

Chemical Constituents from the Leaves of Desmos chinensis Lour.

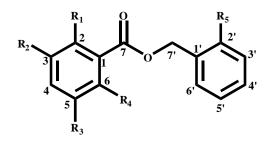
Tharikarn Rittiwong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Studies Prince of Songkla University 2010 Copyright of Prince of Songkla University

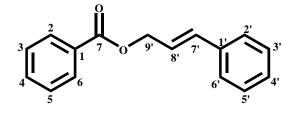
Thesis Title	Chemical Constituents from the Leaves of Desmos chinensis Lour.		
Author	Miss Tharikarn Rittiwong		
Major Program	Chemical Studies		
Major Advisor :		Examining Committee :	
(Dr. Suda Chakthong		Chairperson (Dr. Phanruethai Pailee)	
Co-advisor :		(Dr. Suda Chakthong)	
		(Assoc. Prof. Dr. Wilawan Mahabusarakam)	
		(Assoc. Prof. Chanita Ponglimanont)	

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in

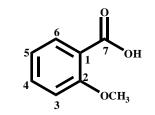
Chemical Studies.

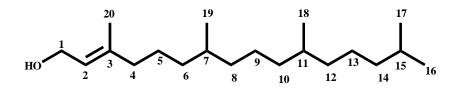

.....

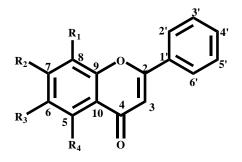
(Prof. Dr. Amornrat Phongdara) Dean of Graduate School ชื่อวิทยานิพนธ์ ผู้เขียน สาขาวิชา ปีการศึกษา

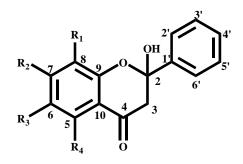

องค์ประกอบทางเคมีจากใบสายหยุด (*Desmos chinensis* Lour.) นางสาวฑริกานต์ ฤทธิวงศ์ เคมีศึกษา 2553

บทคัดย่อ

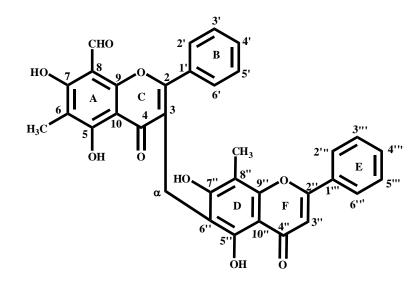

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบไดคลอโรมีเทนจากใบสายหยด สามารถแยกสารใหม่ได้ 4 สาร เป็นสารประกอบประเภท biflavones คือ saiyunensis A (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6''-(5'',7''-dihydroxy-8''-methylflavone) (DC16), saiyunensis B (DC17), saiyunensis C (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6"-(2",5",7"-trihydroxy-8"-methylflavanone) (DC18) และ saiyunensis D (DC20) นอกจากนี้ยังได้ พบสารที่มีการรายงานมาแล้ว 16 สาร ประกอบด้วยสารประเภท benzoate esters 9 สาร คือ benzyl 2-hydroxybenzoate (DC1), benzyl benzoate (DC2), benzyl 2,6-dihydroxybenzoate (DC3), cinnamyl benzoate (DC4), benzyl 2-hydroxy-5-methoxybenzoate (DC5), 2-methoxybenzyl benzoate (DC6), benzyl 2-hydroxy-6-methoxybenzoate (DC7), benzyl 2-methoxybenzoate (DC9) และ benzyl 3-hydroxybenzoate (DC14) สารประเภท flavones 5 สาร คือ isounonal (DC10), unonal (DC11), 6-formyl-2,5,7-trihydroxy-8-methylflavanone (DC12), desmal (DC13) und matteuorien (DC19) สารประเภท diterpene 1 สาร คือ phytol (DC8) และสารประเภท อนุพันธ์ของ กรคเบนโซอิก 1 สาร คือ 2-methoxybenzoic acid (DC15) โครงสร้างของสารประกอบเหล่านี้ ้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี UV IR NMR MS และเปรียบเทียบกับสารที่มีรายงาน การวิจัยแล้ว


DC1: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC2: $R_1 = H$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC3: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{OH}$	$\mathbf{R}_5 = \mathbf{H}$
DC5: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$R_3 = OCH_3$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC6: $R_1 = H$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$R_5 = OCH_3$
DC7: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{OCH}_3$	$\mathbf{R}_5 = \mathbf{H}$
DC9: $R_1 = OCH_3$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC14: $R_1 = H$	$\mathbf{R}_2 = \mathbf{OH}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$

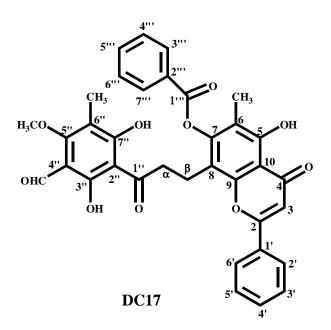

DC4

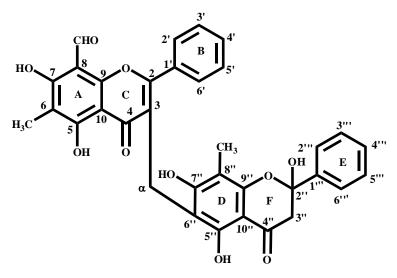

DC15

DC8

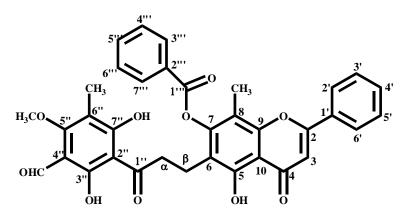


DC10: $R_1 = CHO$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$ DC11: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CHO$ $R_4 = OH$ DC19: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$



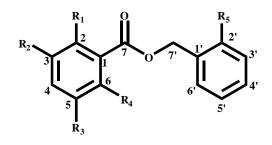

 DC12: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CHO$ $R_4 = OH$

 DC13: $R_1 = CHO$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$

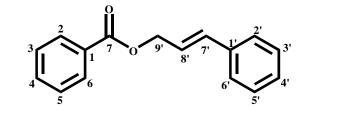


DC16

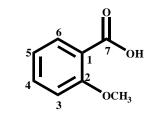
DC18

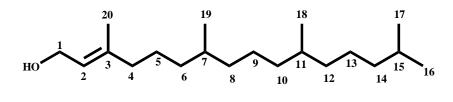


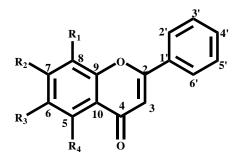
DC20

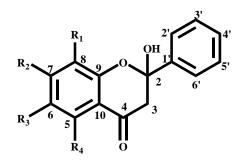

Thesis Title	Chemical Constituents from the Leaves of Desmos chinensis		
	Lour.		
Author	Miss Tharikarn Rittiwong		
Major Program	Chemical Studies		
Academic Year	2010		

ABSTRACT

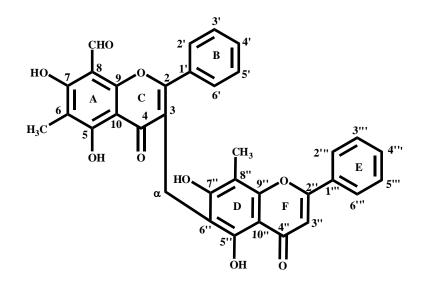

Investigation of the crude dichloromethane extract of the leaves of Desmos chinensis yielded four new biflavones: saiyunensis A (8-formyl-5,7dihydroxy-6-methylflavone)-3-methane-6''-(5'',7''-dihydroxy-8''-methylflavone) (DC16), saiyunensis B (DC17) and saiyunensis C (8-formyl-5,7-dihydroxy-6methylflavone)-3-methane-6''-(2'',5'',7''-trihydroxy-8''-methylflavanone) (DC18) and saiyunensis D (DC20), together with sixteen known compounds: nine benzoate esters: benzyl 2-hydroxybenzoate (DC1), benzyl benzoate (DC2), benzyl 2,6dihydroxybenzoate (DC3), cinnamyl benzoate (DC4), benzyl 2-hydroxy-5methoxybenzoate (DC5), 2-methoxybenzyl benzoate (DC6), benzyl 2-hydroxy-6methoxybenzoate (DC7), benzyl 2-methoxybenzoate (DC9) and benzyl 3hydroxybenzoate (DC14), five flavones: isounonal (DC10), unonal (DC11), 6formyl-2,5,7-trihydroxy-8-methylflavanone (DC12), desmal (DC13) and matteuorien (DC19), one diterpene: phytol (DC8) and one benzoic acid derivative: 2methoxybenzoic acid (DC15). Their structures were determined on the basis of UV, IR, NMR, MS and by comparison of their spectroscopic data with those reported.


DC1: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC2: $R_1 = H$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC3: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{OH}$	$\mathbf{R}_5 = \mathbf{H}$
DC5: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$R_3 = OCH_3$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC6: $R_1 = H$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$R_5 = OCH_3$
DC7: $\mathbf{R}_1 = \mathbf{OH}$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{OCH}_3$	$\mathbf{R}_5 = \mathbf{H}$
DC9: $R_1 = OCH_3$	$\mathbf{R}_2 = \mathbf{H}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$
DC14: $R_1 = H$	$\mathbf{R}_2 = \mathbf{OH}$	$\mathbf{R}_3 = \mathbf{H}$	$\mathbf{R}_4 = \mathbf{H}$	$\mathbf{R}_5 = \mathbf{H}$

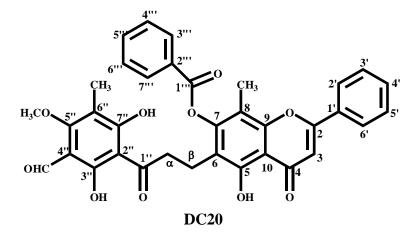

DC4


DC15

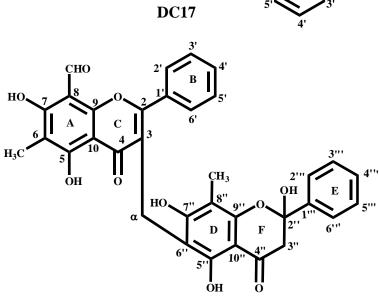
DC8

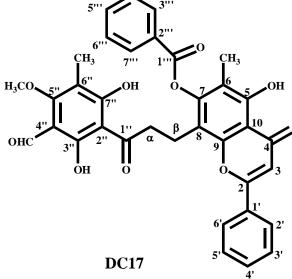


DC10: $R_1 = CHO$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$ DC11: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CHO$ $R_4 = OH$ DC19: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$



 DC12: $R_1 = CH_3$ $R_2 = OH$ $R_3 = CHO$ $R_4 = OH$


 DC13: $R_1 = CHO$ $R_2 = OH$ $R_3 = CH_3$ $R_4 = OH$



DC16

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my supervisor, Dr. Suda Chakthong, for her valuable instruction, expert guidance, excellent suggestion and kindness. I would also like to express my appreciation to Assoc. Prof. Dr. Wilawan Mahabusarakam my co-advisor and Assoc. Prof. Chanita Ponglimanont, for correction of my thesis and her kindness.

My sincere thanks are expressed to Assoc. Prof. Dr. Supayang Piyawan Voravuthikunchai for bioactivity testing and Assoc. Prof. Dr. Kitichate Sridith for plant identification.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible.

This research was supported by a scholarship from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Educaion. I would like to acknowledge the Faculty of Science Research Fund and the Graduate School, Prince of Songkla University for partial financial support.

Tharikarn Rittiwong

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents from the leaves of *Desmos chinensis*. They are a part of the basic research on the Thai medicinal plants. A derivative of benzoic acid, a diterpene, nine benzoate esters, five flavones, and two biflavones were isolated from the leaves of *Desmos chinensis*.

CONTENTS

	Page
ABSTRACT (in Thai)	iii
ABSTRACT (in English)	vii
ACKNOWLEDGMENT	xi
THE RELEVANCE OF THE RESEARCH WORK	
TO THAILAND	xii
CONTENTS	xiii
LIST OF TABLES	XV
LIST OF ILLUSTRATIONS	xxii
LIST OF ABBREVIATIONS AND SYMBOLS	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Review of literatures	2
1.2.1 The Biological Activity of D. chinensis	2
1.3 Objective	28
CHAPTER 2 EXPERIMENTAL	29
2.1 Instruments and Chemicals	29
2.2 Plant material	30
2.3 Extraction and Isolation	30
2.4 Isolation and Chemical Investigation	30
CHAPTER 3 RESULTS AND DISCUSSION	39
3.1 Structure elucidation of compounds from the leaves of D.	chinensis 39
3.1.1 Compound DC1	40
3.1.2 Compound DC2	42
3.1.3 Compound DC3	44
3.1.4 Compound DC4	46
3.1.5 Compound DC5	48

CONTENTS (Continued)

3.1.6 Compound DC6	50
3.1.7 Compound DC7	52
3.1.8 Compound DC8	54
3.1.9 Compound DC9	56
3.1.10 Compound DC10	58
3.1.11 Compound DC11	60
3.1.12 Compound DC12	62
3.1.13 Compound DC13	62
3.1.14 Compound DC14	66
3.1.15 Compound DC15	68
3.1.16 Compound DC16	70
3.1.17 Compound DC17	74
3.1.18 Compound DC18	79
3.1.19 Compound DC19	82
3.1.20 Compound DC20	84
Conclusion	90
REFERENCES	91
APPENDIX	95
VITAE	178

LIST OF TABLES

Table	J	Page
1	Compounds from plants of Desmos species	4
2	Physical characteristics and weights of the fractions from	
	dichlorometane extract	31
3	¹ H, ¹³ C NMR and HMBC spectral data of DC1 (CDCl ₃)	41
4	¹ H, ¹³ C NMR and HMBC spectral data of DC2 (CDCl ₃)	43
5	¹ H, ¹³ C NMR and HMBC spectral data of DC3 (CDCl ₃)	45
6	¹ H, ¹³ C NMR and HMBC spectral data of DC4 (CDCl ₃)	47
7	¹ H, ¹³ C NMR and HMBC spectral data of DC5 (CDCl ₃)	49
8	¹ H, ¹³ C NMR and HMBC spectral data of DC6 (CDCl ₃)	51
9	¹ H, ¹³ C NMR and HMBC spectral data of DC7 (CDCl ₃)	53
10	¹ H, ¹³ C NMR and HMBC spectral data of DC8 (CDCl ₃)	55
11	¹ H, ¹³ C NMR and HMBC spectral data of DC9 (CDCl ₃)	57
12	¹ H, ¹³ C NMR and HMBC spectral data of DC10 (CDCl ₃)	59
13	¹ H, ¹³ C NMR and HMBC spectral data of DC11 (CDCl ₃)	61
14	¹ H, ¹³ C NMR and HMBC spectral data of DC12 (CDCl ₃)	64
15	¹ H, ¹³ C NMR and HMBC spectral data of DC13 (CDCl ₃)	65
16	¹ H, ¹³ C NMR and HMBC spectral data of DC14 (CDCl ₃)	67
17	¹ H, ¹³ C NMR and HMBC spectral data of DC15 (CDCl ₃)	69
18	¹ H, ¹³ C NMR and HMBC spectral data of DC16 (CDCl ₃)	72
19	¹ H, ¹³ C NMR and HMBC spectral data of DC17 (CDCl ₃)	76
20	¹ H, ¹³ C NMR and HMBC spectral data of DC18 (CDCl ₃)	80
21	¹ H, ¹³ C NMR and HMBC spectral data of DC19 (CDCl ₃ and DMSO- d_6)	83
22	¹ H, ¹³ C NMR and HMBC spectral data of DC20 (CDCl ₃)	85

LIST OF ILLUSTRATIONS

Schemes	Page
1 Extraction of the leaves of <i>D. chinensis</i> Lour.	30
2 Isolation of compounds DC1-DC20	
from the dichloromethane extract	31
3 Fragmentation pathway of compound DC17	78
4 Plausible biosynthetic route for <i>o</i> -quinomethine from isounonal	87
5 Plausible biosynthetic route for <i>o</i> -quinomethine from unonal	87
6 Plausible biosynthetic route for saiyunensis B (DC17) from 3-	
formyl-2,6-dihydroxy-4-methoxy-5-methyl dibenzoylmethane and	
isounonal	88
7 Plausible biosynthetic route for saiyunensis D (DC20) from 3-	
formyl-2,6-dihydroxy-4-methoxy-5-methyl dibenzoylmethane and	
unonal	89
Figures	Page

1 Different parts of <i>Desmos chinensis</i>	2
2 Selected HMBC correlations of DC1	40
3 Selected HMBC correlations of DC2	42
4 Selected HMBC correlations of DC3	44
5 Selected HMBC correlations of DC4	46
6 Selected HMBC correlations of DC5	48
7 Selected HMBC correlations of DC6	50
8 Selected HMBC correlations of DC7	52
9 Selected HMBC correlations of DC9	56
10 Selected HMBC correlations of DC10	59
11 Selected HMBC correlations of DC11	60
12 Selected HMBC correlations of DC12	63

Figures	Page
13 Selected HMBC correlations of DC13	65
14 Selected HMBC correlations of DC14	66
15 Selected HMBC correlations of DC15	67
16 Selected HMBC correlations of DC16	72
17 Selected HMBC correlations of DC17	76
18 Selected HMBC correlations of DC18	80
19 Selected HMBC correlations of DC19	82
20 Selected HMBC correlations of DC20	85
21 UV (MeOH) spectrum of compound DC1	96
22 IR (neat) spectrum of compound DC1	96
23 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC1	97
24 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC1	97
25 DEPT 135° (CDCl ₃) of compound DC1	98
26 DEPT 90° (CDCl ₃) of compound DC1	98
27 2D HMQC (CDCl ₃) of compound DC1	99
28 2D HMBC (CDCl ₃) of compound DC1	99
29 2D COSY (CDCl ₃) of compound DC1	100
30 UV (MeOH) spectrum of compound DC2	101
31 IR (neat) spectrum of compound DC2	101
32 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC2	102
33 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC2	102
34 DEPT 135° (CDCl ₃) of compound DC2	103
35 2D HMQC (CDCl ₃) of compound DC2	103
36 2D HMBC (CDCl ₃) of compound DC2	104
37 2D COSY (CDCl ₃) of compound DC2	104
38 UV (MeOH) spectrum of compound DC3	105
39 IR (neat) spectrum of compound DC3	105
40 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC3	106

Figures	Page
41 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC3	106
42 DEPT 135° (CDCl ₃) of compound DC3	107
43 2D HMQC (CDCl ₃) of compound DC3	107
44 2D HMBC (CDCl ₃) of compound DC3	108
45 2D COSY (CDCl ₃) of compound DC3	108
46 UV (MeOH) spectrum of compound DC4	109
47 IR (neat) spectrum of compound DC4	109
48 1 H NMR (300 MHz) (CDCl ₃) of compound DC4	110
49 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC4	110
50 DEPT 135° (CDCl ₃) of compound DC4	111
51 2D HMQC (CDCl ₃) of compound DC4	111
52 2D HMBC (CDCl ₃) of compound DC4	112
53 2D COSY (CDCl ₃) of compound DC4	112
54 UV (MeOH) spectrum of compound DC5	113
55 IR (neat) spectrum of compound DC5	113
56 1 H NMR (300 MHz) (CDCl ₃) of compound DC5	114
57 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC5	114
58 DEPT 135° (CDCl ₃) of compound DC5	115
59 DEPT 90° (CDCl ₃) of compound DC5	115
60 2D HMQC (CDCl ₃) of compound DC5	116
61 2D HMBC (CDCl ₃) of compound DC5	116
62 2D COSY (CDCl ₃) of compound DC5	117
63 UV (MeOH) spectrum of compound DC6	118
64 IR (neat) spectrum of compound DC6	118
65 ¹ H NMR (500 MHz) (CDCl ₃) of compound DC6	119
66 ¹³ C NMR (125 MHz) (CDCl ₃) of compound DC6	119
67 DEPT 135° (CDCl ₃) of compound DC6	120
68 DEPT 90° (CDCl ₃) of compound DC6	120
	wwiii

Figures	Page
69 2D HMQC (CDCl ₃) of compound DC6	121
70 2D HMBC (CDCl ₃) of compound DC6	121
71 2D COSY (CDCl ₃) of compound DC6	122
72 UV (MeOH) spectrum of compound DC7	123
73 IR (neat) spectrum of compound DC7	123
74 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC7	124
75 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC7	124
76 DEPT 135° (CDCl ₃) of compound DC7	125
77 DEPT 90° (CDCl ₃) of compound DC7	125
78 2D HMQC (CDCl ₃) of compound DC7	126
79 2D HMBC (CDCl ₃) of compound DC7	126
80 2D COSY (CDCl ₃) of compound DC7	127
81 UV (MeOH) spectrum of compound DC8	128
82 IR (neat) spectrum of compound DC8	128
83 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC8	129
84 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC8	129
85 DEPT 135° (CDCl ₃) of compound DC8	130
86 UV (MeOH) spectrum of compound DC9	131
87 IR (neat) spectrum of compound DC9	131
88 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC9	132
89 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC9	132
90 DEPT 135° (CDCl ₃) of compound DC9	133
91 DEPT 90° (CDCl ₃) of compound DC9	133
92 2D HMQC (CDCl ₃) of compound DC9	134
93 2D HMBC (CDCl ₃) of compound DC9	134
94 2D COSY (CDCl ₃) of compound DC9	135
95 UV (MeOH) spectrum of compound DC10	136
96 IR (KBr) spectrum of compound DC10	136

Figures	Page
97 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC10	137
98 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC10	137
99 DEPT 135° (CDCl ₃) of compound DC10	138
100 2D HMQC (CDCl ₃) of compound DC10	138
101 2D HMBC (CDCl ₃) of compound DC10	139
102 2D COSY (CDCl ₃) of compound DC10	139
103 UV (MeOH) spectrum of compound DC11	140
104 IR (KBr) spectrum of compound DC11	140
105 1 H NMR (300 MHz) (CDCl ₃) of compound DC11	141
106 13 C NMR (75 MHz) (CDCl ₃) of compound DC11	141
107 DEPT 135° (CDCl ₃) of compound DC11	142
108 2D HMQC (CDCl ₃) of compound DC11	142
109 2D HMBC (CDCl ₃) of compound DC11	143
110 2D COSY (CDCl ₃) of compound DC11	143
111 UV (MeOH) spectrum of compound DC12 and DC13	144
112 IR (KBr) spectrum of compound DC12 and DC13	144
113 1 H NMR (300 MHz) (CDCl ₃) of compound DC12 and DC13	145
114 13 C NMR (75 MHz) (CDCl ₃) of compound DC12 and DC13	145
115 DEPT 135° (CDCl ₃) of compound DC12 and DC13	146
116 2D HMQC (CDCl ₃) of compound DC12 and DC13	146
117 2D HMBC (CDCl ₃) of compound DC12 and DC13	147
118 2D COSY (CDCl ₃) of compound DC12 and DC13	147
119 UV (MeOH) spectrum of compound DC14	148
120 IR (neat) spectrum of compound DC14	148
121 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC14	149
122 13 C NMR (75 MHz) (CDCl ₃) of compound DC14	149
123 DEPT 135° (CDCl ₃) of compound DC14	150
124 2D HMQC (CDCl ₃) of compound DC14	150

Figures	Page
125 2D HMBC (CDCl ₃) of compound DC14	151
126 2D COSY (CDCl ₃) of compound DC14	151
127 UV (MeOH) spectrum of compound DC15	152
128 IR (neat) spectrum of compound DC15	152
129 1 H NMR (300 MHz) (CDCl ₃) of compound DC15	153
130 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC15	153
131 DEPT135° (CDCl ₃) of compound DC15	154
132 2D HMQC (CDCl ₃) of compound DC15	154
133 2D HMBC (CDCl ₃) of compound DC15	155
134 2D COSY (CDCl ₃) of compound DC15	155
135 UV (MeOH) spectrum of compound DC16	156
136 IR (KBr) spectrum of compound DC16	156
137 1 H NMR (300 MHz) (CDCl ₃) of compound DC16	157
138 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC16	157
139 DEPT 135° (CDCl ₃) of compound DC16	158
140 2D HMQC (CDCl ₃) of compound DC16	158
141 2D HMBC (CDCl ₃) of compound DC16	159
142 2D COSY (CDCl ₃) of compound DC16	159
143 UV (MeOH) spectrum of compound DC17	160
144 IR (KBr) spectrum of compound DC17	160
145 1 H NMR (600 MHz) (CDCl ₃) of compound DC17	161
146 ¹³ C NMR (150 MHz) (CDCl ₃) of compound DC17	161
147 DEPT 135° and DEPT 90° (CDCl ₃) of compound DC17	162
148 2D HMQC (CDCl ₃) of compound DC17	162
149 2D HMBC (CDCl ₃) of compound DC17	163
150 2D COSY (CDCl ₃) of compound DC17	163
151 2D NOESY (CDCl ₃) of compound DC17	164
152 UV (MeOH) spectrum of compound DC18	165

Figures	Page
153 IR (KBr) spectrum of compound DC18	165
154 ¹ H NMR (300 MHz) (CDCl ₃) of compound DC18	166
155 ¹³ C NMR (75 MHz) (CDCl ₃) of compound DC18	166
156 DEPT 135° (CDCl ₃) of compound DC18	167
157 2D HMQC (CDCl ₃) of compound DC18	167
158 2D HMBC (CDCl ₃) of compound DC18	168
159 2D COSY (CDCl ₃) of compound DC18	168
160 UV (MeOH) spectrum of compound DC19	169
161 IR (KBr) spectrum of compound DC19	169
162 ¹ H NMR (300 MHz) (DMSO- d_6) of compound DC19	170
163 ¹³ C NMR (75 MHz) (DMSO- <i>d</i> ₆) of compound DC19	170
164 DEPT 135° (DMSO- <i>d</i> ₆) of compound DC19	171
165 2D HMQC (DMSO- d_6) of compound DC19	171
166 2D HMBC (DMSO- <i>d</i> ₆) of compound DC19	172
167 2D COSY (DMSO- <i>d</i> ₆) of compound DC19	172
168 UV (MeOH) spectrum of compound DC20	173
169 IR (KBr) spectrum of compound DC20	173
170 ¹ H NMR (600 MHz) (CDCl ₃) of compound DC20	174
171 ¹³ C NMR (150 MHz) (CDCl ₃) of compound DC20	174
172 DEPT 135° and DEPT 90° (CDCl ₃) of compound DC20	175
173 2D HMQC (CDCl ₃) of compound DC20	175
174 2D HMBC (CDCl ₃) of compound DC20	176
175 2D COSY (CDCl ₃) of compound DC20	176
176 2D NOESY (CDCl ₃) of compound DC20	177

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
m	=	multiplet
dd	=	doublet of doublet
ddd	=	doublet of doublet of doublet
dt	=	doublet of triplet
g	=	gram
nm	=	nanometer
mp	=	melting point
cm ⁻¹	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
[α] _D	=	specific rotation
λ_{max}	=	maximum wavelength
ν	=	absorption frequencies
З	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
С	=	concentration
IR	=	Infrared

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

UV	=	Ultraviolet
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectroscopy
NMR	=	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectrosopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TLC	=	Thin Layer Chromatography
TMS	=	tetramethylsilane
CDCl ₃	=	deuterochloroform
DMSO- d_6	=	dimethylsulfoxide-d ₆

CHAPTER 1 INTRODUCTION

1.1 Introduction

Desmos chinensis Lour. is the plant in the Annonaceae family, which is locally known as "arumum". The tree is a climbing shrub with straggling branches, up to 5 meters tall, flowers are greenish-yellow. The petals arrange in 6 layers. Young flowers are green and inconspicuous. Only mature yellow flowers have strong lemon-like fruity scent can be detected at a distance, especially in the evening. When the flower fades, the petals turn to rusty-red and then drop. The aggregate fruits like bead bracelet and the ripe are glittering black that contain 2-5 seeds. The flowers open between April and July and fruit can be observed from June to March of the following year. The plant *Desmos chinensis* is distributed widely in Asia and northern Australia (Frodin *et al.*, 1990). This plant has been used as a folk medicine for treatment of malaria, parturition and vertigo (Rahman *et al.*, 2003). In Thailand it is used traditionally to treat pyretic and dysentery (Kummee *et al.*, 2008). The extracted oil from flowers is used as cardiotonic, antipyretic and vertiginous relieving. The stem and root are used to relief the drug addict by vapor exposing.

According to Smitinand (2001), there are five species of genus *Desmos* found in Thailand as follows.

- 1. D. chinensis
- 2. D. cochinchinensis
- 3. D. crinitus
- 4. D. dumosus
- 5. D. macrocarpus

The leaf extract of this plant contains flavonoids such as flavones, chalcones and flavanones (Rahman *et al.*, 2003). This plant exhibited antibacterial activity against *S. aureus*, *Bacillus cereus*, *B. subtilis*, *Salmonella typh*i A, *Shigella boydii*, *Shigella shiga* and *S. sonnei* at concentration of 400 µg/disc (Qais *et al.*, 1996), cytotoxicity (Nakanishi *et al.*, 1965) and tyrosine kinase enzyme inhibitory properties (Kakeya *et al.*, 1993).

Trees

Flowers

Fruits

Figure 1 Different parts of Desmos chinensis Lour.

1.2 Review of Literatures

The chemical constituents isolated from the eight species of *Desmos* spp. were summarized in **Table 1**. Information obtained from SciFinder Scholar copyright in 2010 will be presented and classified into groups: Acids, Alkaloids, Chalcones, Esters Flavonoids, Steroids and Triterpenoids.

1.2.1 The Biological Activity of D. chinensis

The compounds isolated from *D. chinensis* have been investigated for biological activity. For example, negletein, 2',3'-dihydroxy-4',6'-dimethoxydihydrochalcone and 2-methoxybenzyl benzoate isolated from leaves of *D*.

chinensis showed the inhibitory activity against nuclear factor of activated T cells (NFAT) transcription factor with IC₅₀ values of $3.89 \pm 0.39 \,\mu$ M, $9.77 \pm 0.26 \,\mu$ M and $28.4 \pm 2.62 \,\mu$ M, respectively (Kiem *et al.*, 2005), 8-formyl-2,5,7-trihydroxy-6-methylflavone was an anticancer agent and inhibited tyrosine kinase with IC₅₀ of 0.85 μ g/mL (Umezawa *et al.*, 1994), 2-methoxy-3-methyl-4,6-dihydroxy-5-(3'-hydroxy) cinnamoylbenzaldehyde and lawinal demonstrated potent anti-HIV activity with EC₅₀ values of 0.022 and 2.30 μ g/mL and therapeutic indexes of 489 and 45.2, respectively (Wu *et al.*, 2003).

Table 1 Compounds from plants of Desmos species.

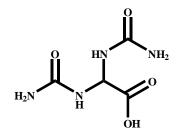
a. Acids

b. Alkaloids

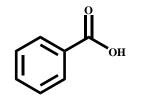
- e. Flavonoidsf. Steroids
- f.
- c. Chalcones
- d. Esters

g. Triterpenoids

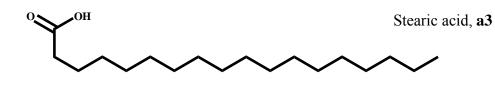
Scientific name	Part	Compounds	Bibliography
D. chinensis	Root	Desmethoxymatteucinol, e1	Zhao et al., 1992
		4,7-Dihydroxy-5-methoxy-6-	
		methyl-8-formylflavane, e2	
		Benzoic acid, a2	Wu et al., 2000
		Desmethoxymatteucinol-7-	
		methyl ether, e3	
		Negletein, e4	
		Unonal, e5	
		β-Sitosterol, f2	
		Stigmasterol, f3	
	Seed	Allantonic acid, a1	Ju et al., 1999
		Daucosterol, f1	
		Desmosal, e6	
		Desmosflavone, e7	
		Isounonal, e8	
		Lawinal, e9	
		Stearic acid, a3	

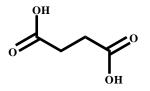

Part	Compounds	Bibliography
	Succinic acid, a4	
	β -Sitosterol, f2	
	Unonal, e5	
Leaves	2',4'-Dihydroxy-3'-(2,6-	Rahman et al.,
	dihydroxybenzyl)-6'-	2003
	methoxychalcone, c1	
	Uvaretin, c2	
	Isoouvaretin, c3	
	Astillbin, e10	Shi <i>et al.</i> , 2003
	Eucryphin, e11	
	Negletein, e4	
	Mosloflavone, e12	
	Astillbin, e10	Kiem et al.,
	2',3'-Dihydroxy-4',6'-	2005
	dimethoxydihydrochalcone, c4	
	5,6-Dihydroxy-7-methoxy-	
	dihydroflavone, e13	
	2-Methoxybenzyl benzoate, d1	
	Negletein, e4	
	Quercitrin, e14	
Branch	Mosloflavone, e12	Liu <i>et al.</i> , 2004
	Negletein, e4	
	Oxoanolobin, b1	
	β-Sitosterol, f2	
	3,9,11-Trimethoxy-1,2-	
	methylenedioxyloxoaporphine, b2	
Root	Desmethoxymatteucinol, e1	Wu et al., 1994
	Desmosflavone, e7	
	β -Sitosterol, f2	
	Branch	β -Sitosterol, f2Unonal, e5Leaves2',4'-Dihydroxy-3'-(2,6- dihydroxybenzyl)-6'- methoxychalcone, c1Uvaretin, c2Isoouvaretin, c3Astillbin, e10Eucryphin, e11Negletein, e4Mosloflavone, e12Astillbin, e102',3'-Dihydroxy-4',6'- dimethoxydihydrochalcone, c45,6-Dihydroxy-7-methoxy- dihydroflavone, e132-Methoxybenzyl benzoate, d1Negletein, e4Quercitrin, e14BranchMosloflavone, e12Negletein, e4Oxoanolobin, b1 β -Sitosterol, f23,9,11-Trimethoxy-1,2- methylenedioxyloxoaporphine, b2RootDesmethoxymatteucinol, e1

Scientific name	Part	Compounds	Bibliography
		Unonal, e5	Wu et al., 1997
		Desmosflavone, e7	
D. dasymachalus	Leaves	Dasymachaline, b3	Chan <i>et al.</i> ,
		Dicentrinone, b4	1986
D. dumosus	Root	Benzoic acid, a2	Wu et al., 1997
		Desmethoxymatteucinol-7-methyl	
		ether, e3	
		Desmethoxymatteucinol, e1	
		5,7-Dihydroxy-8-formyl-6-	
		methylflavanone, e15	
		Lawinal, e9	
		β-Sitosterol, f2	
		Stigmasterol, f3	
		Desmethoxymatteucinol-7-methyl	Wu et al., 1999
		ether, e3	
		2-Methoxy-3-methyl-4,6-	
		dihydroxy-5-(3'-	
		hydroxy)cinnamoylbenzaldehyde,	
		c5	
		Mosloflavone, e12	
		Negletein, e4	
		Stigmast-4-ene-3,6-dione, f4	
		Stigmastane-3,6-dione, f5	
		5-Hydroxy-7-one-6,8,8-	Wu et al., 2001
		trimethylflavone, e16	
		Lawinal, e9	Wu et al., 2005
		2-Methoxy-3-methyl-4,6-	
		dihydroxy-5-(3'-	
		hydroxy)cinnamoylbenzaldehyde,	
		c5	

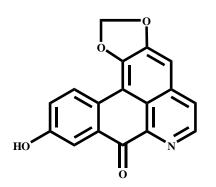

Scientific name	Part	Compounds	Bibliography
	Bark	Desmosine, b5	Sulaiman <i>et al.</i> ,
			1998
	Leaves	Asimilobine, b6	Sulaiman <i>et al.</i> ,
	and	Discretamine, b7	2003
	Stem	3-Hydroxynornuciferine, b8	
	bark	Liriodenine, b9	
		5-Hydroxy-6,7-dimethoxyflavone,	
		e17	
		5-Hydroxy-7,8-dimethoxyflavone,	
		e18	
		Lysicamine, b10	
		<i>O</i> -Methylisopiline, b11	
		O-Methylmoschatoline, b12	
		Nornuciferine, b13	
		Pronuciferine, b14	
		Stepharine, b15	
D. grandifolius	Root	Benzoic acid, a2	Wu et al., 2000
		Desmethoxymatteucinol, e1	
		Desmosal, e6	
		Lawinal, e9	
		β-Sitosterol, f2	
		Stigmasterol, f3	
D. longiflorus	Stem	15a-Hydroxy-24-	Connolly <i>et al.</i> ,
	bark	methylenelanosta-7,9(11)-dien-3-	1994
		one, g1	
		Antherospermidine, b16	Hossain <i>et al.</i> ,
		Discretamine, b7	1995
		Lanuginosine, b17	
		Liriodenine, b9	
		Xylopine, b18	

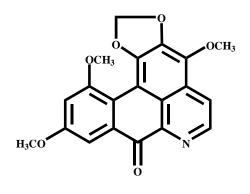
Scientific name	Part	Compounds	Bibliography
D. rostrata	Stem bark	Desmorostratine, b19	Nguyen et al.,
		Discretine-N-oxide, b20	2008
		Discretine, b21	
		Dehydrodiscretine, b22	
		Pseudocolumbamine, b23	
		Predicentrine, b24	
		Aristolactam AII, b25	
D. tiebaghiensis	Twigs and	Anonaine, b26	Leboeuf et al.,
	Leaves	Asimilobine, b27	1982
		Boldine, b28	
		Discretamine, b7	
		Glaziovine, b29	
		Isoboldine, b30	
		Laurotetanine, b31	
		<i>N</i> -Methyllaurotetanine, b32	
		N-Methylcoclaurine, b33	
		Norushinsunine, b34	
		Pallidine, b35	
		Reticuline, b36	
		Stepholidine, b37	
D. yunnanensis	-	Anonaine, b26	Luo et al., 2000
		Demethylcorydalmine, b38	
		5,6-Dimethoxy-2,2-dimethyl-1-	
		(4-hydroxybenzyl)-1,2,3,4-	
		tetrahydroisoquinoline chloride,	
		b39	
		N-Methylisococlaurine, b40	
		Isococlaurine, b41	
		Spinosine, b42	

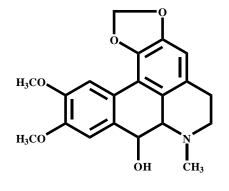

a. Acids

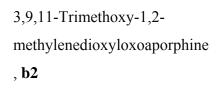


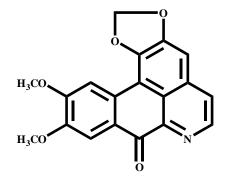
Allantoic acid, a1

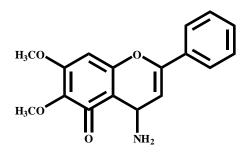

Benzoic acid, a2

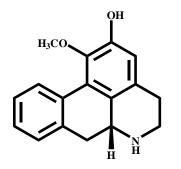



Succinic acid, a4


b. Alkaloids

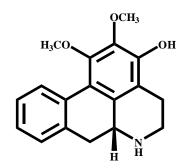

Oxoanolobin, b1




Dasymachaline, **b3**

Dicentrinone , $\mathbf{b4}$

Desmosine, **b5**

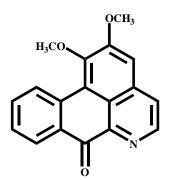

ОСН3

Н

юH

Asimilobine, **b6**

Discretamine, b7



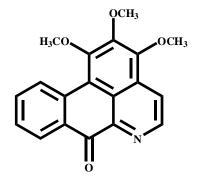
OCH₃

но

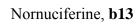
3-Hydroxynornuciferine, **b8**

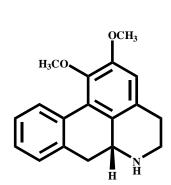
Liriodenine, **b9**

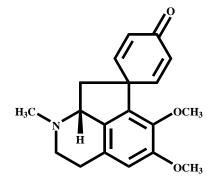
H₃CO.


OCH3

H H


OCH₃


Lysicamine, **b10**

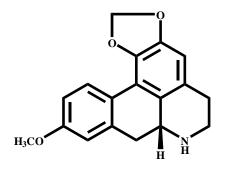

O-Methylisopiline, **b11**

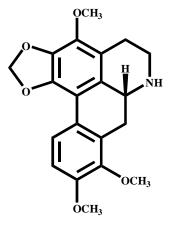
O-Methylmoschatoline, **b12**

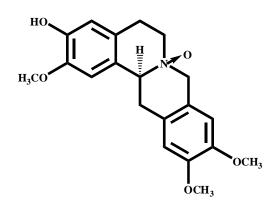
HN H OCH3

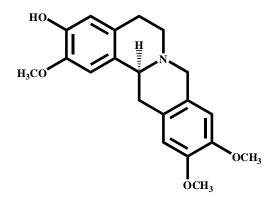
OCH3

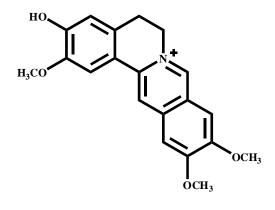
HO OCH3 OH


Pronuciferine, **b14**


Stepharine, **b15**


Antherospermidine, b16


Lanuginosine, **b17**

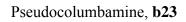


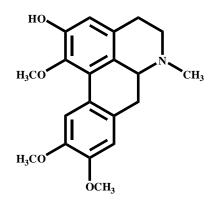
Xylopine, **b18**

Desmorostratine, **b19**

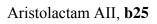
Discretine-N-oxide, b20

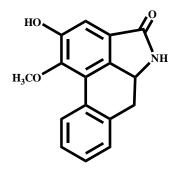
Discretine, **b21**


OCH₃

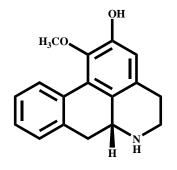

осн3

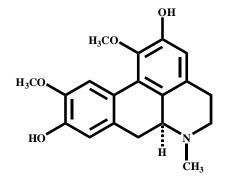
H₃CO.

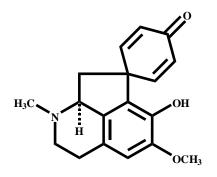

но

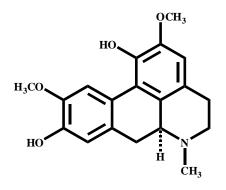

Dehydrodiscretine, b22



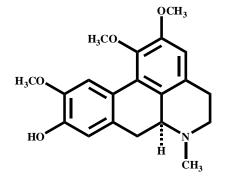


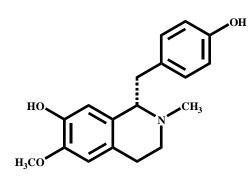

Predicentrine, **b24**



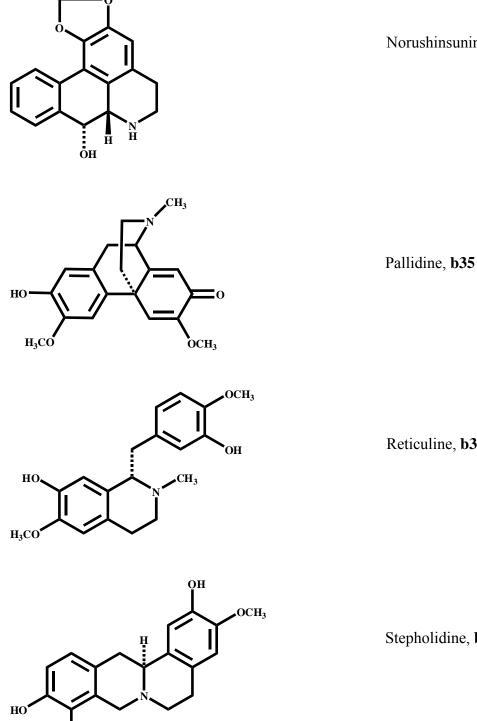



Anonaine, b26


Asimilobine, **b27**


Boldine, **b28**

Glaziovine, b29

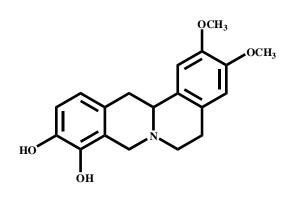


Isoboldine, b30

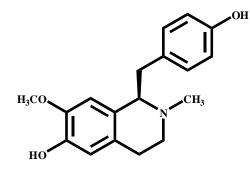
Laurotetanine, b31

N-Methyllaurotetanine, **b32**

N-Methylcoclaurine, **b33**



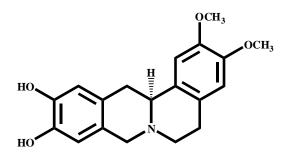
OCH₃


Norushinsunin, **b34**

Reticuline, b36

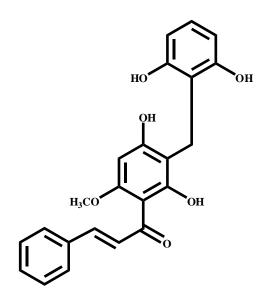
Stepholidine, **b37**

H₃C H₃C H₃C CH₂ OCH₃ Cl Cl

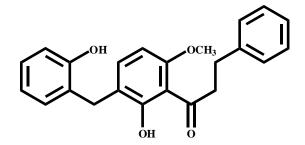

Demethylcorydalmine, b38

5,6-Dimethoxy-2,2-dimethyl-1-(4hydroxybenzyl)-1,2,3,4tetrahydroisoquinoline chloride, **b39**

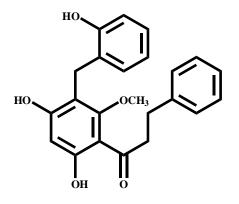
N-methylisococlaurine, **b40**

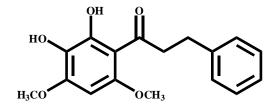


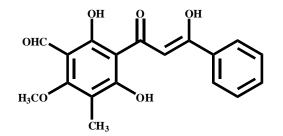
Isococlaurine, b41



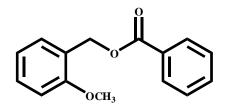
Spinosine, **b42**


c. Chalcones

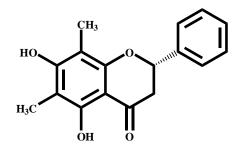

2',4'-Dihydroxy-3'-(2,6dihydroxybenzyl)-6'methoxychalcone, **c1**

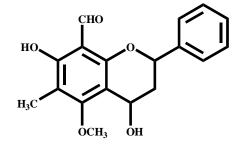

Uvaretin, c2

Isouvaretin, c3

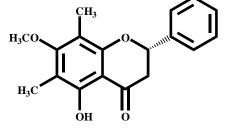


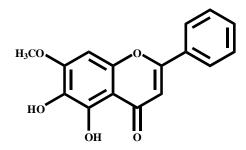
2',3'-Dihydroxy-4',6'dimethoxydihydrochalcone, **c4**

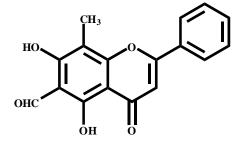

2-Methoxy-3-methyl-4,6dihydroxy-5-(3'-hydroxy) cinnamoylbenzaldehyde, **c5**


d. Ester

2-Methoxybenzyl benzoate, d1

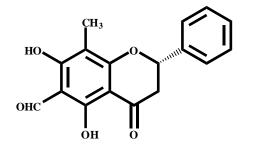

e. Flavonoids

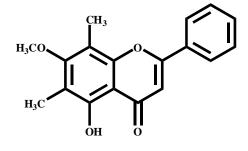




Desmethoxymatteucinol, e1

4,7-Dihydroxy-5-methoxy-6-methyl-8-formylflavane, **e2**





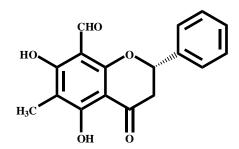
Desmethoxymatteucinol 7-methyl ether, **e3**

Negletein, e4

Unonal, e5

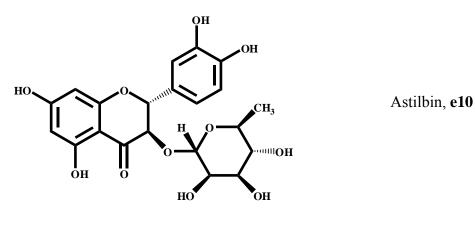
сно

он

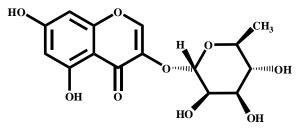

но

H₃C

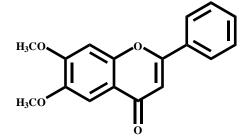
Desmosal, e6

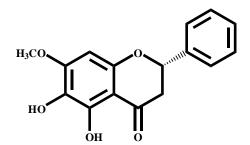

Desmosflavone, e7

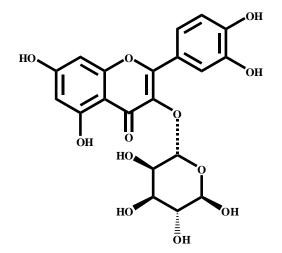
Isounonal, e8

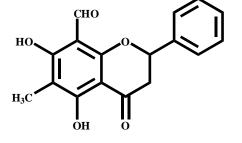


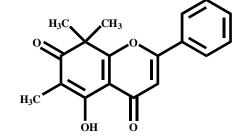
0

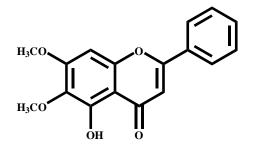

Lawinal, e9



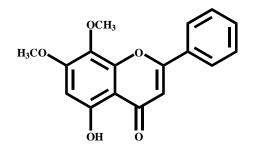

Eucryphin, e11

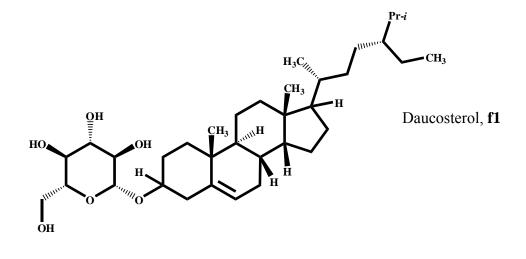

Mosloflavone, e12

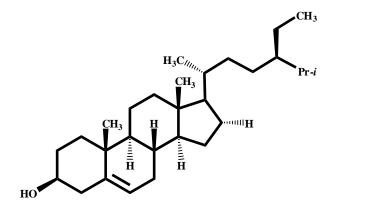

5,6-Dihydroxy-7-methoxydihydroflavone, **e13**

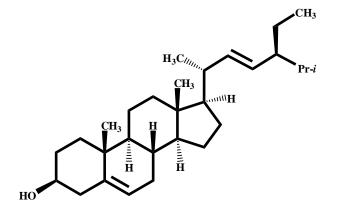


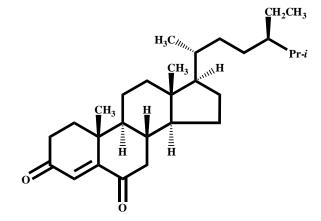
Quercitrin, e14

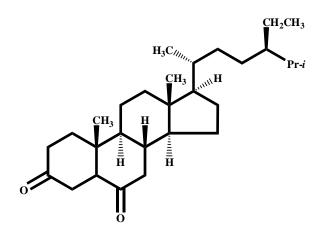

5,7-Dihydroxy-8-formyl-6methylflavanone, **e15**


5-Hydroxy-7-one-6,8,8trimethylflavone, **e16**

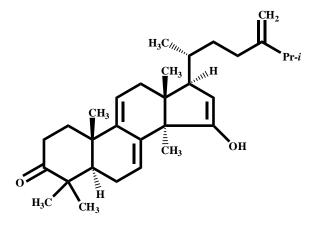

5-Hydroxy-6,7dimethoxyflavone, **e17**


5-Hydroxy-7,8dimethoxyflavone, **e18**




 β -Sitosterol, **f2**

Stigmasterol, f3



Stigmast-4-ene-3,6-dione, f4

Stigmastane-3,6-dione, **f5**

g. Triterpenoids

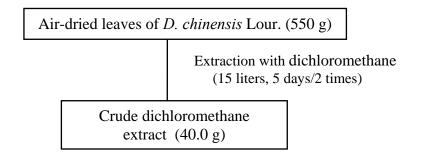
15a-Hydroxy-24methylenelanosta-7,9(11)-dien-3-one, **g1**

1.3 Objective

This research work involved isolation, purification and structure elucidation of chemical constituents from the leaves of *Desmos chinensis* Lour.

CHAPTER 2 EXPERIMENTAL

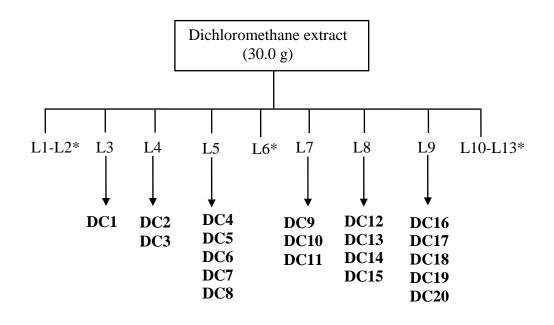
2.1 Instruments and Chemicals


Melting point was recorded in °C on a digital Electrothermal 9100 Melting Point Apparatus. Ultraviolet spectra were measured with a UV-160A spectrophotometer (SHIMADZU) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. The optical rotation $[\alpha]_D$ was measured in chloroform solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer 783 FTS165 FT-IR spectrophotometer. ¹H and ¹³C – Nuclear magnetic resonance spectra were recorded on a FT-NMR Bruker Ultra ShieldTM 300, 500 and 600 MHz spectrometer. Spectra were recorded in deuterochloroform and dimethylsulfoxide-d₆ as δ value in ppm downfield from TMS (internal standard δ 0.00) and coupling constant (J) are expressed in hertz. EI and HREI mass spectra were measured on MAT 95 XL Mass spectrometer. Quick column chromatography (QCC) and column chromatography was performed by using silica gel 60 H (Merck) and silica gel 100 (70-230 Mesh ASTM, Merck), respectively. For thin-layer chromatography (TLC), aluminum sheets of silica gel 60 F₂₅₄ (20×20 cm, layer thickness 0.2 mm, Merck) were used for analytical purposes and the compounds were visualized under ultraviolet light. Solvents for extraction and chromatography were distilled at their boiling ranges prior to use except chloroform was analytical grade reagent.

2.2 Plant Material

The leaves of *D.chinensis* Lour. was collected from Krabi province in the southern part of Thailand, in April 2009. Identification was made by Assoc. Prof. Dr. Kitichate Sridith and a specimen (No.T. Rittiwong.) deposited at PSU Herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

2.3 Extraction and Isolation


The air-dried leaves of *D. chinensis* Lour. (550 g) were extracted with dichloromethane for 5 days (2 times) at room temperature. The solvent was evaporated under reduced pressure to give concentrated solution of dichloromethane extract as brown residue (40.0 g). The process of extraction was shown in **Scheme 1**.

Scheme 1 Extraction of the leaves of *D. chinensis* Lour.

2.4 Isolation and Chemical Investigation

Dichloromethane extract (30.0 g) was subjected to quick column chromatography using silica gel as stationary phase and eluted with a gradient of hexane-dichloromethane, dichloromethane, dichloromethane-methanol and methanol as eluents. On the basis of their TLC characteristics, the fractions which contained the same major components were combined to give fractions L1-L13. Twenty pure compounds were obtained as shown in **Scheme 2**.

*No further investigation

Scheme 2 Isolation of compounds DC1-DC20 from the dichloromethane extract

Table 2 Physical characteristics and weights of the fractions from the	ıe
dichloromethane extract	

Fraction	Weight (g)	Physical characteristic	
L1	1.6772	orange viscous liquid	
L2	3.0001	orange viscous liquid	
L3	0.1408	white viscous liquid	
L4	2.1483	white viscous liquid	
L5	2.1101	red viscous liquid	
L6	3.3764	red viscous liquid	
L7	2.7282	yellow solid	
L8	4.9946	green solid	
L9	0.8138	green solid	
L10	0.7175	green solid	
L11	0.5054	green solid	
L12	3.8592	green solid	

 Table 2
 continued

Fraction	Weight (g)	Physical characteristic
L13	2.9282	green solid
Total	28.9998	-

Fraction L3 (0.1408 g) gave **DC1**: benzyl 2-hydroxybenzoate (0.1408 g) as white viscous liquid.

Fraction L4 (2.1483 g) was purified by column chromatography with ethyl acetate-hexane (0.5:9.5) to give **DC2**: benzyl benzoate (0.2421 g) and **DC3**: benzyl 2,6-dihydroxybenzoate (0.1325 g).

Fraction L5 (2.1101 g) was purified by column chromatography with dichloromethane-hexane (3.5:6.5) to afford 8 fractions (5A-5H).

Subfraction 5D (0.3200 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (0.3:9.7) to afford 5 fractions (5D1-5D5).

Subfraction 5D2 (0.0708 g) was purified by column chromatography over silica gel and eluted with acetone-hexane (1.0:9.0) to afford 6 fractions (5D2A-5D2F).

Subfraction 5D2D (0.0118 g) was further purified on preparative TLC and eluted with dichloromethane-hexane (3.5:6.5) to afford 2 fractions (5D2D1-5D2D2).

Subfraction 5D2D2 (0.0070 g) was further purified on preparative TLC and eluted with ethyl acetate-hexane (0.3:9.7) to give **DC4**: cinnamyl benzoate (0.0018 g).

Subfraction 5D2E (0.0128 g) was further purified on preparative TLC and eluted with ethyl acetate-hexane (0.3:9.7) to afford 4 fractions (5D2E1-5D2E4).

Subfraction 5D2E3 was as colourless viscous liquid of **DC5**: benzyl 2hydroxy-5-methoxybenzoate (0.0040 g).

Subfraction 5D2E4 was further purified on preparative TLC and eluted with dichloromethane-hexane (3.5:6.5) to give **DC6**: 2-methoxybenzyl benzoate (0.0015 g).

Subfraction 5E (1.1612 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (0.3:9.7) to afford 7 fractions (5E1-5E7).

Subfraction 5E4 (0.1824 g) was purified by column chromatography over silica gel and eluted with acetone-hexane (1.0:9.0) to give **DC7**: benzyl 2-hydroxy-6-methoxybenzoate (0.0776 g).

Subfraction 5F (0.1626 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (1.0:9.0) to afford 5 fractions (5F1-5F5).

Subfraction 5F3 (0.1013 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (0.5:9.5) to afford 7 fractions (5F3A-5F3G).

Subfraction 5F3D (0.0711 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (4.0:6.0) to give **DC8**: phytol (0.0096 g).

Fraction L7 (2.7282 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (1.0:1.0) to afford 8 fractions (7A-7H).

Subfraction 7B (0.1805 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (1.0:9.0) to give **DC9**: benzyl 2-methoxybenzoate (0.0376 g).

Subfraction 7D (0.5701 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (1.0:1.0) to give **DC10**: isounonal (0.2783 g) and **DC11**: unonal (0.0420 g).

Fraction L8 (4.9946 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (7.0:3.0) to afford 9 fractions (8A-8I).

Subfraction 8F (3.000 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (7.0:3.0) to afford 10 fractions (8F1-8F10).

Subfraction 8F9 (0.1310 g) was purified by column chromatography over silica gel and eluted with dichloromethane to afford 8 fractions (8F9A-8F9H).

Subfraction 8F9D (0.0153 g) was further purified on preparative TLC and eluted with dichloromethane-hexane (9.0:1.0) to give a mixture of **DC12**: 6-formyl-2,5,7-trihydroxy-8-methylflavanone and **DC13**: 8-formyl-2,5,7-trihydroxy-6-methylflavanone (0.0059 g), and **DC14**: benzyl 3-hydroxybenzoate (0.0020 g).

Subfraction 8G (0.8800 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (7.0:3.0) to afford 9 fractions (8G1-8G9).

Subfraction 8G7 (0.0382 g) was purified by column chromatography over silica gel and eluted with acetone-hexane (2.0:8.0) to give **DC15**: 2-methoxybenzoic acid (0.0092 g).

Fraction L9 (0.8138 g) was purified by column chromatography over silica gel and eluted with dichloromethane to afford 8 fractions (9A-9H).

Subfraction 9C (0.0314 g) was purified by column chromatography over silica gel and eluted with dichloromethane-hexane (6.0:4.0) to afford 5 fractions (9C1-9C5).

Subfraction 9C4 (0.0059 g) was further purified on preparative TLC and eluted with dichloromethane-hexane (7.0:3.0) to give **DC16**: (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6''-(5'',7''-dihydroxy-8''-methylflavone) (saiyunensis A) (0.0023 g).

Subfraction 9F (0.0799 g) was purified by column chromatography over silica gel and eluted with dichloromethane to afford 7 fractions (9F1-9F5).

Subfraction 9F2 (0.0374 g) was purified by column chromatography over silica gel and eluted with acetone-hexane (2.5:7.5) to afford 7 fractions (9F2A-9F2G).

Subfraction 9F2E (0.0050 g) was further purified on preparative TLC and eluted with dichloromethane to give **DC17**: saiyunensis B (0.0017 g) and **DC18**: (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6''-(2'',5'',7''-trihydroxy-8''-methylflavanone) (saiyunensis C) (0.0025 g).

Subfraction 9F5 (0.0135 g) was recrystallized from dichloromethane-hexane (1.0:1.0) to give a yellow solid of **DC19**: matteuorien (0.0077 g).

Subfraction 9G (0.1073 g) was purified by column chromatography over silica gel and eluted with acetone-hexane (2.0:8.0) to afford 8 fractions (9G1-9G8).

Subfraction 9G5 (0.0148 g) was further purified on preparative TLC and eluted with ethyl acetate-hexane (2.0:8.0) to afford 5 fractions (9G5A-9G5E).

Subfraction 9G5A (0.0047 g) was further purified on preparative TLC and eluted with methanol-dichloromethane to give **DC20**: saiyunensis D (0.0016 g).

Compound DC1: Benzyl 2-hydroxybenzoate, white viscous liquid; UV λ_{max} (MeOH) (log ε): 203 (4.57), 239 (3.76) and 309 (3.38) nm; IR (Neat) v (cm⁻¹): 3200 (O-H stretching), 1685 (C=O stretching), 1557 and 1485 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 3.

Compound DC2: Benzyl benzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 229 (4.24), 268 (3.50) and 273 (3.46) nm; IR (Neat) v (cm⁻¹): 1716 (C=O stretching), 1602 and 1496 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 4.

Compound DC3: Benzyl 2,6-dihydroxybenzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 202 (4.02), 254 (3.38) and 325 (3.88) nm; IR (Neat) v (cm⁻¹): 3443 (O-H stretching), 1670 (C=O stretching), 1578 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 5.

Compound DC4: Cinnamyl benzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 245 (4.31), 281 (3.36) and 292 (3.05) nm; IR (Neat) v (cm⁻¹): 1716 (C=O stretching), 1550 and 1455 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 6.

Compound DC5: Benzyl 2-hydroxy-5-methoxybenzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 212 (4.21), 253 (3.75) and 316 (3.31) nm; IR (Neat) ν (cm⁻¹): 3034 (O-H stretching), 1680 (C=O stretching), 1614 and 1445 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 7.

Compound DC6: 2-Methoxybenzyl benzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 201 (4.19), 222 (4.02) and 272 (3.34) nm; IR (Neat) v (cm⁻¹): 1720 (C=O stretching), 1603 and 1496 (aromatics). For ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectral data, see Table 8.

Compound DC7: Benzyl 2-hydroxy-6-methoxybenzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 212 (4.17), 255 (3.79) and 316 (3.31) nm; IR (Neat) ν (cm⁻¹): 3034 (O-H stretching), 1660 (C=O stretching), 1614 and 1455 (aromatics).

For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 9.

Compound DC8: Phytol, colourless viscous liquid, $[\alpha]_D^{25} = -1.3^\circ$ (c = 1.00, CHCl₃); UV λ_{max} (MeOH) (log ε): 203 (3.90) and 236 (2.85) nm; IR (Neat) v (cm⁻¹): 3389 (OH stretching), 1669 (double bond). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 10.

Compound DC9: Benzyl 2-methoxybenzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 234 (4.53), 220 (4.45) and 294 (4.15) nm; IR (Neat) v (cm⁻¹): 1725 (C=O stretching), 1600 and 1491 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 11.

Compound DC10: 6-Methyl-5,7-dihydroxy-8-formylflavone (isounonal), a pale yellow solid, m.p. 144-145°C; UV λ_{max} (MeOH) (log ε): 253 (4.12), 302 (3.99) and 227 (3.99) nm; IR (KBr) v (cm⁻¹): 3494 (O-H stretching), 1655, 1625 (C=O stretching), 1559 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 12.

Compound DC11: 6-Formyl-5,7-dihydroxy-8-methylflavone (unonal), yellow solid, m.p. 125-126°C; UV λ_{max} (MeOH) (log ε): 289 (4.26), 204 (3.96) and 221 (3.96) nm; IR (KBr) v (cm⁻¹): 3472 (O-H stretching), 1650 (C=O stretching), 1589 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 13.

Compound DC12: 6-Formyl-2,5,7-trihydroxy-8-methylflavanone, a pale yellow solid, m.p. 164-165°C, $[\alpha]_D^{25} = +3.1^\circ$ (c = 1.00, CHCl₃); UV λ_{max} (MeOH) (log ε): 272 (4.37), 236 (3.91) and 343 (3.75) nm; IR (Neat) v (cm⁻¹): 3341 (O-H stretching), 1630 (C=O stretching), 1546 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 14.

Compound DC13: 8-Formyl-2,5,7-trihydroxy-6-methylflavanone (desmal), a pale yellow solid, m.p. 164-165°C, $[\alpha]_D^{25} = +3.1°$ (c = 1.00, CHCl₃); UV λ_{max} (MeOH) (log ε): 272 (4.37), 236 (3.91) and 343 (3.75) nm; IR (Neat) v (cm⁻¹): 3341 (O-H stretching), 1630 (C=O stretching), 1546 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 15.

Compound DC14: Benzyl 3-hydroxybenzoate, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 203 (4.57), 239 (3.76) and 309 (3.38) nm; IR (Neat) v (cm⁻¹): 3368 (O-H stretching), 1716 (C=O stretching), 1698 and 1455 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 16.

Compound DC15: 2-Methoxybenzoic acid, colourless viscous liquid; UV λ_{max} (MeOH) (log ε): 204 (4.45) and 281 (3.36) nm; IR (Neat) v (cm⁻¹): 3450 (O-H stretching), 1722 (C=O stretching), 1603 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 17.

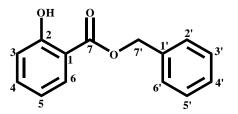
Compound DC16: (8-Formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6''-(5'',7''-dihydroxy-8''-methylflavone), (Saiyunensis A), a pale yellow solid, m.p. 229-230 °C; UV λ_{max} (MeOH) (log ε): 203 (4.19), 248 (3.94) and 281 (4.06) nm; IR (KBr) v (cm⁻¹): 3494 (O-H stretching), 1655 (C=O stretching). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 18.

Compound DC17: Saiyunensis B, a pale yellow solid, m.p. 190-191 °C; UV λ_{max} (MeOH) (log ε): 203 (3.86), 274 (3.73) and 485 (2.63) nm; IR (KBr) v (cm⁻¹): 3447 (O-H stretching), 1739, 1633 (C=O stretching), 1542 (aromatics). For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectral data, see Table 19.

Compound DC18: (8-Formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6''-(2'',5'',7''-trihydroxy-8''-methylflavanone), (Saiyunensis C), a pale yellow solid, m.p. 199-200 °C, $[\alpha]_D^{25} = +1.4^\circ$ (c = 1.00, CHCl₃); UV λ_{max} (MeOH) (log ε): 203 (4.40), 294 (4.18) and 430 (2.37) nm; IR (KBr) v (cm⁻¹): 3341 (O-H stretching), 1630 (C=O stretching). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 20.

Compound DC19: 5,7-Dihydroxy-6,8-dimethylflavone (matteuorien), a pale yellow solid, m.p. 180-181 °C; UV λ_{max} (MeOH) (log ε): 204 (4.90), 278 (4.20) and 321 (4.77) nm; IR (KBr) v (cm⁻¹): 3494 (O-H stretching), 1655 (C=O stretching), 1487 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 21.

Compound DC20: Saiyunensis D, a pale yellow solid, m.p. 180-182 °C; UV λ_{max} (MeOH) (log ε): 203 (3.62), 278 (3.11) and 413 (1.67) nm; IR (KBr) v (cm⁻¹): 3439 (O-H stretching), 1720, 1643 (C=O stretching), 1542 (aromatics). For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectral data, see Table 22.


CHAPTER 3 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the leaves of D. chinensis

The crude dichloromethane extract from the leaves of *D. chinensis* was subjected to quick column chromatography and repeated column chromatography over silica gel to furnish twenty compounds: benzyl 2-hydroxybenzoate (**DC1**), benzyl benzoate (**DC2**), benzyl 2,6-dihydroxybenzoate (**DC3**), cinnamyl benzoate (**DC4**), benzyl 2-hydroxy-5-methoxybenzoate (**DC5**), 2-methoxybenzyl benzoate (**DC6**), benzyl 2-hydroxy-6-methoxybenzoate (**DC7**), phytol (**DC8**), benzyl 2-methoxybenzoate (**DC9**), isounonal (**DC10**), unonal (**DC11**), 6-formyl-2,5,7-trihydroxy-8-methylflavanone (**DC12**), desmal (**DC13**), benzyl 3-hydroxybenzoate (**DC14**), 2-methoxybenzoic acid (**DC15**), saiyunensis A (**DC16**), saiyunensis B (**DC17**), saiyunensis C (**DC18**), matteuorien (**DC19**) and saiyunensis D (**DC20**).

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC and COSY. Mass spectra were determined for the new compounds: **DC16-DC18** and **DC20**. The physical data of the known compounds were also compared with the reported values.

Compound DC1

DC1 was obtained as white viscous liquid. Its IR spectrum revealed hydroxyl (3200 cm⁻¹), ester carbonyl (1685 cm⁻¹) and aromatic ring (1557 and 1485 cm⁻¹).

The ¹H NMR spectrum of **DC1** showed the signals of one oxymethylene protons at δ 5.42, (2H, s, H-7') and nine aromatic protons at δ 6.87 (1H, t, J = 7.5 Hz, H-5), δ 6.98 (1H, d, J = 8.3 Hz, H-3), δ 7.45-7.37 (6H, m, H-4, H-2', H-3', H-4', H-5', H-6') and δ 7.89 (1H, dd, J = 7.5, 3.0 Hz, H-6) of which five (δ 7.45-7.37) showed the coupling pattern of a monosubstituted phenyl ring. Additionally, the ¹H NMR spectrum disclosed a singlet signal of a chelated hydroxyl group at δ 10.84 (2-OH). The ¹³C NMR indicated the presence of 14 carbons including one ester carbonyl (δ 169.8), one methylene (δ 66.8) and two aromatic rings. The HMBC spectrum showed correlations between oxymethylene protons H₂-7' (δ 5.42) and C-7 (δ 169.8), C-1' (δ 135.2) and C-2'/6' (δ 128.1); aromatic proton H-6 (δ 7.89) and C-2 (δ 161.7), C-4 (δ 135.7) and C-7 (δ 169.8), confirming that the methylene group was connected to C-1' of the aromatic ring while the carbonyl group was connected to the other aromatic ring. The location of the hydroxyl group at C-2 was assigned by HMBC correlations between the hydroxyl proton 2-OH (δ 10.84) and C-1 (δ 112.3), C-2 (δ 161.7) and C-3 (δ 117.5). The structure of compound **DC1** was identified as benzyl 2hydroxybenzoate, (Kodpinid et al., 1983).

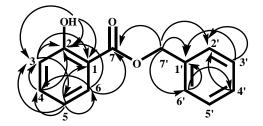


Figure 2 Selected HMBC correlations of DC1

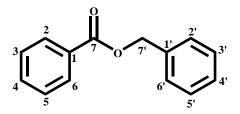

position	$\delta_{\rm H}$ (multiplicity)		$\delta_{\rm C}$ (C- type)	НМВС
position	DC1 ^a	R ^b	DC1 ^c	Invide
1	-	-	112.3 (C)	-
2	-	-	161.7 (C)	-
3	6.98 (d, <i>J</i> = 8.3 Hz)	7.51-6.81 (m)	117.5 (CH)	C-1, C-2, C-5
4	7.45-7.37 (m)	7.51-6.81 (m)	135.7 (CH)	C-2, C-3
5	6.87 (t, $J = 7.5$ Hz)	7.51-6.81 (m)	119.1 (CH)	C-1, C-3, C-4, C-6
6	7.89 (dd, <i>J</i> = 7.5, 3.0 Hz)	$7.86 (\mathrm{dd}, J = 8.0, 2.0 \mathrm{Hz})$	129.9 (CH)	C-2, C-4, C-7
7	-	-	169.8 (C)	-
1′	-	-	135.2 (C)	-
2', 6'	7.45-7.37 (m)	7.38 (s)	128.1 (CH)	C-4′, C-7′
3', 5'	7.45-7.37 (m)	7.38 (s)	128.6 (CH)	C-1', C-2', C-6'
4′	7.45-7.37 (m)	7.38 (s)	128.4 (CH)	C-2′
7′	5.42 (s)	5.35 (s)	66.8 (CH ₂)	C-7, C-1', C-2', C-6'
2-ОН	10.84 (s)	10.73 (s)	-	C-1, C-2, C-3

 Table 3 ¹H, ¹³C NMR and HMBC spectral data of DC1 and benzyl 2hydroxybenzoate (**R**, CDCl₃)

^a300 MHz, ^b60 MHz, ^c75 MHz

Compound DC2

DC2 was obtained as colourless viscous liquid. Its IR spectrum revealed ester carbonyl (1716 cm⁻¹), and aromatic ring (1602 and 1496 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC2** were similar to those of **DC1**, except for the appearance of an additional aromatic proton signal at δ 8.00 (d, J = 7.3 Hz, H-2) instead of the singlet signal of the hydroxyl group due to 2-OH in **DC1**. These suggested the presence of two monosubstituted phenyl rings. Therefore the structure of compound **DC2** was identified as benzyl benzoate, (Kodpinid *et al.*, 1983).

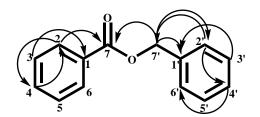
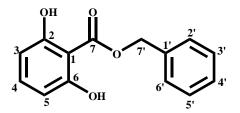



Figure 3 Selected HMBC correlations of DC2

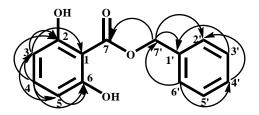
position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	129.8 (C)	-
2, 6	8.00 (d, $J = 7.3$ Hz)	129.3 (CH)	C-4, C-7
3, 5	7.39-7.26 (m)	128.2 (CH)	C-1
4	7.50 (t, $J = 7.3$ Hz)	132.5 (CH)	C-2, C-6
7	-	165.7 (C)	-
1′	-	135.8 (C)	-
2', 6'	7.39-7.26 (m)	127.7 (CH)	C-4′, C-7′
3', 5'	7.39-7.26 (m)	127.9 (CH)	C-1′
4'	7.39-7.26 (m)	127.8 (CH)	C-2′, C-6′
7′	5.29 (s)	66.2 (CH ₂)	C-7, C-1', C-2', C-6'

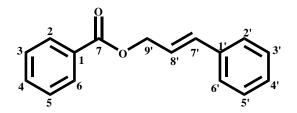
 Table 4
 ¹H, ¹³C NMR and HMBC spectral data of DC2 (CDCl₃)

Compound DC3

DC3 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3443 cm⁻¹), ester carbonyl (1670 cm⁻¹) and aromatic ring (1578 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC3** were similar to those of **DC1**, except for the disappearance of the signal of an aromatic proton at δ 7.89 (H-6) and the appearance of the hydroxyl broad singlet signal at δ 9.60 (2H, 2,6-OH), indicating a 1,2,6-trisubstituted symmetrical aromatic ring as evidenced from the signals at δ 7.17 (1H, *t*, *J* = 8.3 Hz, H-4) and 6.35 (2H, *d*, *J* = 8.3 Hz, H-3, H-5). The positions of the substituents were confirmed from HMBC spectrum which showed the correlations between aromatic protons H-3/H-5 (δ 6.35) and C-1 (δ 99.9), C-2/C-6 (δ 160.9) and from the correlations of an aromatic proton H-4 (δ 7.17) with C-2/C-6 (δ 160.9) and C-3/C-5 (δ 108.2). The structure of compound **DC3** was identified as benzyl 2,6dihydroxybenzoate, (Kodpinid *et al.*, 1983).




Figure 4 Selected HMBC correlations of DC3

$\delta_{\rm H}$ (multiplicity)		$\delta_{\rm C}$ (C- type)	НМВС
DC3 ^a	R ^b	DC3 ^c	
-	-	99.9 (C)	-
-	-	160.9 (C)	-
6.35 (d, <i>J</i> = 8.3 Hz)	6.28 (d, J = 8.0 Hz)	108.2 (CH)	C-1, C-2, C-6
7.17 (t, $J = 8.3$ Hz)	7.07 (t, $J = 8.0$ Hz)	136.6 (CH)	C-2, C-3, C-5, C-6
-	-	169.4 (C)	-
-	-	133.8 (C)	-
7.30-7.29 (m)	7.32 (s)	128.6 (CH)	C-4′, C-7′
7.30-7.29 (m)	7.32 (s)	129.0 (CH)	C-1′
7.30-7.29 (m)	7.32 (s)	129.2 (CH)	C-2′, C-6′
5.34 (s)	5.38 (s)	68.1 (CH ₂)	C-7, C-1', C-2', C-6'
9.60 (br s)	9.40 (s)	-	-
	DC3 ^a - 6.35 (d, $J = 8.3 \text{ Hz}$) 7.17 (t, $J = 8.3 \text{ Hz}$) - 7.30-7.29 (m) 7.30-7.29 (m) 7.30-7.29 (m) 5.34 (s)	DC3a \mathbb{R}^{b} 6.35 (d, $J = 8.3 \text{ Hz}$)6.28 (d, $J = 8.0 \text{ Hz}$)7.17 (t, $J = 8.3 \text{ Hz}$)7.07 (t, $J = 8.0 \text{ Hz}$)7.30-7.29 (m)7.32 (s)7.30-7.29 (m)7.32 (s)5.34 (s)5.38 (s)	DC3a \mathbb{R}^b DC3c99.9 (C)160.9 (C) $6.35 (d, J = 8.3 Hz)$ $6.28 (d, J = 8.0 Hz)$ $108.2 (CH)$ $7.17 (t, J = 8.3 Hz)$ $7.07 (t, J = 8.0 Hz)$ $136.6 (CH)$ 169.4 (C)133.8 (C) $7.30-7.29 (m)$ $7.32 (s)$ $128.6 (CH)$ $7.30-7.29 (m)$ $7.32 (s)$ $129.0 (CH)$ $7.30-7.29 (m)$ $7.32 (s)$ $129.2 (CH)$ $5.34 (s)$ $5.38 (s)$ $68.1 (CH_2)$

Table 5 ¹H, ¹³C NMR and HMBC spectral data of **DC3** and benzyl 2,6-dihydroxybenzoate (**R**, CDCl₃)

^a300 MHz, ^b60 MHz, ^c75 MHz

Compound DC4

DC4 was obtained as colourless viscous liquid. Its IR spectrum revealed ester carbonyl (1716 cm⁻¹) and aromatic ring (1550 and 1455 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC4** showed the signals similar to those of **DC2**, except for the additional signals of an AB system of two olefinic protons at δ 6.77 (1H, d, J = 15.9 Hz, H-7′) and 6.43 (1H, dt, J = 15.9, 6.3 Hz, H-8′). The large coupling constant (J = 15.9 Hz) between H-7′ and H-8′ indicated a *trans* configuration of the double bond. The spectral data suggested a cinnamyl group connecting to an oxygen of a benzoate group as showed from the HMBC correlations of oxymethylene protons H₂-9′ (δ 5.01) to C-7 (δ 166.3), C-7′ (δ 134.3) and C-8′ (δ 123.3). The structure of compound **DC4** was identified as cinnamyl benzoate, (Correria *et al.*, 2001).

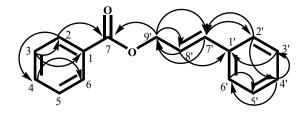


Figure 5 Selected HMBC correlations of DC4

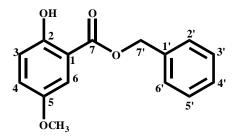

position	$\delta_{ m H}$ (multiplicity)		$\delta_{\rm C}$ (C- type)	HMBC
poortion	DC4 ^a	R ^b	DC4 ^c	
1	-	-	130.3 (C)	-
2, 6	8.11 (dd, <i>J</i> = 7.1, 1.5 Hz)	8.09 (d, <i>J</i> = 7.9 Hz)	129.6 (CH)	C-4, C-7
3, 5	7.50-7.43 (m)	7.59-7.22 (m)	128.4 (CH)	C-1, C-2, C-6
4	7.59 (dt, <i>J</i> = 7.4, 1.5 Hz)	7.59-7.22 (m)	133.0 (CH)	C-2, C-6
7	-	-	166.3 (C)	-
1′	-	-	136.3 (C)	-
2', 6'	7.50-7.43 (m)	7.59-7.22 (m)	126.6 (CH)	C-3', C-4', C-5', C-7'
3', 5'	7.38-7.30 (m)	7.59-7.22 (m)	128.6 (CH)	C-1′
4′	7.38-7.30 (m)	7.59-7.22 (m)	128.1 (CH)	C-2′, C-6′
7'	6.77 (d, <i>J</i> = 15.9 Hz)	6.74 (d, <i>J</i> = 15.9 Hz)	134.3 (CH)	C-2', C-6', C-9'
8′	6.43 (dt, <i>J</i> = 15.9, 6.3 Hz)	6.41 (dt, J = 15.9, 6.4 Hz)	123.3 (CH)	C-1′, C-9′
9′	5.01 (dd, $J = 6.3$, 1.2 Hz)	4.98 (d, J = 6.4 Hz)	65.5 (CH ₂)	C-7, C-7′, C-8′

 Table 6
 ¹H, ¹³C NMR and HMBC spectral data of DC4 (CDCl₃) and cinnamyl

 benzoate (**R**, CDCl₃)

^a300 MHz, ^b400 MHz, ^c75 MHz

Compound DC5

DC5 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3034 cm⁻¹), ester carbonyl (1680 cm⁻¹) and aromatic ring (1614 and 1445 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC5** were similar to those of **DC3**, except for the appearance of an additional methoxyl singlet signal at δ 3.77 (5-OCH₃) and the disappearance of the signal of an aromatic proton at δ 6.35 (H-5), indicating a 1,2,4trisubstituted aromatic ring. In the HMBC spectrum, the hydroxyl proton at δ 10.36 (2-OH) correlated with C-2 (δ 156.3), C-1 (δ 111.9) and C-3 (δ 118.6) and the methoxyl protons at δ 3.77 (5-OCH₃) correlated with C-5 (δ 152.1) as well as the correlations of H-4 (δ 7.09) with C-2 (δ 156.3), C-5 (δ 152.1) and C-6 (δ 112.4) and of H-3 (δ 6.92) with C-5 (δ 152.1) and C-1 (δ 111.9), resulting in the assignment of a hydroxyl group at C-2 and a methoxyl group at C-5, respectively. The structure of compound **DC5** was identified as benzyl 2-hydroxy-5-methoxybenzoate, (Kodpinid *et al.*, 1983).

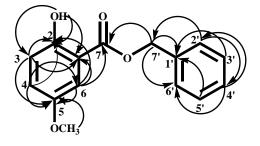
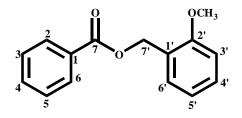



Figure 6 Selected HMBC correlations of DC5

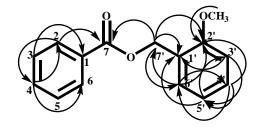
position	$\delta_{ m H}({ m multiplicit})$	ty)	$\delta_{\rm C}$ (C- type)	НМВС
position	DC5 ^a	\mathbf{R}^{b}	DC5 ^c	IIIVIDC
1	-	-	111.9 (C)	-
2	-	-	156.3 (C)	-
3	6.92 (d, J = 9.1 Hz)	7.40-6.66 (m)	118.6 (CH)	C-1, C-2, C-5
4	7.09 (dd, J = 9.1, 3.2 Hz)	7.40-6.66 (m)	123.9 (CH)	C-2, C-5, C-6
5	-	-	152.1 (C)	-
6	7.33 (d, $J = 3.2$ Hz)		112.4 (CH)	C-1, C-2, C-4, C-5, C-7
7	-	-	169.7 (C)	-
1′	-	-	135.4 (C)	-
2', 6'	7.47-7.36 (m)	7.30 (s)	128.3 (CH)	C-4′, C-7′
3', 5'	7.47-7.36 (m)	7.30 (s)	128.7 (CH)	C-1′
4′	7.47-7.36 (m)	7.30 (s)	128.6 (CH)	C-2′, C-6′
7′	5.39 (s)	5.26 (s)	67.0 (CH ₂)	C-7, C-1′, C-2′, C-6′
2-OH	10.36 (s)	10.18 (s)	-	C-1, C-2, C-3
5-OCH ₃	3.77 (s)	3.67 (s)	55.9 (OCH ₃)	C-5

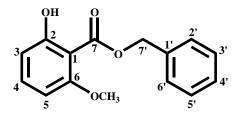
Table 7 ¹H, ¹³C NMR and HMBC spectral data of **DC5** and benzyl 2-hydroxy-5-methoxybenzoate (**R**, CDCl₃)

^a300 MHz, ^b60 MHz, ^c75 MHz

DC6 was obtained as colourless viscous liquid. Its IR spectrum revealed ester carbonyl (1720 cm⁻¹), and aromatic ring (1603 and 1496 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC6** were similar to those of **DC2**, except for the appearance of the methoxyl singlet signal at δ 3.87 (2'-OCH₃). The location of the methoxyl group at C-2' was assigned by HMBC correlations of the methoxyl protons at δ 3.87 (2'-OCH₃) to the carbon at δ 157.4 (C-2'), as well as the correlations of H-6' (δ 7.54-7.52), H-4' (δ 7.32) and H-7' (δ 5.42) to the carbon at δ 157.4 (C-2'). The structure of compound **DC6** was identified as 2-methoxybenzyl benzoate, (Kodpinid *et al.*, 1983).




Figure 7 Selected HMBC correlations of DC6

position	position $\delta_{\rm H}$ (multiplicit		$\delta_{\rm C}$ (C- type)	НМВС
position	DC6 ^a	\mathbf{R}^{b}	DC6 ^c	IIWIDC
1	-	-	130.5 (C)	-
2, 6	8.09 (d, <i>J</i> = 7.3 Hz)	8.17-7.97 (m)	129.7 (CH)	C-4, C-7
3, 5	7.54-7.42 (m)	7.50-6.72 (m)	128.3 (CH)	C-1
4	7.55 (t, <i>J</i> = 7.3 Hz)	7.50-6.72 (m)	132.8 (CH)	C-2, C-6
7	-	-	166.5 (C)	-
1′	-	-	124.5 (C)	-
2'	-	-	157.4 (C)	-
3'	6.92 (d, J = 8.0 Hz)	7.50-6.72 (m)	110.5 (CH)	C-1′, C-5′
4′	7.32 (t, $J = 8.0$ Hz)	7.50-6.72 (m)	129.5 (CH)	C-2′, C-5′, C-6′
5'	6.98 (t, J = 8.0 Hz)	7.50-6.72 (m)	120.5 (CH)	C-1′, C-3′
6'	7.54-7.42 (m)	7.50-6.72 (m)	129.4 (CH)	C-2′, C-4′, C-7′
7'	5.42 (s)	5.33 (s)	62.2 (CH ₂)	C-7, C-1', C-2', C-6'
2'-OCH ₃	3.87 (s)	3.87 (s)	55.5 (CH ₃)	C-2′

 Table 8 ¹H, ¹³C NMR and HMBC spectral data of DC6 and 2-methoxybenzyl

 benzoate (**R**, CDCl₃)

^a500 MHz, ^b60 MHz, ^c125 MHz

DC7 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3034 cm⁻¹), ester carbonyl (1660 cm⁻¹) and aromatic ring (1614 and 1455 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC7** were similar to those of **DC3**, except for the appearance of an additional methoxyl singlet signal at δ 3.82, indicating that a hydroxyl group in **DC3** was replaced by a methoxyl group. In the HMBC spectrum, the methoxyl protons at δ 3.82 (6-OCH₃) correlated with C-6 (δ 161.0) and from the correlations of H-4 (δ 7.39-7.27) aromatic proton with C-6 (δ 161.0) and C-2 (δ 163.5), resulting in the assignment of a methoxyl group at C-6. The structure of compound **DC7** was identified as benzyl 2-hydroxy-6-methoxybenzoate, (Kodpinid *et al.*, 1983).

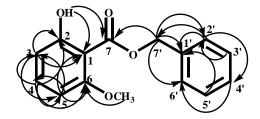
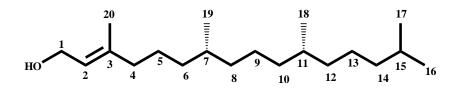
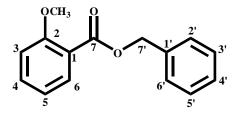



Figure 8 Selected HMBC correlations of DC7

position	$\delta_{ m H}({ m mult})$	$\delta_{\rm H}$ (multiplicity)		НМВС
position	DC7 ^a	R ^b	DC8 ^c	IIIVIDC
1	-	-	103.1 (C)	-
2	-	-	163.5 (C)	-
3	6.58 (d, J = 8.4 Hz)	6.47 (dd, <i>J</i> = 8.0, 2.0 Hz)	109.9 (CH)	C-1, C-2, C-5, C-6, C-7
4	7.39-7.27 (m)	7.42-7.06 (m)	135.1 (CH)	C-2, C-3, C-5, C-6
5	6.38 (d, J = 8.4 Hz)	6.27 (dd, J = 8.0, 2.0 Hz)	102.2 (CH)	C-1, C-4, C-3,
				C-6, C-7
6	-	-	161.0 (C)	-
7	-	-	170.8 (C)	-
1′	-	-	135.6 (C)	-
2', 6'	7.45 (d, $J = 7.0$ Hz)	7.42-7.06 (m)	127.3 (CH)	C-1', C-4', C-7'
3', 5'	7.39-7.27 (m)	7.42-7.06 (m)	128.4 (CH)	C-1′, C-2′, C-6′
4′	7.39-7.27 (m)	7.42-7.06 (m)	127.9 (CH)	C-2′, C-6′
7′	5.38 (s)	5.32 (s)	66.7 (CH ₂)	C-1, C-7, C-1', C-2', C-6'
2-ОН	11.44 (s)	11.28 (s)	-	C-1, C-2, C-3, C-4, C-7
6-OCH ₃	3.81 (s)	3.88 (s)	55.9(OCH ₃)	C-5, C-6

Table 9 ¹H, ¹³C NMR and HMBC spectral data of **DC7** and benzyl 2-hydroxy-6-methoxybenzoate (**R**, CDCl₃)

^a300 MHz, ^b60 MHz, ^c75 MHz


DC8 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3389 cm^{-1}) and double bond (1669 cm^{-1}).

The ¹H NMR spectral data showed the signals of oxymethylene protons at δ 4.09 (d, J = 6.9 Hz, H₂-1) and an olefinic proton at δ 5.34 (t, J = 6.9 Hz, H-2). Additionally, the ¹H NMR spectrum showed the singlet signal at δ 1.62 (Me-19), representing a methyl group attached to a quaternary carbon whereas four methyl groups appeared as three doublet signals at δ 0.79 (d, J = 6.6 Hz, Me-16 and Me-17), 0.78 (d, J = 6.5 Hz, Me-18) and 0.77 (d, J = 6.5 Hz, Me-19). In addition, the ¹H NMR spectrum displayed several methine or methylene signals indicating **DC8** to be an aliphatic alcohol with one double bond. In the ¹³C NMR spectrum nineteen signals of twenty carbons consisting of an olefinic quaternary (δ 140.3) and an olefinic methine (δ 123.1), one oxygenated methylene C-1 (δ 59.4), five methyls (δ 22.7, 22.6, 19.7, 19.7 and 16.2), nine methylene and three methine signals were observed. These results led to the conclusion for **DC8** to be a non-cyclic aliphatic diterpenoid. The structure of compound **DC8** was identified as phytol, an aliphatic acyclic diterpenoid, usually found as a component part of chlorophyll (Bang *et al.*, 2002 and Menkham *et al.*, 2003).

position	$\delta_{ m H}$ (multiplicity)		$\delta_{\rm C}$ (C- ty	ype)
position	DC8 ^a	R ^b	DC8 ^c	R
1	4.09 (d, J = 6.9 Hz)	4.15 (d, J = 6.9 Hz)	59.4 (CH ₂)	59.4
2	5.34 (t, J = 6.9 Hz)	5.40 (t, $J = 6.9$ Hz)	123.1 (CH)	123.1
3	-	-	140.3 (C)	140.3
4	1.92 (t, $J = 7.2$ Hz)	1.96 (m)	39.9 (CH ₂)	39.9
5	-	-	39.4 (CH ₂)	39.4
6	-	-	37.4 (CH ₂)	37.5
7	-	-	32.8 (CH)	32.8
8	-	-	37.4 (CH ₂)	37.4
9	-	-	37.3 (CH ₂)	37.3
10	-	-	36.7 (CH ₂)	36.9
11	-	-	32.7 (CH)	32.7
12	-	-	25.1 (CH ₂)	25.2
13	-	-	24.8 (CH ₂)	24.8
14	-	-	24.5 (CH ₂)	24.5
15	-	-	27.9 (CH)	27.9
16	0.79 (d, <i>J</i> = 6.6 Hz)	0.84 (d, J = 6.7 Hz)	22.7 (CH ₃)	22.7
17	0.79 (d, <i>J</i> = 6.6 Hz)	0.84 (d, J = 6.7 Hz)	22.6 (CH ₃)	22.6
18	0.78 (d, <i>J</i> = 6.5 Hz)	0.82 (d, J = 6.7 Hz)	19.7 (CH ₃)	19.7
19	0.77 (d, <i>J</i> = 6.5 Hz)	0.82 (d, J = 6.7 Hz)	19.7 (CH ₃)	19.7
20	1.62 (s)	1.64 (s)	16.2 (CH ₃)	16.2

Table 10 ¹H and ¹³C NMR spectral data of **DC8** and phytol (**R**, CDCl₃)

^a300 MHz, ^b270 MHz, ^c75 MHz

DC9 was obtained as colourless viscous liquid. Its IR spectrum revealed ester carbonyl (1725 cm⁻¹) and aromatic (1600, 1491 cm⁻¹).

The ¹H and ¹³C NMR spectral data of **DC9** were similar to those of **DC1**, except for the appearance of the methoxyl singlet signal at δ 3.82 (2-OCH₃) and the disappearance of chelated hydroxyl at δ 10.84 (2-OH) of **DC1**, indicating that a hydroxyl group in **DC1** was replaced by a methoxyl group. The location of the methoxyl group at C-2 was assigned by HMBC correlations of the methoxyl protons at δ 3.82 (2-OCH₃) to the carbon at δ 159.3 (C-2), as well as the correlations of H-6 (δ 7.55) and H-4 (δ 7.18-7.41) to the carbon at δ 159.3 (C-2). The structure of compound **DC9** was identified as benzyl 2-methoxybenzoate, (Kodpinid *et al.*, 1983).

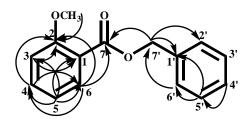
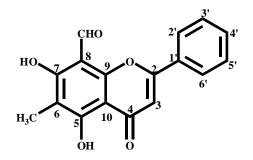



Figure 9 Selected HMBC correlations of DC9

position	$\delta_{ m H}$ (multiplicity)		$\delta_{\rm C}$ (C- type)	НМВС	
position	DC9 ^a	\mathbf{R}^{b}	DC9 ^c		
1	-	-	120.0 (C)	-	
2	-	-	159.3 (C)	-	
3	6.88 (m)	7.50-6.78 (m)	112.0 (CH)	C-1, C-2, C-5	
4	7.41-7.18 (m)	7.50-6.78 (m)	133.7 (CH)	C-2, C-6	
5	6.88 (m)	7.50-6.78 (m)	120.1 (CH)	C-1, C-3, C-4, C-6	
6	7.75 (dd, <i>J</i> = 7.9, 1.6 Hz)	7.72 (dd, $J = 8.0, 2.0$ Hz)	131.7 (CH)	C-2, C-4, C-7	
7	-	-	165.8 (C)	-	
1′	-	-	136.2 (C)	-	
2', 6'	7.41-7.18 (m)	7.35 (s)	128.1 (CH)	C-3′, C-5′, C-7′	
4′	7.41-7.18 (m)	7.35 (s)	128.1 (CH)	C-3′, C-5′	
3', 5'	7.41-7.18 (m)	7.35 (s)	128.5 (CH)	C-1′, C-2′, C-6′	
7′	5.27 (s)	5.28 (s)	66.4 (CH ₂)	C-7, C-1', C-2', C-6'	
2-OCH ₃	3.82 (s)	3.86 (s)	55.9 (OCH ₃)	C-2	

Table 11 ¹H, ¹³C NMR and HMBC spectral data of **DC9** and benzyl 2-
methoxybenzoate (**R**, CDCl₃)

^a300 MHz, ^b60 MHz, ^c75 MHz

DC10 was obtained as a pale yellow solid, m.p. 144-145°C. Its IR spectrum revealed hydroxyl (3494 cm⁻¹), carbonyl (1655, 1625 cm⁻¹) and aromatic (1559 cm⁻¹).

The ¹H NMR spectrum of **DC10** showed two singlets of chelated hydroxyl groups at δ 12.84 (7-OH) and δ 13.69 (5-OH), a singlet proton at δ 6.71 (1H) and aromatic multiplets at δ 7.49-7.46 (3H) and δ 7.77 (2H, d, J = 6.7 Hz), suggesting a 5,7-dihydroxyflavone with an unsubstituted phenyl moiety (B-ring). The ¹H NMR spectrum further showed an aromatic methyl singlet at δ 2.02 (3H, 6-CH₃) and a formyl singlet at δ 10.39 (1H, 8-CHO), confirming the chelation of downfield shift 7-OH proton (δ 12.84) with a formyl oxygen, while the downfield shift 5-OH proton (δ 13.69) with the oxygen of the α,β -unsaturated keto carbon at C-4.

In the HMBC spectrum, the 5-OH proton signal at δ 13.69 showed correlations with the carbons at δ 165.5 (C-5), 108.5 (C-6) and 104.1 (C-10). In addition, the 7-OH proton signal at δ 12.84 showed correlations with C-8 (δ 102.7), C-6 (δ 108.5) and C-7 (δ 166.9). Correlations between the methyl proton at δ 2.02 and C-5 (δ 165.5), C-6 (108.5) and C-7 (166.9), confirmed the position of the methyl group at C-6. These assignments left the formyl substituent to be located at C-8, in agreement with correlations between C-7 and the formyl proton. These data led to the assignment of the structure of **DC10** as isounonal, (Jianhua *et al.*,1999).

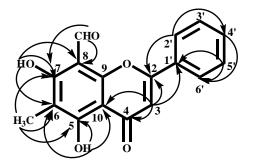
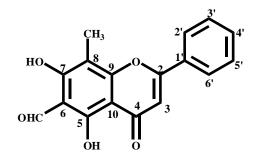



Figure 10 Selected HMBC correlations of DC10

Table 12 ^{1}H	, ¹³ C NMR	and HMBC spe	ectral data of I	DC10 (CDCl ₃)
------------------	-----------------------	--------------	------------------	----------------------------------

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	163.7 (C)	-
3	6.71 (s)	106.9 (CH)	C-2, C-4, C-10, C-1′
4	-	181.6 (C)	-
5	-	165.5 (C)	-
6	-	108.5 (C)	-
7	-	166.9 (C)	-
8	-	102.7 (C)	-
9	-	157.9 (C)	-
10	-	104.1 (C)	-
1′	-	130.5 (C)	-
2', 6'	7.77 (d, <i>J</i> = 6.7 Hz)	126.2 (CH)	C-2, C-4′
3', 5'	7.49-7.46 (m)	129.3 (CH)	C-1', C-2', C-6'
4'	7.49-7.46 (m)	132.4 (CH)	C-2′, C-6′
5-OH	13.69 (s)	-	C-5, C-6, C-10
6-CH ₃	2.02 (s)	6.2 (CH ₃)	C-5, C-6, C-7
7- OH	12.84 (s)	-	C-6, C-7, C-8
8-CHO	10.39 (s)	189.5 (CH)	C-7, C-8

DC11 was obtained as a yellow solid, m.p. 125-126°C. IR spectrum revealed hydroxyl (3472 cm⁻¹), carbonyl (1650 cm⁻¹) and aromatic (1589 cm⁻¹).

The ¹H NMR spectrum was also very similar to that of compound **DC10**, with only a phenolic hydroxyl located on C-5 shifted to lowerfield, while another phenolic hydroxyl located on C-7 shifted to higherfield. This was used to assign the position of the formyl group at C-6, leaving the C-methyl to be located at C-8. The positions of 6-CHO (δ 10.28) and 8-CH₃ (δ 2.21) were assigned from HMBC spectrum which showed the correlations of the former with C-7 (δ 165.6) and C-5 (δ 165.5) and the latter with C-7 (δ 165.6), C-8 (δ 103.2) and C-9 (δ 159.3), confirming that the formyl group was connected to C-6 and the methyl group was connected to C-8. Therefore, flavone **DC11** was determined to be unonal, a structural isomer of **DC10**, (Jianhua *et al.*, 1999).

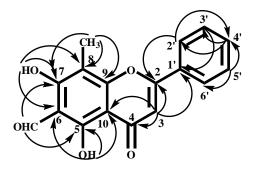
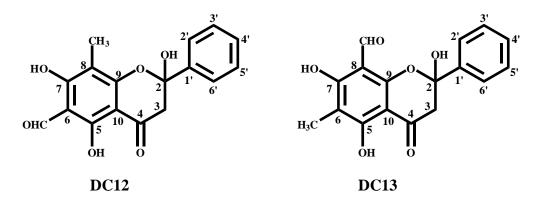



Figure 11 Selected HMBC correlations of DC11

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	164.4 (C)	-
3	6.61 (s)	105.4 (CH)	C-2, C-4, C-10, C-1′
4	-	182.9 (C)	-
5	-	165.5 (C)	-
6	-	106.3 (C)	-
7	-	165.6 (C)	-
8	-	103.2 (C)	-
9	-	159.3 (C)	-
10	-	103.7 (C)	-
1'	-	130.9 (C)	-
2', 6'	7.83 (dd, <i>J</i> = 9.9, 2.2 Hz)	126.3 (CH)	C-2, C-4′
3', 5'	7.53-7.45 (m)	129.3 (CH)	C-1', C-2', C-4', C-6'
4′	7.53-7.45 (m)	132.4 (CH)	C-2′, C-3′, C-6′
5-ОН	14.01 (s)	-	C-5, C-6, C-10
6-CHO	10.28 (s)	192.6 (CH)	C-5, C-7
7 - OH	12.62 (s)	-	C-6, C-7, C-8
8-CH ₃	2.21 (s)	6.8 (CH ₃)	C-7, C-8, C-9

 Table 13 ¹H, ¹³C NMR and HMBC spectral data of DC11 (CDCl₃)

Compound DC12 and DC13

DC12 and **DC13** were isolated as a mixture (**DC12** : **DC13** = 1 : 0.69) of a pale yellow solid, m.p. 164-165°C, $[\alpha]_D^{25} = +3.1^\circ$ (c = 1.00, CHCl₃). Its IR spectrum revealed hydroxyl (3341 cm⁻¹), carbonyl (1630 cm⁻¹) and aromatic ring (1546 cm⁻¹).

The ¹H NMR spectrum of **DC12**, the major compound of a mixture, showed two singlets of chelated hydroxyl groups at δ 13.03 and δ 13.09, a singlet proton at δ 3.11 (2H) and aromatic multiplets at δ 7.52-7.47 (3H) and δ 7.69-7.65 (2H), suggesting a 5,7-dihydroxyflavanone with an unsubstituted phenyl moiety (B-ring). The ¹H NMR spectrum further showed an aromatic methyl singlet at δ 2.08 (3H, 8-CH₃) and a formyl singlet at δ 10.22 (1H, 6-CHO). In the HMBC spectrum, the 5-OH proton signal at δ 13.03 showed correlations with the carbons at δ 166.1 (C-5), 105.1 (C-6) and 100.8 (C-10). In addition, the 7-OH proton signal at δ 13.09 showed correlations with C-6 (δ 105.1), C-8 (δ 105.1) and C-7 (δ 169.1). Correlations between the methyl protons at δ 2.08 and C-7 (δ 169.1), C-8 (105.1) and C-9 (161.6) and correlations between the formyl proton at δ 10.22 and C-6 (δ 105.1) and C-7 (δ 169.1), confirmed the position of the methyl group at C-8 and the formyl group at C-6, respectively. The absence of a doublet of doublet in the region of δ 5.20 suggested the absence of an H-2 proton which normally coupled with the H-3 protons in flavanones. That this proton was substituted by a hydroxyl group was supported by the presence of a doubly oxygenated sp^3 carbon signal at δ 102.1 (C-2) in the ¹³C NMR spectrum. The position of this carbon was assigned by HMBC correlations with the H-3 (δ 3.11) and H-2'/H-6' (δ 7.69-7.65). These data led to the assignment of the structure of DC12 as 6-formyl-2,5,7-trihydroxy-8-methylflavanone. DC13 gave signals similar to and sometimes overlapping with those of **DC12** in both the ¹H and ¹³C NMR spectra (Table 15). These data led to the assignment of the structure of **DC13** as 8-formyl-2,5,7-trihydroxy-6-methylflavanone, (Kakeya *et al.*,1993).

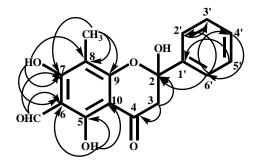


Figure 12 Selected HMBC correlations of DC12

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	102.1 (C)	-
3	3.11 (s)	48.0 (CH ₂)	C-2, C-4
4	-	194.6 (C)	-
5	-	166.1 (C)	-
6	-	105.1 (C)	-
7	-	169.1 (C)	-
8	-	105.1 (C)	-
9	-	161.6 (C)	-
10	-	100.8 (C)	-
1′	-	141.1 (C)	-
2', 6'	7.69-7.65 (m)	124.9 (CH)	C-2, C-3', C-4', C-5'
3', 5'	7.52-7.47 (m)	129.0 (CH)	C-1′
4′	7.52-7.47 (m)	129.7 (CH)	C-2′, C-6′
5-ОН	13.03 (s)	-	C-5, C-6, C-10
6-CHO	10.22 (s)	192.0 (CH)	C-6, C-7
7 - OH	13.09 (s)	-	C-6, C-7, C-8
8-CH ₃	2.08 (s)	6.9 (CH ₃)	C-7, C-8, C-9

 Table 14 ¹H, ¹³C NMR and HMBC spectral data of DC12 (CDCl₃)

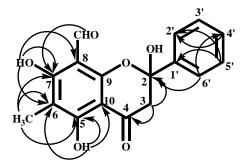
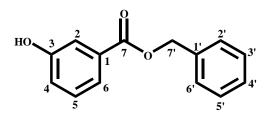



Figure 13 Selected HMBC correlations of DC13

Table 15 ¹ H, ¹³ C NMR and HMBC spectral data of DC13	(CDCl ₃)
---	----------------------

position	δ_{H} (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	103.2 (C)	-
3	3.13 (s)	48.2 (CH ₂)	C-2, C-4
4	-	193.8 (C)	-
5	-	166.6 (C)	-
6	-	106.0 (C)	-
7	-	168.2 (C)	-
8	-	105.1 (C)	-
9	-	162.3 (C)	-
10	-	100.9 (C)	-
1′	-	141.0 (C)	-
2', 6'	7.69-7.65 (m)	124.8 (CH)	C-2, C-4′
3', 5'	7.52-7.47 (m)	129.1 (CH)	C-1', C-2', C-6'
4'	7.52-7.47 (m)	129.9 (CH)	C-2′, C-6′
5-ОН	12.71 (s)	-	C-5, C-6, C-10
6-CH ₃	2.03 (s)	6.0 (CH ₃)	C-5, C-6, C-7
7 - OH	12.84 (s)	-	C-6, C-7, C-8
8-CHO	10.17 (s)	191.2 (CH)	C-7

DC14 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3368 cm⁻¹), ester carbonyl (1716 cm⁻¹) and aromatic ring (1698 and 1455 cm⁻¹).

The ¹H and ¹³C NMR spectra of **DC14** were similar to those of **DC1**, except for the disappearance of a singlet signal of a chelated hydroxyl group at δ 10.84 but the appearance of aromatic protons at δ 7.53 (*dd*, *J* = 2.6, 1.2 Hz, H-2), 7.04 (*ddd*, *J* = 8.1, 2.6, 1.2 Hz, H-4), 7.31 (*t*, *J* = 8.1 Hz, H-5) and 7.66 (*ddd*, *J* = 8.1, 1.2, 1.2 Hz, H-6), implied the presence of 1,3-disubstituted aromatic ring. In the HMBC spectrum, an aromatic proton at δ 7.31 (H-5) correlated with C-1 (δ 131.7), C-3 (δ 155.6) and C-4 (δ 120.2), confirming that the hydroxyl group was connected to C-3. The structure of compound **DC14** was identified as benzyl 3-hydroxybenzoate (Rivero-Cruz *et al.*, 2007).

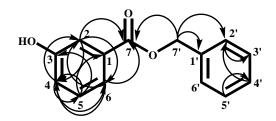
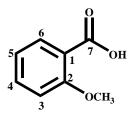



Figure 14 Selected HMBC correlations of DC14

position	$\delta_{\mathrm{H}}(\mathrm{multiplicity})$	$\delta_{\rm C}$ (C- type)	HMBC
1	-	131.7 (C)	-
2	7.53 (dd, <i>J</i> = 2.6, 1.2 Hz)	116.3 (CH)	C-4, C-6, C-7
3	-	155.6 (C)	-
4	7.04 (ddd, <i>J</i> = 8.1, 2.6, 1.2 Hz)	120.2 (CH)	C-2, C-5, C-6
5	7.31 (t, <i>J</i> = 8.1 Hz)	129.7 (CH)	C-1, C-3, C-4
6	7.66 (ddd, <i>J</i> = 8.1, 1.2, 1.2 Hz)	122.2 (CH)	C-2, C-4, C-7
7	-	166.1 (C)	
1'	-	135.9 (C)	-
2', 6'	7.46-7.35 (m)	128.2 (CH)	C-3′, C-5′
3', 5'	7.46-7.35 (m)	128.6 (CH)	C-4′
4′	7.46-7.35 (m)	128.3 (CH)	C-2′, C-6′
7′	5.35 (s)	66.8 (CH ₂)	C-7, C-1', C-2', C-6'

 Table 16
 ¹H, ¹³C NMR and HMBC spectral data of **DC14** (CDCl₃)

DC15 was obtained as colourless viscous liquid. Its IR spectrum revealed hydroxyl (3450 cm⁻¹), carbonyl (1722 cm⁻¹) functions and aromatic (1603 cm⁻¹).

The ¹H NMR spectrum of **DC15** indicated a 1,2-disubstituted aromatic ring due to the signals at δ 7.07 (1H, *d*, *J* = 7.5 Hz, H-3), 7.14 (1H, *t*, *J* = 7.5 Hz, H-5), 7.58 (1H, *td*, *J* = 7.5, 1.5 Hz, H-4) and 8.17 (1H, *dd*, *J* = 7.5, 1.5 Hz, H-6). Additionally, the ¹H NMR spectrum showed the appearance of the methoxyl singlet signal at δ 4.08 (2-OCH₃). Furthermore, the ¹³C NMR spectral data exhibited a carboxyl carbon at δ 165.5. In the HMBC spectrum, the methoxy protons at δ 4.08 (2-OCH₃) correlated with C-2 (δ 158.1), as well as the correlations of H-4 (δ 7.58) to the carbon C-2 (δ 158.1) and the correlations of H-6 (δ 8.17) aromatic proton with C-2 (δ 158.1), C-4 (δ 135.0) and C-7 (δ 165.5), confirming that the methoxyl group was connected to C-2 while the carboxylic group was connected to C-1 of the aromatic ring. All these data suggested that **DC15** was identified as 2-methoxybenzoic acid.

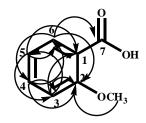
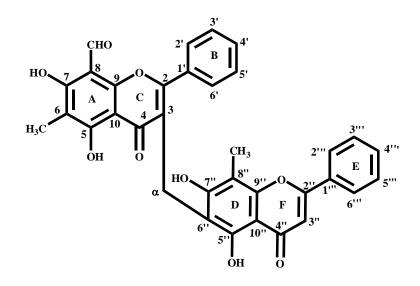



Figure 15 Selected HMBC correlations of DC15

position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	117.6 (C)	-
2	-	158.1 (C)	-
3	7.07 (d, $J = 7.5$ Hz)	111.7 (CH)	C-1, C-2, C-5
4	7.58 (td, <i>J</i> = 7.5, 1.5 Hz)	135.0 (CH)	C-2, C-3, C-6
5	7.14 (t, <i>J</i> = 7.5 Hz)	122.1 (CH)	C-1, C-3, C-4, C-6
6	8.17 (dd, <i>J</i> = 7.5, 1.5 Hz)	133.7 (CH)	C-2, C-4, C-7
7	-	165.5 (C)	-
2-OCH ₃	4.08 (s)	55.6 (OCH ₃)	C-2

 Table 17
 ¹H, ¹³C NMR and HMBC spectral data of DC15 (CDCl₃)

DC16 was obtained as a pale yellow solid, m.p. 229-230°C. Its IR spectrum revealed hydroxyl (3494 cm⁻¹) and carbonyl (1655 cm⁻¹).

The ¹³C NMR spectrum of **DC16** showed a total of 34 signals, which was clearly twice the signals of the isounonal (**DC10**). The EIMS displayed a molecular ion $[M]^+$ at m/z 576, consistent with the molecular formula $C_{34}H_{24}O_9$.

The ¹H NMR spectrum of **DC16** showed the presence of four hydroxyl protons, a formyl proton, a vinylic methine proton, methylene protons, ten aromatic protons and six protons for two methyl groups, suggesting that **DC16** could be a biflavone with an interflavonoid methylene linkage. The two chelated hydroxyl protons resonating at δ 12.34 (5"-OH) and δ 13.16 (5-OH), suggested the chelation with oxygen of the α , β -unsaturated keto carbon at C-4" (δ 182.7) and C-4 (δ 182.9), respectively. Furthermore, the downfield singlet signal at δ 13.06 corresponded to 7-OH proton which chelated with oxygen of the formyl substituent at C-8. Another hydroxyl proton singlet appearing at δ 10.04 represented 7"-OH proton of ring D. The presence of two sets of monosubstituted aromatic protons at δ 7.65-7.61 (3H, *m*) and δ 7.71 (2H, *dd*, *J* = 7.2, 1.8 Hz); δ 7.54-7.51 (3H, *m*) and δ 7.89 (2H, *dd*, *J* = 7.2, 1.7 Hz) were assigned to ten aromatic protons of ring B and ring E, respectively. The upfield signal of the ¹H NMR spectrum showed two methyl singlets at δ 2.12 and 2.39. The signal at δ 2.12 was assigned to the methyl group at C-6 since it showed

HMBC correlations to the signals of the C-5 (δ 164.7), C-6 (δ 108.9) and C-7 (δ 168.0), whereas the signal at δ 2.39 showed correlations to the signals of the C-7" (δ 160.0), C-8" (δ 104.6) and C-9" (154.0), establishing the location of the second methyl group at C-8". The remaining two singlets at δ 6.58 and 4.01 were assigned to a vinylic methine proton (H-3") of ring F and the methylene protons, respectively, which implied that the methylene carbon at C-6" of ring D was involved in the interflavonoid linkage with C-3 of ring C. In the HMBC spectrum, the hydroxyl proton signal at δ 13.06 showed correlations with C-6 (δ 108.9), C-7 (δ 168.0) and C-8 (δ 102.3) and the formyl proton signal at δ 10.28 showed correlations with C-7 (δ 168.0) and C-8 (δ 102.3), suggesting that the hydroxyl group at δ 13.06 was located at C-7, leaving the formyl group at C-8. The correlations of the hydroxyl proton signal at δ 10.04 (7"-OH) to C-6" (δ 108.6), C-7" (δ 160.1) and C-8" (δ 104.6) confirmed the position of this hydroxyl group at C-7". Additionally, the methylene protons signal at δ 4.01 showed correlations with C-2 (δ 165.1), C-3 (δ 119.3), C-4 (δ 182.9), C-5" (δ 158.0), C-6" (δ 108.6) and C-7" (δ 160.1), implying that a methylene bond linked the two flavonoid units at C-6" and C-3. The structure of DC16 was therefore composed of 8-formyl-5,7-dihydroxy-6-methylflavone and 5",7"-dihydroxy-8"-methylflavone with a methylene linkage between C-3 and C-6". Thus the structure of compound DC16 was identified as (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6"-(5",7"-dihydroxy-8"-methylflavone) and named as saiyunensis A, a new compound.

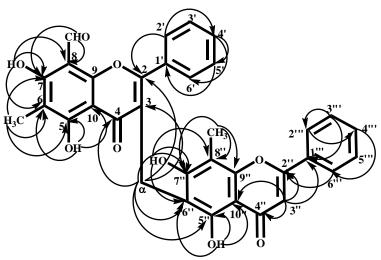
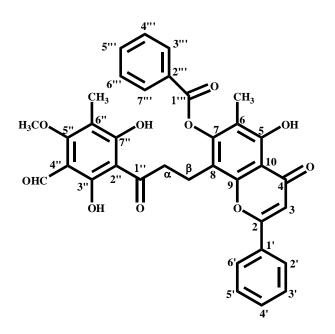



Figure 16 Selected HMBC correlations of DC16

Table 18 ¹ H, ¹³ C NMR and HMBC spectral data of DC16 (C	CDCl ₃)
--	---------------------

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС	
1	-	-	-	
2	-	165.1 (C)	-	
3	-	119.3 (C)	-	
4	-	182.9 (C)	-	
5	-	164.7 (C)	-	
6	-	108.9 (C)	-	
7	-	168.0 (C)	-	
8	-	102.3 (C)	-	
9	-	156.9 (C)	-	
10	-	103.0 (C)	-	
1'	-	132.5 (C)	-	
2', 6'	7.71 (dd, <i>J</i> = 7.2, 1.8 Hz)	129.2 (CH)	C-2, C-4′	
3', 5'	7.65-7.61 (m)	128.7 (CH)	C-1′	
4'	7.65-7.61 (m)	131.1 (CH)	C-2', C-3', C-5', C-6'	
1''	-	-	-	
2''	-	163.4 (C)	-	
3''	6.58 (s)	105.1 (CH)	C-2", C-4", C-10", C-1"	

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC	
4''	-	182.7 (C)	-	
5''	-	158.0 (C)	-	
6''	-	108.6 (C)	-	
7''	-	160.1 (C)	-	
8''	-	104.6 (C)	-	
9''	-	154.0 (C)	-	
10''	-	104.7 (C)	-	
1'''	-	131.7 (C)	-	
2′′′, 6′′′	7.89 (dd, <i>J</i> = 7.2, 1.7 Hz)	126.2 (CH)	C-2'', C-4'''	
3''', 5'''	7.54-7.51 (m)	129.1 (CH)	C-1''', C-2''', C-6'''	
4'''	7.54-7.51 (m)	131.7 (CH) C-2", C-6"		
5-OH	13.16 (s)	-	C-5, C-6, C-10	
6-CH ₃	2.12 (s)	6.4 (CH ₃)	C-5, C-6, C-7	
7 - OH	13.06 (s)	-	C-6, C-7, C-8	
8-CHO	10.28 (s)	189.8 (CH)	C-7, C-8	
5''-OH	12.34 (s)	- C-5", C-6", C-10"		
α	4.01 (s)	19.6 (CH ₂) C-2, C-3, C-4, C-5", C-6", C-		
7''-OH	10.04 (s)	- C-6", C-7", C-8"		
8''-CH ₃	2.39 (s)	8.3 (CH ₃)	C-7'', C-8'', C-9''	

DC17 was obtained as a pale yellow solid, m.p. 190-191°C. IR spectrum revealed hydroxyl (3447 cm⁻¹), carbonyl (1739, 1633 cm⁻¹) and aromatic (1542 cm⁻¹).

The ¹³C NMR spectrum of **DC17** showed a total of 35 signals. The EIMS displayed a molecular ion $[M]^+$ at m/z 608, consistent with the molecular formula $C_{35}H_{28}O_{10}$.

The ¹H NMR spectrum of **DC17** displayed signals of methoxyl protons at δ 3.84 (*s*, 5"-OCH₃), methyl protons at δ 2.02 (*s*, 4"-CH₃), a formyl proton at δ 9.87 (*s*, 6"-CHO) and two chelated hydroxyl protons at δ 14.87 (3"-OH) and 14.04 (7"-OH), suggesting the chelation with oxygens of the keto carbon at C-1" (δ 205.6) and the formyl substituent at C-6", respectively. Furthermore, the ¹H NMR spectrum showed the signal of a methylene triplet at δ 3.51 (4H, J = 7.3 Hz, H₂- β and H₂- α). In the HMQC spectrum of **DC17**, the methylene signal at $\delta_{\rm C}$ 43.5 was correlated with a methylene triplet at $\delta_{\rm H}$ 3.51 indicating that two methylenes (H₂- β and H₂- α) had the same chemical shifts and their carbon signals were overlapped at $\delta_{\rm C}$ 43.5 in the ¹³C NMR spectrum. Accordingly, this suggested that **DC17** has a 1-(5-formyl-2,6-dihydroxy-4-methoxy-3-methylphenyl)propane-1-one moiety in the molecule, which was supported by fragment ions at *m*/*z* 223 and 385 in the EIMS (Scheme 3). In the HMBC spectrum, the hydroxyl proton signal at δ 14.04 showed correlations with C-6" (δ 107.1) and C-7" (δ 167.0) and the formyl proton signal at δ 9.87 showed

correlations with C-6" (δ 107.1) and C-7" (δ 167.0), suggesting that the hydroxyl group at δ 14.04 was located at C-7", leaving the formyl group at C-6". The correlations of the hydroxyl proton signal at δ 14.87 (3"-OH) to C-3" (δ 172.3), C-4" (δ 110.9) and C-2" (δ 106.2) confirmed the position of this hydroxyl group at C-3". The signal at δ 2.02 was assigned to the methyl group at C-4" since it showed HMBC correlations to C-3" (δ 172.3), C-4" (δ 110.9) and C-5" (δ 166.5), whereas the methoxyl signal at δ 3.84 showed correlations to C-5" (δ 166.5), establishing the location of the methoxyl group at C-5". In the NOESY spectrum of **DC17**, the correlations from the methyl group at δ 2.02 to the methoxyl group at δ 3.84 and the methoxyl group at δ 3.84 to the formyl group at δ 9.87 were clearly observed. The presence of methyl protons at δ 2.11 (s, 6-CH₃), a vinylic methine proton at δ 6.77 (s, H-3), a monosubstituted aromatic ring at δ 7.92 (2H, d, J = 7.2 Hz, H-2' and H-6') and 7.55-7.50 (3H, m, H-3', H-4' and H-5') and another chelated hydroxyl proton at δ 12.98 (5-OH) suggested the chelation with oxygen of the α , β -unsaturated keto carbon at C-4 (δ 183.3) of a flavones moiety. The correlations of the hydroxyl proton signal at δ 12.98 (5-OH) to C-5 (δ 157.9), C-6 (δ 114.7) and C-10 (δ 108.9) and of the methyl proton signal at δ 2.11 to C-5 (δ 157.9), C-6 (δ 114.7) and C-7 (δ 153.7) confirmed the position of this hydroxyl group at C-5 and the methyl group at C-6, respectively. Additionally the methylene proton signal at δ 3.51 showed the correlations with C-8 (δ 112.0) and C-1" (δ 205.6) suggesting that a phenylpropanone unit was linked at C-8 of a flavones moiety. Furthermore, the ¹H NMR spectra and the EIMS fragment of **DC17** (m/z 105 and 503) showed that the flavones moiety had a benzoyl group at δ 8.25 (2H, d, J = 7.2 Hz, H-3^{'''} and H-7^{'''}), 7.57-7.50 (2H, m, H-4^{'''} and H-6'''), 7.70 (1H, t, J = 7.2 Hz, H-5''') and $\delta_{\rm C}$ 163.9 (C-1'''). The downfield shift of H_2 - β proton was caused by the anisotropic effect of the benzoyl group adjacent to an oxygen of a flavones unit at C-7 (Scheme 3). The structure of DC17 was proposed to be an unusual biflavone, named as saiyunensis B, a new compound.

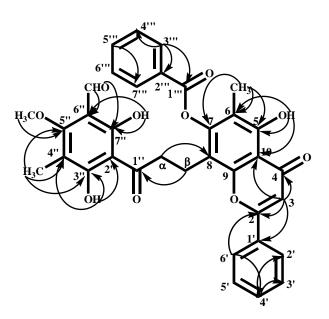
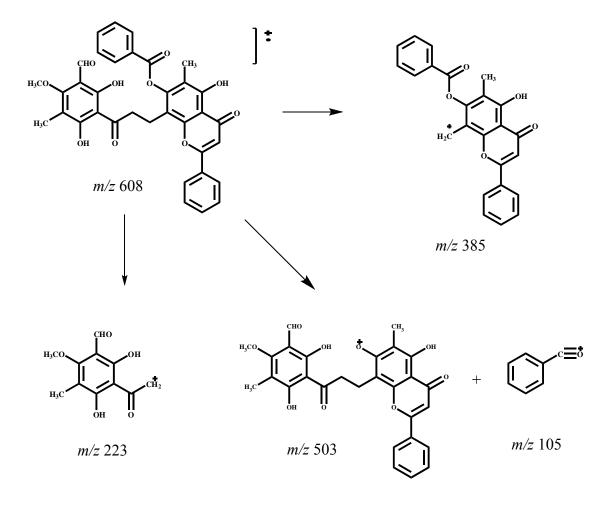



Figure 17 Selected HMBC correlations of DC17

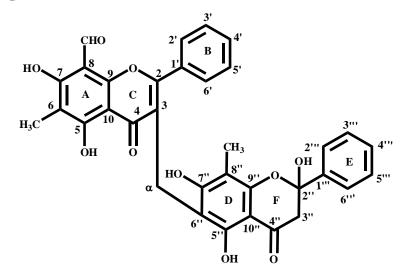

position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	163.4 (C)	-
3	6.77 (s)	105.9 (CH)	C-2, C-4, C-10, C-1′
4	-	183.3 (C)	-
5	-	157.9 (C)	-
6	-	114.7 (C)	-
7	-	153.7 (C)	-
8	-	112.0 (C)	-
9	-	159.0 (C)	-
10	-	108.9 (C)	-
1′	-	131.4 (C)	-
2', 6'	7.92 (d, $J = 7.2$ Hz)	126.3 (CH)	C-2, C-4′
3', 5'	7.57-7.50 (m)	129.2 (CH)	C-2', C-6'
4′	7.57-7.50 (m)	131.9 (CH)	C-3′, C-5′

 Table 19 ¹H, ¹³C NMR and HMBC spectral data of DC17 (CDCl₃)

position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
α	3.51 (t, J = 7.3 Hz)	43.5 (CH ₂)	C-8, C- 1″
β	3.51 (t, J = 7.3 Hz)	43.5 (CH ₂)	C-8, C- 1″
1''	-	205.6 (C)	-
2''	-	106.2 (C)	-
3''	-	172.3 (C)	-
4''	-	110.9 (C)	-
5''	-	166.5 (C)	-
6''	-	107.1 (C)	-
7''	-	167.0 (C)	-
1'''	-	163.9 (C)	
2'''	-	131.4 (C)	-
3''', 7'''	8.25 (d, <i>J</i> = 7.2 Hz)	130.3 (CH)	С-β, С-2′′′, С-5′′′
4′′′, 6′′′	7.57-7.50 (m)	128.8 (CH)	C-3''', C-5''', C-7'''
5'''	7.70 (t, $J = 7.2$ Hz)	134.0 (CH)	C-3''', C-7'''
5-OH	12.98 (s)	-	C-5, C-6, C-10
6-CH ₃	2.11 (s)	8.7 (CH ₃)	C-5, C-6, C-7
3′′-ОН	14.87 (s)	-	C-2'', C-3'', C-4''
4''-CH ₃	2.02 (s)	7.9 (CH ₃)	C-3'', C-4'', C-5''
5''-OCH ₃	3.84 (s)	62.8 (CH ₃)	C-5''
6''-СНО	9.87 (s)	192.4 (CH)	C-6′′, C-7′′
7''-OH	14.04 (s)	-	C-6", C-7"

Scheme 3 Fragmentation pathway of compound DC17

DC18 was obtained as a pale yellow solid, m.p. 199-200°C, $[\alpha]_D^{25} = +1.4^\circ$ (*c* = 1.00, CHCl₃). Its IR spectrum revealed hydroxyl (3341 cm⁻¹) and carbonyl (1630 cm⁻¹).

The ¹³C NMR spectrum of **DC18** showed a total of 34 signals, suggesting a biflavone structure. The EIMS displayed a molecular ion $[M]^+$ at m/z 594, consistent with the molecular formula $C_{34}H_{26}O_{10}$.

The ¹H NMR spectrum was also very similar to that of compound **DC16**, except for the appearance of a singlet signal of a methylene group at C-3" (δ 2.96) instead of a vinylic methine proton, suggesting a flavone-flavanone biflavonoid structure. The absence of a H-2" proton which normally coupled with the H-3" proton in flavanones suggested that the H-2" proton was substituted by a hydroxyl group which was supported by the presence of a doubly oxygenated carbon signal at δ 100.9 (C-2") in the ¹³C NMR spectrum. The location of the methylene proton at C-3" was assigned by the HMBC correlations of the signal at δ 2.96 (H₂-3") to the carbons at δ 100.9 (C-2"), δ 194.3 (C-4") and δ 142.2 (C-1") and the hydroxyl group at C-2" from the correlations of H-2"/H-6" with C-2" (δ 100.9). Thus the structure of compound **DC18** was identified as (8-formyl-5,7-dihydroxy-6-methylflavone)-3-methane-6"-(2",5",7"-trihydroxy-8"-methylflavanone) and named as saiyunensis C, a new compound.

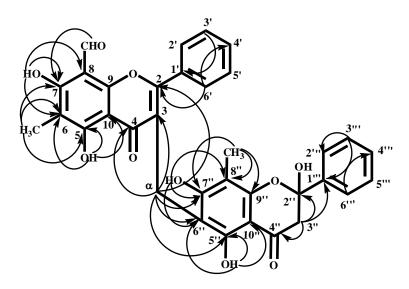
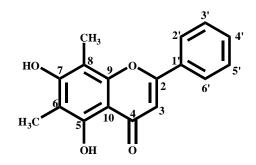



Figure 18 Selected HMBC correlations of DC18

Table 20 ¹ H, ¹³ C NMR	and HMBC spectral data of DC18 (CDCl ₃)
---	--

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	164.8 (C)	-
3	-	119.5 (C)	-
4	-	182.9 (C)	-
5	-	164.7 (C)	-
6	-	108.6 (C)	-
7	-	168.1 (C)	-
8	-	102.3 (C)	-
9	-	160.4 (C)	-
10	-	103.1 (C)	-
1′	-	132.6 (C)	-
2', 6'	7.68-7.65 (m)	129.2 (CH)	C-2, C-4′
3', 5'	7.63-7.59 (m)	128.7 (CH)	C-1′
4'	7.63-7.59 (m)	131.1 (CH)	-
1''	-	-	-
2''	-	100.9 (C)	-
3''	2.96 (s)	48.1 (CH ₂)	C-2'', C-4'', C-1'''

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type) HMBC	
4''	-	194.3 (C)	-
5''	-	159.9 (C)	-
6''	-	105.8 (C)	-
7''	-	163.0 (C)	-
8''	-	106.3 (C)	-
9''	-	155.1 (C)	-
10''	-	101.8 (C)	-
1'''	-	142.2 (C)	-
2′′′, 6′′′	7.68-7.65 (m)	124.9 (CH) C-2", C-4"	
3''', 5'''	7.45-7.42 (m)	128.6 (CH) C-1", C-2", C-6"	
4'''	7.45-7.42 (m)	129.2 (CH) -	
5-OH	13.17 (s)	- C-5, C-6, C-10	
6- CH ₃	2.13 (s)	6.4 (CH ₃) C-5, C-6, C-7	
7- OH	13.06 (s)	- C-6, C-7, C-8	
8-CHO	10.27 (s)	189.8 (CH) C-7	
5''-OH	11.56 (s)	- C-5", C-6", C-10"	
α	3.93 (d, <i>J</i> = 3.3 Hz)	19.2 (CH ₂) C-2, C-3, C-4, C-5", C-6", C-	
7''-OH	10.13 (s)	- C-6", C-7", C-8"	
8''-CH3	2.15 (s)	8.3 (CH ₃)	C-7'', C-8'', C-9''

DC19 was obtained as a yellow solid, m.p. 180-181°C. Its IR spectrum revealed hydroxyl (3494 cm⁻¹), carbonyl (1655 cm⁻¹) and aromatic (1487 cm⁻¹) functions.

The ¹H NMR spectrum of **DC19** showed a signal pattern similar to those of **DC10**, except for the appearance of an additional singlet signal at δ 2.37 assignable to the methyl group, instead of the singlet of the formyl group due to 8-CHO in the ¹H NMR spectrum of **DC10**. The position of 8-CH₃ (δ 2.37) was assigned from HMBC spectrum which showed correlations with C-7 (δ 159.4), C-8 (δ 102.0) and C-9 (δ 153.1). The structure of compound **DC19** was identified as matteuorien, (Zhang *et al.*, 2008).

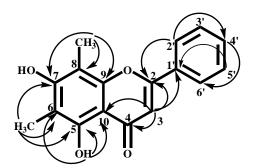
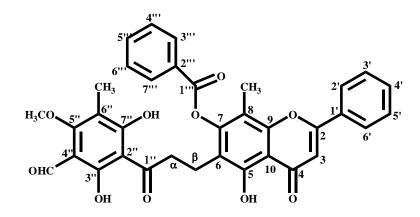



Figure 19 Selected HMBC correlations of DC19

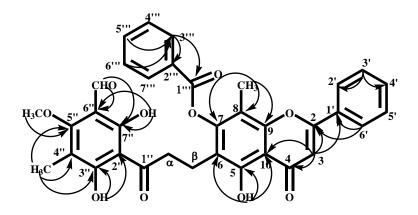
Position	$\delta_{\rm H}$ (multiplicity)		$\delta_{\rm C}$ (C- type)		НМВС
1 03111011	DMSO- d_6	CDCl ₃	DMSO- d_6	CDCl ₃	IIWIDC
1	-	-	-	-	-
2	-	-	163.3 (C)	163.3 (C)	-
3	6.90 (s)	6.69 (s)	105.2 (CH)	105.2 (CH)	C-2, C-4, C-10, C-1′
4	-	-	182.7 (C)	182.9 (C)	-
5	-	-	156.5 (C)	156.4 (C)	-
6	-	-	107.7 (C)	107.0 (C)	-
7	-	-	160.5 (C)	159.4 (C)	-
8	-	-	102.5 (C)	102.0 (C)	-
9	-	-	153.0 (C)	153.1 (C)	-
10	-	-	104.3 (C)	104.7 (C)	-
1′	-	-	131.5 (C)	131.5 (C)	-
2', 6'	8.03-8.00 (m)	7.95-7.92 (m)	126.7 (CH)	126.1 (CH)	C-2, C-4′
3', 5'	7.55-7.51 (m)	7.56-7.53 (m)	129.7 (CH)	129.0 (CH)	C-1′
4′	7.55-7.51 (m)	7.56-7.53 (m)	132.4 (CH)	131.6 (CH)	C-2′, C-6′
5-OH	12.94 (s)	12.87 (s)	-	-	C-5, C-6, C-10
6-CH ₃	2.01 (s)	2.18 (s)	8.5 (CH ₃)	7.3 (CH ₃)	C-5, C-7, C-6
7 - OH	-	-	-	-	-
8-CH ₃	2.24 (s)	2.37 (s)	8.8 (CH ₃)	7.9 (CH ₃)	C-7, C-8, C-9

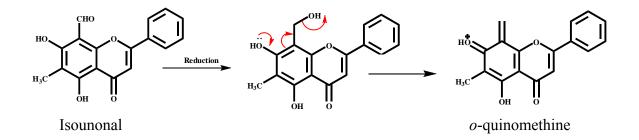
Table 21 ¹H, ¹³C NMR and HMBC spectral data of **DC19** (CDCl₃ and DMSO- d_6)

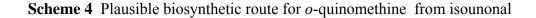
DC20 was obtained as a pale yellow solid, m.p. 180-182°C. IR spectrum revealed hydroxyl (3439 cm⁻¹), carbonyl (1720, 1648 cm⁻¹) and aromatic (1542 cm⁻¹).

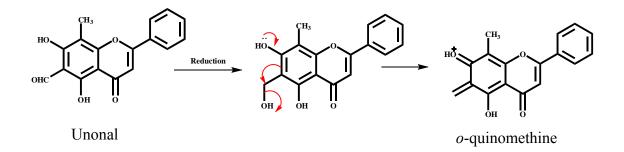
The ¹³C NMR spectrum of **DC17** showed a total of 35 signals. The EIMS displayed a molecular ion $[M]^+$ at m/z 608, consistent with the molecular formula $C_{35}H_{28}O_{10}$.

The ¹H NMR spectrum of **DC20** was superimposable to those of **DC17**. The EIMS and ¹H NMR spectrum including NOESY experiment of **DC20** showed that **DC20** had the same phenylpropanone moiety as **DC17**. In the ¹H NMR spectrum the methyl singlet signal based on a flavones moiety were observed at a lower field (δ 2.31 (8-CH₃). In the HMBC spectrum, the methyl protons at δ 2.31 correlated with C-7 (δ 153.4), C-8 (δ 109.1) and C-9 (δ 152.7) resulting in the assignment of this methyl group at C-8. The phenylpropanone unit was linked at C-6 of a flavones moiety. Thus the structure of compound **DC20** was a structural isomer of **DC17**, a new compound and named as saiyunensis D.

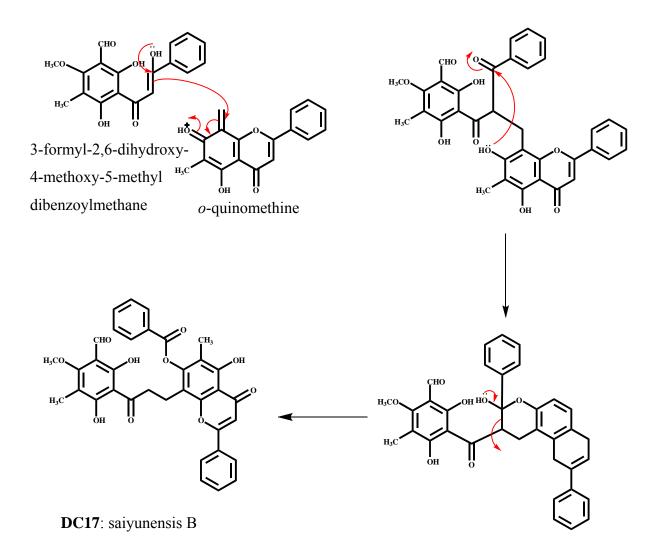


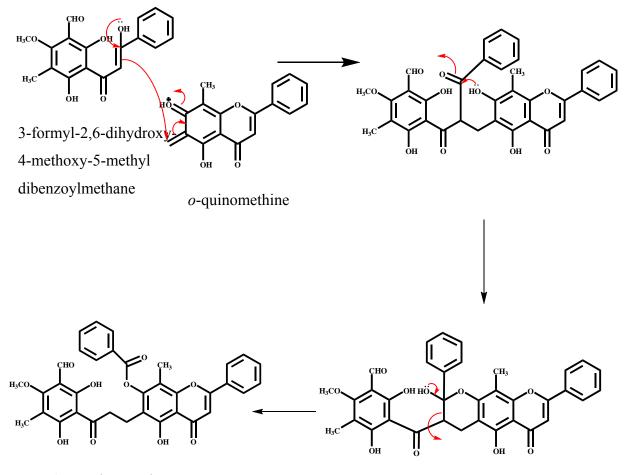

Figure 20 Selected HMBC correlations of DC20


Table 22 ¹ H, ¹³ C NMR and HMBC spectral data of DC20 (C	DCl ₃)
---	--------------------


position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	164.3 (C)	-
3	6.77 (s)	105.9 (CH)	C-2, C-4, C-10, C-1'
4	-	183.4 (C)	-
5	-	157.5 (C)	-
6	-	117.1 (C)	-
7	-	153.4 (C)	-
8	-	109.1 (C)	-
9	-	152.7 (C)	-
10	-	108.8 (C)	-
1′	-	131.9 (C)	-
2', 6'	7.93 (d, $J = 6.8$ Hz)	126.3 (CH)	C-2, C-1′
3', 5'	7.60-7.52 (m)	129.1 (CH)	C-2', C-4', C-6'
4'	7.60-7.52 (m)	133.9 (CH)	-
α	3.51 (t, J = 7.8 Hz)	42.9 (CH ₂)	-
β	3.51 (t, J = 7.8 Hz)	42.9 (CH ₂)	-
1''	-	206.0 (C)	-
2''	-	106.2 (C)	-

position	$\delta_{ m H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
3''	-	172.4 (C)	-
4''	-	110.8 (C)	-
5''	-	166.3 (C)	-
6''	-	107.1 (C)	-
7''	-	167.1 (C)	-
1'''	-	164.0 (C)	-
2'''	-	131.9 (C)	-
3′′′, 7′′′	8.23 (d, <i>J</i> = 7.5 Hz)	130.3 (CH)	C-1''', C-2'''
4′′′, 6′′′	7.60-7.52 (m)	128.7 (CH)	C-3′′′, C-7′′′
5'''	7.60-7.52 (m)	133.9 (CH)	C-3′′′, C-7′′′
5-OH	12.96 (s)	-	C-5, C-6, C-10
8-CH ₃	2.31 (s)	9.1 (CH ₃)	C-7, C-8, C-9
3′′-ОН	14.97 (s)	-	C-2'', C-3''
4''-CH ₃	2.05 (s)	7.9 (CH ₃)	C-3'', C-4'', C-5''
5''-OCH ₃	3.86 (s)	62.8 (CH ₃)	C-5''
6''-СНО	9.91 (s)	192.3 (CH)	C-6′′, C-7′′
7''-OH	14.02 (s)	-	C-6'', C-7''


The biosynthesis of saiyunensis A and B could involve an oxidative coupling between 3-formyl-2,6-dihydroxy-4-methoxy-5-methyl dibenzoylmethane and flavones derivatives, followed by nucleophilic addition to give a cyclic ketal product. Then a ring opening led to linkage of these units through C- β and C- β and C- β and C- β and C- β bonds, respectively.



Scheme 5 Plausible biosynthetic route for *o*-quinomethine from unonal

Scheme 6 Plausible biosynthetic route for saiyunensis B (DC17) from 3formyl-2,6-dihydroxy-4-methoxy-5-methyl dibenzoylmethane and isounonal

DC20: saiyunensis D

Scheme 7 Plausible biosynthetic route for saiyunensis D (DC20) from 3formyl-2,6-dihydroxy-4-methoxy-5-methyl dibenzoylmethane and unonal

Conclusion

Investigation of the crude dichloromethane extract from the leaves of *D*. *chinensis* led to the isolation of twenty compounds of nine benzoate esters: benzyl 2-hydroxybenzoate (**DC1**), benzyl benzoate (**DC2**), benzyl 2,6-dihydroxybenzoate (**DC3**), cinnamyl benzoate (**DC4**), benzyl 2-hydroxy-5-methoxybenzoate (**DC5**), 2-methoxybenzyl benzoate (**DC6**), benzyl 2-hydroxy-6-methoxybenzoate (**DC7**), benzyl 2-methoxybenzoate (**DC6**) and benzyl 3-hydroxybenzoate (**DC14**), one diterpene: phytol (**DC8**), five flavones: isounonal (**DC10**), unonal (**DC11**), 6-formyl-2,5,7-trihydroxy-8-methylflavanone (**DC12**), desmal (**DC13**) and matteuorien (**DC19**), one acid: 2-methoxybenzoic acid (**DC15**), four biflavones: saiyunensis A (**DC16**), saiyunensis B (**DC17**), saiyunensis C (**DC18**) and saiyunensis D (**DC20**).

REFERENCES

- Bang, M. -H.; Choi, S. Y.; Jang, T. -O.; Kim, S. K.; Kwon, O. -S.; Kang, T. -C.; Won,
 M. H.; Park, J.; Baek, N. -I. 2002. Phytol, SSADH inhibitory diterpenoid of *Lactuca sativa*. Arch. Pharm. Res., 25(5), 643-646.
- Chan, K. C.; Toh, H. T. **1986**. A 7-hydroxyaporphine alkaloid from *Desmos* dasymachalus. *Phytochemistry*, 25(8), 1999-2000.
- Connolly, J. D.; Haque, M. D. E.; Hasan, C. M.; Hossain, M. S. 1994. 15a-Hydroxy-24-methylenelanosta-7,9-(11)-diene-3-one from the stem bark of *Desmos longiflorus*. *Phytochemistry*, 36(5), 1337-1338.
- Correia, R.; DeShong, P. **2001**. Palladium-catalyzed arylation of allylic benzoates using hypervalent siloxane derivatives. *J. Org. Chem.*, 66, 7159-7165.
- Frodin, D. G. **1990**. Studies in *Schefflera* (Araliaceae). *Botanical Journal of the Linnean Society*, 104, 309-324.
- Hossain, M. S.; Ferdous, A. J.; Hasan, C. M. **1995**. Alkaloids from the stem bark of *Desmos longiflorus*. *Fitoterapia*, 66(5), 463-464.
- Ju, J.; Tu, J. 1999. Studies on chemical constituents of seeds of *Desmos chinensis* Lour. *Zhongguo Zhongyao Zazhi*, 24(7), 418-421.
- Kakeya, H.; Imoto, M.; Tabata, Y.; Iwami, J.; Matsumoto, H.; Nakamura, K.; Koyano, T.; Tadano, K.; Umezawa, K. 1993. Isolation of a novel substrate competitive tyrosine kinase inhibitor desmal from the plant *Desmos chinensis*. *FEBS Letters*, 320, 169-172.
- Kiem, P. V.; Minh, C. V.; Huong, H. T.; Lee, J. J.; Lee, I. S.; Kim, Y. H. 2005. Phenolic constituents with inhibitory activity against NFAT transcription from *Desmos chinensis*. Arch. Pharm. Res., 28(12), 1345-1349.
- Kodpinid, M.; Sadavongvivad, C.; Thebtaranonth, C.; Thebtaranonth, Y. 1984. Benzyl benzoates from the root of *Uvaria purpurea*. *Phytochemistry*, 23(1), 199-200.
- Kummee, S.; Intaraksa, N. 2008. Antimicrobial activity of *Desmos chinensis* leaf and *Maclura cochinchinensis* wood extracts. *Songklanarin J. Sci. Technol.*, 30(5), 635-639.

- Leboeuf, M.; Cave, A.; El Tohami, M.; Pusset, J.; Forgacs P.; Provost, J. 1982. Alkaloids of Annonaceae. XXXV. Alkaloids of *Desmos tiebaghiensis*. J. Nat. Prod., 45(5), 617-623.
- Liu, X. -T.; Zhang, Q.; Liang, J. -Y.; Min, Z. -D. **2004**. A New oxoaporphine from *Desmos chinensis* Lour. *Zhongguo Tianran Yaowu*, 2(4), 205-207.
- Luo, Y.; Li, B.; Zhang, G.; 2000. Alkaloids from *Desmos yunnanensis*. Tianran Chanwu Yanjiu Yu Kaifa, 12(6), 1-5.
- Menkham, S.; Suttisri, R. 2003. Chemical constituents of *Cleidion spiciflorum* Leaves. *Thai J. Pharm. Sci.* 27(1-2), 33-39.
- Nakanishi, K.; Sasaki, S. I; Kiang, A. K. 1965. Phytochemical survey of Malaysian plants. Preliminary chemical and pharmacological screening. *Chem. Pharm. Bull.* 13, 882-890.
- Nguyen, N. T.; Pham, V. C.; Litaudon, M.; Gueritte, F.; Grellier, P.; Nguyen, V. T.; Nguyen, V. H. 2008. Antiplasmodial alkaloids from *Desmos rostrata*. J. Nat. Prod, 71, 2057-2059.
- Qais, N.; Rahman, M. M.; Rashid, M. A.; Koshino, H.; Nagasawa, K.; Nakata, T. **1996**. Antibacterial flavonoids from *Desmos chinensis*. *Fitoterapia*, 67(6), 554-555.
- Rahman, M. M.; Qais, N.; Rashid, M. A. 2003. A new C-benzylated chalcone from Desmos chinensis. Fitoterapia, 74, 511-514.
- Rivero-Cruz, B.; Rivero-Cruz, I.; Rodríguez-Sotres, R.; Mata, R. 2007. Effect of natural and synthetic benzyl benzoates on Calmodulin. *Phytochemistry*, 68, 1147-1155.
- Shi, M.; Pan, Q.; Min, Z. 2003. Studies on chemical constituents from leaves of Desmos chinensis Lour. Zhongguo Yaoke Daxue Xuebao, 34(6), 503-505.
- Smitinand, T. 2001. "Thai Plant Names". Prachachon publisher: Bangkok, p. 117.
- Sulaiman, M.; Hamid, A.; Hadi, A.; Awang, K. 2003. Alkaloids and flavones from Desmos dumosus, Roxb. Saff. (Annonaceae). Malays. J. Sci., 22(1), 87-93.
- Sulaiman, M.; Martin, M. –T.; Pais, M.; Hamid, A. H. A.; Awang, K. 1998. Desmosine, an artifact alkaloid from *Desmos dumosus*. *Phytochemistry*, 49(7), 2191-2192.

- Umezawa, K.; Koyano, T.; Hara, T. **1994**. Anticancer flavanone derivative of *Desmos chinensis*. *Jpn. Kokai Tokkyo*.
- Wu, J. -H; Lan, C. -Q.; Mao, S. -L.; Lioa, S. -X.; Su, Z. -W. 2000. Chemical constituents from the root of *Desmos chinensis*. *Zhongcaoyao*, 31(8), 567-569.
- Wu, J. -H.; Liao, S. -X.; Liang, H. -Q.; Mao, S. -L. 1994. Isolation and identification of flavones from *Desmos cochinchinensis* Lour. *Yaoxue Xuebao*, 29(8), 621-623.
- Wu, J. -H.; Liao, S. -X.; Bi, H. -M.; Yang, G. -J.; Su, Z. -W. 1997. Isolation and identification of constituents from *Desmos* A00: Seven compounds were isolated from the root of *Desmos dumosus* (Roxb.) Saff.. *Zhongcaoyao*. 28(9), 515-517.
- Wu, J. -H.; Liao, S. -X.; Mao, S. -L.; Liang, H. -Q.; Wang, Y. -L.; Su, Z. -W. 1997. Desmosflavanone II: A new flavanone from *Desmos cochichinensis* Lour. *Journal of Chinese Pharmaceutical Sciences*, 6(3), 119-121.
- Wu, J. -H.; Liao, S. -X.; Mao, S. -L.; Yi, Y. -H.; Takeya, K.; Su, Z. -W.; Lan, C. -Q. **1999**. Studies on chemical constutents from *Desmos dumosus* Saff. *Yaoxue Xuebao*, 34(9), 682-885.
- Wu, J. -H.; Mao, S. -L.; Liao, S. -X.; Shi, W. -H.; Su, Z. -W.; Lan, C. -Q. 2000. Studies on chemical constituents in root of *Desmos grandifolius*. *Zhongguo Zhongyao*. 25(7), 419-421.
- Wu, J. -H.; Mao, S. -L.; Liao, S. -X.; Yi, Y. -H.; Lan, C. -Q.; Su, Z. -W. 2001. Desmos dumotin B: A new special flavones from *Desmos dumosus*. *Chinese. Chem. Lett.*, 12(1), 49-50.
- Wu, J. -H.; Wang, X. -H.; Yi, Y. -H.; Lee, K. -H. 2003. Anti-AIDS Agents 54. A potent anti-HIV chalcone and flavonoids from Genus Desmos. Bioorg. Med. Chem. Lett., 13, 1813-1815.
- Wu, J. -H.; Shi, N.; Pan, M. -X.; Wang, X. -H.; Yi, Y. -H. 2005. Studies on the structure and activity of anti-HIV compounds in *Desmos dumosus*. *Zhongguo Yaoxue Zazhi*, 40(7), 495-497.

- Zhang, D.; Yang, L.; Fu, M.; Tu, Y. 2008. Studies on chemical constituents of rhizome of *Matteuccia struthiopteris*. Zhongguo Zhongyao Zazhi, 33(14), 1703-1705.
- Zhao, J. **1992**. Chemical constituents on the roots of *Desmos chinensis*. Yunnan *Zhiwu Yanjiu*, 14(1), 97-100.

APPENDIX

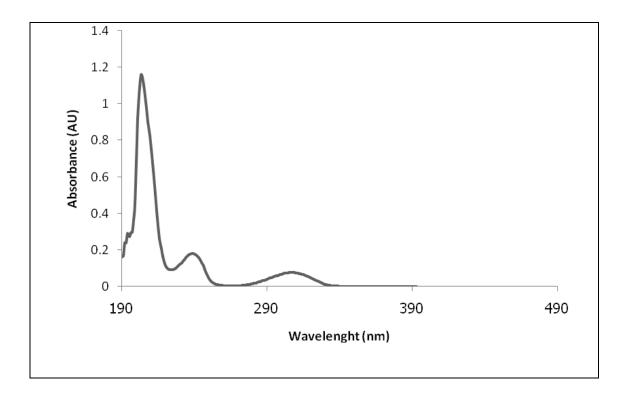


Figure 21 UV (MeOH) spectrum of compound DC1

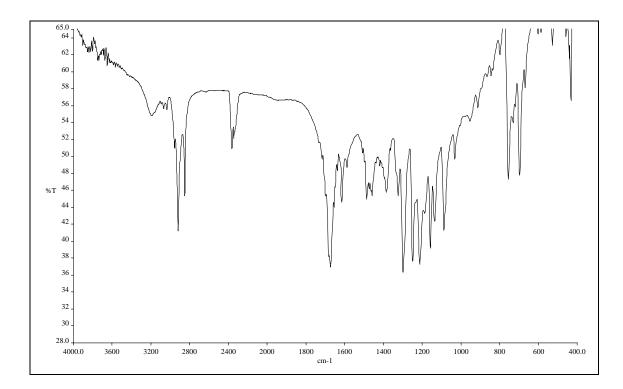


Figure 22 IR (neat) spectrum of compound DC1

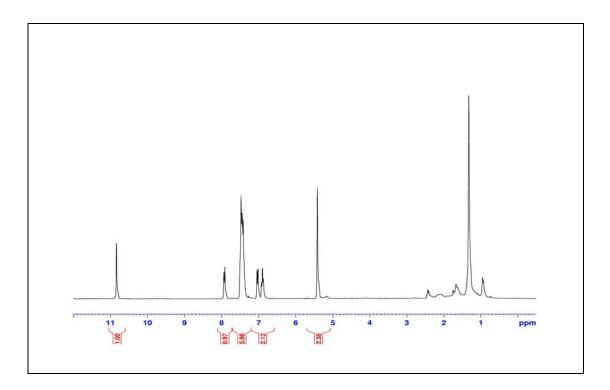


Figure 23 ¹H NMR (300 MHz) (CDCl₃) of compound DC1

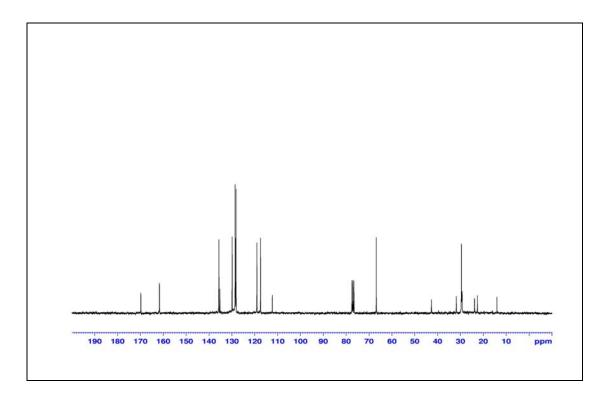


Figure 24 ¹³C NMR (75 MHz) (CDCl₃) of compound DC1

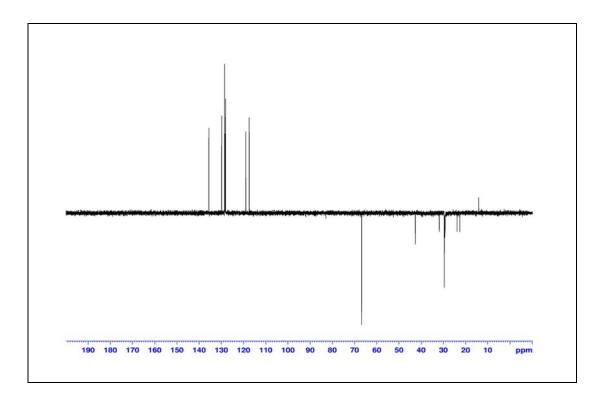


Figure 25 DEPT 135° (CDCl₃) of compound DC1

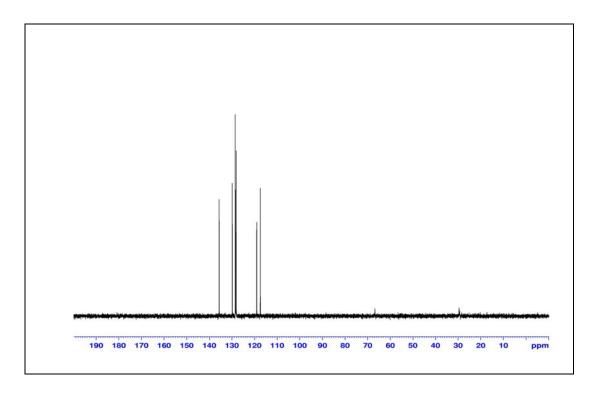


Figure 26 DEPT 90° (CDCl₃) of compound DC1

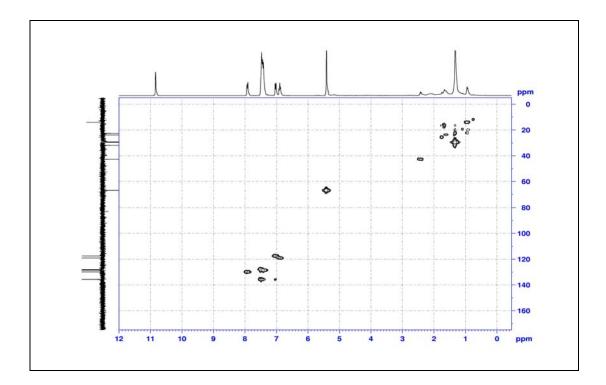


Figure 27 2D HMQC (CDCl₃) of compound DC1

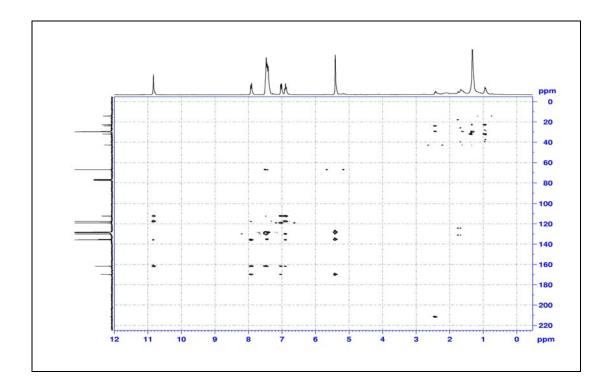


Figure 28 2D HMBC (CDCl₃) of compound DC1

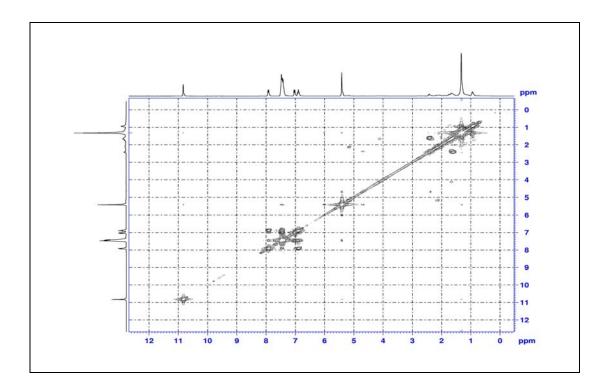


Figure 29 2D COSY (CDCl₃) of compound DC1

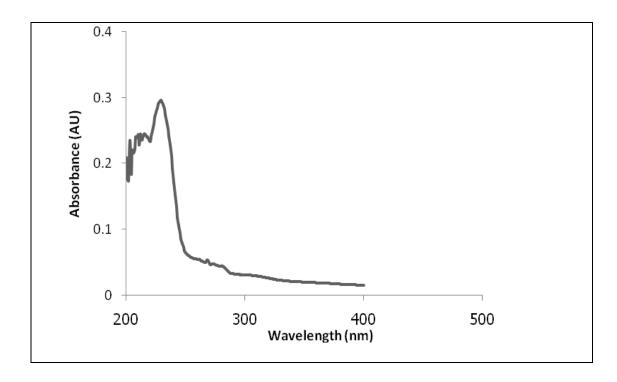


Figure 30 UV (MeOH) spectrum of compound DC2

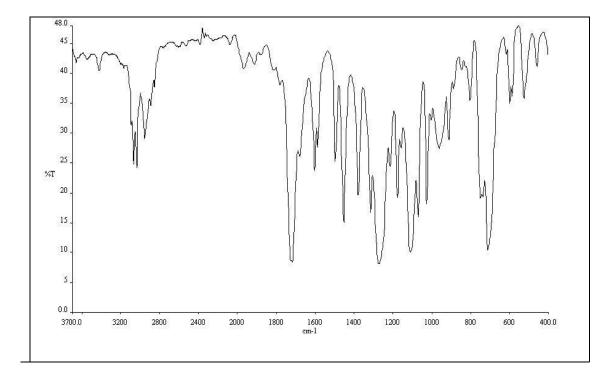


Figure 31 IR (neat) spectrum of compound DC2

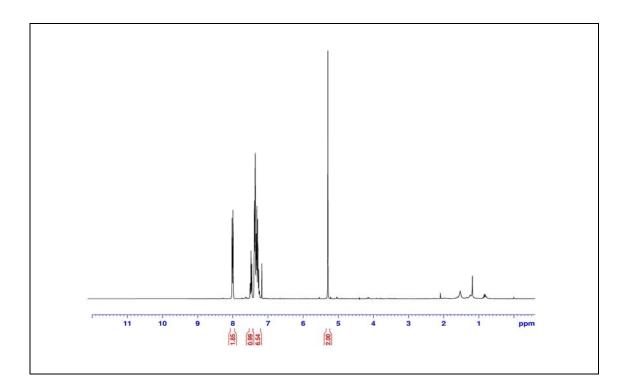


Figure 32 ¹H NMR (300 MHz) (CDCl₃) of compound DC2

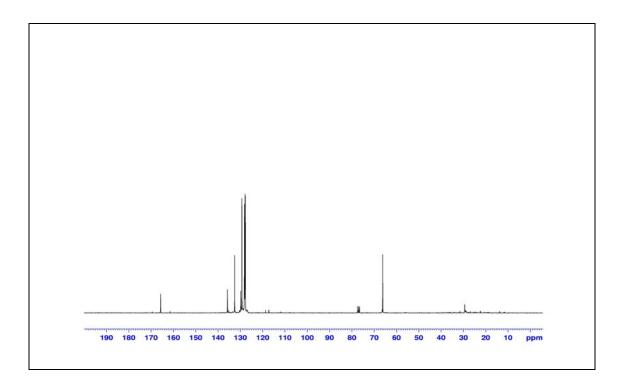


Figure 33 ¹³C NMR (75 MHz) (CDCl₃) of compound DC2

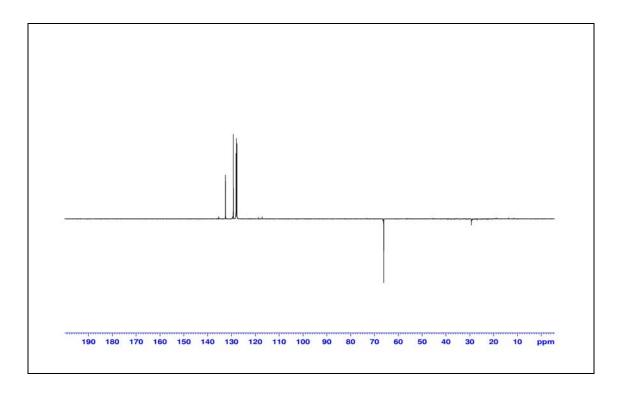


Figure 34 DEPT 135° (CDCl₃) of compound DC2



Figure 35 2D HMQC (CDCl₃) of compound DC2

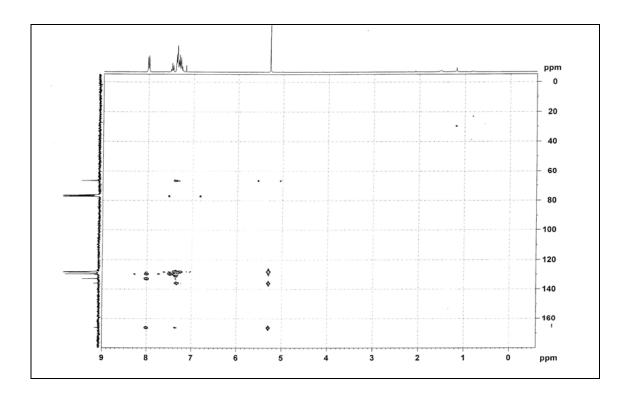


Figure 36 2D HMBC (CDCl₃) of compound DC2

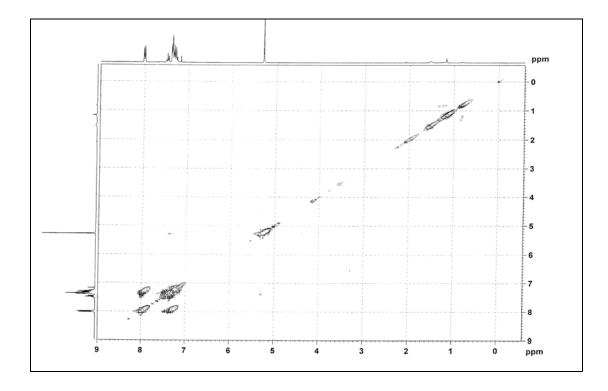


Figure 37 2D COSY (CDCl₃) of compound DC2

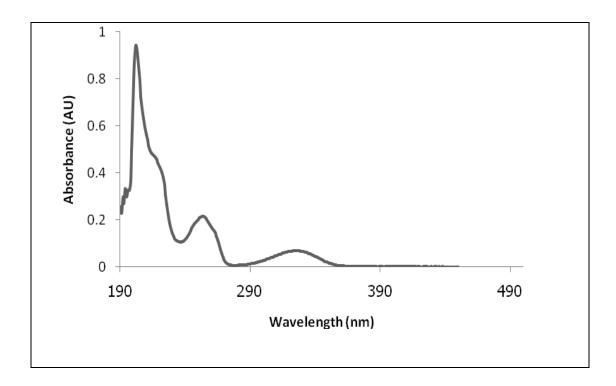


Figure 38 UV (MeOH) spectrum of compound DC3

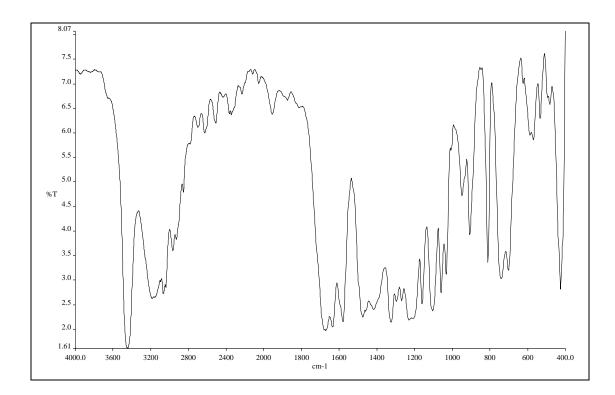


Figure 39 IR (neat) spectrum of compound DC3

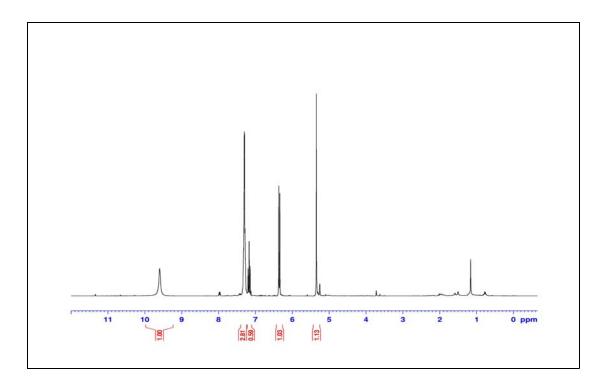


Figure 40¹H NMR (300 MHz) (CDCl₃) of compound DC3

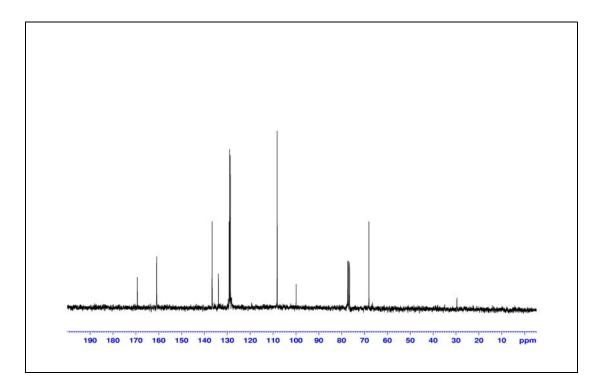


Figure 41¹³C NMR (75 MHz) (CDCl₃) of compound DC3

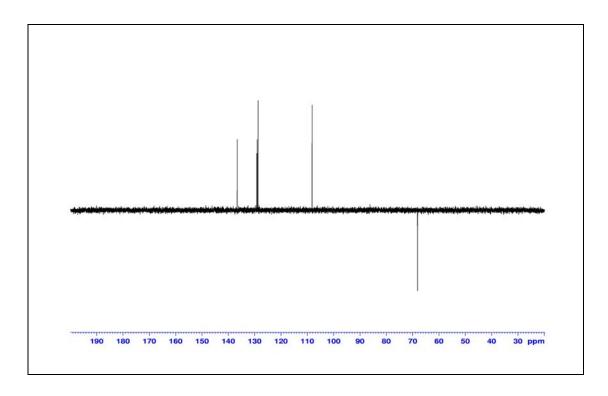


Figure 42 DEPT 135° (CDCl₃) of compound DC3

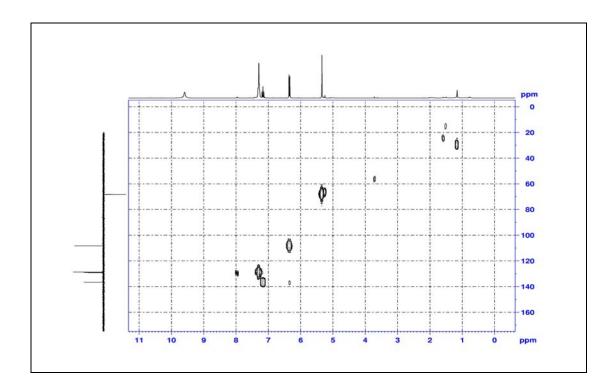


Figure 43 2D HMQC (CDCl₃) of compound DC3

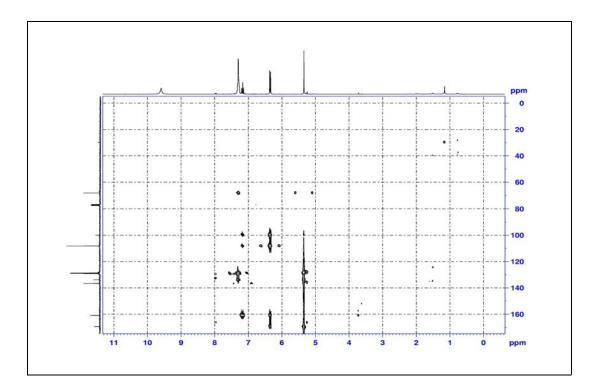


Figure 44 2D HMBC (CDCl₃) of compound DC3

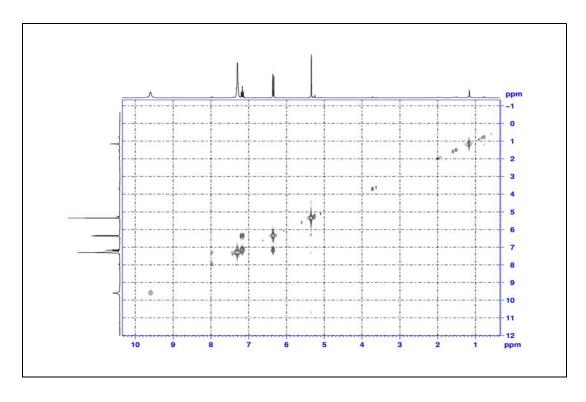


Figure 45 2D COSY (CDCl₃) of compound DC3

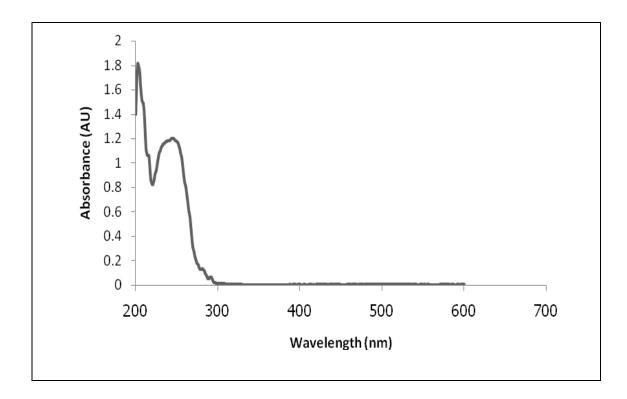


Figure 46 UV (MeOH) spectrum of compound DC4

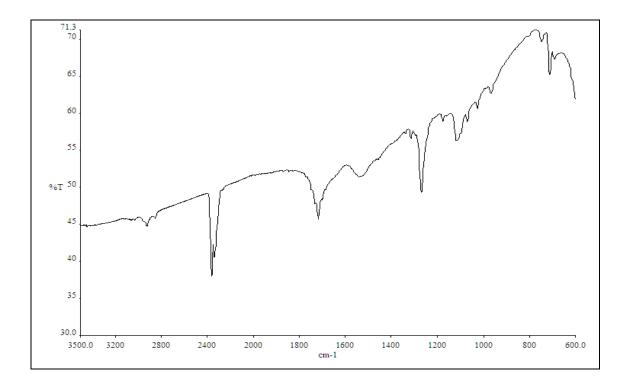


Figure 47 IR (neat) spectrum of compound DC4

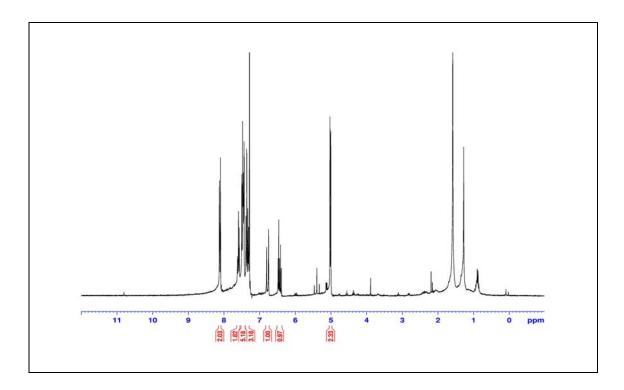


Figure 48¹H NMR (300 MHz) (CDCl₃) of compound DC4

Figure 49¹³C NMR (75 MHz) (CDCl₃) of compound DC4

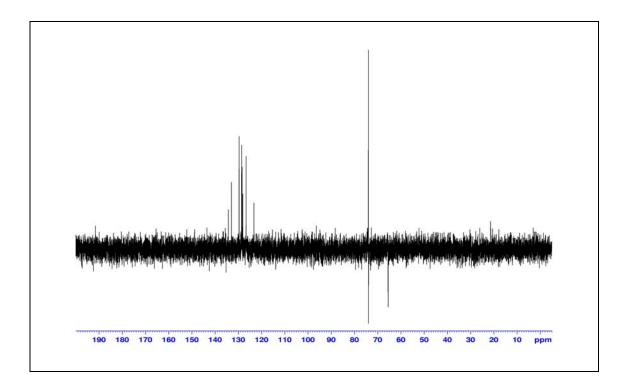


Figure 50 DEPT 135° (CDCl₃) of compound DC4

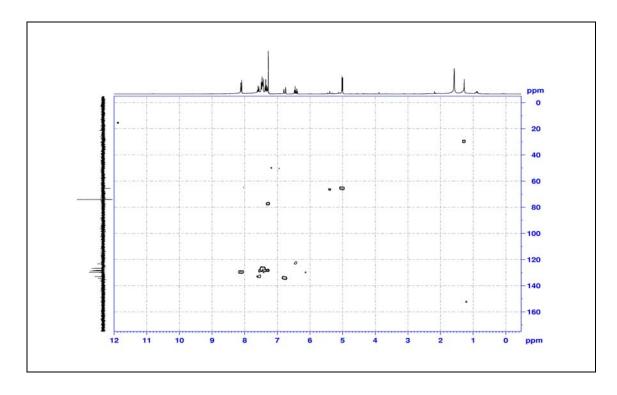


Figure 51 2D HMQC (CDCl₃) of compound DC4

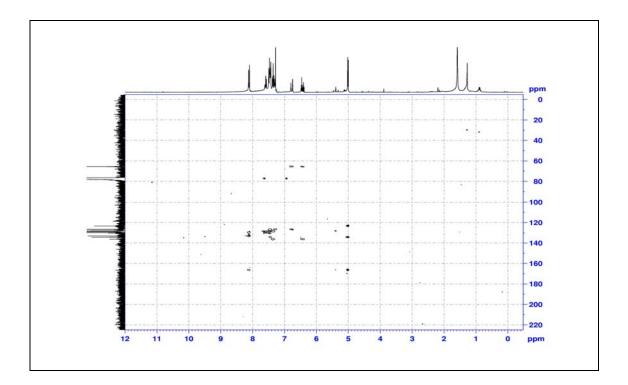


Figure 52 2D HMBC (CDCl₃) of compound DC4

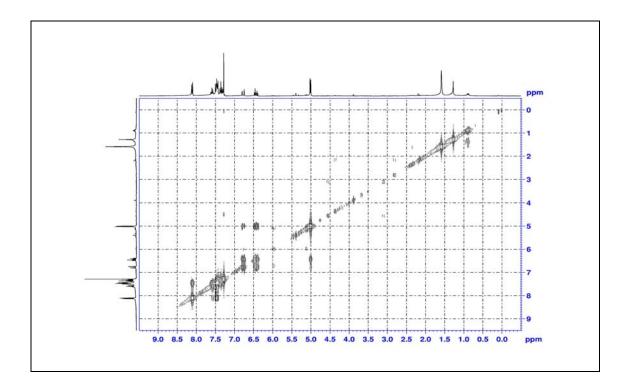


Figure 53 2D COSY (CDCl₃) of compound DC4

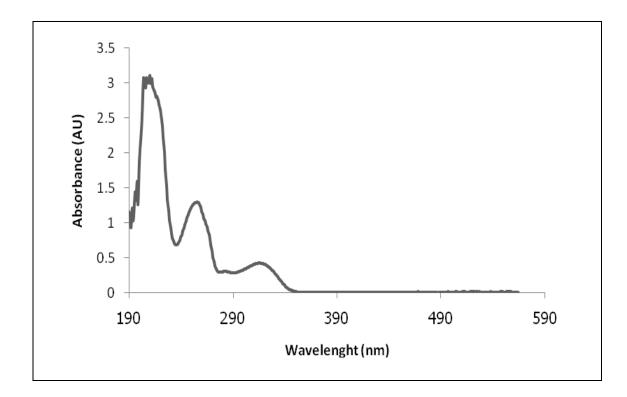


Figure 54 UV (MeOH) spectrum of compound DC5

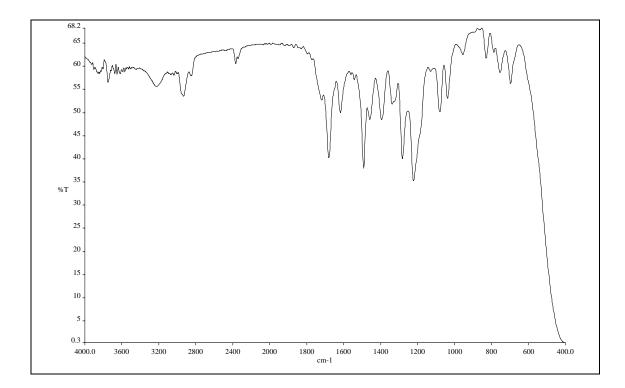
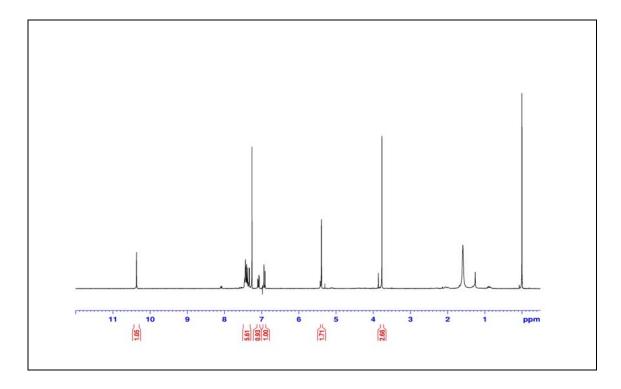



Figure 55 IR (neat) spectrum of compound DC5

Figure 56 ¹H NMR (300 MHz) (CDCl₃) of compound **DC5**

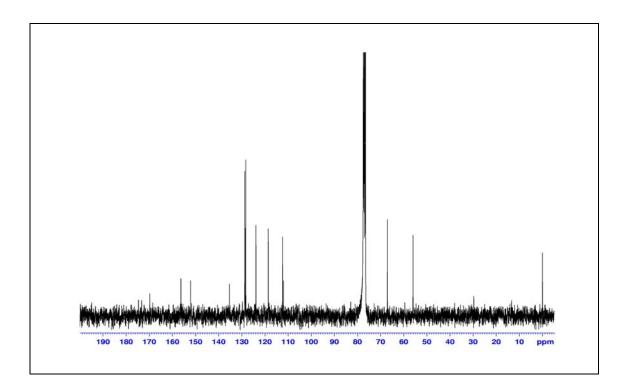


Figure 57¹³C NMR (75 MHz) (CDCl₃) of compound DC5

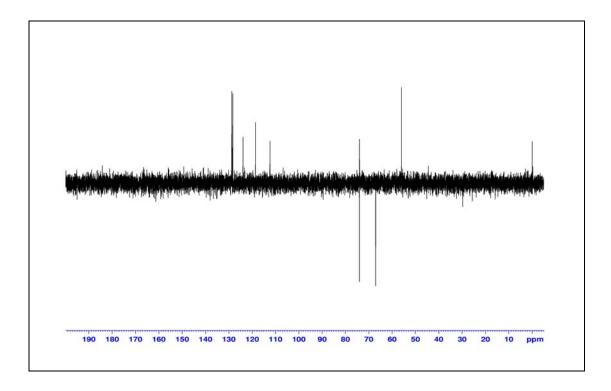


Figure 58 DEPT 135° (CDCl₃) of compound DC5

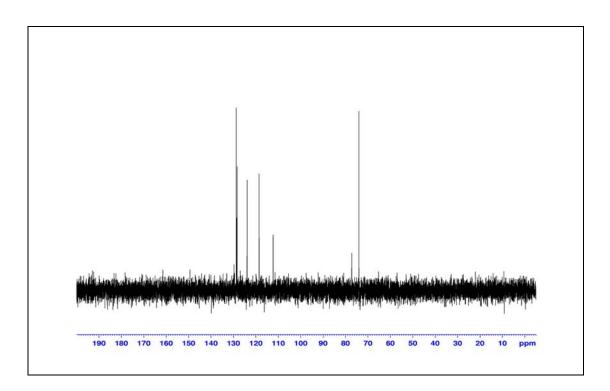


Figure 59 DEPT 90° (CDCl₃) of compound DC5

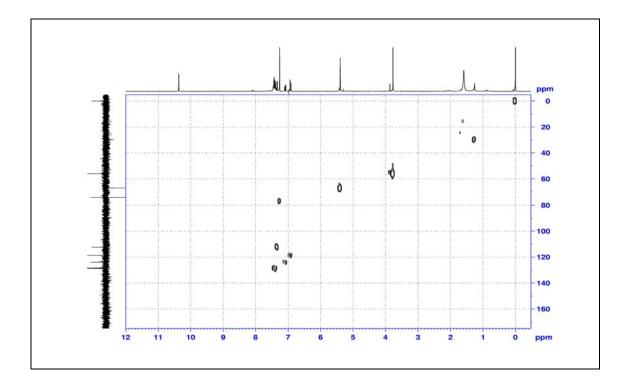


Figure 60 2D HMQC (CDCl₃) of compound DC5

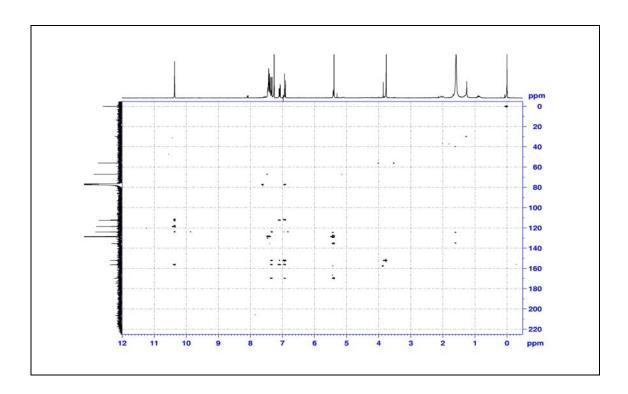


Figure 61 2D HMBC (CDCl₃) of compound DC5

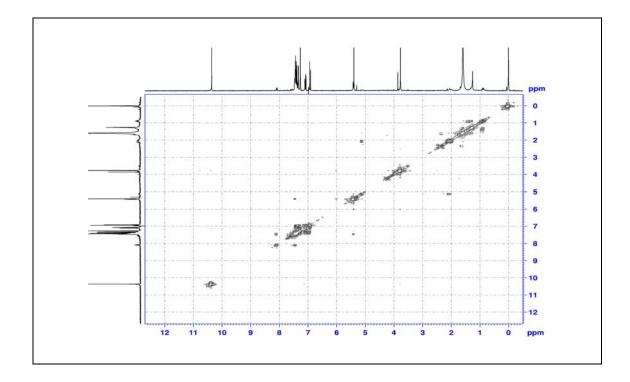


Figure 62 2D COSY (CDCl₃) of compound DC5

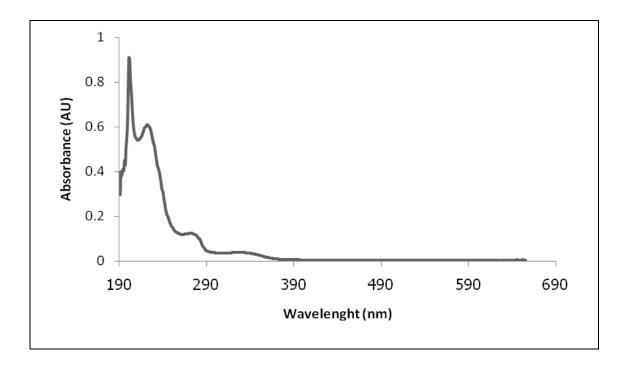


Figure 63 UV (MeOH) spectrum of compound DC6

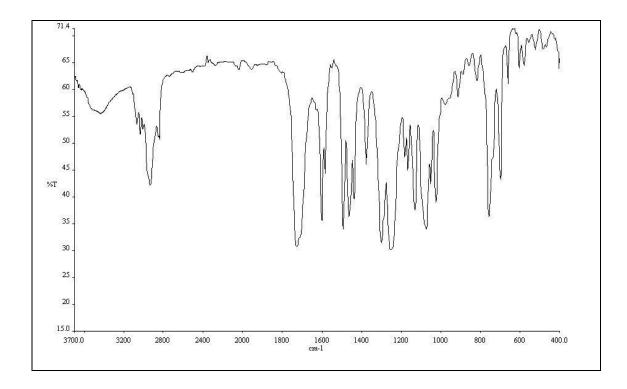


Figure 64 IR (neat) spectrum of compound DC6

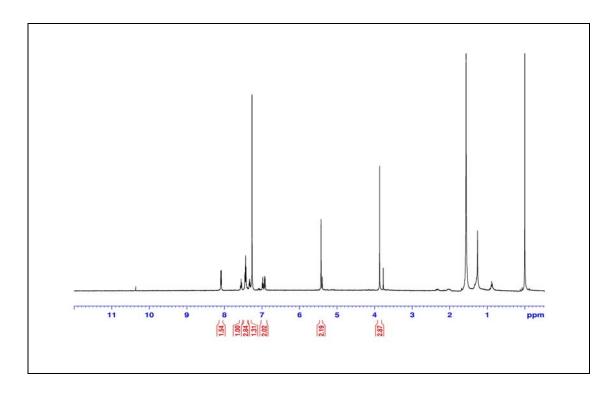


Figure 65 ¹H NMR (500 MHz) (CDCl₃) of compound DC6

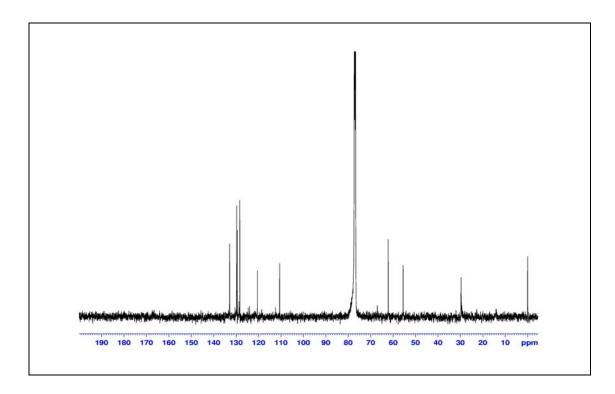
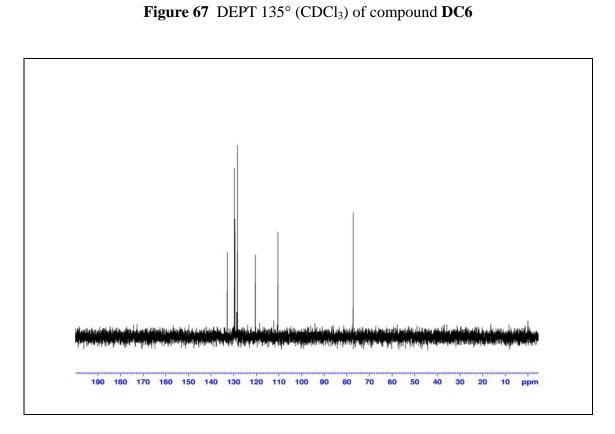
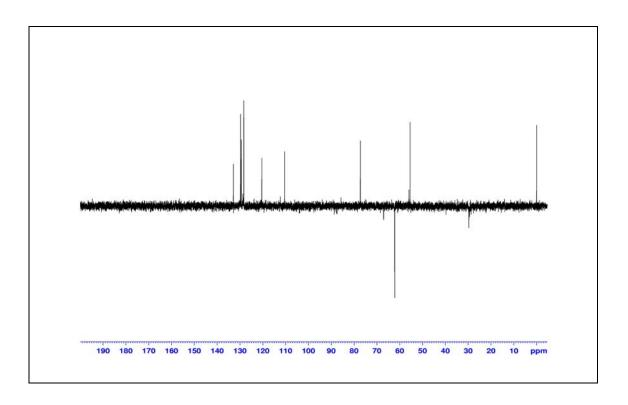




Figure 66¹³C NMR (125 MHz) (CDCl₃) of compound DC6

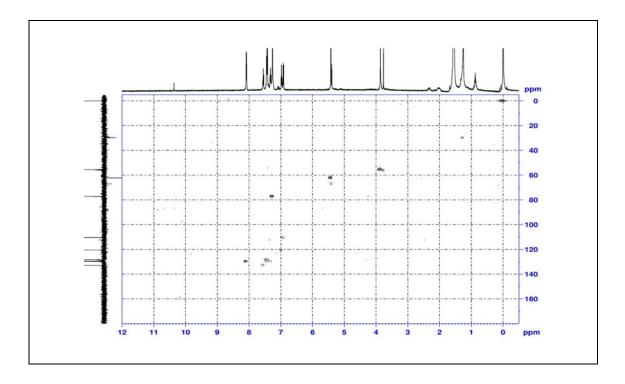


Figure 69 2D HMQC (CDCl₃) of compound DC6

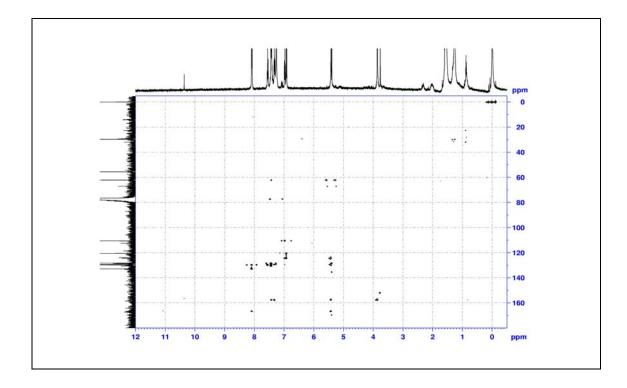


Figure 70 2D HMBC (CDCl₃) of compound DC6

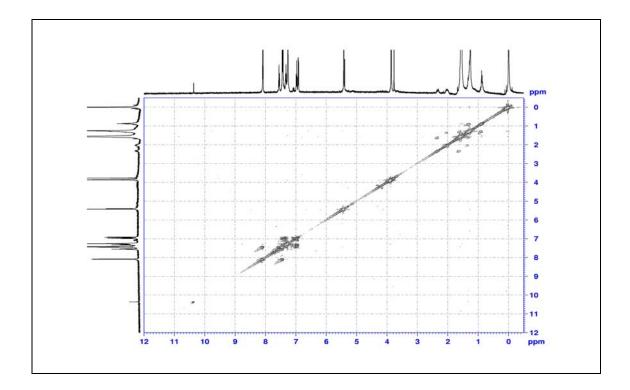


Figure 71 2D COSY (CDCl₃) of compound DC6

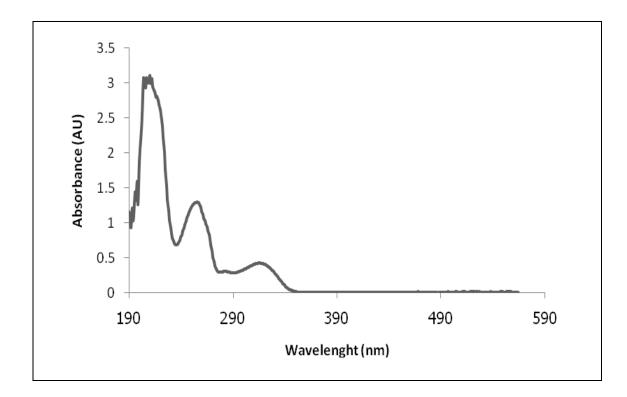
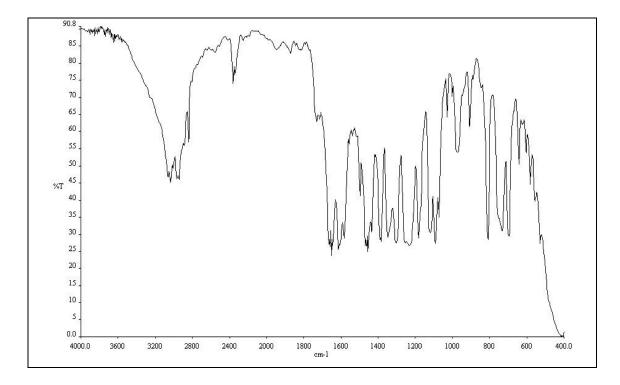
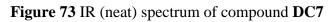




Figure 72 UV (MeOH) spectrum of compound DC7

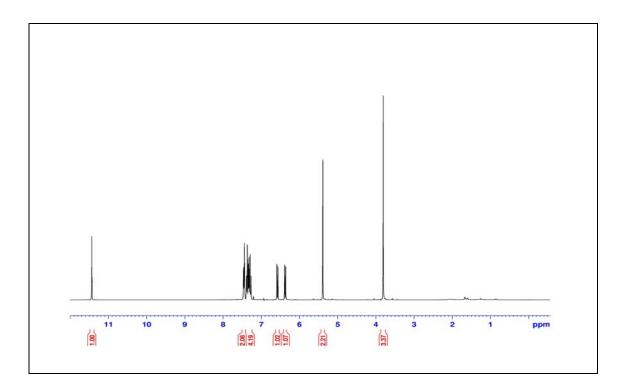


Figure 74 ¹H NMR (300 MHz) (CDCl₃) of compound DC7

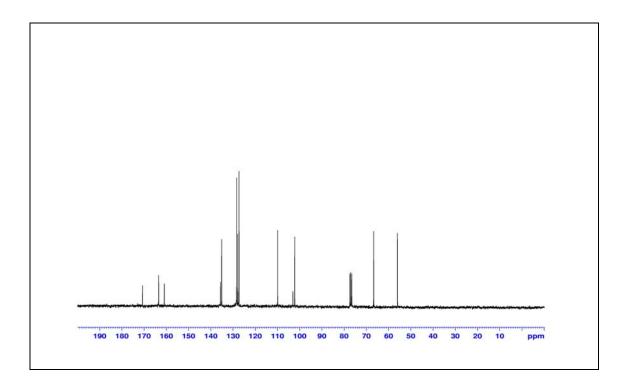


Figure 75¹³C NMR (75 MHz) (CDCl₃) of compound DC7

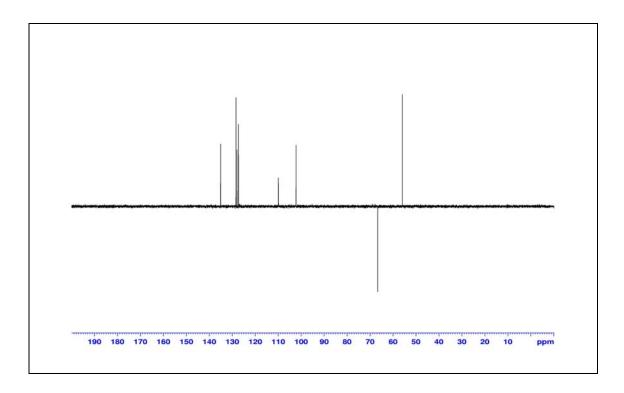


Figure 76 DEPT 135° (CDCl₃) of compound DC7

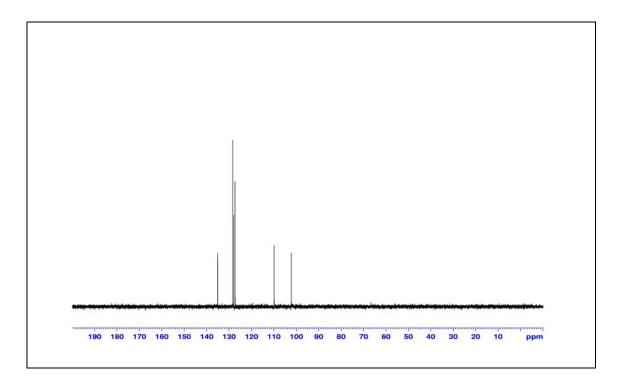


Figure 77 DEPT 90° (CDCl₃) of compound DC7

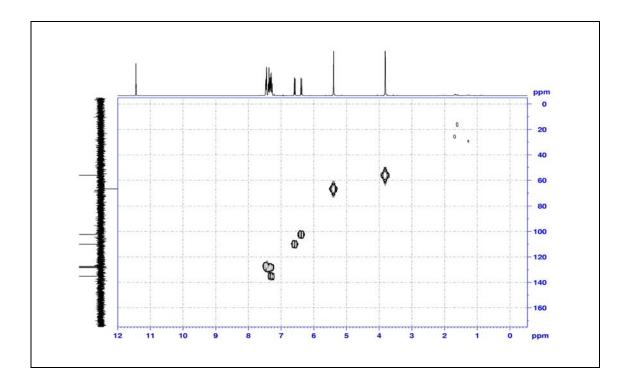


Figure 78 2D HMQC (CDCl₃) of compound DC7

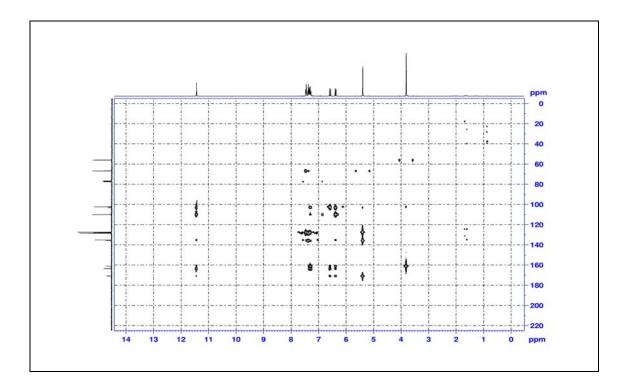


Figure 79 2D HMBC (CDCl₃) of compound DC7



Figure 80 2D COSY (CDCl₃) of compound DC7

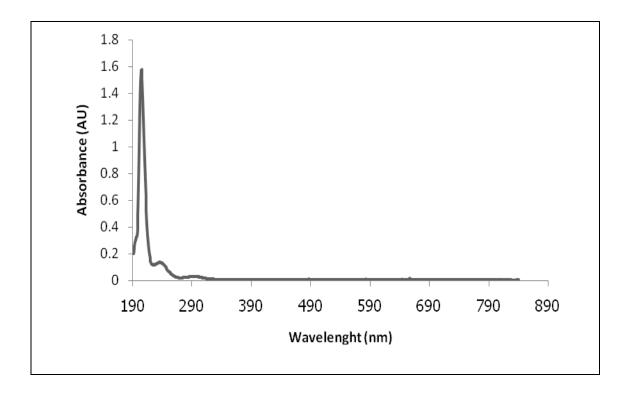


Figure 81 UV (MeOH) spectrum of compound DC8

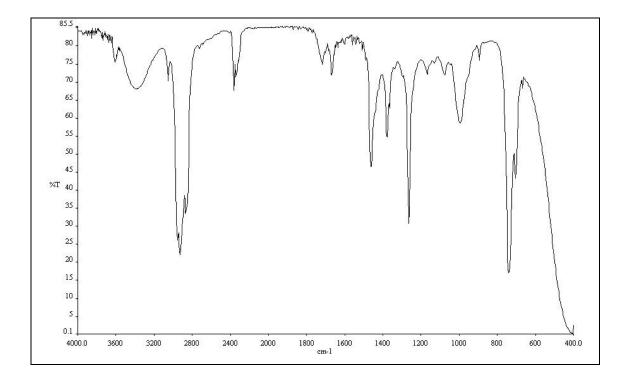


Figure 82 IR (neat) spectrum of compound DC8

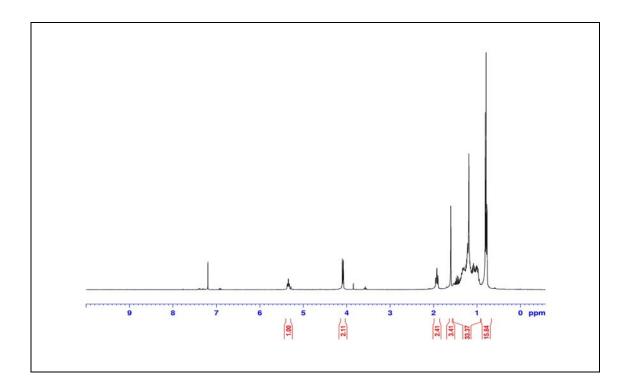


Figure 83 ¹H NMR (300 MHz) (CDCl₃) of compound DC8

Figure 84 ¹³C NMR (75 MHz) (CDCl₃) of compound DC8

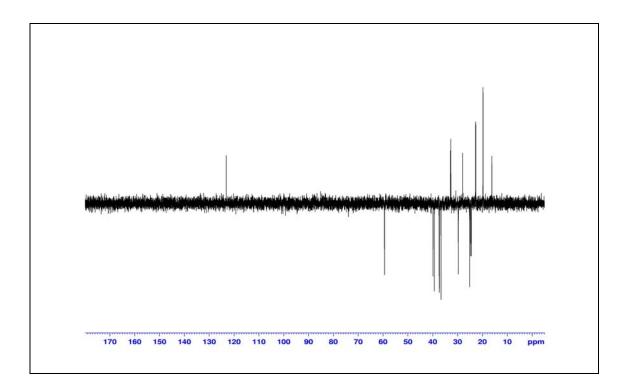


Figure 85 DEPT 135° (CDCl₃) of compound DC8

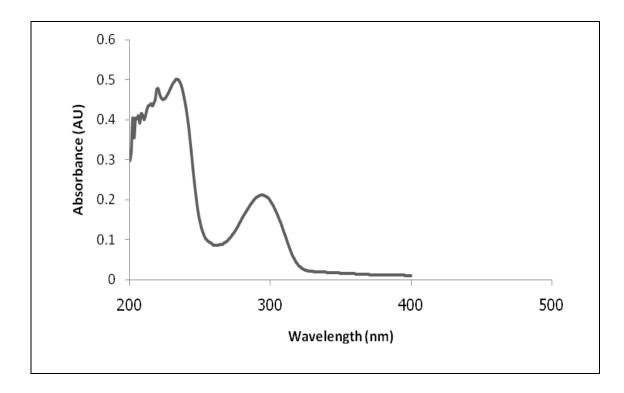


Figure 86 UV (MeOH) spectrum of compound DC9

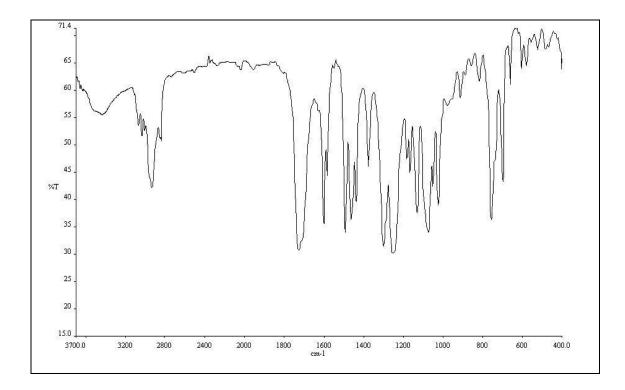


Figure 87 IR (neat) spectrum of compound DC9

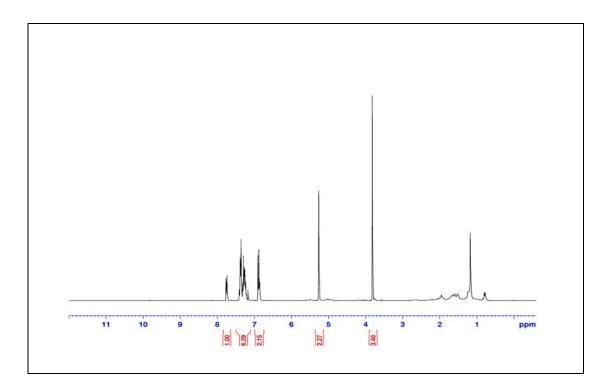


Figure 88 ¹H NMR (300 MHz) (CDCl₃) of compound DC9

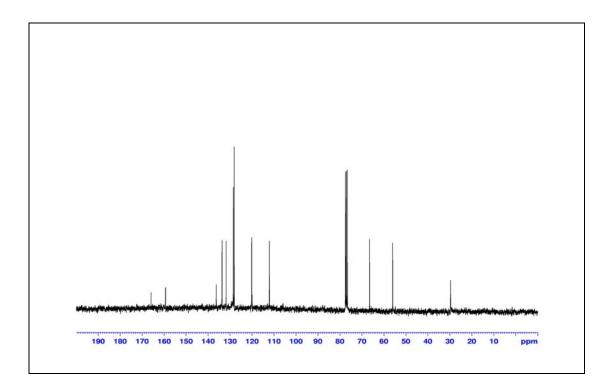


Figure 89¹³C NMR (75 MHz) (CDCl₃) of compound DC9

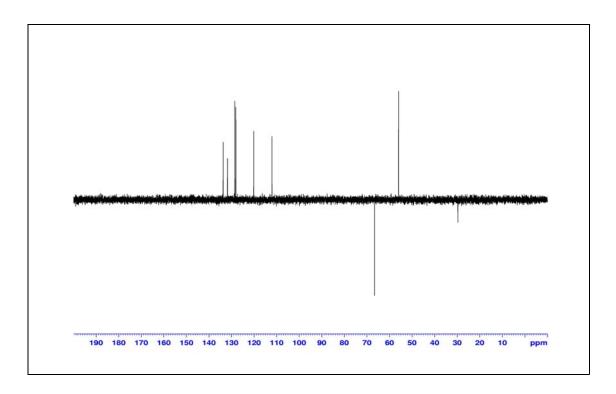


Figure 90 DEPT 135° (CDCl₃) of compound DC9

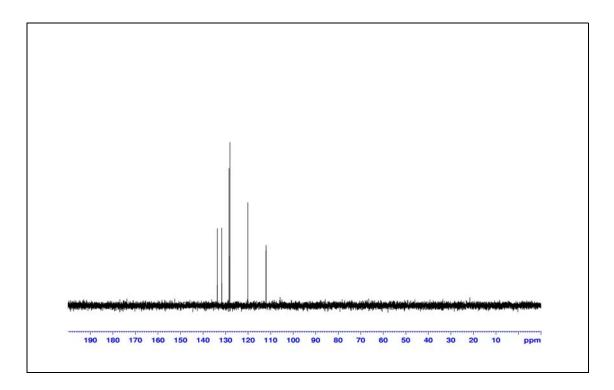


Figure 91 DEPT 90° (CDCl₃) of compound DC9

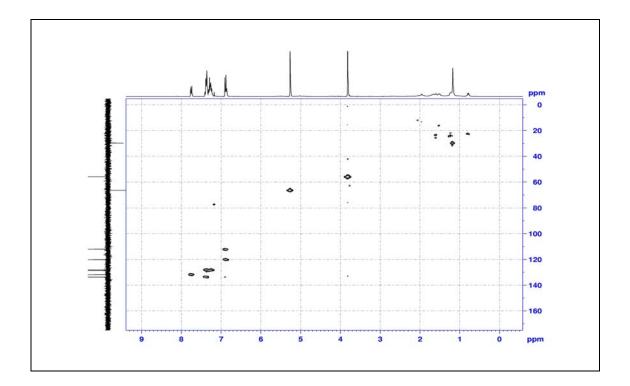


Figure 92 2D HMQC (CDCl₃) of compound DC9

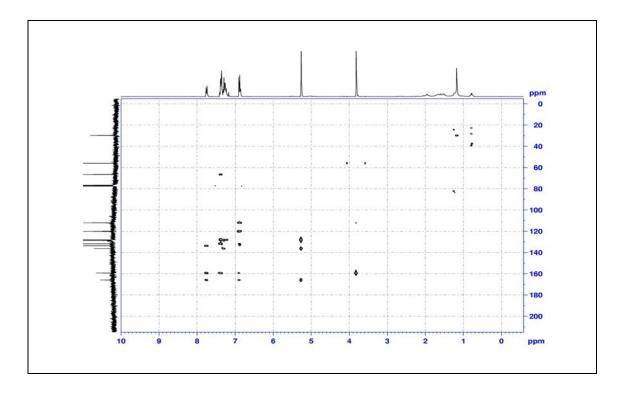


Figure 93 2D HMBC (CDCl₃) of compound DC9

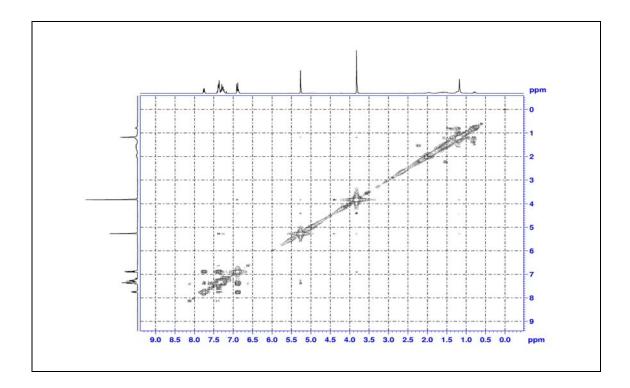


Figure 94 2D COSY (CDCl₃) of compound DC9

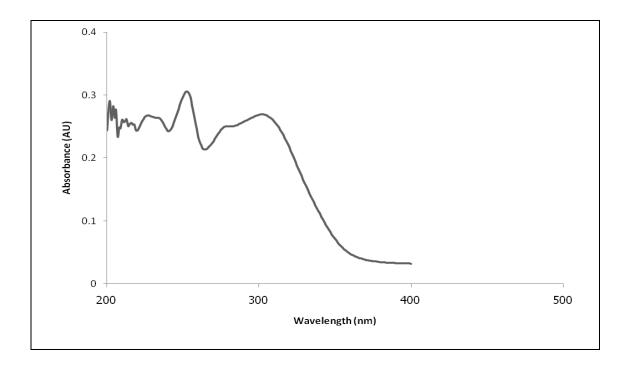


Figure 95 UV (MeOH) spectrum of compound D10

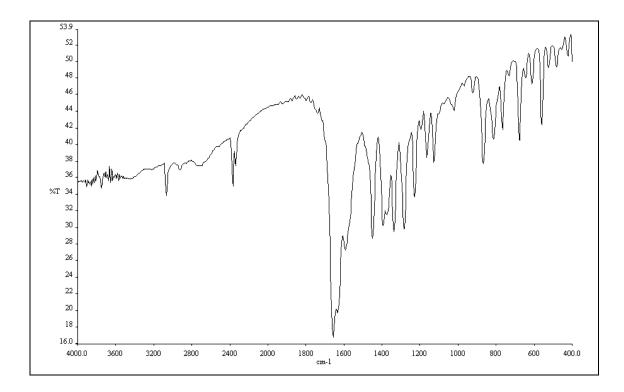


Figure 96 IR (KBr) spectrum of compound DC10

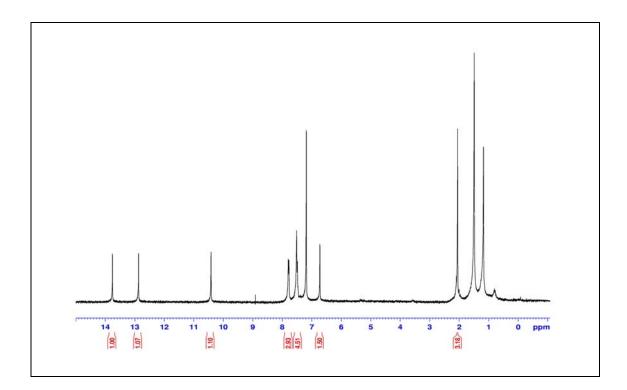


Figure 97 1 H NMR (300 MHz) (CDCl₃) of compound DC10

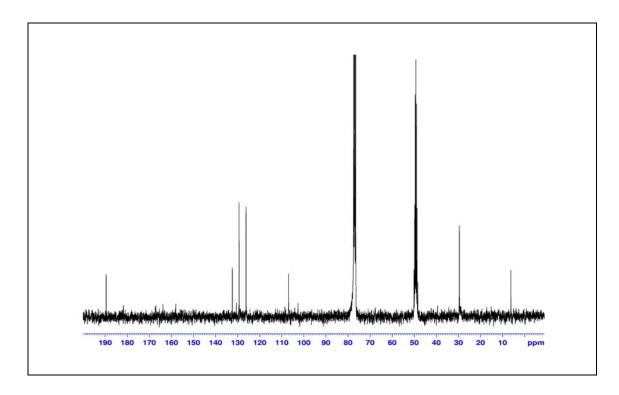


Figure 98¹³C NMR (75 MHz) (CDCl₃) of compound DC10

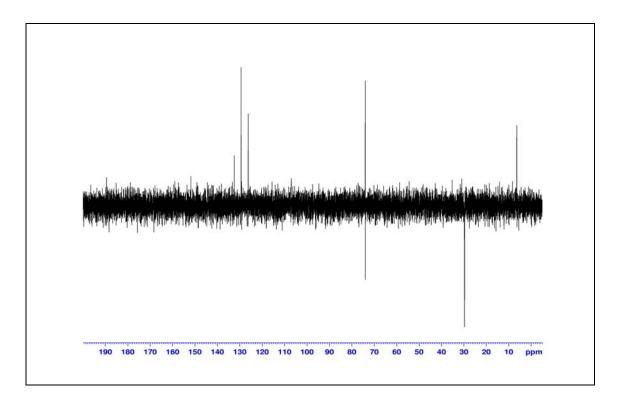


Figure 99 DEPT 135° (CDCl₃) of compound DC10

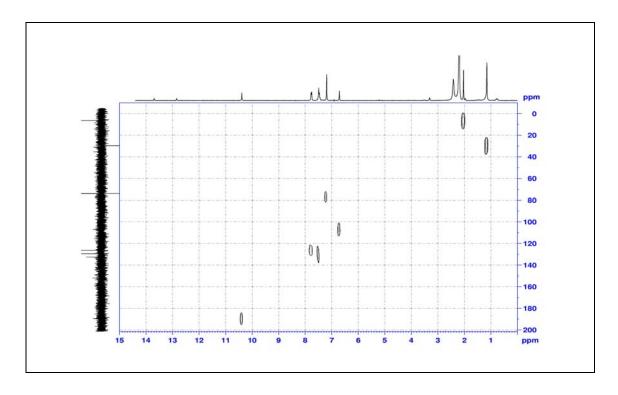


Figure 100 2D HMQC (CDCl₃) of compound DC10

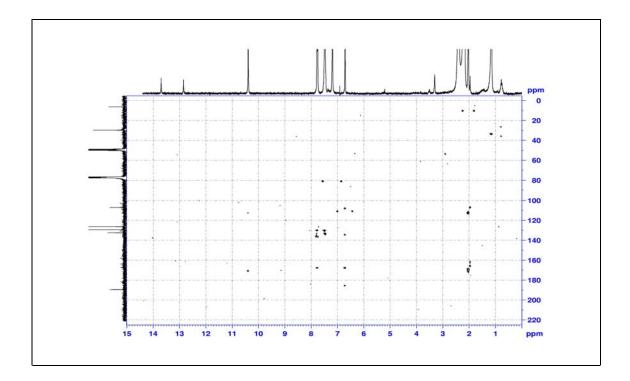


Figure 101 2D HMBC (CDCl₃) of compound DC10

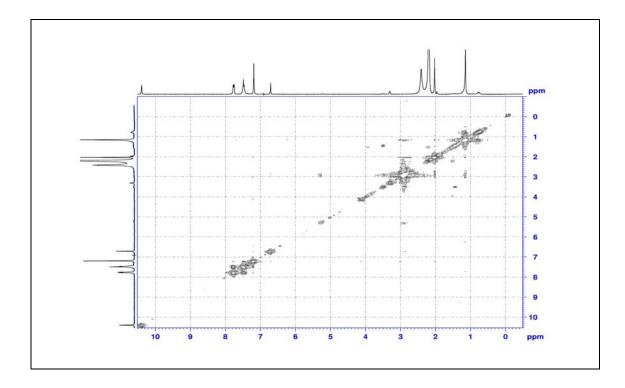


Figure 102 2D COSY (CDCl₃) of compound DC10

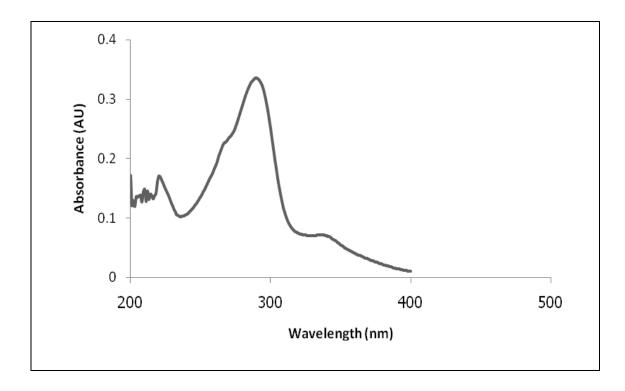


Figure 103 UV (MeOH) spectrum of compound D11

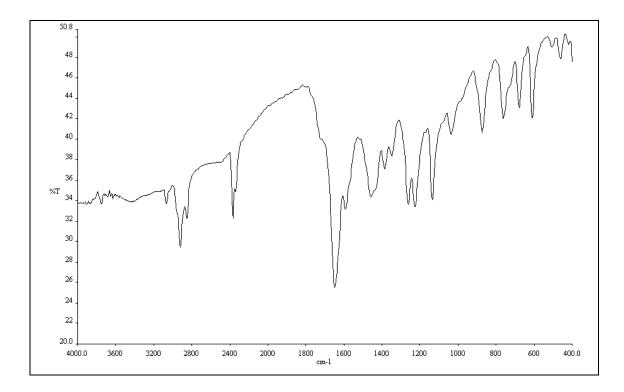


Figure 104 IR (KBr) spectrum of compound DC11

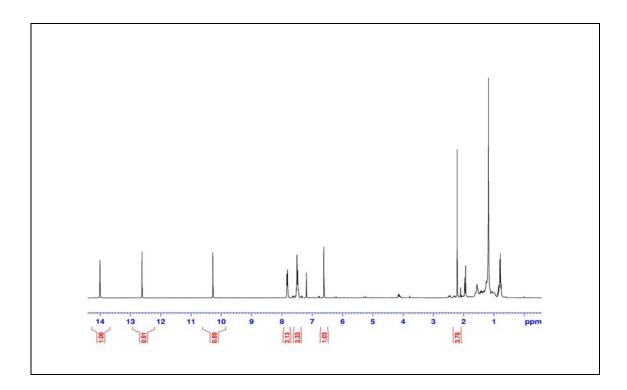


Figure 105 ¹H NMR (300 MHz) (CDCl₃) of compound DC11

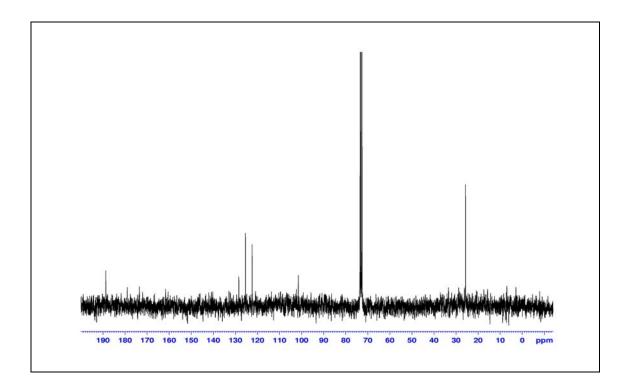


Figure 106¹³C NMR (75 MHz) (CDCl₃) of compound DC11

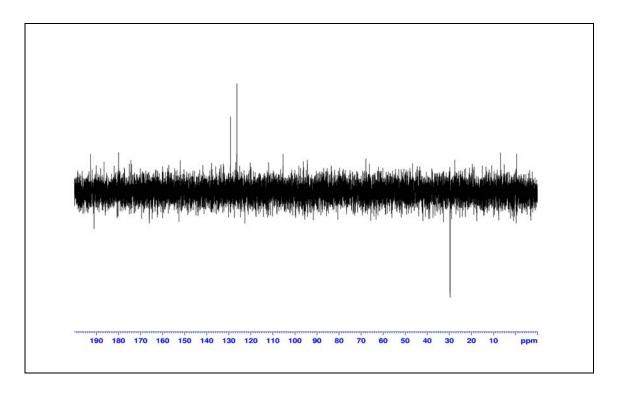


Figure 107 DEPT 135° (CDCl₃) of compound DC11

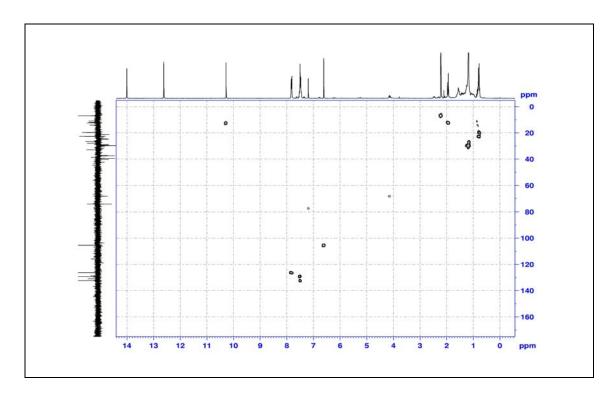


Figure 108 2D HMQC (CDCl₃) of compound DC11

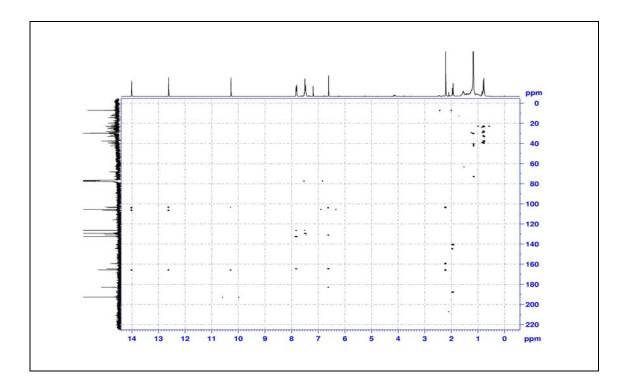


Figure 109 2D HMBC (CDCl₃) of compound DC11

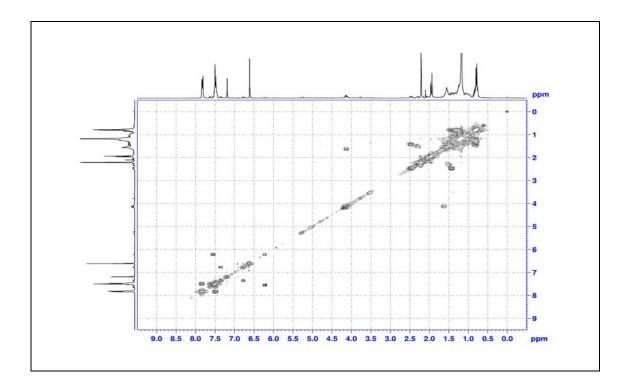


Figure 110 2D COSY (CDCl₃) of compound DC11

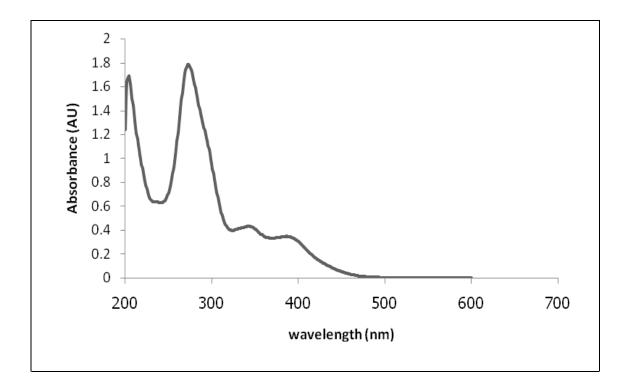


Figure 111 UV (MeOH) spectrum of compound D12 and DC13

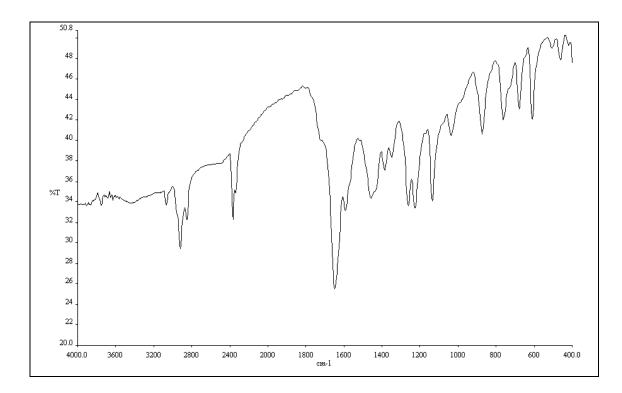


Figure 112 IR (KBr) spectrum of compound DC12 and DC13

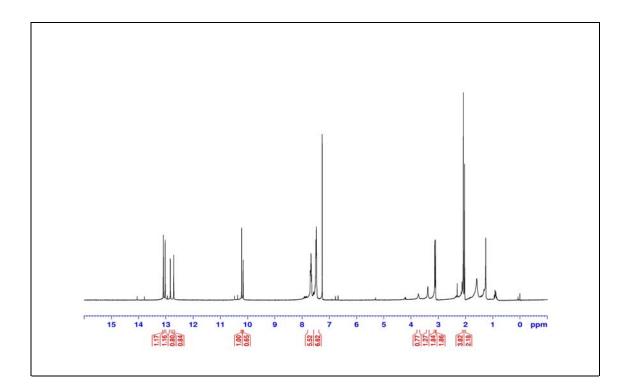


Figure 113 1 H NMR (300 MHz) (CDCl₃) of compound DC12 and DC13

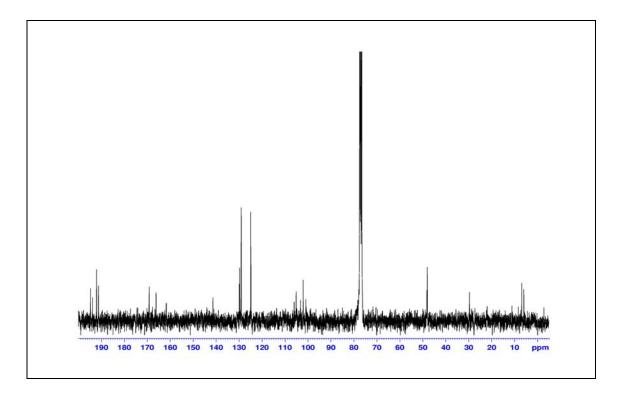


Figure 114¹³C NMR (75 MHz) (CDCl₃) of compound DC12 and DC13

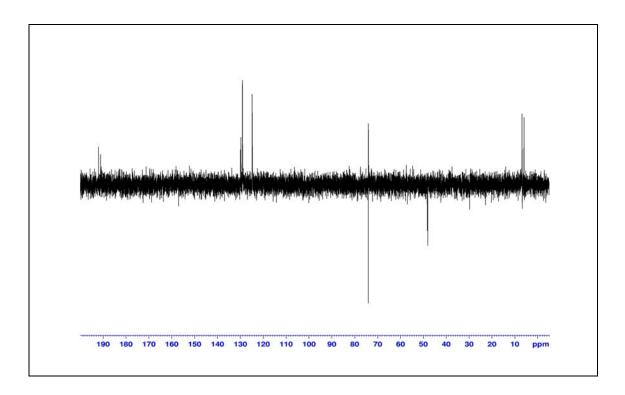


Figure 115 DEPT 135° (CDCl₃) of compound DC12 and DC13

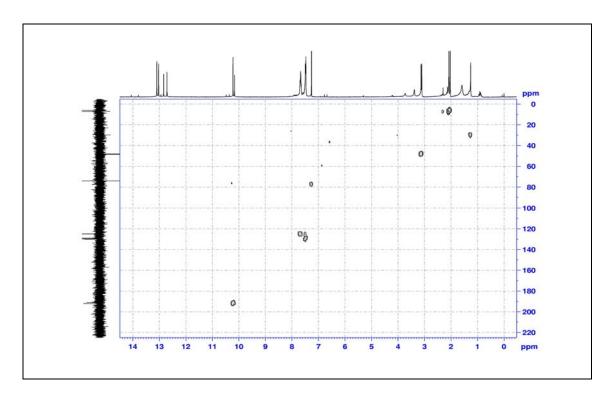


Figure 116 2D HMQC (CDCl₃) of compound DC12 and DC13

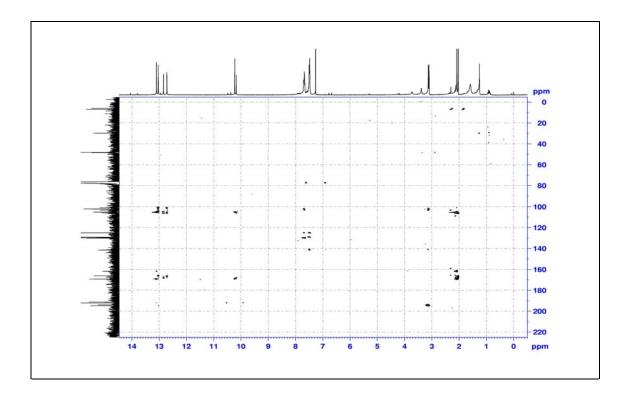


Figure 117 2D HMBC (CDCl₃) of compound DC12 and DC13

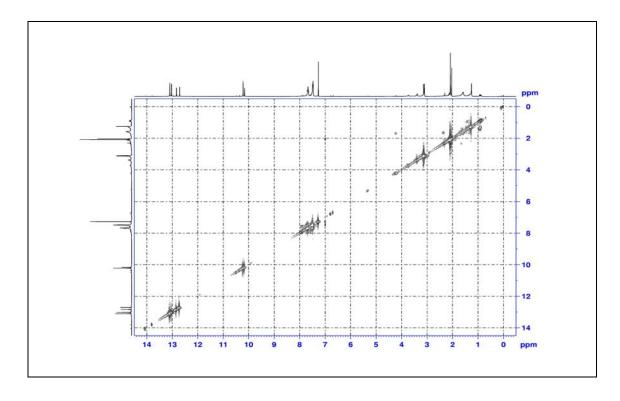


Figure 118 2D COSY (CDCl₃) of compound DC12 and DC13

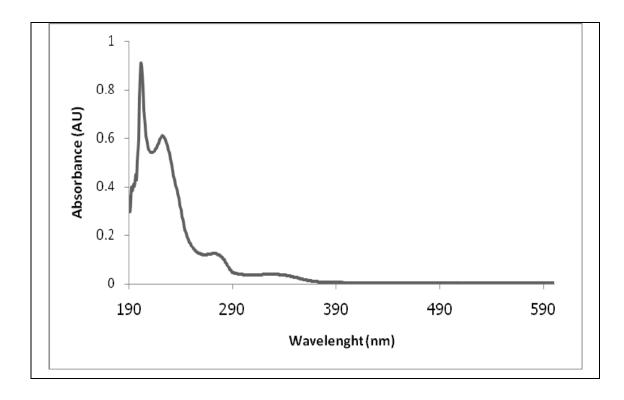


Figure 119 UV (MeOH) spectrum of compound DC14

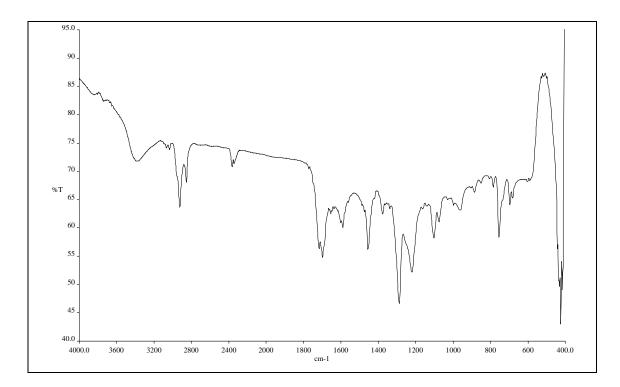


Figure 120 IR (neat) spectrum of compound DC14

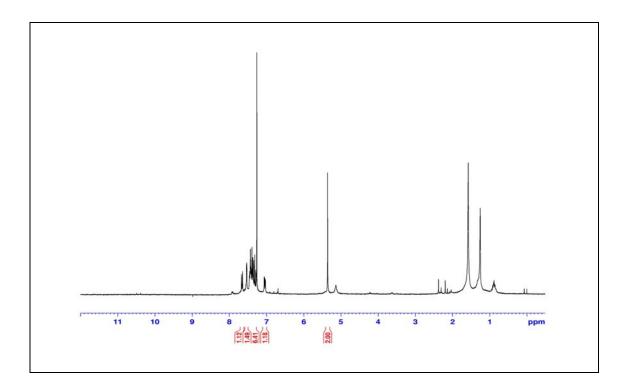


Figure 121 ¹H NMR (300 MHz) (CDCl₃) of compound DC14

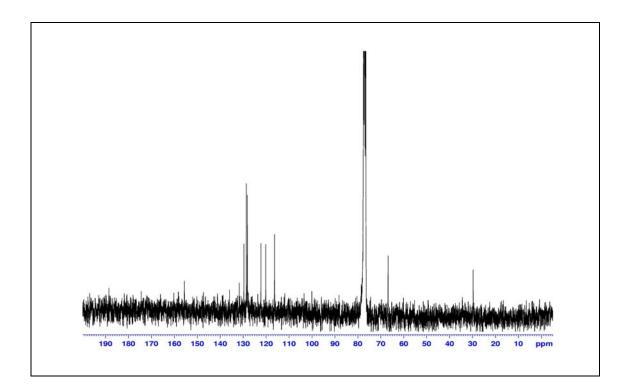


Figure 122 ¹³C NMR (75 MHz) (CDCl₃) of compound DC14

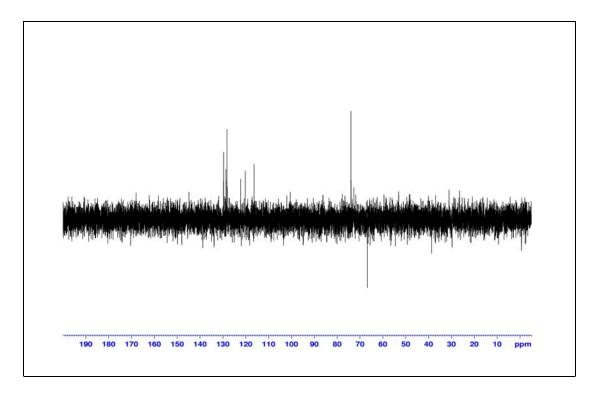


Figure 123 DEPT 135° (CDCl₃) of compound DC14

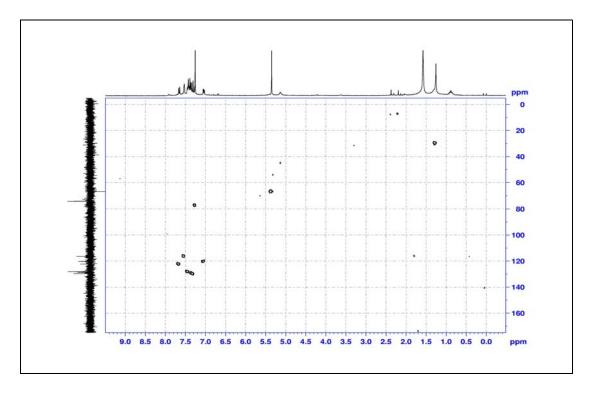


Figure 124 2D HMQC (CDCl₃) of compound DC14

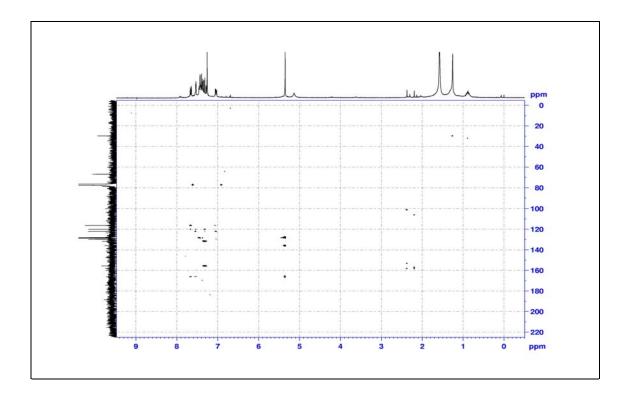


Figure 125 2D HMBC (CDCl₃) of compound DC14

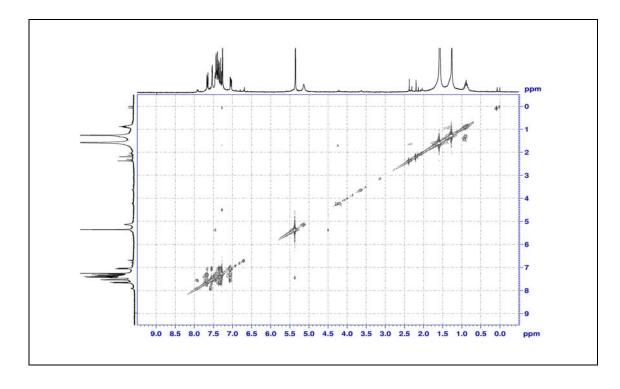


Figure 126 2D COSY (CDCl₃) of compound DC14

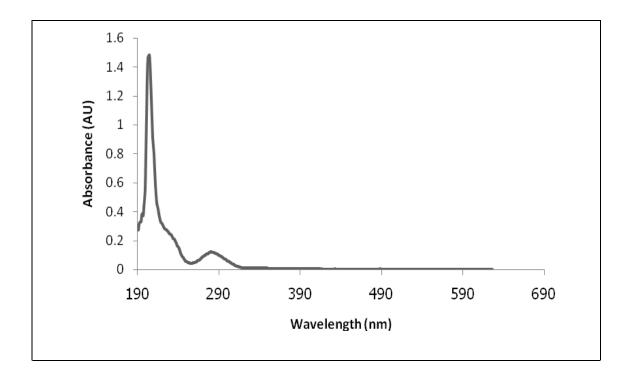


Figure 127 UV (MeOH) spectrum of compound DC15

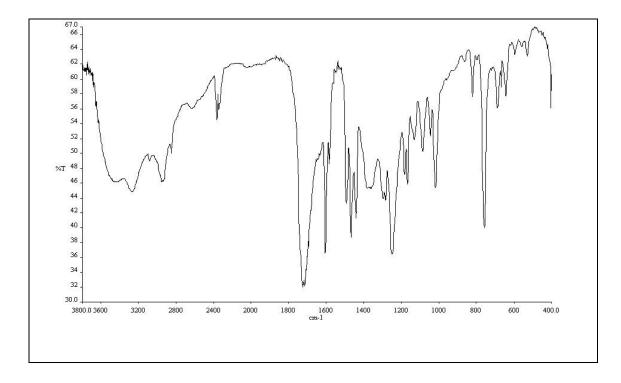


Figure 128 IR (neat) spectrum of compound DC15

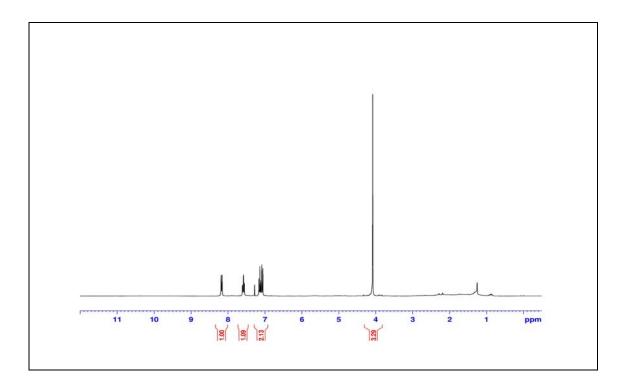


Figure 129 ¹H NMR (300 MHz) (CDCl₃) of compound DC15

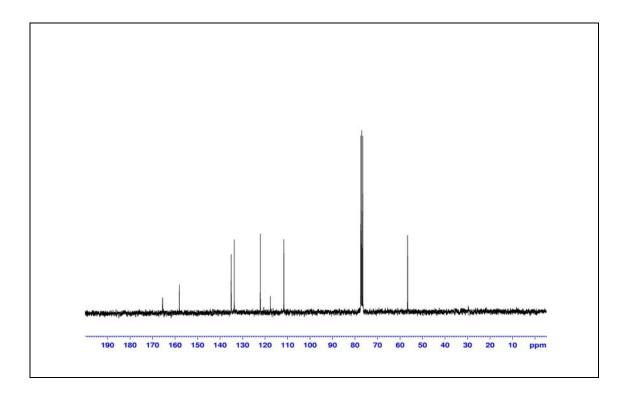


Figure 130¹³C NMR (75 MHz) (CDCl₃) of compound DC15

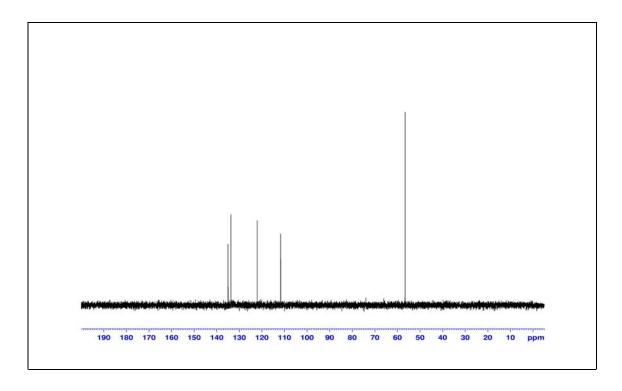


Figure 131 DEPT 135° (CDCl₃) of compound DC15

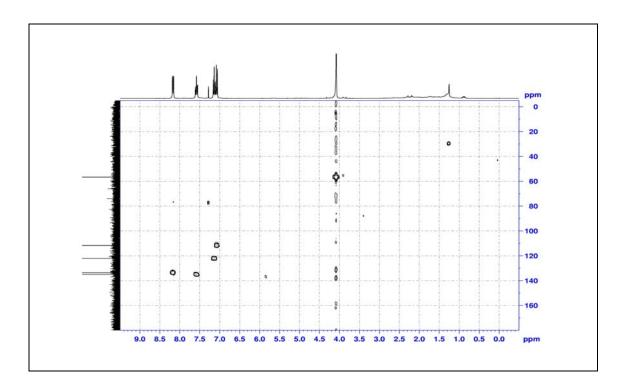


Figure 132 2D HMQC (CDCl₃) of compound DC15

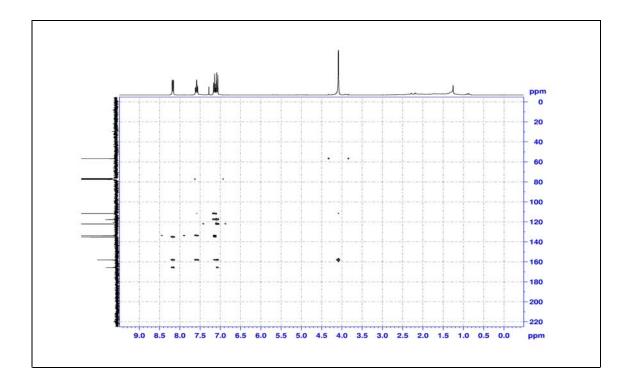


Figure 133 2D HMBC (CDCl₃) of compound DC15

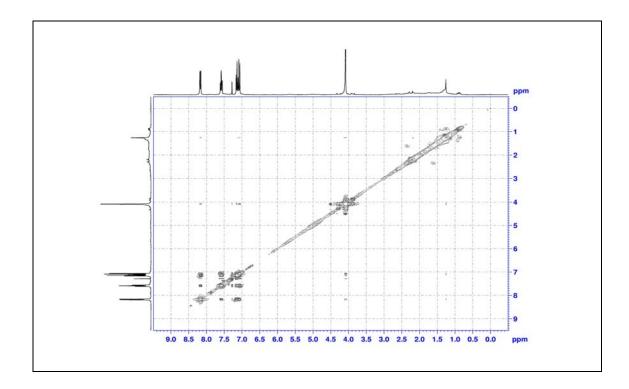


Figure 134 2D COSY (CDCl₃) of compound DC15

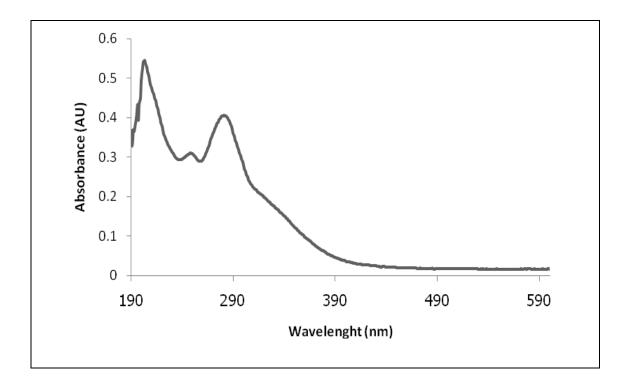


Figure 135 UV (MeOH) spectrum of compound DC16

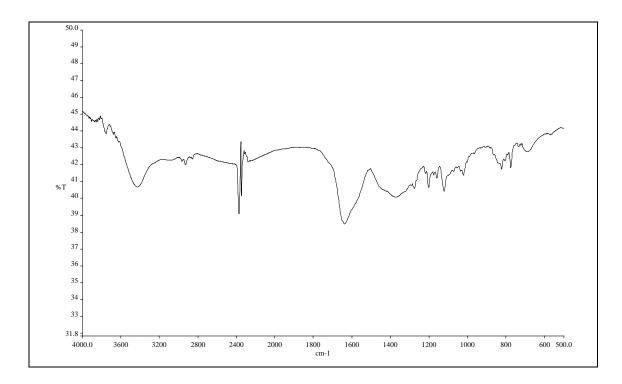


Figure 136 IR (KBr) spectrum of compound DC16

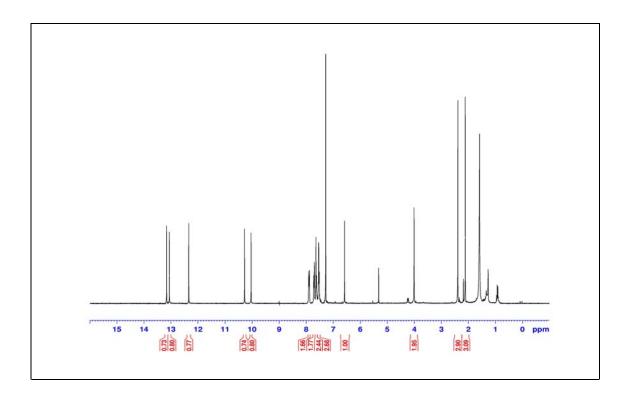


Figure 137 ¹H NMR (300 MHz) (CDCl₃) of compound DC16

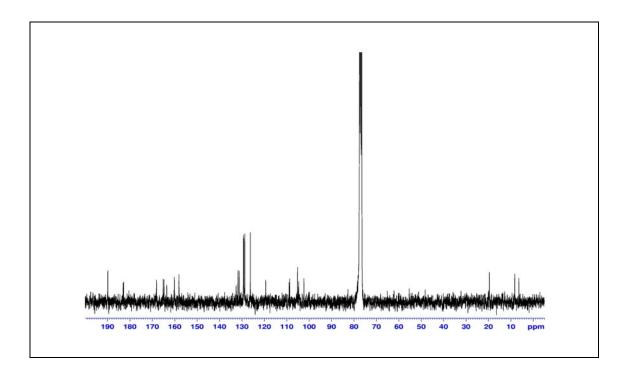


Figure 138 ¹³C NMR (75 MHz) (CDCl₃) of compound DC16

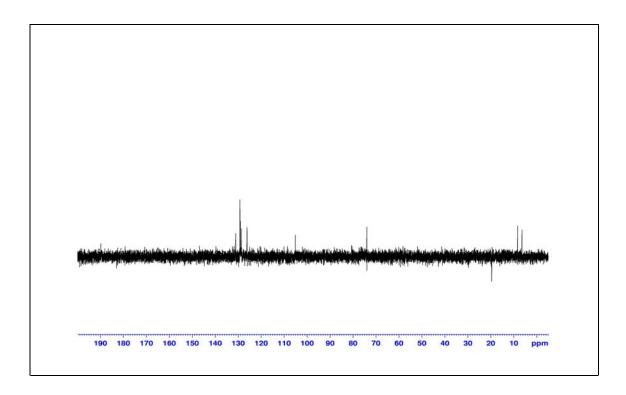


Figure 139 DEPT 135° (CDCl₃) of compound DC16

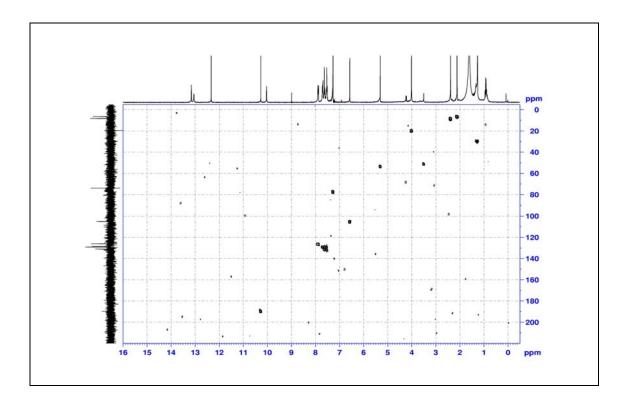


Figure 140 2D HMQC (CDCl₃) of compound DC16

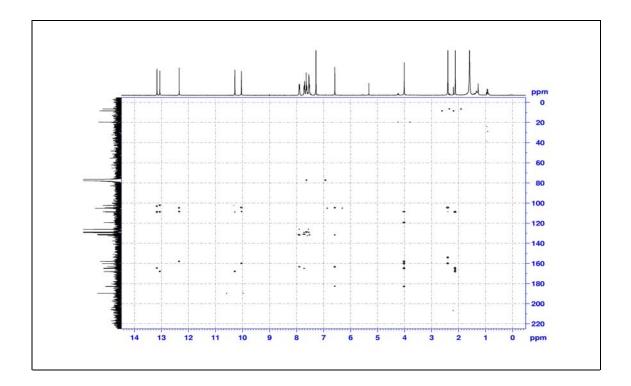


Figure 141 2D HMBC (CDCl₃) of compound DC16

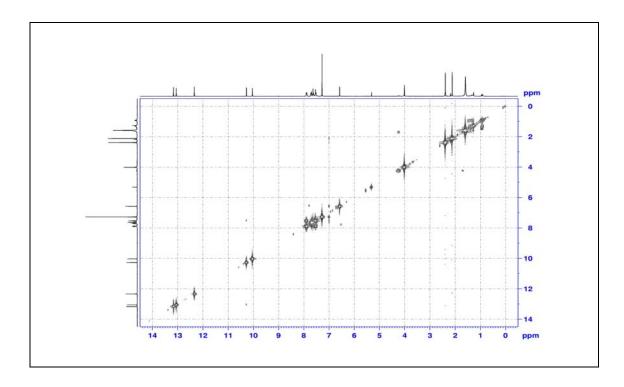


Figure 142 2D COSY (CDCl₃) of compound DC16

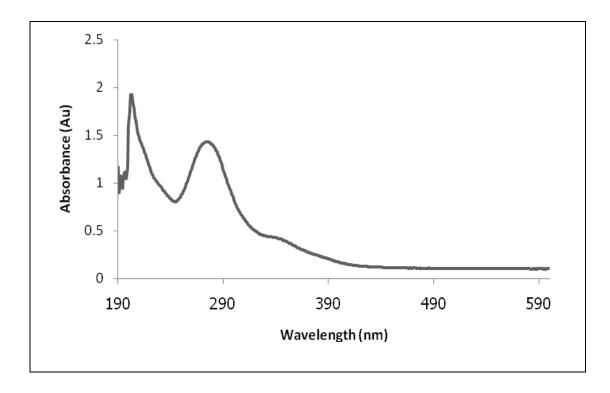


Figure 143 UV (MeOH) spectrum of compound DC17

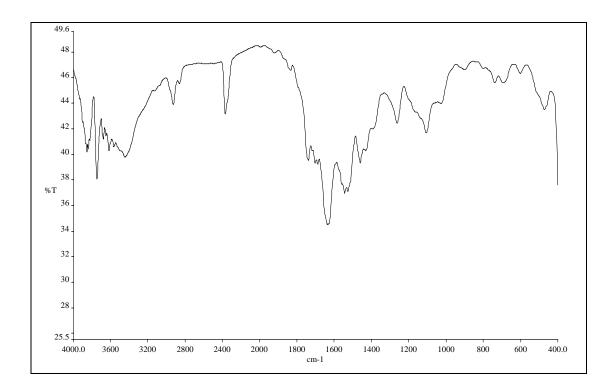


Figure 144 IR (KBr) spectrum of compound DC17

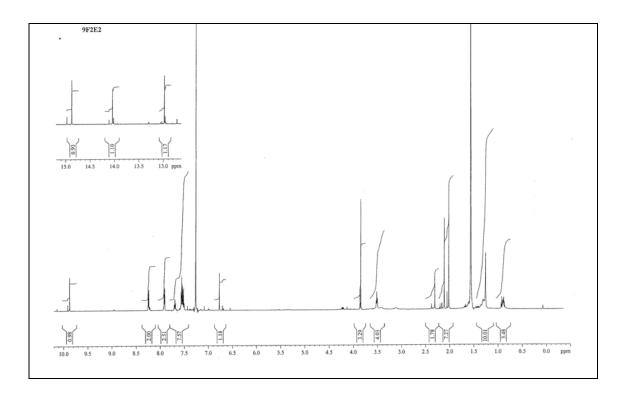


Figure 145 1 H NMR (600 MHz) (CDCl₃) of compound DC17

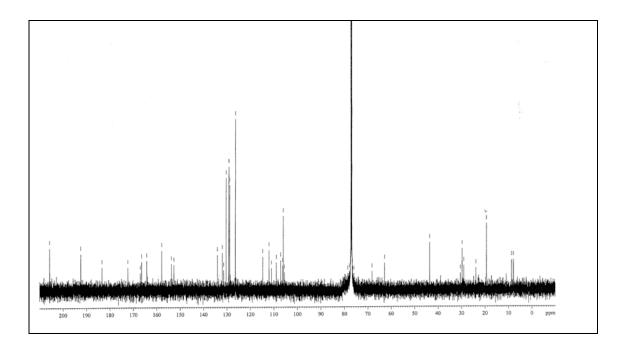


Figure 146¹³C NMR (150 MHz) (CDCl₃) of compound DC17

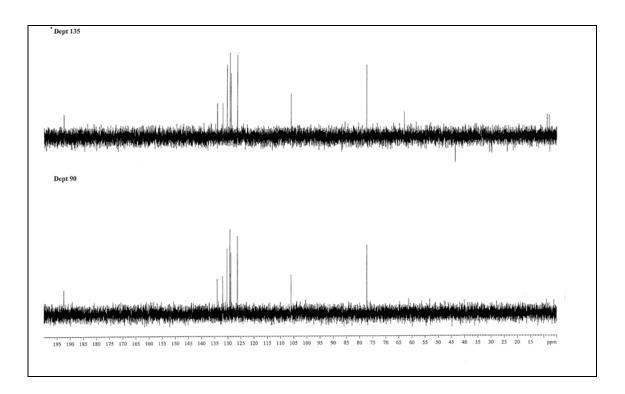


Figure 147 DEPT 135° and DEPT 90° (CDCl₃) of compound DC17



Figure 148 2D HMQC (CDCl₃) of compound DC17

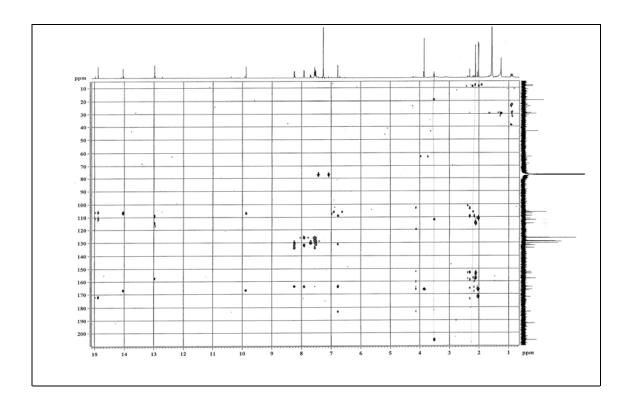


Figure 149 2D HMBC (CDCl₃) of compound DC17

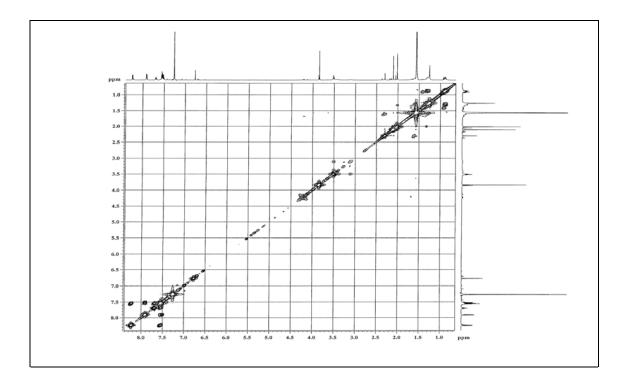


Figure 150 2D COSY (CDCl₃) of compound DC17

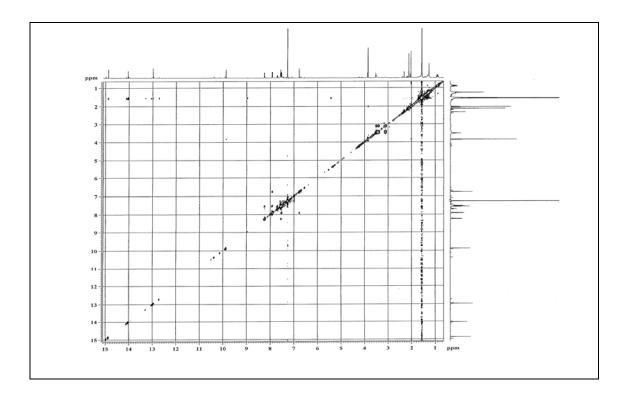


Figure 151 2D NOESY (CDCl₃) of compound DC17

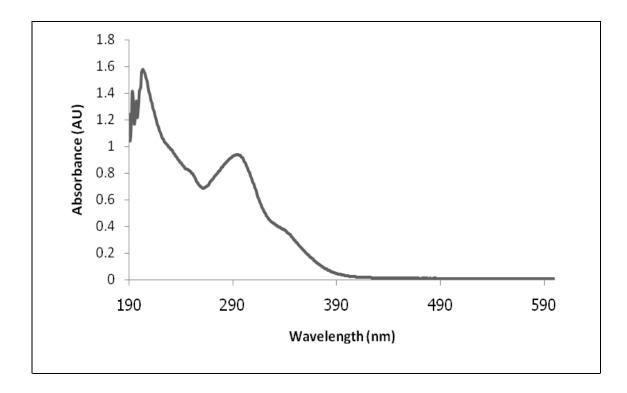


Figure 152 UV (MeOH) spectrum of compound DC18

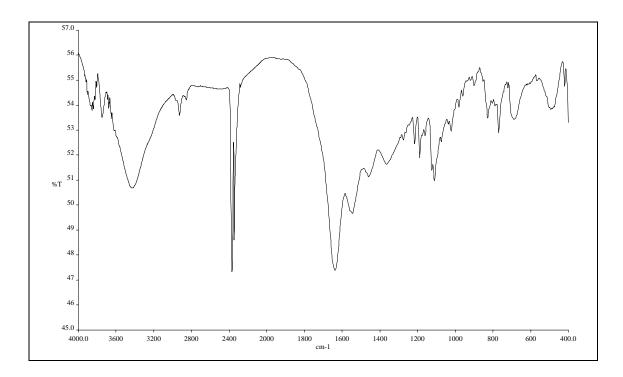


Figure 153 IR (KBr) spectrum of compound DC18

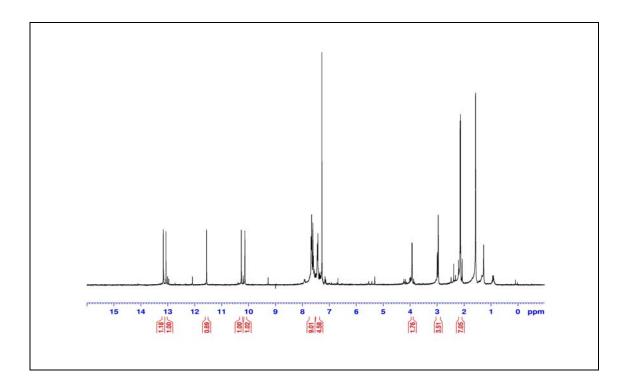


Figure 154 ¹H NMR (300 MHz) (CDCl₃) of compound DC18

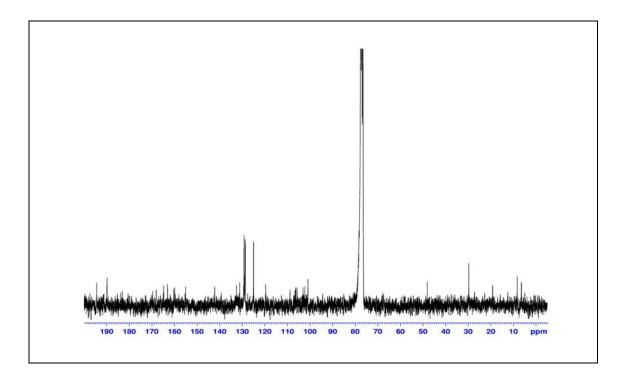


Figure 155 ¹³C NMR (75 MHz) (CDCl₃) of compound DC18

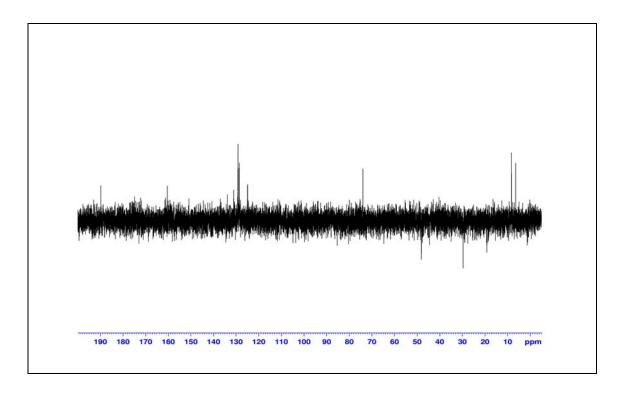


Figure 156 DEPT 135° (CDCl₃) of compound DC18

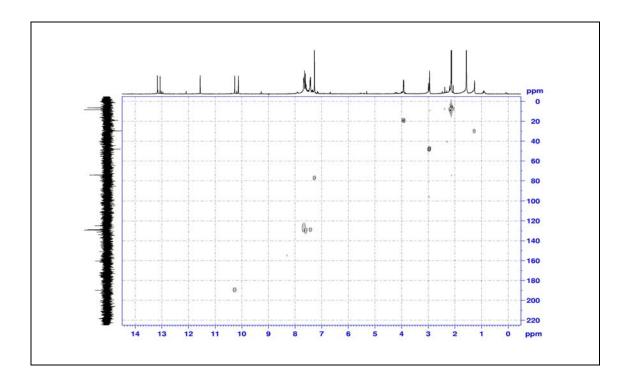


Figure 157 2D HMQC (CDCl₃) of compound DC18

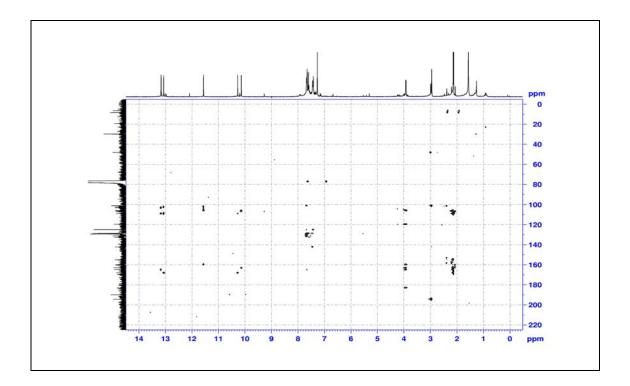


Figure 158 2D HMBC (CDCl₃) of compound DC18

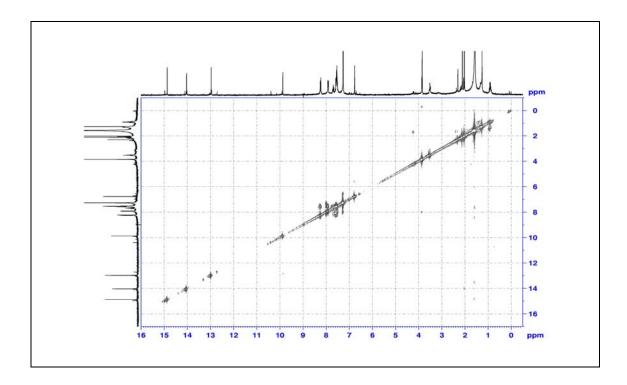


Figure 159 2D COSY (CDCl₃) of compound DC18

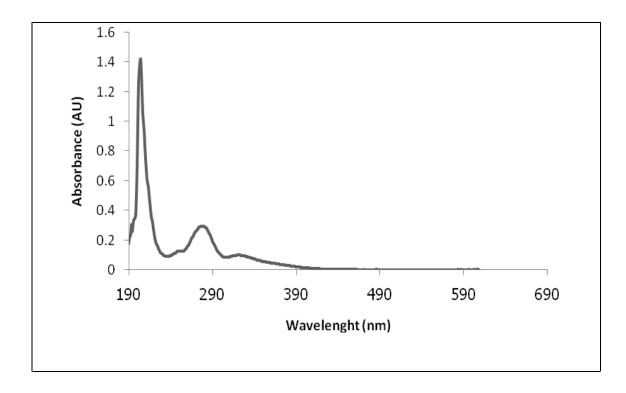


Figure 160 UV (MeOH) spectrum of compound DC19

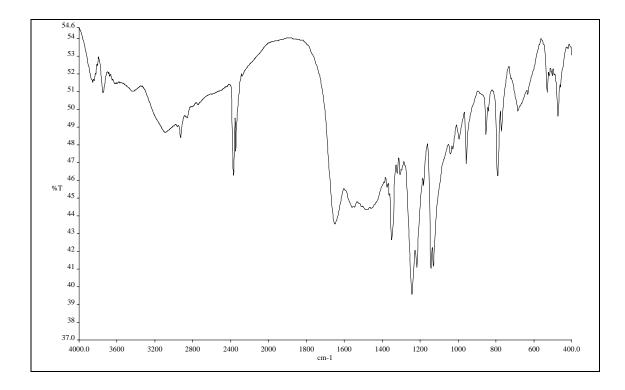


Figure 161 IR (KBr) spectrum of compound DC19

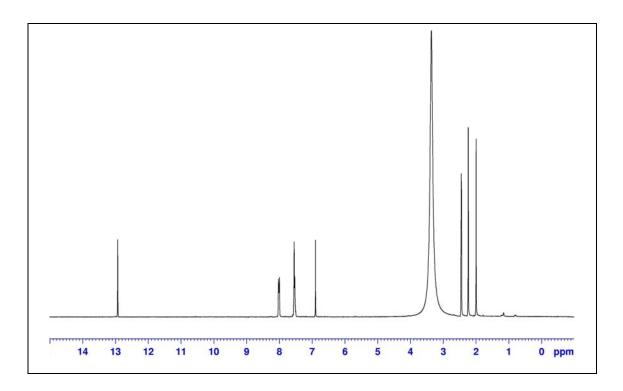


Figure 162 ¹H NMR (300 MHz) (DMSO-*d*₆) of compound DC19

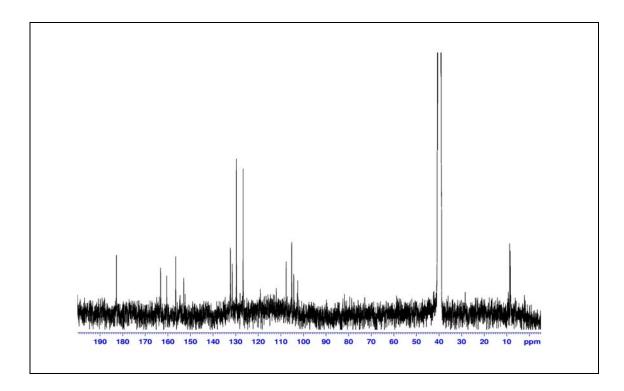


Figure 163 ¹³C NMR (75 MHz) (DMSO-*d*₆) of compound DC19

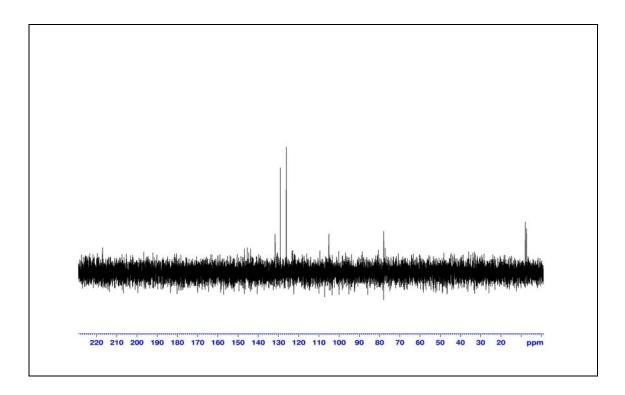


Figure 164 DEPT 135° (DMSO-*d*₆) of compound DC19

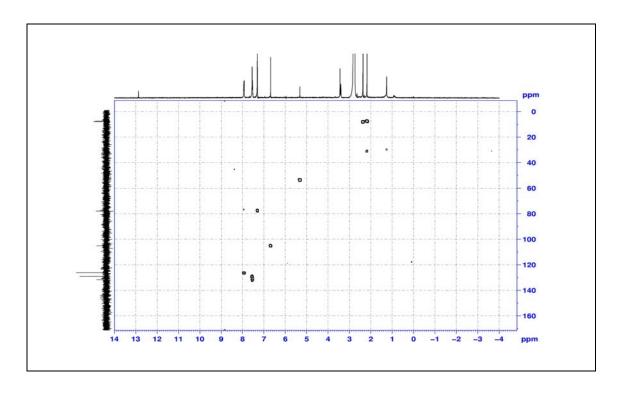


Figure 165 2D HMQC (DMSO-d₆) of compound DC19

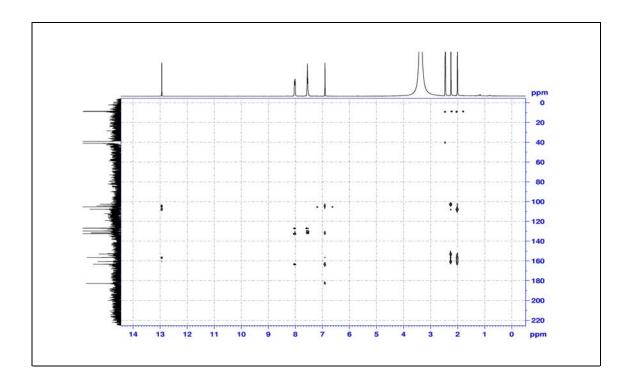


Figure 166 2D HMBC (DMSO-*d*₆) of compound DC19

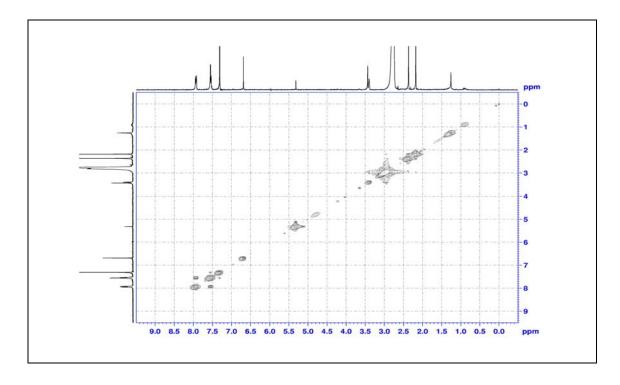


Figure 167 2D COSY (DMSO-*d*₆) of compound DC19

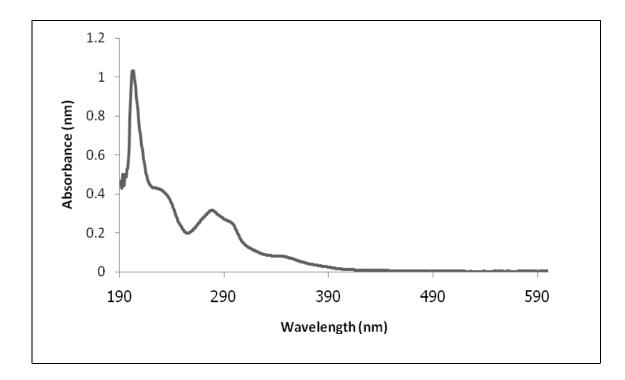


Figure 168 UV (MeOH) spectrum of compound DC20

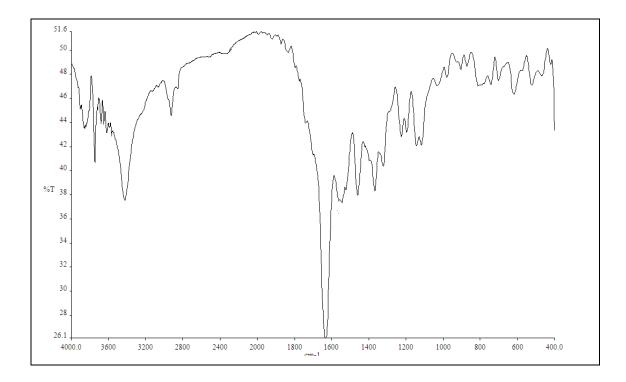


Figure 169 IR (KBr) spectrum of compound DC20

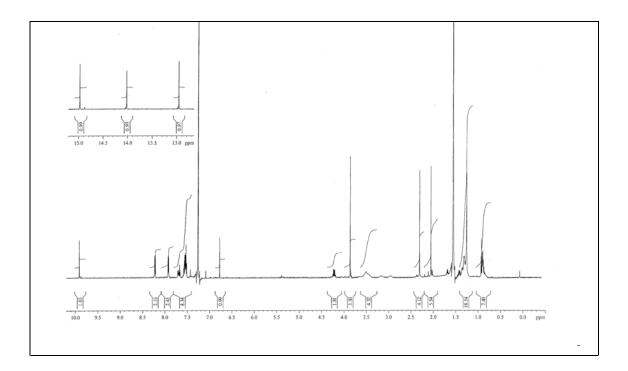


Figure 170 ¹H NMR (600 MHz) (CDCl₃) of compound DC20

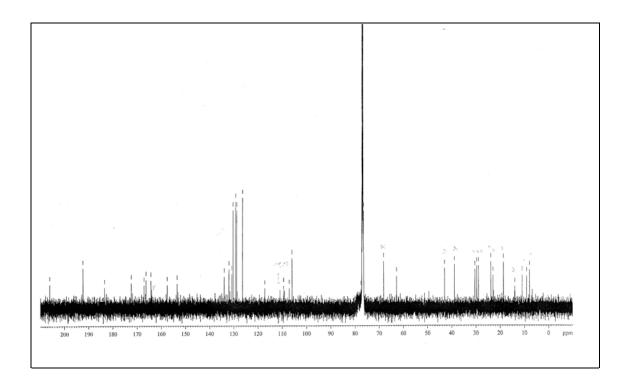


Figure 171 ¹³C NMR (150 MHz) (CDCl₃) of compound DC20

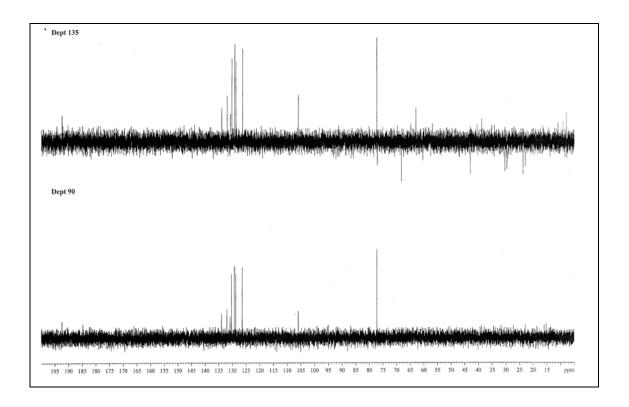


Figure 172 DEPT 135° and DEPT 90° (CDCl₃) of compound DC20

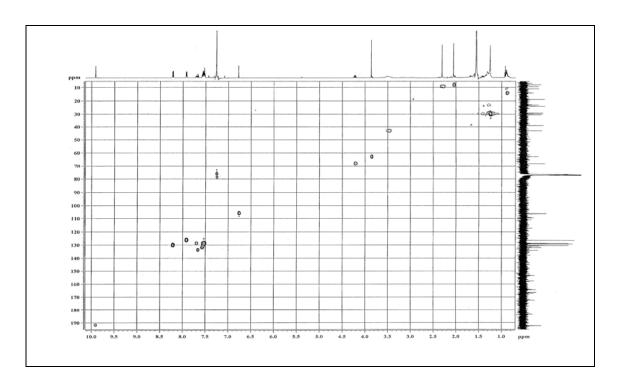


Figure 173 2D HMQC (CDCl₃) of compound DC20

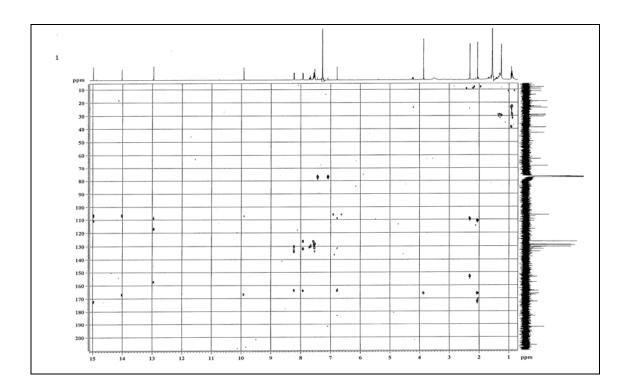


Figure 174 2D HMBC (CDCl₃) of compound DC20

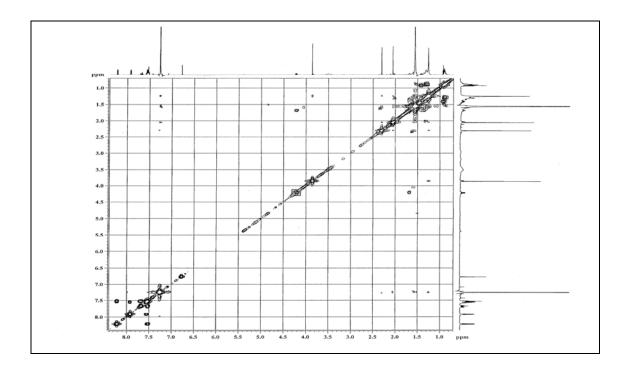


Figure 175 2D COSY (CDCl₃) of compound DC20

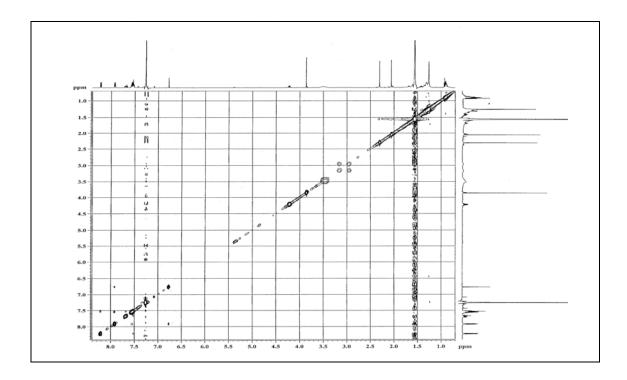


Figure 176 2D NOESY (CDCl₃) of compound DC20

VITAE

Name	Miss Tharikarn Rittiwong	
Student ID	5110220022	
Educational Attainment		
Degree	Name of Institution	Year of Graduation
Degree Bachelor of Science	Name of Institution Prince of Songkla University	Year of Graduation 2006

Scholarship Awards during Enrolment

The Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education

List of Publication and Proceedings

1. Tharikarn Rittiwong and Suda Chakthong. "Chemical Constituents from the Leaves of *Desmos chinensis* Lour." The 16th National Graduate Research Conference, Maejo University, Chiang Mai, Thailand, 11-12 March 2010. (Poster presentation)

2. Tharikarn Rittiwong and Suda Chakthong. "Esters and Flavones from the Leaves of *Desmos chinensis* Lour." The 1st Current Drug Development International Conference, Woraburi Phuket Resort & Spa, Phuket, Thailand, 6-8 May 2010. (Poster presentation, Partial support from Natural Product Research Center)