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ABSTRACT

The aim o f this thesis is to investigate the potential use o f epiphytic corticolous 

lichens as indicators of fire history in the cerrado (savannas) of central Brazil. Work was carried out at 

the Reserva Ecologica do IBGE and the Jardim Botanico de Brasilia, 33 km outside Brasilia D.F., in 

plots o f cerrado denso within the 'Fire Project' area. Each plot was subjected to a specific prescribed 

burning regime, with study sites varying from a plot protected from fire for over 20 years to a plot 

burned every two years.

The research was carried out in three stages:

1) a preliminary survey of plots with different fire histories, measuring variables about the lichen 

habitat and the lichen communities present in the habitats;

2) lichen sampling in plots with different fire histories, where collection and identification of lichen 

species took place;

3) sampling of the lichen genus, Bulbothrix, in plots with different Ere histories, measuring abundance 

and size of individual lichens.

Field techniques used included plotless sampling, and identification of lichens was carried out using 

taxonomic keys, both in the field and in the laboratory.

The results show that fire is a major determinant o f epiphytic corticolous lichen 

communities in cerrado denso vegetation. The abundance, distribution, and recolonisation of lichen 

communities can clearly be correlated with the frequency and behaviour, in terms of homogeneity and 

flame heights, of the fires that have occurred in each of the plots surveyed. Particular lichen species 

show differential sensitivities to fire frequency and behaviour, and as the length of the fire-free period 

increases, Bulbothrix individuals become greater in size. Using these various responses of lichens, at 

the community, population and species level, a Lichen Fire History (LFH) Key was constructed for 

estimating fire frequency, fire behaviour, and the 'time-since-the-last' fire. The LFH Key is then 

presented as a simple booklet to be used in the field.

Key words: savanna, cerrado, Brazil, corticolous lichens, fire history, bioindicators, Lichen Fire 

History (LFH) Key.
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Chapter 1 
Fire history in savannas: a problem of measurement

1.1 The concept of fire history

Although reliable evidence on the role of fire during the past several hundred millions 

of years is scarce, wildfires were probably common ever since the build-up o f plant biomass some 350 

to 400 million years ago (Schiile, 1990). It has been demonstrated that natural fires have affected and 

shaped many terrestrial ecosystems since the late Quaternary, and in some vegetation formations, such 

as the boreal forest regions, they are still an important force (Goldammer and Crutzen, 1993). However, 

with the first appearance of hominids in African savannas between 1.5 to 2 million years B.P. 

(Barbetti, 1986; Brain and Sillen, 1988), there began a world-wide shift from a natural to an 

anthropogenic fire regime. In most regions of the world today, anthropogenic fires are dominant. 

Human-caused fires influence the formation and maintenance of various vegetation types, including the 

Australian eucalypt forests, the seasonal tropical forests, and the majority o f tropical savannas 

(Goldammer and Crutzen, 1993).

Depending on whether there has been a single fire event, or successive burns, and on 

the nature of the fires, the characteristics of fire frequency and behaviour of past fires can be described as 

the 'fire history'1 of an area. Fire behaviour can be measured in terms of characteristics such as flame 

temperatures and the rate of fire spread. However, in this study, more basic fire behaviour variables are 

used to describe the fire history. These are the homogeneity of the fire i.e. the evenness of the bum, and 

the flame heights of the fire i.e. low, various or high.

The importance of determining the fire history of an area lies in the management of 

the vegetation. It is vital to know what role fire has played in an area of vegetation in order to apply 

correct and effective burning regimes. For example, van Wilgen et al. (1990) point out that the fire 

management aims in many national parks and areas of conservation are to maintain the biodiversity of 

the ecosystems, the scientific value for researchers, and scenic features for tourism. In areas where fire is 

recognised to be important for the vegetation e.g. savanna regions, attempts are made to recreate 

'traditional1 or 'natural' fire regimes. However, information on the fire history o f the area is often not 

available or is limited, and consequently fire prescriptions are based on research done elsewhere, as in 

many South African national parks (van Wilgen et al., 1990). If  the fire history o f these areas were 

known, comparisons with the present day status o f the vegetation would unravel the importance of fire 

as a determinant o f the vegetation, and reveal to what extent fire has influenced the vegetation. 

Accordingly, this would allow decisions to be made on how to use fire, whether for maintaining or 

changing the vegetation, depending on the needs of the manager. In terms of present day management, 

the significance o f recent fire history is thus especially important. For example, if  a manager needs to

1 Tenns appearing in bold are defined in the Glossary (p.267).
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burn an area, it is vital to know the fire history of the last ten to twenty years, and information 

regarding even older fires may be significant where available. In the present study, 'past fires' refers to 

up to twenty years ago, and so 'fire history' is defined as 'the combination of fire frequency and fire 

behaviour of recent past fires in an area o f vegetation'.

Today, anthropogenic fires are becoming an increasingly important phenomenon in 

many vegetation fonnations, but particularly in savanna regions, which cover about 40% of the tropics 

(Solbrig, 1991), or nearly a third of the world's land surface (Werner et a l, 1990). With over one fifth 

of the world's population living in or around savanna areas (Frost et a l ,  1986), land managers and 

scientists have come to recognise the urgency for research into fire management practices which are 

sustainable and compatible with the increasingly intense use o f savannas by the expanding human 

population (Solbrig, 1991). Most o f these savanna fires are related to agricultural practices, such as 

improving pastoralism (e.g. Batchelder, 1968; Coutinho, 1990), and in many areas, past fire regimes 

are uncharted, resulting in inappropriate and damaging prescribed fires being applied. These may result 

in the destruction o f vegetation, the disappearance o f soil fertility, and ultimately make the land 

unproductive, which may be a considerable loss, not only for humans, but also for other species. It is 

therefore fundamental to develop techniques for establishing fire history within savanna areas.

1.2 Techniques for detecting fire history

1.2.1 Dendrochronology
Tree growth is affected by variations in the external environment, with favourable 

conditions resulting in rapid growth. In seasonal environments, the rate o f tree growth is reflected in 

the width of tree rings, whose study, dendrochronology, allows us to investigate past environmental 

conditions (Fritts, 1976). Dendrochronology involves taking cores from a number of trees and wood 

fragments in a given area, and matching their ring patterns. Referred to as crossdating, this procedure is 

necessary in order to identify special cases where rings may be absent, or where two or more apparent 

rings have been formed during one year. This is most common in the tropics, where many woody 

species can produce several growth layers, which often vary from tree to tree, and even between 

opposite sides o f  one tree (Alvim, 1964). However, some tropical trees do produce distinct annual 

rings, but, as yet, limited research has been carried out in this field (Fritts, 1976).

In cases where dendrochronology can be applied, variations in tree-ring widths can be 

used to reconstruct the occurrence of past disturbance in forests, as well as climatic impacts on tree 

growth (Abrams et a l,  1995). For example, where fire has killed part of the cambium, a scar appears 

on the tree ring, which can then be dated (Fritts, 1976). Based upon the position o f the scar within the 

annual ring, it is also possible to determine which time during the year the fire took place (Brown and 

Swetnam, 1994). The immediate effects after a fire include the reduction of competition in a stand of 

trees, the removal o f shade, and the release o f minerals, so that the rings o f some trees become wider
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due to increased growth (Abrams and Nowacki, 1992; Lorimer and Frelich, 1989; Orwig and Abrams, 

1994). Together with data on age distribution classes of trees, fire scars have been used to construct 

chronologies of fire frequencies, and to determine how fire frequency has varied in time (Agee, 1991; 

Cutter and Guyette, 1994; Dansereau and Bergeron, 1993; Mann et a l , 1994; Wills and Stuart, 1994).

To determine the fire history of a site, data from tree rings are used to construct a 

'stand origin map' (Heinselman, 1973). This map is the result of a complex pattern of overlapping past 

burns, and is first outlined using aerial photographs to identify major boundaries (Johnson, 1992). 

Next, various areas are sampled in the field and assigned dates according to data from fire scars. 

Information derived from the 'stand origin map' is then applied to models based on tree survivorship 

and age distributions (van Wagner, 1978). These models can give estimates of a number of fire history 

variables, including 'time-since-last-fire' and the fire frequency (Johnson and van Wagner, 1985).

The use o f fire scars to date past fires is probably the most accurate method for 

evaluating fire history in temperate regions (Fritts, 1976). In the tropics, however, dating events with 

tree rings is much more difficult and prone to errors due to the common development of several growth 

rings during a single year. Also, the mosaic nature of fires means that some trees will have escaped 

certain fires. Therefore, in order to determine the fire history of a large area, a substantial number of 

trees would need to be sampled, so that accurate crossdatiug could take place. In conclusion, not only 

is this method time consuming, it is also unreliable in the tropics.

1.2.2 Charcoal analysis
Analysis of charcoal remnants from lake and swamp deposits have been widely used 

in temperate regions to reconstruct the fire history of an area (Clark, 1988, 1990; Clark and Royall, 

1994). So far, work involving charcoal analysis in tropical areas has been limited to investigating 

paleoenvironments rather than more recent fire histories (Dcosta and Kershaw, 1995; Heusser, 1994; 

Hope and Tulip, 1994; Hopkins et a l,  1993; Horn and Sanford, 1992; Vernet et a l,  1994).

One limitation o f charcoal analysis is the problem of finding suitable areas of 

sedimentation. These areas are infrequent in many vegetation types, and, if  found, it may not be 

possible to discern any stratification within the sediment if local disturbance has taken place e.g. the 

occurrence of strong currents within a lake. It is also extremely difficult to determine the origin of 

charcoal particles within sediments. In open areas, charcoal may have been transported to the sediment 

from a great distance, through the action of wind or in streams, whereas in a closed area, the charcoal 

may have been deposited from only a few metres away. It is therefore only possible to tell with any 

certainty the fire frequency of an area that has contributed to the sediment. Information regarding the 

extent of the fire and its behaviour is highly questionable. Charcoal analysis also requires detailed 

examination of the sediment, a procedure which involves extraction equipment, carried out within a 

laboratory. This renders the method time consuming and costly, and with the limited information
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obtained, charcoal analysis is probably the least useful technique for determining the fire history of an 

area.

1.2.3 Remote sensing
Satellite remote sensing can provide important information on a range o f fire 

variables including fire frequency and behaviour. Various satellite systems are able to map successive 

active fires, as well as bum scars, and discern the fire intensity through interpretation of the spectral 

reflectance from the resulting ash layer (Justice et a l ,  1993). This information has enabled the 

construction o f recent fire histories within some areas o f vegetation (Chuvieco and Congalton, 1988; 

Minich, 1983). Different levels o f information are available depending on the resolution o f the 

satellites, which can be up to 10 x 10 m (Malingreau, 1990), thereby allowing fire monitoring to take 

place at both a large- and small-scale.

Although satellite images have been available since the 1960s, tropical remote 

sensing is still in its infancy (Malingreau, 1990). There are a wide range of satellite systems in use at 

present, but many do not have the resolution sufficient for constructing fire histories for small areas of 

vegetation. More importantly, remote sensing involves computer-based technology, which is not only 

expensive, but also requires considerable training. Still, as data analysis programs become more user 

friendly, and the satellite images cheaper and of greater accuracy, remote sensing will probably become 

one of the most important tools for detennining an area's fire history.

1.2.4 Historical records
The use of historical records has been a tool for identifying the fire history in areas of 

vegetation. In some cases, past research detailing the ecology and vegetation of a specific area has 

proved useful for gathering information about the frequency and behaviour of past fires. For example, 

Warming (1892) described the savanna vegetation around Lagoa Santa in the state o f Minas Gerais, 

Brazil and outlined the nature of fire in this area. Another more recent example is Goodland and Ferri's 

(1979) account o f the Triangulo Mineiro area in the west o f Minais Gerais. The problem with these 

types of historical records is that they are focused on a certain number of years, and in some instances, 

relate to the last century. As a result, they do not give a record o f continuous fire history over a long 

period o f time, or to the present day.

Other potential sources of historical fire records include government departments, 

official reserves and non-governmental organisations. For instance, records obtained from the 

Department of Environmental Affairs in South Africa have documented the history of fires caused by 

hot, dessicating winds (termed 'bergwinds') in the southern Cape since the last century (Geldenhuys,

1994). Snyder (1991) was able to construct the fire history of the Everglades National Park in Florida 

using a data set o f fire records from the park, which goes back to 1948. Although these kinds of 

records may be comprehensive and reliable, some are restricted to the public, and where they are
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available for general use, access to them may involve long, and sometimes unsuccessful, beauracratic 

procedures. This is particularly true in many tropical countries, such as Brazil, where the beauracracy of 

the government system, and the unwillingness o f researchers and officials to part with historical 

records, especially to foreigners, means that records are very difficult to obtain (Carlos Klink, pers. 

comm. 22/5/94).

1.2.5 Oral history
In many indigenous cultures, the traditional method for determining the fire history 

of an area has been through 'word o f mouth1. For example, the Aborigines living in the eucalypt 

savanna forests o f northern Australia pass on their fire history knowledge to members of their groups, 

and from one generation to another, through oral means (Haynes, 1984, 1991; Lewis, 1989; Roberts,

1995). This information regarding fire frequency and behaviour in different areas of vegetation ensures 

sustainable and effective fire management practices at all times.

However, with the arrival of Europeans into many of these indigenous cultures, much 

traditional knowledge has been lost (Braithwaite, 1991). This means that though information about the 

fire history of certain areas may have been preserved, this evidence is no longer reliable. For example, 

in Brazil, the numbers of Kayapo Indians living in the savannas have been greatly reduced since the 

arrival of the Portuguese. Many of these Indians live on reservations set up in order to protect their 

land, and with the topic of indigenous peoples being highly sensitive for the government, permission 

to interview the Indians is nearly impossible to obtain (Carlos Klink, pers. comm. 22/5/94).

Also, in many cases, scientific ideas may come into conflict with traditional views. 

For example, Kanjanavanit (1992) noted the annual incidence of a lightning-caused fire in West 

Thailand after interviewing villagers living within or along the forest where the fires were observed to 

occur. Many members of the Thai Forest Fire Control Unit, however, entirely reject the possibility of 

such fires caused by lightning strikes in Thailand, on the assumption that there are no dry 

thunderstorms. These contrasting beliefs may confuse accounts of the fire history of an area, thereby 

rendering the method of oral history unreliable.

1.3 The aim of this thesis: lichens as potential bioindicators of fire history
The majority of fires which take place in the savanna regions of the world are within 

cultures where information systems and computer technology are not part o f everyday life. In these 

places, methods for detecting fire history, such as dendrochronology, charcoal analysis and remote 

sensing, remain impractical. Also, in many of these savanna areas, it may be extremely difficult to get 

access to historical fire records, or to find people who have traditional knowledge about fire history. 

The use of lichen bioindicators may offer an easy, efficient and economic alternative. Bioindicators 

are organisms which respond to environmental change, and thereby can provide information on both the 

change and the extent o f change (Kovacs, 1992). They have to occur in abundance, react rapidly to
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environmental change, and each species must have a differential sensitivity to the environmental 

change, thereby providing a unique assemblage o f species in any one environmental scenario. Many 

organisms, such as higher plants, bryophytes and algae, as well as insects and amphibians have been 

employed as bioindicators, but lichens are particularly good since they fulfil all the above criteria and 

occur in almost every ecosystem of the world.

So far, studies have demonstrated the effects o f fire on lichens (Ahti, 1977; Brodo, 

1968), but relatively little research has dealt with the subject o f lichens as indicators o f fire history. 

Nevertheless, recent work in North America (Wetmore, 1983) and Thailand (Wolseley and Aguirre- 

Hudson, 1991, 1996a,b) has shown that epiphytic lichen species respond to different fire regimes, 

allowing the identification of indicator species. Phorophyte bark surfaces can support an abundant and 

wide range of lichen species adapted to specific niches (corticolous lichens), and are therefore most 

likely to show specific sensitivities to variations in fire histories. If  corticolous lichens can provide an 

indication of various fire histories, they may be a quick, cost-effective and accessible substitute to 

dendrochronology, charcoal analysis, remote sensing, historical records and oral history.

The aim of this study is to investigate the potential use o f lichens as bioindicators of 

fire history. The cetrado of Brazil is an ideal savanna formation for this study, since not only is fire an 

integral part o f the ecology o f the ecosystem (Coutinho, 1990), but also the cerrado has the richest 

woody flora of all the world's savannas (Eiten, 1994). This suggests the establishment o f an abundant 

corticolous lichen flora, from which bioindicators may be identified. Scales to monitor changes in air 

pollution and woodland management have been constructed using lichen indicators (Hawksworth and 

Rose, 1970; Rose, 1994). A similar idea is considered in this study, where it is hoped that a Lichen 

Fire History (LFH) Key can be developed for detecting different fire histories in areas of cerrado. This 

study is wholly exploratory, with the aim to generate hypotheses regarding lichen bioindicators and fire 

history, which can later be tested with long-tenn monitoring studies.

1.4 Thesis structure
The thesis begins with an introduction to lichen ecology, an outline of the specific 

characteristics of lichens which make them ideal bioindicators, and a review o f the areas in which they 

have been applied as bioindicators (Chapter 2). This is followed by a discussion of cerrado ecology, 

pointing out the main determinants of the cerrado formation and the role o f fire within this savanna 

ecosystem (Chapter 3). This chapter ends with a description of the study site, in terms of its woody 

flora and fire history. Chapter 4 describes the field methods employed, and Chapters 5, 6 and 7 present 

the results, in which conclusions are proposed. These conclusions, together with the development of 

the LFH Key, are discussed in the final chapter (Chapter 8), which ends with the presentation and 

critical examination of the LFH Key.
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Chapter 2 
The ecology of lichens and their role as bioindicators

2.1 Introduction
Lichens have been employed as biological indicators for a wide range of purposes, 

from detecting changes in levels of atmospheric pollutants to monitoring disturbance in forest 

ecosystems (Galloway, 1993). However, before these uses of lichens as bioindicators can be described, 

it is important to understand what a lichen is, and how it functions within the environment.

The first part o f this chapter begins with a brief definition of a 'lichen', and a 

summary of the main lichen characteristics. This is followed by a description of the role of lichens in 

the process of succession, and how lichens employ various life strategies to build dynamic and 

competitive communities within their specific environments. The section on lichen ecology ends with a 

discussion of the environmental factors which influence lichen growth, focusing on physiological and 

morphological adaptations that enable lichens to be sensitive to changes in their environment.

The second part defines a 'bioindicator', and lists the specific features of lichens 

which make them ideal as indicators. Finally, examples of the uses of lichens as bioindicators are 

given, ending with an explanation as to why lichens are likely to prove appropriate indicator organisms 

for the present study.

2.2 The lichen symbiosis
A lichen is a symbiotic association of a fungus (mycobiont) and a photosynthetic 

partner (photobiont), which may be an alga or a cyanobacterium. Together, the mycobiont and the 

photobiont contribute to the production of a thallus, or body (Ahmadjian, 1993). Lichenised genera of 

fungi are found in two groups, Ascomycetes and Basidiomycetes (Hale, 1983). However, in contrast to 

the thousands of spfecies of lichenised Ascomycetes, there are only ten to twenty species of lichenised 

Basidiomycetes. About twenty-five genera of lichenised photobionts have been identified, belonging to 

two classes of algae: the Chlorophyta (green algae) and the cyanobacteria (blue-green algae) (Ahmadjian, 

1993), The most common photobionts are the unicellular green algae Trebouxia and the filamentous 

green algae Trentepohlia  (Gartner, 1992; Poelt, 1973), the latter occurring more frequently in the 

tropics. Within the cyanobacteria, common photobionts include Nostoc , Scytonema and Stigonema 

(Budel, 1992).

There are three major types of lichen thalli: crustose, which closely adheres to the 

substrate and lacks a lower cortex; foliose, which is leaf-like, attached loosely to the substrate and has 

both an upper and lower cortex; and fruticose, which may have pendulous strands or hollow, upright 

stalks, and can resemble a miniature shrub (Hale, 1983). The thallus is composed of a cortex and 

medulla, both made of fungal tissue, and a photobiont layer, where the algal or cyanobacterial cells are
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enveloped by fungal hyphae (Hale, 1983). This photobiont layer, about 7% of the total thallus volume 

(Collins and Farrar, 1978), is sandwiched between the upper cortex and the medulla, so as to obtain the 

maximum amount o f sunlight for photosynthesis. The outer cortex protects the photobiont cells from 

drying and excessive light, while the inner medulla has a large water-holding capacity and promotes gas 

exchange (Ahmadjian, 1993).

Lichens occur in virtually every ecosystem, from tidal zones on rocky shores to 

mountain summits, and within the extreme conditions o f hot deserts and tropical forests to the freezing 

temperatures of the Arctic and Antarctic (Hale, 1983; Kappen, 1973). They are the dominant vegetation 

on about 8% of the earth's terrestrial surface (Larson, 1987), such as the tundra, mire, grassland and 

coastal desert environments (Longton, 1992). Lichens grow on many substrates, including rocks 

(saxicolous), soil (terricolous), bark (corticolous), wood (lignicolous), bryophytes (muscicolous) and 

leaves (foliicolous) (Brodo, 1974).

The remarkable success o f lichens is the result o f unique survival strategies. When 

water is available, from rain or dew, lichens become metabolically active within a few minutes, 

although it may take longer for photosynthesis to reach optimal levels (Kershaw, 1985). Under sunny 

conditions, they quickly dry out, and as their water content drops, first photosynthesis, and then 

respiration stops, after which they can remain dormant for an unlimited amount o f time until 

remoistened. Lichens have also evolved efficient mechanisms for nutrient uptake from their 

environment. They can adsorb metal ions such as calcium2+ via an ion exchange mechanism, and trap 

tiny particles of rock, soil or pollutants within their structure which are then broken down, releasing 

nutrients for uptake (Richardson, 1992). Cyanobacteria, present in about 10% of all lichen species, are 

able to fix nitrogen from the air, and a substantial amount o f this supplements the fungal partner, in 

addition to the small quantity found in rain water (Ahmadjian, 1993).

Reproduction in lichens can be both sexual and asexual. Most lichens belong to the 

fungal group Ascomycetes. They reproduce by ejecting spores from sacs within fruiting bodies that 

form on the cortex of the lichen thallus. If  these spores land on a suitable substrate, they germinate, and 

entrap algae or cyanobacteria. If  these photobionts are compatible with the fungus, a lichen resynthesis 

will occur, and a thallus will begin to grow. Many spores will not find the correct substrate for 

germination, or if  germination does take place, a compatible photobiont may not be available. 

Therefore, many lichens have evolved vegetative propagation in which both partners are distributed 

together from the parent plant. This can take place through small pieces o f thallus being broken off, but 

more commonly through vegetative propagules that form on the thallus surface. These include soredia, 

small, light-weight granules distributed by wind or rain, and the larger, heavier isidia, fragile finger­

like protuberances that are easily detached and dispersed. These vegetative means o f reproduction are 

particularly important in invasive situations, allowing lichens to colonise and establish quickly.

Rogers (1990) studied the reproductive adaptations o f 34 lichen species, and found a 

range of life strategies, including: stress-tolerant or ruderal species, producing smaller propagules
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(soredia and spores), such as the epilithic crustose Rhizocarpon obscurata (Rogers, 1990); ephemeral 

colonists e.g. Aspicilia excavata, which reproduces only by soredia (Poelt and Vezda, 1990); perennial 

competitive species, which occur in more permanent habitats, producing small spores e.g. Cladoniaceae 

and Lobariaceae (Rogers, 1990); short-lived shuttle species found in seasonally suitable microsites 

within a community, producing small spores, and dispersed in small clumps over short distances e.g. 

Aphanopsis coenosa (Poelt and Vezda, 1990; Sipman, 1983); and long-lived shuttle species, found in 

long-lasting microsites, producing very large spores, and frequent quantities of soredia and isidia e.g. 

Pertusaria and Ochrolechia species (Rogers, 1990; Sipman, 1983).

2.2.1 Lichen succession
Lichens are commonly the primary colonisers on rock surfaces, and the pioneer 

organisms in a series of communities in vegetation succession (Longton, 1992). Lichen establishment 

on rocks is brought about through adaptations such as tolerance to desiccation and extreme 

temperatures, and low growth rates in accord with the slow release of mineral nutrients from the 

substratum (Topham, 1977). Generally, crustose lichens are the first colonisers, followed by foliose and 

later fruticose lichens, though this pattern can vary depending on moisture, rock type and other factors 

specific to the climatic region (Hale, 1983).

Once they are established, lichens promote soil formation by trapping wind-blown 

organic and inorganic material, by contributing to undecomposed organic matter and by accelerating 

physical and chemical weathering (Longton, 1992). Physical weathering comes about through the 

expansion and contraction of endolithic crustose lichens, as their water content varies, and by rhizine 

penetration into rocks by foliose species (Ascaso, 1985; Viles, 1987). Chemical weathering occurs 

when lichens release oxalic acid, carbonic acid and other secondary metabolites, which crystallise on the 

outer surface of hyphae, directly in contact with the rock (Friedmann, 1982). However, it is unclear at 

what scale lichen-associated weathering occurs, and some authors have suggested that lichens may 

inhibit weathering by protecting surfaces from erosion (Lindsay, 1978).

Lichens are prominent in succession following the destruction of established 

vegetation i.e. secondary succession (Longton, 1992). Ahti (1977) recorded the following sequence after 

recurrent lightning-induced fires in boreal forests:

1. bare soil for 1 to 3 years after fire;

2. crustose lichen stage, 3 to 10 years after fire;

3. cup lichen stage e.g. Cladonia crispata, 10 to 50 years after fire;

4. larger cup lichens e.g. Cladina rangiferina, 30 to 120 years after fire.

Lichens have been shown to modify environmental conditions following a fire. Before colonisation, 

wide diurnal temperature fluctuations are common at the ground level, whereas after lichen invasion, 

net radiation on the ground surface is reduced, and by retaining moisture in the thallus, absorbed energy 

is increasingly dissipated as heat (Longton, 1992). This leads to a decrease in surface temperatures,
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allowing a larger range of lichen species to establish. Once the canopy begins to close, some o f these 

lichens are also lost, primarily due to light restriction inhibiting photosynthesis (Kershaw, 1985).

On many trees, including saplings, lichen invasion occurs at the internodes of 

terminal branches, where bark texture is rougher, giving purchase to propagules and protection to 

developing lichens. These first colonisers on twigs are commonly endophloedal species, such as of 

the crustose family Pyrenocarpaceae. As the bark substrate ages, other crustose and foliose species, with 

a preference for the conditions on smaller branches, such as high light levels, invade, with fruticose 

lichens usually colonising the middle-aged branches. The trunk is the oldest part o f the phorophyte, 

and normally holds a community o f crustose and foliose lichens, indicators o f old age e.g. the 

Lobarion community of Fagaceous forests (James et al., 1977; Wolseley, 1991; Wolseley and O ’Dare,

1990).

Together with the succession of lichens as bark age increases, is the process of lichen 

succession with changes in phorophyte structure. Young phorophytes may have increased levels o f 

light, and high temperatures on their bark surfaces, due to the lack o f canopy cover, thereby influencing 

the lichen species present. However, as the canopy begins to close, lower parts o f the trunk and 

branches may become shaded, leading to a change in microhabitat along the trunk. In parallel, lichens 

distribute themselves along the trunk according to their particular environmental needs, whether they be 

light, water or temperature (Hale, 1952; Harris, 1971; Rose, 1974). For example, in temperate areas, 

the tree base is usually inhabited by shade-loving species of Cladonia, Leptogium  and Peltigera, 

whereas the canopy is rich in more xeric lichens such as Parmelia and Ramalina (Hale, 1983). In the 

tropical rain forests, many foliose and fruticose lichens inhabit the tree crowns ('sun epiphytes') rather 

than living in the sub-canopy ('shade epiphytes') (Richards, 1954).

Once the vegetation cover has established itself, progression to a climax lichen 

community may take 15 to 20 years in temperate regions, whereas in warmer climates, mature 

communities may form within 6 to 8 years (Hale, 1983). These processes o f succession on the 

phorophyte are particularly important for this study. In the absence of fire, succession will lead to the 

presence o f old-aged lichens on the phorophyte trunk, and to a community comprised o f species 

characteristic o f long-standing, undisturbed bark surfaces. Moreover, as the vegetation structure 

becomes more complex, there will be an expansion o f habitat availability on the trunk, thereby 

increasing the diversity and abundance of the lichen community. With the occurrence of fire, all the 

lichens present within the flame zone will be destroyed, and successional processes will begin again as 

recolonisation takes place from the surviving lichen community (Wolseley and Aguirre-Hudson, 

1996b). Therefore, the stage at which lichens are in the process of succession may be indicative of the 

impact of fire in an area.

Both primary and secondary succession show a marked progressive increase in lichen 

species diversity with time, although there is a slight decline in the climax community (Filion and 

Payette, 1989; Magomedova, 1980). The r-se lected  lichen species predominate in pioneer
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communities, such as on bare, burned bark following a fire, allowing them to occupy a wide range of 

niches. As succession progresses, both the increase in niche diversity (i.e. increase in phorophyte 

structural complexity) and the invasion of K-selected species, characterised by a more restricted niche 

specificity, results in higher lichen diversity e.g. in areas of long-term fire protection. As the plant 

community reaches climax, there is a reduction in niche heterogeneity, with a consequent reduction in 

lichen diversity (Rogers, 1988; Topham, 1977).

Competition between lichens in the process of succession is greatest when light 

becomes a limiting factor (Topham, 1977). Fruticose species are generally the most aggressive 

competitors, followed by foliose and then crustose lichens (Rogers, 1988, 1990). The larger fruticose 

and foliose lichens may simply overgrow other adpressed species (John and Dale, 1995), although 

crustose species may employ allelopathic substances, such as various lichen acids (e.g. barbatic acid), 

which can diffuse from the thallus and prevent neighbouring lichens from encroaching further (Topham, 

1977). Lichens with larger vegetative propagules tend to be more competitive (isidia) than those with 

smaller propagules (spores and soredia) (Rogers, 1990). Competitive lichen species can therefore be 

associated with K-selected species, which tend to produce small numbers of large propagules, and 

ruderal lichen species with r-selected species, which produce large numbers of small propagules 

(Stearns, 1977).

Since corticolous lichens are the subject o f this thesis, the descriptions in the 

subsequent sections will be restricted to this group of lichens.

2.2.2. Factors influencing lichen growth
The main factors controlling corticolous lichen growth are:

1) climate i.e. moisture, light and temperature;

2) bark characteristics, such as texture, pH, and the presence of bark solutes;

3) disturbance, which can be biotic e.g. predation, or abiotic e.g. as in this thesis, fire (Barkman, 1958; 

James et al., 1977; Sipman and Harris, 1986) (see Figure 2.1).

These factors can determine lichen communities at a large-scale, over whole regions, and at a small- 

scale, on the phorophyte trunk, and many are associated with one another e.g. light and temperature, or 

substrate and moisture. Lichens, in turn, have responses to factors influencing their growth, which may 

be positive, involving adaptations of their physiology, morphology and ecology, or negative, where 

lichens may disappear from a given environment, or seem strongly damaged (Kappen, 1973). These 

positive and negative responses are not necessarily of the whole lichen organism, but may be either of 

the fungal or algal component.

a) Moisture

According to Paterson et al. (1983), moisture is the most important factor that 

influences lichen growth. Lichens achieve their highest growth rates during periods of continuous
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Figure 2.1 The main factors influencing lichen growth. The boxes represent interacting factors.

moisture, such as times of rainfall or cloud cover (Armstrong, 1973; Karenlampi, 1971), and after 

snowmelt, especially important for lichens in polar and alpine regions (Kappen and Breuer, 1991). In 

the seasonal tropics, growth mostly occurs during the rainy season (Hale, 1983). In England, the 

species P seudoparm elia  caperata , grows up to 0.09 mm day' 1 between August and October, 

corresponding to the main rainy season (Fisher and Proctor, 1978).

The way in which moisture affects lichen growth depends on the degree o f thallus 

saturation and on alternating cycles of wetting and drying. At a low water content (15 to 50% 

maximum thallus saturation) in the light, fungal respiration is inhibited more than algal 

photosynthesis, allowing the photobionts to utilise greater quantities of the photosynthetic products for 

their own growth. At a high water content, the reverse takes place, and the photobionts receive less 

photosynthetic products. At maximum thallus saturation in continuous light, the photobiont eventually 

dies because all of its products are translocated to the fungus (Harris and Kershaw, 1971).

An adaptation o f lichens to dry conditions is the ability to assimilate CO2 at near- 

optimal levels when their thalli are exposed only to water vapour (Lange et al., 1970a 1970b). For 

example, in coastal regions of northern Chile, lichens can reach a water content of up to 70% of their 

dry weight through water vapour alone (Lange and Redon, 1983). Kappen and Redon (1987) found that 

all the lichens with green photobionts they studied could absorb water vapour. Cyanolichens, however, 

can only be metabolically reactivated by liquid water (Lange et al., 1989). Another adaptation to water 

deficiency is the utilisation of dew. Many lichens in temperate and tropical regions are moistened by
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dew in the evenings after clear, warm days and achieve levels of thallus saturation, allowing them to 

photosynthesise at maximum rates in the early morning. Studies have shown that desert lichens, such 

as Ramalina maciformis and Teloschistes capensis, receive sufficient nightly dew to allow them to 

photosynthesise at high rates for about 3 hours after sunrise (Lange et al., 1970a, 1970b, 1990). 

Northerly exposed thalli have higher photosynthetic rates due to the longer duration of cool and humid 

conditions after sunrise (Kappen et a l ,  1980).

In many lichens, complete water saturation of the thallus impedes CO2 diffusion to 

the photobiont, lowering the rate of photosynthesis. Only when the thallus begins to dry out (65-90% 

saturation), does photosynthesis peak (Cowan et a l,  1992). This is because drying causes air spaces to 

form in the cortex and medulla, and CO2 can diffuse more easily to the algae. Some subtropical lichens 

have structural adaptive modifications on their thalli such as soredia and cyphellae that maintain air 

spaces even in saturated thalli (Snelger et a l,  1981). Others, such as species of Stictaceae, have thallus 

structures which separate the functions of water uptake and storage, and carbon dioxide exchange (Green 

et al., 1985). This thallus adaptation to maximise gas exchange provides these lichens with a selective 

advantage in environments where they rarely dry out (Ahmadjian, 1993).

Some lichens undergo frequent drying and wetting in their natural habitats. 

Adaptations to this phenomenon include the ability to reach peak photosynthesis quickly after a dry 

thallus is rewetted, and to shut down photosynthesis and respiration when the thallus dries 

(Ahmadjian, 1993). Another adaptation to frequent drying and wetting can be observed when dry thalli 

are rewetted. The thalli undergo a period of very intense respiration called resaturation respiration, 

which is accompanied by a rapid efflux of organic and inorganic solutes from the mycobiont (Farrar and 

Smith, 1976; Smith and Molesworth, 1973). During this process, a considerable amount of CO2 is 

released, which occurs only when dry thalli are rewetted quickly with liquid water. Farrar and Smith 

(1976) have hypothesised that this period of respiration may allow the algae to take up the solutes 

leaked from the mycobiont. Resaturation respiration varies in duration according to the lichen habitat. 

For example, desert lichens, such as Chondropsis semiviridis and Ramalina maciformis, elevate their 

respiration for only a few minutes after rewetting (Rogers, 1971). This may allow them to maximise 

the brief periods of favourable conditions available for metabolism. However, lichens that undergo long 

periods o f resaturation respiration can only survive in habitats that allow them to achieve a positive 

growth rate and a photosynthetic gain over the long term. This is because the respiratory carbon losses 

from frequent periods of rewetting are extremely large and detrimental to the lichen, and may be one 

reason for the slow growth of most lichens (Lechowicz, 1981).

b) Temperature

Most lichens grow best during periods of moderate temperatures e.g. 15 to 30°C 

(Ahmadjian, 1993). In temperate zones, this is usually during spring or autumn. For example, the 

species Pseudoparmelia baltimorensis found in Maryland, U.S.A., grows at a maximum rate of 0.05
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inm day' 1 in May/June when temperatures vary between 25 to 30°C (Hale, 1983). Low temperature 

exposure may play an important role in constraining the distribution o f tropical lichens, due to their 

greater sensitivity to photoinhibition and pigment destruction at low temperatures (Coxson, 1987a).

Some lichens are extremely tolerant o f thermal stress, adjusting their photo synthetic 

and respiratoiy rates with external temperature conditions (Ahmadjian, 1993). Most dry lichens can 

tolerate adverse high and low temperatures, though there may be some damage to the basic metabolic 

processes (Larson, 1982; MacFarlane and Kershaw, 1980). Alternatively, photosynthesis in moist 

lichens is damaged at warmer temperatures (36 to 45°C) that may be 50°C lower than those that cause 

injury to dry lichens (Ahmadjian, 1993). Cooling of moist lichens can result in severe morphological 

damage to thalli, including peeling of the upper cortex and algal layer (Benedict, 1990). Therefore, 

many lichens undergo a period of dry state dormancy in seasonal climates, where extreme temperatures 

may occur for several months. In cold climates, lichens have adaptations such as dark coloured thalli, 

to absorb radiation and raise the thallus temperature, and adpressed thalli, to avoid the effects o f cold 

winds (Lindsay, 1977). Adaptations to high temperatures include light coloured thalli, to reflect the 

light, and a thickened upper cortex, which reduces the intensity o f light reaching the photobiont, 

reduces the evaporative loss, and also permits direct absorption o f water vapour from the air (Rogers, 

1977).

c) Light

The amount o f  light required for optimal lichen growth is not yet known 

(Ahmadjian, 1993). However, light is essential for photosynthesis by the algal partner, and therefore 

vital for growth. For example, in the polar zones, growth ceases in the winter months of unbroken 

darkness (Hale, 1983). Continuous light also harms lichens, which indicates that a period o f darkness 

is important for the overall viability of lichens, probably for the 'dark reaction' i.e. production of 

carbohydrates, o f photosynthesis (Ahmadjian, 1993). Kershaw and MacFarlane (1980) found that 

variations in the length o f a day caused a rapid decline in photosynthesis in air-dried specimens of 

Peltigera, though there was a full recovery in a few days. Day length also plays a role in triggering 

seasonal acclimatisation of photosynthetic processes in lichens (Brown and Kershaw, 1984).

In temperate regions, aspect is an important factor affecting lichen growth 

(Armstrong, 1975, 1977; Rose, 1992). In these regions, the amount o f sunlight varies with the 

direction of exposure, and together with prevailing wind directions, rain directions, inclination of 

trunks and shading by crowns, causes different sides o f tree trunks to have entirely different 

microclimates (Barkman, 1958). In the tropics, however, aspect plays a relatively small role, since there 

is not such a great distinction in the amount of light reaching each side of a trunk (Barkman, 1958). 

Although aspect has been found to be insignificant in lichen communities o f Thai tropical forests 

(Wolseley, pers. comm. 25/1/95), it has been correlated with variations in lichen abundance on different 

exposures in some mangrove forests o f Brazil (Marcelli, 1992).
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The amount of light reaching lichens in different vegetation types is also important. 

For example, in ̂ (//mi-dominated woodlands in northern Norway, the growth o f large ferns on the trees 

limits the amount of light reaching below the canopy, and thereby deterring lichen growth in these 

areas (Ovstedal, 1980). However, some woodland lichen species of the genus Peltigera can rapidly 

adjust to fluctuations in light intensity, and photosynthesise optimally in both the presence and 

absence of the forest leaf canopy (Kershaw and MacFarlane, 1980). In many tropical forests, the 

structural complexity of the vegetation confines the majority of lichens to the higher levels o f trees, 

where light is able to penetrate the canopy (Gradstein, 1992). For example, Marcelli (1987, 1991) 

found that foliose and fruticose lichens were usually larger, and more abundant in the more illuminated 

regions of mangrove forests. Within the forest, some lichens are adapted to shade, and in some, such as 

Stereocaulon virgatum, high light intensities causes the inhibition of net photosynthesis, and eventual 

death (Coxson, 1987b).

In tropical rain forests, lichens vary morphologically with the light regime of the 

environment (Kappen, 1988). Shade-adapted thalli have a thinner cortex, are less pigmented (with little 

need for protection against light), and have a greater degree of ramification of lobes (to capture more 

sunlight) than when found growing in open habitats e.g. Parmelia perforata , Physcia erythrocardia 

and Sphaerophorus melanocarpus (Kappen, 1988). Sun-adapted lichens, on the other hand, have deeply 

pigmented thalli or contain greater quantities of secondary compounds, and have thicker cortical layers 

for protection against high light intensities (Legaz et a l,  1986). Differences in net photosynthesis 

between sun- and shade-adapted lichens have been directly related to the quantities of chlorophyll in 

the thalli, with a greater amount of chlorophyll in shade-adapted forms (Kershaw et a l ,  1983; 

MacFarlane et a l,  1983; Savoye and Leclerc, 1982). Many lichens living at high altitudes have sun 

and UV+ screening compounds, such as thiol, xanthones and usnic acid in their cortex, which protect 

the algal symbiont from intense light damage (Guttenberger et a l,  1991; Rundel, 1978).

d) Bark substrate

Although many differences between lichen communities on barks of various textures 

can bear directly on other aspects o f the substrate e.g. relationship o f bark hardness to moisture 

capacity, the ease of colonisation is probably due solely to texture (Brodo, 1974). Lichen propagules 

can become trapped and develop on rough surfaces more easily than on smooth surfaces. However, it is 

not known whether this is because o f different colonisation abilities on discrete bark textures, or due to 

survival in moist (rough creviced bark) as opposed to dry (smooth bark) microhabitats (Brodo, 1974). 

The physical form of deep creviced bark types may also aid lichen survival during disturbances such as 

fire (Wolseley and Aguirre-Hudson, 1996b).

Water-holding capacity is related to the porosity and texture of bark. Generally, soft- 

barked trees such as Ulmus and Fraxinus, have a higher water capacity and porosity, and give up water 

more slowly than hard-barked species such as Quercus (Barkman, 1958). Diy bark may also occur
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higher on a tree trunk due to greater windspeeds and higher irradiances, whilst bark at the tree base may 

retain more water due to the close proximity to moist soil and the lower windspeeds (Bates, 1992). A 

reduced bark slope favours hygrophilous lichens by prolonging the period o f water uptake (Barkman, 

1958). Moisture content may also vary with bark substrate age. For example, increasing moisture 

retention o f older bark surfaces was found to correlate with richer lichen communities in the rain forests 

of Tasmania (Kantvilas and Minchin, 1989).

Many broad-leaved trees have a bark pH between 4.5 and 7, while conifers have a 

lower pH, from 3 to 5 (Hale, 1983). Bark pH can also vary between individuals of the same tree species 

and between different parts o f the trunk (Barkman, 1958). Some lichen species may prefer or be able to 

tolerate acidic bark, whereas for other lichens, acidity may deter germination of fungal spores and 

growth of the algae. In Fagaceous temperate forests, pH varies with bark age in Quercus petraea, older 

trees having a higher pH and a richer lichen community (James et a l,  1977).

Inorganic minerals and organic substances formed in, or leached from, substrate 

surfaces are important factors influencing lichen distribution (Barkman, 1958). Carlisle et al. (1967) 

found that the concentrations o f potassium, calcium, magnesium, and various other soluble 

carbohydrates in rainwater collected from Quercus petraea stands were higher after having flowed over 

the bark. Barkman (1958) classified various European trees according to their nutrient content by 

measuring the ash content o f their bark i.e. percent dry weight. Trees such as Acer pseudoplatanus, 

Sambucus nigra and Prunus avium, with an ash content o f 5 to 12%, were categorised as eutrophic; 

Quercus robur, Q. petraea  and Fraxinus excelsior, with an ash content o f 2 to 5% were classified 

inesotrophic trees; and species o f Betula, Picea and Abies, with an ash content o f 0.4 to 2.7%, were 

labelled oligotrophic trees. The tree species ash content values were then correlated with their epiphytic 

vegetation. For example, the Arthonietalia radiatae and Parmelion caperatae communities were 

associated with mesotrophic trees.

Other bark characteristics which may influence lichens include colour, shedding and 

the presence o f resins or tannins. Bark colour may influence the temperature of lichens. For example, 

dark coloured trees such as oaks and conifers have a greater heat absorption capacity than light coloured 

bark e.g. ash, beech and birch (Barkman, 1958). In some tropical trees, such as Terminalia species, 

regular bark shedding limits the growth o f large lichen communities (Wolseley and Aguirre-Hudson, 

1996a). The presence o f resins or tannins in trees such as Alnus, Betula and conifers, may deter lichen 

growth (Barkman, 1958). Many tropical tree barks contain compounds such as phenolic acid, or 

produce resins and latex which contain a variety o f substances, which may deter lichen establishment 

and growth (Wolseley and Aguirre-Hudson, 1996a).

Conifers have a distinctive lichen flora of Cetraria  and Usnea species, whereas 

deciduous hardwoods tend to be dominated by species o f H eteroderm ia, Parm elia, Physcia  and 

Xanthoria (Barkman, 1958). However, although many lichens appear phorophyte specific (Hale, 1983), 

it is not the identity of the host phorophyte but the ecological conditions prevalent on the phorophyte
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that may produce specific phorophyte-lichen relationships (Wolf, 1994). For example, Comelissen and 

Ter Steege (1989) compared two tree species of Eperua in a lowland Guyanan rain forest, and found 

that lichen communities were host specific, probably due to differences in bark texture and chemistry. 

Marcelli (1992) working in the southeastern coastal mangroves of Brazil also found host specific lichen 

communities, attributed to bark qualities such as pH and roughness.

e) Disturbance

There are two types of disturbance: biotic and abiotic. A common biotic disturbance 

is predation. Lichens are an important food source for reindeer and caribou in the tundra and subarctic 

forests (Richardson and Young, 1977), as well as sheep in the Lybian deserts (Hale, 1983). They are 

also utilised by birds (Raynor, 1988; Sillett, 1994), snails and slugs (Yom-Tov and Galun, 1971), 

marine mollusca (Hale, 1983) and a variety of insects (Gerson and Seaward, 1977). A major source of 

abiotic disturbance is mechanical damage from factors such as wind and rain, which may cause lichens 

to be removed from their habitat, and subsequent death. Other abiotic factors include pollutants, and 

forest disturbance through logging or fire, discussed in Section 2.4.

Adaptations to biotic disturbances may include, for example, the presence of 

allelopathic substances to deter predation, whereas adaptations to abiotic disturbances may be the 

employment of certain life strategies, or morphological adaptations such as adpressed thalli to avoid 

wind damage.

2.2.3 Lichen growth rates
Lichens are usually the pioneers in plant succession (see Section 2.2.1), and if  their 

environment is stable e.g. in the Arctic, Antarctica or in deserts, they can survive for hundreds or even 

thousands of years (Ahmadjian, 1993; Kappen, 1988). Their radial growth ranges from an average of 

0.5 to 2.5 mm y f 1 for crustose lichens to 1 to 6 mm y r 1 for foliose and fruticose lichens (Hale, 1983). 

Growth rates of lichens vary greatly according to many factors such as season, substrate, and aspect, 

and may even vary between individual lobes of a single thallus. It is therefore very difficult to compare 

annual growth rates between different species of lichens.

Lichenometry is the technique of dating substrates of unknown age using lichens 

(Beschel, 1973). This method is based on the 'lichen factor', which is defined as the total growth of the 

particular lichen selected per hundred years, which can be estimated from historical photographs, dated 

surfaces or direct photography over several years (Hale, 1983). For example, a common crustose lichen 

of Arctic and alpine regions, Rhizocarpon geographicum, has a lichen factor of 10 to 25 mm 100 y r 1. 

Thus, a thallus of R. geographicum 150 mm in diameter on a certain moraine can be extrapolated to be 

roughly 1000 years old (average factor o f 15). It could be stated then, that the moraine was exposed 

approximately 1000 years ago during a glacial retreat. Similar extrapolations have dated glacial retreats 

since 9000 B.P. in Swedish Lapland (Denton and Karlen, 1973). This method o f dating substrates
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using lichens is important for this study because the measurement o f lichen thalli sizes may give an 

estimate o f how long ago a fire occurred in an area. For example, a high frequency o f lichens with large 

thalli may indicate the lack of fire disturbance in an area, whereas an abundance o f small sized lichens 

may suggest a recent fire event. Though lichenometry is widely used, it has been criticised by some 

workers, especially because the lichen colonisation time and fluctuations in growth rates in response to 

environmental changes are not known (Jochimsen, 1973). Even so, for this study, the measurement of 

lichen thalli sizes may be an important method for dating the last fire in an area.

2.3 The concept of biological indicators

Biological indicators are organisms (or populations o f organisms) whose occurrence 

and/or vitality change with varying environmental conditions (Kovacs, 1992). Each organism may 

respond to environmental changes on a variable scale, from a sensitive to a resistant way, thereby 

allowing an estimation o f the degree of enviromnental impact (Kovacs, 1992). The main requirements 

of a biological indicator are that it occurs at a high abundance, and that it possesses specific reactions to 

the environment (Kovacs, 1992). Once indicator organisms have been identified, these can then be used 

to monitor environments through a system o f regular observations, allowing comparisons to be made 

between past and present states, and/or to survey different sites at the same time in order to compare the 

spatial differences in the environment (Podani, 1992).

2.4 The uses of lichens as bioindicators

Lichens are found in large numbers within many ecosystems, have slow growth rates, 

and have various tolerances and adaptations, which enable rapid differential species responses to 

enviromnental change. It is for these reasons that they have been employed as bioindicators for a range 

of factors, from air pollution to forest disturbance (Richardson, 1988a).

To date, a great deal o f work has focused on the use o f lichens as bioindicators of 

pollution, most notably for monitoring atmospheric pollution, but also in reference to metal pollution, 

organic compounds, acid rain and radionuclide emissions. However, it has been realised recently that 

lichens may play an important role in assessing other types of environmental change. These include 

climatic change, monitoring levels o f ozone in the atmosphere, and for indicating site history and 

management of forest ecosystems. Most forest management studies carried out on epiphytic lichen 

communities have, as yet, been concentrated in Europe and North America, and it is only recently that 

lichens have been recognised as potential bioindicators o f forest management in tropical ecosystems.

2.4.1 Environmental pollution
There are numerous polluting compounds in the environment, but relatively few have 

been studied in regards to their effect on lichens. O f these, many originate from industrial combustion, 

home heating systems and car exhaust emissions, and include sulphur dioxide, hydrogen fluoride,
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ozone, peroxyacetyl nitrate and nitrogen oxides (Ahmadjian, 1993). Others include particulate 

pollutants, such as metals (e.g. lead, copper and zinc), and various radionuclides, generated from urban 

and industrial areas, smelters and power stations.

a) Determining the sensitivity o f lichens to pollution

By correlating the relative sensitivities of lichen species to different pollutant levels, 

it is possible to identify the responses of specific lichen species. The simplest method is to monitor the 

responses of lichen communities to varying pollutant concentration levels in the field. However, this is 

time consuming, and it is impossible to eliminate other determinants that may influence the lichen 

species composition. More reliable methods of determining lichen sensitivity to pollutants are 

laboratory fumigations (Moser et al., 1980; Nash, 1988; Ronen, 1986). This method can be useful in 

giving rapid results, but has severe problems (Ahmadjian, 1993). Many studies have used higher 

pollutant levels than would normally be found naturally, exposure times to pollutants have been short 

in comparison to natural situations, the form of the pollutant has varied i.e. a gas or in solution, and it 

has been difficult to maintain the moisture of samples for more than a few hours (Richardson, 1988; 

Richardson and Puckett, 1973). Despite these criticisms, this method can provide a way of confirming 

field studies, and increase understanding of how pollutants affect lichen metabolism (Nash, 1988).

Once the relative sensitivities of lichen species have been established, by comparing 

the lichen composition between areas, it is possible to develop contour maps of pollutant influence. 

This kind of distribution mapping relies on presence/absence data, so a species must disappear before 

an effect is registered by the scales. A better way to follow gradual changes in lichen communities is to 

record both the presence of lichens in different areas and the percentage cover. Though this method is 

time consuming, the data collected can be used to calculate Indices o f Atmospheric Purity (IAPs) 

(LeBlanc and De Sloover, 1970). Maps can then be drawn with lines joining sites which have 

numerically similar indices.

As the proportion of pollution-sensitive species recorded in a survey increases, the 

reliability of the IAP values also increase (Richardson, 1992). If  there is a low proportion of these 

species at a site, more trees have to be surveyed, although this does not fully redress the loss in quality 

resulting from a low density of pollution-sensitive species. The IAP method is therefore not 

recommended where the whole study area has an impoverished lichen flora (Herben and Liska, 1986). 

Also, distribution and IAP studies are useful predictors of current air quality only if  the area being 

studied has static or rising levels of pollution (Richardson, 1992). If, for example, levels of sulphur 

dioxide pollution have fallen within the last five to ten years, the distribution of recorded lichens may 

not relate to the measured pollution levels, due to a time lag in lichen reinvasion (see Section b 

below). Recently, computer analyses of distribution data for the air quality around La Spezia, northern 

Italy, have produced three-dimensional IAP maps (Nimis et a l,  1990; Will-Wolf, 1988). These maps
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show the difference between elevated areas, which have high IAP values i.e. purer air, and the valley 

bottom, where IAP values are much lower due to a large coal-fired electricity generating plant.

Transplanting lichens is another widely used method for determining whether an area 

is polluted, and what effects pollutants have on lichens (Ferry and Coppins, 1979; Holopainen, 1984a; 

Kauppi, 1976). The zone in the centre o f urban or industrial areas where there are little or no lichens is 

often called a 'lichen desert' (Semander, 1926). Lichens or bark discs with thalli can be attached to 

wooden boards or similar supports and placed in these lichen desert zones to assess the current air 

pollution (Brodo, 1961, 1968). For example, the lichen Hypogymnia physodes  has been used in 

transplant studies around Budapest, Hungary. Thalli were transplanted from rural control areas (attached 

to pieces o f felt) to trees in the city. The lichens transplanted near a sulphuric acid factory soon showed 

yellow and red marginal lobes, signs of damage. Lichens transplanted close to main roads showed more 

discolouration than those attached in quiet streets, and when attached on opposite sides o f the same 

tree, the lichens facing the road exhibited greater symptoms of injury (Farkas et a l,  1985).

b) Sulphur dioxide pollution
Sulphur dioxide (SO2) is a very soluble gas which can dissolve in rain water or 

moisture within the cell walls o f a wet lichen thallus to form sulphuric acid. The sensitivity o f a lichen 

to SO2 depends therefore on its ability to absorb and retain moisture, as well as on certain 

morphological features o f the thallus that prevent entry of SO2 i.e. a thick, compact cortex (Wirth and 

Turk, 1974). At a high pH, sulphuric acid remains dissociated, but at acid pH levels, it is converted 

into bisulphite and sulphuric acid, which are toxic (Puckett et a l ,  1973). These compounds alter the 

permeability and structure of cell membranes (e.g. chloroplasts and m itochondria) and enzyme 

activity (Sundstrom and Hallgren, 1973), disrupting a wide variety o f metabolic processes including 

photosynthesis, respiration and nitrogen fixation in the photobiont (Lange et al., 1989; Richardson, 

1992).

Visible morphological changes common in lichens affected by SO2 are smaller thalli, 

the reduction or absence of fruiting bodies, and a change in thallus colour e.g. Parmelia sulcata, 

normally grey/green turns reddish violet when exposed to SO2 (Ahmadjian, 1993). Some lichens turn 

brown at the lobe ends, or become white and detach from the substrate due to the death o f the 

photobiont (Saunders, 1970), while in others, the thallus becomes fragmented as the biont association 

is disturbed (Jahns and Neumann, 1981). SO2 can also stimulate the production of vegetative structures 

such as soredia and isidia (De Sloover and LeBlanc, 1970; Stringer and Stringer, 1974). This could be 

a response to the breakdown of the thallus (Ahmadjian, 1993).

Different lichens have different sensitivities to SO2 and this will determine the 

composition and abundance o f lichens found in any specific area depending on the level o f SO2 

pollution present (Karnefelt et a l ,  1990; Rassi and Vaisanen, 1987; Richardson, 1992; Trass and 

Randlane, 1987). It has been shown that lichen diversity and abundance increases with distance from an
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urban or industrial centre (Caniglia and Drudi, 1984; Fenton, 1960), and this factor, together with SO2 

readings from monitoring stations, has been used to devise scales for SO2 pollution. The most well 

known and widely used scale in Europe is the 'Hawksworth and Rose scale', which distinguishes ten 

lichen zones in relation to mean winter sulphur dioxide levels (Hawksworth and Rose, 1976). This 

scale was established using SO2 readings from England and Wales, and though it has been applied to 

other countries in Europe, it has been found that the tolerated levels of SO2 pollution between 

individuals of the same lichen species are different. For example, in the 'Hawksworth and Rose' scale, 

it is stated that Lecanora conizaeoides can withstand up to 150 mg m"3 o f SO2 and Parmelia caperata 

up to 40 mg n r 3 of SO2 without showing any adverse effects (Lerond, 1978). However, studies in 

Ireland show that the limit for growth of L. conizaeoides is about 50 mg m"3 of SO2, while for P. 

caperata it is 30 mg n r 3 of SO2 (Ni Lamhna et a l,  1988). This may be due to more frequent rain in 

Ireland, keeping the lichens moister and more metabolically active, and therefore more sensitive 

(Richardson, 1992). So, though the 'Hawksworth and Rose' scale is a useful technique for establishing 

pollution zones around cities or industrial sites, the relative sensitivities o f lichens should be 

determined at each site.

Recently, falls in SO2 concentrations, due to reductions in emissions from low-level 

sources (e.g. oil combustion for heating in domestic properties) and the increasing use of sulphur-free 

fuels, has seen the reinvasion of lichens (Bates et al., 1990; Gilbert, 1986a, 1992). For example, in the 

city of London there was an amiual mean atmospheric SO2 concentration decrease from 300 mg n r 3 in 

1964/65 to about 25 to 40 mg n r 3 in 1984/85 (Laxen and Thompson, 1987). Surprisingly, this has 

resulted in the recolonisation of lichens typical of zones 6 and 7 in the Hawksworth and Rose scale, 

rather than the more tolerant species of zones 4 and 5 (Hawksworth and McManus, 1989). This 

phenomenon is termed 'zone skipping', and is defined as recolonisation without the return of species 

progressively lost under conditions of gradually rising ambient air pollution levels (Alexander, 1982; 

Hawksworth and McManus, 1989). It seems that a new and different lichen flora may be occupying 

certain areas of lichen deserts (De Bakker, 1989; Seaward and Letrouit-Galinou, 1991; van der Knaap 

and van Dobben, 1987), with some species recolonising areas more quickly than more tolerant species, 

perhaps through a more efficient dispersal strategy (De Bakker, 1987).

Most studies have shown that there is a time lag of 5 to 10 years between a decrease 

in SO2 levels and the reinvasion of lichens (Richardson, 1992). This time lag is partly controlled by 

dispersal capacity, and studies have shown that lichens can be categorised as 'zone skippers' (rapid 

colonisers) or 'zone dawdlers' (slow colonisers) (Hawksworth and McManus, 1989). The majority of 

'zone skippers', such as Usnea species, which disappeared from an area over 70,000 km2 in Britain as a 

result of increasing air pollution (Seaward, 1987), occur on well-lit mature deciduous trees in sites 

subject to regular wetting. Usnea subfloridana, for example, has re-established on trees such as ash and 

willow, which have bark with a high pH, buffering the effects of acidic pollution, and also retaining 

higher amounts of moisture, which facilitates colonisation (Seaward, 1987). In contrast, many 'zone
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dawdlers' are crustose lichens characteristic o f dry bark that rarely gets wetted by the rain, and thus 

retaining the bark acidity o f the past (Grodzinska, 1977, 1979). The input o f alkalinity from dust also 

speeds up reinvasion, observed around buildings, cement factories and quarries (Gilbert, 1976; 

Hawksworth and McManus, 1988).

It seems, therefore, that habitat, in particular pH, is just as im portant for 

recolonisation, as dispersal efficiency (Bates et al., 1990; De Bakker, 1989; Farmer et al., 1991; 

Henderson-Seliers and Seaward, 1979). What is also apparent is that while lichens can provide a general 

picture of pollution abatement, they are not ideal monitors for this due to the time-lag phenomenon 

(Gilbert, 1992).

c) Acid rain

Acid rain forms when sulphuric acid and nitric acid, derived from dissolved sulphur 

and nitrogen oxides, fall with rain water. This acidifies the environment, sometimes even in areas at 

some distance from the source, and results in the leaching of nutrients and a reduction in the buffering 

capacity of bark and soil (Richardson, 1992). Lichen species composition is governed by natural 

variations in substrate and water acidity (Barkman, 1958; James et al. 1977), so that increasing 

acidification brought about by pollution can be expected to favour some species and weaken others 

(Hawksworth, 1990). Therefore, the lichen species most susceptible to acid rain are those with poor 

resistance to high concentrations of acid, and occurring in environments with less robust buffering 

properties e.g. acid bark (Biischer et al., 1990). The effects on these lichens include thallus 

discolouration, the death of algal cells, and damage to the photosynthetic and respiratory systems 

(Hutchinson et al., 1986; Lechowicz, 1987; Roy-Arcand et al., 1989; Scott and Hutchinson, 1987).

Cyanolichens are particularly sensitive to the decreased pH levels caused by acid rain 

(Gilbert, 1986b; Hallinback, 1989). In Great Britain, the Lobarion cyanolichen community has been 

used to monitor the effects o f acid rain. These studies have shown that from 1986 to 1990 phorophyte 

bark pH has declined, resulting in the local extinction of a number o f Lobaria species and a reduction 

in their relative growth rates (Looney, 1991; Looney and James, 1990; Wolseley and James, 1991). In 

Sweden, Lobaria scrobiculata, previously recorded at over 300 localities, has now disappeared from 

the south and east o f the country, and has become rare elsewhere (Hallinback, 1989). This has been due 

to the progressive decrease in bark pH from the effect of weak acid rain derived from pollution produced 

in the continent and the U.K. (Nieboer et al., 1984).

Many lichens are resistant to or require low pH, and so while acid-sensitive species 

may decline, acid-tolerant species would be expected to increase (Day, 1985). Seaward (1989) has noted 

the expansion in the UK of Parmelinopsis ambigua, from a restricted distribution on debarked conifer 

wood to widespread growth on acidified bark o f deciduous trees in polluted areas. Many other 

oligotrophic crustose lichens have also expanded in their range, and could be used for monitoring acid 

rain pollution (Seaward, 1989).
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d) Fluorides

Fluorides are released into the atmosphere through industrial processes such as 

aluminium smelting, brick firing, the production of fertilisers, and by volcanic eruptions (Richardson, 

1992). Symptoms of damage on the lichens include: the degradation of the chlorophyll in the algal 

cells, and subsequent death o f the thalli; red colouration; weakening of bark attachment; and the 

swelling and breakdown of chloroplast membranes in the algal ceils, followed by the accumulation of 

small globules and crystalline material, causing mitochondrial (respiratory) degeneration (Holopainen, 

1984b; Nash, 1971; Perkins and Millar, 1987a, b).

The effects o f fluorides on lichens are more localised than for SO2 or acid rain 

pollution, providing the opportunity to monitor the impact o f fluoride pollution near the source. For 

example, in 1970, a new aluminium smelter was commissioned near Holyhead, North Wales. Within 6 

to 12 weeks, nearby lichens were showing signs of damage, and after five years, fruticose and foliose 

lichens decreased to less than 1% and 12% respectively, o f the initial cover. Crustose lichens were least 

affected, and some species such as the pollutant-tolerant Lecanora expallens, increased markedly. Many 

fruticose and foliose lichens can accumulate up to 50 mg g' 1 o f fluoride without being permanently 

damaged, and some of the fluoride-tolerant species, such as Parmelia loxodes, show little or 110 injury 

after taking up to three times this amount (Perkins, 1980).

Recent studies have found that lichens can accumulate high levels of chloride, another 

halogenic element like fluoride, from wind blown salt particles without damage (Takala et al., 1990). 

This has led to the conclusion that the damage caused to lichens around aluminium smelters is 

probably due to the effect of hydrogen fluoride, rather than to particulate fluorides.

Volcanoes release fluorides in gaseous form or as microscopic salt particles within or 

crystallised onto volcanic ash (Richardson, 1992). During the donnant phase, fluorides form part o f the 

gas plume, and though lichens cannot be used to give absolute measures o f fluoride content, they can 

be used to evaluate dispersion patterns of fluoride fallout. This was carried out for Mount Etna in 

Sicily, where it was found that different levels o f fluoride fallout at different locations around the 

volcano were due to an interaction between the prevailing winds and the shape o f the mountain (Davies 

and Notcutt, 1988). Lichens could therefore be used to identify fluoride-contaminated areas, in order to 

prevent animals and people from developing illnesses such as fluoridosis.

e) Metals

Lichens can accumulate high levels of various metals, and are therefore excellent 

monitors of atmospheric fallout around smelters, industrial and urban areas, mines and road systems 

(Richardson, 1992). They accumulate metals either by trapping insoluble particulates (usually oxides, 

sulphates and sulphides) or by absorbing dissolved metal ions into their cell walls (fungi and algae) 

through ion exchange mechanism (Richardson and Nieboer, 1981).
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Some lichens have been found to contain high levels o f metals e.g. over 5000 mg g"1 

dry weight, without resulting in any apparent harm (Nash, 1989; Tyler, 1989). In fact, it is the type of 

the metal that is important, not necessarily the quantity. Zinc, lead and copper are much more 

damaging to lichens than iron (Richardson, 1991). Where injury does take place, there are detrimental 

changes in cell membrane permeability, chlorophyll composition, and enzyme function, affecting 

photosynthesis, respiration and nitrogen-fixation (Puckett, 1976; Van Assche and Clijsters, 1990). 

Some lichens, however, secrete compounds such as oxalic acid, which form complexes with excess 

metal ions, providing a metal tolerance mechanism (Jones, 1988). This includes species such as 

Lecanora cascadensis and L. vinetorum, which can grow on copper-rich rocks or wood sprayed with 

copper-containing fungicides (Tyler, 1989). Another tolerance mechanism is the regulation o f metals 

reaching the thallus by the rhizinae from metal-contaminated soils as in Peltigera (Goyal and Seaward,

1982).

As monitors of metal pollution, lichens have been used around isolated industrial 

works e.g. smelters, as well as around large urban and industrial zones (Blyum and Tyutyunnik, 1985; 

Mukherjee and Nuorteva, 1994; Sloof and Wolterbeek, 1991; Thompson et a l ,  1987; Walthier et al.,

1990). They have also been used to monitor levels o f lead emitted from vehicle exhausts (Gordon et 

al., 1995; Krai et a l ,  1989; Laarksovirta, 1976) and to define zones o f influence of mining activities 

on the surrounding area (Bargagli et a l ,  1987; Beckett et a l ,  1982).

Recently, lichens have been used to detect changes in the levels o f metal 

contamination in rivers. Samples of Parmelia praesorediosa were collected from a remote site in 

southwestern Louisiana, USA, washed in distilled water and air dried. Five grams of the lichen were 

then packed in nylon mesh sacks and placed in PVC containers with holes drilled in all sides. These 

tubes were then submerged at ten sampling locations along a tributary of the Calcasieu River for two 

weeks. Once retrieved, washed and dried, it was found that levels o f zinc, copper, cadmium and 

chromium increased upstream to a maximum value just inside the outlet of an industrial drainage ditch 

(Beck and Ramelow, 1990). In another study, currently in progress, lichen material suspended in metal- 

contaminated waters is being used to evaluate the quantity o f metals adsorbed by the lichens, from 

which the levels o f biological available soluble metal ions in rivers can be detennined (Connor et a l,

1991).

j )  Aromatic hydrocarbons

Aromatic hydrocarbons and poly aromatic hydrocarbons (PAHs) include dioxins and 

furans (released during the incomplete burning of, for example, fossil fuels or rubbish) and PCBs 

(polychlorinated biphenyls), which are carcinogenic compounds used in the chemical industry and in 

electrical transformers (Thomas, 1981; Thomas et a l ,  1984). PCBs are more volatile than PAHs, and 

so occur in the atmosphere as gases rather than particulates. Chlorinated hydrocarbons e.g. Lindane and 

DDT, are found in pesticides and in compounds employed in the paint and plastics industry (Brown,
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1992). High concentrations of these compounds in lichens can inhibit photosynthesis, respiration and 

nitrogen fixation (Howes, 1986; Kallio and Wilkinson, 1977).

Lichens that can accumulate these aromatic hydrocarbons could provide information 

on the degree of environmental contamination (Villeneuve et al., 1988). For example, regular sampling 

in remote areas o f northern Sweden of the reindeer lichen Cladonia rangiferina showed that there was a 

progressive increase in the levels o f PCBs over a 10 year period. The mean residence time of the PCBs 

in the atmosphere was estimated to be 2 to 3 years, and it was suggested that aerial transport was the 

main dispersal route for the chlorinated hydrocarbons to this isolated site (Villeneuve and Holm, 1984). 

In winter, reindeer survive mostly on C. rangiferina, and the Lapp people eat the reindeer (Pruit, 1963; 

Slack, 1988). Studies indicate that the Lapps may ingest up to 12 mg yr'1 of this compound from deer 

meat (Villeneuve et al., 1985). Thus, sampling lichens could be a rapid and simple technique for 

monitoring aromatic hydrocarbon pollution levels in the environment.

g) Radioactive elements

Radioactive contaminants (e.g. 137caesium and plutonium) from atmospheric nuclear 

bomb testing, the crashing of nuclear-powered satellites, and accidents at nuclear-powered stations, such 

as at Chernobyl, have been successfully monitored using lichens. For example, lichen studies on 

137caesium concentrations released from nuclear explosions revealed that the Lapps of Scandinavia, and 

the Inuit people of Canada and Alaska, were part of a food chain that resulted in up to five times more 

137caesium ingestion than people who did not depend on reindeer or caribou for food (Aberg and 

Hungate, 1967). The I37caesium can be accumulated by lichens either through the radioactive material 

being adsorbed into small particles (dry deposition), or by the radioactive material dissolving in rain 

water (wet deposition) (Smith and Ellis, 1990).

After the 1986 Chernobyl nuclear power station explosion in the Ukraine, lichens 

were used to monitor the radioactive fallout in many countries (Mackenzie, 1986; Papastefanou et a l, 

1989; Smith and Ellis, 1990; Strandberg, 1994). For example, in Poland, post-Chernobyl samples of 

the lichen Umbilicaria showed a 165-fold increase in levels of 137caesium (Seaward et a l, 1988).

2.4.2 Climate change
With the present trends of climate warming in both the southern and northern 

hemispheres, many glaciers and icefields are retreating to create and expose new rock, gravel and soil 

surfaces, ideal for colonisation by lichens. For example, the San Rafael Glacier in Chile is descending 

from the North Patagonian Icecap into the sea, at a rate of between 17 to 28 m d a y 1. Consequently, the 

freshly exposed rock surfaces are being rapidly colonised by minute colonies of the alga Trentepohlia, 

the photobiont partner for the lichen Placopsis, which grows rapidly in this environment (Galloway,

1992). Within 10 to 15 years, rock surfaces 10 to 50 m above the glacier are completely covered by a 

mosaic of Placopsis species.
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2.4.3 Ozone
A study o f mosses over a period o f 24 years from the Ross Sea region of Antarctica 

found that the absolute levels o f photoprotective flavonoids correlated directly with measured 

atmospheric concentrations o f ozone (Markham et al., 1990). Lichens in alpine and high altitude 

environments also produce a number of cortical screening compounds, especially carotenoids and usnic 

acid, which protect the photobiont from radiation damage, and make lichens potentially useful 

biomonitors for the long-term effects o f ozone thinning (Galloway, 1993).

2.4.4 Forest management in temperate regions
Nowadays, there are comparatively few ancient woodlands left in Britain and western 

Europe, and even fewer still managed in the traditional way (Rose, 1992). The Fagaceous New Forest, 

England, for example, contains 9000 acres of ancient pasture-woodland (the largest in lowland Europe), 

and is still managed by grazing o f ponies, cattle and deer. It has the largest epiphytic lichen flora 

known in any comparable area in Europe: 312 species, including two rarities, Catinaria laureri and 

Parmelia minarum , known nowhere else in the British Isles and rare in western Europe (Rose and 

James, 1974).

Studies in other little modified forest areas, such as in the montane forests o f the 

mountain massifs o f central Europe e.g. the Vosges, Black Forest and Pyrenees, have found 

communities o f lichens which may have remained unchanged since the time before any human 

disturbance. The alliance Lobarion pulmonariae is the most significant community of undisturbed 

Fagaceous forests and includes foliose species such as Lobaria pulmonaria, L. virens, L. amplissima 

and Sticta limbata, as well as crustose species such as Arthonia vinosa and Thelopsis rubella (James et 

al., 1977). Another ancient forest lichen community specific to oak trees (over 300 years old), is the 

alliance Lecanactidetum premneae. This persists on the overhung side o f trunks, where the bark is 

extremely dry, and includes Lecanactis prem nea, L. lyncea, L. amylacea and Opegrapha pros odea 

(James et a l,  1977).

The occurrence of these 'ancient woodland indicator' lichen epiphytes (Rose, 1974), 

has led to the formation o f the Revised Index of Ecological Continuity (RIEC) (Rose, 1976). This key 

employs 30 lichens known to be faithful to ancient woodlands. The occurrence of 20 of these species is 

an indication that a woodland has not been disturbed since early medieval times. The greater the 

number of RIEC species present, the greater the probability that a site is ancient in origin. Even though 

some lichen species were more valuable indicators of stability e.g. Lobaria species, an index based on 

weightings for different species was considered too difficult to devise (Rose, 1992). Also, when using 

the index, it is important to survey areas which from the point o f view o f disturbance or replanting, are 

as homogeneous as possible.

Sensitive lichen species are often local or regional in their distribution, and so indices 

using these species may provide more reliable results. This concept led to the development o f the New
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Index of Ecological Continuity (NIEC) for lowland Britain, which also works from western Norway 

and western France to the western Pyrenees and into Spanish Navarra (Rose, 1992). Since lichen 

taxonomic work has advanced in recent years, this new index incorporates 70 species for the calculation 

of a main index number, to which the number of'bonus' species occurrences are added. Together, this 

gives a final index figure 'T'. The RIEC is useful as an indication of disturbance, whereas the NIEC is 

more effective at sorting out woodlands in terms of their conservation value (sites with 'T' values <20 

are presumed to be of limited conservation importance) (Rose, 1992). Indices incorporating special 

characteristics of particular areas, such as the communities of acidic oak-birch woods in the very high 

rainfall areas of upland western Britain, are in preparation (Rose, 1992). An index for forest continuity 

using crustose lichens as indicators has been designed for the boreal coniferous forests of southern 

Sweden to Lapland (Tibell, 1992), and in other parts o f Europe, lichen indicators of ancient forests are 

being identified (Camenzind and Wildi, 1991; Dietrich, 1991).

Outside Europe little work has been carried out on lichen indicators of forest 

management. In the U.S.A., ancient forest lichen indicator species have been used in an index of 

ecological continuity (IEC) for northern hardwoods and spruce-Fir stands in Maine, New Hampshire, 

Vennont and western New Brunswick (Selva, 1994). Some macrolichens may provide a rough index of 

environmental continuity in old-growth inland forests of British Columbia, Canada (Goward, 1994). 

Kantvilas (1985) and Kantvilas et al. (1985) found lichen communities confined to pristine temperate 

rain forests in Tasmania, but as yet, no indices have been devised.

2.4.5 Forest management in tropical regions
A pioneer work using lichens as bioindicators of environmental stability and change 

in the tropical forests o f Thailand was carried out by Wolseley and Aguirre-Hudson (1991). They 

worked in three vegetation types: dry deciduous dipterocarp savanna forest (DDF); seasonal evergreen 

forest (SEF); and montane oak forest (MOF). They found that the DDF, an open, well-lit forest, had 

high frequencies o f light-demanding lichen families, such as Physciaceae, Graphidaceae and 

Parmeliaceae. In contrast, the SEF, a more closed and moist environment, had a predominance of 

shade-loving and hydrophilous species of the Bacidiaceae and Arthoniaceae families (Wolseley et al., 

1994). These species have Trentepohlia as their photobiont, which prefers shady, moist conditions 

(Wolseley and Aguirre-Hudson, 1996b). The MOF was characterised by a combination of the previous 

families, as well as species of Megalosporaceae, Pyrenocarpaceae and Thelotremataceae (Wolseley and 

Aguirre-Hudson, 1996a). This is probably due to the lower temperatures, and high moisture availability 

(Gradstein, 1992). Larger foliose species of Lobaria, Sticta  and Pseudocyphellaria, indicators of 

ancient Fagaceous woodlands in Europe (Rose, 1988; Wolseley, 1991), were also found in undisturbed 

MOF (Wolseley and Aguirre-Hudson, 1996b).

Within the areas of the MOF that had been disturbed (by logging or regular fire 

damage), crustose lichens such as Lecidopyrenopsis , Gyalecta, Pyrgidium  and Tylophoron  had
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disappeared, and species such as Relicinopsis rahengensis, D irinaria  sp. and Pyxine consocians, 

typical of well-lit or disturbed areas had become frequent. Macrolichens, including Physcidia, Lobaria, 

Sticta and Usnea were absent from the disturbed MOF areas, whereas there were high abundances of 

Rimelia reticulata, Parmotrema tinctorum  and H ypotrachyna  sp., species that are able to colonise 

quickly after disturbance. Together with an isidiate squamulose species of Phyllospora, these species 

were also frequently present in disturbed SEF plots. The most common fonn o f disturbance in the SEF 

and DDF plots was fire, and lichen species indicative of different fire regimes were found (see Section 

2.4.6 below).

Limited other work has been carried out on using lichens as bioindicators of forest 

growth and disturbance in the tropics. Marcelli (1992) studying mangrove lichen ecology in the south 

and southeastern coast o f Brazil, found that the heliophilous crust family Thelotremaceae, containing 

the shade and moisture-loving Trentepohlia photobiont, was a good indicator o f undisturbed, old- 

growth mangrove trees.

2.4.6 Lichens and fire studies in savannas
Wetmore (1983) studied the effects of fire on lichen communities in a forested oak 

'savanna' in east-central Minnesota, USA. The main tree species in this savanna included bur oak 

( Q uercus m acrocarpa), northern pin oak (Quercus e llipso ida lis) and green ash (F rax inus  

pennsylvanica). To see the effects o f different burning regimes, five areas with the following burning 

histories since 1962 were used: burned every year (BUI); burned three out of four years (BU2); burned 

two out o f four years (BU3); burned once every four years (BU4); protected from fire for at least 50 

years (BU5). Lichen sampling took place at three different height bands on twenty trees within each 

area: base (below 5 cm); mid (5 to 75 cm); top (above 75 cm).

The results showed lower lichen frequency and cover values in the more frequently 

burned plots, and decreasing values o f lichen frequency and cover as one moved down the trunk, 

paralleling an increase in fire damage. Wetmore also found a number o f lichen species including 

Phaeophyscia chloantha, Physcia millegrana  and Candelaria concolor that had much higher 

occurrences in frequently burned areas. It was hypothesised that since these lichens typically grow in 

the cracks o f bark, they are able to escape damage by fire, and are thus able to colonise areas where 

more competitive, but fire sensitive species, have been displaced. Some lichens appeared to survive at 

the tree bases in BU3 and BU4, probably having escaped burning because of the direction of the fire, 

and the variation in fire homogeneity from one bum to another (Brodo, 1968). Some species such as 

Caloplaca flavorubescens and Phaeophyscia rubropulchra, however, are eliminated by repeated fires 

and were mostly found in the protected area (BU5). The study also showed that more lichen species 

were present on bur oak than on the northern pin oak, attributed to differences in bark texture, pH and 

moisture holding capacity (Brodo, 1968; Hale, 1955).
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In the same studies described in Section 2.4.5, Wolseley and Aguirre-Hudson 

(1996a, b) found that lichen species had differential sensitivities to the effects of fire in the dry 

dipterocarp savanna forests (DDF) o f Thailand. These forests are dominated by species of 

Dipterocarpus and Shorea, and many of the phorophytes are adapted to fire e.g. diy thick bark (Stott et 

al., 1990). Lichen sampling took place on phorophyte species up to a height o f 3 m, in plots of 

varying fire histories, ranging from frequently burned, to protected for over 23 years.

Where fire had occurred, there was a lichen desert that corresponded to the flame 

height. Above this zone, many lichens species remained undamaged which facilitated rapid 

recolonisation on the bare bark using vegetative propagules. These recolonisers included species of 

Pyxine, Dirinaria, Relicinopsis, Bulbothrix, Canoparmelia and Parmelinella. These species are closely 

attached to the bark surface, so may have survived the fires in bark crevices.

Crusts varied in their sensitivity to fire and colonisation rates following fire. Some 

species of Pertusaria and Rinodina appeared to be more tolerant of fire, and were found frequently in 

burned areas, whereas species from the Pyrenocarpaceae and Thelotremataceae, were more readily 

damaged. 'Time-since-last-fire' could be estimated by the diameters of the recolonisers, and where fires 

were both very frequent and intense, recolonisation did not occur at all (Wolseley and Aguirre-Hudson, 

1996b). Additional findings showed that many less fire-sensitive crustose species occurred strictly in a 

vegetative state where frequent fires had occurred, but were found fertile above the flame height or in 

areas not subjected to fires for a long time (Wolseley and Aguirre-Hudson, 1996b).

These authors are hoping to set up projects with local people to assess and monitor 

the health o f their forests using lichens, and to use indicator lichens as a basis o f management 

recommendations, in particular with regards to fire practices (Wolseley, pers. comm. 1995).

2.5 Conclusion
Lichens have been successfully used as bioindicators for various types of disturbances 

within a wide range o f ecosystems. Their outstanding attributes of wide ecological amplitude, high 

abundance, and rapid reactions to fluctuations in the environment make them ideal organisms for 

bioindicating. It has been shown that lichens are sensitive to changes in fire management, both in N. 

America and in the seasonal tropics of Thailand. It was therefore hoped that lichens would also indicate 

differences in past fire management in the savannas of central Brazil.
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Chapter 3
The Brazilian cerrado :distribution, determinants

and ecology of study site

3.1 The savannas of South America
Savannas can be defined as ‘those tropical and subtropical formations which lie 

between rain forests and deserts and semi-deserts, where the C 4 grass stratum is continuous and 

important, occasionally interrupted by trees and shrubs, the main growth patterns are closely associated 

with alternating wet and dry seasons, and fires occur from time to time’ (Bourliere and Hadley, 1983). 

In the American tropics, savannas are the second largest ecosystem and occupy an area over 2 million 

km2 (Figure 3.1). In some regions of South America, savannas cover vast stretches of land, such as the

Gran sabana Atlantic
Ocean

Coastal
savannas

Llanos

C olom b ia

Amazonian _j /  Brazi 
savajinas f ^

C errad o
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Figure 3.1 Tropical and subtropical savanna regions in South America (modified by the author 

after Bourliere, 1983).
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Brazilian cerrado and the Colombian and Venezuelan llanos, but they also occur in smaller, isolated 

patches amid rain forests in Central America and Amazonia (Eden, 1990; Sarmiento, 1983). The open 

forms of caatingas, concentrated in the Amazonian Rio Negro drainage basins and in north-eastern 

Brazil are, according to some authors (Cole, 1960; Eiten, 1982), also savannas.

The savannas of tropical America have been classified in two different dimensions, 

one ecological, the other physiognomic (Sarmiento, 1984). The physiognomic categories, defined by a 

structural classification, agree with the savanna forms recognised in the Brazilian literature, which will 

be discussed later (see Section 3.2). From an ecological standpoint, neotropical savannas have been 

divided into four major categories according to seasonality (Sarmiento, 1978; Sarmiento and 

Monasterio, 1975).

The first ecological type is the semi-seasonal savanna. It is characterised by weak 

seasonal water stress of only one or two short dry seasons. These savannas occur as scattered patches 

within areas o f rain forest, such as the Amazonian campos. The second type, and most widespread, is 

the seasonal savanna. It is determined by long periods of moisture stress, and occurs in large tracts of 

Brazil, Colombia and Venezuela. A third savanna form, the hyperseasonal savanna, is subjected to 

alternate periods of water deficiency and waterlogging during each annual cycle. Common in poorly 

drained sites, it occurs in large regions of Brazil and Bolivia (for example the Gran P an tana l 

formation). The fourth savanna type, esteros, or marshy savannas, remains under conditions of 

excessive soil water during a major part of the year and occupies sites in valleys or tableland margins.

These different savanna types show a surprising floristic affinity, with several species 

prevalent not only in similar formations of adjacent areas, but also throughout their whole geographical 

range. Among the most widespread species are trees like Bowdichia virgilioides (Leguminosae- 

Papilionoideae), Byrsonima crassifolia (Malpighiaceae) and Curatella americana (Dilleniaceae), as 

well as several grass species of Andropogon, Axonopus, Paspalum  and Trachypogon  (Sarmiento, 

1983). Within this general scheme of floristic homogeneity, the Brazilian savannas are exceptional, 

with a diversity o f woody elements not matched by any other savanna flora in the world (Eiten, 1972; 

Filgueiras and Pereira, 1994).

3.2 The Brazilian savannas
The Brazilian savanna, commonly called cerrado (meaning 'closed' in Portuguese) is 

a complex vegetation form, characterised by a mosaic o f physiognomies ranging from pure grasslands 

through open scrubland to dense woodlands (Eiten, 1972, 1978). Situated between latitude 3° and 24° 

S and longitude 41° and 63°W, it occupies over 1.8 million km2, 22% o f the Brazilian territory 

(Coutinho, 1990; Goodland, 1971a) (see Figure 3.1), and in terms o f area, is second only to the 

Amazonian rain forest (Furley and Ratter, 1988). The cerrado is centred on the Brazilian Planalto, 

characterised by a realm of plateaux and high tablelands (termed chapadas) ranging in altitude from 

approximately 300 m to 1000 m above sea level (Ab'Saber, 1971). From here cerrado  descends
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southwards to the lowlands of the Mato Grosso Gran Pantanal, and northwards to the Amazon rain 

forests. To the east and south, the transition with the humid forest landscapes of the Atlantic region is 

gradual, while to the north-east a rather steep climatic gradient leads to the large depressions of the dry 

caatinga region (Eiten, 1994). The tablelands covered in savannas are occasionally dissected by wide 

valleys penetrated by gallery forest.

The soils o f the cerrado are mostly oxisols, and shales are the predominant parent 

material (Parada and Andrade, 1977). They are characteristically deep (>3m), well drained, red or 

yellow, clay-rich, acidic, structurally strong but nutrient-poor (Furley and Ratter, 1988). Due to the low 

cation exchange capacities and the high levels o f aluminium saturation o f the soil, the amounts of 

exchangeable calcium, magnesium and phosphorous are low, with aluminium reaching toxic levels in 

many areas (Goedert, 1983). The whole cerrado region has a tropical seasonal climate (Aw type of 

Koppen, 1931) with average annual rainfall in the order of 1500 mm. The dry season lasts from 3 to 5 

consecutive months during the winter of the Southern Hemisphere (May to September) (Ab'Saber,

1983).

The cerrado encompasses several structural types of open vegetation, from grasslands 

to dense woodlands. With such variation in form, the delimitation of physiognomic types is fairly 

arbitrary. A generally accepted classification based on the presence of woody elements recognises five 

structural types of cerrado vegetation (Eiten, 1972) (Figure 3.2):

a. campo litnpo ('clean field') - a pure or almost pure grassland;

b. campo sujo ('dirty field') - a tree and shrub savanna, with widely scattered woody species;

c. campo cerrado - a wooded savanna, where the scattered low trees have a total crown cover of about 

3%, but the herbaceous species still appear as a conspicuous part of the landscape;

d. cerrado sensu stricto - a savanna woodland where the total woody cover is about 20%;

e. cerraddo - a woodland or open low forest, with a tree canopy cover above 50%.

Throughout the cerrado region, these physiognomic forms can be found mixed and 

intergraded with one another, forming complex vegetation mosaics. The 'forest-ecotone-grassland 

concept' o f Coutinho (1978a) describes this intricacy as a continuum of grassland formations (campos), 

savanna intermediary formations (cerrado sensu stricto - the most common cerrado formation) and 

forest formations (cerraddo - the rarest cerrado formation). Goodland (1971a) quantitatively analysed 

110 stands of cerrado vegetation in a region of Minas Gerais in central Brazil. He found a continuous 

variation in physiognomy and species composition. For example, from campo sujo  to cerraddo, 

canopy cover ranged from 0 to 85%, ground cover from 30% to 2%, number of tree species from 19 to 

72, and number of herb species from 79 to 21. This gradual change along a physiognomic gradient 

suggests the ecotonal nature of the cerrado, especially in the intennediary formations.

Other savanna formations present within the cerrado include hyperseasonal savannas and 

veredas, generally occurring as treeless grasslands or sometimes as palm savannas with M auritia  

vinifera. (Askew et a l, 1970; Eiten, 1975). They occupy wet sites on valley sides or tableland margins
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Figure 3.2 The basic structural gradient from campo limpo to cerraddo.

throughout the area (Eiten, 1978), though they become more important in Mato Grosso, towards the 

transition to the Gran Pantanal formation (Eiten, 1975, 1978).

The flora of the cerrado is notably rich and diverse (Sarmiento, 1983; Eiten, 1994). 

Heringer (1971) recorded more than 300 species in one hectare of protected cerrado near Brasilia. 

According to Heringer et al. (1977), 774 woody plant species are known, while the herbaceous flora 

may comprise more than double this number. The total number of plant species in the cerrado  is 

estimated to be around 2400 (Coutinho, 1990).

This high diversity is thought to have originated during the humid conditions of the 

last interglacial, when the Amazonian forest covered a much greater area of Brazil, with the cerrado 

having contracted to a few disjunct islands (Ledru, 1993; Prance, 1973, 1982a). It has been suggested 

that these remnant savannas formed 'refugia' (Haffer, 1969), harbouring species which began to diverge 

through evolution. The return o f xeric conditions during the glacials resulted in the expansion and 

convergence of these refugia. In these circumstances, if speciation was complete, there would be 

geographic overlap, but if incomplete, either geographic exclusion o f one form by the other or 

hybridisation would take place. These periodic fluctuations in savanna cover led to a high species 

diversity. This refugial hypothesis is largely based on biogeographic distributions of endemic species, 

as well as geomorphological data and paleoecological records (Bush, 1994). Characteristic examples of 

endemic cerrado  flora include the genera Antonia  (Loganiaceae), Austroplenckia  (Celastraceae), 

Pterodon (Leguminosae) and Salvertia (Vochysiaceae).

More recent studies, however, emphasise the role of biotic interchange between the 

Amazonian rain forest, the Atlantic forest, and the cerrado, through successive expansions and 

contractions during the alternating glacial periods of the Pleistocene (Ab'Saber, 1977; Eiten, 1972; 

Heringer et al., 1977; Oliveira-Filho and Ratter, 1995; Sarmiento, 1983; Van der Hammen, 1974). 

These studies have rejected the refugia theory in favour of a more complex evolutionary history (Bush, 

1994). In this new model, the endemic centres are not seen as unchanging refugia, but as areas most
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susceptible to climatic change, located primarily at ecotonal boundaries (e.g. cerrado!rain forest) 

(Brown, 1987). Here, rather than a marked species change, it is more likely that there was coexistence 

of both forest and savanna flora, forming a novel species assemblage (Bush et a l,  1990; Pipemo et al.,

1990). The different rates of species expansion and contraction created communities of unique floristic 

composition in space and time. This resulted in hybridisation between related species, and the 

evolution of an endemic flora (Bush, 1994). Evidence for floristic interchange between different floras 

comes from the high number of genera, such as Caryocar (Caryocaraceae), that have both rain forest 

(e.g. Caryocar villosuni) and cerrado (e.g. Caryocar brasiliense) species (Heringer et al., 1977; 

Prance, 1973, 1982b, 1987). This new 'diversity-instability' argument is in contrast to the 'diversity- 

stability' concept o f refugia theory, where species evolved in isolation.

Cerrado vegetation has two principal strata of flora: the ground layer; and the woody 

layer. The ground layer contains almost no annual herbs (Coutinho, 1990). It is composed o f three 

growth forms (Eiten, 1994):

1) perennial herbs, defined as plants with herbaceous aerial stems throughout their existence;

2) 'recurrent sub shrub’ which has a basal stem with or without bark, and a purely herbaceous upper 

stem - the whole stem dying from the base during either the dry or rainy season, and then new aerial 

stems arising from xylopodia (swollen, woody underground structures) in the following rains;

3) 'recurrent shrub', like 2), but here the whole stem has bark.

The woody layer is made up of trees, together with thick-stemmed 'persistent shrubs', 

which remain alive for many years producing new branches and increasing in girth (Eiten, 1994). These 

have rather large, usually stiff leaves, or large compound leaves with tiny to large leaflets; only a few 

species have soft, hairy or mesomorphic leaves (Eiten, 1982). Generally, cerrado  trees have fewer 

branches for their size than tropical mesophytic forest trees or temperate zone trees, and many have 

rather open crowns (Eiten, 1982).

Though the study o f cerrado phytogeography is still at an early stage, it has been 

shown that marked differences occur in floristic composition at a large scale between various regions of 

Brazil (Felfili and Silva Jr, 1988; Gibbs et a l ,  1983; Oliveira-Filho and Martins, 1991; Oliveira-Filho 

et a l,  1989; Ratter, 1986, 1987; Ratter and Dargie, 1992; Ratter et a l,  1973, 1988), and at a smaller 

scale between areas close to each other, such as the protected areas within the Federal District (Felfili 

and Silva Jr, 1993).

3.3 Determinants and adaptations of cerrado vegetation
The origins and the principal determinants of the cerrado  vegetation have been 

discussed since the last century (Saint-Hilaire, 1824; Warming, 1892). In his classic work Lagoa  

Santa, Warming considered the cerrado to be a climatic climax determined by dry conditions during 

the winter months. Other authors, such as Rawitscher (1942a) and Ferri (1944) gave greater relevance to 

fire, although their work was restricted to the southern cerrado physiognomies. Some, like Goodland
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(1969, 1971a, 1971b), Lopes and Cox (1977) and Queiroz Neto (1982), have emphasised the role of 

soil dystrophy and aluminium toxicity. However, in the new conceptual framework o f savanna 

modelling (Frost et a l ,  1986; Goldstein et a l ,  1988; Medina, 1987), there is no one single cause that 

governs cerrado formation. An approach employing 'hierarchy theory1 (Solbrig, 1991), stresses the 

relative importance of all savanna determinants, at different spatial and temporal scales. The hierarchy 

diagram shown in Figure 3.3 hypothesises how the key determinants o f the cerrado are related to one 

another, and within which spatial scales (region, landscape, catena, patch) they might play a significant 

role.

3.3.1 Plant Available Moisture (PAM)
At the regional scale, the limits o f cerrado distribution coincide with the seasonal 

tropical climate predominant there. At a smaller scale the principal influences of relief, rock and soil 

type regulate the drainage conditions, and ultimately the water available for vegetation (Sarmiento,

1984).

The geomorphology o f the cerrado  region is one o f the determinants o f the 

hydrology at a landscape scale. For example, the Distrito Federal is characterised by relief forms of 

chapadas, plateaux whose surfaces are level or slightly rolling, and are dissected by elongated valleys 

(Novaes Pinto, 1994). With 57% o f the chapadas above 1000 m in altitude, they act as water divides 

for Araguaia-Tocantins (Amazon), Parana and Sao Francisco drainages (fluvial valleys) (Novaes Pinto, 

1994).

Geology is the second most important landscape determinant. The chapadas of the 

Distrito Federal, for example, are covered with metamorphic rocks of very low porosity and 

permeability, with a heterogeneous distribution o f Iaterite, quartzites, metasiltites and latosols 

(Barros, 1994). At the subsoil level, the prevalence o f metamorphic rocks and various depths o f hard 

Iaterite limit the replenishment of subterranean water (Barros, 1994; Haridasan, 1994). Characteristics 

of the latosol soils, which have a high clay content, are their high water holding capacity, low 

infiltration ability and problems with aeration after intense rains (Haridasan, 1994). Where quartzites 

predominate, the chapadas  are covered in lithosolic soils o f a shallow, stony and humus-rich 

composition, freely-drained and with good aeration (Bridges, 1978).

The mosaic o f catenas present within the cerrado landscape determine gradients in 

ground water levels, closely matched by gradients in vegetation, from cerrado to gallery forest (Askew 

et al., 1970; Oliveira-Filho and M artins, 1986). Since cerrado  species cannot tolerate soil 

waterlogging, even for a relatively short period (Eiten, 1972, 1975; Joly and Crawford, 1982), the 

occurrence of woody cerrado vegetation on more elevated, level sites reflects its requirement for soils 

which are well drained throughout the year (Furley and Ratter, 1988; Ratter et a l,  1973). Where the 

water table is permanently high, swampy gallery forest presides, and in areas where the soil is
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A Large scale anthropogenic factors
PAM = Plant Available Moisture
PAN = Plant Available Nutrients
Al Aluminium toxicity
p  _ Fire
H Herbivory
a = Small scale anthropogenic factors

R = Region, L = Landscape, C = Catena, and P = Patch. These represent 
a range of scales at which each determinant has a significant role.

Figure 3.3 A hierarchy model of cerrado key determinants (modified by the author after Solbrig,

1991). N.B. Determinants at one level in the hierarchy are constrained by those above. 

Determinants at the same level of the hierarchy interact frequently and strongly.

inundated for part o f the year, but dries up during the dry season, wet campo grassland is prominent 

(Freire, 1979; Furley, 1985).

Plant Available Moisture (PAM) also plays a role at the patch scale. A distinct 

community of tree species is formed on raised islands of ground within wet campos (Furley and Ratter, 

1988). The island formations, called campos de murundu  (Diniz et a l , 1986; Eiten, 1982), are
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particularly common in inundated areas such as the Pantanal do Mato Grosso and the Ilha do Bananal. 

They consist o f raised earthmounds bearing shrubs, termitaria, and cerrado trees, most commonly 

Curatella americana (Dilleniaceae) and Byrsonima crassifolia (Malpighiaceae) (Prance and Schaller, 

1982; Ratter et a l,  1973), two species which can tolerate periodic inundation o f the soil. During this 

seasonal rise of the water-table, the deeper roots o f these species die, causing chlorosis o f the leaves, 

and subsequent annual leaf fall (Foldats and Rutkins, 1975).

The evolutionary significance o f PAM is evident in the many examples o f 

adaptations to water stress present in cerrado plant species. Studies of transpiration and water balance 

in a number of tree, shrub and grass species have shown that deep rooted woody species do not curtail 

their transpiration during the dry season, and some grasses, such as Echinolaena inflexa, simply dry 

out completely (Ferri, 1944; Maitelli, 1987; Rachid, 1947). This led to the conclusion that the deep 

roots of cerrado woody species enable them to reach enough disposable water in the lower levels of the 

soil during the dry season to survive (Miranda and Miranda, 1992; Rawitscher, 1948; Rawitscher et 

a l,  1943). Many species also use xylopodia to store water (Coutinho et a l,  1978). Sclerophylly is a 

common adaptation to water stress, and many species have leaves with thick cuticles, sunken stomata 

and greatly lignified tissues (Furley and Ratter, 1988).

3.3.2 Plant Available Nutrients (PAN)
W ithin the cerra d o  region, soil fertility is considered to be a major factor 

determining the vegetation (Eiten, 1972; Lopes and Cox, 1977; Queiroz Neto, 1982). As geology, 

geomorphology and soil characteristics control landscape hydrology, these factors also determine 

nutrient availability.

Higher levels o f the chapadas, steep slopes, and low-lying areas all have different 

soil types of varying nutrient content and availability (Camargo and Bennema, 1966; Freitas and 

Silveira, 1977; Ranzani, 1971). For example, the dark red latosols found at higher levels of the 

Planalto have low nutrient reserves compared to other red latosols found on gently sloping topography. 

These differences in nutrient levels o f the soil are reflected in the vegetation present.

An example is the occurrence of two types of cerraddo. One occurs on soils with a 

high calcium content (between 3.25-7.58 me/100 g soil), and is identified by a number o f indicator 

species such as M agonia pubescens  and Callisthene fasciculata , allowing it to be recognised as a 

mesotrophic facies cerraddo (Araujo, 1984; Ratter, 1971; Ratter et a l, 1973, 1977). It is widespread in 

the cerrado region and has been recorded from many localities in Goias, Minas Gerais, Mato Grosso 

and Mato Grosso do Sul, some o f these more than 1500 km apart. Often associated with the margins of 

deciduous or semideciduous forest (the climax vegetation o f better soils in the cerrado region), this 

cerraddo indicates an intermediate in soil fertility between the dystrophic  fonns o f cerrado and the 

deciduous forest (Furley and Ratter, 1988). A floristically different type o f cerraddo, dystrophic facies 

cerraddo (Araujo, 1984; Ratter et a l ,  1977), with indicator species such as Hirtella glandulosa and
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Emmotum nitens, is found on dystrophic soils. Here, the soil calcium content falls to a range of 0.08- 

0.2 me/100 g. This cerraddo is widespread in central Brazil (in the absence of disturbance), especially 

in the Distrito Federal.

Changes in floristic composition and physiognomy of cerrado vegetation occurring 

at a catena scale are frequently hypothesised to be related with differences in soil fertility (Lopes and 

Cox, 1977). For example, Goodland and Pollard (1973) correlated increased production of woody 

vegetation (from campo limpo to cerraddo) with an increasing soil fertility gradient in the Triangulo 

Mineiro, south Minas Gerais. However, other workers in the Distrito Federal such as Haridasan (1992) 

and Ribeiro (1983) failed to demonstrate this relationship, and found well-developed cerraddo on no 

more fertile soils than other less woody forms o f cerrado . Though these results could be partly 

explained by the occurrence of two types of cerraddo (discussed above), it seems more probable that 

other determinants, such as fire, may be important in this area.

Oliveira-Filho et al. (1989) observed small scale variations (patch scale) in soil 

nutrient status, and suggests they may be due to localised soil patchiness. This patchiness could be 

accounted for by a number of factors including run-on nutrients from soil erosion, leaf-cutter ants (Atta 

species), which accumulate nutrients in their chambers (Constantino, 1988; Egler and Haridasan, 1987; 

Haridasan, 1994), and through the recycling of nutrients after patchy fires (see Section 3.5.3).

Research on physiological adaptations of cerrado species to poor nutrient levels is in 

its infancy. It is possible that many cerrado species have similar adaptations to other plants of nutrient 

poor areas, which include mycorrhizal symbiotic associations between plant roots and certain fungi, and 

storage of nutrients within living tissues (Allen, 1994; Crawford, 1989; Killham, 1994). The examples 

of plant adaptations to poor nutrient availability in the cerrado that are known are related to fire and 

include the presence of xylopodia, which absorb mineral nutrients particularly after the occurrence of 

fire (Coutinho et a l,  1978) (see Section 3.5.3).

3.3.3 Aluminium levels
Goodland (1971a) described aluminium as an ecological factor with a strong negative 

influence over cerrado vegetation. At high soil concentrations, this element impedes the growth of 

roots by inhibiting the mechanisms of phosphorylation in the cells, and thereby interfering with normal 

growth (Clarkson, 1969). Aluminium also makes the essential plant nutrients phosphorus and calcium 

insoluble, thus reducing soil fertility (Coleman et al., 1960). The aray of factors associated with high 

soil aluminium concentrations have also been attributed to characteristics other than growth responses, 

such as the high degree of scleromorphy. It should be noted though that the more serious toxic effects 

attributed to aluminium appear to have been overrated, as 40 to 60% of the Amazon rain forest (non 

sclerophyllous) has equally high levels o f aluminium (Tothill, 1985).

Aluminium levels are directly related to soil type and will therefore vary at the 

landscape, catena and patch scale. At the landscape scale, for example, Ratter et al. (1977) recorded

6 1



aluminium levels in mesotrophic soils in Mato Grosso and Goias o f 0 and 0.62 me/100 g soil 

respectively, whereas Ribeiro (1983) found 2.36 m e/100 g soil of aluminium in dystrophic soils in the 

Distrito Federal.

Though aluminium can reach toxic levels harmful to most plants, a taxonomically 

unrelated group of plants can actually accumulate aluminium in their tissues (Goodland, 1971b). These 

aluminium-tolerant plants include, most notably, the Vochysiaceae e.g. Qualea grandiflora, Qualea 

parviflora  and Vochysia thyrsoidea (accumulating an extraordinary 14,120 mg kg' 1 in its leaves), 

Palicourea species (Rubiaceae) and Miconia species (Melastomataceae) (Haridasan, 1982; Haridasan and 

Araujo, 1988; Haridasan et al., 1987). Aluminium-tolerant species are just as abundant amongst the 

larger trees o f the cerraddo  as they are in the smaller species o f more open forms o f cerrado, 

suggesting that this characteristic does not seem to be associated with differences in the stature of the 

community (Haridasan, 1992). Nevertheless, the amount o f aluminium in the soil at a catena and patch 

scale will determine which species will most successfully establish there, and in turn delimit the 

composition o f the cerrado fonn present.

3.3.4 Herbivory
Herbivory by native fauna, a major determinant of other savanna formations (Solbrig, 

1991), appears to play a less significant role in determining the cerrado, principally due to the low 

abundance of large herbivores present (Moura et al., 1989; Nascimento, 1987; Nascimento and 

Lewinsohn, 1992; Nascimento et a l ,  1990; Ojasti, 1978; Prado, 1989). Although the effects of native 

mammals may be negligible, insects, such as termites, are probably extremely important herbivores in 

the cerrado, as has been shown for other savanna regions (Andersen, 1995; Andersen and Lonsdale, 

1991). However, the lack of research in this area means that the influence of herbivores on cerrado 

vegetation can only be ascertained at the patch scale.

3.3.5 Anthropogenic factors
Since the establishment o f Brasilia in 1959/1960, development within the cerrado 

region has expanded from peripheral areas o f the coastal states o f Rio de Janeiro and Sao Paulo, to 

more western and northern cerrado in Mato Grosso, Mato Grosso do Sul and Tocantins (Alencar, 

1979). The principal advance has been in large-scale commercial arable cultivation (wheat, maize, soya, 

sorghum), followed by extensive low production ranching (Furley and Ratter, 1988). Using liming and 

fertilisation, the low soil fertility resulting from high aluminium levels has been neutralised (Lobato, 

1980; Sanchez, 1976, 1981). This, together with improved plant breeding (which has concentrated on 

enhancing root growth for obtaining higher water and nutrient extraction from greater soil depths 

(Goedert, 1983)), is likely to greatly increase crop production. For example, the production of crops 

such as soyabean has increased from virtually zero in 1960 to 5.8 million tonnes in 1987 (Klink et a l, 

1993), and sugarcane from 297,000 tonnes in 1970 to 1.3 million tonnes in 1980 (Mesquita, 1989). It
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has been estimated that using modem techniques, at least 50 million hectares o f savanna (28%) could 

be developed for crop production (Wagner, 1981).

Other major factors increasingly affecting the cerrado region include the growth of 

urban and industrial land-use, the construction of reservoirs and dams, and the extensive planting of 

eucalypts and pines for pulp and charcoal production (Dias, 1994).

Anthropogenic factors work at two different levels. At one level are the factors 

described above, which determine the cerrado from the landscape (e.g. fanning), to the patch scale (e.g. 

dumping household waste). At another level, anthropogenic factors can influence the vegetation at all 

scales, including the regional scale. This could be the effect o f global warming for instance. It is for 

this reason that large-scale anthropogenic factors (A) are distinguished from small-scale anthropogenic 

factors (a), and that the former 'A' is placed at the top of the hierarchy diagram.

3.3.6 Fire
Fire is undoubtedly extremely important in the cerrado. Frequent fires favour the 

more open forms, whereas protection from fire allows the woody vegetation to establish, and 

succession continues to the closed cerraddo  when other factors are not limiting (Ferri, 1973; 

Henriques, 1993; Ratter, 1991; Ratter et a l,  1973, 1978). Several authors, like Rizzini and Heringer 

(1962) and Rizzini (1963) have considered the cerraddo as the original forest type in the whole cerrado 

area, the other structural types having been derived by human activities, particularly burning. Though 

this hypothesis may be applicable to some restricted areas, it is improbable that the whole cerrado 

region is determined by ancient anthropogenic management (Sarmiento, 1983).

As a determinant of the cerrado, fire acts at the landscape, catena and patch scales. At 

the landscape scale, geomorphology is the important factor. An example are the relief forms of 

chapadas in the Distrito Federal, which control the plant available moisture, and in turn, determine the 

water content o f combustible fuels within the cerrado vegetation. The catenas within this landscape are 

a parallel gradient o f soil moisture and vegetation type. Again, at this catena scale, the water content of 

combustible fuels will vary, as will the quantity o f combustible fuel, according to the cerrado  

physiognomy present (see Section 3.5). The effect o f topography on fire behaviour will also be 

important at this scale. At the patch level, the mosaic distribution of combustible fuels within the 

vegetation and the microclimatic conditions will determine fire behaviour.

3.4 The role of fire in the Brazilian cerrado

Fire as a stress in the cerrado  has been discussed ever since the classic works of 

Saint-Hilaire (1824, 1847), Warming (1892) and Lofgren (1898). Wildfires have been significant in the 

cerrado since at least the Middle Holocene, some 6,000 years B.P. (Vernet et a l ,  1994), and even 

today, natural causes of fire, such as lightning, are reported by fanners and park rangers. However, their
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importance has not been recognised due to the sheer lack of research on the subject (Coutinho, 1990). 

Even so, humans are unquestionably the principal cause of fire in the cerrado.

People have been using fire for more than 32,000 years in central Brazil (Guidon and 

Delibrias, 1986). Anthropological research shows that even before the colonisation of Brazil by the 

Portuguese, Indians were using fire in burning vegetation for hunting and tribal wars (Lukesch, 1969; 

Villas-Boas and Villas-Boas, 1976). Even today, the Kayapo Indians use fire to limit the growth of 

certain undesirable species and to stimulate the production o f certain native fruit-bearing trees 

(Anderson and Posey, 1985, 1987). A large number of cerrado species either tolerate or depend on fire, 

further evidence for the case that fire is an old and major ecological factor in this ecosystem (Coutinho, 

1990).

Today, the more open forms of the cerrado are frequently used by cattle ranchers as 

natural pastures (Klink et al., 1993). During the dry season in central Brazil, the cattle suffer from a 

lack o f palatable, green feed, so firing the cerrado  in the second half o f the dry season (August- 

September) constitutes the cheapest management practice undertaken by the cattle ranchers. In a matter 

of just a few days or weeks following a fire, the vegetation sprouts, thus providing the cattle with feed, 

rich in protein, cellulose and salts. This is now the principal cause of fires in the cerrado  region 

(Coutinho, 1990).

To bring in new agricultural land, vast areas of the cerrado are cleared and burned at 

the end of the dry season (August-September). These sites are then ploughed, fertilised, and sterilised 

with pesticides, eliminating the majority o f native plant and animal species and resulting in the 

irrevocable loss o f cerrado biodiversity (Klink et a l,  1993). This is the second major cause of fires in 

the cerrado at present (Coutinho, 1990).

Other bums arise from various causes, such as the control o f shrubs in pastures, pest 

control, carelessness in fire management in intentionally burned areas (such as during the cutting and 

burning of vegetation while cleaning the edges of highways and railroads), and the falling o f balloons 

with the wicks still alight during the June religious festivals (Coutinho, 1990). Although carelessness 

with cigarettes does not seem to be relevant in the cerrado  (Coutinho, 1990), arson is common, 

whether by hunters hoping to catch wild animals escaping from the flames, or local people who bum 

the vegetation for the aesthetic value fire has (Heloisa Miranda, pers. comm. 14/9/94).

According to Eiten and Goodland (1979), to sustain a cerrado physiognomy, burning 

should occur at a frequency of every 3 years. This allows enough time for both the herbaceous and 

woody layers to recover sufficiently. However, population increases and agricultural expansion have led 

to an increase in burning rates, and large areas still covered in natural vegetation are now burned almost 

every year (Klink et a l ,  1993). Though fire frequency is important, the nature o f a fire is equally 

decisive in determining how an area o f cerrado may recover from, or degrade due to, fire. Since the 

cerrado consists o f various physiognomies, fire behaviour will vary from one form to another.
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3.5 The nature of cerrado fires

Fires in the cerrado are characteristically surface-level (Chandler et al., 1983) and 

fast-moving (reaching speeds of 30 m min"1 (Kauffman et al., 1994)), consuming the herbaceous layer, 

but rarely igniting the taller woody plants (Miranda and Miranda, 1993) (see Figure 3.4).

They usually begin with the onset of the dry season (May-June), increase in frequency 

and intensity during June and July, and attain a maximum peak in August (Coutinho, 1990). As the 

wet season starts (September-October), the occurrence of fires drops markedly, and although prescribed 

burning does not take place, the vegetation is still susceptible to burning, particularly in areas where 

there have been no bum-offs for several years, and/or after a sequence of hot days in the absence of rain 

(veranico) (Cochrane et al., 1988). The period between August to the beginning of September is 

particularly favourable for the propagation of fire, as relative air humidity during the hottest hours of 

the day (25-30°C) can reach below 20%, and the days are very windy (Coutinho, 1982a). In years of 

frosts, a great part of the epigeous phytomass in the herbaceous/undershrub stratum dies. This, and the 

accompanying fall o f leaves from many trees and shrubs accumulate on the soil as an easily 

dehydratable and highly combustible material, greatly increasing the risk of fire (Coutinho, 1990).

Figure 3.4 A backfire in cerrado detiso vegetation at 2:40 pm in the Reserva Ecologica do IBGE, 

24/8/94. (Photo by the author).
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The cerrado landscape is characterised by gently sloping hills, and in view of this 

fact, topography probably plays an important role in fire spread, which increases with degree of upslope 

due to fuel preheating (McArthur, 1971). Unfortunately, research has yet to be carried out on this aspect 

of fire behaviour in the cerrado.

The types of fire that occur in the cerrado vary in behaviour most notably in relation 

to fuels, which is intrinsically related to physiognomy (Kauffman et a l,  1994). These fuels also govern 

the vertical distribution o f temperatures, and the amount of nutrients released into the air as part of 

mineral recycling.

3.5.1 Fuel and fire
Although total fuel biomass is significantly greater in cerrado sensu stricto and 

cerraddo , the biomass of grasses is considerably lower than in the campo limpo  or cam po sujo  

(Coutinho, 1982a; Kauffman et a l ,  1994; Pivello and Coutinho, 1992; Miranda and Miranda, 1993; 

Ward et a l ,  1992). Because of their high degree o f flammability, grasses and other ground-layer 

vegetation are a major influence on fire behaviour in different cerrado physiognomies. In a campo sujo, 

for example, where grasses can represent up to 91% of the combustible fuel (Ward et a l ,  1992), fires 

can reach temperatures higher than 800°C (Berardi, 1994; Cesar, 1980), whereas cerrado types with 

prevailing woody elements, e.g. cerrado sensu stricto, yield significantly lower temperatures (Miranda 

et a l,  1993). There is virtually no smouldering combustion following flaming combustion in either 

campo limpo or campo sujo (due to the low woody biomass), compared to campo cerrado and cerrado 

sensu stricto, where smouldering combustion is prevalent (Kauffman et a l ,  1994). This suggests that 

fire has a greater influence in the open cerrado forms, and that more woody plants will be killed, rather 

than scorched, in the closed physiognomies.

It is also possible to explain the difference in fire behaviour along the gradient o f 

cerrado physiognomies according to fuel moisture content. Kauffman et a l  (1994) found that fuel 

moisture content was very low in dry, non-green grass (22-29% dry weight basis), comprising 78% of 

the fuel mass in campo limpo and 40% in campo cerrado. In contrast, fuel moisture content o f the 

woody component ranged from 118 to 140% (dry weight basis) - 28% o f the fuel mass in campo  

cerrado yet less than 6% in campo limpo. Total mass of water in fuels was calculated to be <3,100 kg 

ha’1 in campo limpo and campo sujo, and > 4,600 kg ha’1 in campo cerrado and cerrado sensu stricto. 

The differences in moisture content affect the ignitability o f fuels, thus possibly contributing to the 

lower impact o f fire on the tree-dominated communities, in comparison to the grasslands.

The different physiognomies of cerrado vegetation, in terms of their densities and 

corresponding microclimates, also affect fire behaviour. Miranda et a l  (1993) recorded a maximum fire 

temperature of 260°C in an area o f cerrado sensu stricto which had been protected for 15 years and 

burned 3 days after rain. Many patches o f the vegetation remained unbumed. In contrast, campo sujo 

burned on the same day under the same conditions, left only the woody vegetation unburned, and
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attained temperatures in the region o f 650°C. Shading of the fine fuel on the ground by trees and 

shrubs affects the rate o f fuel moisture loss, causing mosaic-like bums in the more closed cerrado 

types. In the open campo sujo , most o f the dry matter is not in close contact with the wet soil surface, 

and is well exposed to wind and solar radiation, so moisture is quickly lost to the environment (Luke 

and McArthur, 1978; Miranda et a l, 1993).

The timing of the a bum will affect fire behaviour. Generally, fires during the early 

dry season (May to June) are patchy and of a low intensity, due to the high moisture still present 

within the vegetation from the rainy season. The mid-season fires (July to August) are of a higher 

intensity and more homogeneous, since most o f the combustible fuel may be dry, and the climatic 

conditions may be ideal for fire propagation. In the late dry season, two scenarios are possible: the 

build-up of dry combustible fuel, and peak air temperatures may cause very intense fires; or, the onset 

o f the rains may result in patchy, low intensity bums (Miranda and Miranda, 1993).

'Time-since-last-fire' also determines the characteristics of cerrado  fires. Areas 

protected from fire for long periods of time will bum at higher temperatures than those areas burned 

regularly, regardless o f their physiognomic type, due to the build up of combustible fuels (Miranda and 

Miranda, 1993; Miranda et a l,  1993).

3.5.2 Vertical distribution of temperatures during fires
As fires vary horizontally, they also have a vertical pattern of distribution in terms of 

temperature. At the soil level, temperature increases during cerrado fires are relatively small e.g. around 

50°C, decreasing exponentially with depth, and becoming more or less negligible at and below 5 cm 

depth (Cesar, 1980; Coutinho, 1976, 1978b; Miranda et al., 1993). These insignificant soil 

temperature changes are irrespective of the physiognomic form being burned, and the maxima observed 

are unlikely to have any direct effect on soil organic matter, microbial populations, or buried seeds 

(Miranda et al., 1993).

Miranda et al. (1993) found that regardless of cerrado physiognomy, at 1 cm above 

the ground, 60 cm height and 160 cm height, maximum temperatures ranged from 85 to 326°C, 180 to 

840°C and 107 to 650°C respectively. Also, the residence time (duration of temperatures) above 60°C 

varied from 90 to 270 seconds at 1 cm above the ground, 90 to 200 seconds at a 60 cm height, and 20 

to 70 seconds at a 160 cm height. Other data confirm these results, which suggest that the highest 

temperatures occur between 1 to 60 cm above the ground, and that the residence time above 60°C also 

peaks at this height range (Miranda and Miranda, 1993). This could be related to the height of 

combustible fuels within the herbaceous layer. Above 60 cm, fire temperatures decrease, with 

temperatures reaching peaks of up to 700°C for short periods of time. These different fire temperatures 

and residence times at various heights in the vegetation may be extremely important in determining the 

survival and subsequent recolonisation of lichen communities. Lichens present on higher sections of 

phorophytes may be exposed to relatively low fire temperatures for only a few seconds, and so many
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with adaptations to high temperatures (see Section 2.2.2b) may survive the fire. These, together with 

the lichens remaining above the flame heights, may then aid recolonisation o f the bare bark surfaces.

3.5.3 Fire and mineral nutrient cycling
Generally, the soils underlying the cerrado  are rather poor in mineral nutrients, 

distinctly acidic, and with high levels o f aluminium (Goodland, 1971b; Lopes, 1975; Lopes and Cox, 

1977). Fire is intimately related to this nutritional status since it is involved with the cycling of 

mineral nutrients (Coutinho, 1990). Through the action o f fire, most o f the epigeous biomass is rapidly 

mineralised, with nitrogen, carbon, sulphur and to a lesser extent, phosphorous and potassium, 

volatilised and lost to the atmosphere, and the remaining material either deposited on the soil surface as 

ash, or removed as particulate matter in smoke (Frost and Robertson, 1987).

In the cerrado , the immediate effects o f burning result in an increment at the soil 

surface (0 to 5 cm) in concentrations o f calcium, magnesium, phosphorous and potassium, and the 

complete disappearance of aluminium, which can remain at zero levels for up to 40 days (Cavalcanti, 

1978; Coutinho, 1982a). Deeper down in the soil there is no change in these nutrients or in aluminium 

levels, suggesting that the ash deposited on the top soil is highly beneficial to the growth of 

herbaceous/undershrub plants with superficial root systems, since they are provided with a large 

quantity of mineral nutrients and a significant reduction in aluminium toxicity (Coutinho, 1990).

However, for the tree/shrub layer which generally possesses deep root systems 

(Rawitscher, 1942a, 1942b; Rawitscher et al., 1943), fire is detrimental, since nutrients made available 

from burned leaves, flowers, fruits and branches, are transferred to the herbaceous layer (Batmanian, 

1983; Cavalcanti, 1978). Compensation for this loss o f nutrients from the tree/shrub vegetation is 

brought about through the action of leaf-cutter ants (Atta species), which are frequently encountered in 

the cerrado (Coutinho, 1982b). Through their foraging activity, nutrients are transported to chambers at 

depths of 6 to 7 m in the soil. Although this process is limited to where the ants have their nests, in 

the long term, nutrients will be absorbed by the deep roots o f the tree/shrub stratum, and may 

determine cerrado vegetation at the patch scale.

Kauffman et al. (1994) looked at the relationship between fire and nutrient dynamics 

along the physiognomic gradient in the cerrado. They found that though the pool size o f nitrogen, 

carbon and sulphur (within the fuel load) increased along the gradient from campo limpo to cerrado 

sensu stricto, the percentage of those nutrients lost by fire decreased. For example, along the gradient, 

total mass of nitrogen increased from 24 to 55 kg h a '1, but nitrogen lost by fire was greater or equal to 

90% o f the pool in the grasslands, in comparison to less than 56% in the tree-dominated communities. 

This is probably due to the significantly greater amounts o f readily accessible combustible fuel in the 

grasslands, while nutrients remain locked up in the woody plants, which rarely burn. Other data 

showed that in cerrado sensu stricto, greater quantities of nutrients were lost as particulates, whereas in 

campo limpo, most o f the nutrients were volatilised during fire. These levels o f losses through
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volatilisation are especially important because they are likely to be ecosystem losses (Raison, Khanna 

and Woods, 1985) in contrast to particulate losses, which may be redistributed within the ecosystem. 

However, the amount of nutrients lost in the cerrado due to fire represents a minor proportion of the 

total pool (in roots, soils and above-ground woody vegetation), and is likely to be replaced through 

natural inputs, particularly through rainfall (Coutinho, 1979; Schiavini, 1984), in one to three years 

(Kauffman et al., 1994; Pivello-Pompeia, 1985).

3.6 Plant adaptations to fire
The closed cerraddo is comprised of many species, for example Emmotum nitens and 

Ocotea pomaderroides, that are extremely fire sensitive (Moreira, 1992). The flora of the open cerrado 

fonns, on the other hand, and especially the herbaceous/undershrub stratum, is typically pyrophytic 

(Coutinho, 1990). One pyrophytic characteristic of cerrado species is the strong suberisation of the 

trunk and branches of the trees, permitting thermal isolation of the living internal tissues (Eiten, 1994). 

Other species maintain the capacity to produce vigorous sprouts from subterranean roots following the 

total carbonisation of the aerial branches (Rachid-Edwards, 1956). Even the seedlings of certain tree 

species may present this type o f adaptation (Dionello, 1978).

Some trees protect their dormant apical buds using dense, hairy cataphylls e.g. 

Anemia anthriscifolia (Rachid-Edwards, 1956). Others however, have exposed dormant apical buds, 

and these frequently die during the fires. A few days later, adventitious buds may sprout from the 

branches, resulting in sympodial growth o f the stems (Eiten, 1982). This imparts the most 

characteristic feature o f the taller shrubs and trees, which enables a cerrado to be recognised on sight - 

its tortuosity.

It is among the herbaceous/undershrub flora that the majority of species highly 

resistant to fire can be found. Some are annuals, growing and developing during the rainy months, thus 

escaping the dangers of dry season fires as seeds. Many perennial species possess subterranean organs 

such as bulbs, underground shoots, rhizomes, and xylopodia, which avoid damage from fire. The 

densely imbricated sheaths of some grasses provide protection by limiting combustion due to 

inadequate aeration e.g. Aristida pallens (Rachid-Edwards, 1956). Some woody species present in the 

herbaceous/undershrub stratum develop their entire system of trunks and branches subterraneously, with 

only the small vegetative branches or yearly reproductive sprouts protruding above the soil. This 

example of cryptophytism can be found in trees such as Anacardium pumilum  and Andira humilis and 

among palms such as Acanthococos emensis and Attalea exigua (Lopez-Naranjo, 1975; Rawitscher et 

a l, 1943; Rawitscher and Rachid, 1946).

Burning induces flowering and fruit dehiscence in many cerrado species, and some 

seeds of the Mimosa  genus require a thermal shock in order to germinate (Almeida and Silva, 1989; 

Coutinho, 1982a; Coutinho and Jurkevics, 1978). Coutinho (1977) postulates that fire has a beneficial
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effect on these species by cleaning out obstructing vegetation, thus facilitating pollination and seed 

dispersion.

3.7 Choice of study site

The Reserva Ecologica do IBGE (IBGE) and the Jardim Botanico de Brasilia (JBB) 

were chosen as the research sites due to the existence of the ‘Projecto Fogo’ (Fire Project). This project 

was set up in 1989 to determine the effects of different burning regimes on the structure and dynamics 

of cerrado communities in Brasilia (D.F.). This area contains plots with known fire histories, so by 

assessing the lichen communities in these plots, any relationship between fire and lichen presence could 

be ascertained and used to form a LFH Key.

Another factor determining the choice of this site was its convenient location, just 33 

km outside Brasilia, easily accessible by either bus or car.

3.8 Site description
The Reserva Ecologica do IBGE, also known as the Reserva Ecologica do Roncador 

(RECOR), was created in 1975, and covers an area o f 1300 hectares. It is situated 33 km south of the 

centre o f Brasilia (D.F.), and is adjoined by two other areas o f preservation: the Jardim Botanico de 

Brasilia; and the Fazenda Agua Limpa (University o f Brasilia) (Figure 3.5). Together, these form an 

area more than 7000 ha, with an altitude o f between 1048-1150 m, and a 3.5% slope (Pereira et al., 

1989). Both reserves reside in a chapada, a high tableland classified within the larger physiognomic 

unit tenned 'Pratinha Surface Highlands' (Cochrane et a l, 1985). This physiognomic unit is found in 

the epicentre o f the Brazilian Shield, the elevated and exposed Precambrian shield region of central 

Brazil, characterised by old, stable plateau surfaces (Ab'Saber, 1971). The earths are mostly covered by 

dctrites-lateritics of the Tertiary, with considerable bands of Quaternary alluvials and the soils are 

predominantly red-yellow and dark-red latosols (EMBRAPA, 1980, 1987). The vegetation is complex 

and diverse, represented by the major forms of cerrado, including campo limpo, campo sujo, campo 

cerrado, cerrado sensu stricto, and cerraddo. Gallery forests and swamps are present by the permanent 

waterways.

3.8.1 Climate
The climate of the study site has two well defined seasons. The rainy season begins 

in September or October and prolongs until April or mid-May. During these months about 75% o f the 

total annual precipitation falls. The dry season lasts from June through to September. Mean annual 

temperatures range from a maximum of 29.3°C in the summer (September being the hottest month), to 

a minimum of 15.8°C in the winter (July being the coolest month). The average annual temperature is 

21.3°C (Neto, 1991). Mean annual rainfall is 1,667 mm, peaking in the months o f November, 

December and January, falling in May, with June, July and August having little or no rain (Pereira et
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a l,  1989). The relative humidity of the air varies throughout the year, registering between 72 and 83% 

in the summer and between 58 and 67% in the winter months, with some days in August and 

September falling to an average of 20%. Most evaporation occurs between June and October, peaking in 

August, with average annual evaporation very slightly exceeding annual precipitation. The winds are of 

a weak to moderate nature, the velocity on average in the order o f 2.1m sec-1. In the dry season, winds 

are mostly easterly, while in the rainy season they vary from north-easterly, easterly to north-westerly 

(Pereira et a l,  1989).

Compared to the climate o f previous years at IBGE (Pereira et a l ,  1989), the 

fieldwork year (October 1993 to September 1994) proved to be notably drier than usual, with no rain 

and very low humidities recorded in August and September. Relative humidity fell to 11% on the 15th 

o f September 1994, the lowest ever recorded for Brasilia ("0  Globo", 16/9/94). Figure 3.6 shows the 

rainfall, air temperatures and relative humidities at the IBGE meteorological station for the period of 

this study.

3.8.2 The Projecto Fogo

The Projecto Fogo is located in both IBGE and JBB, 15 55’ 58” S, 47 51’ 02” W. 

Set up in 1989, the areas used in the project were initially selected for their homogeneity in topography 

and edaphic factors (low downward slope and typical latosols, predominant in the cerrado), and to have 

a gradient of vegetation from campo limpo to cerraddo. The experimental area was divided into 3 

blocks o f 50 hectares, each block relating to a fonn of cerrado vegetation. These blocks were then 

subdivided into 5 plots of 200 m x 500 m, to be subjected to a specific experimental treatment. Five 

treatments, of different times and frequencies of bums, were established for each block:

1) no burning (control) - a regime proposed in the management plans o f the National Parks o f the 

cerrado, in favour of succession towards cerraddo;

2) early biennial bum (end of June) - an alternative regime to reduce the chance of accidental fires by 

eliminating excessive combustives, control alien grasses by destroying the flowering structures, and 

provide food for the fauna during the dry season;

3) middle biennial bum (beginning of August) - the regime dominant in the cerrado',

4) late biennial bum (end of September) - the regime that has probably the biggest impact on the 

vegetation due to the phenological patterns o f peaks in renewal of crowns and reproduction;

5) middle quadrennial bum (beginning o f August) - to favour the recmitment o f trees.

Before the project was established, both IBGE and JBB had different fire management 

policies. Within IBGE, fires were not controlled until 1974, after which a fire protection policy was 

introduced. Thus, the whole Projecto Fogo area within IBGE has not been burned since 1974. The 

JBB, on the other hand, has a Tet-burn’ policy, with patchy bums occurring on average every two 

years. Here, the plots o f the Projecto Fogo have been protected from fire only since 1986. Both 

reserves are protected from cattle grazing.
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3.8.3 Plot descriptions

The plots of cerrado chosen for this work were classified as campo denso within the 

Projecto Fogo (Figure 3.7). These were essentially a combination of cerrado sensu stricto  and 

cerraddo, with one form presiding over the other in different patches within the plots. Campo denso 

was used because observations prior to data collecting showed that lichen presence was greatest in this 

cerrado vegetation type. It also comprises cerrado sensu stricto, the ‘typical’ and most widespread 

cerrado vegetation type.

In total, ten plots of campo denso were used for this study, five in IBGE and five in 

JBB (Figure 3.8), with specific plots used for certain lines of research (see Chapter 4). It is assumed 

that climate, soil type and topography are consistent between and within all the plots, due to their close 

proximity to each other. It is therefore presumed that differences in woody species composition and 

vegetation structure between the plots arises from variations in fire history.

Figure 3.7 Typical cerrado denso vegetation, Reserva Ecologica do IBGE, 30/7/94. (Photo by the 

author).
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a) Fire history

The following is a description o f the fire histories o f the ten plots combining the 

observations o f Heloisa Miranda, Head o f the Projecto Fogo  (pers. comm., 20/9/94), and the 

measurements o f  presence/absence o f scorch and height o f scorch, taken during the field research 

(Figures 3.9a and b) (see Chapter 4):

a) Plots in IBGE (‘let-bum’ policy until 1974, then fire protection):

i) Plot 1 - controlled from fire for over 20 years. This was the only plot that showed no scorch (see 

Figure 3,9a);

ii) Plot 2 - burned in August 1991, and is a 'quadrennial' bum plot. The fire in this plot burned evenly 

throughout the whole area (Figure 3.9a - 100% o f phorophytes with scorch, indicating the 

homogeneous nature of the bum) and flame heights were high (Figure 3.9b - highest frequency of 

phorophytes in scorch height class ‘1 - 2.9 m ’);

iii) Plot 3 - subjected to burning in June 1992 as part o f the biennial cycle of bums. This plot had one 

of the lowest frequencies of phorophytes with scorch (Figure 3.9a), corresponding to the heterogeneous 

bum in this area. There are high frequencies of phorophytes within scorch height classes ‘< 0.5 m ’, ‘0.5 

- 0.9 m ’ and ‘1 - 2.9 m ’ (Figure 3.9b), suggesting that the bum in this area was not only patchy, but 

was probably with various flame heights.

iv) Plot 4 - burned in August 1992, part o f the biennial cycle o f burns. This plot burned in the same 

fashion as Plot 3 (see Figures 3.9a and b);

v) Plot 5 - burned in September 1992, part o f the biennial cycle of bums. This plot burned in the same 

fashion as Plot 3 (see Figures 3.9a and b);

b) Plots in JBB ( ‘let-bum’ policy until 1986):

i) Plot 6 - controlled from fire for 8 years. It still has many phorophytes with scorch (Figure 3.9a), 

though less apparent than Plots 7, 8 and 9. Figure 3.8b indicates that the previous bums in this plot 

may have had high flame heights (> 1 m), with some flames reaching more than 5 m;

ii) Plot 7 - burned intensely and evenly in August 1991, and is a 'quadrennial' bum plot. There is

100% scorch (Figure 3.9a), suggesting that fire has been homogenous in this area. This plot may have 

had fires with high flame heights, shown by the high frequencies of phorophytes within scorch height 

classes ‘ 1 - 2.9 m ’ and ‘3 - 4.9 m ’ (Figure 3.9b);

iii) Plot 8 - burned in June 1991 and 1993 as part o f the biennial cycle o f bums. It burned in the same 

manner as Plot 7 (see Figures 3.9a and b);

iv) Plot 9 - burned in August 1991 and 1993 as part o f the biennial cycle o f bums. It burned with very 

high flame heights in the same manner as Plots 7 and 8 (see Figures 3.9a and b);

v) Plot 10 - burned in September 1991 and 1993 as part o f the biennial cycle o f bums. This plot has 

the lowest frequency of phorophytes with scorch out o f all the JBB plots (Figure 3.9a), indicating that 

fire has been infrequent and heterogeneous in this area. This plot also has higher frequencies of
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Figure 3.9: a) The percentage frequency of phorophytes with scorch in each plot; b) The 

percentage frequency of phorophytes within different scorch height classes (m above ground) for 

each plot.
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phorophytes within the lower scorch height classes (Figure 3.9b), indicating flames with various 

heights (as in Plots 3, 4 and 5).

Table 3.1 summarises the fire histories of the plots, and indicates a fire history code 

for each plot. The code is constructed in the following manner:

Code = (A-B: C, D, E) where,

A = the date up to which there has been a 'let-bum' policy i.e. 1974 or 1986.

B = the date(s) of last known fire.

C = whether the bum was homogeneous (Horn) or heterogeneous (Het).

D = whether there were variable (V) or high (H) flame heights.

E = whether the fire took place during the early (E), mid (M) or late (L) dry season. 

This code is used in the following text as a concise definition of the fire history o f each plot. Table 3.1 

is replicated in Appendix 4, enclosed at the back of the thesis, as an aid to the reader.

b) Floristics

In total, 89 woody species were found, belonging to 63 different genera and 37 

families. The most diverse family was Leguminosae with 14 species, 16% o f the total. Other diverse 

families included Vochysiaceae (8%), Malpighiaceae (8%), Melastomataceae (5%), Myrtaceae (5%) and 

Rubiaceae (5%). Within the plots, trees had the highest species diversity, 65 species in total (73%), 

followed by shrubs with 21 species (24%) and sub shrubs with 3 species (3%).

The phytosociological parameters (density (number of phorophytes n r 1)), dominance 

(basal area (m2 n r 1)), frequency (percentage occurrence of a species in the plots)) were used to calculate 

the Importance Value (IV) (Mueller-Dombois and Ellenberg, 1974), defined as the sum of relative 

density, dominance and frequency, for each species in each plot. The IV places the species in a 

hierarchical order in the community and as a sum o f relative parameters, is useful in comparisons 

between plots and with other studies. A species has a high IV when their density, basal area and/or 

frequency are higher than those for the other species in a site (Curtis and McIntosh, 1950, 1951).

Within the study plots, the ten species with the highest overall IV (in descending 

order) were Blepharocalyx salicifolius2, Caryocar brasiliense, Sclerolobium paniculatum , Ouratea 

hexasperma, Guapira noxia, Qualea grandiflora, Vochysia thyrsoidea, Didymopanax macrocarpum, 

Vellozia squamata  and Qualea parviflora. Among them, C. brasiliense, Q. grandiflora  and Q. 

parviflora, have been recorded as common by Ratter and Dargie (1992), occurring in 15 or more of the 

26 widely scattered cerrado sensu stricto sites compared.

In this study, Caryocar brasiliense, Sclerolobium paniculatum  and Vochysia thyrsoidea have 

greater importance values than other sites around the Distrito Federal (Felfili and Silva Jr, 1993). 

Though Blepharocalyx salicifolius has a high importance value within the Projecto Fogo (this study; 

Moreira, 1992) and the neighbouring Fazenda Agua Limpa (Felfili and Silva Jr, 1992), it

2 Authorities for phorophyte species found in this study are given in Appendix 1 (p.271).
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Table 3.1 The fire histories of the ten plots and their codes.

A rea P lo t F ire h istory Code used in text

1 Protected since 1974 (for over 20 
years)

(74-control)

2 Protected since 1974, but 
subjected to a rare middle dry 
season homogeneous fire with 
high flame heights in 1991

(74-91: Horn, H, M)

IBGE - 'let- 
bum' policy 
until 1974

3 Protected since 1974, but 
subjected to a rare early dry 
season, heterogeneous fire with 
various flame heights in 1992

(74-92: Het, V, E)

4 Protected since 1974, but 
subjected to a rare middle dry 
season, heterogeneous fire with 
various flame heights in 1992

(74-92: Het, V, M)

5 Protected since 1974, but 
subjected to a rare late diy season, 
heterogeneous fire with various 
flame heights in 1992

(74-92: Het, V, L)

6 Frequently burned until 1986, but 
protected from fire since 1986

(86-control)

7 Frequently burned until 1986, 
subjected to a middle diy season 
homogeneous fire with high 
flame heights in 1991

(86-91: Horn, H, M)

JBB - 'let-burn' 
policy until 
1986

8 Frequently burned until 1986, 
subjected to an early diy season 
homogeneous fire with high 
flame heights in 1991 and 1993

(86-91,93: Horn, H, E)

9 Frequently burned until 1986, 
subjected to a middle diy season 
homogeneous fire with high 
flame heights in 1991 and 1993

(86-91,93: Horn, H, M)

10 Infrequently burned until 1986, 
subjected to a late dry season 
heterogeneous fire with various 
flame heights in 1991 and 1993

(86-91,93: Het, V, L)

is not considered a typical species of the region, being more specific to other areas o f the Planalto 

(Felfili and Silva Jr, 1993). Other species with high importance values comparable to other sites around 

the Distrito Federal were Didymopanax macrocarpum, Guapira noxia, Ouratea hexasperma and 

Miconia ferruginata (Felfili and Silva Jr, 1992, 1993).

Multivariate analyses were carried out on the plot phorophyte data in order to identify 

associations between species and between plots. The matrix of 10 plots by 89 species was ordinated 

using Detrended Correspondence Analysis (DCA) (Hill and Gauch, 1980) and classified using Two- 

Way Indicator Species Analysis (TWINSPAN) (Gauch and Whittaker, 1981; Hill, 1979). Although 

DCA and TWINSPAN have been widely criticised (Gauch, 1982), they still remain one of the most 

frequently used and effective multivariate analysis techniques (Kent and Coker, 1992), and allow
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Figure 3.10 DCA plot ordination using phorophyte species data. Note that all the 1BGE plots 

(1-5) are on the right-hand side of the graph, and the JBB plots (6-9) are on the left-hand side. 

Plot 10 of the JBB is more similar to the IBGE plots, being found on the right-hand side of the 

graph.

comparisons with other studies. The IV values for species were used in both the ordination and 

classification since they give good indications of the proportional representation of individual species at 

a site (Felfili and Silva Jr, 1993).

Because there were many species that occurred only once, it was decided to 

downweight the rarer species in both the ordination and classification analysis (Kent and Coker, 1992). 

This helped clarify the patterns determined by the more common species. All other default commands 

were used for the analyses. The results of the DCA shows that the first component accounts for 73% of 

the total variance, and the second for 21%. Together, they account for over 94% o f the total variation, 

so are therefore regarded as the most significant components (Causton, 1988). Both the plot and species 

ordinations were plotted using the 1st component as the x-coordinate and the 2nd component as the y- 

coordinate.

The plot ordination (Figure 3.10) indicates that fire history may account for the 

polarisation on the 1st axis, with the IBGE plots (1, 2, 3, 4 and 5) on the right-hand side of the graph, 

and the JBB plots (6 , 7, 8 and 9) on the left-hand side. Plot 10 is the only exception to this pattern. 

The graph shows that the greatest difference on the first axis is between Plots 9 and 5. Plot 5 has been
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Plots:

Division 4

Division 3

Division 2

Division 1

3 & 4

Fire history:

Protected since 1974.

Rare heterogeneous 
burn in 1992 with 
various flame heights.

Rare homogeneous 
bum in 1991 with 
high flame heights.

Rare heterogeneous 
burn in 1992 with 
various flame heights.

Heterogeneous burn 
in 1991 and 1993 with 
various flame heights. 
Frequent fires in past.

Homogeneous bum 
in 1991 with high 
flame heights.
Frequent fires in past.

Homogeneous burn 
in 1991 and 1993 with 
high flame heights. 
Frequent fires in past.

Protected since 1986. 
Frequent fires in past.

Homogeneous bum 
in 1991 and 1993 with 
very high flame heights. 
Frequent fires in past.

IBG E plots, 
flet-burnf 
policy until 

1974

JBB plots, 
’let-burn* 
policy until 

1986

Figure 3.11 Dendrogram of TWINSPAN results showing the separation of plots according to 

their fire history.
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Figure 3.12 DCA phorophyte species ordination.

burned recently and heterogeneously, but was previously protected from fire for over 20 years. 

Alternatively, Plot 9 has been burned frequently in the past, the last bum being of a homogeneous 

nature with high flame heights. On the graph, Plot 6 occurs between the IBGE plots and the other JBB 

plots, and this is probably because, though burned frequently in the past, it has been protected from fire 

for 8 years. Although Plot 10 is a JBB plot, it seems that fire has not affected this plot in the same 

fashion as the other JBB plots. This could be because fire in this area was not as frequent and 

homogeneous compared to the other JBB plots. These results are confirmed by the TWINSPAN 

classification (Figure 3.11). The first division separates the IBGE plots from the JBB plots, although 

Plot 10 (a JBB plot) is separated with the IBGE plots. The subsequent divisions separate the plots into 

a gradient of fire history, with Plot 1 (74-control) at one extreme, and Plot 9 (86-91,93: Horn, H, M) at 

the other.

Looking at the second axis of the DCA plot ordination, Plot 10 (86-91,93: Het, V, 

L) is at one pole, Plot 4 (74-92: Het, V, M) at the other. The ordination indicates that this axis 

accounts for 21% of the variance, so it is far less important than the first. Since no environmental
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factors were measured, it is impossible to ascertain what could be the reason for the plot distribution on 

this second axis.

Figure 3.12 shows the phorophyte species ordination and Figure 3.13 is an overlay of 

the species ordination with the groups (A-D) identified by the TWINSPAN classification (the rarer 

species i.e. those that occur in two or less plots are excluded from the graph). Although the results of 

the species ordination are more difficult to interpret than the plot ordination, it does seem that the 

controlling factor on the first axis may be fire history.

Three fire-sensitive species, Emmotum nitens, Bowdichia virgilioides and Miconia 

albicans common in protected cerrado denso (Furley and Ratter, 1988; Moreira, 1987; Ratter, 1991; 

Ribeiro et al., 1985), are present on the right-hand side of Figure 3.11 and in TWINSPAN Group A. 

However, another fire-sensitive species, Miconia pohliana, is located towards the middle o f the 

ordination graph, thereby not indicating fire-sensitivity. Moreira (1992) suggests that similarities 

between protected and unprotected cerrado denso may be explained due to the patchy nature of burns in 

this cerrado form, allowing fire-sensitive species to be protected from fire long enough to enable them 

to pass through the vulnerable sapling stage, and reach a more fire-resistant mature stage. Other species 

in TWINSPAN Groups A and B, including Acosmium dasycarpon, Didymopanax macrocarpon, 

Eremanthus glom erulatus, Guapira graciliflora, Guapira noxia, Blepharocalyx salicifolius and 

Sclerolobium paniculatum  are also common in protected cerrado denso (Moreira, 1992).

In the centre of the graph, typical cerrado denso/cerrado sensu stricto species
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Figure 3.13 DCA phorophyte species ordination with TWINSPAN group (A-D) overlay.

83



(Groups B and C) are found. These include Aspidosperma tomentosum, Caryocar brasiliense, Myrsine 

guianensis, Ouratea hexasperma, Roupala montana, Vellozia squamata and Vochysia thyrsoidea 

(Moreira, 1992; Ratter, 1991). On the left-hand side o f the graph, shrub species such as Rourea induta 

and Syagrus comosa (Group D) are indicators of more open vegetation (Moreira, 1992). So, from right 

to left on the first axis, the effect o f fire on the vegetation increases, controlling the openness of the 

vegetation, and in turn, the species present. There are many species that seem to be indicators o f open 

vegetation, such as Symplocos rhamnifolia, Stryphnodendron adstringens, Qualea parviflora  and 

Qualea grandiflora, but they are species typically found in most cerrado types (Ratter, 1991; Ratter 

and Dargie, 1992), and their importance in this fire gradient may be misleading, since their occurrence 

is more likely to be due to a clumped distribution (Oliveira et a l,  1989; Oliveira-Filho et a l ,  1989).

The second axis in Figure 3.12 shows the greatest difference between Symplocos 

nitens and two species, Miconia albicans and Banisteriopsis latifolia. S. nitens is characteristic o f the 

wetter gallery forest (Pereira et al., 1993; Ratter, 1991), and suggests that this gradient could be due to 

soil hydrology. Even so, there is no evidence to suggest that M. albicans or B. latifolia are tolerant of 

drier soils, and so soil hydrology as the detenninant on second axis must be considered with caution.

c) Vegetation structure

Figures 3.14a to c show the percentage frequency of phorophytes in different height, 

girth, and first branch height classes respectively for the ten plots. These graphs indicate that fire 

protection in the past (Plots 1 to 5) has led to a greater tree height and an increase in those individuals 

with thicker trunks. Plot 1, protected from fire for over 20 years, has a large proportion of phorophytes 

with large girths and with low-level branches, suggesting the presence o f thick-stemmed phorophytes 

that are multi-branching near the base (see Section 3.2) and a high structural complexity. In Plots 3, 4 

and 5, there is a decrease in the proportion of phorophytes with low branches (< 0.5 m and 0.5 - 0.9 

m), suggesting that though fire has been rare and heterogeneous in these areas, it has effected the 

vegetation structure, eliminating many of the lower branches. Plot 2 not only has a low proportion of 

phorophytes with low branches, but also has fewer phorophytes in the girth class ‘5 - 7.9 cm’, a result 

of the recent homogeneous bum that took place.

Plot 6 , protected from fire for 8 years, also has a high proportion of phorophytes with 

large girths, but otherwise it shows similar structural patterns to Plots 3, 4 and 5. The graphs suggest 

that frequent burning (Plots 7, 8 and 9) lowers the height of the vegetation, eliminates large-girthed 

trees and reduces low branch density. The greater number o f thin-stemmed phorophytes is probably the 

result of tree recruitment after fire, and the larger presence of phorophytes with lower branches could be 

the result o f the coppicing effect of fire (Ramos, 1990). Plot 10 shows similar tree height and height of 

first branch class distribution to Plots 1 to 5, providing further evidence that it may not have been 

burned in the same manner as the other JBB plots. However, the lower proportion of phorophytes with 

large girth classes in Plot 10 compared to Plots 1 to 5, indicate that fire has effected this area.
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Plot number

ED < lm  H  1 - 2.9m |  3 - 4.9m □  >5m

Figure 3.14a The percentage frequency of phorophytes in different height classes (m) for each 

plot.

1 2 3 4 5 6 7 8 9  10

Plot number

□  5 -7 .9  cm ■  8 - 11.9cm ■  12 -19.9 cm □  > 20 cm

Figure 3.14b The percentage frequency of phorophytes in different girth classes (diameter in cm) 

for each plot.
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1 2 3 4 5 6 7 8 9  10

Plot number

□  <0.5 m ■  0.5 -0 .9  m ■  1 -2 .9  m □  3 - 4.9 m |  > 5 m

Figure 3.14c The percentage frequency of phorophytes in different first branch height classes (m) 

for each plot.

3.9 Conclusion

The cerrado o f Brazil is unique in having the greatest floristic diversity o f all the 

world's savanna formations. This species rich community forms a mosaic of structural types, ranging 

from pure grasslands (campo limpo) to closed woodland (cerradao). These physiognomic types are 

determined at various spatial scales by the following factors: Plant Available Moisture (PAM); Plant 

Available Nutrients (PAN); aluminium toxicity; anthropogenic disturbance; herbivory; and fire.

Fire is a major factor within cerrado  regions, and is at present, the widest used 

management tool. Little research, however, has been carried out on fire dynamics in the cerrado. 

Factors associated with the fuel type, e.g. density and moisture content, all intrinsically related to 

physiognomic type, have been demonstrated to be the most important elements governing fire 

behaviour. Studies involving the measurement of the vertical distribution of temperatures during fires 

have shown that the highest temperatures occur between 1 to 60 cm above the ground and that residence 

times also peaks at this height range. At higher positions above the ground, fire temperatures are lower, 

amd may last for only a few seconds. These spatial variations in fire temperatures and residence times 

may be extremely important for the survival and subsequent recolonisation of lichen communities.
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Field research was carried out at the Reserva Ecologica do IBGE and the Jardim 

Botanico de Brasilia, 33 km outside Brasilia D.F., in central Brazil. Ten study plots of cerrado denso 

were chosen within the area o f the Projecto Fogo, where prescribed burns o f various frequencies take 

place in order to study their effects on the vegetation. These plots range from controls, e.g. protected 

from fire for over 20 years, to plots which are burned every two years at different times during the dry 

season. Using data collected during the present study, each of the ten plots is described in terms of its 

fire history, floristics and vegetation structure. The analysis indicates the importance of not only fire 

frequency, but also of fire behaviour, in terms of the homogeneity of the fire and the flame heights of 

the fire, on the vegetation composition and structure.

The following chapter describes how these plots were employed in the field research 

and the particular methods used.
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Chapter 4 
Field Methods

4.1 The research strategy

The aim o f this study is to investigate the potential use of corticolous lichens as 

bioindicators o f fire history in the cerrado, and to generate a Lichen Fire History (LFH) Key. In order 

to investigate whether corticolous lichens can be useful indicators of fire history, it is necessary to 

determine how fire history affects corticolous lichens and to what extent fire history affects other factors 

influencing lichens. The main determinants of corticolous lichens in temperate and tropical forests 

(Barkman, 1958; James et al., 1977; Sipman and Harris, 1986) are: climatic factors, such as moisture, 

light and temperature; bark characteristics, including texture, rate of shedding, pH, age, nutrient status, 

chemical composition, presence of resins, and moisture-absorbing and retaining capacities; and 

disturbance e.g. predation and fire. These factors do not have an absolute control over lichen 

communities, but vary in their effect along a spatial scale. For example, climate may determine lichens 

over whole regions, as in the area of the Distrito Federal of this study, but it can also act at a micro­

scale, restricting particular lichens to certain parts o f a phorophyte trunk depending on their specific 

micro-climatic requirements. Bark characteristics can also act at a large-scale, for example, between 

different forest types due to their phorophyte composition, and at a small-scale, on different sections of 

the same trunk. Disturbances, more specifically fire, can cover large areas, thereby influencing lichens at 

a large-scale, but can also determine whether lichens are present on one phorophyte individual, or even 

on one side of a trunk.

The aim of this study is not to use lichens for determining the fire history over large 

tracts o f cerrado vegetation, but to allow managers to employ a simple method within small, relatively 

homogeneous areas. Hence, it is important to investigate the effects of fire history, and other lichen 

determinants at a small-scale, rather than at the large-scale. However, factors influencing lichen growth 

are not independent from one another. For example, fire may reduce the canopy cover of the woody 

vegetation, and therefore indirectly alter the microclimate for lichens. Thus, it is important not only to 

investigate the direct effects of fire history on lichen communities, but also the effects o f fire history on 

other small-scale lichen determinants. This should provide evidence to show the precise influence that 

fire history has on lichens, both direct and indirect. Once this is established, other small-scale factors 

strongly influencing lichen communities may be eliminated from sampling so that fire history becomes 

the major determinant of lichens. Consequently, lichen indicators of fire history can be isolated.

4.2 Main lines of research

The research scheme is outlined in Figure 4.1. Data collecting events are represented 

by squares, products by circles, and decisions by diamonds. Since no work has been carried out on any
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aspect of lichen ecology, let alone lichen fire ecology, within the cerrado, a thorough investigation of 

lichen abundance, distribution and recolonisation, and their relationship to factors influencing 

corticolous lichen growth was necessary. By comparing these lichen small-scale determinants between 

plots with different fire histories, it could be ascertained whether fire history, directly or indirectly 

affects lichen communities. The first part o f the research (Stage 1), therefore, involved measuring 

parameters about the lichens e.g. abundance, and their small-scale determinants e.g. phorophyte bark 

texture, in areas with different fire histories. Data relating to phorophyte structure, species composition 

and presence of scorch (as an indication of past fires) was also used for constructing descriptions o f the 

ten study plots (see Section 3.8.3).

Once it was established that lichen communities were influenced by fire history, five 

woody species were selected to carry out a study of the lichen composition in areas with different fire 

histories (Stage 2). By selecting specific phorophyte species, the influence of factors, other than fire 

history, could be reduced. The five phorophyte species were chosen on the basis o f their high density 

within the plots, the high abundances of lichens present on them, and the high variation in lichen 

abundance between plots with different fire histories. It was hoped that from this stage of the study, 

lichen 'indicator' genera/species for different fire histories could be identified.

From Stage 2 o f the research, the genus Bulbothrix3 was found to have one of the 

most dynamic responses to different fire histories. Data about the abundance and size of Bulbothrix 

individuals from plots with different fire histories was then collected (Stage 3). It was hoped that this 

would show how fire history affects Bulbothrix populations in terms of their numbers, distribution and 

growth rates.

A combination of the most significant results from Stages 1, 2 and 3 were then used 

to construct the LFH Key.

The methods employed for each of these stages will now be presented in detail.

4.3 Stage 1: General survey
For this part o f the study, all 10 cerrado denso plots o f the 'Projecto Fogo' were 

surveyed (see Section 3.8.3). Before vegetation sampling could begin, two important choices had to be 

made, namely: the sampling method to be used, and the criteria for choosing which phorophytes would 

be sampled.

4.3.1 The sampling method
Sampling methods, like the conventional quadrat, are ideal i f  the vegetation is truly 

homogeneous (Kent and Coker, 1992). In contrast, the cerrado has a very heterogeneous structural and 

floristic composition, both at the regional (Oliveira-Filho et al., 1989; Ratter and Dargie, 1992) and 

local scale (Felfili and Silva Jr, 1993). To overcome this, and the problem of the distribution pattern

3 Authorities for lichen species found in this study are given in Appendix 2 (p.275).
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i.e. random, regular, or clumped, it was felt that the largest area possible for each plot (200 m x 500 m 

in size) should be sampled. The other important factor influencing the choice o f sampling procedure 

was the amount of time available. The quantitative measurements necessary for this study meant that 

surveying all the vegetation within each of the ten plots would have taken too long, and, in the end, 

this was the deciding factor governing which sampling method was used.

The distance method of plotless sampling was chosen as the sampling technique for 

this study. Defined as sampling without a two-dimensional reference area (Mueller-Dombois and 

Ellenberg, 1974), it was first developed for timber surveys, based on the idea that the number o f trees 

per unit area can be calculated from the mean distance between the trees (Curtis, 1959). Since then, a 

number of distance methods have been proposed and applied to vegetation studies, all o f which operate 

from sampling points that can be established either randomly or systematically.

The 'nearest neighbour method' and the 'random pairs method' involve selecting pairs 

of individuals near randomly chosen points. A third method, the 'closest individual method' simply 

measures the distance from a randomly selected point to the nearest tree (Cottam and Curtis, 1949; 

Cottam and Curtis, 1956; Cottam et al., 1953). The distance method used in this work was the 'point- 

centred quarter method' (Cottam and Curtis, 1956). This involves measuring four distances from a 

sampling point. A random point was located at the edge of each plot, and according to a pre-established 

compass bearing, sampling took place in a straight line, every 10 metres for a distance of 500 m, i.e. 

50 sampling points4. Four quarters were established at each sampling point through a cross formed by 

two lines. One line was the compass direction and the other a line running perpendicular to the 

compass direction through the sampling point. The distance to the mid-point o f the nearest phorophyte 

from the sampling point was measured in each quarter and the phorophyte was identified to species (see 

Figure 4.2). These parameters were used to calculate the Importance Value (IV) of phorophyte species 

within each plot (see Section 3.8.3b).

The important factor for this study was to sample a large number of phorophytes and 

their lichen communities quickly and easily. In comparison to the other three distance methods 

described above, it has been shown that the point-centred quarter method does not require a correction 

factor for calculating the mean distance, and it is the most efficient o f all the methods (Cottam and 

Curtis, 1956). Since there is no requirement for the laying out of plot boundaries, considerable time is 

saved, and it eliminates, to a certain extent, the personal error from judging whether boundary 

individuals are inside or outside the quadrat. This technique, however, does have limitations for field 

applications. An individual must be located within each quarter and must not be measured twice 

(Newsome and Dix, 1968). This presents a problem in very open stands o f vegetation, but was not 

encountered in the more closed cerrado denso of this study.

4 The accuracy with which the mean distance, and thereafter density, is calculated increases with 
the number of sampling points, and a minimum of 20 points is recommended (Cottam and Curtis, 
1956).
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Compass line (first line)

Second line

Measured distance

Phorophyte Sampling point

Figure 4.2 The point-centred quarter method of plotless sampling.

4.3.2 Criteria for phorophyte sampling
Difficulties arose when choosing criteria for selecting phorophytes to be sampled. It 

was important to include all phorophytes with lichens that would be affected by fire. The cerrado has a 

flora characterised by a high structural diversity, and the use o f a minimum trunk diameter at breast 

height - a criterion commonly used in phorophyte sampling - would have excluded some species useful 

for this study. For example, the thick-stemmed shrubs of the cerrado develop a short, stout trunk, and 

a number of thinner aerial stems that can remain alive from several to many years (Eiten, 1994). This 

means that if a limit o f a certain diameter at breast-height was used, these shrubs would be excluded 

from sampling.

There is also no proven correlation between the age of a phorophyte and height or 

diameter (Oliveira and Silva, 1993), Jatoba (Hymenea stigonocarpa), for example, can continue to have 

the appearance of a juvenile even after fire or chopping, though being quite old in age (Dulce Rocha, 

pers. comm. 12/9/94).

Therefore, a certain criterion needed to be established that would avoid saplings, 

seedlings, and herbaceous species, but which would include the thick-stemmed shrubs that are multi­

branching near the base, and allow for the tortuosity of the vegetation. Considering all these factors, it 

was decided to use a minimum diameter of 5 cm, measured at 30 cm above ground level.
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4.3.3 Parameters measured
In this study, two sets o f measurements were taken: those of the woody vegetation; 

and those of the lichen vegetation. For each phorophyte, the following data was collected:

1) distance from sampling point to phorophyte (m);

2) species name;

3) height (m);

4) girth (cm);

5) height o f first branch (m);

6) presence/absence o f scorch (P/A);

7) if present, the height of scorch (m);

8) bark texture (using a pre-determined scale);

9) degree of lichen abundance (using a pre-determined scale);

10) lichen distribution (using a pre-determined scale);

11) presence/absence of lichens growing on scorched bark (P/A).

Parameter (1) was measured in order to calculate the density of phorophyte species. 

This was important for choosing the phorophyte species for Stage 2 of the data collection, and essential 

for the study plot descriptions. Parameters (2) to (8) were measured so the effect o f small-scale 

determinants on lichens could be analysed. Factors which influence lichen communities include bark 

texture, moisture, pH, age, nutrient status, chemical composition, presence o f resins and tannins, and 

rate of shedding, as well as microclimatic factors such as light and temperature (James et al., 1977). To 

measure most o f the bark characteristics would have involved time consuming and complicated 

procedures, beyond the scope of this study. However, bark texture is important in affecting both lichen 

survival during a fire and subsequent lichen recolonisation (Wolseley and Aguirre-Hudson, 1996b). 

Bark texture can be recorded quickly and easily, and information about the moisture content o f the bark 

can also be deduced from this, since bark texture is related to bark moisture.

Time available at the end o f the study, allowed the measurement o f bark pH on a 

number of phorophyte species (see Section 4.6.1). It was hoped that the measurement o f phorophyte 

height and girth may give an idea as to how bark age also affects lichens. Microclimatic measurements 

would have also been too time consuming for this study. However, phorophyte height, girth and first 

branch height i.e. phorophyte structure, may effect the lichen microclimate, and could be used to 

analyse its effects on lichens. Aspect is easily recordable and an important factor influencing lichen 

establishment, although mostly in temperate regions (see Section 2.2.2c). In the cerrado, the woody 

vegetation has a very tortuous nature. Many phorophytes are twisted, with few sections of a trunk being 

in a vertical position, making it extremely difficult to ascertain the overall aspect. Aspect was therefore 

not measured in this study. The variables (2) to (7) were also used in the study plot descriptions.

Lichen variables (9) and (10) were employed to assess the ecology o f lichens: the 

abundance scale showing the degree of lichen cover; and the distribution scale giving an idea o f the
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microclimatic conditions on the phorophytes which may determine the location o f lichen 

establishment. Presence/absence o f lichens on scorch, parameter (11), was a measure of the degree of 

recolonisation after fire.

The methods employed for each of the parameters measured will now be discussed in

detail.

a) Phorophyte species name

At the beginning o f the survey, samples of leaves (and fruits when possible) were 

taken from all phorophytes sampled. With time, the more common species did not need to be 

collected. Samples were tagged and placed in plastic bags. They were later dried, pressed and sterilised 

at the University of Brasilia Herbarium. Identification took place primarily with help of the Herbarium 

staff, and then with consultation of identified specimens in the herbarium collection.

b) Distance, height and girth measurements

Distance from sampling point to phorophyte was measured using a 10 m length 

measuring tape. Height o f phorophyte, first branch height and height of scorch were measured using a 

15 m extendible measuring pole. Girth of phorophytes (diameter in cm) was recorded with a 100 cm 

long diameter tape.

c) Presence/absence o f scorch

This was a purely subjective recording, according to whether there was distinctive 

blackening on the phorophyte bark surface or not. It was sometimes difficult to decipher the presence of 

scorch, especially since a few of the phorophyte species had naturally dark-coloured bark. In these cases, 

scorch was recorded as present, but a question mark was added to signify doubt. The same problem 

arose in the case of height of scorch since, on occasions, the scorch marks became patchy towards the 

phorophyte canopy, and so the maximum discernible height was recorded.

d) Bark texture

Through observations prior to data collecting, phorophyte species were found to have 

varying bark textures. From this, four main bark textures were established and the simple scale below 

was constructed (see Figure 4.3):

Texture value

1= smooth;

2= rough without marked crevices;

3= rough with crevices;

4= rough with deep crevices.
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Figure 4.3 Bark textures: a) smooth, Sclerolobium paniculatum', b) rough without marked 

crevices, Blepharocalyx salicifolius; c) rough with crevices, Dalbergia miscolobium; d) rough with 

deep crevices, Vochysia thyrsoidea. (Photos by the author).
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For this scale, a crevice was defined as a fissure that occurs between delimited 

segments o f bark, regardless of the type or pattern o f the actual segment (see Figures 4.3c and 4.3d). 

When a phorophyte did not exactly match any of the scale categories, it was allocated to the one most 

similar to its bark texture.

e) Degree o f lichen abundance

Previous observations showed that there were many phorophytes with absolutely no 

lichens on them, and in other cases, with just one or two individuals. It was also noted that the 

richness of lichen cover rarely exceeded more than half of the phorophyte surface. Allowing for these 

factors, a scale was constructed that had a small number of classes and could be used to take quick and 

accurate cover estimations easily:

Cover Scale

0 = absence of lichens;

1 = one or two individuals, less than 1% cover;

2 = 1 to 25% cover;

3 = 26 to 50% cover;

4 = over 50% cover.

There were difficulties when trying to estimate lichen cover on phorophytes. The 

main problem was with the taller phorophytes, where lichens may have been growing at heights out of 

sight of the author. It has to be noted, therefore, that cover values were assigned according to the 

visibility of the lichens. The cylindrical nature of phorophytes also presented problems, and though 

systematic recording took place, some errors were likely.

f) Lichen distribution on the phorophyte

This was estimated using the scales below:

Distribution scale

0= homogeneous lichen distribution;

1= partially restricted lichen distribution, to

a. base;

b. base to 0.9 m;

c. 1 to 2 m;

d. higher than 2 m;

e. on branches & twigs;
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Distribution scale continued

2= restricted lichen distribution, to

a. base;

b. base to 0.9 m;

c. 1 to 2 m;

d. higher than 2 m;

e. on branches & twigs.

g) Presence/absence o f  lichens growing on scorched bark

This was a purely nominal measurement, regardless o f the amount of coverage of the 

lichens on the scorch.

4.4 Stage 2: Lichen community study
With virtually no previous research on cerrado  lichens, except for an occasional 

taxonomic study (Marcelli, 1993), the aim of this stage in the study was to identify the lichen flora of 

the cerrado and, by comparing the flora between plots with different fire histories, be able to identify 

indicator species or genera which might help to generate a LFH Key.

4.4.1 The sampling design
Hawksworth and Rose (1976) recommend some procedures of standardisation for 

surveying phorophytes to be used in developing lichen scales for pollution studies. These include 

using: phorophytes of the same species or at least similar bark characteristics (supporting similar 

communities in unaffected areas); phorophytes which are positioned vertically, in comparable situations 

i.e. exposed and free-standing, rather than in ravines or dense woods; phorophytes o f similar size 

classes (according to girth or height); phorophytes differentiated according to their bark pH i.e. 

separating acidic from naturally basic barks. All o f these criteria were used by Hawksworth and Rose 

(1970) to construct a lichen scale for sulphur dioxide air pollution in England and Wales.

Since a level of standardisation was required for this study too, these guidelines 

served as a basis for choosing which phorophytes would be sampled. The scenario o f pollution was 

replaced with fire, and the vegetation characteristics o f the cerrado, as well as the absence of previous 

lichen studies, had to be taken into consideration.

The heterogeneity and richness o f the cerrado  woody flora meant that important 

criteria for choosing which phorophytes to use were: phorophytes commonly found in cerrado denso\ 

and phorophytes most easily recognisable in the field. Using the results of simple analysis on the Stage 

1 data, woody species that showed high lichen abundances and differences in lichen abundance between 

plots o f different fire histories, were short-listed as potential candidates (see Section 5.10). Based on 

these criteria, the following five phorophyte species were chosen on which to study the lichen
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community in more depth (local names in brackets): Blepharocalyx salicifolius (Maria preta), Caryocar 

brasiliense (Pequizeiro), Guapira noxia (Pau-de-lepra), Sclerolobium paniculatum  (Carvoeiro) and 

Vellozia squamata (Canela-de-ema) (Figure 4.4).

The topography o f the plots was reasonably constant, and only free-standing (in 

contrast to fallen individuals) were sampled. No strict girth diameter was assigned. For example, V. 

squamata is normally a very thin-stemmed species, yet an important one in terms of its constancy and 

conspicousness in the field, as well as its lichen flora. For each of the five woody species, sampling 

took place according to the girth criteria discussed in Section 4.3.2, though between individuals of the 

same species the trunk diameter was kept as constant as possible.

Only Plots 1 to 6 were used for this stage of the research. It was hoped that by 

comparing the lichen species composition and frequency within Plot 1 (74-control), Plot 2 (74-91: 

Horn, H, M) and Plot 6 (84-control), certain 'indicators' could be found for fire frequency and 

behaviour. Although the past bums through Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M) and 

Plot 5 (74-92: Het, V, L) have been very patchy, it was hoped that the lichen composition/frequency 

data from these would isolate certain lichen species indicative of fire timing during the dry season.

4.4.2 The sampling method
A sampling procedure was established that could encompass the area o f each plot, and 

be efficient within the time available. It was, in essence, a belt transect (Kent and Coker, 1992). A 

random point was located in the plot, and walking in a straight line o f a pre-determined compass 

bearing, those individuals encountered on or within 2 metres to the left or right of this line were 

sampled. In this way, a large part o f each plot was covered, and the chance of encountering an 

individual o f the chosen phorophyte species, greatly increased. Only five individuals of each species 

were sampled per plot, as lichen identification was a difficult process, and five was seen as a 

manageable number for the time available, and sufficient to provide statistically significant data. The 

height, girth and first branch height were measured on each phorophyte individual.

4.4.3 Lichen sampling
Branches, twigs and leaves support their own distinctive communities of lichens, 

usually in the earlier stages of succession (Barkman, 1958; Hale, 1983). The phorophyte trunk, on the 

other hand, generally possesses the oldest lichen community, reflecting the conditions of the 

surrounding environment (Wolseley, pers. comm., 19/5/95). The trunk is also the most accessible part 

o f the phorophyte, and so it was decided to limit sampling just to the trunk. The trunk of each 

phorophyte was divided into 4 sections, every half a metre up to 2 m, and within each o f these 

quarters, samples of all the different lichen species were collected. A limit o f 2 m was chosen because 

average flame heights range from 1 to 2 m (see Figure 3.9b), and so the effects of fire on lichens would 

be most apparent at up to 2 m. Also, in order to make the LFH Key easy to use, it was important to
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Figure 4.4 The five selected phorophyte species (not to scale): a) Sclerolobium paniculatum ; b) 

Blepharocalyx salicifolius; c) Caryocar brasiliense; d) Guapira noxia\ e) Vellozia squamata. 

(Photos by the author).
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find indicator lichen species on accessible parts o f the trunks i.e. below 2 m. By sampling at four 

different heights on the trunks, it could be ascertained whether certain lichen species had preferences for 

particular locations on the phorophyte trunk.

4.4.4 Lichen collection
Samples o f lichen species were collected using a strong pen-knife, and were then 

wrapped in tissue paper, labelled using a pseudo-name generated by field identification and placed in 

paper envelopes. Once back in the laboratory, the lichens were laid out to dry in the sun for a day, and 

then placed back in their envelopes for further identification.

4.4.5 Lichen identification
This involved the use o f keys, which, by following a series o f steps, allowed the 

identification o f lichens to either generic or species level. Methods employed for usage of the keys 

included recognising morphological features o f the lichens, both external and internal, and the use of 

chemicals for colour tests, which serve as indicators of certain groups of lichen substances.

4.4.6 The nse of keys
Apart from a very general, out-dated key based on the lichens of north-eastern Brazil 

(Xavier Filho, 1976), there are no major identification guides for Brazilian lichens. Marcelli (1991, 

1992) has contributed greatly to lichenological work in Brazil, but taking into account the vast territory 

of the country and its diversity o f ecosystems, there is plenty of work remaining to be done. After 

reviewing a number o f keys, the following four were chosen for this study:

1) Marcelli, M.P. (1993). Pequenas Parmelia S.L. (Liquens: Ascomycotina) ciliadas dos cerrados 

brasileiros. Acta bot. bras., 7(2): 25-70;

2) Sipman, H.J.M. (1986). Key to the genera occurring in the Guianas. Unpublished manuscript;

3) Swinscow, T.D.V. and Krog, H. (1988). Macrolichens o f  East Africa. British Museum (Natural 

History). London;

4) Wolseley, P.A. and Aguirre-Hudson, B. (1993a). Key to lichen genera in Thailand with special 

reference to epiphytic communities. Part I Macrolichens. Unpublished, draft copy.

The majority of the identifications were carried out using the key by Wolseley and 

Aguirre-Hudson. Their work has been concentrated in northern Thailand (Wolseley and Aguirre- 

Hudson, 1991), and this key has been constructed with students in mind, as an introduction to 

lichenology. In view of this, it is a very simple and easily usable key, and concentrates on 

identification through lichen morphology, rather than on the complicated procedures o f chemical 

examination. Here, only fruticose, foliose and squamulose lichens are dealt with, all keyed to the level 

o f the genera. Though Thailand is geographically distant from Brazil, at a generic level, their lichen

101



floras are similar (Sipman and Harris, 1989), and since this Thai key included lichens from dry 

dipterocarp (savanna) forests to montane forest types, it was seen as the most suitable key available.

The Swinscow and Krog (1988) key is a comprehensive account o f the fruticose, 

foliose and squamulose lichens o f East Africa, illustrated with photographs and diagrams to aid 

identification. The main key is to generic level, but under each genera, further classification to species 

level is given, with detailed explanations describing characteristic features o f each species/genera, 

including their preferred substrate, altitude and geographical location. This key was used in conjunction 

with the Thai key, for checking identifications and consulting the descriptions (though for some genera, 

especially Parmelia, it is out-dated: see Elix, 1993). It was considerably more difficult to use, as the 

key referred to complicated, and very detailed lichen morphology, which at the species level became 

quite incomprehensible. As in the Thai key, this text dealt with a region quite different to central 

Brazil, but it was a pioneering work on tropical lichens, and with many genera common to both areas, 

on the whole, it was an invaluable support aid for identification.

The only key used to identify the crustose lichens was the Sipman (1986) key for the 

Guianas. This did include foliose and fruticose lichens, but their classification was very simple and 

excluded a number of recent delimitations of certain genera, such as Parmelia mentioned above. But for 

the crustose taxa, it provided identification to the generic level, without too much difficulty. More 

emphasis was placed on the internal morphology o f the reproductive structures, in particular identifying 

the spore type (see Section 4.4.7b), a task that grows easier with practice.

Marcelli's (1993) work with a number o f foliose genera of the Parmeliaceae provides

the sole lichen key to date for the cerrado. It uses simple colour tests, and the recognition o f external 

morphological structures, which makes it very easy to use. Unfortunately, it deals with only seven 

genera, although these are delimited to 30 species in total, each fully described, with photographs. 

Using this key, identifications of those seven genera were made to species level.

The majority of lichens were identified only to genera, but where it seemed possible, 

some were named as species. Samples of all the different lichens collected were later sent to a specialist 

in Sao Paulo, Dr. Marcello P. Marcelli at the Instituto de Botanica, who verified the identifications, 

and named many to species.

4.4.7 Morphological examination of the specimens
To be able to use the keys, it was necessary to have a general knowledge o f the

tenninology involved, and to be familiar with the range o f structures that are used as a basis for the

description of lichens. Lichen specimens were sorted in the field and in the laboratory, using the 

following characteristics (in order of undertaking):

A) in the field:

i) the type of thallus present;

ii) general features of the thallus, including:
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a) thallus colour, both on the upper and lower sides;

b) the colour of the medulla;

c) which type of photobiont it contains;

d) the size and branching pattern of the lobes;

e) the characteristics of the upper surface;

f) examination of the lower surface for attachment organs;

iii) presence of reproductive structures on the thallus, vegetative and sexual;

B) in the laboratory:

iv) morphology of the internal organs of the thallus, and the reproductive apparatus.

Lichen characteristics were identified using a hand lens (xlO) in the field, and a dissecting or compound 

microscope in the laboratory. These lichen features will now be described in more detail.

a) Lichen characteristics identified in the field

i) Thallus form

Lichens were primarily separated into groups according to their thallus form (Figure

4.5):

1) Crustose - closely appressed to the substrate, and attached to it by the hyphae of the medulla. 

Crustose lichens may grow as a continuous crust, or as rounded or angular areaolae;

2) Squamulose - consisting of numerous small squamules or peltate discs, often on a hypothallus. 

May appear crust-like or foliose-like;

3) Foliose - leaf-like, with a distinct upper and lower cortex, attached to the substrate by rhizines, 

hapters or a central holdfast;

4) Fruticose - erect, shrubby, or pendulous, may be attached to substrate by a holdfast, or be 

unattached. They may be terete or flattened, hollow or solid and with or without a central cord-like 

axis.

ii) Lichen colour

Lichen colour was recorded for both the upper and lower surface, since in general they 

are different in colour on each side. The presence or absence of a differentiated border (lighter or darker 

in colour) on the lower surface o f the lichen was also noted. The colour of the medulla is also used in 

identification, and may be white or coloured. It was examined by scraping away the cortex with a 

scalpel or razor.

iii) Lichen photobionts

Lichen photobionts were identified by observing colour changes of the thallus when 

scratched. Thalli that turned yellow-orange when dry contained Trentepohlia. If  there was no colour
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Figure 4.5 Thallus form: a) crustose, Haematomma puniceum  (xlO); b) squamulose, Cladonia 

ochroclora (x5); c) foliose, Parmotrema mellissii (x5); and d) fruticose, Usnea sp. ‘A ’ (x5). (Photos 

by the author).
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Figure 4.6 Cilia: a) simple, Parmotrema mellissii (x30); and b) bulbate, B ulbothrix  coronata 

(x30). (Photos by the author).

Figure 4.7 A hypothallus, Buellia myriocarpa Figure 4.9 A holdfast, Usnea sp. ‘A’ (xl5).

(x5). (Photo by the author). (Photo by the author).
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change while the thallus was dry, water was applied to the scratched area. If  the thallus turned blue-grey 

or brown when wet, it contained cyanobacteria, and if  it turned bright green it contained Trebouxia 

algae (Wolseley and Aguirre-Hudson, 1993a).

iv) Thalline features

The upper surface o f the thallus was observed for many different characteristics. It can 

be smooth, wrinkled, cracked or reticulate, and also shiny, pruinose (i.e. frosty looking) or hairy. Due 

to the irregular distribution o f algal cells, a spotted or reticulate pattern of maculae (i.e. paler areas) can 

occur (Wolseley and Aguirre-Hudson, 1993b). The lobes in foliose and fruticose thalli can be arranged 

dichotomously or sympodially. The lower surface of the thallus can be corticate or ecorticate.

Cilia are hair-like thalline appendages, decolourised or carbonised strands of hyphae 

that originate along the lobe margins of the thallus, or on the exciples of apothecia. They can be short, 

long, bulbate or simple (Figure 4.6).

The hypothallus is a thick, felty layer o f hyphae, white to darkly coloured, on the 

substrate, which precedes the development of the lichen thallus. It can be seen as a dark-coloured rim 

surrounding crustose thalli (Figure 4.7), or as a woolly or spongy structure surrounding squamulose 

and some foliose thalli. In some genera, a related tomentum occurs.

Some large foliose lichens produce pores on their surface. Cyphellae are structured 

pores through the lower cortex, with a raised rim around a cup-like structure, and a distinct membrane 

bounding the medulla. Pseudocyphellae are simple, undifferentiated perforations in the upper or lower 

cortex, or on the margins of lobes.

Cephalodia are bodies o f cyanobacteria and fungal hyphae, seen as outgrowths 

growing on the surface or within the thallus of a lichen with a green photobiont.

v) Attachment organs

Rhizines are compacted strands o f colourless or blackened hyphae that originate 

largely from the lower cortex and anchor the thallus to the substrate. They can be simple i.e. 

unbranched, and where branching does occur, they can take two forms, squarrose or dichotomous 

(Figure 4.8). They can be distributed uniformly over the lower cortex, or in clumps.

A hapter is a sucker-like attachment organ, present on the underside of the thallus, 

and distributed like rhizines. A holdfast is an expanded, sometimes disc-like, attachment o f the thallus 

to the substrate (Figure 4.9).

6) Vegetative reproductive structures

Soredia are separable non-corticated clumps of a few algal cells loosely enveloped by 

fungal hyphae (Figure 4.10a). Sorelia, delimited masses of erupted soredia, can be classified as
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Figure 4.8 Rhizines (not to scale): a) simple; b) dichotomous branched; and c) squarrose 

branching.

laminal, terminal, and marginal on the upper surface of the thallus (Figure 4.11). They may vary in 

texture from a fine powder to a granular appearance, but are usually paler in colour than the thallus.

Isidia are protuberances of the upper cortex in which algal and fungal tissues are more or less 

continuously incorporated. They can be finger-like, globose or flattened, branched, coralloid or simple 

in appearance, and are often fragile and easily broken off (Figure 4.10b). They may be produced 

laminally or marginally over the upper side of the thallus, and appear either the same colour or darker 

than the thalline surface.

Dactyls or pustules are irregularly corticated extensions of the thallus. They appear 

blister-like and eroded, and may bear isidia or soredia. Phyllidia are small dorsiventral structures, 

constricted at the base, appearing on the margin or lamina of the lichen thallus. They resemble, in 

miniature, the parent thallus.

Figure 4.11 Positions of vegetative structures on thallus (not to scale): a) laminal; b) terminal; 

and c) marginal.
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Figure 4.10 Vegetative structures: a) soredia, Hypotrachyna sp ‘C’ (x30); b) isidia, Parmotrema 

tinctorum  (x40). (Photos by the author).
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7) Sexual reproductive structures

The most frequently occurring group of lichenised fungi are the Ascomycetes, which 

produce three kinds of characteristic fruiting bodies:

1) rounded apothecium - a disc-like structure that occurs on the margin or laminal surface of the thallus, 

and can be immersed, adnate, or stalked (podetia), and with or without a central perforation. In 

lecideine apothecia the outer edge of the apothecium forms a margin known as the proper exciple, 

similar in colour to the disc, whereas lecanorine apothecia have a thalline rim (containing algae) visible 

around the apothecia, which is the same colour as the thallus and different to the disc (Figure 4.12a);

2) lirella apothecium - where the apothecia have become elongated and contorted, and worm-like in 

appearance. They can occur evenly over the thallus surface, or in clumps (Figure 4.12b);

3) perithecium - are globular or flask-shaped bodies, with a pore-like opening called an ostiole, which 

itself can be orientated apically or laterally, and free or fused with other ostioles. Perithecia can be 

found immersed or sessile on the thallus surface, and sometimes occur in compound groups (Figure 

4.12c).

Pycnidia are sexual reproductive structures which produce microconidia by budding 

of simple or branched hyphae within the pycnidium. They strongly resemble perithecia, and may be 

immersed, sessile, or peniciilate on the thallus.

b) Lichen characteristics identified in the laboratory

i) Preparation o f microscope slides

In taking a fragment of an apothecium or the thallus for a squash preparation, the area 

was first moistened for a few minutes to soften the structures. A cut was then made vertically down 

with a razor blade, through the structure a little in from the edge. This section was discarded, and from 

the remaining material several thin slices were obtained. The material was then placed in a drop of 

water in the middle of the slide, and the coverslip placed on it. The slide was then examined for 

fruiting structures, or thallus organisation. In some cases, if there was difficulty in observing these 

structures, especially the spores, with gently pressure on the coverslip, the material was squashed, the 

surplus fluid being moped away, and followed by re-examination o f the slide.

Sometimes, if  the slides were particularly good, for example, for showing the spore type 

present, they were made semipermanent (Swinscow and Krog, 1988). This was done by spreading a 

large drop of lactophenol cotton blue along one edge of the coverslip and withdrawing the water at the 

opposite end by means of absorbent paper. In this way, one reagent is suppose to replace the other 

without disturbance of the sections, though some clarity o f the specimen is lost. After cleaning the 

glass, the margins o f the coverslip were sealed with two coats of ordinary cosmetic nail varnish. 

Treated in this way, the slide is suppose to remain in a fit state to be examined for some months, 

though it was found that since the author did not have much experience with these techniques, many of
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Figure 4.12 Sexual reproductive fruiting bodies: a) rounded apothecia, C a n o p a rm e lia  

caroliniana (x20); b) lirellae, Graphina sp. (x40); and c) perithecia, Porina sp. (x30). (Photos by 

the author).
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the specimens turned too densely blue to be examined within a couple of weeks. In any case, the slides 

were useful for checking against recent identifications.

ii) Thallus structure

Thalli can have stratified layers, where the photobiont is restricted to the upper 

cortex, called heteromerous, or can have the fungal and algal partners occurring together throughout the 

thallus,which is termed homoiomerous. The first is identified by the upper and lower surfaces being 

different in colour, and the second, by both surfaces being similar in colour.

The cortex of a heteromerous thallus is composed of hyphae which become orientated 

in various directions and compressed so as to give the appearance of cellular organisation. There are two 

different kinds of orientation: irregularly organised paraplectenchyma, where the hyphae grow from 

the inner part of the thallus at right angles to the surface, giving the cortex a cellular appearance in both 

cross and longitudinal section; and periclinally prosoplectenchyma, where the cortical hyphae is seen 

parallel to the surface. In contrast to this, the medulla is always composed o f loosely interwoven 

hyphae with clear gaps.

iii) Internal morphology of sexual reproductive structures

The spores are contained in asci, sac-like bodies within the hym enium . The 

hymenium is made up of filaments called paraphyses, free at the tips, which are usually simple, or 

more rarely branched (Figure 4.13). In some lichens the asci degenerate at maturity leaving the spores 

in a powdery mass termed a mazaedium.

•araphyses
spores asci

hymenium

Figure 4.13 The internal structure of a rounded fruiting body (not to scale).
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Figure 4.14 Spore types (not to scale): a) simple; b) transversely septate; and c) muriform.

There are usually eight spores in each ascus, though this number can vary. They can 

be either colourless or brown. Septation is one o f the most useful features separating spores. They were 

identified according to the following classification (Wolseley and Aguirre-Hudson, 1993a) (Figure 

4.14):

1) Simple - unicellular and nonseptate, often small and thin walled, more rarely very large and thick- 

walled;

2) Transversely septate - elongate and multicellular, with one to as many as 30 to 40 transverse cross 

walls. The spore can have thin septa with a cubic lumina or thick septa with a lumina either rounded 

or diamond shaped;

3) Muriform - multicellular with both transverse and longitudinal walls (a shattered glass appearance), 

often quite large. The spore can have thin septa with a cubic lumina or thick septa with a lumina either 

rounded.

If it was necessary to measure the size of a spore, a micrometer eyepiece, with a 

corresponding table showing what the large and small divisions of the micrometer with each of the 

microscope's objectives were in actual lengths (micrometres), was used.

4.4.8 Colour tests
Lichens contain a great variety o f unique compounds which are associated with 

metabolic pathways, and have been used in chemotaxonomy to define groups of related species 

(Hawksworth, 1976). Simple, readily-obtained chemicals that undergo colour reactions are used.

Colour tests were carried out in the laboratory and only where required, for example, 

in many genera o f Parmeliaceae, and for certain lichens at the species level. The following common 

reagents were used (Swinscow and Krog, 1988):

K ............................ 5% KOH in water;

C .............................  a solution of calcium hypochlorite in water, for example a commercial brand

of household bleach;
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K C ......................... reagent K quickly followed by reagent C;

PD ......................... a saturated solution of paraphenylenediamine in 96% alcohol (ethanol) (must

be freshly prepared every 3-4 hours). There was difficulty in obtaining a 

sufficient quantity of this chemical, so this test was used only rarely.

The tests were carried out under the dissecting microscope, and applied using a thin 

glass rod. A small drop of the reagent was tested either directly onto the surface of the thallus, or on 

the medulla, in which case, the cortex was removed with a scalpel from an area large enough to prevent 

the reagent from coming into contact with the cortex. Positive reactions are usually yellow, orange, 

pink, red or reddish brown (Swinscow and Krog, 1988). The chemicals cause discolouration of the 

thallus, so the test area was cut away from the specimen and discarded once the reaction had been 

noted. See White and James (1985) for more details about these chemicals.

4.4.9 Problems encountered during lichen identification
Lack o f experience was really the only problem when carrying out lichen 

identifications, though with time, and plenty of practice, it became considerably easier. A number of 

lichens, especially among the crustose species were sterile i.e. they lacked fruiting bodies, and in these 

cases, they were given pseudo-names until they could be referred to the specialist. Even the specialist 

could not identify a few of those lichens, so they were labelled by their pseudo-names.

4.5 Stage 3: Population study of the genus Bulbothrix

This section of the research was aimed at analysing in detail how abundances and 

thallus sizes of lichen populations varied between plots with different fire histories, the results of which 

could then be built into the LFH Key. The measurement of thallus size was particularly important 

because the radial growth of lichens meant that thallus size could be used to date fires i.e. determine the 

‘time-since-last-fire’ (see Section 2.2.3). Since this stage of the research involved measuring variables 

about the lichens in the field, it was decided to do this quantitative work on just one genera of lichen.

The genus Bulbothrix was chosen, principally because it appeared to be one of the 

first colonisers after fire, and also because it is a genera easily identified in the field, a factor making an 

in situ study an easier task. It has very characteristic cilia, with nodule, 'bulb-like' features (see Figure 

4.6b), sometimes visible to the naked eye, but quite easily seen under a xlO hand lens.

4.5.1 Sampling design
For this part of the study, it was decided to investigate Bulbothrix individuals only 

on the woody species Guapira noxia, Vellozia squamata and Caryocar brasiliense. These phorophytes 

were observed to have high occurrences of Bulbothrix. Sampling of the Bulbothrix populations took 

place in Plot 1 (74-control), Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control). The sampling 

procedure was the same as in Stage 2 (see Section 4.4.2), and again 5 individuals o f each species were
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used. Standard measurements of phorophyte height, girth, and height o f first branch for each woody 

individual were taken.

For each individual o f Bulbothrix, measurements o f the longest and shortest thallus 

diameter were taken using a ruler. An average o f these two values was then used to calculate the thallus 

area. Only Bulbothrix  lichens with a complete thallus were considered ‘individuals’. Where the 

individuals were too numerous and small, a rough estimate o f the abundance, and size was taken. To 

see if there was a pattern of vertical distribution, the height o f each Bulbothrix individual on the 

phorophyte trunk was also measured, using a measuring tape.

4.6 Additional fieldwork
After the three main studies had been completed, two additional experiments were 

carried out. The first was to test the pH o f bark, to see if  it acts as a limiting factor on lichen growth, 

as has been shown in other studies (Barkman, 1958; Wolseley and Aguirre-Hudson, 1996a), and the 

second was the measurement of fire temperatures on bark surfaces, to see how they could be related to 

lichen abundance and distribution patterns.

4.6.1 pH Tests
pH was tested using bark from five randomly chosen individuals o f the ten 

phorophyte species Blepharocalyx salicifolius, Caryocar brasiliense, Guapira noxia, Sclerolobium  

paniculatum, Vellozia squamata, Miconia ferruginata, Palicourea rigida, Qualea grandiflora, Qualea 

parviflora  and Vochysia thyrsoidea. The first five phorophyte species were found to hold abundant 

lichen populations, whereas the latter five phorophyte species had little or no lichen presence (see 

Section 5.9.1), Samples were collected from phorophytes in Plot 1 (74-control) which all had similar 

trunk diameters and heights. These were taken at breast-height for all individuals, except in V. 

squamata , where bark was collected at a 1 m level because V. squamata were generally found to be 

shorter in height than other phorophyte species.

The method used to measure bark pH had to be carried out in the laboratory. pH 

electrodes that can be used directly in the field have proved to be valid (Farmer et a l ,  1990), and 

would allow a greater number o f measurements, but were not available. The following procedures, 

according to Haertel and Grill (1972) were carried out:

1) The bark samples were dried in an oven at 70°C for at least 24 hours;

2) Debris was removed from the bark surface, and then the samples were ground into powder using an 

electrical grinder;

3) The powder samples were then weighed into portions of 4 g or 2 g (depending on the amount there 

was), and added to either 30 ml or 15 ml of distilled water respectively;
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4) The samples were then placed in a shaker for approximately 2 hours, after which they were tested for 

pH, using a pH electrode meter.

4.6.2 Measurements of fire behaviour
The aspects of cerrado fires that were important for the current work were the fire 

temperatures attained on the bark surfaces at different heights on the phorophyte trunk, and their 

residence times i.e. duration of the temperatures. These aspects o f fire affect the survival and 

recolonisation o f lichens, and though recovery experiments were not undertaken (which would have to 

be carried out over a number of years, and therefore beyond the scope of this work), it was hoped that 

this information about the nature of fire along phorophyte trunks would contribute to the understanding 

of general lichen fire ecology.

a) Fire temperature measurements

Fire temperature and duration of temperature have been measured in a number of 

ways. These include using a heavy duty, non-contact, infra-red digital pyrometer (Kanjanavanit, 1992), 

heat-sensitive paints (Hobbs et at., 1984; Kanjanavanit, 1992; Stott, 1986), and thermocouples 

(Miranda, 1988). For this study, both a pyrometer and thermocouples were available. Pyrometer 

readings have to be taken manually, and as the instrument response is too fast to follow by hand with 

accuracy, measurements have to be taken at time intervals, such as every 5 seconds (Kanjanavanit, 

1992). In the field, it was impossible to get within 2 to 3 metres o f the flames, the heat radiating from 

them being so strong. These factors, together with the requirement of taking measurements at different 

heights on the phorophytes simultaneously, rendered the pyrometer an unsatisfactory tool for this 

experiment.

Thermocouples were used in this experiment partly due to their availability and also 

because a number of fire temperature measurements could be taken simultaneously (Daubenmire, 1968). 

They can be prone to large errors if not used with caution, and need to be connected to recording 

equipment that has to be installed and protected from the fire (Vines, 1981; Hobbs et ah, 1984). Since 

they have been used extensively by researchers of the Ecology Department, University of Brasilia, for 

cerrado fire experiments (Miranda and Miranda, 1993; Miranda et ah, 1993), it was hoped that through 

their help and expertise with the thermocouples, these problems could be overcome.

Heat-sensitive paints may have been a better choice. The benefits of this method 

would have been the ease of installation and the greater number o f phorophytes and heights which 

could have been measured, and statistically tested. However, the paints do have a problem in that, for 

interpretation, they need to be recalibrated, since the manufacturer's calibration is for industrial use, and 

this, in turn, can effect their working ability, with some colour changes not occurring very well 

(Kanjanavanit, 1992). Also questionable is the accuracy of the fire temperature measurements, since
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more than usual, range rather than point temperatures are attained. Still, for the kind o f information 

wanted for this study, range temperatures would have sufficed.

b) The set-up o f  the equipment

The temperature sensors were made o f bare thermocouple wires (type k: chromel- 

alumel, 30 swg) placed within small ceramic tubes, and wrapped in aluminium foil to reduce heat 

absorption and conduction along the wires (Miranda et a l ,  1993). The thermocouple junctions were 

arc-welded to withstand flame temperatures. The sensors were placed at 0.5, 1 and 2 m above the 

ground, fixed against the phorophyte bark by aluminium wire, with about 2 cm of bare wire exposed to 

the air.

The temperature readings were obtained from a thermocouple amplifier (AD595AD) 

buried in a shallow trench near the sensors (Miranda et ah, 1993). The amplified signals o f the 

thermocouples were conducted away from the burning area through buried cables to a Campbell 2 IX 

data logger, 2 m away which selected and recorded the temperatures on each o f its 8 channels with 97% 

precision and 1°C resolution.

Four phorophytes were used: Caryocar brasiliense; Guapira noxia; Sclerolobium  

paniculatum; and Vellozia squamata. These phorophytes were chosen because they were the species 

used in the lichen survey, and also because they were located conveniently close enough to each other 

to be connected to the datalogger by the limited amount o f wire present. S. paniculatum  (channels 1,2 

and 3) and G. noxia. (channels 4,5 and 6) were connected to the first datalogger (ID ) and V. squamata 

(channels 1,2 and 3) and C.brasiliense (channels 4,5 and 6) were connected to the second datalogger 

(2D). All the phorophytes were approximately 2 m into Plot 4, the IBGE middle season biennial 

burning plot.

The thermocouples were put in two days before the bum, and programmed to take 

readings every 10 minutes. On the day of the bum, 10 minutes before the setting o f fire, the datalogger 

readings were set to record every 1 second once a temperature of 50°C was reached. 20 minutes after the 

fire had passed, the datalogger was set back to record every 10 minutes, and continued reading for the 

following four complete days.

4.7 Conclusion

The field methods employed in this study were largely chosen in respect to the time 

available and the area of the study plots. Research took place in three stages. The first stage involved a 

general survey of both the phorophyte and lichen communities in plots with different fire histories. The 

parameters measured here were used to describe the lichen and phorophyte habitats, and to compare the 

effects o f different fire histories on these communities. In the second stage of the research, detailed 

sampling took place on five woody species to determine the differences in lichen composition in plots 

with varying fire histories. The third part o f the research dealt specifically with one genus o f lichen,
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Bulbothrix. Differences in the number of individuals and their sizes were recorded in plots with 

different fire histories. The results from these three stages of the research were then used to develop the 

Lichen Fire History (LFH) Key.

Additional work included: pH tests on phorophyte bark to see whether this is a 

limiting factor on lichen growth; and the measurement of fire temperatures at different heights on 

phorophytes to examine their relationship to lichen abundance and distribution. The following three 

chapters present the analyses and the results of the data collected.
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Chapter 5 
Results I: Fire history and its relation to lichen 

abundance, distribution and recolonisation

5.1 Introduction
The aims of this chapter are:

1) to investigate whether fire history affects the abundance, distribution and recolonisation of lichen 

communities;

2) to investigate whether changes in other small-scale determinants between areas with different fire 

histories influence lichen abundance, distribution and recolonisation;

3) to identify a number o f phorophyte species for investigating changes in the lichen species 

composition between areas with different fire histories (Stage 2 of data collection - see Section 4.4).

I f  fire history does affect the lichen population, the specific changes in lichen 

abundance, distribution and recolonisation can then be incorporated into the Lichen Fire History (LFH) 

Key. However, it is necessary to know which other factors influence lichen populations in an area 

protected from fire, and whether these determinants change in their effect, and to what degree, once fire 

is introduced. The influence o f these factors on lichen populations may affect the LFH Key. Since Plot 

1 (74-control) has been protected from fire for over 20 years, it is considered the 'control' plot, and is 

compared to the plots subjected to fire i.e. Plots 2 to 10.

To compare lichen abundance between data such as height classes, results are 

presented as an index of Mean Lichen Abundance (MLA). This is the mean frequency distribution of 

the lichen abundance categories 0 to 4 constructed for this study (see Section 4.3.3e). Where data is 

presented as mean values, the standard error (S.E.) is used to show the confidence intervals (at 95%). 

Where the sample size is small i.e. less than 30, the correction factor t is used in the calculation, again 

at a 95% confidence. Both are represented by ’mean + S.E.'. Data analysis o f less than ten samples is 

deemed to be statistically insignificant, and so where the total number of samples are lower than this 

limit, a sign of non-significance (N.S.) is shown.

For the categorical data, tests for significance were calculated using the Chi-squared 

test, where the expected values were the Plot 1 (74-control) frequencies. The degrees o f freedom are 

indicated as a subscript on the Chi-squared sign, and any non-significant results are represented by 

'N.S.'. The level o f significance used in each calculation is shown as P<0.01 for 99% confidence, and 

P<0.05, for 95% confidence.
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5.2 Fire history and lichen abundance, distribution and recolonisation

5.2.1 Lichen abundance
Figure 5.1 shows the percentage frequency of phorophytes within each lichen 

abundance category in the ten plots. In Plot 1 (74-control), lichens are absent on only a few 

phorophytes, with most phorophytes having 26 to 50% or over 50% lichen cover. However, except for 

Plot 3 (74-92: Het, V, E) (x24 =1.58 (N.S.)), all the other plots have significantly different distributions 

of phorophyte frequencies compared to Plot 1 (Plot 2 x24 =261, P<0.01; Plot 4 x24 =11.7, P<0.05; Plot 5 

x 24 =34.4, P<0.01; Plot 6 x24 =70.8, P<0.01; Plot 7 x24 =553, P<0.01; Plot 8 x24 =794, P<0.01; Plot 9 x24 

=3192, P<0.01; Plot 10 x24 =19.4, P<0.01).

On the IBGE side, within Plot 2 (74-91: Horn, H, M), the majority o f the 

phorophytes have less than 1% lichen cover, with only a small proportion of phorophytes having no 

lichens or over 50% lichen cover. Plot 3 (74-92: Het, V, E) has an identical distribution of phorophyte 

percentages as Plot 1 (74-control), with most phorophytes having 26 to 50% or over 50% lichen cover. 

On the other hand, Plot 4 (74-92: Het, V, M) and Plot 5 (74-92: Het, V, L) show a pattern in lichen 

abundance slightly different from Plot 1, with major differences being in the ‘26 to 50%’ category, 

where lower values are apparent.

The JBB plots present a different picture. In Plot 6 (86-control), although a low 

proportion of phorophytes have no lichens, as in Plot 1 (74-control), many more phorophytes have less 

than 1% and 1 to 26% lichen cover, and fewer have 26 to 50% or over 50% lichen cover. Plot 7 (86-91: 

Horn, H, M) and Plot 8 (86-91,93: Horn, H, E) have few phorophytes in all the lichen abundance
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Figure 5.1 The percentage frequency of phorophytes within each lichen abundance category in 

the ten plots.
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Plot number

Percentage similarity

] <30% 30-55% 56-80% ^  >80%

Figure 5.2 A table of Czekanowski similarity coefficients for the ten plots based on the lichen 

abundance categories.

categories except in the ‘< 1%’ cover category, where values are considerably greater than in Plot 1. 

Plot 9 (86-91,93: Horn, H, M) is different from all the other plots, in that it has a very high proportion 

of phorophytes with no lichens, and few phorophytes with over 25% lichen cover. Compared to Plot 1, 

Plot 10 (86-91,93: Het, V, L) has a greater proportion of phorophytes with less than 1% lichen cover 

and fewer phorophytes with 26 to 50% lichen cover, similar to the distribution of frequencies found in 

Plot 5 (74-92: Het, V, L).

Figure 5.2 is a table of Czekanowski similarity coefficients for the ten plots based on 

the lichen abundance categories. It shows two groups of most similar plots. The largest group, 

composed of Plot 1 (74-control), Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M), Plot 5 (74-92: 

Het, V, L) and Plot 10 (86-91,93: Het, V, L), parallels the results found from the phorophyte data 

analysis, where the DCA ordination, based on the frequency of each phorophyte species in each plot, 

placed Plots 1, 3, 4, 5 and 10 close together (see Section 3.8.3b). The second group, comprised of 

Plot 2 (74-91: Horn, H, M), Plot 7 (86-91: Horn, H, M) and Plot 8 (86-91,93: Horn, H, E), show over
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80% similarity. Plot 6 (86-control) and Plot 9 (86-91,93: Horn, H, M) are not within these groups: 

Plot 6 has a high degree of similarity (56 to 80%) with all the plots except Plot 9; and Plot 9 has a 

low degree of similarity with all the plots except Plots 7 and 8 .

5.2.2 Lichen distribution
Figure 5.3 show s the percentage frequency o f  phorophytes w ith in  each lichen  

distribution category in the ten plots. In Plot 1 (74-control), the largest proportion o f  phorophytes have 

a hom ogeneous lichen distribution, fo llow ed  by a low er proportion with a partially restricted lichen  

distribution, and the low est proportion with a restricted lichen distribution. A ll the other plots have 

significantly different patterns o f  phorophyte frequencies to Plot 1 (Plot 2 x22 =21.8, P<0.01; Plot 3 x22 

=26.3, P<0.01; Plot 4 x22 =12.6, P<0.01; Plot 5 x22 =30.4, P<0.01; Plot 6 x22 =11.1, P<0.05; Plot 7 x22 =33.4, 

P<0.01; Plot 8 x 22 =31.3, P<0.01; Plot 9 x 22 =52.2, PO.Ol; Plot 10 x 22 =41.5, P<0.01).

Plot 6 (86-control) has a higher frequency of phorophytes with a homogeneous lichen 

distribution, and a lower frequency of phorophytes with a partially restricted lichen distribution 

compared to Plot 1 (74-control). However, in contrast to the other plots, Plot 6 shows the most similar 

pattern of lichen distribution to Plot 1. Plot 2 (74-91: Horn, H, M), Plot 3 (74-92: Het, V, E), Plot 4

1 2 3 4 5 6 7 8 9  10

Plot number

□  Homogeneous lichen distribution |  Partially restricted lichen distribution 

EJ Restricted lichen distribution

Figure 5.3 The percentage frequency of phorophytes within each lichen distribution category in 

the ten plots.
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(74-92: Het, V, M), Plot 5 (74-92: Het, V, L) and Plot 10 (86-91,93: Het, V, L) all have much higher 

frequencies of phorophytes with a homogeneous lichen distribution and lower frequencies of 

phorophytes with a partially restricted and restricted lichen distribution when compared to Plot 1. Plot 

7 (86-91: Horn, H, M), Plot 8 (86-91,93: Horn, H, E) and Plot 9 (86-91,93: Horn, H, M) have high 

frequencies of phorophytes with a homogeneous lichen distribution, very low frequencies of 

phorophytes with a partially restricted lichen distribution, but the highest frequencies of phorophytes 

with a restricted lichen distribution.

Figures 5.4a and 5.4b show the percentage frequency of phorophytes with lichens on 

specific parts o f the phorophyte within the ‘partially restricted lichen distribution’ category, and the 

‘restricted lichen distribution’ category respectively, in the ten plots. Throughout all the plots there are 

no occurrences of lichens partially restricted, or restricted to the branches and twigs.

First looking at the different categories among the phorophytes with a partially 

restricted lichen distribution (Figure 5.4a), Plot 1 (74-control) has the highest proportion of 

phorophytes with lichens from the base to 0.9 m and between 1 to 2 m. Plot 6 (86-control) has a 

pattern of distribution similar to Plot 1, but with a higher proportion of phorophytes with lichens

4 0 -----------------------------------------------------------------------------------------------

Plot number

["I Base H  Base to 0.9 m |  1 to 2 m

YA Higher than 2 m ^  On branches and twigs

Figure 5.4a The percentage frequency of phorophytes with lichens on specific parts of the 

phorophyte within the ‘partially restricted lichen distribution’ category in the ten plots.
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above 2 m. As in Plot 1, Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M) and Plot 5 (74-92: Het, 

V, E) have the highest frequencies of phorophytes with lichens at 1 to 2 m, although there are few 

phorophytes with lichens concentrated below 1 m. Plot 2 (74-91: Horn, H, M), Plot 7 (86-91: Horn,

H, M) and Plot 8 (86-91,93: Horn, H, E) have the highest value in the ‘higher than 2 m ’ category, with 

few phorophytes having lichens concentrated below 2 m. Although most phorophytes in Plot 9 (86- 

91,93: Horn, H, M) have lichens above 2 m, and between 1 to 2 m in Plot 10 (86-91,93: Het, V, L), 

the values are too low to be significant.

In the group of phorophytes with a restricted lichen distribution (Figure 5.4b), Plot 1 

(74-control) has the highest proportion of phorophytes with lichens from the base to 0.9 m, with all the 

other plots having no lichens between this height range. Phorophytes with a restricted lichen 

distribution were not found in Plot 3 (74-92: Het, V, E), Plot 5 (74-92: Het, V, L) and Plot 6 (86- 

control). However, Plot 2 (74-91: Horn, H, M), Plot 4 (74-92: Het, V, M), Plot 10 (86-91,93: Het, V, 

L), and especially Plot 7 (86-91: Horn, H, M), Plot 8 (86-91,93: Horn, H, E) and Plot 9 (86-91,93: 

Horn, H, M) show considerably higher values in the ‘higher than 2 m1 category when compared to Plot

I .

15 -i------------------------------------------------------------------------------------------------
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1 2 3 4 5 6 7 8 9  10
Plot number

H  Base H  Base to 0.9 m 1 to 2 m

□  Higher than 2 m ^  On branches and twigs

Figure 5.4b The percentage frequency of phorophytes with lichens on specific parts of the 

phorophyte within the ‘restricted lichen distribution’ category in the ten plots.
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5.2.3 Lichen recolonisation
Figure 5.5 shows the percentage frequency of phorophytes with lichens present on 

scorch i.e. lichen recolonisation, in the ten plots. Since Plot 1 (74-control) has been protected from fire 

for over 20 years, scorch was absent (see Section 3.8.3a). Statistical analysis indicates that there is a 

significant difference in lichen recolonisation between the plots (x2% = 353.3, P<0.01). Plot 2 (74-91:

Horn, H, M) has just over 50% of phorophytes with lichen recolonisation. Plot 3 (74-92: Het, V, E) 

and Plot 4 (74-92: Het, V, M) both have high frequencies of phorophytes with lichen recolonisation, 

71% and 68% respectively, while Plot 5 (74-92: Het, V, L) and Plot 10 (86-91,93: Het, V, L) have 

much lower values: 46% and 39% respectively. Plot 6 (86-control) has the highest proportion of 

phorophytes with lichen recolonisation (86%) of all the plots. Few phorophytes in Plot 7 (86-91: Horn, 

H, M) and Plot 8 (86-91,93: Horn, H, E) have lichen recolonisation (20 and 17% respectively), while 

Plot 9 (86-91,93: Horn, H, M) has the lowest proportion of lichen recolonisation of all the plots, only 

1 %.

5.2.4 Summary
These results show that there is variation in lichen abundance between plots with 

different fire histories. Most phorophytes in Plot 1 (74-control) have 26 to 50% or over 50% lichen 

cover. In comparison, all the other plots have varying degrees of differentiation in lichen abundance to 

Plot 1, with Plot 3 (74-92: Het, V, E) being the most identical, followed by Plot 4 (74-92: Het, V,
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Figure 5.5 The percentage frequency of phorophytes with lichen recolonisation in the ten plots.
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M), Plot 5 (74-92: Het, V, L) and Plot 10 (86-91,93: Het, V, L). Although most phorophytes in Plot 

2 (74-91: Horn, H, M) have less than 1% lichen cover, there are still some phorophytes with between 1 

to 50% lichen cover. Many phorophytes in Plot 6 (86-control) also have a low lichen cover, and in this 

plot there are few phorophytes with high lichen abundances. Most phorophytes in Plot 7 (86-91: Horn, 

H, M) and Plot 8 (86-91,93: Horn, H, E) have a low lichen cover, and in the case o f Plot 9 (86-91,93: 

Horn, H, M), few phorophytes have any lichens at all.

Lichen distribution was also found to vary between plots with different fire histories. 

In Plot 1 (74-control) most phorophytes have a homogeneous lichen distribution, or are partially 

restricted from the base to 2 m. This is also true for Plot 6 (86-control), although more phorophytes in 

this plot have lichens above 2 m compared to Plot 1. Among the phorophytes showing a significant 

partially restricted lichen distribution, Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M), Plot 5 

(74-92: Het, V, L) and Plot 10 (86-91,93: Het, V, L) have much higher frequencies of phorophytes 

with lichens between 1 to 2 m, and in Plot 2 (74-91: Horn, H, M), above 2 m. In Plot 7 (86-91: Horn, 

H, M), Plot 8 (86-91,93: Horn, H, E) and Plot 9 (86-91,93: Horn, H, M), where there is the highest 

proportion o f phorophytes with a restricted lichen distribution, notably more phorophytes have lichens 

above 2 m.

The results showed that lichen recolonisation varied between plots with different fire 

histories. Plot 6 (86-control) has the highest degree of lichen recolonisation, followed by Plot 3 (74-92: 

Het, V, E) and Plot 4 (74-92: Het, V, M). Plot 2 (74-91: Horn, H, M), Plot 5 (74-92: Het, V, L) and 

Plot 10 (86-91,93: Het, V, L) have lower values, and lichen recolonisation decreases further in Plot 7 

(86-91: Horn, H, M) and Plot 8 (86-91,93: Horn, H, E), with Plot 9 (86-91,93: Horn, H, M) having 

the lowest value.

These results, indicating that lichen abundance, distribution and recolonisation are 

affected by fire history, are highly relevant to the LFH Key. They show that variations in these lichen 

variables may be used to help determine the fire history of an area.

5.3 Phorophyte height and lichen abundance, distribution and recolonisation in 
plots with varying fire histories

5.3.1 Phorophyte height and lichen abundance
Figures 5.6 and 5.7 show the Mean Lichen Abundance (MLA) on phorophytes within 

different height classes for an area protected from fire and in areas subjected to fire, respectively. 

Results for phorophytes within the '< 1 m' classes are insignificant since the minimum limit o f ten 

individuals was not passed in this group.

There is no significant difference in MLA on phorophytes between different height 

classes in an area protected from fire (mean ± S.E.=NS). Although there is a significant difference in 

MLA on phorophytes between different height classes in areas subjected to fire (mean ± S.E.), the high
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Figure 5.6 The Mean Lichen Abundance on phorophytes within different height classes (m) in 

an area protected from fire. The Coefficient of Variation (CV) for each class is shown in 

brackets, and the vertical bars represent the standard error of the mean.

relative variability in MLA values within the height classes (see CV values) limits the significance of 

the results.

5.3.2 Phorophyte height and lichen distribution

Table 5.1 shows the percentage frequency of phorophytes in each lichen distribution 

category within different height classes in an area protected from fire and in areas subjected to fire, 

respectively. Results for phorophytes within the '< 1 m1 height class are insignificant since the 

minimum limit of ten individuals was not passed in this group.

In both an area protected from fire, and areas subjected to fire, the height class '1 - 2.9 

m' shows a significantly higher proportion of phorophytes with a homogeneous lichen distribution and 

a lower proportion of phorophytes with a partially restricted lichen distribution when compared to the 

'3 - 4.9 m' and '> 5 m' height classes. There is an insignificant difference in the frequency of 

phorophytes between height classes within the ‘restricted lichen distribution’ category in both the fire 

protected area and fire subjected areas.
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areas subjected to fire. The Coefficient of Variation (CV) for each class is shown in brackets, and 

the vertical bars represent the standard error of the mean.

Table 5.1 The percentage frequency of phorophytes in each lichen distribution category within 

different height classes (m) in an area protected from fire and in areas subjected to fire, where 0 

= homogeneous lichen distribution, 1 = partially restricted lichen distribution and 2 = restricted 

lichen distribution.

A rea p ro tec ted  from  
fire

A reas subjected  to fire

H eight classes
L ichen  distribu tion  

ca teg o ry
L ichen  d istribu tion  

ca teg o ry
(m ) 0 1 2 0 1 2

< 1 = NS 0 0 100 100 0 0
1 -2 .9 71 23 6 92 6 2
3 -4 .9 58 40 2 83 13 4

> 5 53 44 3 72 22 6
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Figure 5.8 The mean percentage frequency of phorophytes with lichen recolonisation within 

different height classes (m) in areas subjected to fire. The Coefficient of Variation (CV) for each 

class is shown in brackets, and the vertical bars represent the standard error of the mean.

5.3.3 Phorophyte height and lichen recolonisation
Figure 5.8 shows the mean percentage frequency o f phorophytes with lichens on 

scorch i.e. lichen recolonisation, within different height classes in areas subjected to fire. Class '1 - 2.9 

m' has a significantly higher mean frequency of phorophytes with lichen recolonisation than the other 

classes, and class '3 - 4.9 m' has a significantly higher value than class '> 5 m' (mean + S.E.). The 

relative variability is fairly low in all classes, increasing from 11% in class '1 - 2.9 m' to 24% in class 

’> 5 m'.

5.3.4 Summary
These results indicate that there is no significant difference in lichen abundance and 

distribution between different phorophyte height classes, both within an area protected from fire and in 

areas subjected to fire. However, the results significantly indicate that most lichen recolonisation is 

occurring at a phorophyte height class o f '1 - 2.9 m \ This suggests that phorophyte height may be a 

determinant of lichen recolonisation after fire.
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5.4 Phorophyte girth and lichen abundance, distribution and recolonisation in 
plots with varying fire histories

5.4.1 Phorophyte girth and lichen abundance
Figure 5.9 shows the Mean Lichen Abundance (MLA) on phorophytes within 

different girth classes in an area protected from fire. Classes '5 - 7.9 cm' and '12 - 19.9 cm' have 

significantly higher MLA values when compared to class ’> 20 cm1 (mean + S.E.), although there is a 

high variability in values.

Figure 5.10 shows the MLA on phorophytes within different girth classes in areas 

subjected to fire. In these plots, a high relative variability in MLA values within the girth classes (see 

CV values) limits the significance of these results.

5.4.2 Phorophyte girth and lichen distribution
Table 5.2 shows the percentage frequency of phorophytes in each lichen distribution 

category within different girth classes in an area protected from fire and in areas subjected to fire. In the 

area protected from fire, classes '12 - 19.9 cm1 and '> 20 cm1 have the highest percentages of
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Figure 5.9 The Mean Lichen Abundance on phorophytes within different girth classes (diameter

in cm) in an area protected from fire. The Coefficient of Variation (CV) for each class is shown

in brackets, and the vertical bars represent the standard error of the mean.
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Figure 5.10 The Mean Lichen Abundance on phorophytes within different girth classes 

(diameter in cm) in areas subjected to Fire. The Coefficient of Variation (CV) for each class is 

shown in brackets, and the vertical bars represent the standard error of the mean.

Table 5.2 The percentage frequency of phorophytes in each lichen distribution category within 

different girth classes (diameter in cm) in an area protected from fire and in areas subjected to 

fire, where 0 = homogeneous lichen distribution, 1 = partially restricted lichen distribution and 

2 = restricted lichen distribution.

G irth classes 
(cm )

A rea  pro tec ted  from  
fire

A reas subjected  to fire

L ichen  distribution  
ca teg o ry

L ichen distribu tion  
ca teg o ry

0 1 2 0 1 2

5 - 7.9 59 35 6 87 9 4
8 -1 1 .9 58 36 6 84 12 4
12 - 19.9 76 24 0 82 15 4

> 2 0 71 29 0 80 16 4
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phorophytes with a homogeneous lichen distribution and the lowest frequencies with a partially 

restricted lichen distribution. Only classes '5 - 7.9 cm' and '8 - 11.9 cm' have phorophytes with a 

restricted lichen distribution, but at low values.

In areas subjected to fire, the highest frequencies of phorophytes with a homogeneous 

lichen distribution are in the smaller girth classes o f '5 - 7.9 cm' and '8 - 11.9 cm'. O f the phorophytes 

with a partially restricted lichen distribution, the areas subjected to fire have the highest frequencies in 

the '8 - 11.9 cm' and '12 - 19.9 cm' classes. All the girth classes have low frequencies of phorophytes 

within the ‘restricted lichen distribution’ category.

5.4.3 Phorophyte girth and lichen recolonisation
Figure 5.11 shows the mean percentage frequency of phorophytes with lichens on 

scorch i.e. lichen recolonisation, within different girth classes in areas subjected to fire. There is a 

significant decrease in the mean frequency of phorophytes with lichen recolonisation from class '5 - 7.9 

cm' to '> 20 cm' (mean ± S.E.), and the CV values in the classes are low, except in class '> 20 cm'.
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Figure 5.11 The mean percentage frequency of phorophytes with lichen recolonisation within 

different girth classes (diameter in cm) in areas subjected to fire. The Coefficient of Variation 

(CV) for each class is shown in brackets, and the vertical bars represent the standard error of 

the mean.
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5.4.4 Summary
These results show that in an area protected from fire, phorophytes within girth 

classes '5 - 7.9 cm1 and '12 - 19.9 cm' have the highest lichen abundance. However, in areas subjected 

to fire, there is no significant difference in lichen abundance between different phorophyte girth classes.

In an area protected from fire, most of the phorophytes with a homogeneous lichen 

distribution have a large girth (between 12 to > 20 cm), and the majority o f phorophytes with a 

partially restricted lichen distribution have a small girth (between 5 to 11.9 cm). The opposite is seen 

in areas subjected to fire. Here, most of the phorophytes with a homogeneous lichen distribution have a 

small girth and the majority o f phorophytes with a partially restricted lichen distribution have a large 

girth. Whereas in fire protected area, only the smaller girth classes had a restricted lichen distribution, 

in areas subjected to fire, all the classes have values in this distribution category.

The results also significantly indicate that most lichen recolonisation is occurring at 

phorophyte girth classes of '5 - 7.9 cm' and '8 - 11.9 cm'.

Overall, these results suggest that phorophyte girth may determine lichen abundance, 

distribution and recolonisation. Although phorophyte girth only affects lichen abundance where fire is 

absent, it influences lichen distribution both in the absence and presence of fire. This, and the 

significant affect on lichen recolonisation, expresses the importance o f phorophyte girth for the 

development of the LFH Key.

5.5 Phorophyte first branch height and lichen abundance, distribution and 
recolonisation in plots with varying fire histories

5.5.1 Phorophyte first branch height and lichen abundance
Figures 5.12 and 5.13 show the Mean Lichen Abundance (MLA) on phorophytes 

within different first branch height classes in an area protected from fire and in areas subjected to fire, 

respectively. Results for phorophytes within the '> 5 m' first branch height class in areas subjected to 

fire are insignificant since the minimum limit o f ten individuals was not passed in this group.

There is no significant difference in MLA on phorophytes between different first 

branch height classes in an area protected from fire (mean ± S.E.=NS). Although phorophytes within the 

first branch height class o f '1 - 2.9 m' have a significantly higher MLA than those in classes '< 0.5 m' 

and '0.5 - 0.9 m1 in areas subjected to fire (mean ± S.E.), the high relative variability in MLA values 

within the first branch height classes (see CV values) limits the significance of the results.

5.5.2 Phorophyte first branch height and lichen distribution
Table 5.3 shows the percentage frequency of phorophytes in each lichen distribution 

category within different first branch height classes in an area protected from fire and in areas subjected 

to fire. In an area protected from fire, the highest proportion of phorophytes with a homogeneous lichen
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Figure 5.12 The Mean Lichen Abundance on phorophytes within different first branch height 

classes (m) in an area protected from fire. The Coefficient of Variation (CV) for each class is 

shown in brackets, and the vertical bars represent the standard error of the mean.

distribution are within the first branch height classes '0.5 - 0.9 m1 and '3 - 4.9 m' and lowest proportion 

within classes T - 2.9 m1 and '< 0.5 m1. Inversely, the highest proportion o f phorophytes with a 

partially restricted lichen distribution are within first branch height classes '1 - 2.9 m' and '< 0.5 m' and 

lowest proportion within classes '0.5 - 0.9 m' and '3 - 4,9 m'. All the classes have comparable values 

for the ‘restricted lichen distribution’ category.

In areas subjected to fire, results for phorophytes within the ’> 5 m 1 first branch 

height class are insignificant since the minimum limit o f ten individuals was not passed in this group. 

The highest frequencies o f phorophytes with a homogeneous lichen distribution are within the first 

branch height classes '< 0.5 m' and '0.5 - 0.9 m' and lowest frequencies within classes '1 - 2.9 m' and 

'3 - 4.9 m1. On the other hand, the highest frequencies of phorophytes with a partially restricted lichen 

distribution are within first branch height classes '1 - 2.9 m1 and '3 - 4.9 m' and lowest frequencies 

within classes '< 0.5 m 1 and '0.5 - 0.9 m'. All the classes have comparable values for the ‘restricted 

lichen distribution’ category.
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classes (m) in areas subjected to fire. The Coefficient of Variation (CV) for each class is shown in 

brackets, and the vertical bars represent the standard error of the mean.

Table 5.3 The percentage frequency of phorophytes in each lichen distribution category within 

different first branch height classes (m) in an area protected from fire and in areas subjected to 

fire, where 0 = homogeneous lichen distribution, 1 = partially restricted lichen distribution and 

2 = restricted lichen distribution. Note that the height of first branch class > 5 m has been excluded 

from the table because there were no occurrences in an area protected from fire.

H eight o f  first 
b ranch  

classes (m)

A rea  p ro tected  from  
fire

A reas subjected to fire

L ichen  distribution  
ca tego ry

L ichen d istribu tion  
ca teg o ry

0 1 2 0 1 2

< 0.5 63 31 6 91 5 4
0.5 - 0.9 75 21 4 90 8 2

1 - 2.9 57 38 5 84 12 4
3 - 4.9 70 30 0 80 16 4

> 5  = NS - - _ 100 0 0

135



5.5.3 Phorophyte first branch height and lichen recolonisation
Figure 5.14 shows the mean percentage frequency o f phorophytes with lichens on 

scorch i.e. lichen recolonisation, within different first branch height classes in areas subjected to fire. 

Class '1 -2 .9  m' has a significantly higher mean frequency o f phorophytes with lichen recolonisation 

than all the other classes (mean + S.E.).

5.5.4 Summary
These results show that there is no significant difference in lichen abundance between 

different phorophyte first branch height classes, both in an area protected from fire and in areas 

subjected to fire.

In an area protected from fire, most phorophytes with a homogeneous lichen 

distribution are within the first branch height classes '0,5 - 0.9 m' and '3 - 4.9 m’. The majority of 

phorophytes with a partially restricted lichen distribution are within the first branch height classes '< 

0.5 m' and '1 - 2.9 m!. However, in areas subjected to fire, most phorophytes with a homogeneous 

lichen distribution are within the lower first branch height classes (between < 0.5 m to 0.9 m), and the 

majority o f phorophytes with a partially restricted lichen distribution are within the higher first branch 

height classes (between 1 m to 4.9 m).

°  (9)5 0 -

Jl § 4 0 -& VJ3 
O  t/3

‘3
g o  3 0 -
cr E —a

is
.2 2 0 -

□ (19)
1 0 -

f i  (55)

1 -2 .9<0.5 0.5 - 0.9 3 -4 .9

Phorophyte first branch height classes (m)

Figure 5.14 The mean percentage frequency of phorophytes with lichen recolonisation within 

different first branch height classes (m) in areas subjected to fire. The Coefficient of Variation 

(CV) for each class is shown in brackets, and the vertical bars represent the standard error of 

the mean.

136



The results also significantly indicate that most lichen recolonisation is occurring at a 

phorophyte first branch height class o f '1 - 2,9 m'.

Overall, these results suggest that phorophyte first branch height may determine 

lichen distribution, both in the absence and presence of fire, and also affect lichen recolonisation after 

fire. Phorophyte first branch height may therefore be important for the development of the LFH Key.

5.6 Phorophyte bark texture and lichen abundance, distribution and 
recolonisation in plots with varying fire histories

5.6.1 Phorophyte bark texture and lichen abundance
Figure 5.15 shows the Mean Lichen Abundance (MLA) on phorophytes within each 

bark texture category in an area protected from fire. Phorophytes with both 'smooth' and 'rough without 

marked crevices' bark textures, have significantly higher MLA values than phorophytes with 'rough 

with deep crevices' bark texture (mean + S.E.). All the bark texture categories, except 'rough with deep 

crevices', have a low relative variability in MLA.
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Figure 5.15 The Mean Lichen Abundance on phorophytes within each bark texture category in

an area protected from fire. The Coefficient of Variation (CV) for each category is shown in

brackets, and the vertical bars represent the standard error of the mean.
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Figure 5.16 shows the MLA on phorophytes within each bark texture category in 

areas subjected to fire. Here, the 'smooth' bark texture category has a significantly higher MLA than all 

the other bark textures (mean ± S.E.). However, all the bark texture categories have a high relative 

variability in MLA, which limits the significance of the results.

5,6.2 Phorophyte bark texture and lichen distribution
Table 5.4 shows the percentage frequency o f phorophytes in each lichen distribution 

category within different bark texture categories in an area protected from fire and in areas subjected to 

fire. In an area protected from fire, ’rough with crevices' and 'rough with deep crevices' bark texture 

categories have the highest frequencies o f phorophytes within the ‘homogeneous lichen distribution1 

category, and the lowest within the ‘partially restricted lichen distribution’ category. Conversely, 

'smooth' and 'rough without marked crevices' bark texture categories have the highest frequencies of 

phorophytes within the ‘partially restricted lichen distribution’ category, and the lowest within the 

‘homogeneous lichen distribution’ category. The ‘rough with crevices’ bark texture category has the 

highest proportion of phorophytes with a restricted lichen distribution. All the other bark texture 

categories have low, comparable values.
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Figure 5.16 The Mean Lichen Abundance on phorophytes within each bark texture category in

areas subjected to fire. The Coefficient of Variation (CV) for each category is shown in brackets,

and the vertical bars represent the standard error of the mean.
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Table 5.4 The percentage frequency of phorophytes in each lichen distribution category within 

different bark texture categories in an area protected from fire and in areas subjected to fire, 

where 0 = homogeneous lichen distribution, 1 -  partially restricted lichen distribution and 2 = 

restricted lichen distribution.

A rea p ro tected  from  
fire

A reas subjected to fire

B ark  tex ture  category L ichen distribution  
ca tego ry

L ichen d istribu tion  
ca teg o ry

0 1 2 0 1 2

smooth 51 49 0 73 24 3
rough, without marked 60 37 3 88 9 3
crevices
rough, with crevices 71 18 11 88 8 4
rough, with deep crevices 74 22 4 86 10 4

In areas subjected to fire, the 'smooth' bark texture category has the lowest proportion 

of phorophytes with a homogeneous lichen distribution, and the highest with a partially restricted 

lichen distribution. All the other bark texture categories have comparable values in the two lichen 

distribution categories. The frequencies o f phorophytes within the ‘restricted lichen distribution’ 

category are nearly equal between bark texture categories.

5.6.3 Phorophyte bark texture and lichen recolonisation
Figure 5.17 shows the mean percentage frequency of phorophytes with lichens on 

scorch i.e. lichen recolonisation, within different bark texture categories in areas subjected to fire. 

’Smooth' and 'rough without crevices' bark texture categories have significantly higher mean frequencies 

of phorophytes with lichen recolonisation than 'rough with crevices’ and 'rough with deep crevices' bark 

texture categories (mean + S.E.). The low CV values indicate little relative variability o f the mean within 

each bark texture category.

5.6.4 Summary
These results indicate that in an area protected from fire, phorophytes with 'smooth' 

and 'rough without marked crevices' bark textures have significantly greater abundances of lichens than 

phorophytes with 'rough with crevices' and more significantly, 'rough with deep crevices' bark textures. 

However, in areas subjected to fire, there is no significant difference in lichen abundance between 

different phorophyte bark texture categories.

In an area protected from fire, most phorophytes with a homogeneous lichen 

distribution have 'rough with crevices' and 'rough with deep crevices' bark textures. The majority of 

phorophytes with a partially restricted lichen distribution have 'smooth' and 'rough without marked 

crevices' bark textures. A similar pattern of lichen distribution within different bark texture categories is
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Figure 5.17 The mean percentage frequency of phorophytes with lichen recolonisation within 

different bark texture categories in areas subjected to fire. The Coefficient of Variation (CV) for 

each category is shown in brackets, and the vertical bars represent the standard error of the 

mean.

seen in areas subjected to fire, but here, only phorophytes with a 'smooth’ bark texture have a high 

value within the ‘partially restricted lichen distribution’ category.

The results also significantly indicate that the highest lichen recolonisation is 

occurring on phorophytes with 'smooth' (highest value) and 'rough without crevices’ bark textures.

Overall, these results suggest that phorophyte bark texture may determine lichen 

abundance, distribution and recolonisation. Although bark texture only affects lichen abundance where 

fire is absent, it influences lichen distribution both in the absence and presence of fire. This, and the 

significant affect on lichen recolonisation, expresses the importance o f phorophyte bark texture for the 

development of the LFH Key.

5.7 The effect of bark pH on lichen abundance
The measurement of bark pH was only carried out on ten phorophyte species in Plot 

1 (74-control) (see Section 4.6.1). Five of these species have a high Mean Lichen Abundance (MLA)
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and the other five have a low MLA within the ten plots (see Section 5.9.1). Figure 5.18 shows that all 

the species have acidic barks, ranging from pH 3.8 to pH 4.7.

Overall, the species with a high MLA seem to have a more acidic bark (below pH 

4.2) with V. squamata the only exception (a mean pH 4.6 and a higher relative variability of 3.4%). 

Within this group of species, V. squamata has a significantly higher mean pH than the other species, 

and G. noxia has a significantly higher mean pH than B. salicifolius, C. brasiliense  and S. 

paniculatum (mean ± S.E.).

Except for Q, grandiflora, most o f the species with a low MLA have less acidic bark 

(above pH 4.2). The relative variability in pH values for these species is low, the highest being at 6.1% 

for Q. parviflora, In this group of species, V. thyrsoidea, Q. parviflora, P. rigida and M. ferruginata 

have a significantly higher mean pH than Q. grandiflora (mean ± S.E.).
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Figure 5.18 The mean pH for ten phorophyte species. The species in bold have a high M l.A.

The Coefficient of Variation (CV) for each species is shown in brackets, and the vertical bars

represent the standard error of the mean.
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5.7.1 Summary
These results suggest that overall, phorophyte species with a high lichen abundance 

have more acidic barks than the species with a low lichen abundance. This is therefore an important 

factor to take into consideration when developing the LFH Key.

5.8 Scorch height and lichen abundance, distribution and recolonisation in 
plots with varying fire histories

5.8.1 Scorch height and lichen abundance
Figure 5.19 shows the Mean Lichen Abundance (MLA) on phorophytes within 

different scorch height classes in areas subjected to fire. Scorch height classes '< 0.5 m' and '0.5 - 0.9 

m' have significantly higher MLA values than classes '1 -2 .9  m1, '3 - 4.9 m' and '> 5 m' (mean ± S.E.). 

However, the high relative variability in MLA within these latter classes (over 70%), limits the 

significance of the results.

5.8.2 Scorch height and lichen distribution
Table 5.5 shows the percentage frequency o f phorophytes in each lichen distribution 

category within different scorch height classes in areas subjected to fire. The frequencies in the different 

distribution categories are consistent between classes, except in the case of scorch height class ’> 5 m'. 

Compared to the other classes, class ’> 5 m' has a much lower frequency o f phorophytes in the 

‘homogeneous lichen distribution’ category, and a higher value in the ‘partially restricted lichen 

distribution’ category.

5.8.3 Scorch height and lichen recolonisation
Figure 5.20 shows the mean percentage frequency o f phorophytes with lichens on 

scorch i.e. lichen recolonisation, within different scorch height classes in areas subjected to fire. Results 

for phorophytes within the '> 5 m' class are insignificant since the minimum limit o f ten individuals 

was not passed in this group. Class '1 - 2.9 m' has a significantly higher mean frequency o f 

phorophytes with lichen recolonisation (and the lowest CV), than classes '< 0.5 m', '0.5 - 0.9 m' and '3 

- 4.9 m1 (mean + S.E.).

5.8.4 Summary
These results indicate that there are no significant differences in lichen abundance 

between scorch height classes in areas subjected to fire. Within these fire subjected areas, most 

phorophytes with a homogeneous lichen distribution have a scorch height between < 0.5 m to 4.9 m, 

whereas the majority of phorophytes with a partially restricted lichen distribution have a scorch height

142



3.00

□ (42)
□ (44)

2.50 -

oJSa.

®  2.00  -<U0g
1

□ (79)
□ (75)<  1 .50 -

8  
o

3
|  1.0 0 -  
s

0.50
<0.5 0.5 - 0.9 1 -2.9 3 -4 .9

Phorophyte scorch height classes (m)

Figure 5.19 The Mean Lichen Abundance on phorophytes within different scorch height classes 

(m) in areas subjected to fire. The Coefficient of Variation (CV) for each class is shown in 

brackets, and the vertical bars represent the standard error of the mean.

Table 5.5 The percentage frequency of phorophytes in each lichen distribution category within 

different scorch height classes (m) in areas subjected to fire, where 0 = homogeneous lichen 

distribution, 1 = partially restricted lichen distribution and 2 = restricted lichen distribution.

Scorch height 
classes (m)

Lichen distribution 
ca tegory

0 1 2

< 0.5 87 13 0
0.5 - 0.9 87 13 0

1 - 2.9 85 10 5
3 -4 .9 87 8 5

> 5 64 36 0
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Figure 5.20 The mean percentage frequency of phorophytes with lichen recolonisation within 

different scorch height classes (m) in areas subjected to fire. The Coefficient of Variation (CV) for 

each class is shown in brackets, and the vertical bars represent the standard error of the mean.

> 5 m. The results also significantly indicate that most lichen recolonisation is occurring at a 

phorophyte scorch height class of '1 - 2.9 m'.

Overall, the results suggest that the scorch height o f fire may determine lichen 

distribution and lichen recolonisation after fire. This is therefore an important factor to take into 

consideration when developing the LFH Key.

5.9 Phorophyte species and lichen abundance, distribution and recolonisation in 
plots with varying fire histories

5.9.1 Phorophyte species and lichen abundance
To investigate the relationship between phorophyte species and lichen abundance in 

an area protected from fire and in areas subjected to fire, the Importance Value (see Section 3.8.3b) for 

full definition) of each phorophyte species and the Mean Lichen Abundance (MLA) on each phorophyte 

species are examined. These values are presented in Table 5.6. In both fire protected and fire subjected 

areas, most o f the phorophyte species (25 and 45 respectively) have a very low Importance Value. In an
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Table 5.6 The Importance Value (IV) and Mean Lichen Abundance (MLA) for the phorophyte 

species in an area protected from fire and in areas subjected to fire, and the percentage 

frequency of individuals with lichen recolonisation (R) in areas subjected to fire. Note: a 

represents a non-occurrence.

P horophy te  species

A rea  p ro tec ted  
from  fire

A reas subjected  to fire

IV M LA IV M L A R

Machaerium opacum - - 0.27 3.00 50
Banisteriopsis latifolia - - 0.29 3.50 50
Pern glabrata - - 0.30 3.00 0
Annona coriacea - - 0.32 0.00 0
Miconia stenoscrachys - - 0.34 1.50 100
Diosypros hispida - - 0.35 1.33 100
Copaifera langsdorfii - - 0.38 3.00 50
Ocotea sp. - - 0.56 3.67 33
Bowdichia virgilioides - - 0.63 3.33 67
Vochysia elliptica - - 0.68 1.00 75
Enterolobium gummiferum - - 0.72 1.00 100
Davila elliptica - - 0.81 2.20 60
Eriotheca pubescens - - 0.84 3.20 40
Hymenaea stigonocarpa - - 0.89 1.20 25
Erythroxylum campestris - - 0.97 2.17 40
Ocotea pomaderroides - - 1.15 3.00 67
Vochysia rufa 1.15 3.00 0.52 1.00 0
Erythroxylum suberosum 1.15 4.00 0.65 1.80 50
Symplocos nitens 1.15 2.00 1.93 2.17 33
Stryphnodendron adstringens 1.15 3.00 6.63 1.60 50
Miconia pohliana 1.17 1.00 2.12 0.77 20
Salacia crassifolia 1.19 4.00 1.69 2.09 63
Acosmium dasycarpum - - 1.19 3.43 71
Protium ovatum 1.21 4.00 - - -
Alibertia concolor 1.21 4.00 0.43 3.67 67
Psidium aerugineum 1.24 4.00 0.62 2.50 67
Lafoensia pacari 1.31 4.00 - - -
Pouteria torta 1.40 4.00 - - -
Terminalia brasiliensis - - 1.53 4.00 50
Syagrus comosa 1.54 3.00 3.48 0.86 78
Aspidosperma tomentosum 1.59 4.00 5.71 1.86 47
Lamanonia tunata - - 1.64 4.00 0
Byrsonima verbascifolia - - 1.67 2.50 78
Strychnus pseudoaquina - - 2.01 2.30 60
Symplocos lanceolata 2.19 0 0.31 1.00 0
Neea theifera 2.29 4.00 0.26 2.50 100
Plathymenia reticulata 2.32 4.00 1.24 1.80 40
Couepia grandiflora - - 2.43 2.50 64
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Table 5.7 continued.

P h o ro p h y te  species

A rea  p ro tec ted  
from  fire

A reas subjected  to fire

IV M L A r v M L A R
Aspidosperma macrocarpon 2.50 1.50 2.90 1.39 62
Miconia albicans 2.54 1.00 0.32 2.00 0
Emmotum nitens 2.63 3.00 6.36 3.29 36
Symplocos rhamnifolia - - 3.02 0.41 33
Byrsonima coccolobifolia - - 3.08 2.79 32
Hirtella grandulosa 3.14 3.00 - - -
Pouteria rami/lor a - - 3.23 2.89 47
Pterodon pubescens - - 3.33 1.46 18
Qualea grandiflora 3.41 3.00 15.34 1.28 27
Palicourea rigida 3.74 0.33 4.22 0.78 5
Dimorphrandra mollis 4.59 1.67 1.92 1.15 30
Rourea induta - - 4.60 2.16 52
Kielmeyera coriacea 4.61 1.00 1.04 2.00 86
Qualea multiflora 4.82 3.00 3.74 2.00 57
Guapira graciliflora 5.94 2.80 6.20 3.84 20
Eremanthus glomerulatus 5.95 3.50 5.26 2.03 45
Piptocarpha rotundifolia 6.18 3.00 5.65 1.23 50
Qualea parviflora 6.22 1.50 13.00 1.19 25
Byrsonima crassa 6.29 3.80 9.39 2.43 44
Syagrus flexuosa 6.31 2.67 6.18 1.08 77
Myrsine guianensis 8.37 2.57 8.49 2.08 24
Styrax ferruginous 8.85 3.25 6.40 2.44 49
Guapira noxia 10.16 3.86 14.72 2.69 59
Dalbergia miscolobium 10.86 2.83 12.26 2.00 28
Kielmeyera speciosa 10.93 3.00 2.38 1.81 20
Didymopanax macrocatpum 11.54 2.83 13.91 1.72 22
Roupala montana 11.78 2.45 7.47 2.52 40
Ouratea hexasperma 12.27 3.50 17.58 2.20 52
Miconia ferruginata 12.77 1.22 8.81 1.44 38
Vellozia squamata 16.16 3.71 11.92 1.75 70
Vochysia thyrsoidea 19.15 1.00 13.20 0.98 11
Caryocar brasiliense 20.23 3.00 17.72 2.28 43
Blepharocalyx salicifolius 24.01 3.47 19.81 2.41 46
Sclerolobium paniculatum 30.80 2.83 16.38 2.15 64

area protected from fire, many of these species have an MLA above 2, whereas in areas subjected to fire, 

the MLA values are lower, with only two species, Terminalia brasiliensis and Lamanonia tunata, 

having a MLA o f 4. However, the rarity o f these species (Importance Value below 5) limits the 

significance of the results, and will therefore not be discussed further.
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Of the species with an Importance Value between 5 and 10 in an area protected from 

fire, the majority, including Byrsonima crassa, Eremanthus glomerulatus and Styrax ferrugineus have 

high MLA values, with Qualea parviflora being the only species with an MLA below 2. Most of the 

species with an Importance Value between 5 and 10 in an area protected from fire, are also present in 

this range of Importance Values within areas subjected to fire. However, except for G uapira  

graciliflora, most o f the species have much lower MLA values in areas subjected to fire. Only Guapira 

graciliflora  and Emmotum nitens have an MLA over 3, with over half o f the species having MLA 

values around 2 or below.

Above an Importance Value of 10 in an area protected from fire, two species, Miconia 

ferruginata and Vochysia thyrsoidea, have very low MLAs (around 1), whilst the others have MLAs of 

2.5 or above and include (in descending order from highest MLA value), Guapira noxia, Vellozia 

squam ata, Ouratea hexasperma, Blepharocalyx salicifolius, K ielm eyera speciosa, C aryocar  

brasiliense, Dalbergia miscolobium, Didymopanax macrocarpum , Sclerolobium paniculatum  and 

Roupala montana.

Many phorophyte species with an Importance Value over 10 in an area protected from 

fire are also common to areas subjected to fire. However, these species have much lower MLA values in 

areas subjected to fire compared to an area protected fro fire. Only Guapira noxia, Sclerolobium  

paniculatum, Ouratea hexasperma, Caryocar brasiliense and Blepharocalyx salicifolius have MLA 

values over 2 (no species has an MLA over 3), with the other species having an MLA of 2 or below. 

Vochysia thyrsoidea has the lowest MLA of 0.98.

5.9.2 Phorophyte species and lichen distribution
Table 5.7 lists the Importance Value (IV) and the percentage frequency of individuals 

within each lichen distribution category for phorophyte species with an IV above 5, in an area protected 

from fire and in areas subjected to fire.

Most of the species with an Importance Value between 5 and 10 in an area protected 

from fire have the highest proportion of individuals with a homogeneous lichen distribution, although 

Eremanthus glomerulatus, Piptocarpha rotundifolia and Qualea parviflora have comparable values in 

this category and the ‘partially restricted lichen distribution’ category. Only Piptocarpha rotundifolia 

and Syagrus flexuosa have individuals with a restricted lichen distribution.

In areas subjected to fire, all the species with an Importance Value between 5 and 10 

have the highest proportion o f individuals with a homogeneous lichen distribution. Although the 

values are small, many more species in areas subjected to fire have a restricted lichen distribution 

compared to an area protected from fire.

Most of the species with an Importance Value above 10 in an area protected from fire 

have the highest proportion of individuals with a homogeneous lichen distribution. The exceptions are 

Kielmeyera speciosa, which has comparable values in the ‘homogeneous lichen distribution’ and
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Table 5.7 The percentage frequency of individuals within each lichen distribution category for 

phorophyte species with an Importance Value (IV) above 5 in an area protected from fire and in 

areas subjected to lire, where 0 = homogeneous lichen distribution, 1 = partially restricted lichen 

distribution and 2 = restricted lichen distribution. Note: a represents a non-occurrence.

Phorophyte Species

Area protected from  
fire

Areas subjected to fire

IV 0 1 2 IV 0 1 2

Aspidosperma tomentosum - - - - 5.71 80 10 10
Guapira graciliflora 5.94 60 40 0 6.20 84 16 0
Eremanthus glomerulatus 5.95 50 50 0 5.26 72 24 4
Piptocarpha rotundifolia 6.18 40 40 20 5.65 78 17 5
Qualea parviflora 6.22 50 50 0 13.00 94 4 2
Byrsonima crassa 6.29 100 0 0 9.39 100 0 0
Emmotum nitens - - - - 6.36 86 7 7
Syagrus flexuosa 6.31 50 25 25 6.18 100 0 0
Stryphnodendron adstringens - - - - 6.63 75 25 0
Myrsine guianensis 8.37 57 43 0 8.49 84 14 2
Styrax ferrugineus 8.85 75 25 0 6.40 73 21 6
Guapira noxia 10.16 86 14 0 14.72 79 19 2
Dalbergia miscolobium 10.86 83 17 0 12.26 88 9 3
Kielmeyera speciosa 10.93 44 44 12 - - _ -
Didymopanax macrocarpum 11.54 83 17 0 13.91 83 9 8
Roupala montana 11.78 55 27 18 7.47 95 3 2
Ouratea hexasperma 12.27 80 20 0 17.58 91 5 4
Miconia ferruginata 12.77 78 22 0 8.81 98 2 0
Qualea grandiflora - - - - 15.34 90 5 5
Vellozia squamata 16.16 64 36 0 11.92 95 2 3
Vochysia thyrsoidea 19.15 100 0 0 13.20 94 4 2
Caryocar brasiliense 20.23 62 38 0 17.72 86 12 2
Blepharocalyx salicifolius 24.01 53 47 0 19.81 89 11 0
Sclerolobium paniculatum 30.80 28 72 0 16.38 39 53 8

‘partially restricted lichen distribution’ categories, and Sclerolobium paniculatum , which has the 

greatest proportion o f individuals with a partially restricted lichen distribution. Only K ielm eyera  

speciosa and Roupala montana have individuals with a restricted lichen distribution.

All the species in areas subjected to fire with an Importance Value over 10 have the 

highest proportion of individuals with a homogeneous lichen distribution. The only exception to this 

pattern is found in S. paniculatum, which, as in an area protected from fire, has the greatest proportion 

of individuals with a partially restricted lichen distribution. Although the values are small, many more 

species in areas subjected to fire have a restricted lichen distribution compared to an area protected from 

fire.
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5.9.3 Phorophyte species and lichen recolonisation
The percentage frequency of individuals o f each phorophyte species with lichens on 

scorch i.e. lichen recolonisation, in areas subjected to fire are shown in Table 5.6. Among the species 

with an Importance Value between 5 and 10, most have 50% lichen recolonisation or below, the only 

exception being Syagrus flexuosa  with 77% lichen recolonisation. O f the species with an Importance 

Value over 10, the highest lichen recolonisation (over 40%) is found in V. squamata, S. paniculatum, 

G. noxia, O. hexasperma, B. salicifolius and C. brasiliense, and the lowest in V. thyrsoidea (only 

11%).

5.9.4 Summary
These results show that in both the area protected from fire and in the areas subjected 

to fire, o f the species with an Importance Value of over 10, Guapira noxia, Vellozia squamata, 

Ouratea hexasperma, Blepharocalyx salicifolius, Kielmeyera speciosa, Caryocar brasiliense, 

Dalbergia miscolobium, Didymopanax macrocarpum, Sclerolobium paniculatum  and Roupala  

montana have a high lichen abundance, and Vochysia thyrsoidea, Qualea grandiflora, Q. parviflora 

and Miconia ferruginata have a low lichen abundance.

Most o f the phorophyte species in the area protected from fire and in the areas 

subjected to fire, have individuals with a homogeneous lichen distribution. S. paniculatum  is the only 

species that has higher frequencies of individuals with a partially restricted lichen distribution.

The results also show that most phorophyte species with an Importance Value above 

5 have under 50% lichen recolonisation after fire, and of the species with an Importance Value over 10, 

the highest lichen recolonisation is found on V. squamata, S. paniculatum, G. noxia, O. hexasperma, 

B. salicifolius and C. brasiliense.

Overall, these results suggest that factors specific to different phorophyte species may 

determine lichen abundance and distribution, both in the presence and absence of fire, and lichen 

recolonisation after fire. Phorophyte specificity may therefore be extremely important for the 

development of the LFH Key.

5.10 Choosing the phorophyte species for the Stage 2 data collection

After the preliminary survey of the phorophyte and lichen communities in the ten 

plots was carried out (Stage 1), a number of phorophyte species were selected for the next stage in the 

research, which involved sampling the lichen composition in plots with different fire histories (see 

Section 4.4). The criteria for choosing these phorophytes were:

1) they are commonly found in the ten plots;

2) they have a high abundance of lichens on them;

3) they show a variation in lichen abundance between plots with different fire histories.
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Table 5.8 The Importance Value (IV), Mean Lichen Abundance (MLA) and Coefficient of 

Variation (CV) for the phorophyte species with an Importance Value over 10 in the ten plots.

P horophy te  species IV M L A CV

Dalbergia miscolobium 12.12 2.07 57
Qualea parviflora 12.33 1.21 84
Vellozia squamata 12.34 2.02 82
Didymopanax macrocarpum 13.67 1.79 52
Vochysia thyrsoidea 13.79 0.98 22
Qualea grandiflora 14.15 1.31 75
Guapira noxia 14.26 2.77 48
Ouratea hexasperma 17.05 2.30 64
Sclerolobium paniculatum 17.82 2.28 50
Caryocar brasiliense 17.97 2.38 47
Blepharocalyx salicifolius 20.23 2.58 49

Table 5.8 shows the Mean Lichen Abundance (MLA) and the Coefficient o f Variation 

(CV) for the phorophyte species within the ten plots which have an Importance Value above 10 i.e. the 

most common species. O f these, three, Vochysia thyrsoidea, Qualea parviflora  and Q. grandiflora 

have MLA values under 1.5. The other eight species have MLA values over 2, and include Dalbergia 

miscolobium, Didymopanax macrocarpum, Vellozia squamata, Guapira noxia, Caryocar brasiliense, 

Ouratea hexaspertna, Sclerolobium paniculatum  and Blepharocalyx salicifolius. The species that have 

the highest variability in MLA values between plots are Q. parviflora (84%), V. squamata (82%), Q. 

grandiflora  (75%), O. hexasperma (64%), D. miscolobium  (57%), D. macrocarpum  (52%) and S. 

panicidatum  (50%), with B. salicifolius, G. noxia and C. brasiliense having CV values just below 

50%.

5.10.1 Summary

These results show that the phorophyte species which fulfil the criteria o f prevalence 

in the ten plots, a high lichen abundance, and a variation in lichen abundance between different fire 

histories are Dalbergia miscolobium, Didymopanax macrocarpum, Vellozia squamata, Guapira noxia, 

Caryocar brasiliense, Ouratea hexasperma, Sclerolobium paniculatum  and Blepharocalyx salicifolius. 

These phorophytes may be extremely important in the development of the LFH Key.

5.11 General conclusions

Analysis o f the data from Stage 1 of the research showed the following results:

1) lichen abundance varies between plots with different fire histories. Areas which have been protected 

from fire in the past, or have had a recent rare heterogeneous fire, have the greatest abundances of 

lichens. A lower lichen abundance is present in an area which may have had frequent fires in the past,
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but has been recently protected. Where there has been a recent rare, but homogeneous fire, there is a low 

abundance of lichens, and in areas subjected to frequent, homogeneous fires, lichen abundances are 

extremely low. If  fires are very frequent, little or no lichens are apparent;

2) lichen distribution varies between plots with different fire histories. In areas where there has been no 

fire for a long period o f time or recent fire protection, most phorophytes have either a homogeneous 

lichen distribution or a partially restricted lichen distribution. Here, lichens are common between the 

base and 0.9 m. Where there has been a recent, rare fire, phorophytes frequently have a homogeneous 

lichen distribution, and if  some have a partially restricted lichen distribution, it is above 2 m, 

particularly if the rare fire was homogeneous. In contrast, areas with frequent, homogeneous fires have 

more occurrences of a restricted lichen distribution, especially above 2 m;

3) lichen recolonisation after fire varies between plots with different fire histories. A recently protected 

area has the highest degree o f recolonisation, followed by areas which were subjected to recent, rare 

fires, with areas where fire is frequent and homogeneous having the lowest amount of lichen 

recolonisation;

4) there is no significant difference in lichen abundance and distribution within different phorophyte 

height classes in an area protected from fire and in areas subjected to fire. However, a significantly 

greater amount of lichen recolonisation after fire is occurring at a phorophyte height class o f '1 - 2.9 m';

5) in an area protected from fire, phorophytes within girth classes ’5 - 7.9 cm' and '12 - 19.9 cm' have a 

significantly higher lichen abundance, However, in areas subjected to fire, there is no significant 

difference in lichen abundance between different phorophyte girth classes. In contrast to an area 

protected from fire, most phorophytes with a homogeneous lichen distribution in areas subjected to fire 

have a small girth and the majority with a partially restricted lichen distribution have a large girth. A 

significantly greater amount of lichen recolonisation after fire is occurring at phorophyte girth classes of 

'5 - 7.9 cm' and '8 - 11.9 cm1;

6) there is no significant difference in lichen abundance between different phorophyte first branch height 

classes in an area protected from fire and in areas subjected to fire. Compared to an area protected from 

fire, most phorophytes in areas subjected to fire with a homogeneous lichen distribution have a low 

first branch height (between < 0.5 m to 0.9 m), and the majority of phorophytes with a partially 

restricted lichen distribution have a high first branch height (between 1 m to 4.9 m). A significantly 

greater amount of lichen recolonisation is occurring at a phorophyte first branch height class o f '1 - 2.9 

m';

7) in an area protected from fire, phorophytes with 'smooth' and 'rough without marked crevices' bark 

textures have the highest lichen abundances. However, in areas subjected to fire, there is no significant 

difference in lichen abundance between phorophytes of different bark textures. In both an area protected 

from fire and in areas subjected to fire, most phorophytes with a homogeneous lichen distribution have 

rough with crevices' and 'rough with deep crevices' bark textures. In an area protected from fire, the 

majority o f phorophytes with a partially restricted lichen distribution have 'smooth' and 'rough without
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marked crevices' bark textures, but in areas subjected to fire, only phorophytes with a 'smooth' bark 

texture have a partially restricted lichen distribution. There is a significantly greater amount o f lichen 

recolonisation after fire occurring on phorophytes with 'smooth' (highest value) and 'rough without 

crevices' bark textures;

8) phorophyte species with a high lichen abundance have more acidic barks than the species with a low 

lichen abundance;

9) there is no significant difference in lichen abundance within different scorch height classes in areas 

subjected to fire. In these areas, most phorophytes with a homogeneous lichen distribution have a 

scorch height between < 0.5 m to 4.9 m, whereas the majority of phorophytes with a partially restricted 

lichen distribution have a scorch height > 5 m. A significantly greater amount o f lichen recolonisation 

after fire is occurring at a scorch height class o f '1 - 2.9 m';

10) in both an area protected from fire and in areas subjected to fire, of the most common phorophyte 

species, Guapira noxia, Vellozia squamata, Ouratea hexasperma, B lepharocalyx salicifolius, 

Kielmeyera speciosa, Caryocar brasiliense, Dalbergia miscolobium, Didymopanax macrocarpum, 

Sclerolobium paniculatum  and Roupala montana  have high lichen abundances, and Vochysia  

thyrsoidea, Qualea grandiflora, Q. parviflora and Miconia ferruginata  have low lichen abundances. 

Most o f the phorophyte species in an area protected from fire and in areas subjected to fire have 

individuals with a homogeneous lichen distribution. The highest lichen recolonisation is found on the 

phorophyte species V. squamata, S. paniculatum, G. noxia, O. hexasperma, B. salicifolius and C. 

brasiliense;

11) eight phorophyte species, Dalbergia m iscolobium, Didymopanax macrocarpum, Vellozia 

squamata, Guapira noxia, Caryocar brasiliense, Ouratea hexasperma, Sclerolobium paniculatum  and 

Blepharocalyx salicifolius are possible candidates for the Stage 2 data collection.

From these results, a number o f conclusions, which may be important for the

development of the LFH Key, are proposed:

a) lichen abundance, distribution and recolonisation after fire are affected by fire history;

b) phorophyte height may determine lichen recolonisation after fire;

c) phorophyte girth may determine lichen abundance where fire is absent, and influence lichen 

distribution both in the absence and presence o f fire. Girth may also determine lichen recolonisation 

after fire;

d) phorophyte first branch height may determine lichen distribution, both in the absence and presence 

of fire, and also affect lichen recolonisation after fire;

e) phorophyte bark texture may determine lichen abundance where fire is absent, and influence lichen 

distribution both in the absence and presence o f fire. Bark texture may also determine lichen 

recolonisation after fire;

f) phorophyte bark pH may determine lichen abundance;

g) scorch height o f fire may determine lichen distribution and lichen recolonisation after fire;
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h) factors specific to different phorophyte species i.e. phorophyte specificity, may determine lichen 

abundance and distribution, both in the presence and absence of fire, and lichen recolonisation after fire.
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Chapter 6
Results II: Fire history and lichen composition

6.1 Introduction

Having established that the various fire histories directly influence lichen abundance, 

distribution and recolonisation in the ten plots, detailed work on the composition of these communities 

was carried out. As a process of standardisation for this stage of the research, sampling was confined to 

specific phorophyte species. Previous results identified eight phorophyte species as potential 

candidates, which are all commonly found in cerrado denso, have high abundances of lichens, and 

show variation in lichen abundance between plots with different fire histories. For the scope of this 

study, it was only possible to sample five phorophyte species. Taking into account the aforementioned 

criteria, as well as the easy identification of the phorophytes in the field, and the degree of lichen 

recolonisation on the phorophytes after fire, Blepharocalyx salicifolius, Caryocar brasiliense, Guapira 

noxia, Sclerolobium paniculatum  and Vellozia squamata were chosen.

Six plots were employed for this part o f the research: Plot 1 (74-control); Plot 2 (74- 

91: Horn, H, M); Plot 3 (74-92: Het, V, E); Plot 4 (74-92: Het, V, M); Plot 5 (74-92: Het, V, L); and 

Plot 6 (86-control). Five individuals o f each species were sampled for their lichen flora at four heights 

on the trunk: base to 0.5 m (Quarter 1); >0.5 to 1 m (Quarter 2); >1 to 1.5 m (Quarter 3); and >1.5 to 

2 m (Quarter 4). Table 6.1 shows the average height, girth and first branch height within the six plots 

for these species.

To investigate the factors determining lichen composition between the different plots, 

multivariate analyses were carried out using Detrended Correspondence Analysis (DCA) for ordination 

and Two-Way Indicator Species Analysis (TWINSPAN) for classification (see Section 3.8.3b). The 

matrix values were composed of lichen species frequencies at each height class for the five phorophyte 

species sampled in every plot. Downweighting was applied in the ordination to reduce noise generated

Table 6.1 The average height (m), girth (diameter in cm) and first branch height (m) of the five 

phorophyte species sampled within Plots 1 to 6.

P h orophy te  species H eigh t (m ) G irth  
(d iam eter 

in  cm)

F irst b ranch  
heigh t (m )

Blepharocalyx salicifolius 5.2 12.8 1.9
Caryocar brasiliense 4 11.3 1.5
Guapira noxia 3.5 7.4 1.4
Sclerolobium paniculatum 6.1 10.8 1.7
Vellozia squamata 2.5 6.6 1
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by uncommon species. All other default commands were used. In the ordination graphs, the plots are 

represented by a "P" followed by the plot number, the phorophyte species by their genus initial, and 

the quarters on the trunk as "Ql-4".

6.2 Initial analysis of the six plots

The sample ordination for all the plots is shown in Figure 6.1 The first component 

accounts for 37% of the total variance (axis 1), and the second for 26% (axis 2). The graph shows that 

the samples are widely scattered on both axes. The most apparent feature on axis 1 is that all the 

Blepharocalyx salicifolius (B) samples are congregated on the right-hand side. Among the other 

samples, there is no apparent pattern in distribution along this axis. Similarly along axis 2, samples 

have no clear sequence of distribution.
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Figure 6.1 DCA sample ordination of Plots 1 to 6 using lichen species data. Note that all the 

Blepharocalyx salicifolius  samples are grouped on the right-hand side of the ordination. 

Abbreviations: Plot, P; Blepharocalyx salicifolius, B; Caryocar brasiliense, C; Guapira noxia, G; 

Sclerolobium paniculatum , S; Vellozia squamata, V; Quarter on phorophyte, Q.
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From this ordination result, it was decided to eliminate B. salicifolius samples from 

further analysis, since they seem to be obscuring the effects of fire in the results. It was also resolved to 

reanalyse the data in the following combinations: 1) Plot 1 (74-control) alone, to determine which 

factors control lichen composition where fire is absent, and therefore including B. salicifolius samples;

2) Plot 1 (74-control), Plot 2 (74-91: Horn, V, M) and Plot 6 (86-control), to analyse differences in 

lichen composition due to fire frequency and behaviour; 3) Plot 3 (74-92: Het, V, E), Plot 4 (74-92: 

Het, V, M) and Plot 5 (74-92: Het, V, L), to detect possible lichen compositional changes in response 

to burning time during the dry season.

6.3 Reanalysis of the six plots

6.3.1 Analysis of Plot 1: factors controlling lichen species composition in the 
absence of fire

The results o f the DCA show that the first axis accounts for 50% of the total 

variance, and the second axis for 28%. The sample ordination graph (Figure 6.2) shows two clusters of 

samples: the right-hand cluster has the Vellozia squamata samples with the highest axis values, 

followed by samples of Caryocar brasiliense and Guapira noxia; the left-hand cluster is composed of
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Figure 6.2 DCA sample ordination of Plot 1 using lichen species data. Abbreviations: 

B lepharocalyx salicifo lius, B; Caryocar brasiliense, C; Guapira noxia, G; S clero lob iu m  

paniculatum, S; Vellozia squamata, V; Quarter on phorophyte, Q.
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Sclerolobium paniculatum  and Blepharocalyx salicifolius samples. The samples are widely scattered on 

axis 2, and though there are some Quarter 4 (Q4) samples at the top o f the graph, and Quarter 1 (Q l) 

samples at the bottom (seen most strongly for G. noxia and V. squamata), this pattern is not consistent 

for all the phorophyte species. These results suggest that axis 1 of the DCA ordination graph may 

express phorophyte specificity, and axis 2 may represent vertical zonation, although this is less certain.

The lichen species ordination is shown in Figure 6.3 It shows species such as 

Coccocarpia dominguensis, C. imbricascens, Parmotrema jam esii and P. mellissii on the right-hand 

side o f the graph, and lichens including 'Sterile White Crust1 sp. '4', Lecanora sp. and Arthopyrenia 

sp. ’2' on the left-hand side. This suggests that the former group of lichens may be specific to V. 

squamata, whereas the latter group of lichens may be more commonly found on B. salicifolius and S. 

paniculatum. The lichen species with intermediate values on axis 1 may prefer C. brasiliense and G. 

noxia. This ordination also indicates that the lichen species, Hypotrachyna velloziae, Lepraria sp., 

Parmotrema nylanderi and P. dilatatum may prefer habitats higher on the phorophyte (top of graph),
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Figure 6.3 DCA lichen species ordination of Plot 1.
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Figure 6.4 DCA sample ordination of Plot 1 overlaid by the groups (A-D) identified by the 

TWINSPAN classification.
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Figure 6.5 DCA lichen species ordination of Plot 1 overlaid by the groups (1-5) identified by the 

TWINSPAN classification.
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and that Cladonia subradiata, C. ramulosa, Pyxine subcinerea and P. mellissii may be more typically 

of phorophyte bases (bottom of graph).

The TWINSPAN classification identified four phorophyte specific groups of samples 

(see Figure 6.4 from right to left): Group A contains all the Vellozia squamata samples; Group B is 

comprised of all the Catyocar brasiliense and Guapira noxia samples; Group C has just Sclerolobium  

paniculatum  samples; and Group D contains all the Blepharocalyx salicifolius samples and one S. 

paniculatum  sample. The groups of lichen species recognised from the classification (see Figure 6.5) 

suggest that Group 1 is specific to V. squamata, Groups 2 and 3 to C. brasiliense and G. noxia, and 

Groups 4 and 5 to B. salicifolius and S. paniculatum.

A dendrogram of the TWINSPAN classification (Figure 6 .6) presents the lichen 

indicator species for each group o f phorophyte samples. At the first division, low frequencies of 

Coccocarpia imbricascens and Parmelinopsis horrescens separate the Vellozia squamata samples 

(Group A) from the other groups. Low frequencies o f Bulbothrix suffixa, Graphina sp., Buellia  

myriocarpa and a higher frequency o f Pyrrhospora russula are indicators o f the other phorophytes 

(Groups B, C and D).

DIVISION 1 :

DIVISION 2 : 

DIVISION 3 :

DIVISION 4 :

TWINSPAN 
Groups :

Phorophyte species

Bulbothrix suffixa (2) 
Graphina sp. (1) 
B u ellia  myriocarpa (1) 
Pyrrhospora russula (3)

Lecanora m yriocarpoides (2)

Aithopyrem a  
sp.’2' (1)

Arthothehum
sp-'2' (1)

Bulbothrix 
hypochrae (1)

Group D Group C Group B

Coccocarpia  
im bricascens (1) 
Parm elinopsis 
horrescens (2)

Arthothelium
sp.T(I)

Cladonia  
ram ulosa (1)

Group A

Blepharocalyx Sclerolobium Caryocar brasiliense Vellozia squamata
salicifolius paniculatum Guapira noxia

Figure 6.6 Dendrogram representing the major divisions of a TWINSPAN classification of the 

samples from Plot 1. Negative lichen indicator species appear on the left of each division and 

positive lichen indicator species on the right. The number in parentheses after each lichen 

indicator name is a 'pseudospecies1 abundance class: classes 1-5, respectively, represent lower 

cut values for percentage frequencies of 20, 40, 60, 80 and 100%.
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More specifically, Bulbothrix hypochrae is indicative of Caryocar brasiliense and Guapira noxia 

samples, Arthopyrenia sp. ’2' to Sclerolobium paniculatum  samples, and Lecanora myriocarpoides and 

Arthothelium sp. '2' to Blepharocalyx salicifolius samples.

6.3.2 Analyses of Plots 1, 2 and 6: fire frequency and behaviour as factors 
determining lichen species composition

The results o f the DCA show that the first component (1st axis) accounts for 43% of 

the total variance, and the second (2nd axis) for 26%. The sample ordination (Figure 6.7) shows that 

there are three predominant sample assemblages along the 1st axis: on the left-hand side, the samples 

are chiefly represented by Plot 1 (74-control); in the middle, Plot 6 (86-control) samples are prevalent; 

and on the right-hand side, Plot 2 (74-91: Horn, H, M) samples are dominant. The second axis of 

Figure 6.7 shows a wide scattering of Plot 1 samples, less so in Plot 6 samples, and hardly any spread 

of Plot 2 samples. Within Plot 1 samples, and to a lesser extent in Plot 6 , the Vellozia squamata 

samples have higher values on axis 2 (at the top of the graph), Caryocar brasiliense and Guapira noxia 

have intermediate values, and Sclerolobium paniculatum  have the lowest values (at the bottom of the 

graph).
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Figure 6.7 DCA sample ordination of Plots 1, 2 and 6 using lichen species data. Abbreviations: 

Plot, P; Caryocar brasiliense, C; Guapira noxia , G; Sclerolobium paniculatum , S; Vellozia  

squamata, V; Quarter on phorophyte, Q.
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The lichen species ordination is shown in Figure 6 .8, and it largely corresponds with 

the sample ordination. There is a diffusion of species along both the first and second axes, with a wide 

spread of points on the left-hand side of the graph that gradually narrows as one moves towards the 

right-hand side of the graph.

Axis 1 of the DCA may express fire history, low axis values corresponding to fire 

protection (Plot 1 samples), and the highest axis values indicating a recent, homogeneous bum (Plot 2 

samples). Lichen species with low loadings on the first axis include Coccocarpia dominguensis, C. 

imbricascens, Parmotrema nylanderi, Pertusaria sp. T  and Canoparmelia wallichiana. Lichens with 

high values on this axis are Flavoparmelia amplexa, Rimelia reticulata, 'Sterile Green Crust' sp., 

Canoparmelia amazonica and Bulbothrix fungicola. By having intermediate values, Plot 6 (86-control) 

shows that though it has been recently protected from fire (analogous to Plot 1), there have been 

frequent fires in the past (i.e. a degree of burning as in Plot 2). This combination of factors make Plot 

6 samples a unique group of their own, indicating past frequent fires. Many lichen species have 

intermediate values on axis 1 and include Bulbothrix isidiza, B. suffixa, Canoparmelia caroliniana, 

Parmelinopsis sp. '3', and Chrysothrix sp..
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Figure 6.8 DCA lichen species ordination of Plots 1, 2 and 6.
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The second DCA axis may reflect phorophyte specificity, which is highly influential 

in Plot 1 (74-control), but becomes less relevant in Plot 6 (86-control), and is insignificant in Plot 2 

(74-91: Horn, V, M). The ordering of the lichen species along axis 2 agrees with the previous DCA 

results of Plot 1 alone, where phorophyte specificity was found to be the first axis. Coccocarpia  

dominguensis, C. imbricascens, Cladonia ramulosa and Parmotrema nylanderi, considered to favour 

Vellozia squamata, have high axis values, and the lichen taxa Graphina sp., Arthopyrenia sp. '2' and 

Hypotrachyna sp. 'C' which may prefer Sclerolobium paniculatum  have low axis values. The lichen 

species with intermediate values are probably partial to Caryocar brasiliense and Guapira noxia.

Overlays o f the sample and species ordinations with groups identified by the 

TWINSPAN classification are shown in Figures 6.9 and 6.10 respectively. These groups are aligned 

along the first axis, suggested to be a variation in fire history. Table 6.2 shows that the highest 

proportion of samples taken to form Groups A and B are from Plot 2 (74-91: Horn, H, M), to form 

Group C are from Plot 6 (86-control), and to form Groups D and E are from Plot 1 (74-control). Group 

5 is probably an indication o f phorophyte specificity becoming an important factor within the 

classification. The groups of lichen species recognised from the classification (see Figure 6.10) suggest 

that Group 1 is specific to Plot 2, Groups 2 and 3 to Plot 6 , and Groups 4 and 5 to Plot I.
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Figure 6.9 DCA sample ordination of Plots 1, 2 and 6 overlaid by the groups (A-E) identified by 

the TWINSPAN classification.
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Figure 6.10 DCA Lichen species ordination of Plots 1, 2 and 6 overlaid by the groups (1-5) 

identified by the TWINSPAN classification.

Table 6.2 The percentages of samples taken from each plot to form the TWINSPAN groups.

P lo t

TW INSPAN group

A B C D E

1 0 0 0 81 19
2 64 36 0 0 0
6 0 25 69 6 0

A dendrogram representing the first three divisions in the TWINSPAN classification, 

and their indicator species are shown in Figure 6.11. A low frequency o f Ochrolechia pallescens, 

'Sterile White Crust' sp. '2' and Buellia myriocarpa, and an intermediate frequency o f Pyrrhospora  

russula, distinguishes Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control) from Plot 1 (74-control). A 

high frequency of Canoparmelia amazonica  is indicative of Plot 2. Plot 6 is marked by a high 

frequency of Bulbothrix fungicola  and Canoparmelia caroliniana, and a low frequency of Chrysothrix 

sp.. Within Plot 1, Group D is differentiated from Group E by a low frequency o f C occocarpia  

imbricascens and an intermediate frequency of Lecanora myriocarpoides.
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Figure 6.11 Dendrogram representing the major divisions of a TWINSPAN classification of the 

samples from Plots 1, 2 and 6. Negative lichen indicator species appear on the left of each 

division and positive lichen indicator species on the right. The number in parentheses after each 

lichen indicator name is a 'pseudospecies' abundance class: classes 1-5, respectively, represent 

lower cut values for percentage frequencies of 20, 40, 60, 80 and 100%.

6.3.3 Analyses of Plots 3, 4 and 5: comparing the effects of early, middle and late 
season bums on lichen species composition

The results of the DCA shows that the first component (1st axis) accounts for 37% of 

the total variance, and the second (2nd axis) for 28%. The sample ordination shows three groups along 

the 1st axis (Figure 6.12). The first group on the right-hand side of the graph is dominated by Plot 4 

(74-92: Het, V, M) samples. The group o f samples on the left-hand side o f the ordination are 

principally of Plot 5 (74-92: Het, V, L). In between these two extremes is another group, where Plot 3 

(74-92: Het, V, E) samples are predominant, although a handful of Plot 4 and Plot 5 samples are 

present. Figure 6.12 also shows that samples are widely scattered on axis 2. However, this spread of 

samples is most apparent on the right-hand side of the graph among the Plot 4 (74-92: Het, V, M) 

samples. This is slightly less evident in the Plot 3 (74-92: Het, V, E) samples, and becomes negligible 

on the left-hand side of the graph within the Plot 5 (74-92: Het, V, L) samples. Where there is this 

dispersion of samples on the second axis, Sclerolobium paniculatum  samples have the highest axis 

values (at the top o f the graph), Caryocar brasiliense and Guapira noxia have lower, intermediate 

values, and Vellozia squamata samples are at the bottom of the graph, with the lowest values.
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Figure 6.12 DCA sample ordination of Plot 3, 4 and 5 using lichen species data. Abbreviations: 

Plot, P; Caryocar brasiliense , C; Guapira noxia, G; Sclerolobium  panicu latum , S; Vellozia  

squamata, V; Quarter on phorophyte, Q.

The species ordination is shown in Figure 6.13. Lichen taxa are widely distributed 

over the first and second axis, though along axis 2 , there is greater clumping of species on the left-hand

side of the graph, than on the right.

Axis 1 of the DCA ordination may reflect fire history, low axis values correlating 

with a high density o f fire patchiness, and high axis values to a low density o f fire patchiness. This

suggests that the lichen composition is least affected by fire in a middle season bum (Plot 4), and most 

affected in a late season bum (Plot 5). Lichen species with high axis values include Chrysothrix  

candelaris, Laurera sp., Bulbothrix sensibilis and Arthothelium  sp. T', and those with low axis values 

comprise Cladonia ochroclora, C. ramulosa, Parmelinopsis jam esii and Hypotrachyna sp. 'C'. There 

is an intermediate density of fire patchiness in the early season bum (Plot 3). Many lichen species 

intermediate axis values, and include Canoparmelia amazonica, C. caroliniana, Bulbothrix fungicola  

and Pyrrhospora russula.

The second DCA axis may express phorophyte specificity. However, the influence of 

this factor may vary according to the degree of fire impact (axis 1). Phorophyte specificity is most 

notable within Plot 4 samples i.e. least affected by fire, and its importance decreases as the impact of 

fire increases (also found in the Plot 1, 2 and 6 ordination - see Section 6.3.2 above). Lichen species 

with high values on axis 2, such as Parmelinopsis minarum, Arthopyrenia sp. '2' and Chrysothrix
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Figure 6.13 DCA lichen species ordination of Plots 3, 4 and 5.

candelaris may prefer Sclerolobium paniculatum, and Coccocarpia imbricascens and Flavoparmelia 

amplexa may favour Vellozia squamata. Arthopyrenia sp, '21 and C. imbricascens were also found to 

relate to the same phorophyte species in the ordination of Plot 1 alone, and Plots 1, 2 and 6 (see 

Sections 6.3.1 and 6.3.2 above). Lichen species with intermediate axis values, such as Bulbothrix  

fungicola  and Canoparmelia amazonica, are most typical of Caryocar brasiliense and Guapira noxia.

Overlays of the sample and species ordination graphs with groups identified by the 

TWINSPAN classification are shown in Figure 6.14 and 6.15 respectively. These groups are arranged 

from right to left along the first axis, suggested to be a variation in fire history. Table 6.3 shows that 

the highest proportion of samples taken to form Group A are from Plot 4 (74-92: Het, V, M), to form 

Group B are from Plot 3 (74-92: Het, V, E), and to form Groups C and D are from Plot 5 (74-92: Het, 

V, L). The groups of lichen species recognised from the classification (see Figure 6.15) suggest that 

Group 1 is specific to Plot 4, Groups 2 and 3 to Plot 3, and Group 4 to Plot 5.
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Figure 6.14 DCA sample ordination of Plots 3, 4 and 5 overlaid by the groups (A-D) identified 
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Figure 6.15 DCA lichen species ordination of Plots 3, 4 and 5 overlaid by the groups (1-4) 

identified by the TWINSPAN classification.
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Table 6.3 The percentages of samples taken from each plot to form the TWINSPAN groups.

P lo t
TW INSPAN group

A B C D

3 12 50 25 13
4 93 0 0 7
5 0 31 38 31

DIVISION 1 :

DIVISION 2 :

DIVISION 3 :

TWINSPAN
Groups:

PLOT Num. 

FIRE
HISTORY:

'Sterile Y ellow  Crust' sp. (1) Canoparmelia 
'Sterile Green Crust’ sp. {1) crozalsiana (2) 
'Sterile W hite Crust' sp .T  (1) Hypotrachyna 
Bulbothrix fungicola (4) sp.’C’ (1)

Bulbothrix isidiza (3) 
Bulbothrix coronata (1)

Cladonia ochroclora (1) 
Lecanora m yriocarpoides (2) 
B uellia  myriocarpa (3)

Graphina sp. (1) 
Chrysothrix sp. (1)

Cladonia ochroclora (1) 
Canoparmelia crozalsiana (3) 
Parm elinopsis sp,'3' (4) 
Cladonia ramulosa (1) 
Pannelinella  versiform is (1)

Group D Group C Group B Group A

Burned in 1992, 
late dry season, 
previously protected 
from fire

Burned in 1992, 
early dry season, 
previously protected 
from fire

Burned in 1992, 
middle dry season, 
previously protected 
from fire

Figure 6.16 Dendrogram representing the major divisions of a TWINSPAN classification of the 

samples from Plots 3, 4 and 5. Negative lichen indicator species appear on the left of each 

division and positive lichen indicator species on the right. The number in parentheses after each 

lichen indicator name is a 'pseudospecies' abundance class: classes 1-5, respectively, represent 

lower cut values for percentage frequencies of 20, 40, 60, 80 and 100%.

The first three divisions in the TWINSPAN classification, and their indicator species 

are shown as a dendrogram in Figure 6.16. At the first division, an intermediate frequency of 

Canoparmelia crozalsiana and a low frequency of Hypotrachyna sp. 'C' separate Plot 4 (74-92: Het, V, 

M) samples from Plot 3 (74-92: Het, V, E) and Plot 5 (74-92: Het, V, L) samples. These two latter
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plots are distinguished by low frequencies of'S terile Yellow Crust' sp., 'Sterile Green Crust' sp. and 

'Sterile White Crust' sp. '1', and a high frequency o f Bulbothrix fungicola. Further divisions show that 

some Plot 3 samples are distinct, with, for example, a high frequency of Buellia myriocarpa (at 

division 2), whereas other samples are related to Plot 5 samples, but later differentiated from them by, 

for example, a high frequency of Canoparmelia crozalsiana and Parmelinopsis sp. '3' (at division 3). 

Characteristic o f Plot 5 samples is a high frequency of Bulbothrix isidiza, and low frequencies of B. 

coronata, Graphina sp. and Chrysothrix sp..

6.4 The variation in frequency of lichen species between plots with different 
fire histories

6.4.1 Frequency variations in lichen species between Plots 1, 2 and 6
Table 6.4 shows the frequency o f each lichen species in Plot 1 (74-control), Plot 2 

(74-91: Horn, H, M) and Plot 6 (86-control), the total number o f occurrences within all three plots and 

the Coefficient o f Variation (CV) for each species. In each plot, the frequency is out of 80 samples. 

Sixteen of the 89 species recorded in these plots were only encountered once, and 67 species have under 

20 occurrences. The rarity of these species limits the significance of frequency differences between 

plots, although it should be noted that there are far greater numbers o f rare species in Plot 1 than in 

Plots 2 or 6 .

O f the species with between 20 and 50 total occurrences, Parmelinella versiformis, 

Lecanora myriocarpoides, Ochrolechia pallescens, Arthopyrenia sp. '1', 'Sterile White Crust' sp. '2', 

Pertusaria sp. '2' and Buellia myriocarpa have the highest CV values (over 100%), with the highest 

frequency in Plot 1 (74-control), a much lower value in Plot 6 (86-control), and a negligible or zero 

value in Plot 2 (74-91: Horn, H, M). The species with total occurrences between 50 and 100 also show 

the same frequency distribution between plots, and include Pyrrhospora russula, Canoparm elia  

crozalsiana and Parmelinopsis sp. '3'. These species have over 70% relative variability between plots. 

Bulbothrix isidiza is the only exception, with equal frequencies in Plots 1 and 6, a lower value in Plot 

2 and a CV of only 39%.

Only three species, C anoparm elia caro lin iana , B ulbothrix  fu n g ico la  and 

Canoparmelia amazonica, have over 100 total occurrences. C. caroliniana has the highest CV, with 

the highest frequency in Plot 1 (74-control), followed by Plot 6 (86-control) and the lowest value in 

Plot 2 (74-91: Horn, H, M). B. fungicola and C. amazonica, on the other hand, have lower CV values, 

and show their highest frequencies in Plot 6, and lowest in Plot 2.

These results suggest that many of the lichen species that occur in high numbers 

show a high sensitivity to differences in fire history between Plot 1 (74-control), Plot 2 (74-91: Horn, 

H, M) and Plot 6 (86-control). This may be due to lichen species-specific adaptations to conditions 

prevalent in areas of different fire histories.
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Table 6.4 The frequency of each lichen species in Plots 1, 2 and 6 , the total number of

occurrences and the Coefficient of Variation (CV).

L ichen species P lo t 1 P lo t 2 P lo t 6 T o ta l CV

Arthothelium  sp. '2' 1.25 0 0 1 173
Bacidia sp. 1.25 0 0 1 173
Bulbothrix apophysata 1.25 0 0 1 173
Bulbothrix sensibilis 1.25 0 0 1 173
Chiodecton sp. 1.25 0 0 1 173
Dimerella sp. 1.25 0 0 1 173
Flavoparmelia caperata 0 0 1.25 1 173
Hypotrachyna velloziae 1.25 0 0 1 173
Lepraria sp. 1.25 0 0 1 173
Medusulina sp. 0 0 1.25 1 173
Physcia albicans 0 0 1.25 1 173
Pyxine daedalea 1.25 0 0 1 173
Pyxine subcinerea 1.25 0 0 1 173
Pyxine sp. 1.25 0 0 1 173
'Sterile White Crust’ sp. '5' 1.25 0 0 1 173
Trypethelium sp. 1.25 0 0 1 173
Buellia sp. 2.5 0 0 2 173
Coccocarpia erythroxili 1.25 0 1.25 2 87
Coccocarpia stellata 2.5 0 0 2 173
Hypotrachyna deglii 1.25 0 1.25 2 87
Hypotrachyna ducalis 2.5 0 0 2 173
Parmotrema gardneri 2.5 0 0 2 173
Parmotrema subisidiosum 0 0 2.5 2 173
Phaeographis sp. 2.5 0 0 2 173
Pyxine physciaeformis 1.25 1.25 0 2 87
Relicinopsis sp. 2.5 0 0 2 173
Usnea sp. 'B' 2.5 0 0 2 173
Cladonia ramulosa 3.75 0 0 3 173
Heterodermia obscurata 2.5 0 1.25 3 100
Lecanora sp. 1.25 0 2.5 3 100
Parmelinopsis jamesii 2.5 1.25 0 3 100
Pertusaria sp. T 3.75 0 0 3 173
Rimeliella subsumpta 3.75 0 0 3 173
Parmotrema dilatatum 3.75 0 1.25 4 115
Parmotrema nylanderi 5 0 0 4 173
Rimelia reticulata 0 0 5 4 173
'Sterile White Crust' sp. '4' 3.75 0 1.25 4 115
Flavoparmelia amplexa 1.25 1.25 3.75 5 69
Letrouitia sp. 5 0 1.25 5 125
Parmotrema mellissii 2.5 0 3.75 5 92
Relicina abstrusa 3.75 0 2.5 5 92
Chrysothrix candelaris 3.75 1.25 2.5 6 50
Coccocarpia dominguensis 6.25 0 1.25 6 132
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Table 6.4 continued

L ichen  species P lo t 1 P lo t 2 P lo t 6 T o ta l CV
Coccocarpia imbricascens 7.5 0 0 6 173
Parmotrema sp. 'A' 5 0 2.5 6 100
'Sterile Green Crust' sp. 3.75 3.75 0 6 87
Hypotrachyna novella 7.5 1.25 0 7 138
Pertusaria sp. '3' 3.75 1.25 3.75 7 49
Canoparmelia wallichiana 10 0 0 8 173
Hypotrachyna sp. 3.75 0 6.25 8 94
Parmelinopsis sp. 3.75 0 6.25 8 94
Hypotrachyna silvatica 10 0 1.25 9 145
Hypotrachyna sp. *C' 6.25 0 5 9 88
Canoparmelia texana 10 0 2.5 10 125
Arthothelium  sp. '1' 11.25 0 2.5 11 129
Myelochroa sp. 6.25 2.5 5 11 42
Parmotrema tinctorum 6.25 1.25 6.25 11 63
Usnea sp. 'A' 7.5 0 7.5 12 87
Bulbothrix coronata 11.25 0 5 13 104
'Sterile Yellow Crust' sp. 10 3.75 2.5 13 74
Cladonia subradiata 7.5 0 10 14 89
Maronina multifera 7.5 3.75 6.25 14 33
'Sterile White Crust' sp. '3' 10 0 7.5 14 89
Haematomma puniceum 16.25 0 3.75 16 128
Hypotrachyna subaffinis 17.5 3.75 0 17 130
Parmelinopsis minarum 18.75 0 2.5 17 144
Arthopyrenia sp. '2' 12.5 0 11.25 19 87
Parmelinella versiformis 21.25 1.25 2.5 20 134
'Sterile White Crust' sp. '1' 11.25 8.75 6.25 21 29
Bulbothrix hypochrae 11.25 2.5 13.75 22 64
Lecanora inyriocarpoides 22.5 3.75 2.5 23 117
Graphina sp. 17.5 0 15 26 87
Chrysothrix sp. 16.25 0 17.5 27 87
Cladonia ochroclora 21.25 1.25 11.25 27 89
Ochrolechia pallescens 31.25 0 5 29 139
Gyalideopsis sp. 25 1.25 11.25 30 95
Parmelinopsis horrescens 26.25 0 16.25 34 94
Arthopyrenia sp. '1' 36.25 2.5 8.75 38 113
Bulbothrix suffixa 23.75 1.25 25 40 80
'Sterile White Crust' sp. '2' 40 0 10 40 125
Pertusaria sp. '2' 38.75 1.25 12.5 42 110
Buellia myriocarpa 43.75 1.25 11.25 45 119
Pyrrhospora russula 53.75 2.5 16.25 58 110
Canoparmelia crozalsiana 40 2.5 31.25 59 80
Parmelinopsis sp. '3' 56.25 10 31.25 78 71
Bulbothrix isidiza 45 20 45 88 39
Canoparmelia caroliniana 70 12.5 51.25 107 66
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Table 6.4 continued.

L ichen species P lo t 1 P lo t 2 P lo t 6 T o ta l CV
Bulbothrix fungicola 48.75 35 82.5 133 44
Canoparmelia amazonica 68.75 55 97.5 111 29

6.4.2 Frequency variations in lichen species between Plots 3, 4 and 5
Table 6.5 shows the frequency of each lichen species in Plot 3 (74-92: Het, V, E), 

Plot 4 (74-92: Het, V, M) and Plot 5 (74-92: Het, V, L), the total number of occurrences within all 

three plots and the Coefficient of Variation (CV) for each species. Out of the 83 species found within 

these plots, 10 are found only once, and 57 have under 20 occurrences. Most of these rare species occur 

in Plot 4.

Among the species with total occurrences between 20 and 50, many have low CV 

values around 50% or below, with only Chrysothrix sp., 'Sterile Green Crust' sp., Hypotrachyna sp. 

'C' and 'Sterile White Crust' sp. 'I* having a CV value above 80%. Chrysothrix sp., 'Sterile Green 

Crust' sp. and 'Sterile White Crust' sp. '1' have their highest frequencies in Plot 4 (74-92: Het, V, M), 

and low comparable values in Plot 3 (74-92: Het, V, E) and Plot 5 (74-92: Het, V, L). Hypotrachyna 

sp. 'C' has its highest frequency in Plot 5, a lower value in Plot 3, and an absence in Plot 4.

O f those with between 50 and 100 total occurrences, the species L eca n o ra  

m yriocarpoides  and Canoparmelia crozalsiana  have the highest CV values of 53% and 71% 

respectively. In L. myriocarpoides, the highest frequency is in Plot 4 (74-92: Het, V, M), followed by 

lower values in Plot 5 (74-92: Het, V, L) and Plot 3 (74-92: Het, V, E) respectively. C. crozalsiana, 

on the other hand, has its highest frequency in Plot 5, and comparable values in Plots 3 and 5. 

Canoparmelia amazonica is the sole species with over 100 total occurrences, and although it has a low 

CV, its highest frequency is in Plot 3, with lower values recorded in Plots 5 and 4 respectively.

These results suggest that many of the lichen species that occur in high numbers do 

not show a significantly high sensitivity to differences in fire history between Plot 3 (74-92: Het, V, 

E), Plot 4 (74-92: Het, V, M) and Plot 5 (74-92: Het, V, L). This suggests that it may be difficult to 

differentiate between areas burned at different times during the dry season using lichens.

6.5 General conclusions
From these results, a number of conclusions are proposed:

1) in the absence of fire, the most important determinant o f lichen species composition is phorophyte 

specificity, followed to a lesser extent by vertical zonation on the trunk. The lichen indicators of 

Vellozia squamata are Coccocarpia dominguensis, C. imbricascens, Parmotrema jam esii and P. 

mellissii. For Caryocar brasiliense and Guapira noxia they include Bulbothrix isidiza, Canoparmelia 

caroliniana, Bulbothrix fungicola, Pyrrhospora russula and Canoparmelia am azonica ; and for 

Blepharocalyx salicifolius and Sclerolobium paniculatum  they are Arthopyrenia sp. '2', Graphina
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Table 6.5 The frequency of each lichen species in Plots 3, 4 and 5, the total number of

occurrences and the Coefficient of Variation (CV).

L ichen species P lo t 3 P lo t 4 P lo t 5 T o ta l CV

Arthonia sp. 0 1.25 0 1 173
Arthothelium  sp. '2' 0 1.25 0 1 173
Coccocarpia erythroxili 0 1.25 0 1 173
Coccocarpia stellata 0 0 1.25 1 173
Parmotrema mellissii 1.25 0 0 1 173
Pertusaria sp. '1' 1.25 0 0 1 173
Porina sp. 0 1.25 0 1 173
Pyxine pungens 0 1.25 0 1 173
Pyxine sp. 0 1.25 0 1 173
Rimeliella subsumpta 0 1.25 0 1 173
Bulbothrix bulbochraeta 2.5 0 0 2 173
Bulbothrix linteolocarpa 0 2.5 0 2 173
Canoparmelia texana 1.25 0 1.25 2 87
Chrysothrix candelaris 0 2.5 0 2 173
Hypotrachyna ducalis 1.25 0 1.25 2 87
Hypotrachyna sp. 0 1.25 1.25 2 87
Laurera sp. 0 2.5 0 2 173
Parmotrema dilatatum 0 2.5 0 2 173
Parmotrema nylanderi 0 2.5 0 2 173
Parmotrema sp, 'A' 1.25 1.25 0 2 87
Pyxine daedalea 0 2.5 0 2 173
Relicina abstrusa 0 1.25 1.25 2 87
Usnea sp. 'A' 1.25 0 1.25 2 87
Dir inaria picta 0 3.75 0 3 173
Heterodermia obscurata 3.75 0 0 3 173
Hypotrachyna deglii 1.25 2.5 0 3 100
Hypotrachyna velloziae 1.25 2.5 0 3 100
Lecanora sp. 1.25 2.5 0 3 100
Parmelinopsis jamesii 0 0 3.75 3 173
Parm elin opsis minarum 3.75 0 0 3 173
Relicinopsis sp. 0 3.75 0 3 173
Buellia sp. 0 1.25 3.75 4 115
Flavoparmelia caperata 1.25 2.5 1.25 4 43
Parmotrema subisidiosum 1.25 3.75 0 4 115
Letrouitia sp. 3.75 0 2.5 5 92
'Sterile White Crust' sp. '3' 0 1.25 5 5 125
Bulbothrix sensibilis 0 7.5 0 6 173
Hypotrachyna novella 0 7.5 0 6 173
Lepraria sp. 0 7.5 0 6 173
Coccocarpia dominguensis 1.25 2.5 5 7 65
Coccocarpia imbricascens 3.75 5 0 7 89
Canoparmelia wallichiana 2.5 6.25 1.25 8 78
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Table 6.5 continued.

L ichen species P lo t 3 P lo t 4 P lo t 5 T o ta l CV
Cladonia ramulosa 1.25 5 3.75 8 57
Pyxine subcinerea 2.5 7.5 1.25 9 88
Arthothelium sp. '1' 0 11.25 1.25 10 148
Arthopyrenia sp. '2 ' 7.5 3.75 1.25 10 75
Hypotrachyna subaffinis 8.75 3.75 0 10 105
Flavoparmelia amplexa 2.5 8.75 2.5 11 79
Parmelinopsis sp. 3.75 1.25 10 12 90
Cladonia subradiata 5 10 1.25 13 81
Pertusaria sp. '3' 1.25 10 5 13 81
Bulbothrix hypochrae 3.75 12.5 2.5 15 87
Myelochroa sp. 5 11.25 2.5 15 72
Parmotrema tinctorum 5 11.25 2.5 15 72
Bulbothrix suffixa 1.25 10 8.75 16 71
Maronina multifera 3.75 15 3.75 18 87
'Sterile Yellow Crust1 sp. 0 21.25 2.5 19 147
Bulbothrix coronata 11.25 8.75 5 20 38
Parmelinella versiformis 12.5 5 7.5 20 46
Graphina sp. 12.5 2.5 11.25 21 62
Chrysothrix sp. 3.75 18.75 5 22 91
'Sterile Green Crust' sp. 6.25 20 3.75 24 88
Parmelinopsis horrescens 10 6.25 17.5 27 51
Gyalideopsis sp. 6.25 12.5 16.25 28 43
Hypotrachyna silvatica 12.5 6.25 18.75 30 50
Haematomma puniceum 7.5 17.5 13.75 31 39
Ochrolechia pallescens 12.5 8.75 20 33 42
Hypotrachyna sp. 'C' 15 0 27.5 34 97
Arthopyrenia sp. '1' 13.75 18.75 11.25 35 26
Cladonia ochroclora 11.25 8.75 23.75 35 55
'Sterile White Crust' sp. '1' 3.75 40 2.5 37 138
'Sterile White Crust' sp. '2' 17.5 15 25 46 27
Lecanora myriocarpoides 10 33.75 23.75 54 53
Pertusaria sp. '2' 15 30 32.5 62 37
Buellia myriocarpa 20 22.5 37.5 64 35
Canoparmelia crozalsiana 21.25 15 55 73 71
Pyrrhospora russula 35 31.25 25 73 17
Canoparmelia caroliniana 38.75 32.5 31.25 82 12
Parmelinopsis sp. '3' 35 23.75 51.25 88 38
Bulbothrix fungicola 37.5 42.5 31.25 89 15
Bulbothrix isidiza 48.75 28.75 42.5 96 26
Canoparmelia amazonica 80 60 72.5 170 14
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sp., Bulbothrix suffixa and Gyalideopsis sp.. Lichen species typical o f phorophyte bases are Cladonia 

subrad ia ta , C. ramulosa and C. ochroclora, and for the higher parts o f phorophytes include 

Hypotrachyna velloziae, Lepraria sp., Parmotrema nylanderi and P. dilatatum;

2) once fire is present in the vegetation, fire history becomes the primary determinant o f the lichen 

species composition. The lichen indicator species (i.e. those species that show a distinct grouping 

within plots o f different fire histories) are:

a) for fire protection, Coccocarpia species, Pyrrhospora russula, Buellia myriocarpa, Lecanora  

myriocarpoides, Parmelinella versiformis, Parmelinopsis horrescens, 'Sterile White Crust' sp. '2', 

Ochrolechia pallescens, Cladonia species and Pertusaria sp. '2';

b) for a rare, but recent, homogeneous fire, Flavoparmelia amplexa, Rimelia reticulata, 'Sterile Green 

Crust* sp., Canoparmelia amazonica and Bulbothrix fungicola;

c) for past frequent fires, but recent protection, Bulbothrix isidiza, B. suffixa, C anoparm elia  

caroliniana, Parmelinopsis sp. '3' and Chrysothrix sp.;

d) for a low density of fire patchiness, Coccocarpia imbricascens, Laurera sp., Chrysothrix candelaris 

and Bulbothrix sensibilis;

e) for an intennediate density of fire patchiness, Haematomma puniceum, Lecanora myriocarpoides and 

Chrysothrix sp.;

f) for a high density of fire patchiness, Canoparmelia amazonica, C. caroliniana, Bulbothrix fungicola  

and B. isidiza;

3) many common lichen species show a high sensitivity to differences in fire history between Plot 1 

(74-control), Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control). This may be due to particular lichen 

species having adaptations to conditions prevalent in areas o f different fire histories. These species 

include Parmelinella versiformis, Lecanora myriocarpoides, Ochrolechia pallescens, Arthopyrenia sp. 

'I ', 'Sterile White Crust' sp. '2', Pertusaria  sp. '2', Buellia m yriocarpa, Pyrrhospora russula, 

Canoparmelia crozalsiana, C. caroliniana, C. amazonica, Parmelinopsis sp. '3' and Bulbothrix  

fungicola',

4) many common lichen species do not show a significantly high sensitivity to differences in fire 

history between Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M) and Plot 5 (74-92: Het, V, L). 

This suggests that it may be difficult to differentiate between areas burned at different times during the 

dry season using lichens.
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Chapter 7
Results III: Lichen population dynamics and fire

ecology

7.1 Introduction

The results presented in the previous chapter clearly demonstrate that species of the 

lichen genus Bulbothrix are commonly found in high abundances, and that they show a variation in 

frequency between plots with different fire histories. This taxon is also one of the primary colonisers 

after fire, and can easily be identified in the field due to the presence of 'bulb-like' nodules on the 

thallus. These characteristics made it an ideal genus to study in depth, and therefore a population study, 

measuring the numbers and sizes o f individuals, was carried out (see Section 4.5). It was hoped that 

any changes in Bulbothrix  populations due to fire histoiy could be incorporated into the LFH Key. 

Measurements took place in Plot 1 (74-control), Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control). 

These plots were chosen because they showed the greatest differences in lichen composition, as outlined 

in the previous chapter. The results of this study are presented in the first part of the chapter.

In the second section of the chapter, various lichen characteristics, such as form and 

reproductive methods, are compared between Plots 1 to 6 . This data was extrapolated from the lichen 

composition study. Finally, the results of the fire behaviour study are presented (see Section 4.6.2), 

This was undertaken in order to reveal how fire temperature and duration, at different heights on the 

phorophyte trunk, affect lichen survival, and subsequent recolonisation.

Where a mean value is presented, the standard error (S.E.) is used to show a 95% 

confidence interval, and is denoted by 'mean + S.E.'.

7.2 The effect of fire history on Bulbothrix  lichen populations

Figure 7.1 shows that the mean percentage frequency of Bulbothrix  individuals in 

Plot 1 (74-control) is significantly higher than in Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control) 

(mean ± S.E.). These latter two plots have almost identical mean frequencies of individuals. They also 

have a higher relative variability of the mean values, particularly Plot 2.

Figure 7.2 shows the percentage frequency of Bulbothrix  individuals in different 

thallus size classes. Here, Plot 1 (74-control) and Plot 6 (86-control) have a similar pattern of 

individuals present in all the classes, having the highest frequencies in the smaller ’< 49 nun2' and '50 - 

149 mm2' thallus size classes. Plot 1, however, has slightly more Bulbothrix individuals within the 

largest class o f > 350 nun2’. In comparison to Plots 1 and 6 , Plot 2 (74-91: Horn, H, M) has higher 

values in the smaller two thallus size classes, but scarcely any Bulbothrix individuals in the larger size 

classes.
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Figure 7.1 The mean percentage frequency of B ulbo thrix  individuals in Plots 1, 2 and 6. The 

Coefficient of Variation (CV) for each plot is shown in brackets, and the vertical bars represent 

the standard error of the mean.

The percentage frequency of Bulbothrix  individuals within different phorophyte 

height classes is shown in Figure 7.3. In Plot 1 (74-control) the highest frequencies of individuals are 

between the base and 0.5 m, and from > 0.5 m to 1 m. In comparison to Plot 1, Plot 2 (74-91: Horn, 

H, M) and Plot 6 (86-control) have the highest proportion of Bulbothrix individuals from > 1.5 to 2 

m. However, Plot 6 shows higher values in the lower height classes than Plot 2 (except in class '> 0.5 

- 1 m').

The percentage frequencies o f different Bulbothrix thallus sizes in Plot 1 (74-control), 

Plot 2 (74-91: Horn, H, M) and Plot 6 (86-control), within various height classes on the phorophytes, 

are displayed in Figures 7.4a-d. From the base to 0.5 m (see Figure 7.4a), the majority of Bulbothrix 

individuals in all the plots, particularly in Plot 2 and Plot 6 , have small sized thalli (< 49 mm2). 

However, although Plot 2 and Plot 6 have some medium sized Bulbothrix individuals (50 -249 mm2), 

only Plot 1 has individuals with thalli > 250 nun2. Between > 0 .5  and 1 m on the phorophyte (see 

Figure 7.4b), the majority o f Bulbothrix individuals in all the plots, particularly in Plot 2, have small 

sized thalli (< 49 mm2). Here, Plot 2 has Bulbothrix individuals with thalli only up to 149 mm2, but 

both Plot 1 and Plot 6 have medium to large sized thalli (> 250 mm2).
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Figure 7.3 The percentage frequency of B ulbothrix  individuals within different height classes 

(m) on the phorophytes.
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Figure 7.4a The percentage frequency of different B ulbothrix  thallus sizes in Plots 1, 2 and 6 
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From > 1 to 1.5 m on the phorophyte (see Figure 7.4c), a high proportion of 

Bulbothrix individuals in all the plots, particularly in Plot 1 (74-control), have small sized thalli (< 49 

mm2). Plot 1 and Plot 6 (86-control) have Bulbothrix individuals present in all the higher thallus size 

classes, and in Plot 6, these are at higher frequencies than was found on the lower sections of the 

phorophyte. Although Plot 2 (74-91: Horn, H, M) has a high proportion of Bulbothrix  individuals 

with medium sized thalli (50 - 149 mm2), at this height range on the phorophyte, there are some 

individuals with thalli up to 349 mm2.

From > 1.5 and 2 m on the phorophyte (see Figure 7.4d), the majority of Bulbothrix 

individuals in all the plots, particularly Plot 2 (74-91: Horn, H, M), have small sized thalli (< 49 

m m 2). Medium to large sized Bulbothrix  individuals (> 50 mm2) are present in both Plot 1 (74- 

control) and Plot 6 (86-control). At this height range on the phorophyte, Plot 6 has a higher 

representation o f these larger thalli than at lower sections o f the phorophyte. Plot 2 only has 

individuals with thalli up to 249 mm2.

7.3 Lichen compositional, morphological and reproductive responses to various 
fire histories

7.3.1 Species richness
In total, 103 lichen species were recorded from the six plots. Figure 7.5 shows the 

numbers of species in Plots 1 to 6. Plot 1 (74-control) has the highest number o f species (84), followed 

by Plot 4 (74-92: Het, V, M) with 76 and Plot 6 (86-control) with 61. Plot 3 (74-92: Het, V, E) and 

Plot 5 (74-92: Het, V, L) have comparable totals o f 59 and 53 respectively, and Plot 2 (74-91: Horn, 

H, M) has the lowest value of only 33. If the total number o f lichen individuals are compared between 

the plots (Figure 7.6), they show a similar pattern. Plot 1 has the greatest total value o f 858 

individuals, followed by Plot 4 with a much lower value of 591, and Plots 5 and 6 with 591 and 525 

respectively. Plot 3 has 467 individuals in total, and Plot 2 has the lowest value of 151.

7.3.2 Lichen families
Figure 7.7a shows the percentage representation of species in relation to lichen family in Plots 

1 to 6. Plot 1 (74-control) and Plot 4 (74-92: Het, V, M) have the greatest frequency o f families (18 

and 17 respectively), Plot 5 (74-92: Het, V, L) and Plot 6 (86-control) have 14, Plot 3 (74-92: Het, V, 

E) has 13, and Plot 2 (74-91: Horn, H, M) only 9. In all the plots, Parmeliaceae is the most diverse 

family. Although it contains over 45% o f the species in Plots 1 and 4, other families including 

Physciaceae, Unknown (which includes all the sterile crust species), Pertusariaceae, Coccocarpiaceae and 

Lecanoraceae, are all well represented. In Plot 2, Parmeliaceae comprises over 50% of the total species. 

Other important families include Unknown, Lecanoraceae and Pertusariaceae, which have greater
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Figure 7.7: a) The percentage representation of species by lichen family in each plot; and b) the 

percentage representation of individuals by lichen family in each plot.
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numbers o f species than in Plot 1. Just under 50% of the species in Plots 5 and 6 are of the 

Parmeliaceae. In both these plots, as in Plot 1, the families Unknown and Lecanoraceae have high 

frequencies of species. However, compared to Plot 1, Plot 5 has greater frequencies of Cladoniaceae and 

Chrysothrichaceae species, whereas in Plot 6, Arthopyreniaceae is more important. Plot 3 has just over 

50% of species of the Parmeliaceae, and a greater proportion of Cladoniaceae species, than in Plot 1.

Figure 7.7b shows the percentage representation of individuals in relation to lichen 

family in Plots 1 to 6. Throughout all the plots, Parmeliaceae has the greatest proportion of lichen 

individuals. In Plot 1 (74-control), it has a 50% occurrence, with Lecanoraceae, Unknown, 

Pertusariaceae and Physciaceae having lower, but significant values. In comparison to Plot 1, Plot 2 

(74-91: Horn, H, M) has over 80% of individuals in the Parmeliaceae family. However, although the 

other families have lower frequencies, Lecanoraceae has a comparable value to Plot 1. 64% of the 

individuals in Plot 3 (74-92: Het, V, E) are of the Parmeliaceae. Here, Lecanoraceae has a similar value 

to Plot 1, but all the other families have lower values. 45% of individuals in Plot 4 (74-92: Het, V, M) 

are of the Parmeliaceae, and there are much higher occurrences in the Lecanoraceae and Unknown 

families compared to Plot 1. In Plot 5 (74-92: Het, V, L), 45% o f the individuals are o f the 

Parmeliaceae. All the other families have lower values than in Plot 1, but among them, the 

Pertusariaceae and Lecanoraceae have higher values. 71% of the individuals in Plot 6 (86-control) are of 

the Parmeliaceae, and all the other families have lower values in comparison to Plot 1. Out of these, 

Lecanoraceae and Unknown have the highest frequencies.

7.3.3 Lichen form
Figure 7.8 shows the percentage representation of species in relation to different 

lichen forms in Plots 1 to 6. There is a consistent pattern in all the plots of higher foliose than crustose 

species, and very few squamulose species, which are absent in Plot 2 (74-91: Horn, H, M). Fruticose 

species are the rarest, with only two species found in total, and these are only present in Plot 1 (74- 

control), Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M) and Plot 6 (86-control). The percentage 

representation of individuals in relation to different lichen forms in Plots 1 to 6 is shown in Figure 

7.9. Here, Plot 1 and Plot 4 have the highest frequencies o f crustose lichens, Plot 3, Plot 5 (74-92: 

Het, V, L) and Plot 6 have lower values, and Plot 2 has the lowest value. Foliose lichens are most 

frequent in Plot 2, less so in Plot 3, Plot 5 and Plot 6, and have the lowest values in Plot 1 and Plot 

4. Squamulose lichens have frequencies comparable between plots, except Plot 2 where they are absent, 

and the fruticose lichens are mostly found in Plot 1 and Plot 6.
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Figure 7.9 The percentage representation of individuals in relation to lichen form in each plot.
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7.3.4 Lichen photobionts
The percentage representation of species in relation to different algal photobionts in 

Plots 1 to 6 is shown in Figure 7.10. Cyanobacterial lichen species are rare but present in all the plots 

except Plot 2 (74-91: Horn, H, M). Most of the lichen species found have Trebouxia algae, and have 

equal values in all the plots. Species with Trentepohlia algae are less frequent, and are slightly less 

represented in Plot 2, Plot 3 (74-92: Het, V, E) and Plot 5 (74-92: Het, V, L) compared to the other 

plots.

The percentage representation of individuals in relation to different algal photobionts 

in Plots 1 to 6 is shown in Figure 7.11. Lichen individuals with Trebouxia algae occur most often and 

have a higher value in Plot 2 (74-91: Horn, H, M) compared to the other plots. Plot 3 (74-92: Het, V, 

E), Plot 5 (74-92: Het, V, L) and Plot 6 (86-control) have comparable values, and Plot 1 (86-control) 

and Plot 4 (74-92: Het, V, M) have the lowest frequencies. Very low frequencies of lichen individuals 

with cyanobacteria are recorded in all the plots, with Plot 1 having the highest value. Lichen 

individuals with Trentepohlia occur most often in Plot 1 and Plot 4, have similar values in Plot 3, 

Plot 5 and Plot 6, and the lowest value in Plot 2.
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Figure 7.10 The percentage representation of lichen species in relation to algal photobiont in 

each plot.
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Figure 7.11 The percentage representation of lichen individuals in relation to algal photobiont 

in each plot.

7.3.5 Lichen reproductive methods
Figure 7.12 shows that in all the plots, there are higher frequencies of species 

reproducing sexually through fruiting bodies, than asexually using vegetative structures. However, 

although the proportion of lichen individuals using sexual reproduction are more or less equal between 

plots, the frequency of individuals employing asexual reproduction is much higher in Plot 2 (74-91: 

Horn, H, M) and Plot 6 (86-control) than in the other plots (Figure 7.13). Both plots also show greater 

frequencies of individuals employing asexual compared to sexual reproduction. Plot 1 (74-control) and 

Plot 4 (74-92: Het, V, M) show the lowest values with asexual reproduction.

a) Lichen vegetative structures

In most o f the plots, there are equal or slightly greater frequencies of species with 

soredia than isidia (Figure 7.14). Plot 2 (74-91: Horn, H, M) and Plot 5 (74-92: Het, V, L) are the 

exception, having slightly more species with isidia than soredia. However, although the frequencies of 

individuals with isidia are greater than those with soredia in all the plots (Figure 7.15). Plot 2, 

followed by Plot 3 (74-92: Het, V, E) and Plot 6 (86-control), have far greater frequencies of lichens
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Figure 7.12 The percentage representation of lichen species in relation to reproductive method in 

each plot.
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Figure 7.13 The percentage representation of lichen individuals in relation to reproductive

method in each plot.
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with isidia than the other plots. Plot 1 (74-control), Plot 4 (74-92: Het, V, M) and Plot 5 have high 

and equivalent values with soredia.

7.4 Fire patterns on phorophyte trunks

Information about fire behaviour was collected from four individual phorophytes of 

the species Caryocar brasiliense, Guapira noxia, Sclerolobium paniculatum  and Vellozia squamata. S. 

paniculatum  and G. noxia were located at one end of the plot, and C. brasiliense and V. squamata at 

the other. Thermocouples were placed at 0.5 m, 1 m and 2 m heights on the phorophyte individuals, 

and 10 minute interval readings began one day before the burn. Ten minutes before the fire, the 

datalogger was set to record every second once a temperature of 50°C was reached, and twenty minutes 

after the fire had passed, the datalogger was set back to record every 10 minutes and continued for the 

following four full days.

Figures 7.16a-c, presented in Appendix 3, show the temperatures attained at the 

different heights on each phorophyte before, during and after the fire. The 2 m thermocouple on C. 

brasiliense failed a few hours before the bum (see Figure 7.16a(i)), but was repaired before the bum. 

The graphs show that there is a diurnal variation of temperatures on phorophyte trunks, with the lowest 

temperatures of between 5 to 10°C during the early morning and peak temperatures o f between 30 to 

50°C around midday (see Figures 7.16a(i)-(iv)). These temperatures quickly rise with the onset o f the 

fire (see Figures 7.16b(i)-(iv)), and the highest temperatures recorded were 542°C (on V. squamata), 

and 555°C (on G. noxia). As the fire passes, the temperatures fall to the normal air temperature, and 

continue to show a typical diurnal pattern of temperatures four days after the fire (see Figures 7.16c(i)-

(iv))-
The temperatures recorded at the different heights on the phorophytes are roughly the 

same during the normal diurnal variation in temperatures. However, during the fire, the difference 

between the various heights become pronounced. In some cases, the highest temperatures are at 0.5 m 

on the phorophyte (C. brasiliense and V. squamata), whereas in others, the highest temperatures are 

recorded at 1 m {S. paniculatum  ) and 2 m (G. noxia). Although these extreme temperatures only last 

for a few seconds, high temperatures of between 50 to 100°C at all the heights on the phorophytes last 

for a couple of minutes. Also worth mentioning is the fact that although S. paniculatum  was 

approximately 2 m away from G. noxia (and the same for the other pair o f phorophytes), both 

individuals registered completely different fire temperatures along the trunk.

7.5 General conclusions

These results showed the following:

1) Bulbothrix populations are greater in numbers within fire protected areas compared to plots which 

have been burned;
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2) Bulbothrix individuals have larger thallus sizes within fire protected areas compared to plots which 

have been burned;

3) in a fire protected area, Bulbothrix individuals are mostly present between the base and 1 m  on the 

phorophyte, and these individuals have a wide range in thallus sizes. In an area frequently burned in the 

past, but recently protected, the majority o f Bulbothrix individuals are present between 1.5 to 2 m on 

the phorophyte, and include many of the larger thallus-sized individuals. In an area subjected to a recent 

rare homogeneous fire, the highest frequency o f Bulbothrix individuals are also present between 1.5 to 

2 m on the phorophyte, most of which have small thallus sizes;

4) the fire protected area has the highest number o f lichen species, families and individuals. Crustose 

lichens are common here, and fruticose lichens are present. Cyanobacterial lichens, and those with the 

Trentepohlia  photobiont, are most abundant in this area, and the majority of lichens have sexual 

reproductive methods;

5) in an area frequently burned in the past but recently protected, there are lower numbers o f species, 

families and individuals compared to an area protected from fire, and although foliose lichens are 

dominant, some fruticose individuals are present. Trebouxia is the most abundant photobiont, and 

vegetative reproduction is prevalent, chiefly through isidia;

6) in an area subjected to a recent rare homogeneous fire, there is a very low species richness, mostly 

confined to the Panneliaceae family. Foliose lichens, and those with the photobiont Trebouxia, are 

predominant, whilst squamulose and fruticose forms are absent. Lichens employing vegetative 

reproduction are very abundant, and this is mostly through isidia;

7) in an area subjected to a recent rare heterogeneous fire there are high species numbers, individuals 

and families, comparable to a fire protected area. Crustose and foliose lichens are dominant, and 

fruticose fonns are also present. However, there may be fewer lichen species with cyanobacteria and 

Trentepohlia. Sexual reproduction occurs in most lichens and vegetative reproduction with soredia is 

common;

8) fire temperatures along a phorophyte trunk are commonly around 200°C and can reach beyond 500°C 

in some cases. These peak temperatures may only last for a few seconds, but readings of between 50 to 

100°C may persist for a couple o f minutes. Temperatures during fires vary at different heights on the 

trunk of an individual phorophyte, vary between similar heights on the trunks o f various phorophytes, 

and are different even between two adjacent individuals.

From these results, a number o f conclusions, which may be important for the 

development o f the LFH Key, are proposed:

a) Bulbothrix populations, in terms o f numbers and distribution on the phorophyte, are affected by fire 

history. Thallus sizes o f Bulbothrix populations also vary with fire history, suggesting that they could 

be used to date fires;

b) lichens have various compositional, morphological and reproductive responses to different fire 

histories;
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c) the heterogeneity o f fire temperatures along a phorophyte trunk may affect the survival and 

recolonisation of lichens.
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Chapter 8 
Theoretical discussion, and development of the 

Lichen Fire History (LFH) Key

8.1 Introduction
The aim of this thesis is to investigate whether corticolous lichens can be used as 

bioindicators of fire history in the cerrado, and to generate a preliminary Lichen Fire History (LFH) 

Key.

This chapter is divided into four main sections. The first discusses the role of various 

small-scale determinants on lichen abundance, distribution and recolonisation. Here, the effect of fire on 

lichens, both directly and indirectly, is analysed in detail. From this, a LFH Key, using lichen 

abundance, distribution and recolonisation is proposed. The second section deals with the effect of 

different determinants on lichen species composition, and outlines the importance of fire. Indicator 

species for different fire histories are discussed in terms of their fire ecology, and from these, a select 

number of lichen species are chosen for the LFH Key. The third section considers the population 

dynamics of the genus Bulbothrix in areas of different fire histories. A LFH Key using the thallus sizes 

of Bulbothrix individuals is presented.

The final version of the LFH Key, incorporating the general characteristics of lichen 

abundance, distribution and recolonisation, the specific indicator species, and Bulbothrix population 

responses, are presented in the fourth, and final section of this chapter. Within this section is an 

appraisal of the LFH Key, summarising its effectiveness and applicability. This section concludes with 

the presentation o f the LFH Key in it’s practical form as a working booklet.

8.2 Towards a LFH Key using general characteristics of lichen abundance, 
distribution and recolonisation (columns A, B and C in Table 8.3)

Although fire may directly influence lichens, it can also indirectly cause a change in 

other small-scale determinants, which in turn will affect lichen populations. Small-scale lichen 

determinants investigated in the present study include: bark substrate characteristics, using bark texture 

and pH; bark age, using phorophyte girth and height; and microclimate, using phorophyte structure i.e. 

height and first branch height.

8.2.1 Absence of fire: the importance of other small-scale determinants
The present study reveals that most phorophytes in a plot protected from fire for over 

20 years has 26 to 50% or over 50% lichen cover (see Figures 8.1a and 8.1b). A large majority of these 

lichens are partially restricted to various parts of the phorophyte, particularly below 1 m, as opposed to 

having a homogeneous distribution. These features of a high lichen abundance, and a degree of vertical
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zonation on the phorophyte trunk i.e. habitat specialisation, are characteristic of the older stages in 

lichen succession (James et a l,  1977), and indicate the long-term fire protection of the area.

In this study, a number of phorophyte species commonly encountered in cerrado  

denso, including Miconia ferruginata, Palicourea rigida, Qualea species, and Vochysia thyrsoidea, are 

found to possess very low lichen abundances compared to other common phorophytes such as 

Sclerolobium paniculatum  and Vellozia squamata. This 'phorophyte specificity' o f lichens is most 

significantly associated with the small-scale determinant bark substrate, which is a combination o f the 

level o f aluminium, the pH, the texture, the water-absorbing and holding capacity, the age, and the 

availability of habitats on the bark.

Many o f the phorophyte species with low lichen abundances accumulate high levels 

o f aluminium in their bark. Da Silva (1990) found that M. ferruginata  contained 12, 510 mg kg-1, P. 

rigida 8,924 mg kg-1 and Q. grandiflora 9,768 mg kg*1 of aluminium in their bark compared to S. 

paniculatum  with only 640 mg kg-1. Aluminium toxicity in the bark of some phorophyte species may 

deter lichen establishment by inhibiting growth and reducing available nutrients, with only those lichen 

species with a tolerance/resistance mechanism being able to survive.

In this study, phorophyte species with a high lichen abundance {Blepharocalyx  

salicifolius, Caryocar brasiliense, Guapira noxia, Sclerolobium paniculatum  and Vellozia squamata) 

have a more acidic bark than species with a low lichen abundance (.Miconia ferruginata, Palicourea 

rigida, Qualea grandiflora, Q. parviflora  and Vochysia thyrsoidea). This finding disagrees with 

previous work in both temperate and tropical regions where lichen abundance increases with pH (James 

et a l,  1977; Marcelli, 1992; Wolseley and Aguirre-Hudson, 1996a). Gradstein (1992), on the other 

hand, stated that there was no significant correlation between epiphytic lichens and bark pH in a wet 

tropical forest on Mount Kinabalu, Borneo. The reason why cerrado denso phorophytes with a high 

lichen abundance have a higher bark acidity may be due to the inter-relationship between pH and 

aluminium levels. A high acidity increases the solubility o f aluminium allowing this metal to be 

leached away. A lower acidity has the opposite effect, resulting in higher aluminium concentrations 

(Killham, 1994). However, evidence for this pH-aluminium relationship comes from soil studies, and 

the presence of a similar relationship in bark is only a hypothesis.

Phorophyte species with 'smooth' and 'rough without crevices' bark textures are 

shown to have higher lichen abundances and a higher proportion o f individuals with partially restricted 

lichen distributions when compared to species with 'rough with crevices' and 'rough with deep crevices' 

bark textures. This may be due to the intimate relationship between bark texture and its moisture- 

absorbing and holding capacity (Brodo, 1974). The 'smooth' bark texture of cerrado denso species is 

characteristically tough and thin-layered. In contrast, the 'rough with deep crevices' bark texture is thick 

and brittle. Therefore, phorophytes with a 'smooth' bark in cerrado denso may retain higher levels of 

water, due to the impervious nature of the bark, and thereby sustain a larger lichen population than the 

soft, thick-barked species, which have a greater bark porosity (Wolseley and Aguirre-Hudson, 1996a).
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The higher moisture levels in smooth-barked phorophytes may also allow a greater diversity of lichens 

to establish along the trunk since water will not be the only limiting factor, and could explain the 

higher proportions of smooth-barked phorophytes with a partially restricted lichen distribution on the 

trunk i.e. greater habitat specialisation.

Significantly higher lichen abundances are found on small-girthed phorophytes in this 

study, compared to large-girthed phorophytes. This may be explained by the occurrence o f many 

phorophyte species, such as Hymenea stigonocarpa, Didymopanax macrocarpum, Guapira noxia, 

Ouratea hexasperma and Vellozia squamata, which are thin-stemmed even though they may be great in 

age (Dulce Rocha, pers. comm., 12/9/94), and may reflect some long-standing bark surfaces. These 

species make up nearly 50% of the phorophyte species in an area protected from fire. In temperate 

forests, the increasing age of a bark substrate is accompanied by an increase in bark pH, favourable for 

the establishment of richer lichen communities (James et a l ,  1977), and in the tropical savanna forests 

o f Thailand, an elevated pH, as well as the ability to retain higher levels of moisture in older bark 

surfaces, were considered the reasons for a high lichen abundance (Wolseley and Aguirre-Hudson, 

1996a). These factors may also be relevant to cerrado denso lichens. It is also possible that aluminium 

levels fall as bark becomes older as a result o f leaching. Older bark surfaces may also explain the 

significantly higher proportions of small-girthed phorophytes found to have lichens with a partially 

restricted and restricted distribution. This confinement of groups o f lichens to certain parts o f the 

phorophyte suggests a habitat preference for a particular microclimatic condition on the trunk as the 

bark ages. However, some of the small-girthed phorophytes with high lichen abundances may be young 

individuals. Wolseley (pers. comm. 21/8/95) suggests that, regardless o f species, the bark of many 

young individuals is relatively thin, which may allow greater water availability from the transpiration 

stream, thereby increasing the abundance o f lichens. The larger proportion o f partially restricted and 

restricted lichen distributions found on young, small-girthed phorophytes may also be due to greater 

available bark moisture, allowing a more diverse population of lichens to invade and establish.

Phorophytes with lower first branches (<0.5 to 0.9 m) are shown to have higher 

proportions of individuals with partially restricted lichen distributions compared to phorophytes with 

higher first branches (1 to 4.9 m), which had higher proportions of individuals with homogeneous 

lichen distributions. This suggests that the structural complexity of phorophytes may provide a greater 

range of available habitats for lichens. According to microclimate, lichens can inhabit specific niches on 

the phorophytes, thereby showing a partially restricted distribution. The phorophytes with a lower 

structural complexity may have fewer habitats present throughout the phorophyte, thereby showing a 

homogeneous lichen distribution.

8.2.2 Summary
Cerrado denso lichen communities are highly influenced by the bark substrate in fire- 

controlled areas. Results from this study indicate that the most important factor controlling lichen
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communities is the level o f aluminium present in bark, although moisture status within various bark 

types and the age o f the bark substrate may also be significant lichen determinants. These factors are 

phorophyte specific, as each phorophyte species will have a unique combination o f bark characteristics. 

This suggests that, as in many other ecosystems, lichens in cerrado denso are commonly phorophyte 

specific as a result o f the conditions prevalent on the phorophyte (Hale, 1983). This phorophyte-lichen 

specificity factor is o f utmost importance for the development o f a LFH Key. So as to eliminate 

changes in lichen abundance and distribution determined by factors other than fire, it is necessary to 

select a few specific phorophyte species for the LFH key. The phorophyte species chosen for the LFH 

Key were Blepharocalyx salicifolius, Catyocar brasiliense, Guapira noxia, Sclerolobium paniculatum  

and Vellozia squamata. These species are common in cerrado denso, have a high lichen abundance, 

and show a variation in lichen abundance between different fire histories. Since the small-girthed 

phorophyte individuals have the greatest lichen abundance, it may be necessary to select only 

individuals of this size range to be used in the LFH Key.

8.2.3 Fire
The results o f this study show that once fire is introduced into cerrado denso 

vegetation, it is overwhelmingly the major factor influencing lichens, with the effect o f other small- 

scale determinants becoming insignificant. No factor other than fire can account for the differences 

found in lichen communities between an area protected from and those subjected to burning. Fire acts 

on lichens in two ways: the heat causes the destruction of the algae and the flames physically destroy 

the fungal body o f the lichen. It is suggested that fire has both a direct and an indirect effect on lichen 

communities. The direct effects on lichens are the immediate death from flame heat and intensity, the 

creation of new habitats for recolonisation, and a change in the nutrient status o f the bark substrate 

through fire by-products. The indirect effects of fire on lichens include an alteration in phorophyte 

density, and therefore microclimate, and a change in the phorophyte species composition.

The present study shows that fire destroys lichens present within the flame zone, but outside 

this, lichens remain unharmed. For example, in an area protected from fire, lichens are present on 

different parts o f the phorophyte trunk according to the microclimate. However, in areas subjected to 

fire, lichens are more commonly found on higher sections o f the phorophyte trunk, above the flames. In 

the cases where a fire is homogeneous with high flame heights, lichens are typically found above 2 m. 

Heterogeneous fires, on the other hand, allow considerable numbers of lichens to escape damage, and in 

some instances, depending on the direction of the flames, the lichens on one side o f a phorophyte are 

completely destroyed, while the lichens on the other side are left unscathed (see Figure 8.1c). The study 

of fire patterns on phorophyte trunks clearly demonstrates the heterogeneous effects o f fire. Temperature 

patterns vary randomly between different heights on the trunk of various phorophytes, and are different 

even between two adjacent individuals. This is probably due to the heterogeneity o f combustible fuels 

at the ground level. A lthough tem peratures o f over 200°C were rarely recorded on the
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Figure 8.1 Lichens in cerrado denso : a) and b) rich lichen communities common in undisturbed 

areas; c) heterogeneous fires cause lichens to be destroyed on one side of the phorophyte, leaving 

healthy individuals on the other; d) lichen recolonisers after fire. (Photos by the author).
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phorophyte trunk, temperatures o f between 50 and 100°C were frequent. Many lichens with dry thalli 

(an adaptation to the dry season) can tolerate temperatures o f up to 100°C without damage to their 

photosynthetic photobionts (Ahmadjian, 1993). These results suggest that the heterogeneity o f flames, 

and a tolerance to heat from common temperatures, may allow many lichens to survive fires unharmed.

The surviving lichen populations readily promote recolonisation, and in this study, 

all the plots subjected to fire show varying degrees of recolonisation depending on their fire history (see 

Section 8.3). Recolonisation may occur through the transportation of propagules in the air and down 

phorophyte trunks by rain during the wet season, or by being actively carried to new habitats by fauna 

(Wolseley and Aguirre-Hudson, 1996b). If  fire is uncommon, the bare burnt bark may be rapidly 

invaded, and secondary succession begins (see Figure 8. Id). But as fire frequency increases, the 'lichen 

source1 i.e. the groups o f older, more established lichens producing greater quantities of propagules 

above the fire zone, may be destroyed. Frequent fires also prevent succession as lichen recolonisers may 

be regularly killed, therefore hindering the establishment of a lichen community within the fire zone. 

Only a select number of invasive 'r-selected' species may be apparent in these zones.

The behaviour of fires will vary, in terms of homogeneity and flame heights, from 

burn to bum. If  the bum is heterogeneous, the effect o f various flame heights could be counteracted by 

the high number o f phorophytes left unharmed. Healthy lichen communities on these undamaged 

phorophytes, and from above the fire zone, promote recolonisation on the burnt bark. A similar 

situation may arise where the fire is homogeneous, with low flame heights. Recolonisation occurs from 

the lichen populations above the fire zone. Alternatively, a complete burn o f high flame heights may 

cause lichen populations in all phorophyte habitats to decline. If  this reaches the point where lichens are 

severely diminished and isolated to the tops of a few scattered phorophytes, recolonisation could 

become very slow or may cease. These areas may then become 'lichen deserts', devoid o f lichens 

(Wolseley and Aguirre-Hudson, 1996b).

The findings of this study indicate that in areas subjected to fire, significantly greater 

numbers of phorophytes with a large girth, high first branch height, and high scorch height have a 

partially restricted lichen distribution. A large girth may allow some lichens on the trunk to escape the 

flames, restricting them to certain parts o f the phorophyte trunk. Phorophytes with a high first branch 

are more likely to be burned evenly below, due to the lack of structural complexity, and so restricting 

lichens to higher parts o f the phorophyte. Higher scorch heights may restrict lichens to high areas 

(usually in the canopy) on the phorophyte.

In this study, most recolonisation after fire occurs on phorophytes with an 

intermediate height, first branch height and scorch height, o f 1 to 2.9 m. This height range may be the 

most accessible for lichens recolonising from above the flames, or it could be that the microclimate on 

these phorophytes e.g. higher light levels, are ideal for invasive species. Phorophytes with small girths 

are found to have the highest amount o f recolonisation. This could be the consequence of two factors. 

Small girthed, but older individuals, may have higher proportions o f lichens in general, and therefore a

2 0 0



greater cover of lichens above the fire zone to aid recolonisation. There is also the fact that a small 

girthed individual is more likely to be burned completely, compared to a larger girthed individual, 

where only one aspect of the phorophyte may be burned. This in turn may make a larger area on a small 

girthed individual available for recolonisation.

The results o f this study also show that phorophytes with 'smooth' bark have the 

greatest amount of lichen recolonisation. These findings are contraiy to previous work. For example, 

Brodo (1974) considered the ease of recolonisation to be pronounced in rough, creviced bark when 

compared to smooth bark. This may be due to the moist microclimate within a crevice allowing lichens 

to survive any change in the environment outside. Wetmore (1983) and Wolseley and Aguirre-Hudson 

(1996b) also observed the survival of lichen thalli between bark fissures during fires, and suggest that 

these lichens aid subsequent recolonisation. The higher moisture availability of smooth bark, which is 

hard and impermeable (Wolseley and Aguirre-Hudson, 1996a), may be the controlling factor for 

recolonisation in the cerrado denso. Also, since lichens will be more easily damaged on smooth bark, 

it may be that the greater area available on this bark surface for invasion after a fire is important.

Each time a fire occurs in the cerrado denso, whether it be occasional or frequent, the 

immediate and direct effects involve the deposition of ash, containing high levels o f nutrients such as 

nitrogen, carbon and sulphur, the production o f particulate matter in smoke (Frost and Robertson, 

1987), and the immediate disappearance of aluminium toxicity for up to 40 days at the soil surface 

(Coutinho, 1982a). As yet no information is available on the effects these processes have on lichen 

populations, although smoke was found to cause eutrophication to lichens in both an urban area of 

Britain (James, 1973), and in a burned oak savanna in North America (Wetmore, 1983). Wolseley and 

Aguirre-Hudson (1996b) demonstrated that the bark pH of the same species did not vary significantly 

between fire-protected and burned areas, and suggested that the following rains may remove any 

particulate matter from trees. In the case of aluminium toxicity, the results o f this study indicate that 

lichens do recolonise burnt bark on aluminium-accumulating phorophyte species, though at a lower 

degree compared to other species. Although there is no data on aluminium levels in bark following a 

fire, it may be possible that aluminium is depressed or nullified, thereby allowing various lichen 

species to invade. Once aluminium begins to increase again, these may be replaced by aluminium- 

tolerant lichen species. However, the low amount o f recolonisation on aluminium-accumulating 

phorophytes lends greater authority to the idea that bark aluminium levels are not markedly reduced 

after a fire, and that the recolonisers are actually those lichen species which are tolerant.

In the fire protected plot o f this study, a high frequency of phorophytes have lichens 

restricted, or partially restricted, to different heights on the phorophyte, particularly to the lower 

sections o f the trunk, near the base. This indicates older stages in lichen succession as microclimate 

changes and habitat specialisation occur. However, all the burned plots o f this study show greater 

homogeneity in lichen distribution, with few or no phorophytes with lichens restricted or partially 

restricted to the lower sections o f trunks. This suggests that lichen succession is limited once fire is
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introduced. Fire has the effect o f opening up cerrado denso vegetation, since phorophytes in the more 

closed forms o f cerrado are less adapted to fire, and therefore more frequently killed than phorophytes 

in the open cerrado  physiognomies (Kauffman et al., 1994). This reduction in cover may directly 

influence the lichen microclimate. However, cerrado denso has a 20 to 50% canopy cover, and densely 

closed areas only occur as patches within the vegetation (Eiten, 1994). Under these dense canopies 

lichens become distributed along the trunk according to bark age and microclimate. Once fire reduces 

the canopy and increases the distance between individuals, insolation and temperatures on bark surfaces 

may increase, causing a reduction in moisture levels and atmospheric humidity within the forest, 

especially during the dry season. The lichens associated with the moist and shady areas (usually at the 

base of phorophytes) and on moist-barked trees may be lost, to be replaced by heliophilous, dry- 

adapted lichens, typical o f the illuminated areas and therefore competitively advantaged, and invasive 'r- 

selected' species, which can colonise a wide range of niches (Rogers, 1988). I f  fire is then prevented, 

secondary succession may begin, and the lichen flora may advance to the state characteristic o f before. 

If, on the other hand, there are subsequent fires, lichen cover may diminish, with only a select number 

of lichen species being able to tolerate the changing conditions.

Results o f the present study show that some fire-adapted phorophytes with thick, 

corky bark (termed 'rough with deep crevices' in this study), such as Qualea grandiflora  and Q. 

parviflora, become more important in burned areas compared to the fire protected area. However, as 

was discovered previously, many o f these thick-barked species, including Q. grandiflora  and Q. 

parviflora, are aluminium-accumulators, and have few lichens. This bark type also has a low water- 

holding capacity (Wolseley and Aguirre-Hudson, 1996a), thereby reducing the numbers o f lichens 

which need high moisture levels. Therefore, an indirect effect o f fire on lichen populations is the 

selection of certain fire-adapted phorophyte species which may pauperise lichen cover.

8.2.4 Summary
Overall, it is concluded that fire alters the conditions for cerrado denso lichen 

populations in the following ways:

1) the death of lichens within the flame zone and the creation of bare bark habitats for recolonisation;

2) a change in bark nutrient levels and aluminium concentrations, which may affect both surviving and 

recolonising lichens;

3) a change in phorophyte density causing microclimatic modifications;

4) the selection of certain fire-adapted phorophyte species which are characterised by a low lichen cover.

The frequency and behaviour o f fire affects the above factors, which in turn determine 

the abundance, distribution and extent o f recolonisation o f lichens on phorophytes. The following 

section integrates these findings for the development o f the LFH Key.

2 0 2



8.3 The LFH Key using lichen abundance, distribution and recolonisation
Fire transforms the lichen environment from a situation where phorophyte species and 

bark age are the most important factors influencing lichen growth (no fire), to the state where the 

frequency and behaviour of fire are of major significance. The type of fire and its frequency can be 

ascertained by the way in which lichen abundance, distribution and recolonisation are affected as a 

consequence of the altered lichen environment. In other words, lichens can 'describe' the fire history of a 

particular site. The basis o f the LFH Key are therefore the following:

1) a high lichen abundance can be attributed to a history of past fire protection, and a low lichen 

abundance to past frequent fires;

2) the homogeneity of a fire and the flame heights attained can be 'described' by the degree of lichen 

restriction to higher sections of the phorophyte;

3) both the frequency and behaviour of a fire can be ascertained by the levels o f recolonisation.

These factors of lichen abundance, distribution and recolonisation are combined to 

give the preliminary LFH Key based on lichen populations (Figures 8.2 and 8.3). In Figure 8.2, the 

Mean Lichen Abundance (MLA) i.e. the mean frequency distribution of the lichen abundance categories 

0 to 4 constructed for this study (see Section 4.3.3e), for each study plot is represented on the x-axis. 

This is used as an indication of fire frequency. Plotted on the y-axis for each study plot is the Spatial 

Index of Fire (SIF), which expresses fire behaviour in tenns of the homogeneity and flame heights of a 

bum. The SIF was calculated from the lichen distribution categories as follows :

Spatial Index of Fire = |(A - an)| + |(B - bn)| + |(C - cn)| + [(D - dn)|

where,

A = constant, frequencies of partially restricted and restricted to base lichen 

distribution in Plot 1.

an = frequencies of partially restricted and restricted to base lichen distribution in Plot 

n.

B = constant, frequencies of partially restricted and restricted from base to 0.9 m 

lichen distribution in Plot 1.

bn = frequencies of partially restricted and restricted from base to 0.9 m lichen 

distribution in Plot n.

C = constant, frequencies of partially restricted and restricted from 1 to 2 m lichen 

distribution in Plot 1.

cn = frequencies of partially restricted and restricted from 1 to 2 m lichen distribution 

in Plot n.

D = constant, frequencies of partially restricted and restricted above 2 m lichen 

distribution in Plot 1.
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dn = frequencies o f partially restricted and restricted above 2 m  lichen distribution in 

Plot n.

Since Plot 1 (74-control) has been protected from fire for over 20 years, each burned 

plot is compared to Plot 1 to see how much departure there is from its partially restricted and restricted 

lichen distribution. The greater the homogeneity and flame heights o f a burned plot, the greater the 

restriction o f lichen populations to higher parts of the phorophyte, and therefore the larger the departure 

from Plot 1 values. For example, for Plot 2 (74-91: Horn, H, M), an = 0, bn= 0, cn= 2 dn= 13. 

Therefore, the SIF is |4-0| + |12-0| + |19-2| + |2-13| = 45. This is a large digression from Plot 1 (which 

has a SIF of 0) indicating high fire homogeneity and flame heights. Plot 3 (74-92: Het, V, E), on the 

other hand, has the values an = 0, bn= 1, cn= 11 dn= 1. The SIF in this case is |4-0| + 112-11 + [19-11| 

+ |2-1| -  24. The lower value indicates greater heterogeneity and lower flame heights for this plot.

Figure 8.3 is the MLA divided by the SIF plotted against the percentage 

recolonisation for each study plot. Table 8.1 shows how various combinations o f MLA, SIF and 

percentage recolonisation can estimate the fire history of an area. The fire histories of the ten plots used 

in this study will now be determined using the LFH Key i.e. Figures 8.2 and 8.3, and Table 8.1, and 

how they correlate with what is known about each plot will be discussed.

4 0 -

3 0 -

oo

2 0 -

1 0 -

0.5 1.0 1.5 2.0 2.5 3.0

MLA

Figure 8.2 The M ean Lichen A bundance (MLA) and Spatial Index of F ire (SIF) for the ten 

plots.
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Figure 8.3 The Mean Lichen Abundance (MLA) divided by the Spatial Index of Fire (SIF), 

plotted against percentage recolonisation for the ten plots.

Fire protection, particularly over a long period of time, leads to an increase in lichen 

abundance and habitat specialisation on phorophytes. This is seen clearly in Plot 1 (74-control), where 

fires have been controlled for over 20 years. Figure 8.2 shows Plot 1 to have an extremely high lichen 

abundance (MLA of 2.84) and an SIF of 0, indicating the absence of fire from this area.

However, the greater presence of lichen communities in the absence of fire is not as 

apparent where fires have been frequent in the past i.e. Plot 6 (86-control). The lower MLA of 2.2 in 

this plot compared to Plot 1 (see Figure 8.2), suggests a greater frequency o f fire. The SIF of 17 

indicates a heterogeneous, low to medium flame height fire, and the high percentage of recolonisation 

(see Figure 8.3) signifies the recent absence of fires. This is in accordance with the known fire history 

of Plot 6. The regularity o f fires in the past has prevented the establishment o f high lichen cover values 

that are characteristic o f fire protection. This is because the time between each fire in the past was 

probably too short to allow any lichen recolonisers to establish. Also, the varying nature of fire e.g. 

homogeneous or heterogeneous, and height of flames, probably eradicated lichens from many habitats 

on the phorophyte, thereby slowing down the process of recolonisation once fire was removed. Still, 

with time, increasing amounts of lichens began recolonising the burnt bark and it is for this reason that 

Plot 6 has the highest percentage recolonisation.
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Table 8.1 The Mean Lichen Abundance (MLA), Spatial Index of Fire (SIF) and percentage 

recolonisation for determining the fire history of an area.

Fire h istory M L A SIF % R ecolonisation

a. Fire protection for over 
20 years

high zero none

b. Rare, heterogeneous 
fire with various flame 
heights

high tow-medium high

c. Rare, homogeneous fire 
with various flame 
heights

low medium-high medium-high

d. Frequent fires, some 
degree of recent protection

medium low-medium medium-high

e. Frequent,
heterogeneous fires with 
various flame heights

medium low-medium low-medium

f. Frequent, homogeneous 
fires with various flame 
heights

low medium-high low-medium

g. Very frequent, 
homogeneous fires with 
various flame heights

very low high low

For Plot 2 (74-91: Horn, H, M), a low MLA of 1.66 points to a moderate fire 

frequency, and a SIF of 45 to a homogeneous, high flamed fire (see Figure 8.2). However, the high 

percentage of recolonisation (over 50%) on Figure 8.3 reveals a degree o f protection in the past. This is 

confirmed by the known fire history, which reveals that Plot 2 has been protected in the past, but 

recently burned. The homogeneous nature o f the fire means that most o f the lichens on the phorophytes 

within reach of the flames will have been destroyed, and therefore few phorophytes have a high lichen 

cover. The lichens which escaped the fire were mostly above the flame height zone, and these 

undamaged communities probably aided rapid and extensive recolonisation on the bare bark below.

Figures 8.2 and 8.3 suggest that in Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, 

M) and Plot 5 (74-92: Het, V, L) fire has been rare and heterogeneous, and of various flame heights. In 

fact, fire has been previously controlled in these plots, and the recent mosaic-like fire probably left 

many phorophytes unharmed, thereby preserving high lichen covers (high MLA values on Figure 8.2). 

This permitted a substantial degree o f recolonisation on bare bark to occur quickly (high percentage 

recolonisation on Figure 8.3). However, most o f the lichen communities at the base o f phorophyte 

trunks were destroyed, and where fire had scorched a phorophyte, the lichens were confined above the 

flame height zone (SIF values between 24 and 26 on Figure 8.2).
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A high MLA of 2.63, together with a high SIF of 34 and only 39% recolonisation, 

signifies that Plot 10 (86-91,93: Het, V, L) has had infrequent, homogeneous and moderately high- 

flamed fires in the past. This area is very similar to Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, 

M) and Plot 5 (74-92: Het, V, L) in terms of fire frequency, but the nature of fire in this area has been 

of a more damaging nature.

The MLA, SIF and percentage recolonisation shown in Figures 8.2 and 8.3 for Plot 7 

(86-91: Horn, H, M), Plot 8 (86-91,93: Horn, H, E) and Plot 9 (86-91,93: Horn, H, M) agree with the 

known fire histories for these areas. Regular fires have been homogeneous and with moderately high 

flame heights in Plot 7 and Plot 8, reducing lichen populations (very low MLA values in Figure 8.2) 

to habitats above the flame height zone (high SIF values). This promoted limited and short-lived 

recolonisation (low percentage recolonisation on Figure 8.3). This has developed into an extreme 

situation in Plot 9, where recurrent homogeneous and high-flamed fires have caused the few lichens 

remaining on the phorophytes to be confined above 2 m (extremely low MLA and high SIF value). 

These are too small in number for any significant recolonisation to take place, and thus 'lichen deserts' 

are evident on the majority of phorophytes (only 1% recolonisation on Figure 8.3).

The timing of a dry season fire does affect lichen communities, although the 

differences between early, middle and late season burns are not as apparent as the overall contrast 

between fire protection and frequent burning. Nevertheless, there are indications from Figures 8.2 and 

8.3 that on the whole, a late season burn (Plot 5) is less favourable to lichens than an early (Plot 3) and 

middle season (Plot 4) burn. This is probably due to the higher flame heights and homogeneity of the 

fire (slightly higher SIF for Plot 5 than Plots 3 and 4 on Figure 8.2), as a result o f the build-up of 

combustible fuels and elevated air temperatures during a late season burn. This fire behaviour causes a 

reduction in lichen abundance (lower MLA than in Plot 3 and Plot 4 on Figure 8.2), and recolonisation 

(only 46% recolonisation compared to 71% and 68% in Plot 3 and Plot 4 respectively - see Figure 

8.3).

It should be noted here that fires during the dry season are largely governed by the 

prevailing environmental factors at the time. It is generally considered that the early season burn (end of 

June/beginning of July) may be subdued because of high moisture levels in the fuel from the end of the 

rainy season. This moisture may have dried by the middle season bum (August), and by the late season 

(September), the fuel is highly combustible. Also, temperatures are usually the highest during the late 

dry season, and humidity the lowest, with winds becoming stronger. These factors all contribute 

towards a more homogeneous fire o f high flame heights in the late season. However, the rains vary 

from year to year, sometimes ending earlier in the rainy season, and at other times beginning earlier in 

the dry season. There are also spells o f occasional rain during the actual dry season, and all these 

variations in climate will determine the nature of a fire. So, although the LFH Key does show 

differences between early, middle and late season burns, this is a response of lichen populations to the
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behaviour of fire during those bums (resulting from the climate and fuel conditions at the time), and 

not necessarily because of the fire timing.

Figures 8.2 and 8.3 reveal how lichen abundance, distribution and recolonisation 

together can be used to give a very good idea of past fire frequency and fire behaviour in an area of 

cerrado denso. From Figure 8.3 it is possible to see more clearly the difference between Plot 2 (74-91: 

Horn, H, M), and Plot 7 (86-91: Horn, H, M), Plot 8 (86-91,93: Horn, H, E) and Plot 9 (86-91,93: 

Horn, H, M). Though they were all burned homogeneously, Plot 2 has a much greater amount o f 

recolonisation, due to the infrequent nature of burns in this area. It is also possible to see the 

differences between Plot 3 (74-92: Het, V, E) and Plot 4 (74-92: Het, V, M), and Plot 5 (74-92: Het, 

V, L), the latter having had a fire o f greater homogeneity and and of higher flame heights.

8.4 Towards a LFH Key using lichen indicator species (columns D, E and F in 
Table 8.3)

Although lichen populations in general are determined by certain substrate and 

environmental conditions, the actual lichen species present in any given area are primarily determined 

by the prevailing climatic conditions and the physiognomy o f the vegetation (Wolseley and Aguirre- 

Hudson, 1996a). One hundred and three species o f lichens were found within the cerrado denso plots 

of this study. This rich cerrado denso lichen flora is characterised by the climate and the high altitude 

of the Distrito Federal, and the structure o f cerrado denso vegetation.

Cerrado regions are subjected to a long dry season, which is accompanied by high air 

temperatures, little rain, and a low humidity. Even though the Distrito Federal has a typical cerrado 

climate, it is distinguished from other cerrado  areas by its location on a high tableland. This high 

altitude o f the Distrito Federal is from 1048 to 1150 m above sea level, and affects the climate, 

especially during the dry season by lowering the humidity to below 15%, and by elevating 

temperatures. These climatic conditions may enforce dormancy on many lichen species during the dry 

season, since inactive dry thalli are able to tolerate high temperatures better than moist thalli (Rogers 

and Stevens, 1981). Morphological adaptations to the dry season, as cited in Wolseley and Aguirre- 

Hudson (1996a), include:

1) a thallus closely appressed to the bark substrate, thereby reducing moisture loss from the underside 

e.g. species of Bulbothrix, Canoparmelia, Hypotrachyna, Parmelinella, Parmelinopsis and Pyxine;

2) the protection of spores with a thickened epithecial layer which is sometimes crystalline preventing 

spore release during the dry season e.g. Haematomma puniceum  and Pyrrhospora russula, or with a 

powdery deposit (pruina) e.g. Lecanora species;

3) protection from high temperatures through lichen compounds such as depsidones e.g. Canoparmelia 

and Parmelinopsis species.

The high altitude of the Distrito Federal also determines the presence of some typical 

montane lichen species in the study plots, most notably o f the genus Hypotrachyna  (Hale, 1975).
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Many of these Hypotrachyna species contain solar radiation, including UV+, screening compounds, 

such as xanthones and usnic acid, which protect the algal partner from the increased levels of solar 

irradiation at high altitudes (Rundel 1978).

Although the cerrado denso has a high density of phorophytes, the different sizes of 

individuals restricts the formation of a continuous canopy cover, and light reaches many areas within 

the vegetation. This may explain the presence of many lichen species typical o f well-lit areas, most 

prominently of the family Parmeliaceae (Swinscow and Krog, 1988), such as species o f the genera 

Bulbothrix and Canoparmelia, common in the study plots.

Within areas o f cerrado denso, lichen communities are governed by the absence or 

occurrence of fire, and along a gradient of increasing fire disturbance. This gradient will also affect 

lichen composition, and determine to what extent other factors, apart from fire, influence lichen species.

8.4.1 General characteristics of the lichen community in the absence of fire
The results of this study indicate that the greatest number o f lichen species and 

individuals are found in fire protected areas of cerrado denso. This may be due to the continuity of the 

vegetation cover over a period of time allowing lichen succession to reach older stages, and particular 

populations o f lichen species to distribute themselves within the vegetation according to their 

environmental needs. The Parmeliaceae family is found to be the most diverse in this study. This may 

be because Parmeliaceae is generally a light loving family (Hale, 1976a), and the insolation levels 

within cerrado denso vegetation are probably sufficient to hold a sizeable community. The fire 

protected area has a lower abundance of Parmeliaceae species, and a greater richness of lichen families, 

compared to the burned plots. This is possibly a result o f the greater amount o f shaded areas restricting 

Parmeliaceae from establishing, and the lack of disturbance allowing a larger range of available habitats 

to form, hence increasing the diversity of lichen families which can establish.

In this study, crustose and squamulose lichens are most abundant in the fire-protected 

area. This may be because many crustose lichens are moisture-dependent and shade tolerant (Wolseley 

and Aguirre-Hudson, 1996a), and so inhabit the denser patches of canopy in fire protected areas. The 

squamulose lichens found in the fire protected plot include species of the genus Cladonia, moisture- 

and shade-loving species characteristic o f phorophyte bases (Ahti, 1986). These lichens have high 

abundances in the fire protected plot probably due to the lack of disturbance, and the denser patches of 

vegetation providing shade and humidity.

The present study shows that cyanobacterial and Trentepohlioid lichens, characteristic 

of humid, shady conditions (Wolseley and Aguirre-Hudson, 1996a), are most abundant in a fire 

protected area o f cerrado denso. The sensitivity of the lichen photobiont to drought or high 

temperatures is critical for the survival o f a lichen thallus (Ahmadjian, 1993). Therefore, the high 

abundance of cyanobacteria and Trentepohlia algae in a fire protected area may be due to the lack of
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disturbance in this area allowing greater patches of dense canopy to establish, under which humidity 

may increase and light levels decrease.

The fire protected plot o f this study has a much higher abundance o f sexually 

reproducing lichen species than asexually reproducing species. This is probably due to the high overall 

abundance o f the lichen community and the lack o f disturbance, allowing many lichens to reach a 

certain stage o f sexual maturity at which reproduction through fruiting bodies ensures successful 

propagation and survival.

8.4.2 Absence of fire and lichen species composition
Multivariate analyses were carried out in order to investigate the factors determining 

lichen composition in a fire protected plot. It is suggested from the DCA ordination that the primary 

determinant o f lichen composition in a fire controlled area is phorophyte specificity. This phorophyte- 

lichen relationship was also found to influence the general characteristics of the lichen community, and 

factors associated with bark substrate are postulated to be the primary determinants (see Section 8.2,1). 

However, for sampling the lichen composition, five phorophyte species with the highest lichen 

abundances and variations in lichen abundance between fire histories were used (see Section 5.10), and 

as a result, the influence o f phorophyte specific factors was reduced. The five phorophytes were 

Blepharocalyx salicifolius, Caryocar brasiliense, Guapira noxia, Sclerolobium paniculatum  and 

Vellozia squamata.

Along the gradient o f phorophyte specificity, three main groups are identified:

1) a V. squamata group, characterised by the lichens Coccocarpia dominguensis, C. imbricascens, 

Parmotrema jamesii, P. mellissii and Cladonia species;

2) a C. brasiliense and G. noxia group, containing the lichens Bulbothrix isidiza, B. fungicola, 

Canoparmelia caroliniana, C. crozalsiana, C. amazonica, Buellia myriocarpa, Pyrrhospora russula 

and Ochrolechia pallescens\

3) a S. paniculatum  and B. salicifolius group, with the lichens Arthopyrenia  sp. ‘2’, Graphina sp., 

Bulbothrix suffixa and Gyalideopsis sp..

There are no obvious differences in bark type along the gradient from V. squamata to 

B. salicifolius. V. squamata, C. brasiliense and B. salicifolius all have rough bark textures, although 

each phorophyte has its own specific bark texture within this 'rough' bark category. S. paniculatum  has 

smooth bark, and G. noxia has 'rough with deep crevices' bark. However, bark moisture, related to 

texture, may play a role in determining lichen species within these phorophytes. Coccocarpia species 

are characteristic o f wet, humid habitats, and their cyanobacterial photobiont is sensitive to drought and 

high temperatures (Arvidsson, 1982). The occurrence of Coccocarpia species on V. squamata therefore 

suggests that this phorophyte may contain higher levels o f bark moisture compared to the other species. 

The smooth bark o f S. paniculatum  may also retain higher quantities o f bark moisture due to the 

impermeable nature o f the bark, yet it has a different lichen composition compared to V. squamata. All
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the phorophytes have different bark pH values. This may partly explain the differentiation of lichen 

species on the phorophytes. For example, the lichen Ochrolechia pallescens is commonly found on 

acid bark in many areas o f Europe (James et a l ,  1977). In this study it is characteristic o f C. 

brasiliense and G. noxia, which have a higher bark acidity than V. squamata. However, B. salicifolius 

has the lowest pH of the five phorophytes, yet O. pallescens is not commonly found on this 

phorophyte. Differences in bark aluminium, nutrient content, presence of resins and bark shedding, may 

also control the lichen compositional units found on each phorophyte species, but no information is 

available to investigate these hypotheses.

The results o f this study suggest that no one bark factor is influencing lichen 

composition in the absence of fire. A range of factors, each to a varying degree within a specific 

phorophyte bark type, probably determine the lichen compositions on the various phorophytes. These 

factors may include bark moisture, pH, small-scale aluminium levels, nutrients, resins and tannins, and 

bark shedding.

Microclimate is suggested to be the second factor affecting lichen communities in an 

area controlled from fire (axis 2 on the DC A ordination graph). This may control which lichen species 

occupy particular parts of the trunk, made apparent by a vertical zonation of lichen species on the 

phorophyte. In this study, the lichen species Cladonia ochroclora, C. subradiata and C. ramulosa, are 

found to occur together at one end of the ordination axis. These species prefer the moist, shady 

conditions prevalent at phorophyte bases (Ahti, 1986). The ordination also indicates that lichen species 

such as Hypotrachyna velloziae, Parmotrema nylanderi and P. dilatatum are characteristic of higher 

sections on the phorophyte trunk (between 1.5 and 2 m). These species are rapid invaders of open, dry 

habitats such as those present on higher parts of phorophytes (Hale, 1975; Swinscow and Krog, 1988). 

Therefore, microclimate (along a gradient from moist and shady to dry and open) may be an important 

determinant of lichen composition in the absence of fire.

8.4.3 General characteristics of the lichen community in the presence of fire
The present study demonstrates that in areas where there has been past fire protection, 

a rare heterogeneous bum will not greatly lower the total number of species, although lichen abundance 

is considerably reduced. This is because although lichen communities are destroyed, thereby lowering 

the abundance of lichens, many phorophytes escape the flames, and on these the diversity of lichen 

species may still be great. In other words, the high diversity of lichens within a phorophyte individual 

allows the number o f lichen species to remain high after a heterogeneous fire. If  the fire is 

homogeneous, a greater proportion of phorophytes are burned, so drastically diminishing both the 

lichen abundance and the species richness. In either case, the number of species may increase again if 

fire is prevented, and regain the level of a fire-protected area. Frequent fires will also lower the total 

number of species and lichen abundance, and depending on the behaviour of the fires, may cause 'lichen
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deserts' on phorophytes. Therefore, although fire reduces species richness and abundance (Wolseley and 

Aguirre-Hudson, 1996b), this depends on fire frequency and homogeneity.

Species o f the family Parmeliaceae are found to have the highest abundance in a 

frequently burned area, and in an area where there has been a rare homogeneous fire. Fire in these two 

areas may have reduced the denser patches of canopy, thereby increasing light and insolation levels, 

ideal conditions for light-loving Parmeliaceae species (Hale, 1976a). Also, many Parmeliaceae species 

have vegetative means of reproduction (Hale, 1976a), aiding rapid colonisation of burnt bark.

Foliose lichens are most common in the burned plots within this study, especially 

where the fire has been homogeneous. Since foliose lichens are typically light demanding (Wolseley 

and Aguirre-Hudson, 1996a), the large decrease in canopy cover after a homogeneous fire may greatly 

increase insolation levels within the vegetation, thus favouring foliose lichens. Squamulose lichens are 

frequent where there has been some fire protection, or a rare heterogeneous fire. However, these are 

absent where the fire has been homogeneous. This may be due to the squamulose lichens in this study 

(species of the genus Cladonia) being characteristic o f phorophytes bases (Ahti, 1986). The results 

show that in comparison to other fire histories, a homogeneous bum affects most phorophytes in an 

area, so destroying the majority o f lichens at the phorophyte bases.

In areas where there has been past frequent burning, or a rare heterogeneous fire, 

lichens with cyanobacteria and Trentepohlia are lowered as a result o f their intolerance to increased 

light levels and temperature, and decrease in moisture (Wolseley and Aguirre-Hudson, 1996a). This 

change in the lichen microclimate is more pronounced in an area subjected to a rare homogeneous fire, 

where no or few cyanobacterial and Trentepohlioid lichens are present. However, this area has the 

greatest abundance of lichens with Trebouxia, which suggests that lichens with Trebouxia algae may 

prefer greater insolation, and be tolerant of dry conditions.

Although the frequency o f lichens employing sexual reproduction is equal between 

plots with varying fire histories, the proportion o f lichens using asexual reproduction is greatest in a 

past frequently burned area and in an area subjected to a rare homogeneous fire. The advantages o f a 

vegetative strategy are greater survival o f propagules (due to their large numbers and because both 

bionts are dispersed together), and rapid invasion of new habitats (Bowler and Rundel, 1975). This is 

highly beneficial in a regularly burned area, where the lichen population may be reduced to the point 

that sexual reproductive methods become non-viable. Invasive r-selected recolonisers after fire may also 

employ vegetative means of dispersal (Rogers, 1990), in order to quickly inhabit large bare surfaces 

produced in areas of frequent burning, and homogeneous fires. In both areas, the altered microclimate, 

characterised by higher temperatures and insolation, may allow vegetative propagules, which have a 

broader ecological amplitude and habitat range, to germinate and establish (Bowler and Rundel, 1975).

Isidiate species are usually considered to be K-selected competitors, whereas sorediate 

species are r-selected ruderals (Rogers, 1990). The high abundance o f isidiate species in a past 

frequently burned area, and in an area subjected to a rare homogeneous fire, is therefore difficult to
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explain. It may be that isidia are more easily dispersed by wind and rain, or that most recolonisation 

after fire is occurring on phorophytes from above the flame height. Isidia are larger and heavier than 

soredia (Bowler and Rundel, 1975), and may therefore determine only local recolonisation down the 

trunk.

8.4.4 Presence of fire and lichen species composition
Two separate ordination and classification analyses were carried out. The first used 

Plot 1 (74-control), Plot 6 (86-control), and Plot 2 (74-91: Horn, H, M). The second ordination 

employed Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, E) and Plot 5 (74-92: Het, V, E).

a) Analyses o f  Plots 1, 2 and 6: the identification o f lichen indicator species 
for fire frequency and behaviour

The first axis of the ordination analysis indicates that the dominant factor affecting 

lichen species may be fire history. Along axis 1, there is a gradient from fire protection (Plot 1 

samples), followed by past frequent fires (Plot 6 samples), through to a recent rare homogeneous fire 

(Plot 2 samples). This suggests that a history of fire occurrence compared to complete fire protection is 

an important element. This is underlined by the dendrogram of the classification divisions, where at the 

first division, Plot 2 is grouped with Plot 6, rather than with Plot 1. It is suggested that the second 

axis o f the ordination is phorophyte specificity, the dominant factor affecting lichens where fire is 

absent. The same lichen species are found to favour certain phorophytes as in the fire protected plot e.g. 

Coccocarpia species and Cladonia ramulosa on Vellozia squamata, and Arthopyrenia  sp. '2' and 

Graphina sp. on Sclerolobium paniculatum. However, the fire history of an area may determine the 

influence o f phorophyte specificity on lichen species. The ordination indicates that phorophyte 

specificity has a significant control on lichens where fire is absent, is less relevant where there has been 

some fire protection after frequent fires, and is insignificant in an area where there has been a recent, rare 

fire. Therefore, once fire is introduced into an area of cerrado denso , it becomes the primary 

determinant affecting lichen communities, with the role of phorophyte specificity decreasing with an 

increase in fire occurrence.

The combination of lichen species found to be indicative, i.e. showing a distinct 

grouping, of a fire protected area include Coccocarpia species, Cladonia species, Pyrrhospora russula, 

Buellia myriocarpa, Lecanora myriocarpoides, Ochrolechia pallescens, Parmelinella versiformis, 

Parmelinopsis horrescens, Pertusaria  sp. '2' and 'Sterile White Crust' sp. '2'. The occurrence of 

Coccocarpia and Cladonia species in a fire protected area of cerrado denso may be due to the constant 

conditions, and higher humidity under the patches o f dense canopy cover (see Section 8.4.2). 

"Pyrrhospora russula, Buellia myriocarpa, Ochrolechia pallescens and Lecanora myriocarpoides 

practically identify the cerrado" (Marcelo Marcelli, pers. comm., 29/6/95), and their occurrence as 

indicators of a fire protected area may be in terms of their abundance. For example, the dendrogram of
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the classification divisions shows that low abundances of P. russula, B. myriocarpa and O. pallescens 

in the burned plots characterise the first division. Therefore, although these species occur in burned 

areas, high abundances of these lichens may be indicative of a fire protected cerrado denso. P. russula, 

B. myriocarpa and L. myriocarpoides are typical o f the well-lit areas within the vegetation, possessing 

coloured fruiting bodies which may protect them from high temperatures and illumination (Wolseley 

and Aguirre-Hudson, 1996a). O. pallescens is also characteristic o f humid habitats (James et al., 1977), 

and may be more frequent in the denser and moister areas o f the vegetation. Parmelinella versiformis 

and Pertusaria sp. '2', together with P. russula, B. myriocarpa, O. pallescens and L. myriocarpoides, 

were found in this study to reproduce only by means o f fruiting bodies. This means that they need 

stable and large populations in order to reproduce, conditions met in areas where fire is absent. 

Parmelinopsis horrescens is more common in illuminated areas (Marcelli, 1993), and 'Sterile White 

Crust' sp. '2' was unidentifiable, so nothing is known about this species. This species was found 

throughout the different plots, and it may be an indicator o f a fire protected area due to its high 

occurrence there.

The combination o f lichen species found to be indicative o f an area subjected to 

frequent fires in the past are Bulbothrix isidiza, B. suffixa, Canoparmelia caroliniana, Parmelinopsis 

sp. ‘3 ’ and Chrysothrix sp.. B. isidiza, B. suffixa and C. caroliniana are all characteristic of well-lit 

areas (Hale, 1976a,b; Marcelli, 1993), and frequent burning in an area would have caused a decrease in 

canopy cover and an increase in light reaching all sections of the vegetation. These species are closely 

attached to the substrate, thereby reducing moisture loss, an adaptation to higher temperatures in more 

insolated areas. B. isidiza, C. caroliniana send Parmelinopsis sp. ‘3 ’ all have dense isidia on their 

thalli, allowing rapid invasion of new habitats (Bowler and Rundel, 1975), and therefore being able to 

quickly and easily colonise bare bark after subsequent fires. C. caroliniana is also abundant in heavily 

polluted areas within Brazilian cities (Marcelo Marcelli, pers. comm., 29/6/95), and so within this 

study it may show high eutrophication of bark surfaces as a result o f past frequent fires. Chrysothrix 

species are also indicators o f eutrophication (Gilbert, 1992), and so Chrysothrix sp. found in this study 

may express eutrophication o f bark surfaces in a frequently burned area.

The dendrogram o f the classification divisions shows that high abundances of 

Canoparmelia caroliniana and Bulbothrix fungicola  and a low abundance of Chrysothrix sp. are 

indicators of the past frequently burned plot. C. caroliniana and Chrysothrix sp. have already been 

discussed. B. fungicola  is characteristically abundant in well-lit areas, and the presence of dense isidia 

on its thallus, allows rapid invasion onto new habitats (Hale, 1976b). The lack o f a dense vegetation 

canopy, and regular bare substrate surfaces in a frequently burned area, are probably the ideal conditions 

for this successful species.

An area where there has been a recent rare homogeneous fire is characterised by a 

combination of the lichen species Bulbothrix fungicola, Canoparmelia amazonica, Flavoparmelia  

amplexa, Rimelia reticulata and 'Sterile Green Crust' sp.. The increase in light within the vegetation
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and the creation of bare bark surfaces after a fire probably allow greater recolonisation of B. fungicola, 

as discussed above. C. amazonica is also indicative of increased light levels, having a thallus closely 

appressed to the bark, and has moderate to dense isidia to aid recolonisation after fire (Hale, 1976a). 

The dendrogram o f the classification divisions shows that high abundances o f C. amazonica  

differentiates the plot subjected to a recent rare homogeneous fire from the other plots. F. amplexa is 

frequent in open, illuminated areas, and also contains usnic acid (Hale, 1976a), which may allow it to 

tolerate high temperatures once a canopy cover is removed by fire. R. reticulata has soredia on its 

thallus, a vegetative means of reproduction which may allow rapid recolonisation after fire. This species 

is also frequently found in disturbed savanna forest areas of northern Thailand (Wolseley and Aguirre- 

Hudson, 1994). The 'Sterile Green Crust' sp. was unidentifiable, so it is impossible to say why it is an 

indicator of an area where there has been a recent rare homogeneous fire.

b) Analyses o f  Plots 3, 4 and 5: the identification o f lichen indicator species 

for fire patchiness

The first axis o f the ordination is suggested to reflect fire history. Since all three 

plots (Plots 3, 4 and 5) were subjected to patchy fires, axis 1 is proposed to show a gradient from a 

low density of fire patchiness (Plot 4 samples), followed by an intermediate density of fire patchiness 

(Plot 3 samples), through to a high density of fire patchiness (Plot 5 samples). The second axis is 

postulated to be phorophyte specificity, with the same lichen species favouring the exact phorophyte 

species, as was found in the fire protected plot (see Section 8.4.2) and above in Section 8.4.4a, Also, 

similar to previous results, the influence of phorophyte specificity on lichen species gradually becomes 

less significant as fire becomes dominant. In these results, the greater the density of fire patchiness, the 

smaller the effect of phorophyte specificity.

The lichen indicator species of a low density of fire patchiness include Coccocarpia 

imbricascens, Bulbothrix sensibilis, Laurera sp. and Chrysothrix candelaris. The occurrence of C. 

imbricascens may be due to the scarcity of disturbance maintaining humid conditions under some 

dense patches o f canopy, as was found in the fire protected plot (see Section 8.4.4a). B. sensibilis is 

frequent in open areas, and only reproduces through fruiting bodies (Marcelli, 1993). It therefore 

probably requires constant conditions to be able to survive. The appearance of Laurera  sp. and 

Chrysothrix candelaris as indicators is difficult to explain due to the lack of literature on these species. 

Laurera species are generally found in well-lit areas (Wolseley and Aguirre-Hudson, 1994), but nothing 

else about its ecology is known. C. candelaris, on the other hand, is characteristic o f eutrophicated 

areas (Gilbert, 1992), and therefore may indicate the occurrence of fire, even if it is just found at a low 

density of fire patchiness.

Lichen indicators o f an intermediate density of fire patchiness are Haematomma  

puniceum, Lecanora myriocarpoides and Chrysothrix sp.. A dendrogram of the classification divisions 

shows that some samples from the plot o f an intermediate density of fire patchiness are common with
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the low density o f fire patchiness samples, and others are common with the high density o f fire 

patchiness samples. This may explain the occurrences of H. puniceum  and L. myriocarpoides, which 

were found to be indicative o f fire protected areas, and C hrysothrix  sp. which is indicative of 

eutrophication due to frequent burning.

A high density of fire patchiness is indicated by Canoparmelia amazonica, C. 

caroliniana, Bulbothrix fungicola  and B. isidiza. All these species were found to be characteristic of 

well illuminated areas and rapid invaders on new habitats. These conditions are probably met where a 

fire has been of a high patch density, thus resulting in a decrease o f phorophyte cover.

8.4.5 Summary: lichen indicators of fire history
Fire histories are a mixture o f varying fire variables, namely the frequency and 

behaviour o f fire. From the results of Section 8.4.4a, possible groups of lichen species indicative of 

fire protection and fire frequency were found. All the plots analysed in Section 8.4.4b, however, were 

subjected to heterogeneous burns. Although the results show that there were lichen groups indicative of 

a low and a high fire heterogeneity, these are less apparent for an intermediate fire heterogeneity. 

Therefore, it is difficult to clearly discriminate between areas not at the extremes in burn density. 

Consequently, lichen indicators can only be used for identifying homogeneously, in contrast to 

heterogeneously, burned areas.

The groups o f lichen species indicative o f fire protection, fire frequency and the 

spatial pattern of fire are identified as the following:

1) fire protected:- Coccocarpia species, Cladonia species, Pyrrhospora russula, Buellia myriocarpa, 

Lecanora m yriocarpoides, Ochrolechia pallescens, Parm elinella versiformis, P arm elinopsis  

horrescens, Pertusaria sp. '2' and 'Sterile White Crust' sp. '2';

2a) low fire frequency:- as in (1), together with Bulbothrix fungicola, B. isidiza, C anoparm elia  

amazonica and C. caroliniana',

2b) high fire frequency:- Bulbothrix fungicola, B. isidiza, B. suffixa, Canoparmelia caroliniana, 

Parmelinopsis sp. '3' and Chtysothrix sp.;

3a) heterogeneous fire with various flame heights:- as in (1), together with Bulbothrix fungicola, B. 

isidiza, Canoparmelia amazonica and C. caroliniana;

3b) homogeneous fire with various flame heights:- Bulbothrix fungicola, Canoparmelia amazonica, 

Flavoparmelia amplexa, Rimelia reticulata and 'Sterile Green Crust' sp..

However, in order to detect more specifically the fire history of an area, it is necessary 

to look at the frequencies o f particular lichen indicator species, rather than just their presence or 

absence. The best lichen indicators of fire history are the species which have a high abundance, and a 

high sensitivity to different fire histories. It is also important that the lichen may be easily identifiable 

in the field. Based on these criteria, the following twelve lichen species were chosen for the LFH Key: 

Parmelinella versiformis; Lecanora myriocarpoides; Ochrolechia pallescens; P arm elinopsis
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horrescens; Cladonia ochroclora; Pertusaria  sp. '2'; Buellia myriocarpa; Pyrrhospora russula; 

Bulbothrix isidiza; Canoparmelia caroliniana; Bulbothrix fungicola; Canoparmelia amazonica.

Based on the changes in frequencies of these twelve lichen species to variations in the 

different fire variables from this study, it is derived that they will deviate in the following ways:

1) fire  influence;

a) fire  protected'.- all twelve species have high frequencies;

b) fire\- Parmelinella versiformis, Lecanora myriocarpoides, Ochrolechia pallescens, Parmelinopsis 

horrescens, Cladonia ochroclora, Pertusaria  sp. '2', Buellia myriocarpa and Pyrrhospora russula 

greatly decrease in frequency, and the other species may become lower or remain the same. The species 

which decrease in frequency due to fire are probably affected by the elimination of shady areas within 

the vegetation e.g. Cladonia ochroclora and the decrease in humidity as temperatures increase e.g. 

Ochrolechia pallescens;

2) low frequency vs high frequency;

a) low frequency offire:- the frequencies of all twelve species become lower. This lower frequency may 

be the result o f the death of all these species within the flame zone, but rapid recolonisation occurs due 

the rarity of fire disturbance;

b) high frequency o f fire:- Bulbothrix fungicola and Canoparmelia amazonica have frequencies higher 

than the fire  protected' plot. Lecanora myriocarpoides and Parmelinella versiformis have extremely 

low values, and all the other species have low values. After each fire, B. fungicola  and C. amazonica, 

both employing vegetative reproduction and preferring increased light levels, quickly invade bare bark. 

As fire frequency increases, the populations o f these two species may increase with a rise in new 

habitats and more areas of the vegetation being subjected to high illumination. Other indicator species 

have low values after repeated fires because the sexual reproductive method o f these species may restrict 

rapid recolonisation, and as the overall abundance of these species declines, few individuals remain for 

recolonisation of bare surfaces. These responses to frequent fires may be accentuated in L. 

myriocarpoides and P. versiformis, thereby giving them veiy low frequencies;

3) spatial pattern o f  fire;

a) heterogeneous, various flam e heights:- the frequencies of all twelve species become lower. This 

lower frequency may be the result o f the death of all these species within the flame zone, but rapid 

recolonisation occurs from the many lichens which may have escaped;

b) homogeneous, various flam e heights:- Bulbothrix isidiza, Canoparmelia caroliniana, Bulbothrix 

fungicola  and Canoparmelia amazonica have intermediate frequencies, and all the other species have 

extremely low values. After a homogeneous fire with varying flame heights, B. isidiza, C. caroliniana, 

B. fungicola  and C. amazonica may rapidly invade the large areas of bare bark as a result of their 

vegetative means of reproduction. This type of fire may also substantially reduce the canopy cover, and 

increase insolation within the vegetation, favourable for B. isidiza, C. caroliniana, B. fungicola  and C.
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amazonica. The other indicator species have low frequencies since their abundance may have been 

dramatically reduced and their sexual reproductive method impedes rapid recolonisation.

8.5 The LFH Key using lichen species
After evaluating the changes in the frequencies o f the twelve lichen indicator species, 

the following indices for fire impact, fire frequency and the spatial pattern of fire are proposed:

1) Fire Impact Index (FII) = N - a

a + 0.5

where,

N = the total frequencies of Parmelinella versiformis, Lecanora myriocarpoides, 

Ochrolechia pallescens, Parmelinopsis horrescens, Cladonia ochroclora, Pertusaria 

sp. ‘2 ’, Buellia myriocarpa and Pyrrhospora russula in a fire protected plot (Plot 1 

of this study).

a = the total frequencies o f Parmelinella versiformis, Lecanora myriocarpoides, 

Ochrolechia pallescens, Parmelinopsis horrescens, Cladonia ochroclora, Pertusaria 

sp. ‘2 ’, Buellia myriocarpa and Pyrrhospora russula in plot n.

For a fire protected plot, the value for the FII will be 0. As the impact o f fire 

increases, the FII will also increase. High values will be obtained for areas which have had either a high 

fire frequency or a homogeneous fire with high flame heights.

2) Fire Frequency Index (FFI) = B f + Ca

Lm + Pv + 0.5

where,

Bf = frequency o f Bulbothrix fungicola

Ca = frequency of Canoparmelia amazonica

Lm = frequency of Lecanora myriocarpoides

Pv = frequency of Parmelinella versiformis

The FFI will be the lowest for a fire protected area, but with the occurrence o f a fire, 

the FFI will increase. The highest values will be obtained for areas where there have been frequent 

burns in the past, but recent protection. However, in areas which have been frequently burned up to the 

present time, the FFI will be low, reaching very low values in areas burned very frequently.

2 1 8



3) Spatial Pattern of Fire Index (SPFI) = Bi + Cc + B f + Ca

Pv + Lm + Op + Ph + Co + Pes + Bm + Pr + 0.5

where,

Bi = frequency of Bulbothrix isidiza 

Cc = frequency of Canoparmelia caroliniana 

B f = frequency of Bulbothrix fungicola 

Ca = frequency of Canoparmelia amazonica 

Pv = frequency of Parmelinella versiformis 

Lm = frequency of Lecanora myriocarpoides 

Op = frequency of Ochrolechia pallescens 

Ph = frequency of Parmelinopsis horrescens 

Co = frequency of Cladonia ochroclora 

Pes = frequency of Pertusaria sp. ‘2 ’

Bm = frequency of Buellia myriocarpa 

Pr = frequency of Pyrrhospora russula

The lowest value for the SPFI will be for a fire protected 

of fire becomes increasingly homogeneous, with higher flame heights, the 

value of SPFI will be for an area which has been burned homogeneously, 

heights.

Therefore, using the frequency values from Table 6.4 (see Section 6.4.1) the fire 

histories for Plots 1 to 6 may be estimated. These values are shown in Table 8.2. For Plot 1 (74-

control), a Fire Impact Index (FII) value is 0, a Fire Frequency Index (FFI) value is 3, and a Spatial

Pattern of Fire Index (SPFI) is 1. The FII clearly indicates that no fires have occurred in this area for a 

long time (over 20 years for this study). The FFI and the SPFI are also low, suggesting fire protection 

in Plot 1. Plot 2 (74-91: Horn, H, M) has an FII value of 21, a FFI value of 16, and a SPFI value of 

10. This indicates a high fire impact, an intermediate fire frequency and a fire of high homogeneity and 

flame heights. This corresponds with the known fire history of this plot o f a rare, homogeneous burn 

with various flame heights. For Plot 3 (74-92: Het, V, E), Plot 4 (74-92: Het, V, M) and Plot 5 (74- 

92: Het, V, L), all the indices have low values, although the FII values indicate that compared to the 

Plot 1 values, fire has occurred in these plots. Out o f these three plots, the indices suggest that Plot 3 

has had the highest fire frequency, fire homogeneity and flame heights, although results from the 

general lichen characteristics indicated that this plot was least affected by fire (see Section 8.3). Plot 6 

(86-control) has a low FII and SPFI value, but a very high FFI value. This suggests that fires have 

been frequent in this area, but they may have been recently controlled. This corresponds with the 

known fire history of Plot 6 i.e. past frequent fires but recent protection.

area. As the spatial pattern 

SPFI will increase. A high 

with extremely high flame
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Table 8.2 The Fire Impact Index (FII), Fire Frequency Index (FFI) and Spatial Pattern of Fire 

Index (SPFI) values for Plots 1 to 6 of this study.

P lo t F II FFI SPFI

1 0 3 1
2 21 16 10
3 1 5 2
4 1 3 1
5 0.4 3 1
6 2 33 4

Therefore, the FII indicates the difference between a fire protected, and a burned plot. 

The FFI for a fire protected area is low, increases where fires have been rare, and is high for an area of 

past frequent fires. The SPFI for a fire protected plot is low, increases where there have been 

heterogeneous fires with various flame heights, increases further where fires have been homogeneous, 

and is high for an area where fire has been homogeneous with high flame heights.

8.6 Towards a LFH Key using the lichen genus Bulbothrix (Table 8.4)
The present study reveals that a population o f the lichen genus Bulbothrix  has a 

higher density of individuals within a fire protected compared to a burned area of cerrado denso. The 

Bulbothrix individuals in a fire protected area are also found to be larger in thallus size, and found on 

all parts of the phorophyte, though more commonly between >1 and 1.5 m. These findings o f a large 

population size, large thallus sizes, and a lichen preference to particular parts o f the phorophyte trunk, 

in a fire protected area, are characteristic o f older stages in lichen succession (James et a l,  1977). The 

continuity o f a fire protected area i.e. lack o f disturbance, allows high abundances o f species to 

establish and persist, and niche specialisation o f particular groups of lichen species on the phorophyte 

trunk. Lichens exhibit radial growth, and a large thallus size represents a long period of continuity of 

the lichen environment (Hale, 1983). Therefore, the abundance of large sized individuals in the 

protected area of this study lends further testimony that there has been no disturbance in that plot.

This study also shows that there is no significant difference in the abundance of 

Bulbothrix  individuals between an area subjected to a rare recent homogeneous fire, and an area 

frequently burned in the past but recently protected. Frequent burning causes a reduction in lichen 

abundance as a consequence of the decrease in the 'lichen source1 i.e. the older lichens which may 

facilitate rapid recolonisation of burned areas, and the isolation of lichens above the flame height zone 

(see Section 8.2.3). This may explain the low proportion of Bulbothrix individuals found in the area 

burned frequently in the past, and the highest occurrence o f individuals between. 1.5 to 2 m on the 

phorophyte trunk. However, recent protection in this plot of past frequent bums accounts for the high 

proportion of large sized Bulbothrix individuals present, and their significant presence at higher levels
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on the phorophyte may reflect the avoidance and survival o f individuals above the flame height zone 

from regular fires.

In an area subjected to a rare recent homogeneous fire, all the lichens within the flame 

zone may have been destroyed, and there is insufficient time since the fire to allow the establishment of 

a population. Also, the homogeneous nature of the fire may have killed many lichens from all sections 

o f the vegetation (see Section 8.2.3), demonstrated by the restriction o f Bulbothrix  individuals to 

between 1.5 to 2 m on the phorophyte trunk. The large proportion o f small sized B ulbo thrix  

individuals in the recently burned area expresses a high degree of recolonisation, which is a result of 

past protection within the area allowing the 'lichen source' to remain and assist propagation.

8.7 The LFH Key using Bulbothrix individuals

Since lichens grow radially, the size of Bulbothrix  individuals can be useful in 

estimating the 'time-since-last-flre'. A ratio o f the smallest to the largest individuals is employed:

'Time-since-last-fire' index = frequency of individuals in thallus size class < 49 mm2

frequency of individuals in thallus size class >250 mm2 + 0.5

Therefore, the higher the index value, the more recent the burn. For the plot protected 

for over 20 years in this study, this index has a value of 6. The plot protected for 8 years has a index of 

8, whereas the recently (3 years ago) burned plot has a index of 154.

8.8 The Lichen Fire History (LFH) Key

The Lichen Fire History (LFH) Key is presented in Tables 8.3 and 8.4. It is 

comprised of indices derived from measurements at three levels: the lichen community, producing the 

Mean Lichen Abundance (MLA), the Spatial Index of Fire (SIF), and the percentage recolonisation; the 

lichen species composition, producing the Fire Impact Index (FII), the Fire Frequency Index (FFI), and 

the Spatial Pattern of Fire Index (SPFI); and the thallus size of Bulbothrix individuals, producing the 

'time-since-last-fire' index.

Although the MLA, SIF and percentage recolonisation are obtained from general 

measurements about the lichen population, they can provide a reasonable estimate of the fire history of 

an area per se. However, the drawback of these indices is that it is difficult to tell whether an area was 

frequently burned in the past, but recently protected, or was protected in the past but subjected to a 

recent, homogeneous fire with varying flame heights. This is because the MLA is considered an index 

of fire frequency. In the case o f past frequently burned plots, recent protection may lead to an increase 

in the overall lichen population (i.e. MLA) through recolonisation from areas which survived the past 

fires, usually high in the phorophyte canopy. This increase in lichen abundance therefore masks the 

history of past fires. In a recent homogeneous burn with various flame heights, the 'intense' nature of
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the burn destroys most o f the lichens within the flame zone, severely reducing the overall lichen 

population. Therefore, in this area, the MLA also indicates that there have been frequent fires.

So, to differentiate between the two scenarios, it is necessary to look at the lichen 

species composition. Using lichen indicator species, the Fire Frequency Index (FFI) can indicate 

whether fires have been frequent in a plot or not, independent o f the nature of the fire, or recent 

protection. This is because particular lichen species have specific responses to frequent fires which does 

not affect the overall lichen community. Lichen indicator species can also give a better idea of the 

nature of past fires in an area than general measurements about the lichen community. For example, in 

this study, plots subjected to rare heterogeneous bums had higher Spatial Index o f Fire (SIF) values 

than a past frequently burned, but recently controlled plot (see Section 8.3). The opposite was found 

for the Spatial Pattern o f Fire Index (SPFI) using lichen indicators. Therefore, the SPFI is a better 

indication of the behaviour of the past frequent bums (more homogeneous with varying flame heights) 

due to the specific responses of indicator lichens, than the SIF which is governed by the general 

characteristic o f lichen distribution.

Although lichen indicators can make a distinction between a homogeneous and a 

heterogeneous bum, it is not possible to distinguish between various degrees of heterogeneous bums 

(see Section 8.4). On the other hand, the general lichen population indices are able to separate out 

heterogeneous burns of various patch densities. This may be because heterogeneous bums haphazardly 

destroy the lichen communities, and so depending on the degree of heterogeneity, the overall lichen 

abundance will vary. The mosaic nature o f bums will also randomly determine which lichen species 

survive. Therefore, although a more heterogeneous bum (i.e. of a higher patch density) will produce 

greater bare areas for recolonisation by 'homogeneous fire1 lichen indicators, it is not possible to 

decipher how many of these lichen species survived the fire. This means that the overall frequencies of 

these indicator lichens will not vary due to the degree of fire heterogeneity, but a result o f the 

randomness of their location within the vegetation, and the direction o f the fire. So, lichen community 

indices are the best indicators for heterogeneous bums.

Thallus size of Bulbothrix individuals is the only indication of the 'time-since-last- 

burn'. This is due to the effect o f fire behaviour on the lichen community and on lichen indicator 

species. A homogeneous burn with various flame heights will reduce the lichen community, and the 

frequencies o f some indicator species, and so show a recent bum. A heterogeneous bum with various 

flame heights will not reduce the lichen community substantially, or the frequencies of some indicator 

species, so will indicate an old burn. Therefore, if  both a homogeneous and heterogeneous bum 

occurred at the same time, each would show a different 'time-since-last-bum'.

Although the 'time-since-last-fire' index does give an estimation of how long ago a 

fire occurred, it is not valid if  the fire occurred more than 10 years ago. Within a period of 8 years, the 

Bulbothrix thalli seem to be almost as large as those undisturbed for over 20 years (see Section 8.7),
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Table 8.4 The LFH Key: the 'time-since-last-fire' index. The values for the index are 

approximations.

Fire history Protected from 

fire for 20 yrs

Last fire 8 

yrs ago

Last fire 5 

yrs ago

Last fire 3 

yrs ago

Last fire 1 to 

2 yrs ago

Index very low 

(6)

low

(8 - <20)

medium 

(20 - <100)

high 

(100 - 200)

very high 

(> 200)

thereby giving similar index values. This may be because species within this genus are fast growing up 

to a number of years, after which growth slows down, so changes in thallus size are not great.

All the indices are necessary for the LFH Key. The more indices used, the more 

accurately can the fire history of an area be determined.

8.8.1 The effectiveness of the LFH Key
Data for the Mean Lichen Abundance (MLA), Spatial Index o f Fire (SIF), and 

percentage recolonisation, indices using general lichen characteristics, can be collected very quickly and 

efficiently, since they rely on measurements taken by eye. For the MLA and SIF, scale measurements 

o f the lichen abundance and distribution respectively were taken. However, this involves a degree of 

subjectivity, as each data recorder will have a personal bias. It is for this reason that the scales in this 

study were kept as concise and simple as possible. There were five levels for the lichen abundance, and 

three levels for the lichen distribution. Although presence/absence data is recorded for percentage 

recolonisation i.e. lichens on scorch, there are difficulties since the recorder has to first decide if  scorch 

is present on the phorophyte. This is particularly problematic on phorophytes with naturally dark 

coloured bark types.

Frequency data on lichen indicator species and measuring the size of a Bulbothrix 

thallus is far more objective. However, although the indicator species were chosen for their easy 

identification, some recorders may still be unable to differentiate between two species of the same 

genus, or have problems with general identification. This problem o f identification may also apply 

when measuring sizes of Bulbothrix individuals.

For the MLA, SIF and percentage recolonisation, 200 phorophytes were sampled. 

Calculations have shown that to obtain reliable results, 150 phorophytes need to be sampled, although 

the larger the sampling number, the better the results. For efficiency, 200 phorophytes are probably an 

ideal amount. Only 20 phorophytes were used for sampling the lichen indicator species, and recordings 

took place at four heights on each phorophyte. This may be a sufficient number, although the estimated 

fire histories would be more reliable if  greater numbers, between 30 to 40 phorophytes were sampled. 

This is also hue for measuring the thallus size of Bulbothrix recolonisers. Small-girthed phorophytes 

(between 5 and 12 cm in diameter) are the most appropriate for sampling.
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8.8.2 The applicability of the LFH Key
Even though the LFH Key has been developed for the Distrito Federal, it may be 

applied to other areas of the cerrado. The Distrito Federal has its own unique community of lichens as 

a result o f the high altitude, but the species chosen as indicators may be commonly found throughout 

the cerrado  region (Marcelo Marcelli, pers. comm., 29/6/95). However, it may be necessary to 

undertake an inventory of the lichen species within other cerrado areas in order to isolate indicator 

species of different fire histories which may be specific to a certain area. The phorophyte species of the 

LFH Key are also common in the denser forms of cerrado vegetation, so may be used throughout the 

cerrado range.

This LFH Key has been developed to detect fire histories only up to 20 years ago, 

but in some areas the fire history may be much longer. Here, the LFH Key may give a rough 

estimation of the fire history. For example, if  an area of cerrado denso has been protected from fire for 

40 years, the LFH key will detect fire protection for 20 years i.e. there has been long-term fire 

protection. However, the LFH will not reflect the true time-scale of the fire history.

Since the LFH Key is based on corticolous lichens, it is constrained to areas of 

cerrado which have a substantial woody presence. This includes the cerradao , cerrado sensu stricto 

and campo cerrado, and any variations or mosaics of these vegetation types.

In areas where other forms of disturbance may have taken place, the LFH Key may 

give false indications. For example, if an area of cerrado denso is cleared for agriculture, this will 

destroy the whole lichen community. However, if later, this same area is abandoned, and the vegetation 

achieves the status of cerrado denso once again, lichens will still be absent due to the death of the 

'lichen source'. I f  fire does not occur in this area after being abandoned, it may be obvious that the 

cause of the 'lichen deserts' is a factor independent of fire. However, if fire does occur, the LFH Key 

will indicate that the 'lichen deserts' were formed due to past frequent, homogeneous fires with high 

flame heights, which is not true.

The LFH Key may be applicable in other areas of the world where fire is a 

determinant of the vegetation. These areas have to contain enough woody individuals to support a 

lichen population, and these lichen populations have to be abundant in order for changes in fire 

histories to be detected. Potential locations include the Mediterranean macchia, the Southern African 

fynbos, the North American chaparal, dry dipterocarp forests of South East Asia, and the Australian 

eucalypt forests.

8.8.3 Suggestions for further research
The work described here provides a means of rapidly assessing the fire history of an 

area, using general measurements about the lichen community, and a select number of lichen indicator 

species, without recourse to elaborate and expensive equipment. However, the development of the LFH 

Key was intended to be exploratory, and is based only on one relatively small area of cerrado denso.
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Other areas, both within the Distrito Federal, and in other cerrado regions, subject to different fire 

regimes, need to be sampled and incorporated into the LFH Key. Further insight is also needed on the 

reliability of the LFH Key by means of long-term monitoring of lichen communities. This may be 

carried out by setting up pennanent plots in areas where fires are recorded or prescribed, and taking 

yearly or biennial measurements o f any changes in the lichen communities.

8.9 Presentation of the LFH Key booklet
The LFH Key in the form o f a working booklet is presented in Appendix 5, 

enclosed at the back o f the thesis. It is divided into three parts: the use of general lichen 

characteristics; the use o f lichen indicator species; and the use of Bulbothrix  thallus sizes. Within 

these sections there are directions on how sampling should be carried out, the number and species of 

phorophyte species needed, and how to measure the different lichen variables. Following this is the 

LFH Key for determining the fire history of an area. At the end of the booklet are the Checksheets for 

each part o f the LFH Key, and the Calculation Sheets. These can be pulled out o f the booklet for 

making multiple copies.

This LFH Key is a simpler version of the one presented in Section 8.8. Identifying 

the lichen indicator species is one of the most difficult aspects of the LFH Key, so in this simple 

version, their number is reduced to only four. By using lichen abundance, distribution and 

recolonisation, a general picture of the fire history of an area can be formed. The four lichen indicators 

are used to estimate the fire frequency, as the general lichen characteristics can sometimes give a false 

indication of fire frequency (see Section 8.8). Thallus sizes of Bulbothrix individuals give the ‘time- 

since-last-fire’.

8.10 Conclusion
This thesis has demonstrated that corticolous lichens can be used effectively to 

indicate the fire history o f an area o f cerrado denso. A Lichen Fire History (LFH) Key has been 

produced using the lichen-indicating characteristics o f abundance, distribution, recolonisation, species 

composition, and thallus size o f individuals within the genus Bulbothrix. This LFH Key is also 

presented in a simpler version as a working booklet to be used in the field. In order to investigate the 

reliability o f the key, and its applicability in other areas of cerrado, long-term monitoring in different 

areas subjected to varying fire regimes needs to be carried out. This research demonstrates that 

corticolous lichens might be successfully employed as indicators of fire history in any area where the 

woody flora and fire are integral components o f the ecosystem. The technique, therefore, is unlikely to 

be limited to savanna formations, but could potentially have world-wide applications.
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Glossary

Adnate: adjoining the surface.

Alga (pi. -gae): a heterogeneous group of eukaryotic unicellular colonial and multicellular organisms of 

simple structure, usually photosynthetic and traditionally included in the plant kingdom.

AUelopathic: the influence or effects (sometimes inhibitory or harmful) of a living organism on other 

nearby organisms.

Apothecium (pi. -cia): fruiting body of the fungal component of a lichen, often cup-shaped and usually 

open above, with the disc exposed.

Areola (pi. -lae): a small area.

Ascus (pi. -ci): sac-like vessel, usually clavate to obovate, containing spores.

B ioindicator: an organism which responds to environmental change, and thereby can provide 

information on both the change and the extent of change.

Bulbate: globose with a narrow, tapering neck.

C4 plants: species of higher plants in which the assimilation of atmospheric CO2 in the photosynthetic 

process is indirect, via the enzyme phosphoenol pyruvate carboxylase in the sheaths surrounding the 

veins of the leaves; the rate of photosynthesis in these plants continues to increase with the intensity of 

the photosynthetic active radiation (PAR) well beyond that normally found in nature.

Cataphylls: simple, scale-like leaves which act as a covering over buds.

Cephalodium (pi. -dia): a body composed of blue-green photobiont cells and fungal hyphae growing 

011 the surface or within the thallus of lichens with a green photobiont.

Chlorophyll: principal photo synthetic pigment of green plants and algae.

Chloroplast: organelle in cytoplasm of all green plants where reactions of photosynthesis take place. 

Cilia: hair-like outgrowths from the margins or upper surface of the thallus.

Coralloid: divided up into many short branches, like coral.

Cortex: a tissue of compacted hyphae, which may appear cellular or fibrous, forming the outer layer of 

the thallus.

Corticate: having a cortex.

Corticolous: growing on the bark of trees 01* shrubs.

Crustose: crust-like, i.e. thallus stretching over and firmly fixed to the substratum by the whole of 

their lower surface, and generally lacking rhizines.

Cyanobacteria (pi. -ium): a blue-green algal photobiont.

Cyphella (pi. -lae): a sharply bounded concave pore, on the underside of the thallus.

Dactyl: finger-like protuberance, bounded by a cortex, often opening at the apex to expose the medulla, 

sometimes producing soredia from the inner surface.

Dichotomous: dividing into two or more equal aims, usually repeatedly and successively.

Disc: exposed upper surface of the hymenimn in an apothecium.
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Dorsiventral: flattened and having upper and lower surface of distinctly different structure.

Dystrophic: inhibiting adequate nutrition.

Ecorticate: without a cortex.

Endolithic: burrowing or existing in a stony substratum.

Endophloedal: part o f the lichen thallus containing the photobiont living inside the bark.

Epithecium (pi. -cia): a lining of cells tightly bound together.

Ephemeral: short-lived.

Epilithic: attached on rocks.

Eutrophic: rich in nutrients.

Exciple: a tissue or tissues containing the hymenium of the apothecium, or forming the walls of a 

perithecium.

Fire history (in this thesis): the combination of fire frequency and fire behaviour (fire homogeneity 

and flame heights) o f recent past fires (up to 20 years ago) in an area of vegetation; more generally - all 

occurrences of past fires in an area.

Foliose: leaf-like, with a distinct upper and lower surface, and larger than the arbitrarily distinguished 

squamulose lobes (up to 5 mm long and wide).

Fruticose: shrubby, with an upright or hanging thallus of a radial structure.

Fungus (pi. -gi): a kingdom of heterotrophic, non-motile, non-photosynthetic and chiefly multicellular 

organisms that absorb nutrients from dead or living tissues.

Globose: approximately spherical.

Hapter: an organ of attachment (of the thallus to the substrate).

Heliophilous: adapted to a relatively high intensity of light.

Heteromerous: (of a layered thallus) having the mycobiont and the photobiont in well-marked layers in 

the thallus.

Holdfast: an expanded often disc-like attachment of thallus to substrate.

Homoiomerous: (of an unlayered thallus) having the mycobiont and the photobiont evenly distributed 

through the thallus.

Hydrophilous: spore propagation through water.

Hygrophilous: inhabiting moist or marshy places.

Hymenium: that part of the fruiting body comprising the asci and the paraphyses.

Hypha (pi. -hae): a filament o f fungal cells.

Hypothallus: a thick layer of hyphae, white to darkly coloured, on the underside of the thallus, often 

projecting beyond it's margins.

Isidium (pi. -dia): a pin-like vegetative propagule bounded by a true cortex, comprising both 

photobiont cells and fungal hyphae, usually concolourous with the upper surface of the thallus. 

K-selected: species selected for their superiority in stable environments, having a slow development, a 

large size and the production of a small number of offspring.
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Laminal: the main body, in contrast to the margins.

Lecanorine: apothecium with a thalline rim around the disc.

Lecideine: apothecium without a thalline rim around the disc.

Lichen: an organism formed from the symbiotic association of certain fungi and a green alga or

cyanobacterium, forming a simple body.

Lirella (pi. -lae): long and narrow apothecium.

Lobe: a division of a foliose or squamulose thallus.

Lumina: internal space within a spore.

Maculae: spotted or blotched patterning on thallus due to uneven distribution of photobiont cells. 

Mazaedium: a powdery mass of spores together with disintegrating asci and paraphyses.

Marginal: on the margins of a thallus.

Medulla: the loose layer of hyphae under the cortex and algal layer.

Mesotrophic: moderate quantity of nutrients.

Microconidium (pi. -dia): non-motile asexual spore.

Mitochondrion (pi. -dria): organelle in cytoplasm of eukaryotic cells, site o f oxidative respiration,

generating ATP i.e. energy.

Muriform: brick wall-like, having transverse and longitudinal septa.

Mycobiont: the fungal partner in the symbiosis that constitutes a lichen.

Oligotrophic: poor in nutrients.

Ostiole: cavity ending in a pore in the papilla or neck of a perithecium or pycnidium.

Paraphyses: hyphae originating from the base of the cavity, usually unbranched and not anastomosed. 

Paraplectenchymatous: a tissue of isodiametric thin-walled fungal cells.

Peltate: shield-shaped.

Pendulous: hanging.

Penicillate: tufted, like a paint brush.

Perennial: persists for several years.

Periclinal: of hyphae, lying in the same plane as the surface.

Perithecium (pi. -cia): fruiting body of the fungal component of a lichen, more or less globose or 

flask-shaped, closed above except for a central (or rarely eccentric) ostiole.

Photobiont: the photosynthesising organism with which a fungus is in symbiosis to form a lichen. 

Phyllidium (pi. -dia): a small vegetative, corticate, scale-like, dorsiventral structure developed at the 

margins or the upper surface of the thallus, narrowed or constricted at the point of attachment. 

Podetium (pi. -tia): lichenised stem-like portion, bearing apothecia.

Prosoplechtenchyma: tissue with elongated longitudinally arranged hyphae (in L.S.).

Pruinose: having a frost-like or flour-like surface covering.

Pseudocyphella (pi. -lae): opening in the cortex of lichens where the medulla is exposed to the air, but 

lacking specialised cells surrounding the cavity.
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Pustule: swelling-like protuberance, formed from the thalline cortex.

Pycnidium (pi. -dia): flask-shaped with ostioles, containing conidiomata, consisting entirely o f fungal 

tissue.

Reticulate: net-like.

Rliizine (pi. -nae): root-like hair or thread, the attachment organ of many foliose lichens, 

r-selected: species typical of variable, unpredictable environments, characterised by a small body size, a 

rapid rate of increase and the production of large quantity of small-sized offspring.

Sclerophylly: condition of having hard leaves, which are resistant to drought through having a thick 

cuticle.

Septation: division into cells or compartments.

Sessile: having no stem, attached directly to the surface.

Soralia: soredia on lamina or margins of thallus in a variety of diffuse, delimited or figurate patterns, 

Soredium  (pi. -dia): a non-corticate combination of photobiont cells and fungal hyphae having the 

appearance of a powdery granule and capable of vegetative reproduction.

S p o re : a uni- or multicellular reproductive structure (asexual or sexual) in fungi, bacteria and 

cryptograms.

S quam ule : a small separate thallus scale or lobe (less than 5 mm long), with or without a lower 

cortex.

Squamulose: made up of squamules.

Squarrose: of branching at right angles, as in rhizines.

S u b e risa tio n : thickening of plant cell walls due to the deposition o f suberin, a waxy substance 

characteristic o f corky tissues.

Sym biosis (adj. sym biotic): a long-lasting association between two or more different species of 

organisms and includes mutualism, in which both symbionts benefit, and parasitism, in which one 

biont benefits at the expense of the other (Ahmadjian and Paracer, 1986).

Sympodial: o f a thallus with a main axis and a succession o f subsidiary lateral branches.

Terete: more or less circular in transverse section.

Term inal: at the ends of lobes.

Thallus (pi. -li): the vegetative part of a lichen.

Tomentum: a dense covering o f entangled and appressed hyphal hairs.
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Appendix 1 
List of phorophyte species found in this study

Family Species Local name Form

Annonaceae Annona coriacea Mart. Araticum Tree
Annona crassiflora Mart. Tree

Apocynaceae Aspidosperma macrocarpon Mart. Peroba-do-campo Tree
Aspidosperma tomentosum Mart. Tree
Hancornia speciosa Gomez. Mangaba Tree

Araliaceae Didymopanax macrocarpum Mandiocao Tree
(Cham. & Schl.)Seem

Bombacaceae Eriotheca pubescens Paineira Tree
(Mart. & Zucc.) Schott & Endl.

Burseraceae Protium ovatum Engl. Subshrub

Caryocaraceae Caryocar brasiliense Camb. Pequizeiro Tree

Chrysobalanaceae Couepia grandiflora Tree
(Mart. & Zucc.) Benth. ex Hook f.
Hirtella grandulosa Spr. Bosta-de-rato Tree

Combretaceae Terminalia brasiliensis Raddi Tree

Compositae Eremanthus glomerulatus Less. Tree
Eremanthus goyazensis Sch. Bip. Subshrub
Piptocarpha rotundifolia Cinzeiro Tree
(Less.) Baker.

Connaraceae Connarus suberosus Planch. Tree
Rourea induta Planch. Shrub

Cunnoniaceae Lamanonia ternata Veil. Cangalheiro Tree

Dichapetalaceae Tapura amazonica Poepp. & Endl. Tree

Dilleniaceae Davila elliptica St. Hil. Sambaibinha Shrub

Ebenaceae Diospyros hispida Tree
DC.(var camporum)

Erythroxylaceae Erythroxylum campestris St. Hil. Subshrub
Erythroxylum suberosum St. Hil. Mercurio-do-campo

Shrub
Erythroxylum tortuosum Mart. Mercurio-do-campo

Shrub

Euphorbiaceae Pera glabrata (Sch.) Baill. Tree

Guttiferae Kielmeyera coriacea Mart. Pau santo Tree
Kielmeyera speciosa St. Hil. Pau santo Shrub
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Family Species Local name Form

Hippocrateaceae Salacia crassifolia (Mart.) G. Don. Bacupari Tree

Icacinaceae Emmotum nitens (Benth.) Miers. Sobro Tree

Laitraceae Aniba sp. Tree
Ocotea pomaderroides Meiss. Mez. 
Ocotea sp.

Canela Tree
Tree

Leguminosae Acosmium dasycarpum (Vog.) 
Yakovl.subsp.dasycarpum Benth.

Chapadinha Tree

Bowdichia virgilioides HBK. Sucupira preta Tree
Copaifera langsdorfii Desf. Pau d ’oleo Tree
Dalbergia miscolobium Benth. Jacarando-do-

cerrado
Tree

Dimorphrandra mollis Benth. Faveira Tree
Enterolobium gummiferum 
(ellipticum) (Mart.) Macb.

Tamboril-do-
cerrado

Tree

Hymenaea stigonocarpa 
Mart, ex Hayne. 
Leguminosae sp. 
Machaerium opacum Vog.

Jatoba-do-cerrado Tree

Tree
Tree

Plathymenia reticulata Benth. Vinhatico Tree
Pterodon pubescens Benth. Sucupira Tree
Sclerolobium paniculatum  Vog. 
var. subvelutinum Benth.

Carvoeiro Tree

Stryphnodendron adstringens 
(Mart.) Coville.

Barbatimao Tree

Vatairea macrocarpa 
(Benth.) Ducke.

Amargosinha Tree

Loganiaceae Strychnus pseudoaquina St. Hil. Quineira Tree

Lytbraceae Lafoensia pacari St. Hil. Pacari Tree

Malpighiaceae Banisteriopsis latifolia 
(A. Juss.) Gates. 
Banisteriopsis malifolia 
(Nees & Mart.) Gates.

Shrub

Shrub

Byrsonima coccolobifolia Kunth. Murici Tree
Byrsonima crassa Nied. 
Byrsonima pachyphylla A. Juss.

Murici Tree
Shrub

Byrsonima verbascifolia (L.) DC. 
Heteropterys brysonimifolia 
Adr.Juss.

Murici Tree
Shrub

Melastomataceae Miconia albicans (Sw.) Triana. 
Miconia ferruginata  DC. 
Miconia pohliana Cogn. 
Miconia stenoscrachys DC.

Shrub
Tree
Shrub
Shrub

Myrsinaceae Myrsine guianensis (Aubl.) 0 . Kuntze. Tree
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Family Species Local name Form

Myrtaceae Blepharocalyx salicifolius 
(H.B.K.) Berg.
Myrcia tomentosa (Aubl.) DC.

Maria preta Tree

Shrub
Psidium aerugineum Berg. 
Psidium pohlianum  Berg.

Araca Shrub
Tree

Nyctaginaceae Guapira graciliflora
(Mart, ex J.A. Schmidt) Lundel.

Tree

Guapira noxia (Netto) Lundel 
Neea theifera Oerst.

Pau-de-lepra Tree
Shrub

Ochnaceae Ouratea hexasperma (St. Hil.) Bail. Tree

Palmae Syagrus comosa (Mart.) Becc. Camargo Shrub
Syagrus flexuosa  (Mart.) Becc. Licuri Shrub

Proteaceae Roupala montana Aubl. Came-de-vaca Tree

Rubiaceae Alibertia concolor (Cham.) Schum. Marmeladinha Shrub
Alibertia edulis (L.C. Rich.). 
A. C. Rich ex DC.
Chomelia ribesioides Benth.

Marmelada Shrub

Shrub
Palicourea rigida H.B.K. Chapeu-de-couro Tree

Sapotaceae Pouteria ramiflora (Mart.) Radik. Curriola Tree
Pouteria torta (Mart.) Radik. Curriola Tree

Styracaceae Styrax ferrugineus Nees & mart. Laranjinha-do-
campo

Tree

Symplocaceae Symplocos lanceolata (Mart.) A.DC. 
Symplocos nitens (Pohl) Benth. 
Symplocos rhamnifolia A.DC.

Tree
Tree
Tree

Velloziaceae Vellozia squamata Mart ex Schult. Canela-de-ema Shrub

Vochysiaceae Qualea dichotoma (Mart.) Warm. Jacare Tree
Qualea grandiflora Mart. Pau terra Tree
Qualea multiflora Mart. Pau terrinha Tree
Qualea parviflora Mart. 
Vochysia elliptica Mart.

Pau terrinha Tree
Tree

Vochysia rufa Mart. Pau doce Tree
Vochysia thyrsoidea Pohl. Gomeira Tree
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Appendix 2 
List of lichen species found in this study

A rthoniaceae
Arthonia Ach. = Arthonia sp.

Arthothelium Massal. -  Arthothelium  sp. ‘1’ and Arthothelium  sp. ‘2 ’

A rthopyreniaceae
Arthopyrenia Massal. = Arthopyrenia sp. ‘1’ and Arthopyrenia sp. ‘2 ’ 

Mycomicrothelia Keissl.

Bacidiaceae
Bacidia De Not. = Bacidia sp.

C andelariaceae
Candelaria Massal. = Candelaria sp.

Chry sotrich aceae
Chrysothrix Mont. = Chrysothrix sp.

Chrysothrix candelaris (L.) Laundon

C ladoniaceae
Cladonia ochroclora Florke 

Cladonia ramulosa (With.) Laundon 

Cladonia subradiata (Vainio) Sandst.

Coccocarpiaceae
Coccocarpia dominguensis Vain.

Coccocarpia erythroxyli (Sprengel) Swinscow & Krog 

Coccocarpia imbricascens Nyl.

Coccocarpia stellata Tuck.

G om phillaceae
Gyalideopsis Vezda = Gyalideopsis sp.

G raphidaceae
Graphina Miill. Arg. = Graphina sp.

Graphis Adans. = Graphis sp.

Medusulina Miill. Arg. = Medusulina sp.
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Sarcographa Fee = Sarcographa sp.

G yalectaceae
Dimerella Trevisan = Dimerella sp.

H aem atom m ataceae
Haematomma puniceum  (Sw.) Mass.

Lecanoraceae
Lecanora myriocarpoides Vain.

Lecidella Korb. = Lecidella sp.

Maronina multifera (W. Nylander) J. Hafellner & R.W. Rogers 

Pyrrhosphora russula (Ach.) Hafellner

Letrouitiaceae
Letrouitia Hafellner & Bellem. = Letrouitia sp.

O pegraphaceae
Chiodecton Ach. = Chiodecton sp.

Parm eliaceae
Bulbothrix apophysata (Hale & Kurokawa) Hale 

Bulbothrix bulbochaeta (Hale) Hale 

Bulbothrix coronata (Fee) Hale 

Bulbothrix fungicola (Lynge) Hale 

Bulbothrix hypocrae (Vainio) Hale 

Bulbothrix isidiza (Nyl.) Hale 

Bulbothrix linteolocarpa M.P. Marcelli 

Bulbothrix sensibilis (Steiner & Zahlbr.) Hale 

Bulbothrix suffixa (Stirton) Hale

Canoparmelia amazonica (W. Nylander) J.A. Elix & M.E. Hale 

Canoparmelia caroliniana (W. Nylander) J.A. Elix & M.E. Hale 

Canoparmelia crozalsiana (M. Bouly de Lesdain) J.A. Elix & M.E. Hale 

Canoparmelia texana (E. Tuckerman) J.A. Elix & M.E. Hale 

Flavoparmelia amplexa (J.Stirton) Hale 

Flavoparmelia subamplexa (Hale) Hale

Hypotrachyna (Vain.) Hale = Hypotrachyna sp. and Hypotrachyna sp. ‘C’ 

Hypotrachyna deglii (Hale) Hale 

Hypotrachyna ducalis (Jatta) Hale
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Parm eliaceae continued.
Hypotrachyna lythgoeana (Dodge) Hale 

Hypotrachyna novella (Vainio) Hale 

Hypotrachyna silvatica (Lynge) Hale 

Hypotrachyna subaffinis (Zahlbruckner) Hale 

Hypotrachyna velloziae (Vainio) Hale 

Myelochroa (Asahina) Elix & Hale = Myelochroa sp.

Parmelinella versiformis (Kremp.) M.P. Marcelli

Parmelinopsis Elix & Hale = Parmelinopsis sp. and Parmelinopsis sp. ‘3’

Parmelinopsis horrescens (Taylor) Elix & Hale

Parmelinopsis jamesii (Hale) Elix & Hale

Parmelinopsis minarum (Vainio) Elix & Hale

Parmotrema Massal. -  Parmotrema sp. ‘A ’

Parmotrema dilatatum (Vainio) Hale 

Parmotrema gardneri (Dodge) Serus.

Parmotrema mellissii (Dodge) Hale 

Parmotrema nylanderi (Lynge) Hale 

Parmotrema subisidiosum (Mull. Arg.) Hale 

Parmotrema tinctorum (Nyl.) Hale

Pseudoparmelia wallichiana (T. Taylor) H. Krog & T.D.V. Swinscow 

Relicina abstrusa (Hale & Kurok.) Hale 

Relicinopsis Elix & Verdon = Relicinopsis sp.

Rimelia reticulata (T. Taylor) Hale & Fletcher 

Rimeliella subcaperata (Kremp.) Kurok.

Rimeliella subsumpta (Nyl.) Kurok.

Usnea Dill, ex Adans. = Usnea sp. ‘A ’ and Usnea sp. ‘B ’

Pertusariaceae
Ochrolechia pallescens (L.) G. Clauzade & C. Roux

Pertusaria DC. = Pertusaria sp. ‘1’, Pertusaria sp. ‘2 ’ and Pertusaria sp. ‘3’ 

Porina Ach. = Porina sp.

Physciaceae
Buellia De Not. = Buellia sp.

Buellia myriocarpa (DC.) De Not 

Dirinaria (Tuck.) Clem. =Dirinaria sp.

Dirinaria picta (Swartz) Clements & Shear 

Heterodermia obscurata (Nyl.) Trevisan
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Physciaceae continued.
Physcia albicans (Pers.) Thoms.

Pyxine Fr. = Pyxine sp.

Pyxine daedalea H. Krog & R. Santesson 

Pyxine physciaeformis (Malme) Imsh.

Pyxine pungens Zahlbr.

Pyxine subcinerea Stirton

Pyrenulaceae
Pannentaria Fee -  Parmentaria sp.

Trapeliaceae
Trapeliopsis Hertel & Gotth. Schneid. = Trapeliopsis sp.

Trypetheliaceae
Laurera Reichenb. = Laurera sp.

Trypethelium Sprengel = Trypethelium sp.

U nknow n
'Sterile Green Crust' sp.

'Sterile White Crust' sp '1'

'Sterile White Crust' sp '2'

'Sterile White Crust' sp '3'

'Sterile White Crust* sp '4'

'Sterile White Crust' sp '5'

'Sterile Yellow Crust' sp.
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Appendix 3 
Figures for Section 7.4
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Figure 7.16a (i) T em peratures on the tru n k  of Caryocar brasiliense before the fire, Reserva 

Ecologica do IBGE, 24-25/11/95.
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Figure 7.16a (ii) Temperatures on the trunk of Guapira noxia before the fire, Reserva Ecologica

do IBGE, 24-25/11/95.
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(iii)  50
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Figure 7.16a (iii) T em peratu res on the tru n k  of Sclerolobium  paniculatum  before the fire, 

Reserva Ecologica do IBGE, 24-25/11/95.
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Figure 7.16a (iv) Temperatures on the trunk of Vellozia squamata before the fire, Reserva

Ecol6gica do IBGE, 24-25/11/95.
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Figure 7.16b (i) Temperatures on the trunk of Caryocar brasiliettse during the fire, Reserva 

Ecologica do IBGE, 25/11/95.
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Figure 7.16b (ii) Temperatures on the trunk of Guapira noxia during the fire, Reserva Ecologica

do IBGE, 25/11/95.
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Figure 7.16b (iii) T em peratures on the tru n k  of Sclerolobium  paniculatum  during  the fire, 

Reserva Ecologica do IBGE, 25/11/95.
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Figure 7.16b (iv) Temperatures on the trunk of Vellozia squamata during the fire, Reserva

Ecol6gica do IBGE, 25/11/95.
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Figure 7.16c (i) T em peratu res on the tru n k  of Caryocar brasiliense  a fter the fire, Reserva 

Ecologica do IBGE, 25-30/11/95.
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Figure 7.16c (ii) Temperatures on the trunk of Guapira noxia after the fire, Reserva Ecologica do

IBGE, 25-30/11/95.
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Figure 7.16c (iii) Temperatures on the trunk of Sclerolobium paniculatum  after the fire, Reserva 

Ecol6gica do IBGE, 25-30/11/95.
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Figure 7.16c (iv) Temperatures on the trunk of Vellozia squamata  after the fire, Reserva

Ecoldgica do IBGE, 25-30/11/95.



Appendix 4 
The fire histories of the ten plots and their 

codes.

A rea P lo t F ire  h isto ry C ode used  in tex t

1 Protected since 1974 (for over 20 
years)

(74-control)

2 Protected since 1974, but 
subjected to a rare middle dry 
season homogeneous fire with 
high flame heights in 1991

(74-91: Horn, H, M)

IBGE - 'let-bum' 
policy until 
1974

3 Protected since 1974, but 
subjected to a rare early dry 
season, heterogeneous fire with 
various flame heights in 1992

(74-92: Het, V, E)

4 Protected since 1974, but 
subjected to a rare middle dry 
season, heterogeneous fire with 
various flame heights in 1992

(74-92: Het, V, M)

5 Protected since 1974, but 
subjected to a rare late dry season, 
heterogeneous fire with various 
flame heights in 1992

(74-92: Het, V, L)

6 Frequently burned until 1986, but 
protected from fire since 1986

(86-control)

7 Frequently burned until 1986, 
subjected to a middle dry season 
homogeneous fire with high 
flame heights in 1991

(86-91: Horn, H, M)

JBB - 'let-bum' 
policy until 
1986

8 Frequently burned until 1986, 
subjected to an early dry season 
homogeneous fire with high 
flame heights in 1991 and 1993

(86-91,93: Horn, H, E)

9 Frequently burned until 1986, 
subjected to a middle dry season 
homogeneous fire with high 
flame heights in 1991 and 1993

(86-91,93: Horn, H, M)

10 Infrequently burned until 1986, 
subjected to a late dry season 
heterogeneous fire with various 
flame heights in 1991 and 1993

(86-91,93: Het, V, L)

Part submission for the degree of Ph.D. 
by Jayalaxshmi Mistry 

Title: Corticolous lichens as potential bioindicators of fire history: a study in the cerrado

of the Distrito Federal, central Brazil.
Department of Geography, School of Oriental and African Studies,

University of London. 1996
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Section B: Calculation sheets
P a r t i
Lichen abundance:-

A.Scale B.Total no, A. x B.
0  

1 

2
3
4

C. Sum:

Mean Lichen Abundance = ___________ C____________ =
(MLA) Total no. o f phorophytes

Lichen distribution:-

D.Scale E.Total no. D. x E.
PRa + Ra F .
PRb + Rb G.
PRc + Rc H.
PRd + Rd I.

Spatial Index o f Fire (SIF) =

|(2 - F.)| + |(6 - G.)| + |(9.5 - H.)| + |(1 - I.)| =

Lichen recolonisation:-

Scale J.Total no.

P

% Recolonisation = J._________  xlOO —
Total no. o f phorophytes



Part II
Lichen indicators >

Total no. o f phorophytes x 4 =  (K.)

Indicators L.Total no. M .=L./K. M x 100
BF 
CA 
LM 
P V

Fire Frequency Index (FFI) = N. + O.
P. + Q. + 0.5

Part III
Bulbothrix individuals

Total no. o f phorophytes x 4 = (R.)

T x  100 

U.

V.

‘Time-since-last-fire’ index ~  U. =
V. + 0.5

Thallus size S.Total no. T .-S ./R .
4 9  m m 2
and below
2 5 0  n u n 2
and above

Z 
O 

et, 
O

'



Field checksheets for Part III

Phorophyte no.
1 2 3 4 5

Height A B C D A B C D A B C D A B C D A B C D

< 49 mm2

> 250 mm2

Phorophyte no.
6 7 8 9 10

Height A B C D A B C D A B C D A B C D A B C D

< 49 mm2

> 250 mm2

Phorophyte no.
11 12 13 14 15

Height A B C D A B C D A B C D A B C D A B C D

< 49 nun2

> 250 mm2

Phorophyte no.
16 17 18 19 20

Height A B C D A B C D A B C D A B C D A B C D

< 49 mm2

> 250 mm2

Phorophyte no.
21 22 23 24 25

Height A | B C D A B C D A B C D A B C D A B C D

< 49 nun2 1

> 250 nun2 1

Phorophyte no.
26 27 28 29 30

Height A B C D A B C D A B C D A B C D A B C D

< 49 nun2

> 250 nun2



Field checksheets for Part II

Phorophyte no. 1 2 3 4 5 6

Height A B C D A B C D A B C D A B C D A B C D A B C D

Lichen

sp.

BF

CA

LM

PV

Phorophyte no. 7 8 9 10 11 12

Height A B C D A B C D A B C D A B C D A B C D A B C D

Lichen

sp.

BF

CA

LM

PV

Phorophyte no. 13 14 15 16 17 18

Height A B C D A B C D A B C D A B C D A B C D A B C D

Lichen

sp.

BF

CA

LM

PV

Phorophyte no. 19 20 21 22 23 24

Height A B C D A B C D A B C D A B C D A B C D A B C D

Lichen

sp.

BF

CA

LM

PV

Phorophyte no. 25 26 27 28 29 30

Height A B C D A B C D A B C D A B C D A B C D A B C D

Lichen

sp.

BF

CA

LM

PV



Field checksheets for Part I

Phorophyte no.

Abundance

Distribution

Recolonisation

Phorophyte no.

Abundance

Distribution

Recolonisation

Phorophyte no.

Abundance

Distribution

Recolonisation

Phorophyte no.

Abundance

Distribution

Recolonisation

Phorophyte no.

Abundance

Distribution

Recolonisation


