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ABSTRACT  
 

Calanus helgolandicus is a key copepod species occurring in the North East 

Atlantic that is responding to oceanic warming through an expansion of its geographic 

range. This range extension has led to concerns about how this may affect ecosystem 

trophodynamics. Here I investigate the interannual variability and seasonality of C. 

helgolandicus, using a ~28 year time-series from the western English Channel (station 

L4). I focus specifically on the role of mortality, as a key life history process that is 

challenging to quantify and historically has received little attention. C. helgolandicus 

abundance remained within a narrow ~four-fold interannual envelope, which was a 

consequence of multiple losses that removed ~99% of the potential population. Loss of 

early life stages occurred through the incidence of non-viable eggs and abnormal 

nauplii (both higher in spring), and via predation; egg mortality rates were positively 

correlated with C. helgolandicus copepodite abundance and total copepod biomass, 

indicative of intraguild predation and cannibalism. By contrast, late-stage copepodite 

mortality rates were highest in autumn, and were positively related to gelatinous 

predator abundance and biomass (medusae, ctenophores and chaetognaths). 

Molecular gut-content analyses revealed that two abundant jellyfish species present 

during 2015 (Pleurobrachia pileus and Leuckartiara octona) both preyed on C. 

helgolandicus. Adult male consumptive mortality rates were ~6 times higher than that 

of adult females; whereas male non-consumptive rates were only ~1.5 times that of 

females, providing evidence that predation was the primary mortality source in males.  

Non-consumptive mortality rates contributed 0-54% (median of 4.5%) to total 

mortality and were positively related to the 72-hour maximum wind speed, implying 

that turbulence created during extreme weather events may increase zooplankton 

mortality.  I conclude that C. helgolandicus population control is modulated via a series 

of mortality-related losses occurring through the different development stages; from 

reduced egg viability to predation of copepodites by gelatinous carnivores. Although I 

find little evidence for changing ecosystem trophodynamics at L4, my results 

contribute to the knowledge of C. helgolandicus population dynamics at a site near the 

centre of its distribution, and suggest that a future expanding population may be a 

valuable food source for a variety of predators. 
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CHAPTER ONE 

General Introduction 

 

Zooplanktonic organisms play a pivotal role in the functioning of the world’s 

oceans, mostly due to their abundance, diversity and wide variety of ecosystem 

functions (e.g. the transfer of energy from primary production to higher trophic levels 

and in mediating biogeochemical cycles) (Kaiser et al., 2005). They also represent the 

first level of integration of the influence of the climate (hydroclimatic forcing) on the 

pelagic foodweb (Beaugrand, 2005).  Zooplankton species are also particularly 

sensitive to, and so indicative of, hydro-meteorological changes in the ocean 

environment, and may be particularly useful indicators of climate change (Richardson, 

2008). Reasons for this are threefold; firstly most species have a short generation time 

and so population size can respond very rapidly to environmental conditions; secondly, 

they are free drifting and sensitive to changes in the ocean environment which can be 

measured; and thirdly, very few species are commercially exploited, so fishing-related 

population modification does not occur (Hays et al., 2005), although such impacts may 

occur indirectly.  

The most abundant and biomass dominant mesozooplankton in the oceans are 

the Copepoda (Milne-Edwards, 1840). Indeed, these animals are considered the most 

numerous multicellular organisms on the planet (Humes, 1994). Copepods in particular 

are of global importance due to their role as primary consumers of phytoplankton and 

their tremendous reproductive capacity, and therefore are pivotal organisms in the 

transfer of energy from primary production to higher trophic levels (Karleskint et al., 

2006). They are also very sensitive to changes in temperature and display interannual 

changes in numerical density, which often reflect a response to climatic forcing (Hays 

et al. 2005). Because of this, their relative ubiquity and their numerical dominance in 

the plankton (Longhurst, 1985), they are also one of the most frequently studied of the 

zooplankton taxa.  

It is now widely recognised that there was a period of hydroclimatic change 

during the last half of the 20th century, , manifested in markedly increasing sea surface 

temperatures, which dramatically altered planktonic ecosystems in the Northeast 
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Atlantic (Beaugrand, 2004; Philippart et al., 2011). This ocean warming has continued 

and in only 40 years there has been a substantial shift in plankton and fish 

communities that may have far-reaching consequences (Beaugrand et al., 2009). The 

Intergovernmental Panel on Climate Change (IPCC) climate projections estimate a 

mean increase of 0.6°C (RCP2.6) to 2.0°C (RCP8.5) in the top 100 m of the ocean [based 

on Representative Concentration Pathway (RCP) radiative forcing level scenarios, with 

RCP2.6 referring to peak mitigation and lowest emissions and RCP8.5, a very high 

baseline emission scenario], by the end of the 21st century (IPCC, 2013).  Around the 

UK, the greatest increase in sea surface temperatures in the past 25 years has occurred 

in the eastern English Channel and southern North Sea, with a temperature increase of 

0.6° to 0.8°C per decade (MCCIP, 2010).  

Much of the research on the effects of the recent environmental change on 

zooplankton populations in the North Atlantic has focused on copepod assemblages 

and biodiversity. Beaugrand et al. (2002) provide evidence of a reorganisation of 

calanoid copepod diversity at the basin scale between 1960 and 1999, where there has 

been a significant northward movement (10°C of latitude) of warm species, coupled 

with a decrease in the number of sub-arctic and arctic species in the north. This 

phenomenon has been related to the increasing trend in Northern Hemisphere 

temperature (NHT) anomalies. A subsequent study analysed an extended period of 

data (1958-2005) and concluded that the biodiversity of calanoid copepod 

assemblages were responding quickly to increasing temperatures and that warm-

temperate copepod species were moving northward at a rate of 23.16 km yr-1 

(Beaugrand et al., 2009). 

Calanus helgolandicus () is a key calanoid copepod (Figure 1.1), that is mostly 

located over the European shelf-edge and in the eastern Atlantic between 40° and 

60°N (Helaouët and Beaugrand, 2007). It is a warm, temperate species and typically 

occupies temperatures between 9º and 20ºC (Bonnet et al., 2005). It is an important 

contributor to the zooplankton biomass in these regions and can contribute 6-93% to 

the mesozooplankton biomass (Bonnet et al., 2005). It is therefore considered an 

important prey source for commercially important fish species (Heath, 2007) and 

indeed Mauchline (1998) classifies C. helgolandicus as one of a set of “professional 

prey species”, whereby the organism functions as a major food source for other 
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animals and, therefore, must have a reproductive response to match their exploitation 

patterns in order to maintain the population. 

 

     

Figure 1.1. Calanus helgolandicus morphology, ♂ and ♀ adults. Reproduced from Sars 

(1903).   

 

The congener Calanus finmarchicus (Gunnerus, 1770) by contrast is an indicator 

sub-arctic species, which is located mostly in the Atlantic Polar Front (Helaouët and 

Beaugrand, 2007). Its southern-most distribution is approximately 55°N in the North 

Sea and 50°N in the open ocean (Planque and Fromentin, 1996). There are however, 

geographic areas of overlap between the two species, for example in the North Sea, 

the Irish Sea and the Celtic Sea, but it is known that the species occupy distinct thermal 

niches, have different phenologies and exist at different depths (Williams and Conway, 

1984).  Together C. helgolandicus and C. finmarchicus can contribute > 90% to the 

mesozooplankton biomass of regions such as the North Sea and the Celtic Sea (Bonnet 

et al., 2005).                                                                                                               

Commensurate with the warming of the north Atlantic area, there has been an 

expanding distributional range of the temperate C. helgolandicus coupled with a 

northward movement of the sub-arctic C. finmarchicus (Chust et al., 2013). Therefore, 

there has been a partial substitution of C. finmarchicus by C. helgolandicus in some 

♂ ♀ 

3
-4

 m
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areas around northern UK waters and the North Sea (Figure 1.2). It is suggested that 

this may result in long-term changes in predator populations, notably commercial fish 

species (Barange and Harris, 2003). For example, cod (Gadus morhua) recruitment in 

the North Sea, has been affected by the changing of the timing of the arrival of suitably 

sized copepod larval stages, due to the different phenology and population dynamics 

of C. helgolandicus compared with C. finmarchicus (Beaugrand et al., 2003). 

Consequently it has become imperative to understand the underlying ecology and 

population dynamics of this species, to be able to predict the impact of future climate 

fluctuations.  

 

 

Figure 1.2. Map showing the changing distributions of Calanus helgolandicus in the N 

Atlantic (1960-1999) (reproduced from Bonnet et al., 2005). 

 

Research activity on C. helgolandicus has increased substantially over recent 

decades, but is still a long way from matching that of C. finmarchicus, which is the most 

studied of all copepod species (Helaouët et al., 2011).  Investigations of C. 

helgolandicus distribution, biology and ecology, including factors contributing to 

population gains (i.e. reproduction rates, feeding, growth rates) are numerous 

(Chapter Three). However, gaps in our knowledge remain, particularly regarding the 

processes leading to population losses and the causes of mortality (i.e. predation, 
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starvation, food-limitation, non-viable eggs and naupliar deformities) (Bonnet et al., 

2005). Therefore this thesis focuses on understanding the key processes in C. 

helgolandicus population dynamics (Chapter Two), with a special focus on elucidating 

the importance of mortality,and to investigate mortality rates and the major sources 

influencing it (Chapters Three to Five).  

Predation-related mortality has historically received most attention (Chapter 

Four), and potential predators include the larvae of commercially important fish 

species (Daewel et al., 2014) as well as a range of medusae, chaetognaths, 

siphonophores, euphausiids and carnivorous copepods (Hirota, 1974; Purcell, 1982; 

Bagøien et al., 2000; Bonnet et al., 2004; Bonnet et al., 2010). However, there has been 

a more recent move towards understanding non-consumptive mortality and various 

sources for it including parasites, environmental stress, starvation, disease and injuries 

have been highlighted (see Elliott and Tang, 2009 and references therein). Efforts to 

distinguish between living copepods and dead carcasses in the water column have also 

grown, as it is recognised that this can provide information on the relative importance 

of consumptive and non-consumptive mortality, and if non-consumptive mortality is 

not quantified appropriately, this may lead to overestimates of zooplankton 

population recruitment and secondary recruitment (Tang et al., 2006). 

The study area for this thesis is the monitoring station L4, located in the 

western English Channel, where sampling has been done sporadically since 1888 

(Southward et al., 2004). Station L4 is a well-established coastal monitoring station 

(50°15.00’N, 4°13.02’W) (Figure 1.3), situated in seasonally stratified waters, 

approximately 10km south of Plymouth Breakwater with a depth of ~55m (Harris, 

2010). A weekly zooplankton sampling regime was established in 1988, with 

phytoplankton added in 1992. A suite of physico-chemical measurements is taken 

concurrently with the plankton sampling (i.e. temperature, salinity, turbidity, oxygen, 

pigments, DNA, etc), and weekly CTD (conductivity/temperature/depth profiler) hauls 

were introduced in 2001.  

This site offers several advantages for understanding the response of C. 

helgolandicus to environmental variability. First, the site is inshore and shows inter-

annual variation in temperature, stratification, food quantity, quality and timing (Eloire 
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et al., 2010; Smyth et al., 2010; Widdicombe et al., 2010; Atkinson et al., 2015). 

Second, sampling has been ongoing on a weekly basis since March 1988 and has 

produced a valuable ~28 year time series. Third, C. helgolandicus egg production 

measurements have been made in a standardised manner on a weekly basis since 

1992. Finally, there is a background of knowledge on C. helgolandicus at the site; Table 

1.1 lists studies that have focused primarily on C. helgolandicus collected from station 

L4 and it is evident that most of the research effort occurred some 10-20 years ago. 

 

 

Figure 1.3. Map showing the position of station L4 in the western English Channel (Source: 

www.westernchannelobservatory.org.uk). 
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Table 1.1. Published studies of Calanus helgolandicus at station L4. 

Author Title Process 

Møller et al. 2012 The effect of changes in temperature and food on 

the development of Calanus finmarchicus and 

Calanus helgolandicus populations  

Growth, 

development 

Eloire et al. 2010 Temporal variability and community composition 

of zooplankton at station L4 in the Western 

Channel: 20 years of sampling 

Various 

Bonnet et al. 2010 Sagitta setosa predation on Calanus helgolandicus 

in the English Channel 

Mortality 

Fileman et al. 2010 Grazing by the copepods Calanus helgolandicus 

and Acartia clausi on the protozooplankton 

community at station L4 in the Western English 

Channel 

Feeding 

Bonnet et al. 2009 Temperature effects on Calanus helgolandicus 

(Copepoda: Calanoida) development time and egg 

production 

Development, 

reproduction 

Hirst et al. 2007 Seasonal dynamics and mortality rates of Calanus 

helgolandicus over two years at a station in the 

English Channel 

Variability, 

mortality 

Poulet et al. 2006 Influence of diatoms on copepod reproduction. I. 

Field and laboratory observations related to 

Calanus helgolandicus egg production 

Reproduction 

Bonnet et al. 2005 An overview of Calanus helgolandicus ecology in 

European waters. 

Various 

Yebra et al. 2005 Comparison of five methods for estimating growth 

of Calanus helgolandicus later developmental 

stages (CV–CVI) 

Growth 

Bonnet et al. 2004 Calanus the cannibal Feeding, 

mortality 

Rey-Rassat et al. 

2004a 

Secondary production of Calanus helgolandicus in 

the Western English Channel 

Abundance, 

reproduction 

Rey-Rassat et al. 

2004b 

Is weight an important parameter when 

measuring copepod growth? 

Growth 

Irigoien and Harris, 
2003  

Interannual variability of Calanus helgolandicus in 
the English Channel 

Variability, 
reproduction, 
mortality 

Irigoien et al. 2002 Copepod hatching success in marine ecosystems 
with high diatom concentrations 

Reproduction, 
mortality 

Rey-Rassat et al. 

2002a 

Growth and development of Calanus 

helgolandicus reared in the laboratory 

Growth 

Rey-Rassat et al. 

2002b 

Egg production rates of Calanus helgolandicus 

females reared in the laboratory: variability due to 

present and past feeding conditions 

Reproduction 

Rey et al. 2001 Influence of algal diet on growth and ingestion of 

Calanus helgolandicus nauplii 

Growth, 

feeding 
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Table 1.1. contd. 

Author Title Life process 

Harris et al. 2000 Feeding, growth, and reproduction in the genus 
Calanus 

Feeding, 
growth, 
reproduction 

Irigoien et al. 2000a The influence of diatom abundance on the egg 

production rate of Calanus helgolandicus in the 

English Channel 

Reproduction 

Irigoien et al. 2000b Feeding selectivity and egg production of Calanus 

helgolandicus in the English Channel 

Reproduction 

Laabir et al. 1998 Comparative study of the reproduction of 

Calanus helgolandicus in well-mixed and 

seasonally stratified coastal waters of the 

western English Channel 

Reproduction 

Shreeve et al. 1998 Moulting rates of Calanus helgolandicus: an 

inter-comparison of experimental methods 

Growth 

Pond et al. 1996 Environmental and nutritional factors 

determining seasonal variability in the fecundity 

and egg viability of Calanus helgolandicus in 

coastal waters off Plymouth, UK 

Reproduction, 

mortality 

Laabir et al. 1995a  

 

Laabir et al. 1995b 

Measuring production and viability of eggs in 

Calanus helgolandicus 

Reproductive response of Calanus helgolandicus. 

II. In situ inhibition of embryonic development. 

Reproduction, 

mortality 

Reproduction, 

mortality 

Poulet et al. 1995 Reproductive response of Calanus helgolandicus. 

I. Abnormal embryonic and naupliar 

development 

Reproduction, 

mortality 

Guisande and Harris, 

1995 

Effect of total organic content of eggs on 

hatching success and naupliar survival in the 

copepod Calanus helgolandicus 

Reproduction 

Bautista et al. 1994 Temporal variability in copepod fecundity during 

two different spring bloom periods in coastal 

waters off Plymouth (SW England) 

Reproduction 

Green et al. 1993 The seasonal abundance of the copepodite 

stages of Calanus helgolandicus and 

Pseudocalanus elongatus off Plymouth 

Abundance, 

variability 

Butler et al.  1969 On the nutrition and metabolism of zooplankton 

VI. Feeding efficiency of Calanus in terms of 

nitrogen and phosphorus 

Feeding 

Lebour, 1922 The food of planktonic organisms. Feeding 

Lebour, 1923 The food of planktonic organisms II. Feeding 
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Given the importance of C. helgolandicus in the structuring of food webs, its 

recognised response to warming oceans, and its changing distribution, this study has 

the following aims and objectives:  

 

1. To explore the L4 time series to understand which processes control the 

population of C. helgolandicus in the western English Channel.  I present a 

broad scale overview of population dynamics, using the basic time series 

measurements namely abundance, egg production in relation to the physical 

environment, stratification and taxon-resolved food. I explore the abundance 

and phenology of C. helgolandicus and investigate the evidence for the 

dominant population control mechanisms, as well as evidence for the effects of 

climate change (Chapter Two). 

 

2. To investigate rates and sources of C. helgolandicus early-stage mortality, with 

a particular focus on egg hatch success and naupliar health. Here I measure egg 

viability and the incidence of naupliar abnormalities in relation to the available 

nutrient resource estimated via the maternal diet. Egg mortality rates are 

estimated and related to predator abundance and biomass (Chapter Three). 

 

3. To estimate late-stage C. helgolandicus mortality rates and establish the main 

sources of mortality. I estimate total and the constituent consumptive and non-

consumptive mortality rates and investigate these in relation to predators and 

also differences between the sexes (Chapter Four). 

 

4. To collect and analyse the gut-contents of potential predators for physical 

evidence of C. helgolandicus consumption. Using molecular next generation 

sequencing (NGS) metabarcoding techniques I assess the diets of the major 

gelatinous zooplankton predators at L4 (ctenophores and medusae), collected 

during 2015 (Chapter Five). 
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CHAPTER TWO 

How does Calanus helgolandicus maintain its population in a variable 

environment? Analysis of a 25-year time series from the English Channel 

 

Calanus helgolandicus is a key copepod of the NE Atlantic and fringing shelves, 

with a distribution that is expanding northwards with oceanic warming. The Plymouth 

L4 site has warmed over the past 25-years, and experiences large variations in the 

timing and availability of food for C. helgolandicus. Here I examine the degree to which 

these changes translate into variation in reproductive output and subsequently C. 

helgolandicus population size. Egg production rates (eggs female-1 day-1) were maximal 

in the spring to early-summer period, when diatom blooms and high ciliate abundance 

also occurred, rather than during the equally large autumn blooms of autotrophic 

dinoflagellates. Egg hatch success was lower in spring than in other periods, however, 

there were a greater proportion of naupliar deformities then also. Both the timing and 

the mean summer abundance of C. helgolandicus (CI-CVI) reflected those of spring total 

reproductive output. However, this relationship was driven by inter-annual variability in 

female abundance and not that of egg production per female, which varied only two-

fold. Winter abundance of C. helgolandicus at L4 was much more variable than 

abundance in other seasons, and reflected conditions from the previous growing 

season. However, these low winter abundances had no clear carry-over signal to the 

following season’s population size. Overall, the C. helgolandicus population appears to 

be surprisingly resilient at this inshore site, even though other physical and biological 

conditions were very variable within and between years, with this copepod showing no 

long-term phenology shift and only a four-fold variation in mean abundance between 

years. This apparent dampening in population changes may reflect a series of mortality 

sources, associated with the timing of stratification in the early part of the season, 

likely affecting egg sinking and loss, plus intense, density-dependent mortality of early 

stages in mid-summer potentially through predation.  
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Hirst, P. K. Lindeque, C. E. Widdicombe, R. A. Harmer, A. J. McEvoy, D. G. Cummings 

(2015). How does Calanus helgolandicus maintain its population in a variable 
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K. McConville. (2015). Questioning the role of phenology shifts and trophic 
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2.1 Introduction 

Concerns over how climate variability and change may influence Calanus 

helgolandicus distribution have led to considerable research effort into the population 

dynamics of this species (e.g. Planque and Fromentin, 1996; Bonnet et al., 2005; 

Helaouët and Beaugrand, 2007; Wilson et al., 2015). Many of these studies emphasise 

the fact that the main geographic habitat of C. helgolandicus is not only warming 

(Lowe et al., 2009; IPCC, 2013), but is highly variable from year-to-year. This is 

manifested in major year-to-year changes in both the physics (e.g. temperature, 

stratification) and the planktonic assemblages (Holt et al., 2010; Widdicombe et al., 

2010). Understanding the sensitivity or the resilience of C. helgolandicus populations 

to present-day variation is needed for improved understanding of population 

processes and the likely responses to future climatic fluctuations. 

The C. helgolandicus distribution extends from the Mediterranean in the south 

to the northern North Sea and the species has an optimum temperature of ~15°C 

(Bonnet et al., 2005; Wilson et al., 2016a). Development time from NI nauplius to adult 

ranges from 26 to 42 days (Thompson, 1982), and 3-5 generations may be produced 

per year (Green et al., 1993). Population seasonality is dependent on location, but the 

average seasonal cycle displays a peak of abundance in April-June, followed by a larger 

autumn peak (September-October) (Planque and Fromentin, 1996). Bonnet et al. 

(2005) suggest that seasonality relates to latitude, where southern stations exhibit 

periods of high abundance in spring, but at the highest latitudes, peak abundance 

occurs in autumn. At L4, C. helgolandicus abundance was reported to peak during June 

to July with the species occurring all year round (Irigoien and Harris, 2003). Highest 

densities of up to ~200 individuals m-3 have been observed in the Adriatic and off the 

coast of Vigo (NW Spain); the average C. helgolandicus abundance at L4 was was 

reported to be 20-100 individuals m-3 (Bonnet et al., 2005). The species is not thought 

to undergo diapause, but instead remains in shallow waters through the winter 

(Bonnet et al., 2005); however, there are as yet no published studies on the duration 

and timing of C. helgolandicus diapause (Wilson et al., 2015).  

C. helgolandicus is a broadcast spawning species and the timing of egg 

production has also been described in relation to latitude, with egg production in 
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southern populations peaking between February and June, but in late summer in more 

northern climes (Bonnet et al., 2005). In the English Channel, C. helgolandicus appears 

to have an almost continuous reproductive period lasting from early spring through to 

winter, and egg production rate has been correlated with chlorophyll-a (Bautista et al., 

1994; Laabir et al., 1998). 

This study aims to explore the C. helgolandicus dataset at L4 and provide an 

overview of the population dynamics. I used data available at the time; namely a 1988-

2012 (25 year) time series of C. helgolandicus abundance and the 1992-2012 egg 

production rate data from station L4. My objectives were three-fold; (1) to explore the 

annual and seasonal variability of C. helgolandicus abundance and egg production; I 

hypothesise that there will be a strong pattern of seasonality, but less obvious 

interannual variability, (2) to test the hypothesis that environmental variability is a key 

determinant of year-to-year variability in C. helgolandicus abundance at L4, through its 

effect on egg production rates, and (3) to investigate trends in changes to test the 

hypothesis that abundance and phenology may have changed in response to a 

changing marine environment. 

 

 

2.2 Materials and methods 

Table 2.1 presents the data coverage available for this chapter. 

 

2.2.1 Mesozooplankton data collection 

Data used for this study span March 1988 to December 2012 and represent a 

weekly sampling regime. Two WP-2 (200 μm mesh) replicate plankton net vertical 

hauls were taken from a depth of ~50 m to the surface, at a speed of ~15 m min-1 and 

fixed immediately in 4% formaldehyde. All zooplankton including C. helgolandicus 

adult females, adult males and total copepodites were identified and enumerated 

under a microscope in the laboratory from sub-samples containing ~200 individuals 

and converted into abundance (no. m-3). Subsamples were extracted using a Folsom 

splitter and a Stempel pipette, to identify separately large and small organisms. Values 
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presented in this Thesis represent the mean of the two replicate hauls. The resultant 

abundance data were entered into a L4 mesozooplankton database. A WP-2 63μm 

mesh vertical haul from 50m to the surface was added to the sampling regime in 2010. 

In the mesozooplankton database animals were assigned to taxonomic groups: 

Siphonophora, Ctenophora, Chaetognatha, Trachymedusae, Hydromedusae, 

Echinodermata, Cladocera, Cirripedia, Euphausiacea, Mysida, Decapoda, Copepoda 

(including Calanoida, Cyclopoda and Harpacticoida). A number of different 

zooplankton analysts have contributed to the dataset over the years; however the 

level of expertise with respect to the Copepoda has been consistent (R. Harris, 2014, 

personal communication, 20th January). 

 

Table 2.1. Time series data availability 1988-2012, Station L4, Western English Channel. 

Time series Data available 

Total C. helgolandicus (males, females, 
copepodites) abundance 

1988-2012 

Female adult abundance 1992-2012 (excl. Aug-Dec 2005) 

Male adult abundance 1996-2012 (excl. 2000) 

Egg production rate Feb.1992-2012 (excl. Jul-Dec 2000, 
2001, Jan-Sep 2007) 

Sea surface temperature 1988-2012 

Stratification Index 1993-2012 (excl. Feb-Dec 2000, 
2001) 

Chlorophyll-a 1992-2012 

Phytoplankton biomass (microscopy) Oct. 1992-2012 

Microzooplankton biomass (microscopy) Oct. 1992-2012 

Mesozooplankton abundance (including 
predators) 

1988-2012 

 

 

Over the years of data collection, the level of detail of C. helgolandicus 

identification and enumeration has changed. The specific data collected were as 

follows; 1988-1991 – total C. helgolandicus only (males, females and copepodites); 

1992-2000 – female adults, “other” C. helgolandicus and total C. helgolandicus; 2001-

2004 – males, females, “other” C. helgolandicus and total C. helgolandicus; 2005-2012 

– males, females and copepodites CI-CV and total C. helgolandicus. Therefore female 
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adult data were only available for 21 years (1992-2012) and male data for 12 years 

(2001-2012). Total copepodites (CI-CV) were counted from 2005-2012, and could be 

calculated from 1996-2004, therefore available for a total of 17 years.  

 

2.2.2 Egg production rate 

At each L4 visit between October 1992 and December 2012 live zooplankton 

were collected with a 710 μm mesh net towed horizontally within the top 10 m layer, 

at a speed of < 0.5 m s-1. Following return of the live samples to the laboratory in a cool 

box (typically ~2-3 h after collection), 25 adult (CVI) female C. helgolandicus were 

picked from the sample and 5 replicates of 5 females incubated. To prevent 

cannibalism of the eggs the animals for each replicate were placed in a 500 μm mesh-

bottom Plexiglas chamber inside a 2 L plastic beaker filled with 1.5 L of 0.2 μm filtered 

L4 seawater (FSW). These were incubated at ambient L4 surface temperature for 24 h 

in constant darkness. Harvested eggs from each replicate were counted and mean egg 

production rate (EPR) as eggs female-1 day-1 was calculated. Total reproductive output 

(TRO) (eggs m-3 day-1) was also calculated as EPR multiplied by the adult female field 

density. 

Calanus finmarchicus sometimes co-occurs with C. helgolandicus at L4, albeit in 

much lower abundance (Lindeque et al., 2013). During a recent series of cold winters 

since 2010, C. finmarchicus abundance has increased slightly in the English Channel 

(Edwards et al., 2016). However, even during these recent winters C. finmarchicus 

comprised a median of only 4% of C. helgolandicus abundance in the top 50 m. 

Therefore the egg production experiments may have contained on occasion a small 

admixture of C. finmarchicus females picked alongside C. helgolandicus, but the 

proportion overall will have been insignificant. 

 

2.2.3 Egg hatching success and naupliar abnormalities 

Eggs obtained from the EPR experiments during 2013 were subsequently used 

in egg hatching incubations. From each replicate, individual eggs were gently pipetted 

into the cells of a 24-cell clear Plexiglas multi-well tray, each cell containing 5 mL of 0.2 
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μm filtered seawater. A maximum of 120 eggs were incubated over the five replicates. 

The trays were placed in the controlled-temperature room at ambient L4 temperature 

in constant darkness and examined under a dissecting microscope every 24 h for 5 

days. For those eggs that hatched I recorded survival and incidence of deformities in 

the nauplii.  

 

2.2.4 Phyto- and microzooplankton 

Between October 1992 and December 2012 water was sampled from a depth 

of 10 m using a 10 L Niskin bottle. A 200 mL sub-sample was immediately preserved 

with a 2% (final concentration) acid-Lugol’s iodine solution and a second subsample 

was preserved with neutral formaldehyde (4% final concentration) for the preservation 

and enumeration of coccolithophores. Paired samples were stored in the dark (using 

200mL glass amber medical bottles) and at room temperature until analysis by light 

microscopy within ca. 1-4 weeks of collection. Cells with sizes between 2 and 200 µm 

were enumerated by microscopy, with sample analysis differing according to the 

specific preservative and undertaken as follows: (a) Lugol’s iodine sample, a 50mL sub-

sample was examined under phase contrast using a x10 objective (x100 magnification) 

and using the L4 species list as a reference, density and composition were recorded. 

Detailed examination of the phyto-flagellates was conducted using a x40 objective 

(x400 magnification) and phase contrast or differential interference contrast (DIC). 

Small (ca. 2µm) and medium (ca. 4µm) flagellates were counted in ten fields of view, 

randomly selected throughout the chamber (ca. 10% error). Large (ca. 8-10µm) 

flagellates, Cryptophyceae and Choanoflagellates were enumerated on one vertical 

transect across the chamber. Cells typically >15µm were enumerated using x20 

objective (x200 magnification) and phase contrast or DIC. Abundant/blooming species 

were enumerated using either one (vertical) or two (vertical & horizontal) transects. All 

remaining cells were enumerated in the whole (or half) chamber. Cells were identified, 

where possible, to species level according to e.g. Drebes (1974); Dodge (1982); Tomas 

(1996); Hoppenrath et al., (2009). Species were recorded in a phytoplankton or 

microzooplankton database and assigned to their different functional groups: phyto-

flagellates, diatoms, dinoflagellates, heterotrophic dinoflagellates, ciliates and 

zooflagellates; (b) neutral formaldehyde solution: One vertical and one horizontal 
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transect were performed using a x40 objective (x400 magnification) and either phase 

contrast or DIC for abundant species e.g. Emiliania huxleyi. All coccolithophores were 

identified where possible according to Tomas (1993) and assigned to the 

‘Coccolithophore’ group. The number of cells for each species/taxa was expressed as 

cells mL-1. Cell volumes, calculated assuming appropriate geometric shapes according 

to Kovala and Larrance (1966) using average cell length, width and depth 

measurements of individual taxa,  were converted to carbon (pg C cell-1) using the 

formulae of Menden-Deuer and Lessard (2000) and then expressed as mg C m-3. Total 

biomass for each functional group was thus calculated from the sum of each 

species/taxon in individual samples. In addition, weekly net samples (20µm), towed 

vertically from the near-seabed to surface, were analysed live to ascertain dominant 

species in the near ‘real-time’.  

 

2.2.5 Chlorophyll-a 

Surface chlorophyll-a concentrations were determined using two methods; 

fluorometry (Turner fluorometer) and reversed-phase high performance liquid 

chromatography (HPLC). For the period 1992-1999 fluorometry techniques only were 

used, with both methods used after 1999. In this later period HPLC data were used for 

analysis. Where available HPLC-derived data were favoured over fluorometry-derived 

data, however there was 98% agreement of values when they were used concurrently 

(Smyth et al., 2010). 

 

2.2.6 Temperature and Stratification Index 

During the period 1988 to 1992, sea surface temperature (SST) was recorded 

and determined with a mercury thermometer immediately after collecting a metal 

bucket full of water from the sampling site. From 1992 a CTD also provided 

temperature profiles. I have combined these two data sets by using the CTD surface 

temperature if just the CTD or both CTD and bucket were available, or the bucket value 

if only that was available. This choice is supported by the fact that both measurements 

are closely related (R2 = 95%) and that they show no suggestion of departure from a 

1:1 relationship (unpublished data).  
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Monthly temperature anomalies were calculated by subtracting the overall 

average of the whole time series for a given month from the observed monthly value, 

using Equation 2.1: 

xm,y
' =

xm,y-x̅m

σ(xm)
                                                           [2.1] 

 

where m is the month (m: 1=January, 2=February, …, 12=December) and y the year; 

xm, y
'   is the monthly anomaly of month m in year y;  xm, y  is the monthly average of 

month m in year y; x̅m is the average, and σ(xm) the standard deviation, of month m 

over the entire time series (Eloire, 2010). Annual and seasonal anomalies were 

calculated by averaging the relevant monthly anomalies. 

A Stratification Index (SI) was calculated according to Irigoien and Harris (2003). 

This equates to the difference (in °C) between the temperature at the surface and at 

30 m. Stratification was said to occur during a temperature difference of ≥1°C. 

Temperature across depth was only recorded from 1992 onwards; therefore the SI was 

only available from this time period (Table 2.1). 

 

2.2.7 Phenological indices 

Phenological timing indices were calculated based on the 25th, 50th and 75th 

cumulative percentiles (Figure 2.1), as well as the “centre of gravity” (COG) of the 

annual population trajectory (see Mackas et al., 2012a). The ‘‘center-of-gravity’’ was 

originally developed by Colebrook and Robinson (1963) to describe average seasonal 

cycles, and calculates the date of the weighted mean of the entire population curve 

using the formula: 

COG = (∑ND*D)/∑ND     [2.2] 

 

where ND is the observed abundance (no. m-3) at time period D (Julian Day). 
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Figure 2.1. Example of calculation of cumulative percentiles, ♀ C. helgolandicus (2012). 25th 

percentile represents the day when 25% cumulative abundance occurs (Day 141) and is used 

to define the “Start of season”; 50th percentile is the day when 50% abundance is reached 

(Day 184) and termed “Middle of season”, and 75th percentile (Day 234) is the “End of 

season”. 

 

2.2.8 Numerical and statistical analyses 

All weekly data were averaged into fortnightly, monthly and annual means. 

Seasonal means were also determined for each year and were nominally divided into 

spring (March to May), summer (June to August), autumn (September to November) 

and winter (December to February). Sea surface temperature values were integrated 

over the duration of spring-summer warming, i.e. April-August.  

Annual and seasonal means for each time series were determined and used in a 

backward stepwise multiple regression analysis to determine the factors linked to the 

variability in winter C. helgolandicus abundance. Explanatory variables included annual 

and seasonal mean SST anomalies, microzooplankton biomass, phytoplankton 

biomass, chlorophyll concentration, the onset and breakdown of stratification, EPR 

and TRO. Variables were tested for multicollinearity and where variables were found 

to correlate highly, the variable that correlated most highly with the most number of 
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variables was included in the analysis, with the aim to include one factor to account for 

each of food, temperature and stratification. A Durbin-Watson test was performed to 

detect autocorrelation in the residuals (Durbin and Watson, 1950). Homogeneity of 

variances and normality of residuals were also examined in the standard regression 

diagnostic plots. Copepod abundance data were log10 (x+1) transformed where 

necessary to reduce problems associated with normality. Where heteroscedasticity 

occurred, residuals versus predictor plots were scrutinised for patterns and variance-

covariance structures applied to a generalised least squares model (GLS) as necessary. 

A GLS is an extended linear mixed-effect model in which errors are allowed to be 

autocorrelated and/or have unequal variance (Pinheiro and Bates, 2000). The GLS 

models were compared using the lowest Akaike Information Criteria (AIC) as the 

decision criterion and for the explanatory variables a significance level of p < 0.05 was 

used. Data manipulation was performed using Microsoft Excel 2010. All statistical 

analysis was undertaken using the R programming environment (R Development Core 

Team, 2012). 

 

 

2.3 Results 

2.3.1 Overview of average seasonality at L4 

An overall average picture of seasonality at L4 (using a fortnightly averaging 

period for optimal resolution) is presented in Figure 2.2. Sea surface temperature 

averaged between 8.5°C in winter to 16.0°C in late summer, with extremes of 6.8°C 

and 19.9°C. Stratification was typically initiated in May and persisted until 

September/October (Figure 2.2a), but periodic gales sometimes eroded the main 

stratification season into several shorter periods. At its peak, the Stratification Index 

reached 4.5°C, which occurred in July 2006.  

While the timings varied substantially between individual years (Atkinson et al., 

2015), chlorophyll-a concentrations typically increased sharply in spring from 0.5 mg 

m-3 to a peak of over 2.5 mg m-3, with a second smaller peak spanning July to 

September (Figure 2.2b). Total phytoplankton biomass followed a similar pattern to 

chlorophyll-a, with high values throughout the summer, reflecting successive peaks of 
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diatoms, dinoflagellates and coccolithophores. Microzooplankton biomass (consisting 

of ciliates, heterotrophic dinoflagellates and zooflagellates) was substantially less than 

that of phytoplankton biomass, reaching a maximum typically around July (Figure 

2.2b).  

Total predator abundance rose sharply in May/June, from less than 50 m-3 to 

ca. 250 individuals m-3 (Figure 2.2c). This density persisted throughout the summer and 

autumn before declining after October. Predator densities followed a progression, with 

medusae and ctenophores peaking first, then chaetognaths and siphonophores. Fish 

larvae are not plotted here as they occurred in much lower abundances than the 

invertebrate predators (Western Channel Observatory, unpublished data). 

Mean abundance of C. helgolandicus CI-CVI ranged from 6 ind. m-3 in December 

to 204 ind. m-3 in August (Figure 2.2d), and usually exhibited a spring-summer peak, 

with a second larger peak following in the autumn. The trajectory of CVI females was 

broadly similar, but with a small January peak and a main summer peak rather earlier 

than that of CI-CVI (Figure 2.2d).  
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Figure 2.2. Seasonal variation (fortnightly mean and error bars representing standard 

deviation) of: (a) sea surface temperature and Stratification Index (difference between 

temperature at the surface and at 30 m), 1992-2012. Stratification is indicated by dashed line 

as defined by a temperature difference of 1oC or greater; (b) chlorophyll-a, total 

phytoplankton biomass, total microzooplankton biomass, 1992-2012; (c) total predator 

abundance, 1988-2012; (d) total abundance of C. helgolandicus adults and copepodites, 

1988-2012, and C. helgolandicus♀adults, 1992-2012, retained by 200 μm net. 
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Mean C. helgolandicus egg production rate (EPR) ranged from zero (recorded in 

only 4% of the weeks sampled) to 59 eggs female-1 day-1. EPR was maximal from April 

to June before declining steadily back to winter levels (Figure 2.3a). Total reproductive 

output, TRO (no. eggs m-3 day-1) is a function of both female abundance and egg 

production per female and showed a strong peak in June (600 eggs m-3 day-1). Total 

healthy nauplii output (THN) (nauplii m-3 day-1) represents the output of nauplii that 

did not display external abnormalities. Despite decreased egg hatch success and 

concomitantly increased incidence of deformed nauplii in the first half of the year 

(discussed in the next section) the calculated THN remains almost the same as that of 

TRO, being driven by the abundance of females and their elevated levels of EPR. All of 

EPR, TRO and THN decline after June at what would seem intuitively to be a favourable 

period of the year, given the increasing temperatures and an abundance of prey items. 

 

2.3.2 Egg hatching success and incidence of naupliar deformities 

During my detailed study throughout 2013, the success of egg hatching and 

incidence of naupliar deformity suggested more serious adverse effects in this year 

than in the previous years where data are available (Figure 2.3b). During 2013, 

monthly mean hatching success was at its lowest in February at 8%, rising through the 

spring to a peak in July of nearly 80%. This level was maintained between ~70-80% 

through to November with a peak of 84% of eggs successfully hatching (Figure 2.3b). 

Bonnet et al. (2009) also found a dip in hatch success in late winter (2003-2004), but 

their rates were overall higher in this first part of the year.  

Concomitant with the low egg hatch rate I found in winter-spring 2013, the 

nauplii that did hatch were often deformed (Figure 2.3c). This ranged in severity from a 

simple shortened or lack of appendage to an indistinguishable mass with no swimming 

appendages. Almost all of these deformed nauplii died before moulting to the next 

stage. An earlier study during 1994 also found elevated incidence of deformities in 

spring, but the effect was not as great as in 2013 (Pond et al., 1996; their data re-

plotted in Figure 2.3c). Egg hatch success and the incidence of naupliar abnormalities 

are studied in greater detail over multiple years in Chapter Three. 
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Figure 2.3. Seasonal variation (monthly mean and error bars representing standard 

deviation) of: (a) mean egg production rate (EPR) and total reproductive output (TRO), 1992-

2012; total healthy naupliar output (THN) in 2013; (b) Calanus egg hatching success, 2003-

2004 data, kindly supplied by Bonnet et al. (2009), alongside the 2013 data (collected by 

author); (c) abundance of deformed C. helgolandicus nauplii (monthly mean and standard 

error bars) 1994 data (Pond et al., 1996) and 2013 data (collected by author) produced by 

female adults collected from Station L4. 
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2.3.3 Inter-annual and longer-term variability 

Figure 2.4 summarises the seasonal and inter-annual variability in the C. helgolandicus 

population and its reproductive output, with this variability compared against that of 

its food environment and predators in Table 2.2. The observation period was 

characterised by cycles of positive and negative temperature anomalies, and indicated 

an overall warming of spring-summers (April-August mean: R2 =0.2, p = 0.038, n = 25; 

Figure 2.4a). This finding is in line with an overall longer-term warming trajectory in the 

Western English Channel (Southward et al., 2004; Smyth et al., 2010).  

 

Table 2.2. Mean annual range of plankton variation at L4 over the time series (compared 

here only for complete years with all data, between 1993 and 2012; see Table 2.1) obtained 

for the C. helgolandicus, microplankton and predator time series; amplitude is the 

maximum/minimum range value; n: number of sampling time-points. 

Variable n 
Annual mean 

range amplitude 

Total C. helgolandicus abundance (no. m
-3

) 867 4.3 

Total ♀ C. helgolandicus abundance (no. m
-3

) 851 6.4 

Mean C. helgolandicus egg production rate (eggs female
-1

 day
-1

) 754 1.9 

Total C. helgolandicus egg production rate (eggs m
-3

 day
-1

) 726 12.4 

Microzooplankton biomass (mg C m
-3

) 820 5.9 

Phytoplankton biomass (mg C m
-3

) 819 3.8 

Microplankton biomass (mg C m
-3

) 814 3.1 

Siphonophores (no. m
-3

) 867 14.0 

Medusae (no. m
-3

) 867 45.1 

Ctenophores (no. m
-3

) 867 26.1 

Chaetognaths (no. m
-3

) 867 9.6 

Total predators (no. m
-3

) 867 8.0 

 

 

Mean annual C. helgolandicus abundance (Figure 2.4b) varied by a factor of 4.3 

over the time series, much less than that of their predators, the siphonophores, 

medusae and ctenophores (Table 2.2). C. helgolandicus mean abundance did not 

change significantly over the 25 years, in contrast to values in winter (December-

February) which increased significantly (R2 =0.411, p <0.001, n = 25). These winter 

stocks varied 100-fold over the study period (Table 2.2) with a marked increase 
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between about 2001 and 2009 (Figure 2.4b). A backward stepwise multiple regression 

model was developed to attempt to explain this increase in winter abundance.  

Phytoplankton biomass, chlorophyll concentration and EPR were not found to explain 

any of the winter abundance variation and were removed from the model entirely. 

Table 2.3 lists the significant models, with SST anomaly, microzooplankton biomass, 

TRO and the onset of stratification used as predictor variables. The best model (i.e. 

lowest AIC) used Apr-Aug SST anomaly and autumn TRO as predictors of winter C. 

helgolandicus abundance.  

Mean annual EPR varied less than two-fold (Figure 2.4c), which was much less 

than the component food sources, and hence was found not to have changed over the 

21 years of measurements. Mean annual TRO however, was found to be much more 

variable (Figure 2.4d) with over a 12-fold range of variation in the number of eggs 

released. This was a function of the variation in female abundance (factor of 6.4), 

which again is greater than the total C. helgolandicus abundance.  

 

  



42 
 
 

 

Figure 2.4. (a) Monthly sea surface temperature (SST) anomalies and mean annual 

anomalies; (b) total C. helgolandicus copepodite and adult abundance [log10 (x+1)] (monthly 

mean) (1988-2012), annual (geometric) mean, summer mean (of the 10 highest non-

consecutive summer values from June to August) and winter mean (of the 10 lowest non-

consecutive weekly winter values from December to February, where for example, winter 

1990 consists of data from Dec 1990 and Jan-Feb 1991), plotted for illustrative purposes 
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only; (c) C. helgolandicus EPR - egg production rate [log10 (x+1)] (monthly mean) (1992-2012), 

annual (geometric) mean, spring mean (March to May weekly data), winter mean (December 

to February weekly data); (d) TRO - total reproductive output [log10 (x+1)] (1992-2012), 

annual mean. 

 

Table 2.3.  Generalised least squares analysis of winter C. helgolandicus abundance: 

coefficients, standard error, t-value, p-value and AIC value for single and multi-variable GLSs; 

TRO = total reproductive output; SST = sea surface temperature. 

Model predictor(s) Coefficient 
(slope) 

SE t-value p-value AIC 

SST anomaly: Apr-Aug  

TRO: annual  

0.494 

0.619 

0.142 

0.189 

3.484 

3.277 

0.005 

0.007 

5.459 

SST anomaly: Apr-Aug  

TRO: autumn 

0.404 

0.354 

0.118 

0.139 

3.414 

2.549 

0.009 

0.034 

9.037 

TRO: autumn 0.461 0.200 2.308 0.046 9.056 

TRO: annual 0.747 0.257 2.904 0.013 13.844 

SST anomaly: Apr-Aug  

Microzooplankton: spring 

0.658 

1.128 

0.169 

0.358 

3.889 

3.147 

0.002 

0.007 

17.447 

SST anomaly: Apr-Aug  

Microzooplankton: Apr-Aug 

0.636 

0.919 

0.180 

0.361 

3.530 

2.545 

0.003 

0.022 

20.395 

SST anomaly: Apr-Aug 0.628 0.207 3.028 0.008 23.943 

Stratification onset (first day SI >1°) -0.014 0.005 -2.968 0.010 29.340 

 

 

2.3.4 Variability in phenological timings 

The four indices of phenology that I used (Figure 2.5) all show that the timing of 

EPR (Figure 2.5c) varied much less over the time series than that of total C. 

helgolandicus CI-CVI (Figure 2.5a) or of adult females (Figure 2.5b). For instance the 

25% cumulative percentile (a good indicator of the timing of the initial increase) varied 

from Julian day 65 to 136 for EPR (Figure 2.5c) compared to a range of day 62-169 for 

total C. helgolandicus (Figure 2.5a). Variability in timings of EPR, particularly those of 

central tendency, tended to reflect variability of the bulk food properties, for example 

total microzooplankton biomass (R2 = 0.34, p = 0.018, n = 16), suggesting, perhaps 
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unsurprisingly, that years of early or late appearance of foods led to respectively 

earlier or later timings of EPR. 

 

 

Figure 2.5. Comparison of phenological indices; timing of 25%, 50% and 75% cumulative 

percentiles and “centre of gravity” (COG) of (a) total C. helgolandicus abundance (1988-2012, 

excluding 2000 due to low sample size); (b) ♀ C. helgolandicus abundance (1992-2012, 

excluding 2000-01 and 2005 due to low sample size) and (c) mean egg production rate (1992-

2012, excluding 2000 and 2006-07 due to low sample size). 
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2.3.5 Causes of inter-annual variability in timing and abundance of Calanus 

helgolandicus  

At the inter-annual scale, the average TRO in the months of greatest EPR (April-

May) was a predictor of subsequent mean summer (June to August) total C. 

helgolandicus abundance (Figure 2.6a).  Significant positive relationships between the 

annual timing of TRO and the subsequent timing of C. helgolandicus appearance were 

also found (Figure 2.6b). Together, these findings support my central study hypothesis 

that variation in reproductive output translates into that of population size. However 

this relationship was not driven by variation in EPR, which fluctuated only two-fold 

between years and was unrelated to the total resultant C. helgolandicus population, 

either in terms of timing of increase (Figure 2.6c) or in terms of mean annual values. 

Instead it reflected the more substantial variation in abundance of egg-laying females 

(Table 2.2), whose abundance was a strong predictor of the copepodite (CI-CV) 

population. 

Despite the significant increase in mean April-August temperatures, there was 

no significant phenology shift observed for total C. helgolandicus over the 25-year 

period. The timing of the population growth of this species was also unrelated 

statistically to April-August water temperature, a finding in common with the majority 

of zooplankton taxa at L4 (Atkinson et al., 2015). The only clear environmental 

correlate with the phenology of this species was the timing of stratification (Figure 

2.6d). This lends support to the hypothesis of Irigoien and Harris (2003) that 

stratification may be required for the C. helgolandicus population to increase at this 

site. Further support is provided by the lack of any relationship between timings of 

increase (25% cumulative percentile) of EPR and timing of increase in C. helgolandicus 

(Figure 2.6c). This suggests that population increases do not follow on predictably from 

increases in EPR, but that other factors such as stratification may intervene in 

determining the success of newly recruited individuals.  
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Figure 2.6. Relationship between (a) mean summer (June to August) total C. helgolandicus 

abundance and mean April to May total reproductive output (TRO); (b) timing of “centre of 

gravity” of C. helgolandicus and timing of “centre of gravity” of TRO (other phenological 

indices, 25th, 50th and 75th percentiles were also positive and excluding the 25th percentile 

were significant); (c) timing of 25th percentile of C. helgolandicus and timing of 25th 

percentile of egg production rate (EPR); (d) timing of 25th  cumulative percentile of total C. 

helgolandicus abundance and the timing of onset of stratification (1st day where 

Stratification Index (temperature difference between 0m and 30m) ≥ 1°C). 

 

2.3.6 A Calanus helgolandicus population growth model 

A simple model of C. helgolandicus abundance was developed to investigate 

the degree to which total theoretical C. helgolandicus abundance (calculated from the 

cumulative weekly total reproductive outputs and in the absence of mortality) 

departed from the actual abundances recorded at L4. This involved calculating the 
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mean weekly TRO (1992-2012) and “growing” each weekly cohort through from egg to 

CV copepodite stage within a pre-determined temperature-related and stage-specific 

development time (Bonnet et al., 2009). The population in each week of the year was 

calculated by summing the abundances from each cohort. This “theoretical” 

population trajectory (with simplified assumptions and no mortality) was then plotted 

alongside the observed population data [using egg to CV stage data collected 2002-04 

from Hirst et al. (2007) and 2013 (unpublished data) to compare the deficit between 

the two (Figure 2.7)], as a relative measure of mortality timing. During the winter and 

autumn months the theoretical and population densities were 10-25 times that of the 

observed densities. However from April, this increased dramatically such that in 

June/July a 100-250-fold deficit was evident. This model is utilised further in Chapter 

Four (Section 4.3.4), where I develop a mortality index over multiple years. 

 

 

Figure 2.7. Comparison of observed monthly total C. helgolandicus abundance (egg-CV) (no. 

m-3) with a theoretical total abundance calculated from a simple population growth model, 

summing mean weekly total reproductive output (TRO) at a temperature-specific 

development rate, from egg production to CV (see Results, 3.6). Note the difference in 

scales. 
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2.4 Discussion 

At Station L4 the annual mean density of C. helgolandicus varied surprisingly 

little; only ~4-fold over the 25 years, which is remarkable given that many variables 

show wide ranges, such as SST anomaly (by ~1.8°C), predators (8-fold) and total 

reproductive output (12-fold). Even where significant increasing trends were found, 

such as winter abundance, winter stock levels had no obvious carry-over in dictating 

population density in the following season. Mean summer density of total C. 

helgolandicus reflected variation in spring total reproductive output, but this was 

driven by changes in female abundance rather than in EPR. In fact EPR varied very little 

(only two-fold between years), perhaps being buffered by the feeding flexibility of C. 

helgolandicus (Fileman et al., 2010) and the plethora of nutritious foods at the site 

(Pond et al., 1996).  

While C. helgolandicus population density was ultimately driven by total 

reproductive output, I question what further factors control the population, 

dampening it into a narrow range of densities?  I suggest that it is multiple sources of 

mortality, each probably occurring successively at differing times during the season, 

that are acting together to limit the exceptionally high values I might expect from the 

simple matrix model. Here I discuss the various sources of mortality that may impact 

on the various life stages of C. helgolandicus and then extend this to a larger-scale 

discussion of the spatial distribution and success of the species as a whole. 

 

2.4.1 Food-related factors affecting egg production rate  

The seasonal trend in EPR at L4 is surprising in that late season food, 

dominated by autotrophic dinoflagellates, supported lower EPRs than equivalent 

biomass concentrations of early season foods (chiefly diatoms and ciliates). The issue 

of food quality in dictating copepod EPR has received a great amount of attention and 

debate (Jónasdóttir et al., 2005; Ceballos and Álvarez-Marqués, 2006a; Jónasdóttir and 

Koski, 2011). At L4 the findings on food quality have been slightly contradictory. On 

one hand, Pond et al. (1996) found that diatoms, dinoflagellates and particularly 

ciliates all supported high fecundity, while on the other hand Irigoien et al. (2000) 

found low EPR associated with autumn blooms of the dinoflagellate Prorocentrum 
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balticum. Interannual variability in the composition of dinoflagellates that dominate 

later in the season may explain this contrast, since in some years these blooms are 

strongly dominated by single species which may produce toxins, most notably Karenia 

mikimotoi (Barnes et al., 2015). 

During the three seasons in which egg hatch success and naupliar deformities 

were recorded (Pond et al., 1996; Bonnet et al., 2009 and this study) the values ranged 

enormously between years. These data revealed that between 30% and 70% of eggs 

survived to the NII stage, effectively removing a considerable proportion of the 

potential population within the first few days after egg production. While these studies 

show differing degrees of egg viability, all suggest that the strongest affect is at the 

time of the spring diatom bloom.  

Cytotoxic compounds from some diatom species have been strongly implicated 

in inducing teratogenic effects on copepod eggs and nauplii, and diatom degradation 

products such as polyunsaturated aldehydes (PUA) and oxylipins have been much 

investigated and debated intensively in the past 20 years (Irigoien et al., 2002a; Ianora 

and Miralto, 2010). A diet of the diatom Skeletonema marinoi was found to reduce egg 

hatching success and female survival (Miralto et al., 1999; Ianora et al., 2004; Ianora 

and Miralto, 2010) and alter gene expression (Lauritano et al., 2011a; Lauritano et al., 

2011b) specifically in C. helgolandicus. The potential dual role of diatoms, in enhancing 

EPR and reducing viability of these eggs, is studied in greater detail in Chapter Three. 

 

2.4.2 Physical factors affecting egg survival 

Egg and early-stage nauplii are known to succumb to the highest mortality rates 

of any development stage, with less than 10% surviving between egg and NI (Hirst et 

al., 2007). Mortality can occur as a consequence of many physical, chemical and 

biological processes. Calanus spp. eggs sink at a rate of approximately 36 to 70 m day-1 

(Irigoien and Harris, 2003). This combined with a shallow depth and a prolonged 

hatching duration in winter may result in a proportion of eggs reaching the bottom 

before hatching has occurred. This may potentially expose them to high benthic 

predation, which may present an important mortality agent (Peterson and Kimmerer, 

1994). Irigoien and Harris (2003) suggested that the onset of stratification was an 
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important factor in allowing the summer increase in C. helgolandicus at L4, whereby 

warmer temperatures lead to a faster hatching rate which reduces the loss of eggs to 

the sea bed. Additionally, development of the thermocline may prevent the eggs from 

settling out of the upper layers and suffering predation by the benthos. These 

suggestions are supported correlatively at least by my analysis of a longer data span, 

where stratification timing was the only physical variable found to correlate with the 

timing of increase of the C. helgolandicus population. 

 

2.4.3 Predation on nauplii and copepodite stages 

The escalating mortality risk from April to July that I predicted from the simple 

matrix model does not coincide neatly with the elevated abundance of taxa considered 

as classic predators (Hirst et al., 2007; Bonnet et al., 2010). The latter increase only in 

June and last longer into autumn, suggesting that additional factors may be involved. 

For example high autumn water temperatures may allow rapid C. helgolandicus 

development to maximise survival of recruits to adulthood so that they are more likely 

to avoid predation. Another factor may be that a different suite of predators help to 

remove the eggs and nauplii, since these early stages show slightly earlier peaks in 

mortality at L4 than those of later copepodite stages (Hirst et al., 2007). Many 

copepods are known to predate other copepods or young of their own species 

(Lebour, 1922; Kleppel, 1993). Ohman and Hirche (2001) further described density-

dependent mortality through cannibalism in Calanus spp. suggesting that this may be a 

form of population self-limitation. Indeed, Hirst et al. (2007) found a significant 

correlation between adult C. helgolandicus abundance at L4 and both the rate of 

removal of their eggs from the water column (ind. m-3 d-1) and egg mortality (d-1), 

implying a density-dependent process at L4. The relative lack of fluctuation in both the 

upper boundary and annual mean density of C. helgolandicus may also suggest that 

population self-regulation processes operate at this site. Egg mortality and potential 

predators of early life stages are explored in more detail in Chapter Three. 
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2.4.4 Population-level responses to a variable and changing environment 

Among 46 zooplankton taxa where minimum and maximum annual mean 

abundances were compared throughout the time series, only three varied less than C. 

helgolandicus in abundance from year to year (Atkinson et al., 2015). My finding that 

interannual variability in total abundance of C. helgolandicus over 25 years at L4 is only 

4-fold can also be compared to that of its colder water congener C. finmarchicus. 

Monitoring data from the Continuous Plankton Recorder (CPR) (1997-2009), from the 

north-east of Scotland demonstrated a 16-fold range of variation in C. finmarchicus 

annual mean abundance (Baxter et al., 2011). The variability that is observed between 

years reflects the fact that L4 is a fixed point site in an advective environment. 

However, if fluctuating sources of C. helgolandicus were being advected past the site, 

this would presumably tend to increase the variability that I observed, rather than 

decrease it. 

Evidence of a biogeographic shift occurring over the past 50 years, from cold-

temperate to warm-temperate species in the North–East Atlantic, as a result of ocean 

warming, has been widely reported in the literature (Planque and Fromentin, 1996; 

Beaugrand et al., 2002; Beaugrand, 2003; Helaouët and Beaugrand, 2007; Helaouët et 

al., 2013). My emphasis on the relative stability of C. helgolandicus populations at a 

single site, contrasts with many larger-scale studies that stress the sensitivity of C. 

helgolandicus and C. finmarchicus to climatic changes. Rapid change affects are 

particularly well studied within the population gravity centre of C. helgolandicus 

(Helaouët et al., 2013; Maar et al., 2013). These authors found that the large scale 

distributions of C. helgolandicus and C. finmarchicus were strongly related to sea 

surface temperature and suggested a lack of thermal adaptation. That would imply 

sensitivity to climate change, with dramatic range changes in these species with 

warming (Hinder et al., 2014). Nevertheless, these authors caution against attempts to 

project future distribution patterns, for example with climatic envelope modelling 

based on warming scenarios, since the effect of climatic drivers can change over time 

(Beaugrand, 2012).  

The elucidation of the detailed population dynamics of C. helgolandicus is 

necessary to understand the responses to potentially greater climate variability in the 
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future. So how do my results, specific to a single site, help to inform the understanding 

of C. helgolandicus populations on wider scales of space and time? On one hand L4 is 

near the thermal optimum of the species (Bonnet et al., 2005), so climatic effects that 

may affect a species nearer the edge of its range may not be so acute here. However 

the overall stability of C helgolandicus stocks at L4, (indexed both by lack of 

phenological shift and low variation in mean density between years) would perhaps 

not be expected from large scale predictions based on temperature and/or food levels 

(Richardson et al., 2008). The exact mechanisms for the resilience are still to be 

clarified, and I investigate the stabilising effects of mortality in Chapters Three (eggs) 

and Four (copepodites).  
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CHAPTER THREE 

Calanus helgolandicus egg mortality: egg hatch success, naupliar 

abnormalities and predation 

 

Mortality rates of zooplankton are generally thought to be highest for the early 

developmental stages, particularly the egg stage. For copepods especially, it is 

acknowledged that a non-trivial proportion of the eggs produced never hatch and of 

those that do hatch, a proportion of the nauplii exhibit deformities. Copepod eggs are 

also vulnerable to ingestion by a variety of predators. Here I investigate the mortality 

sources and rates of Calanus helgolandicus in the western English Channel (station L4) 

using two different approaches; 1) via direct measurement of egg hatching success 

(EHS) and the incidence of abnormalities over four years, and 2) using a vertical life-

table (VLT) method to estimate egg mortality rates over three years. Egg hatch success 

rates varied from 0-100% (monthly means of 25-80%) and naupliar abnormalities (NA) 

ranged from 0-54% (mean of 8%). These data imply that 30% to 70% of the potential C. 

helgolandicus population is lost before the NII naupliar stage. Both egg viability and 

naupliar health were reduced and more variable in the spring, and NA was inversely 

related to EHS. I found that egg and naupliar health were boosted by the availability of 

nutritious food for the adult females, but may be reduced by the presence of certain 

toxic diatom strains. Egg mortality rates (derived using the Basic VLT method and a 

new Viability Basic method to account for non-viable eggs) were significantly higher in 

spring and summer than autumn and winter. Total copepod biomass and C. 

helgolandicus copepodite (CI-CV) abundance were positive predictors of egg mortality 

rates, suggesting that intraguild predation and cannibalism were important sources of 

egg loss. I conclude that C. helgolandicus mortality is a function of three key loss 

processes, acting through the maternal diet to influence egg and naupliar health, and 

the strong predatory impact of other copepods. 
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3.1 Introduction 

The fundamental aim of zooplankton ecology is to describe, explain and 

understand the distribution and abundance of organisms (Begon et al., 2006). The 

elucidation of the population dynamics of an organism requires the understanding of 

the processes involved in the production, growth, development and loss of individuals, 

including the trophic links between prey and predator species. Historically, it is the 

gain processes that have received most attention and estimation due to the relative 

ease of experimentation [i.e. reproduction (Poulet et al., 1995; Rey-Rassat et al., 

2002a), growth and development (Rey-Rassat et al., 2002b; Bonnet et al., 2009) and 

feeding (Paffenhöfer, 1976; Meunier et al., 2015]. However, this should be balanced 

with an equal understanding of the loss processes (i.e. mortality, predation, starvation, 

advection, etc.) (Hirst and Kiørboe, 2002; Gallego et al., 2012).  

Mortality rates are traditionally much more challenging to measure than, for 

example, egg production rates. Methods and equations for the estimation of 

zooplankton mortality rates have been available for around half a century (Mullin and 

Brooks, 1970; Peterson and Kimmerer, 1994; Wood, 1994; Aksnes and Ohman, 1996), 

although much of the focus of this work has been on copepods, the biomass dominant 

mesozooplankton in the upper pelagic (Harris et al., 2010). However, much debate still 

exists on their reliability and accuracy, especially when applied at advective marine 

environments (Ohman, 2012). Vertical life-table (VLT) methods, where mortality is 

calculated using a “slice of time” and calculations are made using abundances of 

zooplankton development stages and their stage duration times, have tended to 

dominate marine copepod studies.  

The mortality of an organism is generally highest for the early life stages, e.g. 

fish larvae (Sifa and Mathias, 1985; Garrido et al., 2015), birds (Sullivan, 1989; Ridley, 

2007) and amphibians (Wilbur and Collins, 1973). This is mainly due to a limited or 

none existent (in the case of eggs) escape response and an increased vulnerability to 

predation through their smaller size [through the slow-growth-high-mortality 

hypothesis (Clancy and Price, 1987), indicating that faster growth rates lead to an 

increase in size, and a reduced likelihood of being preyed upon].  Highest rates of 

mortality in zooplankton are also generally found for the early life stages (e.g. Kiørboe 
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et al., 1988; Eiane and Ohman, 2004).  For copepods, this is especially so in freely 

spawned pelagic eggs (Kiørboe et al., 1988; Hirst et al., 2007). Important sources 

include predation, cannibalism, sinking (whereby eggs in shallow waters are lost to the 

benthos before they can hatch) and non-viability. It is recognised that not all copepod 

eggs produced are viable and that egg hatch success may be much less than 100% 

(Cook et al., 2007; Maud et al., 2015).  The use of standard estimates of mortality 

rates, if non-viable eggs are not taken into account can lead to overestimates in 

population dynamic models (Head et al., 2015). In addition, not all viable eggs result in 

viable nauplii; some may display abnormalities such as missing limbs or evidence of 

arrested development, and it is unlikely that these nauplii can develop further (Miralto 

et al., 1998).  

Possible explanations for the non-viability of eggs and naupliar deformities are 

mostly related to the maternal diet (Jónasdóttir et al., 2002). There are two major 

strands of investigation, the first related to food quality; for example, phytoplankton 

blooms may lead to monospecific diet that may be lacking essential nutrients that 

prevent normal reproduction (Huntley et al., 1987; Irigoien et al., 2000b).  In addition, 

the biochemical composition of a bloom may also change with time, such that dietary 

quality may be compromised, with subsequent effects on reproduction (Diekmann et 

al., 2009). The second strand relates to the so-called paradox of “toxic” phytoplankton 

(Ban et al., 1997). Although phytoplankton form a key constituent of the natural diet of 

copepods, paradoxically, some species or strains are implicated as causal agents of low 

egg production and non-viability of eggs. These “toxic” species are purported to 

produce secondary plant metabolites that are detrimental to egg development. 

Diatoms are much implicated here, and laboratory studies have determined that they 

may synthesize polyunsaturated aldehydes (PUA) from polyunsaturated FAs (PUFAs) 

(Miralto et al., 1999) or non-volatile oxylipins (Barreiro et al., 2011). However, there is 

also evidence for the negative effects of some dinoflagellate species. Following this, 

research into phytoplankton fatty acid (FA) composition of seston has revealed specific 

FA biomarkers that indicate the presence of certain phytoplankton groups. For 

example, diatoms are known to be generally rich in C20:5(n-3), whereas dinoflagellates 

are high in C22:6(n-3) (Anderson and Pond, 2000). Certain biomarkers have been 

utilised to explain egg hatch success/naupliar health; for example C22:6(n-3) 
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(docosahexaenoic acid-DHA) is known to be an important fatty acid for determining 

fecundity of marine organisms and is present at high levels in dinoflagellates (Pond et 

al., 1996).  

In this study I focus on quantifying and understanding C. helgolandicus egg 

mortality and viability at L4. I derive egg mortality rates over three years using vertical 

life-table approaches. Egg hatch success was collated over ~four years, mostly through 

discrete studies, independent of the routine C. helgolandicus egg production 

experiments; now however, since 2015, a routine EHS protocol is in place at L4.  

 

 

3.2 Materials and method 

Time series data availability is provided in Table 3.1. 

 

Table 3.1. Time series data and availability from station L4. 

Time series  Data available 

Total C. helgolandicus (males, females, copepodites) 1988-2015 

♀ adult abundance 1988-2015 (excl. August-December 2005) 

♂ adult abundance 1996-2012 (excl. 2000) 

Egg production rate (EPR) February 1992-2015 (excl. July-December 2000;  
2001; January-September 2007) 

Total copepodite (CI-CV) abundance 1996-2015 

Copepodite (CI-CV) stage composition  March 2002-March 2004; 2012-2013 

Egg hatch success (EHS) August 2003-August 2004, 2013, March-October 
2015 and 2016 

Naupliar abnormalities (NA) March-September 1994, 2013, March-October 
2015 and 2016 

Mesozooplankton abundance and biomass (incl. 
predators) 

1988-2015 

Total fish larvae abundance  1988-2015 

Phyto-and microzooplankton abundance and biomass October 1988-2014 

Sea surface temperature (SST) 1988-October 2016 

Mean column temperature (MCT) 1993-October 2016 (excl. February-December 
2000, 2001) 

Stratification Index (SI) 1993-October 2016 (excl. February-December 
2000, 2001) 

Chlorophyll-α (fluorescence) 1992-October 2016 

Particulate organic carbon/nitrogen (POC/PON) 2008-2010, 2012-2015 

Seston fatty acid composition January-December 2013 

C. helgolandicus egg fatty acid composition June-November 2013 
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3.2.1 Mesozooplankton field sampling 

The sampling, identification and enumeration of mesozooplankton [including 

adult Calanus helgolandicus (male and female) and total copepodites (CI-CV)] were 

undertaken following materials and methods in Chapter Two (Section 2.2.1). During 

2013 separate sub-samples of ~100 C. helgolandicus CI-CVI stages were taken from 

one of the weekly 200 µm WP-2 net hauls to enumerate copepodite stage abundances. 

Counts were converted into abundances (no. m-3). Additionally during 2013, a 63 µm 

WP-2 net was also deployed in a vertical 0-50 m haul at the weekly L4 sampling. The 

live sample was returned to the laboratory and preserved in 70% ethanol. Sub-samples 

of ~100 C. helgolandicus eggs and NI-NVI nauplii were staged and enumerated and 

converted to abundances (no. m-3).  

Abundance data of potential predators of C. helgolandicus eggs were extracted 

from the time series including total ctenophore, siphonophore, medusae and 

chaetognath, copepod and fish larvae abundances. Total meroplankton (larvae of 

polychaetes, bryozoans, gastropod larvae, echinoderms, cirripedes and decapods) and 

total other non-copepod holoplankton (cladocerans, hyperiid and mysid shrimps and 

euphausiids) abundances were also obtained, along with total mesozooplankton and 

total gelatinous plankton abundance (total of ctenophore, siphonophore, medusae 

and chaetognaths). Predator biomasses were calculated by measuring lengths of L4 

specimens and applying literature length-mass conversions. In total, the characteristic 

lengths (for example medusa bell height or diameter, copepod prosome length) of 

3780 individuals were measured. The length data were first divided into the seasons 

spring (March-May), summer (June-August), autumn (September-November) and 

winter (December to February). I then used published length-mass conversions to get a 

mean individual carbon mass for each taxon in each season, which was multiplied with 

the respective abundance data to estimate biomass (mg C m-3).  

 

3.2.2 Environmental data 

SST, SI and chlorophyll-a were determined following materials and methods in 

Chapter Two (Section 2.2.4 and 2.2.5).  Particulate organic carbon (POC) and nitrogen 

(PON) were quantified by collecting triplicate 250 mL aliquots of surface seawater, pre-
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filtering through a 200 µm mesh, before filtering onto 25 mm ashed glass fibre filters 

(GF/F). The filters were then dried at 60 °C and acidified with sulphurous acid prior to 

analysis on a Thermoquest FlashEA 1112 elemental analyser.  

Microplankton data were sampled and enumerated following the materials and 

methods in Chapter Two (Section 2.2.4).  Phytoplankton data were grouped into total 

diatoms, dinoflagellates, coccolithophores and phytoflagellates. Microzooplankton 

data were grouped into total ciliates, heterotrophic dinoflagellates and zooflagellates. 

Specific “toxic” phytoplankton species were identified from a review of the literature 

on the effect of diatoms and dinoflagellates on copepod egg viability and potential 

teratogenic effects, and cross-referenced with those taxa reported at station L4. A list 

of 35 potential harmful taxa was produced following discussion with an expert 

taxonomist (C. E. Widdicombe, 2016, personal communication, 14th November) (Table 

3.2). 

 

3.2.3 Egg production rate, hatching success and naupliar abnormalities 

Mean egg production rate (EPR) was determined weekly from the incubation of 

25 adult females over 24 hrs [see Chapter Two (Section 2.2.2)]. Egg hatching success 

(EHS) was evaluated over the years 2013 and 2015-2016 using two similar methods. 

During 2013, ~120 eggs (collected during the EPR experiments) were pipetted into 

individual cells of a multi-well plate, incubated at ambient L4 temperature and 

observed every 24 hrs for five days [see Chapter Two (Section 2.2.3)]. During the 

period 2015-16, harvested eggs from the EPR incubations were placed in a 250 ml 

amber glass bottle with ~200 ml 0.2 µm FSW and incubated at ambient L4 

temperature. After ~48 hrs, 10 ml 2% (final concentration) acid-Lugol’s iodine solution 

was added to the incubation to preserve the nauplii and non-hatched eggs. During 

sample analysis, all nauplii and un-hatched eggs were enumerated. Nauplii were 

categorised as either healthy or abnormal. Partial hatches were classified as un-

hatched or if it was obvious that the nauplius was not healthy, were counted as 

abnormal nauplii. Egg hatch success was calculated as a proportion of the total number 

of eggs produced during the EPR experiments. Naupliar abnormality (NA) was 

calculated as a proportion of the total number of eggs hatched. Egg hatch success data 
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from April 2003 to August 2004 were kindly provided by D. Bonnet to extend the size 

of the dataset (Bonnet et al., 2009). Naupliar abnormality data from March to August 

1994 were transcribed from Pond et al. (1996). 

 

Table 3.2. Potential harmful phytoplankton species reported at station L4, English Channel, 

UK and investigated for effects on Calanus helgolandicus egg hatch success and naupliar 

abnormalities; PUA – polyunsaturated aldehyde; NVO – non-volatile oxylipin. 

Species Type                                                                 Harmful chemical 

Alexandrium tamarense Dinoflagellate Saxitoxin 

Amphidium spp. Dinoflagellate Various 

Asterionellopsis glacialis Diatom PUA 

Cerataulina pelagica Diatom NVO 

Chaetoceros affinis Diatom PUA 

Chaetoceros compressus Diatom PUA 

Chaetoceros curvisetum Diatom Unknown 

Chaetoceros socialis Diatom Weak PUA 

Cylindrotheca costatum Diatom NVO 

Dinophysis spp. Dinoflagellate Various 

Ditylum brightwellii Diatom NVO 

Emiliania huxleyii Coccolithophore Unknown 

Fragilaria spp. Diatom PUA 

Guinardia delicatula Diatom PUA 

Guinardia striata Diatom NVO 

Gymnodinium pygmaeum Dinoflagellate Unknown 

Heterocapsa niei Dinoflagellate Unknown 

Karenia mikimotoi Dinoflagellate Unknown 

Lauderia annulata Diatom Unknown 

Melosira spp. Diatom PUA 

Navicula spp. Diatom NVO 

Phaeocystis pouchettii Prymnesiophyte PUA 

Prorocentrum spp. Dinoflagellate Various 

Pseudonitzschia delicatissima Diatom PUA 

Rhizosolenia setigera Diatom NVO 

Skeletonema costatum Diatom PUA 

Thalassiosira anguste-lineata Diatom PUA 

Thalassiosira eccentrica Diatom NVO 

Thalassiosira punctigera Diatom NVO 

Thalassiosira rotula Diatom PUA 

Total Chaetoceros Diatom     - 

Total Guinardia Diatom     - 

Total Pseudo-nitzschia Diatom     - 

Total Rhizosolenia Diatom     - 

Total Thalassiosira Diatom     - 



61 
 
 

3.2.4 Egg mortality estimation 

Stage duration 

Egg hatching times (i.e. the period from egg laying until hatching) are required 

to determine mortality rates. The literature was reviewed to collate all experimentally-

derived egg-hatch data. Egg-hatch times over a range of temperatures were fitted to a 

temperature function (T, oC) using the Bělehrádek function (Bělehrádek and Mann, 

1935; Bělehrádek, 1957): 

 

D = a(T-α)-b                                                                               (3.1) 

 

where a is a constant that accounts for the difference in the mean slope, α is the 

biological zero (the theoretical temperature at which development time is infinitely 

long) and b is the degree of the curvilinearity of the response (Corkett, 1972). The 

function was solved using the non-linear least squares (nls) tool in R (R Development 

Core Team, 2012). The value for b for copepods in the literature has frequently been 

set at 2.05 [(e.g. see Corkett et al., (1986)] and has been applied here too. Data sources 

are presented in Table 3.3. 

 

Table 3.3. C. helgolandicus egg hatching rates used in derivation of egg stage duration 

Bělehrádek function. 

Source T (ºC) D (days) 

Corkett (1972) 0.7 6.91 

“ 3.9 4.20 

“ 7.4 2.41 

“ 14.2 1.37 

Rey et al., (2001) 15.0 1.70 

“ 15.0 1.50 

“ 15.0 1.30 

“ 15.0 1.20 

Cook et al., (2007) 8.0 2.21 

“ 12.0 1.48 

“ 15.0 1.13 

Lopez et al., (2007) 15.0 1.30 

Bonnet et al., (2009) 9.0 1.28 

“ 12.0 1.11 

“ 15.0 1.16 
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Vertical life-table mortality methods 

Egg mortality rates (instantaneous mortality rates) were ascertained using the 

Basic vertical life table method [Equation 5 in Hirst et al. (2007)], modified and 

corrected by Hirst and Kiørboe (2002), originally from Peterson and Kimmerer (1994);  

 

Neggβegg

F × NC6f
=[1- exp

(-β
egg

Degg)]    (3.2) 

 

where βegg is the mortality rate of the egg stage and solved by iteration; Negg is the 

abundance of eggs (m-3), F is the egg production rate (no. eggs female-1 d-1), NC6f is the 

abundance of females (no. m-3), and Degg is the egg hatching time (d).  

From a range of possible vertical methods, the Basic method is recommended 

as the most suitable for early stages and egg mortality in particular (Gentleman et al., 

2012; Head et al., 2015). As it is recognised that egg viability is usually <100%, a 

modification taking account of egg hatching success has been developed (Head et al., 

2015), therefore I have also employed this Viability Basic method (Eq. 7a and 8) from 

Head et al. (2015) to calculate modified egg mortality rates; 

 

Neggβegg

F × NC6f
 = [1- v exp

(-β
egg

Degg)]                                                   (3.3) 

 

where v is the proportion of viable eggs obtained from egg hatch success 

experimentation.  

 

3.2.5 Lipid extraction and fatty acid analyses 

Seston 

Lipid extraction and fatty acid determination followed the protocol given in 

White et al. (2015). The method involved the collection of 4-6 L seawater from a depth 

of 10m, (collected using the CTD), which was pre-filtered through a 200 μm mesh, 

filtered under light vacuum onto ashed glass fibre filters (Whatman GF/F; 47 mm; n = 
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3), then stored in ca 7 mL of chloroform:methanol (2:1 v/v+0.05% w/v Butylated 

hydroxytoluene) in combusted glass vials at −20 °C prior to lipid extraction. Extracts 

were generated using sonication to disrupt cellular material (Folch et al., 1957). 

Samples were further extracted with 100% chloroform to ensure complete lipid 

extraction. Lipid-containing layers were pooled and dried under vacuum and stored at 

−80 °C in 1 mL of chloroform:methanol (2:1).  

Fatty acid determination involved the drying of 400 μL of lipid extract under a 

gentle stream of nitrogen before adding nonadecanoic acid (C19:0; 20 μL, 1 mg mL−1) 

as an internal standard. Cellular fatty acids were converted directly to fatty acid methyl 

esters (FAMEs) by adding 1 mL of transesterification mix (95:5 v/v 3 N methanolic 

hydrochloric acid; 2, 2-dimethoxypropane) followed by incubation at 90 °C for 2 h. 

After cooling, FAMEs were recovered by addition of 1% w/v NaCl solution (1 mL) and n-

hexane (1 mL) followed by vortexing. The upper hexane layer was injected directly into 

the Gas Chromatography-Mass Spectrometry (GC–MS) system and FAMEs were 

separated on a fused silica capillary column (30 m × 0.25 mm × 0.25 μm; Omegawax™ 

250, Supelco, Sigma-Aldrich, Gillingham, Dorset, UK) using an oven temperature 

gradient of 75 °C to 240 °C at 4 °C min−1 followed by 15 min hold time. Helium was 

used as the carrier gas (1 mL min−1) and the injector and detector inlet temperatures 

were maintained at 280 °C and 230 °C, respectively. FAMEs were identified using 

retention times and qualifier ion response, and quantified using respective target ion 

responses. All parameters were derived from calibration curves generated from a 

FAME standard mix (Supelco, Sigma-Aldrich, Gillingham, Dorset, UK). FA data were 

available in units of µg L-1 and as the proportion of total FA. 

 

Calanus helgolandicus eggs 

During June-November 2013, the remaining eggs following the egg production 

experiments (and those not required for egg hatching experiments) were collected in a 

2 mL Eppendorf with as small an amount of FSW as possible and frozen at -20ºC. The 

number of eggs preserved was noted. As for seston FA, extracts were generated using 

sonication and 100% chloroform to disrupt cellular material (Folch et al., 1957) and 
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FAMES were derived using GC-MS. FA data were available in units of ng egg-1and as the 

proportion of total FA. 

 

3.2.6 Statistical methods 

C. helgolandicus egg hatch success and naupliar deformity proportion data 

were arcsine-square-root transformed before any regression analyses were performed 

to linearise the data. Egg and seston fatty acid proportion data were also arcsine-

square-root transformed. Phyto-, micro- and zooplankton data were log transformed 

(as log10 x+1). Both simple and multiple regression models were generated using 

environmental, phyto/micro-plankton and FA data (see more on FA data below). 

Homogeneity, normality and independence of model residuals were examined. Where 

residuals displayed heterogeneity, variance-covariance structures were applied via a 

GLS (generalised least squares) model. Date was included in the regression models to 

account for temporal autocorrelation in residuals.  

Seston fatty acid data were analysed using principal components analysis (PCA) 

to reduce the number of variables employed in multiple regression analyses. PCA 

arranges similar variables on components and calculates the relative loading 

[eigenvectors on a scale of -1 (negative loading) to 1 (positive loading)], allowing key 

variables to be selected (Table 3.4). FA with the highest loadings (+ and –ve) from each 

principal component were included in multiple regression analysis (Table 3.5).  

Fatty acid profiles of both egg and seston (relative proportion data) were 

subject to separate non-metric multidimensional scaling (MDS) analyses to investigate 

fatty acid composition of each sample. MDS is an ordination technique that represents 

samples as points in low-dimensional space, so that samples occurring close together 

in a plot are very similar in composition.  

The analysis of the effects of potential toxic species on eggs involved an 

exploration of toxic species (listed in Table 3.2) reported during the month prior to the 

timings of low EHS and high NA (using mean proportions as threshold low EHS/high NA 

levels), to ascertain if there was any co-occurrence.  
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Egg mortality rates were both positive and negative values, therefore a log10[x + 

(min(x) +1)] transformation was undertaken to convert all data to positive values and 

normalise the distribution. Following Hirst et al. (2007), mortality rates were LOESS-

smoothed (f=0.2) before further analysis for relationships with potential predators (C. 

helgolandicus copepodites, total copepods, total medusae, total meroplankton, etc.) 

and environmental variables (SST, SI and chlorophyll-a, etc.). All regression analyses 

were performed on the LOESS-smoothed mortality rates. 

All regression analyses were performed in the R programming environment (R 

Development Core Team, 2012). Reduced major axis (RMA) regressions were 

performed using the RMA Software of Bohonak and van def Linde (2004). All 

multivariate statistical analyses (MDS and PCA) were performed using PRIMER-E v6 

(Clarke and Gorley, 2006). 

 

Table 3.4. Eigenvectors from five principal components of Principal Components Analysis 

(PCA) of seston fatty acids (proportions); numbers in bold represent highest loadings. 

Seston fatty acid    PC1    PC2    PC3    PC4    PC5 

C16:0 -0.36 -0.02 -0.24 0.07 -0.12 

C16:1(n-7) -0.16 0.32 0.31 0.14 -0.15 

C16:1/C16:0 ratio -0.02 0.32 0.39 0.10 -0.05 

C16:4 (n-3) 0.27 0.11 -0.36 0.00 -0.18 

C16:4 (n-1) 0.08 0.30 0.02 0.34 -0.06 

C18:2(n-6) -0.15 -0.28 0.00 0.34 0.19 

C18:3(n-6) 0.17 0.24 -0.21 -0.29 0.34 

C18:3(n-3) 0.08 -0.31 -0.17 0.33 -0.26 

C18:4(n-3) 0.32 -0.05 -0.24 0.22 -0.30 

C20:4(n-6) 0.08 0.28 -0.23 0.14 0.14 

C20:5(n-3) 0.30 0.24 0.10 0.22 0.03 

C22:6 (n-3) 0.14 -0.25 0.31 -0.24 0.32 

C22:6/C20:5 ratio 0.00 0.12 0.00 -0.40 -0.57 

n-3/n-6 ratio 0.12 -0.26 0.34 -0.02 -0.35 

Tot MUFA -0.28 0.11 0.25 0.30 -0.05 

Tot PUFA 0.41 -0.07 0.06 0.11 0.10 

Tot SFA -0.37 0.04 -0.17 -0.24 -0.10 
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Table 3.5. Seston fatty acids included in multiple regressions with Calanus helgolandicus egg 

hatch success and naupliar abnormalities, following PCA of all seston fatty acids 

(proportions) and expert knowledge. 

Seston fatty acid 

C16:0 

C16:1(n-7) 

C16:1/C16:0 ratio 

C16:4(n-3) 

C16:4(n-1) 

C18:2(n-6) 

C18:3(n-3) 

C18:4(n-3) 

C20:4(n-6) 

C20:5(n-3) 

C22:6(n-3)) 

C22:6/C20:5 ratio 

n-3/n-6 ratio 

Tot MUFA 

Tot PUFA 

Tot SFA 

 

 

3.3 Results 

The average L4 seasonal environment over the time periods analysed in this 

study is presented in Figure 3.1. Sea surface temperature ranged from ~7ºC in spring 

(low of 7.3ºC on 9th March 2013) to ~19ºC during late summer and autumn (high of 

18.8ºC on 9th August 2004) with an annual mean of ~13ºC (Figure 3.1a). Thermal 

stratification occurred between May and September, with peak SI indices recorded 

August to September when surface temperatures were >4ºC greater than at depth 

(Figure 3.1a). Mean fortnightly chlorophyll-a concentrations ranged from 0.3-2.4 mg m-

3 and peaked from April to May (during the spring diatom bloom), and again in late 

summer to autumn (with the dinoflagellate bloom). Lowest concentrations occurred 

during winter and also in the summer stratified period (Figure 3.1b).  

Phytoplankton biomass was low throughout November to March, and was 

superseded by the spring diatom bloom and an increase in flagellates. Dinoflagellates 

appeared in summer and obtained peak biomass in September (Figure 3.1c). 

Microzooplankton biomass was elevated from spring though to the end of autumn, 
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and peaked in the summer (Figure 3.1d). Ciliate biomass increased in mid-winter and 

constituted between 50-75% of the biomass between February and May. Throughout 

June and July, heterotrophic flagellates dominated and peak microzooplankton 

biomass levels were reached. During the autumn, both heterotrophic dinoflagellate 

and ciliate biomass contributed ~50% to the biomass.  

Predator biomass was generally high throughout March to October and was 

dominated by copepods (Figure 3.1e). Meroplankton biomass was greatest during the 

spring, whilst gelatinous zooplankton biomass was high during summer and autumn. 

Non-copepod holoplankton occurred mostly in the spring and fish larval biomass was 

greatest in spring and summer; both contributed little to total predator biomass.  

 

Figure 3.1. Seasonal variation (fortnightly means and error bars representing standard 

deviation) of (a) sea surface temperature (SST) (ºC) and Stratification Index (difference in 

temperature between surface and 30m) (2002-04, 2013, 2015, Jan-Sep 2016); (b) chlorophyll-

a concentration; RHA is right hand axis. 
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Figure 3.1 contd. Seasonal variation (fortnightly means and error bars representing standard 

deviation) of (c) phytoplankton biomass (2002–2004, 2013); (d) microzooplankton biomass 

(2002-2004, 2013), and (e) main predator groups biomass (2002–2004, 2013). 
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The fatty acid profile of the seston was measured on a near-weekly basis 

throughout 2013. Total seston fatty acid concentrations ranged from 4 - ~50 µg L-1, 

with a mean of 15.4 µg L-1. Concentrations rose from background levels from May 

through to September, with a peak of 48.9 µg L-1 occurring in August 2013. The 

dominant fatty acids included C16:0 – mean of 23%, C22:6(n-3) docosahexaenoic acid 

(DHA) - mean of 12%, C14:0 - mean of 11%, C16:1(n-7) - mean of 8% and C20:5(n-3) 

eicosapentaenoic acid (EPA) - mean of 7.5% (Figure 3.2).  

 

 

Figure 3.2. Dominant fatty acid concentrations in seston (2013), comprising ~60% of annual 

FA concentration (C16:0 – 23%; C22:6(n-3) – 12%; C14:0 – 11%; C16:1(n-7) – 8%; C20:5(n-3) – 

7.5%). 

 

3.3.1 Calanus helgolandicus abundance 

Calanus helgolandicus copepodites were continually recorded at L4, albeit at 

very low levels during December and January (~5-10 CI-CVI copepodites m-3). Total C. 

helgolandicus abundance increased in February and often exhibited two peaks, the 

first in spring, with a second higher peak in late-summer/early autumn (Figure 3.3a). 

Abundances ranged from 0.4 to 1251 C. helgolandicus m-3 with an average of 88.5 m-3 

individuals (median of 33.3 m-3).  Female adult C. helgolandicus abundance was very 

low (~1 m-3) through November and December, but the population increased steadily 
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from January to mid-summer. The 25-year (1988-2012) L4 time-series showed that 

female abundance typically reduces dramatically after June (Maud et al., 2015) 

(Chapter Two), however the truncated dataset analysed during this study showed a 

second peak in abundance in the autumn (Figure 3.3a). Female abundance ranged 

from 0-49 m-3, with an average of 7.3 m-3 (median of 3.6 m-3). 

 

3.3.2 Egg production and abundance at L4 

C. helgolandicus egg production usually continues all year round at this coastal 

NE Atlantic site. Egg production rates (EPR) were lowest in winter, but started to 

increase from February, well before the phytoplankton spring bloom. Production rates 

continued to increase through the spring and peaked between April through June, 

followed by a decline through autumn into winter. Mean EPR over the time considered 

here was 13.3 eggs female-1 d-1 and a maximum of 54.8 eggs female-1 d-1 was recorded 

on 22nd April 2003 (Figure 3.3b).  

Egg abundance in the water column was very low during October through to 

January each year (~10 eggs m-3), but also increased from February onwards as EPR 

increased. The concentration of eggs continued to increase strongly throughout spring 

and summer as both EPR and numbers of females increased, and declined from 

October onwards (Figure 3.3b).  
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Figure 3.3. Calanus helgolandicus seasonality (fortnightly mean and error bars representing 

standard deviation) (a) total CI-CVI abundance and ♀ abundance; (b) mean egg production 

rate and egg abundance. RHA is right hand axis. 

 

3.3.3 Egg hatch success and relationships with diet and environment 

Calanus helgolandicus EHS was determined for a total of 93 weeks over the 

study period and ranged from 0-100%, with mean monthly rates of 25-80% (Figure 

3.4). Mean winter and spring EHS rates were 47% and 35% respectively. Egg hatch 

success was much higher during the second half of the year with mean summer and 

autumn rates of 75% and 68% respectively. This analysis builds upon the evidence 

presented in Maud et al. (2015), and substantiates a continued pattern of low egg 

viability in winter and spring followed by consistently high viability in summer and 
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autumn. Statistical analysis of seasonal EHS rates indicated that spring rates were 

significantly lower than all other seasons (Kruskal-Wallis H = 24.6, df = 3, p = 0.0001).  

 

 

Figure 3.4. Seasonal variation of egg hatch success annual fortnightly means, 2003 and 2004 

data kindly supplied by Bonnet et al. (2009), 2013 data taken from Maud et al. (2015), 

alongside 2015 and 2016 data; black line indicates mean monthly egg hatch success.  

 

 

Table 3.6 summarises the relationships between EHS and environmental and 

maternal diet-related factors. There was a strong positive relationship with SST (R2 = 

0.270, n = 89, p <0.000001 with date included as a variable), and also with 

Stratification Index (R2 = 0.081, n= 89, p = 0.0097 with date included). There were no 

relationships with surface chlorophyll-α concentrations or diatom abundance/biomass; 

however, dinoflagellates, coccolithophores and phytoflagellates (biomass) were 

positive predictors of EHS. A backwards stepwise regression including all 

environmental and microplankton biomass factors, resulted in a model where only SST 

remained as a significant predictor. When microplankton biomasses only were 

included, dinoflagellates were the only significant variable in a stepwise multiple 

regression model.  

Biomass data from the previous week (1 week lag) also highlighted 

dinoflagellates and phytoflagellates as important predictors, but in addition, diatoms, 

ciliates and heterotrophic dinoflagellates also explained EHS. Multiple regressions with 
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lagged data produced significant models with ciliates + dinoflagellates, and ciliates + 

coccolithophores (Table 3.7). 

 

Table 3.6. Coefficient of determination (R2
) of linear regressions between egg hatch success 

rate or naupliar abnormality rate and sea surface temperature (SST), Stratification Index (SI) 

and microplankton biomasses. All proportions were arcsine-square-root transformed. All 

biomass data were log10(x+1) transformed. Significance of regression is indicated by asterisk: 

*** p < 0.001, ** p < 0.01, * p < 0.05, R2
 value only indicates p <0.1, ns is not significant.  

Predictor Egg hatch success 

(proportion) 

Naupliar abnormalities 

(proportion) 

SST 0.274*** 0.119* 

SI 0.085** ns 

Diatom biomass ns ns 

Diatom biomass (-1 wk) 0.093* ns 

Dinoflagellate biomass 0.233*** ns 

Dinoflagellate biomass (-1 wk) 0.145** ns 

Coccolithophore biomass 0.071* ns 

Coccolithophore biomass (-1 wk) ns ns 

Phytoflagellate biomass 0.0722* 0.067 

Phytoflagellate biomass (-1 wk) 0.154** ns 

Ciliate biomass 0.0562 ns 

Ciliate biomass (-1 wk) 0.152** ns 

Heterotrophic dinoflagellate biomass ns ns 

Heterotrophic dinoflagellate (-1 wk) 0.090* ns 
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Table 3.7. Generalised least squares (GLS) analysis of environmental and maternal diet-

related variables predicting C. helgolandicus egg hatch success and naupliar abnormalities: 

coefficients, standard error (SE), t-value, p-value and AIC value for multi- GLSs; SST = sea 

surface temperature. 

Model predictor (s) Coefficient 

(slope) 

SE t-value p-value AIC 

Egg hatch success (EHS)      

Log10(dinoflagellate biomass (-1 wk) + 
log10(ciliate biomass (-1 wk) 

0.175 
0.311 

0.85 
0.144 

2.05 
2.16 

0.046 
0.036 

44.65 

Log10(ciliate biomass (-1 wk) + 
log10(coccolithophores biomass (-1 wk) 

0.343 
0.498 

0.118 
0.130 

2.917 
3.832 

0.005 
0.0004 

40.97 

Naupliar abnormalities (NA)      

SST + 
log10(ciliate biomass) 

-0.030 
0.180 

0.008 
0.069 

-3.72 
2.60 

0.0005 
0.0123 

24.98 

Log10(ciliate biomass)+ 
log10(coccolithophore biomass) + 
log10(phytoflagellates biomass) 

0.136 
-0.236 
-0.228 

0.066 
0.099 
0.084 

2.057 
-2.40 
-2.73 

0.0448 
0.0202 
0.0086 

22.81 
 

 

 

The investigation of potential toxic phytoplankton species revealed that there 

were 17 sample dates (18%) when EHS was below the mean (58%), and of these ~90% 

could not be associated with any potential toxic species, either during the week of 

sampling or the previous month. There were two dates when elevated levels of a 

number of toxic species co-occurred with a low EHS. High (but not peak) levels of 

Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, Skeletonema costatum, 

Thalassiosira rotula and Phaeocystis pouchetii coincided with an EHS of < 30%.  

 

3.3.4 Naupliar abnormalities and relationships with maternal diet and environment 

Abnormalities in newly hatched NI nauplii (NA) (Figure 3.5) were determined 

over a total of 89 weeks. NA ranged from 0-50% of eggs hatched, with a mean of 8%. 

Higher levels of NA were seen during the first six months of each year, particularly 

during spring of 2013 and 2015 (Figure 3.6).  
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Figure 3.5. C. helgolandicus newly hatched (a) nauplii with deformities, and (b) healthy 

nauplii (stained orange as preserved in 2% (final concentration) acid-Lugol’s iodine solution). 

 

 

 

Figure 3.6. Calanus helgolandicus. Seasonal variation of naupliar abnormalities (annual 

fortnightly means), 1994 data extracted from Pond et al. (1996), 2013 data taken from Maud 

et al. (2015), alongside my 2015 and 2016 data; black line indicates mean monthly 

abnormalities, excluding 100% NA outlier from 20/6/16. 
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The general mean seasonal cycle indicates a March-June increase in the rate 

and variation of naupliar deformities, and spring abnormality rates (mean of 12%) 

were greater than other seasons, although not significantly. There was an inverse 

relationship between mean monthly EHS and NA, so that when egg viability was low, 

there were an increased number of abnormal nauplii [reduced major axis (RMA) 

regression analysis intercept = 0.22, slope = -0.234, R2 = 0.606, n = 12, p = 0.0023]. 

Naupliar abnormalities were inversely related to SST (R2 = 0.12, n = 86, p = 

0.006, with date included as a variable). Phytoflagellate biomass was the only diet-

related variable close to being a significant (inverse) predictor of NA (R2 = 0.067, n = 55, 

p = 0.056). A multiple backwards stepwise regression starting with all environmental 

and microplankton data resulted in a model including SST and ciliate biomass. A 

backwards stepwise regression including microplankton biomass only resulted in a 

model incorporating coccolithophore, phytoflagellate and ciliate biomass (Table 3.7). 

Naupliar deformity rates of greater than 10% were investigated for co-

occurrence with toxic phytoplankton. Five dates when NA was between 11% and 17% 

coincided with multiple potential toxic species, including Cerataulina pelagica, 

Chaetoceros spp., Gymnodinium pygmaeum, P. delicatissima, Prorocentrum micans, 

Guinardia spp., Thalassiosira spp. and Karenia mikimotoi. However, none of the 

highest NA rates (20-50%) occurred at the same time as toxic blooms. 

 

3.3.5 Calanus helgolandicus egg and seston fatty acids  

Fatty acid profiles of eggs were determined for only 16 weeks from June to 

November 2013. Therefore, unfortunately, this only provides insight into the most 

productive half of the year. Total egg fatty acids were variable throughout this period, 

and ranged from 14 -~50 ng egg-1, with a mean of 36 ng egg-1. PUFAs accounted for an 

average of 50% of egg fatty acids; SFAs accounted for ~36% and MUFAs contributed 

~13%.  

The dominant fatty acids showed similarities to that of the seston and included 

C16:0, C22:6(n-3), C20:5(n-3), C16:1(n-7) and C18:0 (Figure 3.7). However mean 

proportions were different, C22:6(n-3) and C20:5(n-3), in particular were much higher 
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than in the seston. Linear regression analyses of individual fatty acids determined that 

C22:6(n-3) and C20:5(n-3) were more concentrated in the eggs and were not related to 

seston proportion. The majority of other fatty acids in the eggs also did not mirror that 

of the seston.  

 

 

Figure 3.7. Composition of the dominant fatty acids (mean June-November) comprising ~80% 

of total FA concentration in seston at L4 and Calanus helgolandicus eggs laid from wild ♀ 

collected from station L4. 

 

 

Non-metric multidimensional scaling (MDS) of the seston fatty acid 

(proportion) profiles illustrates the weekly variation in composition and provides 

evidence of some clustering of months, indicating seasonal changes (Figure 3.8a). 

However, 14 out of 16 egg fatty acid compositions (88%) were clustered in exactly the 

same position in space on the MDS plot (Figure 3.8b), indicating that the composition 

of these samples was highly similar.  
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Figure 3.8. Non-metric multidimensional scaling plots representing (a) seston fatty acid 

composition (proportion) of seawater collected from station L4 (June-November 2013); and 

(b) Calanus helgolandicus egg fatty acid composition (proportion) from♀collected from 

station L4 (June-November 2013), labels in italics represent the date of sampling. 
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3.3.6 Fatty acids, egg hatch success and naupliar abnormalities 

Linear regressions of seston fatty acids with both EHS and NA are presented in 

Table 3.8. Numerous fatty acids and EHS were positively related, including the diatom 

biomarkers C16:0 (concentration), C16:1(n-7) (concentration), and the dinoflagellate 

biomarkers C18:2(n-6) (proportion), C18:3(n-3) (concentration) and C22:6(n-3) 

(concentration). The diatom biomarkers C20:5(n-3) (proportion) and C16:4(n-1) 

(proportion) were negatively related to EHS, although only C16:4(n-1) significantly 

(Figure 3.9a and Figure 3.9c). A multiple backwards stepwise regression analysis 

starting with a reduced set of seston fatty acids (proportions) (following the PCA 

analysis, Table 3.5), resulted in a model with C18:2(n-6) as the only significant variable 

(R2 =0.243, n = 34, p = 0.0031). A significant model (starting with environmental and 

reduced seston fatty acid (proportion) variables) incorporated C16:0, C18:3(n-3), 

C20:5(n-3) and SI (R2 =0.487, n = 34, p = 0.0005; all +ve). 

The proportion of NA was positively related to the C16:1/C16:0 ratio, C16:4(n-

1) concentration (Figure 3.9d) and C20:5(n-3) concentration (Figure 3.9b) (Table 3.8). A 

multiple backwards regression starting with reduced (Table 3.5) seston fatty acid 

(proportions) produced a model including C16:0 as a negative predictor and C16:4(n-1) 

as a positive predictor (R2 =0.293, n = 31, p = 0.0079). 

As stated earlier, egg fatty acid composition was determined from June to 

November 2013. There were no significant relationships between any fatty acids 

(proportion) and EHS or NA. However, close-to-significant, inverse relationships were 

determined between NA and C16:1/C16:0 ratio (R2 = 0.218, n = 16, p = 0.0685) and 

also C22:6(n-3) (R2 = 0.183, n = 16, p = 0.0986). 
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Table 3.8. Calanus helgolandicus. Coefficient of determination (R2) of linear regressions 

between weekly egg hatch success rate (EHS) and naupliar abnormality rate (NA) 

(proportions) and specific  seston fatty acids (proportion and µg L-1 concentration) and ratios 

(January-December 2013). All proportions are arcsine-square-root transformed. Significance 

of relationship is indicated by asterisk: * p < 0.05, ** p < 0.001, *** p <0.0001; n = 34; SFA 

saturated fatty acids, PUFA polyunsaturated fatty acids, MUFA monounsaturated fatty acids. 

Predictor Metric EHS (proportion) NA (proportion) 

C16:0 proportion 0.075 0.177* 

" µg L
-1

 0.155* 0.014 

C16:1(n-7) proportion 0.0044 0.05 

" µg L
-1

 0.134* 0.0001 

C16:1/C16:0 ratio - 0.034 0.148* 

C16:4(n-1) proportion 0.129* 0.135* 

" µg L
-1

 0.007 0.019 

C18:1(n-9) proportion 0.246** 0.077 

" µg L
-1

 0.176* 0 

C18:2(n-6) proportion 0.284** 0.04 

" µg L
-1

 0.164* 0.017 

C18:3(n-3) proportion 0.095 0.04 

" µg L
-1

 0.128* 0.049 

C20:4(n-3) proportion 0.002 0.11 

" µg L
-1

 0.326** 0 

C20:5(n-3) proportion 0.085 0.174* 

" µg L
-1

 0.078 0.0011 

C22:6(n-3) proportion 0.023 0 

" µg L
-1

 0.121* 0.004 

C22:6/C20:5 ratio - 0.106 0.045 

n-3/n-6 ratio - 0.06 0.003 

SFA proportion 0.0064 0.141* 

" µg L
-1

 0.145* 0.01 

PUFA proportion 0.036 0 

" µg L
-1

 0.094 0.002 

MUFA proportion 0.126* 0 

" µg L
-1

 0.162* 0.004 
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Figure 3.9. Relationship between selected seston fatty acids (proportion) and Calanus 

helgolandicus egg hatch success (EHS) and naupliar abnormalities (NA) (2013); (a) C20:5(n-3) 

and EHS; (b) C20:5(n-3) and NA; (c) C16:4(n-1) and EHS; (d) C16:4(n-1) and NA; (significant 

regressions indicated by solid black line, close-to significant regressions indicated by dashed 

black line). 

 

 

3.3.7 Egg mortality 

Calanus helgolandicus egg mortality rates were determined for 107 weeks, and 

ranged between -2.1 and 236 d-1 (median of 0.53 d-1). However, > 90% of the rates fell 

below 10 d-1 (Figure 3.10). The annual mean seasonality confirmed that increased 

mortality occurred from March to September, with two annual peaks, the first in June 

and a second lower peak in August.  Egg mortality rates were significantly higher in 

spring and summer than autumn and winter (Kruskal-Wallis H = 33.07, df = 3, p 

<0.0001). 
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Figure 3.10. Calanus helgolandicus egg mortality rates (and mean monthly rates indicated by 

dashed black line) as determined using the “Basic” vertical life-table method (Hirst et al., 

2007), March-December 2002, January – December 2003, January- March 2004 and January-

December 2013. 

 

Egg mortality rates were calculable using the Viability Basic approach for 33 out 

of a possible 107 sampling dates.  Rates very much followed the same fluctuations as 

the Basic method; however rates ranged from 0.002 – 24.2 d-1, with a median of 0.41 

d-1 (Figure 3.11). Comparable Basic rates ranged from -1.81x10-7 – 24.2 d-1. All Viability 

Basic rates were positive values and had increased from the Basic rates by 0-~60%. 

Viability Basic rates were very highly correlated with Basic rates (reduced major axis 

(RMA) regression analysis intercept = 0.149, slope = 0.993, R2 = 0.99, n = 33, p < 0.001). 
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Figure 3.11. Calanus helgolandicus egg mortality rates (2013) as determined using the 

standard Basic vertical life-table method (Hirst et al., 2007) (black line) and Viability Basic 

method, accounting for egg viability (Head and Gentleman, 2015) (red dashed line). 

 

Causative agents of egg mortality 

Table 3.9 summarises all significant simple and multiple regressions. SST was 

not a predictor of egg mortality rate, although both SI (R2 = 0.168, n = 106, p < 

0.000001) and chlorophyll-a (R2 = 0.072, n = 106, p = 0.0085) were positive predictors.  

Of the potential predators, C. helgolandicus copepodite abundance (CI-CVI and 

CI-CV abundances) and total copepod biomass explained egg mortality rates (Figure 

3.12). Total meroplankton and total non-copepod holoplankton were also significant 

predictors; however the typical copepod predator types (medusae, siphonophores, 

ctenophores, chaetognaths or fish larvae) or total gelatinous zooplankton were not. 

When a backwards stepwise multiple regression model was applied incorporating all 

significant environmental and predator variables, CI-CVI abundance was the only 

remaining significant variable. Including environmental factors only, a model 

containing SI and chlorophyll-a was significant.  A model incorporating copepod 

biomass and SI was also significant. 
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Table 3.9. Generalised least squares analysis of C. helgolandicus egg mortality rates and 

environmental and predator variables, as derived using the Basic vertical life-table method 

(Hirst et al., (2007)): coefficients, standard error (SE), t-value, p-value and AIC value for single 

and multi-variable GLSs; TRO = total reproductive output; SI = Stratification Index. 

Model predictor (s) Coefficient 

(slope) 

SE t-value p-value AIC 

Log10(SI) 0.784 0.078 10.01 <0.000001 5.27 

Log10(total C. helgolandicus 

CI-CVI abundance)  

0.143 0.027 5.40 <0.0001 40.93 

Log10(total meroplankton 

biomass) 

0.188 0.040 4.74 <0.000001 44.01 

SI + 

log10(copepod biomass) 

0.049 

0.267 

0.025 

0.059 

1.99 

4.49 

0.049 

0.00002 

44.47 

Log10(total C. helgolandicus 

CIV-CVI abundance) 

0.247 0.048 5.18 <0.0001 46.28 

Log10(total C. helgolandicus 

CI-CV abundance) 

0.280 0.060 4.98 <0.000001 47.44 

Log10(copepod biomass) 0.234 0.057 4.10 0.001 48.81 

Log10(chlorophyll-a) 0.575 0.214 2.68 0.0085 56.02 

Log10(non-copepod 

holoplankton biomass) 

0.070 0.033 2.15 0.034 60.40 

SI + 

chlorophyll-a 

0.069 

0.073 

0.027 

0.036 

2.56 

1.99 

0.012 

0.049 

66.71 
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Figure 3.12. Calanus helgolandicus egg mortality rates (April 2002 – March 2004, 2013). 

Relationship with (a) total Calanus helgolandicus copepodite (CI-CVI) abundance; (b) total 

meroplankton biomass (polychaete larvae, bryozoan larvae, gastropod larvae, echinoderms, 

cirripede larvae and decapod larvae); (c) total Calanus helgolandicus CI-CV copepodite 

abundance; (d) other holoplankton biomass (appendicularians, cladocerans, hyperiids, 

mysids and euphausiids); (e) total copepod biomass. 
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3.4 Discussion 

3.4.1 Egg hatch success and naupliar health  

I have determined Calanus helgolandicus egg and naupliar viabilities over ~four 

years at station L4 and found that NA as a proportion of eggs hatched were inversely 

related to EHS, so the greater the number of eggs hatched, the lower the proportion of 

abnormalities. This would suggest that copepod reproduction potential separates into 

two contrasting scenarios; time periods when population growth potential is likely high 

(most eggs hatch/few abnormalities) and periods when it is low (few eggs hatch/more 

abnormalities). Here I discuss causative agents, following three lines of reasoning 

related to the physical environment, food quality and “toxic” food. 

 

The physical environment 

Both egg and naupliar health were lower and more variable in spring. My 

results concur with other C. helgolandicus egg viability studies where spring EHS was 

low (Laabir et al., 1995b; Jónasdóttir et al., 2005), although one study in the Cantabrian 

Sea reported a consistently high EHS (> 70%) (Ceballos and Álvarez-Marquéz, 2006b). 

Studies that measured NA of C. helgolandicus in addition to EHS are few. The Laabir et 

al. (1995b) study reported that “the nauplii that did hatch were abnormal” during low 

EHS events in summer at Roscoff, indicating a 100% deformity rate. Pond et al. (1996) 

obtained rates from L4 during 1994, and these data have been consolidated into my 

study. Abnormality rates of other calanoid species include Calanus simillimus in the 

sub-Antarctic (3-20%) (Miralto et al., 1998); Centropages hamatus from Long Island 

Sound, US (<5%), and Temora longicornis (<10%), also from Long Island Sound (Tang et 

al., 1998). Together these studies indicate typically varied egg viability rates across 

many calanoid copepods. 

I established that both egg viability and naupliar health were positively related 

to SST, both in simple linear and multiple regressions. EHS data from 1994, also from 

L4, reported the same association with SST (Pond et al., 1996).  However, the 2003-04 

L4 EHS data (data incorporated into this study) on its own was not associated with SST 

(Bonnet et al., 2009), and Ceballos and Álvarez-Marqués (2006b) reported the same 

lack of relationship. It is likely that any relationship between EHS, NA and SST is an 
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indirect one, through the effect on the female, or simply that SST is a proxy for the 

biological/environmental variability that occurs throughout the year. For example, in 

the colder months, adult females may be lacking in body condition, experiencing 

starvation episodes, or may simply be older females (Ianora et al., 1996; Jónasdóttir et 

al., 2005), such that eggs produced are less viable.  

 

Food quality  

The results on the effect of maternal food availability and nutrition on EHS 

were conflicting. Neither chlorophyll-a nor diatom biomass were predictors of EHS (in 

agreement with other C. helgolandicus studies [Laabir et al., 1995b; Pond et al., 1996; 

Tang et al., 1998; Ceballos and Álvarez-Marqués, 2006b)], although EHS was positively 

related to the diatom fatty acid biomarker C16:1(n-7) concentration. Instead, my study 

highlighted dinoflagellates and ciliates as important explanatory factors.  

Both of these microplankton groups might be expected to be advantageous to 

copepod reproduction. Ciliates have frequently been reported as a particularly 

nutritious and lipid-rich prey, beneficial to various copepod life processes (Pond et al., 

1996; Maud et al., 2015), which may also be selected by copepods, in preference to 

other microplankton (Nejstgaard et al., 1997; Fileman et al., 2010). Evidence for the 

nutritional role of dinoflagellates is contradictory. Kleppel (1993) found that 

dinoflagellates provided more protein, carbohydrate and lipid than diatoms and stated 

that dinoflagellates were generally viewed as more nutritious for copepods. Jones & 

Flynn (2005) observed selective feeding of dinoflagellates over diatoms. However, 

dinoflagellate blooms of species known to produce neurotoxins (i.e. Alexandrium spp. 

and Karenia spp.) have been reported to reduce reproduction and egg viability (Gill 

and Harris, 1987; Roncalli et al., 2016). The potential toxic effects of dinoflagellates are 

discussed in the following section. 

Dinoflagellate fatty acid biomarkers include C22:6(n-3), C18:5(n-3) (White et al., 

2015), linoleic acid C18:2(n-6) (Pond et al., 1996) and linolenic acid C18:3(n-3) 

(Jónasdóttir et al., 2005). My study found that C. helgolandicus EHS was positively 

correlated with the PUFA C22:6(n-3) and was inversely related to NA, although the 

relationship was not significant (p = 0.099). These results complemented other studies 
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(Arendt et al., 2005; Jónasdóttir et al., 2005; Evjemo et al., 2008). PUFAs (particularly 

C22:6(n-3), C20:5(n-3) and C20:4(n-6)) are associated with biological membranes and 

are precursors of eicosanoids, compounds that are vital for range of invertebrate 

processes, including egg production and hatching (Brett and Müller-Navarra, 1997). 

Both C18:2(n-6) (Pond et al., 1996) and C18:3(n-3) (Jónasdóttir et al., 2005) were also 

positive predictors of EHS. These fatty acids are important precursors to PUFAs, 

although it is uncertain if PUFAs are synthesised de novo from precursor fatty acids by 

invertebrates (Monroig et al., 2013). Much is discussed in the literature about the 

C22:6/C20:5 ratio [where it is reported that a ratio of >1 is beneficial for copepod 

reproduction (Lacoste et al., 2001)], and although my results did not find that this ratio 

explained egg or naupliar health to any degree, other studies have reported positive 

relationships (Jónasdóttir and Kiørboe, 1996; Jónasdóttir et al., 2005; Peters et al., 

2007).  

C. helgolandicus egg fatty acids did not reflect seston fatty acid composition, 

although most FAs were detected in both. The most notable difference was the higher 

concentration of PUFAs, predominantly C20:5(n-3) and C22:6(n-3). This result 

corroborates the results of Pond et al. (1996), who suggested that C. helgolandicus 

feeds selectively or is capable of retaining fatty acids. My discovery that egg fatty acid 

composition remained constant throughout June-November, whereas seston 

composition varied considerably, suggests that adult females are capable of modifying 

the content of their eggs in an attempt to produce eggs of optimal quality. 

Additionally, this suggests that during the population growth period, prey abundance 

and quality is consistently high to sustain the production of high-quality eggs. 

 

Harmful phytoplankton 

I hypothesise that if specific toxic phytoplankton were singularly responsible for 

low EHS and high NA, I would expect clear indications in the algal data at the timing of 

the most extreme examples. I found that >90% of the lowest (below mean) EHS rates 

could not be explained by elevated levels of toxic phytoplankton occurring in the 

previous month. Furthermore, none of the high NA rates coincided with blooms of 

those species I recognised as being toxic. There were a limited number of low EHS and 

high NA events that coincided with or rapidly followed elevated levels of “harmful” 



89 
 
 

algae, but these involved multiple species, and were not monospecific. Moreover, only 

one of the elevated algal species (Cerataulina pelagica) was a concentrated bloom; the 

remainder species were generally present at levels above the mean or median 

biomass.  

I specifically discuss Phaeocystis spp. as a regular and well-known algal bloomer 

at L4. Phaeocystis pouchetii colonies frequently produce a 2-3 week bloom, usually 

during the spring, before the diatom bloom. Phaeocystis spp. are known to produce 

PUAs (Hansen et al., 2004) and therefore may affect egg development. However, 

Phaeocystis spp. have also been correlated with C18:3(n-3) (White et al., 2015), which 

in my study was a positive predictor of EHS. As there was no evidence for detrimental 

effects to eggs in my study, I conclude that P. pouchetti blooms at L4 at least, do not 

compromise copepod egg viability. This is in agreement with a previous laboratory 

study involving the effect of a uni-algal diet of Phaeocystis spp. to C. helgolandicus, 

concluding that Phaeocystis spp. do not produce anti-mitotic chemicals (Turner et al., 

2002). From the evidence given above, I conclude that there is little evidence for the 

effect of toxic algae on C. helgolandicus EHS or NA at L4. 

The seston fatty acid and phytoplankton data provide conflicting evidence for 

the role of “toxic” diatoms on egg and naupliar health. On the one hand there were no 

relationships between EHS or NA and diatom biomass. On the other, the fatty acids 

C16:4(n-1) and C20:5(n-3) were found to predict both egg and naupliar health. Diatom 

abundance has been correlated with C16:4(n-1) (White et al., 2015) and C20:5(n-3) 

(Anderson and Pond, 2000), implying that certain diatom strains may contribute to a 

decreased egg and naupliar health. Previous investigations have found both positive 

(Jónasdóttir et al., 2005) and negative (Arendt et al., 2005) impacts of C20:5(n-3) on 

EHS. One might expect both positive and negative effects of diatoms on egg and 

nauplii viability, as it is acknowledged that only certain diatom strains are detrimental 

to copepods, whilst most others are likely beneficial.  

The literature reveals numerous laboratory (and mesocosm) studies of toxic 

diatoms and dinoflagellates, but rather fewer in situ investigations. From a review of 

the available literature, I compiled a list of ~45 references where effects of 

phytoplankton were tested on copepod EHS (see Appendix B: Table 3.10). These 
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references contained data on 125 separate experiments involving 50 different “toxic” 

factors. Of the in situ studies (accounting for ~20%), 45% reported negative effects on 

copepod EHS and included species such as Pseudo-nitzschia delicatissima (Miralto et 

al., 1999), Skeletonema costatum (Miralto et al., 1999), Thalassiosira weissfloggii 

(Campbell and Head, 2000), Thalassiosira spp. (Halsband-Lenk et al., 2005), diatom 

non-volatile oxylipins (NVOs) (Ianora et al., 2015) and polyunsaturated aldehyde (PUA) 

concentration (Wichard et al., 2008). Only 13 references on phytoplankton effects on 

naupliar deformity rates were collated. Two experiments pertained to natural studies 

and investigated the effect of total PUAs (Wichard et al., 2008) and diatom biomass 

(Ban et al., 2000); neither of these affected NA. 

  

3.4.2 Calanus helgolandicus egg mortality 

Egg mortality rates were estimated over three years using the Basic method, 

incorporating data from the only published study of C. helgolandicus egg mortality 

(Hirst et al. 2007), and ~one year using the Viability Basic method. I discuss the 

potential link with predators (intraguild and other mesozooplankton), and also 

compare the results of the two mortality approaches. 

My three-year dataset of egg mortality estimates (including January – 

December 2013) determined a median rate of 0.53 d-1, with elevated rates in summer 

(peaks in June and August) and lows from September to February. Egg mortality rates 

have been derived for the congener species C. finmarchicus, albeit using different 

methods. Ohman and Hirche (2001) reported a median C. finmarchicus mortality rate 

of 1.76 d-1 with a peak in April [using the Population Surface Method (Wood, 1994)] in 

the Norwegian Sea. An Index of Daily Loss (calculated from VLT mortality rates) for C. 

finmarchicus eggs peaked in May on Georges Bank (Ohman et al., 2008). Other 

copepod species also suffer highest egg mortality during the spring months; T. 

longicornis in Long Island Sound (median rate = 2.72 d-1) (Peterson and Kimmerer, 

1994) and Acartia clausii, T. longicornis and Centropages hamatus in the Kattegat, 

Denmark (Kiørboe and Nielsen, 1994).  

Egg-only mortality rates are relatively rare in the literature; more usually they 

are reported in combined development stages (egg-NI, egg-CI, etc.) when Ratio-type 
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methods have been employed. This merging of stages is particularly problematic for 

drawing conclusions on egg mortality, as this approach averages mortality across the 

stages and assumes that mortality risk is the same for eggs and nauplii (Head et al., 

2015; Gentleman and Head, 2016). Mortality sources of eggs include non-viability, 

sinking and loss to the benthos, predation and advection (Hirst and Kiørboe, 2002). 

Nauplii may be lost if they are deformed, during the moulting-process, via predation or 

through advection. In addition eggs, as non-motile stages, will have a higher predation 

risk than nauplii, as they have no escape response (although one could counter-argue 

that they also avoid detection because of their lack of mobility). Therefore egg 

mortality is likely to be much higher than other stages, and so where possible should 

be estimated as a single stage. 

 

Basic vs Viability Basic egg mortality rates 

There has been a significant movement to improve egg mortality rate 

calculations that involve eggs, as there is a growing recognition that a non-trivial 

proportion of eggs spawned are non-viable and so will not contribute to copepod 

recruitment. The assumption that all eggs are viable has been criticised and a handful 

of attempts have recently been made to generate new models that account for the 

presence of non-hatching eggs. Here I have employed the Viability Basic equation of 

Head et al. (2015) and utilised my experimentally-derived C. helgolandicus egg hatch 

success data to calculate new mortality rates and compared them with the 

conventional Basic rates. Viability Basic mortality rates were 0-60% higher than Basic 

rates and all were shifted to positive rates, complementing the results of Head et al. 

(2015). The extent to which Viability Basic egg mortality rates mirrored the Basic rates 

(R2 = 0.99) was somewhat surprising. In my study, the variable experimental egg 

viability rates were used for each Viability Basic mortality rate calculation. The same 

80% viability rate was employed for all estimations in Head et al. (2015), therefore I 

expected the variability in my egg viability rates to affect the Viability Basic mortality 

rates much more significantly than they did. Because of this, all relationships between 

potential mortality sources were the same for both Basic and Viability Basic mortality 

rates (data not presented here). There has been no attempt here to carry out any 

detailed sensitivity analysis and I have only carried out a very simple exercise in 
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comparison to investigate the effect of accounting for viability with a small dataset. 

However, it is recognised that copepod population models should utilise the most 

realistic data and attempt to account for as many loss scenarios as possible. 

 

Basic egg mortality in relation to environmental variables 

My investigations over three years determined that SST was not significantly 

correlated with egg mortality rates. This was surprising, especially as SST is frequently 

stated to be an important predictor of egg mortality. For example Hirst and Kiørboe 

(2002) performed a meta-analysis on egg mortality rates and reported that SST was a 

positive predictor. However, egg mortality was related to Stratification Index, both on 

its own and with copepod biomass. Calanus helgolandicus abundance was found by 

Maud et al. (2015), to be a function of stronger stratification and as suggested later in 

my study, higher copepod abundances lead to greater egg mortality, I can hypothesise 

that increased egg mortality through predation is commensurate with increased 

stratification. I note however, that this result is in contrast to that of Irigoien and Harris 

(2003) and Maud et al. (2015), who related the date of onset of stratification with the 

timing of the 25% cumulative percentile, indicating that stratification is necessary for 

egg survival [see Chapter Two (Section 2.3.5 and 2.4.2]. 

Egg mortality was related to total C. helgolandicus copepodite (CI-CVI) 

abundance, CI-CV abundance, CIV-CVI abundance and also total copepod biomass, 

providing evidence for both cannibalism and intraguild predation. This is not the first 

time results suggestive of cannibalism in copepods have been reported (Ohman and 

Hirche, 2001; Ohman et al., 2002; Ohman et al., 2004; Plourde et al., 2009a; 2009b). In 

addition, Ohman et al. (2008) calculated predation potentials using published prey 

clearance data and compared these rates with mortality rates, concluding that C. 

finmarchicus was a dominant source of C. finmarchicus egg predation. Filial 

cannibalism (that is eating one’s own offspring) has been reported in almost all major 

groups of egg-laying animals, including insects, spiders, crustaceans, amphibians and 

birds (Polis, 1981), and ecological theory purports a number of population effects of 

cannibalism, including density-dependent population regulation, population 

destabilisation, population stabilisation, bistability, where a population converges on 
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one of two possible states, and modification of the population size-structure (Claessen 

et al., 2004). Cannibalism of eggs by copepods is suggested to be a density-dependent 

population control mechanism (Ohman et al., 2002) and a stabilising mechanism, by 

which population cycles caused by other density-dependent effects, can be dampened 

by cannibalism. The validity of such density-dependent results in copepods however, 

has been called into question for a number of reasons.  

Firstly, such relationships with female abundance should be treated with 

caution, due to female abundance values being an integral part of some egg mortality 

equations (Equation 2); therefore the two axes are not independent of each other. In 

these cases, the employment of more general variables such as total copepodites and 

total CI-CV reduces the potential for spurious significant relationships.  

Secondly, and more importantly, the focus on female copepods as dominant 

consumers of copepod eggs may also be erroneous. C. helgolandicus female biomass 

contributes a mean of 7% (ranging from 0 – 85%) to total copepodite biomass at any 

one time of sampling, so generally the bulk of the predation potential is ignored if only 

female C. helgolandicus are considered. C. helgolandicus eggs measure 0.16-0.19 mm 

in diameter (Conway, 2012a) and C. helgolandicus copepodites CI-CVI range 0.9-3.9 

mm in length (Conway, 2012b). Therefore it is highly likely that eggs could be eaten by 

earlier-stage copepodites and in fact clearance rates of C. helgolandicus eggs have 

been reported for every C. helgolandicus copepodite stage (Bonnet et al., 2004). 

Furthermore, a simple calculation of total C. helgolandicus CI-CVI predation potential 

in the L4 water column (depth of 55 m) can be made using the maximum female adult 

abundance (203.7 m-3) and maximum total CI-CV abundance (1790.1 m-3), and 

assuming clearance rates of 0.32 L d-1 for females and 0.11 L d-1 for CI-CV (from Bonnet 

et al., 2004). Total females (11, 203 m-2) would be capable of clearing 3.56 m3 m-2 d-1 

and CI-CV copepodites (total of 98,454 m-2) capable of clearing 10.83 m3 m-2 d-1; giving 

a total of 14.39 m3 m-2 d-1, which translates to 26% of the water column.  

 In addition to cannibalism, intraguild predation has been estimated to account 

for ~30% of egg and naupliar mortality (Boersma et al., 2014). Omnivorous copepods 

can display increased predatory behaviour in the absence of other food (Daan, 1988), 

and Bonnet et al. (2004) suggested that copepods may actively target eggs even when 
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phytoplankton is not limiting. It is acknowledged that copepods have a wide range of 

prey-predator ratios (Fuchs and Franks, 2010), and even small copepods can ingest 

very large prey items (Atkinson, 1996). Hansen et al. (1994) presented an optimal 

copepod prey-predator ratio of 0.056, although the maximum stated was 0.33. A 

recent study of L4 copepod grazing found that some species could tackle items up to 

half their size; i.e. Oithona similis [length 0.5-0.96 mm (Conway, 2012a)] ingested prey 

with a prey-predator ratio of 0.52, and were also capable of clearing Calanus nauplii, 

suggesting that a Calanus egg would not pose a problem (Djeghri et al., 2017, 

manuscript in preparation).  In my study I also observed that newly-laid eggs were soft, 

misshapen and malleable for a number of hours after spawning, which may increase 

the manageability for smaller stages/species.  

Thirdly, plausible copepodite egg ingestion rates have been investigated using 

the relationship with instantaneous egg removal rates (Ie) and copepodite abundance 

(Ie = egg mortality x egg abundance (no. m-3 d-1)). Ie are a more useful metric of actual 

quantity of eggs lost per day than instantaneous mortality rates. Hirst et al. (2007) 

indicated that each female C. helgolandicus would have to consume 48 eggs each day; 

a feat that was unlikely following work on ingestion rates by Bonnet et al. (2004). I 

have recalculated Ie and related them with total CI-CVI abundance, generating the 

equation Ie = [12.48 x CI-CVI abundance] + 11.68. This indicates that each C. 

helgolandicus copepodite was capable of ingesting ~12 eggs per day. This rate is much 

more plausible, given that Bonnet et al. (2004) reported a maximum rate of ~20 eggs 

per day for female C. helgolandicus.  

In summary, I conclude that C. helgolandicus egg mortality is a function of three 

key loss processes, acting through egg and naupliar health and predation. Egg hatch 

success and nauplii health are boosted by the availability of nutritious food for adult 

females, but may be reduced by the presence of toxic diatom strains (although I found 

no correlation with specific species in this study). Predation on eggs is likely 

widespread throughout the zooplankton and I have provided evidence for the 

predatory influence of copepods, meroplankton and other non-copepod holoplankton.  
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CHAPTER FOUR 

Mortality of Calanus helgolandicus: sources, differences between the 

sexes and consumptive and non-consumptive processes 

 

Mortality losses are as important as reproductive gains in zooplankton 

population dynamics, but are challenging to quantify. I used three approaches to 

provide complementary insights into the mortality of Calanus helgolandicus at Station 

L4 in the western English Channel. Using a neutral-red staining method, I found that 

dead carcasses averaged 9% of the C. helgolandicus copepodites sampled. The 

resulting non-consumptive mortality rates are the first ever derived for C. 

helgolandicus, contributing 0-54%, with an average of 11% to the total mortality. 

Consumptive mortality dominated for most of the year, particularly in summer and 

autumn, whereas non-consumptive mortality increased during summer and winter. The 

non-consumptive mortality rates were positively correlated with maximum wind speed 

during the preceding 72 hours, indicating that extreme weather events may lead to 

increased mortality.  Mortality rates across the CV-adult male stage pair were ~2.5 

times greater than that of CV-adult females over four years. This reflected higher male 

mortality, both from consumptive and non-consumptive sources. Summer CV-adult 

total mortality rates were positively correlated with sea surface temperature, 

chaetognath and siphonophore abundance. The long-term weekly measurements of 

copepodite abundances, female abundance and their egg production rates allowed us 

to construct simple matrices that budgeted mortality loss directly. Over 13 years, the 

year-to-year variability in mortality over all life stages related to chaetognath, 

ctenophore and medusae abundance. My results, based on a variety of timescales and 

methods, all point to the gelatinous predator assemblage as the dominant agent for 

population control of Calanus helgolandicus at L4. 
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G. Hirst, A. Atkinson, P. K. Lindeque and A. J. McEvoy. (In review). Mortality of 

Calanus helgolandicus: sources, differences between the sexes and consumptive and 

non-consumptive processes. Limnology and Oceanography. I conceived, designed and 

conducted the study, with input from AH, AA and PL; I was lead author on the paper, 

which received editorial assistance from AA, AH and PL and AM.   
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4.1 Introduction 

The mortality of an organism is one of the key life history processes impacting 

on an individual, and along with reproduction, immigration and emigration forms the 

major ecological processes involved in population dynamics (Jorgensen and Fath, 

2014). The loss of individuals from a population over time can result from various 

processes; in pelagic marine species, losses can be from advection, emigration and the 

death of individuals. The consumption of a copepod by a predator typically involves 

the removal of the entire animal from the water column. Such consumption can be 

from predators such as fish, fish larvae, jellyfish and chaetognaths (Bonnet et al., 2005; 

Bonnet et al., 2010), but also other copepod species (Daan, 1988; Boersma et al., 

2014), and even via cannibalism (Bonnet et al., 2004). Predation has been ascribed as 

the dominant cause of mortality in copepods (Hirst and Kiørboe, 2002; Hirst et al., 

2010; Daewel et al., 2014), however, other causes may dominate at times (Elliott and 

Tang, 2009). Indeed, there may be a substantial proportion of zooplankton carcasses 

present in the water column, whose death cannot be ascribed to consumptive 

predators (Wheeler, 1967; Elliott et al., 2010; Elliott and Tang, 2011a; Daase et al., 

2013). Non-consumptive mortality; that is mortality not caused by predation, tends 

not to lead to the immediate removal of the body of the animal, and rather usually 

results in a carcass. Non-consumptive mortality can result from death from old age 

(Rodríguez-Graña et al., 2010), disease and parasitism (Kimmerer and McKinnon, 

1990), the ingestion of toxic prey (Kâ et al., 2014), exposure to environmental 

pollutants (Cohen et al., 2014; Wendt et al., 2016) and challenging environment-

related hydrodynamics, including extreme weather events (Dubovskaya et al., 2005; 

Bickel et al., 2011; Tang et al., 2014). Determining the causes of death can be difficult, 

and therefore mortality is poorly understood for most zooplankton species. 

Fortunately, the combination of mortality estimates and the identification of carcasses 

in the water column provide an excellent opportunity for separating some major 

causes of mortality, specifically consumptive and non-consumptive causes (Elliott and 

Tang, 2011b). 

A topic of particular interest relates to the strong sex skew observed in the 

adults of many copepod species (Hirst and Kiørboe, 2002; Hirst et al., 2010); with the 

females at times outnumbering males by 5 or even 10 to 1 (Hirst et al., 2010). This 
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skew may arise from greater mortality of the males than females, especially when the 

sex ratios of the previous stage (CV) are near equal (Hirst et al., 2010). Differential 

mortality of the sexes in adults can result from shorter physiological longevity of 

males; this may for example result from the reduced feeding rates or absence of 

feeding in CVI males. Alternatively, or additionally, sex skew may also be attributable 

to differential predation in the field, with greater predation rates on males than 

females. Males may show riskier behaviour when searching for the females, and at 

times they perform extravagant courtship behaviour (Kiørboe, 2008; Hirst et al., 2010), 

thereby increasing encounter and detection by predators. While these issues can in 

part be explored through incubation experiments with predators and prey, an in situ 

approach would certainly be useful in further testing this predation hypothesis. Since 

death from non-consumptive sources results in a carcass, while death from predation 

typically does not, the use of vital staining methods to separate live and dead 

copepods presents an opportunity to explore any differences in the causes of mortality 

between the sexes.  

This study aims to elucidate the mortality rates, and sources and temporal 

dynamics of the copepod species Calanus helgolandicus. While a recent study of C. 

helgolandicus population dynamics highlighted the dual role of reproduction and 

mortality (Maud et al., 2015), only one previous study has specifically examined 

mortality rates of C. helgolandicus at station L4 (Hirst et al., 2007). Since mortality 

rates are difficult to quantify, and some controversy exists in the application of the 

particular methods (Ohman, 2012), I have combined three complementary methods to 

reveal different facets of the topic. These comprise a Vertical Life Table (VLT) 

approach, a carcass staining method to evaluate non-consumptive mortality, also using 

VLT methods, and via a budgetary approach to compare the difference between my 

measurements of total egg production rate and observed copepodite population size. 

Here I address the questions: (1) What are the main sources of mortality of Calanus 

helgolandicus at the L4 site? (2) How do these mortality sources vary between the 

sexes? (3) Which agents can be identified as determining these non-consumptive and 

consumptive components of mortality?  
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4.2 Materials and methods 

4.2.1 Calanus helgolandicus stage composition 

The C. helgolandicus stage composition was determined from the L4 

mesozooplankton weekly samples from March 2002 to March 2004 [as previously 

published by Hirst et al. (2007)], and supplemented with new data from January 2012 

to December 2013. Composition was obtained from the staging and sexing (of CVI 

adults) of ~100 C. helgolandicus copepodites from one of the two WP-2 200 µm 

vertical hauls chosen at random. A 200 μm sampling mesh was considered the most 

appropriate for copepodites due to the recommendation by Skjoldal et al. (2012) for 

large calanoid copepods including Calanus spp., although it was recognised that CI 

copepodites may be under-represented. I therefore determined mortality across four 

years of weekly copepodite stage data from L4, albeit that the two periods were 

separated by a decade. 

 

4.2.2 Predator abundance and biomass 

Mesozooplankton abundance data were extracted from the weekly L4 dataset 

[sampling and identification as described in materials and methods, Chapter Two 

(Section 2.2.1)]. Data were pooled into broad groups, namely medusae, 

siphonophores, chaetognaths and ctenophores, with total gelatinous zooplankton 

predators being their sum. Due to a change in analysis method I have only used 

ctenophore data from 2008. Data on total fish larvae abundance were also extracted. 

Fish larval data were also made available from the Marine Biological Association’s 

weekly Young Fish Trawl (YFT) survey (2005-2014). Predator biomass (mg C m-3) was 

estimated using the methods detailed in Chapter Three (Section 3.2.1). 

 

4.2.3 Physico-chemical measurements 

Mean water column temperature (MCT), SST, SI, salinity and O2 were 

determined from the weekly CTD profile data. Chlorophyll a concentrations were 

determined via fluorometry or HPLC.  Chapter Two (Section 2.2.4 and 2.2.5) details the 
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specific methods. All data sources and time periods for which the data were available 

are given in Table 4.1. 

 

Table 4.1. Time series data available within the period 1988-2015, at Station L4, western 

English Channel, UK. 

Time series 
 

Data available 

Total C. helgolandicus (males, females, copepodites) 1988-2015 

♀ adult abundance 1988-2015 (excl. August-December 2005) 

♂ adult abundance 1996-2012 (excl. 2000) 

Egg production rate (EPR) February 1992 – 2015 (excl. July-

December 2000; 2001; January-

September 2007) 

Total reproductive output (TRO) February 1992 – 2015 (excl. July-

December 2000; 2001; August-December 

2005; January-September 2007) 

Total copepodite (CI-CV) abundance 1996-2015 

Copepodite (CI-CV) stage composition  March 2002 – March 2004; 2012-2013 

Mesozooplankton abundance (including predators) 

Total fish larvae abundance  

Fish larvae abundance (Marine Biological Association) 

Sea surface temperature (SST) 

Mean column temperature (MCT) 

Salinity 

O2 concentration 

Chlorophyll a 

1988-2015 

1988-2015 

2005-2014 

1988-2015 

1993-2015 (excl. February – December 

2000; 2001) 

1992-2015 

1992-2015 

 

 

4.2.4 Calanus helgolandicus stage duration 

Stage-specific development times are required to determine mortality rates 

using the approaches applied here. The literature was reviewed to collate all 

experimentally-derived copepodite stage duration data (Table 4.2). These data were 

obtained across a range of temperatures from 1º to 15ºC; however the most frequent 

temperature incubations were 8º, 12º and 15°C. Available stage duration data were 

fitted to a temperature function (T, oC) and used to determine stage duration (D) 

(days) for each development stage using a Bělehrádek function (Bělehrádek and Mann, 

1935; Bělehrádek, 1957) [see Chapter Three (Section 3.2.4)]. The results and data 

sources are presented in Table 4.2. 
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Table 4.2. Calanus helgolandicus. Bêlehràdek functions applied in this study to determine 

stage-specific development times (D, h). Egg hatching times fitted to the equation D = a(T – 

α)-2.05, α was determined to be -9.523. This value was then subsequently used when fitting 

the equation to data for all other individual and grouped life stages to determine a. Curve-

fitting was performed using R (R Development Core Team, 2012).  

Stage(s) 
 

a α Data sources 

Egg 19488 -9.523 Corkett (1972), Rey et al. (2001), Lopez et al. (2007), Cook et al. 

(2007), Bonnet et al. (2009) 

CI 113024 -9.523 Shreeve et al. (1998), Cook et al. (2007), Bonnet et al. (2009) 

CII 43106 -9.523 Shreeve et al. (1998), Rey-Rassat et al. (2002), Bonnet et al. (2009) 

CIII 52488 -9.523 Shreeve et al. (1998), Rey-Rassat et al. (2002), Bonnet et al. (2009) 

CIV 58131 -9.523 Shreeve et al. (1998), Rey-Rassat et al. (2002), Bonnet et al. (2009) 

CV 101421 -9.523 Rey-Rassat et al. (2002), Bonnet et al. (2009) 

Egg – CI 289911 -9.523 Rey et al. (2001), Rey-Rassat et al. (2002), Cook et al. (2007), Lopez 

et al. (2007), Møller et al. (2012) 

Egg – CV 530544 -9.523 Diel and Klein Breteler (1986), Rey-Rassat et al. (2002), Bonnet et 

al. (2009), Møller et al. (2012) 

 

 

4.2.5 Vertical Life Table mortality rate calculations 

The stage-ratio Vertical Life Table (hereafter “VLT”) method was used to 

estimate mortality rates over four seasons (March 2002 – March 2004 and January 

2012 – December 2013). This method determines total (defined as both consumptive 

and non-consumptive sources) mortality rates across stage pairs. I calculated mortality 

across the CV-adult female and CV-adult male stage pairs using the equation given by 

Aksnes & Ohman (1996): 

 

 

where β is the mortality rate across the CV-adult stage pair (days-1), D is the stage 

duration (days) estimated here from the Bělehrádek functions in Table 4.2, using the 

mean temperature (T, oC) across depth (MCT), as measured on the day of sampling, 

while N is the abundance of the stage (no. per m-3) as quantified from the depth 

integrated WP-2 nets. When deriving mortality for individual sexes, I assumed a 1:1 sex 

β = 
ln (

NCV

Nadult
+1)

DCV
                                                      [4.2]      
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ratio in the abundance of the CV stage, and applied the abundance of adult males or 

females [see Discussion (Section 4.4.3)].  

The use of VLT methods require a number of assumptions to be fulfilled. The 

first is that any transport processes equally influence stage pairs over the period of the 

total duration of the two stages. As the duration of C. helgolandicus stages is typically a 

few days, this seems a reasonable assumption. The second assumption requires that 

there is no trend in recruitment to a stage over the duration of the combination of 

stages for which mortality is being determined, (i.e. no stage trends or strong cohorts). 

Whilst there was some evidence of population peaks, as expected, in spring and 

autumn, the data do not generally suggest strong cohorts (Figure 4.4b). However, 

there was evidence of a strong trend in CV accumulation during the winters of 2002 

and 2012. I have not omitted these data, but am aware that my mortality estimations 

during the winter months may be impacted. I used two time periods in further 

analyses; i) all months and ii) the subset of May-September, which corresponds to the 

main population growth period and is also when the water column is typically 

stratified.  

A few negative mortality rates were calculated during this study. These can be 

expected using this method, but these data were not removed, as this would subject 

the data to positive bias (Hirst et al., 2007). As recommended for the VLT approach 

(Aksnes and Ohman, 1996), I have averaged mortality across several sampling time-

points. This was done by the application of a LOESS (locally weighted) smooth using 

the loess and predict functions within R (R Development Core Team, 2012), set to an f-

value of 0.2. This value was chosen to produce a smoothing in which major seasonal 

patterns were still evident. Further analysis of VLT-derived mortality rates used the 

LOESS-smoothed rates at each sampling point, rather than the actual mortality rates. It 

is recognised that the traditional VLT method estimates total mortality rates using 

abundance data that includes intact carcasses, which creates a bias in the abundance 

ratios (Elliott and Tang, 2011b), resulting in the under- or overestimation of mortality 

rates. However, this frequently used VLT approach allows us the increased temporal 

coverage of four years. 
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4.2.6 Total, consumptive and non-consumptive mortality rates 

From February 2013 to January 2014 on the same days that the quantitative 

vertical net tows were taken, I also undertook additional zooplankton collections at L4 

to determine the incidence of C. helgolandicus carcasses. Collecting live samples 

required slow (~0.2 m s-1), gentle oblique trawls, which I performed with a 63 µm ring 

net to a depth of ~50 m. These catches were immediately stained with neutral red 

following the method of Elliott and Tang (2009). For this 1 L of sample-water from the 

net cod-end was poured into a plastic container and 1.5 mL of neutral red solution (10 

g L-1 conc.) was immediately added. The container was incubated in a water bath at 

sea surface temperature on deck for 15 mins and afterwards sieved through a 

detachable 63 μm mesh. The mesh was stored in a petri-dish and flash frozen with 

Freeze Spray to instantly preserve all the zooplankton in the sample. The petri dishes 

were stored on ice in a cool box for the time taken to return the samples to the 

laboratory (~two hrs), and then stored in a -20°C freezer until sample processing.  

Chilled 0.2 μm-filtered seawater (FSW) was used to thaw the frozen sample on 

the mesh and rinse the sample into a conical flask. The sample was then collected on a 

63 μm sieve and washed into a sorting dish with ~10 ml 0.2 μm FSW and 0.5 ml 0.1% 

hydrochloric acid (HCL) was added to enhance the brightness of the pink stain (Elliott 

and Tang, 2009). Samples were examined under a dark field dissecting microscope and 

C. helgolandicus were staged, counted and assigned to a live or dead category (bright 

pink/patchy bright pink areas – live; dull/pale pink – dead (Figure 4.1). In some 

instances various sub-samples were pooled so that a total of ~100 copepodites (stage 

CI to CVI) were identified. 
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Figure 4.1. Calanus helgolandicus female adults collected from station L4. “Alive” bright pink 

neutral red-stained copepod indicating was alive when captured; “dead” pale pink copepod 

indicating non-staining copepod carcass in water column. 

 

The carcass turnover time (τ) is an important parameter in the mortality rate 

estimation calculations, and is a function of carcass decomposition rate and sinking 

losses (Elliott et al., 2010). Sinking losses may be ignored if the turbulence within the 

sampling site is enough to retain carcasses in the water column and enable 

resuspension of those that have settled (Elliott and Tang, 2011a). Due to lack of data 

on sinking losses of Calanus at L4, I assumed for simplicity in my calculations that these 

were zero. Since any sinking will reduce the calculated carcass turnover time and thus 

increase the estimate of non-consumptive mortality, my estimates thus provide a 

lower boundary of this mortality source.  

Carcass decomposition time was examined by incubating freshly-killed 

copepodites at a range of temperatures and recording the rate of decomposition. Live 

C. helgolandicus copepodites were collected from L4, stages CIV-CVI were sorted from 

the catch, and placed into a petri dish in a sealable plastic pouch. An AnaeroGen sachet 

(Oxoid Atmosphere Generation System) was introduced into the pouch to generate an 

anaerobic atmosphere and the copepods were incubated for four hours to ensure that 

all were killed. They were sorted into batches of ~80 carcasses and placed in a petri 

dish with ~10 ml 5 μm FSW from L4; this level of filtration was selected to allow 

microbial colonisation and decomposition of the carcass, but to exclude bacterivorous 

protozoa that may alter the microbial community composition. The samples were 

incubated at one of four temperatures across the range usually experienced at L4 (8º, 
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12º, 15º or 18°C) for a period of 10-14 days. A sub-sample of five carcasses were 

removed from the incubations each day and photographed (therefore n = 20), each 

carcass was then categorised on a scale of 1-8 (where 1 was near transparent with no 

decomposition and 8 was an almost completely empty exoskeleton with minimal 

residual tissue; as soon as they are dead, the copepods no longer take up the neutral-

red stain) (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Stages of Calanus helgolandicus carcass decomposition, (1) transparent, no 

decomposition; (2) opaque; (3) opaque and brown colouration; (4) bacteria apparent on 

external carapace; (5) metasome fractured, mostly in tact; (6) metasome split; (7) metasome 

completely split, internal material spilling out or depleted; (8) split carcass and most of 

internal material depleted. 

 

 

 

5 6 

7 8 

1 2 

4 3 
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A carcass decomposition time-temperature function was fitted using the mean 

time taken to reach decomposition category 8 (𝜏, days) (any exoskeletons collected 

with no residual tissue were treated as copepod exuviae, and were not counted as a 

carcass), against temperature (T, ˚C), and is described by the equation: 

 

τ = e-0.114T+3.531                                                                    [4.3] 

                                                                           

 

where R2 = 0.79, n = 20, p-value < 0.00001 (Figure 4.3). 

 

 

 

Figure 4.3. Calanus helgolandicus carcass (CIV-CVI) decomposition time as a function of 

temperature, as measured in the laboratory; dotted line indicates fitted linear model and 

equation used to calculate τ, as used in consumptive mortality rate equation (Elliott and 

Tang, 2011a). 
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Consumptive mortality rates (βc, d
-1) were derived by iteration following the 

equation of Elliott and Tang (2011b), see their Appendix 1:  

 

NCI-CV

NCVI
= 

1- π1e-βcDCI-CV- π2e-βcτ

π1(e-βcDCI-CV)(1- π4e-βcτ)
                                                      [4.4] 

 

where π1 is the relative proportion of CV alive, π2 is the proportion of CV dead, π4 is 

the proportion of stage CVI dead (where dead carcasses fall within the stage categories 

of 1 to 8 described above, and which can be discerned from live animals by the general 

lack of the neutral red stain), N is the total abundance of the stage(s) collected in the 

WP2 nets (no. m-3), and D is stage duration time (days).  

Total mortality (βt) was calculated using the ratio VLT method, but using 

corrected abundances so as they represent only those copepods identified as being 

alive at the time of capture (hereafter “corrected” mortality) (Elliott and Tang, 2011b), 

where in addition to Equation 4.4, π3 is the relative proportion of stage CVI alive:  

 

  

 

This corrected mortality rate removes the potential bias introduced by including 

copepod carcasses in abundance ratios, and is a more robust calculation, but requires 

additional sampling effort and analysis. 

Finally, the non-consumptive mortality rates were calculated as total corrected 

mortality minus consumptive mortality rates (Elliott and Tang, 2011b). Equations 4.4 

and 4.5 were applied across the stage pair of CV and adult, deriving these separately 

for males and females (assuming a sex ratio of 1:1 in CV).  

I explored correlations between a range of variables and mortality rates, 

including SST, stratification, salinity, fluorescence (as a proxy for chlorophyll-α), tidal 

βt= 
ln (

π1N
CV

π3NCVI
+1)

DCV
                                                           [4.5]  
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height, tidal state (state of spring-neap cycle) and wind speed. Environmental factors 

and their data sources included are listed in Table 4.3. 

 

 

Table 4.3. Explanatory variables and data sources collated for use in regression analyses with 

non-consumptive C. helgolandicus mortality rates. PML is Plymouth Marine Laboratory, 

BODC is British Oceanographic Data Centre, and BADC is British Atmospheric Data Centre. 

Explanatory variable 

 

Source of 

data 

Categories 

Sea surface temperature (SST) (˚C) PML n/a 

Stratification Index (SI) (˚C) PML CTD n/a 

Salinity PML CTD n/a 

Fluorescence PML CTD n/a 

O2 PML CTD n/a 

Tidal height BODC n/a 

Tide BODC Ebb or flow 

Tidal state BODC Spring, neap, intermediate 

Mean wind speed:    

   in preceding 24 hrs BADC n/a 

   in preceding 48 hrs BADC n/a 

   In preceding 72 hrs BADC n/a 

Maximum wind speed:   

   in preceding 24 hrs BADC n/a 

   in preceding 48 hrs BADC n/a 

   in preceding 72 hrs BADC n/a 

 

 

4.2.7 Matrix mortality model 

This alternative method is based on the simple population growth model 

developed in Chapter Two (Section 2.3.6), and was used to provide a different 

perspective on mortality and to provide inter-annual comparisons. Data were available 

from 2002 to 2015 (excluding 2007). This method is based on the good fortune of L4 

having concurrent weekly time series of adult female abundance and their egg 

production rate over many years, and from which I could calculate total egg supply to 

the system.  

Egg production rate methodology is detailed in Chapter Two (Section 2.2.2), but 

briefly, this involved incubating 25 adult females each week in filtered seawater within 
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~four hrs of capture at the L4 site. The matrix method involved the creation of a matrix 

in an Excel spreadsheet covering one year, consisting of 52 rows and 52 columns, with 

each cell representing one week in the calendar year. I then used the mean egg 

production rates (no. eggs female-1 day-1) and female abundance data (no. m-3) to 

calculate a daily Total Reproductive Output (TRO) (a product of mean egg production 

rate and the density of females; in no. eggs m-3 day-1). The daily TRO was then 

multiplied by seven to derive a weekly TRO (no. eggs m-3 week-1). Mean water column 

temperature (MCT) was used to estimate the stage durations (weeks) to “develop” 

each individual egg up to a CV copepodite at the onset of moult to CVI (by inserting the 

weekly TRO value into consecutive weeks, representing the stage duration, along each 

row). Because temperature varies throughout this growth period, the MCT applied for 

naupliar stage growth was that recorded at egg production, while for copepodite 

growth, the MCT during the week when NVI moulted to CI was applied in the stage 

duration calculations. The cumulative abundance of growing individuals was then 

calculated at the bottom of each column, so in weekly time-steps. By integrating each 

week’s egg output and growing them without mortality I could calculate a predicted 

density of stages (NI-CV) that would be present in the water column each week, if no 

mortality had occurred. The predicted copepodite (CI-CV) abundance was compared 

with the weekly observed L4 copepodite (CI-CV) abundance. The rationale of 

comparing across the CI-CV time window of development was first because nauplii of 

C. helgolandicus are not consistently enumerated from the L4 samples, and secondly 

the CVI longevity is unknown. In any given week, the difference between the predicted 

abundance in the absence of mortality and that observed was termed the “absolute 

mortality” (no. m-3) and the proportion difference (1 minus observed, as a proportion 

of predicted abundance) provided the “proportional mortality” (PM).  

 

4.2.8 Statistical analyses 

Data analyses of VLT, non-consumptive and consumptive mortality rates were 

performed on the weekly values. Predator abundance and biomass data were 

log10(x+1) transformed before being used to minimise problems associated with non-

normality. Proportion mortality data derived from the matrix mortality model were 

arcsine-squareroot transformed. Simple linear and backwards stepwise multiple linear 
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regression techniques were used initially to gauge the strength and direction of any 

relationships (using the lm function in R). Models were validated by an examination of 

the residuals. Where residuals were non-normal the response variable was subject to a 

square-root or fourth root transformation. If there was evidence of curvilinearity, a 

polynomial regression was applied. Heterogeneity of residuals was accounted for via 

the implementation of a variance-covariance structure within a generalised least 

squares regression model (gls function in R). Non-independence of data was addressed 

by the addition of an appropriate correlation structure within a gls model. The annual 

matrix model proportional mortality (PM) indices were used in inter-annual analyses of 

environmental and predator abundance and biomass relationships. Data manipulation 

was undertaken using Microsoft Excel 2010. All statistical analyses were performed 

using the R programming environment (R Development Core Team, 2012). Reduced 

major axis (RMA) regressions were performed using the RMA Software provided by 

Bohonak and van def Linde (2004). 

 

 

4.3 Results 

4.3.1 Overview of the L4 marine environment 

Figure 4.4 summarises the L4 environment as monitored during two separate 

24-month periods separated by a decade; March 2002 to March 2004 and January 

2012 to December 2013 {see Results of Chapters Two (Section 2.3.1) and Three 

(Section 3.2.1) for a more detailed overview of the complete time series]. Calanus 

helgolandicus reproduction occured throughout the year at L4, as CI to CV stages were 

present through most of the year, except for the winter months when there was an 

increase of CV stages and adult females (Figure 4.4b).  

Strong seasonal variation of C. helgolandicus CV and adult abundance occurred 

in each of the four years of observations (Figure 4.4c). The peak abundances of the 

older stages (CV-CVI) varied through March to October, and in 2013, three peaks were 

apparent. Total C. helgolandicus abundance (CI-CVI) (shown on red secondary axis; 

Figure 4.4c) followed the same general seasonality as the CV and adult stages, but was 
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approximately four to eight times greater. Total C. helgolandicus abundance was 

greater during the period 2012-2013 than between 2002-2004. 

 

 

Figure 4.4. The L4 environment March 2002 – March 2004 and January 2012 – December 

2013, (a) sea surface temperature (SST) and Stratification Index (SI) (difference between 

temperature at the surface and 30m). Stratification is indicated by the dashed line and 

defined as a temperature difference of 1˚C or greater (SI = 1).  (b) Calanus helgolandicus 

copepodite stage composition (CI-CVI); (c) C. helgolandicus stage CV, female adult and male 

adult abundance. 

 

 

The main planktonic predators large enough to consume CV-CVI C. 

helgolandicus are presented in terms of both their abundance (Figure 4.5a) and 

estimated biomass (Figure 4.5b). It is noteworthy that the 2012-2013 period had both 
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a greater abundance and biomass of predators than during the 2002-2004 period. 

Siphonophores and chaetognaths dominated all years in terms of predator abundance, 

although medusae became more numerous during 2012-13. Predator biomass 

patterns were somewhat different; siphonophores and chaetognaths dominated the 

predator biomass, but the contribution of ctenophores (2012-13 only) was much more 

marked than numerical abundance alone suggests. In addition, fish larvae biomass 

contributed much more to the predator biomass than to abundance, indicating that 

peaks occurred earlier in the year compared to the gelatinous predators. The Young 

Fish Trawl dataset revealed that larval fish predators at L4 were dominated by the 

Clupeidae (herring), Callionymus lyra (common dragonet), the Gadidae (codfishes) and 

the Pleuronectidae (flounders) (Figure 4.6).  

 

 

Figure 4.5. The L4 environment March 2002 – March 2004 and January 2012 – December 

2013, (a) main predator abundance; (b) main predator biomass. 
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Figure 4.6. Mean seasonality (2012-13) of dominant fish larvae at station L4 (data courtesy of 

N. Halliday, MBA). 

 

Here I provide some context regarding trends in gelatinous zooplankton 

populations using the complete L4 time series (1988-2015) (Figure 4.7). Mean monthly 

chaetognath abundance was elevated between May and the following January (so for 

¾ of the year), with highest abundances occurring from October to December. Mean 

annual chaetognath abundance increased over the 28 years (R2 = 0.179, p = 0.025, n = 

28). Siphonophores appear at L4 between May and November, with greatest 

abundances occurring between July and October. Mean annual siphonophore 

abundance was relatively stable over the time-series (R2 = 0.007, p = 0.674, n = 28). 

Medusae are generally present at L4 during May to November, with peak abundance 

levels occurring in May-June. It is difficult to identify medusae population trends as 

“total medusae” incorporates so many different species, but whilst there was no trend 

in mean annual medusae abundance from 1988 to 2006, numbers have increased in 

the past decade. The Ctenophora are usually present for a short period between May 

and July, with a peak in June. The truncated ctenophore time-series (2008-2015) did 

not suggest a change in annual mean ctenophore abundance over this timescale (R2 = 

0.067, p > 0.05, n = 8). 
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Figure 4.7. Annual mean abundance of gelatinous predators at station L4 (1988-2015). 

 

4.3.2 VLT stage-ratio CV-CVI total mortality 

January to December 

There were no differences in C. helgolandicus CV-adult total mortality rates 

(where abundance values did not differentiate live animals from carcasses) between 

the four years (Kruskal-Wallis H test statistic = 3.93, p = 0.269, n = 4). However, there 

were clear differences between the sexes. CV-female mortality rates ranged from 

0.038 to 0.150 d-1 (mean of 0.091 d-1) and CV-male rates varied between 0.044 and 

0.446 d-1 (mean of 0.223 d-1). CV-male mortality rates were ~2.5 times greater than CV-

female rates (Mann-Whitney test statistic W = 3621, p < 0.00001, n = 138). Both CV-

females and CV-males typically demonstrated fluctuating mortality rates, with summer 

to autumn peaks (Figure 4.8). Peaks of mortality for CV-females were less well-defined 

however, and also exhibited larger spring peaks during 2012 and 2013. Despite these 

differences, CV-female and CV-male mortality rates were highly related (reduced 

major axis (RMA) regression analysis intercept = 0.022, slope = 0.318, R2 = 0.542, p < 

0.00001, n = 123) (Figure 4.9).  
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Figure 4.8. Calanus helgolandicus mortality rates for the CV-♂ and CV-♀ stage pairs derived using the vertical life table (VLT) method (over the periods 2002-04 

and 2012-13). 
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Figure 4.9. Relationship between CV-♂ and CV-♀ total mortality rates, as derived using the 

vertical life table (VLT) method (over the periods 2002-04 and 2012-13); symbol colour 

indicates seasons to illustrate that the relationship was not driven by a seasonal difference 

in mortality rates. 

 

The CV-female summer (June-August) and autumn (September-November) mortality 

rates were higher than spring (March-May) mortality, which in turn were higher than 

winter (December-February) mortality (Kruskal-Wallis H statistic = 30.06, p-value < 

0.0001, n = 169). CV-male mortality showed a similar pattern, but here winter and 

spring mortalities were lowest and autumn mortalities were highest (Kruskal-Wallis I 

statistic = 41.78, p-value < 0.0001, n = 138). 

Total corrected mortality rates (excluding copepod carcasses) for 2013 were on 

average 1.5% less than the uncorrected rates (including carcasses), with rates ranging 

from 21% higher to 36% lower. Corrected rates were not significantly different from 

uncorrected rates (paired t-test: T = 0.98, p = 0.336, n = 35). 

Regression analyses of the entire twelve months LOESS-smoothed VLT 

mortality values (2002-04 + 2012-13) with predators yielded no relationships, bar that 

between medusae abundance and CV-females (R2 = 0.06, p = 0.084, n = 167). 
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May to September 

Using mortality data from the main growth period of May to September only 

(see Table 4.4), SST was a significant predictor of both CV-female and CV-male 

mortality rates (Figure 4.10).  

 

Table 4.4. Generalised least squares analysis of mean summer (May-September) C. 

helgolandicus CV-adult VLT total mortality rates (2002-04 + 2012-13): coefficients, standard 

error (SE), t-value, p-value and AIC value for CV-♂ and CV-♀ stage pairs, single and multi-

variable GLSs; SST = sea surface temperature; all abundances were log10(x+1). 

Stage and Sex Model predictor(s) Coefficient 

(slope) 

SE t-value p-value AIC 

2002-04 + 2012-13  

CV-♀       

 SST 0.006 0.001 7.254 0.00001 -454.8 

 Total gelatinous 

zooplankton abundance 

0.007 0.002 2.932 0.004 -426.8 

 Chaetognath abundance  0.006 0.002 2.667 0.009 -425.6 

 Siphonophore abundance  0.009 0.002 5.141 0.00001 -443.0 

  Siphonophore biomass 0.008 0.001 5.615 0.00001 -466.1 

 SST +  

ctenophore abundance 

0.004 

0.006 

0.001 

0.002 

4.176 

2.417 

0.0002 

0.021 

-449.2 

 SST + 

siphonophore abundance 

0.005 

0.006 

0.001 

0.002 

5.009 

3.332 

0.00001 

0.001 

-216.4 

 SST + 

ctenophore abundance + 

siphonophore abundance 

0.003 

0.006 

0.004 

0.001 

0.002 

0.001 

4.517 

2.703 

2.957 

0.0001 

0.011 

0.006 

-208.6 

CV-♂       

 SST -0.252 0.041 -6.189 0.0000 -288.5 

 Total gelatinous 

zooplankton abundance 

0.025 0.007 3.475 0.001 -252.6 

 Chaetognath abundance  0.018 0.006 2.769 0.007 -248.3 

  Siphonophore abundance  0.026 0.005 5.673 0.00001 -269.9 

 SST + 

siphonophore abundance 

0.013 

0.016 

0.002 

0.004 

5.536 

3.837 

0.00001 

0.0003 

-283.0 
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Figure 4.10. Relationship between mortality rates of CV-♀and CV-♂, and sea surface 

temperature (SST), (covering the period May-September in the years 2002-2004 and 2012-

2013); Q10 temperature coefficient for CV-♀ is 2.53 and CV-♂ is 6.17. 

 

Both CV-female and CV-male mortality rates were positively correlated with 

chaetognath abundance (Figure 4.11a) and siphonophore abundance (Figure 4.11b). 

Total gelatinous zooplankton abundance (the sum of chaetognath, siphonophore, 

ctenophore and medusae abundances) was also a highly significant predictor of 

mortality rates for both sexes (Figure 4.11c). A stepwise backwards multiple GLS 

regression analysis indicated that only chaetognath abundance was a significant 

explanatory variable, again for both sexes. When SST was included with the predator 

groups in multiple regression analyses, a different suite of predators was highlighted. 

Here, CV-female mortality was related to SST with siphonophores, SST with 

ctenophores and SST with both. CV-male mortality was related to SST and 

siphonophores only. Predator biomass data were also used as predictor variables, 

however they provided little insight beyond that based on the abundance data. 
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Figure 4.11. Relationship between mortality rates of CV-♀ and CV-♂, and (a) chaetognath 

abundance; (b) siphonophore abundance; (c) total gelatinous zooplankton abundance 

(including chaetognaths, siphonophores, ctenophores and medusae), (over the period May-

September in the years 2002-2004 and 2012-2013). It should be noted that if I account for 

the strong relationship with SST, by performing a multiple gls regression with SST + 

predators, the relationship with chaetognaths is lost. The relationship with siphonophores 

remains and a relationship between female mortality and SST + ctenophores emerges (Table 

4.4).  
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Separate analyses of 2002-04 and 2012-2013 

Separate analyses of the two datasets (2002-04 and 2012-13) revealed that 

there were different predator effects between the two periods (Table 4.5). The 2002-

04 time period showed relationships between both CV-female and CV-male mortality 

rates and chaetognath and siphonophore abundance, and a multiple regression 

analysis found that both chaetognath and siphonophore abundances together were 

significant predictors of CV-female mortality rates. During 2012-13, no predator group 

was found to significantly influence C. helgolandicus CV-male/female mortality and 

medusae emerged as the only predators with any suggestion of a positive relationship 

with CV-female mortality (R2 = 0.16, p = 0.218, n = 38). 

 

Table 4.5. Generalised least squares analysis of mean summer (May-Sept) C. helgolandicus 

CV-adult VLT total mortality rates (separate 2002-04 and 2012-13 time periods): coefficients, 

standard error (SE), t-value, p-value and AIC value for CV-♀ and CV-♂ stage pairs, single 

and multi-variable GLSs; SST = sea surface temperature; all abundances were log10(x+1). 

Stage and 

Sex 

Model predictor(s) Coefficient 

(slope) 

SE t-value p-value AIC 

2002-04  

CV-♀             

  SST 0.111 0.0159 6.967 <0.00001 -28.7 

  Chaetognath abundance 0.005 0.0037 1.372 0.1780 -192.2 

  Siphonophore abundance 0.0121 0.0031 3.931 0.0003 -204.1 

  Total gelatinous 
zooplankton abundance 

0.0138 0.0025 2.652 0.0116 -191.2 

  Chaetognath abundance + 
siphonophore abundance 

0.0093 
0.0131 

0.0033 
0.0032 

2.843 
4.033 

0.0072 
0.0030 

-195.7 

CV-♀        

  SST 0.0713 0.0275 2.593 0.0134 -22.6 

  Siphonophore abundance 0.0191 0.0059 3.226 0.0026 -143.9 

2012-13 

CV-♂  

  SST 0.104 0.0195 5.315 <0.00001 -18.6 

  Total gelatinous 
zooplankton abundance 

0.0386 0.0141 2.733 0.0104 -103.8 
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4.3.3 Non-consumptive vs consumptive mortality 

Total copepodites (CI-CVI) 

A total of 38 C. helgolandicus neutral-red stained samples were collected 

throughout 2013. All copepodite data were pooled and samples with a low abundance 

(< 30 live/dead individuals) were excluded from further analysis. A total of 31 weeks of 

data were available for further analyses (with a median of 95 copepodites enumerated 

each week). 

Carcasses constituted 0-22% (mean of 9%) of the total copepodite (CI-CVI) 

abundance (including live and dead individuals) (Figure 4.12a). No carcasses were 

collected during 7 out of the 38 sampling events and these tended to occur in the 

winter months of December to February.  

Consumptive mortality rates were typically much greater than non-

consumptive rates (Figure 4.12b) and varied from 0.003 to 0.123 d-1 with a mean of 

0.062 d-1. Consumptive rates contributed on average 89% to total mortality, with a 

range of 46 to 100%. Non-consumptive mortality rates were often over an order of 

magnitude less than consumptive mortality, ranging from 0-0.02 d-1, with a mean of 

0.005 d-1. Non-consumptive mortality was responsible for an average of just 11% of 

the total, but varied between 0-54% (Figure 4.12c). Seasonal patterns indicated an 

upturn in the contribution of non-consumptive mortality to total mortality during late 

spring and summer, with a decline during autumn, before a sharp increase in winter.  

Simple linear regressions indicated that non-consumptive mortality rates were 

positively correlated with all three of the maximum wind speed variables (24, 48 and 

72-hr), although only the maximum 72-hour wind speed was significant and explained 

around 13% of the variation (Figure 4.13). None of the mean wind speed variables 

indicated any relationships. None of the environmental factors (SST, SI, O2 

concentration, salinity, and fluorescence) were predictors of non-consumptive 

mortality. Additionally, there was no evidence of the influence of tidal state, either in 

terms of a flow or ebb tide, neap, spring and intermediate tides or tidal height. 
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Figure 4.12. Calanus helgolandicus copepodite non-consumptive mortality at station L4 

(February 2013 – January 2014). (a) proportion of total copepodites (CI-CVI) collected which 

were classified as dead (not stained by neutral red stain) from weekly sampling; (b) non-

consumptive and consumptive mortality rates (CI to CVI); (c) proportion of non-predatory 

mortality in relation to total mortality (CI-CVI), and LOESS smooth (black dashed line); zero 

rates represent weeks with missing data or where rate could not be estimated.  
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Figure 4.13. Relationship between maximum 72-hour wind speed and non-consumptive 

mortality rate of C. helgolandicus copepods (CI-CVI) (2013); symbol colours indicate seasons 

to illustrate distribution of rates. 

 

Comparison of the sexes (CV-female and CV-male) 

The proportion of adult male carcasses (13.4% of the adult male population) 

was greater than the respective value for females (5.5%). This was the case at all times 

of year except autumn, when no male carcasses were collected (Figure 4.14). Annual 

mean non-consumptive mortality rates were 0.01 day-1 and 0.02 day-1 for CV-females 

and CV-males respectively, and annual mean consumptive rates were 0.06 day-1 and 

0.21 day-1, indicating that CV-males were subject to both higher consumptive (~6 

times) and non-consumptive mortality rates (~1.5 times) than CV-females.  

 

 

R
2
 = 0.16 

p = 0.017 

n = 28 
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Figure 4.14. Proportion of dead C. helgolandicus by sex (filled bar represents ♀; white bar 

represents ♂) and season (spring = March-May; summer = June-August; autumn = 

September-November; winter = December-February). Values are seasonal means during 

2013, with standard error bars representing standard deviations; numbers above bars 

indicate number of ♀ and ♂ analysed. 

 

 

Consumptive rates contributed more to the total mortality than non-

consumptive rates for both sexes; accounting for an average of 86% for CV-males and 

76% for CV-females (95% CI: -0.091 – 0.005). The greatest consumptive mortality rates 

occurred in autumn for CV-males, whereas rates were relatively stable across seasons 

in CV-females (Figure 4.15). Non-consumptive mortality was greatest during the 

summer and winter months, for both sexes. It should be noted that the number of 

adults counted, whether alive or dead was very low during some of the winter weeks 

(i.e. < 20), so I urge caution with these data. 
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Figure 4.15. Calanus helgolandicus. Total mortality rates, divided into the consumptive 

(white bar) and non-consumptive mortality rates (filled bar). Values are seasonal means 

during 2013, with error bars representing standard deviations for each of the two mortality 

components. (a) CV-♀, and (b) CV-♂. Spring = March-May, summer = June-August, autumn 

= September-November, winter = December-February; numbers above bars indicate number 

of samples analysed; consumptive mortality error bars represented by dashed line, non-

consumptive mortality error bars represented by solid line, plus bars shown only.  

 

 

The CV-male consumptive mortality rates were related both to chaetognath 

and siphonophore abundance, and siphonophore + medusae abundance in a multiple 

gls regression. SST was a significant predictor of CV-male, but not CV-female 

consumptive mortality. When the relationship between SST and CV-male consumptive 

mortality was accounted for, medusae abundance was the only significant predator. 

The CV-female consumptive mortality was related to chaetognath abundance only. 

Neither CV-male nor CV-female non-consumptive mortality rates were related to any 

environmental factors, including SST. The results of all significant mortality regression 

analyses are presented in Table 4.6. 

 

 

 

CV-♀ CV-♂ 
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Table 4.6. Calanus helgolandicus. Generalised least squares analysis of weekly consumptive 

mortality rates of CV-♀ and CV-♂ with temperature and predators (2013): coefficients, 

standard error (SE), t-value, p-value and AIC value, single and multi-variable GLSs; SST = sea 

surface temperature; n = 21 (CV-♀), n = 17 (CV-♂); all abundances were log10(x+1) except 

CV-♀ chaetognath. 

Stage and Sex Model predictor(s) Coefficient 
(slope) 

SE t-value p-value AIC 

CV-♀       

 Chaetognath abundance  0.006 0.002 2.667 0.009 -425.6 

CV-♂       

 SST -0.027 0.011 2.450 0.027 -18.2 

 Chaetognath abundance  0.092 0.037 2.502 0.020 -15.2 

  Siphonophore abundance  0.086 0.014 6.152 0.00001 -27.8 

 SST + 
medusae abundance 

0.036 
-0.012 

0.010 
0.044 

3.667 
-2.634 

0.002 
0.020 

 
-13.1 

 

 

4.3.4 Matrix mortality model 

The weekly proportional mortality (PM) results integrate multiple weeks of egg 

laying (Figure 4.16), and span the one to two month C. helgolandicus generation 

timescale, therefore I have limited any analysis of the weekly PM values. Instead, I 

initially used an April-August time-span (the summer growth period and also time of 

most robust data) to calculate a mean PM index for each year; followed by the usage 

of specific months pertinent to the seasonality of each specific predator group to 

calculate the mean PM. The median predicted  C. helgolandicus CI-CV copepodite peak 

abundance of ~10,000 m-3 occurred during June-July, with the median observed peaks 

of ~70 and ~100 m-3 occurring in June and August (Figure 4.17a). This indicates that 

each year, 95 - 99% of all the potential C. helgolandicus copepodites (CI-CV) are lost at 

some point before they reach adulthood, whether this be a failure of eggs to hatch, 

naupliar abnormalities, predation on eggs/nauplii/copepodites or some other form of 

non-consumptive type of mortality. 
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Figure 4.16. Matrix mortality model method presenting predicted Calanus helgolandicus 

copepodite (CI-CV) abundance and observed copepodite abundance (2002-2015, excl. 2007) 

at station L4. 
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Figure 4.16. contd. 
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Copepodite PM was highest in the earlier part of the summer (June/July) but 

decreased thereafter (Figure 4.17b). Mean April-August PM for 2002-2015 (excl. 2007) 

ranged from 94 to 99%, with a median of 98% (Table 4.7). Table 4.8 details the 

summary statistics of each of the constituent variables within the matrix mortality and 

demonstrates that it is the ~7-fold variation of the female abundance, translating to 

the ~11-fold variation in TRO that was most important in deriving the variability in 

absolute mortality derived by this matrix model. 

 

 

Figure 4.17. Matrix mortality model results (2002-2015, excluding 2007); (a) median monthly 

abundance of CI-CV copepodites as observed (right-hand axis (LHS)) and predicted (left-hand 

axis (RHS)), note change in scale; (b) proportional mortality, as derived from the difference 

between the observed and predicted values. 
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Table 4.7. Calanus helgolandicus. Summer (April – August) proportional mortality rates 

between egg and CI-CV stage, as determined by the matrix mortality method; mean, 

standard deviation and n; number of sampling time-points (2002-2015, excluding 2007). 

Year Proportional mortality (%) 

 Mean n 

2002 98.0 18 

2003 98.1 19 

2004 96.5 16 

2005 98.8 18 

2006 99.1 17 

2008 99.0 18 

2009 98.8 19 

2010 97.7 20 

2011 99.2 21 

2012 98.4 19 

2013 95.4 22 

2014 94.5 20 

2015 99.2 20 

 

 

 

Table 4.8. Calanus helgolandicus. Minimum, maximum, mean, median and range amplitude 

of variables used over 13 years within matrix mortality method (April-August), and resulting 

mortality estimates. Amplitude is maximum/minimum range value. 

Variable Min Max Mean Median Range 

amplitude 

♀ C. helgolandicus abundance (no. m
-3

) 3.70 27.06 12.55 13.13 7.3 

C. helgolandicus egg production rate (EPR) 

(eggs female
-1

 day
-1

) 18.43 28.75 23.63 24.47 1.6 

C. helgolandicus total reproductive output 

(TRO) (eggs m
-3

 day
-1

) 65.50 717.75 337.96 265.03 11.0 

C. helgolandicus copepodite abundance        

(CI-CV) (no. m
-3

) 49.47 284.67 119.57 108.81 5.8 

Absolute mortality (no. m
-3

) 1378.39 13927.42 7558.74 6715.45 10.1 

Proportional mortality (%) 88.7 98.3 95.0 96.2 - 
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Mean April-August PM was not related to mean April-August SST. A backwards 

stepwise multiple gls regression including the main zooplankton predators 

(chaetognaths, siphonophores, medusae and ctenophores) resulted in a model with 

only one significant explanatory variable; chaetognaths (Figure 4.18a). There was no 

relationship between total gelatinous predator abundance and PM, unlike my findings 

for summer VLT mortality rates. Mean annual gelatinous zooplankton biomass related 

positively to mean PM, although not significantly (2002-2015, excl. 2005-07) (R2 = 0.35, 

p = 0.056, n =10), while no such relationship was found for the non-gelatinous 

component. 

Because the April-August averages integrate seasonal as well as interannual 

variability I focussed analysis on time periods specific to the peak of each predator. 

Thus a highly significant relationship was found between mean May-June PM and 

mean May-June ctenophore abundance (2008-2015) (Figure 4.18b) and June to 

October mean PM was related to mean medusae abundance (2002-2015, excl. 2005-

07) (Figure 4.18c).  
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Figure 4.18. Calanus helgolandicus matrix mortality mean proportional mortality (PM) versus 

predator abundance; (a) mean chaetognath abundance (April to August); (b) mean 

ctenophore abundance (May to June); (c) mean medusae abundance (June to October); 

station L4, western English Channel, UK. 
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4.4 Discussion 

The three mortality methods provided complementary insights into the 

mortality dynamics of C. helgolandicus. Mortality was calculated over various temporal 

resolutions, including over 4 years (CV-adult copepodite VLT), seasonal over 1 year 

(consumptive vs non-consumptive), and across 13 years (matrix method). I discuss 

these in combination and focus on agents of total mortality, non-consumptive 

mortality rates and causes and differences in mortality rates between males and 

females. 

 

4.4.1 Total mortality in relation to temperature and predators 

VLT total mortality rates were highest during summer and autumn, lowest in 

winter, and rates for both sexes followed similar seasonal patterns. Kvile et al. (2016) 

proposed a statistical regression approach to take account of the issues related to a 

traditional VLT method when trends in recruitment were present. A downward trend 

in recruitment to the stages leads to underestimated mortality rates, whereas the 

reverse is true for an increasing trend in recruitment. While my data is unsuitable for 

this approach, the basic finding of high mortality in autumn at a time of reducing 

recruitment to late stages would be supported even more strongly if mortality was 

indeed underestimated at this time.  

Sea surface temperature was a positive predictor of both CV-male and CV-

female VLT mortality rates. There may be several factors behind this. First, predator 

activity is higher in warmer summer conditions resulting in higher food demands. 

Second, higher metabolic rates of C. helgolandicus would be expected to result in 

higher natural mortality. These temperature related factors seem to modulate the 

seasonality of mortality rather than its inter-annual variability, since the matrix model 

did not invoke temperature variations between years.  

Considering the effect of the predator landscape, chaetognaths, siphonophores 

and total gelatinous zooplankton abundance were all significant predictors of late-

stage C. helgolandicus VLT mortality rates. Simple calculations of the potential 
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predatory impact of chaetognaths suggest that they are capable of removing up to 

82% of the C. helgolandicus copepodites daily from the water column (using a mean 

clearance rate of 1.2 L ind-1 d-1 provided by Tönnesson and Tiselius (2005), the 

maximum chaetognath abundance of 568 m-3 and the L4 water column depth of 55 m). 

An investigation of the content of the gastrozooids of Muggiaea atlantica found prey 

ranging from 0.1 to 0.9 mm in length (Purcell, 1982), which indicates that only the 

naupliar and CI copepodite stages of C. helgolandicus could be ingested. Using mean 

May-September total naupliar NI-NVI and CI abundances (2002-04 and 2013), I 

calculated a clearance rate of 11.1 L siphonophore-1 d-1, which translated to a 

population clearance rate of 1377 m3 (assuming a maximum siphonophore abundance 

of 1.27 L-1) equivalent to >2500% of the 55 m3 water column.   

Analysis of the separate 2002-04 and 2012-13 datasets suggested that 

chaetognaths and siphonophores were most influential during the earlier time period, 

and medusae were more important during the latter, when they were more abundant. 

This suggests that there are inter-annual fluctuations in the predatory influence of 

each of the gelatinous zooplankton, and in some years there are blooms of various 

medusae that may significantly impact the copepod population. The matrix model 

suggested that chaetognaths, medusae and ctenophores were important at an inter-

annual scale, but each at specific times of the year. The role of these groups is also 

corroborated by the fact that mean annual total gelatinous zooplankton biomass was a 

predictor of annual PM (proportional mortality), but mean annual non-gelatinous 

zooplankton biomass was not. Total zooplankton biomass and abundance at L4 is 

dominated for most of the year by the non-gelatinous zooplankton, which in turn is 

dominated by the Copepoda. These two sets of results at different scales substantiate 

that gelatinous predators (including chaetognaths) are important in structuring C. 

helgolandicus populations in the western English Channel.  

Parasagitta setosa and Parasagitta elegans are the two dominant 

chaetognaths recorded at L4. Parasagitta spp. are major predators of copepods 

(Rakusa-Suszczewski, 1969) and Calanus spp. have been found to predominate in the 

diet of Parasagitta elegans in particular (Grigor et al., 2015). Various studies have 
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linked C. helgolandicus abundance with chaetognath abundance (Southward, 1984; 

Clark et al., 2003; Bonnet et al., 2010). The fact that the matrix mortality method also 

found a relationship with chaetognath abundance is noteworthy in that it suggests the 

predation pressure by chaetognaths is strong enough to be detected at an inter- 

annual scale. Of the Siphonophora, the Calycophorae Muggiaea atlantica and 

Muggiaea kochi are the main species at L4. Blackett et al. (2014) reported that high 

densities of Muggiaea spp. were often associated with high abundance of copepods. C. 

helgolandicus abundance was also negatively correlated with siphonophore 

abundance in the 1989-2003 L4 study (Bonnet et al., 2010). Medusae were found to 

influence proportional mortality (PM) during June to October, the time of their peak 

abundance. There are ~35 species of hydromedusae and scyphomedusae recorded at 

L4, the majority of which are reported to include copepods in their diet (see Chapter 

Five). The numerically dominant species include Aglantha digitale, Obelia spp., Liriope 

tetraphyllae and Lizzia blondina, with two of these,  A. digitale and Obelia spp. 

recorded as feeding specifically on Calanus spp. (Lebour, 1922). Ctenophores are 

dominated by Pleurobrachia pileus at L4 and are usually restricted to a month or so of 

extreme abundances in early summer. Although they are present for only a short 

period, their total number and biomass can be substantial; hence the highly significant 

relationship with C. helgolandicus mortality during these months.   

There has been only limited mention in the literature of the relationship of C. 

helgolandicus abundance with fish larvae, despite this species being a major prey item 

of many larval fish species (Lebour, 1918; Rice, 1963; Robb and Hislop, 1980; Rowlands 

et al., 2008; Lynam et al., 2013). My study found no relationships between fish larvae 

and mortality rates. Although these infrequent predators may target Calanus spp., it 

may be that they are usually too sporadic to have a major impact on copepod 

abundances. 

 

4.4.2 Non-consumptive vs consumptive mortality rates 

My non-consumptive mortality estimates are, to my knowledge, the first for a 

large copepod, and certainly for this species. Carcasses accounted for an average of 9% 
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of all C. helgolandicus copepodite stages. This was a similar percentage to that found 

by Elliott and Tang (2011a) who reported a mean of 12-15% Acartia tonsa copepodite 

carcasses in the lower Chesapeake Bay, USA. Non-consumptive mortality of CI-CVI 

stages contributed from 0-54% of total mortality, with an average of 11%, 

demonstrating that this type of mortality can be substantial. Consumptive mortality of 

C. helgolandicus accounted for an average of 89% of the total mortality, which is 

higher than the 75% estimated by (Hirst and Kiørboe, 2002) in their study of global 

patterns in mortality rates. Non-consumptive mortality rates of total copepodites (CI-

CVI) were high during the summer and winter, but dropped during late-summer to 

autumn, whereas consumptive rates tended to be much higher in the autumn. This 

indicates that in the autumn, at a time when predator abundance is at its highest, 

consumptive processes may be most important in controlling the C. helgolandicus 

population, but at other times, non-consumptive factors contribute more strongly. 

During the derivation of non-consumptive mortality rates, I made the simplifying 

assumption that carcasses were re-suspended at L4 through turbulent action, with no 

losses due to sinking. C. helgolandicus carcasses are large and likely to sink; therefore 

actual non-consumptive mortality rates may in fact be greater than I have calculated.  

Physico-chemical factors have been investigated as causative agents for non-

consumptive mortality. Elliott and Tang (2011b) established a positive relationship 

between Acartia tonsa non-consumptive mortality and SST in Chesapeake Bay. Other 

studies report no relationships at all with environmental parameters (Tang et al., 2006; 

Beşiktepe et al., 2015). In this study, of the environmental factors considered, only 

maximum wind speed in the preceding 72-hours was a predictor of total copepodite 

(CI-CVI) non-consumptive mortality, suggesting that increased wind and storminess 

may play a role. South-west England and its coastal areas are subject to storm events 

and strong winds from the south-west and north-east, particularly in the winter. The 

January 2014 sampling point occurred after a succession of extreme weather events 

linked to cyclone conditions throughout December 2013 into January 2014, with gusts 

of > 70 knots recorded off the coast of Plymouth.  
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The occurrence of wind is a key factor in the generation of turbulence, as 

kinetic energy is added to the environment (Kiørboe and Saiz, 1995). It is recognized 

that copepods adjust their behaviour and swimming effort according to the 

background flow (Michalec et al., 2015), and that minimal turbulence can cause 

enhanced heart-beat rate and activity of copepods (Alcaraz et al., 1994). Whilst small-

scale turbulent eddies are known to enhance encounter rates and increase grazing 

rates (Alcaraz, 1997), higher levels of turbulence can decrease the period of contact 

with food items (Prairie et al., 2012) and inhibit swimming, growth efficiency and 

development. Therefore increased turbulence is thought to have a dome-shaped effect 

on the fitness, condition and production of zooplankton (Tóth et al., 2011).  

Tank experiments simulating turbulence experienced in Lake Balaton (wind 

velocity of 11.8 ms-1 which equates to ~23 knots) found that the increased turbulence 

and low water-level caused a decrease in survival rates in the calanoid copepod 

Eudiaptomus gracilis (Tóth et al., 2011). In comparison to Lake Balaton, Station L4 

frequently experiences gales and strong winds with a mean wind velocity > 40 knots 

and gusts exceeding 80 knots (~26 ms-1) and is a relatively shallow shelf site (~50 m), so 

it would be reasonable to hypothesise that copepod mortality due to extreme weather 

may be important at certain times of the year.  

Global wind speeds have been shown to exhibit an increasing trend, along with 

wave height (data from 1985-2008) (Young et al., 2011). Mean annual scalar wind 

speed at L4 has increased significantly from 1960 to 2014 (R2 = 0.75, p < 0.00001, n= 

54) (International Comprehensive Ocean-Atmosphere Data Set (ICOADS); COPEPOD: 

the global plankton database. ONLINE. 2009. http://www.st.nfms.noaa.gov/copepod), 

which may be an indication of changing weather patterns. Climate change is predicted 

to manifest in increased rainfall and higher temperature, resulting in the increased 

incidence of extreme weather events, including strong winds (Fischer and Knutti, 

2015); therefore non-consumptive zooplankton mortality may occur at higher rates in 

the future. 

 

 

http://www.st.nfms.noaa.gov/copepod
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4.4.3 Comparing mortality rates between sexes 

One of the main aims of the research was to explore how the C. helgolandicus 

mortality rates (both consumptive and non-consumptive) varied between the sexes. 

The proportion of adults which were dead at the point of their collection was generally 

greater for males than for females. This result is akin to that reported by Elliott and 

Tang (2011a) with 40% of adult males of A. tonsa collected being carcasses, with only 

9% of adult females being carcasses. Based on VLT mortality methods, CV-male total 

mortality rates were ~2.5 times greater than CV-female rates; a phenomenon that has 

been reported with other copepod species. For example, Oithona similis male 

mortality rates were estimated to be ~12 times that of females in polar waters (Hirst 

and Ward, 2008), and Calanus pacificus male rates were 2-3 times higher than female 

rates in California (Ohman and Hsieh, 2008). An important assumption I have made in 

this study is the 1:1 sex ratio of CV copepodites. This is based on Fisher’s principle 

(Fisher, 1930), which states that most animal species must produce approximately 

equal numbers of males and females, and that any skew will adjust back to equal ratios 

through the process of natural selection. However, Conover (1988) found that the sex 

ratio of Calanus CVs, based on the appearance of the gonad, was strongly skewed 

towards females, and more recent evidence reported a female-skewed sex ratio at 

birth in the calanoid copepod Acartia tonsa (Burris and Dam, 2015), therefore this 

assumption may need to be reviewed as new data comes to light. The relative 

mortality rates of males and females reflect the assumption of a CV sex ratio; for 

example Figure 4.19 (Appendix B) provides for comparison the male and female 

mortality rates derived using a female-skewed 5:1 CV sex ratio. 

The difference in copepod mortality rates between the sexes has been 

attributed either to male-skewed predation (MSP), defined as elevated consumptive 

mortality during more active mate-finding behaviour; or the shorter life-expectancy 

exhibited by males and subsequent earlier death from natural causes (Hirst et al., 

2010). The male skewed predation theory purports that male copepods move more 

frequently and faster in finding females, and so are more likely to encounter predators 

(Kiørboe and Bagøien, 2005; Kiørboe, 2008). The shorter physiological longevity of 
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males is implicated through various different studies, and importantly Calanus spp. are 

believed to adopt a semelparous reproduction strategy (Mayor et al., 2009; Daase et 

al., 2013), defined as a single reproductive period in their lifetime (Hairston and 

Bohonak, 1998), after which the adults die. This may contribute to some of the non-

consumptive mortality observed, particularly later in the season. Laboratory 

experiments with C. helgolandicus demonstrated that, in general, males moulted and 

died in culture sooner than the females (Mullin and Brooks, 1967). Female Temora 

longicornis were more sensitive (faster swimming velocities) to the presence of food 

than males (Moison et al., 2013) and gut fullness ratios were lowest in male Calanus 

sinicus (Chen et al., 2010) indicating that male copepods simply do not forage or ingest 

as much food as females. C. finmarchicus (Ohman et al., 2004) and Calanus pacificus 

(Ohman and Hsieh, 2008) male mortality rates were explained by atrophied mouth-

parts and reduced feeding rates of adult males, leading to an exhaustion of lipid 

reserves. Rodríguez-Graña et al. (2010) reported that males had more oxidative 

damage than females. Some studies question the male predation theory and suggest 

that differential longevity of the sexes is more important than previously considered 

(Gusmão et al., 2013). Others suggest that depending on genera and species, both 

predation and a shorter life-expectancy are likely to be important (Hirst et al., 2010; 

Kiørboe et al., 2015).  

By separating consumptive and non-consumptive mortality rates for CV-female 

and CV-male C. helgolandicus, I found that consumptive mortality contributed most to 

the total mortality (at 70% and 85% of the annual mean rate for CV-females and CV-

males respectively). CV-male consumptive mortality rates were on average ~6 times 

greater than that of CV-females; whereas CV-male non-consumptive rates were on 

average only ~1.5 times that of CV-female rates. As death from senescence would 

result in carcasses, while predation typically does not, my results suggest consumptive 

mortality is of greater significance to male loss rates in comparison to that of females. 

My approach provides a new method to explore differential causes of mortality in the 

sexes, and in this study provides evidence that predation on males is much greater 

than on females in C. helgolandicus. 
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My investigation has improved our knowledge of C. helgolandicus mortality 

rates and sources at L4. The estimation of mortality rates and attributing causal factors 

is necessary to elucidate the full set of parameters that are responsible for initiating 

and regulating copepod populations. I conclude that total mortality rates are 

dominated by predation mortality, and gelatinous predators in particular are 

important in C. helgolandicus population regulation. However non-consumptive 

mortality is not inconsequential and at times of the year, this may contribute more 

than consumptive sources. Major agents of non-consumptive mortality may include 

increased turbulence, which could become progressively more important in a future 

with a more extreme climate.  C. helgolandicus males experience higher rates of both 

consumptive and non-consumptive mortality. The six-fold difference between CV-male 

and CV-female consumptive rates indicates that it is the male’s higher susceptibility to 

predation that explains most of the increased total mortality; however the higher male 

rates likely reflect both their different behaviour and their shorter natural lifespan.   
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CHAPTER FIVE 

An investigation of the major predators of Calanus helgolandicus in the 

English Channel 

 

 Gelatinous zooplankton (including ctenophores, medusae and siphonophores) 

are purported to be voracious carnivorous predators, particularly of copepods. Various 

gelatinous species have been implicated as important predators of late-stage Calanus 

helgolandicus in the western English Channel. The siphonophore Muggiaea atlantica 

was the most abundant gelatinous species recorded at L4, followed by the ctenophore 

Pleurobrachia pileus. During the spring and summer of 2015 I observed a succession of 

gelatinous zooplankton in the routine sampling at the station L4, and opportunistically 

collected specimens of the ctenophore Pleurobrachia pileus and the hydromedusa 

Leuckartiara octona for molecular gut-content analysis (Muggiaea atlantica were not 

collected as their stomachs are consistently detached from the nectophores in the net-

sampling process). DNA was extracted and amplified from 87 P. pileus and 36 L. octona 

(whole specimens) collected between May and July 2015. I employed primers targeting 

the V9 region of the 18S nuclear small subunit (nSSU) ribosomal RNA (rRNA) gene and 

next-generation sequencing (NGS) techniques to sequence the mixed DNA assemblage. 

C. helgolandicus sequences were detected in every pooled sample and contributed a 

mean of 4% to the P. pileus diet (57% of copepod sequences) and a mean of 8% to the 

L. octona diet (79% of copepod sequences). However, DNA sequences from other 

gelatinous species proved to be dominant in almost all samples of both species. This 

surprising result suggests that copepods may not be the main prey species of 

gelatinous predators, and that they may survive mostly on other gelatinous species.  
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5.1 Introduction 

 Many gelatinous zooplankton are reported to be carnivorous zooplanktivores 

and numerous studies highlight the importance of copepods in their diet (e.g. Lebour, 

1922; Greene et al., 1986; Chandy and Greene, 1995). Maud et al. (In review) found 

that gelatinous predator biomass (including ctenophores, siphonophores and 

medusae) and chaetognaths were significant predictors of late-stage C. helgolandicus 

mortality rates. However, abundance and mortality rate correlations, and laboratory-

based feeding experiments, do not necessarily prove predator ingestion of prey in a 

natural system, hence, the use of gut-content analysis of wild organisms to 

substantiate predator-prey interactions is of considerable benefit. 

Traditional studies of gut-content have involved time-consuming and 

painstaking dissection of gelatinous zooplankton and identification of undigested and 

half-digested prey fragments (e.g. Fraser, 1970; Purcell, 1982; Chandy and Greene, 

1995), which may lead to a bias towards prey items that are harder to digest (with a 

longer gut transit time) and identifiable from indigestible body parts. The development 

of molecular gut-content analysis techniques and the use of the polymerase chain 

reaction (PCR) has afforded the identification of prey DNA in the guts of predators, and 

species-specific primers have provided evidence for the ingestion of a target prey 

species (e.g. Jarman et al., 2002; Vestheim et al., 2005; Bonnet et al., 2010). Such 

techniques are becoming widely used in both aquatic [i.e. seahorses (Corse et al., 

2015), fish (Leray et al., 2013) and dolphins (Dunshea et al., 2008)] and terrestrial 

ecological studies [i.e. parasitoid wasps (Rougerie et al., 2011), carabid beetles 

(Eitzinger and Traugott, 2011), birds (Sutherland, 2000) and bats (Zeale et al., 2011)].  

More recently, metabarcoding approaches (where DNA regions, or “barcodes”, 

are sequenced for every organism in a sample), as well as universal primers, the 

advent of high through-put (HTP) technology and next generation sequencing (NGS) 

platforms have allowed for the sequencing of DNA from natural mixed assemblages, 

thus assessing the true biodiversity (Lindeque et al., 2013; de Vargas et al., 2015; 

Bucklin et al., 2016). Applied to gut-content analyses, metabarcoding and NGS have 

provided a more accurate and complete characterisation of the diversity of prey items 
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(e.g. Blankenship and Yayanos, 2005; King et al., 2008; Pompanon et al., 2012; Maloy 

et al., 2013), revealing previously unknown predator-prey interactions, and providing  

semi-quantitative assessments of the contribution each prey species to the diet 

(Albaina et al., 2016).  

Whilst many studies have extracted DNA from the dissected gut of the 

predator, this may be tricky for smaller and less robust zooplankton (e.g. nauplii, 

gelatinous zooplankton); hence extraction of DNA from the whole organism is 

necessary. This technique, however, means that the predator, as well as the prey DNA, 

may be amplified and the predator DNA will likely dominate the PCR product and mask 

the prey DNA (Piñol et al., 2014). Methods using predator-specific blocking primers 

have been employed to block the amplification of the predator DNA (e.g. Vestheim 

and Jarman, 2008; Deagle et al., 2010), however they may also block prey DNA, 

particularly if it is closely related to the targeted predator, thereby introducing a 

different bias into the analysis. Piñol et al. (2014) promoted the use of NGS without the 

use of blocking probes to analyse an invertebrate diet (a terrestrial arachnid), 

concluding that this technique provided ample sequences for the analysis of the prey 

diversity. 

Here I was able to exploit the sampling of a progression of large blooms of 

ctenophores and medusae at L4 throughout the 2015 season and undertake molecular 

gut-content analysis of multiple gelatinous predators to confirm the presence of, and 

assess the importance of, C. helgolandicus as prey. I utilised the Illumina MiSeq NGS 

platform and 18S rRNA V9 primers following the protocol of the novel study by Albaina 

et al. (2016). The V9 region is suitable for metabarcoding of gut content as it has a 

broad amplification range, short amplicon size to maximise the signal returned from 

partially digested prey and is represented extensively in public databases (Albaina et 

al., 2016 and references therein). To my knowledge, this is the first study to use NGS to 

evaluate the prey field of gelatinous zooplankton using whole organisms. 

The research aimed to answer the following questions; (1) is there evidence for 

the predatory impact of gelatinous zooplankton on C. helgolandicus in the L4 time 
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series? (2) which gelatinous zooplankton prey on C. helgolandicus? and (3) what 

contribution do they make to the diet, at L4? 

 

5.2 Materials and methods 

5.2.1 Molecular analysis of gut contents 

Selection of gelatinous zooplankton for DNA extraction 

 Between 15/05/15 and 14/07/15 live Pleurobrachia pileus ctenophores and 

Leuckartiara octona hydromedusae were selected from the routine weekly vertical 

WP-2 200 µm net samples (individual ctenophores and medusae were picked as soon 

as possible on return from L4 whilst in a controlled-temperature laboratory at ambient 

L4 temperature). Specimens were chosen on their prevalence in the sample and ease 

of identification so that many specimens could easily be collected. Each specimen was 

identified using microscopy and triple rinsed in 0.2 µm filtered sea water (FSW) to 

ensure complete removal of any external contaminating organic material. Excess water 

was removed, the animal placed in a suitably sized Falcon or Eppendorf tube and 

frozen in liquid nitrogen. Samples were stored at -80ºC. 

 

DNA extraction 

The frozen gelatinous specimens were allowed to thaw before pooling the 

required number of specimens (Table 5.1) in a 15 mL Falcon tube and 300 µL of CTAB 

solution (2% cetyl trimethyl ammonium bromide (CTAB), 100 mM Tris-HCl pH 8, 20 

mM EDTA, 1.4 M NaCl, 0.2% β-mercaptoethanol) was added per ctenophore/medusa. 

Physical homogenisation was then carried out using a 5 ml syringe and 19 G needle. 

Molecular grade proteinase K was added (0.37 µg/ml per organism) and the samples 

physically homogenised for a second time before incubation at 55°C for 24 hours. The 

homogenate was extracted once with an equal volume of chloroform:isoamyl alcohol 

(24:1) and gently inverted before centrifugation at 7700 G for 10 min. The aqueous 

phase was transferred to a fresh Falcon tube and precipitated with 2 volumes of 95% 

ethanol at -80°C for 1 hour. The samples were centrifuged again at 10,000 G for 30 
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mins, before pouring off the excess ethanol. The resultant DNA pellet was washed with 

70% ethanol and centrifuged for a final time at 7000 G for 15 mins. Excess ethanol was 

removed and the remaining pellet air dried for 45 mins before resuspension in 200 µL 

TE and storage at 4°C. The DNA extractions were analysed to assess quality and 

quantity of DNA present using a NanoDrop 1000 Spectrophotometer 

(ThermoScientific, Delaware USA). 

 

 

Table 5.1. Gelatinous species, number of individuals analysed, number of samples, total 

number of specimens analysed and total number of pooled samples (May to July 2015).  

Species 18 
Jun 

25 
May 

1 
Jun 

8  
Jun 

15 
Jun 

22 
Jun 

29 
Jun 

6  
Jul 

14 
Jul 

Total 

Pleurobrachia pileus 
                    

No. individuals analysed 18 18 18 15 18         87 

No. pooled samples 3 3 3 3 3         15 

Leuckartiara octona                     

No. individuals analysed 3 9 9 3 3 2 1 3 3 36 

No. of pooled samples 1 3 3 1 1 1 1 1 1 13 

 

 

DNA amplification 

Primers (Illumina_Euk_1391f and Illumina_EukBr), designed by the Earth 

Microbiome Project (EMP), were chosen for amplicon generation. These primers target 

the V9 region of the 18S nuclear small subunit (nSSU) ribosomal RNA (rRNA) gene and 

flank a region that is highly divergent (Albaina et al., 2016). 

Polymerase chain reaction amplification was performed in triplicate using 1 µL 

of genomic DNA template (1:10 dilution) in 25 µL reactions containing 2.5 µL of 10x 

buffer, 2.5 µL 200 µM dNTPs, 2 µL 25 mM MgCl2, 14.8 µL DNA water, 0.5 µL of 10 µM 

primers, 0.5 µL 5x Q solution and 0.2 µL of 2.5 Unit/reaction Taq DNA Polymerase 
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(Qiagen).  The PCR conditions involved a 2 min denaturation at 95°C followed by 27 

cycles of 30 secs at 95°C, 45 secs at 57°C, 45 secs at 72°C and a final extension of 7 min 

at 72°C.  The pooled triplicate PCR products and negative controls was visualised on a 

1% agarose gel before the 180 base pair (bp) amplicons were purified using the 

QIAquick PCR Purification Kit (Qiagen).  The cleaned PCR products were sent to MR 

DNA for sequencing (www.mrdnalab.com, Shallowater, TX, USA) on an Illumina MiSeq 

following the manufacturer’s guidelines. A 5 cycle PCR was undertaken, to add 

multiplexing labels to the amplicons, using the HotStart Taq Plus Master Mix Kit 

(Qiagen, USA) under the following conditions: 94°C for 3 minutes, followed by 5 cycles 

of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final 

elongation step at 72°C for 5 minutes was performed. Following PCR, all amplicon 

products from different samples were mixed in equal concentrations and purified 

using Agencourt Ampure beads (Agencourt Bioscience Corporation, MA, USA).    

 

Sequence data processing  

Sequence data were processed using MR DNA’s analysis pipeline (MR DNA, 

Shallowater, TX, USA). In summary, consensus sequences were formed from the 

forward and reverse reads, barcodes were removed, then sequences <150bp and 

those with ambiguous base calls were removed. Sequences were de-noised (the 

removal of errors introduced in DNA library preparation and amplification), 

operational taxonomic units (OTUs) generated and chimeras removed. OTUs were 

defined by clustering at 3% divergence (97% similarity). Final OTUs were taxonomically 

classified (at the level of 95% homology or above) using BLAST+ version 2.3.0 and the 

BLASTn database https://blast.ncbi.nlm.nih.gov. The assigned taxonomies were 

verified and manual BLAST searches were run on non-local species. 

The number of sequences for each species was calculated as a percentage of 

the total number of sequences returned for that sample. As whole organisms were 

homogenised including their guts, the OTUs containing sequences pertaining to the 

relevant predator species were removed from the dataset and percentage sequences 

http://www.mrdnalab.com/
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recalculated. Where necessary, replicates from the same sampling date were averaged 

to obtain one set of percentage data for each prey species for each date. 

 

5.2.2 Mesozooplankton abundance and biomass 

 Sampling, identification and enumeration of mesozooplankton collected during 

2007 to 2015 [including adult Calanus helgolandicus (male and female) and total 

copepodites (CI-CV)] were undertaken following the methods described in Chapter 

Two (Section 2.2.1). Abundance data for C. helgolandicus, ctenophores, medusae and 

siphonophores were extracted from the time series. Total ctenophore data were 

available from 1988, however I have utilised data spanning from 2007-2015 only, as 

there are doubts over data accuracy before this time (due to time delay from capture 

to analysis and possible fragmentation in formaldehyde). Species-specific medusae, 

ctenophore and siphonophore data were collected from 2009, thus I collated seven 

years only (2009-2015). Predator biomasses were estimated by measuring lengths of 

L4 specimens and applying literature length-mass conversions [see Chapter Three 

(Section 3.2.1)].  

 

5.2.3 Data analysis 

 Simple linear regressions were undertaken between annual and May-July mean 

gelatinous zooplankton abundance and estimated biomass values against total C. 

helgolandicus abundance and biomass. 

 The percentage of C. helgolandicus in the diet of P. pileus and L. octona was 

analysed over time and analysed in relation to the percentage C. helgolandicus 

biomass of the total zooplankton biomass (mg C m-3). 
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5.3 Results 

5.3.1 Abundance and seasonality of gelatinous zooplankton at L4 

 The gelatinous zooplankton species recorded at L4 and an assessment of their 

likelihood to ingest C. helgolandicus is presented in Table 5.2. This was based on the 

published literature and various online registers of marine species [e.g. Marine Species 

Identification Portal (http://species-identification.org/index.php) and the World 

Register of Marine Species (WoRMS) (WoRMS Editorial Board, 2017)]. 

 Figure 5.1 presents the total abundance of each species of gelatinous 

zooplankton recorded over 2009-2015. Only two ctenophores generally appear at L4, 

Pleurobrachia pileus and Beroe cucumis, the most abundant being P. pileus, a predator 

of copepods. Beroe spp. are predators of other ctenophores and can grow very large 

(~150mm) and although reported to be rare at L4 (only appeared in the L4 

zooplankton dataset in 2013, unpublished data), have appeared more abundant during 

the summers of 2015 and 2016.  

Muggiaea spp. are known to feed on copepods and are the predominant 

siphonophore at L4, as well as the most abundant of all gelatinous zooplankton. Other 

species of siphonophore include the physonectae Agalma elegans and Nanomia cara. 

The athorybia larvae of A. elegans are occasionally seen at L4, along with many 

individual nectophores from siphonophores that have disintegrated during sampling.  

 Of the medusan species, five are clearly the most abundant at L4, Obelia spp., 

Lizzia blondina, Liriope tetraphylla, Solmaris corona and Aglantha digitale. Obelia, L. 

tetraphylla and A. digitale are predators of copepods, the diet of L. blondina is 

uncertain and S. corona mostly feeds on other gelatinous zooplankton (Larson et al., 

1989). It is likely that at least a ⅔ (if not many more) of the 30 species of gelatinous 

predator found at L4 are potential predators of C. helgolandicus (Table 5.2).  

http://species-identification.org/index.php
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Table 5.2. List of gelatinous zooplankton species recorded at L4 (2009-2015); indicating occurrence at L4 (Conway 2012), diet and whether is a potential 

predator C. helgolandicus. 

Phylum Class Order Species Occurrence at 
L4 

Diet Predator of              
Calanus? 

Cnidara Scyphomedusae   Aurelia aurita Rare molluscs, crustaceans, tunicate larvae, rotifers, young 
polychaetes, protozoans, diatoms, eggs, fish eggs, 
hydromedusae, ctenophores 



Cnidara Hydromedusae  Liriope tetraphylla V. common herbivorous crustaceans, chaetognaths, and fish eggs and 
larvae 



Cnidara Hydromedusae  Aglantha digitale V. common copepods 

Cnidara Hydromedusae  Obelia spp. V. common crustaceans, copepods, worms, detritus 

Cnidara Hydromedusae  Clytia hemisphaerica Common ? ? 
Cnidara Hydromedusae  Leuckartiara octona Occ. common copepods, fish larvae, decapods 

Cnidara Hydromedusae  Solmaris corona Occ. common gelatinous zooplankton x 
Cnidara Hydromedusae  Sarsia spp. Occ. common copepods 

Cnidara Hydromedusae  Coryne prolifera Occ. common ? ? 
Cnidara Hydromedusae  Corymorpha nutans Occ. common crustaceans 

Cnidara Hydromedusae  Lizzia blondina Occ. common ? ? 
Cnidara Hydromedusae  Amphinema spp. Occ. common copepods, chaetognaths, other hydromedusae 

Cnidara Hydromedusae  Rathkea octopunctata Occasional crustaceans, fish larvae/eggs & Parasagitta spp. 

Cnidara Hydromedusae  Bougainvillia muscus Occasional microzooplankton ? 
Cnidara Hydromedusae  Phialella quadrata Occasional copepods 

Cnidara Hydromedusae  Eutima gracilis Occasional copepods, chaetognaths, other hydromedusae 

Cnidara Hydromedusae  Ectopleura dumortierii Occasional ? ? 
Cnidara Hydromedusae  Turritopsis nutricula Rare ? ? 
Cnidara Hydromedusae  Hydractinia borealis Rare ? ? 
Cnidara Hydromedusae  Cosmetira pilosella Rare fish larvae, Pleurobrachia pileus 

Cnidara Hydromedusae  Mitrocomella brownei Rare ? ? 
Cnidara Hydromedusae   Lovenella clausa Rare ? ? 
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Table 5.2. Continued 

 
      

Phylum Class Order Species Occurrence at 
L4 

Diet Predator of              
Calanus? 

Cnidara Hydromedusae Siphonophora Muggiaea spp. V. common copepods 

Cnidara Hydromedusae Siphonophora Agalma elegans Common copepods, euphausiids, fish larvae, chaetognaths 

Cnidara Hydromedusae Siphonophora Nanomia cara Quite common copepods, euphausiids, fish larvae, chaetognaths 

Cnidara Hydromedusae Siphonophora Apolemia uvaria Rare copepods, crustaceans, fish, other siphonophores 


Ctenophora Tentaculata 
 

Pleurobrachia pileus Common copepods, fish larvae, eggs and other crustaceans 

Ctenophora Tentaculata   Bolinopsis spp. Rare copepods, euphausiids 

Ctenophora Nuda   Beroe cucumis Rare Pleurobrachia pileus, Bolinopsis spp. - other ctenophores x 
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Figure 5.1. Total abundance of gelatinous zooplankton (sum of all samples recorded from 2009-2015) at L4; red columns are ctenophores, green are 

siphonophores and blue are medusae.
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5.3.2 The abundance of P. pileus and L. octona during 2015 

 Pleurobrachia pileus were present from mid-April to late-June, with a peak at 

the end of May (Figure 5.2).  Leuckartiara octona, which temporally overlapped and 

subsequently succeeded P. pileus, were present from late-April, high throughout May 

and June and disappeared in July.  Both species were recorded over periods of ~10 

weeks long. Two peaks of C. helgolandicus flank the annual occurrence of these two 

species, indicating that P. pileus and L. octona in combination may be key predators 

capable of significantly depressing the population of C. helgolandicus at this time of 

the year. 

 

 

 

Figure 5.2. Abundance of P. pileus, L. octona (right-hand axis) and C. helgolandicus at L4 

(April - July 2015); RHA is right hand axis. 

 

 

 Pleurobrachia pileus tend to appear only once a year, peaking around May to 

June (Figure 5.3) and have been known to wash up on beaches in their thousands. 

Although the average abundance at L4 is only ~3 m-3, a maximum of 70 m-3 was 

recorded in June 2011. Leuckartiara octona generally follow the same seasonality as P. 

pileus, but at a maximum density of only ~1.5 m-3.  
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Figure 5.3. Seasonality of P. pileus and L. octona (right-hand axis) (mean monthly abundance, 

2009-2015); RHA is right hand axis. 

 

5.3.3 Relationships between gelatinous predators and C. helgolandicus abundance 

 Annual mean total C. helgolandicus abundance was negatively related to total 

ctenophore abundance, although not at the 5% significance level (Figure 5.4). The 

relationship with L. octona was negative but not significant. 
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Figure 5.4. Relationship between total C. helgolandicus copepodite (CI-CVI) abundance and 

total ctenophore abundance (annual mean; 2007-2015). 

 

5.3.4 Molecular analysis of gut content 

Pleurobrachia pileus 

 Pleurobrachia pileus DNA sequences constituted a mean of 75% of the total 

sequences (mean of 31700 sequences per ctenophore). The sequences indicate that 

the diet consisted mostly of medusae (mean of 38%), with fish and polychaete larvae 

dominating at times, but on average contributing 14% and 13% respectively (Figure 

5.5). Copepods (including C. helgolandicus) were detected in every sample, but at low 

percentages (3-15%). Parasites constituted on average 10% of the sequences. 

Interestingly, other ctenophores and siphonophores were also identified as prey, and 

together with the medusae, the gelatinous zooplankton contributed between 24 and 

84% of DNA sequences in the P. pileus diet. 
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Figure 5.5. Percentage composition of DNA sequences obtained following molecular analysis 

of whole P. pileus, excluding P. pileus sequences (thereby indicating species ingested) (May-

June 2015 and mean). 

 

 

Calanus helgolandicus sequences constituted between 1.3 to 7.9% (mean of 

3.8%) of the P. pileus diet and appeared to demonstrate a decreasing contribution 

from May to June, although this increased again in mid-June (Figure 5.6). 

 

 

 

Figure 5.6. Percentage of C. helgolandicus DNA sequences obtained following molecular 

analysis of whole P. pileus, and excluding P. pileus sequences (thereby indicating species 

ingested) (May-June 2015, with error bars representing standard deviation). 
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Looking at the contribution of copepods specifically, Figure 5.7 shows that C. 

helgolandicus was one of the key copepods (mean of 57% of total copepods) in the 

diet of P. pileus. Other calanoids and harpacticoids contributed ~20% each.  

 

 

Figure 5.7. Percentage composition of copepod DNA sequences obtained following 

molecular analysis of whole P. pileus, and excluding P. pileus sequences (thereby indicating 

species ingested) (May-July 2015 and mean). 

 

Leuckartiara octona 

A mean of 115522 sequences were obtained from each L. octona medusae. 

Predator DNA sequences accounted for a mean of 65% of total sequences. The prey 

DNA sequences indicate that the diet of L. octona was chiefly dominated by 

ctenophores (mean of 50%), other medusae (18%) and polychaete larvae (10%). 

Copepods contributed much less, with a mean of 8% (1-15%) (Figure 5.8).  
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Figure 5.8. Percentage composition of DNA sequences obtained following molecular analysis 

of whole L. octona, excluding L. octona sequences (thereby indicating species ingested) 

(May-July 2015 and mean). 

 

  

Calanus helgolandicus constituted 0.7 to 14% to the L. octona diet, and 

contributed most in late-June and July (Figure 5.9). 

 

 

 

Figure 5.9. Percentage of C. helgolandicus DNA sequences obtained following molecular 

analysis of whole L. octona, and excluding L. octona  sequences (thereby indicating species 

ingested) (May-July 2015, with error bars representing standard deviation). 
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Calanus helgolandicus was the predominant copepod in the L. octona diet and 

comprised a mean of 79%. Other calanoids contributed ~17% (Figure 5.10). 

 

 

Figure 5.10. Percentage composition of copepod species in the diet of L. octona (May-June 

2015 and mean). 

 

5.3.5 Relationships between C. helgolandicus in the diet and biomass at L4 

 There was a highly significant logarithmic relationship between the C. 

helgolandicus biomass as a percentage of the total biomass at L4 and the percentage 

C. helgolandicus detected in the L. octona diet (Figure 5.11). This suggests that an 

increasing contribution of C. helgolandicus to the zooplankton biomass stimulates 

greater ingestion rates by L. octona, but that at a threshold biomass, ingestion levels 

off. 
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Figure 5.11. Relationship between percentage C. helgolandicus biomass of total zooplankton 

biomass at L4 and percentage contribution made by C. helgolandicus to the L. octona diet; 

logarithmic equation: y = 2.788 ln(x) = 3.604.  

 

 

5.4 Discussion 

 Large abundances of the ctenophore P. pileus and hydromedusae L. octona 

were observed in routine L4 sampling during 2015 and coincided with significantly 

depressed C. helgolandicus populations. Molecular gut content analyses of P. pileus 

and L. octona revealed that C. helgolandicus had been ingested by specimens in every 

pooled sample and constituted up to 8% (mean of 4%) and 14% (mean of 8%) of their 

diet respectively. In addition, I determined a strong positive link between C. 

helgolandicus availability at L4 and the relative contribution to the L. octona diet. Here 

I discuss the significance of these results in terms of what is currently known about the 

feeding habits of carnivorous gelatinous predators, their ability to modify the 

zooplankton community and how NGS metabarcoding techniques may alter the 

perception of jellyfish diets. 

 

 

 

 

R2 = 0.92 
n = 7 
p < 0.0001 
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5.4.1 Pleurobrachia pileus 

The wealth of literature available suggests that P. pileus feeds mainly on 

copepods and other crustaceans (e.g. Fraser, 1970; Frank, 1986; Møller et al., 2010), 

and is a non-selective carnivore, whose diet is reported to reflect the ambient food 

environment (Fraser, 1970). Clearance rates of 50-100 L per day were estimated by 

Gibbons and Painting (1992). Numerous studies have highlighted their predatory 

impact; for example 70% of the diet of P. pileus off south-west Nova Scotia were large 

crustacean zooplankton and extremely low levels of haddock (Melanogrammus 

aeglefinus) larvae were attributed to the presence of P. pileus, due to the removal of 

their zooplankton prey (Frank, 1986); and in the southern Benguela upwelling system, 

it was estimated that the P. pileus population could remove up to 27% of integrated 

mesozooplankton standing stocks per day, and in excess of 100% at some depths 

(Gibbons et al., 2003).  

My study suggests that copepods contribute considerably less (a mean of 6.5%) 

to the P. pileus diet at L4 and finds that other gelatinous species form ~50% of the diet. 

These are surprising results, given that gelatinous zooplankton are not detailed as prey 

in the published literature. These results are discussed in more detail later in Section 

5.4.3.  

The capacity of ctenophores to significantly reduce copepod populations has 

been well documented (Deason and Smayda, 1982; Sullivan and Reeve, 1982; Purcell 

and Decker, 2005; Tiselius and Møller, 2017). Their tremendous regulatory capacity is 

the result of individuals being able to ingest up to ten times their body carbon per day 

and growth responses enabling ctenophore populations to nearly double their 

biomasses each day (Greene et al., 1986).   

The Pleurobrachiidae are frequently discussed in the literature alongside their major 

predator, the ctenophore Beroe spp.  Haddock (2007) reported that Beroe can engulf 

Pleurobrachia completely and Lebour (1922) observed Beroe cucumis that were 

“packed tight with Pleurobrachia”.  Beroe, therefore, are seen as important in the 

regulation of the P. pileus population and thus promoting copepod population 

recovery (Greve, 1981). I observed large numbers of Beroe cucumis at L4 following the 

P. pileus bloom during 2015 (Figure 5.12a, Appendix B), which appeared to 
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demonstrate a trophic cascade. Here P. pileus appeared to hugely reduce the C. 

helgolandicus population, but a subsequent peak of Beroe ultimately released C. 

helgolandicus from this predation impact, so that they were able to re-establish peak 

abundances. Expressed as biomass, Figure 5.12b shows the phenomenal biomass of 

Beroe compared to that of P. pileus (~50 times greater), however I include the caveat 

here that there are considerable uncertainties about the Beroe biomass data, due to 

the fragmentation of specimens in samples, which may have inflated abundance and 

the resulting biomass conversions. A rough calculation of the predatory impact of P. 

pileus during the months of May to July [mean annual maximum abundance (2007-15) 

of 39.4 ind. m-3], and using a clearance rate of 61.24 L d-1 [calculated assuming the 

population consisted of large P. pileus with a polar diameter of 15mm, using the 

formula of Gibbons and Painting (1992)], estimated a P. pileus population clearance 

rate of 133 m3, which equates to 241% of the water column (~55m). This suggests that 

at times the P. pileus population is capable of decimating the C. helgolandicus 

population. 

This type of trophic cascade has been documented previously; Greve and 

Reiners (1980) in particular, discuss a self-regulatory system in ctenophore dynamics 

where the detrimental effect of Pleurobrachia is offset by Beroe, which conveys long-

lasting protection against the negative impact of P. pileus on copepod population. 

 

5.4.2 Leuckartiara octona 

The literature provides only a few studies of the feeding habits of L. octona. It 

was reported by Russell (1953) to be a voracious feeder of copepods, decapod larvae, 

polychaete larvae and fish larvae, and capable of catching and eating organisms larger 

than itself (Fraser, 1969). Leuckartiara spp. were observed to feed on the 

hydromedusae Aglantha digitale and Sarsia spp. (Fraser, 1969) and the siphonophore 

Nanomia cara (Alvariño, 1985). More recently Regula et al., (2009) have highlighted 

that L. octona preferentially selects other small hydromedusae over copepods in 

feeding experiments.  

Here, my results suggest that ctenophores and other medusae were the 

dominant prey of L. octona, and copepods contributed only ~8% of DNA sequences. 

This outcome is discussed further in the following section. Although it is unlikely that L. 
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octona in itself is capable of reducing the C. helgolandicus population, it may, in 

conjunction with other predators, exacerbate the predatory impact of P. pileus.  

 

5.4.3 Proportion contribution of C. helgolandicus to the diet 

 Copepods are reported to be the major prey of many gelatinous zooplankton 

species; for example, in Scottish waters 80-97% of the P. pileus diet (analysed using 

visual examination of gut contents) was found to be copepods (Fraser, 1970); the main 

prey of Aglantha digitale were Oithona and Temora spp. copepods (González and 

González, 1996); and Lebour (1922) observed Sarsia tubulosa feeding on copepods, 

but no other species. However, these results were obtained from either feeding 

experiments and/or gut-content analysis and it is recognised that visual identification 

often fails to identify gelatinous zooplankton in particular, due to their high digestion 

rates (Purcell, 1992).   

My results, provided by molecular techniques, suggest that although copepods 

were a constant presence in the diet of two gelatinous species, they were far 

outweighed by the dominance of other gelatinous zooplankton. Medusae were 

consistently important in the P. pileus diet and ctenophores were consistently 

important in the L. octona diet. A few, limited studies report on the feeding habits of 

gelatinous carnivores; Purcell (1991) states that the diets of hydromedusae commonly 

include gelatinous zooplankton, and as mentioned previously, L. octona were observed 

feeding on hydromedusae and siphonophores (Fraser, 1969), and Pleurobrachia were 

observed to prey on other ctenophore species (Alvariño, 1985). Hence, my results may 

be indicative of the fact that copepods may not be as dominant in the diet of 

gelatinous species as originally thought and that many gelatinous species may survive 

mostly on a gelatinous diet. It is only the full characterisation of the gelatinous 

zooplankton diet through molecular techniques along with clearance rates that can 

reveal their true predatory impact.  

I recognise that these results may reflect a sampling effect, as the gelatinous 

zooplankton were not picked from the L4 samples until they were back at the 

laboratory (at times a couple of hours later), and the gelatinous zooplankton may have 

ingested species they would not in a natural situation. However, a later study of the 
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diet of L4 gelatinous predators that picked and preserved animals on the research ship, 

within minutes of their removal from the sea, also indicated high proportions of 

gelatinous species in the gelatinous predator diet (Parry et al., 2017, manuscript in 

preparation); thus corroborating the results presented here.  

 

5.4.4 Other gelatinous zooplankton species  

 Here, I have detailed the diversity of the diet of only two gelatinous predators. 

Other gelatinous species have been investigated for their predatory impact, and many 

report the ability of jellyfish to regulate their prey populations. Aurelia aurita in 

particular, has received much attention; for example, it was classed as a keystone 

species that regulated the zooplankton of a shallow cove (Olesen, 1995); it reduced the 

zooplankton population to almost nothing in Skive Fjord (Denmark) (Møller and 

Riisgård, 2007); and removed two-thirds of daily secondary production in years of high 

abundance in the Kiel Bight/western Baltic (Schneider and Behrends, 1994).  

Other medusan species include Sarsia sp. and Rathkea octopunctata, which 

were deemed collectively responsible for the predation impact on copepods in 

Limfjorden, Denmark (Hansson et al., 2005). The total biomass of five hydromedusans 

(Sarsia sp., A. digitale, R. octopunctata, Cosmetira sp. and Euphysa tentaculata) and A. 

aurita varied reciprocally with zooplankton biomass, suggesting collective population 

control by the medusae off Nova Scotia (Matsakis and Conover, 1991). The 

leptomedusan Phialidium gregarium predation pressure on zooplankton population 

released phytoplankton from grazing pressure in a British Columbian fjord (Huntley 

and Hobson, 1978). Species-specific feeding by medusae may suggest a strong 

predatory impact on the prey species; however this is not always the case; the 

hydromedusan Nemopsis bachei in Chesapeake Bay, USA fed primarily on Acartia 

tonsa copepodites, but even at peak abundance was incapable of reducing A. tonsa 

populations (Purcell and Nemazie, 1992).  

 I mention here the siphonophore Muggiaea sp. as they are the most abundant 

gelatinous predators at L4. I was unable to carry out molecular gut-content analyses 

due to the feeding and digestive gastrozooids (which form part of the cormidia), being 

almost always removed from their polygastric stages during the net-sampling process. 
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Therefore, although the nectophores at times may be very numerous in the L4 

samples, analysis was not possible due to their stomachs being likely unattached. This 

is unfortunate as Muggiaea are believed to prey mostly on copepods and Blackett et 

al. (2014) reported high abundances to be associated with high abundances of 

copepods. There is also evidence for their invasive ability; where an invasion of 

Muggiaea atlantica in the German Bight in 1989 (~500 m-3) depressed small copepod 

populations and caused a phytoplankton bloom (Greve, 1994), and a similar invasion of 

the Adriatic in 1995 created a restructuring of the copepod community (Kršinic and 

Njire, 2001). 

 

5.4.5 Molecular analyses of gelatinous predator gut-contents 

I am aware of only a handful of studies that have employed molecular 

techniques to establish prey ingestion by gelatinous zooplankton and I believe ours is 

the first study to use NGS and the 18S rRNA V9 region to characterise the gut contents 

using whole gelatinous zooplankton specimens. The research by Meredith et al. (2016) 

used NGS to characterise the diet of the scyphomedusae Chrysaora quinquecirrha, 

however they performed gut lavages and gastric pouch/tentacle picks, rather than 

using whole organisms.  

Two studies have used species-specific primers to verify the presence of prey; 

for example, picocyanobacteria in the gut of the ctenophore Mertensia ovum after 

feeding experiments (Majaneva et al., 2014), and quantitative polymerase chain 

reaction methods (qPCR) were used to quantify the consumption of specific prey items 

of wild doliolids Dolioletta gegenbauri (Frischer et al., 2014). 

Pyrosequencing (a sequencing technique that is based on the detection of 

released pyrophosphate (PPi) during DNA synthesis) was used to investigate the 

bacterial communities of ctenophora (Hao et al., 2015), and although this study 

focused on the colonisation of bacteria rather than gut contents, the same 

methodology (extraction of DNA from whole organism) was employed.  
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5.4.6 Limitations of the metabarcoding approach in this study  

The results provided from NGS are only semi-quantitative, and can only provide 

relative proportions of sequences detected of each prey species. However, the fact 

that I determined a very strong link between the proportion of C. helgolandicus in 

zooplankton biomass and the proportion of C. helgolandicus in the diet of L .octona 

verifies that NGS techniques can provide evidence that prey intake reflects the prey 

field.  

At times DNA sequences from parasites were an important contributor to the 

P. pileus diet. The most frequently-occurring species was Hysterothylacium aduncum, a 

fish parasite, which is a nematode parasite of salmonids that has a copepod first 

intermediate host and is also capable of surviving free in the sea and susceptible to 

predation (González, 1998). Whether or not these parasites were ingested along with 

their copepod hosts or were captured as free-living stages is unknown, but this result 

may be an example of a prey-parasitism error (a consequence of a predator consuming 

prey that is parasitised). 

 

5.4.7 Conclusions 

I conclude that the ctenophore P. pileus is a major predator of C. helgolandicus, 

and capable of temporarily removing most of their biomass and initiating trophic 

cascades. L. octona also ingests C. helgolandicus, and may (probably in conjunction 

with other medusae and siphonophores) intensify the predatory impact of P. pileus. In 

addition, my results, obtained by molecular methods, strongly suggest that the 

characterisation of the full range of prey species may have been limited by traditional 

visual gut-content analyses. Molecular gut-content analyses may correct the bias 

towards the identification and significance of zooplankton prey with exoskeletons and 

allow for a more correct balance of prey items that include other gelatinous 

zooplankton. 

I acknowledge that I have only characterised the diet of two gelatinous species 

over a handful of weeks, and that there were multiple co-occurring potential predators 

of C. helgolandicus present in the water column that I have not investigated. However I 

exploited an abundance of easily identifiable gelatinous species to investigate their 
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diet. It is clear that a targeted collection and molecular analyses of other species would 

allow a more complete view of the predatory habits the gelatinous zooplankton at L4. I 

emphasise that each gelatinous species has a different ecology and whilst many may 

ingest a diverse range of taxa including copepods (e.g. P. pileus), others may not target 

copepods at all (e.g. the ctenophore Beroe sp. and the medusan Solmaris corona which 

is known to prey mostly on other medusae (Larson et al., 1989)). Therefore 

generalisations about the predatory impact of jellyfish may lead to spurious results.  
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CHAPTER SIX 

General Discussion 

 

This thesis has explored the population dynamics of the copepod Calanus 

helgolandicus in the western English Channel. My research is centred around the 28-year 

C. helgolandicus abundance time series and a 25-year weekly egg production time series 

from station L4. It has pursued four lines of inquiry; (1) the interannual variability of C. 

helgolandicus through interrogation of the L4 time series and the role of mortality in 

population regulation; (2) the mortality of early-stage C. helgolandicus, through egg and 

naupliar viability, and the importance of predators; (3) the mortality of copepodites in 

terms of both consumption by predators and non-consumptive processes, and (4) a 

specific focus on gelatinous predators (ctenophores and hydromedusae), and direct 

investigation of their consumption of C. helgolandicus through molecular gut-content 

analysis. Here I summarise my main findings and then contextualise their significance 

within the wider marine environment. I also discuss potential directions for future work. 

The C. helgolandicus population density was constrained within a relatively 

narrow inter-annual envelope, and although the species may grow to adulthood in a 

matter of weeks, and are capable of producing three to five generations per year 

(Bonnet et al., 2005 and references therein), there was only a four-fold inter-annual 

variation in abundance (Chapter Two). This suggests that powerful processes act to 

regulate the population. A simple population growth model to explore egg to CV 

population progression (assuming no mortality) and comparison with observed 

abundance indicated that ~99% of individuals (eggs/nauplii/copepodites) were lost 

before adulthood (Chapter Two). Therefore, I conclude that multiple mortality sources 

modify population growth and ultimately regulate the population each year.  

Perhaps surprisingly, few decadal-scale trends were detected in the abundance 

and the timing of key population growth periods; key phenological indices (i.e. the start 

of the season and centre of gravity) did not shift significantly with time or temperature 

and an increase in winter C. helgolandicus abundance was the only significant trend 

(Chapter Two). This winter increase was positively correlated both to a temporal 

increase in spring-summer temperatures and total egg output, but the effects were not 
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carried over to the next season, as spring and summer abundances were more stable 

over time. 

The rates and sources of mortality losses differed considerably between 

developmental stages. Egg mortality rates were related both to total copepod biomass 

and to C. helgolandicus copepodite abundance, emphasising the importance of 

intraguild and cannibalistic predation (Chapter Three). By contrast, late-stage C. 

helgolandicus copepodite mortality rates were positively related to gelatinous 

zooplankton predators, particularly chaetognaths, medusae and ctenophores (Chapter 

Four). This was particularly apparent in 2015, when I observed a possible trophic 

cascade initiated by ctenophores that removed most C. helgolandicus copepodites for a 

six week period in late-spring (Chapter Five). Molecular gut content analysis of 

carnivorous gelatinous zooplankton using metabarcoding techniques confirmed that C. 

helgolandicus was a constituent of the diets of both the ctenophore Pleurobrachia pileus 

and the hydromedusa Leuckartiara octona (Chapter Five).   

Separating the constituent consumptive and non-consumptive mortality rates 

revealed that adult males experienced mortality rates from consumption that were ~6 

times higher than females, whilst adult male non-consumptive mortality rates were only 

~1.5 that of female rates, indicating that predation was the primary mortality source in 

male C. helgolandicus (Chapter Four). Non-consumptive mortality rates were generally 

much lower than consumptive rates, but at certain times of the year contributed up to 

50% to total mortality, and were positively related to maximum wind speed (used as a 

proxy for turbulence), suggesting that extreme weather events may be detrimental to 

copepod health and longevity. 

Losses of early-stage C. helgolandicus also occurred through the incidence of 

non-hatching eggs and naupliar abnormalities (NA), both of which were higher in spring 

(Chapter Three). Together, egg hatch success (EHS) and early stage mortality were 

responsible for the loss of between 30% and 70% of egg-NI stages before reaching 

naupliar stage II and were mostly controlled by food availability. EHS was enhanced and 

NA were reduced when dinoflagellates and ciliates were abundant in the seston, and 

conversely diatom fatty acid biomarkers in the seston related to low EHS and higher NA. 

Below I discuss in more depth some of the key strands to emerge from this study. 
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Dual control of the C. helgolandicus population 

Understanding the method of regulation of population density is paramount 

before we can understand ecosystems sufficiently to project their response to future 

scenarios (Hairston et al., 1960). In addition, population density is ultimately determined 

by a range of species interactions, coupled with available resources and environmental 

conditions (Begon et al., 2006). Mechanisms for population control are focused primarily 

on resource limitation (bottom-up regulation) and predation (top-down regulation). 

Historically, there was a focus on bottom-up factors as the dominant mechanisms in the 

structure of marine ecosystems, but it is now acknowledged that some predatory 

species can exert powerful top-down influence that cascades through pelagic food webs 

(Verity and Smetacek, 1996).  

In situ marine examples of strong top down control often feature gelatinous 

zooplankton (Tiselius and Møller, 2017); and the ctenophore Mnemiopsis leidyi in 

particular, is a frequently-studied species [e.g. the most recent research found M. leidyi 

was capable of reducing their copepod prey by a factor of five and thus releasing the 

primary producers from grazing in Gullmar Fjord in Sweden (Tiselius and Møller, 2017)]. 

However, we often do not understand the relative importance of bottom-up direct 

physical forcing vs. top-down biological interactions (Mackas et al., 2012b), although 

more recent literature has attempted to assess the key mechanisms in different regions 

and ecosystems. For example, bottom-up processes were described as the dominant 

control mechanism of zooplankton in the Bay of Biscay (Poulet et al., 1996; Stenseth et 

al., 2006; Lassalle et al., 2011), and in the North Sea, (Munk and Nielsen, 1994; Heath, 

2005), whereas top down processes were most important in the Norwegian Sea, 

Georges Bank (Huse et al., 2012; Ji et al., 2012), and the western North Pacific (Tadokoro 

et al., 2005), where forage fish were thought to play the dominant role. 

More recently, research has highlighted the importance of both bottom-up and 

top-down processes acting together to determine population size, with various factors 

affecting the timing, duration and strength of each (Hunt and McKinnell, 2006). I found 

that the dominant population control processes changed with season and with 

developmental stage. I determined that bottom-up factors such as food availability and 

food-related mortality  (i.e. toxicity) drive the numbers of healthy eggs and early-stage 

nauplii produced in spring and early summer, but from mid-summer, predation by 
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mostly gelatinous predators removes the bulk of the population. This suggests that the 

dominant processes may switch at some key point during the year. Others have 

reported similar results; for example, Hunt et al. (2011) reported that the epipelagic 

food web of the Lazarev Sea in the Antarctic shifted from being bottom-up controlled in 

summer to top-down controlled in winter; and Kiørboe and Nielsen (1994) found that 

the seasonal development of copepods in the Kattegat in the Baltic Sea depended on 

both productivity and mortality, with a shift from bottom-up to top-down after the 

spring bloom.  

It is evident that the effect of predators on zooplankton populations cannot be 

overlooked and it is likely that both resource limitation and predator pressure play 

important roles, dependant on ecosystem and seasonality. Indeed Daewel et al. (2014), 

in their review of zooplankton dynamics, found that predation was important in all six 

ecosystems considered, but exerted different strengths at different spatial and temporal 

scales. I also stress the importance of considering other non-fish predators as key drivers 

of populations; many studies appear to focus on fish species only, which may at times be 

inadequate, given that I only found an impact of gelatinous zooplankton and not 

ichthyoplankton. 

  

The role of gelatinous predators 

Gelatinous zooplankton have been highlighted in this study as important 

predators of C. helgolandicus (Chapters Four and Five). The literature highlights the 

tremendous capacity of ctenophores in particular to regulate the abundance of their 

prey (Greene et al., 1986) and almost a century ago, Bigelow (1926) noted that 

Pleurobrachia pileus ctenophores could “sweep the water clean of zooplankton” and 

that copepods were exterminated locally. Other gelatinous zooplankton may exert 

strong predation pressure on copepods, for example the hydromedusa Aglantha digitale 

was reported to have the capacity to considerably reduce copepod abundance (Nicholas 

and Frid, 1999), and scyphomedusa Aurelia aurita density negatively impacted on 

copepod abundance in the western Baltic Sea (Behrends and Schneider, 1995). 

There has been much attention given to jellyfish populations in recent years and 

newspaper headlines like “Global warming is causing swathes of jellyfish to flock to 

British beaches” (The Telegraph, 2016) seem to occur every summer. There is still much 
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scientific debate over the reason for seemingly larger and more frequent jellyfish 

blooms. On the one hand, it is thought that jellyfish in the Northeast Atlantic show cyclic 

changes in population sizes (c. 20 year cycle in oceanic waters and 30 year cycle in shelf 

seas) (Edwards et al., 2013). On the other hand, warming has been related to large 

populations, particularly in temperate regions, as a consequence of increased 

metabolism and asexual production (Purcell, 2005). It is also thought that increased 

jellyfish populations may result from the human harvesting of forage fish (and the 

removal of direct competitors for zooplankton prey), which releases the jellyfish from 

competition (Robinson et al., 2014).  

It is widely-recognised that medusae, siphonophores and ctenophores are 

ubiquitous throughout the world’s oceans across the environmental spectrum and there 

are a range of species that can adapt to all niches (Lucas et al., 2014; Mills, 1995). 

Therefore, whether increasing jellyfish population densities are a consequence of 

climate, fisheries or natural cycling, their ability to remove large copepod abundances 

(as I have shown in Chapter Five) may have important knock-on effects for higher 

trophic levels.  

 

The importance of intraguild predation and cannibalism 

Intraguild predation (IGP) is defined as the killing or eating of other species 

occupying the same guild, and exploiting the same resources (i.e. competitors), and it is 

a ubiquitous and often powerful interaction central to the structure and functioning of 

many natural communities (Polis et al., 1989). IGP not only benefits the predator by the 

consumption of a food resource, but also acts by reducing the competition. I found that 

both intraguild predation by other copepods and cannibalism by C. helgolandicus 

copepodites (CI-CVI) were important sources of C. helgolandicus egg mortality at station 

L4.  Whilst cannibalism of early stages has been investigated and discussed in the 

literature to some degree (Daan, 1988; Ohman and Hirche, 2001; Bonnet et al., 2004; 

Basedow and Tande, 2006), intraguild predation has received much less attention.  

Numerous studies exist that attempt to discern whether copepods have the 

ability to feed selectively (and by what metric); for example,  prey size is often invoked 

as a key factor (Mullin, 1963; Hall et al., 1970; Frost, 1972), whilst others report their 

capacity to select their prey based on nutritional quality (Fileman et al., 2010; Meunier 
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et al., 2015). Regardless of the mechanisms involved, it is plausible that zooplankton 

would exploit such plentiful and lipid-rich resources as copepod eggs and nauplii and in 

fact many studies have observed IGP on eggs [(e.g. C. finmarchicus eggs eaten by other 

calanoids (Plourde et al., 2009a and 2009b); and Metridia longa guts coloured orange 

from ingestion of Calanus hyperboreus eggs (Conover and Huntley, 1991)]. Of course 

some copepod species are primarily carnivorous predators (i.e. Candacia armata, 

Paraeuchaeta norvegica, Metridia lucens). Paraeuchaeta norvegica for instance is 

reported to feed mainly on Calanus species (Lowndes, 1935), so nutritious eggs and 

nauplii may be a natural target for many copepods. 

Studies that feature specific examples of IGP as a key mortality source are scarce.  

Acartia clausi, Centropages hamatus, Centropages typicus, and Temora longicornis adult 

females were all observed to ingest their own and all other species eggs and nauplii in 

feeding experiments (Boersma et al., 2014), and Dufour et al. (2016) quantified IGP 

between Metridia longa and the dominant C. hyperboreus and reported that C. 

hyperboreus egg concentration was the only variable to have an impact on M. longa 

ingestion rates. Early life stage mortality rates of C. finmarchicus were much higher in 

the north of its geographical range and were correlated with the increased abundance of 

the congener species Calanus glacialis and Calanus hyperboreus; thus indicating IGP 

(Melle et al., 2014). C. finmarchicus itself was reported to play a key role in structuring 

the community in the North Atlantic through IGP on the early stages of Acartia, Oithona, 

and Metridia lucens (Irigoien and Harris, 2006).  

The mechanisms that regulate unconstrained population growth and prevent 

dominant monocultures are not well understood, and my research contributes insights 

on this by showing that predation on copepods is a function of a multitude of 

biophysicochemical factors involving complex trophodynamics. The majority of nutrient-

phytoplankton-zooplankton (NPZ) models represent zooplankton losses via 

mathematical closure functions poorly grounded in empirical measurements (Daewel et 

al., 2014). Therefore they do not fully explore the mechanisms of IGP or cannibalism. For 

example the 3D ecosystem model of fish-consumptions in the North Sea includes IGP of 

mesozooplankton (Maar et al., 2014), and the ERSEM (European Regional Seas 

Ecosystem Model) marine biogeochemistry and plankton model incorporates various 

zooplankton groups, which are capable of consuming themselves, hence a general 
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cannibalism term (S. Sailley, 2017, personal communication, 9th March). According to 

Mitra (2009), the use of fixed zooplankton closure terms is inappropriate and 

unnecessary, and there is no justification for their continued use as they may 

misrepresent the trophic dynamics. Hence, my results would support calls for further 

research on the occurrence and quantification of zooplankton carnivory and IGP in 

zooplankton dynamics.  

 

The effects of extreme weather events 

An important feature of climate change is the predicted increase in frequency 

and intensity of extreme weather events, including rainfall, heatwaves, storms and 

flooding (IPCC, 2013). Changes in the intensity and extent of turbulence in natural 

aquatic systems, such as those driven by climate change, could have significant 

repercussions on the biological communities (Zhou et al., 2016). For example Gardner et 

al. (2005) estimated that Caribbean coral reefs took over eight years to recover from 

damage incurred by storms, and Sheehan et al. (In prep) found massive decreases in 

abundance and diversity of seabed organisms at depths of 20-30 m due to storm events 

in Lyme Bay, following a procession of storms during the winter 2013/14. This was 

related to the effects of turbulence and scouring from displaced sand moving over the 

seabed.  

I found a relationship between non-consumptive C. helgolandicus mortality rates 

and increasing wind speeds (Chapter Four). This study is one of the first to report a link 

between zooplankton mortality and high turbulence levels in an open sea environment; 

other turbulence studies have focused on lakes and mesocosm experiments, although 

even these are few in number. Turbulence was found to suppress zooplankton growth 

and biomass compared to calm water in a mesocosm study (Zhou et al., 2016); a large 

mesocosm experiment with wave-makers resulted in negative copepod growth 

(Blottiere, 2015) and copepod densities were found to be higher in calm environments  

(Zhou et al., 2016; Blottière et al., 2017). Increased turbulence was also found to shift 

community structure and food web interactions in a small lake in the Eastern Adriatic 

(Ciglenečki et al., 2015), and a shift occurred from a copepod dominated community to a 

rotifer dominated community in a simulated lake experiment (Zhou et al., 2016).  
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Physical mechanisms for these effects include decreased feeding ability, 

decreased visibility, increased predator encounter, and a reduced ability to maintain 

position (Härkönen, 2014). Feeding behaviour in particular has received attention; C. 

finmarchicus feeding rates appeared to decline with increased turbulence (Irigoien et al., 

2000b), and turbulence caused impairment of ingestion through erosion of the feeding 

current and interfered with the detection of prey (Kiorbøe and Saiz, 2005). Copepods 

may also expend more energy sorting food from suspended sediments, which may be of 

lower nutrient quality and may interfere with chemical/biological signals from prey 

(Blottière et al., 2017).  

The effects of turbulence are not limited to zooplankton species, for example, a 

major ecological change in the phytoplankton community of a large lake ecosystem in 

Florida was linked to sediment resuspension, elevated biologically available nutrients 

and increased turbidity, caused by multiple hurricanes (Beaver et al., 2013). Diatom 

abundance decreased and the number of dead cells increased after exposure to episodic 

turbulence simulating breaking waves (Garrison and Tang, 2014). Extreme weather 

events may also affect zooplankton in other ways, including the freshening of coastal 

waters and increasing pollution via runoff (Sheahan et al., 2013). I conclude that there 

will be multiple combined impacts of extreme events on zooplankton populations and 

that understanding these will be necessary to assess the importance of this in future 

climate scenarios. 

 

Calanus helgolandicus in a changing climate 

North Atlantic sea surface temperatures have risen by an average of 0.5º C in the 

past 50 years (Brun et al., 2016). Most zooplankton and climate change research has so 

far focused on the direct and indirect effects of warming seas. Indirect climate-induced 

effects can occur through changes in bottom-up food web forcing from primary 

production or through top-down effects caused by changes in upper trophic levels and 

cascading food-web effects (Drinkwater et al., 2010). Warming-related consequences 

include increased stratification leading to reduced zooplankton population size 

(Roemmich and McGowan, 1995), and decreasing zooplankton biomass (Chust et al., 

2014). The decreasing size of ectotherms within a community has been described as the 

‘third universal ecological response to global warming’ (Daufresne et al., 2009). Smaller 
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plankton may accumulate lower lipid levels (Wilson et al., 2016b), which may in turn 

change diapause duration, which declines at higher temperatures because of increased 

metabolic rates, and lower lipid levels (Wilson et al., 2015). 

  At the beginning of this PhD research (2012), it was reported by many that C. 

helgolandicus populations were expanding northward and that C. finmarchicus was likely 

to decline as its ecological niche was squeezed (Beaugrand, 2003; Helaouët and 

Beaugrand, 2007). It was also recognised that the penetration of warmer water masses 

and their fauna (the so-called “Atlantification” of the Arctic Ocean) (Schiermeier, 2007) 

may create a new niche for C. finmarchicus (Hirche and Kosobokova, 2007), as a species 

that is largely confined to ice-free waters (Conover, 1988). These phenomena were 

reported to be part of a large-scale structural reorganisation in calanoid copepod 

diversity triggered by an increase in SST in the west European basin (Beaugrand, 2003). 

Now, four years later, has anything changed? Does current scientific thinking still lead to 

the same conclusions, or has research progressed to revise the hypotheses and 

projections?  

A search for [“C. helgolandicus” and “climate change”] as a topic in Web of 

Science currently yields 64 studies, and we now have evidence to suggest that, for 

example, the NE Atlantic population is expanding in all directions and not just 

northwards (Chust et al., 2013). A habitat suitability model predicts an extinction of C. 

helgolandicus from the Mediterranean north, through to the Bay of Biscay, in the second 

half of this century (Villarino et al., 2015). Maar et al. (2013) predicted the relative 

occurrence of North Sea C. helgolandicus/finmarchicus is unlikely to change with 

warming seas, but that the seasonal patterns and phenology may shift.  A stage-

structured spatial model of both C. finmarchicus and C. helgolandicus developed by 

Wilson et al. (2016a) suggested that large parts of the northern N. Atlantic are currently 

sufficient to support only one generation of C. helgolandicus per year, but under a high 

carbon emissions scenario, conditions would encourage faster development; also that C. 

helgolandicus may become more of an oceanic species as a consequence of warming 

deep-water coming to the surface. Finally, Reygondeau et al. (2015) report a climate 

driven ecosystem shift in the western English Channel, with modification of the 

dominance of key planktonic groups, although a change for C. helgolandicus was not 
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detected. Therefore I suggest that the most recent studies both substantiate and diverge 

from the predictions of only a few years ago.  

This research has taken a reductionist approach by focussing on each of the 

various factors that affect birth rates and death rates of C. helgolandicus at one station. 

Whilst I found little evidence for the effect of increased temperatures on C. 

helgolandicus at L4 so far, the potential effect of more frequent extreme weather events 

is of concern. This is compounded by the findings that copepods and gelatinous 

predators play a key role in regulating population size, and the prediction of increasing 

jellyfish blooms may have significant knock-on effects, both for C. helgolandicus and the 

copepod predators of C. helgolandicus. A key conclusion is that an understanding of 

multi-species biological interactions is needed to inform climate modelling efforts and 

that population dynamics are unlikely to be predicted from temperature and/or 

chlorophyll-a alone. In addition to the effects of warming, climate change is predicted to 

manifest via other mechanisms such as acidification and deoxygenation, creating a 

“deadly trio” of combined impacts on marine hydrodynamics, biochemistry and 

ecosystems (Bijma et al., 2013). Therefore to be able to better predict the effect of 

climate change on populations and communities, we need to take a whole ecosystem 

approach, based on biological, chemical, physical, ecological, behavioural and genetic 

factors, in relation to multiple climate-related stressors. 

 

6.1 Directions for future study 

I have established the importance of viable egg production and both predator 

and non-predator related mortality at a site thought to be within its population gravity 

centre (Chust et al., 2013), hence an optimal habitat. These findings can be taken in two 

different directions along the broad themes of: 1) what else can we learn from a species 

in its optimal habitat? And 2) how do the key population control processes vary 

throughout and at the edges of the C. helgolandicus distribution? i.e. what changes so 

that C. helgolandicus does not survive? 
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C. helgolandicus at L4 

 Given the importance of gelatinous zooplankton in the modification of C. 

helgolandicus populations, and that I have identified a handful of gelatinous species that 

prey on them [(ctenophores and medusae in this study; chaetognaths in a study by 

Bonnet et al. (2010)], it would repay to determine the range of gelatinous species that 

prey on C. helgolandicus and investigate the importance of this species in their diet. A 

succession of gelatinous species was recorded throughout the spring and summer of 

2015 and 2016 at L4 and I could predict that some of the other dips in C. helgolandicus 

abundance would be linked to these blooms. 

The correlation between non-consumptive mortality and wind speed over one 

season is perhaps the first in situ hint that large-scale turbulence is harmful to copepods.  

Extended monitoring of non-consumptive mortality over more seasons is needed to 

explore any relationship further and reveal other important factors. Further research is 

necessary to elucidate the mechanisms and thresholds, with focus on both the lethal 

and sub-lethal effects (reproduction, egg hatch success, clearance rates, growth, etc.) of 

turbulence within mesocosms or wave-tanks. Leading on from this, knowing how the 

effects of multiple stressors of extreme weather events (i.e. turbulence, decreased 

salinity, suspended sediments causing increased turbidity, allochthonous pollution and 

nutrient enrichment) affect copepod populations would improve marine climate change 

models. 

The metabarcoding of whole gelatinous ctenophores and medusae in this PhD 

research provided evidence of their role as hosts (or predators) of parasites and their 

colonisation by bacteria; a fact recently highlighted by Lindeque et al. (2013). These 

molecular techniques could assist with understanding the prevalence and importance of 

other sources of non-consumptive mortality, namely pathogens and parasites. 

Ellobiopsis alveolate ectoparasites of C. helgolandicus (Albaina and Irigoien, 2006) were 

observed periodically through routine L4 zooplankton sample processing and picking of 

females for egg production experiments, but little attempt has been made to identify, 

quantify or even understand the effect of these parasites.  
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C. helgolandicus throughout its distribution 

 There are 62 marine monitoring sites in the North Atlantic Basin distributed from 

the Mediterranean to the Barents Sea (O'Brien et al., 2013). Investigation of the C. 

helgolandicus data in these time series would improve our knowledge if comparison 

were made between the L4 population and other sites to ascertain, for example, how 

reproduction and mortality are affected at the northern and southern edges of their 

geographical range. A comparison of the interannual variability of C. helgolandicus at 

multiple sites could also be made, including an investigation of the predominant 

population control processes, i.e. are gelatinous zooplankton always key predators?  

One of the major expected changes in respect to climate change relates to the 

phenology of key life-stage events, and although I found no evidence of a shift in the 

initiation of the C. helgolandicus growth season at L4, investigations at other sites may 

elucidate how C. helgolandicus responds to warmer conditions and also how this change 

impacts on higher trophic levels.  

Many models have been developed to investigate copepod population dynamics, 

including stage-structured models (SSM), weight-structured models (WSM), cohort 

models (CM) and individual-based models (IBMs) (Carlotti et al., 2000). The use of IBMs 

in ecology in particular has increased rapidly in the last 20 years (DeAngelis and Grimm, 

2014) and they account for the development, reproduction and mortality of individuals 

and attempt to bridge the gap between the level at which environmental impacts occur 

(individuals) and the level at which observations are made (populations) (Neuheimer et 

al., 2010). I am currently unaware of any attempts to build a population model 

specifically for C. helgolandicus [although IBMs have been constructed for C. 

finmarchicus (Carlotti and Wolf, 1998; Hjøllo et al., 2012)]; therefore the development of 

a population model for C. helgolandicus would be a natural future research objective. A 

C. helgolandicus model, coupled with a NPZ and/or hydrodynamic model could allow us 

to test specific hypotheses relating to the mortality of C. helgolandicus; for example, 

how does the population vary in relation to changing temperatures and/or a changing 

predator landscape (i.e. more gelatinous carnivores)? What are the modelled effects of 

density-dependent population self-regulation? How does the population respond to 

extreme weather (increasing turbulence)? 
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 Bonnet et al., (2005) in their review of C. helgolandicus in European waters called 

for the development of a population model and provided a list of the key parameters 

required (e.g. feeding rates as a function of temperature and mortality rates due to 

starvation). Whilst it is recognised that one of the major limiting factors in ecological 

modelling is data parameterisation, empirical research using time series of key marine 

species such as C. helgolandicus can provide valuable data. Overall, as time series 

lengthen and techniques such as metabarcoding become cheaper and we have better 

data to parameterise these models, the scientific community will be in a more-informed 

position to predict the effects of and respond to climate change. 
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CHAPTER THREE 

Table 3.10. Summary of in situ studies reporting on effects of toxic phytoplankton species or related variables on copepod egg hatch success (EHS) and/or 

naupliar abnormalities (NA); NVO – non-volatile oxylipin; PUA – polyunsaturated aldehyde; ↔ indicates no effect/relationship; ↓ indicates negative effect 

 

 

 

Phytoplankton Copepod EHS NA Effects Reference

Chaetoceros  spp. biomass Calanus spp. ↔ No relationship Jónasdóttirr et al. 2005

chorophyll-a Calanus helgolandicus ↔ EHS unaffected Wichard et al. 2008

chorophyll-a Calanus helgolandicus ↔ No relationship with chlorophyll-a Laabir et al. 1995b

diatom abundance Calanus helgolandicus ↔ EHS unaffected Wichard et al. 2008

diatom biomass Calanus helgolandicus ↔ No significant relationship with EHS Irigoien et al. 2002

diatom biomass Pseudocalanus newmanii ↔ ↔ No relationship with EHS or NA Ban et al. 2000

diatom NVO Acartia clausii ↓ EHS decreased Ianora et al. 2015

diatom NVO Calanus helgolandicus ↓ EHS decreased Ianora et al. 2015

natural phytoplankton mixture Calanus finmarchicus ↔ EHS unaffected Campbell and Head, 2000

Pseudo-nitzschia delicatissima Acartia clausii ↓ During blooms low EHS Miralto et al. 1999

Pseudo-nitzschia delicatissima Calanus helgolandicus ↓ During blooms low EHS Miralto et al. 1999

Skeletonema costatum Acartia clausii ↓ During blooms low EHS Miralto et al. 1999

Skeletonema costatum Calanoides carinatus ↔ EHS unaffected Irigoien et al. 2005

Skeletonema costatum Calanus helgolandicus ↓ During blooms low EHS Miralto et al. 1999

Skeletonema costatum Rhincalanus nasutus ↔ EHS unaffected Irigoien et al .2005

Skeletonema costatum Acartia tonsa ↔ EHS ≥ 90% Tiselius et al., 2008

Skeletonema costatum  and Pseudo-nitzschia delicatissima Acartia clausii ↓ V low EHS post bloom Miralto et al. 2003

Skeletonema costatum  and Pseudo-nitzschia delicatissima Calanus helgolandicus ↓ V low EHS post bloom Miralto et al. 2003

Skeletonema costatum biomass Calanus spp. ↔ No relationship Jónasdóttir et al. 2005

Thalassiosira spp. Calanus pacificus ↓ Lower EHS associated with Thalassiosira  blooms Pierson et al. 2005

Thalassiosira spp. Pseudocalanus newmanii ↓ Lower EHS associated with Thalassiosira  blooms Halsband-Lenk et al. 2005

Thalassiosira  spp. biomass Calanus spp. ↔ No relationship Jónasdóttir et al. 2005

total PUAs Calanus helgolandicus ↔ ↔ No effect on EHS or NA Wichard et al. 2008
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CHAPTER FOUR 

 

Figure 4.19. Calanus helgolandicus mortality rates CV-♀ and CV-♂ stage pairs derived using vertical life table (VLT) stage-pair method (2002-04 and 2012-13) 

(a) using a 1:1 CV sex ratio, and (b) using a 5:1 ♀ to ♂ CV sex ratio. 
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CHAPTER FIVE 

 

 

 

 

Figure 5.12. P. pileus, Beroe spp. and total C. helgolandicus at L4 (January -December 2015); 

a) abundance and b) biomass; RHA is right hand axis. 
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