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ABSTRACT 

 

Molecular and Genetic Analysis of Adaptive Evolution in the Rare Serpentine Endemic, 

Caulanthus amplexicaulis var. barbarae (J Howell) Munz. (August 2010) 

Anna Mildred Burrell, B.A., Duke University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Alan E. Pepper 

 

 In the interest of understanding the genetic basis of adaption to environment, we 

developed F2 lines from an F1 interspecific cross between the rare serpentine endemic, 

Caulanthus amplexicaulis var. barbarae and the non-serpentine Caulanthus 

amplexicaulis var. amplexicaulis. Using genomic DNA from Caulanthus amplexicaulis 

var. barbarae, we developed a suite of microsatellite markers. In addition, we developed 

gene specific markers for genes known in Arabidopsis to be ecologically important. Our 

suite of markers was used to genotype 186 F2 plants, the basis for our F2 linkage map. 

 In order to further resolve evolutionary relationships among related taxa, we 

constructed a molecular phylogeny for 52 taxa within the related genera Caulanthus, 

Guillenia, Sibaropsis, Streptanthella, and Streptanthus, using the sequences from the 

ribosomal ITS region and two chloroplast regions. 

 To create a useful system to enable comparative genomics within the related taxa 

of the ecologically and morphologically diverse Streptanthoid Complex, we 

demonstrated that our molecular tools are portable across a large group of ecologically 

significant taxa. 
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 To use the significant genomic resources available in Arabidopsis, we 

constructed a collinear comparative map of Caulanthus and the model plant Arabidopsis 

thaliana based on  ancestral linkage blocks with the Brassicaceae family. This 

comparative map acted as a guide for candidate gene selection in the mapping of sepal 

color. We identified a region of MYB transcription factors in an orthologous region of 

Arabidopsis. Sequence data from Caulanthus amplexicaulis var. barbarae and 

Caulanthus amplexicaulis var. amplexicaulis in this MYB region showed significant 

sequence divergence between the two taxa. 

 To determine the genetic basis for the tolerance of high concentrations of 

magnesium in Caulanthus amplexicaulis var. barbarae, we phenotyped multiple 

individuals from 88 F2:3 families under two nutrient treatments, differing in the ratio of 

calcium to magnesium. Through QTL analysis, using our F2 linkage map as a framework 

for the analysis, we identified one major effect QTL on Caulanthus Linkage Group 8 and 

another QTL on Caulanthus Linkage Group 3. We identified candidate genes for the 

QTLs using our collinear comparative map to Arabidopsis. 
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NOMENCLATURE 

 

CAA Caulanthus amplexicaulis var. amplexicaulis 

CAB Caulanthus amplexicaulis var. barbarae 

SSR simple sequence repeat (used interchangeably with microsatellite) 

INDEL Insertion-deletion 

INVGAMMA gamma with some invariant sites 

GTR General Time Reversible 
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1.   INTRODUCTION 

 

 G. Ledyard Stebbins believed the study of rare, endemic species would yield 

great insights into evolutionary processes (Stebbins 1979). Many of these species 

possess the ability to endure in extreme conditions, pointing to adaptation to 

environment.  Serpentine or ultramafic soils represent such conditions.  These soils 

generally possess levels of magnesium, nickel and chromium that are toxic to most 

plants, as well as lack the levels of nitrogen, phosphorous, potassium, and particularly, 

calcium that most plants require for survival (Kruckeberg 1984; Proctor& Woodell 

1975).  In addition to the challenging chemical conditions of serpentine soils, the 

structure of the soil is poor, typically rocky and lacking high water-holding capacity. 

Plant life is characteristically sparse in these ―geological islands‖, (Harrison, 1999) and 

the mechanisms by which the plants that survive under these conditions are the focus of 

this work. 

 Reciprocal planting experiments explored the effects of serpentine soils on non-

serpentine plants as well as the effects of non-serpentine conditions on serpentine-

adapted plants (Walker, 1948, Proctor, 1971, Kruckeberg, 1950,1954). The answers to 

many questions that remain largely unanswered today were sought in these experiments. 

Were the species adapted to serpentine truly endemic to the substrate? Did these plants 

require this unique soil in order to survive and complete their life cycles? How would 

 

____________ 
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these naturally occurring serpentine endemics perform outside of their native 

environment?  

In every published study, one common element emerged: species non-native to 

serpentine failed to produce healthy plants under serpentine conditions. However, the 

serpentine-adapted plants were able to complete their life cycles without detrimental 

physiological effects in non-serpentine conditions. Kruckeberg observed that some 

serpentine endemics accumulated less biomass when grown in conditions lacking the 

elevated levels of magnesium characteristic of serpentine soil yet survived to reproduce 

(Kruckeberg 1954).  

 A number of these early pioneering studies on the nature of plant-environment 

interactions occurred in the Pacific Northwest of the United States. However, as early as 

1950 in his PhD dissertation, Kruckeberg cited a genus then little known outside of 

California, Streptanthus, as a potential model for serpentine tolerance (Kruckeberg, 

1950). This genus included species that grew both on and off serpentine, yet most of the 

species within this genus tended to be endemic to particular geologies—a characteristic 

that has over time made this genus greatly interesting for adaptive evolutionary and 

ecological studies (Kruckeberg 1984; Mayer& Soltis 1999; Reeves et al. 1981). 

Following Kruckeberg‘s seminal ecological research, the genetic component of 

serpentine adaptation was broached in 1970, in a PhD dissertation, in which a F1 cross of 

a serpentine endemic grass, Agropyron spicatum (bluebunch wheatgrass), to a non-

serpentine Agropyron spicatum was reported to produce progeny with quantifiable, 
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presumably heritable, variation in growth responses to the conditions of serpentine soil 

(Main, 1970).  

Especially relevant to this work, Kruckeberg showed that species within the 

genus Streptanthus produced fertile progeny from interspecific crosses between 

serpentine and non-serpentine taxa (Kruckeberg 1984).  Much of this research was 

conducted years before DNA sequencing, polymerase chain reaction (PCR) and other 

molecular technologies became widely accessible. Now, in an era of comparative 

genomics and a fully sequenced and annotated genome of the Brassicaceae family 

relative, Arabidopsis thaliana, the research on the species within Streptanthus conducted 

years prior has become a foundation for the research reported herein. 

Eleven of taxa of the ~60 species closely related to Streptanthus (The 

Streptanthoid Complex) are narrowly endemic to serpentine soil (Caulanthus 

amplexicaulis var. barbarae, S. barbiger, S. barbatus, S. brachiatus, S. breweri, S. 

drepanoides,  S.insignis, S. morisonii, S. niger, and S. polygaloides (Kruckeberg 1984).  

The principle subjects of this research are Caulanthus amplexicaulis var. barbarae (J. 

Howell) Munz, a narrow endemic restricted to serpentine soil, and its non-serpentine 

sister taxon, Caulanthus amplexicaulis var. amplexicaulis S. Watson. In this work, we 

show that these Caulanthus taxa are members of a larger monophyletic group, 

encompassing Streptanthus, Caulanthus, Guillenia, Streptanthella and Sibaropsis. 

Stebbins described California as an ideal setting for the study of narrow 

endemics.  Its Mediterranean climate allowed for the growth of desert, temperate and 

boreal species within its boundaries (Stebbins 1965).  Occurring in outcrops, serpentine 
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regions are often small geological islands amidst significantly differing geologies.  In 

many cases, regions adjoining the serpentine outcrops Caulanthus amplexicaulis var. 

barbarae inhabits are rich with plant life but the adjacent serpentine is almost 

completely barren (Kruckeberg 1984).  Caulanthus amplexicaulis var. barbarae is found 

in less than ten populations, often comprised of less than 20 individuals each year 

(Pepper& Norwood 2001).  The species is considered rare and endangered (California 

Native Plant Society 2006).  The outcrops on which these populations grow are found in 

remote areas of high elevation that are exposed to minimal human impact.  More 

widespread in distribution, its sister taxon Caulanthus amplexicaulis var. amplexicaulis 

is found in more accessible regions of Ventura and Los Angeles counties growing on 

granitic soil and one recorded population on shale (Kruckeberg 1984).  Although the two 

taxa are geographically isolated from one another, they are fully interfertile. Their 

progeny are self-fertile, which allows subsequent genetic analysis through genetic 

linkage mapping and quantitative trait loci analysis (Falconer& Mackay 1996; 

Kruckeberg 1984; Mauricio 2001). 
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2.   MOLECULAR PHYLOGENY OF THE STREPTANTHOID COMPLEX 

(BRASSICACEAE) BASED ON RIBOSOMAL INTERNAL TRANSCRIBED 

SPACER AND CHLOROPLAST SEQUENCE 

 

 

2.1 Introduction 

 

Our principle study organism, Caulanthus amplexicaulis var. barbarae, is a 

member of the ±60 plant species that constitute ―The Streptanthoid Complex,‖ our 

working title for the closely related genera within the Schizopetalae tribe of the plant 

family Brassicaceae (Al-Shehbaz et al. 2006; Pepper& Norwood 2001). Genera in this 

complex include: Caulanthus, Guillenia, Sibaropsis, Streptanthella and Streptanthus. 

This group occurs in western North America and exists in a remarkable range of edaphic 

substrates, including serpentine, gypsum, alkaline (pH > 9.5), acidic, clay, saline, 

limestone, basalt, and gabbro soils (Kruckeberg 1984; Rollins 1993). Members of the 

Strepanthoid Complex occur at altitudes ranging from a few meters above sea level (C. 

heterophyllus) to more than 3,600 m (C. major). Taxa within this diverse group of plants 

exist in rainfall regimes varying from less than 150 mm average annual rainfall in the 

Mojave Desert (C. inflatus) to more than 1.5 m in Louisiana (S. hyacinthoides). In 

addition to this remarkable ecological amplitude, species in this group display an array 

of extremely diverse floral morphologies compared to other genera or groups of related 

genera in the Brassicaceae family (which is noted for its highly stereotypical floral 

morphologies). The flowers of the Streptanthoid taxa range from extreme reduction of 
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petals to elaboration and specialization of petals, and include zygomorphic flowers and 

protandry—all rarities in the Brassicaceae (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The diverse floral morphology in Streptanthoid Complex. Clockwise from  the top left: 

Streptanthus maculatus (photo: unknown), Streptanthus cutleri (photo: M. Burrell), Streptanthus 

hyacinthoides (photo: M. Burrell), Streptanthus albidus ssp. albidus (photo: M. Burrell), 

Streptanthus cordatus var. piutensis (photo: A. Pepper), Guillenia lemmoni (photo: S. Matson, 

UC Berkeley), Caulanthus heterophyllus var. heterophyllus (photo: M. Burrell), Streptanthus 

platycarpus (photo: M. Burrell), center photo Caulanthus inflatus (photo: CalFlora) 
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The records of interspecific crosses within this group of genera led us to make 

exploratory interspecific crosses among other members of this diverse group, 

anticipating that many would be interfertile (Kruckeberg 1951; Whittaker 1954). We 

considered knowledge of what taxa were interfertile with one another and would 

produce fertile progeny a pre-requisite to identifying the genetic factors underlying 

adaptation to environment in this group of plants via genetic mapping studies. We 

observed significant interfertility (~70%) among the species crossed. This interfertility 

among the species in this group is a typical signature of rapid species radiation and/or 

reticulate evolution involving wide-hybridization events (Rieseberg 2003). The lack of 

divergence in ITS sequence supports this hypothesis (Mayer& Soltis 1999; Pepper& 

Norwood 2001; Warwick 2009; Warwick et al. 2002). 

The genera in the Streptanthoid Complex, Brassicaceae, propose multiple 

challenges to establishing a well-resolved phylogeny of the group. Of the ±60 taxa in 

this group, at least 21 are considered threatened or endangered at either the state or 

federal level (California Native Plant Society, 2005).  Sampling of many species from 

native habitats for phylogenetic studies simply is not feasible because many taxa within 

the Complex are often in inaccessible habitats and/or the populations have been 

destroyed primarily due to urbanization (Vitousek& Matson 1997).  Furthermore, many 

of the taxa are rare and occurrences of the populations can vary from year to year, 

further hampering the feasibility of collection. Herbarium specimens do exist allowing 

small-scale sampling for molecular studies but are not inclusive of all taxa. 
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 The taxonomic characters of this group are well-documented (De Candolle 1821; 

Hauser 1982; Hickman 1993; Rollins 1993; Schulz 1936). Within the family, the 

members of the Streptanthoid Complex are grouped in the tribe Schizopetaleae (formerly 

called Thelypodieae) and were believed to be a primitive, basal group at one time due to 

two taxonomic similarities to members of the Cleomaceae: stamens of equal length and 

the presence of a gynophore (Beilstein et al. 2006). More recent molecular phylogenies 

of the Brassicaceae have included a few representative taxa within the Streptanthoid 

Complex but are far from comprehensive (Beilstein et al. 2006; Hauser 1982; Johnston& 

Hodnett 2005).   

Recent  molecular ribosomal ITS and chloroplast (trnL and ndhF) sequence data 

data suggests that the Schizopetaleae is an advanced and not a primitive group (Al-

Shehbaz et al. 2006; Beilstein et al. 2006; Pepper& Norwood 2001; Warwick 2009; 

Warwick et al. 2002).  The use of appropriate DNA sequences can provide high 

resolution analyses among related taxa.  However, little resolution has been presented 

among the taxa of interest in contrast with the diversity of their habitats (ranging from 

alkali desert to serpentine), geographical distribution and morphology (Rollins 1993).   

 One study combining chloroplast (trnL) and ITS data focused primarily on 

variability among geographically and ecologically distinct taxa within the Streptanthus 

glandulosus complex (Mayer& Soltis 1999).  The most thorough phylogenetic 

examination of Streptanthoid genera was made in an evolutionary study of Caulanthus 

amplexicaulis var. amplexicaulis and Caulanthus amplexicaulis var. barbarae. This 

phylogeny, created in the interest of establishing evolutionary relationships among 
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serpentine and non-serpentine taxa, using ITS1, ITS2 and chloroplast trnL data clearly 

showed that the Streptanthoid Complex is a monophyletic group within the family 

Brassicaceae (Pepper& Norwood 2001). 

The data presented here includes 51 taxa within the Streptanthoid Complex 

(Table 1). To clarify the relationships of the taxa to one another, we used the widely 

accepted ribosomal ITS and chloroplast trnL genes but concatenated the chloroplast data 

with sequence data from the chloroplast trnH-psba3 region, which shows greater 

polymorphism than trnL region (Kress et al. 2005; Sang et al. 1997). We demonstrate 

previously undocumented phylogenetic resolution that will be useful to use this group of 

plants as genetic models for ecological and evolutionary studies and to further clarify the 

evolution of serpentine tolerance in Caulanthus amplexicaulis var. barbarae. 

 

 

 

Table 1 Taxa used in Streptanthoid Complex phylogeny including acronym and habitat. 

Taxon Acronym Substrate / habitat 

   
Arabis petiolaris (Gray) Gray Apet serpentine 

Caulanthus amplexicaulis var. amplexicaulis S. Watson CAA1 granite scree 

Caulanthus amplexicaulis var. barbarae (J. Howell) Munz CAB1 serpentine 

Caulanthus californicus (S. Watson) Payson Ccalif grassland 

Caulanthus cooperi (S. Watson) Payson Ccoop granitic gravel 

Caulanthus coulteri S. Watson Ccoult granitic sand 

Caulanthus crassicaulis (Torrey) S. Watson Ccras shale 

Caulanthus heterophyllus var. heterophyllus (Nutt.) Payson CHH1 burn 

Caulanthus heterophyllus var. psuedosimulans R. Buck CHP1 burn 

Caulanthus inflatus S. Watson CI1 alkali sand 

Caulanthus pilosus S. Watson Cpil granitic sand 

Guillenia flavescens(Hook) Payson Gflav unknown 
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Table 1 continued 
 

  
Taxon Acronym Substrate / habitat 

 

Guillenia lasiophylla (Hook & Arn.) E. Greene GL1 alkali sand 

Guillenia lemmonii (Greene) Buck Glem sandstone talus 

Sibaropsis hammitti S. Boyd & T.S. Ross Sibham clay, vernal pools 

Sisymbrium orientale L. Sori disturbed soil 

Stanleya pinnata (Pursh ) Britton Stan unknown 

Streptanthella longirostris (S. Watson) Rydb. SL_10 unknown 

Streptanthus albidus ssp. albidus (E. Greene) Kruckeberg SAA valley grassland 

Strepthanthus albidus ssp. peramoenus (E. Greene) Kruckeberg SAP1 serpentine barren 

Streptanthus barbiger E. Greene SBB serpentine 

Streptanthus batrachopus J. Morrison SBA1 serpentine 

Streptanthus bernardinus (E. Greene) Parish Sbnd granitic gravel 

Streptanthus brachiatus F.W. Hoffmann SBH1 serpentine 

Streptanthus bracteatus A. Gray SB1, Sbrac limestone ledge 

Streptanthus breweri A. Gray Sbhesp serpentine 

Streptanthus breweri var. hesperidus Jepson SHES serpentine 

Streptanthus campestris S. Watson Scamp granitic soil 

Streptanthus carinatus C. Wright ex A. Gray Scarin limestone 

Streptanthus carinatus var. arizonicus (S. Wats.) Krucke., Rodman & Worthington Scaraz limestone 

Streptanthus cordatus Nutt. Scord serpentine 

Streptanthus cutleri Cory Scutl limestone 

Streptanthus diversifolius S. Watson Sdiv unknown 

Streptanthus drepanoides Krucke. & J. Morrison Sdr serpentine 

Streptanthus farnsworthianus J. Howell SF serpentine 

Streptanthus glandulosus ssp. secundus (E. Greene) Kruckeberg SGS serpentine 

Streptanthus glandulosus ssp.glandulosus Hook. SGG1 serpentine 

Streptanthus glandulosus var. pulchellus (E. Greene) Kruckeberg SGP1 serptentine 

Streptanthus hispidus A. Gray SHIS burn, alkali scree 

Streptanthus hyacinthoides Hook SHY sand 

Streptanthus insignis Jepson Sins serpentine 

Streptanthus maculatus Nutt. Smac sandstone 

Streptanthus morrisonii F.W. Hoffm. Sm serpentine 

Streptanthus niger E. Greene SN1 serpentine 

Streptanthus platycarpus A. Gray Splaty limestone 

Streptanthus polygaloides A. Gray Spoly serpentine 

Streptanthus shastensis Price, D. Taylor, & Buck SSS1 unknown 

Streptanthus sparsiflorus Rollins Sspars granitic soil 

Streptanthus tortuosus Kellogg ST9 granitic soil 

Streptanthus tortuosus orbiculatus (E. Greene) H.M. Hall STO subalpine barrens 
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2.2 Methods 

 

 DNA collection 

 The majority of the DNA analyzed in this study was field-collected (Appendix 

A). A lack of PCR inhibitory compounds allowed us to develop a field-collection 

protocol that is easy, time-insensitive and highly portable. This method employed the 

use of silica beads (EMD™ t.h.e. desiccant, part number: DX0014-1) in a standard 1.5 

ml Eppendorf tube. Approximately, 2 cm
2
 of leaf tissue was removed from penultimate 

cauline leaves, using sterile four inch plastic forceps and placed into the desiccant-

containing tube until laboratory-based DNA extraction was performed. 

 Herbaria specimens were sampled for the following taxa: Streptanthus 

maculatus, Streptanthus hyacinthoides and Streptanthus sparsiflorus (Herbarium of The 

University of Texas at Austin) and Arabis petiolaris (Herbarium of Texas A&M 

University, Department of Biology). A sample of cauline leaf tissue approximately 2 

cm
2
 in size was removed using sterile plastic forceps and stored in 1.5 ml Eppendorf 

tubes until laboratory-based DNA extraction was performed. 

 For samples grown from seed in the laboratory, the penultimate cauline leaf was 

removed and subsequently ground and extracted using our standard mini-prep protocol 

(Pepper& Norwood 2001). These plants were used for experimental interspecific crosses 

as well as seed bulking. 
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 DNA from the following taxa was extracted from seeds using QuickExtract™ 

Seed DNA Extraction Solution (Epicentre): Caulanthus pilosus and Streptanthus 

carinatus subsp. arizonicus. 

 All genomic DNAs were RNAase-treated and quantified to 50 ng/ul for optimal PCR 

and stored in 0.5X Tris-EDTA (5 mM Tris, 0.5 mM EDTA) solution at -20 °C. 

 

Amplicon sequencing 

 PCR-based amplicons were generated in 20 µl reactions for the majority of taxa: 

7 µl sterile, nuclease-free water, 10 µL GoTaq® Green Master Mix (Promega), 1µl 7.5 

pmol forward primer, 1 µl 7.5 pmol reverse primer (Table 2) and 1µL DNA template. 

Primer pairs used were: 1) Cp-C (trnL) and Cp-D (trnL), 2) trnH and psba3 and 3) ITS4 

and ITS5. Standard PCR cycling parameters were employed (Burrell& Pepper 2006). 

Following seed DNA extraction, the PlantAmp™ PCR System (Epicentre) was 

used following recommended sequencing protocol to generate PCR amplicons for 

downstream sequencing in taxa: Caulanthus pilosus and Streptanthus carinatus subsp. 

arizonicus. DNA samples were diluted to ~50 ng/µl. 

Due to poor sequence quality of Streptanthus diversifolius in ITS, cloning was 

required to obtain sufficient DNA for sequencing. A PCR-generated ITS amplicon was 

cloned into E. coli using pCR®-Blunt II-TOPO® (Invitrogen™). Clones were PCR-

amplified using modified vector primers, TOP-R1 and WM13-R (Table 2). 
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Table 2  Primer sequences used in Streptanthoid Complex phylogeny 

 

Primer Name  Sequence     Origin 

 

CP-C  (trnL) CGAAATCGGTAGACGCTACG   chloroplast 

CP-D  (trnL) GGGGATAGAGGGACTTGAAC  chloroplast 

psba3-F  GTTATGCATGAACGTAATGCTC  chloroplast 

trnH-F  CGCGCATGGTGGATTCACAATCC  chloroplast 

ITS4   TCCTCCGCTTATTGATATGC   ribosome 

ITS5   GGAAGTAAAAGTCGTAACAAGG  ribosome 

TOP-R1  GCCAGTGAATTGTAATACGAC  vector 

WM13-R  AGCGGATAACAATTTCACACAGG  vector 
 

 

 

 

All PCR amplicons were purified using ExcelaPure™ 96-Well ultrafiltration-

based purification (Edge Biosystems) to remove excess dNTPs, primers and any other 

impurities prior to sequencing. 

BigDye® Terminator v3.1 sequencing dye chemistry (Applied Biosystems) was 

used for bidirectional sequencing of purified DNA templates. Primer concentration for 

this reaction was 12.5 ng/µl. Standard sequencing thermocycler parameters were 

employed (Reddy& Pepper 2001). Sequencing templates were purified with the 

Performa® DTR hydrated gel matrix (Edge Biosystems) prior to sequencing on an ABI 

3130 capillary sequencer (Applied Biosystems). 
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Sequence analysis 

 Sequence data was imported into Sequencher 4.8 (GeneCodes) software for 

quality verification and primer sequence trimming. Sequences for each amplicon from 

each taxon were exported in FASTA format for each primer pair (trnL, ITS, trnH-psba3) 

into CLUSTAL X ver.2 software (Larkin& McGettigan 2007) for alignment and 

compilation into interleaved NEXUS file format (Maddison et al. 1997). The alignment 

was further manually refined using Geneious software (Drummond 2009). The aligned 

sequence data from trnL and trnH-psba3 chloroplast regions were concatenated into one 

interleaved NEXUS file for analysis. Regions containing insertion-deletion 

polymorphisms larger than 3 bases and conserved in less than 50% of the sampled taxa 

were excluded from the analysis, relying on informative single nucleotide 

polymorphisms.  

Bayesian analyses were performed on both the ITS data set and the concatenated 

chloroplast data set using Mr. Bayes phylogenetic analysis software (Ronquist& 

Huelsenbeck 2003). The analysis of each separate data set was performed through
 

1,100,000 iterations of the Markov chain Monte Carlo (MCMC) simulation with a burn-

in length of 100,000. Four hot chains (hot temperature 0.2) were employed with a sub-

sampling frequency of every 200 generations. This analysis employed a GTR nucleotide 

substitution model with the invgamma distribution model for rate variation to calculate 

the posterior probability for each branch in the topology. FigTree v1.3.1 was used to 

create the trees using the posterior output of the Bayesian analysis (Figures 2, 3). 
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2.3 Results 

 

Molecular sequence data 

 Aligned ITS sequences provided 691 nucleotides with 133 informative 

nucleotide polymorphisms, whereas aligned and concatenated chloroplast sequences 

provided 688 nucleotides with 66 informative nucleotide polymorphisms. 

 

Tree topology 

 Both trees show significant polytomy and lack of resolution. The two trees 

produced using the posterior output of Bayesian analysis share nearly identical 

topologies with minor exceptions. The ITS tree resolves the branches of C. californicus, 

C. inflatus and C. coulteri into a clade with a 0.91 posterior probability value. This data 

also resolves the previous polytomy of the Guillenia species included in this study and 

verifies the conclusions of Buck that Guillenia forms distinct clades within this group 

(Buck 1995). 

The tree produced by the concatenated chloroplast data largely mirrors the ITS 

tree but places S. diversifolius and S. farnsworthianus in a clade with 0.77 posterior 

probability. This data also places S. cordatus and Sibaropsis hammittii in a clade with a 

0.88 posterior probability. 
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Figure 2  ITS phylogenetic tree. Tree based on Bayseian posterior output for aligned ribosomal 

ITS sequence data in the Streptanthoid Complex, Brassicaceae. Outgroup is Sisymbrium 

orientale (Sori). 
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Figure 3 Chloroplast phylogenetic tree. Tree based on Bayseian posterior output for aligned and 

concatenated chloroplast sequence data in the Streptanthoid Complex, Brassicaceae. Outgroup is 

Sisymbrium orientale (Sori). 
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Figure 4 Interspecific crosses within phylogenetic context. This circular phylogram of 

the evolutionary relationships based on ITS phylogenetic data among the members of the 

Streptanthoid Complex. Lines connecting taxa represent successful interspecific crosses, 

resulting in viable F1 seeds. The crossed-out taxa were not included in these crosses due 

to lack of plant material. 
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2.4 Discussion 

 

The goal of this study was to clarify the sequence similarity among these taxa 

and to lay the groundwork for future genetic analyses through large scale mapping 

studies. The basis of the ecological adaptations of these taxa as well as vegetative and 

floral morphologies within this group continues to be a topic of interest. Due to the 

conserved diploid chromosome number of 2n=28 for all of the taxa we sampled, with the 

possible exception of Streptanthus bernardinus (reported as 2n=14), we have made 

interspecific crosses among the taxa that have produced seed (Figure 4) (Warwick& Al-

Shehbaz 2006). Our exploration of the interfertility of these taxa was limited by the lack 

of plant material, as the majority of our sampled taxa were field-collected leaf tissue. 

However, ~70% of the interspecific crosses we attempted produced viable F1 seeds. Our 

results add to and confirm previous interfertility studies within this group (Kruckeberg 

1951; Whittaker 1954). Interfertility among the species is often a signature of rapid 

species radiation (Givnish& Sytsma 2000). Furthermore, the observed interfertility 

among these plants has led to the development of genetic resources to identify the 

genetic basis of diverse developmental, ecological and physiological processes in these 

organisms (Burrell et al., in preparation). 

The well-supported clades formed in our trees fall into distinct groups: 1) a group 

of taxa endemic to the California Bay Area, 2) the class Eucaulanthus (the ―true‖ 

Caulanthus taxa), 3) a group of taxa found in Texas, 4) the Guillenia taxa and 5) a group 

of endemic taxa found in Northern California. Within each of these clades are taxa that 
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differ drastically in habitat (Table 1). However, there still exists the unresolved 

polytomy in these trees, as seen in the numerous phylogenies that have examined this 

group (Al-Shehbaz et al. 2006; Beilstein et al. 2006; Hall et al. 2002; Marhold& Lihova 

2006; Pepper& Norwood 2001; Warwick& Sauder 2005; Warwick 2009). These 

polytomic taxa include the Texas taxon Arabis petiolaris (formerly called Streptanthus 

petiolaris and found on and off serpentine), Stanleya pinnata, the woodland California 

taxon Caulanthus crassicaulis, the east Texas taxon Streptanthus hyacinthoides, the 

nickel hyperaccumulator Streptanthus polygaloides, Streptanthella longirostris and the 

Northern California taxon Streptanthus shastensis.  

Recent reports have included: 1) a taxonomic treatment of Streptanthus vernalis 

as a possible subspecies of S. morrisonii, 2) a report of a new species, Streptanthus 

longisiliquis, suggested to be closely related to S. bernardinus and S. campestris 3) 

taxonomic revisions within some of the Streptanthoid genera, particularly asserting West 

Texas taxa, Streptanthus sparsiflorus and Streptanthus platycarpus are the same species, 

and 4) Streptanthus polygaloides could be a group of four related subspecies (Al-

Shehbaz& Mayer 2009; Boyd et al. 2009; Clifton& Buck 2007 ; O'Donnell& Dolan 

2005).  

 Although we lacked DNA from some of the aforementioned species, our 

molecular data clearly shows that Streptanthus platycarpus and Streptanthus sparsiflorus 

are distinct species (Figures 1 and 2). Furthermore, three annual visitations to 

populations of these species and simple visual observations (Burrell and Greer, 
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unpublished data) support the previous treatment of the two species by Rollins (Rollins 

1993).  

We still lack sufficient data to clarify the evolutionary history of this group. 

Within the Streptanthoid Complex, signatures of reticulate evolution (hybridization of 

taxa) have been observed previously (Kruckeberg et al. 1982; Mayer& Soltis 1999). We 

observed a contrast in the treatment of Streptanthus barbiger by the nuclear ITS gene 

and the two chloroplast genes, an established indicator of reticulate evolution (Sang et al. 

1997). In addition, the potential for rapid radiation events within this group is strong. 

The diverse and interleaved ―island‖ geology of California, in particular, is a classic 

scenario for rapid adaptive speciation events (Kapralov& Filatov 2006; Seehausen 

2004). 

Greater resolution of the relationships among these taxa will likely be attained by 

the use of nuclear gene sequences (Bailey& O'Kane 2006). We can test hypotheses for 

evidence of reticulate evolution using numerous nuclear markers. We have developed 

gene models from several annotated genes in Arabidopsis that are conserved in all of the 

members of the Streptanthoid Complex, our outgroup Sisymbrium orientale as well as 

Cleome hassleriana (data not shown). These included excellent candidates for a gene-

based phylogenetic analysis: URED (Urease-D), JAR1 (Jasmonate Resistant 1), PPOX 

(Protoporphyrinogen Oxidase) and the widely used ADH1 (Alcohol Dehydrogenase 1) 

(Chiang et al. 2003; Ge et al. 1999; Holmes 2009; Koch& Mummenhoff 2006; Sang et 

al. 1997). Clarifying the evolutionary uncertainties we see in the polytomic taxa will be 

greatly facilitated by next generation sequencing. The era has arrived in which we will 
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not be analyzing taxa based on sequences from only a few loci. Genome wide 

comparisons of loci, both nuclear and plastid, can be generated through concerted 

sequencing and data mining efforts.  
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3.   A COMPARATIVE GENOMIC MAP FOR EVOLUTIONARY AND 

ECOLOGICAL GENOMICS IN CAULANTHUS AMPLEXICAULIS VAR. BARBARAE 

AND RELATED GENERA (BRASSICACEAE) 

 

 

3.1 Introduction 

  

The genetic basis of adaptation is a central theme in biology. With recent 

advances in genomics, the definition of what constitutes a ‗model species‘ for biological 

study is undergoing a period of rapid transition (Hedges 2002). It is incumbent upon us 

to choose our ―next generation‖ model organisms prudently as vast amounts of sequence 

data becomes available in a matter of hours. We will most efficiently dissect the traits 

and underlying gene function that interest us by using the comparative genetics of 

annotated taxa as a guide to gene discovery and annotation. 

Phylogenies have shown that the rare serpentine endemic, Caulanthus 

amplexicaulis var. barbarae, is placed within a clade containing the annotated model 

organism Arabidopsis thaliana and the highly sequenced crop plant members of the 

Brassica genus (Al-Shehbaz et al. 2006; Pepper& Norwood 2001; Warwick et al. 2005). 

Due to this advantageous phylogenetic relationship, we have utilized the publicly 

available genomic resources of these genomes to design gene based markers for known 

genes in Arabidopsis (Rhee& Dixon 2003). The 360 Mb genome size of Caulanthus 

(only 2.5 times the estimated size of Arabidopsis thaliana) is comparatively small 
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(Johnston& Hodnett 2005) and thus attractive for study due to predicted lack of 

duplicated regions and abundant repetitive elements (Johnston& Hodnett 2005; Lysak et 

al. 2009; Mitchell-Olds et al. 2008).  Furthermore, this taxon is grown with relative ease 

in the laboratory environment and can complete its life cycle from seed to seed in 

approximately 10 weeks. 

The genetic resources we present here will facilitate and expedite advances in the 

disciplines of plant evolution and ecology. Our data demonstrates the power of using the 

synteny among genera as a guide to the discovery and annotation of ecologically 

important genes (Mitchell-Olds et al. 2008). 

Adaptation to challenging environments is particularly relevant today, as the 

world population continues to grow simultaneously with climate change and in many 

cases, unmitigated pollution (Myers& Knoll 2001). A safe and sustainable food supply, 

potable water and clean air will continue to be challenges to achieve worldwide. 

Serpentine soils exhibit innate physical and chemical challenges to the organisms able to 

colonize them and thus an understanding of the elusive nature of serpentine ecology has 

long been sought (Brooks 1987; Kruckeberg 1951; Reeves et al. 1981; Whittaker 1954). 

Serpentine soils are noted for their elevated levels of heavy metals such as nickel, 

magnesium, cadmium, zinc and chromium. Furthermore, plant macronutrients such as 

nitrogen, phosphorous, potassium and calcium exist in such limited concentrations that 

few plant species can complete their life cycles.  In addition to the challenges presented 

by the soil chemistry and lack of organic matter, serpentine soils hold very little 

moisture, are highly reflective and offer poor soil structure to plant life (Proctor& 
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Woodell 1975). Those organisms that complete their life cycles in the serpentine 

ecosystem provide compelling examples of adaptation to environment (Figure 5).  

 

 

 

 

 

 

 

Figure 5 Serpentine outcrop. This serpentine outcrop is in Los Padres National Forest, 

California. The steep, rocky terrain with its reflective surface provides the substrate on 

which Caulanthus amplexicaulis var. barbarae subsists. (Photo: M. Burrell) 
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3.2 Methods 

 

Taxa used in this study 

The Santa Barbara Jewelflower, Caulanthus amplexicaulis var. barbarae (J. 

Howell) Munz is a rare annual herbaceous plant restricted to an archipelago of small 

serpentine outcrops in the San Rafael Mountains of southwestern California (Howell, 

1962). Its more wide-spread sister taxon, C. amplexicaulis var. amplexicaulis S. Watson, 

is found largely on granite soils, throughout the Transverse Ranges of Southern 

California. Primarily localized in Ventura County, this taxon has been observed growing 

on shale in San Bernadino County (Kruckeberg 1984). With the exception of their soil 

chemistries, the most distinguishing difference between these two taxa is perianth color, 

particularly in the sepal: deep purple (CAA) and white (CAB). 

 

F2 mapping population 

 Despite being ecologically and geographically isolated for approximately one million 

years (Pepper& Norwood 2001), C. amplexicaulis var. barbarae (CAB1) and C. 

amplexicaulis var. amplexicaulis (CAA1) are fully interfertile in artificial crosses  (A. 

Pepper and L. Norwood, unpublished data). Despite displaying high levels of inbreeding 

in the wild (Burrell, et al, in prep), both parental taxa were selfed five generations in 

separate growth chambers for maximum homozygosity and reduced risk of pollen-

contamination. Following hand-pollination, interspecific F1 seeds were produced on the 
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CAA1 plant. F1 plants contained viable pollen and gave rise to vigorous, fertile F2 

offspring. 

 DNA was extracted from 186 F2 plants using a standard mini-prep method (Burrell& 

Pepper 2006). Genomic DNA was RNAase-treated (20 µg/ml) and quantified to 50 ng/µl 

for optimized PCR and stored in 0.5X Tris-EDTA solution at -20 °C. 

 

Molecular markers: microsatellite markers 

 We developed a suite of 289 microsatellite markers from genomic DNA of 

Caulanthus amplexicaulis var. barbarae  (Burrell& Pepper 2006). In brief, primers were 

designed to achieve a salt-adjusted (50mM Na2
+
) Tm of 61-63C. Ideal amplicon size 

was within the 80-200 bp range to facilitate optimal resolution when electrophoresed 

through 3% agarose TBE gels. The primers, designated ―Ca‖ for Caulanthus 

amplexicaulis, are listed in Appendix B-1. For mapping, we selected 103 SSR markers 

that showed robust amplification and clear polymorphism between CAA1 and CAB1 on 

3% agarose gels.  

 

Molecular markers: conserved ortholog markers 

 Forty-four gene ortholog markers were designed on the basis of conserved exon 

sequences identified by alignments between the Arabidopsis thaliana genome sequence 

(TAGI, 2000) and Brassica EST and genomic sequences identified through BLAST 

searches (Altschul SF 1997) using the general strategy employed previously in other 

species of the Brassicaceae family (Koch et al. 2001; Kuittinen& Lauga 2002; 
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Windsor& Mitchell-Olds 2006). Primers to amplify intron-spanning gene fragments 

were designed to achieve a salt-adjusted (50mM Na2
+
) Tm of 61-64C. 

Our marker development focused on genes known from Arabidopsis to be 

associated with: plant development, pathogen and herbivore responses, mineral nutrition, 

metal stress, and other abiotic stresses such as cold, drought and salt (Rhee& Dixon 

2003).  For 21 of conserved ortholog markers (Appendix B-2), insertion-deletion 

polymorphisms (indels) were identified between the two Caulanthus taxa and scored 

visually on 3% agarose gels.  If the markers did not show visible polymorphism in 

preliminary screens on agarose gels, cloning and sequencing PCR-amplified products 

was employed in each of the Caulanthus spp. parents to create CAPS (cleaved amplified 

polymorphism) markers or primers to produce a smaller amplicon around a small indel 

in order to increase resolution of polymorphisms on agarose gels (Konieczny& Ausubel 

1993).  

In cases of indels smaller than 5 bp between the two parental taxa, new primers 

were designed from contiguous sequences immediately flanking indels to facilitate DNA 

fragmentation size determination using capillary electrophoresis. A 20 base-pair 

universal HEX (GACTTCGAGGAGCTGACACG) or universal FAM 

(GTCGGTGCAGAGCATCATGC) tail was added to the 5′ end of the forward primer. 

For indels > 2 bp, GoTaq® Green Master Mix (Promega) was used in PCR 

amplification. For indels < 2 bp, Phusion® High Fidelity Polymerase (Finnzymes) was 

used. The high fidelity enzyme was employed due to its high processivity and lack of 3
′
 

adenylation (Krishnakumar& Mindrinos 2008). The universally-tagged forward primers 



29 

 

 

29 2
9 

were diluted to a 0.0422 pmol/µl from the standard 7.5 pmole/µl concentration for PCR. 

This dilution of the universally-tagged primers provided the strongest signal for capillary 

analysis. The standard 7.5 pmole/ul concentration was employed for the reverse primer 

and the universal HEX or FAM primer. 

Standard PCR cycling parameters for indels > 2 bp on a ramping thermocycler 

were employed (Burrell and Pepper, 2006). For indels < 2 bp, using the high fidelity 

polymerase with a faster processivity, cycling parameters on a ramping thermocylcer 

according to suggested guidelines for the Phusion® polymerase were used (Finnzymes). 

All resulting PCR products were diluted in a 1:30 ratio in sterile, nuclease free 

water. One microliter of diluted PCR product was suspended in 9 ul Hi-Di™ formamide 

containing 0.1 microliter of ROX 400 HD dye standard (Applied Biosystems). Samples 

were multiplexed in bins of up to nine loci per 96 well plate (depending on the expected 

allele sizes of CAA and CAB). DNA fragment sizes were determined using an ABI 3130 

capillary analyzer along with ABI Peak Scanner™ software v 1.0.  

 

Linkage map 

The linkage map was created by genotyping a minimum of 93 F2 individuals, 

using a combination of microsatellite markers and gene-based markers (Figure 6).  

Linkage group assembly and marker order were determined by MapDisto software 

version 1.7.2 for MS Excel, using Kosambi mapping function, with a minimum LOD 

score of 3 and maximum recombination fraction of 0.35 (Lorieux 2007). Marker data 
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was subjected to maximum-likelihood method to determine most likely marker order 

(Lander 1989).  

 

Comparative map 

We assembled a comparative map of the linkage groups in our F2 population and 

previously described genomic ancestral blocks as a guide for the comparative map 

(Figure 7) (Schranz et al. 2007).  We used the BLAST algorithm on the TAIR website to 

determine significant homology of Caulanthus microsatellite markers to annotated genes 

in Arabidopsis (Altschul SF 1997; Rhee& Dixon 2003). A BLAST ―expect value‖ of 

E=1 x 10 
-7 

was the minimum score we considered to represent significant homology 

between sequences.  The markers with significant BLAST scores were then assigned to 

the ancestral linkage blocks of the Brassicaceae family (Schranz et al. 2007). 
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Figure 6 F2 linkage map. The basis of this map is the CAA x CAB interspecific cross. The map 

contains 14 linkage groups for a total map distance of 1513 cM . 
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Figure 7 Comparative map. This map is based on ancestral linkage blocks of Arabidopsis and the linkage groups of 

the Caulanthus linkage map. 
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Morphological phenotyping of F2 population 

The most distinguishing morphological difference between the two study taxa is 

the deep purple sepal of CAA versus the white sepal of CAB (Figure 8). When F2 plants 

began to flower, we observed that the sepal color of numerous plants was intermediate 

between the two parents. Thus, we scored for perianth color by likeness to either parent 

or an intermediate dosage. This morphological data was incorporated as a marker into 

the F2 linkage map.  

 

 

 

 

 
 

 

Figure 8 Contrasting sepal color in CAA and CAB. The sepals of CAA are deep purple and 

CAB are white. 
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3.3 Results 

 

F2 linkage map 

We mapped a total of 103 microsatellite markers and 44 conserved ortholog 

markers to 14 linkage groups, LOD 3. A morphological marker for sepal color was 

included on linkage group 7. Of the markers that showed polymorphism between CAA1 

and CAB1, ~ 14% of the markers (5 microsatellite, 1 conserved ortholog) were not 

placed in any of the linkage groups. Fourteen linkage groups with a total map length of 

approximately 1513 cM were obtained using a Kosambi algorithm.  The average 

distance between markers over the linkage groups is 10.4 cM, appropriate for QTL 

mapping (Mauricio 2001). The maximum distance between any two markers was 46.9 

cM.  

 

Segregation distortion of F2 population 

 Chi-square tests and the maximum likelihood algorithm performed by MapDisto 

linkage mapping software indicated a low percentage of segregation distortion in our 

mapping population (Lorieux, 2005) (Appendix B-3). We observed genotypic 

segregation distortion in 13% (α=0.05) of our markers mapped in this interspecific cross.  

 

Collinearity with the Arabidopsis genome 

 Since  83% of our mapped microsatellite markers have significant orthology to 

annotated genes in Arabidopsis, we were able to create a model comparative map 
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employing the ancestral linkage blocks of the Brassicaceae (Schranz et al. 2007). The 

lack of numerous duplicated loci in our markers (4 of 47) suggests that the development 

of the Caulanthus genome did not involve a simple or recent duplication of an n=7 

ancestor.  

 

Candidate genes for sepal color 

We used the observed collinearity with Arabidopsis as a guideline for selecting 

candidate genes for our mapped morphological trait: sepal color. This character 

segregates as a single gene Mendelian trait with co-dominant (additive) alleles.  The 

conserved order of our mapped loci to Arabidopsis points to the region between GTG1 

(AT1G64990) and ATSP7/SGA2 (AT1G66740). Genes associated with anthocyanin 

metabolism in this region include: MYB113 (AT1G66370), MYB114 (AT1G66380) and 

PAP2/MYB90 (AT1G66390) (Figure 9). 
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Figure 9 Candidate genes for sepal color. This illustrates the comparative genomic 

method we used to identify candidate genes controlling perianth color in Caulanthus by 

searching collinear regions in Arabidopsis.  
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3.4 Discussion 

 

 Plant evolutionary ecology has been hampered by multiple obstacles. In 

particular, organisms with noteworthy phenotypes in field conditions are often unsuited 

for study in laboratory conditions. Using Caulanthus amplexicaulis var. amplexiculis 

and Caulanthus amplexicaulis var. barbarae, it was possible to make an interspecific 

cross that following selfing yielded fertile, diploid offspring. F2 plants showed no pollen 

abortion, competitive fertilization or pollen tube competition. Furthermore, F2:3 seeds 

were used successfully in phenotypic analysis under varied experimental conditions. The 

creation of late generation recombinant inbred lines through single seed descent of selfed 

germplasm will be particularly useful for QTL mapping of adaptive traits (Tanksley 

1993).  

  The relative lack of segregation distortion (13%) in our linkage map offers a 

significant advantage to the average 59% observed in interspecific Brassica spp. crosses 

(Xian-Liang et al. 2006). In other species considered evolutionary models, segregation 

distortion percentages for interspecific crosses are significantly higher than in 

Caulanthus: 49% in interspecific crosses of mapped Mimulus spp.and up to 60% in 

mapped poplar populations (Bradshaw& Stettler 1994; Fishman et al. 2001). This 

preliminary indicator of recombination between the two genomes suggests a reasonably 

compact genome (Ross-Ibarra 2007). Estimates of the ratio of physical to genetic 

distance in Arabidopsis are highly resolvable at approximately 175 kb per cM.  Another 

well-studied member of the Brassicaceae, Boechera stricta  is estimated to be 360 kb per 
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cM (Schranz et al. 2007). Map resolution in this Caulanthus mapping population is 

approximately 4 cM per megabase, yielding an approximate physical distance of 250 kb 

per centimorgan (Johnston& Hodnett 2005). 

 Furthermore, the compactness of the Caulanthus genome greatly facilitates QTL 

mapping as well as map-based cloning, as the distance required for fine-mapping genes 

of interest is less (250 kb/cM) than in a species like cotton (800 kb/cM) (Pepper, 

unpublished data) and sorghum (1,713 kb/cM) (Menz& Unruh 2002). Within the 

Streptanthoid Complex, we have seen a range of genome sizes determined by flow 

cytometry and they all remain fairly small (Burrell et al, in prep), greatly facilitating 

genetic studies of the other related taxa adapted to many diverse ecological niches. All 

genetic tools presented here can be used for any of the Streptanthoid taxa (Figure 10) 

(Burrell& Pepper 2006). 
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Figure 10 Cross-amplification of SSRs in the Streptanthoid Complex taxa.  20 taxa 

of the Streptanthoid Complex show obvious polymorphism among taxa. Appendix 1 

contains scientific names, corresponding to taxa abbreviations. 
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While microsatellites have been a standard for genetic studies for years now, our 

linkage map data reinforces the idea that they are more useful than anticipated. They 

have long proven to be co-dominant (allowing genotyping of both homozygotes and the 

heterozygote) and are relatively well-spaced throughout the genome. Another advantage 

is the sequence-based nature of microsatellites, the basis of our comparative map. While 

more expensive initially to generate, the sequences of our microsatellite markers proved 

invaluable in their tangible orthology to known genes in Arabidopsis (~83%). This level 

of comparative genomic information was not detected when we obtained approximately 

40,000 reads from next generation sequencing of CAB1 genomic DNA enriched for 400 

bp reads through nebulization. Only 14% of the sequences were orthologous to unique 

genes in plants, whereas the majority of our next generation sequencing data (79%) had 

no significant BLAST score against any documented organism. A BLAST ―expect 

value‖ of E=1 x 10 
-7 

was the minimum score we considered to represent significant 

homology between sequences. While any sequencing data is valuable, our microsatellite-

containing fragments allowed us to establish rapid collinearity with Arabidopsis and 

other genomes of interest in a much more efficient period of time. The success of our 

gene-specific markers based on the collinearity of Arabidopsis and Brassica spp. is a 

useful tool not only in candidate gene prediction but also in the prediction of the location 

of orthologous regions on our linkage groups. This rapid collinearity is a substantial step 

toward full-scale functional genomics. 

While random fragments like AFLPs are less expensive to employ, AFLP 

markers cluster around centromeres and heterochromatic regions and are not sequence-
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based (Schlotterer 2004). SNP markers are incredibly useful for genomic studies. 

However, their true utility is in a previously, deeply sequenced genome (Chakravarti 

1998). The cost of obtaining sufficient genome coverage still remains high especially in 

terms of labor and computing resources to annotate the voluminous data generated by a 

dedicated genome sequencing project. Our data shows that a development of a 

microsatellite library or enriching for microsatellites in library prep for a limited next 

generation sequencing run is a viable and economic approach to comparative genomic 

methods. 

Due to the significant collinearity with Arabidopsis, we were able to pinpoint the 

genes of interest within the linkage interval containing our morphological marker for 

perianth color. Upon designing specific primers and sequencing these orthologous MYB 

loci in both CAA and CAB, we found significant large scale sequence rearrangements 

between the taxa (unpublished data). These genes are members of the highly conserved 

MYB superfamily in Arabidopsis with orthologs in Petunia hybrida and maize. These 

three loci have tremendous sequence similarity to one another, especially in the R2 

domain (Rubin et al. 2009; Stracke et al. 2001). Spanning approximately 12 kb in 

Arabidopsis, they comprise a set of 3 contiguous genes, most likely the result of recent 

tandem duplication. These results are a proof of concept that demonstrates the utility of 

our comparative map. 

The ability to identify specific collinear regions of the Caulanthus and the 

Arabidopsis genome containing genes of interest will be an invaluable tool as we delve 

into QTL analysis. Our F2 linkage map will provide a framework on which we can add 
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conserved ortholog markers upon analysis of phenotypic data. Any experiments can be 

replicated in our advanced generation recombinant inbred lines of the original CAB1 x 

CAA1 cross. 

In addition to the portability of our molecular markers to the other taxa within the 

Streptanthoid Complex, we have seen conservation of linkage in an F2 interspecific cross 

of the coastal species Caulanthus heterophyllus var. heterophyllus (CHH) and its inland 

sister taxon, Caulanthus heterophyllus var. pseudosimilans (CHP) (data not shown). 

While the two taxa are morphologically similar, they differ in flowering time. As a proof 

of concept, we evaluated a small number (20) of our microsatellite markers on the two 

parental taxa for visible polymorphisms. These markers were selected on the basis that 

they had shown significant polymorphisms over a wide range of Streptanthoid taxa 

(Burrell& Pepper 2006). From this limited effort, we saw eight markers that were linked 

in the CAB1 x CAA1 population were in turn linked in the CHH x CHP F2 population. 

These preliminary results of conservation in such ecologically diverse taxa suggest a 

relatively recent radiation event, ripe for further exploration. 

Some members of the Streptanthoid Complex are common and exist in abundant 

numbers, while the majority (~60%) are documented as rare and endangered, including 

Caulanthus amplexicaulis var. barbarae. The microsatellite tools presented here can be 

utilized for informative population genetic studies. For years, conservation biologists 

have been limited typically to one species for conservation genetic studies but the system 

we present here shows that these tools are widely applicable (Mitchell-Olds et al. 2008). 

In regard to the rarity of Caulanthus amplexicaulis var. barbarae and its relatives, 
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population genetic studies are needed for these species (Harrison et al. 2008; Hickman 

1993; Jetz et al. 2004). The linkage map we have created has enabled us to identify a 

suite of unlinked markers in two endangered species (Caulanthus amplexicaulis var. 

barbarae and an imperiled Texas endemic, Streptanthus bracteatus) for conservation 

genetic studies, yielding insight into the level of genetic drift, genetic diversity and 

likelihood of long-term survival in these rare species, which are threatened by the 

consequences of climate change, anthropogenic activities and the encroachment of 

invasive species (Calsbeek et al. 2003; Jetz et al. 2004; Myers 2003). Today‘s scientist is 

only limited by the number of genomic DNA samples possible to collect. Theoretically, 

in a few weeks time, allelic data for every species in the Streptanthoid Complex can be 

procured from focused next generation sequencing runs while simultaneously laying the 

groundwork for large-scale ecological genomics projects. 

One critical element to ecological genomics is the ease of manipulation of the 

study organism when removed from its natural environment and introduced into the 

laboratory setting (Ungerer et al. 2007). With the members of the Streptanthoid 

Complex, we have been able to mimic conditions of a wide range of stresses (nutrient 

limitation and toxicity, temperature, moisture, herbivory) to undertake QTL mapping of 

traits of interest, using this linkage map as a framework.  

Further applications of our molecular tools include single copy nuclear gene 

phylogenetic studies to achieve greater resolution within this diverse group of plants 

(Lysak et al. 2009). Following whole genome sequencing, this linkage map will provide 

a framework for efficient assembly and annotation of the genome. Utilization of these 
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tools can yield groundbreaking information: the genes involved in and their function in 

adaptation to environment, a major goal of evolutionary and ecological genetics. 
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4.   QTL ANALYSIS OF LOW CALCIUM AND HIGH MAGNESIUM STRESS ON 

AN INTERSPECIFIC F2:3 POPULATION OF CAULANTHUS AMPLEXICAULIS VAR. 

AMPLEXICAULIS AND CAULANTHUS AMPLEXICAULIS VAR. BARBARAE 

 

4.1 Introduction 

  

Serpentine soils generally possess levels of magnesium, nickel and chromium 

that are toxic to most plants, and the levels of nitrogen, phosphorous, potassium, and 

particularly, calcium, are lower than most plants require for survival (Kruckeberg 1984; 

Proctor& Woodell 1975).  The origin of a serpentine-adapted plant‘s ability to complete 

its life cycle in the inhospitable conditions of serpentine soil has been a topic of debate 

for more than a century (Brooks& Yang 1984; Grover 1960; Loew& May 1901; 

Madhok& Walker 1969; Vlamis& Jenny 1948; Walker et al. 1955). Some studies have 

suggested that serpentine-adapted plants have an increased capacity to withdraw calcium 

from serpentine soil than non-adapted plants (Walker et al. 1955). Others have shown 

that some serpentine-adapted species exclude excess magnesium from their tissues 

(Walker et al. 1955), whereas other serpentine-adapted species accumulate greater 

concentrations of magnesium in plant tissues than non-serpentine species (Madhok& 

Walker 1969; Main 1981). Magnesium is the central molecule of chlorophyll in green 

plants and acts as a catalyst for plant enzymatic activity and membrane stability. 

Calcium is essential for cell wall formation, cell signaling and nutrient transport in plants 

(Berridge et al. 2000; Buchanan et al. 2000; Hirschi 2001; Marschner 1995). However, it 
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has been shown that in soils with elevated levels of magnesium, the excess of 

magnesium can act antagonistically to calcium and lead to compromised plant growth 

(Grover 1960).  

As early as 1948, Walker reported a ―rescue effect‖ when exogenous calcium 

was added to serpentine soil in a study of Solanum lycopersicon (tomato) and the 

serpentine-adapted species, Streptanthus glandulosus subsp. pulchellus. Walker used 

serpentine soils that had been leached to remove the MgCl2 and CaCl2 components, 

which were then reconstituted with controlled levels of magnesium and calcium in 

assigned experimental concentrations.  Percent available calcium was varied among his 

treatments. Walker showed that the shoot dry weight of the non-serpentine tomato 

increased eight-fold in a medium with 20% available calcium added to its media, 

whereas the growth of Streptanthus glandulosus subsp. pulchellus showed much higher 

biomass accumulation at levels of low calcium but no significant growth response to 

increasing calcium (up to 82% available calcium) (Walker 1948; Walker et al. 1955).  

In 1970, Main delved into the realm of serpentine-adaptation genetics. He 

showed that a serpentine-adapted Agropyron spicatum (bluebunch wheatgrass) crossed 

to a non-serpentine-adapted Agropyron spicatum, gave rise to progeny that showed 

quantitative variation in their response to calcium and magnesium feeding experiments 

(Main 1970). The principal conclusions from this study have set the stage for the work 

contained herein: 1) tolerance to the high magnesium and low calcium present in 

serpentine soils is heritable and 2) progeny from serpentine and non-serpentine taxa 

show quantifiable phenotypic differences under various nutrient conditions. 
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The crucial roles calcium and magnesium play in the life cycle of plants have led 

to widespread interest in the genetic control of calcium and magnesium homeostasis. 

Numerous genes spread throughout the Arabidopsis genome have been identified and 

annotated for their involvement in calcium and magnesium physiology (Cheng& Hirschi 

2003; Cheng et al. 2003; Duarte et al. 2006; Li et al. 2001; Maathuis 2006). One gene in 

particular, CAX1, has been suggested to be responsible for the adaptation of serpentine 

plants to the high levels of magnesium and low levels of calcium in their soil (Bradshaw 

2005). CAX1 is an H
+
/Ca

2+
 antiporter, located in the tonoplast, with the role of keeping 

the concentration of calcium ions low in the cytosol of the plant cell by pumping calcium 

ions from the cytosol into the vacuole (Hirschi et al. 1996). Using a modified 

Hoagland‘s solution to mimic concentrations of calcium and magnesium in serpentine 

soil, Bradshaw observed that cax1 mutant seedlings survived to produce a pair of true 

leaves, which he called a ―faux serpentine tolerant‖ phenotype. Bradshaw proposed that 

a knockout mutation in CAX1 prevented cytosolic depletion of calcium, thereby 

maintaining a level of cytosolic calcium that would not trigger the opening of a 

hypothetical non-selective cation channel in the plasma membrane. He suggested that 

this non-selective cation channel would likely fill the cytosol with toxic levels of 

magnesium in the absence of calcium under the elevated levels of magnesium in the 

presence of serpentine soil, accounting for the poor growth of plants not adapted to 

serpentine soils (Bradshaw 2005). 

 Our F2 linkage map consists of 103 microsatellite markers, approximately 83% 

of which show significant orthology to Arabidopsis, and 44 markers based on contiguous 
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exon sequences from Arabidopsis and Brassica spp. ESTs. In designing Arabidopsis-

based gene specific markers for our linkage map, we used several annotated genes in 

Arabidopsis that are known to be involved in calcium and magnesium plant physiology, 

including CAX1. The linkage map of our CAA x CAB F2 population provided a resource 

to identify regions in the genome of CAB that enable its survival in the serpentine 

environment via associating phenotypes under specific conditions with genotypes at 

particular markers (Lander 1989).  

 

4.2 Methods 

  

F2:3 mapping population 

 We phenotyped F3 families from the CAA x CAB F2 linkage mapping population 

under two mineral nutrient treatments. We employed F2:3 seeds in order to obtain 

multiple data points from individual lines for QTL analysis in conjunction with the F2 

linkage map.  Eighty-eight lines were phenotyped with nine F3 individuals per line in 

each treatment. Twenty seeds of CAA and CAB were planted as controls, for a total of 

1600 plants or 800 plants per treatment. 
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Phenotyping conditions 

 We used a coarse, high-quality silica glass sand (U.S. Silica, Texas Coarse no.2) 

for the phenotyping experiments. The sand provided a nearly chemically inert medium 

with a negligible cation exchange capacity (CEC). Further, the texture of the sand was 

similar to the native soils on which both CAA and CAB grow. 

 Ray Leach Conetainers™ (part no. RLC4 pine, Stuewe & Sons) were filled with 

half their volume with coarse perlite. A mixture of acrylamide soil water retention beads 

(Aquadiamonds Soil Polymers®) and sand in a 1:1000 dry weight ratio was added to the 

upper half of the Conetainers. The Conetainers were placed in racks holding 200 

Conetainers (part no. RL200, Stuewe & Sons) in which they were hydrated to saturation 

with Milli-Q purified water prior to loading of nutrient solutions. 

 For seed germination, a 1 cm
2 

cube of rock wool was placed in a hole of the same 

size made by 8 mm cork borer at the top of the sand mixture. The rock wool served to 

wick moisture and provide a substrate from which the germinating seed could obtain 

constant moisture. One seed was placed on the rock wool cube in each conetainer. 

 Each rack of Conetainers was placed in a 116 quart plastic tub (Sterilite® part 

no. 1990), topped by a sheet of clear plexi-glass. Rope caulk was used to create a seal 

between the tub and the plexi-glass to maintain constant humidity for the duration of the 

experiment. 
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Growth conditions 

 Two growth chambers with identical growth conditions were used in this study. 

The temperature in the growth chambers was maintained at ± 19°C with a light intensity 

of 330 µmol and twelve hour day length. 

 

Nutrient treatments 

 Murashige and Skoog (MS) basal salts minus ammonium nitrate were used in 

this study. Ammonium nitrate was omitted due to its strong interaction with cations like 

calcium. Potassium nitrate was substituted. Ratios of magnesium sulfate to calcium 

chloride distinguished the two treatments (Table 3). Both nutrient solutions had a pH of 

5.8. 

 

 

 

Table 3 Calcium and magnesium concentrations in QTL experiment. Treatment Ca<<Mg has a 

ten-fold decrease in the concentration of calcium in comparison to Treatment Ca=Mg. 

 

Treatment   CaCl2  MgSO4 
 

Ca=Mg   0.748 M 0.375 M 

Ca<<Mg  0.0748 M 0.375 M 

 

 

 

 

 

 When seeds germinated and developed fully expanded cotyledons, nutrient 

solutions were delivered in 48 hour intervals. Plants were treated for 8 weeks with 

nutrient solutions prior to data collection and harvesting. After eight weeks, phenotypic 
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variation among the plants was easily detectable. This variation was considered a proxy 

for fitness. 

 

Phenotypic assays 

 The primary data collected from this experiment was dry weight. Secondary data 

collected from this experiment included: 1) days until germination, 2) true leaf number, 

3) level of chlorophyll in leaf tissue, 4) anthocyanin content in leaf tissue, 5) ―leopard 

spotting‖ on the upper surface of the leaves and 6) necrosis (only under Treatment 

Ca<<Mg). 

 All plants were dried down separately and weighed to determine dry weight. 

Chlorophyll content from the penultimate cauline leaf was measured using a chlorophyll 

content meter (CCM-200, Apogee Instruments). To determine anthocyanin content, a 

leaf punch taken from the penultimate leaf was ground in 96 well clear flat bottom cell 

culture plates (Corning® Costar®, part no. 3599) in an extraction solution of 1.5 N HCl 

and 95 percent ethanol. Anthocyanin content was determined by a Perkin Elmer 2030 

plate reader.  

While developing our F2 linkage map, we observed sepal colors intermediate 

between the pure white sepals of CAB and the deep purple of CAA in the F2 plants. We 

made notations of those morphological characters in the F2 generation and were able to 

add a morphological marker to our linkage map with strong candidate genes in a 

collinear region of Arabidopsis. In addition to sepal color differences between CAA and 

CAB, CAB shows extreme ―leopard spotting‖ on its upper leaf surface. This leaf 
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patterning is absent in CAA (Figure 11). In the F2:3  plants, we observed a range of 

intensity of the leopard spotting and rated the plants from 0 to 4, 0 for no spotting to 4 

for spotting resembling the extreme spotting in CAB. The presence of this ―leopard 

spotting‖ is due to a waxy deposition of anthocyanins, believed to be of significance in 

herbivore deterrence as well as metal tolerance (Gould 2004). 

 

 

 

 

Figure 11 Leaf patterns on CAA and CAB 

 

 

 

Necrosis was observed in many of the F2:3 lines as well as CAA when treated 

with the high magnesium nutrient solution. Necrotic characters included leaf curling, 

marginal necrosis and shoot hyper-elongation. Plants were rated on a scale of 0 to 4 for 

necrosis. A zero rating was assigned to plants that showed no necrotic characters and a 
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four was assigned to plants that showed extreme symptoms of necrosis, similar to CAA 

in response to Treatment Ca<<Mg. 

 

Data analysis 

 The CAB x CAA F2 linkage map compiled by Map Disto was employed as the 

framework for QTL analysis (Lorieux 2007). The mean of each F2:3 family was used as 

the trait value for the phenotypic data required for analysis by QGene software 

(Joehanes& Nelson 2008). Single Marker Analysis, Interval Mapping, Composite 

Interval Mapping and Multi-Locus Maximum Interval Mapping functions were 

performed on the data set to identify markers associated with calcium/magnesium 

response. The minimum LOD score for significance was 3.9 (van Ooijen 1999). 

 

4.3 Results 

 

Dry weight variation and QTL analysis under Treatment Ca=Mg 

 We observed significant variation in biomass accumulation of the F2:3 lines. 

(Table 4 and Figure 12).  
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Figure 12 Histogram of dry weight in Ca=Mg treatment 

F2:3 Max 11.8 mg 

 

Skewness  1.666 

F2:3 Min 2.5 mg 

 

Kurtosis 3.524 

F2:3Mean 5.1 mg± 

 

Variance 3.25 

CAA Mean 10.4 mg± 

 

Adj var 2.464 

CAB Mean 7.4 mg± 

 

h2 0.452 

   

H2 non-adj 0.36 

   

H2 adj 0.694 

Table 4 Summary of dry weight data in Treatment Ca=Mg.  
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 Quantitative trait locus analyses were performed using non-transformed mean 

dry weight values for each F2:3 line sampled. Data transformation produced no 

significant results in analysis. CIM, single-trait MIM and single-trait Bayesian analyses 

did not identify significant QTLs for growth (dry weight) in this environment. 

 

Dry weight variation and QTL analysis under Treatment Ca<<Mg 

We observed significant variation in biomass accumulation in Treatment 

Ca<<Mg (Table 5 and Figure 13). 

 

 

 

 

 

 

 

F2:3 Max 12.01 mg 

 

Skewness  0.993 

F2:3 Min .041 mg 

 

Kurtosis 3.042 

F2:3 Mean 4.86 mg± 

 

Variance 4.147 

CAA Mean 1.27 mg± 

 

Adj var 3.709 

CAB Mean 5.93 mg± 

 

h2 0.938 

   

H2 non-adj 0.561 

   

H2 adj 0.938 

Table 5 Summary of dry weight data in Treatment Ca<<Mg.  
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 Figure 13 Histogram of dry weight in Ca<<Mg treatment 

 

 

 

Quantitative trait locus analyses were performed using non-transformed mean 

dry weight values for each F2:3 line sampled. CIM, single-trait MIM and single-trait 

Bayesian analyses produced the consistent presence of one major QTL among the 

analyses. The single trait MIM detected a QTL with a LOD score of 7.4 on linkage block 

8 between markers ATAMT2 and Ca123, peaking over Ca123, which is orthologous to 

AT2G3360, an expressed protein in Arabidopsis (Figure 14). Marker ATAMT2 was 

constructed from orthologous sequences of Arabidopsis ATAMT2 (Ammonium 

Transporter 2) and Brassica ESTs with map position AT2G38290. 

 



57 

 

 

57 5
7 

 

 

 

 
 

 

 

 

Figure 14 Major effect QTL on Caulanthus Linkage Group 8. MIM QTL analysis was performed 

using mean dry weight values for each F2:3 line analyzed  in the Ca<<Mg Treatment. 
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Figure 15 QTL on Caulanthus Linkage Group 3. The position of the QTL 

was detected at LOD 5.6 in multiple trait MIM analysis of QTL x 

environment effect 
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QTL x environment multiple trait MIM analysis between nutrient treatments  

 Due to the observed significant environmental component of variance in the 

analysis of both nutrient treatments, we employed a QTL x Environment analysis using 

the multiple trait MIM method over Treatments Ca=Mg and Ca<<Mg. The QTL on 

Linkage Group 8 was again detected at a LOD score of 7.6. A minor QTL was detected 

with a LOD score of 4.8 on Linkage Group 3 with a peak between markers Ca256 and 

Ca48. These microsatellite markers have significant orthology to AT5G46610 and 

AT5G45940 respectively (Figure 15). 

 

4.4 Discussion 

  

This experiment yielded a preliminary glimpse into the genetic basis of a 

serpentine-adapted plant‘s ability to tolerate the high levels of magnesium in 

combination with such low levels of calcium, a challenge to most plants in serpentine 

soils. Due to limited sample size, we calculated an adjusted variance to obtain a range of 

heritability which more accurately reflects the genetic component of the variance (Ji& 

Liu 2010). In Treatment Ca=Mg, the range of broad sense heritability was 0.36 to 0.69, 

suggesting a reasonable proportion of the variance was due to a genetic component. In 

Treatment Ca<<Mg, we observed a non-adjusted broad sense heritability at 0.561 

ranging to 0.938 using the adjusted variance, indicating a substantial proportion of the 

phenotypic variability in our F3 population is attributable to genetic variation.

 Through marker orthology and map collinearity to Arabidopsis, we can posit 
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candidate genes that may be involved in the calcium-magnesium conundrum of 

serpentine-adapted plants. The strong QTL observed on Linkage Group 8, although 

peaking rather sharply over Ca123, lies between Arabidopsis positions AT2G33360 and 

AT2G38290 (Figure 16). Candidate genes within this region and their function are listed 

in Table 6. 

 

 

 

 

 

 

Arabidopsis Gene Coordinates Gene Abbreviation Gene Name 

AT2G28910   CXIP4   CAX INTERACTING PROTEIN 4 

AT2G38170   ATCAX1  CATION EXCHANGER 1 

AT2G38270   ATGRX2  CAX-INTERACTING PROTEIN 2 

AT2G47600   ATMHX1  MAGNESIUM PROTON EXCHANGER 

 

 

 

 

Using the same strategy, we have identified two candidate genes for the QTL on 

Linkage Group 3 in the region collinear to Arabidopsis (Figure 17). CHL12 is a 

magnesium chelatase. DELTA-OAT is an ornithine delta-aminotransferase that has been 

associated with salt and abiotic stress (Less& Galili 2008; Tan et al. 2010). 

 

Table 6 List of candidate genes for QTL on Caulanthus Linkage Group 8. Candidate genes in 

Arabidopsis for the QTL detected on Linkage Group 8 of CAA x CAB F2 linkage map. 

These candidates were chosen for their proximity to the region between markers Ca123 and 

ATAMT2. Listed are Arabidopsis gene coordinates, gene abbreviation and gene name. 
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Arabidopsis Gene Coordinates Gene Abbreviation Gene Name 

AT5G45930   CHL12   MAGNESIUM CHELATSE 12 

AT5G46180   DELTA-OAT  DELTA-AMINOTRANSFERASE 

 

 

 

 

 

 

 
 

 

Figure 16 Candidate genes for QTL on Caulanthus Linkage Group 8.  Collinear regions of 

Arabidopsis chromosome 2 depicting location of candidate genes relative to Caulanthus Linkage 

Group 8 

 

 

Table 7 List of candidate genes for QTL on Caulanthus Linkage Group 3. Candidate genes 

in Arabidopsis for the QTL detected on Linkage Group 3 of CAA x CAB F2 linkage map. 

These candidates were chosen for their proximity to the region between markers Ca256 and 

Ca48. Listed are Arabidopsis gene coordinates, gene abbreviation and gene name. 
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Figure 17 Candidate genes for QTL on Caulanthus Linkage Group 3. Collinear regions of 

Arabidopsis chromosome 5 depicting location of candidate genes relative to Caulanthus Linkage 

Group 3 

 

 

 

 

With this information, designing and testing gene specific markers orthologous to 

our candidate genes for polymorphisms between CAA and CAB is a viable step bringing 

us closer to fine mapping of the observed QTLs. It is important to note here that we 
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found two copies of the CAX1 locus in our Caulanthus species and were able to map 

both copies to separate linkage groups. One locus of CAX1 lies on Linkage Group 8 near 

the interval of the large effect QTL but showed no QTL signal. However, its proximity 

to the region of interest bears further investigation, especially in the context of previous 

studies (Bradshaw 2005; Cheng et al. 2003). In contrast to Bradshaw‘s observation of 

cax1 mutant plants‘ reduction in growth in the presence of elevated calcium, we 

observed an increase in dry weight in CAB, our serpentine endemic, when we treated it 

with levels of calcium similar to the conditions reported by Bradshaw.  

 We have developed advanced recombinant inbred lines (F6 to F9) which, when 

genotyped and phenotyped, will enable greater map resolution and statistical power to 

detect QTL and quantify QTL effect. Once candidate loci have been identified, cloning 

and functional genetic studies in the non-serpentine and non-endangered CAA taxon will 

confirm the impact of the loci on adaptation. 

This study illustrates the utility of our molecular markers, linkage map and 

experimental growth medium to dissect genetic adaptation of an organism to its 

environment. Further, we have shown the extensive portability of our molecular tools 

beyond our study taxa to a group of plants that subsist in environmental extremes of 

temperature, rainfall regime, altitude and soil chemistry to name a few (Burrell& Pepper 

2006). We have shown the ability to make interspecific as well as intergeneric crosses 

among the members of the Streptanthoid Complex (Caulanthus, Guillenia, Sibaropsis, 

Streptanthella, and Streptanthus).  The development of these tools has created a system 

by which ecological genetics can be explored and the genetic basis of unique adaptive 
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traits elucidated (Feder& Mitchell-Olds 2003; Mitchell-Olds et al. 2008; Mitchell-Olds 

et al. 2007; Ouborg& Vriezen 2007; Windsor& Mitchell-Olds 2006).  
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5.   CONCLUSIONS 

 

5.1 Summary 

  

In the interest of understanding the genetic basis of adaption to environment, we 

developed F2 lines from an F1 interspecific cross between the rare serpentine endemic, 

Caulanthus amplexicaulis var. barbarae and Caulanthus amplexicaulis var. 

amplexicaulis. Using genomic DNA from Caulanthus amplexicaulis var. barbarae , we 

developed a suite of microsatellite markers as well as conserved ortholog markers for 

genes known in Arabidopsis to be ecologically important. Our suite of markers was used 

to genotype 186 F2 plants, which served as the basis for our F2 linkage map. 

 In order to further resolve evolutionary relationships among related taxa, we 

constructed a molecular phylogeny for 52 taxa within the related genera Caulanthus, 

Guillenia, Sibaropsis, Streptanthella, and Streptanthus, using the sequences from the 

ribosomal ITS region (ITS1 and ITS2) and two chloroplast regions, trnL and trnH-psba3. 

With the germplasm available, we attempted intraspecific, interspecific and intergeneric 

crosses and observed that many of the crossed taxa (~70%) produced viable F1 seeds. 

 We showed that our molecular markers (both microsatellite and gene specific) 

amplify within the related taxa of the ecologically and morphologically diverse 

Streptanthoid Complex, proving that our molecular tools are portable across a large 

group of ecologically significant taxa. 
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 We constructed a collinear comparative map with ancestral linkage blocks in 

Arabidopsis, which acted as a guide for candidate gene selection in the mapping of our 

morphological marker for sepal color. We identified a region of 3 MYB transcription 

factors in an orthologous region of Arabidopsis. When we analyzed sequence data from 

Caulanthus amplexicaulis var. barbarae and Caulanthus amplexicaulis var. 

amplexicaulis in this MYB region, we observed significant sequence divergence 

between the two taxa. 

 We phenotyped multiple individuals from 88 F2:3 families under two nutrient 

regimes, differing in the ratio of calcium to magnesium. We observed vast phenotypic 

variability among the 88 F2:3 families, especially those supplied with the treatment 

containing a low calcium to high magnesium ratio. We employed QTL analysis, using 

our F2 linkage map as a framework for the analysis and identified one major effect QTL 

on Caulanthus Linkage Group 8 and another QTL on Caulanthus Linkage Group 3. We 

identified candidate genes for the QTLs using our collinear comparative map to 

Arabidopsis. 

 

5.2 Conclusions 

 

 In assembling this molecular toolkit (molecular markers, linkage map, 

comparative map, phylogeny and a reproducible system for phenotyping in the 

laboratory setting), we have conducted and laid the groundwork for successful 

ecological studies (Ungerer et al. 2007). The portability of this system to other 
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ecologically significant taxa will facilitate future insights into the genetic basis of metal 

tolerance, endemism and metal hyperaccumulation, to name a few. 

 The QTLs we have identified in relation to phenotypic response in the presence 

of high concentrations of magnesium and low concentrations of calcium bear further 

investigation through sequence analysis between Caulanthus amplexicaulis var. 

barbarae and Caulanthus amplexicaulis var. amplexicaulis in candidate gene loci. These 

genomic regions of interest provide testable hypotheses. However, to verify the 

functionality of candidate genes and their true role in this system, transformation of 

Caulanthus amplexicaulis var. amplexicaulis will be necessary. 

 We have developed over 200 late generation RILs (F6-9) that will be genotyped 

for a higher resolution linkage map with each marker likely homozygous at every locus. 

Multiple phenotyping experiments can be conducted at this stage due to the abundance 

of seed and statistical power afforded by RILs (Broman 2005; Brooks& Berry 2006; 

Falconer& Mackay 1996; Feder& Mitchell-Olds 2003; Mauricio 2001). Interest in 

another key component of serpentine ecology, metal tolerance, will be an experimental 

priority. 

Within the diverse Streptanthoid Complex, ecological genomics can now be 

readily explored with the tools we have created and may soon answer questions of 

ecological and economic importance: how do these organisms survive in such extreme 

environments. 
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APPENDIX A 

 

Taxon Acronym Collector Location 

    
    Arabis petiolaris (Gray) Gray Apet Monique Reed  Gillespie Co., TX 

Caulanthus amplexicaulis var. amplexicaulis S. Watson CAA1 A.E. Pepper  Los Angeles Co., CA 

Caulanthus amplexicaulis var. barbarae (J. Howell) Munz CAB1 Dennis Breedlove  Santa Barbara Co., CA 

Caulanthus californicus (S. Watson) Payson Ccalif A.M. Burrell and A.E. Pepper Kern Co., CA. 

Caulanthus cooperi (S. Watson) Payson Ccoop A.M. Burrell and A.E. Pepper Los Angeles Co., CA 

Caulanthus coulteri S. Watson Ccoult A.M. Burrell and A.E. Pepper Kern Co., CA. 

Caulanthus crassicaulis (Torrey) S. Watson Ccras Rancho Santa Ana Botanical Garden San Bernadino Co., CA 

Caulanthus heterophyllus var. heterophyllus (Nutt.) Payson CHH1 A.E. Pepper  San Diego Co., CA 

 Caulanthus heterophyllus var. psuedosimulans R. Buck CHP1 A.E. Pepper  San Bernardino Co., CA 

Caulanthus inflatus S. Watson CI1 A.E. Pepper San Bernardino Co., CA 

Caulanthus pilosus S. Watson Cpil A. R. Kruckeberg Kern County, CA 

Guillenia flavescens(Hook) Payson Gflav Rancho Santa Ana Botanical Garden  unknown 

Guillenia lasiophylla (Hook & Arn.) E. Greene GL1 A.E. Pepper  San Bernardino Co., CA 

Guillenia lemmonii (Greene) Buck Glem Ron Ratko Ventura Co., CA. 4875' 

Sibaropsis hammitti S. Boyd & T.S. Ross Sibham Rancho Santa Ana Botanical Garden San Diego Co., CA 

Stanleya pinnata (Pursh ) Britton Stan Rancho Santa Ana Botanical Garden unknown 

Streptanthella longirostris (S. Watson) Rydb. SL_10 Wendy Hodgson  Navaho Nation, AZ 

Streptanthus albidus ssp. albidus (E. Greene) Krucke. SAA Sharon Strauss Lake Co., CA 

Strepthanthus albidus ssp. peramoenus (E. Greene) Krucke. SAP1 M.S. Mayer 580 Alameda Co., CA 

Streptanthus barbiger E. Greene SBB Sharon Strauss Lake Co., CA 

Streptanthus batrachopus J. Morrison SBA1 A.E. Pepper Marin Co., CA 

Streptanthus bernardinus (E. Greene) Parish Sbnd Rancho Santa Ana Botanical Garden San Diego Co., CA 

Streptanthus brachiatus F.W. Hoffmann SBH1 Sharon Strauss Sonoma Co., CA 

Streptanthus bracteatus A. Gray SB1 A. E. Pepper Travis Co., TX 

Streptanthus breweri A. Gray Sbhesp Sharon Strauss Marin Co., CA 

Streptanthus breweri var. hesperidus Jepson SHES Sharon Strauss Marin Co., CA 

Streptanthus campestris S. Watson Scamp A.E. Pepper San Bernardino Co., CA 

Streptanthus carinatus C. Wright ex A. Gray Scarin A.M. Burrell and P. Greer  Praesidio Co., TX 

Streptanthus carinatus var. arizonicus (S. Wats.) Krucke. Scaraz D. Damrol  unkown 

Streptanthus cordatus Nutt. Scord M. Baker  unknown 

Streptanthus cutleri Cory Scutl A.M. Burrell and P. Greer Brewster Co, TX 

Streptanthus diversifolius S. Watson Sdiv Sharon Strauss  Fresno Co., CA 

Streptanthus drepanoides Kruckeb. & J. Morrison Sdr Sharon Strauss Colusa Co., CA 

Streptanthus farnsworthianus J. Howell SF Ron Ratko Fresno Co., CA 1325' 

Streptanthus glandulosus ssp. secundus (E. Greene) Krucke. SGS Dennis Carvalho unknown 

Streptanthus glandulosus ssp.glandulosus Hook. SGG1 Sharon Strauss  Kern Co., CA 

Streptanthus glandulosus var. pulchellus (E. Greene) Krucke. SGP1 M.S. Meyer  Marin Co., CA 

Streptanthus hispidus A. Gray SHIS Sharon Strauss Contra Costa, Co., CA 

Streptanthus hyacinthoides Hook SHY A.E. Pepper Hardin Co., TX  

Streptanthus insignis Jepson Sins UC Berkeley Monterey Co., CA 

Streptanthus maculatus Nutt. Smac B.A. & M.H. McRoberts Sabine Co., TX 

Streptanthus morrisonii F.W. Hoffm. Sm Sharon Strauss Napa Co., CA 

Streptanthus niger E. Greene SN1 M.S. Meyer  Marin Co., CA 

Streptanthus platycarpus A. Gray Splaty A.M. Burrell and P. Greer Brewster Co, TX 

Streptanthus polygaloides A. Gray Spoly Rancho Santa Ana Botanical Garden Tuolumme Co., CA 

Streptanthus shastensis Price, D. Taylor, & Buck SSS1 Sharon Strauss Butte Co., CA 

Streptanthus sparsiflorus Rollins Sspars A. M. Powell  Culberson Co., TX 

Streptanthus tortuosus Kellogg ST9 A.E. Pepper  Shasta Co., CA 

Streptanthus tortuosus orbiculatus (E. Greene) H.M. Hall STO Pat McIntyre unknown 
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APPENDIX B 

APPENDIX B-1 

Ca100 GCTTGTTAATTGATATTCTCACCGG CATAAGACCATTTCTAGAGGTTCC (CT)10 AT1G01440.1 1E-11 

Ca102 CTACAGTGAAACGGACAGTGAG CTAAACGTGAGAGATGCTAGGC (AAG)8 AT5G18140.1 e-106 

Ca103 CATCTCGGAGTAACCCAATTCC CCATTAAAAACCCATATCAGTGCG (GA)17 No hits  

Ca104 CCTTTTCTCCTCTCACTGGTTCG CAAAAGCAGTCGTAGATGACAAG (CT)10 AT2G35650.1 4E-17 

Ca107 GTTTCTGTAACAGGGACGAGC GGTTTAGGCGTTTCACCATCC (AAG)15 AT1G19490.1 1E-12 

Ca108 CCCCAGTTGACTCATTCATTCC CGATCGAGGAGTATGATATTCTC (CA)9 AT3G16800.3 3E-47 

Ca110 CCCTGTAAGCAGAAAGAGTTGC GTCAAGGTGGATTCGCAACAG (GA)14 AT1G61460.1 3E-60 

Ca120 CAATTCAAAAAAGATGCGAACAGTC GCTCCTGTAGCAAATACAAAATGG (GAA)10 AT3G24460.1 3E-25 

Ca122 ACTTCAATTGAACCATACCACAAAC CAGACGAAAGAGGAACCTTTGG (CA)9 No hits  

Ca123 CACGCCACCAAATCTTGAAACATCAGC CATTCTTGGTTCGAGCCAAGG (GAA)8 AT2G33360.1 1E-80 

Ca124 GTGAATCCAGAAACGAAACAGAC GTATTCTGTGTTTCTATTCTGGTTG (GA)10 AT1G64680.1 5E-06 

Ca127 CGCAGCTAGTGTAGAGGATTG GAGTTCTGGAAAACAAGTGAGAG (CT)12 AT2G44100 5E-32 

Ca131 CCACGAGTCTCTCTTTTAGAGC CAAGCGCCACAAAAAAACACATG (CT)27 No hits  

Ca135 CAAAAGAAACGCGGAAGGGAC TTTTGTCTTTACGGAAGTGCGTG (CT)20 AT4G11840.1 6E-24 

Ca136 GGGCTTCCCATGTCAAAGTTG GCAAAATGGTAAAATCGATCCCTTG (GA)19 AT5G38365.1 3E-16 

 

Ca138 TACAATACAAACACACGCTCTCAC AGAACTTCGTAGACTTGGAAATATG (CA)14 AT5G57210.1 1E-35 

Ca139 CTCAACACCATAACTCCCTGTG GAGCTGGCTACATCGTAAGAC (GA)14 AT1G51460.1 1E-68 

Ca140 GACCGGTTGGAACTGTAATCG TTCACACTTTACTTGTTTTACAGCC (GA)14 No hits  

Ca141 TTCCACCCCAATACTTTCCTAAAC GTTAGTCTATGATGAAATGTTTTTTACC (CA)15 AT3G28950.1 1E-6 

 

Ca147 CACCGAAAGACTCAACGAAAGC CTTTCCATCAGCAAACTCAGAATC (AAG)6 AT5G53970 1E-7 

Ca158 CTTTAGCAATTAATGGCAGTGCC CCATTCAAGAAACTCACGGGTC (CTT)8 AT1G31770 8e-34 

Ca165 TGAGGGAAAGCTCTCCGCTG AGACAGACCCGCTGCAGAAAC (GAA)8 AT1G80270 4E-24 

Ca174 CCCATAAATATCACAAAGCCCATTC TGTGAGTGAGACAAGAGGGTG (GA)15 AT1G69320.1 2e-56 

Ca177 CAAACACACTAATCTTCTTCCCC CACGAAGCCATATCTAAATCTC (CTT)7 AT5G43066. 5e-7 

Ca184 AAAAAAATGTTGGAAATATCAGAG CGCTATGATTTTCGAAGCTC (GT)8 AT1G17230 e-140 

Ca185 CGCAAAGTGAGAGCCGATAGG CGGACTACCGGAGATTTTTTGC (GA)8 AT3G19490 1e-35 

Ca186 GGAACATGTTATAAGGAAACAACCG CAGCATGTGACTGATTTGTCTGG (GA)8 AT3G52580 6e-34 

Ca188 CATATTGTGTAGTTTCATTGGTGAC CCCAGAGGTTCTTGTTTCGCC (GAA)6 AT4G35470 1e-22 

Ca191 GGAGATCGGGATGAATCAATGAG CGACACGAGTTAGAGAAAGTCC (GA)11 AT5G60740 2e-10 

Ca193 GAGTCGCTTCAGATCTTCATAAG GTATATTTCTATGAGCAGTCTCGATC (TC)28 AT5G67500 2e-6 

Ca195 CATTGGTTATTTCCCCTGTTGGG CTATTTTCTCTTCAGAGTTATCTGC (GAA)10 AT5G24880 5e-14 

Ca196 CGATGAACGTCCAAATCAATCTC CCCTCAACACAACTTCTTCAAGG (GA)9 AT5G39430 7e-68 

Ca207 CGATCCCACCTTGTTCAAGATC CATTGCTACGTGTCAAAACATTACTG (CT)10 AT3G08890.2 2e-5 

Ca21 CTCTCACTCATACTTAACGTTCAC GCAGGAGACTTCATCTTCTTCAC (CT)11 No hits  
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Ca214 GGAGAAGTTTCGGAGATTTTAGAC GCTTATAGCTTTCTACTTCCAACAC (GA)12 AT5G53730.1 3e-16 

Ca218 CTCATTCCCCTCATACCTTTTGC CCTTAGCTTAATGAATTTTTGTTCTTGG (CT)17 AT4G17695.1 5e-9 

Ca22 GGTTTCCTAAATTCTCACACGCC AGGAGATTCAACGGGAGAGCC (CT)8 No hits  

Ca220 ACTCTCCACCTCTTCGTCATC GAAGCAGATGCAGCAGCCATG (CT)24 No hits  

Ca222 GCCTCATCTAAGCTTTGTAACTC CATTGGAAGACTTGGTGACTCC (CT)21 AT5G56300.1 3e-11 

Ca223 CTCGAAACCCACTACAGAACTC CGTCCAGATTCAACTGCATAAGC (CT)8 AT4G35620.1 1e-47 

Ca224 CTCATGGCGATGGTGGTTTCC GGGTATGATCTTTTTTTTTGTGTCTTG (GA)34 AT1G72830.1 5e-10 

Ca227 GAAGGTTATTCACAGGACTCTTTC GTAGTGAAGCATCGAGGAAGAAG (GAA)7 AT1G06240.1 2e-22 

Ca228 CGCTCATAGCTTTATTACGCAGG TTTACAATGTGAACCAGAAACCATAAG (CT)11 AT5G20660.1 8e-49 

Ca229 CTCGAAATGCTGCAAGATGCG GTTATAACCAATGCGCGATGCAC (GAA)35 AT5G43810.1 1e-48 

Ca23 TTTTTGTCTTTTCTAAACATACACAGATG GGCATAATTTAATTTAGAGTCTCATCC (CA)7 No hits  

Ca235 CCCTCATCGACACAATTTCGTG GGACTTTTTGTCGCTCTTTTATAACC (GT)12 AT5G60810.1 4e-42 

Ca24 GAAACGCTCTTCTTCCAGGTG GAAGTTCCATGATTTCTCAGCATC (CT)9 No hits  

Ca241 CTCAACAAGAAAACCTATTAGCCTC CAGAGAAGGATTTGGGATCCAC (GA)15 AT3G54920.1 5e-23 

Ca242 GAGCATCAGAGGGATCGAATC CCGATTAGTGATGAAAAAGAAGGG (CTT)12 AT1G15100.1 5e-32 

Ca244 CTAAATCATAACCCACAATTCGTGC GATTTAAGGTTTCATGAAAGTAGTTGC (GA)10 AT5G23940.1 5e-84 

Ca245 GTAGAGAGTTAAAATCGTCAACCG TTTCCCGCCAAAAGTCTCACTG (CT)7 AT1G52740.1 6e-38 

Ca246 CTGCAATACAGCCTCGATTTTTC GATCGATCAGTCAATGGTGATTG (CT)18 AT2G28360.1 2e-41 

Ca248 CTGTTTGTCTCAATGCATACCTAC CATGGTGCATTGATCCAGGGG (GT)16 AT1G73860.1 2e-53 

Ca252 CAACTGGGAGAAATCCATGAGAC GCCCAATCTCGCAAAGCTAAAAC (CTT)15 AT4G14340.1 1e-10 

Ca254 CGTGTCAATGTTACGCACAGAAC GGGGAAATCGAAGAAAAATAAGAGTT (CT)10 AT4G14990.1 2e-12 

Ca256 CCACAATTTTCTTTTCTTCAGGTTGG CAGATACGTAATCGCCGCTCC (GT)8 AT5G46610.1 2e-49 

Ca257 GAACACAATTCTGCTCCCCATG GGGAGTAGAATTGTGTTCCGAG (GAA)8 AT3G43590.1 4e-48 

Ca260 CTAGTCAGAACACTAAAATAACG GACTTCTTTTTATCTAACCTGTTG (CT)17 AT5G55390.1 1e-48 

Ca261 GAGAAATCAAAACTGACCCACAC CATTACCGCCACGTGTTTCTC (CT)12 AT5G57100.1 2e-75 

Ca264 GATCTGGAAGTCTCCTTCATCG CCACTACAAAATCATCCCTTAGATC (GA)9 AT5G54970.1 5e-29 

Ca265 GACATAGAATAATCATGCTCCAAGG CGAGACTGCTTCAAAGCTTTCAG (GA)11 AT3G55070.1 6e-75 

Ca267 GCTCACATGCTTATTTCATTTCTTAAATC CACTTGCTTGCAGCTGCGAATG (CTT)13 AT2G40113.1 1e-26 

Ca269 GTGATGACTATTTTGATAACATGGTC CTCTTTAGTCCCAATCCACCATG (CT)31 AT1G48380.1 1e-41 

Ca271 GACAATGTTCATCACTTACCTTCC CCTCGCTTTAAACCCATAATTTGG (CA)10 AT5G15150.1 2e-18 

Ca272 CAATAAGGATGATTAGAGAAGGGG CGTGTTTTGGATGGATCGTCG (CT)9 No hits  

Ca265 GACATAGAATAATCATGCTCCAAGG CGAGACTGCTTCAAAGCTTTCAG (GA)11 AT3G55070.1 6e-75 
 

Ca276 GCAAAAGATAAGTAGAGCTTGAGG GCCGCTATCTTCAGCAATTAAAG (GA)17 AT2G42280 1E-37 

Ca277 GAATGAAAATTAAACTAACGAAGTGCAAG CTCCACTTATCTATAAAAACTCCCG (CT)14 No hits  

Ca278 GAAGTCACTAACAACGATGCCC GAACTTGTTTTTCAGTAAAGAGGGTG (CT)31 AT4G04410.1 2e-15 

Ca29 CCCTGTCCAAACTTTTCTCATTCC GGGTTGGCTCTTGAAGGGAAG (CA)8 No hits  

Ca30 CTTAGGACATAACACAAGTGACAAG CCAACAGTTCCCTTATCTTTACAG (GT)12 No hits  

Ca31 CAAACGTCATCTCTCTTCCGC ACGCCATGAGATGAGAGTAGC (CTT)11 AT1G63730.1 2e-51 

Ca32 GTAACGGTGGCTTGTTCGATG GTTAATACATTCGGTTTGCTTTGATTC (CT)32 AT4G26650.2 4e-47 

Ca34 CTTGATTTCCTAAAACGAAAGTTCAC AACAGCCTCGAAAGAAAGGTGG (TC)20 AT1G05790.1 2e-49 

Ca35 CTGCAATGACACTTACCAAATAGC CAACATTAACTACTTCTATATTCTTCG (AG)43 AT5G26090.1 7e-14 

Ca39 CAGTCATTGTTCTCTGGACGTG CCCAATAAAGTTTAGAAGATTCCTC (GT)7 AT1G70070.1 3e-91 

Ca40 GAGATTATGGACAAATATGATGTAGAG GCGATATTGGATAGTGACGAATTC (CT)41 AT1G19430.1 1e-66 
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Ca41 GATGCAAAAGAGCAGCAGTAGC CCTTCTTATCTCATTATCACAGTAAAG (AT)6 AT2G27250.3 8e-8 

Ca42 TAAAATGAAACTGGAGCTGAACTAG CCTCTCAGACCTAACCCTAAAC (AG)12 AT2G45430.1 2E-40 

Ca44 GAATCACAAGCGGTTAGAAATCTC CTCTCAGAAAGCAGCAACATTTTG (AG)44 AT3G55070.1 2E-16 

Ca46 GACTCTGCTACAGTTCAACCAC ACTCTTCACGTTGTGGATCTATC (TC)15 AT4G32880.1 2E-35 

Ca48 CATTGTCACACATAGTAATCAAAAAGATG CTCTTCTCATCCTGGTAAAATCAG (AG)17 AT5G45940.1 4E-55 

Ca49 GTCATTACTCGCAAGATCTGGAG GTCGGAGAAACCCTAGTGTTC (CT)31 No hits  

Ca50 GAGCTTGAGGATGAAAGAAAGTAG GAAGGAAAAGACGATAAATGTTCATC (GAA)9 AT2G42280.2 2E-10 

Ca58 TCTAATCTCAGGGGCACATGG CAAAAGGTTGCGCTCACAGG (CAATCAA)12 AT1G56130.1 7E-12 

Ca59 GCCAATCCAATCCTTTCCTTCC GTGTCCCCAGAAAAAGCGCG (CT)29 No hits  

Ca60 GCAACTTCACTCCACCATCTTG GGTCCGCTTTCTCTGCTATC (CT)13 AT5G14640.1 1E-6 

Ca62 CTTTCTCACTCTGCAACTCTTC CTGCATCTGCGTCCATGATC (CA)10(TA)7 AT1G18960.1 2E-45 

Ca72 CGGTTAAGTGAAATTTGAGGGG GACAAGTTTTTCCATTGAACCTAC (TC)32 AT4G27060.1 7E-27 

Ca73 CATTGATGCACTCGTGTTCTTAAG GAAAACGATTATGTCCCGATTCTC (CT)20 No hits  

Ca76 CAGTTATGAGGATGATTCAACGAC GAACTTATTTAGGCTCAGAGCAC (TTC)6 AT1G14600.1 2E-49 

Ca77 GACGTAGCCTATTGCAGCAGC GACGTAGCCTATTGCAGCAGC (CTT)13 AT4G13820.1 5E-50 

Ca78 CCGTTTTAGTGCTTCTTGTTGTG CTCAGACACTAATCTCGAGATTC (CT)21 AT1G30490.1 5E-10 

Ca79 GAACTTGCCCGGAGTCGAAG CATTTCCCGATTAGGCTCCGC (CTT)6 AT4G00110.1 5E-38 

Ca80 GTCGCTCTAATTTTCTTAACGCAC GAGCTCGAAACGACGACGAC (CT)18 AT5G04590.1 5E-44 

Ca83 GAGGGCTTTCAGTTGATGACG CATCCTTTCCGTGTGCTTCAC (GA)21 AT5G53350.1 9E-9 

Ca85 CCTTAGACGGATCTTCTTTAGAG CTCGATCCCCTTTTCTTTGCAG (CT)10 AT5G53930.1 7E-6 

Ca87 GTGATCCGAAAACGACCACTC GATGTTTTGTCGGCGAGTGAG (GAA)11 AT1G25500 1E-14 

Ca88 CGTGTTCCCTTTCTTTTTCCCC GGAGCAGAAGATTCACTGACC (CT)16 AT1G25500 1E-14 

Ca89 CATCCTTCTCCAGAGTTGCTAG CATTGTGCAACCCTCCATGTC (GAA)16 AT3G48430 9E-98 

Ca91 CGAGAGGTTGTAGAAGACGAC CTGGAAAAACCCCTAAAAACAGAAC (CT)37 AT5G45810 1E-18 

Ca92 GTGTGCTTCTCCTTCTACTTCTC CGATGGAGGTAAGTTATATTCACC (CT)18 AT3G29615 2e-16 

Ca97 CCAACAGGAACAATGCCTCTG GTCTCTGGTGGTTATCTTGTGAG (CA)8 AT1G32490 3E-23 
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 Forward Sequence Reverse Sequence At Position Marker Type Score E-Value 

ACS6 GATTATCATGGCTTGCCCGAATTC CGCTACAGCCTGAAGTAATAAATAGAG AT4G11280 Universal HEX 266 3.00E-70 

ADH1 GTGCTGCTAGGATCATTGGTG GAATGGTTTGGTCTGAATCGATGTG AT1G77120 Universal HEX 516 e-145 

AN CTTTCAAGATGAGTGTGCTCTAC CTAATTAGAGTGGTCTCGGTTTC AT1G01510 FokI CAPS 524 e-148 
ATAMT2 GGAGATGAGCTTTTGCCTTTCTG CTGAAAATACACCAAAGTCGCCATC AT2G38290 Indel 297 8.00E-80 

ATHM2_2 GTATGCATTTAGTCATTTGTAATCTGC ACGCAAACGGCATGAATTGTTCC AT4G03520 Indel 254 3.00E-66 

ATSP7 CTAGACGGTTTATGTGGTATTCATCTG CAGTATCCAAGCATCCCAAAACC AT1G66740 Universal FAM 579 e-164 

ATX1 GGATGTGTKGGAGCTGTGAAAAG CTGGCTSCACGTTGCCTTTCAC AT1G66240 Indel 63 6.00E-12 
BAN CTTCTGCATTTCCTTGAGACCG CGAATTTACTATTTGACCCCTTCCG AT1G61720 Universal HEX 243 2.00E-63 

BGD1 CATGCTGCACAAGACACTAGAAAAAC CCAAGATGGTCTGATTGYCATTGC AT1G64670 12 bp indel 330 2.00E-89 

CAX1-X 

GTTTCCCCATTTGGCTGGCTTC GTAGTCRATGGTTTTGTAATACTGGAAC 

  

AT2G38170 indel 
  CAX1-Y 

CGCAACAAGTGGATTCCCTGTG GAACCATTCAAAATCAGGATTCACAAG 

  

AT2G38170 indel 

  CAX4 GCTCACCGCTATGGATGTCCACGTG CAAGCAAGCTCAACGCAAACACC AT5G01490 indel 102 9.00E-21 

CHI CTAAAGATGATAACTGTCTTCGTCCAC CTCTGCTTGATCTGCATCGATGG AT1G53520 Universal HEX 324 3.00E-87 

CHS GTCCATCTAACCTACCACACTCC CGGCGTACCCATCACCATATTTTG AT5G13930 Universal FAM 697 0 

CRY1 GCTCTGTAATTGTAGACATCATGTGTG CTTTTTAGAGTGGATAACATCGTCAATAC AT4G08920  Universal HEX 473 e-132 

CIPK23 GTTACTGGTGGAGAGCTTTTCG CTTTTTGTTCACTCGAGATCTCG AT1G30270 indel 

  COI1 CTGTCTCCGATTACATTCCTAGTC CTTACATGGGACCTAATGAAATGCC AT2G39940 Universal HEX 460  e-128 

DET2 GGTATCACATAACCTCCCCGG CAAATTCCTCCAAGCTCCTTACG AT2G38050 indel 181 1.00E-44 
DIV1 GTAGAATAGTTTAACATACGTCGTGA ACAAGTCCATTAGAAGTAGCCTGA AT5G58900 indel 217 1.00E-55 

EBS1 CTAGATCAGGCAAGTTGTTCAATATG GATAAGATCCACATGCTAAGGCTTTC AT1G71220 indel 344 2.00E-93 

F3H CTGGAGTAGTCTCTGTTTCTCACC GCAATACAGCGACAAATGAAGATG AT3G51240 DraI CAPS 485 e-136 

GI2 GTGAAATGGTAGAACAGCTCTACTG GTAAGTAGATTGTGTTACTTGATGC AT1G22770   indel 125 4.00E-28 
GSH GATCTGTATCATTCGTGTGTAAGC GATTCAGATAAAAAGGCGGTGAG AT4G23100 indel 

  GTG1 CTGACCAGTCTCACTCTCCTAAAG CAAAAGGAGCAAGGTCAGTTTACG AT1G64990 Universal FAM 94 3.00E-18 
HY5 CAAAGGAAGCGAGGGAGGAGTC GCCGAAACTCTATTCCTCAACAACC AT5G11260 indel 165 3.00E-40 

HYH CAAACCAATTTTCTCAAAACCAATAATG CCCTAAGAAGCACAAAACTGGTAG AT3G17609 indel 
  JAR1 CAACTGTTTCGCACTGCTTTTGC GAATTCTCTGTACAAATGAAACATCAC AT2G46370   indel 184 1.00E-45 

LTI29 GATAACCTGGAAGCTTCTCTTTG CAGATGATTCTCCAGTCGTCAAC AT1G20450   indel 121 1.00E-26 
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MLO2 TGTAAGTCCCCATAGGTTTCTCC CTGTAAGTCCCCATAGGTTTCTCC AT1G11310 Universal HEX 138 1.00E-31 
N23 GACGCTTTTTCAGATAATTATATGGAG CGTGGTCATGGGCACTACAG AT1G10240 HinfI CAPS 515 e-145 

NPK GTTCTACTCTAAACCCCGACGC CAGCTTTAACCAACAAGATCATAACTG AT1G09000 HinfI CAPS 109 5.00E-23 

NRT2 GATGCTTTCCTTGAGTTTCTCATTTGG GTCACAACCCACTCGTAAGCC AT1G08090 indel 

  PCS GAACTTGTGTCAGTTCATCTTGCT GTCGATTAAGTCCTTTTGAAATTTCAG AT5G02190 Indel 216 5.00E-55 

PHRI GCTAGATATAGGCCAGAACCATC CAAGCGGTGTCAACTTCTTCTCC AT4G28610 RsaI CAPS 154 2.00E-36 

PHYB1 TGGACACGCCATTCTGAAACAC GAACTTCTAGACAGAACCGTAGC AT2G18790   DdeI CAPS 253 4.00E-66 
PHYB2 ACACGCCATTCTGAAACCGCAG GCAGTTTTGGCTTGGTTAGACC AT2G18790   Indel 275 5.00E-73 

PHYC CTGTTTGTGTTGTTTCTGGCTCCG GTTCTTCAGTTCATCTTTAACCAAG AT5G35840 Universal FAM 258 6.00E-68 

PPOX CACTATGGTGGTACGCTTTATTTTTC GCTTTGCGAAGAACATCGAGTTG AT4G01690  Universal HEX 181 1.00E-44 

RCI3 GTGTACCGACCGGAAGAAGAG GAGAGCAGAGTCTGATTGAAAC AT1G05260   Alu CAPS 264 1.00E-69 
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APPENDIX B-3 

 

Chi-Square Values for F2 Mapping Population 

Marker A B H total 

Missing 

Data f(a) f(b) X2 

Ca40 48 35 102 185 1 198 172 1.827027 

Ca83 44 49 89 182 4 177 187 0.274725 

Ca91 30 15 48 93 0 108 78 4.83871 

Ca32 43 37 106 186 0 192 180 0.387097 

Ca31 31 28 109 168 18 171 165 0.107143 

Ca35 58 37 91 186 0 207 165 4.741935 

Ca87 24 19 50 93 0 98 88 0.537634 

Ca39 48 34 103 185 1 199 171 2.118919 

Ca44 38 41 102 181 5 178 184 0.099448 

Ca59 49 43 88 180 6 186 174 0.4 

Ca34 51 40 94 185 1 196 174 1.308108 

Ca42 36 42 106 184 2 178 190 0.391304 

Ca48 46 37 98 181 5 190 172 0.895028 

Ca49 43 53 87 183 3 173 193 1.092896 

Ca50 41 58 86 185 1 168 202 3.124324 

Ca58 45 47 92 184 2 182 186 0.043478 

Ca77 50 45 90 185 1 190 180 0.27027 

Ca103 48 48 89 185 1 185 185 0 

Ca72 42 42 101 185 1 185 185 0 

Ca85 27 19 45 91 2 99 83 1.406593 

Ca110 59 33 88 180 6 206 154 7.511111 

Ca89 44 40 91 175 11 179 171 0.182857 

Ca124 26 18 46 90 3 98 82 1.422222 

Ca73 39 56 89 184 2 167 201 3.141304 

Ca131 52 44 90 186 0 194 178 0.688172 

Ca135 29 14 50 93 0 108 78 4.83871 

Ca136 53 38 92 183 3 198 168 2.459016 

Ca139 36 59 90 185 1 162 208 5.718919 

Ca141 55 37 89 181 5 199 163 3.58011 

Ca22 48 36 102 186 0 198 174 1.548387 

Ca29 23 17 53 93 0 99 87 0.774194 

Ca21 21 27 44 92 1 86 98 0.782609 

Ca30 41 41 101 183 3 183 183 0 
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Ca33 16 20 56 92 1 88 96 0.347826 

Ca41 41 51 90 182 4 172 192 1.098901 

Ca46 74 24 85 183 3 233 133 27.3224 

Ca120 45 60 81 186 0 171 201 2.419355 

Ca24 29 47 110 186 0 168 204 3.483871 

Ca62 48 35 101 184 2 197 171 1.836957 

Ca76 28 61 97 186 0 153 219 11.70968 

Ca80 52 30 103 185 1 207 163 5.232432 

Ca88 43 37 99 179 7 185 173 0.402235 

Ca92 24 20 49 93 0 97 89 0.344086 

Ca97 22 26 45 93 0 89 97 0.344086 

Ca100 27 46 107 180 6 161 199 4.011111 

Ca102 36 34 111 181 5 183 179 0.044199 

Ca60 62 30 93 185 1 217 153 11.07027 

Ca61 21 29 41 91 2 83 99 1.406593 

Ca23 40 51 89 180 6 169 191 1.344444 

Ca122 14 18 60 92 1 88 96 0.347826 

Ca138 22 20 50 92 1 94 90 0.086957 

Ca140 17 18 43 78 15 77 79 0.025641 

NPK 16 26 51 93 0 83 103 2.150538 

Ca107 44 48 94 186 0 182 190 0.172043 

ANR1 23 12 57 92 1 103 81 2.630435 

RCI3 47 36 85 168 18 179 157 1.440476 

F3H 20 19 49 88 5 89 87 0.022727 

N23 36 50 99 185 1 171 199 2.118919 

Ca108 41 35 102 178 8 184 172 0.404494 

Ca78 12 11 67 90 3 91 89 0.022222 

Ca127 36 31 118 185 1 190 180 0.27027 

Ca147 20 27 46 93 0 86 100 1.053763 

Ca177 50 33 97 180 6 197 163 3.211111 

Ca174 50 34 93 177 9 193 161 2.892655 

PCS 52 33 95 180 6 199 161 4.011111 

ATH2_2 28 17 48 93 0 104 82 2.602151 

LTI29 26 20 43 89 4 95 83 0.808989 

Ca185 53 44 86 183 3 192 174 0.885246 

Ca186 45 50 91 186 0 181 191 0.268817 

Ca193 15 20 57 92 1 87 97 0.543478 

Ca191 44 44 98 186 0 186 186 0 

Ca207 42 33 104 179 7 188 170 0.905028 

Ca195 52 42 92 186 0 196 176 1.075269 
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Ca158 12 4 66 82 11 90 74 1.560976 

Ca218 58 21 100 179 7 216 142 15.29609 

Ca196 54 44 87 185 1 195 175 1.081081 

Ca184 52 45 87 184 2 191 177 0.532609 

Ca188 17 26 46 89 4 80 98 1.820225 

Ca165 35 54 87 176 10 157 195 4.102273 

DIV1 20 28 45 93 0 85 101 1.376344 

Ca223 27 22 43 92 1 97 87 0.543478 

Ca224 23 42 70 135 51 116 154 5.348148 

Ca220 48 50 88 186 0 184 188 0.043011 

Ca214 20 28 45 93 0 85 101 1.376344 

Ca222 47 50 88 185 1 182 188 0.097297 

Ca228 46 54 85 185 1 177 193 0.691892 

Ca235 49 48 89 186 0 187 185 0.010753 

Ca227 32 54 100 186 0 164 208 5.204301 

Ca241 46 49 91 186 0 183 189 0.096774 

Ca242 38 34 113 185 1 189 181 0.172973 

Ca245 37 57 90 184 2 164 204 4.347826 

Ca244 23 16 54 93 0 100 86 1.053763 

Ca246 21 25 43 89 4 85 93 0.359551 

Ca248 17 30 45 92 1 79 105 3.673913 

Ca254 64 27 95 186 0 223 149 14.72043 

Ca252 47 37 102 186 0 196 176 1.075269 

Ca261 49 13 97 159 27 195 123 16.30189 

GI2 25 21 47 93 0 97 89 0.344086 

Ca257 22 17 53 92 1 97 87 0.543478 

Ca256 32 20 41 93 0 105 81 3.096774 

Ca260 51 40 86 177 9 188 166 1.367232 

Ca229 26 21 46 93 0 98 88 0.537634 

Ca267 41 54 90 185 1 172 198 1.827027 

Ca269 44 30 109 183 3 197 169 2.142077 

Ca264 22 28 42 92 1 86 98 0.782609 

Ca265 21 24 47 92 1 89 95 0.195652 

Ca226 8 14 48 70 23 64 76 1.028571 

CAX4 37 46 97 180 6 171 189 0.9 

HY5 42 43 100 185 1 184 186 0.010811 

JAR1 19 30 41 90 3 79 101 2.688889 

PHRI 43 39 101 183 3 187 179 0.174863 

PHYB2 22 19 48 89 4 92 86 0.202247 

PHYB1 44 30 109 183 3 197 169 2.142077 



86 

 

 

8
6 

AN 17 21 27 65 28 61 69 0.492308 

Ca271 15 20 51 86 7 81 91 0.581395 

Ca277 14 24 47 85 8 75 95 2.352941 

Ca275 25 17 51 93 0 101 85 1.376344 

Ca278 20 32 41 93 0 81 105 3.096774 

Ca272 21 16 56 93 0 98 88 0.537634 

Ca276 22 22 48 92 1 92 92 0 

DET2 22 25 46 93 0 90 96 0.193548 

ATAMT2 15 28 48 91 2 78 104 3.714286 

NRT2 23 19 50 92 1 96 88 0.347826 

Color 20 15 53 88 5 93 83 0.568182 

CIPK23 23 19 50 92 1 96 88 0.347826 

GSH 28 19 46 93 0 102 84 1.741935 

HYH 21 14 57 92 1 99 85 1.065217 

CHI 7 23 59 89 4 73 105 5.752809 

MLO2 28 23 37 88 5 93 83 0.568182 

CHS 17 18 53 88 5 87 89 0.022727 

COI1 26 22 41 89 4 93 85 0.359551 

ATSP7 27 23 37 87 6 91 83 0.367816 

PHYC 19 30 40 89 4 78 100 2.719101 

CHS-2 24 17 47 88 5 95 81 1.113636 

EBS1 24 14 47 85 8 95 75 2.352941 

Ca104 19 22 46 87 6 84 90 0.206897 

Ca123 17 36 31 84 9 65 103 8.595238 

ACS6 19 17 40 76 17 78 74 0.105263 

GTG1 21 21 44 86 7 86 86 0 

ADH1 17 30 40 87 6 74 100 3.885057 

PPOX 26 25 39 90 3 91 89 0.022222 

BAN 22 21 46 89 4 90 88 0.022472 

CRY1 24 15 51 90 3 99 81 1.8 

CAX1X 17 29 41 87 6 75 99 3.310345 

CAX1Y 19 30 38 87 6 76 98 2.781609 

Ca28 17 29 46 92 1 80 104 3.130435 

BGD1 22 23 47 92 1 91 93 0.021739 

ATX1 23 16 54 93 0 100 86 1.053763 
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