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Abstract

Although Branch and Bound (BnB) methods are among the most widely used

techniques for solving hard problems, it is still a challenge to make these methods

smarter. In this paper, we investigate iterative patching, a technique in which a

fixed patching procedure is applied at each node of the BnB search tree for the

Asymmetric Traveling Salesman Problem. Computational experiments show that

iterative patching results in general in search trees that are smaller than the usual

classical BnB trees, and that solution times are lower for usual random and sparse

instances. Furthermore, it turns out that, on average, iterative patching with the

Contract-or-Patch procedure of Glover, Gutin, Yeo and Zverovich (2001) and the

Karp-Steele procedure are the fastest, and that ‘iterative’ Modified Karp-Steele

patching generates the smallest search trees.
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1 Introduction

The Asymmetric Traveling Salesman (ATSP) is usually solved exactly by means of

Branch-and-Bound (BnB) algorithms and Branch-and-Cut (BnC) algorithms, see Fis-

chetti et al. [9]. In BnB type algorithms, an Assignment Problem (AP) is solved at every

node of this tree, and the value of the optimal AP solution serves as a lower bound of the

ATSP solution. A part of the search tree can be discarded when its lower bound exceeds

an upper bound. This upper bound is usually the value of a shortest complete tour found

so far. A class of heuristics applied to construct such a tour is patching. The question

is: at which nodes of the search tree should such a tour be constructed? Patching at a

node may reduce the search tree and the solution time, but if the reduction is too small,

the overall solution time is increased due to the time invested in patching.

In the literature, the most effective BnB methods do not patch at each node; see for

example, Miller and Pekny [13], and Carpaneto et al. [1]. These methods use a best first

search strategy, i.e., the subproblem with the smallest lower bound is solved. According

to these studies, patching at every node is too time-consuming.

In this paper, we consider a BnB algorithm that applies depth first search, which

means that the most recently generated subproblem is solved first. This strategy requires

algorithms to use much less computer memory than do best first strategies. Hence, it

is useful for solving large problems. We apply iterative patching, in which a fixed

patching procedure is applied at every node of the BnB depth first search tree. Four

iterative patching procedures are considered in our computational experiments. These

procedures are described in Glover et al. [6].

Given a set of locations and the distance between any pair of locations, the ATSP

is the problem of finding a shortest Hamiltonian tour; i.e., a shortest round trip visiting

each location exactly once. Figure 1 is an example of an underlying graph that defines

an instance of an ATSP. The nodes of the graph represent locations, and the arcs the

connections between the locations. A number next to an arrowhead denotes the cost of

traveling along that arc.

General instances of the ATSP are often solved to optimality by means of enumer-
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Figure 1: ATSP instance

ation algorithms, in which a fraction of all feasible solutions is checked. BnB methods

explore the solution space by using a search tree. We discuss BnB algorithms that solve

an Assignment Problem (AP) at each node of the corresponding search tree. After solv-

ing the AP a minimum cycle cover F is obtained, say, consisting of k cycles (k ≥ 1). In

the example of Figure 2, three cycles are generated. If k > 1, the subcycles in F can be

patched into a complete tour. BnB algorithms use the value of a patching solution as an

upper bound by which nodes of the search tree are fathomed.

1

2

3

4 5

6

7

8

9

10

11

12

cycle 1

cycle 3

cycle 2

Figure 2: Minimum cycle cover

A patching operation is the simultaneous deletion of two arcs from a cycle cover
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and the insertion of two other arcs, such that the number of cycles is reduced by one. In

our example, two patching operations are needed for the generation of a complete tour

(see Figure 3), namely first arcs (2,4), (5,6) are deleted and (2,6) and (5,4) are inserted,

and then we delete (12,9) and (2,6) and insert (2,9) and (12,6). The resulting tour is

generally feasible but not optimal.
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Figure 3: Obtaining a tour by means of two patching operations

In Karp [11], patching is defined as a sequence of k− 1 patching operations on a

cycle cover of k cycles, k ≥ 1. Recall that even a best possible patching procedure con-

sisting of k−1 patching operations does not always yield a shortest complete tour. For

example, consider the sparse network in Figure 4. The minimum cycle cover consists of

the k = 2 cycles (1,2,3,4,5,1) and (6,7,8,9,6) with total length 29. The unique short-

est complete tour is (1,2,8,9,6,7,4,3,5,1) with length 31. Since four arcs need to be

inserted and deleted, this tour cannot be constructed from the cycle cover by means of

one patching operation. Different patching procedures are introduced in the literature;

see [6, 11, 12, 15]. These patching procedures are discussed in Section 3.

Most heuristics for the ATSP apply patching procedures only once, such as to obtain

approximations to optimal solutions; see e.g. [6–8, 17]. BnB algorithms apply patching

procedures in order to obtain good feasible solutions with which parts of the search tree

can be discarded. Any heuristic may be used to generate such solutions, but patching

procedures are the most natural choices, since they use the structure of the already

constructed minimum cycle cover. If a fixed patching procedure is applied at every
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Figure 4: Best patching solution is not a shortest tour

node in a BnB algorithm, we call it iterative patching.

The currently best BnB algorithms for the ATSP are introduced in Carpaneto et

al. [1] and in Miller and Pekny [13]. We call these the CDT algorithm and the MP

algorithm, respectively. The CDT algorithm uses the patching procedure from Karp &

Steele [12] at the top node of the search tree. Only if the number of zeroes in the reduced

matrix at the top node exceeds a threshold value β, then a subtour-merging procedure is

carried out at each node of the search tree.

The subtour-merging procedure constructs first an admissible graph of zero-cost

elements in the reduced matrix and then tries to find a complete tour in the admissible

graph. The subtour-merging procedure patches cycles together, but only when a zero-

cost patching operation is available. It usually does not return a complete tour. In

Carpaneto et al. [1], it is found that a threshold that if β is set to 2.5n, the solution times

are the shortest, where n is the dimension of the instance.

The MP algorithm applies the Karp-Steele patching procedure, but not at every node

of the search tree. Nodes close to the top node are patched more often than nodes deep

in the tree. This algorithm also applies a subtour-merging procedure at each node.

The CDT and the MP algorithm both use a best first search (BFS) strategy, which

means that a node with the smallest lower bound value is expanded next. BFS is the
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fastest search strategy, but requires exponential memory space. As a consequence, BFS

algorithms are generally restricted to small or easily solvable problems [16]. In depth

first search (DFS), the most recently generated subproblem is solved first, and it re-

quires polynomial memory space. This makes it suitable for solving large and difficult

instances. However, the search trees and solution times of DFS algorithms are usually

large.

Miller and Pekny [13] report that iterative patching is too time-consuming. This

may be true for BFS algorithms, but our algorithms use DFS. DFS algorithms search

through deep nodes of the search tree already at an early stage; lower bounds of such

nodes are generally high. A tight upper bound obtained early enables the algorithm to

discard a large fraction of these nodes. Therefore, a DFS algorithm is more likely to

benefit from a good upper bounding procedure, such as iterative patching, than a BFS

algorithm.

The computational experiments in Section 4 compare the search tree sizes and the

running times of BnB algorithms that apply iterative patching with a DFS implemen-

tation of the CDT algorithm. We apply four patching procedures, namely the ones

discussed in Glover et al. [6]. The main questions that we answer on iterative patching

in this paper are as follows. Is iterative patching effective for DFS algorithms? Is it true

that if a patching procedure returns on average shorter tours than some other one, then,

again on average, the search tree sizes are smaller and the running times are shorter?

Hence, does better patching lead to the smaller search trees and shorter running times?

2 The quality of patching procedures

Let G(V,A) be a graph with vertex set V and arc set A. A minimum cycle cover F ⊂ A

can be determined in O(n3) time by means of the Hungarian algorithm; see for example

[10]. The speed of the Hungarian algorithm can be increased in successor nodes j to

O(n2) by starting from the optimal solution in the parent node, i.e., the node in which

subproblem j is generated; see for example Fischetti et al. [9].

Patching procedures delete pairs of arcs from F and insert pairs of arcs from A\F
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Figure 5: Flowchart of a BnB algorithm with iterative patching

in such a way that a Hamiltonian cycle H ⊂ A is obtained. The patching cost of any

patching procedure P is then denoted by cP(F) and defined as

cP(F) = ∑
a∈H\F

c(a)− ∑
b∈F\H

c(b), (1)

where c(a) denotes the cost of arc a ∈ A. The first term of (1) indicates the cost of the

new arcs introduced by P, and the second term represents the cost of the arcs removed

from the cycle cover. For any subset Q ⊂ A, c(Q) denotes the sum of the cost of the arcs

in Q.

Section 3 presents four heuristics for Karp’s Patching Problem (KPP), which is

the problem of finding an optimal patching from a given cycle cover. The fact that

this problem is N P -hard (see [3]) can be seen as follows. Consider a minimum cycle

cover consisting of n cycles of length 1. Then any arbitrary Hamiltonian tour can be

constructed by means of n− 1 patching operations. So the ATSP reduces to KPP, and

hence, the KPP is N P -hard. So we have to rely on heuristics to solve KPPs.

Let Fj ⊂ A denote a minimum cycle cover at node j of the BnB search tree in

progress. By BnB(Br,S,UBS) we denote a BnB algorithm for the ATSP that applies

branching rule Br, search strategy S, and upper bounding strategy UBS. A branching

rule Br partitions the current feasible regions into subsets. We consider branching rules

6



that only depend on the current minimum cycles cover. The search strategy S in this

paper is DFS. The upper bounding strategy UBS consists of two components: the first

component prescribes at which nodes an upper bounding procedure should be applied,

and the second component specifies the upper bounding procedure to be used. Clearly,

iterative patching is an upper bounding strategy, where a tour is generated at every node

of the search tree by means of a fixed patching procedure. If no confusion is likely, we

simply write BnB(UBS), since S and Br are fixed in this study.

Note that, in case of DFS, the order of node expansion is independent of the bounds

used at each subproblem. For instance, if both algorithms BnB(P1) and BnB(P2) explore

two subproblems S1 and S2, and BnB(P1) explores S1 before S2, then BnB(P2) will

explore S1 before S2 as well.

Let ub j(UBS) be the current upper bound, i.e. the shortest complete tour obtained

until node j using upper bounding strategy UBS. Recall that, when the UBS is iterative

patching, we obtain at each node of the search tree a complete tour, i.e. a candidate for

the value of ub j(UBS).

Node k is called a successor of j in a search tree if j is an intermediate node of the

shortest path between k and the top node of the search tree; we use the notation k ∝ j.

Since the feasible region of the AP at node k is a subset of the feasible region of the AP

at node j, we have of course that c(Fk) ≥ c(Fj) if k ∝ j; see e.g. [16].

In case of iterative patching, one may expect that if patching costs are low, then

upper bounds are tighter and a larger number of subproblems can be fathomed. Theorem

1 formalizes this assertion: if for each instance patching procedure P1 is cheaper than

patching procedure P2, then the search tree of BnB(P1) will be smaller than the search

tree of BnB(P2).

For any iterative patching procedure P, let BnB(P) be the algorithm that uses P

iteratively. Define #BnB(P) as the size of the solution tree of BnB(P), i.e. the number

of nodes in this tree. We assume in Theorem 1 that BnB(P1) and BnB(P2) use the same

AP-solver implementation.

Theorem 1 Let F be the set of minimum cycle covers of a given instance of the ATSP,
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and let P1 and P2 be two patching procedures such that their respective patching costs

satisfy c1(F) ≤ c2(F) for each F ∈ F . It then follows that #BnB(P1) ≤ #BnB(P2).

Proof. For any given instance of the ATSP, let T (Br) be the complete search tree

based only on branching rule Br, i.e. the search tree in which all possible solutions are

enumerated. Usual BnB procedures apply the following pruning operations:

1. If at a certain node of T (Br) F is a complete tour, then all successor nodes are

deleted from T (Br).

2. If at a certain node of T (Br), say j, it holds that c(Fj) ≥ ub j(P), then this node

and all its successors are fathomed.

For any patching procedure P, BnB(P) deletes nodes from the complete search tree

T (Br) until the usual BnB tree remains, which we denote by T (P). Clearly, pruning

operation (1) is independent of the patching procedure used, since the AP solver im-

plementation is taken fixed. Actually, at each node the same minimum cycle cover is

found.

We now show that T (P1) ⊆ T (P2) by showing that if node j is fathomed under P2,

then it is also fathomed under P1. This is the case, if for each node j, it holds that

c(Fj) ≥ ub j(P2) =⇒ c(Fj) ≥ ub j(P1). So we need to show that ub j(P1) ≤ ub j(P2) for

each node j on the path obtained by the search strategy S. Thus, BnB(P2) is only able

to discard nodes if BnB(P1) discards them, which implies that #BnB(P1) ≤ #BnB(P2).

Obviously, for the first node j = 0, it holds that ub0(P1) ≤ ub0(P2). Now assume

that ub j(P1) ≤ ub j(P2) at node j. Let k be the next unsolved subproblem after node j

according to the search strategy S. We show that ubk(P1) ≤ ubk(P2). Let HP(F) be the

patching solution of procedure P given minimum cycle cover F .

After solving the AP at node j, both algorithms compare c(Fj) with their current

upper bounds. Three scenarios are possible:

1. If ub j(P1)≤ ub j(P2)≤ c(Fj), then both algorithms fathom node j and both proce-

dures proceed to node k. Clearly, ubk(P1) = ub j(P1) ≤ ub j(P2)

= ubk(P2).
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2. If c(Fj) < ub j(P1) ≤ ub j(P2), then both algorithms execute patching at node

j. Since c1(Fj) ≤ c2(Fj), it follows that c(H1(Fj)) = c(Fj) + c1(Fj) ≤ c(Fj) +

c2(Fj) = c(H2(Fj)). Since ubk(Pi) = min{ub j(Pi),c(Hi(Fj))} for i = 1,2, we

have that ubk(P1) ≤ ubk(P2).

3. If ub j(P1) ≤ c(Fj) < ub j(P2), then BnB(P1) fathoms node j, and ubk(P1)

:= ub j(P1). BnB(P2) solves an additional patching problem at node j and pos-

sibly at the successor nodes of j. Let q be the successor node of j in which the best

patching solution is obtained, i.e. q = argminl{c(H2(Fl));

l ∝ j, l = j}. After searching through all successors of j, or after discarding them,

BnB(P2) arrives at node k with ubk(P2) ≥ min{ub j(P2),

c(H2(Fq))}. Clearly, ubk(P1) = ub j(P1). Furthermore, it holds that ub j(P2) ≥

ub j(P1) = ubk(P1), and that c(H2(Fq)) ≥ c(Fq) ≥ c(Fj) ≥ ub j(P1) = ubk(P1).

Hence, ubk(P2) ≥ ubk(P1).

Hence, for all nodes j on the path according to S through T (Br), we have that

ub j(P1) ≤ ub j(P2). Therefore, #BnB(P1) ≤ #BnB(P2).

Theorem 1 can be extended to upper bounding strategies UBS for which the upper

bound generated at node j is at least c(Fj). In that case, upper bounds are only obtained

at nodes at which a complete tour is constructed; elsewhere, the patching costs are infi-

nite. For example, consider a BnB algorithm BnB(P;ni) that applies patching procedure

P not iteratively. It follows from Theorem 1 that its search tree is always at least the size

of the search tree of the algorithm BnB(P) that applies P iteratively.

In general, there are few iterative patching procedures that always return better

patching solutions than some other one. Therefore, it makes more sense to consider the

average performance of patching procedures. To this end, we conduct computational

experiments in Section 4.

The most important measure of the quality of algorithms are solution times. Actu-

ally, high quality patching solutions may lead to long solution times of subproblems.
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So usually, a trade-off is made between the quality of the patching and time invested

in patching. For instance, if patching procedure P is only applied at the top node, the

search tree is larger than the tree with iterative patching procedure P. However, the

average solution time at the nodes is smaller. In Section 4, solution times are taken into

account more explicitly.

The following observation allows to increase the speed of iterative patching without

losing quality. Recall, that if a cycle cover F consists of k cycles, patching is a sequence

of k− 1 patching operations. Call the cycle cover after the i-th patching operation Fi,

and denote its cost by c(Fi), i = 1, . . . ,k−1. If c(Fi) exceeds the cost of the current best

solution ub, the patching procedure will certainly not lead to a better solution, since the

cost of each patching operation is nonnegative. Hence, we can abort the patching after

i steps and save running time.

3 Patching Procedures

We now compare the performance of four iterative patching procedures based on the

four most well-known patching algorithms. We start with a short description of these

four patching procedures. All these procedures have a worst-case time complexity of

O(n3), see Glover et al. [6].

Karp-Steele patching (KSP) was introduced in Karp and Steele [12]. Starting with

the minimum cycle cover F , KSP patches the two longest subcycles successively by

using a cheapest patching operation. In our example, KSP patches cycles 1 and 3 by

deleting (10,2) and (9,8), and adding (10,8) and (9,2); see Figure 6. The new cycle is

then patched with cycle 2 by removing (12,9) and (5,6), and inserting (5,9) and (12,6).

Modified Karp-Steele patching (MKS), also called Greedy Karp-Steele patching,

see Glover et al. [6], performs the cheapest patching operation among all pairs of cycles

in the current cycle cover. The patching costs are then updated and the procedure is

repeated until a complete tour is obtained. Since it compares in general more patching

operations than KSP, MKS is more time-consuming. In our example, MKS joins cycles

2 and 3 by deleting arcs (5,6) and (12,9), and inserting (5,9) and (12,6). Cycle 1 is

10
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Figure 6: Karp-Steele patching in action

included by inserting (2,9) and (5,4) and removing (2,4) and (5,9); see Figure 3.

Recursive Path Contraction (RPC) was introduced in Yeo [15]. From all, say k,

cycles a most expensive arc is deleted and the remaining paths are contracted, so trans-

formed into single nodes. On these k nodes an AP is solved. So every contracted path is

connected to another contracted path. The procedure is carried out recursively until one

cycle is obtained. The calculations of Section 4 use the implementation from Glover

et al. [6]. In our example, the most expensive arc from every cycle is deleted, namely

(3,1), (5,6) and (12,9). The end nodes 3, 5 and, 12 are assigned to nodes 9, 1, and 6,

respectively. Finally, the tour depicted in Figure 7 is obtained.

Contract-or-Patch (COP) is a two-stage procedure consisting of RPC in the first

stage and, either MKS or KSP in the second stage; see [6] and [7]. All cycles with

length less than a user-defined threshold value t are patched using RPC. In Gutin et

al. [7], it is shown that the threshold value t = 5 is the most robust choice for different

types of instances. Given the cycle cover from Figure 2, cycles 2 and 3 are patched

using the RPC procedure. The long cycles in the current cycle cover are patched with

either KSP or MKS. In Section 4, the faster procedure KSP is selected, since in Johnson

et al. [8] it is asserted that there is no significant difference in the patching cost of COP

using either KSP or MKS.
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Figure 7: RPC patching solution

4 Computational experiments

In this section, we compare both the tree sizes and the running times of the algorithms

presented in Table 1. Recall that the size of a BnB tree is the number of subproblems

solved before the first optimal solution is determined, i.e. the number of nodes visited

on the path followed through T (Br) according to search strategy S. The results of iter-

ative patching procedures are compared with the results of the DFS implementation of

the CDT algorithm. The DFS implementation is of practical use, because it solves AT-

SPLIB and symmetric instances which a BFS approach cannot solve; see for example

Carpaneto et al. [1] and Miller and Pekny [13].

Table 1: Patching strategies tested
Name Patching strategy
BnB(KSP) Iterative KSP
BnB(MKS) Iterative MKS
BnB(RPC) Iterative RPC
BnB(COP) Iterative COP
BnB(CDT ) CDT algorithm

The experiments are performed on a Pentium 4 computer with speed 2 GHZ and

256 MB RAM under Windows 2000. The programming language is C and the com-

12



piler is GNU with speed -o2. Our branching rule branches by a largest cost arc in

the shortest subcycle of a minimum cycle cover. In a forthcoming study we will ap-

ply tolerance-based branching rules, where branching is performed on an arc with the

smallest tolerance value (the amount at which the cost can be changed without chang-

ing the solution at hand). The iterative patching procedures are tested for the following

types of instances:

1. Asymmetric TSPLIB instances (see [14]);

2. Randomly generated instances with varying degree of symmetry;

3. Randomly generated instances with varying degree of sparsity.

From all asymmetric TSPLIB instances we have selected 16 instances that are solv-

able within reasonable time limits. The random instances have degree of symmetry 0,

0.33, 0.66, and 1, where the degree of symmetry is defined as the fraction of off-diagonal

entries in the cost matrix {ci j} that satisfy ci j = c ji. The third class of instances consists

of instances with varying degree of sparsity, being defined as the fraction of the total

possible number of arcs that are missing. We study instances with degree of sparsity of

0, 0.25, 0.5, and 0.75. The usual random instances have problem size 60, 70, 80, 100,

200, 300, 400, and 500, except for the random instances with degree of symmetry larger

than 0; they have problem size 60, 70, and 80. Only these samples of (quasi-)symmetric

instances are considered, since computation times for larger symmetric instances tend

to be extremely long. The instances with varying degree of sparsity have problem size

100, 200, and 400. The arc costs are drawn from a discrete uniform distribution sup-

ported on {1,2, ...,104}; for each problem set and for all problem sizes, 10 instances

are generated. In comparison with other studies, namely, [1], and [13], our random in-

stances are relatively small, whereas our symmetric instances are relatively large. For

example, the MP algorithm by Miller and Pekny [13] solves random instances of size

500000, but solves symmetric instances of size less than 30 only.

The average size of the search tree of the algorithms is shown in Table 2. In order to

make the results more comparable, we have used normalized results, i.e., we have fixed

13



Table 2: Normalized size of search tree for usual BnB (CDT = 100)
CDT KSP MKS RPC COP

ATSPLIB 100.00 95.03 94.27 101.40 95.37
Usual random 100.00 47.27 43.97 129.98 47.27
Degree of symmetry 0.33 100.00 50.81 50.65 106.75 51.16
Degree of symmetry 0.66 100.00 74.52 73.66 101.45 75.44
Full symmetry 100.00 99.79 99.77 99.97 99.80
Degree of sparsity 0.25 100.00 51.66 51.20 113.26 51.66
Degree of sparsity 0.50 100.00 56.13 56.13 126.68 56.13
Degree of sparsity 0.75 100.00 56.43 56.35 129.98 56.43

the results of BnB(CDT ) at 100. The number ‘50.65’ in the MKS-column means that the

BnB(MKS) generates on average about half the number of subproblems of BnB(CDT )

for instances with degree of symmetry 0.33.

Table 2 shows that, except for the RPC procedure, iterative patching leads to smaller

search trees. The search tree reductions of iterative patching are large for usual random

and sparse instances; the sizes of the trees of BnB(KSP), BnB(MKS) and BnB(COP) are

half the size of the search tree of BnB(CDT ). The reductions of iterative patching are

smaller for symmetric and ATSPLIB instances. On average, the search trees generated

by BnB(MKS) are the smallest, whereas BnB(RPC) only generates reasonably small

search trees for symmetric instances.

Table 3: Normalized running times
CDT KSP MKS RPC COP

ATSPLIB 100.00 114.81 139.56 114.44 116.01
Usual random 100.00 55.81 60.24 140.44 54.45
Degree of symmetry 0.33 100.00 72.22 72.22 170.83 55.56
Degree of symmetry 0.66 100.00 93.33 103.70 132.22 85.00
Full symmetry 100.00 108.24 126.76 114.98 111.54
Degree of sparsity 0.25 100.00 62.64 73.57 125.13 62.33
Degree of sparsity 0.50 100.00 69.05 90.16 144.79 77.44
Degree of sparsity 0.75 100.00 73.79 85.33 153.29 73.88

In Table 3, we present the normalized running times. For usual random and sparse
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Table 4: Search tree sizes and solution times (seconds) of ATSPLIB instances
CDT KSP MKS RPC COP

Instance Size Time Size Time Size Time Size Time Size Time
ft53 21189 2.20 20111 2.31 20111 2.64 21189 2.36 20111 2.42
ft70 26025 3.57 25831 3.85 25831 4.40 26025 4.01 25831 4.07
ftv33 7455 0.16 7065 0.22 7061 0.27 7307 0.22 7065 0.22
ftv35 7305 0.16 6945 0.16 6939 0.22 8267 0.22 6951 0.22
ftv38 7325 0.22 6195 0.22 6195 0.27 10101 0.38 6195 0.16
ftv44 3753 0.11 619 0.01 619 0.05 3753 0.16 3083 0.16
ftv47 29539 1.10 29025 1.26 29017 1.76 29539 1.32 29031 1.37
ftv55 114403 4.73 92447 4.51 92447 5.82 114785 5.44 103839 5.55
ftv64 252755 11.87 43441 3.19 43441 4.18 252755 15.93 43441 3.52
ftv70 326827 23.41 253873 24.95 206195 27.36 410545 35.60 261199 24.73
ftv170 1796439 1073.63 1796149 1300.88 1796159 1614.56 1796459 1198.96 1796149 1276.87
rbg323 3 0.05 3 0.05 1 0.05 9 0.05 3 0.01
rbg358 3 0.05 3 0.05 1 0.16 7 0.11 5 0.05
rbg403 3 0.05 3 0.05 1 0.11 7 0.11 3 0.05
rbg443 3 0.05 3 0.05 1 0.11 3 0.11 3 0.05
br17 3674829 16.59 3674829 24.23 3674829 32.69 3674829 24.51 3674829 24.40

Table 5: Search tree sizes and solution times (seconds) of usual random instances
CDT KSP MKS RPC COP

n Size Time Size Time Size Time Size Time Size Time
60 6508 0.60 3808 0.38 3808 0.44 12880 1.10 3808 0.33
70 10828 1.21 4528 0.44 4528 0.71 18522 2.14 4528 0.55
80 21834 2.75 9014 1.26 8622 1.48 27822 4.1 9014 1.26
100 13454 2.42 9002 1.92 6814 1.81 17424 3.73 9002 1.98
200 138522 114. 36390 33. 36390 40. 172054 151. 36390 33.
300 412930 798. 178498 481. 178498 551. 500100 1081. 178498 424.
400 525088 2142. 284994 1410. 284982 1746. 640440 2825. 284994 1349.
500 951188 6428. 434576 3687. 432000 5284. 1456440 10868. 434576 3889.

instances, iterative patching is clearly more effective; the search tree reduction out-

weighs the time invested in patching at nodes. Although BnB(MKS) often requires the

smallest search trees, BnB(COP) and BnB(KSP) mostly display smaller running times.

This indicates that the speed of solving patching problems is relevant. Solution times

of iterative patching are longer for instances from the ATSPLIB and for symmetric in-

stances than of BnB(CDT ), although in both cases the differences are small.

The following tables show the absolute search tree sizes and solution times in more

detail. For most ATSPLIB instances, the search tree reductions of iterative patching are

minor, and the solution times increase; see Table 4. For the usual random instances,

the iterative patching procedures BnB(KSP), BnB(MKS), and BnB(COP) have clearly

smaller search tree sizes and solution times than BnB(CDT ); see Table 5. These benefits

appear to be independent of the instance size. Finally, Table 6 presents the absolute tree

sizes and solution times of sparse and symmetric instances.

Symmetric and ATSPLIB instances can be considered ‘hard’, i.e., even small in-
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Table 6: Search tree sizes and solution times (seconds) of symmetric and sparse in-
stances

CDT KSP MKS RPC COP
Instance Size Time Size Time Size Time Size Time Size Time
Degree of symmetry 0.33 122520 13 58878 8 58724 8 129914 19 59458 7
Degree of symmetry 0.66 259626 33 202894 33 200630 38 264444 45 204470 32
Full symmetry 114984046 17584 114912026 19182 114908592 22521 109843207 19271 114915850 19972
Degree of sparsity 0.25 637872 1935 362188 1451 354610 1801 732500 2386 362188 1434
Degree of sparsity 0.50 653016 1797 368736 1341 368736 1746 801526 2350 368736 1345
Degree of sparsity 0.75 704832 1998 386468 1467 386392 1909 883026 2857 386468 1472
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Figure 8: Normalized search tree sizes of instances with varying degree of symmetry (n
= 60) and sparsity (n = 100), CDT = 100

stances have large search trees and running times. For these instances, cycle covers of-

ten consist of many short cycles. Hence, tours obtained by patching are long, and only

minor parts of the search tree can be discarded, so the small reductions of the search

tree do not compensate for the time invested in patching at each node. This explains the

special behavior of symmetric and ATSPLIB instances.

Table 8 and Figure 8 show that, as the degree of symmetry increases, the search

trees of BnB(CDT ) and BnB(RPC) converge to the size of the other trees. Hence,

applying iterative patching makes no sense for symmetric instances. On the other hand,

the degree of sparsity does not influence the relative search tree sizes of the algorithms;

see Figure 8. So sparsity does not influence the usefulness of iterative patching.

In Glover et al. [6], the performance of patching heuristics on solution quality is

studied. The results show that MKS returns the best patching solutions for ATSPLIB
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Table 7: Ordering of the top node solution quality and the number of iterations
Average relative
excess over AP
lower bound

Normalized search
tree size (CDT =
100)

ATSPLIB MKS 3.36% MKS 86.15
KSP 4.29% KSP 87.99
COP 4.77% COP 88.81
RPC 18.02% RPC 103.38

Usual random COP 1.88% MKS 43.97
MKS 3.36% COP 47.27
KSP 3.11% KSP 47.27
RPC 106.65% RPC 129.98

Full symmetry COP 79.87% MKS 99.77
RPC 183.57% KSP 99.79
MKS 586.92% COP 99.80
KSP 744.22% RPC 99.97

instances, and COP for random instances, both symmetric and asymmetric. In Table 4,

the solution quality results from Glover et al. [6] are compared with our search tree

sizes. The results show that the ordering with respect to solution quality of patching

procedures differs from the ordering with respect to search tree sizes of the correspond-

ing iterative patching procedure. This phenomenon may be caused by the following ef-

fect. Recall that, when iterative patching is applied, patching solutions are constructed

at each node of the search tree. It may be misleading to take into consideration the

patching quality only at the top node of the search tree, and expect that for all nodes in

the search tree on average the same quality holds. Actually, it is more likely that good

upper bounds are found deep in the search tree and that the average patching solution

quality deep into the tree differs from the average top node patching quality. In fact,

top node cycle covers may consist of many short cycles, whereas subcycles tend to be-

come longer as the BnB algorithm proceeds deeper into the search tree, because our

branching rule attempts to break short cycles. This may explain the differences in the

orderings according to the average patching quality and to the average search tree size
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of the iterative patching procedures.

Consider for example the iterative patching procedures RPC and COP. BnB(RPC)

needs long running times and large search trees for random instances, because RPC

deletes an arc from every cycle without calculating patching costs. Therefore, if cycles

are long, bad patching operations are likely. COP, on the other hand, patches long cycles

carefully, leading to smaller search trees.

5 Conclusion

We studied the performance of four iterative patching procedures, being fixed patching

procedures at every node of the search tree, which we compared with the performance

of a depth first search implementation of the CDT algorithm by Carpaneto et al. [1].

Our performance measures are the size of the search tree and the running times of the

algorithms. Clearly, there is a trade-off between the quality of patching, leading to

smaller search trees, and the speed of solving each patching problem. We conclude

with an answer to the main questions.

Is it worthwhile to use iterative patching procedures? At least, search trees are

always smaller. However, only for ‘practical’ instances the solution times are shorter

when BnB(CDT ) is applied. A side effect of iterative patching is that if calculations are

finished prematurely, a satisfactory solution is often at hand; see Zhang [16].

Which iterative patching procedure is the most efficient one? On the whole, the

algorithm using MKS generates the smallest solution trees, and our COP and KSP im-

plementations achieve the best solution times.
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