwards. Of hese, second is the longest and third the shortest. The first urosomal segment 3 moderately large and bears the fifth pair of legs. The genital segment is the argest urosomal segment, being distinctly wider and longer than the combined ength of the three abdominal segments. The caudal ramus is as long as the last bdominal segment and is slightly longer than broad. Each ramus bears six setae, wo of them being slender, looking more like spines.


Figure IX, 1-9. Lichomolgus holothuriae sp. nov.
1. Adult, female
2. \(\quad\) 3. \(\quad, \quad\)
antenna.
first swimming leg. second swimming leg.

Macrochiron (Macrochiron) rigida'sp. nov.
6. Adult female, dorsal view.
8. Adult, female, maxilliped.
7. ", antenna.
(Sixth and ninth diagrams drawn according to scale" and others according to scale II).

Antennule (Fig. X, 1) is 7 -segmented, and rather not very long. Second segment is the largest and last the shortest. All the segments are provided with a number of setae; first segment also carries a small finger-shaped structure on its anterior distal corner ; two fairly long aesthetasks are borne, one each by the fifth and seventh segments. The proportionate lengths of the antennular segments are given below:
\begin{tabular}{cccccccl}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
14.6 & 22.7 & 9.6 & 18.3 & 14.6 & 11.7 & \(8.5=100\)
\end{tabular}

Antenna (Fig. IX, 7) is comparatively short and consists, as usual, of four segments. Second segment is the largest and third the shortest while the first and the last are subequal in between these two extreme situations. Although the second segment of the antenna in this genus usually bears a spine, in the present case it is found to be a sensory filament rather than a spine. Other cephalosomal appendages are quite normal.

The four pairs of swimming legs ( \(\mathrm{X}, 3,4,5 \& 6\) ) are biramous, each ramus being 3 -segmented, except the fourth endopod which is 2 -segmented. First to third legs are more or less of equal size while the fourth is distinctly smaller; in the latter, although the endopod is only 2 -segmented, it is only a little less than the length of the exopod. The setal formula of the four pairs of the swimming legs are given below:


Fifth leg is cylindrical and fairly large, reaching more than half the lengths of the genital segment. The basal segment, as usual, is fused, with the first urosomal segment and each bears a solitary seta at its distal outer corner. The distal segment is slightly curved inwards and bears two terminal setae of unequal length. The size of the female is 1.25 mm .

\section*{B. Male}

The male (Fig. IX, 9) is much smaller than the female but retain the general form of the female. The prosome is greatly identical in both shape and proportionate lengths of different segments. The urosome is 6 -segmented, consisting of the fifth leg-bearing segment, the genital segment and four abdominal segments. Of these, the first segment is comparable to that of the female and bears the fifth legs which are much reduced in size. The genital segment is greatly enlarged both in length and width. It is almost equivalent to the combined length of the other


Figure X, 1-8. Macrochiron (Macrochiron) rigida sp. nov.

7. Adult, male, maxilliped.
urosomal segments ; at its posterior margin it bears, on either side, a pair of spines which are directed postero-laterally. The abdominal segments diminish both in length and width to the posterior side. The length of the male is 1.0 mm . The maxilliped is quite large, similar to that of the related species and exhibiting sexual dimorphism. The fifth legs are much smaller in size and are also slender although in essential features they are similar to those of the female. The two segments of the fifth leg bear the same number of setae as in the female.

Remarks: Sewell (loc. cit.) has split the genus Macrochiron Brady into two subgenera, Macrochiron (Macrochiron) to receive all those species in which the endopod of the fourth leg is composed of two segments, as in the case of the type - species, M. fucicolum Brady and Macrochiron (Paramacrochiron) to include those species in which the fourth endopod is only 1 -segmented. He attributed the following species to the subgenus Macrochiron (Macrochiron) Sewell.
1. M. (Macrochiron) fucicolum Brady.
2. \(M\). , hirsutipes (T. Scott).
3. M. ," alabatensis (Kossman) ( \(=\) Lichomolgus alabatensis)
4. M. ", simplex (Thom. \& Scott) \((=\) L. simplex)
5. M. , buddhensis (Thom. \& Scott) (=Lichomolgus buddhensis)
6. M. ", robustus ( \(\quad\). \((=\) L. robustus \()\)
7. M. , gracilipes (A. Scott) (=L. gracilipes)
8. M. , , congoensis (T. Scott) (=L. congoensis)
9. M. , longipes Sewell
10. M. ,, spinipes Sewell

The present species does not correspond to any of the known forms and therefore is treated here as a new species. M. (Macrochiron) rigida may be defined as follows : (1) Length of the female 1.25 mm . ; length of the male 1.0 mm . (2) the cephalosome and first pedigerous segment are fused and the combined cephalothorax is only a little less long than the entire rest of the body. (3) The posterior half of the cephalothorax is the widest part of the body. (4) The genital segment in the female is vase-like, the proximal wider part gradually but slightly diminishing in width to the posterior side ; it is distinctly longer and wider than the three abdominal segments together. In the male the genital segment is rather rectangular with parallel sides ; it is almost as long as the entire remainder of the urosome ; there is a pair of pos-tero-laterally directed spines on either of its posterior margins. (5) Caudal ramus as long as the last abdominal segment and is longer than wide. (6) The proportionate lengths of the antennular segments and the setal formula of the swimming legs are as given in the text. (7) The fifth pair of legs stout, incurved, rather cylindrical and wider in the proximal half ; the male fifth legs are highly reduced.

Recently Stock (1957) expressed the opinion that the name Macrochiron should be used at generic level for the conception of a limited number of species all agreeing in the possession of a complexly built 3 -segmented posterior antenna. According to him, all other species that have been referred to this genus but in which there is a normally built 4 -segmented posterior antenna should be removed to the genus Lichomolgus or other related genera. Those transferred to Lichomolgus differ, however, from the typical members of the genus in a number of characters: (1) The mandibles have the lappet conspicuously dilated at the base. Its armature consists not only of spinules lining the margin but also of crest-like ridges, denticulations, etc.
(2) The maxillipeds of the female are well-developed, three-segmented, with at least two setae on the second segment and a cheliform structure on the third segment. (3) The third exopod segment of the fourth leg has usually three outer spines, though some species have two outer spines.

To accommodate this rather natural group of uncertain systematic status within the genus Lichomolgus, Stock (1959) proposed to erect a new subgenus, but left it unnamed, 'since no name is available at the moment for the subgenus and since some species tend to be intermediate. . \(\therefore\).

If Stock's suggestions are accepted and Macrochiron is redefined as proposed by him, then the present species should be transferred to Lichomolgus and placed under the subgenus proposed by him.

\section*{Genus Lichomolgus Thorell}

Canu, 1892, p. 227
Sars, 1918, p. 150
Sewell, 1949, p. 96

\section*{Lichomolgus holothuriae sp. nov.}

Material examined-Numerous females and a few males were obtained from the holothurian washings of the Gulf of Mannar. They live inside the body cavity of the holothurians and are obtained by keeping the host in seawater to which menthol is added. The copepods are brought out by vigorously shaking the host after the interval of an hour or so. In colour they are dull whitish approaching to a pale yellow. The holotype, the allotype and the paratypes are deposited in the Central Marine Fisheries Research Institute and have the registered numbers J. 628/11, J. 629/11 and J. 630/11 respectively.

\section*{Description :}

\section*{A. Female}

The body (Fig. VIII, 4) is highly depressed, flattened and more or less oval in outline: The prosome consists of four segments. The first prosomal segment is eminently large, only a little less than the combined length of the rest of the body. Its posterior corners end in angular edges. There is no trace of division between cephalosome and first leg-bearing segment. Second and third segments are moderately large but much smaller than the first prosomal segment. They are provided with epimeral plates and have angular posterior edges. The last prosomal segment is quite small, less than one-third of the width of the prosomal segment and about one-ninth of the latter's length. It is partly hidden by the preceding segment. The four prosomal segments bear the four pairs of swimming legs. The urosome is 5 -segmented, consisting of the fifth leg-bearing segment, the genital segment and three abdominal segments. The first two segments are very large, subequal each distinctly. longer than the combined lengths of the three abdominal segments. In width the genital segment exceeds all other segments of the urosome. It bears a pair of spines on either of its postero-lateral margins; one of the spines is much larger than the other and is borne on a protrusion. The caudal rami are very short,


Figure VIII, 1-12. Pseudoanthessius agilis sp. nov.
1. Adult, female, second swimming leg. 3. Adult, female, fourth swimming leg 2. ," ," endopod of third swimming leg. Lichomolgus holothuriae sp. nov.
4. Adult, female, dorsal view.
\(\begin{array}{lll}\text { 5. } & \text { ", } & \text { antennule. } \\ \text { 6. } \\ \text { 8. } & ", & \text { mandible and maxillule. } \\ \text { maxilla. }\end{array}\)
9. Adult, male, maxilliped.
10. ", female, fifth leg with parts of urosome
11. ", male, dorsal view.
12. ", ", fifth leg with parts of urosome.
(Fourth and eleventh diagrams are drawn according to scale I and others according to scale II

\section*{A. N. P. UMMERKUTTY}
stumpy, much wider than long, the length-width ratio being \(5: 3\). Each of the rami bears five setae, one of which is clearly long, almost equivalent to the urosome.

Antennule (Fig. VIII, 5) is 8 -segmented, typically of the lichomolgid type with the second segment being the largest and third the shortest. First and fifth segments are fairly large but each of them is less than half the length of the second segment. While the fourth and fifth segments are longer than wide, the reverse is true of the last two segments. All the segments are provided with a number of setae, some of them appearing more like spines. The antennule does not bear any aesthetask. The relative lengths of the various segments are as follows:
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
13.0 & 40.2 & 2.6 & 7.4 & 17.0 & 8.9 & 5.3 & 5.6
\end{tabular}\(=100\).

Antenna (Fig. IX, 1) is very large in size compared to the antennule. While the latter hardly reaches the middle of the first prosomal segment and is fragile, the antenna is stoutly built and extends to more than three-fourth the length of that segment. However, it is only three-segmented. The first two segments are subequal, while the third is quite large and almost as large as the former two combined. The two segments bear a seta each. The third segment bears three setae and a stout terminal spine which is half the length of the segment itself. The spine is incurved like a beak. The mandible (Fig. VIII, 6) is distinct from the maxillule and juxtaposed to it. It consists of a blade with its anterior (outer) margin lined by fine long spinules which decrease in length distalwards. At the base of the posterior (inner) margin of this blade, there is an oblique ridge with fine cilia on one of its margins. The blade is produced into a flagellum. The maxillule (Fig. VIII, 6) is rather small, elongated and bearing terminally three spines. The maxilla (Fig. VIII, 7) is rigid. It has two separate spines besides the terminal lash which is denticulated; while the proximal spine is simple, the distal one is stout and has its tip provided with small denticles; the distal part of the apical lash is much slender than in all other known species and is rather straight, being ciliated on the inner margin. The basal part of the lash is distinct and is provided with stout but small spinules instead of the usual setae. Maxilliped (Fig. VIII, 8) is simple and small. It consists of two segments of approximately equal length and width. The distal segment bears a seta and a terminal claw which is conical and rather small.

The first three pairs of swimming legs (Fig. IX, 2, 3, 4 \& 5) are biramous, each ramus being trimerous. The legs are approximately of equal size but differs in setation. In all the legs, while the exopod is orientated in the same axis as the protopod, the endopod is borne at an angle ; in the case of third legs exactly at right angles to the protopod. The fourth leg is biramous. The exopod is 3-segmented; the endopod is only 2 -segmented. The fourth leg is much smaller than the other legs. The setal formula of the swimming legs are as follows:


Fifth leg (Fig. VIII, 10) is 2-segmented, the basal segment being fused with the first urosomal segment and bearing a single seta; the second segment is well defined and fairly large; it bears two terminal setae of unequal size. The size of the female is 1.2 mm .

\section*{B. Male}

The male (Fig. VIII, 11) is much smaller than the female measuring only 0.75 mm . The prosome is very similar to that of female except in size. The urosome is composed of six segments. The first two segments are subequal in length and width. The second segment bears on each of its postero-lateral corners a fairly long spine which is said to be the remains of the sixth pair of legs. The four abdominal segments are much narrower and form a cylinder ; of these, the third to fifth segments are more or less of equal dimensions while the second abdominal segment is distinctly longer and wider. All the appendages are similar to those of the female except the maxilliped (Fig. VIII, 9) which is very peculiar. In the males of the lichomolgids the maxilliped is generally well developed being many times larger than that of the female. It is supposed to have a geniculate function. In the present species the male maxilliped exhibits some differences in the structure from that of the female but is hardly larger. In both cases it is 2 -segmented. In the female the two segments are sub-equal and the terminal spine of the second segment is very small. In the male, however, the second segment is larger and the terminal spine of that segment is quite large. Further the outer margin of the spine is partly serrated.

\section*{Lichomolgus serratipes sp. nov.}

Material examined. Eighteen female specimens were obtained from washings of the seapen Pteroides esperi Herklots; the specimens were given to me by Dr. S. Jones. Some of these were carrying egg-sacs which were asymmetrical and which appeared to have started hatching. The left egg sac is always longer and contains a larger number of eggs than the right one. The holotype and the paratypes are deposited in the Central Marine Fisheries Research Institute and bear the registered numbers J. 658/12 and J. 659/12 respectively.

\section*{Description:}

\section*{A. Female}

The animal (Fig. XIII, 5) is very robust and rather elongate-oval. The prosome is very conspicuous, constituting as it does, more than four-fifth of the length of the body. It consists of four segments : The first segment is quite large, equal in length to the entire remainder of the body. This segment is considerably expanded and much broader than the succeeding ones; its posterior margin is concave so that the postero-lateral corners constitute acute angles. The second segment is distinctly less wide that the first one and is crescent-like with arms directed backwards. The third segment is less broad than the preceding one but exceeds the latter in length, the medial line being the longest part. The postero-Tateral margins of this segment are finely serrated. The fourth segment is very small, a little wider than the genital segment and completely hidden by the preceding segment in formalin preserved specimens. The postero-lateral margin of this segment also is finely serrated and the specific name of the species has reference to this character. The urosome is 5 -segmented (Fig. XIV, 4) but is very small compared to the size of the prosome. The pre-genital segment is rather small and bears the fifth pair of legs. In length it is only one-third of the genital segment, but it exceeds the latter in breadth. The genital segment is stumpy, much broader than long and without


Figure XIII, 1-10. Lichomolgus indicus sp. nov.

any accessory spine or seta. The three abdominal segments are very inconspicuous and crowded together behind the genital segment. They are subequal in length but decrease gradually in breadth to the posterior side. The last segment bears the caudal rami which are distinctly wider than long. Each of the rami bears five setae, the second one from the inner side being the longest.

The antennule (Fig. XIV, 3) consists of eight segments which bear the following proportionate lengths:
\begin{tabular}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
13.2 & 30.0 & 5.0 & 10.5 & 14.0 & 10.0 & 7.0 & 10.3 & \(=100\)
\end{tabular}

The first segment is rather short, bearing three stout setae. The second segment is very large, equivalent in length to that of all other segments combined. This segment bears a number of setae spread all along its length. Third segment is the shortest and characteristically wider in its anterior half. The fourth segment is longer than the third. Both these segments bear three setae each. The next four segments diminish both in length and width to the apex, quite a number of setae being borne on these segments. Antenna (Fig. XIII. 6) is very stoutly built and is equivalent in length to the antennnule in the natural position. They are held at right angles to the main axis of the body. Each antenna consists of four segments. First segment has a deep curve in its distal posterior margin and bears a solitary seta on the opposite margin. The second is the largest segment of the antenna and is barrel like, bearing one seta on its anterior margin at its mid-length. The third segment is the shortest of all and has three setae on its antero-lateral corner. The distal segment bears two claws and four setae ; three of the setae are apical and of unequal length, the fourth one is rather small and subapical on the posterior margin. Mandible (Fig. XIII, 7) consists of basal broader blade and a distal tapering lappet. The latter is lined on its both margins with fine spinules. The basal broader part carries a ridge with fine spinules on it on the postero-distal margin. The anterodistal margin bears a similar row of spinules. Maxillule (Fig. XIII, 7) is similar to that of the preceding species. Maxilla (Fig. XIII, 8) is rather simple. It is a rectangular appendage with an apical lash which, compared to that of the known species of the genus, is quite short ; the lash is provided with stiff hairs on one margin. Maxilliped (Fig. XIII, 9) is very small and consists of two segments. The first segment is larger than the second and has its proximal part expanded inwards. The second segment bears a small spine and two setae both of which are borne at some distance from the apex.

The four pairs of swimming legs (Fig. XIII, \(10 \&\) Fig. XIV, 1, \(2 \& 5\) ) are borne by the four prosomal segments. The first three pairs are biramous, the ramus consisting of three segments. The last pair of legs are biramous, too, but the inner ramus consists only of two segments. The first pair of legs are slightly smaller than the following legs. The ornamentation of the swimming legs are as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{Protopod} & \multicolumn{7}{|c|}{Endopod} & \multicolumn{7}{|c|}{Exopod} \\
\hline & & & & & & & 2 & & & 3 & & & & & 2 & & 3 & \\
\hline & & Se & Si & & & Se & Si & Se & Si & St & Se & & S & Si & S & Si & St & Se \\
\hline \(\mathrm{P}_{1}\) & 0 & 0 & 0 & 1 & & 0 & 1 & 0 & 4 & 1 & 1 & 0 & I & 1 & I & 4 & 1 & III \\
\hline \(\mathrm{p}_{2}\) & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 3 & 1 & II & 0 & I & 1 & I & 5 & I & III \\
\hline \(\mathrm{P}_{3}\) & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & II & I & 0 & I & 1 & I & 5 & 1 & \\
\hline \(\mathrm{P}_{*}\) & & 0 & 0 & 1 & 1 & & & & II & & & 0 & I & 1 & I & 4 & I & III \\
\hline
\end{tabular}


Figure XIV, 1-6. Lichomolgus serratipes ps. nov.
1. Adult, female, first swimming leg.
2. ", \(\quad\) second swimming leg.
3. ",
Lichomolgus indicus sp. nov.
6. Adult, female, fifth leg with parts of urosome.

The fifth leg (Fig. XIV, 4) is 2 -segmented, but the basal segment is completely confluent with the first urosomal segment. It bears a solitary seta on the distal outer angle. The distal segment is rather rectangular having two setae of unequal length on the terminal margin ; the inner margin of the distal segment is broken at about the midlength by an indentation which projects prominently towards the posterior side. The fifth legs, in their natural position, just reach the posterior margin of the genital segment. The fermale is 1.5 mm . long.

\section*{B. Male}

See Addendum.

\section*{Lichomolgus brevifurcatus sp. nov.}

Material examined: Two female and several male specimens of this species were obtained in the Gulf of Mannar from the starfish washings. The specimens were all in good condition and were pale yellow in colour. The holotype, the allotype and the paratypes are deposited in the Central Marine Fisheries Research Institute and have the registered numbers J. 662/13, J. 663/13 and J. 664/13 respectively.

\section*{A. Female}

\section*{Description :}

The Body: (Fig. XI, 11) is graceful, rather elongate, with the prosome and urosome merging into each other. The prosome is composed of only four segments, the cephalosome and the first metasomal segments having been fused completely to form a cephalothorax. The latter is the largest of the body segments and constitutes two-fifth of the whole body; it is also quite wide, more than twice as wide as the last prosomal segment. A semi-spherical rostral prominence is present on the anterior margin. The posterior corners of this segment is smoothly curved. Of the remaining three segments the second is the longest and the third the shortest. These segments diminish in width gradually to the posterior side. All segments are provided with lateral expansions. The urosome consists of five segments, the fifth leg-bearing segment, the genital segment and three abdominal segments. The first two are of equal width while the last three decrease in breadth posteriorwards ; in length, however, the three abdominal segments show the reverse situation, namely, the last segment is the longest and the first the shortest. The genital segment is barrel-like and does not become narrowed in the posterior half. The caudal ramus is very short, distinctly wider than long. It is only half as long as the last abdominal segment. Each furca bears six setae, four of them much smaller than the other two.

The antennule (Fig. XI, 2) is 7 -segmented, segments bearing the following proportionate lengths:-
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
15.4 & 33.1 & 8.1 & 18.2 & 10.3 & 7.2 & 7.7 & \(=100\)
\end{tabular}

The second segment is the longest and is half as long as the length of all other segments combined ; the last segment is the shortest and bears a single aesthetask on its apex. All the segments are provided with a number of setae. The antenna


Figure XI, 1-7. Lichomolgus brevifurcatus sp. nov.
1. Adult, female, dorsal view.
2. ", " \(\begin{gathered}\text { antennule. } \\ \text { 3. }\end{gathered}\)
4. ", " mandible and maxillule.
5. ", ", fraxilla.
7. ", ", dorsal view.
(Diagrams I and 7 drawn according to scale I and 2-6 to scale II).

XI, 3) is stoutly built, only a little smaller than the antennule and 4 -segmented. first segment bears a solitary seta at its antero-distal corner. The second lent bears a seta on its anterior margin at about two-third the length. The third ment is provided with three setae of unequal length all on the distal antior margin. There are two short spines and three setae on the last segment, besides a few hairs. Two of the setae are apical and one subapical. The mandible (Fig. XI, 4) is moderately developed with broader basal and narrower distal parts. The former carries a ridge at its distal outer margin and a number of large spinules on its distal inner margin. The apical lash is long and carries spines on the margins. The maxillule (Fig. XI, 4) is normal similar to those described for earlier species The maxilla (Fig. XI, 5) with none of the spinules of the apical lash particularly strong; the body proper narrower towards the distal part. Maxilliped is quite normal, short and stout, two-articulate, the last segment bearing a spine which is broad at the base.

There are four pairs of swimming legs (Fig. XI, 6 \& Fig. XII, 1, 2 \& 3) ; all are biramous; the rami of the first three pairs of legs as well as the exopod of the fourth leg are 3 -segmented, while the endopod of the fourth leg is only 2 -segmented. The ornamentation of the swimming legs is as follows :-


All the legs are more or less of equal length. In the first three pairs of legs the endopods are distinctly longer than the exopods while in the fourth leg the situation is reverse. The protopod in all cases is very much stumpy and large. Fifth leg consists of two segments. The basal segment, however, merges with the first urosomal segment, and bears a solitary seta at its outer upper angle. The distal segment is rather rectangular with the long axis more than twice as long as its short axis; it bears two setae terminally and they are of unequal length. The length of the female is 1.6 mm .

\section*{B. Male}

The male (Fig. XI, 7) is much smaller than the female but is more robust in appearance. In the prosome the reduction in breadth from the first to the second segment is gradual while it is rather abrupt in the female. This is because of a proportionate increase in the width of second and third prosomal segments. The urosome is composed of six segments, the fifth leg-bearing segment, the genital segment and four abdominal segments. The first segment is the shortest ; in breadth it is only half as wide as the last prosomal segment. The genital segment is quite large and is equivalent in length to that of all other urosomal segments combined ; it is

\section*{A. N P. UMMERKUTTY}
very much expanded laterally and bears two spines of unequal length on its pc . lateral corners. The abdominal segments are more or less of equal dime and form a column. The furcal rami are similar to those of the female. The a measures 1.5 mm .

All the appendages are identical with those of the female except th maxilliped which is well developed, subcheliform with a long curved hook; it probably has a-geniculate function. The second segment bears a seta on its inner margin at about its mid-length, and the third segment bears a single seta on its apical margin ; a number of stiff hairs, linearly arranged on its long axis, are present on the second segment.

\section*{Lichomolgus indicus sp. nov.}

Material examined.--Four female and two male specimens were obtained along with the preceding species from the Gulf of Mannar in July 1960. A single female specimen was later obtained from the sponge washings of the same area. The type specimens, the holotype, allotype and paratypes are deposited in the Central Marine Fisheries Research Institute, Mandapam Camp and have the registered numbers J. 667/14, J. 668//14 and J. 669/14 respectively.

\section*{A. Female}

\section*{Description :}

This (Fig. XII, 4) is much smaller species than the preceding one. In the prosome, the cephalosome is separate from the first metasomal segment but the line of demarcation is rather faint. The cephalosome bears a distinct rostral prominence. Both these segments are more or less of equal breadth. The following three prosomal segments diminish in width posteriorwards. In length they are subequal. The urosome consists only of four segments, the pregenital, the genital and two abdominal segments. The first segment is quite normal and bears the fifth pair of legs. The genital segment is partly divided at about its three-fourth length and the portion posterior to the line of division is narrower than that before it. Two spines of unequal length are present at the postero-lateral corners of the proximal division. Of the abdominal segments, the second is larger than the first, but they are both of equal width. Caudal ramus is very short, less than half the length of the last abdominal segment ; it is distinctly broader than long; each ramus bears five setae, two of which are fairly long while other three are very small.

Antennule (Fig. XII, 5) is 7 -segmented, the relative lengths of the different segments being as follows :
\begin{tabular}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
14.2 & 32.5 & 6.1 & 15.0 & 13.4 & 9.4 & 9.4
\end{tabular}

While in the preceding species the terminal segment is the shortest antennular segment, in the present case it is third segment which is the shortest. The relative length of the second segment is similar in both cases. The setation of the different segments also bears certain kinship, especially in the presence of two very long setae on the distal margin of the fourth segment. However, no aesthetask is present on the terminal antennular segment. Antenna (Fig. XIII, 1) is quite normal, 4segmented and having great resemblance to that of the preceding species. Mandible
and maxillule (Fig. XIII, 6) are normally built and are as shown in the figure. Maxilla (Fig. XII, 7) is stouter than that of the earlier species, apical lash with spinules of uniform size; the spine at the base strongly built. Maxilliped (Fig. XII, 8) is very small and 2 -segmented; the first segment bears a few spinules on its midinner margin ; the second segment bears a solitary seta at about its mid-length and a conical, broad-based spine at the apex.

The four pairs of swimming legs (Fig. XII, 9 and XIII, 2, 3 \& 4) are borne by the last four prosomal segments respectively. Both rami are of about equal length in all legs except the fourth where the endopod is shorter because of its two segmented nature. The ornamentation of the swimming legs is as follows:


A number of differences can be noticed in the setal arrangement of the swimming legs of this species and this difference extends to the terminal endopod segments of all the four pairs of legs and in the terminal exopod segment of the fourth leg. In general the tendency in the present species is to a reduction in the number of spines. The fifth legs (Fig. XIV, 6) are 2-segmented, but, here again, the basal segment merges into the leg-bearing segment ; the terminal segment is a little more than twice as long as broad and bears two terminal setae, directed posterolaterally. The size of the female is 1.05 mm .

\section*{B. Male}

The male (Fig. XII, 10) exhibits the sexual dimorphism and is smaller than the female. The prosome is very similar in both cases. The urosome in male comprises five segments, the fifth leg-bearing segment, the genital and three abdominal segments. The first segment and the abdominal segments are very much identical with those of the female. The genital segment, however, is quite developed, has no trace of any sub-division and is more or less of uniform breadth throughout. Each postero-lateral corners of this segment bears a pair of spines. Caudal ramus is identical to that of the female. The male measures 1.00 mm .

Among the appendages only the maxilliped shows structural modifications from that of the female. While in the latter it is very dwarf and 2 -segmented, here it is fairly large and with a long apical hook. The appendage bears great resemblance to that of the preceding species.

Remarks.-The genus Lichomolgus is an extremely vast group of animals, 'a lumber-room for those species that do not belong to any of the other genera' of the


Figure XII, 1-10. Lichomolgus brevifurcata sp. nov
1. Adult, male, second swimming leg.
2. ", ", endopod of third swimming leg.
" fourth swimming leg
4. Adult, female, dorsal view.
5. Adult, female, dorsal view.
\(\begin{array}{lll}\text { 6. } & ", & \text { m } \\ 7 . & \text { mandible and maxillule. }\end{array}\)
(Diagrams 4 and 10 are drawn to scale \(I\) and others according scale II).
subfamily Lichomolginae. The difficulty of obtaining large number of representatives, the meagreness of the descriptions of the several species and the innumerable number of species that have been assigned to this genus from various parts of the world at different times make a comparative study of the known species of this genus extremely delicate. To this must be added the fact that several species have been transferred and retransferred from genus to genus because of the disagreement that exists among the scientists as to the validity or otherwise of some of the genera of the subfamily Lichomolginae. No attempt is, therefore, made here, to determine the validity or synonymy of any of the species. The four species described in this paper do not correspond exactly to any of the known forms and, therefore, are treated as new.

Lichoomolgus serratipes is very near to L. pteroidis Della Valle but differs from it in several details :

\section*{L. pteroidis}
1. Size-not given. (ch. Stock, 1959)
2. The length-width ratio of the first prosomal segment is \(40: 60\).
3. The marginal serration of the second prosomal segment is visible from the dorsal side.
4. Antennule 7-Segmented.
5. The terminal segment of the first endopod of male carries a large spinular growth which is half the length of the segment itself.
6. The post-genital segments of urosome are clearly visible from the dorsal side. The middle region of the lateral margins of the male genital segment is smooth.
7. In the female the spiniform projection and the lateral expansion of the fifth leg well beyond the \(\frac{3}{4}\) length.

\section*{L. serratipes}

Size 1.5 mm ., female .76 mm . male.

Length-width ratio of the first prosomal segment is \(45: 55\).

The marginal serration of the second prosomal segment not visible from the dorsal side.

Antennule 8-Segmented.
The spinular growth on the terminal segment of the first endopod is hardly one-fourth of the segment.
The post-genital segments of the urosome in male are completely covered by the large posterior flap of the genital segment. The middle region of the lateral margins of the genital segment of the male is toothed.

The spiniform projection and the lateral expansion of the fifth leg in front of half the length.

Recently, Stock has described another species, P. pterophilus from the Indonesian waters. Unfortunately I have not seen the description of the species.

Both L. pteroidis and L. serratipes (and probably L. pterophilus) are closely allied to the four species of lichomolgids, L. venustus, L. patulus, L. audens and L. asaphidis. Humes that have recently been added from Madagascar (Humes, 1958). In all these forms the antennule is 8 -segmented, the body, particularly the first prosomal segment, is very much broadened (except in asaphidis), the genital segment in both sexes is very large and there is complete fusion between the cephalosome and the first pedigerous segment. There is great similarity also in the oral appendages and the swimming legs.
L. holothuriae appears to be a true representative of the subgenus Stellicola. This species, together with L. curticaudata (Thompson \& Scott) L. asterinae Bocquet L. frequences, L. astropectinis, L. luidiae and L. lautus Humes \& Cressey constitute a closely related group of species. All are characterised by (a) an 8 -segmented antennule; (b) a 3 -segmented antenna and (c) the setal formula for the fourth endopod of OI, II 1 .
L. holothuriae is quite close to \(L\). curticaudatus and may even be conspecific with it. However, it is treated as a separate species because of the following reasons : (1) There is complete fusion of the cephalosomal segment and the first pedigerous segment in L. holothuriae while they are distinctly separate in L. curticaudatus. (2) The urosome is less than one-third the length of the prosome in L. curticaudatus; in the present species it is clearly more than one-third the length of the proscme. (3) In holothuriae the genital segment is longer than the next three segments joined together ; in curticaudatus it is distinctly shorter. (4) The maxilla is different in the two species.

The nearest relative of \(L\). brevifurcatus is perhaps \(L\). robustus Thomp. \& Scott, but the differences between the two forms are many and are noted below: (1) in \(L\). robustus the cepholosome and the first metasomal segment are separate while in \(L\). brevifurcatus they are completely fused. (2) In \(L\). robustus the genital segment is \(1 \frac{1}{2}\) times wider than long; in L. brevifurcatus the breadth and length of the genital segment are the same. (3) A distinct rostral prominence is visible from the dorsal side in the present species, whereas it is not visible in L. robustus. (4) Caudal ramus in \(L\). robustus is only a little shorter than the last abdominal segment; it is only less than half the length of the last abdominal segment in \(L\). brevifurcatus. (5) The longest furcal seta in the present form is longer than the urosome while it is less than half the length of the urosome in L. robustus. (6) The last exopod segment of the fourth leg in L. robustus bears three spines on the outer margin and one spine terminally while in the present case there are only two spines on the outer margin besides the apical spine.
L. indicus is quite distinct enough from all other species in the very general appearance and comparatively smaller size. The two-segmented nature of the abdomen brings down its immediate probable relatives to quite a few. The species is easily identified by the combination of the following characters. (1) Cephalosome and the first metasomal segment separate. (2) The fifth leg-bearing segment is very short, being the shortest of the urosomal segment. (3) The genital segment exhibits a partial division at about three-fourth the length in its distal part; the posterior division is narrower; at the posterolateral corner of the latter there is a pair of spines. (4) The genital segment is equivalent in length to that of the two abdominal segments joined together. (6) In the antennule the second segment is the longest and the third the shortest. (7) The setal formula of the swimming legs is peculiar and is given above in the text.

\section*{Summary}

Eleven new species of cyclopoid copepods, four belonging to the section Siphonostoma and the rest to the section Poecilostoma are described in detail. Six of the species are represented by both the female and the male sexes while others are known only from the females. The material of the present investigations was collected both from the Gulf of Mannar and the Palk Bay off Mandapam on the southeast coast of India during the months of May, June, July and August, 1960. The collections were made in the inshore waters and the methods of collection are discussed.

The composition of the cephalosomal appendages of the siphonostomatous cyclopoids is briefly considered. The present study shows that there are four pairs of oral appendages, the mandible, the maxillule, the maxilla and the maxilliped besides the preoral antennule and antenna on the cephalosome.

The following genera are represented in the present collection :
1. Asteropontius Thompson \& Scott.
2. Cryptopontius Giesbrecht.
3. Hemicyclops Boeck.
4. Pseudoanthessius Canu.
5. Macrochiron (Macrochiron) Brady, Sewell.
6. Lichomolgus Thorell.

A key to the identification of the various known species is provided for the genus, Asteropontius. In other cases the species described in this paper are diagnosed and a comparison between the forms treated here and the previously known forms is rendered.

\section*{Acknowledgements}

My grateful thanks are due to Dr. S. Jones, Chief Research Officer for his constant encouragement and guidance during the period of this investigation. I am also thankful to him for supplying me specimens of Lichomolgus serratipes sp. nov. I am much indebted to Dr. S. Krishnasamy of the Madras University who helped in the identification of the various species treated in this paper and who very generously placed at my disposal many relevant literature. My sincere thanks are due to Dr. S. Z. Qasim of the Aligarh University for his continued interest in this work and for the many valuable suggestions he kindly gave for the improvements of this paper.

\section*{References}

Brady, G. S.* 1872. A list of Non-parasitic Copepoda of the North-East Coast of England. Trans. Nat. Hist. Soc. Northumberland, Durham and Newcastle, IV.

Bocquet, C. 1952. Copepodes semi-parasites des Echinodermes de la region de Roscoff. Description de Lichomolgus asterinae n. sp. Bull. Soc. Zool. Fr., 77: 495-504.

Canu, E.* 1888. Les Copepodes marins du Boulonnais; III. Les Hersiliidae, Famille nouvelle du Copepodes commensaux. Bull. Soc. France et Belge, XIX.
——.* 1892. Les Copepodes du Boulonnais. Trạvaux du Lab. de Zool. Marit. de WimereuxAmbleteuse, VI.

Embleton, Alice L. 1901. Goidelia japonica-a New Entozoic Copepod from Japan, associated with an Infusiorian (Trichodinal). J. Linn. Soc. London, Zool. XXVII.

Gooding, R. U. 1957. On some Copepoda from Plymouth, mainly associated with invertebrates, including three new species. J. Mar. biol. Ass. U.K., 36, 195-221.
—_ 1960. North and South American Copepods of the genus Hemicyclops (Cyclopoida : Clausidiidae) Proc. U.N. nat. Mus., 112, No. 3434: 159-195.
Gurney, R. 1927. Cambridge Expedition to the Suez Canal, 1924 : Report on the Crustacea Copepoda (Littoral and Semi-parasitic) Trans. Zool. Soc. London, XXII, Pt. 4.

Humes, A. G. 1958. Copepodes parasites de mollusques a Madagascar. Memo. de L'Inst. Sci. de Madagascar. Ser. F. Tome II. 285-342.
-_, and R. F. Cressey. 1958. Copepod parasites of Mollusks in West Africa. Bull. de l'I.F.A.N. T.XX, ser A, no. 3; 921-942. pl. 1-18.

7

Humes, A. G., and R. F. Cressey. 1958. Four new species of lichomolgid copepods parasitic is on West African starfishes. Ibid, no. 2; 330-341, pl. 1-10.

Humes A. G., R. S. Cressey and R. U. Gooding. 1958. A new cyclopoid copepod, Hemicyclops visendus, associated with Upogebia in Madagascar. J. Washington Acad. Sci., 48, (12) : 398-405.

Krishnaswamy, S. 1954. Three semiparasitic copepods from the Madras coast. Rec. Indian Mus., 54, (1 \& 2) : 23-27.

Light, S. F. and O. Hartman. 1937. A review of the genera Clausidium Kossmann and Hemicyclops Boeck (Copepoda, Cyclopoida), with description of the new species from the NorthEast Pacific. Univ. Calif. Pub. Zool., XLI, 1:173-184.

Monod, Th.* 1928. Sur quelques Copepodes parasites de Nudibranches. Bull. Inst. Oceanogr. Monaco, No. 509.

Monod, Th. and R. Dollfus. 1932. Les Copepodes parasites de Mollusques. Ann. de Parasitol., X(2) : 129-204.

Nrcholls, A. G. 1944. Littoral copepoda from S. Australia; (II) Calanoida, Cyclopoida; Notodelphyoida, Monstrilloida and Caligoida. Rec. S. Australian Mus., VII, 1: 1-62.

Sars, G. O. 1913-1918. Copepoda Cyclopoida. Crustacea of Norway. VI.
Scott, A. 1902. On some Red Sea and Indian Ocean Copepoda. Trans. Liverpool Biol. Soc., XVI.
1909. The Copepoda of the Siboga Expedition, Pt. I. Free-swimming, Littoral and Semi-parasitic Copepoda, Siboga-Expeditie, XXIX.
*SERbaN, M. 1956. Pontocyclops bacescui n.g., n.sp., (Crustacea Copepoda), ein neuer Cyclopide vom schwarzen Meere. Izdanija (In Russian) 1:169-184.

Sewell, R. B. S. 1949. The Littoral and Semi-parasitic Cyclopoida, the Monstrilloida and Notodelphyoida. Sci. Rep. John Murray Exped. Vol. IX, \(2: 1-199\).
*Shen, C. J. and S. O. BaI. 1956. The marine Copepoda from the spawning ground of Pneumatophorus japonicus (Houttuyn) off Chefoo, China. Aeta Zool. Sinica \(8: 177-234\).
Stock, J. H. 1957. Some notes on the genus Macrochiron Brady, 1872. Ann. Mag. Nat. Mist., 12, 10 : 378.
1959. Copepoda associated with Neapolitan Invertebrates. Pubbl. Staz. Zool. Napoli, 31(1) : 59-75.

Thompson, I. C. and A. Scott. 1903. Report on the Copepoda. Rep. on the Pearl Oyster Fisheries of the Gulf of Mannar. Supp. Rep. VIII, The Roy. Soc. London.

Ummerkutty, A. N. P. 1960. Studies on Indian Copepods 1.: Paralepeopsyllus mannarensis a new genus and species of Cyclopoid Copepod from the Gulf of Mannar J. Mar. biol. Assn India, 2(1): 105-114.

1960a. Studies on Indian Copepods 2 : An account of the morphology and life-history of a harpacticoid copepod Tisbintra jonesi sp. nov. from the Gulf of Mannar. Ibid. 2(2).
_1960b. Studies on Indian Copepods 3: Nearchinotodelphys indicus, a new genus and species of archinotodelphyid Copepod from Indian Seas. Ibid., 2(2).

Wilson, C. B. 1932. The Copepoda of the Woods Hole Region, Massachusetts. Smithsonian Inst. U.S. Nat. Mus, Bull. 158 : 1-635.

\footnotetext{
*Not personally consulted.
}

\section*{ADDENDUM}

\section*{Lichomolgus serratipes sp. nov.}

Male
Size- 0.76 mm . The male (Fig. 1, b) is only a little more than half the length of the female. The general body shape corresponds to that of the female. The sexual dimorphism is expressed in the structure of the maxilliped and the urosome,

The maxilliped (Fig. 1, d) is very large, the terminal segment carrying an incurved claw which is equivalent to the two segments combined. The second segment carries also two setae, one at about the mid-length and the other near the base of the claw. There is a row of spinules along two-third the length of this segment. An elevated ridge is present on the distal area, in continuation with this row of spinules.


Lichomolgus serratipes, sp. nov.
Fig. 1, a- Adult female, dorsal view
\begin{tabular}{llll} 
" & b- & ", male, dorsal view. \\
" & c- & ", female, urosome, ventral view. \\
", & e- & ", & ", maxilliped. \\
" & first endopod.
\end{tabular}

The urosome is 6 -segmented, consisting of the fifth-leg bearing segment, the genital segment and four abdominal segments. All segments are very short and crowded together except the genital segment which is exceedingly large and grows both posteriorwards and sidewards, covering most of the abdominal seg. ments. The caudal rami are, however, visible from the dorsal side.

The fifth leg is rectangular, without any lateral expansion or spinular growth. The basal segment, as in the female, is confluent with the first urosomal segment and carries one seta. The distal segment carries two apical setae. All other structures, including the terminal segment of the first endopod (Fig. 1, e) are similar to those of the female.```


[^0]:    Diotribation - Widely recorded from Atlantic, Indian and Pacific oceans.

