TR85-13

Thesis
Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University
by

GEOFFREY PHILIP EVANS

ACKNOWLEDGEMENTS

Firstly, I wish to thank my supervisor, Professor J.A. Gledhill, for his encouragement and patience throughout the project.

I would like to thank Allon Poole who conceived the idea of advanced ionospheric chirpsounding and thereby presented me with a fascinating project. I am grateful for all his theoretical guidance, suggestions and advice.

I am grateful to Barry Guthrie who introduced me to the programming language FORTH which proved invaluable for software development.

The many helpful suggestions regarding presentation given by Ray Haggard , Ian Dore and Janos Csuzda were greatly appreciated.

I would like to thank the Department of Transport and the Co-operative Scientific Programmes division of the Council for Scientific and Industrial Research for financing this project. The project forms part of the Antarctic Upper Atmosphere Research Programme of the Department of Physics and Electronics of Rhodes University.

CONTENTS

ABSTRACT
Page
CHAPTER 1 INTRODUCTION TO IONOSPHERIC OBSERVATIONS
1.1 The Ionosphere 1
1.2 Ionospheric Observations 1
1.3 Ionosonde Improvements 3
1.4 The Digital Ionosonde 4
1.5 The FMCW Ionosonde 5
Vertical Incidence Operation 5
Oblique Incidence Operation 8
1.6 Electromagnetic Waves in an Ionised Medium 9
1.7 Thesis Scope 12
CHAPTER 2 EXTENDING THE CAPABILITIES OF THE VOS-1C VERTICHIRP SOUNDER
2.1 General Introduction to the VOS-1C Vertichirp Sounder 13
2.2 Vertical Operation 14
2.3 Oblique Operation 17
2.4 "Normal" recording Programme - Grahamstown and SANAE 18
2.5 The Digital Chirpsounder 19
CHAPTER 3 CONTROLLER DESIGN CONCEPTS
3.1 Basic Requirements 22
3.2 Ionogram Structure 24
A Cell 24
A Sounding 25
An Ionogram 26
3.3 Basic Equations 27
3.4 Windowing 29
3.5 Stationary Doppler 30
3.6 Controller Initial Development 31
Hardware 31
Software 32
3.7 Interchangeability - Controller/Logchirp 33
CHAPTER 4 CONTROLLER HARDWARE
4.1 Introduction 34
4.2 Block Diagram of Modified Vertichirp Sounder 35
4.3 Location of Vertichirp Controller Circuit Boards 37
4.4 Controller Power Supplies 39
4.5 Controller Block Diagram 1 - Computer and Strobe Decode 39
Computer Modifications 40
Controller Data Bus (D) and Strobe Decode (PC6) 41
4.6 Controller Block Diagram 2 - Interface Circuitry 42
4.7 System Timing Circuits 44
Advance / Retard Circuit (PC5) 45
Clock Dividers (PC3a) 47
Real Time Clock (RTC) 47
Real Time Clock Display (RTCD) 48
4.8 Synthesizer Control 49
Basic Rate Circuitry (PC4a) 49
Synthesizer Control (PC1) 51
4.9 FFT Sample Rate Generator (PC7) 52
4.10 Windowing and Stationary-Doppler Recordings 54
4.11 Offsetting the 40 MHz Local Oscillator 59
L.0. Offset Frequency Synthesizer (PC9) 59
Sine Wave Generator (PC10) 60
Sine Wave Generator Circuit Development 61
SSB Generator (B3) 65
4.12 Transmit/Receive Switch Control 67
Programmable M-sequence Generator (PC4C) 67
T/R Gain-Weight Generator 72
4.13 System Control 73
Tcell Pulse Generator (PC4b 73
Sweep-Start and Control (PC3D) 74
4.14 BCD $\times 4$, Frequency Mark Generator and Transmitter Filter Control (PC2) 76
BCD $\times 4$ Circuitry 77
Frequency Mark Generator 78
Transmitter Filter Control 80
Frequency Display (FD) 80
4.15 Antenna Switching 80
Vertical/Oblique Antenna Select, Tx Filter Drivers
and 4040 Rx Antenna Select (B2) 80
Antenna Select Board (PC8a) 81
3 MHz Antenna Change-over (B4)
and Receive Antenna Switch (B1) 81
4.16 Film Speed Control (PC8b) 82
4.17 Digitized Chirpsounder - Front and Rear Views 83
CHAPTER 5 CONTROLLER SOFTWARE
5.1 Introduction 85
5.2 Vertichirp Controller Program Structure 86
5.3 FORTH - An Introduction 87
5.4 Additions and Changes to FORTH 87
5.5 Input/Output Control 90
5.6 Computer/MPN Calculator Data Flow Control 91
5.7 Hardware Control 93
5.8 Data Input and Storage 94
5.9 Hardware Setting from Stored Data 100
5.10 Interrupt Service Routines and Interrupt Polling 105
5.11 Function Execution 107
5.12 Function Execution Timing 113
CHAPTER 6 SYSTEM TESTS
6.1 Introduction 115
6.2 Controller Initial Tests 116
6.3 Basic Rate Tests 118
$6.4 \quad 40 \mathrm{MHz}$ Local Oscillator Offsetting 119
6.5 Logarithmic Sweep Rate Test 121
6.6 Stationary Ionogram Test 121
6.7 Operation as a Digital Chirpsounder 122
6.8 Project ISAAC - Controller Programming Example 127
6.9 Digital Chirpsounder Experiments 130
6.10 Commercial Digital Chirpsounders 131
6.11 Conclusion 131
REFERENCES 132

```
APPENDIX A VERTICHIRP CONTROLLER HARDWARE - MANUAL 1
APPENDIX B VERTICHIRP CONTROLLER HARDWARE - MANUAL 2
APPENDIX C VERTICHIRP CONTROLLER SOFTWARE - CHANGES AND ADDITIONS TO FORTH
APPENDIX D VERTICHIRP CONTROLLER SOFTWARE - OPERATORS MANUAL
APPENDIX E VERTICHIRP CONTROLLER SOFTWARE - PROGRAM GLOSSARY
```

Figure (1.1) An Ionogram 2
Figure (1.2a) Pulse Sounder - frequency vs time 6
Figure (1.2b) Pulse Sounder - amplitude vs time 6
Figure (1.3a) FMCW Sounder - frequency vs time 6
Figure (1.3b) FMCW Sounder - amplitude vs frequency 6
Figure (1.4) Block Diagram - Simplified FMCW Sounder 7
Figure (1.5) FMCW Oblique Incidence Operation 9
Figure (2.1) VOS-1C Vertical/oblique chirpsounder 14
Figure (2.2a) Linear Sweep - jump forward corrections 15
Figure (2.2b) Linear Sweep - jump back corrections 15
Figure (2.3) Logarithmic Sweep 15
Figure (2.4) Chirp Signal 16
Figure (2.5) Simplified System Block Diagram 21
Figure (3.1) A Cell 24
Figure (3.2) A Sounding 25
Figure (3.3) An Ionogram 26
Figure (3.4) Windowing, frequency vs time. 29
Figure (3.5) Windowing, offset height and window height. 29
Figure (4.1) Block Diagram - Modified Vertichirp Sounder 35
Figure (4.2) Vertichirp Controller Front and Rear Panels 37
Figure (4.3) Location of Controller Circuit Boards 38
Figure (4.4) Block Diagram - Controller Power Supplies 39
Figure (4.5) Vertichirp Controller Block Diagram 1 - Computer and Strobe Decode (PC6) 40
Figure (4.6) Block Diagram - Controller Data Bus (D) and Strobe Decode (PC6) 41
Figure (4.7) Vertichirp Controller Block Diagram 2 - Interface Circuitry 42
Figure (4.8) Block Diagram - Advance/Retard Circuitry (PC5) 45
Figure (4.9a) Advance Waveform 46
Figure (4.9b) Retard Waveform 46
Figure (4.10) Block Diagram - Clock Dividers (PC3a) 47
Figure (4.11) Block Diagram - Real Time Clock (RTC) 48
Figure (4.12) Block Diagram - Real Time Clock Display (RTCD) 48
Figure (4.13) Chirp Signal Bandwidth 49
Figure (4.14) Block Diagram - Basic Rate (PC4a) 50
Figure (4.15) Block Diagram - Synthesizer Control (PC1) 51
Figure (4.16) Block Diagram - FFT Sample Rate Generator (PC7) 53
Figure (4.17) Block Diagram - Chirpsounder Receiver 55
Figure (4.18) Block Diagram - Local Oscillator Offset frequency Synthesizer (PC9) 59
Figure (4.19) Cosine Wave 61
Figure (4.20) Block Diagram - Digital Sine Wave Generator 61
Figure (4.21) Digitally Generated Sine Wave 61
Figure (4.22a) Cosine Wave - time domain 62
Figure (4.22b) Cosine Wave - frequency domain 62
Figure (4.23a) Sampled Cosine Wave - time domain 62
Figure (4.23b) Sampled cosine Wave - frequency domain 62
Figure (4.24a) Top Hat - time domain 62
Figure (4.24b) Top Hat - frequency domain 62
Figure (4.25a) Quantized Cosine Wave - time domain 62
Figure (4.25b) Quantized cosine Wave - frequency domain 62
Figure (4.26) Block Diagram - Quadrature Sine Wave Generator (PC10) 64
Figure (4.27) Block Diagram - SSB Generator (B3) 65
Figure (4.28) M-sequence - reception probability vs delay time 67
Figure (4.29) M-sequence Generator 69
Figure (4.30) M-sequence generator - inverted data 70
Figure (4.31) M-sequence generator - XNOR implementation 71
Flgure (4.32) Block Diagram - Programmable M-sequence Generator (PC4c) 71
Figure (4.33) Block Diagram - T/R Gain Weight Generator (replaces 4050 board A6) 72
Figure (4.34) Block Diagram - Tcell Pulse Generator (PC4b) 73
Figure (4.35) Block Diagram - Sweep Start and Control (PC3b) 74
Table (4.1) Control Register A 75
Table (4.2) Control Register B 76
Figure (4.36) Simplified Block Diagram - $B C D \times 4$, 76
Frequency Mark Generator and Tx Filter Control (PC2)
Table (4.3) BCD $\times 4$ - Binary Representation 77
Figure (4.37) PROM Address and Data Organization 78
Figure (4.38) Block Diagram - Frequency Mark Generator 79
Figure (4.39) Block Diagram - Vertical/Oblique Antenna selection 80
Figure (4.40) Block Diagram - Antenna Select (PC8a) 81
Figure (4.41) Block Diagram - Dual Receiver Antenna Switching 82
Figure (4.42) Block Diagram - Film Speed Control (PC8b) 82
Figure (4.43) Digitized vos-1C Vertical/Oblique Chirpsounder - Front View 83
Figure (4.44) Digitized VOS-1C Vertical/Oblique Chirpsounder - Rear View 84
Figure (5.1) Program Structure 86
Figure (5.2) Heath VDU Screen Areas 90
Figure (5.3) Computer/MPN Data Flow Control 92
Figure (5.4) Input Sounding Data 96
Figure (5.5) Input Ionogram Data 97
Figure (5.6) Input Timing Slip Data 98
Figure (5.7) Input FORTH hord data 98
Figure (5.8) Input Programme Data 99
Figure (5.9) Set Sounding 101
Figure (5.10) Set Ionogram 102
Figure (5.11) Set Timing Slip 103
Figure (5.12) Set System defined FORTH Word 103
Figure (5.13) Set Programme 104
Figure (5.14) Clock Interrupt Service Routine 105
Figure (5.15) Tcell Interrupt Service Routine 106
Figure (5.16) Interrupt Polling Routine 107
Figure (5,17) Run Sounding 108
Figure (5.18) Run lonogram 108
Figure (5.19) Run Timing Slip 109
Figure (5.20) Run FORTH hord 110
Figure (5.21) Run Programme 110
Figure (5.22) The RUN Command 111
Figure (5.23) Routine SETNXT 112
Figure (5.24) Ionogram execution 113
Figure (6.1) Vertical Incidence Ionograms - 1015 Logchirp Control 116
Figure (6.2) Vertical Incidence Ionograms - Computer Controller 116
Figure (6.3) Oblique Incidence Ionograms - 1015 Logchirp Control 117
Figure (6.4) Oblique Incidence Ionograms - Computer Controller 117
Figure (6.5) Vertical Incidence Ionograms - Basic Rate changes 118
Figure (6.6a) Vertical Incidence Ionogram 119
Figure (6.6b) Stationary Doppler Ionogram at 6.5 MHz 119
Figure (6.7a) Vertical, $k_{B}=k_{0}=50 \mathrm{kHz} / \mathrm{s}$ 120
Figure (6.7b) Vertical, $\mathrm{k}_{\mathrm{B}}=\mathrm{k}_{0}=100 \mathrm{kHz} / \mathrm{s}$ 120
Figure (6.7c) Vertical, $\mathrm{k}_{\mathrm{B}}=\mathrm{k}_{0}=200 \mathrm{kHz} / \mathrm{s}$ 120
Figure (6.7 d) Vertical, $\mathrm{k}_{\mathrm{B}}=\mathrm{k}_{0}=200 \mathrm{kHz} / \mathrm{s}$, L. 0 offset $=256 \mathrm{~Hz} \quad \mathrm{~h}_{\text {min }}^{\prime}=192 \mathrm{~km}$ 120
Figure (6.8) Linear and Log Overall sweep rate 121
Figure (6.9a) Vertical, $\mathrm{k}_{\mathrm{B}}=100 \mathrm{kHz} / \mathrm{s}$ 121
Figure (6.9 b) Stationary Ionogram at 6.0 MHz 121
Figure (6.9c) Vertical , $\mathrm{k}_{\mathrm{B}}=100 \mathrm{kHz} / \mathrm{s}$ 121
Figure (6.10) Vertical Inciderice Ionogram - Film and Digital Records 124
Figure (6.11) Vertical Ionogram 11 - Data and Film Record 128
Figure (6.12a) Vertical Ionogram $17.5 @ 50$ - Data and Film Record 129
Figure (6.12b) Vertical Ionogram [7.5@100 - Data and Film Record 130

ABSTRACT

This thesis describes the design and development of a computer-based controller together with additional hardware that greatly extends the capabilities of a Barry Research VOS-1 Chirpsounder.

The measurement of the virtual height of the ionosphere as a function of frequency using pulse- and frequency-modulated carrier wave (FMCW) techniques is described and the concept of the so called "digital" ionosonde is introduced.

The modifications required for the standard Chirpsounder to perform as a versatile digital chirp ionosonde are discussed. Simplified block diagrams are used to describe the Controller hardware which is fully described in two comprehensive service manuals which have been included as appendices.

Important aspects of the Controller software and data storage formats are described in detail. The emphasis is then placed on system capabilities. An operators' software manual which describes system initialization and operation in terms of system commands is included as an appendix.

Results of tests at both Grahamstown , South Africa, and at the SANAE base in the Antarctic are presented.

CHAPTER 1

INTRODUCTION TO IONOSPHERIC OBSERVATIONS

1.1 The Ionosphere

The ionosphere extends from an altitude of about 60 km to more than 1000 km [Mitra , 1952 ; Kelso, 1964]. In this part of the atmosphere the constituent gases are partially ionised by the action of solar radiation in the ultra-violet and X-ray region of the electromagnetic spectrum.

The ionization per unit volume varies with altitude, latitude , longitude , time of day, season and sunspot cycle among other effects. Ion and electron motions are influenced by mutual interactions, interaction with the neutral gases , the geomagnetic field, electric fields , gravitation and diffusion.

Although the electron concentration in the ionosphere is only about 1% of that of the neutral gases it gives rise to phenomena that are negligible or absent in the lower atmosphere. Of great importance is the ability of the ionosphere to refract and reflect radio waves. Besides finding practical application in long distance radio communications this property is used for the investigation of the physics of the ionosphere itself.

1.2 Ionospheric Observations

In 1925 Breit and Tuve developed the pulse-echo method of ionospheric observation [Mitra , 1964]. This involved starting the sweep of an oscilloscope and then transmitting a radio frequency pulse of a few hundred microseconds duration. After a delay the pulse echoes from the ionosphere
were received and displayed on the same oscilloscope sweep. The time between the transmission of the RF pulse and the reception of the first echo was obtained directly from the oscilloscope. By multiplying this delay time Δt by the velocity of an electromagnetic wave in free space the apparent or equivalent path length was obtained.

This distance is equal to the distance that would be travelled in the same time interval by a signal propagating in free space. Division of this distance by two gives the virtual height of the ionosphere at the transmitted frequency.
If $h^{\prime}(f, t)=$ virtual height of the ionosphere
$c \quad=$ velocity of an electromagnetic wave in free space
$\Delta \mathrm{t}=$ delay time
Then :-

$$
\begin{equation*}
h^{\prime}=c \Delta t / 2 \tag{1.1}
\end{equation*}
$$

The virtual height is thus directly proportional to the signal delay time.

The pulse-echo principle is used in the pulse ionosonde to produce an ionogram which is a plot of virtual height as a function of radio frequency. Ionograms are generally recorded on film. A typical ionogram recorded at Grahamstown, latitude $33^{\circ} 18^{\prime} \mathrm{S}$, is shown in figure (1.1).

Figure (1.1) An lonogram

The ionosphere often contains several layers, the maximum plasma frequency of a given layer being called the critical frequency of that layer. The maximum critical frequency of the whole ionosphere is known as the penetration frequency. Frequencies higher than the penetration frequency are not reflected though they may be scattered.

1.3 Ionosonde Improvements

Technological advances over the years have resulted in significant changes to the basic ionosonde together with new methods of data recording and processing. The earliest ionograms were recorded manually and were of poor accuracy when ionospheric characteristics changed rapidly. The time to record an ionogram was , in general, reduced by automatic frequency-sweep ionosondes. Further improvements resulted when the motor-driven mechanical methods of generating a frequency sweep were replaced by electronic methods. The basic ionosonde became smaller, cheaper and less complex.
M.L.Philips (1974) briefly describes the important characteristics of a number of ionosondes that have been developed. Included are low frequency ionosondes designed to provide additional information on the complex D and E regions and a phase ionosonde which gives much improved resolution in the measurement of virtual height. He also describes equipment which uses coded pulse signals to improve signal-to-noise ratio.

Besides the basic measurement of the virtual height of the ionosphere as a function of frequency researchers devised equipment to separate the two circularly polarised components of the ionospheric echo. Even further assistance in ionogram interpretation was obtained with the determination of
the angle of arrival of the returning signal.
1.4 The Digital Ionosonde

About ten years ago the digital computer made possible the so called "digital" or "advanced" ionosonde. In such an ionosonde the entire sounder function is under computer control and numeric rather than analogue analysis of the data is done. The flexibility of the software together with rapid data processing permits not only the recording of the virtual height of the ionosphere but simultaneous measurements of the received signal amplitude, phase and polarization. From these measurements the angle of arrival of the reflected signal and the Doppler velocity of the reflecting layer can be calculated.

At present two important digital ionosondes are the Dynasonde and the Digisonde. The Dynasonde, developed by J. W. Wright, was designed for the investigation of rapid ("dynamic") ionospheric variations [Wright , 1970]. A digital computer controls the system comprising frequency synthesizer, pulse transmitter and receiver and also processes the received data. Besides recording the digitized data on magnetic tape an analogue ionogram can be recorded on film. The system covers the frequency range 0.5 MHz to 32.0 MHz . The Dynasonde can also calculate real-time electron density profiles and electron collision frequencies.

The Digital Integrating Goniometric Ionospheric Sounder or Digisonde developed by K. Bibl concentrates on the improvement of the signal-to-noise ratio by the digital integration of phase-coded pulses [Bibl , 1970]. Ionograms from 0.5 MHz to 16.0 MHz are produced in digital form from tape.

Both sounders described above are based on pulse ionosonde techniques. Digital sounders, being recent innovations, are expensive and as a result there are only a few in general use today.
1.5 The FMCW Ionosonde (Frequency Modulated Continuous Wave) Vertical Incidence Operation

The pulse ionosonde transmits an impulse with a pulse length equal to the desired time delay resolution and a pulse repetition rate low enough to avoid any ambiguities over the expected time-delay range. The major disadvantage in such a system is the difficulty in achieving adequate average power without excessive peak power. High peak powers (in the range 1 to 30 kW) cause interference in nearby HF receivers and require large vacuum tube amplifiers together with expensive antennae and feed systems.

The development of the digitally-synthesized frequency sweep by Dr. G. Barry and Dr. R. Fenwick provided the key to the successful application of linear frequency modulation to ionospheric sounding [Barry Research , 1971]. Linear frequency modulated ionosondes produce a characteristic "chirp" when heard on a normal HF receiver hence the tradename "Chirpsounder" adopted by the Barry Research Corporation.

The purpose of both pulse and chirp ionosondes is to measure propagationmode time delay (and hence virtual height) and signal amplitude as a function of transmitted frequency. The way in which this is done differs greatly between the two techniques.

The frequency versus time distribution of transmitted and received energy is shown below for both ionosondes [Fenwick , 1973].

Figure (1.2a) Pulse Sounder - frequency vs time

Figure (1.2b) Pulse Sounder - amplitude vs time

Figure (1.3a) FMCW Sounder - frequency vs time.

Figure (1.3b) FMCW Sounder - amplitude vs frequency

Figure (1.2a) shows that the pulse transmitter emits energy simultaneously across the entire bandwidth of about 20 kHz . The received signal has the same energy distribution but is delayed by the travel time Δt.

The Chirpsounder transmits a continuous synthesized linear frequency ramp as shown in figure (1.3a). The received signal is a frequency sweep delayed by the travel time Δt. Provided that the total sweep time is long compared to Δt the received signal may be regarded as being offset in frequency by Δf from the transmitted frequency.

This frequency difference Δf is related to the travel time by :-

$$
\begin{equation*}
\Delta \mathrm{f}=(\mathrm{df} / \mathrm{dt}) \Delta \mathrm{t} \tag{1.2}
\end{equation*}
$$

where $d f / d t$ is the linear sweep rate.

If the received frequency is subtracted from that being simultaneously transmitted , a signal with a particular delay becomes a tone with a frequency proportional to that time delay. This tone is then analysed using an audio spectrum analyser to obtain a time delay display. A simplified FMCW Sounder block diagram (after Fenwick , 1973) is given in figure (1.4)

Figure (1.4) Block Diagram - Simplified FMCH Sounder

The frequency range analysed is determined by the linear sweep rate and the desired delay time range. Example :- For a sweep rate of $50 \mathrm{kHz} / \mathrm{s}$ and a maximum delay time of 10 ms , the frequency difference, $\Delta f_{\text {max }}$, would be

$$
\begin{aligned}
\Delta f_{\max } & =(50000)(0.01) \\
& =500 \mathrm{~Hz}
\end{aligned}
$$

Maximum ionospheric delay times, except near the critical frequency, are of the order of 5 ms .

The effective bandwidth of the sweeping receiver is thus very small (Eg. 500 Hz). This means that a good signal-to-noise ratio can be obtained with low transmitter output power (Eg. VOS-1 Chirpsounder output $=8 \mathrm{~W}$ peak). The small bandwidth also reduces the vulnerability of the sweeping receiver to narrow-band interference which is encountered sequentially and can be reduced or eliminated by clipping or gating.

Vertical incidence operation with co-located transmitter and receiver is achieved by using electronic T / R switching which alternately connects the transmitter and then the receiver to a common antenna.

A limitation of the FMCW technique is the ambiguity between time delay and Doppler frequency shifts , the latter being caused by line-of-sight motion of the reflecting point. In certain radar applications this can cause serious problems. For mid-latitude ionospheric sounding at "normal" (50 $\mathrm{kHz} / \mathrm{s}$) sweep rates the maximum Doppler frequency shift is only about 1% of the frequency difference Δf and is usually ignored. The Digital Chirpsounder (controlled by the hardware and software described in this thesis) allows evaluation of both virtual height and Doppler shift using the FMCW technique.

Oblique Incidence Operation

Geographic separation of transmitter and receiver allows the echo structure of an obliquely transmitted signal to be obtained. Either pulse or FMCW techniques can be used to obtain oblique ionograms.

In the case of the pulse sounder the pulse repetition rates and the frequencies of transmitter and receiver must be kept synchronised. This is achieved using independent stable crystal oscillators [Davies , 1965].

Figure (1.5) FMCH oblique Incidence Operation

Oblique incidence recordings using FMCW require that the transmitting and receiving chirpsounders generate frequency ramps that are identical except that the receiver ramp is delayed with respect to the transmitter ramp. This delay or offset must be such as to allow the signal to fall within the receiver bandwidth.
Δt, the relative time delay of the signal at a specific frequency with respect to the receiving system clock is obtained from the oblique ionogram. If the offset t_{0} is known the total propagation time t can be obtained. Multiplication of t by the velocity of an electromagnetic wave in free space gives the virtual group path length P^{\prime} of the signal [Davies, 1975].

An oblique ionogram is thus a record of group path P^{\prime} versus frequency with a range determined by the receiver bandwidth and a scale zero determined by the offset t_{0}.

1.6 Electromagnetic Waves in an Ionised Medium

To clarify the meanings of the terms phase range, group range and real range it is necessary to discuss the propagation of an electromagnetic wave in a plasma [Ratcliffe , 1959 ; Budden , 1964 ; Ratcliffe 1972].

For an electromagnetic wave in a vacuum the phase velocity (v) is equal to the speed of light (c) in a vacuum.

$$
\begin{equation*}
v=c \tag{1.3}
\end{equation*}
$$

For any other medium the phase velocity is given by

$$
\begin{equation*}
v=c / n \tag{1.4}
\end{equation*}
$$

where n is the phase refractive index of the medium. If n depends on the wave frequency the medium is said to be dispersive.

Fourier analysis shows that a wave can only be monochromatic if it is of infinite duration. The phase velocity and refractive index mentioned above refer to an unmodulated and therefore monochromatic wave of infinite duration.

If the duration is finite (Δt) the waves must occupy a finite bandwidth ($\Delta f=1 / \Delta t$) for cancellation before and after the time Δt. The sinusoidal amplitude modulation ω_{m} of a carrier ω_{C} is identical to a monochromatic carrier ω_{C} plus two monochromatic sidebands $\omega_{C}+\omega_{m}$ and $\omega_{C}-\omega_{m}$. If the phase or the frequency is modulated instead of the amplitude , the modulated wave can still be represented as a carrier plus a spectrum of sidebands. When the wave is of finite duration a continuum of sidebands is obtained.

If a propagated wave is also modulated, the velocity of the modulation , the group velocity, is important. The group velocity is not necessarily equal to the phase velocity since each carrier and sideband propagates at the phase velocity appropriate to its frequency. The medium through which propagation takes place will, in general, be dispersive, so that the different components will travel at different speeds and the modulation will travel at some other velocity - the group velocity.

To summarise, a pulse of waves travels at the group velocity while waves within the pulse travel at the phase velocity. Energy and information are carried at the group velocity.

The formula for the refractive index of an ionised medium is given by the Appleton - Hartree equation [Ratcliffe , 1959 pg 37 equation 4.4.1]. If collisions and the geomagnetic field are neglected the refractive index n is given by :-

$$
\begin{align*}
\omega_{n}^{2} & =1-x \\
& =1-\omega_{n}^{2} / \omega^{2} \tag{1.5}
\end{align*}
$$

where ω_{n} is proportional to the electron density and ω is the angular wave frequency

As the wave penetrates the ionosphere the phase refractive index becomes smaller. For ω_{n} greater than ω the wave cannot propagate since the refractive index becomes imaginary. The energy carried by the radio wave is reflected from the level at which $\omega_{\mathrm{n}}=\omega$, that is where the plasma frequency equals the wave frequency.

A radio pulse travels at the group velocity u.

$$
\begin{equation*}
u=c / n_{g} \tag{1.6}
\end{equation*}
$$

where $c=$ speed of light in a vacuum,$n_{g}=$ group refractive index.

If the phase refractive index n is given by :-

$$
\begin{equation*}
n=\omega_{n}^{2 / \omega^{2}} \tag{1.7}
\end{equation*}
$$

the group refractive index can be shown to be

$$
\begin{equation*}
n_{g}=1 / n \tag{1.8}
\end{equation*}
$$

The radio pulse therefore travels more slowly in the ionosphere than light in free space. The calculation of virtual height or group range assumed a constant velocity equal to that of light in a vacuum. Because of group retardation in the ionosphere the virtual height is always greater than the real height. The real range is the actual path travelled by a signal of frequency f to the point of reflection and is denoted h.

Inclusion of the geomagnetic field in the Appleton-Hartree equation gives two values for the refractive index. This gives rise to two components in the vertical-incidence signal reflected by the ionosphere which are called the ordinary wave (0) and the extraordinary wave (x). The names "ordinary" and "extraordinary" are taken over from the phenomenon of double refraction in optics. These waves will, in general , have elliptical polarizations with opposite senses.
1.7 Thesis Scope

This thesis describes the computer controller and associated hardware and software developed to add digital capabilities similar to those of the Dynasonde and Digisonde to an FMCW ionosonde , the Barry Research VOS-1 Vertichirp Sounder.

CHAPTER 2

EXTENDING THE CAPABILITIES OF THE VOS-1C VERTICHIRP SOUNDER

2.1 General Introduction to the VOS-1C Vertichirp Sounder

The Barry Research VOS-1C Vertichirp Sounder is an FMCW or "chirp" ionosonde designed to produce vertical and oblique incidence ionograms in the frequency range 0.5 to 30.0 MHz [Barry Research , 1972].

In the vertical incidence mode the virtual height range is 0 to 1000 km . In the oblique mode range windows of $31 / 3 \mathrm{~ms}, 5 \mathrm{~ms}, 62 / 3 \mathrm{~ms}$ and 10 ms are available.

Twelve three-position switches allow the automatic selection of a vertical run, an oblique run or no run ("off") at 5 minute intervals in the hour. All oblique runs are either signal receptions or signal transmissions.

Vertical operation requires a single antenna which is used for both transmission and reception. Electronic transmit/receive (T / R) switching reduces the transmitter peak power of 8 W to an average of 3 W . An antenna switch selects a different antenna for oblique operation.

Both vertical and oblique ionograms are recorded on 35 mm film. Identification information for each ionogram includes year, place, yearday number and time. Each ionogram is recorded with frequency and range marks.

Figure (2.1) shows the physical location of all the units in the system.

Figure (2.1) vos-ic Vertical/Oblique Chirpsounder

2.2 Vertical Operation

Front panel switches on the 1015 Logchirp Control set the vertical low and high frequency limits and allow the selection of one fifteen "linear" or "logarithmic" overall sweep rates. These overall frequency versus time curves are approximated by linear segments of half-second duration of a fixed $50 \mathrm{kHz} / \mathrm{s}$ basic sweep rate. At the end of each segment the frequency is either advanced or retarded very rapidly so that the segments define the desired overall frequency versus time curve. These half-second segments followed by a high speed correction are called "cells".

Figure (2.2a) shows a linear overall sweep rate with jump forward corrections, necessary because the overall sweep rate is greater than the $50 \mathrm{kHz} / \mathrm{s}$ basic rate.

Figure (2.2b) shows a linear sweep rate with jump back corrections since the overall rate is less than the basic rate.

Figure (2.2a) Linear Sweep - jump forward corrections

Figure (2.2b) Linear sweep - jump back corrections

To produce an ionogram with a logarithmic frequency scale an exponential frequency increase with time is approximated as shown (on an exaggerated scale) in figure (2.3).

An exponential frequency increase with time takes the form :-

$$
\begin{equation*}
f(t)=k_{1} e^{A t} \tag{2.1}
\end{equation*}
$$

where
$A=$ the exponential time constant
$\mathrm{t}=$ time
At $t=0 \quad f(0)=k_{1}$ so that k_{1} is the ionogram start frequency f_{I}. Equation (2.1) becomes :-

$$
\begin{equation*}
f(t)=f_{I} e^{A t} \tag{2.2}
\end{equation*}
$$

As stated in section 1.5 a received FMCW signal may be regarded as being frequency-offset by Δf from the transmitted frequency, provided the total sweep time is long compared to the travel (or delay) time.

Let $\mathrm{f}_{\mathrm{T}}=$ transmitted frequency at time t_{1}
and $f_{R}=$ received frequency at time t_{1}
then the difference frequency $\quad \Delta f=f_{T}-f_{R}$
Equation (1.2) gives the relationship between frequency difference and delay time as :-

$$
\begin{equation*}
\Delta f=(d f / d t) \Delta t \tag{2.4}
\end{equation*}
$$

where $d f / d t$ is the basic linear sweep rate.

Let $d f / d t=k_{B}$, then

$$
\begin{align*}
\Delta f & =k_{B} \Delta t \\
f_{T}-f_{R} & =k_{B} \Delta t \\
\Delta t & =\left(f_{T}-f_{R}\right) / k_{B} \tag{2.5}
\end{align*}
$$

The virtual height of the ionosphere h^{\prime} is given by equation (1.1) as :-

$$
\begin{align*}
h^{\prime} & =c \Delta t / 2 \\
& =c\left(f_{T}-f_{R}\right) / 2 k_{B} \tag{2.6}
\end{align*}
$$

$\left(f_{T}-f_{R}\right)_{\max }$ is equal to the effective bandwidth of the receiver which is 500 Hz for the Vertichirp sounder. The basic rate k_{B} is fixed at $50 \mathrm{kHz} / \mathrm{s}$.

$$
\begin{align*}
h_{\max }^{\prime} & =\left(3.10^{5}\right)(500) /(2)\left(50.10^{3}\right) \mathrm{km} . \\
& =1500 \mathrm{~km} . \tag{2.7}
\end{align*}
$$

In the Vertichirp system however the spectrum analyser is set to analyse 0 to 333 Hz giving :-

$$
\begin{align*}
\mathrm{h}_{\max }^{\prime} & =\left(3.10^{5}\right)(333) /(2)\left(50.10^{3}\right) \mathrm{km} \\
& =1000 \mathrm{~km} . \tag{2.8}
\end{align*}
$$

2.3 Oblique Operation

The lower and upper frequency limits for oblique operation are set by front panel switches on Logchirp Control. An uninterrupted linear frequency sweep of either $50 \mathrm{kHz} / \mathrm{s}$ or $100 \mathrm{kHz} / \mathrm{s}$ is used. With a sweep rate of $100 \mathrm{kHz} / \mathrm{s}$ and an analysis range of $3331 / 3 \mathrm{~Hz}$ the oblique range window has a width of :-

$$
\begin{align*}
\Delta t_{\text {window }} & =\left(f_{T}-f_{R}\right)_{\max } / k_{B} \quad \text { from equn. } \tag{2.5}\\
& =(3331 / 3) / 100.10^{3} \\
& =31 / 3 \mathrm{~ms} \tag{2.9}
\end{align*}
$$

For oblique incidence synchronization three timing slip rates of 1,10 and $100 \mathrm{~ms} / \mathrm{s}$ are provided. System timing can either be advanced or retarded at the rate selected.
2.4 "Normal" recording Programmme - Grahamstown and Sanae
Parameter
Vertical
Oblique

Frequency range	$0.5-15.0 \mathrm{MHz}$	$2.0-30.0 \mathrm{MHz}$
Sweep Rate	$50 \mathrm{kHz} / \mathrm{s}$	$100 \mathrm{kHz} / \mathrm{s}$
Sweep Duration	4 m 50 s	4 m 40 s
Peak transmitter power	8 W	8 W
Average transmitter power	3 W	8 W
Spectrum Analyser analysis range	$0-333.3 \mathrm{~Hz}$	$0-333.3 \mathrm{~Hz}$
Vertical virtual height range	$0-1000 \mathrm{~km}$	-
Oblique range window	-	3.33 ms

Ionogram Sequencing

Function Sweep Start Times in the hour

Vertical	$00,15,30,45$
Oblique	$05,20,35,50$
Off	$10,25,40,55$

Vertical incidence recordings were made at both Grahamstown and Sanae at the above times. Oblique incidence records have the Sanae system transmitting and the Grahamstown system receiving. An oblique "calibration" was done each week to determine the offset time t_{0} on the Sanae - Grahamstown path.

2.5 The Digital Chirpsounder

The main characteristics of a digital or advanced ionosonde are :-

1. Control of the entire system is by digital computer thereby giving it great flexibility.
2. Numeric analysis of the received data by digital computer either in real time or at a later time from some bulk storage medium such as magnetic tape.

The Barry Research VOS-1C Chirpsounder described in section 2.1 is not a digital ionosonde.

The idea of advanced chirpsounding was conceived by A.W.V.Poole. His PhD. thesis "Advanced Ionospheric Chirpsounding" [Poole , 1983] extends the basic theory of chirpsounding to include measurements of the group range and phase velocity of the reflection point as well as the amplitude, arrival angle and polarization mode of the reflected energy. The thesis shows that all the above measurements can be evaluated from measured phase differences, these being well approximated by differences in the phases of the discrete Fourier frequency components of the difference frequency f_{D}. Allon Poole's thesis therefore details the theory behind and numeric analysis of the received chirp signal and presents initial results showing system capabilities.

To perform the measurements listed above extensive changes had to be made to the standard Barry Research Chirpsounder:-

1. The Chirpsounder control unit, Logchirp Control, was replaced by an M6809 based microcomputer plus additional hardware. The hardware and software design of this new Controller are the subject of this thesis.
2. Two phase matched receivers were purchased and incorporated into the system to allow simultaneous phase measurements on two different receive antennae. The matched receivers contain digitally switchable attenuators that can vary the gain in 2 dB steps over a total range of 110 dB , allowing the signal amplitude to be measured.
3. A hardware Fast Fourier Transform (FFT) analyser [Fisher , 1979] performs the task of simultaneously sampling and transforming the outputs of the dual receivers. The FFT analyser provides two sets of discrete complex amplitudes from which the phases can be calculated. The analyser also computes the power spectrum. It was designed and built at Rhodes University and is the subject of an MSc. thesis entitled "A Real Time Fast Fourier Transform Analyser" by J.S.Fisher , 1979.
4. A Data Capture System (DCS) based on an M6809 microcomputer receives data from the Controller, receiver AGC and FFT Analyser. Ordered data are stored on magnetic tape for later analysis by mainframe computer. The DCS, also designed and constructed at Rhodes University, is described in detail by Poole, 1983.

A simplified block diagram of the modified Chirpsounder is given in figure (2.5).

Figure (2.5) Simplified System Block Diagram

The shaded blocks were designed and constructed by the author.

CONTROLLER DESIGN CONCEPTS

3.1 Basic Requirements

The new Controller's basic requirement was to have all the vertical incidence , oblique incidence and programming capabilities of the Barry Research Logchirp Control as described in Chapter 2. In addition to this it was to allow far more sophisticated control of system functions to enable the simultaneous evaluation of group range and phase velocity of the reflection point as well as the three-dimensional angle of arrival and polarization mode of the received signal.

These parameters were to be determined from phase differences obtained by separating the two received signals in time, frequency and orientation. To separate the received signals in time and in frequency a new structure of synthesizer control was required. This structure is described in section 3.2. Separation in space and orientation required the development of an antenna switch that connects the two receivers to the appropriate antennae.

The ability to operate in a chirp mode (non-zero basic rate) with an overall sweep rate of zero was also required to allow the evaluation of all the above parameters at a fixed frequency. This type of measurement has been termed a "Stationary Ionogram".

The system was also required to operate in the so called "Stationary Doppler" mode in which both basic sweep rate and overall sweep rate are zero
and a fixed frequency is transmitted. Ionospheric vertical motion is then detected by the Doppler frequency change of the received signal.

The new Controller was to have a minimum of hardware bound restraints with software defining and controlling system operation. A much more flexible system of sequencing ionograms was also required.

Finally, the new Controller was to be integrated into the existing system in such a way that it could be unplugged and easily replaced by the Barry Research Logchirp Control if so desired.

3.2 Ionogram Structure

The frequency versus time structure developed for the Digital Chirpsounder is described below.

A Cell

The "cell" is the fundamental building block of this structure. During a cell the transmitter frequency can increase at some linear rate called the "basic rate" (k_{B}) or it can remain constant $\left(k_{B}=0\right)$. The following parameters are associated with each cell of period T_{C} :-

1. A frequency offset Δf which is added to the "sounding" start frequency see figure (3.2).
2. Film drive either enabled or disabled
3. Dual receiver antennae selection.

$f_{C}=$ cell start frequency
$T_{C}=$ cell period
$k_{B}=$ basic rate
Figure (3.1) A Cell

A Sounding

A "sounding" consists of a number of adjacent cells which together allow the evaluation of certain ionospheric parameters at a specific (characteristic) frequency. An n-cell sounding consists of n adjacent cells numbered from 1 to n. Cell start frequencies within a sounding are calculated by adding the cell offset frequency to the sounding start frequency.

This example shows a 3 -cell sounding ($n=3$).
$\mathrm{f}_{\mathrm{Si}}=$ sounding i start frequency
$T_{C}=$ cell period
$T_{S}=$ sounding period
$k_{B}=$ basic rate
$\Delta f_{3}=$ cell 3 offset frequency

Figure (3.2) A Sounding

An Ionogram

An "ionogram" consists of a number of consecutive soundings whose characteristic (or sounding start) frequencies are related by some linear or logarithmic rate of change.

An ionogram structure having 3 -cell soundings related by the linear overall sweep rate K_{0}.
$f_{I}=$ ionogram start frequency
$T_{C}=$ cell period
$T_{S}=$ sounding period
$\Delta f_{3}=$ cell 3 offset frequency
$k_{0}=$ overall sweep rate, linear frequency scale

Figure (3.3) An Ionogram

3.3 Basic Equations

The symbols used in describing an ionogram are listed below. Symbol

Units

$f_{C i j}$	start frequency of cell j in sounding i	Hz
${ }^{T_{C}}$	cell period (invariant for ionogram)	s
k_{B}	basic sweep rate	Hz / s

$\mathrm{n} \quad$ total number of cells per sounding
$\mathrm{f}_{\text {Si }}$ start frequency of sounding i Hz
$T_{S} \quad$ sounding period (invariant for ionogram) s
Δf_{j} cell j offset frequency Hz
f_{I} ionogram start frequency Hz
f_{E} ionogram end frequency Hz
m total number of soundings per ionogram -
T_{I} ionogram period or duration s
$k_{0} \quad$ overall sweep rate, linear frequency scale Hz / s
A overall sweep rate exp time constant, log freq scale s^{-1}

The sounding period T_{S} for an n cell sounding is given by :-

$$
\begin{equation*}
T_{S}=n T_{C} \tag{3.1}
\end{equation*}
$$

The start frequency of cell j in sounding i is obtained by adding cell j offset frequency to sounding i start frequency. That is :-

$$
\begin{equation*}
f_{C i j}=f_{S i}+\Delta f_{j} \tag{3.2}
\end{equation*}
$$

where $\mathrm{j}=1$ to n for each i from 1 to m

The ionogram start frequency is thus

$$
\begin{align*}
f_{I} & =f_{C 11} \\
& =f_{S 1}+\Delta f_{1} \tag{3.3}
\end{align*}
$$

For a linear overall sweep rate the start frequency of sounding i is given by :-

$$
\begin{align*}
f_{S i} & =f_{I}+k_{0} i T_{S} \\
& =f_{I}+k_{0} i n T_{C} \tag{3.4}
\end{align*}
$$

Given the start and end frequencies of an ionogram with a linear overall rate the total number of soundings (m) in the ionogram is obtained by setting $i=m$ and solving for m.

$$
f_{S m}=f_{I}+k_{0}{ }^{m n T} T_{C}
$$

Since $f_{S m}=f_{E}$, the ionogram end frequency, the equation becomes :-

$$
\begin{align*}
f_{E} & =f_{I}+k_{0} m n T_{C} \\
m & =\left(f_{E}-f_{I}\right) / k_{0} n T_{C} \tag{3.5}
\end{align*}
$$

For an exponential overall sweep rate the start frequency of sounding i is given by :-

$$
\begin{equation*}
f_{S i}=f_{I} e^{A i T} S \tag{3.6}
\end{equation*}
$$

The total number of soundings in an ionogram with an exponential sweep rate is given by :-

$$
\begin{align*}
f_{S m} & =f_{I} e^{A m T} S \\
f_{E} & =f_{I} e^{A m T_{S}} \\
e^{A m T_{S}} & =f_{E} / f_{I} \\
m & =\ln \left(f_{E} / f_{I}\right) /\left(A T_{S}\right) \tag{3.7}
\end{align*}
$$

The duration of an ionogram with either a linear or an exponential sweep rate is simply :-

$$
\begin{align*}
T_{I} & =m T_{S} \\
& =m n T_{C} \tag{3.8}
\end{align*}
$$

3.4 Windowing

The effective receiver bandwidth of 500 Hz defines the upper limit of the frequency difference $f_{T}-f_{R}$. Equation (2.6) gives the virtual height of the ionosphere as :-

$$
h^{\prime}=c\left(f_{T}-f_{R}\right) / 2 k_{B}
$$

The virtual height scale has minimum and maximum values given by :-

$$
\begin{aligned}
& h_{\text {min }}^{\prime}=0 \mathrm{~km} . \\
& h_{\text {max }}^{\prime}=c\left(f_{T}-f_{R}\right)_{\max } / 2 k_{B} \quad \mathrm{~km} .
\end{aligned}
$$

This range could be adjusted to cover any "window" of 500 Hz by subtracting a fixed offset f_{0} from the difference frequency.

Figure (3.4) Windowing, frequency vs time.

Figure (3.5) Windowing, offset height and window height.
Then

$$
\begin{align*}
h^{\prime} & =c\left(\left(f_{T}-f_{R}\right)-f_{0}\right) / 2 k_{B} \\
& =c\left(f_{T}-f_{R}\right) / 2 k_{B}-c f_{0} / 2 k_{B} \tag{3.9}
\end{align*}
$$

The maximum value of the first term, that is $c\left(f_{T}-f_{R}\right)_{\max } / 2 k_{B}$, defines the window height with $\mathrm{cf}_{0} / 2 \mathrm{k}_{\mathrm{B}} \mathrm{km}$ being the offset from 0 km .

Equation (2.6) states that $h^{\prime}=c\left(f_{T}-f_{R}\right) / 2 k_{B}$ from which $h_{\text {max }}^{\prime}$ was obtained by setting ($f_{T}-f_{R}$) equal to the receiver bandwidth which is fixed.

It follows that doubling the basic rate k_{B} results in $h_{\text {max }}^{\prime}$ being halved. The 500 Hz baseband signal range is thus spread over half the height range. The frequency change per cell can be kept constant by halving the cell period T_{C} each time the basic rate is doubled.

Basic rate changes with windowing (equation (3.9)) therefore affect both the height of the window being analysed as well as the height offset from 0 km . It was decided to develop hardware such that the offset term $\mathrm{cf}_{0} / 2 \mathrm{k}_{\mathrm{B}}$ could be set in multiples of half the window height.

The minimum offset frequency $f_{0 \text { min }}$ is thus

$$
\begin{align*}
\left({ }^{\left.c f_{0 \min } / 2 k_{B}\right)}\right. & =c\left(f_{t}-f_{R}\right)_{\max } / 4 k_{B} \\
f_{0 \min } & =\left(f_{T}-f_{R}\right)_{\max } / 2 \\
f_{0 \min } & =250 \mathrm{~Hz} \tag{3.10}
\end{align*}
$$

This means that the higher the basic rate the smaller the offset step size becomes. Despite the obvious limitations of higher and higher basic rates usually coupled with shorter and shorter cell periods , windowing was incorporated into the system for experimental purposes. The intention was to use windowing for ionospheric E- and F-region studies.

3.5 Stationary Doppler

The frequency versus time curve for a Chirpsounder, figure (1.3a), shows that at any time t the instantaneous transmitter frequency is higher than the frequency of the received signal.

With fixed-frequency operation (basic and overall sweep rates zero) this would occur naturally if the reflection point moved away from the receiver on the ground. Motion of the reflecting layer toward the receiver would not be detected because the 4040 receiver has an image rejection of 60 dB minimum.

To detect downward motion as well, the "no-motion" signal must be positioned in the centre of the range of Doppler frequencies of interest.
3.6 Controller Initial Development

Hardware

To achieve the flexibility and scope of control as outlined in section in section 3.1 it was apparent from the outset that a microcomputer based system was required. Familarity with the Motorola M6800 8-bit microprocessor contributed to the decision to base the Controller on a South West Technical Products Corporation (SWTPC) 6800 computer system.

The basic system consisting of power supply, mother board, processor board and serial I/O port was modified by the author to fit into a standard 19 inch equipment cabinet to allow it to physically replace Logchirp control. Twelve double sided 28 pin edge connectors were also mounted in the cabinet for the additional hardware that was required.

To allow the fast evaluation of the exponential functions of equations (3.6) and (3.7) a SWTPC calculator board (MPN) was included in the system.

Data and command entry via front panel switches was rejected as being far too limiting and clumsy. Primary communication with the system by VDU was envisaged with hardcopy being available by replacing the VDU with a teletype.

Software

For software development a $51 / 4$ inch dual floppy disk drive was used with the M6800 computer. The high level language ABASIC was investigated but proved too unwieldy for control purposes. Programming was therefore initially done in assembler. A number of the hardware interface boards were tested using these programs. A large part of the system program was also written in assembler. Both the writing of the source code in assembler and the assembly process proved to be very time consuming.

Investigation of the programming language FORTH showed that it was an ideal method of software development. Complex programmes can be written quickly in a structured manner in FORTH. The threaded code aspect of the language results in low memory usage but can add up to 20% to the execution time when compared with straight assembler coding. In most situations this overhead presents no problems but if maximum execution speed is required assembler coded routines can be easily incorporated into FORTH.

At this time an M6809 processor board became available for the SWTPC computer. The 6800 system was upgraded to 6809 because the internal architecture of the 6809 microprocessor lends itself to a very efficient implementation of the FORTH language. All the Controller software was subsequently written in FORTH.(See Appendix D)

3.7 Interchangeability - Controller/Logchirp

Special interconnection cables between the Controller and Amplifier T/R and Controller and Camera Interface were designed into the system to allow easy swapping of control units. This proved to be extremely useful during the initial test stages since the system could be run under Logchirp control during modifications to the new Controller resulting in little data loss.

CHAPTER 4

CONTROLLER HARDWARE

4.1 Introduction

Two comprehensive cross-referenced manuals describing the hardware have been prepared by the author. The prime object was to document the system fully for the operator at the South African Antarctic base, Sanae. The two manuals allow the simultaneous reference to a circuit diagram and its corresponding circuit description.
"Vertichirp Controller Hardware - Manual 1 ; Description of Printed Circuit Boards" is included as Appendix A and describes each board in the form :-

1. Introduction
2. Circuit development (if applicable)
3. Circuit description
4. Control data table
"Vertichirp Controller Hardware - Manual 2 ; Circuit Diagrams , Component Location Diagrams and Wire Lists" is included as Appendix B and contains :-
5. Circuit Diagrams
6. Component Location Diagrams
7. Wire Lists

This documentation format devised by the author is used to completely describe each of the printed circuit boards.

This chapter will contain more general information on the hardware.

4.2 Block Diagram of Modified Vertichirp Sounder

Figure (4.1) expands on the simplified block diagram of figure (2.5) by including all the clock and control lines as well as the RF signal routing. All the shaded blocks were designed and constructed by the author.

Figure (4.1) Block Diagram - Modified Vertichirp Sounder
The basic clock frequencies of 100 kHz and 1 MHz are generated by the 105B Quartz Oscillator which also provides a battery backup +24 VDC supply. The new Vertichirp Controller oversees the entire system operation. It provides programming information to the 5006 Frequency Synthesizer and control signals to the 4050 Amplifier T / R, the antenna selection relays , the antenna switching circuitry, the 6018 Camera Interface/Display and the FFT Analyser. It also sends data to the to the Data Capture System computer.

Two independent receiver signal paths exist. The first consists of the 4040 Receiver, 2002 Spectrum Analyser and FRS-1 Film Recording System. Because the T500A Linear Amplifier does not support electronic T/R switching the RF transmitted on the vertical Tx antenna is received on a separate vertical Rx antenna switched through to the 4040 Receiver by B2b , the 4040 Rx antenna select circuit. The receiver baseband output is analysed by the 2002 Spectrum Analyser before being recorded on film.

The second signal path consists of two phase-matched receivers , an FFT Analyser and a Data Capture System (DCS) which stores the data on magnetic tape. B1 Antenna Switch allows the connection of one of eight receive antennae to either of the two receivers.

The baseband outputs of the two receivers are analysed by the FFT Analyser and DCS computer which stores partially processed data on magnetic tape for further analysis by mainframe computer ' n Poole, $1983{ }^{\circ}$.

Note that the output of one of the two phase-matched receivers can be recorded on film by using its baseband output as the input to the 2002 Spectrum Analyser instead of the 4040 Receiver output. The 4040 Receiver is however more sensitive than either of the matched receivers and is therefore preferred for the film record.

To run the 4040 Receiver and the phase-matched receivers together the 40 MHz and 40.6 to 70.1 MHz local oscillators are amplified before driving in-phase power splitters. The 1 MHz local oscillator signal , being a TTL signal , drives both dual receivers and 4040 Receiver directly. The gain-weight signal from the 4050 Amplifier T / R also drives both receiver sets.

The SSB Generator B3 allows the 40 MHz local oscillator signal to be offset for windowing and stationary-Doppler measurements.

A single VDU is used in the system and can be switched between Controller and Data Capture System computers.

RPA = Rear Panel kephenol n

Figure- (4.2) Vertichirp Controller Front and Rear Panels

4.3 Location of Vertichirp Controller Circuit Boards

The SWTPC MP-B2 Motherboard, modified for use with the MP-09 Processor board, is mounted on the right hand side of the Controller chassis. The I/O half of this board is horizontal as usual but the processor and memory slots are positioned vertically. This means that the processor, memory and realtime clock boards plug into these slots from the front of the controller with the component side down. See figure (4.3).

Behind the $I / 0$ ports on the rear panel is a cooling fan, the $D C$ to $D C$ converter, the diode PCB and the filter PCB. In front of the CPU and memory boards and secured from the top is the frequency display board, FD.

The front left side of the chassis carries the MP-P power supply. The power switch, "cold" and "warm" reset buttons and the real-time clock display, RTCD are also on the left.

Controller hardware PC board +5 V regulators with corresponding edge connectors occupy the remaining space. The Controller PC board slots are numbered from the rear from PC1 to PC12.

Figure (4.3) Location of Controller Circuit Boards

4.4 Controller Power Supplies

The MP-P power supply provides unregulated 7 to 8 VDC to both the computer and the Controller hardware. Each SWTPC board has its own +5 V regulator. Controller edge connectors PC1 to PC12 each have their own chassis-mounted +5 V regulator. A +24 V battery is used to provide a failsafe +5 VDC and -10 VDC supply. -12 V is regulated to -5 VDC for the sine wave generator PC10.

Figure (4.4) Block Diagram - Controller Power Supplies

4.5 Vertichirp Controller Block Diagram 1 - Computer and Strobe Decode

Figure (4.5) shows the commercial SWTPC computer system together with the Strobe Decode board (PC6) designed by the author. A three-pole change-over switch connects the MP-S Serial Interface output and input lines to either a VDU at 9600 b or to a printer at 300b.

Parallel Interface Adapter (PIA) MP-LA-1 handles the Tcell pulse interrupt on its CA1 input line and the real time clock interrupt on its CB1 line. The A side data outputs of MP-LA-1 drive the Controller 8 -bit data bus which is
called "D" in the circuit diagrams. The B side data outputs of MP-LA-1 together with the CB1 output configured as a "write strobe with E restore" (WRE) are used on the Strobe Decode board PC6 to generate all the strobe signals used in the Controller.

Figure (4.5) Vertichirp Controller Block Diagram 1 - Computer and Strobe Decode (PC6)

The A side of parallel interface MP-LA-2 is used to input the real-time clock data with the data valid flag on the CA1 input. The B side of MP-LA-2 is used to output ionogram control parameters to the Data Capture System (DCS). The CB1 line is used as an acknowledge flag from the data capture system. MP-LA-3 is a spare parallel interface.

One of the S-32 memory boards was modified to operate in the address space from 32 K to 56 K . Both memory boards were provided with a battery supply.

Controller Data Bus(D) and Strobe Decode (PC6)

The Controller hardware was designed in such a way that it requires that data from the computer be latched to select one of a number of possible outputs of a particular controlled parameter.

The method used for parameter selection makes use of both sides of a PIA. Data written to the A side are latched by the PIA and distributed to the Controller hardware. The Controller 8-bit data bus is designated "D" in the system block diagrams. Data written to the PIA B side together with the CB2 output configured as a "write strobe with E restore" are used by the Strobe Decode board PC6 to generate the strobes required for data latching and system control. All the strobe signals are active low but have been called STn for clarity in the circuit diagrams. The strobe number n is decimal unless otherwise specified.

Figure (4.6) Block Diagram - Controller Data Bus (D) and Strobe Decode (PC6)

4.6 Vertichirp Controller Block Diagram 2 - Interface Circuitry

Figure (4.7) Vertichirp Controller Block Diagram 2 - Interface Circuitry
A very brief description of the block diagram of figure (4.7) is given below.

The 100 kHz signal from the 105B Quartz Oscillator can have pulses inserted or deleted by the Advance/Retard board (PC5). This allows the system timing to be changed in steps of 10 microseconds. The Clock Dividers (PC3a) divide the 100 kHz input signal down to 100 Hz for the film recording system and to 1 Hz for the Real-Time Clock (RTC) which displays the system time on the front panel display (RTCD). The real-time clock can also be read by the computer via parallel port MP-LA-2A. The advance/retard, clock divider and real-time clock circuits are all provided with a battery supply.

The Basic Rate board (PC4a) generates a number of different basic rate clock signals. One of these is selected to clock the Synthesizer Control board (PC1) which provides BCD programming information to the 5006 Frequency Synthesizer.

The FFT Sample-Rate Generator (PC7) outputs 10.24 MHz to the L.O. Offset Frequency Synthesizer (PC9) which generates the clock for the Sine Wave Generator (PC10). PC10 outputs two sine waves S0 and S1 which have a fixed phase difference of either 90° lag or 90° lead between them at frequency f. L.0. Offset SSB Generator (B3) outputs either the lower sideband or upper sideband of the 40 MHz local oscillator signal offset by frequency f.

2048 Hz from the FFT Sample-Rate Generator (PC7) clocks the M-sequence Generator (PC4C). The output M-sequence which has a programmable duration is modified by the T / R Rate Generator board to produce the signals used in transmit/receive switching.

The FFT Analyser sample-rate signal is selected from eight signals ranging from 1024 Hz to 8 Hz generated on PC7.

Either 4 Hz or 64 Hz from PC7 is selected to go to the Tcell Generator board (PC4b). The time between Tcell pulses determines the cell period ${ }^{T} C$. The choice of input frequency to the Tcell Generator board gives two overlapping sets of cell periods, one set being for normal multi-cell vertical ionograms, the other for Stationary-Doppler measurements.

Circuitry is provided to synchronize the FFT rate generator with the 1 Hz signal from the Clock Dividers (PC3a).

The Sweep-Start and Control board (PC3b) synchronizes ionogram start times with the falling edge of the 1 Hz system clock. PC3b also contains two 8-bit registers , Control Register A and Control Register B , which define system operation as well as "power-on reset" circuitry.

PC2 multiplies the synthesizer BCD programming information by four to obtain the transmitter frequency which is then displayed on the front panel Frequency Display board (FD). PC2 also generates bold and fine frequency mark signals for the camera system and selects the correct transmitter filters via the Filter Drivers in box B2a. Box B2b contains two co-axial relays with associated driver circuitry used for the selection of either a vertical or an oblique antenna as the input to the 4040 receiver.

PC8a provides the control signals to the Receive Antenna Switch (B1) which allows the selection of any of eight receive antennae to either of the two phase-matched receivers. The Film Speed Control (PC8b) generates a film-rate signal that can be changed by the computer.

The following sections explain why each of the functional blocks shown in figure (4.7) were necessary. The circuitry of each function is described in greater detail in block diagram form. All the interface circuits , except for the Real-time Clock and Real-time-clock Display, were designed and constructed by the author. Allon Poole designed and built the clock.

4.7 System Timing Circuits

The four boards used for system timing are discussed here.

Advance/Retard Circuit (PC5)

System timing is derived from the 100 kHz signal from the HP 105B Quartz Oscillator. The Advance/Retard board (PC5) allows the system timing to be changed in 10 microsecond steps by the addition or deletion of pulses from this 100 kHz signal.

Figure (4.8) Block Diagram - Advance/Retard Circuitry (PC5)

The ability to change system timing is of prime importance for oblique incidence synchronization which depends on the relative stability of the transmitting and receiving ionosonde Quartz Oscillators. Different rates of change of timing are useful in searching for the oblique signal. Timing
changes must affect both the ionogram start times as well as the instantaneous frequency of the system if done during a sweep. Both requirements are met by deriving the system timing and the basic rate clock signal from the output of the Advance/Retard board.

Block Diagram - Advance/Retard Circuit (PC5)

Four latched bits from the Controller data bus (D) determine shift direction (advance or retard) and shift rate (1 , 10 or $100 \mathrm{~ms} / \mathrm{s}$). An 8-bit number loaded into the counters is decremented by either the advance or the retard signal which adds or deletes pulses from the 100 kHz square wave when shifting is initiated. When the counters reach zero, shifting is disabled.

Figure (4.9a) Advance Waveform

Figure (4.9b) Retard Wayeform

Clock Dividers (PC3a)

The 100 kHz signal from the Advance/Retard circuit board (PC5) is divided to produce 1 kHz for the film-speed board (PC8a), 100 Hz for the clock in the 6018 Camera Interface/Display and 1 Hz for the system real-time clock and sweep-start circuitry.

Figure (4.10) Block Diagram - Clock Díviders (PC3a)

The standby battery supplies +5 V to all the clock dividers which produce $1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 1 Hz from the 100 kHz input signal.

Real Time Clock (RTC)

The real time clock (designed by A. Poole) provides place, year, year daynumber , hours, minutes and seconds to both the clock display (RTCD) and also to the control computer. It consists of a battery-supplied clock multiplexer board clocked by 1 Hz from the clock dividers.

Figure (4.11) Block Diagram - Real Time Clock (RTC)
1 Hz from the clock dividers increments the time in the clock counters which is initially set using the switches on the Controller front panel. The 4-bit BCD clock data are associated with a 4-bit parameter number that ranges from 0 to 9. The data-valid pulse is used for demultiplexing.

Parameter number	0	1	2	3	4	5	6	7	8	9
Clock data	S1	S10	M1	M10	H1	H10	D1	D10	D100	Y1

Real Time Clock Display (RTCD)

This board (designed by A. Poole) demultiplexes and displays the 10 -digit clock data from the real-time clock board. Place identification and a tens-of-years digit are added to the display using a switch array on this board.

Figure (4.12) Block Diagram - Real Time Clock Display (RTCD)

4.8 Synthesizer Control

The Basic-Rate and Synthesizer Control boards are described in this section.

Basic-Rate Circuitry - (PC4a)

The original system under Logchirp Control provided one fixed basic rate of $50 \mathrm{kHz} / \mathrm{s}$ for vertical operation and a choice of either 50 or $100 \mathrm{kHz} / \mathrm{s}$ basic rate for oblique operation. Equation (2.6) gives the virtual height of the ionosphere as :- $\quad h^{\prime}=c\left(f_{T}-f_{R}\right)_{\max } / 2 k_{B}$
Note that h^{\prime} is inversely proportional to the basic sweep rate k_{B}.

The Basic-Rate board (PC4a) provides a number of different basic rates besides 50 and $100 \mathrm{kHz} / \mathrm{s}$. They are intended for experimental vertical and oblique operation with the most important set being $25,50,100,200,400$ and $800 \mathrm{kHz} / \mathrm{s}$. In generating these signals two other basic-rate sets were produced. These are 40 and $80 \mathrm{kHz} / \mathrm{s}$ and $250,500,1000,2000$ and 4000 $\mathrm{kHz} / \mathrm{s}$, the latter set probably not being of much practical value. A basic rate of zero is used for Stationary-Doppler recordings.

Figure (4.13) Chirp Signal Bandwldth

Note that doubling the basic rate doubles the chirp bandwidth B for a fixed cell period T_{C}, fig.(4.13). This will affect height resolution particularly
near a critical frequency where the electron density changes rapidly. The same frequency change per cell can be obtained by halving the cell period but this results in less energy being transmitted for that measurement.

The 5006 Frequency Synthesizer is directly programmable from 40.125 to 47.5 MHz in 1 Hz increments by supplying it with a 7-decade BCD number. The 0.5 to 30.0 MHz range is obtained by multiplying this signal by 4 and subtracting 160.0 MHz . If the programmed frequency f_{p} is given by :-

$$
\begin{equation*}
f_{P}=40.0 \mathrm{MHz}+B C D \text { number } \tag{4.1}
\end{equation*}
$$

the transmitted signal f_{T} can be written as :-

$$
\begin{align*}
& f_{T}=4 f_{P}-160.0 \mathrm{MHz} \\
& f_{T}=4(40.0+B C D \text { number })-160.0 \mathrm{MHz} \\
& f_{T}=4(B C D \text { number }) \tag{4.2}
\end{align*}
$$

The 0.5 to 30.0 MHz range is therefore covered in 4 Hz increments.

To generate a frequency ramp or "chirp" signal with a slope of $k_{B} \mathrm{kHz} / \mathrm{s}$ the synthesizer programming counters on PC1 must be clocked at $k_{B} / 4 \mathrm{kHz}$. This frequency is generated by the Basic-Rate board (PC4a). Latched data selects the input frequency and the output basic-rate clock.

Figure (4.14) Block Diagram - Basic Rate (PC4a)

Synthesizer Control - (PC1)

The 5006 Frequency Synthesizer produces three swept-frequency outputs ($40.125-47.5 \mathrm{MHz}, \quad 0.5-30.0 \mathrm{MHz}$ and $0.125-7.5 \mathrm{MHz}$) and four fixed frequency outputs ($100 \mathrm{kHz}, 1 \mathrm{MHz}, 5 \mathrm{MHz}$ and 40 MHz).

Frequencies in the range $40.125-47.5 \mathrm{MHz}$ are programmed with a resolution of 1 Hz by PC1 which supplies the synthesizer with a 7 -decade BCD number. Subtraction of 40 MHz from this signal gives the $0.125-7.5 \mathrm{MHz}$ output. The transmitted signal $f_{T}(0.5-30.0 \mathrm{MHz})$ is related to the $B C D$ number according to equation (4.2), $f_{T}=4(B C D$ number), and has a frequency resolution of 4 Hz .

Latches on the Synthesizer Control board (PC1) are sequentially loaded with 7 decades of programming data from the Controller bus. These 28 bits are parallel loaded into the $B C D$ counters which program the synthesizer. The counters can be incremented by the basic-rate clock.

4.9 FFT Sample-Rate Generator (PC7)

The Fast Fourier Transform (FFT) Analyser [Fisher , 1979] was designed to sample and simultaneously transform two time-varying signals band-limited to 500 Hz to provide two sets of discrete complex amplitudes from which signal phases could be calculated.

The analyser performs a 1024 point transform and outputs 512 cosine , 512 sine and 512 power spectral amplitudes for each channel as there are 512 positive frequency points in the transform.

A sample rate of 1024 Hz satisfies the minimum sample frequency condition of the Sampling Theorem and also gives a resolution of 1 Hz in the frequency domain. A higher sample rate would allow the faster accumulation of 1024 points but would reduce frequency domain resolution. The FFT Sample-Rate generator was designed with 1024 Hz as the maximum sample rate.

To reduce sampling time Poole added a "stop sampling" signal to the FFT Analyser to cause it to transform the accumulated data which was made up to 1024 points by the inclusion of zeros. This reduces frequency resolution but was necessary to enable a multi-cell ionogram to be recorded in a reasonable time (e.g. 5 minutes).

Line-of-sight motion of the ionosphere can be detected by setting the transmitter to a specific frequency and analysing the Doppler frequency shift on the received signal to produce a so-called "Stationary-Doppler Ionogram". The FFT Sample-Rate generator was therefore designed to allow the selection of sample rates from $2^{10}=1024 \mathrm{~Hz}$ down to $2^{3}=8 \mathrm{~Hz}$. Note that
the input signal to the FFT Analyser must be band-limited to half the sample rate to prevent aliasing.

Figure (4.16) Block Diagram - FFT Sample Rate Generator (PC7)

1 MHz from the 105 B Quartz Oscillator is divided by 25 to produce a 40 kHz reference signal for the phase-locked loop which multiplies it by 256 to provide 10.24 MHz output.

The 10.24 MHz signal is divided by 10^{3} to 10.24 kHz . Division by 5 gives 2048 Hz which is used to clock the M-sequence generator.

Division of 10.24 kHz by 10 gives 1024 Hz which is divided to 512,256 $128,64,32,16,8$ and 4 Hz . One of the 8 frequencies from 1024 Hz to 8 Hz can be selected as the FFT sample-rate signal.

4 Hz and 64 Hz are output with either one or the other being selected as the Tcell-rate clock. Because the cell period is derived from a generator based on a phase-locked loop, provision is made for synchronization with the system 1 Hz clock signal at the begining of every ionogram. "Re-sync FFT" is required for resynchronization of the Tcell pulse to the system clock during oblique signal searching.

4.10 Windowing and Stationary-Doppler Recordings

To perform both windowing and stationary-Doppler recordings as described in section 3.4 and 3.5 a fixed frequency offset must be introduced into the received signal path. For windowing the ionosphere the instantaneous frequency difference between the transmitted and the received frequency must be reduced. For stationary Doppler recordings the "no motion" signal must be positioned within the analysis range by creating a fixed frequency difference between transmitted and received frequency.

The obvious method of achieving these offsets would be to use two frequency synthesizers, one to generate the signal to be transmitted and the other to generate the receiver local oscillator frequency ramp. This approach was not used because of the cost of a second synthesizer.

The second method considered involved programming the synthesizer from two sets of counters with the transmit/receive (T/R) signal being used to select between them. Presetting the counters with different initial values before clocking would introduce the required offset. The first problem with this idea is that the minimum bit period of the T / R waveform is 488 microseconds whereas the synthesizer takes about 1 millisecond for the frequency to
settle to its new value. The second problem is that consecutive transmit or receive signal segments will, in general, be discontinuous in phase. The resulting signal would therefore not be the continuous linear ramp required for chirpsounding , and parameter evaluation from signal phase would not be possible.

A block diagram of the Chirpsounder receiver is given in figure (4.17). The received signal is mixed with the swept 40.6 to 70.1 MHz local oscillator signal to give a 40.1 MHz first IF. Mixing this with 40.0 MHz gives the second IF of 100 kHz . A 100 kHz bandpass crystal filter determines the ultimate bandwidth of 530 Hz centred about 100275 Hz . This signal is then demodulated to get the baseband signal.

Figure (4.17) Block Diagram - Chirpsounder Receiver

Equation (2.3) gives the chirpsounding difference frequency as :-

$$
\begin{aligned}
\Delta f & =f_{T}-f_{R} \\
\text { thus } f_{R} & =f_{T}-\Delta f
\end{aligned}
$$

The frequency of the swept local oscillator, L01, is given by :-

$$
\begin{equation*}
\mathrm{LO1}=\mathrm{f}_{\mathrm{T}}+40.1 \mathrm{MHz} \tag{4.3}
\end{equation*}
$$

The first intermediate frequency, IF1 is :-

$$
\mathrm{IF1}=\mathrm{L01}-\mathrm{f}_{\mathrm{R}}
$$

Substituting for $L 01$ and f_{R} yeilds :-

$$
\begin{align*}
\text { IF1 } & =f_{T}+40.1-\left(f_{T}-\Delta f\right) \\
& =40.1+\Delta f \tag{4.4}
\end{align*}
$$

The second local oscillator, L02 , is :-

$$
\begin{equation*}
\mathrm{LO2}=40 \mathrm{MHz} \tag{4.5}
\end{equation*}
$$

The second intermediate frequency, IF2 is :-

$$
\text { IF2 }=\text { IF1 }- \text { L02 }
$$

Substituting for IF1 and L02 gives :-

$$
\begin{align*}
\text { IF2 } & =40.1+\Delta f-40 \\
& =100 \mathrm{kHz}+\Delta f \tag{4.6}
\end{align*}
$$

The third local oscillator, LO3, is :-

$$
\begin{equation*}
\mathrm{LO3}=100 \mathrm{kHz} \tag{4.7}
\end{equation*}
$$

and the baseband signal , B, is thus :-

$$
\begin{align*}
B & =I F 2-L 03 \\
& =100+\Delta f-100 \\
& =\Delta f \tag{4.8}
\end{align*}
$$

Windowing (section 3.4) requires that the difference frequency Δf be reduced by some fixed offset f_{0} before the bandpass filter. This can be achieved by increasing the frequency of L02 by f_{0}.

That is :-

$$
\begin{align*}
\mathrm{LO}_{\text {Window }} & =40 \mathrm{MHz}+\mathrm{f}_{0} \tag{4.9}\\
\text { IF2 } & =\mathrm{IF} 1-\mathrm{L} 02
\end{align*}
$$

then

$$
=40.1+\Delta f-\left(40+f_{0}\right)
$$

$$
\begin{equation*}
=100 \mathrm{kHz}+\Delta \mathrm{f}-\mathrm{f}_{0} \tag{4.10}
\end{equation*}
$$

and the baseband signal is :-

$$
B=I F 2-L 03
$$

$$
=100+\Delta f-f_{0}-100
$$

$$
\begin{equation*}
=\Delta f-f_{0} \tag{4.11}
\end{equation*}
$$

Equation (3.10) gives $f_{0 m i n}=250 \mathrm{~Hz}$. For ease of synthesis of both windowing and Doppler offset frequencies fomin was chosen to be 256 Hz .

For stationary Doppler recordings (section 3.5), no line-of sight component of motion of the reflection point results in $f=0 \mathrm{~Hz}$. This "no motion" signal can be positioned within the analysis range by reducing the frequency of LO2 by some fixed offset $f_{O D}$.

$$
\begin{equation*}
{ }^{\text {LO2 }} \text { Doppler }=40 \mathrm{MHz}-\mathrm{f}_{0 \mathrm{D}} \tag{4.12}
\end{equation*}
$$

The second intermediate frequency becomes :-

$$
\begin{align*}
\text { IF2 } & =\text { IF1 }-L 02 \\
& =40.1+0-\left(40-f_{O D}\right) \text { as } \Delta f=0 \\
& =100 \mathrm{kHz}+f_{O D} \tag{4.13}
\end{align*}
$$

The baseband is then :-

$$
\begin{align*}
B & =I F 2-L O 3 \\
& =100+f_{O D}-100 \\
& =f_{O D} \tag{4.14}
\end{align*}
$$

The "no motion" signal is thus positioned at $\mathrm{f}_{0 \mathrm{D}} \mathrm{Hz}$ enabling both upward and downward motion of the reflection point to be observed. The choice of $f_{O D}$ is governed by both the maximum expected vertical component of velocity of the reflection point and the frequency of transmission.

If an observer moves at velocity u away from a source of electromagnetic radiation of frequency f the observer receives frequency f^{\prime} given by (Halliday and Resnick, 1970) :-

$$
\begin{equation*}
f^{\prime}=f(1-u / c) / \sqrt{1-(u / c)^{2}} \tag{4.15}
\end{equation*}
$$

where $c=$ velocity of an electromagnetic wave in free space.

In an ionospheric context equation (4.15) gives the frequency observed at the moving reflection point. Reflection of this signal back to the source
introduces a second Doppler shift so that the frequency observed at the receiver is:-

$$
f^{\prime \prime}=f^{\prime}(1-u / c) / \sqrt{1-(u / c)^{2}}
$$

Substituting for f^{\prime} from equation (4.15) gives :-

$$
\begin{aligned}
f^{\prime \prime} & =f(1-u / c)^{2} /\left(1-(u / c)^{2}\right) \\
& =f\left(1-2 u / c+(u / c)^{2}\right) /\left(1-(u / c)^{2}\right)
\end{aligned}
$$

Since u is very much smaller than $c,(u / c)^{2}$ can be approximated as 0 .
Then

$$
f^{\prime \prime}=f-2 u f / c
$$

or

$$
\begin{align*}
f-f^{\prime \prime} & =-2 u f / c \\
\Delta f_{\text {Doppler reflected }} & =-2 u f / c \tag{4.16}
\end{align*}
$$

An upper limit of foppler Reflected can be calculated by taking a sounding frequency of 10 MHz and the maximum velocity of the reflection point as being about $+60 \mathrm{~m} / \mathrm{s}$ (ie. upwards).

Then

$$
\begin{aligned}
\Delta f_{\text {Doppler reflected }}= & -2 \cdot 60 \cdot 10^{7} / 3 \cdot 10^{8} \\
& =-4 \mathrm{~Hz}
\end{aligned}
$$

The system was designed to have convenient local oscillator offsets for Doppler measurements of $f_{O D}=2,4,8,16,32$ or 64 Hz .

L02 window (equation (4.9)) can be obtained by selecting the upper sideband of $L 02$ modulated by the windowing offset frequency f_{0}.
${ }^{L 02}$ Doppler (equation (4.12)) can be obtained by selecting the lower sideband of LO2 modulated by the Doppler offset frequency $f_{O D}$.

The Local Oscillator Offset Frequency Synthesizer (PC9), Sine Wave Generator (PC10) and SSB Generator (B3) were designed to generate LO2 window and ${ }^{\text {LO2 Doppler }}$.

4. 11 Offsetting the 40 MHz Local Oscillator

The circuitry described below was designed to offset the 40 MHz local oscillator by a programmed amount for the purpose of ionospheric windowing and stationary-Doppler measurements.

Local Oscillator Offset Frequency Synthesizer (PC9)

A clocking frequency of 256 f is required by PC10 to produce two sine waves of frequency f. PC9 synthesizes $256 \times 2,256 \times 4,256 \times 8,256 \times 16,256 x 32$, and 256×64 for stationary-Doppler measurements and $256(256 \times 1)$ through to $256(256 \times 99)$ for windowing.

Figure (4.18) Block Diagram - Local Oscillator Offset frequency Syntheslzer (PC9)
10.24 MHz from the FFT Sample-Rate Generator (PC7) is divided by 25 to provide a 409600 Hz reference signal for the phase-locked loop which outputs 6553600 Hz . Note that 6553600 Hz can be written as $2^{18} \times 5^{2}$ which is equal to $2^{16} \times 100$. The output frequency of the rate multiplier $f_{\text {out }}$ is related to
the input frequency $f_{\text {in }}$ by $f_{\text {out }}=M f_{\text {in }} / 100$ for M greater than 0 but less than or equal to 99 . Therefore :-

$$
\begin{align*}
f_{\text {out }} & =M \cdot 2^{16} \cdot 100 / 100 \\
& =M \cdot 2^{8} \cdot 2^{8} \\
& =256 \cdot 256 \cdot M \tag{4.17}
\end{align*}
$$

The output frequency select multiplexer selects $f_{\text {out }} / 2^{0}$ as SF1, the clocking frequency for PC10 for generating all the windowing offset frequencies. The speed of the 2716 EPROMS on PC10 limits the maximum allowable value of M to 30 .

To generate the frequencies for stationary-Doppler the rate multiplication factor M is set to 1 so that $f_{\text {out }}=256.256$. Division of this frequency by 2^{n} for n ranging from 1 to 6 gives the six clocking frequencies used in Doppler measurements.

The output signal SF1 can also be set to a low TTL logic level when no local oscillator offset is required.

Sine Wave Generator (PC10)

The Sine Wave Generator (PC10) generates two sine waves S0 and S1 of the same frequency f. The phase of S1 can be selected to lead or lag that of S0 by 90°. These two signals are used in the SSB (Single Sideband) Generator (B3) to offset the 40 MHz local oscillator by the frequency f. B3 uses the phase-shift method of generating a single sideband signal.

The minimum offset frequency required is 2 Hz for stationary Doppler. The maximum offset frequency used for windowing is about 7.5 kHz . To ensure a
constant 90° phase shift over such a wide range of frequencies the sine wave generator (PC10) had to be directly coupled to the following stage (B3).

Sine Wave Generator Circuit Development

Figure (4.19) Cosine Wave
Let one cycle of a cosine wave (for convenience in later analysis) be sampled N times along the x-axis with the y-axis being divided into L quantized levels. The N quantized y values are stored in an EPROM at addresses 0 to $\mathrm{N}-1$. A synchronous binary counter clocked at Nf addresses the EPROM as shown in figure (4.20). The output data are latched and drive a digital to analogue converter.

Figure (4.20) Block Diagram - Digital Sine Wave Generator

The D to A converter output is a stepped cosine wave of frequency f with L quantized levels. Figure (4.21) shows a cosine wave with $L=N=32$.

Figure (4.21) Digitally Generated Sine Wave

Figure (4.22a) Cosine Wave - time domain

Figure (4.23a) Sampled Cosine Wave - time domain

Figure (4.24a) Top Hat - time domain

Figure (4.22b) Cosine Wave - frequency domain

Figure (4.23b) Sampled Cosine Wave - frequency domain

Figure (4.24b) Top Hat - frequency domain
(b)

'Figure (4.25a) Quantized Cosine Wave - time domain Figure (4.25b) Quantized Cosine Wave - frequency domain

$$
s(t)=\int_{-\infty}^{+\infty} S(f) e^{+j 2 \pi f t} d t \quad S(f)=\int_{-\infty}^{+\infty} s(t) e^{-j 2 x f t} d t
$$

Figure (4.22a) shows a cosine wave $s(t)$ with frequency f and period T. Figure (4.22b) shows the modulus of the frequency spectrum $S(f)$ which consists of only the fundamental frequency f.

The effect of sampling the cosine wave N times per cycle, figure (4.23a), is shown in the frequency domain in figure (4.23b). Harmonics are present at $(N-1) f$ and $(N+1) f,(2 N-1) f$ and $(2 N+1) f$ etc.

The modulus of the frequency spectrum of a pulse of width T / N is shown in figure (4.24a). This is the modulus of the sinc function, that is $\left|\frac{\sin \pi f}{\pi f}\right|$.

The modulus of the frequency spectrum of the quantized cosine wave of figure (4.25a) is shown in figure (4.25b) and is the convolution of (4.23a) and (4.24a). The quantized cosine wave has harmonics at :f, $(N-1) f,(N+1) f,(2 N-1) f,(2 N+1) f, \ldots \ldots \ldots$. with amplitudes of :$1,1 /(N-1), 1 /(N+1), 1 /(2 N-1), 1 /(2 N+1), \ldots \ldots \ldots$.

The number of samples of one cycle of the cosine wave was choosen to be 256 . This allows the use of an 8-bit binary counter to address the EPROM. The clocking frequency, 256f , is generated by PC9.

By choosing $L=256$ levels on the y-axis the full 8 -bits of EPROM data can be used to drive an 8-bit digital-to-analogue converter.

The output sine wave has therefore a first harmonic of amplitude $1 /(\mathrm{N}-1)$ of the amplitude of the fundamental at frequency $(\mathrm{N}-1) \mathrm{f}=255 \mathrm{f}$.

The EPROM data were calculated as follows :-
$N=$ total number of x-axis samples for 1 cosine cycle $=256$.
$\mathrm{L}=$ upper limit of 256 quantized levels from 0 to $255=255$
$n=n$th sample, $0 \leqslant n \leqslant 255$
$S_{n}=$ EPROM data, the nth sample. $0 \leq S_{n} \leq L$

$$
\begin{align*}
S_{n} & =(\cos (360 / N) n+1)(L / 2) \\
& =(\cos (360 / 256)) n+1)(255 / 2) \tag{4.18}
\end{align*}
$$

for $0 \leqslant n \leqslant 255$

The quadrature sine wave generator designed for the system is shown below in figure (4.26).

A synchronous binary counter clocked at 256 f addresses the two EPROMS. EPROM 0 contains one cycle of cosine wave data at addresses 0 to 255. These data generate the reference signal via latch 0 and D-to-A converter 0 . The output signal can be written as :-

$$
\begin{equation*}
S 0=E_{m} \cos \omega_{m} t \tag{4.19}
\end{equation*}
$$

where $E_{m}=$ maximum signal amplitude , $\omega=2 \pi f$ and $t=$ time .

EPROM 1 contains two sets of data, the first at addresses 0 to 255 being the EPROM 0 data shifted by $+90^{\circ}$ (i.e. $\pi / 2$ radians). When selected this data generates

$$
\begin{equation*}
S 1=E_{m} \cos \left(\omega_{m}+\pi / 2\right) t \tag{4.20}
\end{equation*}
$$

The second set of data stored at addresses 256 to 511 is the EPROM 0 data shifted by -90° (i.e. $-\pi / 2$ radians). When selected this set gives :-

$$
\begin{equation*}
S 1=E_{m} \cos \left(\omega_{m}-\pi / 2\right) t \tag{4.21}
\end{equation*}
$$

The signals SO and S 1 drive the SSB Generator (B3) directly.

SSB Generator Circuit (B3)

The SSB generator circuit is used to offset the 40 MHz local oscillator by the frequency f generated on PC10. The lower sideband ($40-\mathrm{f}$) is used for stationary-Doppler and the upper sideband $(40+f)$ for windowing. For normal vertical- and oblique-incidence ionograms the 40 MHz signal is not shifted.

The phase-shift SSB circuit [Schwartz , 1970] is given in figure (4.27)

Figure (4.27) Block Dlagram - SSB Generator (B3)

The 40 MHz carrier, $E_{C C} \cos \omega_{C} t$ is split into two signals $E_{C} \cos \omega_{C} t$ and $E_{C} \cos \left(\omega_{C}-\pi / 2\right) t$ which are mixed with $S 0$ and $S 1$ respectively. The signal $V 1$ is therefore :-

$$
V 1=\left(E_{c} \cos \omega_{c} t\right)\left(E_{m} \cos \omega t\right)
$$

Using the identity $(\cos A)(\cos B)=1 / 2 \cos (A+B)+1 / 2 \cos (A-B)$

$$
\begin{equation*}
V 1=1 / 2 E_{c} E_{m} \cos \left(\omega_{c}+\omega\right) t+1 / 2 E_{c} E_{m} \cos \left(\omega_{c}-\omega\right) t \tag{4.22}
\end{equation*}
$$

Similarly, choosing $S 1=E_{m} \cos (\omega+\pi / 2) t$, the signal V2 is :-

$$
\begin{aligned}
V 2 & =\left(E_{C} \cos \left(\omega_{c}-\pi / 2\right) t\right)\left(E_{m} \cos (\omega+\pi / 2) t\right) \\
& =1 / 2 E_{C} E_{m} \cos \left(\omega_{c}-\pi / 2+\omega+\pi / 2\right) t+1 / 2 E_{C} E_{m} \cos \left(\omega_{C}-\pi / 2-\omega-\pi / 2\right) t \\
& =1 / 2 E_{C} E_{m} \cos \left(\omega_{C}+\omega\right) t+1 / 2 E_{c} E_{m} \cos \left(\omega_{C}-\omega-\pi\right) t
\end{aligned}
$$

Since $\cos (A-\pi)=-\cos A$, V2 can be written :-

$$
\begin{equation*}
V 2=1 / 2 E_{c} E_{m} \cos \left(\omega_{c}+\omega\right) t-1 / 2 E_{c} E_{m} \cos \left(\omega_{c}-\omega\right) t \tag{4.23}
\end{equation*}
$$

The power combiner sums V1 and V2 to give :-

$$
\begin{align*}
V o & =V 1+V 2 \\
& =1 / 2 E_{c} E_{m} \cos \left(\omega_{c}+\omega\right) t+1 / 2 E_{c} E_{m} \cos \left(\omega_{c}-\omega\right) t \\
& +1 / 2 E_{c} E_{m} \cos \left(\omega_{c}+\omega\right) t-1 / 2 E_{c} E_{m} \cos \left(\omega_{c}-\omega\right) t \\
& =E_{c} E_{m} \cos \left(\omega_{c}+\omega\right) t \tag{4.24}
\end{align*}
$$

This is the upper sideband as required for windowing (equation (4.9)).

By choosing $S 1=E_{m} \cos (\omega-\pi / 2) t$ the lower sideband is obtained. That is :-

$$
\begin{equation*}
V_{0}=E_{c} E_{m} \cos \left(\omega_{c}-\omega\right) t \tag{4.25}
\end{equation*}
$$

This signal is used for stationary-Doppler measurements (equation (4.12)).

Programmable M-Sequence Generator

The minimum ionospheric virtual height $\mathrm{h}_{\text {min }}^{\prime}$ is approximately 90 km . The corresponding minimum delay time $\Delta t_{\text {min }}$ can be obtained from equation (1.1).

$$
\begin{align*}
\Delta t_{\min } & =2 h_{\min }^{\prime} / c \\
& =2 \cdot 90 / 3 \cdot 10^{5} \\
& =600 \mu \mathrm{~s} \tag{4.26}
\end{align*}
$$

Since the minimum target delay is short compared with the duration of a cell it is necessary to employ transmit/receive (T/R) switching. A maximum-length sequence or M -sequence, also known as a pseudo-random binary sequence [MacWilliams and Sloane , 1976], was chosen as the switching waveform because the echo reception probability (auto-correlation function) rises linearly during the first bit period to a constant value. The probability remains constant for all delay times up to one bit period less than the M-sequence repeat period when it falls to zero. The M-sequence repeat period was chosen to be equal to the cell period which is very much greater than the maximum delay of interest.

600 us as calculated in equation (4.26) is thus the maximum single bit period allowed before reduced echo reception probability occurs at the
delays of interest. The minimum single-bit period is determined by the maximum rate of T / R switching possible which is about 200μ s.
An M-sequence can be generated using a shift register with appropriate feedback. Certain bits are modulo-two summed (exclusive-OR'ed) and fed back into the shift register. An n-bit shift register can have 2^{n} possible states. An M-sequence of order n can have $2^{n}-1$ possible states before repeating since the all-zero state is invalid.

An 11-bit shift register has $2^{11}=2048$ possible states. Choosing a clock frequency of 2048 Hz results in a single-bit period of $1 / 2048=488.28 \mu \mathrm{~s}$. Relating this time to height using equation (1.1) :-

$$
\begin{aligned}
h^{\prime} & =\left(488.28 \times 10^{-6}\right)\left(3 \times 10^{5}\right) / 2 \\
& =73.24 \mathrm{~km}
\end{aligned}
$$

The echo reception probability reaches its constant value for reflections from above 73 km . E-region reflections which are from about 90 km are therefore received with maximum possible probability.

An 11-bit M-sequence can be clocked $2^{11}-1$ times before it repeats. Clocked at 2048 Hz the sequence would complete in 2047 clock pulses and would begin again on the 2048th clock pulse. For $T_{C}=1 \mathrm{~s}$ the start of the M -sequence relative to the Tcell pulse would precess by 1 clock pulse ($488.28 \mu \mathrm{~s}$) each second. By resetting the M-sequence at the start of each cell there would be no precession and the code would be identical for each cell.

A clock frequency of 2048 Hz implies 1024 pulses in half a second. Because $2^{10}=1024$ an M-sequence of order 10 would repeat every 1023 clock pulses. Thus for different cell periods all related by a factor of 2 , it is only necessary to change the M-sequence order to obtain a code with a repeat
period equal to the cell period.

The Programmable M-sequence Generator (PC4C) allows the selection of Msequences of order 6 through 16 to correspond to cell periods of $1 / 32 \mathrm{~s}$ through to 32 s . To obtain M-sequences of order $6,7,8,9,10,11,12,13,14,15$ and 16 a 16 bit shift register is required. A computer program was run to list all the possible feedback points for an M-sequence of a particular order. It was discovered that any one of the M-sequences required could be obtained by using only 4 feedback points. Shift register bits 2 and 3 were common to all the orders required.

The shift register bits are designated b1 through to b16. The 4 feedback points are designated F1 , F2 , F3 and F4 and the modulo-2 addition of the data selected by these points is called F.

Q a modulo-2 adder or exclusive $O R$
Figure (4.29) M-sequence Generator

Depending on the order required the selection of one of b4, b5 , b8 or b9 as F3 gives an M-sequence. The fourth feedback point F4 must select data from the bit number equal to the M-sequence order required as this determines the shift register length. For example, F4 must be connected to b10 for an M-sequence of order 10. Being connected to the end of the shift register this point is also the output of the M-sequence.

If the data selected by F1 , F2 , F3 and F4 is A , B , C and D respectively the feedback F is :-

$$
\begin{equation*}
F=A \oplus(B \oplus(C \oplus D)) \tag{4.27}
\end{equation*}
$$

The reset on the shift registers used clears all the bits to zero. This is the only invalid bit combination in an M-sequence. If inverted it becomes the valid all-ones code.

Let the shift register contain inverted data. Then the four feedback points select the inverted data A , B , C and D. The feedback F after successive exclusive ORing is :-

$$
\begin{array}{rlrl}
F & =\bar{A} \oplus(\bar{B} \oplus(\bar{C} \oplus \bar{D})) & \\
& =\bar{A} \oplus(\bar{B} \oplus(C \oplus D)) & \text { as } \bar{X} \oplus Y=X \oplus Y \\
& =\bar{A} \oplus(\bar{B} \oplus C \oplus D) & & \text { as } \bar{X} \oplus Y=\bar{X} \oplus Y \\
& =A \oplus B \oplus C \oplus D & & \text { as } \bar{X} \oplus Y=X \oplus Y \\
F & =A \oplus B \oplus C \oplus D & (4.28)
\end{array}
$$

The feedback is exactly the same as was obtained with non-inverted data. Because the shift register contains inverted data F must be inverted to get the correct feedback.

$$
F=\overline{A \otimes B \oplus C \otimes D}
$$

The non-inverted M-sequence is obtained by inverting the data selected by F4.

The XOR gate and inverter can be replaced by an XNOR gate. If the other two XOR gates are also replaced with XNOR gates (shown here as XOR gates followed by an inverter) the correct feedback is still obtained as shown below in figure (4.31)

Figure (4.31) M-sequence generator - XNOR implementation

Figure (4.32) shows the block diagram of the programmable M-sequence generator. Data from the computer is latched and then used to select the third and fourth feedback points thereby determining the order of the Msequence. The Tcell pulse resets the shift register to an all-zero state at the beginning of each cell. The shift register is clocked at 2048 Hz .

Figure (4.32) Block Diagram - Programmable M-sequence Generator (PC4c)

T/R Gain Weight Generator - replaces 4050 Amplifier T/R board A6

The original Barry Research T / R signal was based on a 16 -bit code , the period of which was changed at a 1 Hz rate to eliminate the blind range that would otherwise occur. The T / R rate generator board produced this signal and converted it to three signals, the T / R pulse train, the Rx gainweight pulse train and the Tx gain-weight pulse train. These signals are all the same except for the Rx gain-weight pulse train which rises 180 s before the other two.

The T/R Gain-Weight Generator board is shown as a block diagram in figure (4.33). It generates the three signals from the M-sequence produced on PC4C and plugs directly into slot A6 in the 4050 Amplifier T / R. The two control lines allow the output signals to be set to one of three possible states. These states are Tx only or Rx only for oblique operation or T / R switching for vertical operation.

Figure (4.33) Block Diagram - T/R Gain Weight Generator (replaces 4050 board A6)

4. 13 System Control

Tcell Pulse Generator (PC4b)

The cell, as described in section 3.2, is the fundamental building block of the synthesizer control system. During a cell the ionosonde transmitter frequency can increase at some linear rate, the basic rate, or it can remain constant. The Tcell Pulse Generator (PC4b) outputs the pulses that determine the cell period T_{C}.

Figure (4.34) Block Diagram - Tcell Pulse Generator (PC4b)

Either 64 or 4 Hz can be selected as the Tcell rate. This provides two overlapping sets of cell periods, one set being for normal multi-cell vertical or oblique ionograms and the other for stationary-Doppler measurements. The latter set includes cell periods up to 64 s for the integration and analysis of small Doppler frequency shifts.

The dividers can be cleared by the "sync on second" pulse. Latched data select the required cell period. The output 100 ns long pulse ,"Tcell pulse" , signals the beginning of a new cell.

Gating on PC3b allows the Tcell pulse to be used to interrupt the computer , load the synthesizer counters and latch antenna-select data.

Sweep Start and Control (PC3b)

The sweep start circuitry was designed to start an ionogram synchronous with the falling edge of the 1 Hz clock signal. At any time less than 1 s before an ionogram is due to start the circuit can be armed by a strobe signal. The signal "sweep" goes high on the next falling edge of the 1 Hz clock , resynchronizes the FFT Rate Generator output and enables the system.

Figure (4.35) Block Diagram - Sweep Start and Control (PC3b)

Ionogram execution is controlled by data written to two 8-bit registers , Control Register A and Control Register B.

The data latched in Control Register A determine the type of recording required (e.g. vertical, oblique, stationary Doppler, etc.) and do not
change during execution. Table (4.1) lists the function of each of the eight bits.

Controller Data Bus Bit		Function
Bit No.	State	-
07	0 1	4 Hz - Stationary Doppler $]$Tcell pulse gen rate select (Hz - Ionograms
D6	0	disable Sweep signal to FFT enable Sweep signal to FFT
D5, D4	$\begin{array}{lll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}$	$\left.\begin{array}{l}\begin{array}{l}\text { Tx only } \\ \text { Tx only } \\ R x \text { only } \\ T / R \text { switching }\end{array}\end{array}\right]$T/R Control. DS also selects oblique or vertical transmit antenna.
D3	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	disable Tcell interrupt to CPU enable Tcell interrupt to CPU
D2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable antenna load by Tcell pulse enable antenna load by Tcell pulse
01	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable synth counter load by Tcell pulse enable synth counter load by Tcell pulse
DO	0	disable synth counter basic rate clock enable synth counter basic rate clock

Table (4.1) Control Register A

As shown in Table (4.1) above,bits D4 and D5 select either Tx-only or Rxonly modes for oblique operation or T / R switching for vertical operation. Bit D5 is used to select either the oblique or the vertical transmit antenna. These bits also generate the control signal used by the 4040 Rx Antenna Select (B2b) circuit which connects the 4040 Rx to either the oblique antenna or to a vertical incidence receive antenna.

Control Register B contains data that may change from cell to cell during a recording (e.g. vertical , oblique etc.). Table (4.2) shows the function of each bit.

Controller Data bus bit		Function
Bit No.	State	
D7	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	spare control bit B7 available on PCB only
D6	0 1	spare control bit ${ }^{\text {b6 }}$
D5	0	spare control bit 85
D4	0	spare control bit 84
D3	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable fast film advance enable fast film advance
D2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable transmitter enable transmitter
01	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Internal Rx AGC External TX AGC
DO	0	disable film drive enable film drive

Table (4.2) Control Register B

4. 14 BCD $\times 4$, Frequency Mark Generator and Tx Filter Control (PC2)

The simplified block diagram of this board is given below in figure (4.36).

Figure (4.36) Simpllfied Block Dlagram - BCD $\times 4$, Frequency Mark Generator and Tx Filter Control (PC2)

Equation (4.2) gives the relationship between the transmitted frequency and the synthesizer $B C D$ programming data as :-

$$
f_{T}=4(B C D \text { programming number })
$$

Circuit board PC2 digitally multiplies the synthesizer programming data by 4 (using PROM's) to obtain the instantaneous transmitter frequency which is displayed on the Controller front panel by the Frequency Display board (FD).

The maximum $B C D$ number from any of the programming decades is 9. Multiplication by 4 gives $9 \times 4=36$, that is six units with a carry of 3 . Including a possible carry of 3 from a previous stage gives $36+3=39$. The maximum carry out is therefore 3 which requires two bits for binary representation. Table (4.3) shows the results in binary of multiplying the $B C D$ numbers 0 through 9 by 4 for Cin (carry in) $=0,1,2$ and 3.

Table (4.3) BCD $\times 4$ - Binary Representation

From the table it is clear that the carry-in LSB determines the LSB of (BCD $\times 4+C i n$). The carry-in MSB defines two sets of BCD $\times 4$ data :-

Set $1=(B C D \times 4)$
Set $2=(B C D \times 4)+2$
The carry-in LSB therefore determines the LSB $\left(2^{0}\right)$ of the multiplication. PROM address lines $A O$ to $A 3$ are driven by the $B C D$ number to be multiplied by 4. The carry-in MSB selects the correct data set via address line A4.

Address	Data
$0-9$	set 1
$10-15$	not used
$16-25$	set 2
$26-31$	not used

Five bits of PROM output data are used, the first three being the bits 2^{1}, 2^{2} and 2^{3} of the result and the next two being the carry out LSB and carry out MSB.

Figure (4.37) PROM Address and Data Organization

Frequency Mark Generator

Frequency marks were required on film at the following frequencies:-

$$
\begin{array}{rrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & \mathrm{MHz}
\end{array}
$$

Bold frequency marks were required at $0,10,20$ and 30 MHz .

Only the first transition of a frequency was to trigger a frequency mark with subsequent transitions being ignored. This condition is necessary because a particular frequency can be passed repeatedly at the low end of a logarithmic overall sweep or when using a "jumpback" linear overall rate.

Two 4-bit magnitude comparators compare the 10^{6} and $10^{7} \mathrm{BCD} \times 4$ decades , "A" , with the number "B" output by two $B C D$ counters. The clock to the counters is disabled when B is greater than A and enabled when B is less than or equal to A.

If $A=x$ then, for the clock to be disabled $B=x+1$. When A changes to $x+1$ the clock is enabled, the next clock pulse increments B to $x+2$ and the comparator disables the gate. The gated clock pulse signals the $x+1 \mathrm{MHz}$ fine frequency mark once only as required.

Because the BCD counters are one count ahead of the actual frequency bold frequency marks must be triggered when the counters contain $1,11,21$ and 31. Bold frequency marks are obtained by fully decoding the LSB counter to produce a pulse when it contains 0001.

Transmitter Filter Control

The T500A linear power amplifier that was added to the system (figure(4.1)) has five filters on the RF output. These filters cover the ranges 2-3, 3-5, $5-8,8-15$ and $15-30 \mathrm{MHz}$ and are controlled by an EPROM. Using the frequency-mark-generator $B C D$ counters to address the EPROM ensures that only the first transition of a switching frequency is acted upon.

The 3 MHz filter control signal is also used to switch from the low frequency receive antenna set to the high frequency set.

Frequency Display (FD)

The four most significant decades of the BCD $\times 4$ data are displayed on the frequency display board (FD) in the form "xx.xx" MHz.

4.15 Antenna Switching

Antenna Select, TX Filter Drivers and 4040 RX Antenna Select (B2)

Figure (4.39) Block Diagram - Vertical/Oblique Antenna selection

RF from the 4050 Amplifier T/R drives the T500A linear amplifier which boosts the output power by about 10dB. Co-axial relays in B2a connect the T500A output to either a vertical transmit antenna or to an oblique antenna. With the transmitter connected to the vertical $T x$ antenna the oblique antenna is switched through to B2b. Here either the oblique antenna or a vertical incidence receive antenna can be selected to go to the 4040 receiver.

B2a also contains the T500A output filter relay driver circuitry. The T500A was modified by the addition of protection diodes across the filter relays. A 22.5 VDC supply mounted in the T500A supplies power to the co-axial relays in B 2 a and B 2 b . B 2 a outputs the 3 MHz change-over control signal to B 4 .

Antenna Select Board (PC8a)

The antenna control logic (PC8a) together with the antenna switch (B1) allows the selection of one of eight receive antennae to either of two receivers. Unused antennae are kept grounded.

Figure (4.40) Block Diagram - Antenna Select (PC8a)

Double latching allows antennae switching to be controlled by the Tcell pulse which loads the second set of latches from the first.

Figure (4.41) Block Diagram - Dual Receiver Antenna Switching

Electrically-short receive antennae were designed for the system by Poole , 1983. To improve receiver low frequency response two sets of four antennae were used with a change-over frequency of 3 MHz . The output signals of B4 are applied to four of the eight available inputs on the receive antenna switch (B1). B1 contains the switching circuitry that allows the selection of one eight receive antennae to either of two receivers.

4.16 Film Speed Control (PC8b)

The film speed control circuitry generates two signals, a 500 Hz fast-filmadvance signal and a variable-film-speed signal. The variable- film-speed signal can be enabled or disabled by computer.

Figure (4.42) Block Diagram - Film Speed Control (PC8b)

Figure (4.43) shows the front view of the digitized VOS-1C Vertical/Oblique Chirpsounder system.

Figure (4.43) Digitized VOS-1C Vertical/Oblique Chirpsounder - Front View

Figure (4.44) shows the rear view of the digitized VOS-1C Vertical/Oblique Chirpsounder system.

Figure (4.44) Digltized VOS-1C Vertical/Oblique Chirpsounder - Rear View

CONTROLLER SOFTWARE

5.1 Introduction

The initial software development and the choice of FORTH as a programming language has already been described in section 3.6. Subsequent software development was done on the Controller computer system itself with a dual 5 $1 / 4$ inch disk drive being used for storage. This arrangement allowed immediate testing of the software with the hardware. The final Controller program was stored in EPROM and the disk drive was removed from the system.

A block diagram of the major components of the system software is given in section 5.2 . More detailed information is given on each functional block in the following sections.

The structure of FORTH is described as an introduction to the modifications made to the standard FORTH memory map and dictionary. The changes briefly discussed here are fully documented in Appendix C.

The manual "Vertichirp Controller Software - Operators Manual" is included as Appendix D and describes system initialization together with all the major commands used for system control, data entry, data display and editing and function execution. This appendix also contains the Controller program listing in the form of 86 screens of FORTH word definitions.

Appendix E - "Vertichirp Controller Software - Program Glossary" gives
detailed information on the operation of each defined FORTH word. The state of the FORTH parameter stack is shown both before and after word execution. Where relevant the numeric calculator (MPN) stack contents are also shown.

5.2 Vertichirp Controller Program Structure

The major functional areas of the Vertichirp Controller program are shown in figure (5.1). Each block is described in detail in the following sections.

Figure (5.1) Program Structure

FORTH [. Rather and Moore , 1976] is a combined operating system , interpreter and compiler. It features an extensible command set which leads naturally to the development of an application oriented vocabulary. FORTH combines computational flexibility with compact code and high speed and was specifically designed as a control language.

The FORTH executive coordinates a large number of small modular routines which are defined as "words" in a dictionary. The dictionary is therefore a threaded list of variable-length entries. Programming in FORTH consists of defining new words in terms of previously defined words. Once defined a new word can be tested immediately by typing it at the terminal.

FORTH is a stack language and makes use of two last-in first-out (LIFO) stacks. The variable or parameter stack is used for calculations (using reverse Polish notation) and the return stack is used for program control.

5.4 Additions and Changes to FORTH

In developing the Controller software it became apparent that certain additions to the FORTH kernel were required. By relocating the disk buffer which was situated after the kernel at $\$ 1 B F O, 1040^{10}$ bytes of memory were made available for these additions.

The program FORTHAD was written to allow primitives (words coded in assembly language) and FDB- (form double byte) coded words to be added to the FORTH kernel. FORTHAD was used in developing both Controller and DCS
(Data Capture System) software.

Seven different sets of FORTH words were added to the kernel and each set is documented in Appendix C in the following form :-

1. Assembler listing of primitive- or FDB-coded words
2. Glossary describing the operation of each word and its action on the parameter stack.

Fourteen double-precision operators were added to facilitate memory, stack, arithmetic and logical manipulation of 32-bit numbers.

The original 68^{\prime} FORTH for 6809 did not include words for interrupt processing. The words RTI (return from interrupt), CLI (clear interrupt mask) , SEIF (set I and F interrupt mask bits) and IRQ (vector FORTH execution to an interrupt service FORTH word) were added to the kernel as primitives. An example of using interrupts is given in Appendix C.

A SWTPC Numeric Calculator board (MPN) was included in the system (I/0 port 0) to provide a fast means of evaluating system parameters. The calculator functions multiply, divide, add, reciprocal , exponential and natural \log proved invaluable for 8 -digit $B C D$ calculations. Being $B C D$ the calculator output required no processing except for the packing of 2 BCD digits per byte prior to outputting to the frequency synthesizer control hardware on PC1. The calculator is used in scientific mode only. Primitive TOMPN sends data or instructions to the calculator board. Primitive ANS transfers the calculator x register to computer memory.

The primitive VECTOR (by A. Poole and documented by the author) was included
to allow vectored FORTH word execution to simplify certain procedures.

Program development was done on drive 1 which was not initialized at power on. The primitive RESTORE1 causes disk drive 1 to do a "seek track 00 " when executed. This resets the track counter and ensures that subsequent disk accesses are performed correctly.

A CASE structure for FORTH [Eaker, 1980] was initially written using colon definitions (the usual method of writing FORTH code). The words defined were CASE , OF , ENDOF and ENDCASE. In use the colon definition OF generated 10 bytes of code. The case structure was made more memory efficient by defining a run time primitive (OF) so that each OF would only generate 4 bytes. The entire CASE structure was added to the FORTH kernal.

Comparison words < and > which operate on signed numbers were used for checking the limits of the dictionary and parameter stack. Unsigned comparison words $U<$ and $U>$ were defined to allow positioning of the stack and dictionary above $8000_{16}(32 \mathrm{~K})$.

The file CHANGES documents all the changes made to the original version of FORTH. These are :-

1. FORTH words changed for operation above 32 K .
2. FORTH memory map changes.
3. Correction to the word + LOOP
4. Changes to allow EPROMing of FORTH

The assembled binary file is used as an overlay to effect the changes.

The procedure for generating the Controller version of FORTH is then
detailed together with the resultant expanded FORTH memory map. The overall system memory map is also given. The system monitor, S-BUG, was modified to set the dynamic address translator so that physical addresses were equal to logical addresses. S-BUG was also changed to vector to the FORTH warm start address at power on if FORTH was in EPROM. If FORTH was not found the monitor program was executed. The non-maskable interrupt (NMI) vector was changed to vector to the FORTH cold start address.

The procedure for saving the EPROM version of the Controller program is given in detail. The final memory map shows the EPROM/RAM allocations for the Controller system.

5.5 Input/Output Control

The Controller software was written primarily for a Heath VDU. The direct cursor addressing facility of the VDU is used to maintain 3 separate areas on the screen as shown in figure (5.2)

Lines 1 to 6	System Status Area
Lines 7 to 18	Data Display Area
Lines 20 to 24	Data and Comand Input Area

Figure (5.2) Heath VOU Screen Areas

The system status area occupies 7 lines and displays place name , year, year day-number, the current programme being run, the current and next function to be executed in that programme and the system timing position. The major part of the screen, lines 8 to 18 , is used for data display and
editing. Lines 20 to 24 are used for command and data entry.

Input/output routines that do not use direct cursor addressing were included to allow the use of any VDU or teletype. In the so called "Printer" mode all input and output data and commands are listed sequentially. Commands are provided to enable and disable the printing of system status.
5.6 Computer/MPN Data Flow Control

Answers from the MPN calculator x-register are stored in 12 bytes of computer memory beginning at address ANSEXP. The first two bytes contain the exponent , the next two the signs of exponent and mantissa and the last 8 , beginning at address ANS\#, contain the mantissa.

Figure (5.3) shows computer memory locations ANSEXP , ANS $\#^{3}$, F1MSB , F2MSB , x, y, z, HERE and the FORTH stack together with the FORTH words defined to move numbers between them. The mantissa and exponent of the answer buffer are formatted into an 8 digit BCD number in Hz which is stored in frequency buffer 1 , F1MSB. F1MSB is used during ionogram setup and execution. Frequency buffer 2 , F2MSB , is used for frequency input. Having two buffers allows data editing while an ionogram is executing.

Notes

1. Computer memory storage depicted as follows :- address n bytes data
2. The FORTH words associated with all data transfers are given in capitals

Figure $(5,3)$ Computer/MPN Data Flow Control

The hardware control words input data and then convert them into codes suitable for use by the hardware. These codes are listed after each printed circuit board description in Appendix A.

Ionogram execution is controlled by data written to two 8 bit registers , Control Register A and Control Register B on PC3. Control Register A is set according to the type of ionogram required such as Vertical, Oblique receive, Stationary Doppler etc. Once set the data in this register are not changed for the duration of the ionogram. Control Register B is used for data that may change during ionogram execution such as enabling/disabling the film drive or transmitter. Control Register B software is written to facilitate the changing of individual control bits.

The parameter setting software checks for valid input data. If the data are valid conversion to code takes place and the result is output to the hardware. This software makes hardware setting and testing very easy :-

Command

$50 \mathrm{KHZ} /$ SEC SETRATE
4 DOP SETDOP
1/ TCELL SETCELL
1/2 MSEQ SETMSEQ
1024 FFT SETFFT
34 ANTENNA SETANTENNA
5 MM/MIN SPEED SETSPEED

Function

Set basic rate (k_{B}) to $50 \mathrm{kHz} / \mathrm{s}$
Set Doppler offset frequency to 4 Hz .
Set cell Period (T_{C}) to 1 s
Set M-sequence period to $1 / 2 \mathrm{~s}$
Set FFT sample rate to 1024 Hz .
Rx1 to antenna 3 and $R \times 2$ to antenna 4
Selects a film speed as close to $5 \mathrm{~mm} / \mathrm{min}$ as possible.

The advance/retard software allows system timing changes to be made in ten microsecond increments with the initial and final positions being displayed on the screen. Three advance slip rates and three retard slip rates are provided. After every millisecond of shift the terminal input buffer is checked for operator break-in. Shift commands take the following form :-

Command Line
10.25 MSEC A@1
15.0 MSEC A@10
7.5 MSEC A@20
12.5 MSEC R@1
5.0 MSEC R@10
50.5 MSEC R@20

Function
10.25 ms advanced at a rate of $1 \mathrm{~ms} / \mathrm{s}$
15.0 ms advanced at a rate of $10 \mathrm{~ms} / \mathrm{s}$
7.5 ms advanced at a rate of $20 \mathrm{~ms} / \mathrm{s}$
12.35 ms retarded at a rate of $1 \mathrm{~ms} / \mathrm{s}$
5.0 ms retarded at a rate of $10 \mathrm{~ms} / \mathrm{s}$
50.5 ms retarted at a rate of $20 \mathrm{~ms} / \mathrm{s}$
. In the SEARCH mode all that is required to sweep the timing is one of the shift commands A@1 through to R@20. The SEARCH mode is used for locating the oblique incidence signal.

5.8 Data Input and Storage

Data are stored in the FORTH dictionary as a list of hardware codes headed by a unique name. To facilitate handling each data set was assigned a "datatype" code and a "subtype" code.

Datatype 1 - SOUNDING data (a subset of ionogram data)
Subtypes - $0=$ Sounding for normal ionogram.
$1=$ Sounding for Stationary Doppler ionogram.

Datatype 2	IONOGRAM data (the sounding that the ionogram uses must exist before the ionogram is defined).
Subtypes	Control register A data in the range 0 to 255_{10} e.g. $255=$ Vertical ionogram $124=$ Stationary-Doppler ionogram
Datatype 3	TIMING Slip Data
Subtypes	$\begin{aligned} & 0=\text { Advance } \\ & 1=\text { Retard } \end{aligned}$
Datatype 4	FORTHWORD Data (The parameter field address (pfa) of a previously defined FORTH word is all the data that is stored after the data type code. This system "FORTH Word" was created to allow new operations to be defined and executed under programme control.
Subtypes	None, set to 0
Datatype 5	PROGRAMME (A prioritized list of times of execution and functions to be executed) Note :- A "programme" of events is distinguished from a computer "program" by the difference in spelling.
Subtypes	None , set to 0 .

Sounding Input - Type 1 Data

Command :- SOUNDING x where $x=a$ unique user-assigned data name. In practice sounding names were given the prefix "S" e.g. S1.

Figure (5.4) shows the flowchart for inputting sounding data named S1.

Figure (5.4) Input Sounding Data

Command :- IONOGRAM x where $x=$ unique user-assigned data name.
Figure (5.5) gives the ionogram input flowchart. The data are named I1.

Figure (5.5) Input Ionogram Data

Timing Slip Input - Type 3 Data

Command :- TIMING x where $x=$ unique user-assigned data name
Figure (5.6) shows the flowchart for entering timing slip data named T .

Figure (5.6) Input Timing Slip Data
FORTH Word Input - Type 4 Data

Command :- FORTHWORD x where $x=$ unique user-assigned data name.
Figure (5.7) shows the flowchart for FORTH Word input, the defined system Word being called F1.

Figure (5.7) Input FORTH Word data

Programme Input - Type 5 Data

Command :- PROGRAMME x where $\mathrm{x}=\mathrm{a}$ unique user-assigned data name.
Figure (5.8) shows that all entries are edited into initialized programme space.

Figure (5.8) Input Programme Data

Data Editing

Command :- EDIT x where $\mathrm{x}=\mathrm{a}$ data name entered using the above commands. Any of the input data can be edited except for the number of cells per sounding.
E.g. EDIT S1 , EDIT I1 , EDIT T1 , EDIT F1 , EDIT P1

Delete Data

Command :- DLIST
DLIST lists all the entered data names and allows their erasure. See Appendix C for a full description of DLIST.
5.9 Hardware Setting from Stored Data

Data types 2,3 , 4 and 5 can all be "set" and executed as "functions". Sounding data, being a subset of ionogram data, cannot be executed as a function but is used to set the system hardware prior to ionogram execution.

Set Sounding

Routine SSET of figure (5.9) requires the parameter field address (pfa) of the data (e.g. pfa of S1) on the stack and leaves a true flag if setting is successful.

Set Ionogram

Routine ISET (figure 5.10) requires the pfa of ionogram data on the stack (e.g. pfa of 11). This routine uses SSET and then calculates ionogram control parameters.

Figure (5.9) Set Soundirig

Figure (5.10) Set Ionogram

Set Timing Slip

Figure (5.11) shows the routine TSET which requires the pfa of timing slip data on the stack prior to execution.

Figure (5.11) Set Timing Slip

Set FORTH Word

The flowchart of routine FSET is given in figure (5.12). The pfa of a system defined FORTH Word is required on the stack before FSET is executed.

Figure (5.12) Set System defined FORTH Word

Set Programme

The flowchart of PSET is given in figure (5.13) and requires a pfa on the stack prior to execution.

Figure (5.13) Set Programme
5.10 Interrupt Service Routines and Interrupt Polling

There are two signals that can generate interrupts, the 1 Hz clock signal negative edge and the Tcell pulse positive edge. The Tcell pulse only occurs when a sweep is in progress.

Clock Interrupt Service Routine

This routine called CLOCK is flowcharted in figure (5.14).

Figure (5.14) Clock Interrupt Service Routine

Tcell Interrupt Service Routine

This routine, NCELL, controls ionogram execution as shown in figure (5.15).

Figure (5.15) Tcell Interrupt Service Routlne.

Both the Tcell interrupt flag and the clock interrupt flag are checked whenever there is an interrupt. Tcell interrupts are given the highest priority as shown in figure (5.16).

RTI $=$ - Return from interrupt
Figure (5.16) Interrupt Polling Routine

5.11 Function Execution

Ionogram , Timing Slip , FORTH Word and Programme data can all be executed as functions. Sounding data, being a subset of the ionogram data, cannot be executed.

Run Sounding

The routine RS of figure (5.17) is included for completness only. It expects a pfa on the stack which is dropped and an error message is output.

Figure (5.17) Run Sounding

Run Ionogram

RI expects the pfa of ionogram data on the stack and initiates an ionogram sweep. Prior to executing RI the routine ISET must be executed to set the hardware and calculate run parameters. RI is flowcharted in figure (5.18).

Figure (5.18) Run Ionogram

Run Timing Slip

RTS expects the pfa of timing-slip data on the stack and executes the slip with operator intervention disallowed.

Figure (5.19) Run Timing Slip
Run FORTH Word ${ }^{\prime}$

RFW expects the pfa of a system-defined FORTH Word on the stack and executes the normally defined word that was stored as data (see FORTHWORD x). RFW is flowcharted in figure (5.20).

Run Programme

RPRG expects the pfa of a programme on the stack. The programme is searched for the next execution time and the corresponding function is set. See figure (5.21)

Figure (5.20) Run FORTH hord

Figure (5.21) Run Programme

Command :- RUN x where x can be a sounding, ionogram , timing slip , FORTH Word or programme data name.

Note that RUN S1 where S1 is a sounding name gives an error message only. In the flowchart of figure (5.22) SETFTN and RFTN use the primitive definition VECTOR to execute the correct routine according to data type.

Figure (5.22) The RUN Cormand

When a programme is run (e.g. RUN P1) it is made the current programme and the data it contains are checked to find the next function to execute. The flowchart of the routine that does this (SETNXT) is shown in figure (5.23)

Figure (5.23) Boutine SETNXT
Once the next function has been found the time at which it is to be executed is stored and compared with the appropriate software clock every second. All three software clocks are 1 s in advance of the actual time. Equality is therefore detected 1 s early and the function is enabled for execution. Execution takes place synchronous with the next clock pulse.

5.12 Function Execution Timing

Figure (5.24) shows the timing diagram for ionogram execution under programme control.

Figure (5.24) Ionogram execution

An ionogram stops once the calculated total number of soundings have been completed. The real-time hardware clock is read on the next falling edge of the 1 Hz signal and immediately incremented to get the three software clock times which are all 1 s in advance of the real time.

The next ionogram in the current programme is then found and set and its execution time is compared with the appropriate software clock each second. When the times are equal ionogram execution is enabled and global data are sent to the Data Capture System. The ionogram begins at the programmed time on the next negative-going edge of the 1 Hz signal. Time comparisons are disabled and the ionogram continues to completion. Th current and next functions are displayed in the status area.

The Tcell pulse signal is gated on by sweep in progress going high. The Tcell interrupt service routine sends the current cell data to the DCS before calculating data for the next cell. Next cell start frequency and antennae connections are output to the hardware and latched ready to be loaded by the next Tcell pulse.

Execution of a timing slip, a system FORTH Word or a programme under programme control is similar to that of an ionogram. Because equality of programmed time and software clock is detected 1 s early the software waits until the next 1 Hz signal falling edge before executing the function.

If the function is a programme it is made the "current" programme and the next function to be executed in the new programme is found and set.

SYSTEM TESTS

6.1 Introduction

During 1983 the different stages of the modified Chirpsounder (figure (4.1)) were tested. Initial tests involved only the replacement of the 1015 Logchirp Control with the new computer-based Controller with ionograms being recorded on film. A number of these tests are reported here.

The testing then progressed to include a new receive antenna system designed by Poole who also modified the dual phase-matched receivers. Phase calibration of the signal path from the antenna cables through the receivers was done [Poole, 1983] using the single sideband circuits (PC9 , PC10 and B3) designed by the author. Poole designed the hardware and software of the data capture system (DCS) which stores data on magnetic tape for later offline analysis.

Since digital recordings were the prime object of the modified system numerous tests and experiments were executed and analysed by Allon Poole to determine system performance [Poole , 1983 , Chapter 5]. An example of the digital capabilities of the system is presented.

Ionosonde operation on the S. A. Agulhas is described with the emphasis being on Controller programming versatility.

The first requirement of the Controller was that it should be a direct functional replacement for the 1015 Logchirp Control (see Chapter 3). Initial tests involved using the Controller to produce vertical- and oblique-incidence ionograms on film according to the "normal" recording schedule as given in section 2.4. Examples of 1015 Logchirp Control and Controller produced vertical-incidence ionograms are given in figures (6.1) and (6.2).

Figure (6.1) Vertical Incidence Ionograms - 1015 Logchirp Control

Figure (6.2) Vertical Incidence Ionograms - Computer Controller
The Controller-produced vertical-incidence ionograms compare excellently with those obtained using the 1015 Logchirp Control unit.

Figure (6.3) shows 2 SANAE - Grahamstown oblique-incidence ionograms recorded using the 1015 Logchirp Control unit.

Figure (6.3) Oblique Incidence Ionograms - 1015 Logehirp Control

Figure (6.4) shows a sequence of oblique-incidence ionograms for the same path recorded using the Controller.

Figure (6.4) ©blique Incidence tonograms - Computer Controller

The ionograms shown above verify that the Controller operates successfully in the oblique-receive mode. The oblique-transmit mode was also tested with the signal being received at Sanae.

Besides functionally replacing the Logchirp Control unit the Controller provided far more flexible control of the ionosonde. For example ; the extended programming capabilities of the Controller were used to perform an
automatic oblique calibration sequence once a week between 14 h 05 and 15 h 55 , a task that was previously done manually. The Advance/Retard hardware and software proved most efficient for system timing changes and oblique signal synchronization.

6.3 Basic Rate Tests

Figure (6.5a) shows a vertical-incidence ionogram with basic and overall sweep-rate equal to $50 \mathrm{kHz} / \mathrm{s}$. Doubling the basic rate doubles the frequency difference for a given delay (equation (2.5)) and halves the ionogram virtual height range (equation (2.6)) as shown in figure (6.5b). Examples of ionograms with basic rates of $100 \mathrm{kHz} / \mathrm{s}(6.5 \mathrm{~b}), 200 \mathrm{kHz} / \mathrm{s}(6.5 \mathrm{c})$ and 400 $\mathrm{kHz} / \mathrm{s}$ (6.5d) are shown. Note that different frequency ranges are swept.

Figure (6.5) Vertical Incidence Ionograms - Basic Rate changes

6.4 40 MHz Local Oscillator Offsetting

Stationary Doppler

For stationary-Doppler recordings a small offset $f_{0 D}$ is subtracted from the 40 MHz local oscillator. PC9 and PC10 together with the SSB generator circuit (B3) perform the frequency shift. This circuitry operated very well as the test stationary-Doppler ionogram indicates.

Figure (6.6a) shows a normal vertical ionogram ($k_{B}=k_{0}=50 \mathrm{kHz} / \mathrm{s}$) recorded at $12 h 00$. The stationary-Doppler ionogram of figure (6.6 b) was recorded at 6.5 MHz with the 40 MHz local oscillator offset by 4 Hz . An anti-aliasing filter set at 12.5 Hz was included between receiver and spectrum analyser which was set to analyse 10 Hz . The maximum observed Doppler shift of about $1 / 4 \mathrm{~Hz}$ corresponds to a line-of-sight velocity given by equation (4.16) :-

$$
u=(1 / 4)(3)\left(10^{8}\right) / 2(6.5)\left(10^{6}\right)=5.7 \mathrm{~m} / \mathrm{s}
$$

The preceding 5 quarter-hourly ionograms confirm that the reflecting layer at 6.5 MHz remains at about 300 km .

Figure (6.6a) Vertical Incidence Ionogram

Figure (6.6 b) Stationary Doppler Ionogram at 6.5 MHz

Windowing

$\mathrm{LO2}_{\text {window }}$ is obtained by selecting the upper sideband of L02 modulated by the windowing offset frequency f_{0} (see chapter 4). The first three ionograms shown below were recorded with different basic rates and no range offset. The fourth has a range offset of 192 km .

Figure (6.7a) Vertical, $\mathrm{k}_{\mathrm{B}}=\mathrm{k}_{0}=50 \mathrm{kHz} / \mathrm{s}$

Figure (6.7 c) Vertical, $k_{B}=k_{0}=200 \mathrm{kHz} / \mathrm{s}$

Figure (6.7b) Vertical, $k_{B}=k_{0}=100 \mathrm{kHz} / \mathrm{s}$

Figure (6.7d) Vertical, $k_{B}=k_{0}=200 \mathrm{kHz} / \mathrm{s}$, L .0 offset $=256 \mathrm{~Hz} \quad \mathrm{~h}_{\text {min }}^{\prime}=192 \mathrm{~km}$

In Figure (6.7c) the second order E-region reflection is just visible at a virtual height of 212 km . The same basic rate was used in figure (6.7 d) but the 40 MHz local oscillator was offset by 256 Hz to give a window from 192 to 442 km . The second order E-region reflection appears at the correct height on the new range scale and the F-region trace is once again visible.

6.5 Logarithmic Sweep Rate Test

Figure (6.8) shows an ionogram recorded at Sanae with linear overall rate of $50 \mathrm{kHz} / \mathrm{s}$ followed by an ionogram with a logarithmic frequency scale recorded using a \log overall rate of $.01 \mathrm{oct} / \mathrm{s}$.

Figure (6.8) Linear and Log Overall sweep rate

6.6 Stationary Ionogram Test

Figure (6.9) shows two vertical-incidence ionograms before and after a sixminute Stationary Ionogram which was recorded at 6 MHz , a frequency chosen because of good separation between the 0 - and x-mode reflections.

6.7 Operation as a Digital Chirpsounder

Besides having the capabilities as tested above the Controller was designed to allow the simultaneous evaluation of group range and phase velocity of the reflection point and the three-dimensional angle of arrival and polarization mode of the return signal.

To perform these measurements the Controller :-

1. sets the dual receiver $A G C$ mode and signals when the $A G C$ may change.
2. outputs a stop-sampling pulse to the FFT analyser at the end of each cell
3. sends global and cell information to the Data Capture System computer
4. selects the 2 receive antennae to be used during each cell.

The DCS stores system and echo data on magnetic tape for later offline processing by mainframe computer. The film record provides a convenient means of selecting interesting ionograms for digital processing.

The LOG command was used to list ionogram data SYNOP/512 and associated sounding data $S 3 / 512$. Note that digital data were to be recorded on magnetic tape and that the AGC was to be clocked once per sounding. The virtual height range given assumes analysis of the full 500 Hz baseband signal. Analysis of only 333.3 Hz reduces the maximum virtual height to 500 km .

The film record of figure (6.10) is followed by a typical presentation of the digital data produced using the mainframe analysis programs written by Allon Poole.

Figure (6.10) Vertical-Incidence lonogram - Film and Digital Records

Signal Amplitude vs Frequency

Phase velocity vs Frequency

The film record of figure (6.10) is followed by a typical presentation of the digital data produced using the mainframe analysis programs written by Allon Poole.

Figure (6.10) Vertical-Incidence lonogram - Film and Digital Records

Signal Amplitude vs Frequency

Phase velocity vs Frequency

Polarisation angle vs Frequency

of the pclarisation ellipse vs frequency

Bearing vs frequency

Zenith Angle vs Frequency

The bearing, zenith angle and group range vector give the orientation of the returning echo

Arrival angle in the North-South plane

Arrival angle North- South

Angle of arrival data - presentation method 3

Echolocation - the point of the group range vector is projected onto a horizontal plane

6.8 Project ISAAC - Controller Programming Example

The modified Controller-operated Chirpsounder (without the digital data recording system) was installed on the S.A. Agulhas in June 1983 to investigate the ionosphere in the region between South Africa and Brazil in the so called "South Atlantic Anomaly" (ISAAC = International South Atlantic Anomaly Campaign).

The Controller operated very sucessfully throughout the voyage of 23 days and recorded 2128 quarter-hourly ionograms. A practical example of Controller programming capabilities as used on the ship is given below.

Programme P1 ran during the day and and swapped to P2 at 20h55. P2 swapped back to P1 at 06h55 the following morning.

LOG no-10no
NJ-IDNIO - FOKIH WORO
FURTH HORA $=$ MAP OK

FORTH COlon Definition of MAP
: MAP ;
No operation.

The priority block 2 entries in programme P1 produce two twenty minute off periods from 10 h 00 to 10 h 20 and 14 h 45 to 15 h 05 for weather map reception. Ionograms that should have been run at 10 h 00 and 10 h 15 are moved to 09 h 55 and 10 h 20 respectively. The 14 h 45 and 15 h 00 ionograms are similarly moved to 14 h 40 and 15 h 05 . When not overidden by higher priority block entries I1 is executed every 15 minutes at $00,15,30$ and 45. Note that I1 sweeps to 15 MHz for daytime ionogram recording.

Ionogram data $I 1$ is shown with an example from film in figure (6.11)

Figure (6.11) Vertical Ionogram II - Data and Film Record

Programme P2 executes two ionograms per available 5-minute slot that sweep to 7.5 MHz only as the penetration frequency at night is lower than that during the day. Ionogram 17.5050 has a basic rate of $50 \mathrm{kHz} / \mathrm{s}$ and 17.50100 a basic rate of $100 \mathrm{kHz} / \mathrm{s}$ to give an expanded virtual height scale. Ionogram data and film records are shown in figures (6.12a) and (6.12b).

Figure (6,12a) Vertical Ionogram 17.5050 - Data and film Record

Figure (6,12b) Vertical Ionogram 17.5@100-Data and Film Record

6.9 Digital Chirpsounder Experiments

The digital Chirpsounder was used for a number of experiments in 1983 :1. Digital vertical-incidence recordings were done during sunrise to collected data for a student's honours project.
2. Execution of vertical-incidence ionograms of 80 -second duration from 3 to 11 MHz provided useful data for the investigation of travelling ionospheric disturbances.
3. Stationary ionogram data revealed that the Doppler velocity $\left(V^{\star}\right)$ of the reflection point exhibits cyclic behaviour during periods of Pc3 micropulsation activity. A paper titled "Capabilities of an FMCW (chirp) Ionosonde applied to the observation of Low Latitude PC3 pulsations" by A.W.V. Poole , P.R. Sutcliffe and J.A. Gledhill was presented at the Florence Assembly of the International Union of Radio Science in August and is presently being prepared for publication.

At the beginning of 1984 the digital Chirpsounder system was installed by the author at the South African Antarctic base , SANAE. A low frequency and a high frequency set of receive antennae were erected, the change-over frequency being 3 MHz . The "normal" recording schedule (section 2.4) with ionogram storage on film has been executed during the year by the Controller. The system has been used in "digital" mode for stationaryionogram recording during micropulsation activity.

6.10 Commercial Digital Chirpsounders

The National Institute for Telecommunications Research (NITR) of the Council for Scientific and Industrial Research (CSIR) has purchased a digital ionosonde from the manufacturers , BR Communications (formerly Barry Research Corp.). In drawing up the system specifications the NITR consulted the author on aspects of Controller operation. Subsequent to this BR Communiucations requested details of the programmable M-sequence generator circuitry. This circuit is included in the digital Chirpsounder they now manufacture.

6.11 Conclusion

A suggested improvement is that additional system data be stored on film. The ability to write a number of lines of alphanumeric data to film has been catered for as outlined in Appendix E page E69.

The Controller hardware and software form an integral part of the digital Chirpsounder system which has proved to be extremely versatile. The full capabilities of the system have yet to be realized.

REFERENCES

Barry Research. (1971). Chirpsounder Systems. Palo Alto , California. Barry Research. (1972). Vertichirp Sounder VOS -1C , Operating and Service Manuals. Palo Alto , California.

Bibl, K., Patenaude, J.A., Reinsch, B.W. and Vargas-Vila, R. (1970). Report AFCRL-71-0001 , USAF Cambridge Research Labs.

Budden, K.G. (1964). Lectures on Magnetionic Theory. Blackie and Son Ltd., London and Glasgow.

Davies, K. (1965). Ionospheric Radio Propagation. NBS Monograph 80. U.S. Dept. of Commerce , Washington D.C.

Eaker, C. (1980). "Just in Case" , FORTH Dimensions , II/3, Sept/Oct.

Fenwick, R.B. (1973). Oblique Chirpsounders - the HF Communications Test Set Tech. Note 2 , Rev A. Barry Research Corp., Palo Alto, California.

Fisher, J.S. (1979). "A Real Time Fast Fourier Transform Analyser". M.Sc. Thesis , Rhodes University, Grahamstown.

Halliday, P. and Resnick, R. (1970). Fundamentals of Physics. John Wiley and Sons Inc., New York.

Kelso, J.M. (1964). Radio Ray Propagation in the Ionosphere. McGraw-Hill Book Co., New York.

Mac Williams, F.J. and Sloane, N.J.A. (1976). "Pseudo- Random Sequences and Arrays". Proc. IEEE. 64 , 1715 - 1728.

Mitra, S.K. (1952). The Upper Atmosphere. 2nd Edition, The Asiatic Society Monograph Series, Calcutta.

Philips, M.L. (1974). "Ground Based Vertical Incidence Ionograms". IEEE. Transactions on Antennas and Propagation , AP-22, 785-795.

Poole, A.W.V. (1983). "Advanced Ionospheric Chirpsounding". PhD. Thesis , Rhodes University, Grahamstown.

Ratcliffe, J.A. (1959). The magneto-ionic theory and its application to the ionosphere. Cambridge University Press , Cambridge.

Ratcliffe, J.A. (1972). An introduction to the ionosphere and magnetosphere. Cambridge University Press , Cambridge.

Rather, E.D. and Moore , C.H. (1976). "The FORTH Approach to Operating Systems". Proc. Annual Conference Association for Computing Machinery Inc.

Schwartz M. (1970). Information Transmission, Modulation and Noise. McGrawHill Kogakusha Ltd., Tokyo.

Wright, J.W. (1970). "A Comparative Discussion of Four Modern Approaches to Ionosonde Design". U.S. Dept of Commerce, Environmental Research Lab., Boulder , Colorado. Correspondence to A.H. Shapley.

APPENDIX A
 VERTICHIRP CONTROLLER HARDWARE - MANUAL 1
 DESCRIPTION OF PRINTED CIRCUIT BOARD OPERATION

G. P. EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY
1
DECEMBER 1983

Contents

-

Vertichirp Sounder System Block Diagram
Vertichirp Controller Block Diagram 1
Vertichirp Controller Block Diagram 2A4
Page Number
Manual Manual 2
A1 B2
43 B3B4
Vertichirp Controller Power Supplies A5B5
Location of Vertichirp Controller Circuit Boards A6 B8
Vertichirp Controller Printed Circuit Boards A7
PC1 Synthesizer Control A8
PC2 BCDx4,Frequency Mark Generator and Tx Filter Control A10 B12
BCDx4 A10 B12
Frequency Mark Generator A14 B12
Tx Filter Control A18 B12
FD Frequency Display A20
B2 Antennae and Filter Control
B2a Antenna Select and Tx Filter Drivers A21 B19
B2b 4040 Rx Antenna Select A23
T500A Linear Amplifier Modifications A24
B4 3 MHz Antennae Change-over A25
PC3 Sweep Start and Control and Clock Dividers
A26 B26
PC3a Clock DividersA27B27
RTC Real Time Clock A30
RTCD Real Time Clock Display A32B31B33

Contents

PC4 Basic Rate, Tcell and M-sequence generators PC4a Basic Rate A33

PC4b Tcell pulse generator A35
PC4C Programmable M-sequence generator
T/R Gain weight generator A43
PC5 Advance Retard A45
PC6 Strobe Decode A49
PC7 FFT Sample Rate A53
PC8 Antenna Select and Film Speed Control PC8a Antenna Select A55 PC8b Film Speed Control A57
B1 Rx Antenna Switch brass box A59
PC9 Local Oscillator Offset Frequency Synthesizer A60
PC10 Sine Wave Generator A63
40 MHz Offsetting for Doppler and Windowing A75
B3 SSB Generator brass box A77
Computer System Memory Modifications A79
6018 Camera Interface/Display Modifications A81
System Timing Diagram A83
Conversion from Logchirp to Vertichirp Controller A85

A33 B36

A37
Page Number
Manual 1 Manual 2 B37 B38 B41 B44 B47 B50

Vertichirp Sounder System Block Diagram

The simplified system block diagram shows the major components of the computer controlled ionosonde. The following block diagram shows all the Vertichirp Controller input and output signal paths as well as the RF signal routing. The Controller, together with its interconnection cables , directly replaces the 1015 Logchirp Control.

The VDU can be switched to either the Controller computer or to the Data Capture system computer. The Vertichirp Controller Software Manual describes all programming options.

Two independant receiver/analysis signal paths exist . The first signal path consists of the 4040 Receiver , 2002 Spectrum Analyser and FRS-1 Film Recording System. Because the T500A Linear Amplifier does not allow T/R switching, the RF transmitted on the vertical TX antenna is received by a separate vertical Rx antenna switched through to the 4040 Receiver by B2a arid B 2 b . The receiver baseband output is analysed by the 2002 Spectrum Analyser before being recorded on film.

The second signal path consists of two phase-matched receivers, an FFT Analysis System and a Data Capture System which stores the data on magnetic tape. The antenna switch B1 allows the selection of one of eight receive antennae to either of the two receivers: The baseband outputs of both receivers are analysed by the FFT circuitry and DCS computer and the partially processed data are stored on magnetic tape for further processing in a mainframe computer.

Note that the output of one of the two matched receivers can be stored on film by using it as the input to the 2002 Spectrum Analyser instead of the 4040 Receiver baseband signal. The 4040 Receiver is however more sensitive than either of the matched receivers and is therefore preferred for the film record.

To run the 4040 Receiver and the matched receivers together the 40 MHz and $40.6-70.1 \mathrm{MHz}$ Local Oscillator (LO) injection frequencies are amplified before driving in-phase power splitters. The 1 MHz LO signal , being a TTL signal, drives both the dual receivers and the 4040 receiver directly. The Gain-Weight signal from the 4050 Amplifier T / R also drives both receiver sets.

Vertichirp Controller Block Diagram 1

This block diagram shows the microcomputer system together with the controller Strobe Decode Board, PC6.

A three pole change-over switch connects the MP-S Serial Interface to either a VDU at 9600b or to a printer at 300b.

Parallel Interface MP-LA-1 handles the Tcell-pulse interrupt on its CA1 input line and the Real-Time Clock one second interrupt on its CB1 line.

MP-LA-1 A side data outputs drive the Controller hardware data bus. The B side data together with the CB1 output, configured as a write strobe with E restore (WRE), are used to generate all the strobe signals on the Strobe Decode Board , PC6.

The A side of Parallel Interface MP-LA-2 is used to input the Real-Time Clock Data with the data valid flag on the CA1 input. The B side of MP-LA-2 is used to output ionogram control parameters to the Data Capture System. The CB1 line is used as an acknowledge flag from the Data Capture System. MP-LA-3 is a spare Parallel Interface.

Vertichirp Controller Block Diagram 2

The 100 kHz signal from the 105B Quartz Oscillator can have pulses deleted or inserted by Advance/Retard Board,PC5 before going to the Clock Dividers on PC3a and the Basic Rate circuitry on PC4a.

The FFT Sample Rate Generator, PC7 , uses 1 MHz as an input signal and generates 10.24 MHz for the LO Offset Frequency Synthesizer, PC9, 2048 Hz for the M-Sequence Generator , PC4c , the FFT Sample Rate signal , 4 and 64 Hz for Tcell pulse generation and a sync on second pulse.

40 MHz from the 4041 Local Oscillator goes to brass box B3 where it can be offset by the frequency generated by the Sine Wave Generator, PC10.

The Sweep Start and Control Board PC3b contains two control registers Control Register A and Control Register B , which define system operation.

The Controller hardware data bus is called ' D ' in the block diagram. Data on this bus is latched on the different boards by strobe signals generated by the Strobe Decode board, PC6. All the strobe signals are active low, the nth strobe being abbreviated as STn.

Vertichirp Controller Power Supplies

The SWTPC microprocessor system power supply, MP-P , powers both the computer and the control hardware with unregulated 7-8 VDC via connector 31. All the SWTPC boards have on-board +5 V regulators. The controller boards PC1 to PC12 have chassis mounted +5 V regulators.

The +24 V battery supply from the 105 B Quartz Oscillator is taken via a Filter $P C B$ on the rear panel to a $D C$ to $D C$ converter which supplies $+5 V D C$ to the circuits which must remain active when main power failures. Six diodes connect this supply to the two S-32 Memory Boards and also to the Clock Dividers on PC3a.

Logchirp Board A40 in slot PC12 converts +24 V to -10 V which is used in the 6018 Camera Interface to power its clock circuitry.
-12 V from the MP-B2 mother board is regulated to -5 V to supply the sine Wave Generator on PC10.

Location of Vertichirp Controller Circuit Boards

The SWTPC MP-B2 Motherboard modified for use with the MP-09 Processor Board is mounted on the right hand side of the Controller chassis. The I/O half of this board is horizontal as usual but the CPU and Memory slots are vertically mounted. This means that the CPU and Memory boards plug into these slots from the front of the Controller with the component side down.

Behind the $I / 0$ ports on the rear panel is a cooling fan, the $D C$ to $D C$ converter, the Diode PCB and the Filter PCB. In front of the CPU and Memory boards and secured from the top is the Frequency Display Board, FD.

The front left of the chassis carries the MP-P power supply. The power switch , Cold and Warm Reset buttons and Real Time Clock Display , RTCD are also on the left.

Controller hardware PC board +5 V regulators with corresponding edge connectors occupy the remaining space. The Controller PC board slots are numbered from the rear beginning with PC1 and ending with PC12.

Vertichirp Controller Printed Circuit Boards

The PC Boards are discussed in ascending order from PC1 to PC12. Additional circuitry associated with a particular PC board is discussed immediately after it. For example, the description of the Antenna Switch in brass box $B 1$ immediately follows that of the Antenna Select and Film Speed Control printed circuit board , PC8.

Each circuit description in this manual (Vertichirp Controller Hardware 1) consists of :

1. Introduction
2. Circuit Development (if applicable)
3. Circuit Description
4. Control / Output Selection Data

The second manual , Vertichirp Controller Hardware 2 , contains :-

1. Circuit Diagram
2. Component Location Diagram
3. Wire Lists

Synthesizer Control , PC1

Introduction

The Barry Research 5006 Frequency Synthesizer provides 3 swept frequency outputs ($40.125-47.5 \mathrm{MHz}, 0.5-30.0 \mathrm{MHz}$ and $0.125-7.5 \mathrm{MHz}$) and 4 fixed frequency outputs ($100 \mathrm{kHz}, 1 \mathrm{MHz}, 5 \mathrm{MHz}$ and 40 MHz).

The 0.5 to 30.0 MHz transmit signal f_{t} is derived from the 40.125 to 47.5 MHz signal f_{0} as is the first local oscillator injection frequency. Seven decades of BCD programming data to the synthesizer allow the synthesis of f_{0} in 1 Hz increments. The 0.5 to 30.0 MHz output f_{t} is derived directly from f_{0} as follows :-
$f_{t}=4 f_{o}-160 \mathrm{MHz}$
The 0.5 to 30.0 MHz frequency range is therefore covered in 4 Hz increments. The output frequency is equal to the synthesizer programming $B C D$ number multiplied by 4 .

A frequency ramp or ' chirp ' signal can be generated under digital control by incrementing the synthesizer programming $B C D$ number at one quarter of the required chirp rate. To generate a frequency ramp with a rate of change of frequency of $50 \mathrm{kHz} / \mathrm{s}$ the BCD programming data must be incremented at 12.5 kHz .

The Synthesizer Control Board , PC1 , outputs $B C D$ to the synthesizer.

Synthesizer Control , PC1

Circuit Description

Latches U1 and U5 are loaded from the Controller data bus by strobe ST5, U9 and U13 by ST6, U4 and U8 by ST7 and U12 by ST8. Synchronous BCD counters $\mathrm{U} 2, \mathrm{U}, \mathrm{U} 10, \mathrm{U} 14, \mathrm{U} 3, \mathrm{U} 7$, and U 11 are all parallel loaded from the latches by the synthesizer counter load pulse generated on the Sweep Start and Control board PC3b. The outputs of these counters drive the synthesizer directly via a rear panel 50 way Amphenol connector.

Standard TTL synchronous counters are used on this board as Low Power Schottky TTL does not drive the synthesizer reliably.

BCDx4 Circuitry

Introduction

The 5006 Frequency Synthesizer is directly programmable over the range 40.125 to 47.5 MHz . The 0.5 to 30.0 MHz range is obtained by multiplying this signal by 4 and subtracting 160.0 MHz . Thus the transmit sweep f_{t} is :-
$f_{t}=4 f_{o}-160 \mathrm{MHz}$
where f_{0} is the programmed frequency sweep.
The relationship between the transmit sweep, f_{t}, and the $B C D$ programming data sent to the synthesizer can be simplified to :-
$f_{t}=(B C D$ programming data $) \times 4 \mathrm{MHz}$ for programming data from 00125000 to 07500000 .

The instantaneous transmitter frequency is displayed on the front panel and is driven by the $B C D$ programming data multiplied by 4 .

Circuit Develompent
The maximum BCD number from any one of the control decades is 9 . Multiplication by 4 gives $9 \times 4=36$, that is six units with a carry out of 3 . Including a possible carry in of three from a previous stage gives 36 $+3=39$. The maximum carry out is therefore decimal 3 which requires two bits for binary representation.

The table below shows the results of multiplying BCD numbers 0 through 9 by 4 for the 4 possible values of carry in ; 0, 1, 2 and 3 .

					BCD $\times 4$								
Decimal $/ 2^{3} 2^{\frac{B C D}{2}} 2^{0}$					$\mathrm{Cin}=00$		Cin $=01$		Cin $=10$			Cin $=11$	
					Cout	BCD×4	Cout	BCDx4		out	BCDx4	Cout	BCDx4
0	0	0	0	0	00	0000	00	0001	0	0	0010	00	0011
1	0	0	0	1	00	0100	00	0101	0	0	0110	00	0111
2	0	0	1	0	00	1000	00	1001	0	1	0000	01	0001
3	0	0	1	1	01	0010	01	0011	0	1	0100	01	0101
4	0	1	0	0	01	0110	01	0111	0	1	1000	01	1001
5	0	1	0	1	10	0000	10	0001	1	0	0010	10	0011
6	0	1	1	0	10	0100	10	0101	1	0	0110	10	0111
7	0	1	1	1	10	1000	10	1001	1	1	0000	11	0001
8	1	0	0	0	11	0010	11	0011	1	1	0100	11	0111
9	1	0	0	1	11	0110	11	0111	1	1	1000	11	1001

From the table it is clear that the carry in LSB determines the LSB of (BCD $\times 4+$ carry in). The carry in MSB defines two sets of BCD $\times 4$ data. Set one $=B C D \times 4$

Set two $=(B C D \times 4)+2$
The carry in MSB is used to select the correct data set stored in a 32×8 PROM via address input line A4. Address input lines AO , A1 , A2 and $A 3$ are driven by the BCD number to be multiplied by 4 .

Address location Contents

PROM Programming Information

Set 1			
Decimal Addr.	Hex Addr.		x Data
0	00	0	0
1	01	0	2
2	02		4
3	03		9
4	04		B
5	05	1	0
6	06	1	2
7	07		4
8	08		9
9	09		B
10	0 A	-	
11	0 B	-	-
12	0 C	-	
13	0 D	-	
14	0 E	-	
15	0 F	-	

Set 2		
Decimal Addr	Hex Addr.	Hex Data
16	10	01
17	11	03
18	12	08
19	13	0 A
20	14	0 C
21	15	11
22	16	13
23	17	18
24	18	1 A
25	19	1 C
26	1 A	-
27	1 B	-
28	1 C	-
29	1 D	-
30	1 E	-
31	1 F	-

Circuit Description

$74 S 288$ PROM's U10, U11 , U12, and U13 each contain the two data sets and are addressed by $B C D$ decades 10^{3} to 10^{6} respectively. The $10^{3} \mathrm{BCD}$ input to U 10 is included to generate the two carry bits for the 10^{4} decade which is the least significant decade of $B C D \times 4$ that is displayed.

BCD $\times 4$ decades $10^{7}, 10^{6}, 10^{5}$ and 10^{4} go to the Frequency Display board which displays the transmit frequency.

Introduction
Frequency marks are generated on film at certain fixed frequencies. These frequencies are :-

$$
\begin{array}{lrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
& 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \\
& 21 & 22 & 23 & 25 & 25 & 26 & 27 & 28 & 29 & 30 & \mathrm{MHz}
\end{array}
$$

All frequency marks are fine except for those at $1,10,20$ and 30 MHz which are bold.

The first transition of a frequency at which a mark is required must trigger the mark. Subsequent transitions of the frequency must be ignored. This is because a particular frequency could be passed more than once at the low end of a logarithmic sweep or when using a jumpback linear rate. Circuit Development

In the circuit below two 4 bit magnitude comparators are used to compare the 10^{6} and $10^{7} \mathrm{BCD} \times 4$ decades (A) with the number (B) on the output of two $B C D$ counters. The clock to the counters is disabled when B is greater than A and enabled when B is less than or equal to A.

Let the number A equal x and B equal $x+1$. Since B is greater than A the clock to the counters is disabled. When A changes to $x+1$ the gate is enabled and the next clock pulse increments B to $x+2$. This disables the gate since B is greater than A. The gated clock pulse signals the $x+1 \mathrm{MHz}$ fine frequency mark. Only one mark is generated at a particular frequency no matter how many times the A number transitions that frequency.

As an example let A change from 5 to 6 . B will be incremented by the gated clock from 6 to 7 generating the 6 MHz frequency mark.

Bold frequency marks are required at $0,10,20$ and 30 MHz . Because the counters are one count ahead of the actual frequency the corresponding outputs are $1,11,21$ and 31 . Bold frequency marks are obtained by ignoring the MSB counter and fully decoding the LSB counter to produce a pulse when its binary output is 0001 (MSB--LSB). Circuit Description

4 bit magnitude comparators U8 and U9 compare data from the BCDx4 PROM's U12 and U13 , with the output of counters U4 and U5. Data to the comparator A side is from the BCDx4 PROM's and data to the B side is from the counters.

At the start of an ionogram counters U4 and U5 are cleared by a pulse on the Clear Freq Mark input. Clock pulses from the Basic Rate Clock increment the counters (B) until B is greater than A and the A less than B output of U9 goes high. As an ionogram proceeds and A is incremented the A less than B output of U9 goes low. This signal, inverted by U7B, enables gate U6D. Basic Rate Clock pulses inverted by U7C are allowed to trigger the monostable consisting of U6A, C5 , R2 and U6C. The 5 microsecond output pulse clocks counters $U 4$ and $U 5$ as well as triggering a positive going fine frequency mark via C7 , R4, U6B and U7A.

With SW1 open frequency marks are generated from 1 to 30 MHz . Closing SW1 inhibits fine frequency marks above 15 MHz . U3 , an AND-OR-INVERT gate, disables U6B when the counter output (which is 1 ahead of the frequency) is 16 or greater.

The outputs of U4, the LSB , are called Q_{0}, Q_{1}, Q_{2} and Q_{3}.
The outputs of U5, the MSB , are called $Q_{0}^{\prime}, Q_{1}^{\prime}, Q^{\prime}{ }_{2}$ and $Q^{\prime}{ }_{3}$.

Frequency marks are inhibited when:-

$$
Q_{0}^{\prime} \cdot Q_{2} \cdot Q_{1}+Q_{0}^{\prime} \cdot Q_{3}+Q_{1}^{\prime} \text { is true. }
$$

The output of U3 (74LS54) goes low to inhibit the frequency marks.
Bold frequency marks are required at $0,10,20$ and 30 MHz . The corresponding counter outputs are $1,11,21$ and 31 . Counter U4 output equal to 0001 (MSB--LSB) is detected by U7D, U7E , U7F, U1A , U1B and U1C and differentiated by C3 and R1 to produce a short positive going trigger pulse on the output of U2C.

Pin 9 of U2C can be strobed low by the computer to produce a Bold mark on film to indicate time on Stationary Doppler recordings.

PROM propagation delays to the A inputs of the magnitude comparators together with ripple counting delays on the B inputs could lead to false frequency mark triggering and Tx Filter switching at incorrect frequencies. The timing diagram below shows how the use of the Basic Rate Clock together with a monostable eliminates these potential problems.

The $B C D$ data to the synthesizer changes synchronously on the rising edge of the basic rate clock.

Basic Rate Clock

Basic Rate Clock

Tx Filter Control

Introduction

The T500A Linear Power Amplifier has five filters on the RF output. These filters numbered F1 , F2 , F3 , F4 and F5 cover the ranges $2-3,3-5$, $5-8,8-15$, and $15-30 \mathrm{MHz}$.

Circuit Description

Counters U4 and U5 address 2716 EPROM U14 thus ensuring that only the first transition of a filter change frequency is acted upon. The EPROM has eight output data bits. Five of these are used, one per filter. At any one time only one of the five filters is selected by a low on its control line.

As $B C D$ data from counters $U 4$ and $U 5$ address the EPROM hex locations A to $F, 1 \mathrm{~A}$ to 1 F and 2 A to 2 F are never addressed. These locations are however programmed with the current filter select data. The filter select data is stored as a FLEX file and is called FILTER.

The filter select data goes to the Antenna Select/Tx Filter driver brass box , B2 , via rear panel 50 way amphenol connector RPA1.

```
0000 ORGG $0000
0000 FE FE FE FE
0 0 0 4 ~ F I I ~ F I I ~
0006 FB FB FB
0009 F7 F7 F? F7
000II F7 F7 F7 F7
0011 F7 F7 F7 F7
0015 F7
0016 EF EF EF EF
001A EF EF EF EF
001E EF EF EF EF
0022 EF EF EF EF
0026 EF EF EF EF
002A EF EF EF EF
002E EF EF EF EF
```

```
** TFANSMITTER FILTER CNIVER IIATA ***
```

** TFANSMITTER FILTER CNIVER IIATA ***
*
*
THE FREQUENCY MARK COUNTERS ARE USEI TO AIIRESS AN EFROM .
THE FREQUENCY MARK COUNTERS ARE USEI TO AIIRESS AN EFROM .
THESE COUNTERS ONLY COUNT UF AND ARE I MHZ AHEAII OF
THESE COUNTERS ONLY COUNT UF AND ARE I MHZ AHEAII OF
THE ACTUAL FREQUENCY BEING TRANSMITTEII.
THE ACTUAL FREQUENCY BEING TRANSMITTEII.
THIS INSURES THAT THE FIRST TRANSITION OF A FREQUENCY
THIS INSURES THAT THE FIRST TRANSITION OF A FREQUENCY
SWITCHES TO THE NEXT FILTER .
SWITCHES TO THE NEXT FILTER .
AS ECD IS USEI ON THE AOMINESS LINES HEX LOCATIONS
AS ECD IS USEI ON THE AOMINESS LINES HEX LOCATIONS
A TO F , 1A TO 1F ANII 2A TO 2F ARE NEVER AIIIRESSEII.
A TO F , 1A TO 1F ANII 2A TO 2F ARE NEVER AIIIRESSEII.
THEY ARE HOWEVER FROGRAMMEI WITH THE CURRENT FILTER IATA.
THEY ARE HOWEVER FROGRAMMEI WITH THE CURRENT FILTER IATA.
5 DF THE \& OUTFUT IAATA LINES ARE USEII.
5 DF THE \& OUTFUT IAATA LINES ARE USEII.
A FILTER IS SELECTEII WHEN IT'S CONTROL LINE GOES LOW .
A FILTER IS SELECTEII WHEN IT'S CONTROL LINE GOES LOW .
THE 5 FILTERS COUER THE FREQUENCY FANGE AG FOLLOWS
THE 5 FILTERS COUER THE FREQUENCY FANGE AG FOLLOWS
2-3,3-5,5-8,9-15, 15-30 MHz ,
2-3,3-5,5-8,9-15, 15-30 MHz ,
FILTER IATA
FILTER IATA
*
*
BANII FCB $FE,FFE,$FE,GFE
BANII FCB $FE,FFE,$FE,GFE
BANI2 FCB $FI,$FI
BANI2 FCB $FI,$FI
BANIIS FCB कFE,$FF,㓞B
BANIIS FCB कFE,$FF,㓞B
EAN[I4 FCE कF7,$F7,$F7,$F7
EAN[I4 FCE कF7,$F7,$F7,$F7
FCB $F7,$F7,$F7,$F7
FCB $F7,$F7,$F7,$F7
FCE $F7,$F7,$F7,$F7
FCE $F7,$F7,$F7,$F7
FCB \$F7
FCB \$F7
FCB \$EF, \&EF, \#EF, \&EF
FCB $EF, &EF, #EF, &EF
FCB &EF,$EF,\&EF, \$EF

```
FCB &EF,$EF,&EF, $EF
```



```
FCB {EF, कEF,$EF,&EF
```

FCB {EF, कEF,\$EF,\&EF
FCB कEF, कEF, कEF, \$EF
FCB कEF, कEF, कEF, $EF
FCE &EF, #EF, &EF,$EF
FCE \&EF, \#EF, \&EF,$EF
FCF 报,$EF,$EF,拃
FCF 报,$EF,\$EF,拃
ENII

```
ENII
```

0 ERROR(S) IETECTEI
ANTARCTIC REGEARCH (RHONES)
2-8-83 TSC ASSEMELER F'AGE 2
TX FILTER IIRIVER IIATA
SYMBOL TABLE:
GANII 0000 BANII 0004 BANIS 0006 BANII 0007 EANILS 0016

Frequency Display ,FD

Introduction
The Frequency Display board displays the frequency being transmitted as XX. XX MHz.

Circuit Description
Four decades of BCD $\times 4$ data from PC2 go to 4 seven segment decoder drivers U1, U2, U3 and U4. These drive two dual displays DIS1 and DIS2 through 300 ohm current limiting resistors.

The Frequency Display board , FD , has its own 5V regulator U5 powering the drivers and the display.

Antenna Select and Tx Filter Drivers , B2a

Vertical/Oblique Tx Antenna Switching and Relay Drivers for Tx Filter Control Introduction

The T500A linear power amplifier has 5 filters on the $R f$ output. The selected filter is switched in by two relays drawing 140 mA between them. Each relay driver in the relay driver brass box , B2a , controls a set of filter switching relays.

The Vertical/Oblique antenna switching relays connect either the vertical $T x$ antenna or the oblique $T x / R x$ antenna to the $T 500 \mathrm{~A}$ Amplifier output. When the vertical Tx antenna is connected to the T500A the oblique antenna is switched to the Rx Antenna Select box , B2b. Circuit Description

Both the filter drivers and the co-axial relay drivers are identical. If the control line to filter 1 driver, $F 1$, is at a logic 1 then Q 1 is on , Q2 is off and the filter relays are not activated. When F1 changes to a logic 0 , Q1 switches off , Q2 switches on and filter 1 relays in the T500A amplifier are activated. Protection diodes, one per set of filter relays, have been added to the T500A amplifier circuitry.

The $\mathrm{V} / 0$ Select driver obtains +22.5 VDC from a power supply mounted in the T500A Linear Amplifier. When V / O Select is high the relays are not activated and the transmitter is connected to the Vertical Tx antenna and the Oblique antenna is connected to the Rx Antenna Select box.

When $\mathrm{V} / \overline{\mathrm{O}}$ is low the relays are energised to switch the transmitter output from the vertical Tx antenna to the oblique Tx antenna. These relays draw 180 mA when supplied with 22.5VDC.

The 14 way Amphenol connector that plugs into the Antenna Select and Tx Filter box , B2a , has two cables coming from it . Cable 1 goes to the Controller connector RPA1 and cable 2 goes to the T500A Linear Amplifier.

Subminiature co-axial cable, cable 3, goes from RPA1 pin 8 to the subminiature connector on the Antenna Select and Tx Filter box, B2a. This cable carries the signal Vertical Rx/Oblique Rx to the 4040 Rx Antenna Select box B2b which is mounted on top of B2a.

The 3 MHz Antennae Change-over Switching box obtains its control signal together with 5 V and gnd. from B2a via connector AC1 (Ant. Change-over 1). The control signal used is F1 , the 2-3 MHz filter select, which remains low for frequencies below 3 MHz .

Introduction
This box contains a co-axial relay plus driver circuitry and selects either a vertical $R x$ antenna or the oblique antenna to the 4040 Receiver. It is mounted on top of Antenna Select and Tx Filter box , B2a.

Circuit Description
The relay driver circuitry is identical to that used in the Antenna Select and Tx Filter box , B2a. Relay driver power , +5 and +22.5 VDC , is obtained from B2a.

Cable 3 carries the control signal from the Controller rear panel Amphenol connector to the Rx Antenna Select box B2b via B2a. When the control signal is high the relay is not activated and the vertical Rx antenna is connected to the 4040A Receiver. Activating the relay with a logic low on the control line connects the oblique antenna to the 4040 A Receiver.

Trans World Electronics T500A Linear Amplifier Modifications

Introduction
The power amplifier has 5 relay switched filters on the RF output. Remote filter switching is possible via a rear panel connector. Additions to Circuitry

To select a filter its control line must be grounded. The Tx Filter Box , B2a , contains 5 relay drivers which do this. The addition of 5 1N4007 diodes across the filter control lines in the T500A protect the driver transistors. The filters can be bypassed by connecting a co-axial cable jumper between two BNC connectors mounted on the T500A rear panel.

A 22.5 VDC supply using an LM317 voltage regulator supplies power to the antenna select co-axial relays in brass box B2a and also to the 4040 receiver antenna select co-axial relay in small brass box B 2 b . Note:

The T500A Linear Amplifier has a Press to Talk (PTT) feature requiring that pin 10 on the remote control socket $\mathrm{SO3}$ be grounded to transmit. The mating plug has pin 10 grounded with the result that it must be plugged in to enable the transmitter.

3 MHz Antennae Change-over , B4

Introduction
The frequency range of a vertical ionogram is from 0.5 Mhz to 15.0 MHz . The 4 electrically short receive antennae that were used worked well above 3.0 MHz . To improve the low frequency response a second set of 4 longer receive antennae were introduced.

The 3 MHz Antenna Change-over box switches between LF and HF antennae sets.

Circuit Description
100 ohm twin core shielded cable is used from the antenna boxes to the 3.0 MHz Antenna Change-over box. The 8 baluns, BL1 through BL8, transform the 100 ohm line impedance to 50 ohm.

Grounding relays GRL1 , GRL2 , GRL3 and GRL4 earth the HF signals when the control signal is low ; that is for frequencies up to 3 MHz . Select relays SRLY1 , SRLY2 , SRLY3 and SRLY4 then connect the LF antennae to the output.

The control signal goes high at 3 MHz to ground the LF antenna set and connect the HF antennae to the output connectors.

Clock Dividers ,PC3a

Introduction
A number of frequencies are required for system operation. The Time/Date (T/D) clock in the 6018 Camera Interface/Display requires 100 Hz and the Real Time Clock, RTC, requires 1 Hz . A battery supply to the clock dividers ensures that these signals are not affected by loss of power. Circuit Description

The input 100 kHz square wave is divided by U6, U2 , U1 , U5 and U10 to provide outputs of $1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 1 Hz which are buffered by U15. An unbuffered 1 Hz signal drives the Real Time Clock, RTC.

U3 monitors the supplies to PC3 , PC4 , PC5 , PC6 , PC7 , PC8 , PC9 and PC10 via a Scotchflex connector and illuminates front panel LED "PC3 to PC10 +5 V Supply" if all supplies are present.

Introduction

The Sweep Start circuitry is required to start an ionogram synchronous with the 1 Hz clock signal falling edge. This is important for oblique synchronization. Ionogram execution is controlled by data written to two 8bit registers , Control Register A and Control Register B.

System Power on clear circuitry is also included on this board. Circuit Description

Control Registers
Control Register A
Control Register A consists of two 4-bit latches U14 and U18 which can be loaded from the controller data bus. The data written to this register does not change during an ionogram. The function of each bit is :-

Controller Data Bus Bit		Function
Bit No.	State	-
D7	0	4 Hz - Stationary Doppler64 Hz - IonogramsTcell pulse gen rate select
D6	0	disable Sweep signal to FFT enable Sweep signal to FFT
D5 , D4	$\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}$	$\left.\begin{array}{l}\text { Tx only } \\ \text { Tx only } \\ \text { Rx only } \\ \text { T/R switching }\end{array}\right]$T/R Control. DS also selects oblique or vertical transmit antenna.
D3	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable Tcell interrupt to CPU enable Tcell interrupt to CPU
D2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable antenna load by Tcell pulse enable antenna load by Tcell pulse
D1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable synth counter load by Tcell pulse enable synth counter load by Tcell pulse
D0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable synth counter basic rate clock enable synth counter basic rate clock

Note:
D4 and D5 , once latched, are called SCO and SC1 respectively.

Control Register B

Control Register B consists of latches U9 and U4. This control register
is intended for data that may change during an ionogram. Assignment table :-

Controller Data bus bit		Function
Bit No.	State	
D7	0	spare control bit B7 available on PCB only
D6	0	spare control bit B6
D5	0	spare control bit B5
1	0	spare control bit B4
D4	disable fast film advance enable fast film advance	
D3	0 1	disable transmitter enable transmitter
D2	Internal Rx AGC External Tx AGC	
D1	disable film drive enable film drive	

Power on Clear

At switch on the +5 V supply charges C 5 through R2. The output of battery supplied Schmitt trigger NAND gate U11A remains high for about 64 ms until C5 charges to the negative going input threshold of 1.6 V when it goes low.U11B inverts this signal so that $\overline{P 0 C}$ remains low at switch on resetting the sweep start, the Advance/Retard and film drive flip-flops. STO to U11B pin 5 allows the computer to generate a $\overline{\mathrm{POC}}$ signal.

Sweep Start

Flip-flops U8A and U8B are initially cleared. Just less than 1 second before an ionogram is due to start strobe ST22 clocks U8A , setting it. The ionogram begins when U8B is set on the next falling edge of the 1 Hz clock signal.

The Sweep start signal enables the Tcell pulse generator and the 6018 Film recording system and also synchronises the output of the FFT rate generator with the 1 Hz clock signal. T/R Control and Antenna Selection

In Control Register A bits D5 and D4 select either Tx only , Rx only or T / R switching. T/R switching is used for vertical incidence ionograms and $T x$ only and Rx only for oblique ionograms. When bit D5 is low the transmitter is switched to the Oblique antenna.

Vertical incidence operation is characterised by T / R switching which is selected when SCO $=$ SC1 $=1$. U11D and U11C detect this condition and generate the control signal Vertical Rx/Oblique Rx used by the 4040 Rx Antenna Select relay box.

$4 / 64 \mathrm{~Hz}$ Select

Control Register A bit D7 together NAND gates U12A , U12B , U12C and U12D select either 4 Hz or 64 Hz as the input frequency to be used by the Tcell pulse generator board. Video Blank and Film Drive Inhibit

Control Register B bit DO controls this function by providing the data inputs to flip-flop U7B which is clocked by the Tcell pulse. This allows control of the film recording system synchronous with the Tcell period.

Real Time Clock , RTC

Introduction

The real time clock provides place , year, year day number, hours , minutes and seconds to both the user and to the controlling computer. It consists of a battery backed-up clock multiplexer board and a display unit. Circuit Description

The clock is driven by 1 Hz from controller board PC3b. This signal clocks dual up counters U11, U12, U13, U14 and U15 which are interconnected to count seconds, minutes, hours, days and unit years. The 1 Hz pulse falling edge also triggers 1 microsecond monostable U22 which resets both counters in dual up counter U23.

The multiplexing frequency of 9.6 kHz is obtained from the computer 600 b clock line. This frequency is divided by 10 by half of dual up counter U23. The output clocks the other half as well as triggering the other monostable in U22. The monostable output on pin 6 , a 10 microsecond pulse, is buffered by U25. This pulse, the data valid pulse, is used by the demultiplexing circuitry.

The outputs of the counter that is clocked at 0.96 kHz address 4 to 16 line decoder U24 which enables one of the ten 3-state buffers U1 through U10 , putting the corresponding $B C D$ clock data onto the clock data bus. The outputs of this counter are also buffered by U25 and provide parameter information.

Parameter	0	1	2	3	4	5	6	7	8	9
Clock Data	S1	S10	M1	M10	H1	H10	D1	D10	D100	Y1

Q1 , R8 , R9 and R10 disable 3-state buffers $U 1$ through $U 10$ when the main supply fails. The front panel rotary switch is used to to selectthe digit to be changed. The toggle switch increments the selected digit by 1 each time it is pressed. U26D and U26C debounce the toggle switch.

Timing Diagrams
Multiplexer on board RTC
mux freq. fmux to U23 pin 10
fmux/10
on U23 pin 14
Data Valid
U25 pin 7
Parameter data 2^{0}
2^{1}
2^{2}
2^{3}
Parameter:-

$$
\begin{aligned}
\text { Clock Data } & 2^{0} \\
& 2^{1} \\
& 2^{2} \\
& 2^{3}
\end{aligned}
$$

Clock Data:-
Demultiplexer on board RTCD
Data valid
on U2 pin 11

Mono out
to U1 pin 23-inhibit

S2 latch enable
U1 pin 9etc.....

Real Time Clock Display, RTCD

Introduction
This board demultiplexes the $B C D$ clock data using the 4 bit parameter data and displays it in the form Y1 D100 D10 D1 H10 H1 M10 M1 S10 S1. Preceding this data is a place identifier and one digit for tens of years. These two digits are set using DIL switches.

Circuit Description

The BCD clock data bus goes to BCD-to-7 segment latch/decoder/drivers U3 through U12 all of which drive MAN 547 segment displays via 150 ohm resistors.

The parameter data to U1 selects one of the BCD-to-seven segment latch/decoder/drivers to latch the data on the clock data bus. Monostable U2 , triggered by the data valid pulse falling edge inhibits 4 to 16 line decoder U1 for 5 microseconds to ensure that the clock data is stable before it is latched.

Basic Rate , PC4a

Introduction
The Basic Rate is the linear rate at which the transmitter frequency is increased during a cell. This circuit allows the selection of a number of a number of different basic rate clocks and hence basic rates.

Circuit Description

ST10 clocks U14 to latch data from the Controller data bus. Either 100 kHz or 1 MHz can be selected by output Q3 of U14 and U1 to go to U4 and U5. U4 divides the input by $2,4,8$ and 16 and U5 divides by 5 and 10. All 6 frequencies together with the input frequency are applied to the inputs of 8 -input multiplexer 49 . One of these rates is selected by $\cup 14$ outputs $Q 0$, Q1 and Q2 which address U9. The selected frequency is the basic rate clock used to clock the BCD counters which drive the synthesizer. Because the programmed synthesized sweep is multiplied by 4 a clocking frequency of 12.5 kHz produces a 50 kHz ramp or Basic Rate.

Basic Rate Select Data
Controller Data Bus Utilization

D7	D6	D5	D4	D3	D2	D1	D0
not used							

Basic Rate Strobe
Decimal ST10
Hex STOA
Basic Rate Select Table

Binary Data				Hex Data	Basic Rate Clock	Basic Rate
D3	D2	D1	D0	Hex	kHz	KHz/s
0	0	0	0	00	6,25	25
0	0	0	1	01	10	40
0	0	1	0	02	12,5	50
0	0	1	1	03	20	80
0	1	0	0	04	25	100
0	1	0	1	05	50	200
0	1	1	0	06	100	400
0	1	1	1	07	-	-
1	0	0	0	08	62.5	250
1	0	0	1	09	100	400
1	0	1	0	OA	125	500
1	0	1	1	OB	200	800
1	1	0	0	OC	250	1000
1	1	0	1	OD	500	2000
1	1	1	0	OE	1000	4000
1	1	1	1	OF	-	-

Tcell Pulse Generator, PC4b

Introduction

The cell is the fundamental building block of the system. During a cell the ionosonde frequency can increase at some linear rate called the Basic Rate or it can remain fixed. The cell period is called Tcell. The Tcell circuitry on PC4b generates the Tcell pulse from one of two sets of eight different clock rates.

Circuit Description

The input frequency used by the Tcell pulse generator board is selected by D7 of Control Register A on PC3b. D7 $=0$ selects the Doppler Tcell rate of 4 Hz and $D 7=1$ selects the ionogram Tcell rate of 64 Hz .

U10 and U11 divide this input by $2,4,8,16,32,64,128$ and 256. Data latched by ST11 in U15 selects one of these 8 rates to trigger monostable U 16 if the sweep is high. The monostable output pulse signals the beginning of a cell.

An Ionogram begins when Sweep changes from low to high. This signal triggers monostable 49 on PC7 which generates a sync on second pulse clearing Tcell dividers $U 10$ and $U 6$ and setting U11 output low. If U16 Pins 3 and 4 are initially low , sweep going high triggers the first Tcell pulse. If $U 16$ pins 3 and 4 are initially high and Sweep goes high the first Tcell pulse is generated when the sync on second pulse clears the Tcell dividers causing a high to low transition on $\cup 16$ pins 3 and 4 .

Tcell Select Data
Controller Data Bus Utilization

D7	D6	D5	D4	D3	D2	D1	D0	
not used						Tcell		
		Select						

Tcell Strobe
Decimal $=$ ST11
Hex
$=$ STOB
Tcell Period Select Table

Binary Data		Hex Data	Tcell Period (s)		
$\underline{D} 2$	$\underline{D 1}$	$\underline{D 0}$	-	$\underline{64 ~ H z ~ i n ~}$	$\underline{4 \mathrm{~Hz}}$ in
0	0	0	00	$1 / 32$	$1 / 2$
0	0	1	01	$1 / 16$	1
0	1	0	02	$1 / 8$	2
0	1	1	03	$1 / 4$	4
1	0	0	04	$1 / 2$	8
1	0	1	05	1	16
1	1	0	06	2	32
1	1	1	07	4	64

Programmable M-Sequence Generator , PC4C

Introduction

Since the minimum target delay is short compared to the duration of a cell it is necessary to employ T/R switching.

A maximum length sequence or M-sequence (also known as a pseudo-random binary sequence) was choosen as the switching waveform as the echo reception probability versus delay (auto-correlation function) is constant except for delays from zero to a delay equal to a single bit period where it rises linearly. At integral multiples of the M-sequence repeat period it also falls to zero then rises to the constant value again. The Msequences used have repeat periods much greater than the maximum delay of interest.
echo reception probability

ts $=$ single bit period
In ionospheric measurements the minimum target range or virtual height vh is approximately 90 Km .
The corresponding delay $T=(2 * v h) / \mathrm{c}$, where $\mathrm{c}=3 * 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& =\left(2 * 90 * 10^{3}\right) / 3 * 10^{8} \mathrm{~s} \\
& =600 \text { us }
\end{aligned}
$$

tsmax $=600$ us is thus the maximum single bit period allowed before reduced echo reception probability occurs at the delays of interest.

The minimum single bit period is determined by the maximum rate of transmit/receive switching possible and is about 200 us.

An M-sequence can be generated by using a shift register with appropriate feedback. Certain bits are modulo-two summed (exclusive-OR'ed) and fed back into the shift register. An n bit shift register can have 2^{n} possible states. An M-sequence of order n can have $2^{n}-1$ possible states before repeating since the all zero state is invalid .

Circuit Design

An 11 bit shift register has $2^{11}=2048$ possible states. Choosing a clock frequency of 2048 Hz results in a single bit period of $1 / 2048=488.28$ us. Related to height, $v h=(t * c) / 2$

$$
\begin{aligned}
& =488.28 * 10^{-6} * 3 * 10^{8} \\
& =73.2 \mathrm{~km}
\end{aligned}
$$

73 Km is thus the half width of the notch near zero delay in the autocorrelation function and is well below the E-region.

An 11 bit M-sequence can be clocked $2^{11}-1$ times before it repeats.
Clocked at 2048 Hz the M -sequence will complete in 2047 clock pulses and will begin again on the 2048th clock pulse. For Tcell $=1 \mathrm{~s}$ the start of the M-sequence relative to Tcell will precess by 1 clock pulse (488.28 us) each second. If the M-sequence is reset at the start of each cell by the Tcell pulse the code will not precess and will be identical for each cell.

A clock frequency of 2048 Hz implies 1024 pulses in half a second . $2^{10}=1024$, so that an M-sequence of order 10 would repeat every 1023 clock pulses. Thus, for a number of Tcell periods all related by a factor of 2 (ie $4 \mathrm{~s}, 2 \mathrm{~s}, 1 \mathrm{~s}, 1 / 2 \mathrm{~s} \ldots$), it is only necessary to change the order of the M-sequence. The programmable M-sequence generator allows the selection of sequences of order 6 through 16 to correspond to Tcell periods of $1 / 32 \mathrm{~s}$ through to 32 s .

To obtain M-sequences of order $6,7,8,9,10,11,12,13,14,15$ and 16 a 16 bit shift register is required. A computer program was run to list all possible feedback points that would yeild an M-sequence of a particular order. It was discovered that any one of the M-sequences required could be obtained by using 4 feedback points only. Two feedback points, namely those from shift register bits 2 and 3 , are common to all the required orders.

The shift register bits are designated b1 through b16. The 4 feedback points are designated F1 , F2 , F3 and F4 and the modulo-2 addition of the data selected by these points F.

\oplus = modulo -2 adder or exclusive $O R$
Depending on the order, selection of one of b4 , b5 , b8 or b9 by F3 yeilds an M-sequence. The fourth feedback point must select data from bits b6 through b16 for M-sequences of order 6 through 16. Being the last bit in the shift register this is also the output of the M-sequence.

Let the data selected by F1, F2 , F3 and F4 be A , B , C and D respectively. The feedback equation is then $A \oplus(B \oplus(C \oplus D))$.

The reset on the shift registers used clears all the bits to zero. This is the only invalid bit combination in an M-sequence. If inverted, however , it becomes the valid all one's state.

Let the shift register contain inverted data. F1 , F2 , F3 and F4 then select inverted data $\bar{A}, \bar{B}, \bar{C}$ and \bar{D}.

Successive XORing of this data yeilds :-

$$
\begin{aligned}
& F=\bar{A} \oplus(\bar{B} \oplus(\bar{C} \oplus \bar{D})) \\
& =\bar{A} \oplus(\bar{B} \oplus(C \oplus D)) \text { applying } \bar{X} \oplus \bar{Y}=X \oplus Y \\
& =\bar{A} \oplus(\overline{B \oplus C \oplus D}) \quad \text { applying } \bar{X} \oplus Y=\overline{X \oplus Y} \\
& =A \oplus B \oplus C \oplus D \quad \text { applying } \bar{X} \oplus \bar{Y}=X \oplus Y
\end{aligned}
$$

This feedback equation is the same as that obtained with non-inverted data. Because the shift register contains inverted data the feedback F must be inverted after XORing to give :-

$$
\bar{F}=\overline{A \oplus B \oplus C \oplus D}
$$

The XOR gate and inverter can be replaced by an XNOR gate. Replacing the 2 remaining XOR gates with XNOR gates gives the following :-

Circuit Description

U2D inverts the 2048 Hz clock signal to $\mathrm{U7}$ and U8 which make up a 16 bit shift register. The first and second feedback points F1 and F2 are common to all orders of M-sequence and are taken from b2 and b3. The data from these points is fed to XNOR gates U2A pin 1 and U2B pin 5 . For the third feedback point one of the four bits b4, b5 , b8 or b9 can be selected via multiplexer U3 to U2C pin 8. Data bus bits DO and D1 are used for this selection. The fourth feedback point is similarily selected from one of the bits b6 through b16 by data bus bits D2 , D3 , D4 , D5 and D6 addressing 2 multiplexers U12 and U13. The M-sequence of the selected order is obtained from $\mathbf{U 1 3}$ pin 6 , the Z output of the multiplexer. The Tcell pulse resets the shift register to an all zero state at the beginning of each cell.

M-sequence Select Data

Controller Data Bus Utilization

	D7	D6	D5	D4	D3	D2	D1	DO
	$\begin{array}{\|l\|l} \text { not } \\ \text { used } \end{array}$			-se	U	S	lec	

Decimal $=$ ST12
Hex = STOC
M-sequence Select Table

T/R Gain Weight Generator - replaces Amplifier T/R board A6

Introduction
The original Barry Research T/R rate generator board produces three pulse trains. These are the T / R pulse train, the Rx gain weight and the Tx gain weight pulse train. The pulse trains are derived from a common clock frequency which can be modulated at a 1 Hz rate to eliminate the blind range associoated with the Barry Research 16 bit T/R code. The pulse trains are all the same except for the Rx gain weight pulse train which rises 180 microseconds before the other two.

The T/R Gain Weight Generator board generates the three pulse trains from the M-sequence generated on PC4C and plugs directly into the A6 slot in the 4050 Amplifier T/R.

Circuit Description

Timing Diagram

1. M-sequence in
2. U2A pin $4, \bar{Q}$ output $=A$

3. U 2 B pin $12, \overline{\mathrm{Q}}$ output $=\mathrm{B}$
4. U3D $\operatorname{pin} 11=\overline{A \cdot B}$
5. U1 $\operatorname{pin} 12=T / R$ pulse train
6. U3B pin $6=M$-seq $+T / R$ train $=R x$ Gain weight pulse train

The M-sequence rising edge triggers monostable U2A producing a 150 microsecond low going pulse. Because U3D pin 13 is high a high going pulse is obtained on pin 11. The falling edge of this pulse clocks flip-flop U1 which has the M-sequence pulse train applied to the J input. Because this is at a logic 1 level the output of $U 1$ on pin 12 goes high.

The M-sequence falling edge triggers monostable U2B producing a 150 microsecond low going pulse. Because U3D pin 12 is high a high going pulse is obtained on pin 11. The falling edge of this pulse clocks flip-flop U1 changing the output from high to low as the M-sequence pulse train on the J input is low.

If both monostables have equal periods the waveform obtained on U1 pin 12 is the input M-sequence delayed by 150 microseconds. This delayed M-sequence is then the T / R pulse train. U3A , U3C and U3B OR the input M-sequence with the delayed M-sequence to produce the receive gain weight pulse train which rises 150 microseconds before the T / R pulse train.

Control lines SCO and SC1 from Control Register A on PC3b together with U4A, UAB, U4C and U4D are used to select Tx only, Rx only or T/R switching. The table below the control data, function selected and the states of the output lines.

Control Lines		Function	Output Pulse Train		
$\frac{\text { SC1 }}{2}$	SC0	-	$\frac{\text { Rx Gain }}{}$ Wt.	Tx Gain wt.	T/R Pulse Train
0	0	Tx only	1	1	1
0	1	Tx only	1	1	1
1	0	Rx only	0	0	0
1	1	T/R switch	waveform 6	waveform 5	Waveform 5

Advance Retard , PC5

Introduction
For oblique synchronization the timing of the receiving ionosonde relative to the transmitting ionosonde must be adjustable. This timing change must affect both the ionogram start times as well as the instantaneous frequency of the ramp during an oblique ionogram.

The 100 kHz square wave is divided down to 1 Hz for the hardware Real Time Clock and is also used to generate the basic rates used in producing oblique ionograms. By adding in or deleting pulses from the 100 kHz square wave both requirements can be met.

Circuit Description

The 100 kHz , 1 Vrms output of the 105B Quartz Oscillator is squared by Q2. Dividers U1 , U2 and U3 provide the correct intervals at which to add in or delete pulses from the 100 kHz signal. Each pulse is equivalent to $1 / 10^{5}$ seconds, that is 10 microseconds.

U1 divides 100 kHz by 10 to provide 10^{4} pulses per second. Adding in or deleting a pulse from the 100 kHz square wave at 10^{4} pulses per second results in a timing slip rate of $10^{4} \times 10 \mathrm{microseconds}=100 \mathrm{~ms} / \mathrm{s}$.

The output of U2 gives 10^{3} pulses per second for a slip rate of $10^{3} \times 10$ microseconds $=10 \mathrm{~ms} / \mathrm{s}$ and the output of U3 gives 10^{2} pulses per second for a slip rate of $10^{2} \times 10 \mathrm{mic}$ coseconds $=1 \mathrm{~ms} / \mathrm{s}$.

U13 is loaded with shift direction and rate data.

Controller Data bus	Logic $\underline{0}$	Logic 1
D0	Advance	Retard
D1	disabled	$1 \mathrm{~ms} / \mathrm{s}$ rate
D2	disabled	$10 \mathrm{~ms} / \mathrm{s}$ rate
D3	disabled	$100 \mathrm{~ms} / \mathrm{s}$ rate

Note :- Only one of the three rates must be enabled at any time.

With the control latch U13 set the required shift is parallel loaded into two four bit binary counters , U9 and U14. Strobe 26 (ST26) initiates the timing slip by setting flip-flop U4A. The selected rate clocks flip-flop U4B enabling either U12A or U12B. With retard selected U6A, U12A and U10D delete pulses from the 100 kHz waveform retarding the timing. To advance the timing U6B, U6F, U6E, U6D , U12B and U10C add pulses to the 100 kHz square wave.

Either the pulses that added to the 100 kHz signal or those that are used for pulse deletion decrement counters U9 and U14. When zero is reached flipflops U4A and U4B are cleared and the timing slip stops.

The software executes a required shift by loading and slipping in multiples of 1 ms followed by a remainder. The smallest possible shift is 10 microseconds.

1. 100 kHz in
2. $U 1$ pin 12
3. U7C pin 8
4. U6F pin 13
5. U6D pin 8
6. U 12 B pin 13
7. U 12 B pin 8
8. U 10 C pin 10
9. U 10 C pin 8

Retard Waveforms

1. 100 kHz in
2. UTC pin 8
3. U12A pin 1
4. U12A pin 6
5.U10D pin 11
5. U10C pin 8

Advance Retard Select data
Controller Data Bus Utilization
Control Data

Data $\frac{\text { bit }}{}$	Function
D7 to D4	not used
D3	0 - disable $100 \mathrm{~ms} / \mathrm{s}$ 1 - enable $100 \mathrm{~ms} / \mathrm{s}$
D2	0 - disable $10 \mathrm{~ms} / \mathrm{s}$ 1 - enable $10 \mathrm{~ms} / \mathrm{s}$
D1	0 - disable $1 \mathrm{~ms} / \mathrm{s}$ 1 - enable $\quad 1 \mathrm{~ms} / \mathrm{s}$
D0	0 - Advance 1 - Retard

Advance Retard Control Data Strobe
Decimal $=$ ST23
Hex = ST17
Shift Data

D7	D6	D5	D4	D3	D2	D1	D0
Shift Data							

Advance Retard Shift Data Strobe
Decimal $=$ ST25
Hex = ST19

Strobe Decode , C6

Introduction

The Controller hardware requires that data from the computer be latched to select one of a number of possible outputs of a particular controlled parameter. For example, selection of a basic rate clock frequency from one of the ten that are generated on PC4a.

The method used for parameter selection makes use of both sides of a PIA with the A side outputting the data and the B side generating a strobe pulse via suitable circuitry.

Data written to the PIA A side is latched by the PIA and distributed to the controller hardware. Data written to the PIA B side together with the CB2 output configured as a write strobe with E restore are used by the Strobe Decode board C6 to generate the strobes required for data latching and system control.

Circuit Operation

PIA MP-LA-1 , A side
The A side latches the data written to it by the computer. This data is distributed to the controller hardware on the controller data bus. PIA MP-LA-1 , B side

The B side data output lines together with the CB2 output are decoded on the Strobe Decode board , PC6. Data bits D6 and D7 are not used.

Bits D5 , D4 and D3 address one of 8 decoder 45 which selects one 8 other decoders for the duration of the WRE (CB2 output) pulse. These bits thus select a set of eight strobe lines.

Bits D2 , D1 and D0 select, via the enabled decoder, one of the eight output lines which pulses low. The duration of the strobe pulse thus generated is approximately 1 microsecond with the microprocessor running at 1 MHz .

This arrangement allows for up to 64 strobe lines which can be used for data latching or clocking logic. Strobe line signal names have been abbreviated from Strobe n to STn. At present the system uses all the strobe lines from STO to ST23 and ST25 to ST28. The 4 spare strobe lines available on the chassis edge connector are ST24 , ST29 , ST30 and ST31. The upper edge connector is not used.

Strobe Signal Functions

Strobe Signals		Function
Decimal	Hex	-
STO	ST00	Clear sweep , A / R and film drive flip-flop
ST1	STO1	Clear sweep flip-flop
ST2	ST02	Clear A/R flip-flop
ST3	ST03	Load Control Register A
ST4	ST04	Load Control Register B
ST5	ST05	Synth latch $10^{0}, 10^{1}$
ST6	ST06	Synth latch $10^{2}, 10^{3}$
ST7	ST07	Synth latch $10^{4}, 10^{5}$
ST8	ST08	Synth latch $10^{6}, 10^{7}$
ST9	ST09	Synth counter initial load
ST10	STOA	Basic Rate data load
ST11	STOB	Tcell pulse period data load
ST12	STOC	M-sequence data load
ST13	STOD	spare
ST14	STOE	FFT data load
ST15	STOF	load antenna latches U1 , U2

Strobe Signal Functions

Strobe Signal		Function
Decimal	Hex	-
ST16	ST10	Antenna data initial load
ST17	ST11	Load film speed data
ST18	ST12	Rx AGC ext clock, data to DCS
ST19	ST13	Rx Phase sync data to DCS
ST20	ST14	Load L0 offset select data
ST21	ST15	Load LO offset data
ST22	ST16	Sweep Start
ST23	ST17	Load A/R control data
ST24	ST18	Spare
ST25	ST19	Load A/R shift data
ST26	ST1A	A/R shift start
ST27	ST1B	Time mark for stationary Doppler
ST28	ST1C	Baseband filter control (unused)
ST29	ST1D	Spare
ST30	ST1E	Spare
ST31	ST1F	Spare

FFT Sample Rate , PC7

Introduction
The FFT unit was designed to analyse the 512 Hz band limited dual channel receiver baseband signal. A sample rate clock of 1024 Hz is required to collect 1024 samples for the transform. Circuit Description

The 1 MHz sine wave from the 105B Quartz oscillator is buffered by Q2 before being divided by 5 by $U 1$ to 200 kHz . U6 divides the 200 kHz by 5 to 40 kHz which is used as the reference frequency for phase-frequency detector U10. The phase detector drives VCO U2 at 10.24 MHz . U7 and U11 divide 10.24 MHz by 256 to give 40 kHz at the phase detector variable input. This is locked onto the reference 40 Khz by the phase-locked loop.

The 10.24 MHz signal is divided by 1000 by U3, U4 and U5 to give 10.24 kHz . U12 divides this by 5 to give the 2048 Hz clock used by the M -sequence generator. 10.24 kHz is also divided by 10 by U8 yeilding 1024 Hz . U13 and U14 are binary counters which produce $512,256,128,64,32,16,8$ and 4 Hz .

Data latched in U15 addresses multiplexer U16 selecting sample rates ranging from 1024 Hz through to 8 Hz .4 Hz and 64 Hz are taken off the board to drive the Tcell pulse generator.

U9 produces a sync on second pulse at the beginning of an ionogram when the sweep signal goes from low to high. This synchronises the FFT sample rate with the 1 second pulse from the system clock on PC3a.

FFT Rate Select Data
Controller Data Bus Utillization

D7	D6	D5	D4	D3	D2	D1	DO
not used					FFT Rate		
					Select		

FFT Sample Rate Strobe
Decimal $=$ ST14
Hex = STOE
FFT Sample Rate Select Table

$\frac{\text { Binary Data }}{}$	$\frac{\text { Hex Data }}{}$	FFT Rate	
D2 D1 D0	-	$H z$	
0	0	0	00
0	0	1	01
0	1	0	02
0	1	1	03
1	0	0	04
1	0	1	05
1	1	0	06
1	1	1	07

Antenna Select, PC8a

Introduction
The antenna select logic together with the antenna switch box select one of 8 antennae to either of two receivers. Unused antennae are kept grounded. Antenna selection data can be changed directly by computer or by Tcell pulse.

Circuit Description
Rx1 antenna select bits D0, D1 and D2 together with enable bit D3 are Iatched in U1 and Rx2 antenna select bits D4 , D5 and D6 plus enable bit D7 are latched in U2 by computer strobe ST15.

The antenna load pulse generated on PC3b transfers Rx1 and Rx2 data to U5 and $U 6$ respectively. This pulse is either a computer strobe (ST16) or Tcell pulse. The outputs of U5 address 1 of 8 decoder/demultiplexer U9 selecting the antenna for R×1 and the outputs of U6 address 1 of 8 decoder/demultiplexer $\cup 10$ to select the Rx2 antenna. The outputs of U9 and U10 are active low, that is they all remain high except for the selected line.

All 8 antenna have a normally high grounding control line driven by an AND gate. Selection of an antenna to either Rx1 or Rx2 enables that antenna by driving its grounding control line low.

Antenna Select Data
Controller Data Bus Utilization

$D 7$	$D 6$	$D 5$	$D 4$	$D 3$	$D 2$	$D 1$	$D 0$
enable $R \times 2$	Rx2 antenna select	enable $R \times 1$	Rx1 antenna select				

Antenna Select Strobe
Decimal $=$ ST15
Hex = STOF
Antenna Select Data Table
All data in hex.

		Rx1 Antenna								
Antenn		Off	1	2	3	4	5	6	7	8
	Off	00	08	09	OA	OB	OC	OD	OE	OF
	1	80	88	89	8A	8B	8C	8D	8E	8F
	2	90	98	99	9A	9B	9C	9D	9 E	9 F
	3	AO	A8	A9	AA	AB	AC	AD	AE	AF
	4	B0	B8	B9	BA	BB	BC	BD	BE	BF
	5	CO	C8	C9	CA	CB	CC	$C D$	CE	CF
	6	D0	D8	D9	DA	DB	DC	DD	DE	DF
	7	E0	E8	E9	EA	EB	EC	ED	EE	EF
	8	F0	F8	F9	FA	FB	FC	FD	FE	FF

Film Speed Control , PC8b

Introduction
The film speed control board generates two signals , a 500 Hz fast film advance signal and a variable film rate signal. The variable film rate signal can be enabled or disabled by the computer.

Circuit Description

U3 divides the 1 kHz input signal by 2 to 500 Hz which is used in the 6018 Camera Interface for fast film advance.

Film speed select data is latched by U11 and U12. Counter U7 is clocked down at 500 Hz . TCD goes low when zero is reached and clocks U4 as well as parallel loading U7 from U11. U7 therefore divides the 500 Hz clock by the number on its parallel inputs which is set by bits D0 , D1 , D2 and D3 and latched by U11.

The resulting pulse train is divided by $2,4,8$ and 16 by U4 and one of these is selected by 4 input multiplexer U8 addressed by latched data bits D4 and D5. Data bits D6 and D7 are not used.

The usual film speed is $6 \mathrm{~mm} / \mathrm{min}$ which corresponds to hex code 2C and a frequency of 5.2 Hz .

Film Speed Select Data

Controller Data bus Utillization

D7	D6	D5	D4	D3	D2	D1	D0
not used	second division	first division					

Film Speed Select Strobe

$$
\text { Decimal }=\text { ST17 } \quad \text { Hex }=\text { ST11 }
$$

Film Speed Select Table

500 Hz corresponds to a film speed of $600 \mathrm{~mm} / \mathrm{min}$.

$\text { Data } \frac{\text { First Division }}{\text { bits D3,D2,D1 }, \mathrm{DO}}$		$\frac{\text { Second Division }}{\text { Data bits D5, D4 }}$									
Hex Data	Division	Data 0		14		2		3			
	by				18	116					
-	-	Hz ${ }^{\text {m }}$	mm/min			Hz	mm/min	Hz $\mathrm{mm} / \mathrm{min}$		Hz	$\mathrm{mm} / \mathrm{min}$
0	-	-	-	-	-	-	-	-	-		
1	1	250	300	125	150	62.5	75	31.3	37.5		
2	2	125	150	62.5	75	31.3	37.5	15.6	18.8		
3	3	83.3	100	41.6	50	20.8	25.0	10.4	12.5		
4	4	62.5	75	31.3	37.5	15.6	18.8	7.8	9.4		
5	5	50.0	60	25.0	30.0	12.5	15.0	6.2	7.5		
6	6	41.6	50	20.8	25.0	10.4	12.5	5.2	6.2		
7	7	35.7	42.8	17.9	21.4	9.0	10.2	4.5	5.1		
8	8	31.2	37.5	15.6	18.8	7.8	9.4	3.9	4.7		
9	9	27.8	33.3	13.9	16.7	6.9	8.3	3.4	4.2		
A	10	25.0	30.0	12.5	15.0	6.2	7.5	3.1	3.8		
B	11	22.7	27.3	11.4	13.6	5.7	6.8	2.8	3.4		
C	12	20.8	25.0	10.4	12.5	5.2	6.2	2.6	3.1		
D	13	19.2	23.1	9.6	11.5	4.8	5.8	2.4	2.9		
E	14	17.9	21.4	8.9	10.7	4.4	5.4	2.2	2.7		
F	15	16.7	20	8.3	10	4.2	5	2.1	2.5		

Antenna Switch Brass Box , B1

Introduction

The antenna switch brass box , driven by the antenna select logic on PC8a , selects one of eight antenna to either of two receivers. Unused antenna are kept grounded.

Circuit Description

Normally open DIP reed relays TRL1 through to TRL8 select the antenna to Rx1 and normally open DIP reed relays BRL1 through BRL8 select the antenna to Rx2. Normally closed DIP reed relays ERL1 through ERL8 keep all the antennae grounded except for those selected.

Note that the normally open reed relays are either $831 \mathrm{~A}-4$ which have an internal protection diode or 831A-3 together with an external protection diode.

All control and supply lines in the antenna switch brass box are looped through ferite beads to reduce interference on the inputs to the receivers.

Local Oscillator Offset Frequency Synthesizer , PC9

Introduction

To obtain a sine wave of frequency from the Sine Wave Generator on PC10 a clocking frequency of $256 \times f$ is required. The Local Oscillator Offset Frequency Synthesizer on PC9 synthesizes two clocking frequency ranges , one for stationary Doppler measurements and the other for windowing.

The clock frequencies for stationary Doppler measurements are 256×2, $256 \times 4,256 \times 8,256 \times 16,256 \times 32$ and 256×64 and those for windowing are $256 \times(256 \times 1)$ through to $256 \times(256 \times 99)$. The choice of sine wave frequencies is discussed in the introduction to the SSB Generator.

Circuit Description

U10 divides 10.24 MHz from the FFT Sample Rate board, PC7 , by 5 to 2.048 MHz. A second division by 5 by U5 reduces this to 409600 Hz which is used as the reference frequency to phase-frequency detector U1. The phase detector drives VCO U6 at 6553600 Hz . U11 divides this frequency by 16 to give 409600 Hz at the phase detector variable input.

6553600 Hz can be written as $2^{18} \times 5^{2}$. This frequency drives two synchronous decade rate multipliers U7 and U8. The rate multipliers generate an output frequency $f_{\text {out }}$ which is related to the input frequency $f_{\text {in }}$ by :$f_{\text {out }}=\left(M \times f_{\text {in }}\right) / 100$ where M is greater than 0 and less than or equal to 99 and is latched by U12 and U13.
$f_{\text {out }}=\left(M \times 2^{18} \times 5^{2}\right) / 100$
$=\left(M \times 2^{16} \times 2^{2} \times 5^{2}\right) / 100$
$=M \times 2^{16}$
$=M \times 2^{8} \times 2^{8}$
$=256$ ($256 \times M$) for M greater than 0 and less than or equal to 99. These frequencies are used for windowing.
$f_{\text {out }}$ is gated to SF1 by U2A , U2B and U2C when Q3 of U14 is high.

To generate the frequencies for stationary Doppler M is set to 1 to obtain $f_{\text {out }}=256 \times 256$. When Q3 of U14 is low, $\overline{Q 3}$ is high enabling U3 and U4 which divide $f_{\text {out }}$ by $2,4,8,16,32,64$ and 128.

Multiplexer U9 addressed by data latched in U14 selects the required stationary Doppler offset frequency.

Q3 of U14 which selects either Doppler or windowing frequencies is also taken to the Sine Wave Generator to select upper sideband for windowing and lower sideband for Doppler.

Local Oscillator Offset Frequency Synthesizer Select Data

Controller Data Bus Utilization
The four controller data bus bits D0 , D1 , D2 and D3 are used for the control of the final output frequency. Their latching strobe is :Decimal $=$ ST20

Hex = ST14
The full 8 bit width of the controller data bus is used as two BCD numbers to select the rate multiplier output frequency. The latching strobe is :-

Decimal $=$ ST21
Hex = ST15
Local Oscillator Offset Frequency Synthesizer Select Table

Control data-U14		Freq. Data-U12, U13	$\mathrm{f}_{\text {out }}$	SF1	Function
Binary	Hex	BCD	Hz	Hz	-
0000	0	00	O (low)	O (low)	Off
0000	0	01	$256 \times 256 \times 1$	0 (low)	Off
0001	1	01	$256 \times 256 \times 1$	256×2	Doppler
0010	2	01	$256 \times 256 \times 1$	256×4	Doppler
0011	3	01	256x256x1	256x8	Doppler
0100	4	01	256x256x1	256×16	Doppler
0101	5	01	$256 \times 256 \times 1$	256×32	Doppler
0110	6	01	$256 \times 256 \times 1$	256x64	Doppler
0111	7	01	$256 \times 256 \times 1$	0 (low)	Off
1000	8	01	$256 \times 256 \times 1$	$256 \times 256 \times 1$	Windowing
1000	8	02	$256 \times 256 \times 2$	$256 \times 256 \times 2$	Windowing
1000	8	03	$256 \times 256 \times 3$	$256 \times 256 \times 3$	Windowing
1000	8	1	1	1	1
1000	8	99	$259 \times 256 \times 99$	$256 \times 256 \times 99$	Windowing

Introduction

This board generates two sine waves of the same frequency called SO and S1. S1 can be selected to either lead S0 by 90° or lag S0 by 90°. These signals are used in the SSB Generator brass box which generates a single sideband signal using a phase shift technique.

To ensure a constant 90° phase shift over a wide frequency range the sine wave generator must be directly coupled to the SSB generator circuitry. Circuit Development

One cycle of a sine wave is sampled N times along the x axis. The y axis is divided into L quantised levels.

The N quantised y values are stored in an EPROM from address 0 to $N-1$.

sine wave output frequency $=f 0$
signal name $=$ SO
A synchronous binary counter clocked at NfO addresses the EPROM, the data at each address being latched before driving a digital to analogue converter. The D to A output is a sine wave of frequency fo having L quantised steps.

The Harmonic Content of the Output Sine Wave

$$
|s(f)| \uparrow
$$

(b)

2(a). Cosine wave 1 (a) sampled N times per cycle
(b)

3(a). Top hat

4(a). Quantised cosine wave
(b)

D to A output

$$
\begin{aligned}
& S(f)=\int_{-\infty}^{+\infty} s(t) e^{-j 2 \pi f t} d t \\
& s(t)=\int_{-\infty}^{+\infty} S(f) e^{+j 2 \pi f t} d t
\end{aligned}
$$

Figure $1(a)$ shows a cosine wave $s(t)$ of frequency f0 and period T. Figure $1(b)$ shows the modulus of the frequency spectrum $S(f)$ which consists of only the fundamental frequency fo.

In figure 2(b) the effect of sampling the cosine wave N times per cycle is shown in the frequency domain. Harmonics are present at ($N-1$)fo and ($N+1$)fo followed by ($2 N-1$)f0, ($2 N+1$)fo and so on.

The mod of the frequency spectrum of a pulse of width T / N is shown in figure $3(b)$. This is the \bmod of the sinc function, that is $\left|\frac{\sin \pi x}{\pi x}\right|$

The mod of the frequency spectrum of the quantised cosine wave of figure $4(a)$ is shown in $4(b)$ and is a convolution of $2(a)$ and $3(a)$.

The quantised cosine wave has harmonics at f0 , ($\mathrm{N}-1$)f0 , ($\mathrm{N}+1$)f0 , ($2 \mathrm{~N}-1$)f0 , ($2 \mathrm{~N}+1$)f0 , with amplitudes of $1,1 /(N-1), 1 /(N+1), 1 /(2 N-1), 1 /(2 N+1), \ldots$

The number of samples of 1 cycle of cosine wave was chosen to be $N=256$. This allows the use of an 8 bit binary counter to address the EPROM. The clocking frequency, $256 \times f 0$, is generated by PC9.

By chosing $L=256$ levels on the y axis the full 8 bits of EPROM data are used to drive an 8 bit D to A converter. The output sine wave has therefore a first harmonic of amplitude $1 /(N-1)=1 / 255$ of the amplitude of the fundamental at frequency $(\mathrm{N}-1) \mathrm{fO}=255 \times \mathrm{fO}$.

Quadrature Sine Wave Generator

To generate two sine waves having a specified phase relationship a second EPROM, latch and D to A are driven by the synchronous binary counter. Two sets of data are stored in this EPROM, the first set from addresses 0 to 255 and the second from 256 to 511. Set 1 is a $+90^{\circ}$ shifted version of the reference wave data which, when selected, gives $S 1=\cos \left(w m+\frac{\pi}{2}\right) t$. Set 2 , when selected, gives $S 1=\cos \left(w m-\frac{\pi}{2}\right) t$.

The EPROM data is calculated as follows:-
$N=$ total number of x axis samples for 1 cosine cycle $=256$
$L=$ total number of steps along y axis $=256$
$n=n$th sample
$\mathrm{Sn}=$ the EPROM data for the n th sampled value $0 \leqslant \mathrm{Sn} \leqslant \mathrm{L}$ For one cycle of cosine wave $\mathrm{Sn}=\left(\cos \left(360^{\circ} / \mathrm{N}\right) \mathrm{n}+1\right) \mathrm{L} / 2$ for $L \leq N \leq 256$ and $0 \leq n \leq 256$

The reference cosine wave data followed by the cosine plus 90° and cosine minus 90° data tables are listed below. Their FLEX file names are COSINE and COSLL (cosine lead lag) respectively.

ANTARCTIC RESEARCH (RHODES) From ilata

FCB $\quad 103,106,107,112,115,118,121,124$
FCB $\quad 128,131,134,137,140,143,146,149$
FCB $\quad 152,155,158,162,165,167,170,173$
FCB $\quad 176,179,182,185,188,190,193,196$
FCH $198,201,203,206,208,211,213,215$
FCB $\quad 218,220,222,224,226,228,230,232$
FCB $\quad 234,235,237,238,240,241,243,244$
FCB $245,246,248,247,250,250,251,252$
FCB $253,253,254,254,254,255,255,255$
ENI

FCB	$103,106,107,112,115,118,121,124$
FCB	$128,131,134,137,140,143,146,149$
FCB	$152,155,158,162,165,167,170,173$
FCB	$176,179,182,185,188,190,193,196$
FCB	$198,201,203,206,208,211,213,215$
FCB	$218,220,222,224,226,228,230,232$
FCB	$234,235,237,238,240,241,243,244$
FCB	$245,246,248,249,250,250,251,252$
FCB	$253,253,254,254,254,255,255,255$

ENI

```
OOB4 5A 5Il 61 64
00B8 67 6A 6II 70
OOBC 73 76 797C
OOCO 80 83 86 89
DOC4 8C 8F 92 95
OOCB 98 9B 9E A2
OOCC AS AT AA AII
OODO BO B3 B6 B9
OODA BC BE CI CA
OOLI8 C6 C9 CH CE
OOIIC IIO IIS IIS IIT
DOEO DA IIC IE EO
OOE4 E2 E4 E6 E8
OOE8 EA EB EII EE
OOEC FO F1 F3 FA
OOFO FS FG F8 FG
OOFA FA FA FF FC
OOF8 FII FII FE FE
OOFC FE FF FF FF
```

PROM IAATA

SYMBOL TABLE:

0000
000080757976
00047370611 6A
0008676461 51
$000 C 5 A 585552$
0010 4F 4C 4946
00144341 3E 3B
001839363431
001 C 2 F 2 C 2 A 28
0020252321 IF
0024 10 18-19 17
$0028 \quad 151412 \quad 11$
OO2C OF OE OC OB
0030 OA 090706
003405050403
003802020101
$003 C 01000000$
004000000000
004401010102
004802030405
$004 C 05060709$
OOSO OA OB OC OE
0054 OF 111214
$00581517 \quad 19 \quad 18$
005 C 1 D 1F 2123
006025282 A 2 C
$00642 F 313436$
006839 3B 3E 41
006C $4346494 C$
$00704 F 525558$
0074 5A 5IL 6164
007867 6A 6I 70
007073767970
008080838689
00848 C 8 F 9295
0088989 B 9 E A2
008 C A5 A7 AA AD
0090 B0 B3 B6 B9
0094 EC BE C1 CA
0098 C6 C9 CB CE
009 C I10 IU3 W5 D7
OOAO IA DC DE EO OOAA E2 EA EG E8 OOAB EA EB EN EE OOAC FO F1 F3 F4

```
```

*** COSINE PLUS 90 ANL COSINE MINUS 90 LATA TABLES *:**

```
```

*** COSINE PLUS 90 ANL COSINE MINUS 90 LATA TABLES *:**
*
*

* X AXIS - 1 CYCLE HAS 256 SAMFLES
* X AXIS - 1 CYCLE HAS 256 SAMFLES
* Y AXIS - 1 CYCLE HAS 256 QUANTISED STEFS
* Y AXIS - 1 CYCLE HAS 256 QUANTISED STEFS
*
*

*** COSINE PLUS 90 TARLE *:**
*** COSINE PLUS 90 TARLE *:**
*

```
*
```

```
ORG $0000
```

ORG \$0000
FCB 128,124,121,118,115,112,109;106
FCB 128,124,121,118,115,112,109;106
FCB 103,100,97,93,90,88,85,82
FCB 103,100,97,93,90,88,85,82
FCB 79,76,73,70,67,65,62,59
FCB 79,76,73,70,67,65,62,59
FCB 57,54, 52, 49,47, 44, 42 ,40
FCB 57,54, 52, 49,47, 44, 42 ,40
FCB 37,35,33,31,29,27,25,23
FCB 37,35,33,31,29,27,25,23
FCB 21, 20,18,17,15, 14, 12,11
FCB 21, 20,18,17,15, 14, 12,11
FCB 10,9,7,6,5,5,4,3
FCB 10,9,7,6,5,5,4,3
FCB 2,2,1,1,1,0,0,0
FCB 2,2,1,1,1,0,0,0
FCB 0,0,0,0,1,1,1,2.
FCB 0,0,0,0,1,1,1,2.
FCB 2,3,4,5,5,6,7,9
FCB 2,3,4,5,5,6,7,9
FCB 10,11,12,14, 15, 17,18,20
FCB 10,11,12,14, 15, 17,18,20
FCB 21,23,25,27,29,31,33,35
FCB 21,23,25,27,29,31,33,35
FCB 37,40,42,44,47,49,5.2,54
FCB 37,40,42,44,47,49,5.2,54
FCB 57,59,62,65,67,70,73,76
FCB 57,59,62,65,67,70,73,76
FCB 79,82,85,88,90,93,97,100
FCB 79,82,85,88,90,93,97,100
FCB 103,106,109,112,115,118,121,124
FCB 103,106,109,112,115,118,121,124
FCB 128,131,134,137,140,143,146,149
FCB 128,131,134,137,140,143,146,149
FCB 152,155,158,162,165,167,170,173
FCB 152,155,158,162,165,167,170,173
FCB 176,179,182,185,188,190,193,196
FCB 176,179,182,185,188,190,193,196
FCB 198,201,203,206,208,211,213,215
FCB 198,201,203,206,208,211,213,215
FCB 218,220,222,224,226,228,230,232
FCB 218,220,222,224,226,228,230,232
FCB :234,235,237,238,240,241,243,244

```
FCB :234,235,237,238,240,241,243,244
```

B4	FA FA	FB
B8	FII FD	FE
OBC	FE FF	F
CO	F	FF
C4	FE FE	F
C8	FI FC	FB
CC	FA F9	F8
IIO	F5 F4	F3
0114	FO EE	ED
18	EA EB	E6
IIC	E2 E0	,
OEO	IA 117	D5 II
E4	IIO CE	CB
OOE8	C6 C4	C1
OOEC	BC $\mathrm{B}^{\text {a }}$	B6
OOFO	BO AII	AA
OOF 4	A5 A2	9E
00F8	9895	92
OFC	C 89	86

010080838689 01048 C 8 F 9295 $0108989 \mathrm{~B} 9 \mathrm{EA} \quad \mathrm{A}$ 010 C A5 A7 AA AD 0110 BO B 3 B 6 B 9 0114 BC EE C1 CA 0118 C6 C9 CB CE 011 C IO 113 I5 117 0120 IA IIC UE EO 0124 E2 E4 E6 E8 0128 EA EB EI EE 012 C F0 F1 F3 F4 0130 F5 F6 F8 F9 0134 FA FA FB FC $0138 \mathrm{FD} F \mathrm{FI}$ FE FE 013 C FE FF FF FF 0140 FF FF FF FF 0144 FE FE FE FD 0148 FII FC FB FA $014 C$ FA FG FB F6 0150 FS F4 F3 F1 0154 FO EE EII EB 0158 EA E8 E6 E4 015 C E2 EO IIE IIC 0160 IIA II7 IIS II3 0164 DO CE CB C9 $0168 \mathrm{C} 6 \mathrm{CA} \mathrm{C1} \mathrm{BE}$

FCB $245,246,248,249,250,250,251,252$
FCB $253,253,254,254,254,255,255,255$
FCB $255,255,255,255,254,254,254,253$
FCB $253,252,251,250,250,249,248,246$
FCB $245,244,243,241,240,238,237,235$
FCB $\quad 234,232,230,228,226,224,222,220$
FCB $\quad 218,215,213,211,208,206,203,201$
FCB $\quad 198,196,193,190,188,185,182,179$
FCB
FCB
*
*** COSINE MINUS 90 TABLE *: F :
*

* X AXIS - 1 CYCLE HAS 256 SAMPLES
* Y AXIS - 1 CYCLE HAS 256 QUANTISED STEPS

FCB $\quad 128,131,134,137,140,143,146,149$
FCB $\quad 152,155,158,162,165,167,170,173$
FCB $\quad 176,179,182,185,188,190,193,196$
FCB $\quad 198,201,203,206,208,211,213,215$
FCB $\quad 218,220,222,224,226,228,230,232$
FCB $234,235,237,238,240,241,243,244$
FCB $\quad 245,246,248,247,250,250,251,252$
FCB $253,253,254,254,254,255,255,255$
FCB $255,255,255,255,254,254,254,253$
FCB $253,252,251,250,250,249,248,246$
FCB $\quad 245,244,243,241,240,238,237,235$
FCB $\quad 234,232,230,228,226,224,222,220$
FCB $\quad 218,215,213,211,208,206,203,201$
FCB $\quad 198,196,193,190,188,185,182,179$

0170 KO AII AA AT
0174 A5 A2 9E 9B
01789895928 F
017C 8C 898683
$0180807 C 7976$
$01847370606 A$
$01886764 \quad 61511$
$018 \mathrm{CA} 58 \quad 5552$
$01904 F 4 C 4946$
$019443413 E \quad 3 B$
019839363431
019 C 2 F 2 C 2 A 28
$01 A 0252321$ 1F
OIAA 1D 1 B 1917
$01 A 815141211$
OIAC OF OE OC OB
O1BO OA 090706
$\begin{array}{lllll}0184 & 05 & 05 & 04 & 03\end{array}$
01B8 02020101
O1BC 01000000
O1CO 00000000
OICA 01010102
01C8 02030405
OICC 05060709
O1DO OA OB OC OE
01 J 4 OF $11 \quad 1214$
01181517191 B
OIJC 1J 1F 2123
$01 E O 25282 A 2 C$
$01 E 42 F 313436$
$01 E 839$ 3B $3 E 41$
$01 E C 434649 \quad 4 C$
$01 F 0 \quad 4 F \quad 52 \quad 55 \quad 58$
O1F4 5A 5II 6164
$01 F 8676$ A $6 I 170$
01FC 73767975

FAGE
?

FCB $\quad 176,173,170,167,165,162,158,155$
FCB $\quad 152,149,146,143,140,137,134,131$
FCB $\quad 128,124,121,118,115,112,109,106$
FCB $\quad 103,100,97,93,90,88,85,82$
FCB $\quad 79,76,73,70,67,65,62,59$
FCB $\quad 57,54,52,49,47,44,42,40$
FCB $\quad 37,35,33,31,29,27,25,23$
FCB $\quad 21,20,18,17,15,14,12,11$
FCB $10,9,7,6,5,5,4,3$.
FCB $\quad 2,2,1,1,1,0,0,0$
FCB $\quad 0,0,0,0,1,1,1,2$
FCB $2,3,4,5,5,6,7,9$
FCR $\quad 10,11,12,14,15,17,18,20$
FCB $\quad 21,23,25,27,29,31,33,35$
FCB $37,40,42,44,47,49,52,54$
FCB $57,59,62,65,67,70,73,76$
FCB $\quad 79,82,85,88,90,93,97,100$
FCB $\quad 103,106,109,112,115,118,121,124$
ENII

0 ERROR(S) IETECTED

ANTARCTIC RESEARCH (RHONES)
PROM IATA

Circuit Description

An 8 bit synchronous binary counter consisting of U2 and U3 is clocked at 256 times the required output frequency. The counter outputs address EPROM U7 which contains the reference cosine wave data. The same addresses to EPROM U6 select either cosine wave data that leads the reference by 90° or lags the reference by 90°. The $L S B / \overline{U S B}$ signal to U6 pin 23 selects 90° lead data if 0 and 90° lag data if at a logic 1.

The EPROM addresses change on the rising edge of the clock. The clock signal also drives the EPROM $\overline{O E}$ (output enable) which means that when the clock signal is high the EPROM data outputs are in a high impedance state. When the clock goes low the addressed data appears on the output bus. Latches U8, U4 , U5 and U1 latch this data on the clock rising edge.

Latches U8 and U4 drive D to A converter U10 which , together with operational amplifier U11A, is connected for symmetrical offset binary operation. It is important that the two 2K7 resistors be within . 05% of each other for the output to be symmetrical about ground.

VR2 allows adjustment of the output of U11A so that U11B is not overdriven. U11B is used as a buffer/driver into a 50 ohm load. The output voltage swing of U 11 B is proportional to its load impedance.

The graph below shows the peak to peak voltage swing variation for differing load resistances.

With a 50 ohm resistor in series with a mixer having a 50 ohm input impedance, that is a total load of 100 ohm , the output voltage swing is about 6 V peak to peak before clipping begins. The mixers used operate below this limiting value.

40 MHz Offsetting for Doppler and Windowing

Receiver Block Diagram

At higher basic rates the frequency difference between the instantaneous Tx frequency and the received signal is higher. The $R x$ bandwidth is limited to 500 Hz . To be able to receive signals which would normally be outside the Rx bandwidth the frequency difference Df must reduced by a known amount.

The RF in is mixed with a swept 40.6 to 70.1 MHz signal giving a 40.1 MHz first IF. The second IF of 100 kHz is obtained by mixing with 40 MHz .

At higher sweep rates the difference between the received $R f$ in and the first injection frequency will be higher. To obtain the 100 kHz IF the 40 MHz signal must be increased in frequency to $40+\mathrm{Df} \mathrm{MHz}$. Windowing therefore requires the USB of 40 MHz modulated by the offset Df.

Doppler
Operation is at a fixed frequency. For reception of a signal the instantaneous received RF must be at a lower frequency than the instantaneous transmitted frequency. This occurs naturally when the reflecting layer moves upward away from the receiver on the ground. Downward motion of the reflecting layer would not be detected.

To detect downward motion as well the ' no motion ' signal must be positioned in the centre of the range of Doppler frequencies of interest. frequency

Normal chirp sounding reception occurs when $\mathrm{Tx}_{\text {inst }}$ is greater than $\mathrm{RF}_{\text {in }}$. That is the 40.6 to 70.1 first local oscillator must be at a higher frequency than $\left(R F_{i n}+40.1\right) \mathrm{MHz}$. If both these frequencies are the same the 1 st IF $=40.1 \mathrm{MHz}$ exactly, the 2 nd IF $=100 \mathrm{kHz}$ exactly and the trace appears at 0 Km .

Because the 40.0 MHz LO signal is subtracted from the first IF signal it must be reduced by a fixed frequency to increase the 100 kHz signal by that frequency and so offset the zero position.

For the detection of both upward and downward motion the LSB of 40 MHz modulated by the offset Df is required.

SSB Generator Brass box , B3

Introduction

The SSB Generator is used to offset the 40 MHz local oscillator signal by the frequency generated by the sine wave generator on PC10. The lower sideband (LSB) is used for stationary Doppler reception and the upper sideband (USB) for ionogram windowing. For normal vertical or oblique Rx ionograms the 40 MHz is not shifted.

The SSB generator uses the phase shift technique of generating a single sideband signal. Four passive RF components are used in the circuit. Circuit Development - Phase Shift SSB Signal Generation

Let $S 1=\cos \left(w m+\frac{\pi}{2}\right) t$ then $V_{0}=V 1+V 2$
$V_{0}=(E m \cos w m t)(E c \cos w c t)+\left(E m \cos \left(w m+\frac{\pi}{2}\right) t\right)\left(E c \cos \left(w c-\frac{\pi}{2}\right) t\right.$ applying $(\cos A)(\cos B)=1 / 2 \cos (A+B)+1 / 2 \cos (A-B)$ yeilds :-
$V_{0}=E m E c / 2 \cos (w c+w m) t+E m E c / 2 \cos (w c-w m) t$
$+E m E c / 2 \cos \left(w c-\frac{\pi}{2}+w m+\frac{\pi}{2}\right) t+E m E c / 2 \cos \left(w c-\frac{\pi}{2}-w m-\frac{\pi}{2}\right) t$
$=E m E c \cos (w c+w m) t+E m E c / 2 \cos (w c-w m) t+E m E c / 2 \cos (w c-w m-\pi) t$
applying $\cos (A-\pi)=-\cos A$ yeilds :-
$\frac{V_{0}=E m E c \cos (w c+w m) t}{\pi}$, which is the upper sideband.
Choosing $\mathrm{S} 1=\cos (w m-\overline{2}) t$ gives the lower sideband.

Circuit Description

The 40 MHz local oscillator signal is split by 90° splitter RF2. Its reference output is mixed with the reference sine wave $S 0$ by mixer RF1. Mixer RF4 mixes two phase shifted signals, that from RF2 with S1. The mixer outputs are combined by in-phase power combiner RF3 to give the required single sideband signal with an amplitude of 100 mV peak to peak.

Computer Modifications

1. S-32 Memory Board modifications for use from 32 K to 56 K

Hex address	Addr	ss bu	MSB'			
	A15	A14	A13	A12		lower 16 K
8 xxx	1	0	0	07		
9xxx	1	0	0	1]	8K	
Axxx	1	0	1	07	8K	
Bxxx	1	0	1	1]		
Cxxx	1	1	0	07		upper 16 K
Dxxx	1	1			8 K	
Exxx	1	1	1	$0]$	8K	
Fxxx	1	1	1	1]		

The upper 32 K of the address space is selected when $A 15=1$.
A14 $=0$ selects the lower 16 K block.
A14 $=1$ selects the upper 16 K block.
Hex addresses from EOOO to FFFF are asigned to the I/0 Ports and the Monitor (S-Bug) and therefore cannot be used for memory. These addresses correspond to the upper 8 K of the upper 16 K block of memory on the $\mathrm{S}-32$ Memory Board. This board has gating allowing the enabling/disabling of memory in two 16 K blocks only. To exclude the upper 8 K block, addresses E 000 to FFFF, the data bus buffers must be disabled when $\mathrm{A} 15=\mathrm{A} 14=\mathrm{A} 13=1$. This is achieved using IC21, a 1 of 8 decoder, which is not used in this particular microprocessor configuration. The changes are shown on the partial circuit diagram in thick black ink.

Circuit Logic

The jumper on the output of IC24 determines the S-32 Memory Board location and is in the 32 K to 64 K position. The upper 16 K is selected when $\mathrm{A} 15=1, \mathrm{~A} 14=1$ and $\overline{\mathrm{E}}$ goes low resulting in a low on IC23 pin 8 which is jumpered to IC18 and IC19 by the ' Enable Upper 16K ' jumper.

The circuit change involves gating the signal from IC23 pin 8 with A13 such that when $A 15=A 14=A 13=1$ the data bus buffers are disabled. Printed circuit tracks to IC21 pins $1,2,3,5$ and 6 are cut and pin 1 is connected to A13 , pin 2 to IC23 pin 8 , pins 3 and 5 to ground and pin 6 to +5 V . IC21 output \bar{O} on pin 15 is connected directly to the enables on IC18 and IC19 and the jumper block is omitted. Thus when A13 $=0$ the ' upper 16 K ' data bus buffers are enabled and when $\mathrm{A} 13=1$ they are disabled. This allows memory up to DFFF and reserves locations EOOO to FFFF for I/O and the S-Bug monitor.
2. S-32 Memory Board Battery Backup.

Both S-32 Memory Boards have EPROM and RAM integrated circuits on them. The contents in RAM must be retained during power failures. The +24 V battery supply from the 105B Quartz Oscillator is converted to +5 VDC and supplies both S-32 boards via the Diode PCB.

The signal Pon from Advance/Retard PC5 drives IC23 pin 12. This sets the memory R / W control line into read mode when the power fails by going from high to low.

6018 Camera Interface/Display Modifications

Linear Variable Oscillator / 500 Hz Oscillator
This board is unplugged when the Controller is used. The Controller provides the variable film rate and 500 Hz fast film advance signals.

PC board A4-V jumpered to A4-W connects A5-F to pin 9 of U3 on A5 when A4 is plugged in (Logchirp operation).

Video Amplifier/Drive Logic , A5
This section describes the changes to PCB A5 for Controller operation.
For an oblique transmission the sounding set up in the Controller must have the film drive set to 'off' to inhibit the variable film rate signal to the 6018. The video signal must also be blanked.

A multi-cell sounding programmed with film drive on for some cells and off for others must have the film drive signal inhibited and the video blanked for the 'off' cells.

Controller board PC3 generates these two signals called 'film drive inhibit' and 'video blank' respectively. 6018 board A5 is modified to utilise the 'video blank' signal as follows.

1. U1 pin 9 connected to U1 pin 10 .
2. U1 pin 1 disconnected from U1 pin 2.
3. A5-F connected to U1 pin 2.
4. Track to U3 pin 9 disconnected.
5. U3 pin 9 pulled high by a $4 K 7$ resistor.
6. U3 pin 9 connected to A5-V.
7. A5-F connected to A5-L on PCB A5.
8. Edge connector A5-V to A4-V.
9. Edge connector A5-L to A4-W.
10. A4-W connected to $\mathrm{A} 4-\mathrm{V}$ on PCB A4.
11. 'Video blank' signal from J2-4 to A5-F.

When Logchirp control is used A4 is plugged in connecting A5-L to A5-V so that the 'OV Tx oblique' signal goes to U3 pin 9 on board A5.

Using the Controller requires that A4 be unplugged. This results in U3 pin 9 being set to a logic 1.

System Timing Diagrams

All of the system timing signals are derived from the 100 kHz from the 105B Quartz Oscillator. This 100 kHz signal , called Q0 , undergoes three inversions through the Advance retard circuitry on PC5 , to become $\overline{Q 0}$.

The synthesizer " 100 kHz " is the timing signal used by the synthesizer and is the same as QO except for a 90° phase shift. Programming data to the synthesizer must be stable for the 3 microseconds after this signal has been high for 1 microsecond.

The counters that drive the synthesizer change on the $\overline{Q O}$ falling edge which occurs 3.5 microseconds before the programming data must be stable.

The 1 Hz from the FFT Rate Generator, PC7, is synchronised with the 1 Hz from the Clock Dividers on PC3a at the start of each ionogram. The falling edge of the $4 / 64 \mathrm{~Hz}$ signal (either 4 or 64 Hz from the FFT Rate Generator is selected on PC3D) clocks the Tcell dividers which trigger, on the falling edge , the 100 nanosecond Tcell pulse.

This pulse signals the beginning of a cell by interrupting the computer. The inverse of the Tcell pulse, called TceIT, transfers latched data to the synthesizer counters , transfers receive antenna select data from the holding latches to the select latches, resets the M-sequence generator and clocks the film drive flip-flop. Tcell is also output to the hardware FFT 'stop sampling ' input via Controller connector RPA4.

100 kHz from Q0

Synth " 100 kHz "

A / R out $=\overline{Q O}$

Basic Rate Clock

Synth counters LSB

1 Hz from Clk Dividers

1 Hz from FFT Rate

TceIT pulse

End of cell
synth counters loaded

Next cell begins

Conversion from Logchirp Control to Vertichirp Controller

1. Switch off $A C$ power to the system.
2. Unplug all the cables from Logchirp Control.

These are:-
a. $A C$ in
b. STBY PWR.
c. . $125-7.5 \mathrm{MHz}$ from synth.
d. " 100 kHz " from synth.
e. 100 kHz from 105B Quartz Oscillator.
f. 5 MHz from synth.
g. Freq Prog synthesizer 50 way cable.
h. Cable to 4050 Amplifier T / R.
i. Cable to 6018 Camera Interface/Display.
3. Remove board $A 40$ (+24 VDC to -10 VDC Converter) from Logchirp Control.
4. Plug A40 into Controller slot PC12.
5. Remove board A6 from 4050 Amplifier T / R.
6. Plug the Controller T / R Gain Weight Generator board into the $A 6$ slot in the 4050 Amplifier T/R.
7. Remove board A4 from the 6018 Camera Interface/Display.

NB: Slot A4 is left unoccupied when the 6018 is used with the Controller.
8. Plug the following cables into the Controller rear panel:-
a. $A C$ in.
b. STBY PWR - Check that front panel "Battery "LED illuminates.
c. 100 kHz from 105B Quartz Oscillator (QO) to BNC8.

NB: 100 kHz from Quartz Oscillator
d. 1 MHz from 105 B QO to BNC6.
e. Freq Prog Synthesizer - the cable from the synthesizer.
f. Special cable between Controller and 4050 Amplifier T/R.
g. Special cable between Controller and 6018 Camera Interface/Display.
h. Cable between Controller and Rx Antenna Switch , B1.
i. Cable between Controller and Data Capture System , DCS.
j. Cable between Controller and Tx Antenna select , B2a.

The other cable from B2a goes to the T500A Linear Amplifier.
k. VDU Pwr.
l. Cable between Controller and VDU.

NB: Check that the toggle switch mounted under the VDU is switched to the " Controller " position.
9. RF Signal Paths - Tx.
A. Controller using 8 W to an antenna which is also used for Rx .
a. 4050 " TO ANT " to antenna.
b. 4050 " RF TO REC " to the 4040 Rx.
B. Controller using T500A Linear Amplifier.

Note:- Separate Tx and Rx antennae must be used.
a. 4050 " TO ANT " to T500A " RF in ".
b. T500A " TO ANT " to Antenna Select Box , B2a.

This box connects the transmitter to either the vertical Tx antenna or to the oblique antenna. If the T500A is tripped or switched off it is automatically bypassed.
10. RF Signal Paths - Rx.
A. Controller using 4040 Rx .
a. 1 MHz from 4041 LO to 4040 Rx .
b. 40 MHz from 4041 LO to 4040 Rx .
c. 40.6 - 70.1 from 4041 LO to 4040 Rx .
d. Gain wt from 4050 Amplifier T / R to 4040 Rx.
e. 4040 Rx RF in:-
i. If connected as in 6A RF in from 4050 "RF TO REC ".
ii. If connected as in 6B RF in from Antenna Switch , B1
or from 4040 Rx Antenna select , B2b
or directly in from a vertical $R x$ antenna.
f. 4040 Rx baseband out to 2002C Spectrum Analyser video input.
B. Controller using dual Rx.
a. 1 MHz from 4041 LO to dual Rx 1 MHz in.
b. 40 MHz from 4041 LO to dual Rx 2nd LO in.
c. $40.6-70.1 \mathrm{MHz}$ to 10 dB RF amplifier.
d. 10 dB amplifier output to dual Rx 1st LO in.
e. Gain wt from 4050 Amplifier T / R to dual Rx Gain wt in.
f. Dual Rx RF in from Antenna Switch , B1.
g. Either RX1 or Rx2 baseband output to 2002C Spectrum Analyser video input via the attenuating series resistor for the film record.
h. R×1 and R×2 baseband outputs to FFT inputs.
C. Controller using dual Rx and 4040 Rx .
a. 1 MHz from 4041 LO to 4040 Rx .
b. 40 MHz from 4041 LO to power splitter PS1.
c. Power splitter outputs to 4040 Rx and dual $R x$.
d. $40.6-70.1 \mathrm{MHz}$ to 10 dB RF amplifier.
e. 10 dB RF amp output to power splitter PS2.
f. Power splitter outputs to 4040 Rx and dual Rx.
g. Gain wt from 4050 Amp T/R to 4040 Rx and dual Rx.
h. 4040 Rx baseband out to 2002C Spectrum Analyser video - film record.
i. Dual Rx outputs from Rx1 , Rx2 to FFT.

APPENDIX B
 VERTICHIRP CONTROLLER HARDWARE - MANUAL 2
 CIRCUIT DIAGRAMS , COMPONENT LOCATION DIAGRAMS AND WIRE LISTS

G. P. EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY

DECEMBER 1983
Vertichirp Controller Hardware - Manual 2
Circuit Diagrams, Component Location Diagrams and Wire Lists

Contents
Simplified System Block Diagram
Vertichirp Sounder System Block Diagram
Vertichirp Controller Block Diagram 1Page Number
Manual 2 Manual 1
B1
B2 A1
B3 A3
Vertichirp Controller Block Diagram 2 B4
A4
Vertichirp Controller Power Supplies B5 A5
Vertichirp Controller Front and Rear Panels B7
Location of Vertichirp Controller Circuit Boards B8 A6
PC1 Synthesizer Control B9 A8
PC2 BCDx4,Frequency Mark Generator and Tx Filter Control B12 A10
FD Frequency Display B16 A20
B2 Antennae and Filter Control
B2a Antenna Select and Tx Filter Drivers B19
B2b 4040 Rx Antenna Select B21
T500A Linear Amplifier B22
B4 3 MHz Antennae Change-over B24
PC3 Sweep Start and Control and Clock DividersPC3a Clock DividersB26
PC3b Sweep Start and Control B27
RTC Real Time Clock B31
RTCD Real Time Clock Display B33
PC4 Basic Rate, Tcell and M-sequence generators
PC4a Basic Rate B36 A33
PC4b Tcell pulse generator B37 A35
PC4c M-sequence generator B38A26A21A23A24A25A27A2A30A32A37

	Contents		
		Page Number	
T/R Gain Weight Generator 2	Manual 1		
PC5 Advance Retard	B41	A43	
PC6 Strobe Decode	B44	A45	
PC7 FFT Sample Rate	B47	A49	
PC8 Antenna Select and Film Speed Control	B50	A53	
	PC8a Antenna Select	B53	

1. Block Diagrams

Single signal lines are drawn as :-

Multiple signal lines are drawn as :-

2. All edge connector numbers are typed in a rectangular box on the circuit diagrams. Component side connectors are prefixed "T" (Top) and solder side connectors are prefixed "B " (Bottom). Connector numbering of both sides is from left to right the board being viewed from the component side. Signal names are typed alongside each box.

Input signal :- synth counter clock T6
Output signal :-

T22 Sweep

3. The following prefixes are used in component numbering :-

U - Integrated Circuit	R - Resistor
Q - Transistor	C - Capacitor
D - Diode	J - Jumper

4. Components are numbered in horizontal rows from left to right with numbering beginning in the top left corner on the component side of the printed circuit board.
5. In the wire lists the direction arrow has the following meaning :-

Arrow to the left - input to the board being described.
Arrow to the right - output from the board being described.
6. Example of signal tracing :-

PC1 circuit diagram shows " synth counter clock " signal on T6 going to U2 pin 5. The component location diagram shows the position of U 2 on the printed circuit board. The wire list shows that the signal is an input to PC1 and that it comes from PC3 connector T21.

40 MHz from 4041

FRONT PANEL

RPAn $=$ Rear Panel Amphenol n
REAR PANEL

Pin No .	Synthesizer Control , PC1 - Component Side (T)			Pin No.
	Signal Name and Function	Direction	From/to	
T1, 12	gnd.	*-	chassis	-
13	ST6 latch 10^{2} and 10^{3} decades	<--	PC6	T4
T4	ST5 latch 10° and 10^{1} decades	<-	PC6	T5
15	synth counter load	<--	PC3	T18
16	synth counter clock	6--	PC3	T21
17	$\left.2^{3}\right] \quad 10^{3}$ out	-->	RPAS	33
18	2^{2}	-->	PC2 RPA5	B3 32
		\rightarrow	PC2	B4
T9	21	\rightarrow	RPA5	8
T10	20	-->	PC2 RPA5	B5 7
		\cdots	PC2	B6
111	$2^{3} \quad 10^{2}$ out	\rightarrow	RPA5	31
112	2^{2}	-->	RPA5	30
113	2^{1}	\rightarrow	RPA5	6
114	2^{0}	\rightarrow	RPA5	5
T15	$\left.2^{3}\right] \quad 10^{1}$ out	\rightarrow	RPA5	29
T16	2^{2}	-->	RPA5	28
$T 17$	2^{1}	\rightarrow	RPA5	4
118	2^{0}	-->	RPA5	3
T19	$\left.2^{3}\right] \quad 10^{0}$ out	\cdots	RPA5	27
T20	2^{2}	-->	RPA5	26
T21	2^{1}	\rightarrow	RPA5	2
T22	2^{0}	\cdots	RPA5	1
T23	-	-	-	-
T24	-	-	-	-
T25	ST8 latch 10^{6} decade	<-	PC6	B3
T26	ST7 latch 10^{4} and 10^{5} decades	<-	PC6	T3
T27, T28	gnd	<-	chassis	-

Notes:	Integrated Circuit		Vcc pin	Gnd. pin
	U1	SN74LS08	14	7
	U2, U6	SN74LS00	14	7
	U3	SN74LS54	14	7
	U4, U5	SN74LS90	5	10
	U7	SN74LS04	14	7
	U8, U9	SN7485	16	8
	U10, U11, U12, U13	SN74S288	16	8
	U14	2716 EPROM	M 24	12

All resistors in ohms.
All capacitors in microfarads unless otherwise stated.

Frequency Display, FD - Solder Side (B)						
Pin No.	Sign	nal	Name and Function	Direction	From/to	Pin No.
B1, 82,83	7 -	8 VDC	C unregulated	<--	chassis	-
B4	gnd			<--	chassis	-
B5	gnd			<--	chassis	-
B6	-			-	-	-
B7		10^{7}	BCDx4 data	<-	PC2	T23
B8	2^{1}			--	PC2	T24
B9	2^{2}			<-	PC2	T25
B10	2^{3}			<-	PC2	T25
811	opti	ional	+5 V regulated in	<-	-	-
812	opti	ional	+5 V regulated in	<-	-	-
813	opti	ional	+5 V regulated in	<-	-	-
814		10^{6}	BCDx4 data	<-	PC2	T19
815	2^{1}			<-	PC2	T20
B16	2^{2}			<-	PC2	T21
817	$23]$			--	PC2	T22
B18		10^{5}	BCDx4 data	<-	PC2	T15
819	2^{1}			--	PC2	T16
B20	2^{2}			<-	PC2	T17
B21	2^{3}			<-	PC2	T18
822		10^{4}	BCDx4 data	<-	PC2	T3
823	2^{1}			<-	PC2	T4
824	2^{2}			<-	PC2	T5
825	2^{3}			<-	PC2	T6

Notes:

$$
\begin{align*}
& \text { An }=\text { Amphenol } 14 \text { pin socket pin } n \tag{1}\\
& \text { Filter control drivers switch } 140 \mathrm{~mA}
\end{align*}
$$

Vertical/Oblique driver switches

Antenna Select and Transmitter Filter Control Signals, RPA1

Pin No.	Signal Name Colour	Pin No.	Signal Name
1	F1 2-3 MHz Brn	26	
2	F2 3-5 MHz Red	27	
3	F3 5-8 MHz Orn	28	
4	F4 8-15 MHz Yel	29	
5	F5 15-30 MHz Grn	30	
6	v/O Select Grn/Wht	31	
7	+5VDC Red	32	
8	Vertical Rx/Oblique Rx	33	
9		- 34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48.	
24		49	
25	gnd. Blk	50	gnd

Antenna Select and Tx Filter Box, B2a

14 way Amphenol socket connections.

Pin No.	Signal Name Col	Colour	Pin No.	Signal Name	Colour
A1	F1 2-3 MHz ctrl in	$\mathrm{Br} n$	A8	+22.5 V	Blu
A2	F2 3-5 MHz ctrl in	Red	A9	F1 driver	ut Brn/Wht
A3	F3 $5-8 \mathrm{MHz} \mathrm{ctrl}$ in	Orn	A10	F2 driver	t Red/Wht
A4	F4 8-15 MHz ctrl in	Yel	A11	F3 driver	ut Orn/Wht
A5	F5 15-30 MHz ctrl in	Grn	A12	F4 driver	ut Yel/Wht
A6	$\mathrm{V} / 0$ Select	Grn/Wht	A13	F5 driver	ut Grn/Wht
A7	+5V	Red	A14	gnd.	Blk

14 way Amphenol plug and cable connections

Pin no.	Signal Name	Colour	Pin No.	Signal Name	Colour
A1	F1 ctrl	Red	A8	+22.5 V	Blu
A2	F2 ctrl	Orn	A9	F1 driver out	Brn/wht
A3	F3 ctrl	Yel	A10	F2 driver out	Red/Wht
A4	F4 ctrl	Grn	A11	F3 driver out	Orn/Wht
A5	F5 ctrl	Blu	A12	F4 driver out	Yel/Wht
A6	V/O Select	Vio	A13	F5 driver out	Grn/Wht
A7	+5 V	B1k	A14	gnd.	Blk
	Cable 1 to			Cable 2 to T500A Amp	

Note :- RPA1 ground on pins 25 and 50 is connected to Cable 1 shield braid.

Subminiature Co-axial Connector on B2a

Centre Conductor - Vertical Rx/Oblique Rx for 4040 Rx Antenna Select. Shield - gnd.
Note :- This signal goes through B2a to the 4040 Rx Antenna Select Box B2b on a white wire. Power from B 2 a to B 2 D is +22.5 V (blue) and +5 V (red).
AC1 pin connections: $-1=F 1$ ctrl signal , $2=$ gnd , $3=+5 V D C$ from B2a.

SChematic twe mod tboon
(mods Sep/28z)

Notes: Integrated Circuit Vec pin Gnd Din

U1, U2 , U5, U6 , U10	MC14017	16	8
U3	SN74LS30	14	7
U15	SN74LS367	16	8

All Capacitors in microfarads

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
T1, T2	gnd	<--	chassis	-
T3	4 Hz	<--	PC7	B18
T4	64 Hz	<-	PC7	$B 15$
T5	STO Clear sweep A/R \& film dr f/f	<-	PC6	T10
16	POC Power on clear	-->	PC3	T19
17	TcelT pulse	$\xrightarrow{--}$	PC5 PC4	T26 T 12
18	Tcell pulse	<-	PC4	B12
T9	Fast Film advance	-->	RPA3	7
- $T 10$	Film Drive inhibit	-->	PC8	B16
$T 11$	Rx AGC int/ext (data to DCS)	\rightarrow	RPA4	13
T12	Basic Rate Clock	<-	PC4	B13
T13	Tx Blank	-->	RPA2	2
T14	Tcell interrupt to CPU	-->	MP-LA-1A	CA1
T15	ST16 Antenna data initial load	<-	PC6	T11
T16	Antenna load	-->	PC8	B12
117	ST9 Synth cntr initial load	<-	PC6	B4
T18	Synth cntr load	-->	PC1	T5
T19	POC Power on clear.	<-	PC3	T6
120	ST1 Clear sweep f/f	<-	PC6	T9
121	Synth cntr clock	\cdots	PC1	16
T22	Sweep To Tcell pulse gen \& camera	-->	PC4	B11
T23	D0] Controller data bus	*-	RPA3	
T24	D1	<--		
T25	D2	<--		
T26	D3	<-		
127,128	gnd.	<-	chassis	-

Real Time Clock, RTC				
Molex Connector C (MTC)				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
MTC1	9.6 kHz Multiplexing freq in	<-	MPB2	1
MTC2	-	-	-	-
MTC3	-	-	-	-
MTC4	-	-	-	-
MTC5	-	-	-	-
Note: The	multiplexing frequency of 9.6 kHz 600b line.	obtained f	om the com	
Molex Connector D (MTD)				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
MTD1	-	-	-	-
MTD2	-	-	-	-
MTD3	-	-	-	-
MTD4	7-8VDC	<-	MPB2	7-8V
MTD5	7-8VDC	<-	MPB2	7-8V
MTD6	7-8VDC	<-	MPB2	7-8V
MTD7	gnd.	<-	MPB2	gnd.
MTD8	gnd	<-	MPB2	gnd
MTD9	gnd	<-	MPB2	gnd
MTD10	-	-	-	-
MTD11	-	-	-	-
MTD12	-	-	-	-
Note: Molex connector E is for mechanical support only.				

MB1

412

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
T1, T2	gnd.	<-	chassis	-
T3	-	-	-	-
T4	-	-	-	-
T5	-	-	-	-
T6	-	-	-	-
T7	-	-	-	-
T8	-	-	-	-
T9	-	-	-	-
T10	-	-	-	-
T11	-	-	-	-
T12	Tcell pulse	$\xrightarrow{-->}$	$\begin{aligned} & \text { RPA4 } \\ & \text { PC3 } \end{aligned}$	39 17
T13	-	-	$-$	-
T14	-	-	-	-
T15	-	-	-	-
T16	-	-	-	-
117	-	-	-	-
T18	-	-	-	-
T19	-	-	-	-
T20	-	-	-	-
T21	-	-	-	-
T22	-	-	-	-
T23	-	-	-	-
T24	-	-	-	-
T25	-	-	-	-
T26	-	-	-	-
T27, T28	gnd.	<-	chassis	-

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
B1, B2	+5 VDC supply	<-	chassis	-
	D0 Controller data bus	<-		
B4	D1	<-		
B5	D2	<-		
B6	D3	<-		
B7	ST10 Basic Rate load	<-	PC6	B5
B8	4/64 Hz from Sweep Start	<-	PC3	B15
B9	ST11 Tcell period load	<-	PC6	B6
B10	sync on second	<-	PC7	T12
811	Sweep	<-	PC3	T22
B12	Tcell pulse	-->	PC3	18
B13	Basic Rate Clock	\rightarrow	PC3 PC2	112 $T 10$
B14	100 kHz in	<-	PC5	B8
B15	1 MHz in	<-	PC7	T4
B16	2048 Hz in	<-	PC7	B13
B17	Tcell signal already on PC4	-	-	-
B18	DO. Controller data bus	<-		
B19	D1	<-		
B20	D2	<-		
B21	D3	<-		
B22	D4	<-		
B23	D5	<-		
B24	D6	<-		
B25	ST12 M-Sequence load	<-	PC6	B7
B26	M-sequence out	\rightarrow	RPA2	10
B27, 828	+5VDC supply	\leqslant	chassis	-

 Solder side AABC D EE F H J K A
Notes:
$J_{n} \quad J_{n}=$ Feedthrough
Jn $\quad \mathrm{Jn}=$ Jumper n

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
1	+5voc supply	--	chassis	-
2	gnd.	$\stackrel{-}{-}$	chassis	-
3	-	-	-	-
4	-	-	-	-
5	-	-	-	-
6	-	-	-	-
7	-	-	-	-
8	-	-	-	-
9	-	-	-	-
10	-	-	-	-
11	-	-	-	-
12	-	-	-	-
13	-	-	-	-
14	-	-	-	-
15	-	-	-	-
16	-	-	-	-
17	RX Gain height out	\rightarrow	A7	ง
18	-	-	-	-
19	-	-	-	-
20	-	-	-	-
21	-	-	-	-
22	-	-	-	-

Advance/Retard , PC5 - Solder Side (B)					
Pin No.	Signal	Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC	supply	<-	chassis	-
B3	+5V Bat	Battery supply	<-	Diode PCB	-
B4	Pon		\rightarrow	PC5	T4
B5	Pon		\cdots	S-32 memory	-
B6	100 kHz	in from Q. 0.	<-	BNC8	-
B7	100 kHz	to clock	\rightarrow	PC3	B10
B8	100 kHz	to Basic Rate	-->	PC4	B14
B9	-		-	-	-
810	-		-	-	-
811	-		-	-	-
812	-		-	-	-
B13	-		-	-	-
B14	-		-	-	-
815	-		-	-	-
B16	-		-	-	-
B17	-		-	-	-
B18	-		-	-	-
819	DO 7 Con	troller data bus	<-		
B20	D1		<-		
B21	D2		<-		
B22	D3		\leqslant		
B23	D4		<-		
B24	D5		<-		
B25	D6		\leqslant		
B26	D7		*-		
B27,827	+5VDC 5	supply	<-	chassis	-

Pin No.	Strobe Decode , PC6 - Component Side (T)				
	Signal	1 Name and Function	Direction	From/to	Pin No.
T1, T2	gnd		<-	chassis	-
13	ST7	synth latch $10^{4}, 10^{5}$	\rightarrow	PC1	T26
T4	ST6	synth latch $10^{2}, 10^{3}$	\rightarrow	- PC1	T3
T5	ST5	synth latch $10^{\circ}, 10^{1}$	\rightarrow	PC1	T4
16	ST4	load Control Register B	\rightarrow	PC3 -	B26
T7	ST3	load Control Register A	\rightarrow	PC3	B25
18	ST2	clear A/R flip-flop	\rightarrow	PC5	T21
T9	ST1	clear sweep flip-flop	\rightarrow	PC3	T20
T10	STO	clear sweep, A / R \& film dr f/f	\rightarrow	PC3	T5
T11.	ST16	antenna data initial load	\rightarrow	PC3	T15
T12	ST17	load film speed data	-->	PC8	B21
T13	ST18	RX AGC ext clock, data to DCS	-->	RPA4	14
T14	ST19	Rx Phase sync. ,data to DCS	\rightarrow	RPA4	12
T15	ST20	load LO offset select data	-->	PC9	T26
T16	ST21	load LO offset data	\rightarrow	PC9	T17
T17	ST22	Sweep Start	\rightarrow	PC3	B19
T18	ST23	load A/R control data	--3	PC5	T22
T19	ST32	spare	\rightarrow		
T20	ST33	spare	\rightarrow		-
T21	ST34	spare	\rightarrow		
T22	ST35	spare	\rightarrow		
T23	ST36	spare	-->		
T24	ST37	spare	-->		
T25	ST38	spare	$\rightarrow>$		
T26	ST39	spare	\rightarrow		
T27,128	gnd		<-	chassis	-

Strobe Decode , PC6 - Solder Side (B)					
Pin No.	Signal	Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC	supply	<-	chassis	-
B3	ST8	synth latch $10^{6}, 10^{7}$	\rightarrow	PC1	T25
B4	ST9	synth counter initial load	\rightarrow	PC3	T17
85	ST10	Basic Rate data load	-->	PC4	B7
B6	ST11	Tcell pulse period data load	-->	PC4	B9
B7	ST12	M-Sequence data load	\rightarrow	PC4	B25
B8	ST13	not used	\cdots		
B9	ST14	FFT data load	$\rightarrow->$	PC7	T18
B10	ST15	load antenna latches U1, U2	\rightarrow	PC8	B11
B11	D3	Strobe Select data	<-	MP-LA-1B	B3
812	D4		<-	MP-LA-1B	B4
813	D5		<-	MP-LA-1B	B5
B14	DO		<-	MP-LA-18	B0
B15	D1		<-	MP-LA-1B	B1
B16	D2		<-	MP-LA-1B	B2
B17	WRE	Write strobe with E restore	<-	MP-LA-1B	CB2
B18	-		-	-	-
B19	ST24	spare	\rightarrow		
B20	ST25	load A / R shift data	\rightarrow	PC5	T24
B21	ST26	A/R shift start	\rightarrow	PC5	T25
B22	ST27	Time Mark for stat Doppler	-->	PC2	B13
B23	ST28	baseband filter ctrl (unused)			
B24	ST29	spare	\rightarrow		
B25	ST30	spare	\cdots		
B26	ST31	spare	\cdots		
B27, B28	+5VDC	supply	<-	chassis	-

Pin No.	FFT Sample Rate , PC7 - Component Side (T)			Pin No.
	Signal Name and Function	Direction	From/to	
T1,T2	gnd	<-	chassis	-
T3	-	-	-	-
T4	1 MHz to Basic Rate	-->	PC4	813
T5	-	-	-	-
T6	-	-	-	-
77	-	-	-	-
18	-	-	-	-
T9	-	-	-	-
T10.	10.24 MHz	-->	PC9	B3
T11	-	-	-	-
T12	Sync on second	$\xrightarrow{--}$	PC4	B10
T13	-	$\stackrel{--}{ }$	PC2	814
T14	-	-	-	-
T15	-	-	-	-
T16	-	-	-	-
117	-	-	-	-
T18	ST14 FFT data load	*-	PC6	B9
T19	-	-	-	-
T20	-	-	-	-
T21	-	-	-	-
T22	-	-	-	-
T23	-	-	-	-
T24	-	-	-	-
T25	-	-	-	-
T26	-	-	-	-
T27, T28	gnd	<-	chassis	-

FFT Sample Rate , PC7 - Solder Side (B)				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC supply	<-Red	chassis	-
B3	-	-	-	-
B4	1 MHz sine wave from 105B Q. 0 .	\leftarrow	BNC6	-
B5	-	-	-	-
B6	-	-	-	-
B7	-	-	-	-
B8	-	-	-	-
B9	-	-	-	-
B10	-	-	-	-
B11	resync FFT gen	\leqslant	PC3	B20
812	-	-	-	-
B13	2048 Hz	-->	PC4	B16
B14	Sweep	<-	PC3	B16
815	64 Hz	\rightarrow	PC3	T4
B16	128 Hz	---		
817	256 Hz	---		
B18	4 Hz	-->	PC3	T3
819	DO	*-		
B20	01	<-		
B21	02	<-		
B22	D3	<-		
823	-	-	-	-
B24	FFT Sample Rate	\rightarrow	RPA4	38
B25	-	-	-	-
826	-	-	-	-
B27, 828	+5VDC supply	$\leqslant-$ Red	chassis	-

B1 $B 2$

Notes: Integrated circuit Vcc pin Gnd pin

U3	SN74LS73	4	11
U4	SN74LS93	5	10
U7	SN74LS193	16	8
U8	SN74LS153	16	8
U11,U12	SN74LS175	16	8

Component Side $T 1$
Solder side B1
Notes:

- = Feedthrough
$\mathrm{Jn} \quad \mathrm{Jn}=$ Jumper n

Pin No.	Signal	Name and Function	Direction	From/to	Pin No.
T1, T2	gnd		<-Blk	chassis	-
T3	R1. 1	Rx1 to ant 1	\rightarrow Blk	RPA6	1
T4	R2. 1	$\mathrm{R} \times 2$ to ant 1	\rightarrow Blk	RPA6	11
T5	E1	enable ant 1	\rightarrow Blk	RPA6	24
T6	R1.2	Rx 1 to ant 2	$\rightarrow \mathrm{Br} n$	RPA6	2
T7	R2. 2	Rx 2 to ant 2	$\rightarrow B r n$	RPA6	12
18	E2	Enable ant 2	$\rightarrow B r n$	RPA6	25
T9	R1. 3	Rx 1 to ant 3	\rightarrow Red	RPA6	3
T10	R2. 3	Rx 2 to ant 3	\rightarrow Red	RPA6	13
T11	E3	Enable ant 3	\rightarrow Red	RPA6	26
T12.	E4	Enable ant 4	$\rightarrow 0 \mathrm{rn}$	RPA6	27
T13	R2. 4	$R \times 2$ to ant 4	$\rightarrow 0 r n$	RPA6	14
T14	R1.4	Rx1 to ant 4	\rightarrow Orn	RPA6	4
T15	R1.8	Rx1 to ant 8	\rightarrow Vio	RPA6	8
T16	R2. 8	Rx2 to ant 8	\rightarrow Vio	RPA6	18
T17	E8	Enable ant 8	\rightarrow Vio	RPA6	31
T18	R1.7	Rx1 to ant 7	\rightarrow Blu	RPA6	7
T19	R2. 7	$R \times 2$ to ant 7	\rightarrow Blu	RPA6	17
T20	E7	Enable ant 7	\rightarrow Blu	RPA6	30
T21	R1. 6	$R \times 1$ to ant 6	$\rightarrow 6 r n$	RPA6	6
T22	R2. 6	Rx2 to ant 6	$\rightarrow G r n$	RPA6	16
T23	E6	Enable ant 6	$\rightarrow G r n$	RPA6	29
T24	R1. 5	R×1 to ant 5	$\rightarrow \mathrm{Yel}$	RPA6	5
T25	E5	Enable ant 5	\rightarrow Yel	RPA6	28
T26	R2. 5	Rx2 to ant 5	$\rightarrow \mathrm{Yel}$	RPA6	15
T27,728	gnd		<-Blk	chassis	-

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC supply	<-Red	chassis	-
	D0 Controller data bus	<-		
B4	D1	<-		
B5	D2	<-		
B6	D3	<-		
B7	D4	<-	.	
B8	D5	<--		
B9	D6	<-		
B10	D7	<-		
B11	ST15 load ant latches U1, U2	<-	PC6	B10
B12	Antenna load loads U5,U6	<-	PC3	T16
B13	-	-	-	-
B14	1 kHz in	<-	PC3	B9
B15	500 Hz fast film advanve	\rightarrow	RPA3	1
B16	Film drive inhibit	<-	PC3	T10
B17	DO Controller data bus	<-		
B18	D1	<-		
B19	D2	<-		
B20	D3	<-		
821	ST17 load film speed data	<-	PC6	T12
B22	D4 Controller data bus	<-		
B23	D5	$<$		
B24	D6	<-		
B25	D7	<-		
B26	Variable Film Speed	\rightarrow	RPA3	2
B27, 828	+5VDC supply	<-Red	chassis	-

Antenna Switch top board - Signal Switching to Rx1 and Antenna Earth Control

Ant 3

Antenna Switch bottom board - Signal Switching to $R \times 2$

Notes:
$a=$ Antenna select control
$b=$ Antenna earthing control
$c=$ Signal from antenna
TRLn and BRLn relays are 831A-4 or 831A-3 with ext diode.
ERLn relays are all 831B-4
$=$ Feedthrough

B1 to B10 are BNC connectors
control = cable from RPA6

Pin No.	Signal	Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC	supply	$\leqslant-$ Red	chassis	-
B3	10.24	MHz	\leftarrow	PC7	T10
B4	-		-	-	-
B5	-	,	-	-	-
B6	-		-	-	-
B7	-		-	-	-
B8	-		-	-	-
B9	-		-	-	-
810	SF1	synthesizer freq 1 $=256 \times$ LO offset freq	\rightarrow	PC10	B14
811	-		-	-	-
B12	D4	Controller data bus	<-		
813	D5		<-		
B14	D6		<-		
815	D7		<-		
B16	-		-	-	-
B17	-		-	-	-
B18	-		-	-	-
B19	-		-	-	-
B20	-		-	-	-
821	-		-	-	-
B22	DO 7	Controller data bus	<-		
B23	D1		<-		
B24	D2		<-		
B25	D3		<-		
B26	-		-	-	-
B27, B28	+5VDC	supply	<-Red	chassis	-

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
B1, B2	+5VDC supply	$<-$ Red	chassis	-
B3	-	-	-	-
B4	-	-	-	-
B5	-	-	-	-
B6	-	-	-	-
B7	-	-	-	-
B8	-	-	-	-
B9	-	-	-	-
B10	-	- -	-	-
B11	-	-	-	-
B12	S1 $+90^{\circ}$ or -90° phase shift rel so	\rightarrow	BNC4	-
B13	-	-	-	-
B14	SF1 $256 \times$ L0 offset frequency	<-	PC9	B10
B15	-	-	-	-
B16	SO reference LO offset frequency	\rightarrow	BNC2	-
B17	-	-	-	-
818	-	-	-	-
819	-	-	-	-
820	-	-	-	-
B21	-	-	-	-
B22	-	-	-	-
B23	-	-	-	-
B24	-	-	-	-
B25	-	-	-	-
B26	-	-	-	-
B27, B28	+5VDC supply	$\leqslant-$ Red	chassis	-

Logchirp board A40, +24V to -10VDC Converter, PC12 - Component Side (T)					
Pin No.	A40 Pin No.	Signal Name	Direction	From/to	Pin No.
T1, T2	-	-	-	-	-
T3	-	-	-	-	-
T4	-	-	-	-	-
T5	-	-	-	-	-
T6	-	-	-	-	-
T7	1	-	-	-	-
18	2	gnd.	\leftarrow	chassis ${ }^{\circ}$	-
19	3	-	-	-	-
T10	4	-	-	-	-
T11	5	-	-	-	-
T12	6	-	-	-	-
T13	7	-10VDC	\rightarrow	RPA3	6
T14	8	-	-	-	-
T15	9	-	-	-	-
T16	10	-	-	-	-
T17	11	-	-	-	-
118	12	-	-	-	-
T19	13	-	-	-	-
T20	14	-	-	-	-
T21	15	-	-	-	-
122	16	-	-	-	-
T23	17	-	-	-	-
T24	18	-	-	-	-
T25	19	-	-	-	-
T26	20	-	-	-	-
T27, T28.	21,22	-	-	-	-

Logchirp board A40, +24V to -10VDC Converter, 'PC12 - Solder Side (B)					
Pin No.	A40 Pin No.	Signal Name	Direction	From/to	Pin No.
B1, B2	-	- .	-	-	-
B3	-	-	-	-	-
B4	-	-	-	-	-
B5	-	-	-	-	-
B6	-	-	-	-	-
B7	A	-	-	-	-
B8	B	gnd	$<$	chassis	-
B9	C	-	-	-	-
B10	D	+24VDC	<-	Filter PCB	-
811	E	-	-	-	-
B12	F	-	-	-	-
813	H	-	-	-	-
B14	J	-	-	-	-
B15	K	-	-	-	-
B16	L	-	-	-	-
B17	M	-	-	-	-
B18	N	-	-	-	-
819	P	-	-	-	-
B20	R	-	-	-	-
B21	S	-	-	-	-
B22	T	-	-	-	-
B23	U	-	-	-	-
B24	v	-	-	-	-
B25	W	-	-	-	-
B26	x	-	-	-	-
B27, B28	Y, Z	-	-	-	-

Control Signals to 4050 Amplifier T/R, RPA2

RPA2 $=$ Controller Rear Panel Amphenol socket number 2.

Pin No.	Signal Name and Function	Direction	From/to	Pin No.
1	-	-	-	-
2	Tx Blank	<-Wht	PC3	T13
3	-	-	-	-
4	-	-	-	-
5	-	-	-	-
6	-	-	-	-
7	-	-	-	-
8	SCO ${ }^{\text {a }}$, Rx and T/R control	<-Blk	PC3	B18
9	SC1	<-Brn	PC3	B17
10	M -Sequence out	<-Red	PC4	826
11	-	-	-	-
12	-	-	-	-
13	gnd	<-Blk	chassis	-
14	gnd .	<-Blk	chassis	-

Additions to 4050 Amplifier T/R rear panel Amphenol connector, $J 7$

Pin No.	Signal	Name and	Function	Direction	From/to	Pin No.
8	SCO	TX, Rx and	T/R control	\rightarrow Blk	A6	v
9	SC1			$\rightarrow \mathrm{Br} n$	A6	W
10	M-Sequ	ence out		\rightarrow Red	A6	E

	Control Signals to 6018 Camer	face/Display	, RPA3	
RPA3 $=$ Controller Rear Panel Amphenol Socket number 3				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
1	500 Hz fast film advance	$<-\cos$-ax	PC8	B15
2	Variable film speed	$<-C 0-a x$	PC8	B26
3	Sweep	$<-$ Red	PC3	T22
4	Video Blank	↔-Blk/Wht	PC3	B7
5	+5V Bat battery supply	<-	Diode PCB	-
6	-10VDC battery supply	$<$	PC12(A40)	T13(7)
7	Fast Film advance	<-	PC3	T9
8	100 Hz to 6018 clock	$<-$	PC3	B8
9	100 Hz to 6018 clock	<-	PC3	B8
10	Bold frequency mark	<-Yel	PC2	B12
11	Fine frequency mark	<-Grn	PC2	B11
12	gnd	$<-$ Blk	-	-
13	gnd	<-Blk	-	-
14	gnd	$<-$ Blk	-	-
Additions to 6018 Camera Interface/Display rear panel Amphenol connector, J2				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
4	Video Blank	\rightarrow	A5	F

Signals to and from the Data Capture System, RPAA				
RPA4 $=$ Controller Rear Panel Amphenol Connector number 4. Pins 1 to 25.				
Pin No.	Signal Name and Function	Direction	From/to	Pin No.
1	BO Data to DCS	<-Blk	MP-LA-2B	B0
2	B1	<--Brn	MP-LA-2B	B1
3	B2	<--Red	MP-LA-2B	B2
4	B3	<-Orn	MP-LA-2B	B3
5	B4	*-Yel	MP-LA-2B	B4
6	B5	<-Grn	MP-LA-2B	B5
7	B6	<-Blu	MP-LA-2B	B6
8	B7	$<-V i o$	MP-LA-2B	B7
9	CB1 flag, negative transition	<-Gry	MP-LA-2B	CB1
10	WRE write strobe with E restore	$<-$ Wht	MP-LA-2B	CB2
11	gnd	<-Blk	chassis	-
12	Rx Phase sync	$<-O r n$	PC6	T14
13	Rx $\overline{\mathrm{int}} / \mathrm{ext}$ clock select	<-Wht	PC3	T11
14	Rx AGC ext clock	<-Red	PC6	T13
15	gnd	$<-$ Blk	-	-
16	-	-	-	-
17	-	-	-	-
18	-	-	-	-
19	-	-	-	-
20	-	-	-	-
21	-	-	-	-
22	-	-	-	-
23	-	-	-	-
24	-	-	-	-
25	-	-	-	-

Signals to and from the Data Capture System, RPA4					
RPA4 $=$ Controller Rear Panel Amphenol Connector number 4. Pins 26 to 50.					
Pin No.	Signal Name and	Function	Direction	From/to	Pin No.
26	-		-	-	-
27	-		-	-	-
28	-		-	-	-
29	-		-	-	-
30	-		-	-	-
31	-		-	-	-
32	-		-	-	-
33	-		-	-	-
34	-		-	-	-
35	-		-	-	-
36	gnd		<-Blk	chassis	-
37	Sweep to FFT		<-Blk	PC3	B16
38	FFT Sample Rate		$\leftarrow-Y e l$	PC7	B24
39	Tcell to FFT		$<-B r n$	PC4	T12
40	gnd		$\leqslant-$ Blk	chassis	-
41	-		-	-	-
42	-		-	-	-
43	-		-	-	-
44	-		-	-	-
45	-		-	-	-
46	-		-	-	-
47	-		-	-	-
48	-		-	-	-
49	-		-	-	-
50	-		-	-	-

VERTICHIRP CONTROLLER SOFTWARE

CHANGES AND ADDITIONS TO FORTH

G.P.EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY

DECEMBER 1984

APPENDIX C

VERTICHIRP CDNTRQLLER_SDFTWARE - CHANGES_ANDADDLTIONS TDEDRTH

Contents	Pagre_Number
Original forth Memory Map	C1
FORTHAD	C 2
Additions to FORTH Kernel	C4
Double Precision FORTH Dperators - Assembler Listing	C5
Double Precision FORTH Operators - Glossary	C10
Interrupt Handling in FORTH - Assembler Listing	011
Intarrupt Handiing in FDRTH - Glossary	[13
MPN Calculator Drivers - Assembler Listing	$C 14$
MPN Calculator Drivers - Glossary	016
Vectored FORTH Hord Execution - Assembler Listing	$[17$
Vectored Forth word Ekecution - Glossary	C1日
Drive 1 Head Restore - Assembler Listing	019
CASE Statement for FIRTH - Assembler Listing	C20
CASE Statement for FIRTH - glossary	023
Unsigned Comparison Operators - Assembler Listing	$[25$
Unsigned Comparison Dperators - Glossary	526
Changes to b8'FDRTH	C27
Memory Map Expansion Procedure	C31
Expanded FORTH Memory Map	032
Overall Memary Map for SWTPC 6807	033
S-BUG Monitor Modifications	C34
Vertichirp Controller Program EPRomMing Procedure	036
Vertichirp Controller Memory Map	C37

addr	16 bit memory address
b	8 bit byte, high 3 bits zero
f	7 bit Ascii character, high 9 bits zero
d	32 bit signed double namber, MSB on tof of stack
f	boolean flag, $0=$ false, non-zero $=$ true
$f f$	boolean false flag $=0$
$t f$	boolean true flag $=$ non-zero
n	16 bit signed integer number
u	16 bit unsigned integer number

The first line of each glossary entry gives the FORTH word being described followed by a symbolic description of the action of the word on the paramater stack. The symbols indicate the order in which the input parameters have been piaced on the stack. Three dashes "---" indirate the exacution point and any paramaters left on the itack are then listed. The top of the stack (most accessible parameter) is to the right in this notation.
: Original FORTH Memory hap :*

```
$0000 --> $1BDO = FORTH kernel
$1BD| --> $1BEF = empty
$1BFO --> $1FFF= disk buffer
$2000 --> $204F = FORTH registers and pointers
                        and user variables.
$2050 = "FORTH" ( a word)
$207E = "TASK" ( a word)
$2089 --> = begimming of dictionary (grows up )
$2F30 = data stack ( grous down)
$2F30 --> $2FB4 = TIB ( terminal input buffer )
$3000 = RETURN stack base.( grows down)
```

```
+t+LIST FORTHAD
    TTL ANTARCTIC RESEARCH (FHODES)
    STTL ADDITIONS TO FORTH KERNEL
    OFT FAG,NOC,HAC,EXP
*
* This program allows Primitives or FDB coded words
* to be added to the FORTH Kernel.
* FROCEDURE
* Create files of primitives to be assembled (FLEX ENITOr)
* These files have the form :-
:*
:* Function of Frimitive as a Comment
*: Any ather Comments
:*
* The MACRO for creating dictionary headers has the form :-
:* WORIIN word char count,word excepit last char, last char, IMMEIIATE
* For primitives
* WORIIM 7,EXAMFL,E
*EXANA FDE *+2
:* Assembler Mneumonics
:* JMP NEXT MUST end with a jung to NEXT
For IIOCOL Words :-
        WORIIM 2,E,G
:EG FID DOCOL
:* FlB's defining the word EG
* FIIB SEMIS MUST end with an FIIB SEMIS
* Assemble FORTHAll into Damed file (ASMB,FORTHATI,NAME)
:* The coMmand is ASMB,FORTHAII,NAME,+P2,+FRMA, PRME, PRYMC
:* Where
* NAME - hame of binary file
* P2 - Assemtiled listing to start frost page 2
: PFMA - HEX equal to last Kernal name field addr. (iNF年)
* PRME - HEX equal to next free Memory location in Kernel
** PRMC - Name of text file containing Primitives
:*
* These parameters can be obtained als follows from FORTH
:* '(Word before 'FORTH' in dict) NFA . = PRitA (HEX)
* PRMA 30 DUMP
* The first free memory location in the Kernel
* is the first $20 in the string of $20*5
:* This address = PRMB
*
* Lasd FORTH
* GET NAME
*
HOCDL EQU $0073
NEXT EQU $0077
NEXTZ EQU $0079
SEMIS EQU $0080
:*
** Set LASTNM equal to last Kernel name field address (NFA)
*
LASTNM SET $&A
:k
    FAG
```

```
:*
*** MACRO for creating dictionary headers :*:**
*
WORDM MACRO
NEXTNH SET *
    IFC &A,IMMEDIATE
    FCB & & +$CO
* 15t byte is no of char with sign and immed bit on if IMMEIIATE
    ELSE
    FCB & 1+$80
    ENDIF
    IFNC $1,1
    FCC '&2'
    ENIIF
** if more than one char, then all but last in here
* then last has sign bit set
    FCB $80+'&3
    FIIB LASTNN
L.ASTNM SET NEXTNM
        ENJM
:*
* Set ORG equal to next free memory location in Kernel
* and declare the file containins FORTH Primitives
* for assembly using a LIB directive.
**
        PAG
*
        ORG $&B
:*
        LIS &C
*
* The next code sets the link-back for this version
:k
        ORG $1196
        FDB LASTNM
        ORG $2806
        FDB LASTNM
        ENI
*
+++
```

: Primitive and colon definition additions to FORTH Kernel :
FLEX Text files assembled via the programme FORTHAD.

1. Iouble Precision Operators
```
FLEX Filename = DPRIMS.TXT
Command line = ASNB,FORTHAD,DPRIMS,+P2,+1A3,4,1BEO,DPRIMS
Binary File = DPRIMS.BIN
Begin address = $1BEO
End address=$1CBA
```

2. Interrupt Handing in FORTH
```
FLEX Filename = INTPRINS.TXT
COMmand line = ASMB,FORTHAD,INTPRIMS,+P2 ,+1CAC,1CBB,INTFRIMS
Binary File = INTPRIMS.BIN
Begin address = $lCBB
End address = $1CEO
```

3. MPN Calculator Drivers
```
FLEX Filename = CALFRIMS.TXT
COMmand line = ASMB,FORTHAD,CALPRIMS,+P2,+1CDF,1CEE,CALPRIMS
Binary File = CALPRIMS.BIN
Begin address = $1CEE
End address = $1D6C
```

4. Primitive FORTH Hord VECTOR
```
FLEX Filename = VECPRIM.TXT
COMMand line = ASMB,FORTHAII, VECPRIN,+P2,+1517,1016D,UECPRIM
Binary File = VECPRIM.BIN
Begin address = $1D6D
End address = $1092
```

5. Primitive FORTH Vord RESTOREI
```
FLEX Filename = RESTORE1.TXT
COMmand line = ASMB,FORTHAD,RESTORE,+P2,+1N6D,1D93,RESTORE
Binary File = RESTORE.BIN
Begin address = $1D93
End address = $1DAE
```

6. CASE Statement

FLEX Filemane $=$ CASE. \cdot TXT
Command line $=$ ASMB, FORTHAOL,CASE $,+\mathrm{F}^{2} 2,+1093,1$ IIAF, CASE
Binary File = CASE.BIN
Begin address $=$ \$1DAF
End address $=\$ 1 E 52$
7. Primitives $U<$ and $U \geqslant$

FLEX Filename : $=$ UNSIGNED.TXT
COMMAD line $=$ ASME, FORTHAD, UNSIGNED,+ P2,$+1 E 21$, EES3, UNSIGNED
Binary File $=$ UNSIGNED.BIN
Begin address $=\$ 1 E 53$
End address $=$ \$1E7C
+++ ASAM , FORTHAD, OPRIMS, , P2 $2,+1 A 3.4,1 B E O$, OPRIMS
DELETE OLD BINARY (Y-N)? Y

ANTARCTIC RESEARCH (RHONES)	$9-30-81$	
ADISITIONS TO FORTH KERNEL		
2		

*

1BEO 82
1BE1 44
1BE2 CO
1BE3 1A34
1BEO

1BEO
1BE
1BE1
1BE
1BE
1BE
$1 A 34$
*
*
*

* Top of Stack

Double Precision No:- 4 Bytes
*
* Stacks Memory
addr+3 LSB LSB
- addr +2 LSB. LSB
* addr+1 MSB MSB
addr MSB MSB
* Top of Stack
*

:k: louble Precision Nemory and Stack Operators:k:
*
Primitives
*

* Primitive De
*

18E0	NEXTNM	WORTM	2, II,
		SET	*
		FCB	2+\$80
		FCC	'010
		FCB	\$80+ ${ }^{\circ}$
		Fib	LASTNH
1BEO	LASTNK	SET	NEXTNM

IAT FDB * $* 2$ PULU X adder to X LDD , X MSBs from mem to 0 LDX $2, X \quad$ LSBs fron men to X BRA PSHXI X then II to stack, NEXT

1BE5 1BET
1BE7 3710
1BE9 EC 84
1BEB AE 02
1BEI 2057

* Iouble Precision FORTH Operatives

Single Frecision No:- 2 Bytes

* Stacks Memory
- addr+1 LSB LSB
addr NSB MSB
ORG \$1BEO
-


```
ANTARCTIC RESEARCH (RHODES) 9-30-81 TSC ASSEMBLER PAGE 4
ADOITIONS TO FDRTH KERNEL
    * Primitive IR`
    *
1C2F WORDM 3,DR,>
1C2F83 IC2F NEXTNM SET 尔 F
1030 44 52 FCC FINR
1C32 BE FCE $80+%
1C33 1C21 FIGB LASTNH
. IC2F LASTNM SET NEXTNM
1035 1C37 IIFRONR FINB :*+2
1C37 35 16 PULS II,X MSB5 to II, LSB5 to X
1 0 3 9 2 0 ~ O B ~ B R A ~ P S H X D ~
    * Primitive IR
    *
1C3B WORIIM 2,II,R
1C3B 82 FCB 2+$80
IC3C 44 FCC FD'
1C3D D2 FCB $80+'R
1C3E 1C2F FOB LASTNM
    ICJE LASTNM SET NEXTNN
1C4O IC42 IR FDB :*+2
```



```
lC46 36 16 FOSXI PSHU X, II 
llllll
        *
        : Colon Definitions
        *
    * : UOROP IROP IROP ;
        *
        066B IRROP EQU $066B
1C4A WOROMM 5,NORO,P
IC4A 85 FCH E+$80
1C48 14 44 52 4F FCC "HDRO'
1C4F D1O FCB $30+1P
1C5O 1C3B FDB LASTNM
    ICAA LASTNM SET TNEXTNM
        ENIM
1C520073 066B IINOP FDE NOCOL,IIROF,DRDP,SEMIS
1C5S 066B 0080
IC5A
    * : DSWAP RDT PR ROT R: ;
    OC86 ROT EQU $0C8S
    0639 TOR EQU $0639
    0647 FROMR EQU $0547
SET *
```


ANTARCTIC RESEARCH (RHODES)
ADIITIONS TO FORTH KERNEL

| ANTARCTIC RESEARCH (RHOIES) | | |
| :--- | :--- | :--- | :--- |
| ADDITIONS TO FORTH KERNEL | $9-30-81 ~ T S C ~ A S S E M E L E R ~ P A G E ~$ | |

```
    1C8E 32 FCB 2+$30
    ICBF 44 FLC 'IV'
    1C90 BC FCB $80+<
    1C91 IC31 FJB LASTNN
            ICBE LASTNM SET NEXTNWM
            ENOMM
    1C93 0073 1C86 DLESS FOB DOCOL,OSUB,SWAP,OROP,ZLESS,SEMIS
1C97 0679 066B
1C9806110080
```

 * : D) os wap D<;
 1C9F WORDiM 2, II, >
1C9F 82 IC9F NEXINM SET $2+\$ 80$
ICAO 44 FCC IV'
ICA1 BE FCB $\$ 80+^{\prime}>$
1CA2 LC8E FDB LASTNM
1CFF LASTNM SET NEXTNM
ENDM
1CA4 0073 LCG2 DGREAT FDB DOCOL, IISWAP, DLESS,SEMIS
1CAB 1 C73 0080

ICB1 0073 1C86 DEQUAL FDB IIOCOL,IISUB,OR,ZERU,SEMIS
1CB5 03FF 05FE
1 CB9 0080

0 ERROR(S) DETECTED

```
    Dlouble Precision - Memory and Stack
    De addr --- d
    Leave the 32 bit contents of the address
    D! d addr ---
    Store 32 bit d at the address
DDUP d --- d d
    Duplicate the souble number on the stack
DOUER dl d2 --- dl d2 dl
    Copy the second stack double value,
    placing it as the new top value
    D>R d ---
        Remove d from the data stack and place as most accessible
        on the return stack.
        Use should be balanced with DR'> in the same definition
    DR> --- d
    Renove the top value d from the return stack
    and leave it on the data stack. See D>R and IR
DR --- d
    Copy the top of the return stack to the data stack
DDROP d ---
    Drop the double number from the stack.
DSWAF d1 d2 -.- d2 d1
    Exchange the top two double numbers on the stack.
DROT d1 d2 d3 \cdots- d2 d3 d1
    Rotate the top three double numbers on the stack
    bringing the third to the top
    Ilouble Precision - Arithmetic and Logical.
D- d1 d2 -.- diff
    Leave the difference of $1-122
    Double Precision - Comparison.
D< dl d2 \cdots- P
    Leave a true flag if d1 is less than d2 ;
    otherwise leave a false flag
D> d1 d2 --- f
    Leave a true flas if d1 is greater tham id2 ;
    otherwise leave a false flag.
D= d1 d2 --- f
    Leave a true plas if d1 = d2 ;
    otherwise leave a false flag.
```

$+++A$ SMB , FORTHAD, INTPRIMS + +P $2,+1$ CAC, ICBB, INTPRIMS
DELETE OLD BINARY (Y-N)? Y

```
HNTARCTIC RESEARCH (RHONES) (N-17-8.2 TSC ASSEMBLER PAGE 2
```


ANTARCTIC RESEARCH (RHOUES)
ADIITIONS TO FORTH KERNEL

```
5-17-8.2 TSC ASSEMBLER FAGE 3
```


: Interrupts in FORTH :
RTI
Return from interrupt. The interrupt service FORTH word must end with this word.

```
CLI ---
```

Clear interrupt mask (I)

Set I and F interrupt masks

Vectors FORTH execution to an interrupt service FORTH word. Vectoring is via SBUG IRQ vector at \$DFC8 which is loaded with the address of the machine code of the FORTH IRQ word. (\$1CE9)
This vectors FORTH execution to the FORTH word whose CFA is stored at \$23E6

Using Interrupts

1. The interrupt service FORTH word must be defined and must end with RTI.

Eg.
: POLL ---forth words--- RTI ;
2. Set the vector at $\$ 23 E 6$ to point to the interrupt service FQRTH word CFA.

Eg. HEX
: STORECFA LIT POLL 23E6 ! ;
3. Set SBUG IRQ vector at \$DFC8 to point to machine code in IRQ word Eg. HEX
: SETVEC ICE9 DFC8 ! ;
4. Combining these
: SETIRQ STORECFA SETVEC ;
or
: SETIRQ LIT POLL 23E6! 1CE9 DFC8 ! ;
+++ASMB, FORTHAII,CALPRIMS, +P2 , +1CLIF, 1CEE, CALFRIMS
DELETE OLD BINARY (Y-N)? Y

ANTARCTIC RESEARCH (RHONES)	$9-13-82$	TSC ASSEHBLER PAGE	2
ADDITIONS TO FORTH KERNEL			

ANTARCTIC RESEARCH (RHODES)
ADIITIONS TO FORTH KERNEL

1032	C6	3E		LIAB	\# 3 SE	LOW HOLID-POS REAITY
11034	E7	01		STAB	1, X	GRING HOLI LINE LOW
1036	E6	01	WAIT2	LDAB	1, X	WAIT FOR SECONI REAIIY
11138	2 A	FC		BPL	WAIT2	
1 1J3	E6	84		LDAB	$0, \chi$	CLEAR FLAG BIT
103C	86	OF		LDAA	\#\$0F	
1D3E	A 7	84		STAA	$0, x$	SEND A NOP
1140	E6	03	WAITJ	LJAB	$3, \mathrm{x}$	LOOK FOR R/W STROBE
1142	2 B	03		BHI	DUTDIG	TRANSFER CALC IATA TO MEmORY
1044	E6	01		LDAB	1, X	LOOK FOR READY STROBE
11546	2B	13		BhI	CONFLG	PRINT MEMORY CONTENTS
1148	20	F6		BRA	WAIT3	
1D4A	Ab	02	DUTDIG	LDAA	$2, \mathrm{x}$	LOAI OUT IIATA INTO A
114 C	1 F	89415		TAB		
1DAF	84	OF		ANDA	\#\$0F	ELIMINATE UPPER A BITS
1051	8A	30		QRAA	\#\$30	CONVERT TO ASCII IIATA
1 D 53	54			LSRB		
1 1054	54			LSRB		
1 D55	54			LSRB		
1D56	54			LSRB		
1157	A7	A5		STAA	B, Y	
1059	20	Es		BRA	WAIT3	
1 D 5 B	86	36	CONFLG	LIIAA	. \$ $^{\text {\% }}$ 36	HIGH HOLI-POS READY
1D5J	A7	01		STAA	1, x	BRING HOLD LINE HIGH
1 D 5 F	Ab	84		LDAA	$0, X$	CLEAR FLAG BIT
11561	84	80		ANDA	\# \$80	GET ERKOR FLAG
1D63	C6	00		LDAB	\#0	
1165	$1 E$	89		EXG	A, B	.
11167	36	06		PSHU	II	
11569	35	20		PULS	Y	RESTORE Y
1D6B	OE	77		JMP	NEXT	

* The next code sets the link-back for this version *

ORG	$\$ 1196$
FDB	LASTNM
ORG	$\$ 2806$
FDB	LASTNH
END	

0 ERROR(S) DETECTED

```
LIST,MPN
    * MPN Calculator Driver Worids :
    The calculator is used in SCIENTIFIC NONE only
    FORTH word "MPN" initialises calculator and
    sets scientific mode
    Primitive Ilefinitions
    TOMPN n ---
        Sends data or instructions to the calculator
    ANS --- f
        Nakes use of the calculator 'OUT' instruction
        which 'ENTERS' and 'OUTPUTS' the number sent
        using "TOMPN".
        "ANS" can therefore be used for termination of
        number entry as well as for output of an
        answer after calculation.
        "ANS" leaves a flag on the stack for error checking
        false flag ( 0 ) = no error
        true flag ( 1 ) = error
        "ANS" stores the calculator X register in memory
        in BCD as follows
ANSEXP 0}0011% HS digit of exponen
    0}0111\mathrm{ LS digit of exponent
    0}00111%SM 0 0 S
    not used
ANS# 0 0 1 1 MS digit of Mantissa
    0 0 1 1 BCD digit
    0 0 1 1 BCO digit
    0 0 1 I BCD digit
    0 0 1 1 LS digit of mantissa
        SM is the sign of the mantissa O = positive
        Se is the sign of the exponent 0 = positive
```

$+++A S M B, F O R T H A D, V E C P R I M,+P 2,+1017,11550$, UECFRIM
DELETE OLD BINARY ($Y-N$)? Y

ANTARCTIC RESEARCH (RHONES)	$5-17-22 ~ T S C ~ A S S E N B L E R ~ F ' A G E ~$	2
ADUITIONS TO FORTH RERNEL		


```
ANTARCTIC REGEARCH (FHODES)
\begin{tabular}{|c|c|c|}
\hline 1196 & ORG & \$1176 \\
\hline 11961050 & FIJ & LASTNAM \\
\hline 2803 & 1)RG & \$2806 \\
\hline 28061116 D & FDS & LASTNIA \\
\hline
\end{tabular}
0 ERFOR(S) DETECTEI
* Vectored execution in FORTH *
VECTOR n ---
    Used in a colon definition in the form
# EXECNTH UECTOR (word 1) --- (word n) ---- ( last word) ;
    If EXECNTH is executed with a number }n\mathrm{ on the stack
    only the nth FORTH word following VECTOR Will execute.
Ekample
    Definitions
    : MOND ." MONday" ; : TUES ." Tuesday" ;
    : PRINTDAY VECTOR MOND TUES ;
    Execution
    1 PRINTDAY will print Monday
    2 PRINTIAY will print Tuesday
    3 PRINTDAY will not do amything!
```

$+++A S M B$, FORTHAD, RESTORE, +P2 $2,+106 D, 1093$, RESTORE
DELETE OLD DINARY (Y-N)? Y

```
ANTARCTIC RESEARCH (RHOUES) 5-17-82 TSC ASSEMELER PAGE 2
HDDITIDNS TO FORTH KERNEL
```

*

1093 0RG $\$ 1093$
DEOC IIRSEL EQU SDEOC Drive Select
DE09 DRREST EQU \$DE09 Restore
*
1093 WORDM 8,RESTORE, 1
$109388 \quad 1073$ NEXTNM $\begin{array}{lll} & \text { SET } & * \\ & & \text { FCB } \\ 109880\end{array}$

```
10945245 53 54 FCC 'RESTORE'
```

$11984 F \quad 5245$
1098 B1 FCB $\$ 80+^{\circ} 1$
109C 1DOL FIIB LASTNM
$1[193$ LASTNM SET NEXTNN
ENDM
1D9E 1 DAO REST1 FDB $: k+2$
1DAO $\operatorname{BE} \quad$ LIAX DOSFCB Set $X=$ Flex FCB
1IIAS 8501
IIAS AT 03
1 DAT BD IIEOC
IDAA ED IIEO9
IIAD OE 77
LDA \#1
STA 3,X Drive Byte of FCB
JSR DFSEL Select Drive 1
JSR DRREST Restore Drive 1
JMP NEXT
*
*
* The next code sets the link-back for this version
*
$1196 \quad$ ORG $\$ 1196$
11951193
2806
28061093
FIA LASTNM
ORG \$2806
FUB LASTNH
END
0 ERROR(S) IETECTEI

```
+++AGMR,FORTHAD,LASE, +P2,+1093,1DAF,CASE
DELETE OLII BINARY (Y-N)? Y
ANTARCTIC RESEARCH (RHOOES) O-13-82 TSC ASSEMBLERI PAGE 2
```



```
ANTARCTIC RESEARCH (RHODES)
ADIIITIONS TO FORTH KERNEL
```

8-13-82 TSC ASSEMBLER PAGE 3

* Frimitive definition of (OF)
*

1006				Worciah	4, (0F,)	
		1JC6	NEXTNM	SET	:	
$1 \mathrm{ILC6}$	C4			FCB	$4+\$ \mathrm{CO}$	
$1 \mathrm{IIC7}$	28 4F	46		FCC	\cdots (OF)	
1 IICA	A9			FCE	\$30+\%)	
1 JiCB	1 IIAF			FDE	LASTNM	
		10C6	LASTNH	SET	NEXTNM	
				ENSM		
1 UCD	1JCF		POF	FOB	: +2	
1DCF	37	06		PULU	D	Get value that preceeded of
10 D 1	10A3	C4		CMFD	U	Compare with select value
11104	26	05		BNE	NXTOF	Not equal- continue to next
1006	33	42		LEAU	2, 0	Equal - drop select value
1008	7E	021A		JMP	ZBNO	Skip branch, execute required words
1008	7E	0211	NXTOF	JMP	ZBYES	Branch to next value
				JMP	NEXT	Never Executed
			*			
			*			
			* Colon	Vefini	tion of	
			*			
			* : OF	4 ? ${ }^{\prime}$ 'AIR	S COMPIL	(OF) HERE O, 5 ; IMMEDIATE
			*			
			* Note	: 1 OF	is an IM	EIIIATE
			*	2 Whe	n OF exe	utes COMPTLE compiles CFA of Primitive
			*		0 the FOR	IH word being defined.

1 IIIE WORDM $2,0, F$, IMMEDIATE
1DDE C2
1DDE NEXTNH
SET *
FCB $\quad 2+\$ C O$
FCC "O"
1DDF $4 F$
1DEO C6
FCB $\quad \$ 80+{ }^{\prime} \mathrm{F}$
1DE1 1 IICG
FOB LASTNM
TDDE LASTNM SET NEXTNM
10E3 $007301 E 7$ OF FDG DOCOL,LIT, \$0DO4,QPAIRS,CDMPIL,FOF, HERE
1LEF 0004 OA67
1 IIEB OAAE IICII
1DEF O8II8
1DF1 076B 08F4
FDB ZERO,COMMA,LIT, $\$ 0005$, SEMIS
10F5 01E7 0005
1DFQ 0080
*

* Colon Definition of ENDOF
*
* : ENIIOF 5 ?PAIRS COMPILE BRANCH HERE 0
: SWAF 2 [COMPILE] ENIIF 4 ; IMMEDIATE
*
* Note : ENDOF is " OEFINEN into the dictionany not Compiled
* Thus [COMFILE] ENDIF becomes FUB ENOIF

ANTARCTIC RESEARCH (RHODES)
ADIITIONS TO FORTH KERNEL

1196 IE21	FDB	LASTNH
2806	ORG	$\$ 2806$
2806 IE2	FOB	LASTNH

0 ERROR(S) DETECTEII

* CASE Statement for FORTH :

CASE --- addr n (compiling)
Used in a colon definition of the form
CASE ... OF ... ENDOF ... ENDCASE
OF . E ENDOF pairs may be repeated as necessary
At compile time CASE saves the current value of CSP
and resets it to the current position of the stack.
This information is used by ENDCASE to resolve forward references left on the stack by any ENDOF's before it. n is left for subsequent error checking.

CASE has no run time effects.
OF --- addr n (compiling)
$n 1 n 2 \cdots n 1$ (if no match)
$n 1 n 2---$ (if $n 1=n 2$)
Used in a colon definition of the form
CASE ... DF ... ENDOF ... ENICASE
At compile time $0 F$ emplaces ($0 F$) and reserves space
for an offset at addr. addr is used by ENNOF to resolve the offset. n is used for error checking.

At run time, $O F$ checks $n 1$ and $n 2$ for equality. If equal, n1 and $n 2$ are both dropped from the stack, and execution continues to the next ENIOF. If not equal, n2 is dropped and execution jumps to whatever follows the next ENDOF.

```
ENDOF addr1 n1 --- addr2 n2 ( compiling)
    Used in a colon definition of the form
    CASE ... OF ... ENDOF ... ENDCASE
```

At compile time ENDOF emplaces BRANCH reserving a branch offset 5 aves addr2 on the stack and alsa $n 2$ for error checking. ENDOF also resolves the pending forward branches from OF by calculating the offset from addrl to here and storing it at addrl.

At run time ENUOF transfers control to the code following the next ENDCASE provided there was a match at the last OF. If there was no match at the last OF , ENDOF is the location to which execution will branch.

```
ENDCASE addrl ... addrn n -.- ( compiling )
                    n --- ( if mo match)
                            --- ( if match found )
    Used in a colon definition of the form
    CASE ... DF ... ENDOF ... ENDCASE
    At compile time ENDCASE compiles a drop then computes
    forward branch offsets until all addresses left by previous
    ENDOF's have been resolved. Finally the value of CSF saved
    by CASE is restored. n is used for error checking.
    At run time ENICASE drops the select value if it does not
    equal any case values. ENDCASE then serves as the destination
    of forward branches from all previous ENDOF's.
Example
    : PRINTDAY CASE 1 OF ."Mom,ay" ENDOF
        2 OF ." Tuesday" ENDOF 3 DF ." Wednesday" ENOOF
        4 OF ." Thursday" ENIDF 5 OF ." Friday" ENJDF ENDCASE ;
    1 PRINTDAY will print Monday
    4 PRINTDAY will print Thursday
    9 PRINTDAY will not do anything !
```

ASMB, FORTHAD, UNSIGNED, +P2 , +1E21, 1E53, UNSIGNED DELETE OLD BIHARY (Y-N)? Y

| ANTARCTIC RESEARCH (RHODES) | $11-11-82$ | TSC ASSEMBLER PAGE |
| :--- | :--- | :--- | :--- |
| ADDITIONS TO FORTH KERNEL | | |

ANTARCTIC RESEARCH (RHODES)
11-11-82 TSC ASSEMBLER PAGE 3 ADDITIONS TO FORTH KERNEL

```
* The next code sets the link-back for this version
```

*

1196 ORG \$1196
1196 1E70 FDB LASTNM

2806
ORG $\$ 2806$
$28061 E 70$
FDB LASTNM

ENU

0 ERROR(S) DETECTEI

* Single Precision Unsigned Comparison FORTH Words *

FORTH uses the comparison words "く" and ">" for checking the limits of the Dictionary and Data Stack. "<" and ">" operate on signed numbers only. For operation above $\$ 7 F F F$ the unsigned operators "Uए" and "U>" were defined.

UK U1 U2 $-\cdots$?
True if $u 1$ less than $u 2$
41 and 42 are 16 bit numbers (ie unsigned)
U) $u 1$ u2 $-f^{-}$

True if $u 1$ is greater than u_{2}
ut and $u 2$ are 16 bit numbers (ie unsigned)

```
++++ASMB,CHANGES 
++++ASMB,CHANGES 
```

 *
 TTL ANTARCTIC RESEARCH (RHODES)
 STTL CHANGES TO FORTH KERNEL
 OPT PAG
 PAG
 ANTARCTIC RESEARCH (RHODES)
CHANGES TO FORTH KERNEL

```
*** Changes to ****
*** 68'FORTH for 6809 Version 01.01 (Talbot Hicrosystems) :***
*** used for :***
:*** Vertichirp Controller Programming **:*
*
** Operation above 32K ***
*
* FORTH uses comparison words < and > which operate on signed numbers
* for checking the limits of the Dictionary and Stack
* < and > are used by ?STACK and FORGET
* To te able to use Dictionary and Stack memory above $8000
* unsigned comparison operators US and U> have been defined
*
* Change to ?STACK
0C78 1E58 FDB $1E53 was $05A3 ie < changed to UK
*
* Change to FDRGET
FIBB $1E58 was $05A3 ie<, changed to UK
ORG $1459
FDB $1E75 was $092I ie >, changed to U.>
PAG
```

0 C69 ORG \$0C69
$0 C 69$ 1E5B FDB $\$ 1$ E58
$0 \mathrm{C78}$ ORG $\$ 0078$
144A ORG \$144A
144A 1E58
1459
14591 E75

ANTARCTIC RESEARCH (RHODES) CHANGES TO FORTH KERNEL


```
O ERROR(S) DETECTEI
```

: FORTH Memory Map expansion Procedure :
The following binary files are required on the workins drive

1. CHANGES.BIN
2. IPRIHS.BIN
3. INTPRIMS.BIN
4. CALPRIMS.BIN
5. VECPRIMS.BIN
6. RESTOREI.BIN
7. CASE.BIN
8. UNSIGNED.BIN

The FLEX cOMmand FORTH loads and runs FORTH Using the FORTH word "_" (underline) together with the FLEX command "GET" all the above files are loaded into memory.
ie. - GET CHANGES
_ GET DFRIMS
_ GET INTPRIMS

- GET CALPRIMS
_ GET VECPRIMS
- GET RESTOREI
- gET CASE
- GET UNSIGNEI

NB All the primitives in OPRIMS through to UNSIGNEO must the loaded in the order above thus ensuring that the dictionary backlinks are set up correctly.

Typing the FORTH command "COLD" will set up the system using the addresses overlayed by CHANGES. BIN
Type ULIST to check that all the new prinitives are in the dictionary.
Check the operation of FORTH and the added primitives before saving the modified version on disk. This expanded Memory Map FORTH is saved to disk by _ SAUE 1.FORTH.CMD,0000,2000,0

```
* Expanded FORTH Hemory Map *
$0000 --> $1BDO = FORTH Kernel
$1BD| - $1BDF = eMpty
$1BEO --> $|CBA = double precision words
$1CBB --> $1CED = interrupt Woriss
$1CEE --> $1DGC = MPN Calculator words
$1D6D --> $1D92 = the word VECTOR
$1D93 --> $1DAE = the yord RESTOREI
$1DAB --> $1DAF = CASE statenent words
$1E53 --> $1E7C = the worids UK and U`
$1E7D --> $1FE9 = empty
$1FEA --> $1FFF = init. subroutine added by CHANGES
$2000 --> $204F = FORTH registers and pointers
    and user variables.
$2050 --> $23E5 = empty
$23E6 and $23E7 = IRQ vector
$23E8 and $23E9 = enpty
$23EA and $23EB = XUSE
$23EC and $23ED = XPREV
$23EE = NUMTFY
$23EF = empty
$23F0 --> $27FF = disk buffer
$2800 --> $2838 = "FORTH" and "TASK"
$2839 --> = beginning of dictionary ( grows up)
$BF30 = data stack ( grows down)
$BF30 --> $BFB4 = TIB (terminal input buffer)
$BFFF = RETURN stack base (grows down)
$COOO --> $IFFF= RAM for FLEX 9 ( DOS )
```

```
* Dverall Hemory Map for 6809 :
$0000 --> $BFFF= FORTH ( expanded version )
$COOO --> $DFFF = for FLEX Disk operating system
$E000 = I/O address beginning
$EOOO --> $EOOZ = MPN Calculator Board
$E004 --> $E007 = MPS Serial interface board
$E008 --> $EOOB = MPLA1 // port - hardware control
$EOOC --> $EOOF = MPLA2 // port - clock and DCS
$E010 --> $E013 = not used
$E014 --> $E017 = junpered for disk controller
$E018 --> $E01B = DC3 disk controller board
$EO1C --> $EO1F = MPLA3 // port - filN I.I.
$E020 -->$EFFF = empty
$FOOD --> $F7FF = eapty
$F800 --> $FFFF = SBUG MONITOR
```


S-BUG Honitor Modification

The SUTPC 6809 monitor was modified as follows for use in the Vertichirp Controller systen.

Interrupt Vectors

Locations Name old vectoring address New vectoring address Function

FFFE, FFFF Restart	FFOO	FFOO	Set DAT
FFFC,FFFD NHI			FORTH warn start
FFOO	0000	FORTH cald start	

The MP-09 processor board contains an on board Dynamic Address Translator (DAT) that divides the conputer's 64 K address space into 164 K blocks. Each memory location has therefore a physical address and a logical address. The S-BUG monitor sets the DAT to position the highest physical 4 K block of RAM at logical address DOOD-DFFF. The next 4 K block is positioned at COOO-CFFF with subsequent blocks being logically assigned addresses from 0000 up to BFFF.

In the Vertichirp Controller system both FORTH and the Controller programmes are stored in EPROM in low memory form 0000. To prevent rearrangement of memory the S-BUG monitor was modified to set up the DAT to always assign addresses so that logical address $=$ physical address.

SET_DAT

FFOE			ORG	\$FFOE	
FFOE 8E	DFDO		LDX	H\$DFDO	$X=A D D R E S S$ OF DAT COPY
FF11 86	OF		LDA	H\$0F	SET PHYSICAL ADDRESS
FF13 A7	80	LOOP 1	STA	0, X +	ERUAL TO LOGICAL ADDRESS
FF15 4A			DECA		IN COPY
FF16 26	FB		BNE	LOOP1	
FF18 86	FO		LDA	\#\$F0	
FF1A A7	84		STA	0, X	STORE \$FO AT \$DFDF
FF1C 47			INCA		
FF1D 87	82		STA	$0,-x$	STORE \$F1 AT \$DFDE
FF1F 8E	FFFO		LIJX	\#\$FFFFO	
FF22 10	DFDO		LDY	\#\$DFDO	
FF26 C6			LDB	H\$10	
FF28 Ab		LOOP2	LDA	$0, Y+$	COPY TABLE TO DAT
FF2A A7			STA	$0, \mathrm{X}+$	
FF2C 5A			DECB		
FF2D 26	F9		BNE	LOOP2	
FF2F 53			COMB		
FF30 F7	DFE2		STB	\$DFF2	
FF33 10CE	DECO		LDS	H\$DFCO	SET HARDUARE STACK
FF37 16	F8DA		LBR	\$F814	

Call to code checking if FORTH is in EPROM.

FBSE		ORG	\$F85E
FB5E	17	$067 F$	LBSR

The following code checks locations $0000,0001,0002$ and 0003 during power on initialization to see if the systen has FORTH in EPROM. If it is a jump to FORTH "warm start" is executed. If not execution continues to S-BUG "next command" routine.

RUN_S-BUG_OR_EORTH

FEEO 17	FECB	LBSR	\$FDAE	PRINT "K "CRLL
FEE3 CC	1601	LDD	H\$1601	FORTH 1ST 2 BYTES
FEEす 10	9300	CMPD	$\$ 00$	FORTH ?
FEE9 27	01	BEQ	CHECK	YES,CHECK NEXT 2 BYTES
FEEB 39		RTS		NO,GO TO S-BUG "NXT CMD"'
FEEC CC	$3 F 16$	LDD	H\$3F16	FORTH BYTES 3 AND 4
FEEF 10	9302	CHPD	$\$ 02$	FORTH?
FEF2 27	01	BEQ	FORTH!	
FEF4 39		RTS		
FEFS 7E	0003 FORTH!	JMP	$\$ 0003$	GO TO FORTH UARM

NOTE: BOTH FORTH COLD AND WARM STARTS RE-POSITION THE STACKS.

S-BUG_MONITOR MODIFICATIONS

1. S-BUG OCCUPIES Menory from \$F800-\$FFFF. It is saved on disk as a binary file using the FLEX command "SAUE".
2. The FLEX command "FIX" is used to change the binary pile to the code given above.
3. The modified version called S-BUG $F T H$ is used to program the new EPROM.

Execution of Controller Programs

The FORTH ward ABORT is modified to execute the word COLD? which checks for prior system initialization and executes either VCOLD or VWARM before continuing with the displaced word QUIT which is the outer interpreter.

```
* Vertichirp Contraller Frogramae EPROMMING Procedure *
Load expanded menory map version of FORTH
Set FORTH Vocabulary - FORTH IEFINITIONS
Forget the word "TASK" - FDRGET TASK
Select drive 1 - LRI
DRI head restore - RESTOREI
Empty disk buffers - EMPTY-BUFFERS
Load Controller Frogrammes - { LOAD
The last screen ( SCR 86 ) executes the following
HEX 982E 0023 ! 9839 0025 ! 9810 0027 ! 9808 115F !
' COLD? CFA 1177 ! SETTIME NFA 1196 !
        982E 119E ! 9800 11C3 !
This modifies the Kernel to move "FOR'TH" and "TASK"
above the Controller prozrammes and redirect startup
to Controller warM start ( UWARM)
To check these changes either press the COLD Reset button
or type the FORTH command "COLD".
"FORTH" and "TASK" will be swapped to RAM begimming at $9800
Execution will then proceed to the Controller word "COLD?"
which will prompt for a Controller cold start.
"VLIST" should show "TASK" then "FORTH" at the top: of
the dictionary followed by the last Controller word "SETTIME"
and all the words that preceeded it.
The first Controller word should be preceded by "FORTH"
"U\" "Uく" ..... etc
If all the above is correct and the programme is operational
it is saved as a binary file from FORTH as follows
Set IRQ interrupt mask bit - SEIF
Reset I/O ports - RESET
Place FLEX system disk in srive O
Place disk with at least 15% empty sectors in drive 1
CAT,1 will show the catalog of drive }1\mathrm{ followed
by the number of remaining sectors on the disk.
_ SAVE 1.FORTH.RON,0000,9800,0
The file FORTH.ROM is used for programming the EPRON's.
```

* VERTICHIRP CONTROLLER MEMORY MAP :

$\$ C O O O \rightarrow$ SDFFF $=$ RAM for F1ex 9 (IIOS) $8 K$ RAM
$\$ E 000 \rightarrow$ - $\$ E 01 F=I / 0$ Adidresses
\$E020 - - $\$$ F7FF $=$ enpty
$\$ F 800 \rightarrow$ SFFFF $=$ modified $5-$ BUG , 5-BUG FTH 2 K EPROM

APPENDIX D
 VERTICHIRP CQNTROLLER_SOETWARE

QPERATORS_MANUAL

G.P.EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY

DECEMBER 1983

APPENDIX D
 VERTICHIRP CONTROLLER_SOETWARE

QFERATQRS_MANUAL
G.P.EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY

DECEMBER 1983

Vertichire_Controller Software Operators_Manual

Contents
Page_NumberD1
System Initialization
D2
Set Fieal Time Clock
D3
Set Timing Fosition
D5
HELP - Abbreviated Command List
System_Commands D6
COLD D6
WARM D6
UDU D6
PRINTER or PRNT D6
CLRUDU D6
TITLE D6
STATUSOFF D7
status D7
TIME \because D7
SETTIME D7
SETFL D7
SETYF D7
SETDY D7
PAUSE D7
CANCEL D7
Qbligue_Synchronization DB
Advance / Retard commands DB
SEARCH D8
LAST D9

Vertichire Controller Software_- Operators Manual

Introduction
This manual describes the initialization of the Vertichirp Controller System and the commands used for system contral, data entry, data display and modification and function execution.

System Initialization

The conversion from Logchirp Control to the Vertichirp Controller is detailed on page 85 of Vertichirp Controller Hardware - Manual 1. Important :- Check that the toggle switch mounted under the VDU is in the " Controller " position.

When connected as required the $A C$ power to the system can be switched on. The terminal should respond with :-

68' FORTH - 09 VERS \#1.1

Heath UDU (Y or N)?

If this prompt does not appear press the WAFM reset followed by the COLD reset on the Vertichirp Controller front panel.

The response to any prompt takes the form of valid data or a command followed by a carriage return (CR). If the VDU was a Heath the response Y (CF) would begin the initialization procedure by dividing the screen into three areas :-

Lines 1 to $6=$ System Status Area
Lines 8 to $18=$ Data Display Area
Lines 20 to $24=$ Command and Data entry area

Any other VDU or teletype can be used by answering N (CR) to the first prompt. Separate areas are not allocated and input and output data and commands are listed one after another. The vDU used must be set up so that the screen scrolls up when the bottom line is reached.

Initialization continues with requests for Place Name, Year and Day of the Week. The final instruction is to set the Real Time Clock (RTC) using the switches on the Controller front panel.

Set_Fieal_Iime_Clock

The clock data is displayed on the Controller front panel as :-
FL Y10 Y1 D100 D10 D1 H10 H1 M10 M1 H 10 S 1
The place identifier, PL , and tens of years, Y 10 , are set using the DIL switches on the Real Time Clock Display board, RTCD.

All the other digits except seconds are changed by using the front panel rotary switch to select the digit to be incremented each time the toggle switch is pressed. The rotary switch inhibits the clock and sets the seconds to zero. Because a carry increments the next significant digit it is easier to set the clock by beginning with unit minutes and ending with unit years.

The clock should be set ahead of the reference time and then enabled when the reference time is judged to be equal to the set time by moving the rotary switch to , Off '. The final timing adjustments are described under the heading " Set Timing Fosition '.

The VDU space bar can then be pressed to signal the computer to read the time. Once read, the screen status area is titled as follows :-

ANTAFICTIC RESEARICH
VERTICHIRF CONTFOLLER
RHODES UNIVERSITY

GFAHAMSTOWN 1983

```
Day Number :- 349
Current Frogramme :- Not Set!
Timing Fosition :- 0000.00 ms Advanced --->
```

The time can be checked using the command TIME which causes the time to be displayed in the status area.

Set_Timing_Fosition

All that now remains is to set the system timing relative to some standard time signal such as ZUO. This is achieved by displaying both the Controller 1 second signal from connector BNC1 and the ZUO signal on a dual channel oscilloscope. The falling edge of the Controller 1 second square wave from BNC1 must be moved to coincide with the beginning of the reference signals one second marker tone burst. This is shown below :-

1 second from BNCI
ZUO 1 second tone burst

The Vertichirp Controller timing is adjusted using the following command format :-
(shift in $m s$ in the form $x x x . x x$) space (MSEC) space (Adv or Fitd Command) Note. The number specifying the shift must include a decimal point .

The Advance and Retard commands are :-
A.D1 = advance at $1 \mathrm{~ms} / \mathrm{s}$

A $210=$ advance at $10 \mathrm{~ms} / \mathrm{s}$

A 20 = advance at $20 \mathrm{~ms} / \mathrm{s}$
RD1 = retard at $1 \mathrm{~ms} / \mathrm{s}$
R010 $=$ retard at $10 \mathrm{~ms} / \mathrm{s}$
$\mathrm{R} 020=$ retard at $20 \mathrm{~ms} / \mathrm{s}$

Examples

Coarse timing adjustment (see SEAFCH for an alternative method):-
60.0 MSEC A320 Advances 60 ms at a rate of $20 \mathrm{~ms} / \mathrm{s}$

Fine timing adjustment :-
0.25 MSEC FO1 Fietards .25 ms at a rate of $1 \mathrm{~ms} / \mathrm{s}$

NB. Check that the Controller timing is adjusted in the correct direction. When the Controller 1 second falling edge coincides with the beginning of the reference time signal the Timing fosition, which is displayed in the status area, is set to zero by the command CLRPOSN. Subsequent timing adjustments displayed in the status area are relative to the position at which the command CLRPOSN was issued.

Note that the $105 B$ Quartz Oscillator which provides the clock signals for the system will drift relative to the radio time signal (eg. ZUO). This means that after a number of days with the timing position $=0000.00 \mathrm{~ms}$ the actual position of the system in time will be slightly advanced or retarded relative to the radio time signal.

This drift can be minimised by adjusting the 105 B Quartz Oscillator Coarse or Fine frequency adjust controls.

Abbreviated_Command_List

HELF displays the following abbreviated list of commands together with the function each performs.

HELi

Systen	- Conmand-		-FunctionCold Start
	WAFIM		
	VIU		vou 1/0
	PFNT		Printer or VDU I/O
	IITLE		Shows Status
	statusoff		No Upulates
	TIME		Strows Tine
	SETTIME		Sets Time
Däta Entry	SOUNIING	x	$x=$ User assigned Data Name
	IONOGRAM	X	
	TIMING	X	
	FORTHLORD	x	$x=$ User assigned Jata Name
	FROGFAMME	*	$x=$ User assigned Vata Name
	EDIT *		$x=$ Defimed Data Name
Data Display/Modify	UISFLAY X		$x=$ Defaned Data Name
	Fritit x		$x=$ Depined Data Name
	LOG x		$x=$ Jefined Data Name
	ILIST		List Data Names
Execution	SET K		$x=$ Defined Data Name
	RUN X		$x=$ Defined loata Name
	HALT		Stop Ionogram

Press SFACE BAR to exit
These commands are described in more detail below. Related commands not
in the list are also included.

System_Commands
HELP
Display abbreviated command list until space bar is pressed. COLD

Cold start. All previously entered data are lost. The system prompts for initialization.

WARM
Warm start. All previously entered data are retained. The screen is titled showing the status of the system before the warm start. VDU

Flag VDU? is set to 1. Data are positioned on the Heath VDU screen using cursor addressing. The Heath screen is divided into 3 different areas which are used for system status display, data display and command or data entry respectively.

FRINTER (or FRNT)
Flag VDU? is cleared to 0 . Cursor addressing is replaced by carriage return only. This command selects printer or VDU I/O with commands , prompts and data being listed line by line. The UDU must be set up to scroll up a line when the last line has been filled. The top line is lost but a new line is created at the bottom of the screen. CLRVDU

VDU :- The screen is cleared and the cursor placed at the top left hand corner.

FRINTER :- A Carriage return only is output.

TITLE

VDU :- The screen is cleared then titled and the current status displayed
FRINTER :- The title followed by the current status is printed.

STATUSDFF

Flag STAT is cleared to 0 . The status of the current and next functions in the current programme are not updated on either VDU or printer. STATUS

Flag STAT set to 1 . The status of the current and next functions in the current programme are updated on either VDU or printer.

TIME
VDU :- The words " Current Frogramme " in the status area are replaced by
the wards " Current Time " fallowed by the time in the form :-
day of week : hours : minutes : seconds. The time is updated every second.
FRINTER : - The current time is printed once only, immediately after the the unit seconds change.

SETTIME

This command instructs the user to set the hardware real time clock. Once set pressing the space bar signals the computer to read the hardware clock. SETFL

Prompts for and sets the place name.
SETYF
Frompts for and sets the year.
SETDY
Frompts for and sets the day of the week.
FAUSE
Fauses the execution of the current programme until the space bar is pressed. After a FAUSE the next function in the current programme is set up for execution. FAUSE halts an executing Ionogram.

CANCEL
The current programme is cancelled. The status area shows :-
" Current Frogramme :- Not Set ! "

oplique_Synchronization

The following commands are used for oblique ionogram synchronization. The timing position relative to the position at which the command CLRPOSN was used is displayed in the status area in the form :-

Timing Fosition :- (last position in ms) ---> (present position in ms)

Commands

1. Specifying the_shiftrequired_in milliiseconds.

The command format is :-
(shift in ms in the form $x \times x . x \mathrm{x}$) space (MSEC) space (Adv or Rtd Command) Note : The number specifying the shift must include a decimal point. Advance_Commands

AQ1 = Advance at $1 \mathrm{~ms} / \mathrm{s}$
AQ10 $=$ Advance at $10 \mathrm{~ms} / \mathrm{s}$
A $220=$ Advance at $20 \mathrm{~ms} / \mathrm{s}$
Eetard_Commands
FO1 = Retard at $1 \mathrm{~ms} / \mathrm{s}$
RO10 $=$ Retard at $10 \mathrm{~ms} / \mathrm{s}$
R020 $=$ Retard at $20 \mathrm{~ms} / \mathrm{s}$
Example
29.0 MSEC RQ10 ie: retard 29.0 milliseconds at a rate of $10 \mathrm{~ms} / \mathrm{s}$.

The status area would show :-
Timing Fosition :- 0000.00 ms Advanced $--->29.00 \mathrm{~ms}$ Retarded

2. The_SEARCH_Command

The SEARCH command prompts only for a shift direction and rate. The changing timing position is shown in the status area. Slipping is terminated by pressing the space bar. The SEAFCH mode is exited by typing EXIT. The timing position prior to the use of SEAFCH can be easily returned to using the command LAST.

3. Ihe_LAST Command

LAST slips the timing at $20 \mathrm{~ms} / \mathrm{s}$ to the last position.
Eg. Timing Fosition :-0000.00 ms Advanced $\rightarrow>29.00 \mathrm{~ms}$ Fietarded After typing LAST the timing position status would be :Timing Fosition :-29.00 ms Fetarded ---> 0000.00 ms Advanced

Data_Entry_Commands

Introduction

There are five different types of data. They are Soundings, Ionograms , Timing Changes, FDRTHWORDS and Frogrammes.

Each entry of a particular data type is given a unique descriptive name by the user. The computer then prompts for all the data required by that particular data type. Once all the prompts have been answered all the entered data is displayed. Any errors during entry can be corrected using the EDIT command.

Of the five data types four can be entered as functions in a Programme. The functions are Ionograms, Timing Changes, Forthwords and Frogrammes. These can all be executed using the RUN command.

A Sounding contains data used by an Ionogram and must therefore be defined before the Ionogram. A sounding cannot be RUN.

SOUNDING :
x is a user assigned Sounding data name.

Examele

The command SQUNDING Si will prompt for all the data necessary to define a Sounding with the name 51.

The data contained in a Sounding are the " microscopic " details of an Ionogram like basic rate, cell period and FFT sample rate. Dnce a Sounding has been defined the Ionogram that uses it may be defined.

An example of programming a Sounding is given below. The. I/O mode was set to PRINTER to make this listing. User responses, all followed by (CR) , are highlighted by rectangular boxes.

```
gounding S1
Stationary [loppler (Y or N)?N N 400 250 500 800 1000 2000 4000 ktiz/sec
Valld 11ata :- 25 10 50 80 1002
Faslc riate =50
Valds lata : - 0 to 950 KM
Heigint fange= 0 to 1500 KM
New Minimum Height Ran̈ze=0
New Height Range \(=0\) to 1500 Km
Valid Data :- 1/32 1/16 1/8 1/4 1/2 1/ 2/ 4/ Sec
```



```
Mseq 
FFT Fiate = 1024
Valid Data :- Between 2 and 150 mm/min
Film Speed = }
Closest Speed = 6 mm/min
Fixed feceiver Gain (Y or N)
Number of Cells=}=
Cell No = 1
Valid lata :- xx*x Hz, x*x.xxx kHz or xx.*xx MHz
Offset from Origin ( Number only) = O Units = HZ
Film Irive (Y or N)?Y
Valij Ilata :-12345678
Ral Antemna
R<2 Antenna
1
```

IONOGRAM \times
x is a user assigned Ionogram data name.

Example

IONOGFAM II prompts for all the data necessary to define an Ionogram with the name II.

Note

One of the requests in the defining of an Ionogram is for a previously defined compatible sounding. Make certain that one exists before entering Ionogram data.

The data contained in an Ionogram are the " Macroscopic " details of the Ionogram function such as Ionogram type (eg VERTICAL), start frequency and end frequency.

An example of programming an Ionogram is given below. The listing was made with the I/D mode set to. PRINTER. User responses, all followed by a carriage return (CR), are highlighted by rectangular boxes.

```
IONOGRAMII
Valid Data :- OFF TEST1 TEST2 DOPFLER OBLIQUETX OBLIQUERX VERTICAL
Experinental Code ( \(Y\) or \(N\) )? \(N\)
Ionogram = UERTICAL
Stationary Ionogran (Y or \(N\) )?N
Valid Data :- Between 0.5 anis 30.0 Miz
Start Frequency \(=.5\)
Valid لata :- Between 0.5 and 30.0 AHz
End Frequency \(=15\).
Valid lata :-Linear \(=x\) K KHz/sec, Log \(=.001-\mathrm{y} .01 \mathrm{oct} / \mathrm{sec}\)
Linear Overall kate (Y or N)? Y
Linear Overall fate \(=50\)
\(S 1\)
Valad Data : - As Listed Above
Sounding \(=31\)
Store Mata on Mar Tape (Y or N)?N
```

TIMING:
x is a user assigned Timing Slip data name.

Example

TIMING $T 1$ prompts for a required shift in milliseconds followed by a shift direction and rate to define a Timing Slip called T1.

An example of programming a Timing Slip is given below. User responses, all followed by ($C R$), are highlighted by boxes.

TMMNG T1
Valid Data :-xאx.xx ms
Shift $=29.0$
Valid Data:- AC1 AC10 AC20 Rel RC10 Re20
Shift Direction and Fate $=$ AC20
T1 - TIMING SLIF (AIIVANCE)
Shift $=29.0 \mathrm{Ms}$
Shift Iirection and Fiate $=A Q 20 \mathrm{~ms} / \mathrm{s}$
OK

FORTHWORD :

: is a user assigned forthword data name.

Example

FORTHWORD F1 prompts for a previously defined and tested FORTH colon definition which is assigned the Forthword data name F1. Forthwords so defined can be executed using the FUN command or can be entered in a Frogramme. This function must be used with caution.

An example of the use of FORTHWORD is given below.

1. FORTH colon definition:-
: CHKDY DYNO $3300=I F$ CLRDIS CR CR ." The day number is 300 !" HOME ENDIF ;
When executed CHKDY fetches the day number and checks to see if it is 300. If it is the display area is cleared and the message :-

* The day number is 300 !, is printed on the third line.

2. Data/Function definition using Controller command FORTHWORD.

FORTHWORD CHECKDAY
Valid Data :- TESTED FORTH Word !
FORTH Word $=\mathrm{CHKDY}$

FORTH Word = CHKDY

FROGFAMME x (or FFIOGRAM x)

* is the user assigned frogramme data name.

A Frogramme is a list of times and functions arranged in three priority blocks. Functions that can be executed under programme control are Ionograms , Timing Slips, Forthwords and Frogrammes. Each of the three priority blocks can have up to 24 entries. Each entry consists of a time associated with a function.
Note :- A Frogramme can call another Programme at a specific time adding great flexibility to Controller programming.

Friority Block_\#1_=Weeklv Data
In this block week day, hours, minutes and seconds must all be specified together with the function to be executed. If no other function is is running the specified function will be executed when the Real Time Clock and entry times are equal.

A function specified in this priority block will run once a week.

Friority_Elock_\#2_=_Daily_Data

In this priority block hours, minutes and seconds must all be specified together with the function to be executed. If no other function is running and there is no priority block \#1 entry at the same time, the specified function will be executed when the real time clock and entry time are equal.

A function specified in priority block \#2 will run once a day unless a priority block \#1 entry overrides it.

Priority_Block_\#三_=_Hourly_Data

In this block minutes and seconds must be specified together with the function to be executed. If no other function is running and there are no priority block \#1 or priority block \#2 entries at the same time, the specified function will be executed when the real time clock and entry times are equal.

A function specified in priority block \#3 will run once an hour unless overridden by either a priority black \#2 or priority block \#1 entry.

Frogramme_Entry

PROGRAMME P1 assigns three empty priority blocks to the frogramme name f1 and displays the first 8 empty locations of priority block \#1. Times and functions can the be entered in any priority block using the programme editor. Allow a minimum of 5 seconds between functions for housekeeping.

An example of a programme is given below. The LOG x command prints all entries plus one empty entry per priority block. The example shows 4 entries each of the function I1, a vertical Ionogram, and the function OBR, an oblique receive Ionogram, in priority block \#3. These entries execute every hour except on Wednesdays between 14:10:00 and 14:55:00 when priority block \#1 entries are executed and oblique receive ionograms alternate with oblique transmissions.
LCi P1

With STATUS selected the Current and Next Functions in the Current Programme are displayed and updated in the status area.

Data_Display/Modify_Commands

Introduction

These commands allow previously entered data to be displayed and changed. EDIT \times
x is the user assigned data name and may be a Sounding name, an Ionogram name, a Timing slip name, a Forthword name or a Programme name.

The EDIT command displays the data type x and the subtype as a heading. The user can then either change a parameter or , in the case of a Sounding or Frogramme, display other areas of data, or exit the editor. Selecting change results in a list of parameters that can be changed being printed. Upon selecting one of these the user is prompted for valid input. DISFLAY \times
x is the user assigned data name and may be one of the 5 different data types.

The DISPLAY command must be used on the Heath VDU only because it switches the $I / 0$ mode to VDU.

Sounding and Frogramme data are displayed in the EDIT format to allow the selection of different areas of data (Eg. Selection of different priority blocks in a Frogramme). Ionogram, Timing Slip and Forthword data are listed in the display area. I/O is left in the VDU mode.

FRINT:
x is the user assigned data name and may be one of the 5 different data types.

PRINT first switches the $I / 0$ mode to FRINTER. This command can be used with either a printer or with any VDU. If x is a valid name the data associated with it are printed. If x is a Frogramme name all entries plus one empty entry per priority block are printed.

I/O is left in the PRINTEF mode.

LOG:
\times is the user assigned data name and may be one of the 5 different data types.

LOG switches the $I / 0$ mode to PRINTER before printing the specified data. LOG is the same as FFINT except when x is the name of an Ionogram. In this case LOG prints the Ionogram data followed by the Sounding data referred to by the Ionogram.

Example

LOO II
11-IONOGRAM (VERTICAL)
Ionogram Duration $=0: 4: 50$
Data to Tape $=$ No
Start Frequency $=00.500000 \mathrm{MHz}$
End Frequency $=15.000000 \mathrm{MHz}$
Overall fate $=50 \mathrm{kHz} / \mathrm{sec}$

Soundinis $=51$
S1 - SOUNDING (TON IONOGRAM)
Basuc Kiate $=50 \mathrm{kHz} / \mathrm{sec}$
L.0. jifiset $=0 \mathrm{~Hz}$

Height Range $=0$ to 1500 Km
Tcell $=1 / \sec$
Mseq $=1 /$ sec
FFT Rate $=1024 \mathrm{~Hz}$
Film Speed = 6 ma/inin
FXALC $=$ Clk/Snd
Time marks = Off
iou of Cells =
utpos
Fim Irive
Exi Antenna
Rx2 Antenna

Cell 100.000000 MHz
Y
1
2 OK

DLIST

Lists all the names entered since COLD reset, the most recent entry heading the list. The names listed include the data entered using the Contraller commands SOUNDING, IONOGRAM, TIMING, FORTHWORD and PROGRAMME 25 well as any FORTH colon definitions.

The user can either exit DLIST or erase all names up to and including a particular name. This function must be used with caution because functions entered after a Frogramme and referred to by the Frogramme may be deleted. If this is done the invalid Frogramme entries will display the message :" Invalid Forward Reference - DELETE ! ". All invalid entries must be deleted from the Frogramme.

ILIST

Defined Functions
STAT/1024 SYiNOF/SI2
OIi

53/512
usi

It Function 51
Erase Function(Y or N)? N OK

SHOWS
SHOWS $=$ Show Soundings
This command lists all the defined Sounding names, beginning with the most recent.

SHOWI
SHOWI = Show Ionograms
This command lists all the defined Ionogram names, beginning with the most recent.

SHOWT
SHOWT = Show Timing Slip
This command list all the defined Timing Slip names, beginning with the most recent.

SHOWF
SHOWF $=$. Show Forthwords
This command lists all the Forthword names defined for execution in a Frogramme. The most recent definition heads the list. Note: These words (datatype 4) are executed either by using the Controller command RUN or by entering them in a Frogramme.

SHOWF
SHOWF = Show Frogrammes
This command lists all the defined frogramme names beginning with the most recent.

Function_Execution

SET :
x is the user assigned data name and may be one of the 5 different data types.

In the case of Soundings and Ionograms the Controller hardware and software is set up according to the data referred to. Setting a programme makes it the Current Frogramme. Setting a Timing Slip or a Forthword only results in a check for an invalid forward reference.

After this command is used (Eg. when checking that the oblique $T x$ / oblique $R x$ antenna relay is switching, the Frogramme required as the Current Frogramme should be reset using the command RUN (Eg. RUN F1)

RUN :
\% is the user assigned data name and may be an Ionogram, a Timing Slip , a Forthword or a Programme.

For $x=a n$ Ionogram name the Controller hardware is first set as required and the initial data is sent to the DCS. The Ionogram begins on the next falling edge of the 1 Hz clock signal.

If the DCS is not connected or does not acknowledge the data, the Controller VDU bell will sound.

For $x=a \operatorname{Timing}$ Slip name, the specified slip is excecuted beginning on the 1 Hz clock falling edge.

For $x=$ a Frogramme name, the specified Frogramme is made the Current Frogramme and the next function to be executed in this Frogramme is found and set. The Current Frogramme name and the Next Function name are displayed in the status area.

If an Ionogram is executing and FUN x is used the Ionogram will be halted before the function x is executed.

HALT
This command is used to terminate an Ionogram before its end frequency is reached. The current sounding is completed and the Ionogram end code is sent to the DCS.

* SCREEN INDEX:

(Reserved Memory)
(Reserved Memary)
(Reserved Memory)
(Reserved Memory)
(Reserved Memory)
(Reserved Memory)
(Reserved Memory)
(Reserved Memory)
(UDU / Printer Control) HEX
(VDU / Printer Control) HEX
(UDU / Printer Control) DECIMAL
(Number and Vord Input) HEX
(MFN Calculator Control) HEX
(Port Initialisation) HEX
(Synthesizer Control - Input MHZ, KHZ or $H Z$) $H E X$
(Synthesizer Control - Print MHz/4 or $\mathrm{MHz}^{\text {. Freq to } \mathrm{MPN} \text {) HEX }}$
(Synthesizer Control - Freq to Synth. ANSEXF to Memory) HEX
(Hardware Control - Control Register A) HEX
(Harduare Control - Control Register B) HEX
(Hardware Control - Basic Rate and Doppler) DECIHAL
(Hardware Control - Tcell and M Sequence) HEX
(Hardware Control - FFT Sample Rate and Antenna Switch) HEX
(Hardware Control - Filn Speed, Windowing and Sync's) HEX
(Hardware Control - Advance Retari Control) HEX HEX
(Hardware Control - Advance Retard Control) HEX
(Datatype Handling) DECIMAL
(Sounding Parameters) DECIMAL
(Sounding Parameters) IECIHAL
(Sounding Parameters) IECIMAL
(Sounding Parameters) DECIMAL
(Build Sounding) DECIMAL
(Display Sounding) DECIMAL
(Display Sounding) DECIMAL
(Display Sounding - Cell Ilata) IECIMAL
(Display Sounding)
(Edit Sounding - Prompts) DECIMAL
(Edit Sounding Paraneter) IECIMAL
(Edit Sounding Paraneter) IIECIMAL
(Iisplay and Edit Sounding) IIECIMAL
(Set Sounding)
(Ionogram Parameters) IIECIMAL
(Ionogran Parameters) DECIMAL
(Ionogram Parameters) DECIMAL
(Build Ionogram)
(Ilisplay Ionosram)
IIECIMAL
(IIsplay Iono.gram)
IIECIMAL
DECIMAL
(Edit Ionogram - Prompts) IIECIKAL
(Edit Ionogram Parameter) DECIMAL
(Iisplay and Edit Ionogran) JECIMAL
(Ionogram Calculations) IIECIMAL
(Ionogram Setting) DECIMAL
(Ionogran Setting) JECIMAL OK

```
55 { Timing Slip Parameters - Build Timing Slip \ IIECIMAL
56 ( Display Timing Slip)
57 ( Edit Timing Slip , Set Tining Slif )
58 ( FORTH Word Parameters - Build FORTH Uord) IIECIMAL
59 ( Display and Edit FORTH Word)
60 ( Set Place, Year, Weekday Number ) HEX
61 ( Read Real Time Clock ) HEX
62 ( Increment Real Time Clock - Get Time + I sec) DECIMAL
63 ( Display Day , Display Time) DECIMAL
64 ( Allot Programme )
65 ( Programme Paraneters ) DECIMAL
66 ( Display Programme)
67 (Display Frogramme )
68 ( Display and Edit Progranme ) DECIMAL
69 (Programme Display Control ) DECIMAL
70 ( Iisplay and Edit Progranme) DECIMAL
71 (Programme Lookahead) DECIMAL
72 (Programme Lookahead)) HEX
73 ( Data to Filn). HEX
74 ( Data to ICS ) HEX
75 ( Data to DCS ) HEX
76 (Print Title and Display Status) IECIMAL
77 ( Iisplay IIatatype. Edit Datatype) IECIMAL
78 ( Set Datatype.)
79 ( Show and Ielete Datatype) IIECIMAL
80 (Sounding and Cell Start Frequencies. Function Stop) DECIMAL
81 ( Tcell Interrupt Routine ) IECIMAL
82 (Run Function) DECIMAL
83 ( Clock Service Routine ) DECIMAL
84 ( Interrupt Polling) HEX
85 ( Command List)
DECIMAL
86 ( Systen Initialisation)
IIECIMAL OK
```

ANTARCTIC RESEARCH（ RHODES）
VERTICHIRP CONTROL PROGRAMS

SCR \＃ 3
0 （Reserved Memory）

HEX			（＊＊＊Sounding Storage＊：k：k	）く
208A	CONSTANT	\＃4C	（ No．of Sets of 4 Cells	［2］）
208C	CONSTANT	4C\＃	（ No．of Current Set of 4 Cells	［2］）
208 E	CONSTANT	CELLH	（ Current Sounding Current Cell	no．［2］）
2090	CONSTANT	AGC\＃	（ Flag and Count	［2］）く
			（ $0=$ Fixed Gain	）＜
			（ 1 ＝AGC Pulsed each Sounding	＜
			（ $n=A G C$ Pulsed every n Tcells	く
2092	CONSTANT	TKK\＃	（ Counter for Tine Marks	［2］）＜

ANTARCTIC RESEARCH (RHODES)
VERTICHIRP CONTROL PROGRAMS

```
SCR # }
    O (Reserved Memory)
    {*** Iono.gram Storage *:k* ) <
        HEX 
        2096 CONSTANT CURS ( Current Sounding Pfa [2] )<
        2098 CONSTANT HSOUND (NO. of SoundingS in IONogram [2] ) <
        209A CONSTANT SOUND# ( Current Sounding no. [2] ) <
        209C CONSTANT F/SND ( Frequency change per Sounding [8] ) <
        2OA4 CONSTANT EATS ( e**ATS for LOG Rates [C] )<
        2OBO CONSTANT CFREQ ( Cell Frequency for DCS [8] )<
        20B8 CONSTANT CANT ( Cell Antennas for DCS [2] ) <
    --><
    <
    12 % < <
13 <
14
15
<
```

SCR \# 5

SCR \# 6
0 (Reserved Memory) <
HEX (*** Programme Entry: $: *: *$) <
20EC CONSTANT TP1 (Addr of Top of Priority Block 1 [2]) <
20EE CONSTANT TP2 (Addr of Top of Friority Block 2 [2]) <
20FO CONSTANT TP3 (Addr of Top of Priority Block 3 [2]) <
20F2 CONSTANT FB (Current Priority Block Nunber [2]) <
(*** Programne Lookahead :kik*) (
20F4 CONSTANT CURFRG (Addr of Current Programne [21) <
20F6 CONSTANT WC (Seconds until Next Weekly Iono [4]) <
20FA CONSTANT HEA (Pfa of Next Weekly Ionogran [2])<
2OFC CONSTANT IIC (Seconds until Next IIaily Iono [4])<
2100 CONSTANT DEA (Pfa of Next Daily Ionogram [2]) <
2102 CONSTANT HC (Seconds until Next Hourly Iono [4]) <
2106 CONSTANT HEA (Pfa of Next Hourly Ionogran [2]) <
$-\cdots<$
15
OK

```
SCR %
    O (Reseried Menory)
        HEX {*** Programme Lookahead **** )<
        2108 COHSTANT NXTIME ( Next Function Start Time in sec [4] )<
        210C CONSTANT HXTFTN
        (Next Function Pfa
        [2] ) <
        210E CONSTANT NPB (Next Function Priority Block no.[2]) <
        2110 CONSTANT CURTIME ( Current Function Start Tine in s[4])<
        2114 CONSTANT CURFTK (Current Function Pfa [2]):
        2116 CONSTANT CPB ( Current Function Priority Block [2] )<
        2118 CONSTANT NXTSET ( 0 = Next Ftn not set [2] )
            (1 = Next Ftn set
        )<
    211A CONSTANT COMPARE (0 = No time comparison-Iono exec[2])<
            ( ( = Compare RTC with execution time )<
                                    --><
13
1 4
1 5
SCR # 8
    O (Reserved Memory)
        HEX (*** Data Capture System *:** )<
        211C CONSTANT IICS? (0 = Inhibits Printing of DCS Jata )<
    (1 = Print Data being sent to DCS[21) <
    211E CONSTANT DCSTAT (0 = DCS ACknowledsing data
    (1 = DCS not Acknowledging data [2] )
    ( *** Flag in Interrupt Routine **** )<
        2120 CONSTANT TON ( 0 = Time Display off )<
    (1 = Display Time every second [2])<
    (*** Ionogram Busy Flas ****) 人
    (0 = Ionogram not running );
        2122 CONSTANT ION < = IONOGram not running
    ( 1 = Ionogram rumning
[2] ) <
--><
14
15
```


15

```
SCR * 10
    O ( UDU / Printer Control )
    1 : STATUSOFF O STAT ! ; ( Controller Status not Displayed )
    2 : STATUS | STAT ! ; (Controller Status Displayed ) . <
    3 : Se STAT Q ; ( Fetch Controller Status Flag ) <
    4 : PRNT O VDU? ! ; ( Carriage Return used - Printer ) <
    5 : VDU 1 VDU? ! ; ( Cursor Addressing used-VDU ) <
    6 : Ve VDU? Q; (Fetch VDU Flar3 ) (, m>, ), <
    7 : NEWCR UDU? & IF OA EMIT OD EMIT 8 OUT ! ELSE CR ENDIF; <
    8:CR NEWCR ; ( If UDU inhibit PTERMIMAL inCR ), <
    9: ?TERM TFTN E DUP IF DROP ?TERMINAL ENDIF ; (f - % f ( Output Escape ) < <
    11: BELL 7 EMIT; (Ring Bell )
    12 : CLRVDU VE IF ( VDU ) ESC 45 EMIT ELSE ( Printer) CR ENDIF ; <
    13 : SAUEXY UR IF ( UDU ) ESC 6A EMIT ENDIF ; ( UDU saves X,Y )
    14: GOXY UP IF ( UDU ) ESC 6B EMIT ENDIF ; ( Cursor to X,Y ) <
    15
```

```
SCR # 11
    0 { UDU / Printer Control ) HEX <
    1 : CURPOS VE IF ESC 6E EMIT KEY IROP KEY IROP <
    2 KEY 20 - KEY 20 - ELSE 0 O ENIIF ; ( --> ln# col# ) <
    : GTOXY ESC 59 EMIT SWAP O MAX 17 MIN 20 + EHIT <
    4 O MAX 4B MIN 20 + EMIT ; { ln# col# -->)<
    5 : GOTOXY VE IF GTOXY ELSE DDROP CR ENDIF ; ( ln# col# --.) ) <
    6 : XYONLY VE IF GTOXY ELSE DDROP ENDIF ; (In# col# -->) <
    7 : CLRLI O GTOXY ESC 6C EMIT ; ( | l | --> )<
    8: CLRLN ve IF CLRLI ELSE DROP CR ENDIF ; ( ) ln# -->)<
    9:CLRLIS 1+ SUAP DO I CLRLI LOOP ; ( ln#1 ln#2 -->)<
    10 : CLRLNS ve IF CLRLIS ELSE DROP DROP ENDIF ; ( ln#1 ln|2 -->) <
    11 : CEOL VE IF 57 OUT P - SPACES ENDIF ; ( Clr end of In ) <
    12 : CLRSTAT VE IF 0 6 CLRLIS 0 0 GTOXY ELSE CR ENDIF ; () <
    13 : CLRDIS VE IF 8 12 CLRLIS 8 0 GTOXY ELSE CR ENDIF ; () ) <
    14 : CLRD+1 ve IF 9 12 CLRLIS 9 0 GTOXY ELSE CR ENDIF ; ( ) <
    15 : CLRIN ve IF 15 17 CLRLIS 15 0 GTOXY ELSE CR ENJIF; - ; <
```

SCR \# 12
0 (UDU / Frinter Control) DECIMAL \&
1 : HOHE SE IF VE IF 2023 CLRLIS 190 GTOXY ELSE CR ENIIF ENDIF ;
2
$3: H+1$ SE IF VE IF 20 CLRLI ELSE CR ENDIF ENDIF ; () <
4 : DSHLN Ve IF 0 GTOXY
5790 DO ." -" LOOP ELSE DROF ENDIF ; (1 n\# -)
6 : PTRCR UP $0=$ IF CR ENDIF ;
$7:->$ SPACES ; (n - \quad ($)$
8 : TAB OUT Q 8 - - SPACES ; $(n \cdots)$)
9 : ISEC 100000 DO LOOP ;
10: B1S BELL ISEC ;
11 : OK? DUP $0=I F$ BIS ENDIF ; $(f \rightarrow$ f)
12 : 4
13 : U? B U? B1S ;
14
15
OK


```
SCR 16
    O ( Synthesizer Contral - Input MHZ , KHZ or HZ ) HEX<
    1 : SETDPLJ DPL & DUP 3 = 0= IF 3 SWAP - O DO A * LOOP ELSE DROP <
    2 ENDIF ; ( n --> n:*0:**3-DPL )<
    3 : CONSTORE DUP O< O=
    4 IF 4 /HOD 4 O DO A IMOD LOOP 5 O DO 30 OR F2MSS I + C! LOOP <
    5 3E8* + 4/A /MOD A/KOD 8 5 DO 30 OR F2MSBI + C! LOOP 1<
    6 ELSE DDROP CR ." FreqError" O ENDIF ; ( r q --> i ) 人
    7 : KHZ DPL P 4 < IF SUAP SETDPLJ ELSE DPL C 6 = < <
    8 IF 3E8 N/ ELSE DDROP CR."Format ?" 0-1 ENDIF ...> + <<
    9 E DRO DPL R DUP IF I SUAP O DO A : LOOP M/ SWAP SETDPLZ SWAP <
    I ELSE DROP SUAP ENDIF; (d --> r q)<
    2 : KHZ DPL E 3 >
    13 IF DDROP 0 -1 ELSE DRQ ENDIF CONSTORE; (d m-> f )
```



```
    15
```

SCR \＃ 17
0 （Synthesizer Control－Print $\mathrm{NHz}_{\mathrm{L}} / 4$ or MHz ．Freq to MPN）HEX＜ 1 ：PRINTBUF DUP 2 TYPE ：＂．＂ $2+6$ TYPE．＂ $\mathrm{HHz} / 4^{n}$ ：
2 ：PRINTBUFI FIMSB PRINTBUF ；
：PRINTBUF2 F2HSB PRINTBUF ；
1 ：TO\＃O SUAP O DO OUER I－CE F AND I
5 IF I ODOA＊LOOP＋ELSE＋ENDIF LOOF SWAP DROP；$<$
6 ：PRINTF DUP $4+4$ TOU $4 *$ SUAP $7+3$ TO\＃ 4 ： 3 E8／NOD ROT $+<$
70 く\＃\＃\＃\＃2E HOLD \＃\＃\＃〉TYPE O〈\＃\＃\＃\＃\＃〉TYPE．＂MHz＂；く
8 ：PRINTFI FIHSB PRINTF ；：PRINTF2 F2HSB PRINTF；
9 ：DENT O DO DUP 1 ＋CE F AND TONPN LOOP DROP ；
：FTOHPN 8 DENT ；FENTER FTOMPN ENTER
1 ：FITOHPN FIHSB FTOMPN：\quad ：F2TOMPN F2MSB FTOMFN ；\quad ： 2 TOMEM F2MSB SWAP 8 CMOUE ；＜
12 ：F1TOMEM FIMSB SUAP 8 CHOVE；：GETF2 HERE F2TOMEN 8 ALLOT ；＜
11 ：TOF1 FIMSB 8 CMOUE；\quad TOF2 F2MSB 8 CMOVE ；-- ； 15

```
SCR # 18
    0 { Synthesizer Control - Freq to Synth.ANSEXP to Memory) HEX <
    1: LZERO 1+ DUP 8 SWAP - DUP DUP
    2 IF FIHSB SUAP 3O FILL ELSE DROP ENDIF ;
    3 : XFR FIMSB + ANS# SWAP ROT CMOUE ;
    4 : FORHAT ANSEXP P F AND DUP 8 <
    5 IF LZERO XFR ELSE ." Freq over range" DROP ENDIF ;
    6 : NEUFRED ANSUER FORHAT ;
    7 PAACK DUF CE SUAP 1+ CE F AND SUAP 10: OR ; <
    8 : TOLATCH 8 O DO IUP I + PACK SUAP 2 +LOOP DROP <
    9 9 5 DO I STORE LOOP ; (Sends 8 bytes to Latches )
    10: LOADFREQ 0 9 STORE ; (Load Counters from Latches )<
    II : FREQOUT FIMSB TOLATCH LOADFREQ ; ( FIMSB to counters ) <
    12 : SETFREQ F2HSB TOLATCH LOADFREQ ; ( F2HSB to counters ) <
    3 : ATOMEN ANSUER ANSEXP SUAP C CMOUE ;
    4 : MTOMPN DUP 4 + 1 DENT MPNDP DUF 5 + 7 IENT MPNEE 2 DENT ; < <
    15
    OK
```

```
SCR | 19
    0 (Hardware Control - Control Register A ) HEX <
    1: STROBEO O O STORE ; (Clears Sweep f/f,A/R f/f filn f/f) <
    2: STROBEI O I STORE ; ( Clears Sweep f/f ) <
    3 : STROBE2 O 2 STORE ; ( Clears A/R f/f )
    4 AO CONSTANT OFF FI CONSTANT TESTI <
    5 F3 CONSTANT TEST2 7C CONSTANT DOPPLER <
    6 IF CONSTANT OBLIQUETX EF CONSTANT OBLIQUERX <
    7 FF CONSTANT UERTICAL <
    8 : SETA DUP CONTROLA ! 3 STORE ; ( Example :- VERTICAL SETA )
    9: Ae CONTROLA Q ;
    O : A?
        CASE AO OF ." OFF" ENDOF FI OF ." TEST1" ENDOF<
                        F3 OF ." TEST2" ENDOF 7C OF ." DOPPLER" ENDOF<
                            9F OF ." OBLIQUE TX" ENDOF EF OF ." OELIQUE RX" ENDOF<
    FF OF ." VERTICAL" ENDOF
                                    --><
```



```
SCR # 21
    O ( Hardware Control - Basic Rate and Doppler) IECIMAL <
    1 : TABLE <BUILDS O DO , LOOP DOES> SWAP 2 * + e ; ( Build Table) <
    2 O 4000 2000 1000 800 500 0 250
    3 0 400 200 100 80 50 40 25 16 TAELE RATE ( Basic rates)<
    4 : RATE? RATE . ." kHz/sec " ;
    5 : KHZ/SEC DUP 0= IF DROP I ENIIIF
    016 O DO DROP DUP I RATE = IF LEAVE ENDIF I LOOP <
    SUAF DROP DUP 15 = IF DROP W? O ELSE 1 ENIIF ;
    8 : SETRATE IF 10 STORE ENUIF ; ( Example :- 50 KHZ/SEC SETFATE ) <
    9: DOFR JUF
10 IF 1+ 2 SUAP O DO 2 * LOOP 4 / ENDIF ; ( Code to Hz ) <
    1 : JOP 0 8 0 DO DROP DUP I DOFR = IF LEAVE ENDIF I LOOF <
12 SUAF DROF IUP 6 % IF DROF W? O ELSE 1 ENDIF ; <
13 : JOP. DOPR . ; <
14 : DOF? DOP.." Hz " ; <
15 : SETDOP IF 20 STORE 1 21 STORE ENJIF ; ( EG 4 DOP SETIUOP) --> 人
```

ANTARCTIC RESEARCH (RHODES)

```
SCR \ 22
    O (Hardvare Control - Tcell and M Sequence)
    1 OO CONSTANT 1/32 O1 CONSTANT 1/16 02 CONSTANT 1/8 <
    203 CONSTANT 1/4 O4 CONSTANT 1/2 05 CONSTANT 1/ <
    306 CONSTANT 2% O% CONSTANT 4/ OA CONSTANT 32/ OB CONSTANT 8/ <ONSTANT 64/,
    5 : TCELL DUP 0 < OUER 7> + IF DROP ." Invalid Tcell " ENDIF ;
    6 : CODE# 5 - DUP ABS 1+1 SUAP O DO 2 * LOOP 2 / SUAP O< ; <
    7 : CELL? CODE# IF ." 1/" . ELSE . 8 EMIT ." / " ENDIF ; <
    8 : TCELL? CELL? ." sec " ; <
    9 : SETCELL b STORE ; ( Example :- 1/ TCELL SETCELL )
10 71 615242 33 21 11 0 8 4 1 B TABLE MSEONCE <
    : HSEQ DUP O < OUER B > + O= <
12 IF MSEQNCE ELSE IROP ." Invalid Kseq" ENDIF ; <
13 : MSEQ? O B O DO DROP DUP I MSEQ =
14 IF LEAVE ENDIF I LOOP SWAP DROP TCELL? ; <
15 : SETHSEQ C STORE O D STORE ; ( EG. :- 1/ MSEQ SETMSEQ ) --><
```

```
SCR # 23
    O (Hardware Control - FFT Sample Rate and Antenna Switch ) HEX<
    1: FFTR 1+ 4 SWAP O DO 2 * LOOP ;
    : FFT 0 9 0 DO DROP DUP I FFTR = IF LEAVE ENDIF I LOOP <
    SHAF UROP DUP 8 = IF DROP W? O ELSE I ENIIF; <
    : FFT. FFTR . ;
    : FFT? FFT. ." Hz " ;
    : SETFFT IF OE STORE ENDIF ; ( Example :- 1024 FFT SETFFT )
    : CHKA IUUP 1 < SHAP 8 > + 0= ;
    : ANTENNA OUER CHKA OUER CHKA AND
    IF 10 * OR 77 + 1 ELSE DINROP W? O ENDIF ;
    : SETANTENNA IF F STORE 0 10 STORE ENDIF ;
    ( Example :- }12\mathrm{ ANTENNA SETANTENNA )
    : ANTS? DUP FO ANJ 10/7-SWAF F AND 7 - ;
    : ANTENNA? ANTS? ." RXI Antemna = ". CR
    ." Rx2 Antenna = ". .;
-->
```

```
SCR # 2.4
    0 (Hardware Control - Film Speed, Windowing and Sync's) HEX<
    1: FILHSPEED? 258 OVER 30 AND 10 / 1+ 0 IN 2 / LOOF
                        SHAP F AND DUP IF / ELSE IROP 1 / ENIIF ; <
    2 SHAP F AND DUP IF / ELSE IROP 1 / ENIIIF ;
    3: MM/MIN [R 1+ DUP 3 < OUER 12C > + O=
    IF 40 O DO DUF I FILMSPEED? IUP ROT <
        IF ." Closest Speed = " . ." mm/min " ISEC <
                        DROF I LEAVE I ELSE DROP ENDIF LOOP <
        ELSE U? DROP O ENDIF ;
    8 : SPEEI? FILMSPEED? . ." mM/min " ;
    9: SETSFEEII IF 11 STORE ENIIF ; ( Eg :- 5 MM/MIN SETSFEED )
    : KMSTEP DUP 3G7 <IF M* 96 M/ SUAF LROF 100 / A /KON 10:k OR 1 <
    ELSE U? UDROF O ENDIF ; (Rate,Min KM to 256 Hz steps)<
    : SETUINII IF 8 14 STORE 15 STORE ENDIF ; ( LO Offset-Windowing) <
1 3
4 : RXPULSE O 12 STORE ; : RXSYNC 0 13 STORE ; <
: SUEEF
    RXSYNC O 16 STORE ; : DOFTIME 0 1B STORE ; - -><
```

```
SCR # 25
    O (Hardware Control - Advance Retard Control )
    I : MSEC DRQ ; (d--) rq
    2 : +COUNT SHIFT DE D+ SHIFT D! ; {
    3: SLIP DUP 19 STORE O 1A STORE ; ( n --> n)
    4: UAITCOUNT SUAP DUP 0> IF DUP 0 IO LDOP SWAP O +COUNT
                    ELSE DUP ABS O DO LOOP SUAP O DMINUS +COUNT ENDIF ;
    : POSN SHIFT DE DDUP DABS <# # 2E HOLD#### # \YPE
    7 ." ns " O. D< IF ." Retarded " ELSE." Advanced " ENDIF ;
    8: ENPOS SE IF VE IF 6 2C GOTOXY ENDIF POSN ENDIF;
    9: CLRPOSN O. SHIFT D! ENPOS HOME ;
    : MSPOS VE IF ENPOS ENDIF ;
    INPOS SS IF 6 14 GOTOXY POSN ." ---> " VE IF EMPOS ENMIF
                                ENDIF BELL ;
    : DOSLIP SRCH E O= JF INPOS ENDIF SUAF DUP IF O DO 64 SLIP
        UAITCOUNT ?TERM IF LEAVE ENUIF MSPOS LOOP ELSE DROP ENJIF
        SUAP A / SLIP WAITCOUNT DROP ENFOS ;

```

SCR \# 26
O (Hardware Control - Advance Retard Control)
1: SETA/R SRCH e 0= IF SHIFT DE LPOSN D! ENDIF
HEX <
I5
SCR \# 27
0 (Hardware Control - Advance Retard Search) DECIMAL
1 : VAL CLRIN." Valid Data :-" ;
2 : NPR NFA ID. ;
3 : DRP VAL'AR1 NPR'AE10 NPR'AR20 NPR
4 , RE1 NPR / RE10 NPR • RE20 NPR
5 : SURP DRP ' EXIT NPR H+1." $>"$;
6 : SEARCH INPOS SHIFT DR LPOSN D! 1 SRCH ! SDRF
EEGIN INUORD DUP ' EXIT $=0=$ UHILE
CLRIN ."Press SPACE BAR to stop"
CASE, ARI OF 010000 ACI ENJOF

- APIO OF 010000 AC10 ENDOF
- AP20 OF 010000 AR2O ENDOF
- ReI OF 010000 Re1 ENNOF
- Re10 OF 010000 REIO ENDOF
13 ORE10 OF 14 Re20 OF 0 10000 RE20 ENUOF SPACE U?B ENICASE
15 Ve IF SJRF ELSE ." >" ENDIF REPEAT UROP O SRCH ! HOME ; $-\cdots$ 人
OK

```
```

SCR | 28
O (Datatype Handling)
: NAME? IN E -FINJ IF 193=
IF DROP W? ELSE NPR ." Exists !" ENDIF DROP IN E O BIS<
ELSE 1 ENDIF SUAP IN ! ;
: TYPE? DUP 2+ e 256/ ; (Upper 8 bits of n= Datatype)<<
: GETNAME -FIND IF 193 = IF DROP U?B O ELSE 1 ENDIF
ELSE U?BO ENDIF ;
: RPFA OVER + ; (pfa n mpfa pfa+n)
: RPFAE RPFAE; (pfa n1 --) pfä n2)<

```

```

 11: GENCR OUT Q COLUNNS Q 10 - > IF CR O OUT ! 7 -> ENDIF; (IG OUER CE 31 AND - SUAP ID. SPACES ; (nfa -->, <
 13:LNPR NFALID.; (pfa -->))<
 14
 15
 SCR \# 29
DECIMAL <
1: BR= " Basic Rate = NAL 16 D DO I RATE DUP IF . ELSE DROF ENDIF LOOP <

```

```

 3 4:HR= "kHz/sec" CR BR= ; "Height Range= " (Windowing) <
 5 : HZKM 150 K* ROT M/ SHAP DROP ;
 6 : HMAX 75000. ROT H/ SWAP DROP ;
 7 : RANGE OUER SWAP HR=
 HZKK DUP. SUAP ." to " HMAX + . ." KM ";
 9 : GETRATE BEGIN RP INPUT TUROP KHZ/SEC OK? UNTIL ; (Get Rate);
 O : NMH ." New Minimum " HR= ;
 1 : HTP VAL ." O to 950 Km" CR DUP O RANGE CR NKH ; <
 2 : GETUIND BEGIN DUP HTP INPUT DROF KMSTEP OK? UNTIL 23 CLRLN 22<
 14
 15
 SCR \# 30
IECIHAL:
O (Sounding Paraneters)
: DOP= ." Joppler Freq=" ; (Noppler Freq) <
: DOPP VAL 7 O DO I DOP. LOOF." Hz" CR DOP=
: GETDOP BEGIN DOPP INPUT DROP DOP OK? UNTIL DUP DOPR I ROT ;
: P VAL DO I CELL? LOOP ." Sec" CR ; (Tcell and Mseq) <
: CKT DUP, 1/32< OUER, 4/ > + 0= ; (Check Iono Tcell)<
: CKD DUP' 1/2< OVER' 64/>+0= ; (Check Mopp Tcell)<
: CKH DUP, 1/32〈OUER 32/>+0=; (Check Mseq)<
8: TC= ." Tcell = " ; <
9: GETTCELL 8 O P TC= BEGIN INUORD CKT EXEC UNTIL ; (Iono) <
0: GETDCELL 12 4 P TC= BEGIN INWORD CKI EXEC UNTILL 4 - ; (IIOFP) <
: DOF?? CLRIH ." Stationary LIOppler " YORN O= ; < Sequence)<
:MS= ."Mseq = " ; (M Sequence)
: GETMSEQ II O F NS= BEGIN INUORI CKM EXEC UNTIL MSEQ ;
--><
I
15
OK

```
```

SCR \# 31
O (Sounding Paraneters) DECIMAL <
1:FT= ." FFT Rate =" ; (FFT Rate)<
2: FFTP UAL 8 0 DO I FFT. LOOP ." Hz" CR FT= ;
3 : GETFFT BEGIN FFTP INPUT DROP FFT OK? UNTIL ;
4:FS= ."FilmSpeed = "; (Film Speed)
5 : FLMP VAL ." Between 2 and 150 nm/min" CR FS= ;
6: GETSPEED BEGIN FLMP INPUT DROP NM/NIN OK? URTILL ;
7:AG= ."RXAGCC =" ; (RX AGC)<
8: RXG CLRIN ." Fixed Receiver Gain " YORN 0= ;
9:G IF CR." Kultiples of Tcell = "INPUT DROP ELSE O ENIIF ;
10:TM= ." Tine Marks = " ; (Time Marks)
11: THKS CLRIN TH= YORN G;
12
1 3
14
15

```
SCR \# 32

SCR \# 33
    0 ( Build Sounding) DECIMALく
    : TYPE \(256+\); (Ilatatype 1 - Sounding ) <
    2 : SOUNDING NAME?
        IF <BUILDS ISEC DOP?? DUP DUP TYFEI, <
            IF GETRATE DUP , RATE GETUIND , , GETTCELL, \(<\)
            ELSE 15 , GETDOP , , GETICELL, ENDIF

        HCELLS DUP, O DO 2025 GOTOXY."Cell No = " \(11+\). <
            GETOFF GETF2 FILADR, GETANT, LOOP DOES \({ }^{(1)}\) DROP \(\leqslant\)
        ENDIF HOME ; ( Build Sounding ) <
    : SUBI. ." SOUNDING ( for "
    IF ."IONOGRAK)"
    ELSE ." STATIONARY DOPPLER )" ENDIF ; ( Print Subtype) <

ANTARCTIC RESEARCH ( RHODES )
VERTICHIRP CONTROL PROGRAMS
```

SCR \# 34
O (Display Soundin;)
1 : BR. SUBTYPE
2 IF 9 O GOTOXY BR= 4 RPFAC RATE? ENDIF ; <asic Rate Print)<
3 : LO= ;"L.O. Off5et = ";
5:LOHR. i 28 GOTOXY 10 RPFAP LO=.."Hz " (LO. Offset Print)
SUBTYPE
7 IF 9 54 GOTOXY 10 RPFAE SHAP
9 54 GOTOXY 10 RPFAE SWAP (RPFAE RATE ROT RANGE ENDIF ; (Ran`ge Print)<
: TC. 10 O GOTOXY TC=
SUBTYPE
SWAP 12 RPFAP ROT O=
IF 4 + ENDIF TCELL?; (Tcell Print):
MS. IF 4 + ENDIF TCELL? ; 10 28 GOTOXY MS= 14 RPFAC HSEQ?; (M Sequence Print)< <
4 : FT. 10 54 GOTOXY FT= 16 RPFAO FFT?; (FFT Rate Print)< <
15
IIECIMAL<
<

```

DECIMAL <







SCF \# 36

OK
```

SCR \# 37
O (Display Squnding) DECIMAL
: DISS TYPE? 1 =
IF DUP CLRDIS 23 -> NPR SUBTYPE SUBI. CR
BR. LOHR. TC. NS. FT. FS. AG.TH. PTRCR <
NC. I 4C\# ! CELLDATA <
ELSE U?B ENDIF ; (Display Sounding) (pfa --> pfa)<
: SDISP DISS DROP ; (Display Soundin`) (pfa -->>, <
: SDISPLAY GETNAME IF SDISP ENDIF ; (Print Sounding) <
: SHOWS CLRD+1 30 -> "" Defined Soundings" CR CR }7\mathrm{ SPACES
CONTEXT \& Q BEGIN GENCR PFA TYPE? 1 =
IF SUBTYPE 2 < IF DUP LNPR ENDIF ENDIF
LFA e DUP BDATA Q < UNTIL DROP ; (Show Soundings)<
--><
<
14
15

```


SCR \# 39


ANTARCTIC RESEARCH (RHODES )
```

SCR * 40
O (Edit Sounding Parameter)
IIECIMAL<
1:CP VAL 24 RPFA E 1+1 DO I. LOOP CR ;
2 : GCM CP." Cell Nunber = " BEGIN 24 RFFA P INPUT DROP MUP <
3 ROT > OUER 1 < + O= IF I ELSE DROP W?B O ENDIF UNTIL ; <
4 : EC\# GC\# 1 - 12 * 26 + OUER + DUP GETOFF
5 F2TOMEM FILMDR OUER 8 + ! GETANT SUAP 10 + ! CELLUATA ; <
6 : PUEC VECTOR EBR ELO ETC EMO EFT EFS EAG ETH EC\# ; <
7 : EDITS PARA FUEC ;
8
9
1 0
11
12
13
14
15

```
SCR \# 41
    0 (Display and Edit Sounding) DECIMAL く
    : PDES VAL

        : DES DISS
            BEGIN PUES KEYCR DUP \(69=0=\) WHILE
            CASE \(80(F) O F 4 C \# E 1-1\) MAX \(4 C \#\) ! PCEL ENINOF
                78 (N) OF 4CHE \(1+\) \#4C C MIM 4 CH ! PCEL ENDOF
                67 ( C ) OF EDITS ENDOF
                SPACE W?B ENDCASE REFEAT DROF DROP HOME ;
    : SDISP VE IF DES ELSE SDISP ENDIF; ( pfa -->) <
    : SEDIT GETNAME IF DES ENDIF ; \(\quad\); \(--\gg\)
    SUISPLAY GETMAME IF SDISP EMJIF ; \(\quad(\quad->)\) )
    SOUNDING DECIHAL HERE [COMPILE] SOUNIING HERE OUER = IF DROP
                    ELSE PFA SDISP ENDIF ; ( Progran, Ilisplay Sounding) <
                                    \(-><\)
SCR \# 42
    0 (Set Sounding)
                    IECIMAL <
        1 : IFR ." Invalid Forward Ref. - " ;
        2 : SSET TYPE? \(1=\) (pfa \(-\gg\) )
    3 IF 4 RPFAD 1 SETRATE SUBTYFE
    4 IF 8 RPFAR 1 SETUIND ELSE 6 RPFAE 1 SETIOP ENIIF \(<\)
    512 RPFAP SETCELL <
    \(6 \quad 14\) RPFAE SETKSEQ <
    716 RPFAR I SETFFT <
    \(8 \quad 18\) KPFAC I SETSFEED <
    9 CLEARB <
    1034 RFFAE IF FILMON ENDIF TXON <
    \(1136+21\) SETANTENNA <
    12 I DUP DUP AGC\#! TMK\# ! CELL\#! 1
    13 ELSE DROP IFR." CHANGE " O ENDIF ; <
    14 : USSET GETNAME IF SSET DROP ENDIF ; (User Set Sounding) --> <
    15
OK
```

SCR \# 43
O (Iomogran Parameters) DECIMAL <
1: TYPEP VAL' OFF NPR'TEST1 NPR ' TEST2 NPR <
, DOPPLER NPR ' OBLIQUETX NPR ' OBLIQUERX NFR <
- VERTICAL NPR CR <
." Experimental Code " YORN CR ." Ionogran " ; <
: GETYPE TYPEP IF ." Decinal CoIde = " INPUT DROP ELGE <
Ó ." = " BEGIN INWORD DUP < OFF < OVER ' VERTICAL > + O=<
7 EXEC UNTIL ENDIF ; (Type)<
8 : ID= ." Ionogram Duration = " ;
9: HORS O BEGIN IROP INPUT DROP DUP 60 <UNTIL 3 -> ; <
0 : GETDUR VAL ." Hours , Hinutes , Seconds" CR <
11 ." Doppler " ID= 8 EMIT ." >" CR
12 ." Hours = " INPUT DROP
." Hinutes = " MORS <
." Seconds = " MORS SUAP ROT ; (Juration)<
--><

```
```

SCF \# 44
O (Ionogram Parameters) IECIMAL <
1:F= ."Frequency = " ;
2 : SF= ."Start "F= ;
3: EF= ." End "F= ;
4 : FP VAL ." Between 0.5 and 30.0 KHz" CR ;
5 : INF BEGIN INPUT HHZ OK? UNTIL ;
6 : GETF F= INF ; (Get Frequency) <
7 : GETSF FP SF= INF ; (Get Start Frequency)
8: GETEF FF EF= INF ; (Get End Frequency)
9: ORA :" Overall Rate " ; (Get Overall Rate) <
0: OR= ORA ." = " ;
1 : LIN ." Linear " ;
2 LN ."Log "; <
13: ORP VALLIN," = xxx KHz/sec , LOG = .001->.01 oct/sec" CR
14 LIN ORA YORN DUP CR IF LIN OR= ELSE LN OR= ENDIF; < < <
15 : GETOR ORP DUP INFUT DROF SWAP O= IF SETDFL3 ENDIF SWAF; --><

```
SCK \# 45
    O (Ionogram Paraneters)
            IECIMAL <
    1 : \(5 N=\) " Sounding \(="\);
    2 : VALA VAL." As Listed Above" CR :
    3 : GETSND CLRDIS SHOUS VALA


    7 : GETISND BEGIN GETSNJ \(0=\) CHKSND UNTIL ; (Ionogram Sounding ) <
    8 : GETDSND BEGIN GETSND CHKSND UNTIL ; ( Doppler Sounding ) <
    9 : TT= ." Data to Tape = " ; <
    0 : TOMT? CLRIN." Store Data on Mas Tape " YOKN ;
    1 : STATI? CLRIN." Stationary Ionogram " YORN ; <
    12
    13
    14
    15

ANTARCIIC RESEARCH (RHODES)
UERTICHIRP CONTROL PROGRAMS
```

SCR \# 46
O (Build Ionogran)
DECIMAL <
: TYPE2 512 + ; (Datatype 2 - Ionogram)
2 : IONOGRAK NAKE?
IF <BUILUS ISEC GETYPE DUP TYFE2, 124=
IF GETDUR , , FP GETF GETF2 GETF2 1,0, GETDSND , <
ELSE STATI?
IF GETDUR , , FP GETF GETF2 GETF2 1,0,
ELSE 0,0, 0, GETSF GETF2 GETEF GETF2 GETOR , <
ENOIF GETISNI,
<
<
ENIIF TOHT?, DOES\ DROP
ENDIF HOME ;
(Build Ionogram)<
: SUB2. ." - IONOGRAM ("A? .")" ; (Print Subtype) <
:.C 2 .R." : " : (Print x%:)<
15

```
```

SCR \# 47
O (Jisplay Ionogram) JECTMAL <
: IDR. 10 0 GOTOXY ID= 4 RPFAC .C 6 RPFAC .C 8 RPFAP . ; <
(Duration Print)<
:TT. 11 0 GOTOXY TT= 32 RPFAC
IF ." Yes" ELSE ." Ho " ENDIF ; (To Tape ?)<
:SF. 130 GOTOXY SF= 10 FPFA PRINTF ; (Start Freq) <
:EF. 140 GOTOXY EF= 18 RPFA PRINTF; (End Freq)<
7 : OR. 150 GOTOXY OR= 26 RPFAE
8 IF 28 RFFAE .." kHz/sec " <
9 ELSE 28 RPFAE 10/MOD 10/HOD <
10 ." ." 1 .R 1 .R 1 .R ." oct/sec " ENDIF ; <
1: SN. 17 O GOTOXY SN= 30 RPFAE TYPE? 1 =
2 IF NPR ELSE DROP IFR ." CHANGE " ENDIF ;
: VEL. SUBTYPE 124= IF 18 0 GOTOXY ." Haximun Velocity = "
14 RPFA 4 TO\# >R 30 RPFAP 10 + E 100 * 375 M*
R> H/ SWAP DROF . ." m/s" ENDIF ; --><

```
SCR \# 48
    0 (Display Ionogram)
                                    DECIMAL
    1 : DISI DUP CLRDIS \(25 \rightarrow\) NPR SUBTYPE SUB2. PTRCR
                        IJR. TT. PTRCR
                        SF. EF. OR. PTRCR <
        SN. VEL. HOME PTRCR ; (Display Iono) (pfa \(->\) pfa) <
    : IDISF DISI DROP ; ( Display Ionogram) (pfa -->) \}
    : IDISfLAY GETNAME IF IDISP ENDIF ; ( Display Ionogram) 人
    : SHOWI CLRD+1 30 -> ." Defined Ionograms" CR CR 7 SPACES
        CONTEXT P e
        BEGIN GENCR PFA TYPE? \(2=\) IF IIUP LNFR ENDIF
        LFA E dUF BDATA Q < UNTIL IIROP ; (Show Ionograns) )
    : IONOGRAM DECIMAL HERE [COMPILE] IONOGFAM
        HERE OUER = IF IRROF ELSE PFA IDISP ENDIF ; \(<\)
                                ( Frogram and Display Ionogran ) (
                                    <
```

SCR H}4
O (Edit Ionogran - Prompts)
1: DUR 1; : DTT 2;
2: SF 3; : EF 4; ORT 5 ;
3: SOUND 6 ;
4: EIP VAL
5 ID= , DUR NPR 5 -> TT= " DTT NPR CR
14 -> SF= 'SF NPR 6 -> EF= 'EF NPR CR
14 -> OR= 'ORT NPR 5 -> SN= ' SOUND NPR
20 2 GOTOXY ; (Edit Ionogram Pronpt)<
: PARI EIP ." - Change >>"
BEGIN INUORD DUP ' DUR < DVER ' SOUND > + 0= EXEC UNTIL ;<
(Paraneter Rrquest) <
12
13
14
15
SCR \# 50
O (Edit Ionogram Parameter)
DECIHAL
: EDR GETDUR SWAP ROT >R >R 4 RPFA! R> 6 RPFA! R> 8 RPFA!
2 IDR. ;
3 : ETT TOHT? 32 RPFA! TT. ;
4 : DOPF FP GETF 10 RPFA F2TOHEM }18\mathrm{ RPFA F2TOMEN;
5 : ESF SUBTYPE 124 =
6 IF IF DOPF EF. VEL. ELSE GETSF 10 RPFA F2TOMEM ENDIF SF.;
: EEF SUBTYPE 124 =
8
: EOR SUBTYPE 124= IF UPB
10 ELSE GETOR SUAP >R 26 RPFA! R> 28 RPFA! OR. 28 RPFAR 0=
11 IF 1 26 RPFA! EDR ENDIF ENDIF ;
12 : ESN SUBTYPE 124 = IF GETDSND
13 ELSE GETISND ENDIF 30 RPFA! DISI ;
14 : IVEC VECTOR EDR ETT ESF EEF EOR ESN ;
15 : EDITI PARI IVEC ;

```
SCR \# 51


ANTARCTIC RESEARCH（ RHODES ）
VERTICHIRP CONTROL FROGRAMS


SCR \＃ 53
O（Ionogran Settins）
1 ：SETDOPL SEC／SNE 4 RPFAE ENTR 3600 STKMFN MPN＊
DECIMAL
26 RPFAQ 60＊STKMPN MPN＋
\(8+8\) STKMFN MPN + ＜
MPNXEY MPN／ANSR \＃SOUND ！；（ Set Doppler ）く
：SETIONO 18 RPFA FENTER 10 RPFA FTOMPN 26 RPFAC＜
IF MFN－SEC／SND LINOR MPN＊NEUFREQ F／SHD FITOMEM
ELSE MPN／MFNLN SEC／SND LNOR MPN：ENTER MPNEX EATS ATOMEH＜
MPNROL ENDIF MFN／ANSR \＃SOUND ！SEC／SND MPN\＃ANSR
60 ／HOD 60 ／MOD CURI \(4+\) ！CURI \(46+\) ！CURI \(8+1\) ；＜
（ Set Ionogram ）＜
：STRCDAT 4 TOMPN MPN＊NEHFREQ CFREQ FITOMEM（Cell Frequency）＜ CURS E 24 ＋CELL\＃© \(12 *+\)－ANTS？（Cell Antemmas）＜ 48 OR CANT C！ 48 OR CANT \(1+\mathrm{C}\) ！；（ Store Cell Data）＜ －－＞＜

\section*{SCR \＃ 54}

O（Ionogran Settins）
DECIMAL く
1 ：ISET DUP CURI ！ 30 RPFAR DUP CURS ！SSET IF SUBTYPE SETA 10 RPFA TOF1 FREQOUT FITOMFN MPNMS AE \(124=\) IF SETDOPL ELSE CURI \(228+8\)

IF SETIONO ELSE F／SND 848 FILL SETIOPL ENTIFく ENDIF 1 SOUNDH ！
CURS E 26 ＋FTOMPN KFNMR MPN＋NEWFREQ FIMSB TOLATCH STRCDAT \(1<\) ELSE NPR O ENIIF ：（Set Ionogram）（pfa－－＞f）く
：UISET GETNAME IF ISET DROP ENDIF ；（User Set Ionogran ）＜
```

SCR 55
O < Tining Slip Parameters - Build Timing Slip \
DECIMAL<
1: SHIFT= ." Shift = " ;
(Shift
2: SDR= ." Shift Direction and Rate = ";
3 : GETSHIFT UAL ." xxx.xx ns" CR SHIFT= INPUT HSEC ;
4 : GETSDR DRP CR SDR=
5 BEGIN INUORD DUP'AC1< OUER ' RE2O > + O= UNTIL

```

```

 8: TIMING NAME? IF <BUILDS ISEC GETSHIFT GETSDR
 TYPEJ (Type),
 ROT ROT (Shift),', DOES DROP ENDIF HOME ;
 : SUB3. "" - TIHING SLIP (" IF :* RETARD)" (Print Subtype)<
 ELSE ." ADVANCE)" ENDIF; (Print Subtype)<
    ```
SCR \# 56
    O (Display Tining Slip)
                                    DECIHAL <
    1 : SHIFT. 11 O GOTOXY SHIFT=
        4 RPFAE 3 .R." ." 6 RPFAC . ." ns/5" ; (Shift Print) <
        : SDR. 130 GOTOXY
                            SDR = 8 RPFAC NFR ." Ms/s" ; (Dir, Rate Frint) く
    4
    : DIST DUP CLRDIS \(25 \rightarrow\) NPR SUBTYFE SUB3.
    6 SHIFT. SDR. HONE PTRCR; (Slip) (pta \(\rightarrow\) (pia) <
    7 : TDISP DIST DROP ; (Slip) (pfa - ) ) <
    8 : TDISPLAY GETNAME IF TDISP ENDIF ; ( Display Tining Slip) <
    : SHOWT CLRD+1 30->."Defined Tining Slip" CR CR 7 SPACES
                                    CONTEXT Q E
                                    BEGIN GENCR PFA TYPE? \(3=1 F\) DUP LNPR ENDIF \(<\)
                                LFA 2 DUP BDATA 0 < UNTIL DROP ; (Shou TiMing Slip) <
    : TIMING UECIMAL HERE [COMPILE] TIMING HERE OUER = IF DROP
ELSE PFA TDISP ENDIF; (Progran, Display Tining ) <
        ELSE PFA TOISP ENDIF; (Progran, Display Tining \(\begin{array}{r}\text { ) < } \\ -\quad \text { < }\end{array}\)
SCR \# 57


ANTARCTIC RESEARCH ( RHODES )
VERTICHIRP CONTROL PROGRAMS
```

SCR \# 58
0 (FORTH Word Parameters - Build FORTH Word) DECIMAL <
1 : FU= ." FORTH Hord = ";
2 : GETFW UAL ." TESTED FORTH WORd!" CR
3 FH= INWORD ; (Get FORTH Word)<
4: TYPE4 1024; (Data Type 4-FORTH Word)<
5 : FORTHWORD NAME? IF <BUILDS ISEC TYPE4 , GETFW , DOES> DROP <
6 ENDIF HONE ; (Build FORTH Nord)<
7 : SUB4. DROP :" - FORTH WORD " ; (Print Type) <
8: FW. FU= 4 RPFAR NPR ; (FORTH Word Frint) <
9: DISF DUP CLRDIS 25 -> NPR SUBTYPE SUB4. CR CR <
10 25 -> FH. HOME ; (Display Word) (pia --> pfa) <
11 : FDISP DISF DROP ; (Display Wori) (pfa -->) <
2 : FDISPLAY GETNAME IF FDISP ENDIF; (Display Word)<
13
14
15

```
SCR \# 59
    O (Display and Edit FORTH Word) DECIMAL <
    : SHOWF CLRD+1 \(25 \rightarrow\) " FORTH Woriss for Exec in Prog" CR CR <
        7 SPACES CONTEXT \(Q\)
        BEGIN GENCR PFA TYPE? \(4=\) IF DUP LNPR ENDIF LFA \(e\) IUP <
        BDATA E < UNTIL DROP ; ( Show FORTH WOrdS ) <
    : FORTHUORD DECIKAL HERE [COMPILE] FORTHWORD HERE OUER =
            IF DROP ELSE PFA FDISP ENDIF ; ( Prog, Disp Word) <
    : EFN GETFU OUER OUER > ( Edit FORTH Word ) <
        IF 4 RPFA! DISF ELSE DROP U?B ENDIF ;
    : DEF DISF BEGIN PDET KEYCR DUP \(69=0=\) WHILE \(67=\)
    : IF :" - Change Uord" EFW ELSE SPACE U?B ENDIF :
11 REPEAT DROP DROP HONE ; <
2 : FEDIT GETKAME IF DEF ENDIF ; <
    : FSET TYPE? SUAF DROP \(4=\) IF 1 ELSE IFR ." CHANGE" O ENDIF ; <
    4 : DOFWD 4 + P CFA EXECUTE ; (Execute FORTH Word) ( pfa -->) (
    5 : UDOFWD GETNAME IF DOFHD ENDIF ; (User EXec FORTH Hord) --><
SCR \# 60
    0 (Set Place , Year, Veekday Number) HEX <
    1 : SETPL VAL PLACE 1020 FILL." Place Name" CR ( Set Place ) <
    2 ""Place = " PLACE 10 EXPECT Name <
    3100 DO PLACE \(I+\) IUP CE \(0=\)
    4 IF 20 SUAP C! ELSE DROP ENDIF LOOP ; <
    5 : PL. 100 DO PLACE I + CE EMIT LOOP ; (Print Place) (
    6 : SETYR VAL." 4 Digits" CR ( Set Year)
        ." Year = "YEAR 5 EXPECT
        YEAR 2+ PACK FF AND 4 /HOD DROP \(0=\) LEAP ! ;
    YR. 40 DO YEAR I + CE EMIT LOOF ; (frint Year) <
    CLRDY O UDAY ! ; (Clear Weekday number) <
    DYP ."Sun=0 Mon=1 Tue=2 Wed=3 Thu:=4 Fri=5 Sat=6"; <
    SETDY UAL DYP CR ." Day of Heek Number = "
    BEGIN INPUT JROP DUP \(0<\) OUER 6\(\rangle+0=\) GOXY UNTIL WDAY! ; <
                                    ( Set Weekday nunber) <
                                    \(-><\)

```

SCR \# 62
O (Increment Real Time Clock - Get Time + 1 sec) DECIMAL <
1 : INCLK CMS 2+ E 1+ DUP 3600 = IF IROP O ENDIF CMS 2+ ! <
CHMS DE 1. J+ DDUP 86400. D=
IF IDROP O. 1 UDAY +! DYNO E 1+ DUP 365>
IF DROP LEAP CE IF 366 ELSE 1 ENDIF ENDIF DYNO !
ENDIF CHKS D!
CDHMS DE 1. D+ DDUP 604800. D=
IF DDROP O. O WDAY ! ENDIF CDHMS D! ; (Increment CLock)<
: GETIHE+1 GETIME INCLK ; (Get Time + 1 sec)<
--><
9
10
11
12
13
14
15

```
```

SCR \# 63
O (Display Day, Display Tine) DECIMAL<
1: TODHNS 60 M/ 60/MOD 24/HOD ; (Convert sec to II H M S)<
2:SU."Sun" 4; : MO ."Non" 4; : TU ." Tues" 3;
3 : UE ." Wednes" 1; : TH ." Thurs" 2; : FR."Fri" 4;
4:SA ." Satur" 2;
5 : WDAYS VECTOR SU MO TU WE TH FR SA ;
6 : DAY. 1+ UDAYS ." day" SPACES ; (Print Day of Week no)<
7
8:2CON 0<\#\#\#\#> TYPE ; (Convert n to 2 Digits)<
9 : MSC. 2CON ." : " 2CON ; (Frint MN : SS)<
O : HMS. 2CON ." : " MSC. ; (Print HH : NM : SS)<
: DHMS. DAY. HMS.; { Print Day: HH: MM : SS) <
: CJHMS. CDHMS DE 1. D- DDUP O. DC
IF DDROP 604799. ENDIF TODHMS IHMS. ;
(Fetch and Print Weekday and Time) <
--><
15

SCR \# 66

| | (Display | Programme) DECIMAL |
| :---: | :---: | :---: |
| 1 | : EMTY? | |
| 2 | ENTRY? | |
| 3 | : DSH | |
| 4 | : 2DSH: | 2 DSH ." : ; (2 Vashes, space, colon) < |
| 5 | : DASH | DJROP 9 DSH 2DSH: 2DSH: 2 DSH 2 SFACES 9 DSH $6+$ |
| 6 | | 87 OUT P - SPACES CR ; (Dashes for Time and Ftn) < |
| 7 | : TYPEVEC | VECTOR SUB1. SUB2. SUB3. SUB4. SUB5. |
| 8 | : FTN. | TYPE? CHKTYP IF IUP NPR 2+ 2256 /MOI TYPEUEC |
| 9 | | ELSE DROP IFR." DELETE!" ENDIF CEOL ; (Print Ftn) < |
| 10 | : FTNP. | 3 SPACES 4 + DUP P FTN. $2+$ CR ; (Fetch, Print Ftn) < |
| 11 | : DSP1 | TODHKS UHMS. FTNe. ; (Disflay Fikl) < |
| 12 | : DSP2 | TODHKS DROP 9 DSH HMS. FTNP. ; (Iİsplay PE2) |
| 13 | : DSP3 | TODHAS DDROP 9 DSH 2DSH: MSC. FINC. ; (Display PB3) |
| 14 | : VEC123 | VECTOR DSP1 DSP2 DSP3 ; |
| 15 | : DSP123 | EATY? IF DASH 1 ELSE PB \& UEC123 0 EMDIF ; --> |
| | | |

```
SCR | 67
    0 ( Display Programme ) IECIMAL <
    1 : E#. 6 / 1+ 9 -> ." Entry " 2 .R 3 -> ; (Print Entry # ) <
    2 : VECTPB VECTOR TP1 TP2 TPJ ;
    3: 8DISP 8 0 DO DUP PB Q VECTPB Q - E#. DSP123 DROF LOOP ; <
    4: ADJA DUP PB Q<IF PB ! 6-ELSE
    5 DUP PB E>IFPB!6 + ELSE PB ! ENDIF ENDIF PBE; <
    6 : PB# DUP ." Priority Block N" TP1 C - DUP 144 < <
        IF DROP I ELSE 294 < IF 2 ELSE 3 ENDIF ENDIF DUP . ADJA ; <
    : DTF 5 ->." Day" 9 -> ." Time" 12 -> ." Function" CR ;
    : PBDSP 9 O GOTOXY PB# DTF
        CASE 1 OF ." Weekly |ata" ENDOF 2 OF ." Daily Iata" ENDOFS
            3 DF ." Hourly Data" ENDOF ENJCASE CR SIISP 48 - ; <
        : PEP VAL 3 ->
        ."N=Next 8 I = Top PB1 I = Insert E = Exit"
        CR 17 -> " P = Previous 8 2 = Top PB2 M = Delete" < <
        CR 33-> !" 3 = Top PB3" H+1 ." >" ; --><
SCR # 68
    O (Display and Edit Programne )
        DECIMAL <
    : FNDPBT VECTPB Q ; ( Find Priority Block Top ) <
    : INE#B O BEGIN DROP INPUT DROP DUP 25 < UNTIL 1 - b ; ; <
    : NUDHK DUP 138 = 0=
        IF OUER + DUP 6 - ROT 132 +
        DO I DUP 6 + 6 CMOVE -6 +LOOP
        ELSE + ENUIF DUP ; ( Hove Entries down 1 posn)<
    : INSERT VAL PB# CR FNDPBT ." Insert at Entry No. = " . <
        INE#B NUUUN PB Q CASE I OF PUF CR GETIHHS ENDOF
        2 OF PDF CR GETHMS ENIIOF <
            3 OF PHF CR GETMS ENIOF ENIICASE <
            ROT D! 4 + GETFTN SUAP ! ; ( Insert Entry )<
        : DELENT VAL PB# CR FNUPBT ." Delete Entry No. = " IHEHB <
            OUER + IUP 6 + SUAP ROT 150 + OVER 6 + - CMOUE; <
                                    ( Delete Entry)<
                                    --><
```

SCR \# 69
O (Programa Display Control)
IIECIMAL <
: DEFINIT DUP CLRUIS $30->$ NPR SUBTYPE SUB5. CR
$24+$ DUP TP1 ! DUP $150+T P 2!$ DUP $300+T P 3!1 \mathrm{~PB}!$; <
: DEF DEPINIT PBDSP
BEGIN PEF KEYCR IUP $69=0=$ WHILE
CASE 80 (P) OF 48 - TP1 C MAX FBIISP ENNOF
78 (N) OF 48 + TP3 C 96 + MIN FBIISP ENJOF
49 (1) OF DROP 1 PB ! TPI C PBDSP ENDOF
50 (2) OF DROP 2 PB ! TF2 2 PGIISP ENIIOF
51 (3) OF DROP 3 PB ! TP3 © F'BDSP ENDOF
73 (I) OF.." - Insert" INSERT FBDSP ENDOF
68 (D) OF ." - Delete" IELENT PEDSF ENDOF <
SPACE W?B ENDCASE
REPEAT DROP DROP HOME ; (Display and Edit Proa) <
-->く
15
OK

```
SCR # 70
    O ( Display and Edit Programme) DECIMAL <
    1 : PRTP DEPINIT CR PB# PB ! DTF ." Weekly Data" CR <
    2 24 0 DO DUP TPI E - EH. DSP123 IF LEAVE ENDIF LOOP CR <
    3 DROP TP2 & 2 PB ! PGH DTF DROP ." Daily Data"CR <
    44 0 IO DUP TP2 P - E#. DSP123 IF LEAVE ENDIF LOOF CF: <
    5 DROP TPJ E 3 PB ! PB# DTF DROP ." Hourly Data" CR <
    6 24 0 DO DUP TP3 & - E#. DSP123 IF LEAVE ENDIF LOOP DROP ; <
    7 : PROGRAMME DECIMAL ALLOTP IF IN ! [COMPILE] ` DEP ENDIF HDME ; <
    8 : PROGRAM PROGRAMME ; ( Altermative comnand)<
    9 : PDISP VE IF UEP ELSE PRTP ENDIF ; ( pfa --> )<
    10: PEDIT GETNAME IF DEP ENDIF HOME ; ( ) <-> )<
    11: PSET TYPE? 5 = ( pfa -->p )<
    12
    3 : UPSET GETNAME IF PSET DROP ENDIF HOME ; ( --> ) <
    4 : CPRG. 3 O GOTOXY ." Current Programne:- " CURPRG e DUP -1 = <
    15 IF DROP ." Not Set!" ELSE NPR 6 -> ENDIF; --> <
```

SCR \# 71
(Programme Lookahead) DECIKAL <
: CHKH DUP DUP DE DHHS DE D- IDUP 1. DS
$<$
IF 604800. D+ ENDIF DDUP WC De DK <
IF WC D! UEA ! ELSE DJROF DROP ENIIF $6+$; (Check PB1) <
: NXTW 900000. WC D! CURFRG 24 + DUP WEA ! ENTRY? <
IF BEGIN CHKU ENTRY? 0= UNTIL ENDIF DROP ; (Next PB1) く
: CHKD DUP DUP DE HKS DE D- IDUP 1. D
IF 86400. D+ ENDIF DDUP DC DC D ©
IF DC D! DEA ! ELSE DDROP DFROP ENDIF $6+$; (Check FB2) <
: NXTD 900000. DC D! CURPRG• 154 + ENTRY? \leqslant
IF BEGIN CHKD ENTRY? $0=$ UNTIL ENDIF DROP ; (Next PE2) <
: CHKH DUP DUP DE KS DE D- DDUP 1. DK
$<$
IF 3600. Dt ENDIF DDUP HC DE D:
IF HC D! HEA ! ELSE DDROF DFIOP ENDIF $6+$; (Check PB3) <
: NXTH 900000. HC D! CURPRG 2304 + ENTRY? (Next PB3) <
IF BEGIN CHKH ENTRY? $0=$ UNTIL ENDIF DROP ; $\quad--><$
SCR \# 72
Q (Programme Lookahead) HEX く
: NTOC NXTIME DE CURTIME D! NXTFTN P CURFTN ! NFB 巴 CFB! ; <
2 (Moves Next Tine and NFB to Current Time and.CF') <
: EATTI DUP DE NXTIME D! $4+$ + NXTFTN ! NFB! ;
(Time to NXTIME, FB to NPB) (FB ent-aditr $-->$) <
: GETNXT CURPRG $-1=0=$ IF NXTW NXTD NXTH WC DE UC DC D.
IF 2 DEA Q DC DE ELSE 1 UEA Q UC JU ENDIF HC DE D> <
IF DROP DROP 3 HEA Q ENDIF NTOC EATTI ELSE O NXTFTN ! ENDIF ; <
(Select saallest of WC DC HC if Frogramme Set) ($-\boldsymbol{-}$)
: GETC=N GETNXT NTOC ; (Get Next Ftn and copy to Current) <
: PBFRT VEC123 DROP ; (Print Priority Elock) 人
: CNDIS CURPEG e $-1=0=$ IF CR 40 GOTOXY
." Current Function :- " CURFTN $Q 0=$ IF ." Empty Frogramme" CEOLK
CR ELSE CURTIME DUP DE CPB E PEFRT ENDIF
." Next Function:-"NXTFTN P 0: IF ." Empty Programme" CEOLK
ELSE NXTIME DUP DE NPB Q PBPRT ENDIF ENDIF; $->$;

SCR 73

O (Data to Film)
HEX く
$1-->$
2
3
4
5
6
7
8
9
10
11
12
13
14
15

```
SCR # }7
    O (Data to DCS )
    1 : RSTDCS O DCSTAT ! :
    2 : CLRACK EOOE CE DROP ;
    3 : DCSACK? 0
    4 A O DO DROP I EOOF CE 80 AND IF LEAVE ENDIF LOOP
    5 9 = IF I DCSTAT ! BELL ENDIF CLRACK ;
    : TODCS DCS? ( ACSii to DCS ) (Char --> )<
    7 IF DUP EKIT ENDIF (Print DCS Data )<
    8 DCSTAT Q <
    9 IF DROP ELSE EOOE C! DCSACK? ENDIF ; (Send to DCS )<
    : ATODCS 30 OR TODCS ; ( Convert n , 0 to 9 , to AsCii )<
    : NTODCS DUP >R 1-0 DO A /MOD LOOP
                    R> O DO 30 OR TODCS LDOP ; (n| n2 -->>) )<
13: DCSCR DCS? IF CR ENDIF ; < <
14 : DCSTAB DCS? E IF OUT Q 4E > IF CR ENDIF ENDIF ; <
15 : DCSDATA CLRUDU O 20 GOTOXY :" DCS Data " CR 1 DCS? ! ; m
```

SCR \# 75
0 (Data to DCS)
HEX <
1 : PLDCS 100 DO PLACE I + Ce TODCS LOOP ; (Place to DCS) <
2 : YRDCS 20 DO YEAR $2+1+C E$ TODCS LOOP; (Year to DCS) <
3 : DHKSDCS DYNO 2 NTODCS (Tine to DCS) <
4 CDHAS DE TODHKS DROP 30 DO 2 NTODCS LOOP; <
5 : DATDCS CURS P DUP $04+8$ RATE 4 NTODCS DUP $18+2$ NTODCS <
6 DUP OC $+Q$ OVER $2+20=I F 1+E N D I F 2$ NTODCS $<$
DUP $10+83+2$ NTODCS $A+e \quad 5$ NTODCS \leqslant
SHIFT DE DDUP 0. D $<$ IF 2D ELSE 2B ENDIF TODCS $<$
DABS く\|\#\# \# \# \# W OUER + SUAP DO I CE TODCS LOOP ;
: IDAT TOUCS PLDCS YRDCS DHMSDCS DATDCS 3F TODCS DCSCR ; <
: IDATDCS RSTDCS 80 IDAT ; (Data to DCS only) <
: IDATMT RSTDCS 81 IDAT ; (Data to DCS and Hagnetic Tape) <
: CDATDCS RSTDCS 82 TODCS (Cell Data to DCS) <
CFREQ A + CFREQ DO I CO TODCS LOOP 3F TODCS DCSTAB ; <
RSTDCS 83 TODCS $3 f$ TODCS ; (End code to DCS) \rightarrow ($<$

ANTARCTIC RESEARCH (RHODES)
UERTICHIRP CONTROL PRUGRAMS:

```
SCR 76
    O (Print Title and Display Status) DECIMAL
    1 : HDING CLRUDU }7\mathrm{ DSHLN 19 DSHLN
    2 0 0 GOTOXY ." ANTARCTIC RESEARCH" 10 SPACESK
    3 ." VERTICHIRP CONTROLLER" 10 SPACESS
    4 ." RHODES UNIUERSITY" ; <
    5:PLYR. 1 28 GOTOXY PL. SFACE YR.
    : DYNO. 2 0 GOTOXY." Day Nunber :-" DYNO e : ; <
    TPOSN. 6 0 GOTOXY ." Tining Position:- " POSN ."--->"; <
    : TITLE DECIMAL HDING PLYR. DYNO. CPRG. CNDIS TPOSN.
            1225 gOTOXY ." Type HELP for Conmand List " HOME ; .->
        11
        12
        13
        14
        15
```

SCR \# 77
O (Display Datatype. Edit Datatype)
: PRINTER PRNT ;
: DISFTN DECIMAL TYPE?
VECTOR SDISP (Sounding) IDISP (Ionogram) <
TDISP (Timing Change) FDISP (FORTH Word) <
PDISP (Program) ; . <
: DISPLAY UDU TITLE GETNAME IF DISFTN ENDIF HOME ; (TO UDU) <
7 : PRINT PRNT GETNAME IF DISFTN ENDIF HOME ; (Printer or VDU) <
: LOG PRNT GETNAME IF TYFE? 2 = (Print for Log) <
IF DUP DISFTN 30 + E ENDIF DISFTN ENDIF HOME ; $<$
: EDFTN JECIHAL TYPE?
VECTOR DES (Sounding) DEI (Ionogram) <
DET (TiMing Change) EEF (FORTH Word) <
UEP (Programme) ; <
: EDIT GETNAME IF EDFTN ENIIF HOME ; (Edit Iatatype) - -> <

```
SCF # 78
    O ( Set Jatatype ) DECIMAL <
    : SETFTN TYPE? VECTOR SSET ( Sounding ) ISET ( Ionogram )<
                                TSET ( Timing ) FSET ( FORTH Worid ) <
                                PSET ( Progranme ) ; <
    : SETNXT GETNXT NXTFTN Q DUP
    IF SETFTN ENDIF DUP NXTSET ! COMPARE ! ;
    GETNAME IF CR ." Busy --> " SETFTIN
        IF ." Set !" ENIIF ENDIF B1S ISEC HOME ; <
        ( Set Function)<
                                    --><
                                    <
                                    <
1 1
12
13
14
15
```

```
SCR * 79
    O ( Show and Delete Datatype) DECIMAL
    1 : SHOUTYF CLRDIS 28 -> ." Uefined Functions " CR
                                <
                                TSPACES CONTEXT & & BEGIN GEHCR FFA
                        DUP LNPR LFA E DUF BDATA E UK UNTIL DROP ;
                    ( Show Type )
    : DLIST SHOWTYP VAL ." Function Name" CR
                    ."Erase Function" YORN CR
        IF ." Erase up to " INWORD
        DUP CURPRG Q 1+ U< IF -1 CURPRG ! ENDIF
        BDATA E UK
        IF U?B ELSE O IN ! FORGET TITLE SHOUTYF ENDIF
        ENDIF HOME ; ( List Data )<
        11
        12
        13
        14
        15
SCR # 80
    O (Sounding and Cell Start Frequencies. Function Stop ) DECIMAL <
    1 : DISCN SE IF CNDIS H+1 ENDIF ; < <
    2 : SETUP .5 1 DPL ! HHZ DROP SETFREQ {Freq to .5 MHz )<
    3 AGCINT GETIHE+1 SETNXT DISCN O ION ! ; ( AGC to int,set,disp)<
    4 : FNDNXT CFYCLK GETNXT DISCN ; (Find,Disp next Ftn ) <
    5 : SSFLIN F/SND FTOMPN MPNKR MPN+ MFNMS ; ( Snd start f,Linear ) <
    6 : SSFLN EATS HTOMFN MPNMR MPN: MPNNSS ; (Snd start.f,LOg )<
    7 : CSFN CURS P 26 + CELL# P 1 - 12 * + <
    8 DUP FTOMPN MPNMR MPN+ NEUFREQ FIMSB TOLATCH <
    9 LUP 8 + E IF FILMON ELSE FILHOFF ENDIF <
10 10 + e 15 STORE STRCUAT ; ( Cell n start freq ) <
11 : STO,1 STROBEO STKOBE1 ; <
12 : STOF STO,1 DCS? & IF O DCS? ! S@ IF TITLE ENDIF ENDIF <
13 ENDCS SETUP ; (Stop lono)<
4 : HALT COHPARE R 0= IF #SOUND E SOUND# ! ENIIF ; ( End Iono )<
: HALTEI? BEGIN ION E O= UNTIL ; --><
```

```
SCK # 81
    0 ( Tcell Interrupt Routine ) IECIMAL <
    : NCELL CUKI E 2+ e 256 MOLI 124=
        IF SOUND# E #SOUND & > IF STOF H+1 ELSE
        CDATIICS CURS E IUP 20 + e -DUP
        IF 1. AGC# +! AGC# 巳 < IF RXFULSE 1 AGC# ! ENDIF ENDIF <
                22 + E -DUP
        IF 1 THK# +! THK# e< IF IOPTIME 1 THK# ! ENDIF ENDIF <
            1 CELL# +! CELL# 巳 CURS e 2.4 + @ >
            IF 1 CELL# ! 1 SOUND# +! ENDIF CSFN ENDIF
        ELSE SOUND# E #SOUND Q > IF STOP H+1 ELSE
        CELLH P = IF CURS 20 + E IF RXFULSE ENDIF ENDIF<<
        CIATUCS 1 CELL# +! CELL# Q CURS 巳 24 + 巳> <
            IF | CELL# ! 1 SOUND# +! CURI C 26 + e
                IF SSFLIN ELSE SSFLN ENDIF <
            ENDIF CSFN ENDIF <
        ENDIF ; --><
```

```
SCR | 82
    O (Run Function) DECIMAL<
        1 : RS DROP U?B 1SEC HOME ; ( Run Sounding - not allowed);
        : RI AGCEXT 32 + e IF IDATMT ELSE IDATDCS EHDIF
    3 SUEEP O COMPARE ! I ION ! FNDNXT ; ( Run Ionogran )<
    4 : RTS GETIME+1 FNDNXT POOT STO,1 SETUP ; ( Run Tinin3 Slip )<
    5 : RFW GETIKE+1 FNDNXT DOFHD STO,1 SETUP ; (Run FORTH Word ) <
    : RPRG DROP GETIKE+1 GETC=N SETNXT TITLE ; (Run Programne )<
    : RFTN TYPE? VECTOR RS ( Sounding ) RI ( Ionogram) <
        RTS ( Tining Slip ) RFU ( FORTH Vord) RPRG ( Progran ) ;
        : RUN HALT HALTED? GETNAKE IF DUP SETFTN
        IF CHS DE BEGIN DDUP CHS DE D= O= UNTIL DDROP RFTN <
        ELSE UROP ENDIF ENDIF ; (Run Function)<
        : AOFF SE STATUSOFF HALT HALTED? -1 CURPRG ! SETNXT STAT ! ; <
        : CANCEL AOFF IITLE ; (Cancel Prog.) <
        : PAUSE CURPRG e AOFF CLRUDU 12 20 GOTOXY ." PAUSE - Press<
        Space Bar to continue" BEGIN ?TERMINAL UNTIL PSET RPRG ; --><
```

SCR \# 83
0 (Clock Service Routine)
DECIHAL $<$
: PBTIME VECTOR CDHHS CHMS CKS ;
$<$
: TIME 1 TON ! ." Press Space Bar to stop" <
30 gotoxy ." Current Tine :-" <
BEGIN ?TERMINAL UNTIL O TON ! 3 CLRLN CPRG. HOME; <
: CLOCK INCLK COMPARE P
IF NPB Q PBTIME DQ NXTIME DE $D=$
IF NXTFTN Q RFTN ENDIF
ENDIF
TON E
IF 320 gotoxy ve $0=$
IF O TON ! ENDIF CDHMS.
ENDIF: $\rightarrow-><$
ENDIF: $\rightarrow-><$
13
14
15
SCR \# 84
0 (Interrupt Polling)
HEX <
1 : POLL E009 CE 80 AND IF E008 CE DROP NCELL ELSE
EOOB CE 80 AND If EOOA CE JROP CLOCK ELSE
." Interrupt Error " ENDIF ENDIF RTI ;
: SETIRQ LIT POLL 23E6 ! 1CE9 DFC8 ! ;

1 : POLL E009 CE 80 AND IF E008 CE DROP NCELL ELSE EOOB CE 80 AND If EOOA CE JROP CLOCK ELSE : SETIRQ LIT POLL 23E6 ! 1CE9 DFC8 ! ;

```
SCR * }8
    O (Command List ) DECIHAL
    1 : T1 20 TAB ; : HD CLRUDU CRTI ; : R1 CR TI ; : T2 45 TAB; <
    2 : Ul ." x" T2 ." x = User assigned Data Name" ; : U Ul RI ; <
    3 : W." x" T2 ." x = Defined Data Name" R1 ; <
    4 : HELP HD ." -Commanj-" T2 ." -Function-" CR ." System" T1<
    5." COLD" T2 ." Cold Start" R1 ." UARM" T2 ." Warm Start" R1<
    ." UDU" T2 ." UDU I/O" R1 ." PRNT" T2 ." Printer or UDU I/O" RI<
    ." TITLE" T2 ." Shows Status" R1 ." STATUSOFF" T2 ." No Updates";
    R1 ." TIME" T2 ." Shows Tine" R1 ." SETTIME" T2 ." Sets Time" <
    CR ." Data Entry " T1 ." SOUNDING " U ." IONOGRAM " U <
        ." TIMING "U ." FORTHWORD "U." PROGRAMME "UI < U
        CR ." Data Display/Kodify" T1." EDIT " W ." DISFLAY " W <
        " PRINT "W."LOG "W." ILIST" 12 ." List Data Names"く
        CR ." Execution" TI
            ." SET " H ." RUN " W." HALT" T2 ." Stop Iomogram" CR CR <
    ." Press SPACE BAR to exit" BEGIN ?TERMINAL UNTIL TITLE ; --> <
```

SCR \# 86
0 (System Initialisation) DECIMAL
: SETTH VAL CR ." Set time then press SPACE BAR "
BEGIN ?TERHINAL UNTIL;
(Set Time)
: VUARM SEIF SETIRQ CR ." BuSy!"
1 TFTN ! 1 STAT ! 1 NPB !
0 DCS? ! 0 TON ! O SRCH !
PORTS STROBEO STROBEI CLI SETUP GETNXT TITLE ; (Warm) <
: VCOLD SEIF CR CR ." Heath VDU " YORN VDU? ! HDING <
830 GOTOXY ." Initialization"
$<$
TPOSN. CLRPOSN SETPL SETYR SETDY SETTH
-1 CURPRG ! O COMPARE ! -26567 BDATA ! UUARH ; (Cold) <
: COLD? HERE 37 e (initial value for DP ie IUPINIT) = <
IF VCOLD ELSE UWARM ENDIF QUIT ; (Cold or Warm Start?) <
: SETTIME SETTK SETUP GETNXT TITLE CR TIME ; (Set Time) <
HEX 982E 23 ! 983925 ! 981027 ! $9808115 F$! COLD? CFA 1177 !
SETTIME NFA 1196 ! 982E $119 E!980011 C 3!$ IIECIHAL ;S:

FORTH HANDY REFERENCE

Stack inouts . ' . .tputs are shown; top of stack on right.
This card follows usage of the Forth Interest Group (S.F Bay Area) usage aligned with the Forth 78 International Standard
For more intc. rorth Interest Group of Southern Africa
P.O. Box 29452

0132 Sunnyside

Operand key: n, n1. . . . 16-bit signed numbers d, $d t, \ldots$. . 32-bit signed numbers u 16-bil unsigned number addr address b 8 -bit byte 7 -bit ascii character value boolean liag

STACK MANIPULATION

| DUP | ($n \cdots n$) |
| :---: | :---: |
| DROP | $(n-1)$ |
| SWAP | -1 n2-n2 n1) |
| OVER | $(\mathrm{n} 1 \mathrm{n2}-\mathrm{n} 1 \mathrm{n2} \mathrm{n} 1)$ |
| ROT | (n1 n2 n3 - n2 n3 n1) |
| -DUP | $(n \rightarrow n ?$) |
| >R | $(n-1)$ |
| R> | $(-n)$ |
| R | (- n) |

Duplicate top ol stack.
Throw away top of stack
DROP
Reverse top two stack items.
Make copy of second item on top.
Rotate third item to top.
Duplicate only it non-zero.
Move top item to "return stack" for temporary storage (use caution).
Retrieve item from return stack.
Copy top of relurn stack onto stack.

NUMBER BASES

| DECIMAL | $(-)$ |
| :--- | :--- |
| HEX | $(-)$ |
| BASE | $(-$ addr $)$ |

Sel decimal base.
Sel hexadecimal base.
System variable containing number base.

ARITHMETIC AND LOGICAL

| + | $(\mathrm{n} 1 \mathrm{n} 2 \rightarrow$ sum) |
| :---: | :---: |
| D+ | (d1 d2 \rightarrow sum) |
| - | ($\mathrm{n} 1 \mathrm{n2}$ - diff) |
| * | ($n 1$ n2 - prod) |
| 1 | ($n 1 \mathrm{n} 2$ - quot) |
| MOD | ($\mathrm{n} 1 \mathrm{n2}$ - rem) |
| /MOD | ($n 1$ n2 - rem quot) |
| -/MOD | (n1 n2 n3 - rem quot) |
| * | ($n 1 \mathrm{n} 2 \mathrm{n} 3-$ quot $)$ |
| MAX | $(\mathrm{n} 1 \mathrm{n} 2 \rightarrow \max)$ |
| MIN | $(\mathrm{n} 1 \mathrm{n} 2 \rightarrow \min)$ |
| ABS | ($n-$ absolute) |
| DABS | (d \rightarrow absolute) |
| MINUS | $(n \rightarrow-n)$ |
| DMINUS | $(d--d)$ |
| AND | (n 1 n 2 - and) |
| .fi | ($n 1 \mathrm{n} 2$ - or) |
| XOR | ($n 1 \mathrm{n} 2 \rightarrow$ xor $)$ |

Add double-precision numbers.
Subtract ($n 1-n 2$).
Multiply.
Divide ($n 1 / n 2$).
Modulo (i.e. remainder from division).
Divide, giving remainder and quotient.
Multiply, then divide ($n 1 * n 2 / n 3$), with double-precision intermediate.
Like */MOD, but give quotient only.
Maximum.
Minimum.
Absolute value.
Absolute value of double-precision number.
Change sign.
Change sign of double-precision number.
Logical AND (bitwise).
Logical OR (bitwise).
Logical exclusive OR (bitwise).

COMPARISON

| $<$ | $\left(\begin{array}{ll}n 1 & n 2-f\end{array}\right)$ |
| :--- | :--- |
| $=$ | $\left(\begin{array}{ll}n 1 & n 2-f\end{array}\right)$ |
| $=$ | $\left(\begin{array}{ll}n & n 2-f\end{array}\right)$ |
| $0<$ | $\left(\begin{array}{ll}n & -1\end{array}\right.$ |
| $0=$ | $(n-1)$ |

True if $n 1$ less than $n 2$.
True if $n 1$ greater than $n 2$.
True if top two numbers are equal.
True if top number negative.
True if top number zero (i.e., reverses truth value).

MEMORY

| @ | (addr $\rightarrow \mathrm{n}$) |
| :---: | :---: |
| $!$ | (n addr - |
| C@ | $(\mathrm{addr}-\mathrm{b})$ |
| C! | (b addr - |
| 7 | (addr -) |
| $+1$ | (n addr - |
| CMOVE | (from to u -) |
| FILL | (addr u b -) |
| ERASE | 1 addr $u \rightarrow$) |
| BLANKS | (addr u . |

Replace word address by contents.
Store second word at address on top.
Fetch one byte only.
Store one byte only.
Print contents of address.
Add second number on stack to contents of address on top
Move u bytes in memory
Fill u bytes in memory with b. beginning at address.
Fill u bytes in memory with zeroes. beginning at address
Fill u bytes in memory with blanks. beginning at address.

CONTROL STRUCTURES

TERMINAL INPUT-OUTPUT

| R | $\begin{aligned} & \binom{n-1}{\text { (fioldwidth }-} \end{aligned}$ |
| :---: | :---: |
| 0. | (d) -1 |
| O.R | (d fieldwidth \rightarrow) |
| CR | (-) |
| SPACE | $(-1$ |
| SPACES | $(n-1)$ |
| .. | $(-)$ |
| DUMP | (addr u \rightarrow) |
| TYPE | (addr u \rightarrow) |
| COUNT | (addr - addr +1 u) |
| TTERMINAL | (-1) |
| KEY | $(-c)$ |
| EMIT | (c-) |
| EXPECT | (addr $n-1$ |
| WORD | (c-) |

INPUT-OUTPUT FORMATTING

Print number.
Print number, nght-justified in theld
Print double-precision number.
Print double-precision number, night-justified in field
Do a carriage return.
Type one space
Type n spaces.
Print message (terminated by ").
Dump u words starting at address
Type string of u characters starting at adoress.
Change iength-byte string to TYPE form.
True if terminal break request present.
Read key. put ascii value on stack.
Type ascil value from stack
Read n characters (or until carnage return) trom input to address
Read one word from input stream, using given character (usually blank) as delmiter.

Convert string at address to double-precision number.
Start output string.
Convert next digit of double-precision number and add character to output string.
Convert all significant digits of double-precision number to output string.
insert sign of n into output string.
Terminate output string (ready for TYPE).
insert ascii character into output string.

DISK HANDLING

| LIST | $\left(\begin{array}{l}\text { screen }-\rightarrow) \\ \text { LOAD } \\ \text { BLOCReen } \rightarrow \text {) }\end{array}\right.$ |
| :--- | :--- |
| BLBUF | $($ block \rightarrow addr $)$ |
| BLK | $(-n)$ |
| SCR | $(-$ addr $)$ |
| UPDATE | $(-$ addr $)$ |
| FLUSH | $(-)$ |
| EMPTY-BUFFERS | $(-)$ |

List a disk screen.
Load disk screen (cympile or execute).
Read disk block to memory address.
System constant giving disk block size in bytes.
System variable containing current block number.
System variable centaining current screen number.
Mark last buffer accessed as updated.
Write all updated buffers to disk.
Erase all buffers.

DEFINING WORDS

Begin colon definition of $x \times x$.
End colon definition.
Create a variable named $x \times x$ with initial value n; returns address when executed.
Create a constant named $x x x$ with value n; returns value when executed.
Begin definition of assembly-language primitive operation named xxx.
Used to create a new defining word. with execution-time "code routine" for this data type in assembly.
Used to create a new detining word. with execution-time routine for this data il higher-level Forth.

VOCABULARIES

| CONTEXT | (- addr) |
| :---: | :---: |
| CURRENT | (- addr) |
| FORTH | (\rightarrow) |
| EDITOR | (-) |
| ASSEMBLER | (-1) |
| DEFINITIONS | 1 - |
| VOCABULARY xxx | (-) |
| VLIST | (-1) |

Returns adoress of pointer to context vocabulary isearched first)
Returns address of pointer to current vocabulary (where new definitions are out)
Main Forth vocabulary (execution of FORTH sets CONTEXT vocabulary)
Editor vocabulary. sets CONTEXT
Assemoler vocabulary: sets CONTEXT.
Sets CURRENT vocabulary to CONTEXT
Create new vocabulary named $\times x x$
Pint names of all words in CONTEXT vocabulary

mISCELLANEOUS AND SYSTEM

| 1 | - |
| :---: | :---: |
| FORGET xxx | -1 |
| ABORT | - 1 |
| xax | (- addr) |
| HERE | - addr) |
| PAD | $(\rightarrow$ addr $)$ |
| IN | (- addr) |
| SP@ | $($ - addr) |
| Allot | $(\mathrm{n} \cdot \mathrm{l}$) |
| , | $1 \mathrm{n}-$ |

Begin comment. terminated by rignt paren on same ine: space after
Forget all definitions back to and including $x \times x$
Error termination of operation
Find the addess of $x \mathrm{xx}$ in the dictionary. It used in delinition. compile addiess
Returns address of next unusec byte in the dictionary
Returns address of scratch area (usually 68 bytes beyond HERE)
System variable containing oftset into input bulfer, used. og. by WORD
Returns address of top stack hem
Leave a gap of n bytes in the dictionary
Comple a number into the dictionary

FORTH Error Messages

```
Error No Messaze
err # I EMPTY STACK
err # 2 DICTIONARY FULL
err # 3 HAS INCORRECT ADDRESS HODE
err 4 ISN'T UNIQUE
err # 5
err # 6 DISC RANGE ?
err # 7 FULL STACK
err #8 DISC ERROR !
err # %
err # 10
err # 11
err # 12
err # 13
err # 14
err # 15 68'FORTH Talbot Microsystems Ver 1.0 JAN 1980
err 16 ( ERROR MESSAGES )
err # 17 COMPILATION ONLY, USE IN DEFINITION
err # 18 EXECUTION ONLY
err * }19\mathrm{ CONDITIONALS NOT PAIRED
err # 20 DEFINITION NOT FINISHED
err # 21 IN PROTECTED DICTIONARY
err # 22 USE ONLY UHEN LOADING
err # 23 OFF CURRENT EDITIMG SCREEN
err # 24 DECLARE vOCABULARY
err # 25
err # 26
err # 27
err # 28
err # 29
err # 30
    OK
```

G. P. EVANS

ANTARCTIC RESEARCH - RHODES UNIVERSITY

DECEMBER 1984

QEENDIXE

15
$11-18$
$17-27$
28
$27-32$

35
$34-37$
$38-40$
$4 i$
42
$43-45$

46

47-48

51
52
$53-54$

Gentent
Introdaction
Screan No.
1-9 Reserved Nemory E2

Page_Mugber
EI

E2

VDU/Printer Contro:$E 2$
13

Number and Word Input $E 5$
14 E7

Display lonogranE41
$47-50$ Edit Ionogram E42
Fort initialization E日

Synthesizer Control E10
Hardware Contral E14

Detatype Handiing E25
Sounding Farameters$E 27$
Euild Sounaing ES 1
Bi三play Soundife E32
Edit Sourding E34
[isplay and Edit Sounding E36
Set Soundirg $E 37$
Ionogram Parameters E37
Euild lonogram E39
Display and Edil lonogran E43
Ionogram Calculations E44
Ionogran Setting

Display Timing Slip
Edit and Set Timing Slip
FORTH Word Parameters E52
Display and Edit FORTH Word E53

Set Place, Year, Weekday Number E54
Read Real Time Clock E54
Increment clack E56
Display Time E57
Allot Frogramme E57
65 Frogramme Faramaters . 559
66-67 Display Frogramme E60
68-70 Display and Edit Programme Eb2
71-72 Frogramme Lookahead E65
73
Data to Film E69
74-75 Data to DC5 E69
76

Clock Interrupt Service Routine

84

Interrupt Folling

Command List E75

[^0]EEO

APPENDIX E

VERTICHIRP CONTEQLLER SOETWARE_ \quad EROGRAMME GLOSSARY

Introduction

This glossary is sesigned to be used in conjunction with the programme listings in the Vertichirp Controller Software - Operators Manual.

The following symbols are used in describing numbers on the forith parameter stack.

| Symbol |
| :---: |
| addr |
| b |
| c |
| d |
| f |
| $f \mathrm{f}$ |
| $t f$ |
| n |
| u |

Meaning
16 bit memory address
8 bit byte, high 8 bits zero
7 bit Ascii character, high 9 bits zero
32 bit signed double number, MSB on top of stack
boolean flag, $0=$ false, non-zero $=$ true
boolean false flag $=0$
booiean true flag = non-zero
16 bit signed integer number
10 bit unsigned integer number
The first line of each glossary entry gives the forith word being described followed by a symbolic description of the action of the word on the parameter stack. The symbols indicate the order in which the input parameters have been placed on the stack. Three dashes "---" indicate the execution point and any parameters left on the stack are then listed. The top of the stack (most accessible parameter) is to the right in this notation.

Note :- Unless otherwise specified named stack numbers are all 16 bit signed integers (n). Named stack integers are enclosed in brackets if more than 1 word long. E.g. (basic rate code) --- (basic rate)

Scregns-1_tg Regerve Memory

These screens allocate memory for flags and storage using the fofth word CONSTANT. Subsequent use of the name given pushes the address sperified as the constant onto the steck a:lowing variables to be fetched or stored fron that location.

The FORTH word VARIAELE was not used as it allocases named variable storage within the dictionary making programme EfROMming impossibie,

Sereen-19 VEu/Erinter Control
Note:- The software was designed to support either a feath vou using cursor addressing or any other vou or printer. Unless otherwise specified the system Heath vou will be assumed to be the I/O device. STATIEDFF ---

Flag STAT cleared, controller status not displayed.
status
Flag STAT set, controller status displayed.
56
--- \ddagger
Fetch sontroller status flag from STAT.

FRNT
Flag VDU? cleared, cursor addressing not used.
VDU
Flag VDU? set, use Heath vod carsor addressing.
VE
--- f
Fetch UDU tlag from vDu?
NEWCR
New Carriege Return: Defined to jisallow break-ir when listing to Heath VDU, allow break-in when listing to printer.

Carriage Return. Redefinition using NEWCR.
?TERM

ESC

Dutputs escape character.
BELL
Rings $1 / 0$ device bell.
CLRUDU
Clear VDU screen if VOU? $=1$ else CR.
SAVEXY
VDU saves cursor posn. if VDU? $=1$
G0XY
VDU cursor goes to previously saved posn. if VDU? $=1$

Screentil voulerinter Control
CURPOS --- (line no.) (rolumn no.)
VDU sends cursor posn. if VDU? $=1$ else 0 o left on stack.
Line no. range 0 to 23 , Column no. range 0 to 75
gToXY (line no.) (column no.) ---
Moves cursor to posn. specified.
gotoxy
(line no.) (column no.) ---
Cursor to posn. specified if VDU? $=1$ else CR

```
XYONLY (line no.) (column no.) ---
    Cursor to posn. specified if VDU? =1
    (line no.) ---
    Clears VDU line specified.
    (line no.) ---
    Clears specified line if VDU? = 1 else CR
    (start line no.) (end line no.) ---
    Clears VDU from start line no. to end line no.
    (start line no.) (end line no.) ---
    Clears VDU from start line no. to end line no. if VDU? = 1
    else CR
CEOL ---
    Clear to end of current line if VDU? = 1
CLRSTAT
    Clear status area, lines 0 to b, if VDU? = 1 else CR
CLRDIS
    Clear display area, lines 8 to 18, if VDU? = 1 else CR
CLRE+1
    Clear display area lines 9 to 18 if VDU? = 1 else CF
CLRIN ---
    Clear input area, lines 21 to 23, if VDU? = 1 else CR
    Scregniz vov/Printer Contrgl
    HOME
    Cursor to input area, line 20, if STAT = VDU? = 1 else CR
    H+1
        Cursor to line 21 if STAT= VDU? = 1 Else CR
```

```
DSHLN }\quadn\cdots
PTRCR
-> n ---
    Type n spaces. Short form of SPACES
    n ---
    Move to column n on current line
        ,
    Loops for approx 1 second
B1S
    Ring bell, wait.1 s
OK? f --- f
    If f = 0 ring bell wait 1 s
W?
    "What ?"
W?B
    "What ?", bell , wait 1 5
Scregn_13 Number_and_word_Ingut
INFT --- ff not numeric input
    --- dtf numeric input
    QUERY gets either 80 characters or up to CR, stores them at
    the addr. stored in TIB.
    2016 WDRD gets string from TIE to HERE (dictionary buffer)
    WORD leaves char count in first byte then chars ending with 2
    or more spaces. The loop fetches each char in turn and if not
    a number or " . " the loop is exited leaving 0 on the stack
```

else it loops through all char then converts the string to d using NUMEER leaving $d t i$ on the stack.

This word was written because the standard FORTH number conversion executes QUIT if conversion fails allowing the program to continue. INFT signals conversion failure with ff only to allow re-prompting for data.

BLNK
IN spaces output if VDU? $=1$. Used to clear non-numeric input data off screen.

INPUT

INWORD

EXEC

YORN

KEYCR
d
Loops until true flag put on stark by INPT. Used for inputting positive n and d only.
--- pfa
Loops until a valid dictionary word is input leaving the word's parameter field address on the stack
pfa ff --- ff
pfatf ---tf
Execute word designated by pfa if true flag on stack.
Note: Exerution of certain words leaves data on the stark.
--- f
"(Y or N)?" Loops, $Y=t f, N=f f$
--- c
Accepts char c followed by $C R$

```
Scregn-14 MPN_Calculator Control
MFN
MPNDP
    Decimal point
    MPNEE ---
    Enter exponent
    MFNCS
    Change sign of MPN x register
MFNXEM
    Exchange MFN: register and memory.
MFNMS
    Memory store, x register stored in calculator memory.
MFNMR
    Memory recall, memory to calculator x register
ENTER
    Terminate number entry
MPNROL
    Rotate MPN registers. x to y, y toz, z to t, t tox
MPNECLR
        Feset calculator
```

MFNXEY
Exchange MPN x and y registers
MFNEX
e^{x}
KPNLN
$\ln x$
MFN1/X
1/x i.e. reciprocal
--
MFNY
y^{x}
MPN+
Add registers , $y+*$
MPN-
Subtract registers, y -
MFN* ---

Multiply registers , yx
MPN/
Divide registers, y / x
ANSWER --Uses primitive ANS to transfer calculator x register to computer memory at ANSEXF. If calculator error flag is set an error is reported and the calculator error flag cleared.

Screnn $15 \quad$ Portuntitialization
MFS

$$
\begin{aligned}
& \text { Initialize serial port. } \$ 03=\text { master reset then set for } 8 \text { bits } \\
& \text { plus } 1 \text { stop bit, } \$ i 1 \text {. }
\end{aligned}
$$

STORE

MPLA1

MPLA2

MFLAS
Initializes parallel interface 3 (MF-LA-3) in port 7.

| Addr ${ }^{\text {a }}$ | Reg. | Data | Dessrietign |
| :---: | :---: | :---: | :---: |
| E010 | PRA | FF | A side $=$ all outputs |
| E01D | CRA | 04 | CAI,CA2 not defined |
| E01E | FRE | FF | B side = all outputs |
| EOIF | CRE | 04 | CE1,CB2 not defined |

| FORTS | |
| :---: | :---: |
| | Initializes MPN, MPS, MPLA1, MFLA2 and MPLAB. |
| A10FF | --- |
| | Clear parallel port MP-LA-1 |
| A20FF | --- |
| | Clear parallel port MP-LA-2 |
| ASOFF | --- . . . |
| | Clear parallel port MF-LA-3 |
| RESET | --- |
| | Clear all parallel ports, initialise serial port. |
| Screen 16 | |
| SETDFLS | n--- (n.10 ${ }^{3-D P L}$) |
| | Sets the number of digits after the decimal point to 3. |
| | DFL $=$ no. of digits input after decimal point. |
| CONSTORE | r q --- f |
| | r (remainder) and q (quotient) are the resuits of a/M00 or M/ |
| | operation. CONSTORE checks to see that 4 is positive, if so 7 |
| | is divided by 4 to produce 5 ASCII numbers that are stored at |
| | F2MSE to $F 2 M E B+4$. The remainder of this division is |
| | multiplied by 1000 and added to r and the result is divided by |
| | 4 to produce 3 ASCII numbers stored at $\mathrm{F} 2 \mathrm{MSB}+5, \mathrm{FGMSE}+6$ |
| | and $\mathrm{F} 2 \mathrm{MSB}+7$. If CONSTORE is executed successfully a true |
| | fiag is left on the stack else a false flag. The number stored |
| | at F2MSE is called F2. |
| MHZ | d --- |
| | Converts d tod/4 (freq/4 for synthesizer programming) which |
| | is stored at F2MSE, |

d can be entered in the following forms:$x x ., x x . x, x x . x x, x x . x x x$ or $x x . x x x x x x$
d ---r
Converts double no. $d=q . r$ to two single numbers, a 3 digit remainder r and a 3 digit quotient q

d ---

Converts d to $d / 4$ (freq/4 for synthesizer programming) which is stored at F2MSB. d can be entered in the following forms:xx. , xx.x, xx.xx or xx.xxx
n --- f
If n is less than 3999 it is converted to n/4 and stored at F2MSE and a true flag left on the stack else a false flag.
 FRINTBUF addr ---

Prints 8 ASCII digits from addr (HHz/4)

FRINTBUFI

PRINTEUF2

TO\#

FRINTF

Prints Fi from FiMSE, freq/4

Prints F2 from F2MSB, freq/4
(LSE addr) nl --- (5um $=$ n2)
Converts ni ECD digits from (LSE addr) into a single number n2 on the FORTH stack. $n 2$ must be less than 32000 .
(MSE addr) ---
8 BCD numbers from (MSE addr) are converted to a double number on the stack. This is multiplied by 4 and printed in the form:- xx.xxx:x. MHz

PRINTFI
Frints $\mathrm{Fi} \times 4 \mathrm{MHz}$ from FiMSE
FRINTF2
Frints $\mathrm{F} 2 \times 4 \mathrm{MHz}$ from F 2 MSB

DENT
(MSE addr) n ---
Digit Enter. n digits from (MSB addr) sent to MPN calculator.
(MSE addr) ---
Frequency to MPN - 8 digits from (MSB addr) to calculator. (MSB' addr) ---

Frequency Enter - 8 digits from (MSB addr) to MPN and entered
FITOMPN
Fi to MFN

F2TOMPN
F2 to MPN
FITOMEM addr ---
Q BCD digits from FIMSE to addr
F2TOMEM addr ---
8 BCD digits from F2MSE to addr
GETF 1
8 BCD digits from FiMSB to dictionary at HERE. DP advanced B.
GETF2

TOFI

TOF2
8 ECD digits from F2MSB to dictionary at HERE. DF advsnced 8.
ador ---
Moves 8 bed digits from addr to FiMSB
addr ---
Moves 8 BCD digits from addr to F2MSE

Screen_18 LZERO

XFF

FORMAT

NEWFRER

PACK.

TOLATCH addr ---
8 bytes from addr, packed and output to synth. latches, FCI

Latched data loaded into synthesizer counters

F1 sent to synth latches and counters on PCi.

SETFREQ

ATOMEM
Synthesizer Control-Frequency_to Synthesizer. ANSExP to memory exp --- (exp + 1) (no. of leading zeros)

Generates leading zeros depending on the value of the exponent Converts MFN scientific mode answer to an 8 digit number. exp $=0,7$ leading zeros. exp $=7$, 0 leading zeros
(exp + 1) (ng. of leading zeros) ---8-(no. of leading zeros) digits transferred from ANS\# to FiMSB Check that exp less than θ. If less uses LZERO and XFR to convert and transfer MFN answer to FiMSE Else error message.

Executes ANSHER then FORMAT
addr --- n
2 BCD bytes form addr and (addr + 1) packed into n

LOADFREQ ---

FREQOUT
\qquad
F2 sent to synth latches and counters on FC1.
addr ---

Answer to memory. Executes ANSWER then moves 12 bytes from ANSEXP (exp, signs and mantissal to addr.

```
MTOMPN Mddr --- Memory to MPN. Data stored using ATOMEM to MPN. Not eritered.
Sgreen_19 Hardware_Contrgl_=-Contrgl_Register_A
STROBEO ---
    Clears sweep f/f , advance/retard f/f and film drive f/f
STROEEI
    Clears sweep flip-flop.
STROBE2
    Clears advance/retard flip-flop
Constants:- Name Hex_Code isets control register A)
    DFF AO
    TEST1 FI
    TEST2 FS
    DOFPLER , 7C
    OBLIQUETX OF
    OELIQUERX EF
    VERTICAL FF
SETA
AG
--- n
Fetch contents of CONTROLA
A?
n ---
n = named code print name else "Derimal code = n"
```

| Screpg_20 | Hardware_Control_z-Control_Register_E |
| :---: | :---: |
| SETE | ก --- |
| | n copied to CONTROLB and output to control register b on PC3 |
| | CONTROLB data may change from cell to cell. |
| CLEARE | --- |
| | Clear control register B |
| Be | -.- n |
| | Contents of CONTROLB fetched to stack |
| ORSETE | п1 n2 --- |
| | $n 1$ and $n 2$ logically ored. Fesult sent to control register E |
| | This allows individual bits to be set. |
| ANDSETE | n1 $n 2$--- |
| | $n 1$ and $n 2$ logically ANDed. Result sent to control register B |
| | This allows individual bits to be cleared. |
| FILHON | --- FILMOFF --- |
| | $\mathrm{bO}=1$ enables film dr \quad bo $=0$ disables film drive |
| AGCEXT | - AGCINT --- |
| | $b 1=1$ ext AGC clock bi $=0$ int AGC ciock |
| TXON | --- TXOFF |
| | $b 2=1$ TX enabled ${ }^{-} \quad \mathrm{b} 2=0 \mathrm{TX}$ disabled |
| BSON | --- E30FF |
| | $b 3=1$ fast film drive $\quad \mathrm{b} 3=0$ fast drive disabled |
| E40N | --- B40FF |
| | $b 4=1$ spare control \quad b $=0$ spare control |
| B50N | --- BSOFF --- |
| | $b 5=1$ spare \quad b5 $=0$ spare |

| B60N | B60FF -- |
| :---: | :---: |
| | bb = 1 spare \quad bó $=0$ spare |
| B70N | 870FF |
| | $b 7=1$ spare $\quad 67=0$ spare |
| BLIET | --- |
| | Heading for control reg E status |
| B? | --- |
| | Fetch and print control register 8 data |
| Screen 21 | Hardware_Control_=-Basic_Ratenand_Doegler |
| TABLE | --- |
| | Used to generate a lookup tatle. |
| RATE | Uses TABLE to generate a table of basic rates. Data are listed |
| | in reverse order with the last no. = no. elements in list |
| RATE? | (basic rate code) --- (basic rate, $\mathrm{kHz/s}$) |
| | Code required by PC4 hardware converted to basic rate in $\mathrm{kHz} / \mathrm{s}$ |
| | and printed. |
| KHz/SEC | (basic rate, $k H z / s$) ---ff Valid rate |
| | (basic rate, kHz/s) --- (basic rate code) tf Invalid rate |
| SETRATE | (basic rate code) f --- |
| | Set hardware if $f=1$ Use:- $50 \mathrm{KHZ/SEC}$ SETRATE |
| DOPR | (Doppler code $=n$) $--2^{n}$ |
| | Converts n to 2^{n} for n not equal to zero. For $n=0$ returns 0. |
| | Converts code for setting stationary Doppler offset frequency |
| | , PC9, to an offset frequency in Hz . |
| DOP | (offset freq $=$ n) ---ff |
| | (offset freq $=$ r) --- (Doppler code) $t f$ |
| | $n=$ offset freq in Hz for stationary Coppler recordings. |

n out of range ff only else converted to Doppler code and $t f$.

DOF. (Doppler code) --
Converts Doppler code to an offset freq in Hz and prints it.

DOP? (Doppler code) ---
Executes DOF. "Hz"
SETDOP (Doppler code) f ---
If true flag L. O. offset synthesizer, PC9, set to required freq in stationary Doppler mode.

Use :- 4 DOP SETDOF Sets stationary Doppler freq to 4 Hz

Screen 22 Harduare_Control_=-Icelland M-seguence
The constants listed below are named codes used for setting up both cell and M-sequence periods.


```
CELL? code ---
TCELL? : code ---
Uses CELL? and prints "sec" after time.
code ---
Set Tcell pulse generator, PC4b, to give selected period.
Use :- 1/2 TCELL SETCELL Sets cell period to 1/2 s
MSQNCE :- Uses TABLE to set up a table of M-sequence period codes.
MSEQ
```

MSEQ?

SETMSEQ

```
        code ---
        Uses lookup table to find which element corresponds to code
        then uses TCELL? to convert the entry number to a time period
        code f ---
        Set M-sequence gen on PC4c to the period determined by code if
        the flag is true.
        USE :- 1/2 MSEQ SETMSEQ Sets M-sequence period to 1/2 =
```


FFTR
FFT
n---ff Invalid
n--- code tf Valid
If n greater than or equal to 8 , less than or equal to 1024
it is converted to an FFT sample rate code with true flag

```
FFT. code ---
    code converted to frequency and frinted
    code ---
    FFT. followed by "Hz"
    code f ---
    FFT Sample rate, PC7, set with code if true flag
    Use :- 1024 FFT SETFFT Sets FFT sample rate to 1024 Hz.
    n ---f
        True flag if n greater than or equal to l less than or equal
        to 8
        n1 n2 --- ff
        n1 n2 --- code tf
        n1 = Rx1 antenna; n2 = Fx2 antenna. code obtained by shifting
        n2 to upper 4 bytes (n2 x l6) logically ORing with ni and
        adding 7716
        code --- (R.1 ant) (RX2 ant)
        Converts antenna select code to Rxi ant no. and Ry2 ant no.
        code ---
        Converts antenna select code to two numbers and prints them.
            Scresm_24
    Hardwere_Sontrol_=_Film_SEegd_s_Wingowing_end_Synce
Film_Sgeed
    Input frequency = 500 Hz i.e. 10 mm/s = 600 mm/min
    Two hardware divisions give b0 film speeds from 300 mm/min to
    2.5 mm/min
FILMSPEED? code --- speed
    Film speed code converted to speed in range 2.5 to 300 mm/min
```

```
MM/MIN speed --- ff
    speed --- code tf
    Speed out of range, ff only. Speed valid, converted to code
    that is closest to the required speed plus tf.
SPEED? code ---
    Code converted to a speed and printed (xxx mm/min)
SETSFEED code f ---
    If true flag film speed is set using code.
Use :- 5 MM/MIN SETSPEED
```


Hindgwing

Equation (3.9) gives the height offset as $h_{0}=c f_{0} / 2 k_{g} k m$. when a fixed offset f_{0} is subtracted from the difference frequency. The offset f_{0} is therefore given by :- $f_{0}=h_{0} k_{E} /(c / 2)$

For h_{0} in $k m$ and k_{B} in $k H z f_{0}$ in $H z$ is given by $:-$

$$
f_{0}=h_{0} k_{B} / 150 \mathrm{~Hz}
$$

The local oscillator offset frequency synthesizer was designed with fomin $^{\text {OM }} 256 \mathrm{~Hz}$ (see Chapter 4, Windowing and Stationary Doppler (with higher offset frequencies being multiples of this.

Number of 256 Hz steps $=f_{0} / 25 t=h_{0} k_{E} /(150)(256)$
If 0 km offset is required the code for no offset (00) is output.
KMSTEP
$k_{B} h_{0} \cdots f f \quad$ Invalid h_{0}
$k_{B} h_{0}-\cdots n t f \quad$ valid h_{0}
The offset height in $k m$, if less than 951 , is multiplied by the basic rate k_{E} and the result divided by 150 and 256 to give the number of 256 Hz steps. This number is converted to a two digit packed ECD number n and a true flag. If the offset height is greater than 951 km error message output and f.

SETWIND

RXPULSE
Clocks dual RX $A G C$ if set to EXT mode in control register B. RXSYNC

Synchronizes dual Rx output signal phases.
SWEEP
Sync receivers, enable sweep start flip-flop. A sweep (recording) begins on the next falling edge of the 1 s clock. DOPTIME
n f ---
If true flag the L. 0 . offset synthesizer, FC9, is set to the required frequency in the windowing mode.
E.g. $k_{B} h_{0}$ KMSTEF SETWIND
,
\qquad

Doppler Time mark. Sends a pulse to FC 2 to produce a time mark on film for stationary Doppler recordings.

Screen_25 Hardware_Control_=-AdvancelRetard_Control

The advance/retard software was designed to provide the following functions

1. Set timing position counter to zero
2. Advance or retard timing by a given amount with the capability of halting the shift at any time.
3. Display resulting pesition on VDU (Note :- This is not an absolute position as system timing drifts relative to a time signal e.g. ZUO) Display takes the form :-

Timing Position : 0010.00 ms Advanced ---> 0005.00 ms Retarded
4. "SEARCH" mode used for locating the oblique signal. Frompts only for direction and rate of shift. Shift stopped when required by operator. Right hand count continuously updated.
5. On exiting from SEARCH mode the command LAST allows return to timing posn
prior to SEAFCH.
6. Execution of a timing slip by controller programme, operator intervention disallowed.

MSEC
d --- microseconds milliseconds
Fiedefinition of DRQ. Converts double number $d=$ shift in milliseconds to two 3 digit single numbers. E.g. $5.67-\cdots 675$
d - -
Adds slipped amount d to SHIFT which contains timing position

SLIF
n ---n $n=$ required slip. Sent to advance/retard board PCS together with the shift enable strobe hex $1 A$. n left on stack.

WAITCOUNT wait count --- wait
wait determines duration of a loop while the hardware shifts the timing at the required rate. Hardware timing chenges in increments of 10 microseconds. Software sends 100 to hardware to produce timing changes in 1 ms increments. The sign of wait $i s$ + for advance, - for retard and is used to determine whether to add or subtract count to or from SHIFT.

POSN
Prints contents of SHIFT as xxx.x: ms Advanced (or Fetarded)

ENPOS
End Position. STAT $=0$, does nothing STAT $=1$, VDU $=0 \quad$ Frints end position $V D U=1 \quad$ Frints end posn in correct screen area

CLRFOSN

Clear fosition. SHIFT set to 0 , posn printed

VDU? $=1$, ENFOS prints position each ms slipped

INPOS

DOSLIP
Initial Fosition printed.
microseconds milliseconds wait ---
Do Timing Slip. Prints initial and final positions if in printer mode or timing position each ms slipped if in VDU mode Flag TFTN checked, 0 allows keyboard termination of shift.

Screen_26 Hardware_Control_=Advance_Retard_Sontrol
microseconds milliseconds ---
Advance at 1 ms/s by shift numbers left by MSEC
Use :-10.5 MSEC AGS Advances 10.5 ms at 1 ms/s
microseconos milliseconds --
Advance at 10 ms/s by shift numbers left by MSEC

Lise :-5.5 MCEC AG10
microseconds milliseconds ---
Advance at $20 \mathrm{~ms} / \mathrm{s}$ by shift numbers left by MSEC
Note : - Each millisecond of shift is done by the hardware at a rate of $100 \mathrm{~ms} / \mathrm{s}$ but software overhead results in a net shift rate of $20 \mathrm{~ms} / \mathrm{s}$ hence the command Ae20.

Use :-8.5 MSEC AG20
microseconds milliseconds ---
Retard at $1 \mathrm{~ms} / \mathrm{s}$ by shift numbers left by MSEC
Use :- 15.0 MSEC Re1
microseconds milliseconds ---
Retard at $20 \mathrm{ms/s}$ by shift numbers left by MSEC
The hardware shifts at $100 \mathrm{~ms} / \mathrm{s}$ but net rate is only $20 \mathrm{~ms} / \mathrm{s}$
Use :- 12.5 MSEC R@20

EXIT
Exit SEAFCH mode.

LAST
Return timing to previously stored position (LPOSN) at $20 \mathrm{~ms} / \mathrm{s}$ In the SEARCH mode last position not updated allowing timing to be reset to the position prior to SEARCH by typing LAST

Command Disglay
10. MEEC AE1 Timing Fosition :- 10.00 ms Advanced ---> 20.50 ms Advanced

LAST Timing Fosition : 20.50 ms Advanced $-->10.00 \mathrm{~ms}$ Advanced

LAST

Screen_27 Hardware_Control_=-Adyance_fetard_Search

VAL

NPR
pfa ---
Name frint. Frints name of word given parameter field address

Direction Rate Prompt
SDRF
Search Direction and Rate Frompt
SEARCH
Current position stored at LPOSN, prompts with SDRF. Typing
one of A@1, A@10, A@20, RG1, Re10, Re20 followed by CR
shifts in selected direction at rate given. Pressing space bar
stops shift. Right hand digits updated as timing posn changes
EXIT exits from SEARCH mode.

Screen_28 Datatyge-Handing

The 〈BUILDS DOES〉 structure was used to define FOFTH words for data storage. Each data set is identified by the first single number stored as data. The upper byte is the data "type" and the lower byte the data "subtype". FORTH word data entries have the following form :-

Address

nfa $=$ name field address $\quad 1$
$n f a+1 x$
lfa $=1 \mathrm{ink}$ field address 2
cfa = code field address 2
pfa = parameter field addr 2
pfa +2
Note :-
Type, subtype and data are "built" into the word being defined and in use the address of the does part points to the word DROP so that attempted execution of the word containing data results in no apparent action. Attempted execution puts pfa on stack, this is dropped by DROp

NAME?

TYFE?

SUBTYFE

FPFA

RFFAG

RFFA!

GENCR

LID.

LNFR
getname
--- f
Saves IN. Checks TIE (terminal input buffer) for a word for subsequent use. If no word in TIE prints "what ?". If there is a word but it already exists prints word then " Exists!". In both cases the saved value of in is dropped and the new value saved to jump over "no word" or existing word in TIB. A false flag is left on the stack. If there is a unique word the saved value of IN is stored at IN so that the unique word can be used by <BUILDS. A true flag is left on the stack. pfa --- pfa type Returns pfa and type (upper 8 bits) of type/subtype at pfat2 pfa --- pfa subtype Returns pfa and subtype (lower 8 bits) of type/subtype at pfa+2
--- ff no name in TIB or undefined name
--- pfatf pfa of name in TIB left on stack
pfan--pfa (pfałn) Felative to pfa. n is offset of data relative to pfa.
pfan --- pfa data
Relative to pfa fetch. Fetches data from address pfatn
pfanin2--- pfa
Relative to pfa store. Stores ni at addrese pfatn2

Generate carriage return 10 spaces from end of line. nfa ---

Frint word rame from nfa, left justified in 31 column fieio pfa ---

Frint word name frompfa, left justified in 31 column fieid

```
Screen_29 Sounding_Farameters
gR=
    "Basic Rate = "
RF
    Rate Prompt. Prints "Valid Data :-" followed by
    2540 50 80 100 200 400 250 500 900 1000 2000 4000 kHz/s
HF=
HZKM & kB follorg
Hertz per km. Uses equation hol
HMAX
RANGE
gEtRATE
    --- (basic rate code)
    Frompts for basic rate, chesks input, if valid leaves basit
    rate code on stack else prompts until valid.
NMH
HTP (tasic rate) ---
    Height Frompt. Prompts "Valid Data :- 0 to }950\textrm{km
    "Height Range = 0 to x%x km" (x** depends on basic rate)
    "New Minimum Height Fange = "
```

```
GETWIND (basic rate) --- freq step (control = 8)
    Uses HTF to get new minimum height range which is converted to
    the number of 256 Hz steps using KMSTEF. Loops until velid
    data obtained then uses RANGE to print new height range.
    8 = control code for windowing
    step = no. of 256 Hz step\equiv stored as packed BCD
    freq = (no. of steps) : 256 Hz ( single number , binary)
Scregn_30 Sounding_Farameters
DOP= ---
    "Doppler Freq = "
DOPP
    Doppler Prompt.
    "Valid data :- 0 2 4 8 16 32 64 Hz"
GETDOF --- freq 1 (Doppler code)
    Prompts for Doppler offset frequency, if valid converts to
    code else loops to prompt again. Stack data :-
    Doppler code = code to set hardware on PC9 to required freq.
    1. = sets fout from rate multiplier to 256 Hz
    freq = Doppler offset frequency in Hz (single no.)
    n1 n2 ---
    Teell and M-seq Prompt. Expects two numbers ni and n2 between
    1 and 12 on the stack. Prints corresponding time period FORTH
    words using CELL? as valid data for Tcell or M-seq prompts.
    --- f
    Check if Tcell period in correct range, if so tf.
CKD
--- f
Check if Doppler Tcell period in correct range, if so tf.
```

```
CKM 
    Get Teell period for ionogram. Frompts and loops until valid
    word input. word executed to leave code on stack.
GETDCELL . --- (stationary Doppler Tcell code)
    Get Tceli period for stationary Doppler. Prompts and loops
    until valid word input. Word executed to leave code.
00P??
    --- f
    "Stationary Doppler (Y or N)?" Y = ff ,N = tf.
MS=
    "M-seq = "
GETMSEQ --- (M-5eq code)
    Get M-sequence period. Prompts and loops until valid word
    input. Executes word to leave M-seq code on stack.
Scregnj1 Squnding_Parameters
FT= ---
    "FFT Fate = "
FFTP
    FFT Prompt.
    "Valid Data :- E 16 32 64 128 256 512 1024 Hz"
    "FFT Rate = "
GETFFT
--- (FFT rate code)
Prompts for FFT rate, looping until valid code obtained.
```

```
FS= 
FLMF ---
                            Film speed Frompt. "Valid Data :- Eetween 2 and 150 mm/min"
GETSPEED
                            --- (film speed code)
                            Pronpts for film speed, looping until valid data input.
                                    Leaves code of closest speed on stack.
AG=
R\timesG
G
ff --- ff Invalid
tf --- n Prompts "Multiples of.Tcell = " and inputs n
TM=
    "Time Marks="
TMKS
    --- n
    "Time Marks = (Y or N)? " then uses G to get number n.
Sgreen_32 Squnding_Parameters
#CELL5 --- n
    "Number of cells = " then inputs n. If 0 input 1 put on stack
OFPRM
CHKWD
```

```
"Valid Data :- xxxx Hz , xxx.xxx kHz or xx.xxx MHz "
```

"Valid Data :- xxxx Hz , xxx.xxx kHz or xx.xxx MHz "
"Offset from Origin (number only)="
"Offset from Origin (number only)="
Origin = sounding start frequency
Origin = sounding start frequency
pfa --- f
pfa --- f
Check Word. tf if pfa is that of HZ, KHZ or MHZ elseff.

```
    Check Word. tf if pfa is that of HZ, KHZ or MHZ elseff.
```

getoff

FILMDF

ANTP
gETANT
"valid Data:-12345678"
--- (antenna code)
Get Antennae connections. Frompt for Rxi ant, Rx2 ant then input both and convert to code, looping until data valid.

Screen_3 \quad Euild Sounding
typei

SOUNDINE
Input Sounding data. Use:- SOUNDING x where x is the user assigned data name given to the sounding. If x is unique SOUNDING prompts, gets and stores data as shown below.

Address Deta
pfat2 Type (upper byte) $=1$, SOUNDING
Subtype (lower byte) $=0$, for STATIONARY DOFPLER
Subtype (lower byte) $=1$, for IONOGRAM
pfa+4 Basic rate (k_{B}) code
pfatb L. O. offset hardware contral code
pfate L. 0 offset freq as packed $B C D$ for hardware
pfatlo L. O. offset freq as FORTH single mo. in Hz .
pfat12 Tcell period (T_{C}) code

| Address | Data |
| :---: | :---: |
| $p f a+14$ | M-seq period code |
| $p f a+16$ | FFT sample rate code |
| $p f a+18$ | Film speed code |
| $p f a+20$ | Fx AGC data. |
| | B reg = AGCINT before run, AGCEXT during run. |
| | Stat Doppler :- Data $=0=\mathrm{fixed}$ AGC |
| | Data $=0$ = pulse per n Tcells |
| 1 | Ionogram :- Data $=0=$ fixed AGC |
| | :- Data $=1$ = pulse per sounding |
| $p f a+22$ | |
| pfat 24 | Number of cells (n) |
| pfat26. | Cell 1 offset frequency relative to sounding |
| | start frequency, E bytes. |
| $p f a+54$ | Cell 1 film drive enable or disable |
| $p f a+36$ | Cell 1 antenna connection code |
| $p f a+38$ | Cell 2 offset frequencyetc, 12 bytes per |
| | cell for as many cells specified (n). |

Note:- Attempted execution of data word x results in no apparent action. SUE1. n ---

Prints subtype from number n
$n=0 "-($ SOUNDING for STATIONARY DOPPLER)"
$n=1^{n-}(\text { SOUNDING for IONOGRAM })^{\prime \prime}$

SEreen_34 Display_Sounding
BR.
pfa --- pfa
Basic Rate Frint from code if subtype $=1=$ ionogram.

LO=

LOHR.

TC.

MS.

FT.
pfa --- pfa
FFT sample rate Print from stored code.

Screen_35 Display_Sounding
FS.
pfa --- pfa
Film Speed Print from stored code
AG. pfa---pfa
AGC control data Frint from stored code.

TM.
pfa---pfa
Time mark data Frint from stored deta.
NC.
pfa---pfa
Number of Cells Frint fron stored number.

CNUM
$n 1$---n2
Converts ni between 1 and 4 together with the contents of $4 C \#$ (four cell number) to n2, the entry number.

```
VECC n1 n2 --- n3
    Vector to current cell in sounding data
    n1 = offset to cell 1 offset freq, film dr or antenna data
    n2 = number between 1 and 4 in current cell block
    n3 = offset relative to sounding pfa of current cell data
PCELL
celldata
    pfa ---
    Frint cell data. Clears cell display area, prints up to 4
    sets of cell data in current cell block.
    pfa--- pfa
    Prints headings , calculates no. of sets of 4 cells (#4C)
    VDU - prints up to 4 sets of cell data in display area
    Printer - prints all cell data
Scregn_37 Disglay_Sounding
DISS pfa--- pfa
    Display Sounding. If type = 1 displays sounding data name,
    subtype and all the data else error message.
S01SF pfa---
    Same as DISS, drops pfa
SDISFLAY ---
    Sounding Display. Use :- SDISFLAY }x,x=\mathrm{ sounding data name
SHOWS
```

 Show Soundings. All sounding data names listed
 Screen zig Edit_Sounding_=-Ergmets

| BR | --1 | LO | --2 | TC | ---3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $M S Q$ | --4 | FT | --5 | FS | --6 |
| AGC | --7 | TH | ---8 | CELL | --9 |

$\mathrm{OF}=$
$\mathrm{CL}=$

ESF

PARA

Scresn_39
ELO

ERR

ETC

EMO

EFT

EFS pfa--pfa
Edit Film Speed
EAG
pfa --- pfa
Edit $A G C$ data according to subtype

Screen_40
CP
"Offset/fange $=$ "

"Cells = "

Edit Sounding Frompt, uses above short forms e.g. BR

Parameter prompt using ESF, e.g. If $B R$ typed $n=1$

Edit.Sounding_Parameters
pfa --- pfa
Edit L. 0 . offset frequency / height range
pfa---pfa
Edit Basic Rate if subtype $=1=$ sounding for ionogram
pfa --- pfa
Edit Tesll period according to subtype
pfa---pfa
Edit M-sequence period
pfa --- pfa
Edit FFT sample rate

Edit_Sounding_Earameters
pfa---pfa

Cell Prompt. Lists all valid cell numbers
pfa---pfan
Get Cell Number. Frompts, inputs no. (n), loops until valid. pfa--- pfa

Edit Cell ne. n freq offset, film orive and antennae selection

PVEC pfan --- pfa Parameter Vector. Vectors to edit word n and executes it. EDITS \quad pfa--- pfa

Edit Sounding. Frompts for parameter to edit then edits it.

Screen_41 Disgley_and_Edit_Sounding
PDES
Prompt, for sounding display and edit.
$N=N e x t 4$ cells
$\mathrm{C}=$ Change
$E=E x i t$
$\mathrm{F}=$ Previous 4 cells

DES
pfa ---
Display and Edit Sounding. Frompts using FDES.
N - increments 4C\# , MIN of 4C\# and \#4C, stored at 4C\#
F - decrements 4C\#, MAX of 4C\# and 1 , stored at $4 C \#$

C - executes EDITS

E - Exit

S0ISp pfa---
Sounding Display. Displayed in edit mode on VoU.

SEDIT
Sounding Edit.
Use : - SEDIT $x, x=u s e r$ asigned sounding data name

SDISPLAY
Sounding Dispiay. Use :- SDISFLAY $x ; x=$ sounding data name

Redefinition of SOUNDING incorporating SDISF to display all sounding data once it has been entered.

Scregn_42 Set Sounding
IFR
"Invalid Forward Feference - "

SSET
pfa ---
Set Sounding. If datatype $=1$ the data is used to set the hardware. The $T x$ is enabled and AGC\#, TMK\#, CELL\# initialized USSET

User Sounding Set. Use :- USSET $x: x=$ sounding data name

Ignogramparameters
TYPEF
--- f
Type of recording Prompt. Choice of 7 named types or code. $f f=$ ionogram, $t f=$ experimental code

GETYPE --- (control register A code)
Gets Type of recording. Stack number used to set ctrl reg A
$10=$
"Ionogram Duration = "

MORS

GETDUR
Minutes or Seconds input routine. Loops until valid n input.
--- seconds minutes hours
Get Duration of stationary Doppler ionograms.

```
Scregn_44 Ignogram_Parameters
F=
SF=
                            "Start Frequency = "
EF
                            "End Frequency = "
FP
                            Frequency Prompt. "Valid data :- Between 0.5 and 30.0 MHz
INF
GETF
GETSF
    Input Frequency to F2MSG, looping until valid data obtained
    Gets Frequency. Prompts for then stores frequency in F2MSB
    Get Start Frequency. Frompt, input then store at F2MSE
GETEF
    Get End Frequency. Frompt, input then store at F2MSB
ORA
    "Overall Rate"
OR=
    "Overall Rate = "
LIN
    "Linear "
LN
    "Log"
ORF
    --- f
    Overall Rate Prompt.
    "valid data :- Linear = xx* kHz/s, Log = .001 -->.01 oct/s"
```

 Queries if Linear or Log. Log \(=f f=0\), Linear \(=t f=1\)
 GETOF --- (overall rate) (lin/log flag)
Get Overall Rate with lin/log flag.
Screnn 45 Ionogram_Earamaters
$\begin{array}{ll}S N= & --- \\ & \text { "Sounding }="\end{array}$
VALA ---
"Valid Data :- As listed above"
GETSND --- pfa subtype
Get Sounding. Lists names, inputs and leaves pfa and subtype
CHKSND f --- f
Check Sounding. If tf prints "Incompatible Sounding" leaves ff
GETISND --- pfa
Get Ionogram Sounding. Loops until compatible sounding input
GETDSND --- pfa
Get stat Doppler Sounding. Loops until compatible sounding in.
$T T=$
"Data to Tape ="
TOMT?
--- f
"Store Data on Mar Tape $(Y$ or N)? ", $Y=1, N=0$
STATI? --- f
"Stationary Ionogram (Y or N)?", $Y=1, N=0$
Screen_4b Euildingogram
TYPE2
subtype --- (512 + subtype)
Sets datatype $=$ upper byte to 2 by adding 512 to subtype.

```
IONOGRAM
    ---
    Input Ionogram Data. Use :- IONOGRAM x where x is the user
    assigned data name given to the ionogram. If x is unique the
        ionogram parameter prompts are used to get and store data at
        the following addresses.
        Address Data
        pfa+2 Type (upper byte)=2, IONOGRAM
                            Subtype llower byte! , Control register A data
                            Hours
                            Minutes Ionogram/Stat Doppler duration
                            seconds
                                Start frequency, B bytes
                                End frequency, 8 bytes
        0= log, 1 = linear
        Overall rate.
        0 = stat Doppler, n kHz/s = normal ionogram
        Scunding pfa
        Mag tape flag. O = not to tape, 1 = to tape.
Note :- If subtype = 120 the recording is a stationary Doppler and start
frequency = end frequency, lin/log = lin and overall rate = 0. The stat
Doppler duration is prompted for and stored at pfa+4, pfa+b and pfa+g.
Ionogram durations are calculated when the ionogram is set. This time is
then written into the ionogram data word.
SUB2. n ---
    Prints subtype from number n
    e.g. If n= 120" - IUNOGRAM ( DOPPLER )"
    e.g. if n = 255 " - IONOGFAAM (VERTICAL )"
```

. C

Screen_47
IDR.

TT.

SF:
pfa --- pfa
Start Frequency Print.
EF.

OR.

SN.

VEL.
pfa --- pfa
maximum observable velocity of reflection point frint.
Uses equation (4.16) in the form $u_{\text {max }}=f_{00}{ }^{\text {r/2f }}$
$f_{0 D}=$ stat Doppler L. O. offset frequency
f = stat Doppler transmitter frequency
"Maximum Velocity $=x x x \mathrm{~m} / \mathrm{s}$ "

Screen_4日 Diselay_Ionogram
DISI pfa---pfa
Display Ionogram. Displays ionogram data name , type and
subtype followed by the ionogram data.

| IDISP | pfa --- |
| :---: | :---: |
| | Ionogram Display. Same as DISI but drops pfa. |
| IDISPLAY | -- |
| | Ionogram Display. Use:-IDISFLAY $x, x=$ ionogram data name |
| SHOWI | --- |
| | Show Ionograms. All ionogram data names listed. |
| IONOGRAM | --- |
| | Redefinition of IONOGRAM that inputs then displays data.
 Use :- IONOGRAM $x, x=u s e r$ assigned name |
| Screen 49 | Edit_Ionogram_=_Promets |
| DUR | --- 1 DTT --- 2 |
| SF | -- 3 EF --- 4 ORT --- 5 |
| SOUND | ---6 |
| EIP | --- |
| | Edit ionogram Frompt. E.g. "DUR = Ionogram Duration" etc. |
| PARI | --- n |
| | Parameters Ionogram. EIF to prompts for parameters to change. No exit until valid input given, leaves n between 1 and 6 |
| Screen 50 | Edit_Iorogram_Parameters |
| EDR | pfa --- pfa |
| | Edit duration data. |
| ETT | pfa --- pfa |
| | Edit To mag Tape flag |
| DOPF | --- |
| | Doppler frequency edit. New freq = start freq = end freq. |

Scresn_51
FDEI

DEI

IEDIT

Edit Ionogram. Prompts for parameter then edits it.

Disgloy_ang Edit_Ionogram
pfa---
Display and Edit Ionogram. Frompts as above for C or E. If C uses EDITI to edit ionogram, E exits edit mode.
pfa---pfa
Edit Start Frequency. If subtype = Doppler uses DOFF to edit start freq $=$ end freq, recalculates maximum velocity.
pfa --- pfa
Edit End Frequency, If subtype = Doppler uses DOFF to edit
start freq = end freq, recalculates maximum velocity.
pfa --- pfa
Edit Overall Rate if subtype is not stationary Doppler.
pfa--- pfa
Edit sounding Name. If ionogram subtype = Doppler get Doppler sounding else get ionogram sounding.
n ---
Ionogram edit Vector. Execute ionogram edit word n.
pfa--- pfa
\qquad
Ionogram Edit. Use:- IEDIT $x, x=$ ionogram oata name

| Screen_52 | Ionogram_Calculations |
| :---: | :---: |
| STKF. | n --- |
| | Stack to FiMSE. Single number n to ECD and stored at fiMSB. |
| STKMPN | n --- |
| | Stack to MFN calculator via FiMSB. |
| ENTf | n --- |
| | Enter, n via FIMSE to MPN and entered. |
| FISTK | --- |
| | Fi to Stack. Note :- n must be less than 32000 |
| ANSR | --- |
| | Answer from MPN calculator put on stack. |
| CELMPN | (Tcell code) --- |
| | Tcell to MPN. Tcell code converted to a number with true |
| | flag if period is less than 1 and number sent to MPN. If true |
| | flag MPN1/X is executed. Cell period therefore entered in MPN. |
| SEC/SND | --- |
| | Seconds per Sounding. Current Sounding pfa storedin Curs. |
| | This is used to obtain Teell code and number of soundings in |
| | current sounding. These are sent to MFN as numbers and not |
| | code and are multiplied to give the sounding period. |
| | Equation (3.1) :- $T_{S}=n T_{C}$ |
| ORTOM | (ionogrampfa) -.- |
| | Overall kate to MPN. |
| LINOR | (ionogrampfa) --- |
| | Linear Overall Rate. MPN used to multiply rate in $\mathrm{kHz} / \mathrm{s}$ by 250 as all calcs done on $1 / 4$ the actual Tx freq. ($250=1000 / 4$) |

LNOR (ionogram pfa) ---
Log Overall fate (oct/s). Entered log rate is multiplied by 1000 then stored. Calculator divides stored log rate by 1000 to get actual rate.

Sereen_s3 Iongram_Setting
SETDOFL
Set stationary Doppler. SEC/SND used to calculate sounding period. Doppler ionogram duration sent to MPN and number of soundings are calculated and stored at \#SOUND

FORTH_S士ack
EORTH_Wgrd
MPN_Calculator_Stacks

| - | - | x | Y | 2 | t |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | SEC/SND | sec/sid $=T_{S}$ | - | - | - |
| hrs | ENTR | hrs | hrs | T_{S} | - |
| 3600 | STKMFN | 3600 | hrs | T_{5} | - |
| - | MPN* | $3600 \times \mathrm{hrs}=\mathrm{Hs}$ | T_{5} | - | - |
| $\min * 60=M 5$ | STKMFN | M seconds | H seconds | T_{S} | - |
| - | MFN+ | $H+M$ seconds | T_{5} | - | - |
| 5 seconds | STKMPN | S seconds | $\mathrm{H}+\mathrm{M}$ seconds | T_{5} | - |
| - | MFN+ | $H+M+5$ seconds | T_{S} | - | - |
| - | MFNXEY | T_{S} | $H+M+S$ sec | - | - |
| - | MPN/ | No. of soundings | - | - | - |
| No. soundings | ANSR | - | - | - | - |
| SETIONO | (ionogram pfas --- | | | | |
| | Set Ionogram. If overall rate is linear calculations are based | | | | |
| | on equation (3.5) which gives total soundings in ionogram, mimer | | | | |
| | $m=\left(f_{E}-f_{I}\right) / k_{0} n T_{C}$ | | | | |
| | First calculated is $k_{0}{ }^{n T} C_{C}=k_{0} T_{S}$ which gives the frequency | | | | |

change per sounding. This is stored at F/SND. Next m is calculated and stored at \#SOUND. Finally the ionogram duration $T_{I}=m T_{S}$ is calculated and stored in current ionogram.

EORIH_Stack FOETH Word

MPN Calculator 5 tack

| - | - | * | y | | t |
| :---: | :---: | :---: | :---: | :---: | :---: |
| addr of f_{E} | FENTER | ${ }^{\text {f }}$ E | ${ }^{\text {f }}$ | - | - |
| addr of f_{I} | FTOMPN | ${ }_{\text {f }}^{\text {I }}$ | ${ }^{\text {f }}$ E | - | |
| If linear overall rate : | | | | | |
| - | MFN- | ${ }^{f} E-{ }^{\text {f }}$ I | - | - | - |
| - | SEC/SND | sec/snd $=T_{S}$ | ${ }^{f} E-{ }^{\text {f }}$ | - | |
| - | LINQR | k_{0} | ${ }^{\text {S }}$ S | | |
| - | MFN* | $k_{0}{ }^{\top}{ }_{s}$ | $f_{E}-{ }^{\text {f }}$ | - | |

- NEWFREQ copies $k_{0} T_{s}$ to FIMSB
- F/SND FITOMEM transfers $k_{0}{ }^{\top} s$ to $F / S N D$

| - | - | m | - | - | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - | SEC/SND | T_{S} | m | - | - |
| - | $M F N *$ | $\pi_{S}=T_{I}$ seconds | - | - | - |
| T_{I} seconds | ANSR | T_{I} seconds | - | - | - |

T_{I} seconds are converted to hours, minutes and seconds and are stored in the current ionogram at pfa+4, pfa+6 and pfa+8 (ionogram duration).

If sweep rate is logarithmic the calculations are based on equation (3.7) which gives the total number of soundings in the ionogram as :-

$$
m=\ln \left(f_{E} / f_{I}\right) / A n T_{C}
$$

First caiculated is $\ln \left(f_{E} / f_{I}\right)$ then $A n T_{C}=A T_{S}$.
$e^{A T} S$ is calculated and stored in memory at EATS. m is then calculated and stored at \#SOUND. Finally the ionogram duration is calculated and stored within the current ionogram.

EVEIH_Stask
EORTH Werd
MEN-Cgleulator 5 tack

| - | - | $*$ | y | z |
| :---: | :---: | :---: | :---: | :---: |
| addr of f_{E} | FENTER | ${ }^{\dagger} E$ | ${ }^{\text {f }}$ E | - |
| addr of f_{I} | FTOMFN | ${ }_{\text {f }}^{\text {I }}$ | ${ }^{\text {f }}$ E | - |
| - | MFN/, | ${ }_{\mathrm{E}} \mathrm{E}^{\prime \prime} \mathrm{I}$ | - | - |
| - | MFNLN | $\ln \left(f_{E} / f^{\prime}\right)$ | - | - |
| - | SEC/SND | sec/snd $=T_{S}$ | $\ln \left(f_{E} / f_{1}\right)$ | - |
| - | Lner | A | T_{5} | $\ln \left(f_{E} / f^{\prime}\right)$ |
| - | MPN* | AT_{S} | $\ln \left(f_{E} / \mathrm{f}_{\mathrm{I}}{ }^{\text {a }}\right.$ | - |
| - | ENTER | $A T_{S}$ | $A T_{s}$ | $\ln \left(f_{E} \mathrm{E}^{\prime \prime}\right)$ |
| - | MPNEX | $e^{A T} S$ | ${ }^{A T} T_{S}$ | $\ln \left(f_{E} / f_{I}\right)$ |

| - | EATS ATOHEM copies exponent, signs and mantissa from answer | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | buffer to location EATS | | | | |
| - | - | $e^{A T_{S}}$ | AT_{5} | $\underline{l n}\left(f_{E} / f_{i}\right)$ | - |
| - | MPNFOL | ${ }^{A T} T_{S}$ | $\underline{l n}\left(f_{E} / f_{i}\right)$ | - | $e^{A T}{ }_{S}$ |
| - | MPN/ | $\ln \left(f_{E}{ }^{\prime \prime} f_{\text {I }}\right.$ | - | - | $e^{A T} S^{\text {d }}$ |
| m | Angr | m | - | - | $e^{A T} S$ |
| - | \#Sound : stores no. of soundings m at meound | | | | |
| - | SEC/SND | T_{5} | m | - | $e^{A T}{ }_{S}$ |
| - | MFN** | $\mathrm{m}_{\mathrm{S}}=\mathrm{T}_{\mathrm{I}}$ | - | - | ${ }^{\text {AT }}$. ${ }^{\text {a }}$ |
| ${ }^{\text {I }}$ | ANSR | $T_{\text {I }}$ | - | - | | T_{I} is converted to hours, minutes and seconos and is stored in the current ionagram at $p f a+4$, pfa+b and pfa+8 (ionogram duration).

strcdat
Store Cell Data of current cell of current sounsing. Cell

```
frequency in MFN is multiplied by 4 to get transmitter
frequency which is stored at RFREQ (= cell frequency) and
antenna code of same cell is converted to two ASCII characters
Ryl antenna no. stored at CANT, Fx2 ant no. stored at CANT+1
```


Screen_ 54
 Iongaransettiga

ISET
(ionogram pfa) $-\cdots \quad$ f
The current ionogram pfa is stored at CURI. The sounding pfa, stored as ionogram data at ionogrampfa +30 , is fetched, duplicated and stored at CURS. Duplicate is used by SSET (sounding set) which sets basic rate, cell period, M-sequence period, FFT sample rate, film speed, and L. O. offset frequency. Cell 1 film drive data and antenna selections are also set. The dual $R x A G C$ is set to internal and the transmitter enable set to enabled

If the sounding is set successfully the ionogram subtype is used to set control register A. The ionogram start frequency is sent to the synthesizer counters on PCl and also to the MFN x register from which it is stored in the calculators memory using FORTH word MPNMS. If subtype = Doppler sETDOPL is executed else the current ionogram overall rate is fetched from pfat2e. If the overall rate is non-zero SETIOND is executed else the ionogram is a stationary ionogram (zero overall rate therefore chirp at fixed frequency) and $F / S N D$ is set to zero and SETDOPL enecuted to caiculate the sounding period and the number of soundings.

SOUND contains the sounding number, this is initialized to 1 .
The cell 1 offset frequency, stored at current sounding pfa +26 is sent to MPN and added to the ionogram start frequency. The result = ionogram start frequency plus cell i offset frequency is sent to the synthesizer latches on FC1. STRCDAT converts and stores cell information for later transmission to

DCS. If all is enecuted successfully a true flag is left on the stack. UISET User Ionogram Set. Use :- UISET $x, x=$ ionogram data name
 SHIFT=

SDR=

GETSHIFT

GETSDR

TYPES
subtype --- (768 + subtype)
Sets datatype $=$ upper byte to 3 by adding 768 to subtype.
TIMING
Input and store timing shift data.
Use :- TIMING x, $x=u s e r$ assigned timing shift data name
Timing data word x is built in the form :-
Address Data
pfat2 Type (upper byte) $=3$, Timing Slip
Subtype (lower byte) $=0$ for advance
Subtype (lower byte) $=1$ for retard
pfat4 Shift, n2 milliseconds
pfatb Shift, ni microseconds
pfat8 pfa of shift direction and rate word

SUES.
n ---
$n=0 *-\operatorname{TIM} \operatorname{lng} \operatorname{SLIF}(\operatorname{ADVANCE}) "$
$n=1$ " - TIMING SLIP (RETARD)"

Screen $5 \underline{6} \quad$ Disglay_Timing
SHIFT. pfa ---.pfa
Shift Print. "Shift $=x$ x. xxx ms"
SDR. pfa --- pfa
Shift Direction/Rate Frint. Eg "Shift Direction and Rate = Agi"
DIST pfa-- pfa
Display Timing. Frints name, type, subtype and data.
TDISP
pfa---
Timing Display. Same as DIST but drops pfa

TDISPLAY

 SHOWT

Show Timing Slip. Lists all Timing Slip deta names
TIMING
Redefinition of TIMING, Use :- TIMING $x, x=$ data name Prompts for then displays entered timing slip.

Screen_57 s

ETP
Edit.Timing Slip_1-Set Timing_slip
--- 0 SDF

Edit Timing Frompt. "Shift $=5$ "
"Shift direction and rate $=$ SDR"
pfa ---
Display and edit timing. Uses PDET, if Cuses EDITT to edit
timing, if E exits edit mode.
TEDIT
pfa ---
Programme Do Timing Slip. Keyboard interruption of timing slip
disallowed by TFTN $=0$, DOT executed then TFTN set back to 1

$\mathrm{FH}=$

GETFH ---pfa
Get Forth word. " TESTED FORTH Word $=$ " , inputs a previously defined and tested FORTH word and leaves the pfa on the stack.
subtype --- (1024 + subtype)
Sets datatype $=$ upper byte to 4 by adding 1024 to the subtype.

FORTHWORD

```
USE :- FORTHWORD }x,x=user assigned FORTHWORD data name for
use in controller programming. If i is unique FORTHWORD
prompts inputs and stores the data as follows:-
Address Data
pfa+2 Type (MS byte) = 4, FORTH Word
    Subtype (LS byte)=0
pfa+4 pfa of previously defined and tested
    FORTH Word, y.
```

SUB4. n---
Subtype 4 Frint. No subtypes associated with FORTH words.
n is dropped and only " - FORTH WORD" is printed.

FlN. pfa ---pfa
FORTH WOrd Print. "FORTH Word $=x$ "

DISF pfa--pfa
Display FORTH word. Prints the following :-
" : - FORTH WORD"
" FOFTH Word $=y^{\prime \prime}$
x = Controller FORTH word, used with EDIT, SET, RUN ete.
$y=$ Normally defined FORTH word - colon definition.

FDISP pfa---
FORTH Word Display. Uses DISF then drops pfa.
FDISFLAY
Use :- FDISFLAY $x \quad x=$ name assigned to Controller FOfTH word

Scresn_sq Di三giay_and_Edit_EDRTH_Kord
SHOWF
Show FORTH words. Lists all datatype 4 names.
FCRTHWORD
--- ,
Redefinition of FORTHWORD. Prompts for, stores then displays entered data.

EFH
pfa ---
Edit FORTH Hord. Allows the data word y to be changed.
pfa ---
Display and Edit FORTH word. C for Change, E for Exit.
FEDIT

FEET

DOFWD
pfa---
Do FORTH Word. Data word y stored under name x is executed.
UDOFWD
User Do FDRTH Word. Use :- UDOFWD x. Executes x data $=$ word y

```
Screm@_t0 Set_Place_,_Year_1_Wegtgay_Number
SETPL
    Set Flace. Location PLACE cleared to ASCII spaces. Prompts
    for place name whict is infut and stored at PLACE
PL.
    Place Print. Flace name fetched from PLACE and printed.
SETYR ---
    Set Year. Frompts for year which is input and stored at YEAR
    LEAP'= 0 if not a leap year.
    LEAP = 1 if year is a leap year.
YR.
    Year frint. Year fetched from YEAR and printed.
cLRDY
    Clear weekday number location WDAY.
DYP ---
    Weekday number prompt.
SETDY
    Frompt for and store valid weekday number at WDAY
Screm_61 Read_Real_Ime_Clock
CLKIOF ---
    Clock Interrupt 听. Masked on parallel port MF-LA-1.
CLKION ---
    Clock Interrupt On. Enabled on parallel port MP-LA-1.
RSTCLK
    Feset Clock 1 s interrupt flag by reading MF-LA-2, PRA
SEC?
    1 Hz clock falling edge ? Loops checking MF-LA-1 CRE b7
```

Data Valid flag falling edge ? Loops checking MF-LA-2 CRA 57 --- is 105 1M 10 M 1H 10 H 10 10 D 100 D iY Fead time from hardware clock. Fesets 1 Hz flag and waits for next falling edge. Resets 1 Hz flag and loops on $D V$ flag checking until parameter data $=9$. Once equal to 9 the next multiplexing cycle is read onto the stack with the parameter data masked.
Clock Mux Data :-MS 4 bits = ECD parameter data $0 \ldots . . .{ }^{9} 9$ LS 4 bits $=$ BCD clock data

1\% ---
Store unit years at YEARHS in ASCII
1D 1001000 ---
Store year day number as a single number n at DYNO
15 105 IM 10 M 1H $10 \mathrm{H}--$
Store time in seconds in the three real time software clocks which use locations CMS , CHMS , CDHMS
iM and lom are converted to seconds and added to 15105 and the result clock Minutes and Seconds is stored at CMS as a doubie number. it and 10 H are converted to seconds and added to CMS to give Clock Hours Minutes and seconds in seconds which is stored at CHMS as a double number. Location WDAY contains the weekday number as previously set. This is multiplied by 8600 . to obtain the number of seconds per day and the result is added to CHMS to give Clock Days Hours Minutes and Seconds in seconds which is stored at CDHMS as a double number. The three different software clocks CMS , CHMS and CDHMS are therefore initialized from the hardware clock.

CPYCLK
Copy Clock to locations used during programme lookahead.
CMS copied to MS
CHMS copied to HMS
CDHMS copied to DHMS
GETIME

Screen_ 62 Increment_feal_Time_Clock. Get_Time_t_1_s
INCLK
Get Time. Clock interrupt off, clock read, data stored and also copied to program lookahead locations. Clock interrupt enabled. The time taken to read convert and store the clock data was measured as 55 ms.

```
    Increment the three real time clocks as follows.
    Inc CMS, if = 3600. s (1 hr) CHS = 0. Else CHS = CMS + 1.
    Inc CHMS, If = 86400. 5 (1 day),
                        Inc WDAY and DYNO,
                        If DYNO is greater than 365 and it is a leap
                        yEar DYNO = 3bt else DYNO = 1
            else DYNO = DYNO + 1
    el5e CHMS = CHMS + 1
    Inc CDHMS, if = 604800., CDHMS = 0. and WDAY = 0.
                        else CDHMS = CDHMS + 1.
```

GETIME+1
Get time plus 1 second. Feads and stores the hardware clock
time as three software clocks which are ali immediately
incremented by 15 . Software clocks therefore 15 ahead.

TODHMS
d --- 5 MHE
To Days Hours Minutes and Seconds. Double no. to 4 single nos.
n ---
week Day number Frint. Left justifiedin a 10 column field.
2 CON

MSC.

HMS.

EHMS.
SMHD--
Day Hours Minutes Seconds Print. Form : - Weekday HH:MM: SS CDHMS.

Clock Dey Hours Minutes Print. Fetches the time from CDHMS, subtracts 1 s to correct time, prints :- Weekday HH: MM : SS

Screen_64
TYPES
Allot Erogramae
--- 1260
Defined as a constant to push 1280 onto the stack. Used to set the datatype (upper byte of single number) to 5

ALLOTF

| SHOVEC | n --- |
| :---: | :---: |
| | Show functions vectoring according to n. |
| | $n=1$, SHOWI; $n=2$, SHOWT; $n=3$, SHOWF ; $n=4$, SHOWF |
| SHOF | --- |
| | Show fanctions Prompt. |
| SHFTNS | --- |
| | Show functions. If required all defined names of one of the 4 |
| | functions can be displayed. \quad. . . . |
| | |
| Screen_65 | Frogramme Parexeters |
| FUD | --- |
| | "Function Data" |
| FHF | --- |
| | Prompt for Hourly Function data. For priority block 3 . |
| GETMS | ---d |
| | Get Minutes and Seconds as seconds. |
| PDF | --- |
| | Frompt for Daily function data. For priority block 2. |
| GTH | --- d |
| | Get Hours , convert to seconds. |
| GTHMS | --- d |
| | Get Hours minutes and Seconds in seconds. |
| PWF | --- |
| | Prompt for Weekly Function data. For priority block 1. |
| GTD | --- d |
| | Get Day. Prompts for and gets weekday no., sonverted to 5. |
| getdhms | --- d |
| | Get Day Hour Minute and Second. Uses GTD and GTHMs and adds. |

```
CHKTYP datatype --- f
    Check Datatype. tf if datatype = 2, 3, 4 or 5
GETFTN --- pfa
    Get Function. Loops until function name with valid datatype is
    input then exits leaving function pfa on stack.
Screen_6b Display_Prgaramme
EMTY? addr --- addr time ftn
    Empty entry ? True flag if time = -1. i.e. No Entry
    addr --- addr f
    Entry ? True flag if there is an entry. Time not equal to -1.
    n ---
    Dash. Frints n dashes followed by 1 space.
20SH:
    Two dashes plus a colon. " -- :"
DASH
TYPEVEC n ---
    Type vector. Frints type and subtype from subtype number n.
    pfa ---
    Function name, type and subtype Print. Checks for forward ref
FTN@. (entry x addr) --- (entry x addr + b)
    Function Fetch and Print. The entry addr is the addr at which
    the time is stored. The function pfa is fetched fromentry x
    addr + 4 and its name, type ano subtype are printed.
    Entry x addr + b = entry (x + 1) addr is left on the stack
```

| DSPI | (entry addr) (time in s) --- (entry addr + 6) |
| :---: | :---: |
| | Display a priority block 1 entry. |
| | "Weekday $\quad H H: M M: S S$ Function neme - Type (Subtype)" |
| DSP2 | (entry addr) (time in s) --- (entry addr + 6) |
| | Display a priority block 2 entry. |
| | "------- $H H: M M: S S$ Function name - Type (Subtype)" |
| DSP3 | (entry addr) (time in s) --- (entry addr + 6) |
| | Display a priority block 3 entry. |
| | "--------- - MM : SS Function name - Type (Subtype) |
| VEC123 | (entry addr) (time in s) $n \cdots-\cdots$ (entry addr + b) |
| | Vector to DSP1, DSP2 or DSFS according to n. Inc entry addr. |
| DSP123 | (entry addr) --- (entry addr) f |
| | Display PB\#1, PB\#2 or PE\#S entry data from given entry addr. |
| | If empty entry prints all dashes, leaves a true flag else |
| | prints entry data using priority block no. from location PE |
| | and Veci2s and leaves a false flag. |

Screen_er Display_Frogigme

E\#. (current addr - addr of top of current FB) ---
Entry number print. "Entry x " where x is calculated using the supplied stack number divided by b then adding 1 .

VECTPE
n --- (addr of location containing PB\#n addr)
Vector to priority block address storage locations :TFI contains addr of top of FE\#1 of current programme TP2 contains addr of top of PB\#2 of current programme TF 3 contains addr of top of $\mathrm{FB} \mathrm{H}_{3}$ of current programme

| 80ISF | (entry x addr) --- (entry x addr +48) |
| :---: | :---: |
| | Eight Display. Displeys entry no. time and furction for g |
| | entries and leaves addr of entry $(x+8)$ on the stack. |
| ADJA | (entry addr) PE\#n --- (adjusted addr: FB\#n |
| | Adjust address. Takes dummy entry no. 25 into aceount. |
| | Entry addr in previous block, adjusted addr = ontry addr - b |
| | Entry addr in current bleck, adjusted addr = entry addr |
| | Entry addr in next block, adjusted addr = entry addr +6 |
| PB\# | (entry addr) --- (adjusted addr) PB\# |
| | Friority Elock number calculated from entry addr. ADJA used to |
| | adjust address on priority block change. "Friority Elock \#n" |
| DTF | --- |
| | Day Time Function Headings. |
| FEDSP | (entry addr) --- (entry addr) |
| | Priority Elock Display. Frints block number, headings and 8 |
| | entries of time and function. The address is incremented by 40 |
| | by EDISF therefore 4 e is subtracted to leave (entry addr). |
| PEF | --- |
| | Prompt for display and Edit Programme, |
| | $N=\operatorname{Next~} 8 \quad 1$ = top PE1 $\quad I=$ insert $\quad E=$ Exit |
| | $\bar{F}=$ Frevious $8 \quad 2=$ top FE2 $\quad 0=$ Deiete |
| | $3=$ top PBS |
| | - |
| Sereen 68 | Display_and_Editarrogremme |
| FNDFET | n --- (addr of top of PEn) |
| | Find Friority Block Top. |

INE\#B

MUDWN

INSERT

DELENT

Screen_69
DEFINIT
--- (entry n addr offset from block top)
Input entry number convert to offset relative to block top. Inputs no. between 1 and 24 . Converts to an address offset relative to block top using $6(E \#-1)$.
(entry n addr offset) --- (entry n addr) (entry n addr) Move all entries below and including n down 1 position. Two copies of entry n ador are left on stack. Entry 24 is lost. (entry addr) --- (entry addr) Insert entry in priority block. The priority block number is first calculated. Prompts "Insert at Entry No. = " and infuts number n. All entries below and including entry n are moved down 1 position, entry 24 being lost. Prompts for and inputs entry n execution time depending on priority block being edited. Entry n function then prompted for, input and stored. (entry addr) --- (entry addr) Delete entry from priority block. The priority block number is first calculated from (entry ador). Frompts :-
" Delete Entry No $=$ " and inputs entry no. n. All entries from $n+1$ to 25 (which always contains time $=-1, \quad$ ftn $=0$) are moved up 1 position. This overwrites entry n and sets entry 24 to an empty entry.
pfa ---
Display and Edit Programme. Initializes using DEPINIT then prompte for a single character followed by return.

P-Frevious 8 entries. If at top of FEl display first B.
N - Next 8 entries. If at bottom of PBS display last 8.
1 - Display first 8 entries of PB1
2 - Display first 8 entries of PB2
3 - Display first B entries of PBS
I - Insert entry
D - Delete entry
E Exit edit mode

Screen 70
PRTP

FROGRAM

PDISF

PROGRAMME
Redefinition of PROGRAMME which allots programme space then displays the empty programme. Data can then be entered using the edit functions. Use :- FROGFAMME $x, x=$ prog data name ---

Alternative command for frogramme. Use :- FROGRAM $x, x=p r o g r a m$ data name
pfa ---
Frogramme Dispiay. If VDU? $=1$ use DEF else use PTRTP

Programme Edit. Use :- PEDIT: $x=$ programme data name
PSET pfa --- f Frogramme Set. If datatype $=5$ the pfais stored at curfig and a true flag left else pfa dropped, -1 stored at CuRpRg and a false flag is left on the stack.

UFSET

CPRG.

```
Current Frogramme Print.
"Current Frogramme :- Not Set i" if programme not set.
"Current Programme :-x" if programme \(x\) set
```


Screen 71 Programme_Logkated

A programme can contain up to 24 entries per priority block. All empty entries have execution time $=-1$. and function $=0$. "Dummy" entry 25 always has time $=-1$. and function $=0$

Friority_Elock_\#1 Weokyy_Data
EDHMS = Execution time with weelsDay; Hours, Minutes and Seconds specified. When the copied ciock time DHMS = EDHMS the associated function (e.g. ftni) is executed. Ftni is therefore executed once a week.

Prigrity_Block_\#2 Daily_Data

EHMS = Execution time with Hours, Minutes and Seconds specified. When the copied clock time HMS = EDHMS the associated function (e.g. ftri2) is executed. Ftn2 is therefore enecuted once every dey,

Prigrity_plock\#3 Hourly_Data

EMS = Execution time with Minutes and Seconds specified. When the copied clock time MS = EMS the associated function (e.g. ftn3) is executed. Ftns is therefore executed once every hour.

The programme lookahead software calculates the difference between the programmed exacution times and the copied clock times for each entry of each priority block. The minimum difference obtained in each priority block together with the corresponding entry address is retained. This gives the next function to be executed in each priority block. The function associated with the minimum time difference is the one set up as the next function to be executed. Equality of time differences is resolved by giving the priority block \#i difference the highest priority and the priority block \#3 difference the lowest priority.

Let the programed execution time be T and the hardware clock time C. The number of seconds before the function at T is to be executed is given by T - C for T greater than C. For T less than C the difference T - C is negative and the time before execution is given by $T-C+C_{m a n}$ where $C_{\text {max }}$ is the maximum count applicable to the priority block being processed.
Friority Black \#1 $\quad C_{W m a x}=604800$. (no. of seconds in one week)

Priority Block \#2
Friority Block \#3
$C_{\text {Dmax }}=86400$. (no. of seconds in one day)
$C_{\text {Hma: }}=3600$. (no. of seconds in one hour)

CHKW

$$
\begin{aligned}
& \text { (entry n addr) --- (entry n ador }+6 \text {) } \\
& \text { Check Weelly data. Calculates } T_{W}-C_{W} \\
& \text { If positive, time before entry } n, T_{D}=T_{W}-C_{W} \\
& \text { If negative, time before entry } n, T_{D}=T_{W}-C_{W}+C_{W m a x} \\
& T_{D} \text { is compared with the contents of } W C(=W e e l i y \text { Counts. If }
\end{aligned}
$$

less T_{D} is stored at $W C$ and the address of entry n is stored at WEA (Weekly Entry Address) else T_{D} and entry n address are dropped. Finaily the address is incremented by 6 to point at entry $n+1$.

NXTW

NXTH

Next Weekly function. Initialises WC to a large number. Gets pfa of current programme (from CURPRG) and adds 4 to point at first entry of PB\#1. This is stored at WEA. All entries are checked using cHKW which leaves the time before the next function in WC with the corresponding entry address in WEA.
(entry n addr) --- (entry n address +6)
Check Daily datas Similar to CHKW but returns the minimum daily count in DC with corresponding address in DEA for entry n compared with previous contents of DC.

Next Daily function. Similar to NXTW but returns time to next PE\#2 function in $D C$ with corresponding entry addr in DEf. (entry n) --- (entry n +6) Check Hourly data. Similar to chkw but returns the minimum hourly count in HC with corresponding entry address in HEA for entry n compared with the previous contents of $H C$.

Next Hourly function. Similar to NXTW but returns the time to the next fe\#s function in HC with entry addr in HEA.

Scresn $72 \quad$ Erggramme Logkahead
NTOC

EATtI
Next time/ftn data TO Current time/function storage. Contents of NXTIME to CURTIME execution time in s Contents of NXTFTN to CURFTN Function pfa
Contents of NPE to CPB Friority Elock number.
FB\#n (entry addr) ---
Entry Address To Time. Execution time copied to NXTIME Function pfa copied to NXTFTN and PE\# stored at NPE
getnxt
Get next function to execute. Selects smallest of WC, DC and HC in current programme. Any equalities are easily resolved in the order $\mathrm{FB} \mathrm{H}_{\mathrm{H}}=$ highest priority, $\mathrm{FB} \mathrm{H}_{\mathrm{S}}=$ lowest priority. MTOC transfers previous data to current function storage and the new data is stored as the next function. If the current programme has not been set CURPRG $=-1$ and NXTFTN $=0$

PBPRT
Get Current function data $=$ Next function data.
(time in 5) FE\#n --
Priority Elock n time and function Frint.
CNDIS
Current and Next Display.
Current function time format from CFB, function from CURFTN
Next function time format from NFE, function from NXTFTN
If an programme empty :- "Empty Frogramme"

Screen 7 B Datatorilo

Screen 73 was reserved for words to allow the CFU to write alphanumeric data to film using a DE/210 Vacuum Flourescent Display which is 10 characters wide.

Froposed use:-Control register B bit 3 was to control fast film advance. Simple modification to the 6018 Camera Interface/Display would be necessary. FORTH definition to advance film by 1 text line :-
: NEXTLINE BSON 1000 DO LOOP BJOFF ;
The data listed below would be written to film each time any ionogram except an oblique $T x$ was executed.

Line 1 Flace (P), Year (Y), Day no. (D) in the form:- F (YY-DDD-
Line 2 Time (H, M) and Type (VER, $O B L$ ete) in the form :- HH-MM-TTT
Line 3 Start $f(5 \mathrm{MHz})$, End $f(E \mathrm{MHz})$, Window Ht (W KG) : - $55-E E-$ WHH
Line 4 Message (M), up to 10 characters long :- MMMMMMMMM
Each time a programe was set the programme name was to be written to film.

Scregn_74 ㅁata_toncs
Q bit ASCII alphanumeric data is sent to the DCS. When the eighth bit is set the other 7 bits are interpreted by the DCS as a control code : -

EO 16 Global data to DCS, no not write to tape.
81. Global data to DCS, write to magnetic tape.

82 16 Freceeds each set of cell data.
83_{16} signals ionogram end.

n in the range 0 to 9 is converted to ASCII and sent to DCS.
NTODCS
$\Pi 142$--
Numbers to DCS. $n 2$ must be greater than 2. $n 1$ is the stack
number to be converted to $n 2$ ASCII digits and sent to DCS.
DCSCR ---
DCS Carriage Feturn. Used in listing DCS data to VDU.
DCSTAB
DCS Tabulate. Tabulate fata listed to VDU.
DCSDATA
Clears VDU and sets DCS? $=1$

Screen 75 Dȧa_to DCs
FLDCS ---
Flace to DCS. 16 ASCII characters from FlACE
YRDCS
Year to DCS. 2 ASCII characters from YEAR
DHMSDCS

Days, Hours, Minutes, seconds to DCS. From DYND and CDHMS
DATDCS
Current ionogram global Data to DCS.
Basic rate from current sounding pfa (stored in CURS) +4
No. of cells from current sounding pfa +24

Cell period from current sounding pfa +12
FFT sample rate from current sounding pfa +16
L. O. offset frequency from current sounding pfa +10

A/R position from location SHIFT

IDAT
n ---
Initial Data to DCS. $n=$ control code, either 80 , or 81 ib Sends global date - place, year, time, DATDCS and ? to DCS. IDATDCS --Initial Data to DCS, control code 80 , not to mag tape

IDATMT
Initial Data to DCS and Nag Tape, control code 81 16 .

CDATDCS ---
Cell Data to DCS, control code 8216° Sends data from CFREQ $=$ cell frequency and CANT = cell antennae followed by ?.

ENDCS
End code to DCS. Sends 83_{16} followed by ? to DCS.

Screen_7t Frint_itie_and_isplay_status
HDING ---
Heading. Clears screen and prints title on top line.

PLYR.
Place Year Print.

DYNO.
Year Day Number Print.
TFOSN.
Timing Position Print.

TITLE
Title the screen. Includes current and next function status.

| Screen_II | Display_gatatyees Editagatatyee |
| :---: | :---: |
| FRINTEF | - |
| | Set $1 / 0$ device flag to printer. |
| DISFTN | pfa --- |
| | Display function data. Checks datatype and vectors to |
| | corresponding display routine. |
| DISPLAY | --- |
| | Display data on VDU. Use:- DISPLAY x where x can be a Sounding, an Ionogram, a Timing Slip; a FORTH Word or a |
| | Programme data name. |
| PRINT | --- |
| | Display data - printer format. Use :- PRINT $x, x=$ data name |
| LOG | --- |
| | Log data on printer. Use :- LOB $x, x=a n y$ of the data names |
| | If $x=a n$ Ionogram data name its Sounding is also listed. |
| EDFTN | pfa --- |
| | Edit Function Data. Checks datatype and vectors to |
| | corresponding edit/display routine. |
| EDIT | --- |
| | Edit datatype. Lse : EDIT $x, x=S, I, T, F$ or P data name. |
| S¢resn 7 º | Set_Datatype |
| SETFTN | pfa---f |
| | Set Function. Checks datatype and vectors to corresponding set |
| | routine. |
| SETNXT | --- |
| | Set Next function. First scans the current programme to find the next function. If not an empty programme it is set and the |

flag generated by setting is stored at NXTSET and COMPARE

Scregn_79
SHOWTYP

DLIST
Set function. Use :- SET x, x can be any of the 5 datatype names. If correctly set prints "Set !".

Show_and_Delete_Datatyee

Shows all defined datatype names since cold start.
--
Data List. Lists all defined datatype names and allows erasure of data entries from the dictionary. NB : - Erasure of name x erases x plus all names defined after $:$. The controller program reports invalid references which may occur if DLIST is used unwisely.

Screen 80 Sgunding and Cell ctartiFrequencies: Function Stog.
DISCN
Display Current and Next functions if flag STAT $=1$
SETUF

FNDHKT

Sets frequency to 0.5 MHz , AGC to internel, sets next function, displays current and next time and function if STAT $=1$ and clears the ionogram busy flag ION:

Find Next function. Makes a copy of the three real time clocks then gets the next function in the current programme and displays the current and next function data is STAT $=1$

Sounding Start Frequency, Linear overall rate.
Equation (3.4) qives the start frequency of sounding i as
$f_{S i}=f_{I}+k_{0}{ }^{i n T_{C}}$
$k_{0}{ }^{n T} C=f_{\text {sid }}$ the frequency change per sounding which is calculated when the ionogram is set and is stored at F/SND Sounding start frequency $f_{S_{i}}=f_{i}+i f_{\text {snd }}$

The calculator memory is initialized to fi. Consecutive sounding start frequencies are obtained by adding fsnd to the contents of the calculator memory.
i.e. New sounding start frequency $=$ old start frequency $+f_{\text {sad }}$

SSFLN
Sounding Start Frequency, Log overall rate.
Equation (3.6) gives the start frequency of sounding i as :$f_{S i}=f_{I} e^{A i T_{S}}$

$$
=f_{I} e^{A T_{S}(i-1)} e^{A T} S
$$

$e^{A T_{S}}$ is calculated when the innogram is set and is stored at EATS. The calculator memory is initialised to fi Consecutive sounding stert frequencies are obtained by multiplying the calculator memory contents by $e^{A T} S$.
i.e. New sounding start freq $=$ (old start freq) (e ${ }^{A T} S$)

CSFN

Cell n Start Frequency. (Linear or Log). Equation (3.2) gives cell j start freq in sounding i as:- $f_{C i j}=f_{S i}+f_{j}$ $f_{s i}$ is stored in calculator memory (see above). To this is added the cell j offset freq f. The result is sent to the synthesizer latches (FCi) to be loaded by the ne:t Tcell pulse Film drive and antennae data also latched for Tcell pulse load
Generates STROBEO followed by STROBEI. Clears all fiip-flops.
STOF
HALT

Halt ionogram execution by setting the current sounding number equal to the total no. of soundings in the ionogram.

```
Loop that checks ionogram busy flag until it is cleared.
```

Scregn- 81 Icell Interrupt Rgutine
NCELL
Next Cell.
If subtype of current ionogram is stationary Doppler then :-
Compares SOUND\# (sounding no.) with \#SOUND (total no. of soundings).
If SOUND\# is the greater then ionogram end has been reached - stof
else send current.cell data \langle calculated during preyious cell to DCS
increment AGC\# and compare with AGC data of current sounding. if
greater pulse receiver AGC and reset AGC\# to 1
If film marks required increment TMK\# and compare with current sounding
time mark data. If greater make time mark and reset TMK\# to 1
increment CELL\#, compare with no. of cells in current sounding: If
greater reset CELL\# to 1 and increment sOUND\#
Finally execute CSFN to calculate and latch next cell data.

If subtype of current ionogram is NOT stationary Doppler then :Compare SOUND\# (sounding no.) with \#SQUND (total no. of soundings). If SOUND\# is the greater then ionogram end has been reached - sTop else if cell no. $=1$ and if sounding $A G C$ data $=$ not fixed, pulse AGC send current cell data \{calculated during previous cell) to DCS increment CELL\# and compare with no. of cells in current sounding If greater reset CELL\# to 1 and increment SOUND\# If linear overall rate execute SSFLIN else log rate execute SSFLN Finally execute CSFN to calculate and latch next cell data.

Srreen 82

RFW

Eun Function
pfa ---
Run Sounding. Not allowed therefore issues error message.
ffa ---
Fun Ionogram. AGC set to external. If ionogram has data to tape $=$ yes IDATHT executed else IDATDCS. The sweep flip-flop is then enabled, COMPARE flag set to 0 to inhibit comparison of next function stert time with clock during an ionogram and the ionogran busy flag is set to 1 . The next function to be executed is found and displayed with its execution time. pfa ---

Fun Timing Slip. Feads hardware clock then finds and displays next function in current programme. Does timing slip then sets the next function to be executed.
pfa ---
Run FORTH Word. Feads hardware clock then finds and displays next function in current programe. Fofith word executed then the next function is set.

RFRG

RFTN RUN

ADFF

CANCEL ---
Cancel programme. Sets CURPRG to -i using ADFF.
FAUSE

Pause programme execution. CURFRG saved then set to -1 using AOFF to inhibit automatic sequencing of functions. Automatic operation resumed by pressing VDU space bar.

Screen $83 \quad$ Clock_Service_koutine
PBTIME $\quad n \cdots$
Vectors to CDHMS, CHMS or CMS according to n.
TIME
pfa---
Run frogramme. pfais dropped and the hardware clock is read. Gets current function $=$ next function in the current programme. The next function is set and the screen titled. pfa ---

Run Function. Checks datatype and vectors to correct run word

Fun Function, Use :- RUN $x \quad x=$ function name
If typed during the execution of an ionogram the executing ionogram is halted, the specified function (x) is set and then run on the negative edge of the 1 Hz clock signal.

Automatic operation 0ff: Status flag set to off, current ionogram halted and -1 stored in CURPRG. SETNXT then executed and status set to former state. -

Set time display flag TON until VDU space bar pressed.

CLOCK
Increments the three software clocks. If flag compare is set the priority block number of the next function is obtained from NPB and the corresponding clock time is fetched and compared with the function execution time stored in NXTIME. If equal the next function is run. NB :- Ionogram execution. Since the clock is 1 s ahead of the real time the run command initialises certain parameters (see fI) then enables the sweep start flip-flop. Execution begins on the next falling edge of the 1 Hz clock which occurs at the programmed time. If TON $=1$ the time is displayed with updates each second.

Scresn 84 Interruet Polling
FOLL
Interrupt Polling routine. After any interrupt :-
Tcell pulse interrupt fiag checked, if set executes NCELL Clock interrupt flag checked, if set executes CLOCK

If neither Tceil pulse nor clock, "interrupt error" Return from interrupt.

SETIRQ
Set Interrupt fiequest vectors.
Ffa of $F O L L$ stored at $23 E G_{16}$
S-BUG vector to primitive IRO set by storing ICEG $_{16}$ at DFCB 16

Screen 8 Commad_List
The first 7 words listed are used in defining the word HELF

HELF
Displays an abpreviated command list.

| Screen_ ${ }^{\text {b }}$ | System_Initiolization |
| :---: | :---: |
| SETTM | --- |
| | Set hardware clock Time. "Set time then press SPACE BAR". |
| VWAFM | --- : |
| | Vertichirp controller warm start. Interrupts off, interrupt |
| | vectors set, flags initialized, ports initialized, |
| | controller hardware reset, interrupts enabled, hardware |
| | clock read and next function found and set and screen titled. |
| VCOLD | --- |
| | Vertichirp controller cold start. |
| | Queries "Heath VoU (Y or N) ?" , prints "Initialization" then |
| | prompts for place name, year and weekday number: |
| | Hardware clock must then be set. |
| | CURPRG set to $-1=$ programme not set. COMPARE set to 0. |
| | bdata (beginning of data) initielized. |
| | VWARM executed. |
| COLD? | --- |
| | Executed by kernal word ABORT in place of QUIT. Checks to see |
| | if any data has been entered. If no oata executes VCOLD else |
| | enecutes UWARM. QUIT lloop that checks and inputs from |
| | leyboard, then executed. |

SETTIME
Set hardware clock Time, read into computer and display. The last two lines of FORTH execute to assign addresses as follows:Hex_Address Hex Data
0023 982E
$0025 \quad 983$

0027
9810

9808
Efa of COLD? 1177
nfa of SETTIME 1196
$119 E \quad 982 \mathrm{E}$

1103
9800

Eunction
initial fence set to new location of TASK. new coid start value for dictionary pointer new cold start value for vocabulary link reference to FORTH in kernal word ABORT

ABORT to execute COLD? before QUIT
set backlink from word FORTH to SETTIME
new nfa of word TASK
new nfa of word FORTH

[^0]: E6 System initialization

