
Università degli Studi di Genova

SCUOLA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Electron quantum optics at fractional
filling factor: minimal excitation states

and interferometry

Thesis for the Doctoral degree in Physics

March 2018

PhD candidate Luca Vannucci

Supervisor Prof. Maura Sassetti
External supervisor Dr. Dario Ferraro (IIT)

Referee Prof. Fabrizio Dolcini (Politecnico di Torino)
Referee Prof. Thomas Schmidt (Uni. Luxembourg)



2



Contents

Introduction 7

1 Noise in mesoscopic physics 11

1.1 “The noise is the signal” . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Thermal noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Partition noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Two particle interferometry . . . . . . . . . . . . . . . . 18

1.5 An introduction to the scattering matrix formalism . . . . . . . 23

1.6 Experiments on shot noise . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Tunnel junctions . . . . . . . . . . . . . . . . . . . . . . 29

1.6.2 Conductance and noise of a quantum point contact . . . 29

1.7 Photoassisted shot noise . . . . . . . . . . . . . . . . . . . . . . 33

1.7.1 Tien-Gordon model . . . . . . . . . . . . . . . . . . . . . 33

1.7.2 Floquet scattering matrix . . . . . . . . . . . . . . . . . 35

2 Electron quantum optics 39

2.1 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Berry phase and topology . . . . . . . . . . . . . . . . . 43

2.1.2 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Electron quantum optics . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Single-electron sources . . . . . . . . . . . . . . . . . . . 48

2.2.2 The leviton . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3 Experimental evidence . . . . . . . . . . . . . . . . . . . 52

2.3 Towards electron quantum optics at fractional filling factor . . . 55

2.3.1 The fractional quantum Hall effect . . . . . . . . . . . . 55

2.3.2 Measuring a fractional charge . . . . . . . . . . . . . . . 57

2.3.3 Anyons and fractional statistics . . . . . . . . . . . . . . 60

2.3.4 Electron quantum optics with fractional states . . . . . . 61

3



Contents

3 Minimal excitations at fractional filling factor 63
3.1 Edge state theory of the FQHE . . . . . . . . . . . . . . . . . . 63
3.2 Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Voltage pulse sources and equations of motion . . . . . . . . . . 74

3.3.1 Infinitely long voltage contacts . . . . . . . . . . . . . . . 78
3.3.2 Finite-length contacts . . . . . . . . . . . . . . . . . . . 79

3.4 Tunneling at the QPC . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.3 Zero temperature expression . . . . . . . . . . . . . . . . 90
3.4.4 Current and noise due to a dc bias . . . . . . . . . . . . 90

3.5 Excess noise and minimal excitations . . . . . . . . . . . . . . . 93
3.5.1 Particle-hole excitations due to voltage pulses . . . . . . 94
3.5.2 Minimal excitation states . . . . . . . . . . . . . . . . . . 96

3.6 Photoassisted spectroscopy . . . . . . . . . . . . . . . . . . . . . 100
3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Minimal excitations for heat transport 105
4.1 Heat transport in the quantum Hall regime . . . . . . . . . . . . 105
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3 Heat current operator in the chiral Luttinger liquid . . . . . . . 107
4.4 Averaged backscattered heat current . . . . . . . . . . . . . . . 109
4.5 Zero-frequency heat and mixed noise . . . . . . . . . . . . . . . 111

4.5.1 Zero temperature . . . . . . . . . . . . . . . . . . . . . . 112
4.6 Excess signals and noiseless drive . . . . . . . . . . . . . . . . . 113

4.6.1 From Schottky formula to the ac regime . . . . . . . . . 113
4.6.2 Physical content of the excess signals . . . . . . . . . . . 114

4.7 Multiple Lorentzian pulses . . . . . . . . . . . . . . . . . . . . . 117

5 Hong-Ou-Mandel interferometry 123
5.1 Shot noise in a two-sources interferometer . . . . . . . . . . . . 123

5.1.1 Hong-Ou-Mandel ratio . . . . . . . . . . . . . . . . . . . 125
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Multiple leviton collisions . . . . . . . . . . . . . . . . . 130
5.2.2 Asymmetric collisions . . . . . . . . . . . . . . . . . . . . 133

Conclusions and perspectives 135

Appendices 139

A Photoassisted coefficients 141
A.1 Single source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.1 Cosine wave . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.1.2 Square wave . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.1.3 Lorentzian wave . . . . . . . . . . . . . . . . . . . . . . . 143

4



Contents

A.1.4 Leviton . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Two sources: Hong-Ou-Mandel setup . . . . . . . . . . . . . . . 146
A.3 Multiple pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.4 Useful sum rule for the photoassisted coefficients . . . . . . . . . 148

B Bosonic commutators and point splitting 151
B.1 Bosonic commutators . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2 Bosonization at integer filling factor using point splitting . . . . 153

B.2.1 Particle density . . . . . . . . . . . . . . . . . . . . . . . 154
B.2.2 Hamiltonian density . . . . . . . . . . . . . . . . . . . . 155

C Baker-Campbell-Hausdorff theorem 159
C.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.2 Useful identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D Keldysh contour formalism 163
D.1 Time evolution pictures . . . . . . . . . . . . . . . . . . . . . . 163

D.1.1 Schrödinger picture . . . . . . . . . . . . . . . . . . . . . 163
D.1.2 Heisenberg picture . . . . . . . . . . . . . . . . . . . . . 165
D.1.3 Interaction picture . . . . . . . . . . . . . . . . . . . . . 166

D.2 Equilibrium Green’s functions . . . . . . . . . . . . . . . . . . . 168
D.3 Non-equilibrium Green’s functions: closed time contour . . . . . 171

E Bosonic correlation function 175

F Fourier transform of the Green’s function 179
F.1 Useful properties . . . . . . . . . . . . . . . . . . . . . . . . . . 181
F.2 Detailed balance from general considerations . . . . . . . . . . . 183

Acronyms 185

Bibliography 187

5



Contents

6



Introduction

Quantum optics is the branch of physics dealing with light and light-matter
interaction at the microscopic quantum level. The striking ability in creat-
ing, manipulating and measuring quantum states of the electromagnetic field
achieved in the last thirty years has provided some simple yet fundamental
tests for the quantum mechanical behavior of single-photon states [1].

In a similar fashion, the on-demand generation of single-electron states in
mesoscopic systems has recently opened the way to the fascinating field of
Electron Quantum Optics (EQO), where individual fermionic quantum states
are manipulated one by one in ballistic, coherent conductors [2]. In this way it
is possible to reproduce quantum-optical experiments and setups in solid state
devices, using fermionic degrees of freedom (electrons in mesoscopic systems)
instead of bosonic ones (photons in waveguides and optical cavities). The full
correspondence between photonic quantum optics and EQO is built on the
following three ingredients (see Fig. I.1):

X Fermionic waveguides. They are provided by one-dimensional topological
edge states emerging in the Quantum Hall (QH) regime [3]. By applying
a strong perpendicular magnetic field to a Two-Dimensional Electron
Gas (2DEG), bulk conduction is suppressed by a finite bulk gap between
valence and conduction bands, but metallic states appear at the edge
of the system due to the topologically non-trivial structure of the bulk
[4]. Chirality of the edge states forbids electron backscattering, thus
providing efficient waveguides for fermionic degrees of freedom.

X Beam splitters. In a typical quantum-optical experiment, photon beams
are manipulated with the help of beam splitters. In QH systems, a nega-
tive gate voltage can partially deplete the underlying 2DEG and distort
the path of the edge states. This constriction is called Quantum Point
Contact (QPC) and represents an effective beam splitter for electrons,
allowing for tunable transmission and reflection of the fermionic beam
impinging on the barrier.
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Figure I.1: Left: the essence of electron quantum optics. Photon guns
are replaced by single electron sources (A and B), a QPC (C) serves as an
electronic beam splitter and one-dimensional edge states (D) are the solid
state analogue of photon waveguides. Right: artistic view of the voltage
pulse source theoretically described by L. Levitov. Credits: B. Plaçais’s
group at LPA-ENS (http://www.phys.ens.fr/~placais/), D.C. Glattli’s
group at CEA Saclay (http://nanoelectronics.wikidot.com/).

X Single-electron sources. Two recipes have been proposed to extract a
single electron out of the filled Fermi sea in fermionic systems. First, the
so-called driven mesoscopic capacitor [5] consists of a quantum dot con-
nected to the 2DEG through an additional QPC. A periodic drive of the
energy levels of the dot leads to the separate injection of an electron and
a hole into the system for each period of the drive [6]. Alternatively, one
can excite a single electron above the Fermi sea by applying well defined
voltage pulses to a quantum conductor, as suggested by L. Levitov and
coworkers [7–9]. Remarkably, they found that Lorentzian pulses with
quantized area

∫
dt V (t) = nh

e
(n ∈ N) injects particle-like excitations

only.

Single-electron sources based on mesoscopic capacitors and levitons (as Levi-
tov’s single-electron excitations have been dubbed [10]) were both experimen-
tally reported, using a fermionic analogue of the Hanbury Brown-Twiss (HBT)
experiment to explore single-electron excitations in the energy domain and a
collisional Hong-Ou-Mandel (HOM) interferometry to shed light on their wave-
function in the time domain [10–12].

Despite evident analogies and similarities with traditional photonic quan-
tum optics, EQO brings into play two new features that are inherently charac-
teristic of electronic systems. Firstly, single-photon states are usually created
on a real quantum mechanical vacuum (i.e. zero-particle state), while single-
electron states are always generated on top of a completely different ground
state with its own dynamics, namely the filled Fermi sea. The contribution
of the Fermi sea have to be carefully taken into account in the framework of
EQO. Nevertheless, a fermionic analogue of Roy J. Glauber’s theory of optical
coherence [13] can be developed circumventing this complication [14], and the-
oretical predictions are in excellent agreement with experiments [10–12, 15–
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18].

Even more importantly, solid state systems can be heavily affected by in-
teractions, and the ground state of a fermionic system can show correlations.
For instance, the Fractional Quantum Hall (FQH) effect [19] is a paradigmatic
example of the dramatic consequences of electron-electron interactions. Here,
a new strongly correlated phase emerge in the quantum liquid, with quasi-
particle excitations carrying a fraction of the electron charge [20] and whose
statistical properties are neither bosonic nor fermionic, but belongs to the more
general class of anyons [21]. The fact that FQH systems host topologically pro-
tected chiral modes at the edge [22] let us envisage an exciting generalization
of EQO, including correlated ground states and properly taking into account
all the striking phenomena that come along with electron-electron interactions
in one dimensional systems [23]. This is precisely the aim of the present thesis,
in which I present the theory of EQO in the FQH regime.

I begin from the physics of noise in mesoscopic systems, which is reviewed
in the introductory Chapter 1. Here I summarize the so-called Floquet scat-
tering approach to deal with photoassisted transport in coherent mesoscopic
conductors. This is a crucial first step, as experimental activity in EQO rely
on the measurement of the current-current correlation spectrum, i.e. noise, in
the presence of high-frequency periodic sources.

In Chapter 2 I review the discovery of the QH effect and its topological
interpretation, and show how to take advantage of the ballistic edge states
arising in the QH regime. Two types of single-electron sources are then dis-
cussed, both from the theoretical and experimental point of view. A particular
attention is devoted to minimal excitation states of quantum conductors, also
called levitons.

Chapter 3 is basically the core of this thesis. The field-theoretical ap-
proach to the edge states of the FQH regime and their capacitive coupling
with a voltage source are discussed. It is then shown how minimal excitations
in the FQH regime arise in response to appropriately designed voltage pulses,
and how to detect such states in a HBT interferometer.

A similar analysis is carried out in Chapter 4, where I focus on mini-
mal excitations for heat transport instead of the ordinary charge transport.
Here I consider the heat current flowing in response to periodic voltage pulses
and discuss the auto-correlation spectrum of heat-heat and mixed charge-heat
fluctuations. The robustness of minimal excitation states with respect to an
arbitrary overlap is also examined.

Finally, Chapter 5 is devoted to HOM interferometry, namely the physics
of colliding identical excitations. I show that FQH single-leviton collisions
bear a universal HOM signature identical to their Fermi liquid analog, while
multiple-leviton interferometry generates surprising dips and bumps in the
zero-frequency charge noise.

Several Appendices are used to illustrate technical parts of the calcula-
tions (such as the evaluation of photoassisted coefficients, Green’s functions,
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and useful commutation relations), and to discuss in more detail the theoreti-
cal formalism used in the main text (for instance, the Keldysh nonequilibrium
Green’s function approach).

This thesis is based on the following papers co-authored by myself:

X Ref. [24]: J. Rech, et al., “Minimal Excitations in the Fractional Quan-
tum Hall Regime”, Phys. Rev. Lett. 118, 076801 (2017) (Chapters 3
and 5);

X Ref. [25]: L. Vannucci, et al., “Minimal excitation states for heat trans-
port in driven quantum Hall systems”, Phys. Rev. B 95, 245415 (2017)
(Chapter 4);

X Ref. [26]: L. Vannucci, et al., “Photoassisted shot noise spectroscopy at
fractional filling factor”, arXiv:1709.05112, [J. Phys. Conf. Ser., in
press] (Chapter 3);

X Ref. [27]: F. Ronetti, et al., “Crystallization of Levitons in the fractional
quantum Hall regime”, arXiv:1712.07094 (Chapter 5).

Other publications not included in this thesis are:

X Ref. [28]: G. Dolcetto, et al., “Current enhancement through a time-
dependent constriction in fractional topological insulators”, Phys. Rev.
B 90, 165401 (2014);

X Ref. [29]: L. Vannucci, et al., “Interference-induced thermoelectric switch-
ing and heat rectification in quantum Hall junctions”, Phys. Rev. B 92,
075446 (2015);

X Ref. [30]: F. Ronetti, et al., “Spin-thermoelectric transport induced by
interactions and spin-flip processes in two-dimensional topological insu-
lators”, Phys. Rev. B 93, 165414 (2016).
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Chapter 1
Noise in mesoscopic physics

In this Chapter we present an overview of the physics of noise in mesoscopic
systems. These are systems whose size is sufficiently small to be affected by
quantum mechanics but still contain a macroscopic number of particles. We
point out the importance of noise measurements by showing that quantum
fluctuations contains information that is usually invisible in more traditional
quantities, such as the average electrical current. After a general description
of different sources of noise, we introduce the scattering matrix formalism
that will allow us to deal with some notable examples. We conclude with an
introduction to the photoassisted shot noise, which will be the central quantity
of interest in the rest of this thesis.

1.1 “The noise is the signal”

In our daily experience, the word noise is in general intended as a synonym of
disturbance. When we think on noise we imagine an unpleasant (and usually
unwanted) sound that interferes with the one we are paying attention to, or
just bothers us someway.

This meaning is translated almost literally in the field of electronics. For
any experiment one can imagine to carry out in the lab, the signal one would
like to measure is generally hidden behind a certain amount of disturbance,
which is once again called noise. Experimentalists usually fight against any
possible source of stochastic fluctuations that may affect the precision of a
measurement, in such a way to extract the quantity of interest out of the
background noise.

But what if the noise itself were the signal of interest? This statement,
which may at first sound extremely counterintuitive, was first expressed by
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Chapter 1. Noise in mesoscopic physics

Rolf Landauer, one of the fathers of mesoscopic physics, and turns out to
be profoundly true [31]. In the course of the past 30 years, condensed mat-
ter physicists gradually realized that noise in mesoscopic physics contains a
huge amount of information that is usually hidden in quantities we often look
at, such as the electrical current. Connections between noise and electronic
temperature, conductance, elementary charge, quantum statistics and emis-
sion/absorption spectrum were highlighted and deeply scrutinized.

From a quantitative point of view, we will describe the noise in terms of the
current-current correlation function throughout this thesis. Assuming that an
electrical current J(t) flows from the source to the drain electrode of a generic
conductor (classical or quantum), current fluctuations around the expectation
value 〈J(t)〉 are described by the quantity

∆J(t) = J(t)− 〈J(t)〉 . (1.1)

Here the symbol 〈X〉 stands for the quantum average value of the operator
X over an equilibrium configuration described by the density matrix ρ, i.e.
〈X〉 = Tr(ρX). The autocorrelation function of current fluctuations is

C(t, τ) = 〈∆J(t)∆J(t+ τ)〉 = 〈J(t)J(t+ τ)〉 − 〈J(t)〉 〈J(t+ τ)〉 . (1.2)

In time-translation invariant systems, C(t, τ) does not depend on the variable
t and we can write

C(τ) = 〈∆J(t)∆J(t+ τ)〉 = 〈∆J(0)∆J(τ)〉 . (1.3)

The noise power (or spectral density) is the Fourier transform of C(τ), namely1

S(ω) = 2

∫ +∞

−∞
dτ eiωτ 〈∆J(t)∆J(t+ τ)〉 . (1.4)

1.2 Thermal noise

Thermal agitation is the first fundamental source of noise we consider. At
finite temperature, thermal agitation of the carriers causes fluctuations of the
electrical current flowing through a conductor. Surprisingly, equilibrium fluc-
tuations of the current are directly related to the conductance of the system,
as we show here below.

Let us consider a generic classical conductor at equilibrium, described e.g.
by Drude theory [33]. In this framework, electron are assumed to be inde-
pendent free particles and are substantially treated by methods ot the kinetic
theory. They relax to the thermal equilibrium state only through collisions,
which happen with a probability per unit time γ known as relaxation rate.

1 We put an additional factor 2 in front of the Fourier transform for normalization
purposes, as usually done in the literature [32].
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1.2. Thermal noise

Suppose now that the system has cross-sectional area A and length L, and is
in thermodynamic equilibrium with the environment at temperature θ. Cur-
rent J in the x direction (which is oriented along the length L of the sample)
is related to the momentum of the carriers and the charge density. For the
single electron contribution we can write [34]

J1(t) = − e

mL
p(t), (1.5)

where p is the x component of the particle momentum. Since momenta are
randomly distributed, the expectation value for the current vanishes, namely
〈J1(t)〉 = 0. Let us now compute the current-current correlation function:

C1(τ) = 〈∆J1(t)∆J1(t+ τ)〉 =
e2

m2L2
〈p(t)p(t+ τ)〉 . (1.6)

Correlation of momenta at different times decays exponentially as the differ-
ence in time increases, thus the momentum correlation function can be written
as 〈p(t)p(t+ τ)〉 = αe−γ|τ |.2 For a system in equilibrium at temperature θ, we
get the value of the constant α observing that the average value of p2(t) in the
steady state must satisfy the well known equipartition theorem. This readily
gives α = mkBθ.

Consider that the volume A·L contains N independent particles. The total
current-current correlation function is just

C(τ) = NC1(τ) =
Ne2

mL2
kBθe

−γ|τ | = GγkBθe
−γ|τ |, (1.8)

where we have recognized the conductance G = 1/R. The latter is given by

G = σ
A

L
=

Ne2

mL2γ
, (1.9)

with σ = N
AL

e2

mγ
the Drude conductance. The noise spectral power as defined

in the previous section is thus

S(ω) = 2GγkBθ

∫ +∞

−∞
dτ eiωτe−γ|τ | = 4GkBθ

1

1 + ω2

γ2

. (1.10)

2 This follows from the fact that p(t) ∼ e−γt in the Drude model, and from the assumption
that the correlation function cannot diverge exponentially for negative values of τ , hence the
absolute value on τ . This rather intuitive physical assumption can be proved more rigorously
by solving the Langevin equation for a particle subjected to both a dissipative force with
damping rate γ and a stochastic force F (t) [35, 36]

ṗ(t) = −γp(t) + F (t). (1.7)

Solving for p(t) and evaluating the momentum correlation function we get the exponential
decay e−γ|τ |.

13



Chapter 1. Noise in mesoscopic physics

In typical metallic systems, where γ is of the order of 1013 ∼ 1014 s−1 [33],
this signal is approximately constant over a very large frequency range up to
ω ≈ γ and is given by

S(0) = 4GkBθ. (1.11)

This is the famous Johnson-Nyquist formula for the thermal noise [37, 38]. It
states that the equilibrium noise S(0) is proportional to the electrical conduc-
tance G, with the proportionality substantially given by the temperature θ.
This phenomenon was first noted at Bell labs by J.B. Johnson in 1926 working
on a vacuum tube amplifier, and subsequently explained by H. Nyquist on the
basis of energy balance considerations in a transmission line.

It is worth emphasizing a very important aspect of Eq. (1.11). Thermal
noise is an equilibrium statistical property of the system, while the conductance
tells us how the conductor reacts and dissipates energy when it is driven out of
equilibrium by applying a non-zero voltage bias. The Johnson-Nyquist result
shows a remarkably profound link between equilibrium fluctuations and dissi-
pative properties of a system (in linear response). It was indeed demonstrated
that the Johnson-Nyquist formula is nothing but a particular manifestation of
a far more general relation known as fluctuation-dissipation theorem [39].

Equation (1.11) is thus a first example of information encoded in the noise.
For instance, we can measure the temperature by looking at the ratio S(0)/G,
which is more or less the essence of the noise thermometry technique [40–
42]. However, we can fully appreciate the power behind Landauer’s quote by
moving on to non-equilibrium noise in quantum conductors.

1.3 Shot noise

As we all know, an electric current is nothing but the flow of discrete particles
with quantized charge. The charge of the carrier can be different, depending
on the system we consider. In metal and semiconductors the current is carried
either by electrons, with negative charge −e, or by holes, with positive charge
+e. In superconductors two electrons can bound together to form the so-
called Cooper pair, and the fundamental carrier has charge −2e. A more
exotic situation is represented by the FQH effect, where quasiparticles and
quasiholes with a fraction of the electron charge can carry the current. The
most prominent example is the FQH effect at filling factor ν = 1/3, which
shows excitations with charge ±e∗ = ±e/3. In all these cases the granularity of
the electric current gives rise to a new type of noise, which is called shot noise.
Walter Schottky first predicted the occurrence of this kind of fluctuations in
an almost ideal vacuum tube where every other source of disturbance was
eliminated [43]. He used the German word Schroteffekt (literally, shot effect)
to distinguish this second source of noise from thermal effects (Wärmeeffekt).

Let us give an intuitive derivation of the origin of shot noise by consider-
ing an ideal experiment in which two electronic reservoirs are separated by a

14



1.3. Shot noise

barrier. A certain amount of particles is emitted from, say, the left reservoir
and moves towards the barrier. Let us assume that particles can be randomly
transmitted to the right reservoir or reflected back to the left side, with all
transmission or reflection events independent from each other. This is a very
good approximation, for instance, for the case of two metals separated by a
thin insulating layer, where transmission events are uncorrelated. If N parti-
cles are transmitted on average in the interval ∆t (i.e. the transmission rate
λ = N/∆t is constant and known), the probability distribution for having k
particles transmitted in the same interval through the conductor is given by
the Poisson distribution

P (k) = e−N
Nk

k!
. (1.12)

Now, imagine that we can measure the current by looking at how many parti-
cles are transmitted in the interval ∆t. If each particle carries a charge q, the
current is given by I = qk/∆t, and its average value is 〈I〉 =

∑∞
k=0(qk/∆t)P (k).

To calculate the average current and its fluctuation we use the characteristic
function of the distribution, given by χ(β) =

〈
eiβk
〉
. This is a very useful

tool to calculate all the momenta, which can be inferred from χ(β) through
derivation with respect to β:

〈kn〉 = (−i)n∂χ
∂β

∣∣∣∣
β=0

. (1.13)

For the Poisson distribution, the characteristic function reads

χ(β) =
+∞∑
k=0

eiβke−N
Nk

k!
= exp

[
N(eiβ − 1)

]
, (1.14)

and the first and second momenta are easily found to be 〈k〉 = N and 〈k2〉 =
N2 +N . Thus, the current and its fluctuations are given by

〈I〉 =
qN

∆t
, (1.15)〈

∆I2
〉

=
〈
I2
〉
− 〈I〉2 =

q2N

(∆t)2
. (1.16)

Let us now look for the spectral density of the noise. We emphasize that
averaging over the time ∆t corresponds to filtering the signal in the frequency
domain. The effective bandwith is ∆ω = 2π∆f = π/∆t [44]. Recalling the
definition Eqs. (1.3) and (1.4) we have〈

∆I2
〉

= C(0) =
1

2

∫ +∞

−∞

dω

2π
S(ω) =

∆ω

2π
S, (1.17)

where we have considered S(ω) as constant in the bandwith ∆ω (i.e. we have
assumed a white noise spectrum). We finally obtain the very important result

S = 2∆t
〈
∆I2

〉
= 2q 〈I〉 , (1.18)
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Chapter 1. Noise in mesoscopic physics

known as Schottky relation3. As we see from Eq. (1.18), the noise is propor-
tional to the charge of the carriers and the average value of the current. This
is rooted in the fact that, for a Poissonian distribution, the average number
〈k〉 of events occurring in the time interval ∆t equals the variance 〈k2〉− 〈k〉2.
The astonishing consequence of Eq. (1.18) is that we are able to measure the
charge q just by looking at the noise-to-current ratio.

Two unconventional manifestation of this statement deserve to be men-
tioned. When considering a junction between a normal metal (N) and a su-
perconductor (S), transport at energies below the gap of the superconductor
is determined by the so called Andreev reflection [46]. An electron traveling
from the normal metal to the superconductor is transmitted as a Cooper pair,
and a hole is reflected back to fulfill charge conservation. The total transferred
charge is thus 2e, and several experiments have reported the doubling of shot
noise in a N-S junction with respect to N-N contacts. [47–49]. Such an idea
was also used to demonstrate that quasiparticles in the FQH regime carry a
fraction of the electron charge, as we will discuss later on [50–52].

Let us remark that the origin of shot noise is much different from thermal
noise. The latter is a property of an equilibrium system caused by fluctuations
in the occupation number. The former is instead an intrinsically nonequilib-
rium characteristic which only emerges when we drive a current through the
system. It should also be noticed that a random reflection or transmission
of particles is necessary: in a perfectly transmitting or completely insulating
system there is no shot noise. We’ll come back to this important point when
dealing with shot noise in the scattering formalism.

1.4 Partition noise

We have already seen that thermal and shot noises provide information about
the dissipative properties of a system, the temperature, and the charge of
the carriers. Here we discuss how statistical properties of particles can be
extrapolated from a special kind of shot noise, called partition noise.

We consider idealized one-particle or two-particle experiments conducted
in some sort of optical table, as shown in Fig. 1.1. Here particles (either bosons
or fermions) coming from input channels 1 and 2 collide on a semi-transparent
mirror (also called beam splitter) and exit in output arms 3 and 4. The mirror
allows transmission with probability T and reflection with probability R =
1 − T . We describe incoming particles in second quantization with creation
and annihilation operators a†i , ai (i = 1, 2), while operators b†j and bj (j = 3, 4)
take care of outgoing particles. For the sake of simplicity we consider one
single mode in each channel (i.e. operators a†, a, b† and b create and annihilate

3 One should note that there is no barrier between cathode and anode in Schottky’s
vacuum tube, and the transmission is almost perfect. However, the source of randomness is
rooted in the emission probability from the cathode and gives rise to the same physics we
discussed above [45].
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1.4. Partition noise
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3

4

in
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out

out

Figure 1.1: Optical setup for two-particle interferometry. Incoming par-
ticles, traveling in input channels 1 and 2, impinge on the beam splitter in
the middle (thin blue layer). They are either reflected (with probability R)
or transmitted (with probability T = 1−R) into output channels 3 and 4.
Two detectors are placed at the end of output arms 3 and 4.

particles with a single, well defined value of momentum and energy; spin plays
no role in this discussion). The relation between input and output operators
writes bj =

∑
i sjiai or, in matrix form,(

b3

b4

)
=

(
s31 s32

s41 s42

)(
a1

a2

)
. (1.19)

The 2× 2 matrix in Eq. (1.19) is called scattering matrix of the beam splitter.
We highlight that, in order to conserve commutation and anticommutation
relations of incoming operators, the scattering matrix has to be unitary. For
instance, for bosonic particles obeying [ai, a

†
j] = δij we impose [bi, b

†
j] = δij.

This is satisfied only if ∑
l

sils
∗
jl = δij, (1.20)

which is indeed the condition for a unitary matrix. For fermionic anticommu-
tation relations {ai, a†j} = δij we similarly require {bi, b†j} = δij, and obtain
Eq. (1.20) once again. A convenient parametrization in terms of reflection and
transmission probabilities satisfying Eq. (1.20) is(

s31 s32

s41 s42

)
=

(√
R i

√
T

i
√
T
√
R

)
. (1.21)

Occupation numbers in input and output arms are given, respectively, by ni =
a†iai (i = 1, 2) and nj = b†jbj (j = 3, 4). Relations between input and output
number operators read

n3 = Rn1 + Tn2 + i
√
RT (a†1a2 − a†2a1), (1.22)

n4 = Tn1 +Rn2 − i
√
RT (a†1a2 − a†2a1). (1.23)
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Chapter 1. Noise in mesoscopic physics

We notice that the above equations fulfill the expected conservation of the
total number operator, since n1 + n2 = n3 + n4.

Consider first the situation with only one particle incident on the beam
splitter. Suppose, for instance, that input 2 is in the vacuum state and a
single boson (or fermion) impinges on the mirror from channel 1. We have
thus 〈n1〉 = 1, 〈n2〉 = 0 and 〈(∆n1)2〉 = 〈(∆n2)2〉 = 0 (with ∆ni = ni −
〈ni〉). Let us consider the expected values for n3 and n4 in output arms and
their fluctuations. One immediately finds the reasonable results 〈n3〉 = R
and 〈n4〉 = T for the occupation numbers, which only reveal reflection and
transmission properties of the mirror in a simple fashion. Similarly, one obtains
the following auto-correlation and cross-correlation signals between outputs〈

∆n2
3

〉
=
〈
∆n2

4

〉
= −〈∆n3∆n4〉 = RT. (1.24)

Fluctuation in the detected number of particles described by Eq. (1.24) are
called partition noise, since they are due only to random partition occurring
at the beam splitter. In particular, partition noise for the simple case of a one-
particle state in input arm 1 is proportional to the product RT and vanishes
both for a completely transparent and a completely reflecting barrier. This is
due to the fact that in both cases there is no random partition of the incoming
“beam”, as only one output arm is accessible. As a result, occupation number
of the output states cannot fluctuate. We note that no difference between
fermions and bosons arises in the above result. This is not a great surprise,
since the different character of bosonic and fermionic statistics becomes man-
ifest only in multi-particle states. We thus move to the more interesting case
of two-particle interference.

1.4.1 Two particle interferometry

Imagine now that both input channels of the setup in Fig. 1.1 host a particle,
either a boson or a fermion. We must assume that the two particles arrive
simultaneously at the beam splitter in order to observe the effect of multi-
particle physics. In this case, the average number of particles detected at both
outputs reads

〈n3〉 = R 〈n1〉+ T 〈n2〉 = R + T = 1, (1.25)

〈n4〉 = T 〈n1〉+R 〈n2〉 = T +R = 1. (1.26)

Therefore, each detector measures exactly one particle on average, regardless
of the statistics and the transmission coefficient of the mirror. Let us now
consider the average value 〈n2

3〉. We have〈
n2

3

〉
= R2

〈
n2

1

〉
+ T 2

〈
n2

2

〉
+ 2RT 〈n1n2〉+RT

〈
a†1a2a

†
2a1 + a†2a1a

†
1a2

〉
=

= 1 +RT (2± 2), (1.27)
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1.4. Partition noise

where the upper sign accounts for the bosonic case, while the lower accounts
for fermions. Here the different sign in the last contribution is due to the fact
aia
†
i = 1 ± a†iai, depending on the statistics. Equation (1.27) is manifestly

symmetric with respect to the mutual exchange of R with T , thus 〈n2
4〉 = 〈n2

3〉.
From the conservation relation n1 + n2 = n3 + n4 we easily obtain the average
value 〈n3n4〉, which reads

〈n3n4〉 = RT
[〈
n2

1

〉
+
〈
n2

2

〉
− 〈n1〉 − 〈n2〉 − (2± 2) 〈n1n2〉

]
+ 〈n1n2〉

= 1−RT (2± 2). (1.28)

We finally obtain the following relation for the average fluctuations of the
occupation numbers〈

∆n2
3

〉
=
〈
∆n2

4

〉
= −〈∆n3∆n4〉 = RT (2± 2). (1.29)

A very different behavior for bosons and fermions emerges. If we compare
the above result with twice the partition noise of a single source [Eq. (1.24),
so to speak], we see that fluctuations for the bosonic case are doubled, while
fluctuations for the fermionic case are completely suppressed, namely

R =
〈∆n2

3〉2 particles

2 〈∆n2
3〉1 particle

=

{
2 for bosons,

0 for fermions.
(1.30)

What is the physical origin of this result? The answer can be traced back to
Eq. (1.28), which basically measures of the probability of detecting one particle
in both output arms. Indeed, operator n3n4 gives a nonzero contribution to
the average only in such cases where the two input particles are scattered
into two different outputs (otherwise, either n3 or n4 is zero). This happens
when they are both reflected or both transmitted at the beam splitter. In the
case of fermionic particles, Eq. (1.28) just reads 〈n3n4〉 = 1, independently
of the transmission coefficient of the barrier. The interpretation is simple:
two indistinguishable fermions must avoid each other because of the Pauli
exclusion principle. As a result, exactly one particle is always recorded in each
detector, with no fluctuations. Bosons, instead, behave in a much different
way. Equation (1.28) tells us that the probability that two bosons exit on
opposite sides is P (1, 1) = 1 − 4T (1 − T ). Probabilities of finding 2 particles
in output 3 and no particle in 4 or viceversa are equal (for symmetry reasons)
and given by P (2, 0) = P (0, 2) = 2T (1− T ). P (1, 1) is obviously 1 for T = 0
and T = 1. Conversely, in the region where T ≈ R the probability P (1, 1)
is strongly suppressed, and vanishes exactly for T = R = 0.5. Interestingly
enough, this means that two indistinguishable bosons are forced to exit on
the same channel in a symmetric beam splitter with equal transmission and
reflection probability.

We now comment on the possible outcome of a more realistic experiment, in
which wavepackets with a finite spatial extension are sent to the interferometer
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Chapter 1. Noise in mesoscopic physics

Figure 1.2: From Ref. [53]. The number of photon coincidences in the
output arms of the interferometer is reported against the position of the
beam splitter, which controls the delay between arrivals. An almost com-
plete dip around 302 µm is evident. The interferometer is in this case nearly
perfectly symmetric, as a direct measurement of the transmission coefficient
yields R/T ≈ 0.95.

and do not reach the beam splitter simultaneously, but with a certain time
delay tD. We assume that the measurement is carried out for a sufficiently
long time in order to record both particles in the detectors, independently
of the delay (in other words, the measurement lasts for a time τ � tD).
We start the discussion by considering the bosonic case. When the delay
is long enough to avoid any significant overlap between the wavepackets at
the beam splitter, the measurement is well described by the single particle
picture given in Eq. (1.24) times a factor 2. On the other hand, for tD = 0
we expect to see the suppression of coincidence counts described above in Eq.
(1.28). An intermediate regime with partial overlap between packets gives rise
to partial suppression of the signal. Thus, the number of coincidence counts
plotted as a function of tD has the shape of a dip, whose width is linked to
the temporal extension of wavepackets. This is basically the effect observed
by C.K. Hong, Z.Y. Ou and L. Mandel (HOM) in an optical two-photons
interferometer. We report the HOM result in Fig. 1.2. The figure shows the
number of coincidence counts recorded in 10 minutes against the position of
the beam splitter. Indeed, the delay between two incoming photons is here
controlled by displacing the beam splitter from its symmetry position, giving
rise to different time of flights along input channels. The signal clearly drops
from approximately 850 photon coincidences every 10 minutes to a minimum of
less than 100 counts. The lack of perfect destructive interference is reasonably
explained within the experimental apparatus. The estimated length of photon
wave packets is approximately 100 fs. This effect, which states that photons
in a symmetric beam splitter exits on the same side, is called photon bunching.

Is it possible to realize a similar experiment with fermions? The answer is
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1.0

0.5

0.0
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0.5

0.0

Bosons Fermions

Figure 1.3: Comparison between boson bunching and fermion anti-
bunching in a symmetric interferometer with T = R = 1/2. When two
wavepackets with finite temporal extension collide at the beam splitter, dif-
ferent scenarios may emerge depending on the statistics and the time delay
tD between arrivals. At tD = 0 the number of coincidence counts for bosons
gets suppressed, while the one for fermions is enhanced [see Eq. (1.28)].
Fluctuations in the particle number measured by a single detector behave
the opposite way: bosonic fluctuations are enhanced near tD = 0, while
fermionic ones are suppressed [see Eq. (1.29)].
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Figure 1.4: Fermionic HOM effect realized using two different single-
electron sources in EQO (more details will follow in Chapter 2). A driven-
quantum-dot setup known as mesoscopic capacitor is used on the left (figure
taken from Ref. [12]), while a train of Lorentzian pulses is exploited on the
right (figure adapted from Ref. [10]). In both cases the Pauli dip, namely
the suppression of shot noise as a function of the delay τ , is evident. Note
that both sources periodically emit single-electron excitations, and the cor-
responding HOM trace is periodic in τ with period T . However, the left
panel is centered around τ = 0, while the right panel shows a full period
from τ = 0 to τ = T .

yes, and the framework within which this can be made is now called Electron
Quantum Optics (EQO), in analogy with the traditional photonic quantum
optics. We will introduce this field in the next Chapter and we’ll deal with
EQO throughout the rest of this thesis. Anticipating some results from the
next Chapter, we briefly comment on the fermionc HOM experiments realized
in Refs. [12] and [10]. Here, for practical purposes, fluctuations in one of the
output arms are recorded instead of coincidence counts. One should notice
that fluctuations in the particle number experience exactly the opposite effect
compared to coincidence counts. Indeed, as expressed in Eq. (1.30) and sum-
marized in Fig. 1.3, 〈∆n2

3〉 gets suppressed in the fermionic case and enhanced
in the bosonic case. Hence the HOM effect for electrons is viewed as a dip
in the noise known as Pauli dip, since it originates from the Pauli exclusion
principle which prevents two electrons from exiting on the same arm. This sta-
tistical effect is called fermion anti-bunching, as opposed to the bunching effect
displayed by bosons. Figure 1.4 shows two experimental detection of the Pauli
dip in EQO experiments. We will give further details on the realization of the
fermionic HOM experiment in the next Chapter, explaining how time-coherent
single-electron sources are implemented, as well as electronic waveguides and
beam splitters. For the moment, it is sufficient to notice that the noise mea-
sured in one of the output channels and normalized to twice the single particle
partition noise drops significantly as the time delay between arrivals vanishes.
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1.5. An introduction to the scattering matrix formalism

SL
R

Figure 1.5: The essence of the scattering picture of quantum transport.
The system is viewed as two reservoirs at equilibrium connected to the
central scattering region through ballistic waveguides. The equilibrium dis-
tribution in each reservoir is described by the chemical potential µL/R and
the temperature θL/R. Amplitudes entering the central region from the
reservoirs (green) are mixed by the scattering matrix of the systems and
emerges as new outgoing amplitudes (red).

1.5 An introduction to the scattering matrix for-
malism

In this section we present the scattering matrix formalism, which is a very
powerful method allowing to tackle a variety of problems regarding shot noise
in mesoscopic physics. We actually sowed the seed of the scattering matrix for-
malism in the previous section, when we described the physics of two-particle
interferometers in terms of a 2× 2 matrix relating input and output states. In
this Section we generalize this approach to a full quantum mechanical treat-
ment of phase coherent, non-interacting quantum conductors. However, this
Section is intended as a short introduction to the topic and is not complete.
We’ll mainly rely on Ref. [32] and the original paper on the scattering matrix
method in the operator formalism by M. Büttiker [54], although other excellent
reviews and books are available in the literature (see, e.g., Refs.[55–58]).

The statement of the problem is well summarized in Fig. 1.5. We consider
a two-terminal quantum conductor, which consists of two electronic reservoirs,
each one connected to the central scattering region by a coherent waveguide
(or lead). Electronic reservoirs contain a very large number of particles and
are assumed to be described by an equilibrium state with well defined chemical
potential µL/R and temperature θL/R. Electrons in the reservoirs thus follow
the Fermi distribution

fα(E) =
1

e(E−µα)/(kBθα) + 1
, α = {L,R}. (1.31)

Driving the system out of equilibrium corresponds to setting different chemical
potentials and/or temperatures in different terminals. The dynamics in the
conductor is entirely phase-coherent, which means that only elastic scattering
events take place in the conductor, and energy is overall conserved (note,
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Chapter 1. Noise in mesoscopic physics

however, that there must be some inelastic mechanism inside the reservoirs in
order to achieve an equilibrium distribution).

Let us start the discussion with the simple case of a two-terminal quantum
conductor. For each lead, we consider that the longitudinal direction coincides
with the z axis. Due to strong confinement, motion in the transverse directions
x, y is quantized and described by the set of orthonormal functions χL/R,n(x, y),
labeled by the discrete index n. Let us introduce operators aα,n(E) that anni-
hilate an electron with total energy E in the n-th channel going from terminal
α to the central scattering region.4 They obey anticommutation relations{

aα,n(E), a†β,m(E ′)
}

= δα,βδn,mδ(E − E ′). (1.32)

Note that the total energy E is determined by the sum of energies in the
longitudinal and transverse channels, with the transverse energy in the n-th
channel given by EL,n. Similarly, operators bα,n(E) annihilate an electron with
energy E in the n-th channel going in the opposite direction. If N transverse
channels are accessible, the field operator in the left waveguide reads

ψL(r, t) =

∫ +∞

0

dE e−iEt/~
N∑
n=1

χL,n(x, y)√
2π~vL,n(E)

[
aL,n(E)eikL,nz + bL,n(E)e−ikL,nz

]
,

(1.33)
with vL,n(E) = (~/m)kL,n(E) and kL,n(E) =

√
2m(E − EL,n)/~ for a quadratic

dispertion.5 Note that an analogous relation holds for the right waveguide.
However, current conservation allows us to focus solely on the left side of the
conductor. Relation between input and output operators is given, as in the
previous section, by the scattering matrix of the system. Due to the pres-
ence of two terminals and N conduction channels per side, the full system is
described by a 2N × 2N matrix s. It reads

bα,i =
∑
β=L,R

N∑
j=1

sαβ,ij aβ,j. (1.34)

However, collecting operators in vectors aα = (aα,1, . . . , aα,N) and bα = (bα,1,
. . . , bα,N) with i = L,R allows for a compact expression of the scattering matrix
in terms of four blocks:(

bL
bR

)
=

(
r t′

t r′

)(
aL
aR

)
= s

(
aL
aR

)
. (1.35)

Here, each block r, t, t′ and r′ is a N×N matrix. Coefficients for r are given by
rij = sLL,ij, and similar relations hold for the remaining three blocks. Blocks

4 To avoid confusion, we label terminals with Greek indices {α, β, . . . } and use Roman
indices {n,m . . . } for transverse channels.

5 The integral in Eq. (1.33) runs from 0 to +∞, as we are dealing with electrons with
parabolic dispertion E = ~2k2/(2m). Different dispertion relations may lead to different
limits of integration.
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1.5. An introduction to the scattering matrix formalism

on the diagonal account for reflection back to the left and right reservoirs
respectively, while off-diagonal blocks describe transport, respectively, from
left to right and from right to left. The scattering matrix is in general unitary,
ss† = 1, and additional symmetries (such as time reversal, if present) further
constrain the block components of s.

We now give the general results for current and noise in the scattering
matrix formalism. For the sake of brevity, we focus on the main passages
and refer the reader interested in a more detailed discussion to the literature
[32, 56]. The one-dimensional current operator in the left lead is obtained by
integrating the quantum-mechanical three-dimensional current density [59, 60]
in the transverse directions x and y:

IL(z, t) =
~e

2im

∫
dx dy

[
ψ†L(r, t)∂zψL(r, t)− ∂zψ†L(r, t)ψL(r, t)

]
. (1.36)

Let us insert the field operator Eq. (1.33) into Eq. (1.36). After some alge-
bra, and neglecting the energy dependence of vL,n(E),6 one gets the following
position-independent result for the current operator:

IL(t) =
e

h

N∑
n=1

∫
dE1dE2e

i(E1−E2)t/~
[
a†L,n(E1)aL,n(E2)− b†L,n(E1)bL,n(E2)

]
.

(1.37)
In a very reasonable fashion, the current is given by a balance between incoming
and outgoing particles, integrated over all the energy states.

The expectation value for IL is found by recalling that particles going from
the reservoirs to the scattering region are in an equilibrium state described by
Eq. (1.31). Then operators aα,n obey〈

a†α,n(E1)aβ,n′(E2)
〉

= δα,βδn,n′δ(E1 − E2)fα(E1). (1.38)

We now write Eq. (1.37) solely in terms of the operators aα,n, a†α,n thanks to
Eq. (1.34), and use the above relation to find the current in terms of the Fermi
distribution in the reservoirs. We find

〈IL〉 =
e

h

N∑
n=1

∫
dE

[
fL(E)−

∑
β=L,R

N∑
m=1

s∗Lβ,nmsLβ,nmfβ(E)

]
=

=
e

h

N∑
n=1

∫
dE

{[
1−

N∑
m=1

|rnm|2
]
fL(E)−

N∑
m=1

|tnm|2fβ(E)

}
=

=
e

h

∫
dE Tr

(
t†t
)

[fL(E)− fR(E)] . (1.39)

6 This is a reasonable assumption in most cases, since only energies in a narrow window
around the Fermi level play a relevant role, while vL,n(E) typically varies significantly on a
much bigger scale. Therefore, we can safely assume the velocity vL,n(E) as constant.
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The last passage follows from the unitarity of the scattering matrix. Indeed
from s†s = 1 one finds r†r + t†t = 1 which leads to

∑
m(|rnm|2 + |tnm|2) = 1.

We note that Eq. (1.39) is manifestly basis-independent, for it involves the
trace of the matrix t†t. It can be expressed in terms of the eigenvalues Tn(E)
of t†t in the following way:

〈IL〉 =
e

h

N∑
n=1

∫
dE Tn(E) [fL(E)− fR(E)] . (1.40)

Equation (1.40) gives the current in a mesoscopic two-terminal system in terms
of the transmission eigenvalues in a very general way, as long as electron-
electron interactions do not play a prominent role. It should be noticed that,
in an equilibrium configuration with µL = µR and θL = θR, Fermi distributions
in the reservoirs are exactly the same and no current flows though the sample.

Consider now the situation in which the two-terminal system is driven
out of equilibrium by a voltage bias V . For instance, imagine that the elec-
trochemical potential in the left reservoir is brought below the Fermi level,
namely µL = EF−eV while µR = EF, with equal temperature θ on both sides.
As the energy scale set by eV is usually much smaller than EF, the integral in
Eq. (1.40) is dominated by a small energy window of width ∼ eV around the
Fermi level. Thus, we can neglect the energy dependence of Tn(E) in this short
interval and perform the integration over the Fermi distributions, getting

〈IL〉 ≈
e

h

N∑
n=1

Tn(EF)

∫
dE [fL(E)− fR(E)] =

e2

h
V

N∑
n=1

Tn(EF), (1.41)

where the last passage holds for EF � {eV, kBθ}. Thus, the conductance
G = 〈IL〉 /V for a two-terminal mesoscopic system in presence of N conduction
channels is generally given by7

G =
e2

h

N∑
n=1

Tn. (1.42)

This famous and very important result is known as Landauer-Büttiker formula
[61–64]. It relates the conductance of a phase coherent quantum conductor to
the transmission eigenvalues of the available conduction channels.

We now apply the scattering matrix formalism to the calculation of the
noise spectrum. We focus on the autocorrelation spectrum of ∆IL = IL−〈IL〉,
which is given by

S(ω) = 2

∫ +∞

−∞
dτ eiωτ 〈∆IL(t)∆IL(t+ τ)〉 . (1.43)

7 In the following, the notation Tn without the energy argument stands for the n-th
transmission eigenvalue evaluated at the Fermi level, i.e. Tn ≡ Tn(EF).
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The calculation relies on the same passages used for 〈IL〉 (one only resorts to
Wick’s theorem to evaluate the four-operator average

〈
a†α1,n1

aα2,n2a
†
α3,n3

aα4,n4

〉
as a product of two operator averages). At the end of the day, one is left with

S(ω) = 2
e2

h

∫
dE Tr

(
tt†tt†

)
{fL(E)[1− fL(E − ~ω)]+ (1.44)

+ fR(E)[1− fR(E − ~ω)]}+ (1.45)

+ 2
e2

h

∫
dE Tr

(
rr†tt†

)
{fL(E)[1− fR(E − ~ω)]+ (1.46)

+ fR(E)[1− fL(E − ~ω)]}. (1.47)

This is once again a basis-independent formula, which can be rewritten in terms
of the eigenvalues using the relations Tr

(
tt†tt†

)
=
∑

n T
2
n(E) and Tr

(
rr†rr†

)
=∑

nR
2
n(E) =

∑
n[1− Tn(E)]2. The final result is

S(ω) = 2
e2

h

N∑
n=1

∫
dE T 2

n(E){fL(E)[1− fL(E − ~ω)]+ (1.48)

+ fR(E)[1− fR(E − ~ω)]}+ (1.49)

+ 2
e2

h

N∑
n=1

∫
dE Rn(E)Tn(E){fL(E)[1− fR(E − ~ω)]+ (1.50)

+ fR(E)[1− fL(E − ~ω)]}. (1.51)

We will be interested in the zero frequency noise S(0), and drop the argument
(0) to make the notation simpler. As for the calculation of the current, we
assume a dc voltage drop of the form µR = EF = µL + eV and no temperature
gradient. One then finds that the products of Fermi distributions give nonvan-
ishing contributions only in very thin energy windows around the Fermi level,
and the zero-frequency shot noise is governed by transmission and reflection
eigenvalues at the Fermi level. Finally, one gets

S = 4
e2

h
kBθ

N∑
n=1

T 2
n + 2

e2

h
eV coth

(
eV

2kBθ

) N∑
n=1

Tn(1− Tn). (1.52)

This is a rather general result, provided that EF is still the largest energy scale
in the problem. However, it is instructive to focus on particular cases to fully
appreciate the physic contained in Eq. (1.52).

Equilibrium (thermal) noise

We use the fact that coth(x) = 1/x + O(x) around x = 0 to find the limit
V → 0 in Eq. (1.52) (i.e. the noise at equilibrium). We find

S = 4
e2

h
kBθ

N∑
n=1

Tn = 4GkBθ, (1.53)
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Chapter 1. Noise in mesoscopic physics

thus recovering the Johnson-Nyquist relation between thermal noise and con-
ductance already discussed in Section 1.2, Eq. (1.11).

Shot noise at zero temperature

Using limx→±∞ coth(x) = ±1 we immediately find the behavior of S at tem-
perature θ = 0:

S = 2
e2

h
e|V |

N∑
n=1

Tn(1− Tn). (1.54)

Equation (1.54) was first derived by G. Lesovik in 1989 [65]. We notice that
the shot noise vanishes both for completely open (Tn = 1) or completely closed
(Tn = 0) channels. As in the case of the two particle interferometer discussed
in Section 1.4.1, the motivation is straightforward: in both cases particles have
no choice, for they can only be reflected back to the original reservoir (Tn = 0)
or fully transmitted to the opposite one (Tn = 1). As a result, the current
across the system cannot fluctuate.

Interestingly enough, the zero-frequency shot noise does not follow the
Schottky relation Eq. (1.18). The latter is only recovered in the low trans-
mission limit, where all contributions T 2

n can be safely neglected and the shot
noise reads

S = 2
e2

h
e|V |

N∑
n=1

Tn = 2e 〈IL〉 . (1.55)

In practice, when at least one of the transmission eigenvalues is large enough
to deviate significantly from the linear approximation, Eq. (1.54) shows us that
the shot noise is suppressed below the Poissonian value predicted by Schot-
tky. In such cases, the noise is said to be sub-Poissonian. Let us remember
that Schottky description assumes uncorrelated transmission events. We have
thus discovered that the shot noise in a mesoscopic conductor with generic
transmission eigenvalues Tn bears signatures of statistical correlation between
particles. Effect of quantum statistics are only washed out in the low trans-
mission regime, where transmission events are rare enough to be substantially
uncorrelated. An efficient way to measure the degree of deviation from the
Schottky value relies on the so called Fano factor, which is given by the ratio

F =
S

2e 〈IL〉
, (1.56)

which was introduced by U. Fano in a completely different context [66]. The
Fano factor is F = 1 for a Schottky-like process, while it drops below one for
sub-Poissonian noise. In the framework of the scattering matrix formalism it
reads

F =

∑N
n=1 Tn(1− Tn)∑N

n=1 Tn
. (1.57)

28
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The scattering matrix formalism is extremely powerful, as it is able to
predict the current and noise measured in a generic mesoscopic system on the
basis of simple input/output relations. Experimental evidence for the validity
of this approach is reviewed in the following section.

1.6 Experiments on shot noise

1.6.1 Tunnel junctions

A tunnel junction is made of a thin insulating layer separating two conducting
electrodes. As electrons have to move through the insulator, transmission
probability is very low and we can safely neglect all terms ∼ T 2

n in Eq. (1.52).
As a result, the two-terminal shot noise at finite temperature reads

S = 2
e2

h
eV coth

(
eV

2kBθ

) N∑
n=1

Tn = 2e coth

(
eV

2kBθ

)
〈IL〉 . (1.58)

An experiment by H. Birk et al. measured fluctuations in the tunneling current
flowing from a scanning tunneling microscope tip to an Au film [67]. Such a
setup can be safely considered as a tunnel junction and should test the validity
of Eq. (1.58). The experiment found excellent agreement with the theory, as
shown in Fig. 1.6. In particular, two very different regimes emerge from Eq.
(1.58), corresponding to the opposite limits x = eV/kBθ � 1 and x � 1. At
high voltage (or very low temperature) we have coth(x) = ±1 and the Schottky
noise S = 2e 〈I〉 is recovered. In the opposite limit, thermal fluctuations
dominate and we get the Johnson-Nyquist result S = 4GkBθ. The result of
Ref. [67] provides a nice experimental evidence for the crossover between these
two regimes: the shot noise as reported in Fig. 1.6 grows linearly with |〈I〉|
at low temperature, but deviates from the linear behavior at sufficiently high
temperature. In the latter case it is approximately constant around the point
〈I〉 = 0. It’s worth noticing that the ratio S/ 〈I〉 is in this case a universal
function of eV/kBθ. As such, it can be used to extract the temperature with a
great degree of precision, since the voltage drop is usually a known quantity.
The technique relying on such a scheme is known as shot noise thermometry
[42].

1.6.2 Conductance and noise of a quantum point contact

We have seen that the scattering matrix description of quantum transport re-
lies on transmission/reflection properties of the electronic channel involved.
However, under ordinary conditions, electronic motion in metals is usually
affected by a huge number of random events (electron-electron collisions, scat-
tering with phonons, scattering against impurities and so on) which makes the
dynamics unpredictable. Thus, in order for the scattering approach to become
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Chapter 1. Noise in mesoscopic physics

Figure 1.6: Shot noise versus current in a tunnel junction as reported by
Ref. [67]. The junction is realized with a scanning tunneling microscope
tip positioned above a layer of Au, as suggested by the inset. The two set
of points correspond to temperature θ = 300 K and tunneling resistance
RT = 0.32 GΩ for empty triangles, θ = 77 K and RT = 2.7 GΩ for filled
triangles. The agreement with solid lines, calculated from Eq. (1.58), is
excellent.

effective, one must deal with a quantum system where the motion is quantized
into a finite number of sub-bands and the sources of reflectivity are known
and, in principle, controllable.

For this reason, experiments are usually conducted in a 2DEG obtained
at the interface between two carefully chosen semiconductors. Here, electron-
ics levels are quantized to due confinement and the mobility can be made
high enough to attain a ballistic transport regime. With this scheme, one al-
most completely eliminates unwanted reflection events and reaches a quantum
regime where electronic sub-bands are quantized. Now, in order to alter the
transmission properties of each sub-band, a metallic gate is usually deposited
on top of the sample in such a way to deplete electrostatically the underlying
portion of the 2DEG. This structure is called QPC and creates a controllable
constriction in the electron gas: indeed, a change in the gate voltage reflects
into a change in the width of the constriction, and thus in the transmission
probability across the sample.

According to Eq. (1.42), such a system will show a step-like two-terminal
conductance as a function of the gate voltage when driven out of equilibrium.
This is exactly what Bart van Wees and collaborators reported in 1988 in a
seminal experiment, which showed the conductance quantization of a QPC for
the first time [68]. Their result is reported in Fig. 1.7 together with a scheme
of the QPC. While sweeping the gate voltage, the conductance in unit of 2e2/h
displays a series of plateaus corresponding to integer values, with the factor 2
due to spin degeneracy. Jumps between adjacent plateaus are interpreted as
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Figure 1.7: Top left: a QPC consists of a narrow constriction in a 2DEG.
This geometry allows to control the number of open channels available for
transport. Bottom left: scheme of the QPC used in Ref. [68]. Right: exper-
imental evidence of quantized conductance in a QPC as measured by B.J.
van Wees et al. [68]. Figure adapted from [56].

the closing or opening of a new transmission channel. In this regard, it is worth
noticing that transmission eigenvalues in such a system are not expected to
be exactly step-like. Rather, they are a smooth function of the gate voltage,
and so is the transition between successive plateaus. A similar result was
subsequently reported in Ref. [69].

Since conductance of a QPC is extremely well described by the Laudauer-
Büttiker formalism, it is natural to expect that the scattering approach will be
equally valid for the shot noise. Equation (1.54) states that the shot noise
should vanish when all channels are either completely open or completely
closed, that is, in correspondence of conductance plateaus. On the contrary,
peaks should be observed when the conductance jumps from one plateau to the
next one, cause this happens when one of the channels is only partially open
(so that both Tn and 1−Tn are nonzero). This oscillation between suppression
and peaks was experimentally demonstrated at the Weizmann institute [70]
and Saclay [71], as shown in Fig. 1.8.

Since the mid ’90s, shot noise suppression below the Poissonian level has
been reported in a number of situations [32]. Beenakker and Büttiker argued
that the scattering approach is still somewhat valid also for non-ballistic con-
ductors in the diffusive regime, provided that phase coherence is preserved (i.e.
the conductor is much longer that the mean free path of electrons, but still
shorter than the typical inelastic scattering length) [72]. In this case, transmis-
sion eigenvalues are not fixed, but randomly distributed according to a bimodal
function. Current and noise are then obtained as an ensemble average in the
framework of the random matrix theory [73]. It turns out that the Fano factor
is F = 1/3 and it is universal for every diffusive metal. The 1/3 suppression
of shot noise was subsequently demonstrated in the experiment by M. Henny
et al. [74].
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Figure 1.8: Suppression of shot noise in a QPC. Top left: data by Reznikov
et al. [70] show that the noise drops whenever the conductance is quantized
in unit of e2/h, as suggested by Eq. (1.54). Different curves are generated
by different values of the source-drain voltage VDS. Top right: a similar ex-
periment by Kumar et al. [71] reports minima of the Fano factor introduced
in Eq. (1.57) for G = n · 2e2/h, n ∈ N. The factor 2 is due to spin degen-
eracy. Bottom: theory (left) and unpublished data (right) from Reznikov
et al. at lower temperature T = 0.4 K (from Ref. [58]). Suppression of the
shot noise, although not complete, is clearly visible.
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1.7. Photoassisted shot noise

Surprisingly, an atomically thin junction displays the same physics of the
QPC. This result was pointed out in the experiment H. Van den Brom and
J. van Ruitenbeek, who basically used Eqs. (1.54) to infer the number of elec-
tronic channels contributing to transport in Au and Al contacts and their
transmission properties [75].

After a countless stream of glaring examples of the usefulness of noise in
mesoscopic physics, we are now convinced that Rolf Landauer was indeed right:
quite often, the noise is the signal.

1.7 Photoassisted shot noise

We now come to a crucial point for the development of this thesis: the con-
nection between shot noise and ac driven quantum systems, which will bring
us to the physics of Photoassisted Shot Noise (PASN).

1.7.1 Tien-Gordon model

This tale starts in the early ’60s, that is, well before the development of meso-
scopic physics. Relying on the tunneling Hamiltonian approach, works by J.
Bardeen and M. Cohen and collaborators showed that the tunneling current in
a superconductor-insulator-superconductor junction can be expressed in terms
of the Fermi distributions fA/B(E) and the density of states ρA/B(E) of the
two superconducting layers A and B [76, 77]. In the presence of a dc voltage
bias Vdc, their result reads

IAB = C

∫
dE ρA(E)ρB(E)[fA(E)− fB(E)] (1.59)

to lowest order in the tunneling, where fA(E) is the equilibrium Fermi dis-
tribution for layer A and fB(E) = fA(E + eVdc). Here, C is an unimportant
constant related to the tunneling amplitude. In 1962 Dayem and Martin put
a superconducting tunnel junction in a microwave cavity and observed that,
while sweeping the dc bias across the junction, the tunneling current devel-
oped multiple steps instead of the expected single jump. Interestingly, steps
were separated by an increase of ~ω/e in the dc bias, where ω is the angular
frequency of the microwave field [78]. An example of such features is shown in
Fig. 1.9.

Tien and Gordon were able to explain the experimental observation in a
remarkably simple way [79]. Assume that, in the absence of any voltage bias,
the two superconducting layers A and B are described by time-independent
Hamiltonians HA/B,0, and electronic wavefunctions are given by ψA/B,0(r, t) =
ψA/B,0(r)e−iEt/~. Then, switching on the microwave field and neglecting its
interaction with the insulating layer, a potential difference between layers A
and B is set up. Taking the former as a reference, the Hamiltonian for B reads

HB = HB,0 + Vac cos(ωt). (1.60)
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Figure 1.9: Left: experimental results by Dayem and Martin, showing
recurring structures separated by steps of ~ω/e in the voltage bias [78].
Right: theoretical curve obtained by Tien and Gordon for α = eVac/(~ω) =
2 juxtaposed with the measured signal without microwave radiation. From
Ref. [79].

Here a crucial assumption has been made, namely that the potential oscillates
in time but is spatially uniform. By solving the full Schrödinger equation
for this new Hamiltonian, it turns out that a purely time-dependent voltage
cannot modify the spatial distribution of the wavefunction, which is indeed
given by

ψB(r, t) = ψB,0(r)e−iEt/~e−iα sin(ωt), α =
eVac

~ω
. (1.61)

The only effect of the oscillating bias is to add a new phase factor to the
wavefunction. We get a very meaningful physical insight by realizing that the
time periodic phase factor e−iα sin(ωt) can be easily written as a Fourier series,
thanks to the integral representation of the Bessel function Jn(x) [80]. The
wavefunction then reads

ψB(r, t) =
∞∑

n=−∞

Jn(α)ψB,0(r)e−i(E+n~ω)t/~. (1.62)

Now the physics becomes clear. Assuming a position-independent voltage bias,
electronic states at energy E are modified into an infinite superposition of
states at energies E+n~ω, each one weighted by the amplitude Jn(α). In other
words, the ac potential induces inelastic scattering events where electrons can
absorb (n > 0) or emit (n < 0) an integer number of energy quanta ~ω from
the oscillating field (i.e. photons). The problem is now fully equivalent to an

infinite set of dc junctions with an effective voltage Ṽn = Vdc + n~ω. The
natural consequence of this fact is that the dc component of the tunneling
currents now reads

IAB = C

∫
dE

∞∑
n=−∞

|Jn(α)|2ρA(E)ρB(E+n~ω)[fA(E)−fB(E+n~ω)]. (1.63)
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We see an interesting effect in Eq. (1.63). In a dc junction, an electron in A
with energy E can only tunnel in a corresponding empty energy state E in
B. Now, by absorbing or emitting photons, it gains access to all energy states
E + n~ω, with n an integer. The term photoassisted transport is ultimately
due to this simple and rather intuitive idea.

Applying Eq. (1.63) to the experimental setup of Ref. [78], one obtains the
theoretical curve shown in the right panel of Fig. 1.9. It can be seen that, due
to the photoassisted effect, features of the dc current are replicated at every
integer multiple of ~ω. Any isolated peculiarity of the dc curve occurring at
a given value V0 of the voltage, such as peak, step, cusp, etc., is replicated
at V0 + ~ωn/e. The magnitude of the original peculiarity is spread between
the new ones with the weights Jn(α) [56]. This is, in short, the essence of the
photoassisted transport formalism.

Although specifically derived for the case of a superconducting tunnel junc-
tion, ideas by Tien and Gordon turned out to be extremely general and far
reaching. With the birth of mesoscopic physics, the photoassisted formalism
has been first applied to tunneling currents in quantum dots [81, 82], and then
to the study of shot noise in phase coherent conductors. An experiment by
R. Schoelkopf and collaborators [83], inspired by earlier theoretical work by
G. Lesovik and L. Levitov [84], has shown the validity of Tien-Gordon ap-
proach in describing the shot noise in diffusive metallic systems whose length
is shorter than the inelastic mean free path. The very same research group
demonstrated, in a subsequent work, that photoassisted features occurring at
Vac = n~ω/e in a normal conductor are shifted to V ′ac = n~ω/(2e) when a
normal metal-superconductor junction is investigated [48]. This happens due
to Andreev reflection mechanism, which leads to the transfer of a charge 2e
across the interface instead of e [46].

1.7.2 Floquet scattering matrix

The connection between the Tien-Gordon model and the scattering approach
has been developed in a number of works covering the late ’90s and early 2000s,
and finally formalized in the so called Floquet scattering matrix approach [85–
87]. In what follows, we summarize the main points of this useful formalism.
Consider the same two-terminal configuration of Sec. 1.5 in the presence of a
time dependent bias V (t) = Vdc + Vac(t) applied to the left reservoir. Assume
also that Vac(t) is a time-periodic function with period T = 2π/ω which aver-
ages to zero over one period. Recalling Eq. (1.37), the current operator in the
scattering approach is expressed as a balance between particles going from the
lead to the scattering region (represented by aα,n, a†αn) and from the scattering
region to the leads (bα,n, b†α,n). As in the Tien-Gordon model, we now assume
that the energy distribution of particles incoming from left is modified by the
ac field. We write them as a superposition of particles at energy E + l~ω,
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namely

aL,n(E) =
+∞∑
l=−∞

pl a
′
L,n(E − l~ω), (1.64)

where operators a′L,n(E) are distributed according to the equilibrium distribu-
tion of reservoir L (which still contains a finite dc offset due to the dc com-
ponent Vdc of the bias). Here, coefficients pl are the absorption or emission
amplitudes given by

pl =

∫
dt

T
eil~ωte−i(e/~)

∫ t
0 dt
′ Vac(t′). (1.65)

They are nothing but the generalization of the Bessel function of Tien-Gordon
model for an arbitrary time-periodic ac voltage. The calculation of current
and noise now follows the one presented in Sec. 1.5, with the only difference
given by the new nonequilibrium distribution of incoming particles given by
Eq. (1.64). We only quote the final result for the dc component of the current,
which (not so surprisingly) reads

〈IL〉 =
e

h

N∑
n=1

∫
dE Tn(E)

+∞∑
l=−∞

|pl|2 [fL(E − l~ω)− fR(E)] . (1.66)

Here (and in the rest of the thesis) we use the notation X = T−1
∫ T

0
dtX(t)

for the temporal average of the quantity X over one period T . If transmission
eigenvalues vary slowly enough with respect to the energy scale eVdc, we take
Tn out of the integral, as in Sec. 1.5. Since

∑
l |pl|2 = 1 and

∑
l l|pl|2 = 0 (see

Appendix A), we are left with the same result of the dc case, namely

〈IL〉 =
e

h

N∑
n=1

Tn

+∞∑
l=−∞

|pl|2(eVdc + l~ω) =
e2

h
Vdc

N∑
n=1

Tn. (1.67)

Thus, in the case of almost constant transmission and linear IV response, the
effect of photoassisted transport is completely washed out and the current is
just proportional to the dc component of the voltage drive. This is a reasonable
result for an ordinary metal. Let us notice that this cancellation does not arise
in the original theory by Tien and Gordon since they take into account a
superconducting tunnel junction (whose IV response is as much nonlinear as
possible!).

We now turn the attention on the zero-frequency PASN, defined as

S = 2

∫ T

0

dt

T

∫ +∞

−∞
dτ 〈∆IL(t)IL(t+ τ)〉 . (1.68)

As for the photossisted current, the calculation is lengthy but straightforward,
and follows step by step the one shown in Sec. 1.5 for the dc case. However,
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in this case we get a far less trivial result:

S = 2
e2

h

N∑
n=1

∫
dE T 2

n(E)×

×
{∑

l

|pl|2fL(E − l~ω)[1− fL(E − l~ω)] + fR(E)[1− fR(E)]

}
+

+ 2
e2

h

N∑
n=1

∫
dE Rn(E)Tn(E)×

×
∑
l

|pl|2 {fL(E − l~ω)[1− fR(E)] + fR(E)[1− fL(E − l~ω)]} .

(1.69)

Interestingly enough, the equilibrium term (first two lines) stays unaffected by
the ac drive, thanks to the property fL/R(E)[1− fL/R(E)] = −kBθ∂EfL/R(E).
This is not the case, however, for the nonequilibrium part of the noise. Ne-
glecting the variation of transmission eigenvalues with energy we get

S = 4
e2

h
kBθ

N∑
n=1

T 2
n+

+ 2
e2

h

N∑
n=1

Tn(1− Tn)
∑
l

|pl|2(eVdc + l~ω) coth

(
eVdc + l~ω

2kBθ

)
. (1.70)

Differently from the averaged current, the PASN is drastically modified by the
ac drive even in the case of a simple metallic system with linear IV charac-
teristic. The reason is pretty simple. For a dc voltage bias, the shot noise is
proportional to eV coth(eV/kBθ) and is thus nonlinear in V . In Eq. (1.70) we
see an infinite superposition of dc signals driven by an effective bias Vdc+l~ω/e.
In this case the series in l is not trivial and bears signature of the photoassisted
transport mechanism. At zero temperature the equilibrium term vanishes and
the PASN is

S = 2
e2

h

N∑
n=1

Tn(1− Tn)
∑
l

|pl|2|eVdc + l~ω|. (1.71)

We briefly comment on the interesting case of Vdc = 0, for which we know from
Eq. (1.67) that the dc component of the current vanishes. In this genuinely
ac case, the PASN is proportional to

∑N
n=1 Tn(1 − Tn) times a factor which

depends on the distribution of coefficients pl, but is certainly nonzero. This is a
paradigmatic example of PASN: we have recovered the physics of dc shot noise
[see Eq. (1.54)] even in the absence of dc transport! We report in Fig. 1.10
some experimental results by L. Reydellet et al. investigating this very case
[88]. The measured noise is in excellent agreement with the theory, Eq. (1.70).
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Figure 1.10: PASN observed in the absence of dc transport by L. Rey-
dellet et al. [88]. Left: the so-called noise temperature (namely, the ratio
TN = S/(4GkB)) agrees very well with theoretical expectation even with no
adjustable parameters. Right: after subtracting the equilibrium contribu-
tion, the noise temperature displays the typical pattern ∼ ∑n Tn(1 − Tn)
already shown in Fig. 1.8.

In particular, the behavior S ∼∑N
n=1 Tn(1− Tn) is clearly visible in the right

panel of Fig. 1.10, as the PASN vanishes totally whenever the conductance
takes values that are integer multiples of 2e2/h, with the factor 2 once again
due to spin degeneracy.

The photoassisted transport formalism has found several applications in the
description of quantum pumps, resonant double-barrier structures and driven
quantum dots [89]. More recently, it has been used to characterize the physics
of coherent single-electron sources in EQO, which will constitute the bulk of
the next Chapter.
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Chapter 2
Electron quantum optics

This second Chapter presents the field of electron quantum optics and all the
ingredients that make EQO possible. We will focus on the revolutionary discov-
ery of the QH effect and its one-dimensional edge states. Then we will discuss
the physics of single-electron sources, which represent fundamental building
blocks for EQO recently implemented in experiments. Finally we introduce
the FQH effect, and propose an extension of EQO to this unconventional and
fascinating regime.

2.1 The quantum Hall effect

The discovery of the QH effect is one of the most revolutionary events in physics
during the last 40 years. Lots of the modern achievements of condensed matter
theory have been triggered by the experimental observation reported by Klaus
von Klitzing and collaborators in 1980 [3].

In a simple picture, the physics of the QH effect is the following: a gas
of electrons is forced to move in a two-dimensional plane and is immersed in
a strong, perpendicular magnetic field. As we briefly mentioned in the pre-
vious Chapter, a 2DEG can form, for instance, at the interface between two
semiconductors due to the bending of the bands (although the original mea-
surement by von Klitzing was performed with a field-effect transistor). When
such a system is prepared, the classical Drude model would predict a simple
linear behavior for the transverse resistance (also called Hall resistance) as a
function of the magnetic field B [90]. Yet, at sufficiently low temperature and
high magnetic field a very peculiar phenomenon takes place: the Hall resis-
tance can only take values which are integer fractions of a universal resistance
quantum, as shown in Fig. 2.1. Such values do not depend on the presence of
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Figure 2.1: The QH effect in a nutshell. Top left: Electrons confined
in a planar two-dimensional geometry are immersed in a strong magnetic
field perpendicular to the plane. A current I is driven longitudinally along
the system and the Hall resistance RH = VH/I is measured. Top right:
Qualitative behavior of the Hall resistance as a function of the magnetic
field B. At low field the resistance is almost proportional to B, but well
defined plateaus develop for sufficiently high B. They correspond to integer
fractions of h/e2 with a precision up to 1 part in 1010. Bottom: The current
is carried by chiral edge states topologically protected from backscattering
while the bulk is insulating, hence the striking precision in the quantization.
Jumps between neighboring plateaus lead to topological phase transitions
were a new metallic state is created or removed at the edge.

40



2.1. The quantum Hall effect

impurities, on the dimensions of the sample and on its shape, but only on two
fundamental constants, namely the electron charge e and Planck’s constant h:

RH =
h

Ne2
, N ∈ N. (2.1)

Jumps among the different plateaus identified by the above equation happen
abruptly as the strength of the magnetic field is varied, but when the resistance
is flat, it is really very flat. So flat that it has been used in metrology [91, 92].
Important questions hence emerge: why is the resistance so stable? Which
is the nature of the phase transition that takes place when the system jumps
from one plateau to another?

The answer to these two questions has been given by D.J. Thouless and
coworkers by means of one of the more elegant and remarkable formulas of
condensed matter physics: the one defining the TKNN invariant (from the
initials of the four authors) [93]. In their original work, they have considered a
two-dimensional system of electrons in the presence of the periodic crystalline
potential and a strong perpendicular magnetic field, and they have computed
the conductance of such a system by using the Kubo formula [94]. The presence
of a periodic potential is crucial: we can use the Bloch theorem and say that
eigenstates of the Hamiltonian H(r) = p2/(2m) + U(r), with p = −i~∇ and
U(r +R) = U(r), are of the form [33]

ψ
(n)
k (r) = eik·ru

(n)
k (r), (2.2)

where uk(r) has the same periodicity of the crystalline potential [i.e. u(r +
R) = u(r)]. Here,R is a generic vector of the Bravais lattice. For a rectangular
lattice with primitive vectors a = (a, 0) and b = (0, b), we have R = ma+nb,

for any integers m,n. The function u
(n)
k is given by the eigenvalue problem

Hku
(n)
k = E

(n)
k u

(n)
k , (2.3)

where Hk = e−ik·rH(r)eik·r is the momentum-space Bloch Hamiltonian.
Still, an important remark is worth being underlined. In the presence of

an external magnetic field, we have to replace the momentum operator with
p − eA where A is the vector potential. Correspondingly, the Hamiltonian
reads

H(r) =
(p− eA)2

2m
+ U(r). (2.4)

In order for the eigenstates of the Hamiltonian (2.4) to still have the form
of Bloch states (2.2), the crystalline momentum has to be a good quantum
number. In other words, discrete translation operators in the x and y directions
(which we call Tx and Ty) have to commute with H and with each other. Due
to the presence of the vector potential they read

Tx = eia
′(px−eAx)/~, Ty = eib

′(py−eAy)/~. (2.5)
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Chapter 2. Electron quantum optics

Note that two new lengths a′, b′ appear in the above equation. The reason for
choosing two new constants instead of the periods a, b of the lattice will become
evident in a moment. The magnetic field is assumed to be perpendicular to
the xy plane, B = (0, 0, B). It is easy to show that the symmetric gauge
A = 1

2
B × r guarantees that [Tx, H] = [Ty, H] = 0. However, translation

operators do not commute with each other,

TxTy = TyTxe
−ia′b′Be/~. (2.6)

It seems that the Bloch theorem is applicable only under the special condition
a′b′Be/~ = 2πp, with p an integer. However, we can get out of trouble thanks
to a simple and extremely clever trick [93, 95]. Suppose that the magnetic
flux per unit cell φ = abB corresponds to a rational number of flux quanta
φ0 = h/e, namely φ/φ0 = p/q with p, q integers. Then, let us choose b′ = b
and write

a′bBe

~
=
a′

a
2π
abBe

h
=
a′

a
2π
p

q
. (2.7)

It is clear that, if we focus on a bigger unit cell with a′ = qa, the additional
phase in Eq. (2.6) vanishes and the Bloch theorem is fully applicable! The
reciprocal lattice is then described by the unit momenta ka = 2π/(qa) and
kb = 2π/b, and the corresponding Brillouin zone is called Magnetic Brillouin
zone [95].

We can now get back to the TKNN work. For the present case of a rectan-
gular lattice with periodic boundary conditions, the magnetic Brillouin zone is,
geometrically speaking, a torus. Thouless and collaborators were able to show
that the Hall conductance can be expressed as an integral, over the Brillouin
zone, of a quantity that does not depend on the energy levels of the system,
but on all the occupied eigenstates. The TKNN result is

GH =
∑
n

G
(n)
H , (2.8)

where each contribution G
(n)
H is given by an integral in the momentum space

involving Bloch states of the n-th band,

G
(n)
H =

e2

h

1

2π

∫∫
BZ

dkxdky i

[〈
∂u

(n)
kx,ky

∂kx

∣∣∣∣∣∂u
(n)
kx,ky

∂ky

〉
−
〈
∂u

(n)
kx,ky

∂ky

∣∣∣∣∣∂u
(n)
kx,ky

∂kx

〉]
,

(2.9)
and the sum in Eq. (2.8) is extended over all filled bands [93]. This behavior
immediately sounds odd: we usually learn that the current, in linear response,
is mainly a property of the states close to the Fermi energy, something very
different from the TKNN result. Moreover, and most importantly, the value
of G

(n)
H can only be an integer multiple of the conductance quantum e2/h.

There is a profound reason for this precise quantization which is rooted in the
mathematical field of topology. But to fully appreciate the link with topology,
we have to resort to a powerful tool called Berry phase.
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2.1. The quantum Hall effect

2.1.1 Berry phase and topology

Suppose that the Hamiltonian H of a quantum system depends on a set of
N parameters, collected in the vector ξ. At each instant, there is a set of
eigenstates {|n(ξ)〉} satisfying the Schrödinger equation

H(ξ) |n(ξ)〉 = E(n)(ξ) |n(ξ)〉 , (2.10)

which constitute the natural basis. Let us now suppose that the system is ini-
tially prepared in the n-th eigenstate, and then follows an adiabatic evolution
in time represented by a path C in the parameter space. According to the
adiabatic theorem, a slow evolution in the parameter space leaves the system
in the n-th eigenstate, provided that there is a gap between the eigenvalue
E(n) and the rest of the spectrum [96]. Namely, if the quantum state at the
initial instant t0 is |ψ(t0)〉 = |n[ξ(t0)]〉, the final state must be proportional to

|n[ξ(t)]〉 times, at most, an additional phase factor: |ψ(t)〉 = eiφ
(n)(t) |n[ξ(t)]〉.

To calculate the phase we consider the full Schrödinger equation for |ψ(t)〉,

i~∂t
[
eiφ

(n) |n(ξ)〉
]

= H(ξ)eiφ
(n) |n(ξ)〉 = E(n)eiφ

(n) |n(ξ)〉 , (2.11)

and take the inner product with 〈n(ξ)|. After an integration in time we readily
obtain

φ(n) = −1

~

∫ t

t0

E(n)(ξ)dt′ +

∫ t

t0

i 〈n(ξ)| ∂t′ |n(ξ)〉 dt′. (2.12)

Thus, the additional phase factor is due both to the usual time evolution of
the eigenstate and the path in the parameter space. This second contribution,
which we’ll denote with γ(n), is of purely geometrical origin, since we can
rewrite it as

γ(n) =

∫
C

A(n)(ξ) · dξ, A(n)(ξ) = i 〈n(ξ)|∇n(ξ)〉 , (2.13)

with ∇ = ( ∂
∂ξ1
, . . . , ∂

∂ξN
). The quantity A(n)(ξ) is called Berry connection.

The emergence of this phase factor isn’t quite a surprise and does not seem
to be so interesting at first. Indeed, it has been known from the very beginning
of the quantum theory that a suitable gauge transformation washes out the
effect of the geometrical phase. But this is not always possible. In 1983 Michael
Berry pointed out what all physicists had missed for almost 60 years: when a
quantum system undergoes a time evolution which is a cycle (i.e. it describes
a closed loop in the parameter space), the geometrical phase cannot be gauged
away and must have a physical meaning [97]. Indeed, a gauge transformation
acts on the eigenstates as

|n[ξ(t)]〉 → |n′[ξ(t)]〉 = eiΛ[ξ(t)] |n[ξ(t)]〉 , (2.14)

where Λ(ξ) is any differentiable function. From Eq. (2.13) it is evident that
the properties of A under gauge transformation are formally comparable to a
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Chapter 2. Electron quantum optics

vector potential, asA′ = A−∇Λ(ξ). We thus get the following transformation
for γ(n)

γ(n) → γ(n)′ = γ(n) − Λ[ξ(t)] + Λ[ξ(t0)]. (2.15)

But a full cyclic evolution implies that Λ[ξ(t)] = Λ[ξ(t0)] + 2πN , with N an
integer, to ensure that we get back to the initial state |n[ξ(t0)]〉. We thus find
that γ(n), which is now called Berry phase, is gauge invariant modulo 2π and
the full phase factor eiγ

(n)
is absolutely gauge invariant.

It was Barry Simon from Caltech to immediately elucidate the link between
this “remarkable and rather mysterious result” (in Berry’s own words) and the
TKNN formula [98]. In particular, the Berry phase as written in the Eq. (2.13)
defines a curvature, which is given by

Ω
(n)
αβ = ∂αA

(n)
β − ∂βA(n)

α (2.16)

(here we use ∂α = ∂/∂ξα). Simon then realized that there the physics of the
Berry curvature is nothing but the physics of vector bundles and their integral
invariants, and the integral of the Berry curvature over a closed surface must
be an integer multiple of 2π.1 Thus the quantity

C(n) =
1

2π

∫∫
S

dxα × dxβ Ω
(n)
αβ (2.17)

is an integer, which is called Chern number.

Berry phase in Bloch bands

The link with the TKNN invariant comes in the following way. Changing
the quasi-momentum across the magnetic Brillouin zone can be viewed as
an adiabatic, cyclic evolution of the momentum-space Hamiltonian Hk, since
we have periodic boundary conditions. Then, for each band we can define
the Berry phase and curvature in terms of the two-dimensional momentum
k = (kx, ky), which plays the role of the set of parameters ξ. Reinterpreting
the TKNN result in this way, one finds that the Hall conductance in unit
of e2/h is nothing but the integral of the Berry curvature over the (closed)
magnetic Brillouin zone summed over the filled bands, and is thus an integer
number:

σH

e2/h
=
∑
n

∫∫
BZ

dkxdky Ω
(n)
kxky

= N. (2.18)

A nice analogy with mathematics in thus recovered. A theorem due to Gauss
and Bonnet states that, for a closed surface with Gaussian curvature K the
quantity [100]

χ =
1

2π

∫
S

K dA, (2.19)

1 For a demonstration of this fact on a simple surface, like a sphere in R3, see e.g. Ref.
[99].
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2.1. The quantum Hall effect

which is called Euler characteristic, is an integer number linked to number of
holes g in geometric structures (in particular one has χ = 2− 2g). The Euler
characteristic is left invariant by a smooth deformation of the manifold which
doesn’t close or open new holes, and is thus called topological invariant. The
Hall conductance for the n-th band behaves exactly the same way when con-
sidering smooth deformations of the Hamiltonian, since σ

(n)
H is the integral of

a curvature over the Brillouin zone. In mathematics, all manifold with iden-
tical χ are said to be topologically equivalent, while different χ correspond to
topologically distinct surfaces. Similarly, we can refer to the different quantum
Hall plateau as topologically different quantum phases.

The phase transition among separate states (i.e. separate Hall plateaus) is
not associated with a symmetry breaking and the behavior of a local order
parameter, but it is related to an integral, hence a global property of the sys-
tem, changing value as soon as the conductance jumps from one plateau to the
next one. This is the deep revolution that the QH effect brought in condensed
matter physics. A new phase of matter was discovered, which doesn’t fit the
usual classification in terms of symmetry breaking and order parameters of the
Landau-Ginzburg theory [101]. Instead, it is understood in terms of a global
property (an integral over the Brillouin zone) with all the characteristics of a
topological invariant.

2.1.2 Edge states

Still, who carries the current in this topological system? Bertrand Halperin, in-
spired by a beautiful Gedanken experiment by Nobel laureate Robert Laughlin
[102], demonstrated that the current is carried by metallic states at the edges
of the sample [4].

To understand why, consider an intuitive semi-classical picture of electrons
constrained in a finite region of the plane by hard-wall boundary conditions.
In the presence of a strong perpendicular magnetic field the trajectory is cir-
cular, with a radius that decreases with increasing magnetic field as 1/B. For
sufficiently high magnetic fields, particles describe very small circular orbits
whose radius is much smaller than the linear dimensions of the sample, and no
conduction can take place through the bulk. But what happens at the edges?
Here, electrons hit the wall before completing a full cycle and, as a result of
multiple collisions with the boundary, they move along the edge describing the
so-called skipping orbits shown in Fig. 2.2.

On a more quantitative point of view the physics is the following: energy
levels of a two-dimensional system of non-interacting charged particles in a
perpendicular magnetic field are given by the highly degenerate Landau levels
[59]

En = ~ωB
(
n+

1

2

)
, (2.20)

where ωB = eB/m is the cyclotron frequency. Each level can accommodate a

45



Chapter 2. Electron quantum optics

B

Figure 2.2: Left: in a semi-classical approximation, electrons in a plane
with a perpendicular magnetic field describe circular orbits. For very high
magnetic fields their radius is much smaller than the linear dimensions of
the sample, and the system behaves mainly as an insulator, as no electron
can be transported through the bulk. Still, electrons at edges collide against
the wall and their circular motion is interrupted, giving rise to chiral edge
states. Right: sketch of the energy levels of the 2DEG.

number Ndeg = φ/φ0 of electrons, where φ is the total magnetic flux through
the plane and φ0 = h/e is the flux quantum. If the 2DEG hosts a total number
N of electrons, the fraction of occupied Landau levels is thus

ν =
N

Ndeg

=
hne
eB

, (2.21)

with ne the electron density in the system. Such a quantity is usually named
filling factor.

Due to translational invariance (here we can safely neglect the periodicity
of the crystalline potential) energy levels in the bulk are spatially homoge-
neous. Inside the sample we have the typical spectrum of an insulator, shown
schematically in Fig. 2.2. Indeed, as long as we stay away from the edges, for
each possible value of the Fermi level EF the highest occupied band is always
separated from the lowest unoccupied one by an energy gap ~ωB. However,
the situation is very different close to the edge of the sample. Here the spec-
trum is shifted with respect to the Landau levels, due to the fact that the
wavefunction has to vanish at the edge. As a result, the Fermi level always
crosses the energy spectrum both on the right side (y = W/2) and on the left
side (y = −W/2), giving rise to metallic edge states.

However, a key role in the physics of the QH effect is played by disorder,
which has often a dramatic effect on transport properties, as demonstrated by
the paradigmatic Anderson localization [103]. The important result shown by
Halperin is that this intuitive picture of edge states is not significantly altered
by disorder. On the contrary, disorder is even useful in this case, as it helps
localizing the bulk states in correspondence of plateaus of GH, while edge states
remain extended and carry a current even in the presence of disorder in the
sample [4].
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2.2. Electron quantum optics

The fact that the current flows at the edge brings several very important
implications, all consistent with experimental observations. First, the motion
is chiral and electrons on the same edge move along the same direction, dic-
tated by the external magnetic field. They would reverse their direction of
motion only by reaching the opposite edge, where they can find a backward-
propagating channel. But this is impossible (or, at least, exponentially sup-
pressed) since the system is insulating in the bulk! The chiral edge states of
the QH effect are thus topologically protected from backscattering and real-
ize a perfect, dissipationless conductor. A vanishing longitudinal resistance is
indeed always measured in correspondence of transverse resistance plateaus.
Second, it’s now clear that all details about the host sample (shape, presence
of impurities, material) are irrelevant. What really matters is the boundary
between the electron gas and the vacuum, were current-carrying edge states
develop. Finally, plateaus of GH are in one to one correspondence with the
number of edge states. Indeed, if the Hall conductance in the presence of a
single edge state is G0 = e2/h, n boundary states generate a conductance
GH = nG0, accounting for the step-like behavior RH = 1/GH. Jumping from
one resistance plateau to the next one corresponds to closing or opening a new
channel at the edge. Thus, in this context, the integer n is nothing but the
filling factor ν.

With the QH effect and its topological interpretation, the era of topological
states of matter was born. A plethora of states which are defined by their
topology rather than by their symmetries have been discovered and understood
since the ’80s. Moreover, when forced to have an interface with something
topologically different (most often, the vacuum), those states necessarily show
robust metallic edges. This is a particular manifestation of a rather general
phenomenon called bulk-boundary correspondence: what happens at the edge
is nothing but a manifestation of topological properties of the bulk.

2.2 Electron quantum optics

The discovery of topological states of matter and their protected edge states has
triggered a huge number of theoretical proposals and cutting-edge experiments.
Very recently, it has been realized that such one-dimensional, dissipationless
conductors are the best possible candidate to realize electronic waveguides.
Indeed, if one were able to generate coherent few-electron excitations along
the edge stated of a QH system, the topological protection would allow for
ballistic transport over distances of the order of several µm (which is a rather
remarkable distance) and, as a consequence, for they coherent manipulation in
interferometric setups. To this end, a 2DEG in the QH regime can be equipped
with a QPC in order to deviate, reflect or manipulate in any possible way the
flow of QH edge states.

Going back to the simple two-particle interferometer we described in Sec.
1.4.1, it seems that we have found a possible physical implementation in
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Figure 2.3: The driven mesoscopic capacitor. A: a narrow loop is defined
along the edge states of a QH system thanks to a QPC (yellow gates with
dc voltage VG). This creates a strongly confined region with discrete energy
levels separated by an energy ∆. A second gate driven with a square voltage
Vexc is able to raise and lower the energy levels periodically. This results in
a periodic emission of an electron and a hole from the confined region to the
rest of the 2DEG. B: time resolved current measurements show the typical
exponential relaxation of an RC circuit. From [6].

fermionic systems. Quantum Hall edge states can provide input and output
channels for electrons, and a QPC is able to reflect or transmit particles at
a tunable rate. But the only missing piece to perform individual fermionic
interferometry is possibly also the hardest one to achieve: a device which is
able to inject an on-demand and controlled train of electronic excitations in
QH edge states.

2.2.1 Single-electron sources

A breakthrough in this direction was achieved in 2007, when the paper by G.
Fève and collaborators reported the first experimental realization of a coherent
single-electron emitter [6].

The physics of this remarkable device relies on earlier work by M. Büttiker,
who investigated a quantum analogue of the RC circuit which he called meso-
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scopic capacitor [5, 104]. We show in Fig. 2.3 the principle behind its operation.
In a 2DEG, a small island is isolated from the rest of the system thanks to
a QPC. The island is small enough to be assimilated to a quantum dot with
discrete energy levels. A dc gate voltage (indicated with VG in the figure)
controls the transmission D from the island to the rest of the 2DEG, which is
driven in the QH regime thanks to a sufficiently high magnetic field. A second
gate Vexc is capacitively coupled to the dot in order to control the Fermi energy
of electrons in the dot.

Now, let us consider the cartoon schematically depicted in the second row
of Fig. 2.3. At the initial step (1), the Fermi level of the 2DEG lies between
two energy levels of the dot. Next, acting on Vexc the energy levels of the dot
are suddenly risen by a fixed amount ∆, which corresponds to the spacing
between levels (2). The electron that previously occupied the highest filled
level is now above EF in energy. It can now escape the dot at a tunneling rate
Γ = τ−1 ≈ D∆/h, where τ is the relaxation time of the dot [6]. As a final step,
the gate voltage is brought back to the initial value so that energy levels of
the dot are realigned with their starting configuration (3). Now the opposite
scenario is realized: an empty level has moved below the Fermi level, and an
electron from the free 2DEG can tunnel into the dot at the same rate Γ to
occupy this empty level. The net result is the emission of a hole from the dot
to the rest of the 2DEG. By driving Vexc with a square wave this up/down cycle
is repeated periodically, leading to the alternate emission of an electron and
a hole for each period of the drive. It’s worth noticing that the ac amplitude
of the square voltage has to be of the order of ∆/e, in such a way to raise a
single level above the Fermi level.

In view of the analogy with the classical capacitor, current driven by the
mesoscopic capacitor is expected to show the typical charging/discharging be-
havior of an RC circuit. Indeed, the time dependent current reported in the
bottom row of Fig. 2.3 shows a good agreement with an exponential relaxation.
As expected, the emission time τ extracted with an exponential fit increases
as the transmission D of the QPC is lowered.

As said, the 2DEG within which the mesoscopic capacitor is realized is
subjected to a strong magnetic field. Electrons and holes outgoing from the
dot are thus directly emitted into the edge states of the QH regime, which
take care of the coherent propagation of the injected wavepacket. In this
framework, a partitioning experiment for a stream of single-electron and single-
hole excitations was realized in Ref. [11] by the ENS Paris team, in the same
spirit of the optical HBT experiment [105–107]. The optical beam splitter was
effectively replaced by an additional QPC with tunable transmission, that was
placed downstream of the emitter.

Even more intriguingly, an HOM experiment with identical fermions was
subsequently performed by the same group and reported in Ref. [12]. In a
two-arm interferometer, such as the one schematically described in Sec. 1.4.1
of the previous chapter, a pair of mesoscopic capacitors were tuned in such a
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way to have identical energy levels and emission times. Simultaneous collisions
of identical electrons and holes at the QPC showed the expected anti-bunching
effect predicted for fermionic particles and already described in Chapter 1 [see
Fig. 1.4]. These experiments show that, combining QH edge states as ballis-
tic waveguides for electrons, a mesoscopic capacitor as an on-demand single-
electron gun and a QPC in the role of a beam splitter, the time for coherent
manipulation of single-electrons in optical-like setup has come. This new field,
which promises to be extremely fruitful for the realization of quantum tech-
nologies, has been named Electron Quantum Optics (EQO) [2].

2.2.2 The leviton

An equally effective yet conceptually simpler idea to conceive single-electron
excitations was discussed in a series of theoretical paper by L. Levitov and
coworkers, who showed how to excite a single electron above the Fermi sea ap-
plying well defined voltage pulses to a quantum conductor [7–9]. In particular,
the pulse must have a Lorentzian shape with quantized area in order to gener-
ate an electron-like excitation with no additional hole-like contribution. The
formalism used by Levitov and collaborators is quite general. Without going
into the details of their work, we summarize the main points and demonstrate
how they are related to the PASN when considering periodic voltage pulses.

Exciting a single electron above the filled Fermi sea might look at first
a pretty challenging task. Applying time-dependent voltage pulses to a con-
ductor is, in some sense, similar to shaking a water tank: we generate a huge
number of ripples with peaks and valleys, which we call, for the case of fermions
in a metallic system, particle and hole excitations. Extracting a single water
droplet without affecting the rest of the equilibrium surface seems to be ex-
tremely difficult, if not impossible.

Levitov et al. developed a theory of electron counting statistics to study
what happens when a non-interacting quantum conductor is shaken with a
voltage pulse V (t). They found that the new quantum state generated after
the pulse depends strongly on the Faraday flux

Φ =

∫ +∞

−∞
dt V (t). (2.22)

The key result is the following. In general, the presence of a nonzero Fara-
day flux generates a new ground state which is orthogonal to the initial one.
This fact bears an interesting resemblance with the orthogonality catastrophe,
where the insertion of a single impurity in a crystal lattice leads to a new or-
thogonal many-particle ground state in the thermodynamic limit [108]. From
the point of view of transport properties, the orthogonality catastrophe leads
to a logarithmic divergence in the current noise due to the fact that the volt-
age pulse excites infinitely many particle-hole pairs. However, a very special
configuration is obtained when the Faraday flux is an integer multiple of the
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flux quantum φ0 = h/e. For Φ = nφ0 the logarithmic divergence vanishes, for
the two ground states are no more orthogonal. Thus, if we want to cause a
minimal disturbance to the Fermi sea we must choose a voltage pulse whose
integral is quantized in terms of the flux quantum φ0, namely

e

h

∫ +∞

−∞
dt V (t) = n, n ∈ N. (2.23)

This is a constraint on the average value (i.e. dc component) of the pulse. It
remains to establish which pulse shape does the job in the best way.

Let us consider Levitov quantization condition (2.23) in terms of the PASN.
We assume that the conductor is driven with a periodic stream of voltage
pulses, instead of a single one. In the presence of any sort of barrier with finite
transmission/reflection we can use Eq. (1.71) to write the zero temperature
shot noise,

S =
e2ω

π

N∑
n=1

Tn(1− Tn)
+∞∑
l=−∞

|pl|2|q + l|, (2.24)

with ω = 2π/T the angular frequency of the drive. Here we have introduced
the parameter q = eVdc/(~ω) which is linked to the dc component of the
voltage drive. We note that, in order to minimize the noise, we must follow
the quantization condition Eq. (2.23) which fixes the value of Vdc. Thus, for a
given q we have to find the optimal shape minimizing the noise. Let us assume
that q > 0 and rewrite S in the following way

S ∝
∑
l>−q

|pl|2(q + l) +
∑
l<−q

|pl|2|q + l| =
+∞∑
l=−∞

|pl|2(q + l) + 2
∑
l<−q

|pl|2|q + l| =

= q + 2
∑
l<−q

|pl|2|q + l|, (2.25)

where we have used the properties
∑

l |pl|2 = 1 and
∑

l l|pl|2 = 0 demonstrated
in the Appendix A. It’s clear that the noise attains the minimal value when∑

l<−q |pl|2|q+l| = 0. But this is a sum involving only positively defined terms!
As such, it vanishes only when all coefficients pl vanishes for l < −q.

Now, we recall that pl are the Fourier coefficients of the time dependent
signal e−iϕ(t), with ϕ(t) = (e/~)

∫ t
0
dt′ Vac(t

′). The condition for minimal noise
reads thus

pl =

∫ +T/2

−T/2

dt

T
eil~ωte−i

e
~
∫ t
0 dt
′ Vac(t′) =

∫ +T/2

−T/2

dt

T
ei(l+q)~ωte−i

e
~
∫ t
0 dt
′ V (t′) = 0

(2.26)
for l < −q. Taking the limit of infinite period, which brings us back to the
single-pulse situation discussed by Levitov, we get the condition

p(ε) =

∫ +∞

−∞
dt e−iεtf(t) = 0, f(t) = e−i

e
~
∫ t
0 dt
′ V (t′), (2.27)
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for positive ε. From complex analysis, we now see that this condition is fulfilled
if the function f(t) has no pole in the lower half of the complex plane [109–111].
However, we also know that f(t) must have at least one pole in the upper-half
plane [otherwise p(ε) vanishes everywhere!], and also that |f(t)| = 1. The
simplest function satisfying this condition is

f(t) =
t− t0 + iW

t− t0 − iW
, (2.28)

where W and t0 are real quantities and W > 0. We immediately get the shape
of the voltage, which is indeed a Lorentzian pulse of width W centered around
t0:

V (t) = i
~
e

d

dt
ln f(t) =

~
e

2W

(t− t0)2 +W 2
. (2.29)

This pulse satisfies Eq. (2.23), as (e/h)
∫
dt V (t) = 1. We get to a very impor-

tant conclusion: a Lorentzian pulse with area
∫
dt V (t) = h/e is the smallest

possible pulse that minimizes the shot noise in a quantum conductor. As such,
the quantum state generated by applying the pulse (2.29) to a conductor at
equilibrium is also called minimal excitation state. The result obtained by Lev-
itov and collaborators is very general. They demonstrated that an arbitrary
superposition of optimal pulses with the same sign but with different values of
t0 and W is still a minimal excitation state. As already noticed in the original
paper, optimal pulses behave like solitons in integrable non-linear systems [7].
Thus, a periodic train of quantized Lorentzian pulses minimizes the shot noise
even without considering the limit T → ∞ as we did in Eq. (2.27). Indeed,
one can evaluate the explicit expression for the discrete coefficient pl in the
periodic case and check that they all vanish for l < −q (see Appendix A).

It’s worth emphasizing an aspect, which is extremely useful when looking
for experimental evidence of the minimal excitation state. From Eqs. (2.24)
and (2.25), we see that the PASN can be rewritten as

S =
e2qω

π

N∑
n=1

Tn(1− Tn) + ∆S, (2.30)

where the first term is just the shot noise in the presence of a dc bias equal
to the average value of the pulse. The additional term ∆S, which we’ll name
excess noise, vanishes in the case of optimal Lorentzian pulses. Indeed, it can
be shown that ∆S is proportional to the number of holes excited by the voltage
drive [9, 112]. The experimental search for minimal excitation states is thus
focused heavily on the measurement of a vanishing excess noise.

2.2.3 Experimental evidence

Experiments performed at CEA Saclay in 2013 demonstrated for the first time
the validity of Levitov’s approach [10]. We report below the results of Ref. [10]
together with their theoretical interpretation.
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Figure 2.4: Theoretical expectation for the PASN as a function of q as-
sociated to periodic signals in Eqs. (2.33), in units of S0. Left panel: zero
temperature case. Right panel: finite temperature case with kBθ = 0.1 ~ω.
For comparison, curves at θ = 0 are reported as dashed lines from the left
panel. In both cases the dimensionless width of Lorentzian pulses is η = 0.1.

A 2DEG in a two-terminal geometry was fabricated in a GaAs/Ga(Al)As
heterojunction. The two ohmic contacts were connected to an arbitrary pulse
generator with a broadband 40 GHz transmission line. The 2DEG was equipped
with a QPC with tunable transmission in such a way to realize a controllable
partition of the periodic stream of pulses. Measurements were performed with
a single transmitted transversal mode (this can be checked with a simple dc
conductance measurement).

We first comment on the behavior of the PASN as a function of the pa-
rameter q = eVdc/(~ω) expected from the theory. Firstly, it should be noticed
that the current emitted from the contact to the single-mode conductor is
I0(t) = G0V (t) for each of the two spin polarizations, with G0 = e2/h [the
total current emitted is of course 2I0(t) = (2e2/h)V (t)]. It follows that the
charge associated with one period of the pulse for each spin polarization is

Q =
e2

h

∫ T

0

dt V (t) =
e2

~ω

∫ T

0

dt

T
V (t) = eq. (2.31)

Thus, q also measures the number of electrons associated with each pulse. We
also note that the condition (2.23) to achieve an optimal flux quantization is
equivalent to the request of integer charge per pulse, q = n. The excess noise
∆S at zero temperature reads

∆S = S − Sdc = S0

(
+∞∑
−∞

|pl|2|l + q| − q
)

= 2S0

+∞∑
l<−q

|pl|2|l + q|, (2.32)

where we have collected all constants in S0 = T1(1 − T1)e2ω/π, and T1 is the
transmission of the single mode. Once we have chosen a waveform, this expres-
sion depends on the values of photoassisted coefficients pl for that particular
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drive. To make contact with experiments, we consider a sinusoidal drive, a
square voltage and a periodic train of Lorentzian pulses given respectively by

Vsin(t) = Vdc[1− cos(ωt)], (2.33a)

Vsqr(t) = 2Vdc

+∞∑
k=−∞

Θ (t− kT ) Θ

(
T

2
− t+ kT

)
, (2.33b)

VLor(t) =
Vdc

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
, (2.33c)

where the periodic Lorentzian drive has been written in terms of the width-to-
period ratio η = W/T . We have calculated the corresponding coefficients in
Appendix A. The excess noise predicted by PASN theory for this three cases is
reported in the left panel of Fig. 2.4. All curves show a non-monotonic behavior
with minima in correspondence of integer values of q, showing the validity of
the condition (2.23) derived by Levitov et al. for avoiding the orthogonality
catastrophe. However, only the Lorentzian voltage pulse can reach the sought-
after value ∆S = 0: both the sinusoidal and the square drive stay well above
zero even in such cases where the charge per pulse q is an integer number.

Experiments, however, cannot reach a temperature θ = 0. It is thus in-
structive to have a look at the finite temperature case. In such case, we know
from Eq. (1.70) that a coth factor is needed to account for finite temperature
corrections. The excess noise is now

∆S = S0

{
+∞∑
−∞

|pl|2(l + q) coth

[
(l + q)ω

2kBθ

]
− q coth

(
qω

2kBθ

)}
, (2.34)

and is reported in the right panel of Fig. 2.4 for the same three voltage pulses.
We see that ∆S does not vanish anymore, even for integer q. This is to be
expected, as thermal fluctuations can generate particle-hole pairs (and thus
additional contribution to the noise) even if the waveform meets the criteria
for optimal injection. The subtraction of the partition noise due to thermal
excitations emitted by the reservoirs, which for integer q is of the order of ∼
2kBθ/(~ω)|p−q|2, should give an indication of the “cleanliness” of the injected
pulse (see the online supplementary information to Ref. [10]).

We now show the outcome of the experiment reported in Ref. [10]. Points
shown in Fig. 2.5, left panel, confirm the hierarchy established by theory,
see Fig. 2.4 for comparison. The dashed threshold corresponds to the thermal
contribution due to the reservoirs, which for this particular case is substantially
equal for the cosine and Lorentzian drive. The Lorentzian curve matches
almost exactly the dashed level, indicating that no additional noise is generated
by the train of voltage pulses. The right panel of Fig. 2.5 shows another set
of data for sharper Lorentzian pulses and higher-frequency sinusoidal drive.
This time the reservoir contributions are different, but we still observe that
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Figure 2.5: Experimental evidence of the leviton (from Ref. [10]). The
excess particle number, given by ∆S/S0, is measured as a function of the
dimensionless dc voltage q. Square, sinusoidal and Lorentzian waveforms
with different frequency are considered. Contributions due to thermal exci-
tations emitted by the reservoirs for the sinusoidal and Lorentzian drive are
reported in both panel as dashed lines (for the left panels they are almost
coincident). Lorentzian pulses in left and right panels have dimensionless
width η = 0.18 and η = 0.09 respectively. The temperature is θ = 39 mK.

the sinusoidal voltage generates some extra noise which is due to the excitation
of particle-hole pairs, while the Lorentzian one does not.

All these features point toward the observation of the minimal excitation
state predicted by Levitov. The authors of Ref. [10] have proposed the name
leviton (i.e. Levitov soliton) for this new type of quasiparticle excitation.

It is worth observing that the leviton seems to be easier to implement with
respect to the driven mesoscopic capacitor protocol. Indeed, it’s sufficient to
apply carefully chosen voltage pulses to a two terminal quantum conductor,
thus drastically simplifying the fabrication process of the single-electron gun.
For instance, an HOM experiment with levitons can be implemented by feeding
two ohmic contacts with the very same pulse generator, with the only care of
introducing a tunable time delay in the transmission line. The outcome of such
an experiment, which was indeed realized still in Ref. [10] and demonstrates
the predicted anti-bunching effect for fermions, has been already shown in the
previous Chapter, fig. 1.4.

2.3 Towards electron quantum optics at fractional
filling factor

2.3.1 The fractional quantum Hall effect

We have seen that the QH effect, with conductance plateaus at integer val-
ues of the filling factor, is well understood in terms of a topological invariant
that can only take integer values. However, even before this picture was com-
pleted, a notable exception was already reported. In 1982, while Thouless and
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Figure 2.6: Left: first observation of the FQH effect (from Ref. [19]).
A plateau in the Hall resistivity (ρxy) develops at ν = 1/3, in correspon-
dence of a suppression of the longitudinal resistivity (ρxx). Right: the rich
phenomenology of the FQH effect (from Ref. [113]).

co-workers were finalizing their interpretation of the TKNN integral, Tsui,
Stormer and Gossard published their results on the observation of a quantum
Hall plateau at ν = 1/3 [19]. The left panel (top and bottom) of Fig. 2.6
shows the first observation of the FQH effect, with the emergence of a Hall
plateau at ν = 1/3. This fact sounds definitely puzzling, and has inspired a
huge number of theoretical and experimental work in the following years. It
has opened the fascinating field of the FQH effect, which, as of today, is still
extensively studied.

A first theoretical interpretation of the data shown in Fig. 2.6 was sub-
sequently published by Laughlin in 1983 [20]. He realized that the missing
ingredient in the theoretical interpretation of QH effects were electron-electron
interactions, and that the FQH effect must originate from a strongly correlated
quantum state. Relying on the analytical properties of the wavefunction of an
electron in the lowest Landau level, and most of all on a brilliant physical in-
tuition, he worked out a variational wavefunction to describe the formation of
new type of quantum liquid. It turned out that the overlap between Laughlin
variational wavefunction and the real wavefunction, calculated numerically for
few-particle states, is of the order of 99%. Although being simple (or, probably,
precisely for this reason) it catches the physics: the FQH effect originates from
the formation of an uncompressible fluid of quasiparticle excitations, each one
carrying a fraction of the electron charge. This phenomenon occurs at very
precise values of the filling factor given by the so called Laughlin sequence [20]

ν =
1

2n+ 1
, n ∈ N. (2.35)

In the following years, a number of fractional plateaus of the Hall conductance
have been reported, as the right panel of Fig. 2.6 shows. A great majority of
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them correspond to the values [114]

ν =
p

2pn+ 1
, p ∈ Z, n ∈ N. (2.36)

This second series is known as Jain sequence, and gives back the Laughlin
values for the case p = 1. However, some notable exceptions with integer
denominator have been spotted, like the exotic ν = 5/2 FQH state [115, 116].
These are extremely interesting due to their quasiparticles with non-Abelian
statistics that may be useful for quantum computation [117].

Similarly to the integer QH already described, the FQH effect is character-
ized by the emergence of conducting states at the edge of the system, where
the quantum fluid meets the vacuum. As we will see in the next chapter, the
basic idea is that the ground state of the FQH forms an incompressible fluid,
whose low-energy excitations are deformations that change its shape, but not
its area. They move chirally as one-dimensional charge density waves along
the edge of the fluid [22].

We won’t give a detailed discussion of Laughlin variational approach, for
which we refer to the literature [90]. It would require a thorough illustration of
the physics of Landau levels and the analytical properties of wavefunctions in
the lowest Landau level, together with the analogy with a plasma of charged
particles that demonstrates the fractional charge of quasiparticles. This would
take an impressive amount of pages (and time!) in this thesis. We will, how-
ever, describe the experimental observation of the fractional charges predicted
by Laughlin. Two observations were published independently in 1997 by the
CEA Saclay group and the Weizmann Institute of Science and helped the cause
of Laughlin, Tsui and Stormer, who were awarded the Nobel prize one year
later [50, 51].

2.3.2 Measuring a fractional charge

The demonstration that Laughlin quasiparticles carry fractional charge is one
of the best exemplification of the power of noise measurements. Back in Section
1.3 we argued that the shot noise can reveal the charge of the carriers, an
information that is usually invisible in the current alone. Experiments carried
out in 1997 in the FQH regime rely exactly on this principle, which we describe
here below.

Consider a 2DEG in the FQH regime with filling factor ν = 1/3. When the
system is driven out of equilibrium thanks to a source-drain voltage Vsd, an
electrical current I0 = GHVsd circulates, with GH = νe2/h. It is carried along
the chiral edge states, as the bulk is insulating.

Now, imagine that a QPC is created in the middle of the sample thanks to
a pair of metallic gates. By applying a negative voltage VG to the gates, part
of the current I0 is reflected into the opposite edge state as shown in Fig. 2.7a.
The physical mechanism responsible for reflection of the current is the tunnel-
ing of fractional quasiparticles with charge e∗ = νe from top to bottom edges,
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and the corresponding backscattering current IB is subjected to fluctuations
due the random nature of reflection. If the tunneling between opposite edges
is sufficiently weak, we can assume that each tunneling event is independent
from the others. This regime is commonly named weak backscattering configu-
ration. Then, in view of the rather general description of Poissonian shot noise
we formulated in Sec. 1.3, the noise will be proportional to the charge of the
carriers and the backscattering current:

S = 2e∗IB. (2.37)

This is valid in the low temperature regime (i.e. kBθ � e∗Vsd). Although a
complete understanding of current and fluctuations in Laughlin edge states
requires a field-theoretical approach and the notion of chiral Luttinger liquid,
Eq. (2.37) should be valid as long as the backscattering can be described as
an uncorrelated tunneling of fractional quasiparticles.2 In the next chapter we
will carry out a detailed calculation of shot noise and backscattering current
for the FQH edge states in the framework of the chiral Luttinger liquid theory.
We will see that the final result totally agrees with Eq. (2.37) in the weak
backscattering regime.

In this context, Saminadayar et al. measured the shot noise due to a weak
backscattering current and reported the noise-vs-current curve shown in Fig.
2.7b [50]. Experimental points approximately follow a straight line in the
Poissonian noise regime (i.e. when the energy scale set by the voltage bias is
much higher than thermal energy). The slope is e∗ = e/3, and clearly departs
from the dotted line representing the slope e. In contrast, the inset shows that
the curve has slope e in the integer QH regime, where the current is carried by
integer electrons. The bottom left panel of Fig. 2.7c reports similar results by
De-Picciotto et al. [51]. The measured fluctuations follow again the predicted
behavior for e∗ = e/3, which is sharply different from the curve obtained for
integer electrons.

Finally, Fig. 2.7d adds further evidence for the fact that what is measured
is not simply the filling factor, but the actual charge of quasiparticles. Indeed,
excitations of Laughlin FQH states carry a fraction of the electron charge that
is exactly equal to the filling factor (and thus to the conductance in unit of
e2/h). This may lead to a rather annoying ambiguity in the interpretation of
the results. For instance, earlier works had already claimed to have measured
the fractional charge in different systems through Aharonov-Bohm oscillations
[118], but it was demonstrated that they were only accessing the filling factor
of the QH liquid [119]. However, the measurement carried out by Reznikov
et al. found the predicted charge e∗ = e/5 for the state ν = 2/5 of the Jain
sequence (2.36). Their data are reported in Fig. 2.7d, and erase any doubt
about a possible misunderstanding [52].

2 The word uncorrelated used here is to be intended as a synonym of independent tun-
neling events. It should not be confused with electron-electron correlations that give rise to
the FQH state, for which we also use the word correlated.
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Figure 2.7: Measurement of the fractional charge of Laughlin quasiparti-
cles. A current is driven along the edge states of a 2DEG in the FQH regime,
schematically shown in panel a. A QPC in the middle reflects part of the
current, generating fluctuations in the backscattering current IB. The shot
noise then follows the linear behavior S = 2e∗IB, with e∗ = e/3 or e∗ = e/5
in the present case. From Refs. [50] (panel b), [51] (c) and [52] (d).
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Figure 2.8: Two exchanges of identical particles (b) are equivalent to a
full cycle of one particle around the other (a). From [122]

These observations prove that the variational theory by Laughlin, predict-
ing fractionally charged quasiparticle as low-energy excitations of the FQH
fluid, was indeed extremely convincing.

2.3.3 Anyons and fractional statistics

Peculiarities of FQH quasiparticles do not end with the their fractional charge.
They also possess a fractional statistical angle, in the sense that the exchange
of two quasiparticle does not lead to a simple factor ±1 in the many-body
wavefunction. In fact, they are neither bosons nor fermions: since the statis-
tical angle can be in principle any, they are called anyons [21].

The reason for this oddity is not due to the physics of the QH effect,
but is instead a general property of quantum mechanics in two dimensions
[120, 121]. Let us briefly revisit the problem of indistinguishable particles
in three dimensions. Consider two identical particles A and B described by
the wavefunction ψ(r1, r2), where the three dimensional vectors r1 and r2

describe the spatial coordinates of the particles. Now, let us exchange particle
A with particle B. Due to indistinguishability, the probability density must
be conserved in the process: |ψ(r1, r2)|2 = |ψ(r2, r1)|2. It follows that the
wavefunction can, at most, pick up a phase factor eiθ. Then, let us perform a
second exchange. It is clear that the wavefunction has now accumulated the
total phase ei2θ. At the same time, we also know that we got back to the initial
state ψ(r1, r2). The only solution is that ei2θ = 1. This defines two possibility
for the statistical angle θ, corresponding to the usual classification of identical
particles in the two classes of bosons (θ = 0) and fermions (θ = π).

This fact has a simple interpretation in terms of topology of the space
where particles live. As suggested by Fig. 2.8, two successive exchanges are
equivalent to the situation where particle B is fixed and particle A describe
a full cycle around B. But in three dimension, this is also equivalent to the
situation in which particle A never moved. In fact, the path described around
particle B can be deformed in such a way that it collapses to a single point
without being cut.

Now, let us imagine a similar procedure in two dimensions. We see from
Fig. 2.8 that we immediately run into a problem: the path cannot be deformed
without passing through particle B! It seems that two successive exchanges
of identical particles may not map into the very same quantum state, but
into a new quantum state that retains some information about the braiding of
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particles. This means that we have to relax the constraint on θ into a more
general description in terms of arbitrary statistical angles. In a few words, this
has to do with the fact that R3 without a point is a simply connected space,
while R2 without a point is not.

We define the statistical angle through the phase accumulated after an
anti-clockwise exchange of the two particle:

ψ(r2, r1) = eiθψ(r1, r2). (2.38)

For θ = {0, π} we get back to the known case of bosons and fermions, but exotic
possibilities with any value of θ are in principle admissible. Such particles are
thus called anyons. Laughlin quasiparticles belong exactly to this class, with
a statistical angle θ = νπ linked to the filling factor [123, 124].

At this stage we cannot give a convincing demonstration of the fractional
statistics of Laughlin quasiparticles. We will see how it emerges naturally
from the commutation of two quasiparticles in the field theoretical approach
discussed in the next Chapter.

2.3.4 Electron quantum optics with fractional states

To summarize, we have seen that a 2DEG in a strong perpendicular magnetic
field behaves in a quite unexpected way. Its transverse conductance is precisely
quantized in units of e2/h, and the reason for that is rooted in the topological
structure of Bloch bands.

The most glaring manifestation of topological protection is the emergence
of chiral metallic edge states propagating in a well defined direction dictated
by the magnetic field. They realize one-dimensional, dissipationless electronic
channels that can be exploited to control and manipulate single-electron exci-
tations generated by on-demand mesoscopic sources. This is, in a few words,
the essence of EQO.

However, we have also seen that QH physics emerges at fractional values
of the transverse conductance. In this case it is due to the formation of a
new strongly correlated phase, where quasiparticles with fractional charge and
statistics exist.

Since also FQH systems host topologically protected chiral modes at their
edge, we can envisage an exciting generalization of EQO to the fractional
regime. Challenging fundamental questions immediately arise: do minimal
excitations states exist on a strongly correlated ground state? If yes, what
charge do they carry? Is it possible to realize time-resolved interferometry of
anyons?

In the next Chapters we will explore these fascinating possibilities.
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Chapter 3
Minimal excitations at fractional filling factor

In the third Chapter we develop the theory of minimal excitation states in
the FQH regime. We first introduce the field theoretical approach to the
FQH effect and its edge states, and show how to construct a field operator for
Laughlin quasiparticles in the framework of the bosonization approach. Then,
we describe the coupling of the edge states with a pair of voltage contacts
and turn to the main problem of identifying clean voltage pulses in the FQH
regime. We show that Lorentzian pulses carrying integer charge, i.e. levitons,
are the only minimal excitation states at fractional filling factor. The present
Chapter is based on the results published in Refs. [24, 26].

3.1 Edge state theory of the FQHE

As a first step towards a theoretical analysis of EQO at fractional filling factor,
we need a suitable theory to deal with FQH edge states. Following the original
work by X.G. Wen [22], in this Section we will construct an effective field
theory for the bulk that reflects the phenomenology of the FQH effect without
any assumption about the microscopic model. Then, the corresponding edge
theory will arise from the restriction of the bulk theory to the boundary. As
we will show, the interesting result is that edge excitations of the FQH effect
are described by one-dimensional chiral bosonic modes.

Let us start from the Lagrangian density for a system of charged particles
in an electromagnetic field. We consider the usual coupling AµJ

µ between the
conserved current Jµ and the external electromagnetic field Aµ:

LA = AµJ
µ. (3.1)
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Since the QH system lies on the plane, all vectors consist of two spatial coor-
dinates x and y and the temporal coordinate t. Using the typical convention
of field theories, we will denote the latter with the index 0, and the spatial
coordinates with indexes 1 and 2. We will adopt the convention of summation
over repeated indexes, resorting to Greek letters when dealing with all values
(0, 1, 2) and Roman indexes for the case of purely spatial values (1, 2). From
now on, we will work with natural units ~ = c = 1.

Consider a two-dimensional system of N electrons with charge −e (e > 0),
whose charge and current densities are denoted with J0 and J = (J1, J2)
respectively. We are looking for a theory that describes the response of a
Laughlin FQH system with filling factor ν = 1/(2n + 1) to a small variation
of the electromagnetic fields. First of all, a variation of charge density δJ0 =
−eδne is linked to the filling factor and the variation of the magnetic field δB
by the relation δne = νe

2π
δB, obtained from Eq. (2.21) (note that h = 2π in

natural units). On the other hand, the current δJ i due to the application of an
electric field δEj in the transverse direction is governed by the Hall resistance
ρxy = 2π

νe2
(the longitudinal resistance ρxx vanishes on a quantum Hall plateau).

In terms of the three-vector δJ these constraints correspond to

δJ0

(−e) = δne =
νe

2π
δB, δJ i =

νe

2π
εijδEj. (3.2)

Here, εij is the anti-symmetric symbol with two indexes. The above relations
can be compactly recast as

δJµ = −νe
2

2π
εµρσ∂ρδAσ, (3.3)

where we have similarly used the anti-symmetric symbol εµρσ with three in-
dexes. It’s worth underlining that the field Aµ describes perturbations of the
electromagnetic fields around a given Hall state with a fixed filling factor, and
does not include the uniform background magnetic field that gives rise to the
QH effect. The latter is taken for granted and is, in some sense, implicitly
included in Eq. (3.3) through the filling factor [125, 126].

We now focus on the Lagrangian (3.1) and try to rewrite it in such a way
to recover Eq. (3.3) from the equations of motion. To this end, it is useful
to introduce a new U(1) gauge field aµ and write the current in terms of the
latter. The only possibility for a conserved, gauge invariant current in 2+1
dimension is [126]

Jµ = − e

2π
εµρσ∂ρaσ. (3.4)

We thus add a new term LCS = aµJ
µ to the total Lagrangian density, which

therefore reads

L = LCS + LA =
m

4π
εµρσaµ∂ρaσ −

e

2π
εµρσAµ∂ρaσ. (3.5)
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It’s worth noticing that the new term LCS, which is called Chern-Simons La-
grangian, originates from very general considerations about symmetries and
conserved currents in 2+1 dimensions, and is the only relevant term when
focusing on the long-distance and large-time physics (i.e. low-energy physics)
[125, 126]. In this field-theoretical approach, aµ can be viewed as an emergent
field that lives only inside the material, arising from the collective behavior of
many underlying electrons [90, 127].

It’s important to point out a significant caveat at this stage. The fact that
we choose to work with a single emergent gauge field aµ is already extremely
restrictive on the physics: as we will show in a moment, this gives rise to
an effective field theory with a single chiral mode at each boundary. Such
a description is thus only appropriate for Laughlin FQH states. Indeed, for
filling factor of the Jain sequence, edge modes are much more complicated and
consist of several channels with, in some cases, different propagation directions
[22]. Coupling among these channels can lead to a physical description with
only one charged mode responsible for charge transport, and additional neutral
modes carrying no charge but finite energy [128, 129]. Assuming a filling factor
in the Laughlin sequence ν = 1/(2n+ 1) simplifies drastically the structure at
the edge, since it guarantees that a single edge mode develops at the boundary.
Thus, a Laughlin fractional system seems to be the most natural framework
to implement EQO protocols in the FQH regime.

It’s immediate to verify that the Euler-Lagrange equations,

∂ρ
δL
δ∂ρaµ

− δL
δaµ

= 0, (3.6)

lead exactly to Eq. (3.3) when m = 1/ν. Interestingly enough, the Chern-
Simons term in Eq. (3.5) seems to work well for a QH system if we choose the
arbitrary constant m to be the reciprocal of the filling factor (m = 1/ν). We
will see in the next Section that creation and annihilation electronic operators
can be defined in a proper way only if m is an odd integer, thus recovering the
Laughlin sequence ν = 1/(2n+ 1), with n ∈ N.

Let us notice an important fact: Eq. (3.5) is not gauge invariant. Indeed
under gauge transformations{

a′µ = aµ + ∂µΛ,

A′µ = Aµ + ∂µf,
(3.7)

the Lagrangian L transforms as

L′ = L+
1

4πν
εµρσ∂µΛ∂ρaσ −

e

2π
εµρσ∂µf∂ρaσ. (3.8)

We note however that the additional terms involve only derivatives of the
fields aµ. If we assume that the latter vanish at infinity (both in space and
time coordinates), we thus recover the gauge invariance of the action S

S =

∫
d3xL =

∫
d3x

(
1

4πν
εµρσaµ∂ρaσ −

e

2π
εµρσAµ∂ρaσ

)
. (3.9)
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Chapter 3. Minimal excitations at fractional filling factor

Vacuum

Vacuum

Quantum
Hall fluid

Quantum
Hall fluid

Figure 3.1: When a Laughlin QH system is confined to a limited region of
space, a topologically protected edge state appears at the boundary between
the QH fluid and the vacuum. Left: when confining to the lower half plane,
the edge state has right-moving character (the magnetic field points towards
the positive semi-axis z). Right: with the same magnetic field, confinement
in the upper half plane generates a left-moving mode.

The Lagrangian (3.5) has another peculiar property: the Hamiltonian density
obtained from Eq. (3.5) vanishes identically, namely

H =
δL
δ∂taµ

∂taµ − L = 0. (3.10)

As a consequence, there’s no dynamics for the field aµ. This fact is a common
feature of topological field theories [90, 127].

We have seen that topological edge states emerge as soon as we create a
boundary between two topologically different regions, the simplest example
being an interface between the QH fluid and the vacuum. What happens to
L if we introduce a boundary? Let us consider the quadratic part in the field
aµ (i.e. the Chern-Simons term LCS = 1

4πν
εµρσaµ∂ρaσ), and imagine that the

system is confined in the lower half of the xy plane, as shown in the left panel of
Fig. 3.1. The dramatic consequence of this assumption is the breaking of gauge
invariance also for the action integral S. Indeed, we recall that the action (3.9)
is gauge invariant only thanks to the vanishing of fields at infinity. However,
the integral on y runs now from −∞ to 0, and the argument of throwing away
a total derivative because of the vanishing of aµ at the boundary does not hold
anymore. Under transformations (3.7), the action integral generated by LCS

transforms as S → S + ∆S with

∆S =

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ 0

−∞
dy

1

4πν
εµρσ∂µΛ∂ρaσ =

=

∫ +∞

−∞
dt

∫ +∞

−∞
dx

1

4πν

[
Λ(∂tax − ∂xat)

]
y=0

. (3.11)

To recover gauge invariance, we must impose either that gauge transformations
(3.7) vanish at the edge, i.e. Λ(x, y = 0, t) = 0, or that fields satisfy ∂tax(x, y =
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3.1. Edge state theory of the FQHE

0, t) − ∂xat(x, y = 0, t) = 0, so that ∆S = 0. We choose the first alternative,
in such a way to avoid a restriction on the fields. This gives us the freedom of
choosing a gauge fixing condition.

As a first try for the gauge fixing, we impose at = 0 and treat the equation
of motion for at as a constraint:

∂ρ
δLCS

δ∂ρat
− δLCS

δat
= 0 =⇒ ∂xay − ∂yax = 0. (3.12)

This last equation can be solved by introducing a new scalar field ΦR(x, y, t),
where reason for the label R will become clear in a moment. We write{

ax(x, y, t) = −√ν∂xΦR(x, y, t),

ay(x, y, t) = −√ν∂yΦR(x, y, t),
(3.13)

and insert the new field in the action integral. From the result we will try to
infer a Lagrangian for the FQH edge. Since at = 0 we have

S =

∫
dt

∫
dx

∫ 0

−∞
dy

1

4πν
(ay∂tax − ax∂tay) =

=

∫
dt

∫
dx

∫ 0

−∞
dy

1

4π
(∂yΦR∂t∂xΦR − ∂xΦR∂t∂yΦR). (3.14)

We integrate by parts the first term with respect to x. This does not introduce
any additional boundary term, as the fields ai = −√ν∂iΦR still vanish at
infinity. Equation (3.14) now becomes

S = −
∫
dt

∫
dx

∫ 0

−∞
dy

1

4π
∂y(∂xΦR∂tΦR) = −

∫
dt

∫
dx

1

4π
∂xΦR∂tΦR

∣∣∣
y=0

.

(3.15)
This last equation can be interpreted in terms of an action integral defined on
the edge,

SR =

∫∫
dt dxLR, (3.16)

from which we recover the Lagrangian

LR = − 1

4π
∂xΦR∂tΦR. (3.17)

Note that fields ∂xΦR and ∂tΦR in the above equation are now defined for
y = 0, that is, they live on the edge! They only depend on the variables x and
t. For the sake of simplicity, in the following we will use the notation

ΦR(x, t) ≡ ΦR(x, 0, t). (3.18)

Unfortunately, the edge Lagrangian in Eq. (3.17) still does not work well for our
purposes. Indeed it is easy to verify that it still generates a trivial, vanishing
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Chapter 3. Minimal excitations at fractional filling factor

Hamiltonian, and hence no dynamics for the fields. We have to find a way to
introduce a propagation velocity in the theory. The solution is to work with
the more general gauge fixing condition

at + vax = 0, (3.19)

which allows us to introduce a new parameter v in the theory. As we will see
in the following, v is exactly the propagation velocity for density waves along
the FQH edge states. In a hydrodynamical picture of the edge excitations,
v can be related to the electric field responsible for confinement and to the
uniform background magnetic field generating Landau quantization, namely
v = |E|/|B| [22]. It is worth noticing that, thanks to the change of variables

x′ = x− vt
y′ = y

t′ = t

,


ax′ = ax

ay′ = ay

at′ = at + vax

, (3.20)

Eq. (3.19) maps into the gauge fixing condition at = 0 already discussed. In
the new coordinates the Lagrangian reads

LR = − 1

4π
∂xΦR(∂t + v∂x)ΦR. (3.21)

Finally, by evaluating the Hamiltonian density HR from LR we obtain the
non-vanishing edge Hamiltonian

HR =

∫ +∞

−∞
dxHR =

∫ +∞

−∞
dx

v

4π
(∂xΦR)2. (3.22)

This is the typical Hamiltonian for a system of free bosons moving with velocity
v, in the direction dictated by the sign of v. At this stage, it is extremely useful
to underline a relation between the bosonic field ΦR and the one-dimensional
electron density ρR at the edge. We thus integrate the two-dimensional particle
density

J0

(−e) =
1

2π
(∂xay − ∂yax) (3.23)

along the thickness of the edge, which we assume to have a very small width
λ along the y direction [130]. We have

ρR(x) =
1

2π

∫ 0

−λ
dy(∂xay − ∂yax). (3.24)

As the width λ is extremely small, the first term can be evaluated in the limit
λ→ 0 considering ∂xay as constant in that range:∫ 0

−λ
dy∂xay ≈ λ∂xay

∣∣∣
y=0
→ 0. (3.25)
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3.1. Edge state theory of the FQHE

Conversely, the second term is found by considering that the fields aµ vanish
outside the QH fluid, i.e. for y ≥ 0. We get∫ 0

−λ
dy∂yax = −ax

∣∣∣
y=−λ

=
√
ν∂xΦR(x, 0, t). (3.26)

Thus, the particle density along the edge is proportional to the derivative of
the bosonic field ΦR:

ρR = −
√
ν

2π
∂xΦR. (3.27)

Now, let us consider the equation of motion for ΦR. From the edge Lagrangian
(3.21) we get

(∂t + v∂x)∂xΦR = 0. (3.28)

Since ∂xΦR is proportional to the density ρR, one obtains a propagation equa-
tion for the electron density, which reads

∂tρR + v∂xρR = 0. (3.29)

We clearly see that edge excitations are chiral as expected. Indeed, Eq. (3.29)
is solved by any function of the form

ρR(x, t) = f(x− vt). (3.30)

This is the typical functional form of a wave propagating rigidly at speed v
towards right, hence the reason for the label R.

It is now time to quantize the Hamiltonian (3.22) in terms of the Fourier
components ρR,k of the density, which read

ρR,k =

∫ +L
2

−L
2

dx e−ikxρR(x). (3.31)

Correspondingly, the density is given by

ρR(x) =
1

L

+∞∑
k=−∞

eikxρR,k. (3.32)

Here we have assumed that the system is a one-dimensional channel with finite
length L extending from −L/2 to L/2. The allowed values for the momentum
are k = 2πn/L, with n ∈ N, due to periodic boundary conditions. The
Hamiltonian (3.22) becomes

HR =
2πv

νL

∑
k>0

ρR,kρR,−k +
πv

νL
N2
R, (3.33)

where we have separated all the contributions for k 6= 0 from the term k = 0,
which we identify with the total number of particles NR =

∫
dx ρR = ρR,0 with
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Chapter 3. Minimal excitations at fractional filling factor

respect to the equilibrium value N
(0)
R . We now impose canonical commutation

relations between ρR,k and its conjugate variable πR,k:

[ρR,k, πR,q] = iδk,q. (3.34)

From Hamilton’s equation it’s immediate to verify that πR,q satisfies

π̇R,q = − ∂HR

∂ρR,q
= −2πv

νL
ρR,−q. (3.35)

Since the Fourier transform of Eq. (3.29) reads ρ̇R,q = −ivqρR,q, we also get

πR,q = i
2π

qνL
ρR,−q. (3.36)

for q 6= 0. The canonical commutation relations are thus[ρR,k, ρR,q] =
kνL

2π
δk,−q, if k, q 6= 0,

[ρR,0, πR,0] = i.
(3.37)

This is known as Kac-Moody algebra [131]. The fact that commutation re-
lations for the density operator of FQH edge states follow the Kac-Moody
algebra should not come as a surprise. Indeed, this is the typical structure of
all one-dimensional theories of interacting fermions, which follow the paradigm
of the Tomonaga-Luttinger liquid [132–135].

As a final step, we introduce bosonic creation and annihilation operators
b†R,k and bR,k. For k > 0 they are defined as

bR,k =

√
2π

kνL
ρR,k, b†R,k =

√
2π

kνL
ρR,−k. (3.38)

Using the above mentioned operators, the Hamiltonian is now made of a zero-
mode term which depends on the total number of electron in the system, plus a
bosonic term which describes a linear excitation spectrum with energy εk = vk,
namely

HR =
∑
k>0

vk b†R,kbR,k +
πv

νL
N2
R. (3.39)

Quite remarkably, we have obtained a diagonal Hamiltonian in the bosonic
operators b†R,k, bR,k and the number operator NR.

Let us now consider the opposite case in which the QH system lies in the
upper half-plane (see Fig. 3.1, right panel). By applying a similar formalism,
we expect to find an edge mode at y = 0 propagating in the opposite direction.
As we did before, we choose at − vax = 0 as our gauge fixing condition. We
now introduce the new field ΦL, whose spatial derivatives are linked to the
fields ax and ay: {

ax = −√ν∂xΦL,

ay = −√ν∂yΦL.
(3.40)
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3.2. Bosonization

We obtain the following edge Lagrangian,

LL =
1

4π
∂xΦL(∂t − v∂x)ΦL, (3.41)

which indeed describes regressive modes propagating in the negative x direc-
tion (and that’s why we used the label L). Integrating over a small width λ
at the edge we find the left-moving density, which is given by

ρL =

√
ν

2π
∂xΦL. (3.42)

The density ρL satisfies the equation of motion ∂tρL − v∂xρL = 0, and its
Fourier components obey the Kac-Moody algebra

[ρL,k, ρL,q] = −kνL
2π

δk,−q. (3.43)

The Hamiltonian for the left movers can be written as in Eq. (3.39), provided
that we define the new creation and annihilation operators for left-moving
excitations as

bL,k =

√
2π

kνL
ρL,−k, b†L,k =

√
2π

kνL
ρL,k. (3.44)

We finally obtain

HL =
v

4π

∫ +∞

−∞
dx(∂xΦL)2 =

∑
k>0

vk b†L,kbL,k +
πv

νL
N2
L. (3.45)

with NL the number of left moving particles with respect the value N
(0)
L at

equilibrium. In the following we will assume that the edge is sufficiently long
to discard safely the terms ∼ 1/L in HR and HL. This is a good approximation
in most of the experimental setups investigating edge state transport in the
QH regime, whose typical dimensions are of the order of several µm. Finite
size effects, which require a careful treatment of the terms ∼ 1/L, become
important in strongly confined structures such as, for instance, quantum dots
[136].

3.2 Bosonization

We have obtained an effective one-dimensional theory for the FQH edge states
by restricting the bulk action to the boundary. The result is pretty interesting:
excitations of a one-dimensional liquid of interacting fermions behave as col-
lective bosonic modes, which propagate chirally along the edge. However, we
still miss an ingredient to complete the picture: since the fields ΦR/L describe
neutral ripples of the incompressible liquid, how do we add or remove charge
at the edge? The answer was first pointed out by X.G. Wen and relies on the
bosonization approach.
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Chapter 3. Minimal excitations at fractional filling factor

The key observation is the following. An electronic annihilation operator
Ψ

(el)
R/L must remove one integer charge from the edge. Thus, it is mandatory

that its commutation relation with the total electron density reads[
ρR/L(x),Ψ

(el)
R/L(y)

]
= −δ(x− y)Ψ

(el)
R/L(y). (3.46)

Wen noted that the Kac-Moody algebra (3.37) implies that ρR/L and ΦR/L

satisfy the following commutation relations[
ΦR/L(x),ΦR/L(y)

]
= ±iπ sign(x− y), (3.47)[

ρR/L(x),ΦR/L(y)
]

= −i√νδ(x− y). (3.48)

These last two equations are demonstrated in Appendix B. He then postulated
that the electronic operator must be proportional to the exponential of the

bosonic field: Ψ
(el)
R/L ∝ exp

(
−i 1√

ν
ΦR/L

)
[137]. To see that this is indeed the

right intuition, let us check that this choice is consistent with Eq. (3.46). Here
we resort to the Baker-Campbell-Hausdorff theorem [138]

e−BAeB = A+ [A,B] +
1

2!
[[A,B] , B] +

1

3!
[[[A,B] , B] , B] + . . . (3.49)

which implies the very useful formula [A, eB] = CeB, with C = [A,B], valid as
long as [A,C] = [B,C] = 0 [see Eq. (C.6) in Appendix C]. Using this result,
together with Eq. (3.48), we immediately get the desired result:[

ρR/L(x), e
−i 1√

ν
ΦR/L(y)

]
= −i 1√

ν

[
ρR/L(x),ΦR/L(y)

]
e
−i 1√

ν
ΦR/L(y)

=

= −δ(x− y)e
−i 1√

ν
ΦR/L(y)

. (3.50)

Moreover, the operator exp
(
−i 1√

ν
ΦR/L

)
has another very interesting prop-

erty: it obeys fermionic anti-commutation relation when ν belongs to the
Laughlin sequence. This can be verified by using formula (C.8) from Ap-
pendix C, namely eAeB = eBeAeC , which is valid again for the case [A,C] =
[B,C] = 0. Exchanging two exponential operators (or vertex operators, as
they are frequently named in conformal field theory [139]) one gets

e
−i 1√

ν
ΦR/L(x)

e
−i 1√

ν
ΦR/L(y)

=

= e
−i 1√

ν
ΦR/L(y)

e
−i 1√

ν
ΦR/L(x)

exp

{
−1

ν

[
ΦR/L(x),ΦR/L(y)

]}
=

= e
−i 1√

ν
ΦR/L(y)

e
−i 1√

ν
ΦR/L(x)

exp

{
∓iπ
ν

sign(x− y)

}
, (3.51)

thanks to the commutation relations (3.47). Surprisingly, the last result tells

us that the vertex operator exp
(
−i 1√

ν
ΦR/L

)
behaves as a boson if 1/ν is an
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3.2. Bosonization

even integer, but is instead a fermion when 1/ν is an odd integer. The latter is
exactly the case of the Laughlin sequence (2.35). In this context, the function
sign(x − y) in the phase factor has a simple physical interpretation: in two
dimensions, clockwise or anti-clockwise rotations give rise to statistical phases
with opposite sign.

At this point we notice that the addition or removal of an electron at the
edge is not the simplest excitation of the FQH fluid. We can also add or
remove a Laughlin quasiparticle with fractional charge e∗ = νe. Annihilation
of a quasiparticle is implemented by the operator Ψ

(qp)
R/L ∝ exp

(
−i√νΦR/L

)
.

Indeed, following the demonstration given for the electronic field, it’s rather
easy to show that the commutator of Ψ

(qp)
R/L with the total density gives[

ρR/L(x), e−i
√
νΦR/L(y)

]
= −i√ν

[
ρR/L(x),ΦR/L(y)

]
e−i
√
νΦR/L(y) =

= −νδ(x− y)e−i
√
νΦR/L(y). (3.52)

This means that exp
(
−i√νΦR/L

)
changes the total density by a fraction ν of

an electron! Thus, the vertex operator Ψ
(qp)
R/L effectively represents the annihi-

lation of a Laughlin quasiparticle at the edge. Moreover, it also implements
the fractional statistical properties we anticipated in Sec. 2.3.3. Exchanging
two quasiparticles leads to

e−i
√
νΦR/L(x)e−i

√
νΦR/L(y) =

= e−i
√
νΦR/L(y)e−i

√
νΦR/L(x) exp

{
−ν
[
ΦR/L(x),ΦR/L(y)

]}
=

= e−i
√
νΦR/L(y)e−i

√
νΦR/L(x) exp {∓iνπ sign(x− y)} (3.53)

and, thus, to the accumulation of a nontrivial fractional statistical angle νπ.
As for the electronic case, the sign of the statistical angle depends on the
direction of rotation.

The picture described above can be formalized in the framework of the
Tomonaga-Luttinger theory, which is a powerful and rather general method
to deal with interacting fermions in one dimension [23, 138, 140]. Indeed,
the fact that low-energy excitations of fermionic systems are collective bosonic
waves is a recurring feature of one-dimensional quantum physics. It allows for
an exact solution of the interacting problem, a miracle that never occurs in
higher dimensions. The complete expression for electronic and quasiparticle
field are

Ψ
(el)
R/L(x) =

F
(el)
R/L√
2πa

e±ikFxe
−i 1√

ν
ΦR/L(x)

, (3.54)

Ψ
(qp)
R/L(x) =

F
(qp)
R/L√
2πa

e±ikFxe−i
√
νΦR/L(x). (3.55)

The operators F
(el/qp)
R/L are called Klein factors [23, 138, 140]. They effectively

raise or lower the particle number by one unit. Moreover, they have a crucial
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Chapter 3. Minimal excitations at fractional filling factor

role in determining the correct anti-commutation relations between operators
on different edges. The new parameter a plays the role of a short distance cut-
off, which is used to regularize some notable quantities such as electronic and
quasiparticles Green’s functions that would otherwise lead to diverging contri-
butions. It gives rise to the corresponding high-energy cutoff ωc = v/a. Finally,
note also that we have introduced the exponential e±ikFx to take into account
that bosonic excitations are constructed on top of a filled many-electron system
with Fermi momentum kF [135].

We point out an interesting duality between electron and quasiparticle fields
emerging from Eqs. (3.54) and (3.55). Apart from the different Klein factors,
which by the way do not play a prominent role in the problems considered in
this thesis, the bosonized parts of the fields are related by the transformation
ν → 1/ν. This duality will be extremely useful when calculating the transport
properties of the edge states in presence of tunneling: once we get the result for,
say, tunneling of quasiparticles, we can easily infer the corresponding electronic
contribution by performing the substitution ν → 1/ν in the scaling exponents
[141].

Finally, we also quote the full expression for the bosonic fields ΦR/L in

terms of the operators bR/L and b†R/L. They are given by

ΦR/L(x) = i

√
2π

L

∑
k>0

e−ak/2√
k

(
e±ikxbR/L,k − e∓ikxb†R/L,k

)
. (3.56)

With the help of the bosonized expression for electronic and quasiparticle field,
and the Kac Moody algebra of bosonic degrees of freedom, we are now in a
position to tackle the problem of edge states transport in the FQH regime with
a suitable theoretical apparatus. Since we are dealing with chiral edge states,
this theory is known as chiral Luttinger liquid theory.

We conclude this section with a pair of important remarks. Firstly, filling
factors belonging to the Laughlin sequence are given by ν = 1/(2n + 1), with
n a positive integer. As such, they also include the integer filling factor ν = 1
for the case n = 0. But we know from the last Chapter that the integer
QH effect is fully understood in the non-interacting, single-particle picture of
the scattering matrix formalism. Thus, results obtained with bosonization at
ν = 1 must coincide with the Fermi liquid result obtained in the scattering
approach. In Appendix B we show, indeed, that the chiral Luttinger liquid
theory at ν = 1 is formally identical to a one-dimensional theory of free chiral
fermions with a linear spectrum.

3.3 Voltage pulse sources and equations of mo-
tion

With the field-theoretical description of the edge excitations developed in the
previous Section, we are now ready to tackle the theoretical analysis of EQO
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1

2

3

4

Figure 3.2: A QH system in a four-terminal setup. Edge modes circulate
clockwise along the boundary. Two voltage sources are connected to ter-
minals 1 and 4 and can send voltage pulses through the conductor, while
terminals 2 and 3 are used as drain contacts for the current.

at fractional filling factor. As a first step, we will show how to couple a pair
of voltage pulse sources to the edge states of the FQH system.

Let us consider the four-terminal setup shown in Fig. 3.2. Imagine that
two pulse generators are connected to terminals 1 and 4, while contact 2 and 3
are grounded. A voltage pulse applied in contact 1 generates a finite electrical
current flowing towards right along the top edge, as shown in the Figure. The
current equilibrates in the ohmic contact 3, that serves as the drain contact for
the current. Similarly, pulses generated in terminal 4 flow towards left along
the bottom edge mode, and are absorbed in terminal 2. We will describe both
the top and bottom edges in terms of a chiral Luttinger liquid with filling
factor belonging to the Laughlin sequence.

Let us notice that the edge modes circulate also between terminals 2-1 and
3-4. However, they do not contribute to the non-equilibrium transport prop-
erties of this system, as they originate from an equilibrium reservoir. We will
thus neglect these “vertical” modes and consider a system with two infinitely
long edge states lying on the top and bottom edges, shown with blue lines in
Fig. 3.2.

Before going on, it is worth recapping the key points of the model by recall-
ing the most useful quantities. The Hamiltonian for the counter-propagating
conducting states on the opposite edges is

H0 =
v

4π

∫
dx
[
(∂xΦR)2 + (∂xΦL)2] , (3.57)

where ΦR/L are given by Eq. (3.56) and satisfy bosonic commutation relations

[ΦR/L(x),ΦR/L(y)] = ±iπ sign(x− y). (3.58)

Electron densities on opposite edges are described by the operators

ρR/L(x) = ∓
√
ν

2π
∂xΦR/L(x). (3.59)
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Finally, the bosonic picture is related to creation and annihilation of quasipar-
ticles and electrons through bosonization identities

Ψ
(el)
R/L(x) =

F
(el)
R/L√
2πa

e±ikFxe
−i 1√

ν
ΦR/L(x)

, (3.60a)

Ψ
(qp)
R/L(x) =

F
(qp)
R/L√
2πa

e±ikFxe−i
√
νΦR/L(x), (3.60b)

where the fields Ψ
(el)
r (x) and Ψ

(qp)
r (x) annihilate respectively an electron and

a Laughlin quasiparticle at the coordinate x along the r-moving edge (r =
{R,L}).

We now introduce the coupling with the external voltage sources. Two
functions VR(x, t) and VL(x, t) describe the application of a space- and time-
dependent voltage to the right and left moving edges respectively. We assume
a simple capacitive coupling eρ · V , which leads to the new following term in
the Hamiltonian:

HV = −e
√
ν

2π

∫
dxVR(x, t)∂xΦR(x) +

e
√
ν

2π

∫
dxVL(x, t)∂xΦL(x). (3.61)

Let us look for the time evolution of bosonic fields ΦR/L in the presence of
such a coupling. We will denote the space- and time-dependent fields with
ΦR/L(x, t). Assuming that the system is initially at equilibrium at the initial
time t = 0, one must have ΦR/L(x, 0) ≡ ΦR/L(x), with the latter given by Eq.
(3.56). Equations of motion for bosonic fields in the presence of VR and VL
are readily obtained, and reads

(∂t ± v∂x)ΦR/L(x, t) = e
√
νVR/L(x, t). (3.62)

This equation is known as inhomogeneous transport equation and can be solved
in the following way [142]. We first focus on the right moving edge and consider
the homogeneous equation in the presence of the boundary condition at the
initial instant t = 0: {

(∂t + v∂x)φR(x, t) = 0,

φR(x, t = 0) = ΦR(x).
(3.63)

Here (and in the rest of the thesis) we have denoted solution of the homoge-
neous equation with the lowercase letter φ. The solution to the above equation
is trivial, but we prefer to solve it with a general method which allows for a
solution of the non-homogeneous problem as well. For each value of (x, t), let
us introduce the new function z(s) := φR(x+ vs, t+ s). It’s easy to verify that
z(s) is constant, since for the derivative ż = d

ds
z one has

ż(s) = v∂xφR(x+ vs, t+ s) + ∂tφR(x+ vs, t+ s) = 0. (3.64)

This means that the function φR is itself constant along the straight line passing
through (x, t) with direction given by the 2D vector (v, 1). In particular the
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3.3. Voltage pulse sources and equations of motion

function at s = −t, which is given by z(−t) = φR(x − vt, 0) = ΦR(x − vt)
because of the boundary condition, must be equal to z(0) = φR(x, t). The
solution to the homogeneous equation is thus

φR(x, t) = ΦR(x− vt). (3.65)

Let us now consider what happens when we add the source term VR(x, t). In
this case the function Z(s) = ΦR(x+vs, t+s) is not constant, and its derivative
yields

Ż(s) = v∂xΦR(x+vs, t+s)+∂tΦR(x+vs, t+s) = e
√
νVR(x+vs, t+s). (3.66)

Integrating this last equation between s = −t and s = 0 we get∫ 0

−t
ds Ż(s) =

∫ 0

−t
ds e
√
νVR(x+ vs, t+ s) =

∫ t

0

dt′ e
√
νVR [x− v(t− t′), t′] .

(3.67)
However, this must also be equal to Z(0)− Z(−t) = ΦR(x, t)−ΦR(x− vt, 0).
Since the initial condition is still ΦR(x − vt, 0) = ΦR(x − vt), we obtain the
following solution for the time evolution of ΦR in the presence of a generic
space and time-dependent voltage:

ΦR(x, t) = ΦR(x− vt) +

∫ t

0

dt′ e
√
νVR [x− v(t− t′), t′] =

= φR(x, t) +

∫ t

0

dt′ e
√
νVR [x− v(t− t′), t′] . (3.68)

To solve the equation for ΦL, it is sufficient to follow a similar method while
inverting the sign of v. We finally get the full solution for both right and left
moving fields, which reads

ΦR/L(x, t) = ΦR/L(x∓ vt) + e
√
ν

∫ t

0

dt′ VR/L [x∓ v(t− t′), t′] =

= φR/L(x, t) + e
√
ν

∫ t

0

dt′ VR/L [x∓ v(t− t′), t′] . (3.69)

The full solution in the presence of VR and VL is thus given by the free chiral
bosonic modes φR/L(x, t) = ΦR/L(x ∓ vt) in the equilibrium configuration
(VL = VR = 0) plus an additional term which depends on the integral of VR/L.
In passing, we notice that we have solved the equations of motion by switching
from a partial differential equation to an ordinary differential equation thanks
to the parametrization Z(s) = ΦR/L(x± vs, t + s). This is a special case of a
more general method known as method of characteristics [142].

Invoking the bosonization identities Eqs. (3.60) we also get the full time
evolution of electron and quasiparticle field operators:

Ψ
(el)
R/L(x, t) = ψ

(el)
R/L(x, t) exp

{
−ie

∫ t

0

dt′ VR/L [x∓ v(t− t′), t′]
}
, (3.70a)

Ψ
(qp)
R/L(x, t) = ψ

(qp)
R/L(x, t) exp

{
−ie∗

∫ t

0

dt′ VR/L [x∓ v(t− t′), t′]
}
, (3.70b)
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Once again, the quantities

ψ
(el)
R/L(x, t) =

F
(el)
R/L√
2πa

e±ikFxe
−i 1√

ν
φR/L(x,t)

, (3.71)

ψ
(qp)
R/L(x, t) =

F
(qp)
R/L√
2πa

e±ikFxe−i
√
νφR/L(x,t). (3.72)

play the role of electronic and quasiparticle fields at equilibrium (VR = VL = 0).
We conclude that, when capacitively coupled with the voltage gates, both elec-
trons and Laughlin quasiparticles experience a phase shift which is proportional
to their charge (e for electrons, e∗ = νe for quasiparticles) and to the integral
of VR/L.

3.3.1 Infinitely long voltage contacts

In order to model the experimentally relevant situation of infinite, homoge-
neous contacts, we will consider factorizations of the form

VR(x, t) = Θ(−x− d)Θ(t)VR(t), (3.73a)

VL(x, t) = Θ(x− d)Θ(t)VL(t), (3.73b)

where d is a positive length (see Fig. 3.3, top panel). We will focus on the
regions downstream of the voltage contacts (that is, x ≥ −d for the right-
moving top edge and x ≤ d for the left-moving mode at the bottom boundary).
Here the fields ΦR/L at t > 0 read

ΦR/L(x, t) = φR/L(x, t) + e
√
ν

∫ t

0

dt′Θ

[(
t∓ x

v
− d

v

)
− t′

]
VR/L(t′) =

= φR/L(x, t) + Θ

(
t∓ x

v
− d

v

)
e
√
ν

∫ t∓x
v
− d
v

0

dt′VR/L(t′). (3.74)

Since the signal propagates at finite velocity v, the causality principle imposes
that regions whose distance from the contacts exceeds the value vt cannot feel
the influence of the voltage drive at a given instant t > 0, hence the presence of
the Heaviside step function Θ

(
t∓ x

v
− d

v

)
in the above equation. Interestingly,

a voltage pulse VR/L(t) generates a deformation in the electronic density with
identical shape. One indeed has

ρR/L(x, t) = ∓
√
ν

2π
∂xφR/L(x, t) + Θ

(
t∓ x

v
− d

v

)
e∗

2π
VR/L

(
t∓ x

v
− d

v

)
.

(3.75)
We will always assume that the causality condition ±x + d < vt imposed by
the step function in Eq. (3.74) is satisfied. As a consequence, annihilation
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3.3. Voltage pulse sources and equations of motion

Figure 3.3: Top: capacitive coupling between a pair of infinite, homoge-
neous voltage contacts and the chiral edge modes. Bottom: finite voltage
contact with length ∆d coupled with the right-moving edge.

operators for electrons and Laughlin quasiparticle are given by

Ψ
(el)
R/L(x, t) = ψ

(el)
R/L(x, t) exp

{
−ie

∫ t∓x
v
− d
v

0

dt′VR/L(t′)

}
, (3.76a)

Ψ
(qp)
R/L(x, t) = ψ

(qp)
R/L(x, t) exp

{
−ie∗

∫ t∓x
v
− d
v

0

dt′VR/L(t′)

}
. (3.76b)

The unimportant constant time shift d
v

will be omitted throughout this thesis.

3.3.2 Finite-length contacts

Before going on it’s important to emphasize that a capacitive coupling does
not account, strictly speaking, for charge injection into the edge modes, since
the coupling Hamiltonian Eq. (3.61) cannot add or remove electrons on the
edge. It can only rearrange the electronic density in neutral density waves,
with

∫ +∞
−∞ dt ρR/L(x, t) unaffected by the presence of the voltage drive.

To see how this may be in accordance with Eq. (3.75), consider for the
moment the model with a finite-length voltage contact shown in the bottom
panel of Fig. 3.3. Let us focus on the right-moving edge and write

VR(x, t) = [Θ(−x− d)−Θ(−x− d−∆d)] Θ(t)VR(t), (3.77)

with ∆d > 0. Inserting this new factorization into Eq. (3.69) and calculating
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ρR = −
√
ν

2π
∂xΦR leads to

ρR(x, t) = ∓
√
ν

2π
∂xφR(x, t) + Θ

(
t− x

v
− d

v

)
e∗

2π
VR

(
t− x

v
− d

v

)
+

−Θ

(
t− x

v
− d+ ∆d

v

)
e∗

2π
VR

(
t− x

v
− d+ ∆d

v

)
. (3.78)

The electronic density is now deformed in two bumps with opposite sign which,
due to chirality, propagate rigidly at a fixed distance ∆d. An integration over
space (or, equivalently, time) immediately shows that the total particle number
is unaffected by the voltage drive, since the two pulses compensate each other
perfectly.

The model with an infinite contact is recovered for the case ∆d → +∞,
where there’s no region of space that can satisfy the causality condition vt >
x + d + ∆d imposed by the step function linked to the negative pulse in Eq.
(3.78). Here, the second negative pulse is subjected to an infinite delay, and
never participates in the dynamics. However, we are not injecting a finite
charge into the edge modes. We are simply pushing negative pulses infinitely
distant in space (and, correspondingly, in time).

With this caveat in mind, we will use from now on the infinite contact
model, which gives rise to the phase-shift of quasiparticle and electronic oper-
ators shown in Eqs. (3.76).

3.4 Tunneling at the QPC

We have seen in Section 2.2 of the previous Chapter that EQO is basically
built upon three ingredients: electronic waveguides, coherent single electron
sources and beam splitters. We can now describe all the ingredients on the
basis of the theoretical model introduced in the present Chapter. Waveguides
are implemented by QH edge states, whose Hamiltonian has been introduced
in Eq. (3.57) for fractional filling factor belonging to the Laughlin sequence. To
model the source we use Eq. (3.61), which accounts for the separate coupling
of left and right moving modes with two voltage gates. We now introduce the
missing piece, namely an effective description for the beam splitter.

We imagine that two additional gates create a QPC at the position x = 0,
as shown in Fig. 3.4, allowing for tunneling of electrons and quasiparticles
between opposite edges. The corresponding tunneling operators are

H
(qp)
T = ΛΨ

(qp)
R

†
(0)Ψ

(qp)
L (0) + h.c. =

∑
ε=+,−

[
ΛΨ

(qp)
R

†
(0)Ψ

(qp)
L (0)

]ε
, (3.79)

H
(el)
T = ΛΨ

(el)
R

†
(0)Ψ

(el)
L (0) + h.c. =

∑
ε=+,−

[
ΛΨ

(el)
R

†
(0)Ψ

(el)
L (0)

]ε
, (3.80)
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1

2

3

4

Figure 3.4: Four terminal geometry as in Fig. 3.2, but in the presence
of a QPC at the coordinate x = 0. Here the voltage source connected to
terminal 4 is switched off. Backscattering current is collected in contact 2
(red).

with Λ the constant tunneling amplitude. Note that we have introduced the
very useful notation [55]

[X]ε =

{
X, if ε = +,

X†, if ε = −. (3.81)

The time evolution of both H
(qp)
T and H

(el)
T is immediately found by using the

time-dependent fields in Eqs. (3.76). We will assume that the QPC operates
in the weak backscattering regime, which means that the barrier is almost
transparent and only a small amount of particles are reflected back into the
opposite chiral mode. We therefore treat backscattering at the QPC as a
small perturbation with respect to the Hamiltonian H0 +HV , and evaluate the
tunneling current and its fluctuation spectrum to lowest nonvanishing order in
the parameter Λ. We will perform calculations in an interaction picture where
operators evolve in time according to H0 + HV , while quantum states evolve
with H

(qp/el)
T (see Appendix D for details about the interaction picture).

In this regime, both electrons and fractional quasiparticles are allowed to
tunnel from one edge mode to the opposite. We will first consider the case
of Laughlin quasiparticles and obtain the backscattering current due to the
tunneling operator H

(qp)
T . Then, the result for electrons can be readily obtained

with the substitution ν → 1/ν, as already discussed in Section 3.2. We will
see in the following that tunneling of quasiparticles dominates over electrons
in the weak backscattering regime, and is the only relevant process in the
renormalization group sense [143, 144].

3.4.1 Current

Let us now focus on the backscattering current induced by the quasiparticle
tunneling term, Eq. (3.79). We assume that the voltage source coupled to
the left-moving mode is switched off, while the one coupled to right-moving
excitations sends a finite current along the top edge (see Fig. 3.4). We will
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Chapter 3. Minimal excitations at fractional filling factor

call this configuration HBT setup, due to the similarity with the optical HBT
experiment [105, 106]. Due to the presence of the QPC, part of the current
is deviated into the bottom edge. We infer the tunneling current from the
temporal variation of the left-moving electron density ρL (which is, by the
way, compensated by an identical variation with opposite sign in the right-
moving density, because of current conservation). It can be measured, for
instance, by looking at the total current flowing into terminal 2 (see Fig. 3.4).
The latter is zero in the absence of tunneling.

We will use the notation JC for the charge current operator, in order to
distinguish from the heat current JQ that will be the main subject of the next
Chapter. The backscattered current operator reads

JC = eṄL = −ie
[
NL, H

(qp)
T

]
, (3.82)

where NL =
∫
dx ρL is the total number of left-moving particles. We now

bosonize the tunneling Hamiltonian with the help of Eqs. (3.60) and make use
of the formula [A, eB] = CeB, with C = [A,B] [Appendix C, Eq. (C.6)], to get

JC = −ie
√
ν

2π

∫
dx

[
∂xΦL(x),

Λ

2πa
ei
√
νΦR(0)e−i

√
νΦL(0) + h.c.

]
=

= −ie
√
ν

2π

Λ

2πa
ei
√
νΦR(0)e−i

√
νΦL(0)

∫
dx
[
∂xΦL(x), (−i√ν)ΦL(0)

]
+ h.c. =

= ie∗
Λ

2πa
ei
√
νΦR(0)e−i

√
νΦL(0) + h.c. =

= ie∗
∑
ε=+,−

ε
[
ΛΨ

(qp)
R

†
(0)Ψ

(qp)
L (0)

]ε
. (3.83)

Note that we have neglected the Klein factors in the intermediate steps of the
above calculation, as they can be safely omitted in a system with only two
edges [145]. Since we are focusing on quasiparticle operators, we will drop the

label (qp) from quasiparticle fields Ψ
(qp)
R/L for brevity. Using Eqs. (3.76) we find

the time dependent operator JC(t), which is given by

JC(t) = ie∗
∑
ε=+,−

εeiεe
∗ ∫ t

0 V (t′)dt′
[
Λψ†R(0, t)ψL(0, t)

]ε
. (3.84)

We now evaluate the expectation value of the backscattered current JC(t)
using the Keldysh contour formalism [55, 146]. This is a powerful tool to
tackle nonequilibrium problems in terms of quasiparticle Green’s functions,
and basically works in the following way (a more detailed introduction to
the Keldysh formalism is developed in Appendix D). We imagine that the
unperturbed system (in this case, the free edge states in the presence of voltage
pulses) was initially at equilibrium in the far past (t = −∞), and that the
perturbation (here, the tunneling) was then adiabatically switched on. We
introduce a closed contour cK for the temporal variable t which runs from
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3.4. Tunneling at the QPC

Figure 3.5: Keldysh contour for the calculation of non-equilibrium Green’s
functions. Operators are ordered along a path that evolves first from t =
−∞ to +∞ (upper branch, label +) and then back from +∞ to −∞ (lower
branch, label−).

t = −∞ to t = +∞ and then back again to t = −∞, as shown in Fig. 3.5.
Each field operator can now lie either on the upper branch of the contour (from
−∞ to +∞) or on the lower one (from positive to negative times). We use
the notation tη, with η = {+,−}, to label times in the two branches of the
Keldysh contour. We finally introduce a new time-ordering operator TK which
arranges field operators according to their position along the twofold contour.
With this trick, one can relate any expectation value to a quantum average
over the initial equilibrium state at t = −∞, as we explain in more detail in
Appendix D. Any reference to the final non-equilibrium state is thus avoided.
The price to pay it that Green’s function have now a 2× 2 matrix structure in
the space of Keldysh labels η. However, each entry of the matrix is in relation
with an appropriate real-time Green’s function, as we will show in a moment.

To calculate the average value of the current JC(t), we must place the time
coordinate t somewhere along the Keldysh contour. A common choice is a
symmetric combination of the upper and lower contour, JC(t) = 1

2

∑
η JC(tη).

The expectation value of the current then reads

〈JC(t)〉 =
1

2

∑
η=+,−

〈
TKJC(tη)e

−i
∫
cK

HT (t′)dt′
〉

=

=
1

2

∑
η,η′

〈
TKJC(tη)e−iη

′ ∫+∞
−∞ HT (t′η

′
)dt′
〉
, (3.85)

where η and η′ label the two branches of cK. A perturbative expression for
〈JC(t)〉 is then readily obtained by expanding the exponential as a power se-
ries, and retaining the lowest nonvanishing order in Λ. At first order in the

83



Chapter 3. Minimal excitations at fractional filling factor

perturbation we obtain

〈JC(t)〉 = − i
2

∑
η,η′

η′
∫ +∞

−∞
dt′
〈
TKJC(tη)HT (t′

η′
)
〉

=

=
e∗

2

∑
η,η′

η′
∫ +∞

−∞
dt′
∑
ε,ε′

εeiεe
∗ ∫ t

0 V (t′′)dt′′eiε
′e∗
∫ t′
0 V (t′′)dt′′×

×
〈
TK

[
Λψ†R(0, tη)ψL(0, tη)

]ε [
Λψ†R(0, t′

η′
)ψL(0, t′

η′
)
]ε′〉

=

=
e∗

2
|Λ|2

∑
η,η′

η′
∫ +∞

−∞
dt′×

×
{
eie
∗ ∫ t
t′ V (t′′)dt′′

〈
TKψ

†
R(0, tη)ψR(0, t′

η′
)
〉〈

TKψL(0, tη)ψ†L(0, t′
η′

)
〉

−e−ie∗
∫ t
t′ V (t′′)dt′′

〈
TKψR(0, tη)ψ†R(0, t′

η′
)
〉〈

TKψ
†
L(0, tη)ψL(0, t′

η′
)
〉}

.

(3.86)

We must now find the quasiparticle Green’s function. Using the formula
eAeB = eA+BeC/2 valid for C = [A,B] and [A,C] = [B,C] = 0 [Appendix
C, Eq. (C.14)] we find〈

TKψ
†
R/L(0, tη)ψR/L(0, t′

η′
)
〉

=

=
1

2πa

〈
TKe

i
√
ν
[
φR/L(0,tη)−φR/L(0,t′η

′
)
]〉

e
ν
2 [φR/L(0,t),φR/L(0,t′)]. (3.87)

We now use the following important result. If an operator X is a linear com-
bination of bosonic operators bk and b†k, then the thermal average

〈
eX
〉

per-
formed over an equilibrium state described by the free bosonic Hamiltonian
H =

∑
k εkb

†
kbk is 〈

eX
〉

= e
1
2〈X2〉, (3.88)

as demonstrated, for instance, in Ref. [138]. This is exactly the case of the
fields φR/L, which are linear in the operators bR/L,k and b†R/L,k [see Eq. (3.56)].
The quasiparticle Green’s function then becomes〈

TKψ
†
R/L(0, tη)ψR/L(0, t′

η′
)
〉

=

=
1

2πa
e
− ν

2

〈
φ2
R/L

(0,tη)+φ2
R/L

(0,t′η
′
)−φR/L(0,tη)φR/L(0,t′η

′
)−φR/L(0,t′η

′
)φR/L(0,tη)

]
×

× e ν2 [φR/L(0,t),φR/L(0,t′)] =

=
1

2πa
e
ν
〈
φR/L(0,tη)φR/L(0,t′η

′
)−φ2

R/L
(0,0)

〉
. (3.89)

In the last equality we have used the fact that
〈
φ2
R/L(0, tη)

〉
=
〈
φ2
R/L(0, t′η

′
)
〉

=〈
φ2
R/L(0, 0)

〉
, since thermal averages are invariant under time translations
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due to symmetry considerations. We also used again Eq. (C.14) to com-

mute φR/L(0, t′η
′
) past φR/L(0, tη). The problem of evaluating the quasiparticle

Green’s functions is thus reduced to the calculation of the bosonic correlator

Gηη′(t, t′) =
〈
φR/L(0, tη)φR/L(0, t′

η′
)− φ2

R/L(0, 0)
〉
, (3.90)

which is a 2×2 matrix in the space of Keldysh contour indexes. However, each
entry of the 2 × 2 matrix is related to the standard one-dimensional Green’s
function through(

G++(t, t′) G+−(t, t′)
G−+(t, t′) G−−(t, t′)

)
=

(
G(|t− t′|) G(−t+ t′)
G(t− t′) G(−|t− t′|)

)
, (3.91)

where the real-time bosonic correation function G(τ) has been calculated in
Appendix E. It reads

G(τ) =
〈
φR/L(0, τ)φR/L(0, 0)

〉
−
〈
φ2
R/L(0, 0)

〉
=

= ln


∣∣∣Γ(1 + 1

βωc
+ i τ

β

)∣∣∣2
Γ2
(

1 + 1
βωc

)
(1 + iωcτ)

 ≈ ln

 π t
β

sinh
(
π t
β

)
(1 + iωct)

 . (3.92)

Here β = θ−1 is the inverse temperature (we have set kB = 1), ωc is the
high energy cutoff and the last equality was obtained in the limit βωc � 1.
Note that there is no label R/L as the Green’s function G(τ) is equal for both
right-moving and left-moving modes.

The calculation of
〈
TKψR/L(0, tη)ψ†R/L(0, t′η

′
)
〉

is very similar and yields

an identical result. We find〈
TKψR/L(0, tη)ψ†R/L(0, t′

η′
)
〉

=

=
〈
TKψ

†
R/L(0, tη)ψR/L(0, t′

η′
)
〉

=
1

2πa
exp

[
νGηη′(t, t′)

]
, (3.93)

with Gηη′(t, t′) given by the matrix representation Eq. (3.91). We now use the
latest result in Eq. (3.86) to find

〈JC(t)〉 = ie∗ |λ|2
∑
η,η′

η′
∫ +∞

−∞
dτ sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
e2νGηη′ (τ) =

= 2ie∗ |λ|2
∫ +∞

0

dτ sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

] [
e2νG(τ) − e2νG(−τ)

]
, (3.94)

where we have introduced the rescaled tunneling coupling λ = Λ/(2πa).
To make contact with the photoassisted transport formalism, we now imag-

ine that the voltage source sends time-periodic pulses to the conductor with
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Chapter 3. Minimal excitations at fractional filling factor

period T .1 Then, as one should expect, the current arising in response to
a periodic drive is itself periodic. The signal in Eq. (3.94) satisfies indeed
〈JC(t+ T )〉 = 〈JC(t)〉, since

sin

[
e∗
∫ t+T

t+T−τ
V (t′′)dt′′

]
= sin

[
e∗
∫ t

t−τ
V (t′′ + T )dt′′

]
= sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
.

(3.95)
We can thus compute the tunneling current averaged over one period, which
reads

〈JC(t)〉 =

∫ T

0

dt

T
〈JC(t)〉 =

= 2ie∗ |λ|2
{∫ +∞

0

dτ

∫ T

0

dt

T
sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
e2νG(τ)

+

∫ 0

−∞
dτ

∫ T−τ

−τ

dt

T
sin

[
e∗
∫ t+τ

t

V (t′′)dt′′
]
e2νG(τ)

}
. (3.96)

In the second term we have used the fact that
∫ T

0
dt f(t) is equivalent to∫ T+α

α
dt f(t) for a periodic function f with period T . Performing the change

of variable t′ = t+ τ we now get

〈JC(t)〉 = 2ie∗ |λ|2
{∫ +∞

0

dτ

∫ T

0

dt

T
sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
e2νG(τ)

+

∫ 0

−∞
dτ

∫ T

0

dt′

T
sin

[
e∗
∫ t′

t′−τ
V (t′′)dt′′

]
e2νG(τ)

}
=

= 2ie∗ |λ|2
∫ T

0

dt

T

∫ +∞

−∞
dτ sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
e2νG(τ). (3.97)

The factor sin
[
e∗
∫ t
t−τ V (t′′)dt′′

]
can be written in terms of the photoassisted

coefficients pl(α) introduced in Chapter 1, Eq. (1.65). One has

sin

[
e∗
∫ t

t−τ
V (t′′)dt′′

]
=

1

2i

∑
l,m

[
p∗l (α)pm(α)ei(l−m)ωtei(q+m)ωτ − c.c.

]
. (3.98)

Here the parameters q and α are related to the dc and ac amplitudes of the
voltage drive, namely q = e∗Vdc/ω and α = e∗Vac/ω. As such, q can be in-
terpreted as the number of electrons carried in a single period of the drive,

1 Strictly speaking, voltage drives in Eqs. (3.73) cannot be completely periodic in time
due to the presence of the step function Θ(t). However, one can imagine to move the
switching-on from t = 0 to an infinitely distant time t0 = −∞. Equation of motions remain
substantially identical, except for a different extreme of integration in the phase accumu-

lated by Laughlin quasiparticle operators, which now reads exp
{
−ie∗

∫ t∓ x
v− d

v

t0
dt′VR/L(t′)

}
.

Quasiparticle fields thus differ from the ones in Eqs. (3.76) by a constant phase factor

exp
{
−ie∗

∫ 0

t0
dt′VR/L(t′)

}
, which is completely negligible for our purposes.
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3.4. Tunneling at the QPC

since the integral over one period of the injected current I0(t) = ν e
2

2π
V (t)

yields Q =
∫ T

0
dt ν e

2

2π
V (t) = eq. We stress that this is only a mathematical

correspondence between the dc amplitude q and the integral of I0(t), and the
parameter q can safely take non-integer value without violating any fundamen-
tal principle. We now insert Eq. (3.98) into Eq. (3.97). Integration over t gives
a Kroenecker delta δl,m and one is finally left with

〈JC(t)〉 = 2ie∗ |λ|2
+∞∑
l=−∞

|pl(α)|2
∫ +∞

−∞
dτ sin [(q + l)ωτ ] e2νG(τ). (3.99)

It’s extremely useful to switch from integration in the time domain to the
energy domain. We thus introduce the function Pg(τ) = egG(τ) and its Fourier

transform P̂g(E) =
∫
dt eiEτPg(τ), the anti-Fourier transform being Pg(τ) =

1
2π

∫
dE e−iEτ P̂g(E). The function P̂g(E) at finite temperature θ > 0 has been

calculated in Appendix F and is given by [23, 147–149]

P̂g(E) =

(
2πθ

ωc

)g−1
eE/(2θ)

ωc

B
(
g

2
− i E

2πθ
,
g

2
+ i

E

2πθ

)
=

=

(
2πθ

ωc

)g−1
eE/(2θ)

Γ(g)ωc

∣∣∣∣Γ(g2 − i E2πθ
)∣∣∣∣2 . (3.100)

It’s useful to note that P̂g(E) is nothing but a Fermi distribution (with energy
E counted with respect to the chemical potential, i.e. µ = 0) multiplied by
an effective tunneling Density Of States (DOS) [29, 150]. We have indeed
P̂g(E) = Dg(E)nF(−E), with

Dg(E) =
(2π)g

Γ(g)ωc

(
θ

ωc

)g−1
∣∣Γ (g

2
− i E

2πθ

)∣∣2∣∣Γ (1
2
− i E

2πθ

)∣∣2 . (3.101)

With the help of these new definitions Eq. (3.99) can be finally recast as a
simple sum over l

〈JC(t)〉 = e∗ |λ|2
+∞∑
l=−∞

|pl(α)|2
{
P̂2ν [(q + l)ω]− P̂2ν [− (q + l)ω]

}
, (3.102)

as for the case of the Tien-Gordon model and the Floquet scattering matrix for-
malism (see Chapter 1, Section 1.7). It’s worth noticing that a connection with
the tunneling rate formalism and the detailed balance relation can be made
manifest in Eq. (3.102). We can interpret the function ΓRL(E) = e∗ |λ|2 P̂2ν(E)
as the tunneling rate from the right-moving to the left-moving edge at en-
ergy E. Then, the l-th contribution to the current is just the difference be-
tween the right-to-left rate at bias (q + l)ω, namely ΓRL[(q + l)ω], and the
opposite left-to-right contribution, ΓLR[(q + l)ω] = ΓRL[−(q + l)ω]. As we
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Chapter 3. Minimal excitations at fractional filling factor

show in Appendix F, the tunneling rate satisfies the detailed balance relation
ΓRL(−E) = e−βEΓRL(E). The total averaged current is then

〈JC(t)〉 = e∗ |λ|2
+∞∑
l=−∞

|pl(α)|2
[
1− e−(q+l)βω

]
P̂2ν [(q + l)ω] . (3.103)

3.4.2 Noise

The zero-frequency shot noise is related to the autocorrelation function of
current fluctuations, which reads

CC(t, t′) = 〈∆JC(t)∆JC(t′)〉 = 〈JC(t)JC(t′)〉 − 〈JC(t)〉 〈JC(t′)〉 , (3.104)

with ∆JC(t) = JC(t)−〈JC(t)〉 the operator representing backscattered current
fluctuations. We adopt again the Keldysh formalism to set up a perturbative
expansion for the noise. The autocorrelation function is thus

CC(t, t′) =
〈
TK∆JC(t+)∆JC(t′

−
)e
−i
∫
cK

HT (t′′)dt′′
〉
, (3.105)

where we have chosen to place the operator ∆JC(t) in the forward branch of
the Keldysh contour and ∆JC(t′) in the opposite backward branch. Since the
operator JC(t+)JC(t′−) is itself O(|Λ|2) [see Eq. (3.84)] and 〈JC(t+)〉 〈JC(t′−)〉
is O(|Λ|4) [see Eq. (3.102)], the first non-vanishing term in the perturbation
expansion is just〈
TKJC(t+)JC(t′

−
)
〉

=

= −(e∗)2
∑
ε,ε′

εε′eiεe
∗ ∫ t

0 V (t′′)dt′′eiε
′e∗
∫ t′
0 V (t′′)dt′′×

×
〈
TK

[
Λψ†R(0, t+)ψL(0, t+)

]ε [
Λψ†R(0, t′

−
)ψL(0, t′

−
)
]ε′〉

=

= (e∗)2 |Λ|2
{
eie
∗ ∫ t
t′ V (t′′)dt′′

〈
TKψ

†
R(0, t+)ψR(0, t′

−
)
〉〈

TKψL(0, t+)ψ†L(0, t′
−

)
〉

+e−ie
∗ ∫ t
t′ V (t′′)dt′′

〈
TKψR(0, t+)ψ†R(0, t′

−
)
〉〈

TKψ
†
L(0, t+)ψL(0, t′

−
)
〉}

.

(3.106)

We now use the bosonic representation of quasiparticle Green’s functions in
Eq. (3.93). In particular, we are only interested in the function G+−(t, t′) =
G(t′ − t). We thus obtain

CC(t, t′) = 2(e∗)2 |λ|2 cos

[
e∗
∫ t

t′
V (t′′)dt′′

]
e2νG(t′−t). (3.107)

To get the time-averaged zero-frequency shot noise we integrate over both the
variables t′ and t. Recalling that we are dealing with time dependent pulses
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3.4. Tunneling at the QPC

with period T , the integral on t′ will run over the entire real axis, while the
integral over t runs over a single period, 0 < t < T . The noise is

SC = 2

∫ T

0

dt

T

∫ +∞

−∞
dτ CC(t, t+ τ) =

= 4(e∗)2 |λ|2
∫ T

0

dt

T

∫ +∞

−∞
dτ cos

[
e∗
∫ t

t+τ

V (t′′)dt′′
]
e2νG(τ). (3.108)

Once again, due to the fact that we consider a periodic voltage signal V (t),

we use the photoassisted coefficients pl to expand cos
[
e∗
∫ t
t+τ

V (t′′)dt′′
]

into a

Fourier series:

cos

[
e∗
∫ t

t+τ

V (t′′)dt′′
]

=
1

2

∑
l,m

[
p∗l (α)pm(α)ei(l−m)ωte−i(q+m)ωτ + c.c

]
. (3.109)

Inserting this sum in the last equation and integrating over t leads to

SC = 4(e∗)2 |λ|2
+∞∑
l=−∞

|pl(α)|2
∫ +∞

−∞
dτ cos [(q + l)ωτ ] e2νG(τ). (3.110)

As for the backscattering current, we recognize that the above equation con-
tains the Fourier transform P̂g(E) of the quasiparticle Green’s function egG(τ).
We can thus rewrite the noise as

SC = 2(e∗)2 |λ|2
+∞∑
l=−∞

|pl(α)|2
{
P̂2ν [(q + l)ω] + P̂2ν [− (q + l)ω]

}
. (3.111)

The noise has a different structure with respect to the current 〈JC〉 in terms of
the tunneling rate ΓRL. It involves the sum ΓRL(E) + ΓRL(−E), rather than
the difference. Using the detailed balance relation ΓRL(−E) = e−βEΓRL(E)
we get

SC = 2(e∗)2 |λ|2
+∞∑
l=−∞

|pl(α)|2
[
1 + e−(q+l)βω

]
P̂2ν [(q + l)ω] . (3.112)

Equations (3.102) and (3.111) are very general. They describe the photoas-
sisted averaged current 〈JC(t)〉 and noise SC for generic temperature and peri-
odic voltage drive in a Laughlin FQH state. As such, they represent the start-
ing point in the quest for minimal excitation states at fractional filling factor.
Before discussing the behavior of current and noise as a function of different
voltage signals V (t), we focus on the interesting limits of (i) zero-temperature
photoassisted transport and (ii) dc transport at generic temperature θ.
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3.4.3 Zero temperature expression

Let us start with the zero temperature limit of Eqs. (3.102) and (3.111) At
θ = 0, the tunneling rate reads

P̂g(E) =
2π

Γ(g)ωgc
Eg−1Θ(E). (3.113)

Here we resorted to the asymptotic form |Γ(x + iy)| ∼
√

2π|y|x−1/2e−π|y|/2 for
y → ±∞ known from textbooks, see e.g. Ref. [80]. The last equation shows
the well known power-law behavior of the DOS typical of the Luttinger liquid
theory. Sum and difference of tunneling rates are thus

P̂2ν [(q + l)ω]− P̂2ν [− (q + l)ω] =
2πω2ν−1

Γ(2ν)ω2ν
c

|q + l|2ν−1 sign (q + l) , (3.114)

P̂2ν [(q + l)ω] + P̂2ν [− (q + l)ω] =
2πω2ν−1

Γ(2ν)ω2ν
c

|q + l|2ν−1. (3.115)

We now insert these results in Eqs. (3.102) and (3.111) and get

〈JC(t)〉
∣∣
θ=0

=
e∗

ω
|λ|2 2π

Γ(2ν)

(
ω

ωc

)2ν +∞∑
l=−∞

|pl(α)|2 |q + l|2ν−1 sign[(q + l)],

(3.116)

SC
∣∣
θ=0

=
(e∗)2

ω
|λ|2 4π

Γ(2ν)

(
ω

ωc

)2ν +∞∑
l=−∞

|pl(α)|2 |q + l|2ν−1. (3.117)

We have recovered something very similar to Eq. (1.71), which describes the
PASN at zero temperature in the noninteracting scattering approach. However,
here the l-th contributions to the current and noise are not linear as in the
noninteracting case, but follow a power law behavior with exponent 2ν − 1.
We notice that, for filling factor in the Laughlin sequence ν = 1/(2n + 1),
such an exponent is always negative, except for the metallic case n = 1. This
means that both 〈JC(t)〉 and SC will show a divergent behavior whenever q
approaches an integer value, as the l-th contribution to both signals will diverge
as 1/ε1−2ν for ε→ 0. We will discuss this feature in more detail and show how
finite temperature effects regularize the divergence in a moment.

3.4.4 Current and noise due to a dc bias

Let us now focus on the purely dc case, namely α = 0 with q 6= 0. Here the
photoassisted coefficients reduce to pl(α = 0) = δl,0 and current and noise
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read2

〈JC〉 = e∗ |λ|2
[
P̂2ν(e

∗Vdc)− P̂2ν(−e∗Vdc)
]

=

=
2e∗ |λ|2
Γ(2ν)ωc

(
2πθ

ωc

)2ν−1 ∣∣∣∣Γ(ν − ie∗Vdc

2πθ

)∣∣∣∣2 sinh

(
e∗Vdc

2θ

)
, (3.118)

SC = 2(e∗)2 |λ|2
[
P̂2ν(e

∗Vdc) + P̂2ν(−e∗Vdc)
]

=

=
4(e∗)2 |λ|2
Γ(2ν)ωc

(
2πθ

ωc

)2ν−1 ∣∣∣∣Γ(ν − ie∗Vdc

2πθ

)∣∣∣∣2 cosh

(
e∗Vdc

2θ

)
, (3.119)

since qω = e∗Vdc. We report their behavior in Fig. 3.6 both at zero and finite
temperature θ. As anticipated before, the fractional power law gives rise to
a diverging behavior of the tunneling rate near Vdc = 0, both in the current
and the noise (red curves in Fig. 3.6). The current is an odd function of
the bias, with sign 〈JC〉 = signVdc, while SC is an even function of Vdc and
satisfies always SC > 0. At finite temperature θ the divergent behavior around
Vdc = 0 gets regularized, as shown by the dashed black curves in Fig. 3.6.
Finite temperature effects are substantially negligible in the limit e∗Vdc � θ,
where the two curves overlap perfectly.

It is now worth exploiting the duality property between electronic fields
Ψ

(el)
R/L and quasiparticle fields Ψ

(qp)
R/L, and commenting on the power-law behav-

ior induced by tunneling of electrons. As discussed before, one just needs to
replace the parameter ν with 1/ν in the tunneling exponents. One thus discov-
ers that backscattering current induced by electron tunneling is governed by
the power law J

(el)
C ∼ V

2/ν−1
dc . Since ν = 1/(2n+ 1) for the Laughlin sequence,

the current due to electron tunneling goes rapidly to zero as the dc bias de-
creases, and is always negligible with respect to the quasiparticle contribution at
low energy. This is a particular manifestation of a much more profound prin-
ciple which can be fully understood in the renormalization group approach:
tunneling of electrons is an irrelevant perturbation at low energies, while tun-
neling of quasiparticles is relevant [144]. For this reason, we will only focus on
quasiparticle tunneling in the rest of this thesis.

Using the detailed balance relation it is not difficult to show that noise and
current are linked to each other by

SC = 2(e∗)2 |λ|2 coth

(
e∗Vdc

2θ

)
(1− e−e∗Vdc/θ)P̂2ν(e

∗Vdc) =

= 2e∗ coth

(
e∗Vdc

2θ

)
〈JC〉 . (3.120)

2 In this regime there’s no need for the notation X(t) indicating the average over one
period of the signal X(t), as the current is constant in t. We will denote the current in the
dc regime simply with 〈JC〉.
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Figure 3.6: Backscattering current 〈JC〉 and zero-frequency noise SC at
ν = 1/3 for a pure dc bias (Vac = 0) as a function of the dimensionless
parameter e∗Vdcω

−1
c . The two curves show the cases of zero temperature

and finite temperature θ = 0.01ωc.
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This result is extremely similar to the finite temperature shot noise in a tunnel
junction shown in Chapter 1, Eq. (1.58), the only difference being the presence
of the fractional charge e∗ instead of e. In particular, in the limit θ → 0 we
get (assuming Vdc > 0)

SC = 2e∗ 〈JC〉 , (3.121)

reproducing the Schottky result for a system with fractionally charged carriers.
We have already shown in Sec. 2.3.2 that experiments by Saminadayar et al.,
De-Picciotto et al. and Reznikov et al. have measured the values e∗ = e/3 and
e∗ = e/5 by determining the ratio between noise and backscattering current
reflected off the QPC [50–52]. Equation (3.121) represents the theoretical
background of the results anticipated in Sec. 2.3.2.

3.5 Excess noise and minimal excitations

Building upon the above results, in this section we tackle the problem of min-
imal excitation states in the FQH regime.

We claim that minimal excitations give rise to the minimum possible shot
noise compatible with the Schottky result Eq. (3.121). We thus propose the
following definition for the excess noise at zero temperature:

∆SC = SC − 2e∗〈JC(t)〉. (3.122)

It is basically the difference between the full noise SC and a Poissonian refer-
ence value given by the averaged time-dependent current over one period. We
give two physically sound reasons for this definition to be the most suitable
one at fractional filling factor. First, in the limit ν = 1 it is exactly coincident
with the one given in the context of the Floquet scattering matrix formalism.
Indeed, in Chapter 2 we defined the excess noise as ∆SC = SC−SC |α=0, where
the second term is the shot noise in the presence of a simple dc bias with am-
plitude eVdc = qω > 0. Our definition Eq. (3.122) is perfectly consistent with
the previous one, since for integer filling factor and θ = 0 one has

SC
∣∣
α=0

= 2
|Λ|2
v2

e2

2π
eVdc = 2e〈JC(t)〉. (3.123)

This can be readily checked by setting ν = 1 and pl = δl,0 in Eqs. (3.116) and
(3.117). Thus, the reference noise subtracted from SC at ν = 1 can be viewed
either as the shot noise without any ac component of the drive (SC |α=0) or as an
averaged current, and we argue that the proper definition of ∆SC at fractional
filling factor involves the latter interpretation. A second important point relies
on the particle-hole interpretation of the excess noise, and is developed in the
next subsection.
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3.5.1 Particle-hole excitations due to voltage pulses

A key feature of ∆SC is that it gives access to the number of holes excited
by the voltage pulses. To see that, one can simply evaluate the number of
electrons excited above the Fermi level and holes below it in presence of the
voltage drive. We roughly follow the idea sketched in Ref. [9] for the case of
a non-interacting one-dimensional wire. Let us count the number of particles
excited above the Fermi level (Ne) or holes created below it (Nh) with respect
to the unperturbed Fermi sea in the right-moving edge. We set θ = 0, EF = 0
and write

Ne(t) =
+∞∑

k=−∞

nF(−vk)
〈
c†k(t)ck(t)

〉
, (3.124)

Nh(t) =
+∞∑

k=−∞

nF(vk)
〈
ck(t)c

†
k(t)
〉
, (3.125)

with nF(k) = 1−nF(−k) = Θ(−k) the Fermi distribution at zero temperature.
Here, operators c†k and ck create and annihilate an electron with momentum k
respectively. They can be written as

ck(t) =
1√
L

∫ +∞

−∞
e−ikxΨ(x, t)dx. (3.126)

We recall that the Fermi distribution is related to the Fourier transform of
the Green function Pg(t). One has P̂g(E) = Dg(E)nF(−E), with Dg(E) the
effective DOS of the Luttinger liquid given in Eq. (3.101). For integer filling
ν = 1 (i.e. for a 1D Fermi liquid) one has P̂g=1(E) = 2πω−1

c nF(−E). We thus
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write Nh as

Nh(t) =
+∞∑

k=−∞

v

2πa
P̂ν=1(−vk)

1

L

∫
dx

∫
dx′e−ik(x−x′)

〈
ΨR(x, t)Ψ†R(x′, t)

〉
=

=
+∞∑

k=−∞

v

2πa

1

L

∫
dτe−ivkτeG(τ)

∫
dx

∫
dx′e−ik(x−x′)×

× exp

[
ie

∫ t−(x′+d)/v

t−(x+d)/v

dt′V (t′)

]
1

2πa
e
G
(
x′−x
v

)
=

=
v

(2πa)2

∫
dτ

∫
dx

∫
dx′ δ(x′ − x− vτ)×

× exp

[
ie

∫ t−(x′+d)/v

t−(x+d)/v

dt′V (t′)

]
eG(τ)e

G
(
x′−x
v

)
=

=
v2

(2πa)2

∫
dτ ′
∫
dτ exp

[
ie

∫ τ ′−τ

τ ′
dt′V (t′)

]
e2G(τ) =

=
v2

(2πa)2

∫
dτ ′
∫
dτ exp

[
−ie

∫ τ ′

τ ′−τ
dt′V (t′)

]
e2G(τ). (3.127)

Let us compare the last expression with Eqs. (3.97) and (3.108). We find that
the excess noise as an integral in the time domain reads

∆SC = 4(e∗)2 |λ|2
∫ T

0

dt

T

∫ +∞

−∞
dτ exp

[
−ie∗

∫ t

t−τ
V (t′′)dt′′

]
e2νG(τ) (3.128)

at temperature θ = 0, and is thus proportional to Nh at ν = 1. In practice,
∆SC represents a direct measure of the number of holes excited by the time
dependent drive, as suggested by Levitov and coworkers [9]. Minimal excita-
tion states are generated by a drive which excites a single electron, while no
particle-hole pairs are created (Nh = 0). Generalizing to a chiral Luttinger
liquid describing a FQH edge state, these excitations should correspond to a
vanishingly small value of the quantity

N =
v2

(2πa)2

∫
dτ ′
∫
dτ exp

[
−ie∗

∫ τ ′

τ ′−τ
dt′V (t′)

]
e2νG(τ). (3.129)

The excess noise ∆SC is thus identified as the most suitable quantity to study
minimal excitations. At θ = 0, one recovers in N precisely the excess noise,
up to a prefactor which depends on the tunneling amplitude [see Eq. (3.128)]
[9]. This legitimizes our definition of excess noise and shows that clean pulses
in the FQH must satisfy the condition ∆SC = 0.
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3.5.2 Minimal excitation states

As shown above, we have defined the excess noise ∆SC = SC − 2e∗〈JC(t)〉 as
the best candidate to highlight the occurrence of a minimal excitation state in a
Laughlin FQH system. In practice, ∆SC gives us information about how much
noise is produced in excess to the ordinary Poissonian noise SC |α=0 = 2e∗〈JC〉.
From Eqs. (3.116) and (3.117) one immediately gets, at θ = 0,

∆SC =
(e∗)2

ω
|λ|2 8π

Γ(2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν−1. (3.130)

At finite temperature the definition of excess noise needs to be slightly modi-
fied. Indeed, we have already shown that the noise reads

SC
∣∣
α=0

= 2e∗〈JC〉 coth
(qω

2θ

)
(3.131)

for the case of dc bias at temperature θ > 0. We thus propose the following
definition for the finite temperature excess noise:

∆SC = SC − 2e∗〈JC〉 coth
(qω

2θ

)
. (3.132)

One should note that Eq. (3.132) corresponds to ∆SC = SC − 2e∗〈JC〉 in the
zero temperature limit θ → 0, since coth(1/x) ≈ sign(x) as x approaches zero.

We now consider three different signals for the train of voltage pulses and
discuss the excess noise they generate. We focus on the same three waveforms
of Sec. 2.2.3, namely

Vsin(t) = Vdc[1− cos(ωt)], (3.133a)

Vsqr(t) = 2Vdc

+∞∑
k=−∞

Θ (t− kT ) Θ

(
T

2
− t+ kT

)
, (3.133b)

VLor(t) =
Vdc

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
. (3.133c)

Let us notice that we have imposed a constraint on the dc and ac amplitudes of
the voltage signals (q = e∗Vdc/ω and α = e∗Vac/ω respectively). Indeed, q and
α are no longer independent from each other, but are locked by the request
V (t) ≥ 0. We also impose that the minimum value inside each single pulse is
Vmin = 0, to ensure that there is no overall dc offset. To fulfill these requests,
we set q = α.

It is now sufficient to insert the suitable coefficients pl(α = q), which are
calculated in Appendix A. Fig. 3.7 shows the excess noise for the three signals
considered both at zero temperature (red curves) and θ = 0.1ω (dashed black
curves). We consider here the first and most accessible FQH plateau of the
Laughlin sequence, i.e. ν = 1/3. Let us first focus on the case θ = 0 and
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3.5. Excess noise and minimal excitations

comment on the common behavior of the curves. The Figure tells us that
there is a local minimum in the noise whenever q is an integer, that is whenever
each pulse carries an integer number of electron charges.3 This is exactly the
quantization condition already discussed in Chapter 2 (see Fig. 2.4), where
we have shown that optimal pulses in an ordinary Fermi liquid must carry
an integer number of electrons q. However, we notice an interesting feature
at ν = 1/3. While curves drop to a local minimum for q = n, n ∈ N, they
show a diverging behavior for q = n− ε, where ε is a small positive quantity.
This linked to the orthogonality catastrophe argument discussed by Levitov
[7]: non-optimal pulses generate a quantum state that is orthogonal to the
unperturbed ground state, and this manifests as a huge number of particle-
hole pairs contributing to the transport. In particular, the diverging curves
follow the power-law ε2ν−1 discussed previously, which is replicated infinite
times by the photoassisted mechanism.

Let us now closely inspect the values of the minima. One easily sees that
cosine and square voltages still generate a finite excess noise ∆SC > 0, even
in correspondence of integer values of q. On the contrary, the Lorentzian
signal at θ = 0 vanishes exactly for q = 1, 2, 3 . . . . We thus claim that integer
Lorentzian voltage pulses generate minimal excitation states in the Laughlin
FQH regime. In other words, the leviton is extremely robust against electron-
electron interactions, since its noiseless status is confirmed even in a strongly
interacting environment such as the ν = 1/3 FQH state. This very important
conclusion is the principal result of Ref. [24].

Interestingly enough, there is absolutely no feature in correspondence of
fractional values of q, as clean pulses are associated with an integer number q of
electrons. Apart from the power-law divergent behavior, ∆SC is qualitatively
similar to the case of a normal metal: each signal shows interesting features
only at integer q (namely, a local minimum), with Lorentzian pulses completely
suppressing the excess noise for such values of q.

An interesting question remains open: is this the only possibility to achieve
zero excess noise? Indeed, we have only shown that integer Lorentzian pulses
generate clean excitations while the cosine and square signal do not, but other
waveforms may in principle give ∆SC = 0, even at different values of q. To
answer this question, let us rewrite the excess noise at θ = 0 in the following
way

∆SC =
(e∗)2

ω
|λ|2 8π

Γ(2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl (q)|2 |q + l|2ν−1 . (3.134)

Each contribution in the sum is positive, due to the absolute value on both the
coefficients pl and on the factor q+l. It is now clear that ∆SC may vanish only if
each contribution vanishes individually, that is, if all the coefficients pl are zero
for l < −q. We have already shown in Chapter 2 that only integer Lorentzian

3 Remember that the total charge associated with each pulse is Q =
∫ T
0
dt ν e

2

2πV (t) = eq.
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Figure 3.7: Excess noise ∆SC in units of e2ω−1 |λ|2 at filling factor ν =
1
3 as a function of q. We compare the sinusoidal, square and Lorentzian
signals in Eqs. (3.133) at θ = 0 and θ/ω = 0.1. The dimensionless width of
Lorentzian pulses is η = 0.1.
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Figure 3.8: Backscattering current 〈JC(t)〉 averaged over one period in
units of eω−1 |λ|2 at filling factor ν = 1

3 . We compare the sinusoidal, square
and Lorentzian signals in Eqs. (3.133) as a function of the dc amplitude q.
The temperature is θ/ω = 0.1 and the dimensionless width of Lorentzian
pulses is η = 0.1.

pulses satisfy this property. Thus, they are the only minimal excitation states
allowed at ν = 1/(2m+ 1), m ∈ N.

This calculation seems to rule out the possibility of exciting a single anyon
with well-shaped voltage pulses, since the minimal excitation state (i.e. levi-
ton) carries a full electron charge e. However, it has been proposed that
the QPC may break a leviton into a single quasiparticle reflected into the
lower edge, with the two remaining quasiparticles transmitted through the
QPC [151]. This protocol may in principle be able to generate a clean single-
quasiparticle state, which can be probed by measuring the excess noise with
the help of a second QPC. Other possibilities may involve fractional filling fac-
tors of the Jain sequence, where several edge modes contribute simultaneously
to transport, or the exotic even-denominator FQH states [116].

Let us now briefly comment on the case θ > 0. Black dashed curves in
Fig. 3.7 are obtained at θ/ω = 0.1, and show that the diverging behavior
disappears at finite temperature and is replaced by smooth, continuous curves.
We notice that the excess noise is now always greater than zero, a fact that
was already observed in the Fermi liquid case (see again Fig. 2.4). Strictly
speaking, a theoretical analysis of minimal excitation states only makes sense
at θ = 0, as additional excitations generated by thermal agitation will always
come into play at finite temperature. It’s interesting to notice that, even at
θ > 0, Lorentzian pulses still generate an extremely small excess noise around
q ≈ 1.4, 2.4 . . . .

Finally, in addition to the excess noise, the time-averaged backscattering
current 〈JC(t)〉 also bears peculiar features. In contrast to the Ohmic behavior
observed in the Fermi liquid case, 〈JC(t)〉 shows large dips for integer values
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Chapter 3. Minimal excitations at fractional filling factor

of q (see Fig. 3.8). These dips are present for all types of periodic drives, and
cannot be used to detect minimal excitations. However, the spacing between
these dips provides an alternative diagnosis (from dc shot noise [50, 51]) to
access the fractional charge e∗ of Laughlin quasiparticles, as q is known from
the frequency and amplitude of Vdc [152].

3.6 Photoassisted spectroscopy

To study minimal excitation states in the FQH regime we have restricted
ourselves to very specific voltage pulses with q = α. In this section we relax
this constraint and consider the more general situation of independent dc and
ac amplitudes q = e∗Vdc/ω and α = e∗Vac/ω. We will specifically consider the
sinusoidal wave Vsin(t) = Vdc − Vac cos(ωt) and the Lorentzian drive

VLor = Vdc + Vac

[
1

π

+∞∑
k=−∞

η

η2 + (t/T + k)2
− 1

]
. (3.135)

The starting point is the photoassisted expression for the shot noise:

SC = 2(e∗)2|λ|2
+∞∑
l=−∞

|pl(α)|2
{
P̂2ν [(q + l)ω] + P̂2ν [− (q + l)ω]

}
. (3.136)

As already discussed in the context of photoassisted transport, it can be viewed
as a superposition of several dc contributions, whose effective bias is shifted by
an amount lω with respect to the dc value qω and weighted by a probability
|pl(α)|2, which is nothing but the probability for a quasiparticle to absorb or
emit l energy quanta [112]. We note that the ac and dc amplitudes are well
separated in Eq. (3.136). Indeed, the former emerges as the argument α of
the coefficients pl, while the latter appears in the functions P̂2ν(E) via the
parameter q.

While the expression for the shot noise generally consists of an infinite
superposition of dc contributions, each one weighted by the corresponding
photoassisted probability, we show in the following that the FQH physics al-
lows to extract each single contribution to the PASN in a surprisingly simple
fashion. Following the results published in Ref. [26], we provide a recipe to
reconstruct the typical absorption and emission probabilities of the photoas-
sisted formalism by independently tuning the ac and dc components of the
voltage drive. We also discuss the experimental feasibility of this study, iden-
tifying a set of reasonable experimental parameters under which our protocol
should be applicable.

3.6.1 Results

To begin, let us first discuss a set of reasonable values for θ, ω and η. Experi-
ments testing levitons in two-dimensional electron gases are usually performed
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Figure 3.9: (a)-(d) PASN as a function of the dc amplitude q for ν = 1
and ν = 1/3 and different values of the ac amplitude α. (e)-(f) Coefficients
|p−q(α)|2 for different values of α as a function of q. In (e) and (f) the
continuous lines are guides for the eyes, with the coefficients |p−q(α)|2 only
defined for integer values of q.

at θ = 10 − 100 mK [10, 15, 18], which also happens to be a range of tem-
perature where well defined FQH states can be spotted [153]. The Lorentzian
voltage drive usually operates at a frequency f = ω

2π
= 5−6 GHz, with dimen-

sionless width of each pulse η = 0.1 − 0.2 [10, 15, 18]. Higher frequencies are
also used for the sinusoidal wave [10], and photoassisted transport in graphene
nanoribbons illuminated with THz radiation was recently reported [154]. We
initially set η = 0.1 and θ = 0.1ω, but lower values of the ratio θ/ω can be
reached in principle and will be discussed later.

Figure 3.9 shows the behavior of SC as a function of q for fixed values of α.
In panels (a) and (b) we report the case of sinusoidal and Lorentzian voltage
pulses at integer filling factor ν = 1. The blue curve represents the pure dc
case where no ac component is present in the voltage drive (α = 0). In this
case SC grows linearly with q as expected, since SC ∝ q coth

(
qω
2θ

)
≈ |q| in

the integer quantum Hall regime at sufficiently low temperature. Conversely,
when a finite ac component is present (α = 1, 2) the behavior at low q is
clearly non-linear and some excess noise due to the presence of the oscillating
drive can be identified. Switching to the FQH regime [panels (c) and (d)], the
linear (or almost linear) profile of the integer case is replaced by a strongly
non-linear behavior, even for a dc voltage drive. This is a typical signature
of the chiral Luttinger liquid theory. In particular the α = 0 curve, which is

101



Chapter 3. Minimal excitations at fractional filling factor

proportional to P̂2ν(qω) + P̂2ν(−qω), shows a sharp peak around q = 0 (this
is exactly the black dashed curve already shown in Fig. 3.6 up to a constant
factor). Such a structure is visible for α = 1 and α = 2 as well, with additional
peaks arising for integer values of q. The different peaks in Fig. 3.9 (c) and
(d) reproduce the features of the α = 0 curve at shifted values q + l, since
the photoassisted transport can be interpreted as an infinite superposition of
shifted dc cases weighted by the probabilities |pl(α)|2, as we mentioned before.
Indeed, due to the sharply peaked structure of the tunneling rates in the FQH
regime, the dominant contribution to the noise around integer q is given by
the photoassisted amplitudes with l = −q. In such a case the PASN is well
approximated by

SC ≈ 4(e∗)2|λ|2P̂2ν(0) |p−q(α)|2 , (3.137)

allowing to reconstruct the probabilities |pl(α)|2 from the relative height of
the different peaks. Thus, by fixing the ac component of the voltage drive
and tuning the dc component, we can explore all the coefficients |pl(α)|2 for
l = 0,±1,±2 . . . . This is similar to the spectroscopic protocol developed by
Dubois et al. in Refs. [10, 112] for the free fermion case, although the fractional
regime treated in the present work makes it much more effective and easy to
visualize, due to the peculiar structure of the tunneling rate P̂2ν(E) at frac-
tional filling (see also a similar analysis in the framework of finite frequency
noise spectroscopy discussed in Refs. [155, 156]). For instance, Fig. 3.9 (d)
suggests that all p−q(α) with q > α vanish for a Lorentzian drive with integer
α, since we cannot see any further peak at q > α. This is the striking property
that allows the Lorentzian voltage pulse to generate a single electron above
the Fermi level, with no disturbance below it [7, 9]. Conversely, no cancella-
tion arises in the sinusoidal case, where Fourier coefficients manifestly satisfy
|pq(α)|2 = |p−q(α)|2 [see Fig. 3.9 (c)]. To check the validity of our spectroscopic
protocol we also show the coefficients |p−q(α)|2 for α = 0, 1, 2 in Fig. 3.9 (e)
and (f). One can easily see that the relative heights of all the peaks in Fig.
3.9 (c) and (d) are very well reproduced by the coefficients |p−q(α)|2. As an
example, the absence (almost total) of peaks at q = 0 for both the sinusoidal
and the Lorentzian drive with α = 2 is linked to the fact that |p0(2)|2 � 1 for
both signals. Moreover, the value of |p−1(2)|2 explains the high asymmetric
peak at q = 1 for the Lorentzian drive with α = 2.

We now turn to the opposite case, in which the dc component is fixed and
we allow the parameter α to vary continuously. As shown in Fig. 3.10 (a)
and (b), at ν = 1 we get a linear behavior at high values of |α| both for the
sinusoidal and the Lorentzian drive. In the vicinity of α = 0, the curves deviate
from the linear regime and the noise is more or less proportional to q. We note
once again the sharp asymmetry for q 6= 0 of the Lorentzian voltage drive,
as opposed to the symmetric profile of the sinusoidal wave. For fractional
filling factor ν = 1/3 [panels (c) and (d)] the curves are evidently non-linear
and oscillate in a non-monotonous fashion as a function of α. However, the
behavior at ν = 1/3 is much more interesting since we can link the value of SC
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Figure 3.10: (a)-(d) PASN for q = 0, 1, 2 as a function of α at ν = 1 and
ν = 1/3. (e)-(f) Coefficients |p−q(α)|2 for q = 0, 1, 2 as a function of α.

to the probability |p−q(α)|2, following Eq. (3.137). In contrast with the case
of fixed ac component, in this case we can explore the dependence of the q-th
Fourier coefficients upon its argument α. Comparing with Fig. 3.10 (e) and
(f), where we report the coefficients |p−q(α)|2 as a function of α, we observe
that the approximation works well from a qualitative point of view, although
an additional contribution due to finite temperature effects is present in all
curves at ν = 1/3, thus preventing us from getting a good quantitative match.

In order to improve the spectroscopic protocol from a quantitative point of
view, let us remark that the peculiar peak of the function P̂2ν(E) + P̂2ν(−E)
around E = 0 becomes more and more pronounced as the ratio θ/ω decreases.
Indeed, we have already commented on the diverging power-law behavior of the
Luttinger liquid theory in the limit θ → 0, which is shown in Fig. 3.6. Thus,
the approximation Eq. (3.137) becomes more efficient at lower temperatures
(or higher frequencies), since the relative weight of the term l = −q in the
PASN with respect to all other terms l′ 6= −q is given by 2P̂2ν(0)/[P̂2ν(l

′ω +
qω)+P̂2ν(−l′ω−qω)]. The recent exploration of PASN in the THz regime [154]
suggests that our results could be tested in the near future in EQO experiments
at fractional filling factor [151].
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Chapter 4
Minimal excitations for heat transport

In this Chapter, which is based on Ref. [25], we investigate minimal excitation
states for heat transport in a HBT setup. Excitations are studied through heat
and mixed noise generated by the random partitioning at the QPC. It is shown
that levitons represent the cleanest states even for heat transport properties,
since excess heat and mixed shot noise both vanish only when Lorentzian
voltage pulses carrying integer electric charge are applied to the conductor.
This happens in the integer QH regime and for Laughlin fractional states as
well, with no signature associated to fractional excitations. In addition, we
demonstrate the robustness of such excitations to the overlap of Lorentzian
wavepackets. Even though mixed and heat noise have nonlinear dependence
on the voltage bias, and despite the non-integer power-law behavior arising
from the FQH physics, an arbitrary superposition of levitons always generates
minimal excitation states.

4.1 Heat transport in the quantum Hall regime

Despite several challenging and fascinating problems concerning charge trans-
port properties, electric charge is far from being the only interesting degree
of freedom we should look at in the framework of EQO. Energy, for instance,
can be coherently transmitted over very long distances along the edge of QH
systems, as was experimentally proved by Granger et al. [157]. This obser-
vation is of particular interest, as typical dimensions of chips and transistors
are rapidly getting smaller and smaller due to the great technological advance
during the last decades. Indeed, the problem of heat conduction and manipula-
tion at the nanoscale has become more actual than ever [42], as demonstrated
by great recent progress in the field of quantum thermodynamics. Topics like
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quantum fluctuation-dissipation theorems [158–162], energy exchanges in open
quantum systems [163, 164], energy dynamics and pumping at the quantum
level [165–169], coherent caloritronics [170, 171], and thermoelectric phenom-
ena [172–174] have been extensively investigated, in an attempt to extend the
known concepts of thermodynamics to the quantum realm. In this context, a
particular emphasis has been focused on the role of QH edge states both from
the theoretical [29, 175–179] and experimental point of view [128, 129, 157,
180–183].

A natural question immediately arises when one considers energy dynamics
in EQO, namely what kind of voltage drive gives rise to minimal excitation
states for heat transport in mesoscopic conductors. This is the fundamental
question we try to answer in this Chapter. To this end, we study heat con-
duction along the topologically-protected chiral edge states of the QH effect.
We analyze heat current fluctuations as well as mixed charge-heat correlations
[184, 185] when periodic voltage pulses are sent to the conductor and parti-
tioned off a QPC [10]. Starting from the dc regime of the voltage drive, where
simple relations between noises and currents can be derived in the spirit of
the Schottky’s formula [32, 43], and from the analogy with the charge current
and noise, we introduce the excess signals for heat and mixed fluctuations,
which basically measure the difference between the zero-frequency noises in an
ac-driven system and their respective reference signals in the dc configuration.
The vanishing of excess heat and mixed noise is thus used to flag the occurrence
of a minimal excitation state for heat transport in the QH regime. With this
powerful tool we demonstrate that minimal noise states for heat transport can
be achieved only when levitons are injected into the QH edge states. We study
this problem both in the integer regime and in the FQH regime. Our results
are robust against interactions, since integer levitons still represent minimal
excitation states despite the highly non-linear physics occurring at the QPC
due to the peculiar collective excitations of the FQH state.

Having recognized levitons as the fundamental building block for heat
transport, we then turn to the second central issue of this Chapter, which
deals with the robustness of multiple overlapping Lorentzian pulses as min-
imal excitation states. Indeed, Levitov and collaborators demonstrated that
N levitons traveling through a quantum conductor with transmission T < 1
represent N independent attempts to pass the barrier, with the total noise not
affected by the overlap between their wavepackets. This is no more guaran-
teed when we look for quantities which have a non-linear dependence on the
voltage bias. Two types of nonlinearities are considered here. The first one
comes from the mixed and heat shot noise, whose behaviors are ∼ V 2(t) and
∼ V 3(t) respectively in Fermi liquid systems. The second one is a natural
consequence of FQH physics, which give rise to power laws with non-integer
exponents. We show that, while currents and noises are sensitive to the actual
number of particles sent to the QPC, excess signals always vanish for arbitrary
superposition of integer levitons. One then concludes that levitons show a
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remarkable stability even with regard to heat transport properties, combined
with the equally surprising robustness in the strongly-correlated FQH liquid.
This provides further evidence of the uniqueness of the leviton state in the QH
regime.

4.2 Model

We adopt the same model used in Chapter 3 and shown schematically in Fig.
3.4. For completeness, and for a better readability of the present Chapter, we
summarize the main points of the model here below:

X We consider a QH system with filling factor ν = 1/(2n+ 1), n ∈ N. The
special case n = 0 corresponds to the integer QH regime at ν = 1, where
the single chiral state on each edge is well described by a one-dimensional
Fermi liquid theory. Conversely, values n > 0 describe a fractional system
in the Laughlin sequence [20], with still one chiral mode per edge.

X The total Hamiltonian is H = H0 +HV +HT , consisting of edge states,
source and tunneling terms respectively. The free Hamiltonian H0 mod-
eling right-moving and left-moving states on opposite edges is given by
Eq. (3.57). The source term HV is given by Eq. (3.61) for the case
VR(x, t) = Θ(−x − d)V (t) and VL(x, t) = 0, accounting for the capaci-
tive coupling with a time-dependent voltage gate. Finally, quasiparticle
tunneling occurs at x = 0 due the the presence of a QPC, and is modeled
through the tunneling Hamiltonian HT given in Eq. (3.79).1

X One can relate the bosonic description to creation and annihilation of
quasiparticles through bosonization identities Eqs. (3.60). The periodic
voltage bias V (t) = Vdc + Vac(t) generates a phase shift of quasiparticle
fields [see Eqs. (3.76)], which will be conveniently handled through the

Fourier series e−ie
∗ ∫ t

0 dt
′ V (t′) = e−iqωt

∑+∞
l=−∞ ple

−ilωt, with q = e∗Vdc/ω.
Details of the calculation of the photoassisted coefficients pl are given in
Appendix A.

4.3 Heat current operator in the chiral Luttinger
liquid

To calculate heat transport properties, one first needs a sound definition of
heat current [186, 187]. To this end, let us consider a thermodynamical system
described by the internal energy E and the particle number N (here we focus

1 Here we suppress the redundant label (qp) from the quasiparticle field, since we will not
consider tunneling of electrons.
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on a single species of particle). The entropy S(E,N) changes at the rate

dS

dt
=

1

θ

dE

dt
− µ

θ

dN

dt
, (4.1)

with θ the temperature and µ the chemical potential. This suggest the fol-
lowing definition for the entropy current in terms of energy (JE) and particle
(JN) currents respectively:

JS =
1

θ
JE −

µ

θ
JN . (4.2)

At the same time we have dQ = θdS from basic thermodynamical principles,
where dQ is the infinitesimal heat exchanged in the process. One then finds
the heat current JQ:

JQ = JE − µJN . (4.3)

The heat current is thus viewed as an excess energy flux with respect to the
value set by the local chemical potential. For a quantum system with Hamilto-
nian H and particle number N , it is thus customary to define the heat current
operator as

JQ = Ḣ − µṄ . (4.4)

However, when dealing with the chiral Luttinger liquid model of FQH edge
states, the above considerations must be revisited carefully. Indeed, the chem-
ical potential contribution is automatically subtracted in the chiral Luttinger
liquid Hamiltonian. This is shown in more detail in Appendix B, where
we demonstrate explicitly how the bosonic Hamiltonian is equivalent to a
fermionic model where energy and particle number are counted with respect to
the many-particle Fermi sea. Thus, the operator for the heat current reflected
into the lower, left-moving edge of the setup shown in Fig. 3.4 is just

JQ = ḢL = −i[HL, HT ]. (4.5)

We now use the Baker-Campbell-formula Eq. (C.6) to calculate the commuta-
tor in Eq. (4.5):

JQ = −i v
4π

∫
dx

[
[∂xΦL(x)]2,

Λ

2πa
ei
√
νΦR(0)e−i

√
νΦL(0) + h.c.

]
=

= −i v
4π

Λ

2πa

∫
dx
{
∂xΦL(x)ei

√
νΦR(0)e−i

√
νΦL(0)∂x

[
ΦL(x), (−i√ν)ΦL(0)

]
+

+ ei
√
νΦR(0)e−i

√
νΦL(0)∂x

[
ΦL(x), (−i√ν)ΦL(0)

]
∂xΦL(x)

}
+ h.c. =

= −v
2

Λ

2πa

∫
dx
{

(−i√ν)∂xΦL(x)ei
√
νΦR(0)e−i

√
νΦL(0)+

+ ei
√
νΦR(0)e−i

√
νΦL(0)(−i√ν)∂xΦL(x)

}
δ(x) + h.c. =

= −v Λ

2πa
(−i√ν)∂xΦL(0)ei

√
νΦR(0)e−i

√
νΦL(0) + h.c. =

= −v Λ

2πa
ei
√
νΦR(0)∂xe

−i
√
νΦL(0) + h.c.. (4.6)
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Here the notation ∂xf(0) stands for [∂xf(x)]x=0. It’s easy to check that JQ in

terms of quasiparticle operators Ψ
(qp)
R/L reads

JQ = −v Λ

2πa
ei
√
νΦR(0)∂x

[
eikFxe−ikFxe−i

√
νΦL(x)

]
x=0

+ h.c. =

= −v
∑
ε=+,−

[
ΛΨ

(qp)
R

†
(0)∂xΨ

(qp)
L (0)

]ε
− ivkF

∑
ε=+,−

ε
[
Ψ

(qp)
R

†
(0)Ψ

(qp)
L (0)

]ε
=

= JE −
µ

e∗
JC , (4.7)

with µ = vkF the chemical potential and JC = e∗JN the charge current oper-
ator given by Eq. (3.83). Here, in analogy with Eq. (4.3), we have defined

JE = −v
∑
ε=+,−

[
ΛΨ

(qp)
R

†
(0)∂xΨ

(qp)
L (0)

]ε
. (4.8)

Now it’s evident that, as stated before, the term µJN is already implicitly
subtracted in the definition of JQ = ḢL.

4.4 Averaged backscattered heat current

We apply the Keldysh non-equilibrium contour formalism (see Appendix D)
to calculate the current 〈JQ(t)〉 backscattered off the barrier and detected in
terminal 2. In this framework one has

〈JQ(t)〉 =
1

2

∑
η0

〈
TKJE(tη0)e

−i
∫
cK

dt′HT (t′)
〉
− µ

e∗
〈JC(t)〉 , (4.9)

with TK the time-ordering operator along the back-and-forth Keldysh contour
cK, whose two branches are labeled by η0 = {+,−}. The transparency of the
QPC can be finely tuned with the help of gate voltages. In the low reflectivity
regime, tunneling can be treated as a perturbative correction to the perfectly
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transmitting setup. Then at first order in the perturbation we have

〈JQ(t)〉 =

= − i
2

∑
η0,η1

η1

∫ +∞

−∞
dt′
〈
TKJE(tη0)HT (t′

η1)
〉
− µ

e∗
〈JC(t)〉 =

=
i

2

∑
η0,η1

η1

∫ +∞

−∞
dt′
∑
ε,ε′

eiεe
∗ ∫ t

0 V (t′′)dt′′eiε
′e∗
∫ t′
0 V (t′′)dt′′×

×
〈
TK

[
Λψ†R(0, tη0)∂tψL(0, tη0)

]ε [
Λψ†R(0, t′

η1)ψL(0, t′
η1)
]ε′〉

− µ

e∗
〈JC(t)〉 =

=
i

2
|Λ|2

∑
η0,η1

η1

∫ +∞

−∞
dt′×

×
{
eie
∗ ∫ t
t′ V (t′′)dt′′

〈
TKψ

†
R(0, tη0)ψR(0, t′

η1)
〉
∂t

〈
TKψL(0, tη0)ψ†L(0, t′

η1)
〉

+e−ie
∗ ∫ t
t′ V (t′′)dt′′

〈
TKψR(0, tη0)ψ†R(0, t′

η1)
〉
∂t

〈
TKψ

†
L(0, tη0)ψL(0, t′

η1)
〉}

+

− µ

e∗
〈JC(t)〉 . (4.10)

The derivatives ∂t give rise to two terms:

∂t

〈
TKψL(0, tη0)ψ†L(0, t′

η1)
〉

=
1

2πa
e−ikFv(t−t′) (−iµ+ ∂t) e

νGη0η1 (t−t′), (4.11)

∂t

〈
TKψ

†
L(0, tη0)ψL(0, t′

η1)
〉

=
1

2πa
eikFv(t−t′) (iµ+ ∂t) e

νGη0η1 (t−t′). (4.12)

It’s straightforward to check that terms proportional to µ = vkF are canceled
by the last term of Eq. (4.10), and the only remaining contribution is

〈JQ(t)〉 = i|λ|2
∑
η0,η1

∫ +∞

−∞
dτη1 cos

[
e∗
∫ t

t−τ
dt′′V (t′′)

]
×

× exp [νGη0η1(τ)] ∂τ exp [νGη0η1(τ)] , (4.13)

with λ = Λ/(2πa) the reduced tunneling constant. In the last equation we
explicitly showed the matrix structure of Keldysh Green’s functions due to the
two-fold time contour. Using Eq. (3.91) we thus get

〈JQ(t)〉 = i|λ|2
∫ +∞

0

dτ cos

[
e∗
∫ t

t−τ
dt′′V (t′′)

] [
∂τe

2νG(τ) − ∂τe2νG(−τ)
]
.

(4.14)
The dc component of charge and heat currents in presence of the periodic drive
is then obtained by averaging over one period T . At this stage, it is useful to
introduce the Fourier transform P̂g(E) =

∫
dτeiEτegG(τ) of the bosonic Green’s

function, which was given in Eq. (3.100) of the previous Chapter. For generic
filling factor of the Laughlin sequence we get

〈JQ(t)〉 = |λ|2ω
2

∑
l

|pl|2(q + l)
{
P̂2ν [(q + l)ω]− P̂2ν [−(q + l)ω]

}
, (4.15)
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4.5. Zero-frequency heat and mixed noise

where the notation 〈. . .〉 stands for
∫ T

0
dt
T
〈. . .〉. We have found a result similar

to the averaged charge current, Eq. (3.102). The l-th contribution to the
averaged heat current is indeed the difference between two opposite tunneling
rates, weighted by the corresponding energy (q+l)ω transferred between edges.

4.5 Zero-frequency heat and mixed noise

We now turn to the calculation of heat and mixed fluctuations. Our focus will
be on the zero-frequency component of the power spectra

SQ = 2

∫ T

0

dt

T

∫ +∞

−∞
dt′ 〈∆JQ(t)∆JQ(t′)〉 , (4.16)

SX = 2

∫ T

0

dt

T

∫ +∞

−∞
dt′ 〈∆JC(t)∆JQ(t′)〉 , (4.17)

with operators ∆Ji(t) = Ji(t) − 〈Ji(t)〉, i = {C,Q}, describing charge and
heat current fluctuations. First of all, we note that all terms 〈Ji(t)〉 〈Jj(t)〉,
with i, j = {C,Q}, are O(|λ|4), and the lowest order terms in the perturbative
expansion are thus given by〈

TK∆Ji(t
+)∆Jj(t

′−)e
−i
∫
cK

dτHT (τ)
〉

=
〈
Ji(t

+)Jj(t
′−)
〉

+O(|λ|4). (4.18)

As in the previous Chapter, we have placed operators ∆Ji(t) and ∆Jj(t
′) on

different portions of the Keldysh contour (the former on the forward branch,
the latter on the backward branch). Calculations are lengthy but straightfor-
ward, and rely uniquely on the function exp [νG+−(t, t′)] = exp [νG(t′ − t)] and
its appropriate derivatives. To lowest order in the tunneling we obtain

SX = 4e∗|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′ sin

[
e∗
∫ t

t′
dt′′V (t′′)

]
eνG(t′−t)∂t′e

νG(t′−t), (4.19)

SQ = 4|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′ cos

[
e∗
∫ t

t′
dt′′V (t′′)

]
eνG(t′−t)∂t∂t′e

νG(t′−t). (4.20)

Once again, it’s convenient to use the Fourier transform P̂g(E) of the function

egG(τ) and the series representation for e−iϕ(t) = e−ie
∗ ∫ t

0 dt
′ Vac(t′). We finally get

a physically reasonable result in terms of the tunneling rates, which reads

SX = e∗ω|λ|2
∑
l

|pl|2(q + l)
{
P̂2ν [(q + l)ω] + P̂2ν [−(q + l)ω]

}
, (4.21)

SQ =
|λ|2
π

∑
l

|pl|2
∫ +∞

−∞
dEE2P̂ν(E)×

×
{
P̂ν [(q + l)ω − E] + P̂ν [−(q + l)ω − E]

}
, (4.22)
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for the zero-frequency component of the noises. To perform the integral in the
equation for SQ, we make use of the identity∫ +∞

−∞

dY

2π
Y 2P̂g1(Y )P̂g2(X − Y ) =

P̂g1+g2(X)

1 + g1 + g2

[
g1g2π

2θ2 +
g1(1 + g1)

g1 + g2

X2

]
(4.23)

demonstrated in Appendix F [see Eq. (F.24)]. The latter leads to

SQ = |λ|2
∑
l

|pl|2
[

2π2ν2

1 + 2ν
θ2 +

1 + ν

1 + 2ν
(q + l)2ω2

]
×
{
P̂2ν [(q + l)ω] + P̂2ν [−(q + l)ω]

}
. (4.24)

While the result for SX is reasonably simple (each contribution is the sum of
opposite tunneling rates times the energy exchanged), the one for SQ has not
a straightforward interpretation, as it is made of a thermal contribution plus
a second term involving the squared energy (q + l)2ω2. One should note that
for ν = 1 and finite temperature we have

SX =
e|Λ|2ω2

2πv2

+∞∑
l=−∞

|pl|2 (q + l)2 coth

[
(q + l)ω

2θ

]
, (4.25)

SQ =
|Λ|2ω3

3πv2

+∞∑
l=−∞

|pl|2
[(

πθ

ω

)2

+ (q + l)2

]
(q + l) coth

[
(q + l)ω

2θ

]
, (4.26)

consistently with previous results in the literature [160, 162, 188, 189].

4.5.1 Zero temperature

At θ = 0 we resort to the asymptotic expansion Eq. (3.113) to perform the
zero-temperature limit of Eqs. (4.15), (4.21) and (4.24). We thus find the
following results:

〈JQ(t)〉 = |λ|2 π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2ν , (4.27)

SX = e∗|λ|2 2π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2ν sign(q + l), (4.28)

SQ = ω|λ|2 2π(1 + ν)

Γ(2ν)(1 + 2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2ν+1. (4.29)

Equations (4.27), (4.28) and (4.29) show the familiar power-law behavior of
the Luttinger liquid [23, 190]. We have already seen a similar power-law in
the charge current 〈JC(t)〉 and noise SC , although in a slightly different form.
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4.6. Excess signals and noiseless drive

While all contributions to 〈JC(t)〉 and SC are proportional to |q + l|2ν−1 [see
Eqs. (3.116) and (3.117)], here we have found the behavior |q+ l|2ν for 〈JQ(t)〉
and SX , and |q + l|2ν+1 for SQ. This hierarchy in the power-law exponents
implies interesting consequences that we will explore in the next Section.

4.6 Excess signals and noiseless drive

4.6.1 From Schottky formula to the ac regime

We start the discussion considering a dc-biased conductor, i.e. V (t) = Vdc with
Vac(t) = 0. Such a situation entails that photoassisted coefficients reduce to
pl = δl,0. As we have seen in the previous Chapter, charge current and noise
at temperature θ = 0 are linked by [50, 51, 191]

SC = 2e∗ 〈JC〉 . (4.30)

Interestingly, similar expressions can be derived relating mixed and heat noise
to the heat current for a dc bias. From Eq. (4.27) and assuming Vdc > 0, one
gets the following formula for the heat current

〈JQ〉 = |λ|2 π

Γ(2ν)

(
e∗Vdc

ωc

)2ν

. (4.31)

Similarly, mixed and heat noise are obtained from Eqs. (4.28) and (4.29) with
the condition pl = δl,0. They read

SX = e∗ |λ|2 2π

Γ(2ν)

(
e∗Vdc

ωc

)2ν

, (4.32)

SQ = e∗Vdc |λ|2
2π (1 + ν)

Γ(2ν) (1 + 2ν)

(
e∗Vdc

ωc

)2ν

. (4.33)

Comparing the last three results, we immediately notice a proportionality be-
tween SX , SQ and 〈JQ〉, namely

SX = 2e∗ 〈JQ〉 , (4.34)

SQ = 2e∗
1 + ν

1 + 2ν
Vdc 〈JQ〉 . (4.35)

Equations (4.34) and (4.35) are generalizations of Schottky’s formula to the
heat and mixed noise. They show that the uncorrelated backscattering of
Laughlin quasiparticles at the QPC leaves Poissonian signature in heat trans-
port properties also, in addition to the well-known Poissonian behavior of the
charge shot noise described by Eq. (4.30). This holds both in a chiral Fermi
liquid (i.e. at ν = 1, when tunneling involves integer electrons only) and in
the FQH regime, with proportionality constants governed by the filling factor
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ν. Similar relations for transport across a quantum dot were recently reported
[184, 192].

We now address the central quantities of interest for the present Chapter.
Equation (4.34), representing a proportionality between the mixed charge-heat
correlator SX and the heat current for a dc voltage drive governed by the charge
e∗, leads us to introduce the excess mixed noise given by

∆SX = SX − 2e∗〈JQ(t)〉. (4.36)

As for the excess charge noise ∆SC = SC − 2e∗〈JC(t)〉 (see Sec. 3.5), this
quantity measures the difference between the noise in presence of a generic
periodic voltage drive and the dc reference value. Using Eqs. (4.27) and (4.28)
the excess mixed noise reads

∆SX = −e∗|λ|2 4π

Γ(2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν . (4.37)

The vanishing of ∆SX should highlight an energetically clean pulse, for which
the mixed noise reaches the minimal value SX = 2e∗〈JQ(t)〉 expected from the
Schottky-like formula Eq. (4.34). With a very similar procedure it is possible
to extract the excess component of the zero-frequency heat noise due to the
time dependent drive. Equation (4.35) states that SQ is proportional to the
heat current multiplied by the voltage bias in the dc limit. In view of this
consideration we define the excess heat noise

∆SQ = SQ − 2e∗
1 + ν

1 + 2ν
V (t) 〈JQ(t)〉. (4.38)

The time-averaged value of V (t) 〈JQ(t)〉 can be calculated from Eq. (4.14)

using the relation e∗V (t)e−iϕ(t) = (ωq+ i∂t)e
−iϕ(t), with ϕ(t) = e∗

∫ t
0
dt′ Vac(t

′).
Then from the above definition we get

∆SQ = ω|λ|2 4π(1 + ν)

Γ(2ν)(1 + 2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν+1. (4.39)

4.6.2 Physical content of the excess signals

Let us now look for the physics described by Eqs. (4.37) and (4.39). We
consider the energy associated with hole-like excitations for an integer QH
state with ν = 1. At temperature θ = 0 it reads

Eh = −
+∞∑

k=−∞

nF(vk)vk
〈
ck(t)c

†
k(t)
〉
, (4.40)
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with nF = Θ(−k) the Fermi distribution. This quantity can be written as

Eh =
i

2

v2

(2πa)2

∫
dτ ′
∫
dτ e−ie

∫ τ ′
τ ′−τ dt

′V (t′)∂τe
2G(τ) =

=
1

2

v2

(2πa)2

∫
dτ ′
∫
dτ

{
sin

[
e

∫ τ ′

τ ′−τ
dt′V (t′)

]
+

+i cos

[
e

∫ τ ′

τ ′−τ
dt′V (t′)

]}
∂τe

2G(τ). (4.41)

Then, comparing this result with Eqs. (4.19) and (4.14), we find that ∆SX
measures the energy associated with the unwanted holes generated through
the periodic voltage drive at ν = 1, namely

Eh ∝ −SX + 2e〈JQ(t)〉 = −∆SX . (4.42)

This accounts for the negative value of ∆SX arising from Eq. (4.37). It is worth
noticing that Eq. (4.41) holds in an unperturbed system without tunneling
between opposite edges. The noise induced by the presence of the QPC can
thus be viewed as a probe for excitations generated by ac pulses. A similar
relation, involving the sum of the squared energy for each value of k, holds for
∆SQ:

+∞∑
k=−∞

nF(vk)(vk)2
〈
ck(t)c

†
k(t)
〉
∝ ∆SQ. (4.43)

Generalizing to FQH state of the Laughlin sequence, we conclude that clean
energy states must arise for vanishing values of the excess mixed and heat
noises ∆SX and ∆SQ.

In Fig. 4.1 we show the behavior of the excess mixed noise as a function
of the charge q injected during one period T . Notice that we normalize ∆SX
by a negative quantity, in order to deal with a positive function. Two types of
bias are considered: a sinusoidal drive and a train of Lorentzian pulses given
respectively by

Vsin(t) = Vdc[1− cos(ωt)], (4.44)

VLor(t) =
Vdc

π

∑
k

η

η2 + (t/T − k)2
, (4.45)

with η = W/T the ratio between the half width W at half maximum of the
Lorentzian peak and the period T . The former is representative of all kinds
of non-optimal voltage drive, while the latter is known to give rise to minimal
charge noise both at integer [9] and fractional [24] fillings. We will set η = 0.1,
a value lying in the range investigated by experiments [10]. At ν = 1, both
curves display local minima whenever q assumes integer values. However, while
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Figure 4.1: Excess mixed noise −∆SX as a function of the charge per
period q at zero temperature. The high energy cutoff is set to ωc = 10ω.
Behavior for Lorentzian pulses (full black line) and sinusoidal voltage drive
(dashed red line) is reported.

the sinusoidal drive always generates an additional noise with respect to the
reference Schottky value 2e∗〈JQ(t)〉, the Lorentzian signal drops to zero for
q ∈ N, indicating that the mixed noise SX due to levitons exactly matches the
Poissonian value set by Eq. (4.34). Since the excess mixed noise is linked to the
unwanted energy introduced into the system as a result of hole injection [see
Eq. (4.42)], Fig. 4.1 shows that there is no hole-like excitation carrying energy
in our system. The bottom panel of Fig. 4.1 shows the same situation in a
ν = 1/3 FQH bar. The hierarchy of the ν = 1 configuration is confirmed, with
Lorentzian pulses generating minimal mixed noise for q ∈ N and sinusoidal
voltage displaying non-optimal characteristics with non-zero ∆SX . As for the
charge excess noise, no signature for fractional values of q arises, signaling
once again the robustness of levitons in interacting fractional systems. This
is markedly different from driven-quantum-dot systems, where a strategy to
inject a periodic train of fractionally charged quasiparticles in the FQH regime
has been recently discussed [193].

The same analysis can be carried out for the excess heat noise ∆SQ. Equa-
tion (4.39) suggests that the excess heat noise vanishes for the very same
conditions that determine the vanishing of ∆SC and ∆SX , given that we get
a similar structure with only a different power law behavior. This expectation
is confirmed in Fig. 4.2, where we report the behavior of ∆SQ for both ν = 1
and ν = 1/3. Lorentzian pulses carrying integer charge per period represent
minimal-heat-noise states, independently of the filling factor.

We conclude this Section with a brief mathematical remark on the vanish-
ing of the excess signals. Equations (3.130), (4.37) and (4.39) all share a similar
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Figure 4.2: Excess heat noise ∆SQ as a function of the charge per period
q. Full black and dashed red lines represent Lorentzian and sinusoidal drives
respectively. The temperature is θ = 0 and the cutoff is ωc = 10ω.

structure in terms of the Fourier coefficients pl, the only difference being the
power law exponents 2ν− 1, 2ν and 2ν + 1 respectively. Then, we can explain
the common features of ∆SC , ∆SX and ∆SQ by looking at the Fourier coeffi-
cients of the Lorentzian voltage drive. In such case, the analytical behavior of
e−iϕ(t) as a function of the complex variable z = eiωt guarantees that pl<−q = 0
when q is an integer, as shown in Appendix A. This immediately leads to the
simultaneous vanishing of the three excess signals at integer charge q. Let us
also remark that the Lorentzian pulse is the only drive showing this striking
feature, as Eqs. (3.130), (4.37) and (4.39) all correspond to sums of positive
terms and can thus only vanish if |pl|2 is zero for all l below −q. The only way
this is possible is with quantized Lorentzian pulses.

4.7 Multiple Lorentzian pulses

In the previous section we demonstrated that quantized Lorentzian pulses with
integer charge q represent minimal excitation states for the heat transport
in the FQH regime, but this statement may potentially fail when different
Lorentzian pulses have a substantial overlap. Indeed, nonlinear quantities such
as JQ, SX and SQ may behave very differently from charge current and noise,
which are linear functions of the bias V (t) in a Fermi liquid. For instance, at
ν = 1 one already sees a fundamental difference between average charge and
heat currents in their response to the external drive, as JC is independent of
Vac [see Eq. (3.116)], while JQ goes like V 2(t) = V 2

dc + V 2
ac(t) [see Eq. (4.27)

and the sum rule demonstrated in Appendix A, Sec. A.4]. Then, one might
wonder whether the independence of overlapping levitons survives when we
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look at such nonlinearity. In this regard, Battista et al. [188] pointed out that
N levitons emitted in the same pulse in Fermi liquid systems are not truly
independent excitations, since heat current and noise associated with such a
drive are proportional to N2 times the single-particle heat current and N3

times the single-particle heat noise respectively. Nevertheless, well-separated
levitons always give rise to really independent excitations, with JQ and SQ
both equal to N times their corresponding single-particle signal, due to the
vanishing of their overlap [188]. Moreover, an additional source of nonlinearity
is provided by electron-electron interactions giving rise to the FQH phase,
whose power-law behavior is governed by fractional exponents, thus strongly
deviating from the linear regime.

In the following we study how nonlinearities due to heat transport proper-
ties and interactions affect the excess signals we introduced in Sec. 4.6. For this
purpose, we consider a periodic signal made of a cluster of N pulses described
by

VN(t) =
N−1∑
j=0

Ṽ
(
t− j α

N
T
)
, (4.46)

where Ṽ (t) is periodic of period T . We still consider the parameter q as the
total charge injected during one complete period T of the drive VN(t), which
means that each pulse in the cluster carries a fraction q/N of the total charge.
Inside a single cluster, the N signals in Eq. (4.46) are equally spaced with
a fixed time delay ∆t = αT/N between successive pulses. Note that α = 0

corresponds to several superimposed pulses, giving VN(t)|α=0 = NṼ (t). Also,
for α = 1 we just get a new periodic signal with period T/N . We thus restrict
the parameter α to the interval 0 ≤ α < 1. An example of such a voltage drive
for the case of Lorentzian pulses is provided in Fig. 4.3.

Fourier coefficients for a periodic multi-pulse cluster can be factorized in a
convenient way (see Appendix A). Here we take as an example the simple case
N = 2, whose coefficients are given by

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(q
2

)
pm

(q
2

)
, (4.47)

Each pulse carries one half of the total charge q, a fact that is clearly reflected
in the structure of Eq. (4.47).

Let us first focus on an integer QH effect with ν = 1. It is easy to see
that, at least in the dc regime, SX and SQ scale as V 2 and V 3 respectively.
It is then natural to wonder if a cluster of Lorentzian pulses still gives rise to
minimal values of SX and SQ when the interplay of nonlinearities, ac effects
and overlapping comes into play. We thus look for the excess mixed and heat
noises for the case of N = 2 Lorentzian pulses per period, in order to shed light
on this problem. The top and bottom panels of Fig. 4.4 show the excess mixed
and heat noises respectively in presence of two pulses per period at ν = 1. For
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Figure 4.3: Time-periodic voltage drive given by Eq. (4.46) in the case of
N = 2 Lorentzian-shaped pulses per period at total charge q = 1 (i.e. 1/2
for each pulse). The top panel represents two completely overlapping pulses
(α = 0), for which we simply have V2(t) = 2Ṽ (t). The central and bottom
panels correspond to non-trivial cases α = 0.45 and α = 0.9 with finite
overlap between pulses. In all cases the behavior of individual Lorentzian
pulses Ṽ (t) and Ṽ
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are depicted with dashed, thin lines.
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Figure 4.4: Excess signals −∆SX (top panel) and ∆SQ (bottom panel) as
a function of q for a cluster of two identical Lorentzian pulses separated by a
time delay αT/2. All curves refer to the case of ν = 1 and zero temperature.
The cutoff is set to ωc = 10ω.
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Figure 4.5: Excess signals −∆SX and ∆SQ as a function of q for two
identical Lorentzian pulses with time delay αT/2 at fractional filling ν = 1/3
and zero temperature. The cutoff is set to ωc = 10ω.

α = 0 we get a perfect superposition between pulses, and we are left with a
single Lorentzian carrying the total charge q. This case displays zeros whenever
the total charge reaches an integer value. Higher values of α represent non-
trivial behavior corresponding to different, time-resolved Lorentzian pulses. A
Lorentzian voltage source injecting q = 1/2 electrons per period is not an
optimal drive (and so is, a fortiori, an arbitrary superposition of such pulses).
As a result, signals for α = 0.45 and α = 0.9 turn out to be greater than zero
at q = 1. However ∆SX and ∆SQ still vanish at q = 2, where they correspond
to a pair of integer levitons, showing the typical behavior of minimal excitation
states with no excess noise. This demonstrates that integer levitons, although
overlapping, always generate the Poissonian value for heat and mixed noises
expected from their respective Schottky formulas. It is worth noticing that
the blue curves in Fig. 4.4 (nearly approaching the limit α→ 1) almost totally
forget the local minimum in q = 1 and get close to a simple rescaling of the
single-pulse excess noises ∆SX

(
q
2

)
and ∆SQ

(
q
2

)
. This is because α → 1 is a

trivial configuration corresponding to one pulse per period with T ′ = T
2
, as

was mentioned before.

It is even more remarkable, however, to still observe a similar qualitative
behavior in the FQH regime, where one may expect this phenomenon to break
down as a result of the strong nonlinearities due to the chiral Luttinger liquid
physics. Figure 4.5 shows that both signals drop to zero for q = 2, representing
a robust evidence for a minimal excitation state even in a strongly-interacting
fractional liquid. We stress that such a strong stability of heat transport
properties is an interesting and unexpected result both at integer and fractional
filling factor. Indeed, the bare signals 〈JQ〉, SX and SQ are affected by the
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4.7. Multiple Lorentzian pulses

parameters governing the overlap between pulses, namely

〈JQ〉
(N) 6= N〈JQ〉

(1)
, (4.48a)

SX (N) 6= NSX (1), (4.48b)

SQ(N) 6= NSQ(1), (4.48c)

even at q = N , in accordance with Ref. [188]. Nonetheless, such differences
are washed out when the dc Schottky-like signals are subtracted from SX and
SQ in Eqs. (4.36) and (4.38), giving

∆SX (N) = ∆SX (1) = 0, (4.49)

∆SQ(N) = ∆SQ(1) = 0. (4.50)

While multiple levitons are not independent [in the sense of Eqs. (4.48)], they
do represent minimal excitation states even in presence of a finite overlap
between Lorentzian pulses. This is a remarkable property which seems to
distinguish the Lorentzian drive from every other type of voltage bias.

Let us note that the robustness with respect to the overlap of Lorentzian
pulses is an interesting result for the charge transport at fractional filling as
well. Indeed 〈JC〉 and SC do not show a trivial rescaling at ν 6= 1. Never-
theless, we have checked that the excess charge noise ∆SC is insensitive to
different overlap between levitons, as it vanishes when exactly one electron
is transported under each pulse, i.e. when q = N . Note that a very similar
behavior was described for the excess charge noise in Ref. [194], where multi-
ple pulses were generated as a result of fractionalization due to inter-channel
interactions in the integer QH regime at ν = 2.

To provide a further proof for our results, we analyze a two-pulse configu-
ration with an asymmetrical charge distribution, namely a case in which the
first pulse carries 1/3 of the total charge q while the second pulse takes care of
the remainder. It is straightforward to verify that the phase e−iϕ(t) associated
with such a drive is represented by a Fourier series with coefficients

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(q
3

)
pm

(
2q

3

)
, (4.51)

where the asymmetry in the charge distribution is manifest, as opposed to the
symmetric case in Eq. (4.47). In view of previous considerations, we expect
this signal to be an optimal voltage drive when both pulses carry an integer
amount of charge. This condition is obviously fulfilled when q = 3, so that the
total charge can be divided into one and two electrons associated with the first
and second pulse respectively. Figure 4.6 confirms our prediction, showing the
first universal vanishing point shared by all three curves at q = 3 instead of
q = 2.

In passing, it is worth remarking that the choice of multiple Lorentzian
pulses with identical shape was only carried out for the sake of simplicity. A
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Figure 4.6: Excess mixed noise −∆SX as a function of q for a cluster
of two Lorentzian pulses. Here q is partitioned asymmetrically, with the
two pulses carrying respectively 1/3 and 2/3 of the total charge per period.
One should compare this figure with Figs. 4.4 and 4.5, where −∆SX for
identical pulses is plotted. The time delay between pulses is αT/2, with
different values of α according to the legend. The cutoff is set to ωc = 10ω
and the temperature is θ = 0.

generalization to more complicated clusters with different width η gives rise to
a very similar qualitative behavior (not shown).
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Chapter 5
Hong-Ou-Mandel interferometry

In this final Chapter we analyze collisions of multi-electronic excitations in a
quantum Hall interferometer, in the spirit of the quantum-optical HOM ex-
periment. We find that the Pauli dip, namely the suppression of shot noise
in the output arms of the interferometer due to indistinguishability effects,
occurs both for integer and fractional filling factors in the Laughlin sequence.
However, additional sub-dips appear in the fractional quantum Hall regime,
denoting the emergence of an unexpected substructure in the backscattered
current. We also observe that minimal excitation states of integer and frac-
tional quantum conductors, i.e. levitons, are clearly detectable through HOM
spectroscopy. Results presented here are partly based on Refs. [24, 27].

5.1 Shot noise in a two-sources interferometer

In the celebrated HOM experiment (see Sec. 1.4.1), indistinguishable photons
impinge on the opposite sides of a beam splitter and are detected at the out-
put arms of an interferometer [53]. By looking at coincidence counts between
detectors (or, alternatively, at fluctuations in the number of detected parti-
cles) it is possible to extract information about the statistical properties of the
colliding particles (thanks to the so-called photon bunching) and the temporal
extension of their wavefunction. A solid state counterpart of the HOM exper-
iment has been realized in the context of EQO, using both driven quantum
dots and voltage pulses as sources for indistinguishable electrons [10, 12]. In
this case, the outcome of the experiment is heavily influenced by the Pauli
exclusion principle, preventing two identical fermions to emerge on the same
arm of the interferometer (this effect is known as fermion anti-bunching). Here
we aim to extend HOM physics to the FQH regime, and present a theoretical
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Chapter 5. Hong-Ou-Mandel interferometry

1

2

3

4

Figure 5.1: Four-terminal setup for HOM interferometry in the QH regime.
Contact 1 and 4 are used as input terminals, while contact 2 and 3 are the
output terminals where the current and the noise are measured.

analysis of current fluctuations in a QH interferometer at integer and fractional
filling factor.

We basically rely on a modified version of the setup already considered in
Chapters 3 and 4, shown in Fig. 5.1. In a 2DEG driven into the FQH regime,
two oppositely propagating edge states are put in contact at the coordinate
x = 0 thanks to a QPC, inducing tunneling of Laughlin quasiparticles between
opposite edges. This is accounted for by the tunneling Hamiltonian (3.79).
Differently from the previous Chapters, we now imagine that both incoming
channels are subjected to periodic voltage pulses, as suggested by Fig. 5.1.
This configuration will be denoted HOM setup.

Analytical results for HOM interferometry at fractional filling factor are
readily obtained from previous work with few additional effort. The central
quantity of interest is still the operator for the charge tunneling current, which
is given by Eq. (3.83):

JC = ie∗
∑
ε=+,−

ε
[
ΛΨ

(qp)
R

†
(0)Ψ

(qp)
L (0)

]ε
. (5.1)

The main difference with respect to the previous Chapters is that time evolu-
tion of JC is now governed by both voltage sources VR(t) and VL(t). In view
of Eqs. (3.76) we have

JC(t) = ie∗
∑
ε=+,−

εeiεe
∗ ∫ t

0 ∆V (t′)dt′
[
Λψ†R(0, t)ψL(0, t)

]ε
, (5.2)

where the quantity ∆V (t) = VR(t) − VL(t) has been introduced. A compari-
son of the above result with Eq. (3.84) leads now to the following important
conclusion: the model for the two-sources interferometer maps into a single-
source HBT setup, where the voltage drive is applied on the upper-left contact
and takes the form V ′R(t) = ∆V (t) = VR(t) − VL(t). Thus, current and noise
in the HOM setup are given by the corresponding signals in the HBT con-
figuration upon the substitution of V (t) with ∆V (t). The desired result for
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5.1. Shot noise in a two-sources interferometer

current-current fluctuations follows directly from Eq. (3.111): it’s just a mat-
ter of finding the suitable photoassisted coefficient for the new voltage drive
∆V (t). It should be remarked that only voltage-pulse sources satisfy this
property. When dealing with HOM experiments with a pair of mesoscopic
capacitors [12], both sources must be treated independently and any mapping
into a single-source setup is impossible.

Using ∆V (t) as the new effective voltage drive, the zero-frequency shot
noise reads1

SHOM = 2(e∗)2|λ|2
+∞∑
l=−∞

|p̃l(αR, αL)|2
{
P̂2ν [(l + ∆q)ω] + P̂2ν [−(l + ∆q)ω]

}
,

(5.3)
with ∆q = qR − qL and qR/L = e∗VR/L,dc/ω. The new coefficients |p̃l(αR, αL)|2
are given by

p̃l =

∫ T

0

dt

T
eilωte−ie

∗ ∫ t
0 dτ∆Vac(τ), (5.4)

with ∆Vac(t) = ∆V (t)− (ω/e∗)∆q, and depend on the ac amplitudes αL and
αL of both voltage sources. Let us notice that (5.3) is the auto-correlation
spectrum of current fluctuations measured in terminal 2 (see Fig. 5.1). For
charge conservation, this is identical to the cross-correlation spectrum between
current fluctuations at outputs 2 and 3 with an opposite sign [32].

An interesting remark should be emphasized before getting into the details
of the results. Despite an evident analogy, the substitution V (t)→ ∆V (t) does
not arise from a gauge transformation. Indeed there is no gauge transformation
that is able to map the equation of motion for the HOM configuration into
an effective HBT setup with V ′R(t) = ∆V (t) and V ′L(t) = 0. However, the
current operator in Eq. (5.2) looks like the effective HBT contribution due to
the peculiarity of point-like tunneling. This is linked to the fact that, in the
Landauer-Büttiker picture of quantum transport, the transmission function
for point-like tunneling between opposite edge states is energy independent.
Any similarity between the HOM setup and an effective HBT would vanish
for more complicated tunneling geometries such as multiple QPC or extended
contacts, where the transmission function acquires a dependence upon energy
[29, 30, 195, 196].

5.1.1 Hong-Ou-Mandel ratio

Strictly speaking, a solid-state HOM geometry is reproduced when identical
excitations collide at the QPC [10, 112]. Contacts 1 and 4 are thus driven with
identical periodic voltage signals, the only difference being a tunable time delay
tD between them. However, we will consider a broader class of HOM collisions

1 The label C identifying the charge shot noise is now unnecessary. From now on we will
refer to charge fluctuations only, and mixed and heat signals won’t be considered anymore.
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Chapter 5. Hong-Ou-Mandel interferometry

where the left and right contact are driven with an identical shape in time but
different amplitudes, namely{

VR(t) = qRV1(t),

VL(t) = qLV1(t+ tD).
(5.5)

Here, the signal V1(t) is normalized in such a way to carry exactly one electron
per period. We also set qR/L = αR/L in order to have VR/L(t) ≥ 0 with no
additional dc offset. Photoassisted coefficients p̃l are thus given by

p̃l(qR, qL) =

∫ T

0

dt

T
eilωte−ie

∗qR
∫ t
0 dτV1(τ)eie

∗qL
∫ t
0 dτV1(τ+tD) =

=

∫ T

0

dt

T
eilωte−ie

∗qR
∫ t
0 dτV1(τ)eie

∗qL
∫ t+tD
0 dτV1(τ)e−ie

∗qL
∫ tD
0 dτV1(τ) =

= e−ie
∗qL

∫ tD
0 dτV1(τ)

∫ T

0

dt

T
eilωt

∑
m,n

pm(qR)e−imωtp∗n(qL)einω(t+tD) =

= e−ie
∗qL

∫ tD
0 dτV1(τ)

∑
n

pl+n(qR)p∗n(qL)einωtD . (5.6)

Since Eq. (5.3) involves the squared modulus of p̃l, we can safely neglect the
constant phase factor in front of the sum in the above result. Equation (5.6)
bears similarities with the photoassisted coefficients for clusters of multiple
pulses, Eq. (4.47), discussed in the previous Chapter. Indeed, the effective
drive ∆V (t) = VR(t)−VL(t) is nothing but a cluster of two pulses with opposite
sign [hence the complex conjugation of the second coefficient p∗n(qL)].

When one of the input terminals is driven with a periodic signal VR/L(t)
while the other one is grounded, we refer to HBT interferometry [11, 105, 106].
In this case, one of the two amplitudes is set to zero and one recovers the result

SHBT
R/L = 2(e∗)2|λ|2

+∞∑
l=−∞

∣∣pl(qR/L)
∣∣2 {P̂2ν

[(
qR/L + l

)
ω
]

+ P̂2ν

[
−
(
qR/L + l

)
ω
]}
,

(5.7)
depending on which of the sources is switched on. The signal SHBT

R/L is mani-
festly independent on the delay tD.

It is customary to normalize the HOM noise to the value expected for the
random partitioning of a single source, namely the HBT signal [10, 12]. For
this purpose we define the ratio

R(tD) =
SHOM − S(0)

SHBT
R + SHBT

L − 2S(0)
. (5.8)

Notice that we have subtracted the equilibrium noise S(0) = 4(e∗)2|λ|2P̂2ν(0)
(obtained with qR = qL = 0) from both the numerator and the denominator
in Eq. (5.8).
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Figure 5.2: HOM ratioR for collisions of identical excitations as a function
of the delay tD. Sinusoidal, square and Lorentzian pulses with q = 1 are
considered. The temperature is θ = 0.01ω.

5.2 Results

Let us begin the analysis of the HOM ratio from the simple case qR = qL =
1. We consider three different waveforms, namely the sinusoidal, square and
Lorentzian signals given in Eqs. (3.133) of Chapter 3.

As can be seen from Fig. 5.2 (left panel), at ν = 1 all three curves generate
a vanishing HOM ratio at tD = 0, i.e. when identical pulses collide simulta-
neously at the QPC. This is consistent with the anti-bunching effect expected
for identical fermionic particles colliding at the QPC, which forces identical
fermions to leave the interferometer on opposite output arms, thus causing a
drop (the so-called Pauli dip) in the fluctuations [10, 12]. Such a suppression
of current fluctuations has been confirmed in experiments conducted by D.C.
Glattli’s group in Saclay, both with Lorentzian and sinusoidal voltage pulses
[10, 18].

Quite surprisingly, one still observes a complete dip in the ratio R at ν =
1/3, despite the presence of anyonic quasiparticles in the system. This is shown
in the middle panel of Fig. 5.2, where we have reported the ratio R for the very
same signals as in the left panel. All three curves evidently lead to a complete
suppression of the noise at tD = 0.

Once again, we ascribe this particular behavior to the geometry of our in-
terferometer, which consists of a single QPC connecting the upper and lower
edge. Indeed, we have already shown that the HOM setup is equivalent, un-
der these particular conditions, to a simpler single-source HBT configuration
driven with the effective voltage ∆V (t) = VR(t) − VL(t). For a two-source
interferometer with identical amplitudes one has VL(t) = VR(t + tD), which
leads to the vanishing of ∆V at tD = 0. An HOM with null delay is effectively
equivalent to an unbiased setup, and thus fluctuations in the tunneling current
get suppressed. From a more physical point of view, we argue that any effect
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Chapter 5. Hong-Ou-Mandel interferometry

of the fractional statistics is invisible in this single-QPC geometry, since the
point-like tunneling does not allow for closed-loop trajectories of one Laughlin
quasiparticles around another.

A very remarkable feature emerges however from the comparison between
the cases ν = 1 and ν = 1/3 in Fig. 5.2, namely that the Lorentzian signal
appears to be exactly the same. This is indeed the case, as we show here below
by calculating separately both the numerator and the denominator of Eq. (5.8)
for quantized Lorentzian pulses with qR = qL = 1. To begin, let us define the
useful function

s(x) = 2(e∗)2|λ|2
[
P̂2ν(xω) + P̂2ν(−xω)

]
. (5.9)

With this compact notation, the following simple expressions for SHOM, SHBT
R/L

and S(0) are obtained at qR = qL = 1:

SHOM =
+∞∑
l=−∞

|p̃l|2s(l), (5.10)

SHBT
R = SHBT

L =
+∞∑
l=−∞

|pl|2s(l + 1), (5.11)

S(0) = s(0). (5.12)

Photoassisted coefficients for the Lorentzian waveform at q = 1 are calculated
analytically in Appendix A. Their square modulus reads

|pl|2 =


(1− e−4πη)2e−4πlη, l ≥ 0,

e−4πη, l = −1,

0, l ≤ −2,

(5.13)

for the case of a single voltage drive (HBT signal) and

|p̃l|2 =

{
4e−4π|l|ηR(η, ζ), l 6= 0,

1 + 4[1− coth(2πη)]R(η, ζ), l = 0,
(5.14)

for the HOM configuration. Here we have introduced the dimensionless delay
ζ = tD/T and the function R(η, ζ) given by

R(η, ζ) =
sinh2(2πη) sin2(πζ)

sinh2(2πη) + sin2(πζ)
. (5.15)

Let us now evaluate the numerator and the denominator of R separately. The
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former reads

SHOM − S(0) =
+∞∑
l=−∞

|p̃l|2s(l)− s(0) =

= 2
+∞∑
l=1

|p̃l|2s(l) + (|p̃0|2 − 1)s(0) =

= 4R(η, ζ)

{
2

+∞∑
l=1

e−4πlηs(l) + [1− coth(2πη)]s(0)

}
, (5.16)

where we have used the fact that s(x) is an even function of x and |p̃l|2 = |p̃−l|2
for the Lorentzian drive. Similarly, the denominator is given by

SHBT
R + SHBT

L − 2S(0) = 2
+∞∑
l=−∞

|pl|2s(l + 1)− 2s(0) =

= 2(1− e−4πη)2

+∞∑
l=0

e−4πlηs(l + 1) + 2(e−4πη − 1)s(0) =

= 4 sinh2(2πη)

{
2

+∞∑
l=1

e−4πlηs(l) + [1− coth(2πη)]s(0)

}
.

(5.17)

To get the last equality we have used the identity

sinh2(x) [1− coth(x)] = − sinh(x)e−x =
1

2

(
e−2x − 1

)
. (5.18)

It is clear from Eqs. (5.16) and (5.17) that the sum involving the function
s(l) factorizes in the same way for the numerator and the denominator of R.
Remarkably, all the dependence on both the filling factor and the temperature
is encoded in s(l), and we thus obtain the following universal expression for
the HOM ratio of leviton-leviton collisions:

R(tD) =
sin2(πζ)

sinh2(2πη) + sin2(πζ)
. (5.19)

This striking factorization is intimately related to the particular values of the
photoassisted coefficients in Eqs. (5.13) and (5.14), and holds only for the
single-leviton excitation. In the right panel of Fig. 5.2 we show the behavior
of the single-leviton HOM ratio (5.19) for different values of the dimensionless
width η. The dip in the noise becomes more and more narrow as the pulses
become sharper, allowing to extract the temporal extension of the levitonic
wavepacket from a shot noise measurement.

The fact that the HOM ratio R does not depend on the temperature
for leviton-leviton collisions has been confirmed experimentally by the Saclay
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group in a Fermi liquid system [18]. We here predict that the same behavior
should be observed in any FQH state of the Laughlin sequence, as both the
temperature and the filling factor factorize away in Eq. (5.19). We believe that
such a remarkable behavior is linked to the fact that the Lorentzian pulse with
q = 1 generates a minimal excitation state in the conductor.

5.2.1 Multiple leviton collisions

We now extend the analysis to generic values of the amplitude q = qR = qL.
The interest is two-fold. On one side, it’s natural to ask whether the Levitov
quantization condition for minimal noise [Eq. (2.23), which requires integer
values of the dc amplitude q] has any effect on the HOM ratio, and what
happens to R if one works instead with non-integer pulses. On the other hand,
interesting collisions of minimal multi-electron packets can be investigated by
setting q = 2, 3, 4 . . . . From now on we focus only on Lorentzian voltage pulses.

We first look at the HOM ratio R(tD) in the case of integer filling factor
(ν = 1) and identical drives (qR = qL = q). Here exact results based on
the scattering matrix formalism are available in the literature, both on the
theoretical and the experimental side [10, 18, 112]. The behavior of R(tD)
in the integer regime is reported in panels a and b of Fig. 5.3. As discussed
previously, the noise is totally suppressed when colliding packets arrive simul-
taneously at the QPC (tD = 0) due to the anti-bunching effect. We point
out that a complete suppression of the noise is observed also for non integer
values of q, i.e. when colliding packets are formed by several particle-hole pairs
instead of a single electron-like excitation: the HOM ratio at ν = 1 always
consists of a single, smooth dip for any value of q. We also note that brighter
regions in Fig. 5.3a occur more or less in correspondence of integer values of q,
but the qualitative behavior of R(tD) as a function of the time delay (a single,
well-defined dip for tD = 0) is almost unaffected by variations of q.

Things look quite differently in the fractional regime, where new features
linked to the strongly-correlated FQH phase come into play. In Fig. 5.3c we
report the behavior of the HOM ratio for filling factor ν = 1/3. One still ob-
serves a completely destructive interference between the two signals at tD = 0
for any value of q (as demonstrated by the total central dip), despite the pres-
ence of anyonic quasiparticles in the system. This shows that electron-electron
interactions in single-edge-mode Laughlin states do not induce decoherence
effects, in contrast with the role played by interactions in the ν = 2 integer
quantum Hall effect, where two co-propagating edge states exist [197, 198].
At the same time, we note that the simple structure consisting of one single
dip at tD = 0 is replaced by a much richer phenomenology that distinguish
between the non-interacting and the strongly correlated phase. Indeed Fig.
5.3c evidently shows the existence of sub-dips for values q > 1, whose spacing
is more or less of the order of the width η. This is even more evident in Fig.
5.3d, where we have isolated the behavior of R(tD) at fixed integer values of
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Figure 5.3: HOM ratioR for collisions of identical excitations as a function
of the delay tD and the amplitude q. Top panels (a and b) refer to the case of
integer filling factor, while bottom panels (c and d) correspond to fractional
filling ν = 1/3. Curves in b and d are extracted respectively from a and c
at q = 1, 2, 3, 4. The temperature is θ = 0.01ω and the dimensionless width
of the pulses is η = 0.04.
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q. Here, one clearly notes the presence of oscillations in the current-current
correlators for q > 1, with 2q−2 new dips aside of the principal one at tD = 0.
Such an unexpected behavior suggests that the backscattered packet splits into
several sub-peaks when one works with more than one electron at a time. It’s
interesting to notice that the spacing between maxima/minima of R(tD) tends
to widen while approaching the ends of the period.

These features unambiguously identify the effects of the strongly correlated
FQH phase on leviton excitations, in striking contrast with the uncorrelated
Fermi liquid phase. A similar pattern was predicted in Ref. [198] and exper-
imentally observed in Ref. [16], where the internal peak/valley structure is
generated by a fractionalization effect in a ν = 2 QH interferometer. Here we
argue that the new side dips must be related to the existence of an unexpected
composite structure in the multi-leviton state at fractional filling factors, as
no fractionalization occurs in our single-edge-mode setup. It is revealed by the
appearance of local maxima and minima in the current-current correlators.

It is worth noting that the same behavior of the ratio can be observed for all
filling factors in the Laughlin sequence. Indeed, as we have already discussed
in Sec. 3.6, the function s(x) defined in Eq. (5.9) is extremely peaked around
x = 0 in the fractional regime, with a maximum more and more pronounced
as the temperature is lowered. Then, a very efficient approximation for the
noise is obtained by retaining only the leading contribution in the infinite sum,
namely the one involving s(0). We get

SHOM ≈ |p̃0|2s(0), (5.20)

SHBT
R = SHBT

L ≈ |p−q|2s(0), (5.21)

S(0) = s(0). (5.22)

This only makes sense, of course, for integer values of q. Under this approxi-
mation, the HOM ratio becomes

R(tD) =
1

2

1− |p̃0|2
1− |p−q|2

. (5.23)

Equation (5.23) is manifestly independent on the filling factor since s(0) fac-
torizes out, as for the case of HOM collisions of single-leviton excitations.
However, while the universal expression (5.19) is obtained exactly by sum-
ming up all terms of the infinite series, here we have obtained the universal
formula (5.23) only at sufficiently low temperature (θ/ω � 1), where one single
term gives a dominant contribution over all the others. The interesting fact is
that this is indeed the typical regime where EQO experiments are performed,
with θ/ω ≈ 0.1 [10, 15, 18].

Finally, the uniqueness of integer Lorentzian pulses is even more evident
in the fractional regime when looking at the behavior for long delays between
colliding packets (i.e. tD/T ≈ ±0.5). We observe that generic values of q lead to
a rather low HOM noise compared with the HBT contribution, which means
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that excitations consisting of several particle-hole pairs are colliding at the
beam splitter. However, integer Lorentzian pulses generate bright horizontal
lines in Fig. 5.3c, meaning that the HOM ratio approaches unity. We find
that this is another striking signature of minimal excitation states in the FQH
regime [24, 25].

5.2.2 Asymmetric collisions

We now examine what happens when wavepackets carrying different charges
are injected in terminals 1 and 4 and sent to the collider. For simplicity we
inject integer Lorentzian pulses with qR = 1 (i.e. levitons) on the upper right-
moving edge, while the opposite contact is driven with a generic Lorentzian
drive with tunable amplitude qL and delay tD. Starting from the ν = 1 case,
we observe that the total suppression of HOM noise is achieved only for qL =
qR = 1, as expected. Different values of qL generate a partial dip in the noise,
as one can infer by looking at Fig. 5.4a. For instance, by fixing the value of qL
we obtain the four curves shown in Fig. 5.4b, which clearly demonstrate that
the anti-bunching effect is not perfect when different excitations are sent to
the QPC.

When looking at the same situation in the FQH regime, we expect to find
some signature of the composite structure observed for symmetric collisions.
This is indeed the case for Figs. 5.4c and 5.4d, where multiple sub-dips appear
in the HOM ratio R. They are extremely well visible in the case of integer qL,
while they are almost totally washed out when considering non-integer pulses.
This suggest that an integer Lorentzian drive, which generates clean states in
the conductor, is the best possible candidate to observe the breaking up of
multi-electronic packets. However, from the phenomenology reported in Figs.
5.3c and 5.3d we expect to see an increasing number of sub-dips for higher
values of qL [roughly, we expect N minima with N = int(qL)]. Conversely,
Figs. 5.4c and 5.4d only show two sub-dips even for qL = 3. This may suggest
that a much thinner probe is required to resolve exactly each peak and valley
of the composite structure (ideally, a delta-like function instead of the qR = 1
Lorentzian). It’s easy to check that the HOM ratio for the case of asymmetric
collisions is described by a generalized version of the approximation Eq. (5.23),
given by

R(tD) =
1− |p̃−qR+qL(qR, qL)|2

2− |p−qR(qR)|2 − |p−qL(qL)|2 . (5.24)

This is valid in the low temperature limit for integer values of qR and qL.
Curves in Fig. 5.4d describe thus a universal behavior in the filling factor ν
(provided that ν 6= 1).

Once again, the robustness of integer Lorentzian pulses is glaring, even
from a merely visual point of view (see the horizontal sharp lines in Fig. 5.4c).
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Figure 5.4: Collisions of single-electron (qR = 1) and generic (qL = q)
pulses as a function of the delay tD and the charge q injected in the left-
moving edge. Top panels (a and b) refer to the case of integer filling factor,
while bottom panels (c and d) correspond to fractional filling ν = 1/3.
Curves in b and d are extracted respectively from a and c at q = 1, 2, 3, 4.
The temperature is θ = 0.01ω and the dimensionless width of the pulses is
η = 0.04.
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Conclusions and perspectives

In this thesis we have tackled the problem of EQO in the Laughlin FQH
regime. A thorough analysis of the physics of levitons (and, more in general, of
photoassisted transport due to an arbitrary periodic voltage drive) at fractional
filling factor has been presented.

We have theoretically studied a class of quantum-optical experiment be-
longing to the following protocol, which closely resembles actual experimental
setups in the field of EQO. First of all, periodic trains of electronic excitations
are generated in the QH liquid by means of periodic voltage pulses. Incoming
beams then travel along the QH edge states and are partitioned off a QPC,
which serves as an effective beam splitter in the context of EQO. This is mod-
eled through tunneling of fractional Laughlin quasiparticles between opposite
edge states occurring at the QPC. Both charge and heat are backscattered
as a result of reflection at the QPC, and can be theoretically evaluated in
the appropriate output contact. To this end, we have adopted a chiral Lut-
tinger liquid model, which is the most suitable tool to inspect the strongly
correlated FQH state generated by electron-electron interactions. Most im-
portantly, charge-charge, heat-heat and mixed charge-heat correlations bring
information about the original excitations generated through voltage pulses.
They bear signatures similar to Poissonian dc transport when conditions for
minimal excitation states are satisfied.

When only a single source is operating we refer to HBT interferometry, in
full analogy with the optical HBT experiment. Conversely, two active sources
allow for the study of HOM interferometry, where identical excitations collide
on opposite sides of the beam splitter. The considered setup is shown in panel
a) of Fig. C.1, which is a final summary of the main results of this thesis. The
latter are collected here below, in the same order as they appear in the text:

X Despite strong electron-electron correlations, minimal excitation states
do emerge in Laughlin FQH states in response to properly shaped pulses.
These occur when applying a periodic Lorentzian drive with quantized
flux, and can be detected as they produce Poissonian noise at the out-
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put of a HBT setup in the weak backscattering regime. Although FQH
quasiparticles carry a fractional charge, the charge of these noiseless ex-
citations generated through Lorentzian voltage pulses corresponds to an
integer number of electrons, and no signature emerges when the area
underneath each pulse matches a fractional value of the electron charge.
This shows that levitons, the time-resolved minimal excitation states of a
Fermi sea, are stable against electron-electron interaction in the Laugh-
lin FQH regime and emerge also on top of a strongly correlated ground
state [Chapter 3].

X Independently of the waveform of the voltage drive, the photoassisted ex-
pression for the noise can be approximated in a remarkably simple way,
due to the typical non-linear behavior of Green’s functions at fractional
filling factor. This allows for a full spectroscopy of the photoassisted
probabilities by varying both the dc and the ac amplitudes of the volt-
age pulses. Such a spectroscopic technique is within reach of current
experimental technologies [Chapter 3].

X Mixed and heat noises measured in one of the output arms of an HBT
interferometer all reach their minimal value (set by the respective Pois-
sonian dc relations) only when levitons impinge on the beam splitter.
These results extend the notion of leviton as a minimal excitation state
in quantum conductors to the heat transport domain. This is valid both
in the integer QH effect and in the Laughlin fractional regime, despite the
exotic physics due to the presence of fractionally charged quasiparticles
induced by strong electron-electron interactions [Chapter 4].

X Superpositions of multiple levitons demonstrate their robustness with
respect to arbitrary overlap. This happens regardless of the nonlinear
dependence on the voltage bias typical of heat-transport-related quan-
tities, and despite the characteristic nonlinear power laws of the chiral
Luttinger liquid theory. Such properties designate levitons as univer-
sal minimal excitation states for mesoscopic quantum transport of both
charge and heat [Chapter 4].

X Despite the presence of anyonic quasiparticles, synchronized HOM colli-
sions in a QH system always generate a complete Pauli dip in the noise,
both at integer and fractional filling. However, the scenario for fractional
filling factor is enriched by the presence of several sub-dips in the HOM
ratio, which reveal an unexpected composite structure of the reflected
packet [Chapter 5].

Possible extensions of this work could address more involved interferometry
of minimal excitations as well as their generalization to non-Abelian states.
On one side, it would be extremely interesting to investigate whether related
setups can serve as optimal sources for fractionally charged single-anyons. In
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Figure C.1: Recap of the main results obtained in this thesis investigating
the setup shown in a). b) Minimal excitations in the FQH regime arise
in response to quantized Lorentzian voltage pulses with dc amplitude q =
e∗Vdc/ω = 1, 2, 3 . . . , as demonstrated by the vanishing of the excess noise
∆SC [Fig. 3.7]. c) Similarly, quantized Lorentzian pulses give rise to minimal
excitations for heat transport (here the mixed charge-heat excess noise ∆SX
is zero) [Fig. 4.1]. d) HOM interferometry in the FQH regime reveals an
intriguing oscillatory pattern in current-current fluctuations [Fig. 5.3].
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this sense, it has been proposed that the QPC may be used to break the leviton
into a coherent quasiparticle reflected off the barrier and a pair of Laughlin
quasiparticles transmitted. The outcome of such a setup should then be used
as the input of a HBT interferometer, in order to investigate the cleanliness
of such a state [151]. On the other hand, multiple-QPC setups such as Fabry-
Pérot interferometers could be investigated in an attempt to reveal signatures
of the fractional statistics through HOM interferometry.

Moreover, the exotic physics of the quantum Hall effect allows for the ex-
istence of peculiar neutral edge modes for some values of the filling factor.
While they can’t contribute to charge transport, they do carry a finite amount
of energy, which often flows in opposite direction with respect to the charged
modes. Thermal currents along neutral edge modes were indeed spotted in
Refs. [128, 129] using quantum dots as local thermometers. A finite heat cur-
rent was measured upstream with respect to the “heater” point, a fact that
can only be explained in presence of counter-propagating neutral modes. An
application of EQO paradigms to FQH states supporting neutral modes let
us envisage an exciting setup were single-particle charge and energy are sep-
arated on-demand into different output terminals, exploiting the composite
edge structure of two-dimensional systems in the QH regime.

Very preliminary experimental results about PASN in the FQH regime are
starting to be available [199]. This is of particular importance in a field like
mesoscopic physics, where theory and experiments have always fed each other
on the pursuit of new exciting discoveries. We believe that this is only the first
step towards a full experimental EQO at fractional filling factor.
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Appendix A
Photoassisted coefficients

A.1 Single source

When subjected to a spatially homogeneous time-dependent voltage pulse
V (t), a particle with charge e∗ acquires the phase factor1

exp

[
−ie∗

∫ t

0

dt′ V (t′)

]
. (A.1)

This happens for electrons in metals, for which we simply set e∗ = e in the
above equation, and for Laughlin quasiparticles in FQH edge states, where we
write e∗ = νe with ν the filling factor. A particularly interesting case in the
one of periodic signals, where the phase factor can be written as a Fourier
series. However, one should note that the integral of a periodic quantity is
not, in principle, a periodic signal as well, since∫ t+T

0

dt′ V (t′) =

∫ t

0

dt′ V (t′) +

∫ t+T

t

dt′ V (t′) =

∫ t

0

dt′ V (t′) + TVdc. (A.2)

To get a periodic integral, one has to subtract the dc amplitude Vdc of the pe-
riodic voltage. It is thus convenient to separate the dc and ac amplitude of the
signal, V (t) = Vdc + Vac(t). When considering a QH system with conductance
G = νe2/h, the former is linked to the charge carried by each single pulse (in
units of e):

q =
1

e

∫ T

0

dtGV (t) =
e∗

ω
Vdc. (A.3)

1 Here we set ~ = 1.
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The phase factor in Eq. (A.1) becomes

exp

[
−ie∗

∫ t

0

dt′ V (t′)

]
= e−iqωte−iϕ(t), (A.4)

with ϕ(t) = e∗
∫ t

0
dt′Vac(t

′). The second phase factor in the right-hand side of
Eq. (A.4) can now be expressed as a Fourier series:

e−iϕ(t) =
+∞∑
l=−∞

ple
−ilωt. (A.5)

As discussed in Section 1.7, the coefficients pl are linked to the probability
amplitude for photon absorption from the ac field (l > 0) or emission (l < 0).
They are given by

pl =

∫ +T
2

−T
2

dt

T
eilωte−iϕ(t). (A.6)

A.1.1 Cosine wave

For a sinusoidal drive of the form Vsin(t) = Vdc − Vac cos(ωt) one has

pl =

∫ +T
2

−T
2

dt

T
eilωteie

∗Vac
∫ t
0 dt
′ cos(ωt′) =

∫ +T
2

−T
2

dt

T
eilωteiα sin(ωt) =

=
1

2π

∫ +π

−π
dτ {cos [α sin(τ) + lτ ] + i sin [α sin(τ) + lτ ]} =

=
1

π

∫ π

0

dτ cos [α sin(τ) + lτ ] = J−l (α) , (A.7)

where in the last step we recognized an integral representation of the Bessel
function of the first kind [80]. Note that we have introduced the dimensionless
ac amplitude α = e∗Vac/ω. Probabilities Pl = |pl|2 to emit or absorb a photon
from the external electromagnetic field are symmetric with respect to the in-
version l→ −l. This is linked to the fact that V (t) has a symmetric variation
around its dc value.

A.1.2 Square wave

We consider a square wave made of a periodic signal oscillating between +Vac

and −Vac plus an additional dc contribution. It reads

Vsqr(t) = Vdc + Vac

[
2

+∞∑
k=−∞

Θ (t− kT ) Θ

(
T

2
− t+ kT

)
− 1

]
. (A.8)
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Using the dimensionless parameter α = e∗Vac/ω, the photoassisted coefficients
read

pl =

∫ +T
2

−T
2

dt

T
eilωte−iαω|t| =

∫ 0

−T
2

dt

T
ei(l+α)ωt +

∫ T
2

0

dt

T
ei(l−α)ωt =

=
1

2πi

[
1− e−iπ(l+α)

l + α
+
eiπ(l−α) − 1

l − α

]
=

=
i

π

α

l2 − α2

[
1− (−1)le−iπα

]
. (A.9)

The probability to absorb or emit l photon is thus

Pl = |pl|2 =

(
α

l + α

sin
[
π
2
(l − α)

]
π
2
(l − α)

)2

. (A.10)

For integer values of α we get Pl = 4
π2

α2

(l2−α2)2
when l − α is odd, Pl = 0 when

l − α is even and Pl = 1
4

for α = l, as in Ref. [112]. Since Vsqr(t) is symmetric
with respect to its dc value, we have again Pl = P−l.

A.1.3 Lorentzian wave

The function

VLor(t) = Vdc + Vac

[
1

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
− 1

]
(A.11)

describes a periodic train of Lorentzian pulses with period T = 2π/ω with
the addition of a constant dc signal Vdc. Note that we have isolated a pure
ac contribution in the square brackets. Indeed, integrating the latter over one
period we get∫ T

0

dt

T

[
1

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
− 1

]
=

1

π

∫ +∞

−∞
dτ

1

1 + τ 2
− 1 = 0. (A.12)

The parameter η is the ratio between the half width at half maximum of a
single Lorentzian pulse and T . To evaluate the coefficients pl, we first rewrite
ϕ(t) = e∗

∫ t
0
dt′Vac(t

′) as follows

ϕ(t) = e∗Vac

∫ t

0

dt′

[
1

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
− 1

]
=

= 2α
+∞∑

k=−∞

∫ +t/(ηT )−k/η

−k/η
dτ

1

1 + τ 2
− αωt =

= 2α
+∞∑

k=−∞

[
arctan

(
t

ηT
− k 1

η

)
− arctan

(
−k 1

η

)]
− αωt. (A.13)
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The second term in the square brackets sum up to zero and the remaining
term can be rearranged as

ϕ(t) + αωt = 2α
+∞∑

k=−∞

arctan

(
t

ηT
− k 1

η

)
=

= iα
+∞∑

k=−∞

ln

(
i+ t

ηT
− k 1

η

i− t
ηT

+ k 1
η

)
=

= iα

[
+∞∑

k=−∞

ln(k − iη − u)−
∞∑

k=−∞

ln(k − iη + u)

]
=

= iα ln

[
sin(iπη + πu)

sin(iπη − πu)

]
, (A.14)

where we have used the dimensionless time u = t/T and the useful identities
[80, 200, 201]

arctan(z) =
i

2
ln

(
i+ z

i− z

)
, (A.15)

+∞∑
k=−∞

ln(k + γ) = ln[sin(πγ)] +
+∞∑

k=−∞

ln(k + 1/2). (A.16)

Now the coefficients pl can be recast as a complex integral with the substitution
z = eiωu, namely

pl =

∫ +T
2

−T
2

1

T
eilωte−iϕ(t) =

=

∫ +T
2

−T
2

1

T
ei(l+α)ωt

[
sin(iπη + πu)

sin(iπη − πu)

]α
=

=
1

2πi

∮
|z|=1

dz

z
zl+α

(
1− γz
z − γ

)α
, (A.17)

with γ = e−2πη. Note that l is always an integer number, while α can assume
in general non integer values. Since |z| = 1 and γ < 1, we can make use of the
generalized binomial series

(1− ξ)β = 1− βξ + · · ·+ (−1)n
β(β − 1) · · · (β − n+ 1)

n!
ξn + · · · =

=
+∞∑
n=0

(−1)n
Γ(β + 1)

Γ(β − n+ 1)

ξn

n!
, (A.18)

that is convergent in the disc |ξ| < 1 [110]. Expanding both the numerator
and the denominator in Eq. (A.17) we obtain

pl =
1

2πi

∮
|z|=1

dz

+∞∑
n,m=0

(−1)n+m Γ(1 + α)

Γ(1− n+ α)

Γ(1− α)

Γ(1−m− α)

zl+n−m−1γn+m

n!m!
.

(A.19)
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We now extend one of the two sums to include negative values of the integer
m, using the fact that Γ(m + 1) = m! for m ≥ 0 and 1/Γ(m + 1) = 0 for
m ≤ −1 [80]:

pl =
1

2πi

∮
|z|=1

dz

+∞∑
n=0

+∞∑
m=−∞

(−1)n+m Γ(1 + α)

Γ(1− n+ α)

Γ(1− α)

Γ(1−m− α)

zl+n−m−1γn+m

n!Γ(m+ 1)
.

(A.20)
Cauchy’s theorem tells us that the only non-vanishing contribution to this
integral comes from l + n−m = 0, so we are left with

pl =
+∞∑
n=0

+∞∑
m=−∞

δm,l+n(−1)n+m Γ(1 + α)Γ(1− α)

Γ(1− n+ α)Γ(1−m− α)

γn+m

n!Γ(m+ 1)
=

=
+∞∑
n=0

(−1)l
Γ(1 + α)Γ(1− α)

Γ(1− n+ α)Γ(1− n− l − α)

γ2n+l

n!Γ(n+ l + 1)
=

=
+∞∑
n=0

(−1)l
Γ(1 + α)Γ(1− α)

Γ(l + n+ α)Γ(1− n− l − α)

Γ(l + n+ α)

Γ(1− n+ α)

γ2n+l

n!Γ(n+ l + 1)
.

(A.21)

Exploiting the property Γ(ξ)Γ(1− ξ) = π/ sin(πξ) valid for ξ 6= 0,±1, . . . [80]
we have

Γ(1 + α)Γ(1− α)

Γ(l + n+ α)Γ(1− n− l − α)
= (−1)l+nα, (A.22)

and finally

pl = αγl
+∞∑
n=0

(−1)n
Γ(l + n+ α)

Γ(1− n+ α)

γ2n

n!Γ(n+ l + 1)
(A.23)

for non-integer values of α. Equation (A.23) can be used for integer values of
α as well, since limα→i pl with i ∈ N is well defined.

A.1.4 Leviton

In the following we focus on the simple case α = 1, with a single electron
excitation carried by each voltage pulse. Equation (A.17) reduces to

pl =
1

2πi

∮
|z|=1

dz zl
1− zγ
z − γ . (A.24)

One should then distinguish between three different cases.

A: l ≥ 0. Here the integrand function

fl(z) = zl
1− zγ
z − γ (A.25)
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has a pole of order 1 in z = γ. Fourier coefficients are readily evaluated with
the help of Cauchy theorem: we just look for the residue inside the unit circle

pl = Res [fl(z), γ] = zl(1− zγ)
∣∣
z=γ

= γl(1− γ2). (A.26)

B: l ≤ −2. In this case fl(z) has two poles at z = γ and z = 0 respectively, but
is analytic everywhere outside the unit circle, even at infinity. This guarantees
that pl = 0 for l ≤ −2, since the unit circle (swept counterclockwise) encloses
an area without residues. Alternatively, one can still sweep clockwise the unit
circle and check that Res [fl(z), γ] + Res [fl(z), 0] = 0.
C: l = −1. For l = −1 one should note that z−1 has a residue at infinity [111],
so that the previous statement doesn’t hold anymore. One has

p−1 = Res [f−1(z), γ] + Res [f−1(z), 0] =
1

γ
(1− γ2)− 1

γ
= −γ. (A.27)

Collecting the three results together we have

pl(α = 1) =


γl(1− γ2) if l ≥ 0,

−γ if l = −1,

0 if l ≤ −2.

(A.28)

A.2 Two sources: Hong-Ou-Mandel setup

Two identical single-electron sources with a tunable delay are necessary to
describe a HOM experiment. They are implemented by two trains of voltage
pulses VR(t) = V (t) and VL(t) = V (t+ tD). The periodic phase factor involves
in this case the combination ∆V (t) = VR(t)− VL(t), namely

e−ie
∗ ∫ t

0 dt
′[V (t′)−V (t′+tD)] = e−iϕ(t)eiϕ(t+tD)e−iϕ(tD) =

+∞∑
l=−∞

p̃le
−ilωt, (A.29)

where the new coefficients p̃l read

p̃l =

∫ T

0

dt

T
eilωte−iϕ(t)eiϕ(t+tD)e−iϕ(tD) = e−iϕ(tD)

+∞∑
m=−∞

pl+mp
∗
me

imωtD . (A.30)

Lorentzian wave

For a periodic train of Lorentzian voltage pulses we can get rid of the sum to
find a simpler expression for the coefficients p̃l. Using Eq. (A.14) it is possible
to write

p̃l = e−iϕ(tD)e−iαωtD
∫ T

0

dt

T
ei2πlu

[
sin (iπη + πu)

sin (iπη − πu)

]α [
sin (iπη − πu− πtD/T )

sin (iπη + πu+ πtD/T )

]α
=

= e−iϕ(tD)φα
1

2πi

∮
|z|=1

dz

z
zl
(

1− zγ
z − γ

)α(
γφ− z
γz − φ

)α
, (A.31)
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with the new parameter φ = e−i2πtD/T in addition to γ = e−2πη. For an
integer Lorentzian with α = 1, we simply have to calculate the residues of the
integrand function. Again, we shall distinguish between three cases.
A: l ≥ 1. The function

f̃l(z) = zl−1
(1− zγ)

(
φ− z

γ

)
(z − γ)

(
z − φ

γ

) (A.32)

has a pole at z = γ and another one at z = φ/γ. Since |φ| = 1 and γ < 1, the
latter lies outside the unit circle and the only contribution to p̃l comes from
the residue at z = γ:

p̃l = e−iϕ(tD)φRes
[
f̃l(z), γ

]
= e−iϕ(tD)φγl

(1− γ2)(1− φ)

φ− γ2
. (A.33)

B: l ≤ −1. Under this condition, we can either look for the residues at z = 0
and z = γ inside the circle or evaluate the residue at z = φ/γ outside the circle,
with a change of sign (note that there’s no residue at infinity for l ≤ −1). The
latter gives

p̃l = −e−iϕ(tD)φRes

[
f̃l(z),

φ

γ

]
= e−iϕ(tD)φγ−lφl

(1− γ2)(1− φ)

φ− γ2
. (A.34)

C: l = 0. The function f̃0(z) has residues at infinity and at z = φ/γ outside
the unit circle, or residues at z = 0 and z = γ inside. Thus

p̃l = e−iϕ(tD)φRes
[
f̃0(z), 0

]
+ e−iϕ(tD)φRes

[
f̃0(z), γ

]
=

= e−iϕ(tD)φ

[
1 +

(1− γ2)(1− φ)

φ− γ2

]
. (A.35)

A.3 Multiple pulses

Finally, let us briefly focus on the case of multiple pulses discussed in Chapter
4. The phase accumulated for the periodic signal VN(t) =

∑N−1
j=0 Ṽ

(
t− j α

N
T
)

is given by

ϕN(t) = e∗
∫ t

0

dt′

[
N−1∑
j=0

Ṽ
(
t′ − j α

N
T
)
− Ṽdc

]

=
N−1∑
j=0

[
ϕ̃
(
t− j α

N
T
)
− ϕ̃

(
−j α

N
T
)]
, (A.36)

where ϕ̃(t) = e∗
∫ t

0
dt′
[
Ṽ (t′)− Ṽdc

]
. Each phase factor e−iϕ̃(t) can be written

as
e−iϕ̃(t) =

∑
l

pl

( q
N

)
e−ilωt, (A.37)
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since each pulse Ṽ involves only a fraction of the total charge q. The corre-
sponding Fourier coefficients for e−iϕN (t) read

p
(N)
l (q) = exp

[
i

N−1∑
j=0

ϕ̃
(
−j α

N
T
)]∫ T

0

dt

T
eilωt

N−1∏
j=0

e−iϕ̃(t−j αN T) =

= exp

[
i

N−1∑
j=0

ϕ̃
(
−j α

N
T
)]∫ T

0

dt

T
exp(ilωt)

+∞∑
m0=−∞

+∞∑
m1=−∞

· · ·
+∞∑

mN−1=−∞

×

× exp(−im0ωt)pm0

( q
N

)
exp

{
−im1ω

[
t− α

N
T
]}

pm1

( q
N

)
· · · ×

× exp
{
−imN−1ω

[
t− (N − 1)

α

N
T
]}

pmN−1

( q
N

)
=

= exp

[
i

N−1∑
j=0

ϕ̃
(
−j α

N
T
)] +∞∑

m1=−∞

· · ·
+∞∑

mN−1=−∞

×

× exp

{
i
2π

N
α [m1 + · · ·+ (N − 1)mN−1]

}
×

× pl−m1−...−mN−1

( q
N

)
pm1

( q
N

)
· · · pmN−1

( q
N

)
. (A.38)

As an example, coefficients for N = 2 are given by

p
(2)
l (q) = eiϕ̃(−αT2 )

+∞∑
m=−∞

eiπαmpl−m

(q
2

)
pm

(q
2

)
. (A.39)

Note that the time-independent phase eiϕ̃(−αT2 ) has been omitted in the main
text, as it is washed out as soon as we compute the squared modulus of p

(2)
l .

A.4 Useful sum rule for the photoassisted coeffi-
cients

In this section we prove a useful sum rule for the coefficients pl, namely

+∞∑
l=−∞

ls|pl|2 =

(
e∗

ω

)s ∫ T

0

dt

T
V s

ac(t), (A.40)
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which is valid for any integer number s. As a first step, we exploit the definition
of the coefficients pl and write the factor ls as a derivative

+∞∑
l=−∞

ls|pl|2 =
+∞∑
l=−∞

ls
∫ T

0

dt

T
eilωte−iϕ(t)

∫ T

0

dt′

T
e−ilωt

′
eiϕ(t′) =

=

∫ T

0

dt

T

∫ T

0

dt′

T

+∞∑
l=−∞

lseilω(t−t′)e−iϕ(t)eiϕ(t′) =

=

∫ T

0

dt

T

∫ T

0

dt′

T

+∞∑
l=−∞

(
i

ω

)s
∂st′e

ilω(t−t′)e−iϕ(t)eiϕ(t′) =

=

∫ T

0

dt

T

∫ T

0

dt′
(
− i
ω

)s
δ(t− t′)e−iϕ(t)∂st′e

iϕ(t′) =

=

∫ T

0

dt

T

(
− i
ω

)s
e−iϕ(t)∂st e

iϕ(t). (A.41)

We now look for a generic expression of the s-th derivative of the phase factor.
By considering the cases s = {1, 2, 3}, which read

∂te
iϕ(t) = ie∗Vac(t)e

iϕ(t) (A.42)

∂2
t e
iϕ(t) = ie∗∂tVac(t)e

iϕ(t) + (ie∗)2V 2
ac(t)e

iϕ(t) (A.43)

∂3
t e
iϕ(t) = ie∗∂2

t Vac(t)e
iϕ(t) +

3

2
(ie∗)2∂tVac(t)e

iϕ(t) + (ie∗)3V 3
ac(t)e

iϕ(t), (A.44)

we realize that the s-th derivative must be given by

∂st e
iϕ(t) = D[Vac(t)]e

iϕ(t) + (ie∗)sV s
ac(t)e

iϕ(t), (A.45)

where D[Vac(t)] contains only first- and higher-order derivatives of Vac(t). It
is clear that, multiplying by e−iϕ(t) and averaging over one period, we are only
left with the second term of Eq. (A.45), namely

∫ T

0

dt

T
e−iϕ(t)∂st e

iϕ(t) = (ie∗)s
∫ T

0

dt

T
V s

ac(t), (A.46)

and we can finally write

+∞∑
l=−∞

ls|pl|2 =

(
e∗

ω

)s ∫ T

0

dt

T
V s

ac(t). (A.47)

From Eq. (A.47) we immediately get the two simple relations
∑

l |pl|2 = 1 and∑
l l|pl|2 = 0 used in the main text. It is worth noticing that we can also add
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the dc component q = e∗Vdc/ω to get the full sum rule

+∞∑
l=−∞

|pl|2(q + l)s =
+∞∑
l=−∞

|pl|2
s∑

k=0

(
s

k

)
qs−klk =

=
s∑

k=0

(
s

k

)(
e∗Vdc

ω

)s−k (
e∗

ω

)k ∫ T

0

dt

T
V k

ac(t) =

=

(
e∗

ω

)s ∫ T

0

dt

T

[
s∑

k=0

(
s

k

)
V s−k

dc V k
ac(t)

]
=

=

(
e∗

ω

)s ∫ T

0

dt

T
[Vdc + Vac(t)]

s =

=

(
e∗

ω

)s ∫ T

0

dt

T
V s(t). (A.48)

150



Appendix B
Bosonic commutators and point splitting

In this Appendix we evaluate the bosonic commutation relations introduced
in Eqs. (3.47) and (3.48) and used throughout this thesis. We also show the
equivalence between the bosonic formalism and a theory of free fermions in
one dimension for the case of integer filling factor ν = 1.

B.1 Bosonic commutators

We first recall the full expression for the bosonic field introduced in the main
text. For simplicity, we will work only with the field ΦR and drop all the labels
R referring to its right-moving character. We have

Φ(x) = ϕ(x) + ϕ†(x) = i

√
2π

L

∑
k>0

e−ak/2√
k

(
e+ikxbk − e−ikxb†k

)
, (B.1)

where bosonic creation and annihilation operators satisfy [bk, b
†
q] = δk,q. Here

we have split the Hermitian operator Φ into two conjugate contributions ϕ(x)
and ϕ†(x). The former is given by

ϕ(x) = i

√
2π

L

∑
k>0

e−ak/2√
k
eikxbk. (B.2)
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Commutators for the new bosonic field ϕ(x) are readily obtained. One finds[
ϕ(x), ϕ†(y)

]
=

2π

L

∑
k,q>0

e−a(k+q)/2

√
kq

eikxe−iqy
[
bk, b

†
q

]
=

=
2π

L

∑
k>0

e−ak

k
eik(x−y) =

∑
n>0

1

n

[
ei

2π
L

(x−y+ia)
]n

=

= − ln
[
1− ei 2πL (x−y+ia)

]
, (B.3)

where we have used the series
∑∞

n=1
xn

n
= − ln(1− x). Expanding the last

result for L→∞ we obtain[
ϕ(x), ϕ†(y)

]
= − ln

[
1− 1− i2π

L
(x− y + ia) + . . .

]
=

≈ − ln

[
−i2π

L
(x− y + ia)

]
. (B.4)

From Eq. (B.3) we also obtain the commutator for Φ. It reads

[Φ(x),Φ(y)] =
[
ϕ(x), ϕ†(y)

]
+
[
ϕ†(x), ϕ(y)

]
= − ln

[
1− ei 2πL (x−y+ia)

1− ei 2πL (y−x+ia)

]
. (B.5)

We focus again on the limit L→∞ and get

[Φ(x),Φ(y)] = − ln

[
1− 1− i2π

L
(x− y + ia) + . . .

1− 1− i2π
L

(y − x+ ia) + . . .

]
=

≈ − ln

(
i+ x−y

a

i− x−y
a

)
=

= −2

i
arctan

(
x− y
a

)
. (B.6)

In the last passage we used the identity arctan z = i
2

ln
(
i+z
i−z

)
[80]. Now we can

safely take the limit a → 0 (remember that a is nothing but a short-distance
regularization cutoff) to finally obtain

[Φ(x),Φ(y)] = iπ sign(x− y). (B.7)

This proves the relation (3.47) for the case of right-moving excitations. Since
the bosonic density is linked to Φ by a spatial derivative, ρ = −(

√
ν/2π)∂xΦ,

we immediately get the commutator (3.48) as well:

[ρ(x),Φ(y)] = −
√
ν

2π
iπ∂x sign(x− y) = −i√νδ(x− y). (B.8)

One should notice that the above results depend on the assumption of infinite
length L. A special care in retaining the terms ∼ 1/L is required when dealing
with finite size systems, as shown for instance in Refs. [138, 140].
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B.2 Bosonization at integer filling factor using
point splitting

We now show that the bosonic description of low-energy excitations is fully
equivalent to a one-dimensional fermionic model of noninteracting electrons
with linear spectrum. In such a case, the Hamiltonian is [135, 138, 140]

HR/L =

∫
dx : Ψ†R/L(x)(∓iv∂x − vkF)ΨR/L(x) : . (B.9)

with the fermionic fields ΨR/L given by

ΨR/L(x) =
1√
L

+∞∑
k=−∞

e±ikxcR/L,k. (B.10)

Note that the second contribution in Eq. (B.9) is proportional to vkF, and plays
the role of a chemical potential to fix the ground state charge and energy, as
pointed out by Haldane in his original work [135]. The notation : X1X2 . . . :
in Eq. (B.9) stands for normal ordering of the product of operators X1X2 . . ..
It means that all operators that destroy the ground state (i.e. all operators Xi

such that Xi |0〉 = 0) are moved to the right of all other operators [135, 138,
140]. For the case of a fermionic system, the ground state is the filled Fermi
sea with Fermi momentum kF. Thus, both ck>kF and c†k<kF destroy the ground
state, and must be anti-commuted to the right of the remaining operators.
For bosons, the ground state is nothing but the bosonic vacuum, and only
annihilation operators bk are involved in the normal ordering process.

Fermionic fields in Eq. (B.9) obey the following anti-commutation relations:{
ΨR/L(x),Ψ†R/L(y)

}
= δ(x− y). (B.11)

Charge and energy density operators in terms of fermionic fields read

ρR/L(x) =: Ψ†R/L(x)ΨR/L(x) :, (B.12)

HR/L(x) = ∓iv : Ψ†R/L(x)∂xΨR/L(x) : −vkFρR/L(x). (B.13)

The tool that maps the fermionic model into the bosonic approach is nothing
but the bosonization identity for integer electrons, which for the case ν = 1
reads

ΨR/L(x) =
FR/L√

2πa
e±ikFxe−iΦR/L(x). (B.14)

We will show that bosonization of Eqs. (B.9), (B.12) and (B.13) will lead us
to

ρR/L(x) = ∓ 1

2π
∂xΦR(x), (B.15)

HR/L(x) =
v

4π
: [∂xΦR(x)]2 : . (B.16)
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B.2.1 Particle density

Let us first consider the density operator ρR. We focus again on the case
of right-moving excitations, and drop the label R for brevity. Following the
notation of Ref. [138] we also drop for the moment the factor eikFx in the
definition of ΨR(x), Eq. (B.14), which will be reinstated at the end of the
calculation. We thus consider the field

Ψ̃(x) =
F√
L
e−iϕ

†(x)e−iϕ(x) =
F√
2πa

e−iΦ(x). (B.17)

Note that the operator in the middle of Eq. (B.17) is normal ordered, while
the right-hand side of the equation is not, hence the presence of the diverging
factor (2πa)−1/2 [138, 140].

With this result under our belt, we can now work out the bosonized expres-
sion for the density ρ̃(x) =: Ψ̃†(x)Ψ̃(x) :. We use the point splitting technique
to regularize such a diverging quantity, using δ = ia as the splitting parameter
and taking the limit a→ 0 at the end of the calculation [138, 140]. Using Eq.
(C.8) from Appendix C we have

Ψ̃†(x+ ia)Ψ̃(x) =
1

L
eiϕ
†(x+ia)eiϕ(x+ia)F †Fe−iϕ

†(x)e−iϕ(x) =

=
1

L
eiϕ
†(x+ia)e−iϕ

†(x)eiϕ(x+ia)e−iϕ(x)e[ϕ(x+ia),ϕ†(x)]. (B.18)

We can safely discard the regularization parameter in the commutator, since
it was already regularized in Eq. (B.3). Thus, we get

exp
{[
ϕ(x), ϕ†(x)

]}
= exp

(
− ln

2πa

L

)
=

L

2πa
. (B.19)

Equation (B.18) now reads

Ψ̃†(x+ ia)Ψ̃(x) =
1

2πa
ei[ϕ

†(x+ia)−ϕ†(x)]ei[ϕ(x+ia)−ϕ(x)]. (B.20)

We now expand the exponentials in powers of a:

Ψ̃†(x+ ia)Ψ̃(x) =
1

2πa

[
1 + i∂xϕ

†(x)ia+O(a2)
] [

1 + i∂xϕ(x)ia+O(a2)
]

=

=
1

2πa
− 1

2π

[
∂xϕ

†(x) + ∂xϕ(x)
]

+O(a) =

=
1

2πa
− 1

2π
∂xΦ(x) +O(a). (B.21)

Finally, normal ordering the last expression and taking the limit a→ 0 we get
the final result

ρ̃(x) = lim
a→0

: Ψ̃†(x+ ia)Ψ̃(x) := (B.22)

= lim
a→0

[
Ψ̃†(x+ ia)Ψ̃(x)−

〈
Ψ̃†(x+ ia)Ψ̃(x)

〉
0

]
= (B.23)

= − 1

2π
∂xΦ(x). (B.24)
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where the notation 〈. . .〉0 stands for a quantum average over the ground state.
Notice that the normal ordering allowed us to get rid of the diverging contri-
bution (2πa)−1.

B.2.2 Hamiltonian density

We proceed similarly for the energy density H(x). However, this calculation
presents some tricky passages that need to be performed carefully. Consider
the first term in Eq. (B.13) for the case of right-moving fermions, which we
will denote as H0. We have

H0(x) = −iv : Ψ†(x)∂xΨ(x) : . (B.25)

Now, let us drop the exponential factor eikFx and work with the field Ψ̃ =
e−ikFxΨ. We resort to the point splitting and write

Ψ̃†(x+ ia)∂xΨ̃(x) =

=
1

L
eiϕ
†(x+ia)eiϕ(x+ia)F †F∂x

[
e−iϕ

†(x)e−iϕ(x)
]

=

=
1

L
eiϕ
†(x+ia)eiϕ(x+ia)e−iϕ

†(x)
[
−i∂xϕ†(x)e−iϕ(x) − ie−iϕ(x)∂xϕ(x)

]
=

=
1

L
eiϕ
†(x+ia)eiϕ(x+ia)e−iϕ

†(x)e−iϕ(x)
{
−i∂xϕ†(x)− i∂xϕ(x)−

[
∂xϕ

†(x), ϕ(x)
]}
.

(B.26)

It is worth noticing that we had to move the exponential e−iϕ(x) to the left of
∂xϕ

†(x), thus generating an additional commutator. The latter is given by

[
∂xϕ

†(x), ϕ(x)
]

= −∂y
[
ϕ(x), ϕ†(y)

]
x=y
≈ ∂y ln

[
−i2π

L
(x− y + ia)

]
x=y

=

=

[
i2π
L

−i2π
L

(x− y + ia)

]
x=y

=
i

a
. (B.27)

Then we obtain

Ψ̃†(x+ ia)∂xΨ̃(x) =

=
1

L
ei[ϕ

†(x+ia)−ϕ†(x)]ei[ϕ(x+ia)−ϕ(x)]e[ϕ(x+ia),ϕ†(x)]
[
−i∂xϕ†(x)− i∂xϕ(x)− i

a

]
.

(B.28)

At this stage, one should notice that the exponential of the commutator[
ϕ(x), ϕ†(x)

]
is proportional to 1/a [see Eq. (B.19)], and we also have a term

∼ 1/a into the square brackets. It follows immediately that we need to expand
the exponential of ϕ and ϕ† up to the order a2 to get the correct result. We
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have

ei[ϕ
†(x+ia)−ϕ†(x)] =

= 1 + a
{
∂ae

i[ϕ†(x+ia)−ϕ†(x)]
}
a=0

+
a2

2

{
∂2
ae
i[ϕ†(x+ia)−ϕ†(x)]

}
a=0

+O(a3) =

= 1− a∂xϕ†(x) +
a2

2
∂a

{
−∂xϕ†(x+ ia)ei[ϕ

†(x+ia)−ϕ†(x)]
}
a=0

+O(a3)

= 1− a∂xϕ†(x) +
a2

2

{
−i∂2

xϕ
†(x) +

[
∂xϕ

†(x)
]2}

+O(a3), (B.29)

and we obtain similarly an expansion for exp {i [ϕ(x+ ia)− ϕ(x)]}. Inserting
both results into Eq. (B.28) we get

Ψ̃†(x+ ia)∂xΨ̃(x) =

= − i

2πa

[
∂xΦ(x) +

1

a

]{
1− a∂xϕ†(x)− ia

2

2
∂2
xϕ
†(x) +

a2

2

[
∂xϕ

†(x)
]2}×

×
{

1− a∂xϕ(x)− ia
2

2
∂2
xϕ(x) +

a2

2
[∂xϕ(x)]2 +O(a3)

}
=

= − i

2πa

[
∂xΦ(x) +

1

a

]{
1− a∂xϕ(x)− ia

2

2
∂2
xϕ(x) +

a2

2
[∂xϕ(x)]2 − a∂xϕ†(x)+

+a2∂xϕ
†(x)∂xϕ(x)− ia

2

2
∂2
xϕ
†(x) +

a2

2

[
∂xϕ

†(x)
]2

+O(a3)

}
=

= − i

2πa

[
∂xΦ(x) +

1

a

]{
1− a∂xΦ(x)− ia

2

2
∂2
xΦ(x) +

a2

2
: [∂xΦ(x)]2 : +O(a3)

}
.

(B.30)

In the last passage we recognized that

a2

2

{[
∂xϕ

†(x)
]2

+ ∂xϕ
†(x)∂xϕ(x) +

[
∂xϕ

†(x)
]2}

=
a2

2
: [∂xΦ(x)]2 : (B.31)

is a normal ordered expression, since the field ϕ† is always on the left of ϕ
(which means that operators b†k are on the left of all bk). We are left with

Ψ̃†(x+ ia)∂xΨ̃(x) =

= −i
{

1

2πa2
− 1

2π
[∂xΦ(x)]2 − i 1

4π
∂2
xΦ(x) +

1

4π
: [∂xΦ(x)]2 : +O(a)

}
.

(B.32)

We can drop the term ∼ ∂2
xΦ(x), which is a total derivative and vanishes as we

integrate over x. Indeed, we should remember that the only meaningful phys-
ical quantity (the total Hamiltonian) is proportional to

∫
dxΨ̃†∂xΨ̃. Finally,

we normal order the entire expression and take the limit a→ 0. This yields

: Ψ̃†(x)∂xΨ̃(x) : = lim
a→0

[
Ψ̃†(x+ ia)∂xΨ̃(x)−

〈
Ψ̃†(x+ ia)∂xΨ̃(x)

〉
0

]
=

= i
1

4π
: [∂xΦ(x)]2 : . (B.33)
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We only have to multiply by −iv to get H̃0:

H̃0(x) = −iv : Ψ̃†(x)∂xΨ̃(x) :=
v

4π
: [∂xΦ(x)]2 : . (B.34)

Introducing the Fermi momentum

As a final step, we restore the oscillating exponential factor eikFx dropped at
the beginning of the calculation. This is similar to the comparison between
Haldane notation [135] and Von Delft notation discussed in Ref. [138], Sec.

10.A.4. Considering a right-moving field, we have Ψ(x) = eikFxΨ̃(x). The
particle density in our formalism is left unchanged since

ρ(x) =: Ψ†(x)Ψ(x) :=: Ψ̃†(x)Ψ̃(x) := − 1

2π
∂xΦ(x). (B.35)

Differently, the energy density acquires an additional term due to the derivative
acting on the exponential eikFx:

H0(x) = −iv : Ψ†(x)∂xΨ(x) := −iv : Ψ̃†(x)∂xΨ̃(x) : +vkF : Ψ̃†(x)Ψ̃(x) :=

=
v

4π
: [∂xΦ(x)]2 : +vkFρ(x). (B.36)

We finally get the result anticipated in Eq. (B.16), since

H(x) = H0(x)− vkFρ(x) =
v

4π
: [∂xΦ(x)]2 : (B.37)
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Appendix C
Baker-Campbell-Hausdorff theorem

In this Appendix we demonstrate the Baker-Campbell-Hausdorff theorem and
some useful formulas used in the main text [138].

C.1 Theorem

Given two operators A and B, the following identity holds:

e−BAeB = A+ [A,B] +
1

2!
[[A,B] , B] + · · · =

+∞∑
n=0

1

n!
[A,B]n . (C.1)

Here, we have defined the symbol [A,B]n by induction as [A,B]n =
[
[A,B]n−1 , B

]
,

with [A,B]0 = A.
To demonstrate Eq. (C.1) we introduce the operator O(s) = e−sBAesB,

which depends on the parameter s. We note that its derivatives are

dO

ds
= −Be−sBAesB + e−sBAesBB = e−sB[A,B]esB, (C.2)

d2O

ds2
= −Be−sB[A,B]esB + e−sB[A,B]esBB = e−sB [[A,B] , B] esB, (C.3)

. . .

dnO

dsn
= −Be−sB[A,B]n−1e

sB + e−sB[A,B]n−1e
sBB = e−sB [A,B]n e

sB. (C.4)

The Taylor expansion for O(s) around s = 0 in then

O(s) = e−sBAesB =
+∞∑
n=0

1

n!
[A,B]n s

n. (C.5)
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Calculating O(s = 1) we get the Baker-Campbell-Hausdorff theorem (C.1).

C.2 Useful identities

The following equalities holds for C = [A,B] and [A,C] = [B,C] = 0.
A

[A, eB] = CeB. (C.6)

Let us consider the theorem (C.1) with C = [A,B] and [A,C] = [B,C] = 0.
We have [A,B]1 = C and [A,B]n = 0 for every n > 1. Then we are left with

e−BAeB = A+ C. (C.7)

Multiplying each side by eB from left we get the commutation relation (C.6).
B

eAeB = eBeAeC . (C.8)

Let us consider the identity

e−BeAeB =
+∞∑
n=0

1

n!

[
eA, B

]
n
, (C.9)

which is given by theorem (C.1) with the substitution A → eA. When C =
[A,B] and [A,C] = [B,C] = 0 we have[

eA, B
]

0
= eA, (C.10)[

eA, B
]

1
= CeA, (C.11)

. . .[
eA, B

]
n

= CneA, (C.12)

thanks to Eq. (C.6). This gives rise to an exponential power series for C:

e−BeAeB = eA
+∞∑
n=0

1

n!
Cn = eAeC . (C.13)

We get Eq. (C.8) multiplying by eB from left.
C

eAeB = eA+B+C/2 = eA+BeC/2. (C.14)

We demonstrate this result by resorting to the parametric operator T (s) =
esAesB. Its evident that T (s = 0) = 1, and its derivative is

dT

ds
= AesAesB + esAesBB = T (A+ sC +B), (C.15)
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where we have commuted the operator A to the right of esAesB exploiting Eq.
(C.6). The differential equation{

d
ds
T (s) = T (s)(A+ sC +B),

T (0) = 1,
(C.16)

is solved by T (s) = eA+B+C/2, giving eAeB = eA+B+C/2 for s = 1. This tells us
that for X, Y satisfying [X, Y ] = 0 we have

eXeY = eX+Y . (C.17)

Since [A + B,C] = 0, we use the latest result to move C out of the sum and
write it as a second exponential, obtaining Eq. (C.14).
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Appendix D
Keldysh contour formalism

In this Appendix we introduce the Schwinger-Keldysh contour formalism to
deal with out-of-equilibrium systems [146, 202]. As a first step, we recap the
essential features of time evolution pictures in quantum mechanics. We then
introduce the equilibrium Green’s function formalism, discuss its failure in
the context of nonequilibrium many-body theory and show how troubles are
circumvented with the Schwinger-Keldysh technique.

D.1 Time evolution pictures

D.1.1 Schrödinger picture

In the Schrödinger picture state vectors evolve with time, while observables do
not. We introduce the time evolution operator which is defined by

|φ(t)〉 = U(t, t0) |φ(t0)〉 . (D.1)

From the well known Schrödinger equation i~∂t |φ(t)〉 = H(t) |φ(t)〉, with H(t)
the total Hamiltonian, one has

i~∂tU(t, t0) |φ(t0)〉 = H(t)U(t, t0) |φ(t0)〉 . (D.2)

Thus the time evolution operator satisfies

∂tU(t, t0) = − i
~
H(t)U(t, t0), (D.3)

from which we obtain

U(t, t0) = 1− i

~

∫ t

t0

dt1H(t1)U(t1, t0). (D.4)
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This is an integral equation that can be solved by iteration:

U(t, t0) = 1− i

~

∫ t

t0

dt1H(t1) +

(
i

~

)2 ∫ t

t0

dt1H(t1)

∫ t1

t0

dt2H(t2) + . . .

· · ·+
(
− i
~

)n ∫ t

t0

dt1H(t1) · · ·
∫ tn−1

t0

dtnH(tn) + · · · . (D.5)

To properly handle this infinite sum, we note that the second term can be
rewritten as [203](

i

~

)2 ∫ t

t0

dt1H(t1)

∫ t1

t0

dt2H(t2) =

=
1

2

(
i

~

)2 [∫ t

t0

dt1H(t1)

∫ t1

t0

dt2H(t2) +

∫ t

t0

dt2H(t2)

∫ t2

t0

dt1H(t1)

]
=

=
1

2

(
i

~

)2 [∫ t

t0

dt1H(t1)

∫ t

t0

dt2H(t2)Θ(t1 − t2)+

+

∫ t

t0

dt2H(t2)

∫ t

t0

dt1H(t1)Θ(t2 − t1)

]
=

=
1

2

(
i

~

)2 ∫ t

t0

dt1

∫ t

t0

dt2 [H(t1)H(t2)Θ(t1 − t2) +H(t2)H(t1)Θ(t2 − t1)] =

=
1

2

(
i

~

)2 ∫ t

t0

dt1

∫ t

t0

dt2T [H(t1)H(t2)] =

= T
{

1

2

[
i

~

∫ t

t0

dt1H(t1)

]2
}
, (D.6)

where T (known as time-ordering operator) automatically orders a product of
time dependent operators in the time-descending sequence. In general one has

T [O(t1) · · ·O(tn)] =
∑
p∈Sp

O(tp1) · · ·O(tpn)Θ(tp1− tp2) · · ·Θ(tpn−1− tpn), (D.7)

so that the n-th order term in the sum (D.5) can be recast as

T
{

1

n!

[(
− i
~

)n ∫ t

t0

dt1H(t1)

]n}
. (D.8)

We can finally collect all the terms in Eq. (D.5) into the simple expression

U(t, t0) = T
[
e
− i

~
∫ t
t0
H(t′)dt′

]
. (D.9)

For a time-independent Hamiltonian, the time evolution operator is just U(t, t0) =

e−
i
~H(t−t0). It’s also worth noting that the time-ordering operator T in unnec-

essary in such cases where the time dependent Hamiltonian commutes with
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itself at different times. Indeed, if [H(t1),H(t2)] = 0 for arbitrary t1, t2, we can
swap H(t2) and H(t1) in the third-to-last passage of the previous calculation
and we get

1

2

(
i

~

)2 ∫ t

t0

dt1

∫ t

t0

dt2 [H(t1)H(t2)Θ(t1 − t2) +H(t1)H(t2)Θ(t2 − t1)] =

=
1

2

(
i

~

)2 ∫ t

t0

dt1

∫ t

t0

dt2H(t1)H(t2) =
1

2

[
i

~

∫ t

t0

dt1H(t1)

]2

, (D.10)

irrespectively of the time-ordering. One must resort to the T operator only
when [H(t),H(t′)] 6= 0. We note that the following useful properties hold:

• U †(t, t0) = U−1(t, t0) = U(t0, t) → U(t, t0)U †(t, t0) = 1, with 1 the iden-
tity operator. Note that U †(t, t0) is given by

U †(t, t0) = T̃
[
e
i
~
∫ t
t0
H(t′)dt′

]
, (D.11)

where the anti-time-ordering operator T̃ acts in the opposite way with
respect to T .

• U(t, t′)U(t′, t′′) = U(t, t′′).

We can also obtain an equation of motion for the density operator ρ(t) =∑
n pn |φn(t)〉 〈φn(t)|. Making use of the Schrödinger equation one has

∂tρ(t) =
∑
n

pn [(∂t |φn(t)〉) 〈φn(t)|+ |φn(t)〉 (∂t 〈φn(t)|)] = (D.12)

=
∑
n

pn

[
− i
~
H(t) |φn(t)〉 〈φn(t)|+ |φn(t)〉 〈φn(t)| i

~
H(t)

]
= (D.13)

=
i

~
[ρ(t),H(t)] . (D.14)

This differential equation is solved by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (D.15)

D.1.2 Heisenberg picture

In quantum mechanics, we’d usually like to know the expectation value of some
observable O at time t, that is

〈φ(t)|O|φ(t)〉 =
〈
φ(t0)|U †(t, t0)OU(t, t0)|φ(t0)

〉
= 〈φ(t0)|O(t)|φ(t0)〉 . (D.16)

It’s evident from the last step that we can formulate the same problem in
a picture where state vectors are fixed at the initial time t0 and observables
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acquire time dependence through O(t) = U †(t, t0)OU(t, t0). This is known as
the Heisenberg picture. One can verify that observables obey the equation

i∂tO(t) =
1

~
[O(t),H(t)] + (∂tO)(t), (D.17)

where the notation O(t) denotes the observables in the Heisenberg picture.
For operators that do not depend explicitly on time, the equation of motion is
simply i∂tO(t) = 1

~ [O(t),H(t)].
In passing, it’s worth noticing that the equation of motion for an operator

in the Heisenberg picture is structurally equivalent to the evolution of the
density operator in Schrödinger picture, apart for an opposite sign: this leads
to the fact that ρ does not depend on time in Heisenberg representation.

D.1.3 Interaction picture

There is a third way of working out the problem of time evolution in quantum
mechanics, known as Interaction picture. It is particularly useful as a tool to
construct perturbative expansions. Suppose that we have an Hamiltonian of
the form

H = H + V (t), (D.18)

where H is a time independent operator whose eigenstate and eigenvectors
are known, while V (t) includes the ‘difficult’ (i.e. non-diagonalizable), time
dependent part of the Hamiltonian, that we will treat as a perturbation. In
the interaction picture, we separate the well known time evolution due to H
from the highly non-trivial one linked to V (t). As a consequence, both state
vectors and observables acquire time dependence. We start again from the
expectation value of O at time t and rewrite it in the following manner:

〈φ(t0)|U †(t, t0)OU(t, t0) |φ(t0)〉 =

= 〈φ(t0)|U †(t, t0)e−
i
~H(t−t0)e

i
~H(t−t0)Oe−

i
~H(t−t0)e

i
~H(t−t0)U(t, t0) |φ(t0)〉 =

=
〈
φ̂(t)

∣∣∣ Ô(t)
∣∣∣φ̂(t)

〉
. (D.19)

Here, we defined state vectors and observables in the interaction representation
as1∣∣∣φ̂(t)

〉
= e

i
~H(t−t0) |φ(t)〉 = e

i
~H(t−t0)U(t, t0) |φ(t0)〉 = Û(t, t0) |φ(t0)〉 , (D.20)

Ô(t) = e
i
~H(t−t0)Oe−

i
~H(t−t0), (D.21)

with Û(t, t0) = e
i
~H(t−t0)U(t, t0) the time evolution operator in the interaction

representation. One immediately sees that observables are defined similarly to
Heisenberg operators, but they evolve according to the unperturbed part of

1 To avoid confusion, in this Appendix we denote every quantity in the interaction picture
with a caret (|φ̂〉, Û(t, t0), ecc...).
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the Hamiltonian only (that is, sH). In contrast, state vectors are sensitive to
the perturbation V (t) through the operator Û(t, t0). The equation of motion
for Ô is i∂tÔ = 1

~ [Ô,H], while |φ̂〉 evolves in accordance with [203]

∂t

∣∣∣φ̂(t)
〉

= ∂t

[
e
i
~H(t−t0) |φ(t)〉

]
=

=
i

~
e
i
~H(t−t0)H |φ(t)〉+ e

i
~H(t−t0)∂t |φ(t)〉 =

=
i

~
e
i
~H(t−t0)[H −H(t)] |φ(t)〉 =

= − i
~
e
i
~H(t−t0)V (t)e−

i
~H(t−t0)e

i
~H(t−t0) |φ(t)〉 =

= − i
~
V̂ (t)

∣∣∣φ̂(t)
〉
. (D.22)

This means that time dependence of the state vector is determined solely by
the perturbative sector of the Hamiltonian. We now derive an expression for
the time evolution operator Û suitable for perturbative calculations. From
Eq. (D.22) we have

∂t

∣∣∣φ̂(t)
〉

= ∂tÛ(t, t0) |φ(t0)〉 = − i
~
V̂ (t)Û(t, t0) |φ(t0)〉 . (D.23)

We thus get the time derivative of Û , namely

∂tÛ(t, t0) = − i
~
V̂ (t)Û(t, t0), (D.24)

that is very similar to Eq. (D.3). In analogy with Eq. (D.5) we get

Û(t, t0) = T
[
e
− i

~
∫ t
t0
V̂ (t′)dt′

]
. (D.25)

Here, the crucial feature of the interaction picture is manifest: the time evolu-
tion operator contains only powers of the perturbation term V̂ (t). This turns
out to be very useful in constructing a perturbative expansion for the Green’s
functions. For the density operator we have

∂tρ̂(t) =
∑
n

pn

[(
∂t

∣∣∣φ̂n(t)
〉)〈

φ̂n(t)
∣∣∣+
∣∣∣φ̂n(t)

〉(
∂t

〈
φ̂n(t)

∣∣∣)] =

=
∑
n

pn

[
− i
~
V̂ (t)

∣∣∣φ̂n(t)
〉〈

φ̂n(t)
∣∣∣+
∣∣∣φ̂n(t)

〉〈
φ̂n(t)

∣∣∣ i~ V̂ (t)

]
=

=
i

~

[
ρ̂(t), V̂ (t)

]
, (D.26)

and thus, recalling that the three pictures must be equivalent at the initial
time t0,

ρ̂(t) = Û(t, t0)ρ(t0)Û †(t, t0). (D.27)
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Finally, we establish a bridge between operators in Heisenberg and interaction
pictures:

Ô(t) = e
i
~H(t−t0)Oe−

i
~H(t−t0) =

= e
i
~H(t−t0)U(t, t0)U †(t, t0)OU(t, t0)U †(t, t0)e−

i
~H(t−t0) =

= Û(t, t0)O(t)Û †(t, t0), (D.28)

hence
O(t) = Û †(t, t0)Ô(t)Û(t, t0). (D.29)

It is worth noting that Eq. (D.29) generates the following perturbative expan-
sion for the operator O(t) in the Heisenberg picture

O(t) = T̃
[
e
i
~
∫ t
t0
V̂ (t′)dt′

]
Ô(t)T

[
e
− i

~
∫ t
t0
V̂ (t′)dt′

]
=

=

{
T̃
[

1 +
i

~

∫ t

t0

dt′V̂ (t′) +
1

2

(
i

~

)2 ∫ t

t0

∫ t

t0

dt′dt′′V̂ (t′)V̂ (t′′) + . . .

]
Ô(t)×

×T
[

1− i

~

∫ t

t0

dt′V̂ (t′) +
1

2

(
− i
~

)2 ∫ t

t0

∫ t

t0

dt′dt′′V̂ (t′)V̂ (t′′) + . . .

]}
=

= Ô(t)− i

~

∫ t

t0

dt′
[
Ô(t), V̂ (t′)

]
+

+

(
− i
~

)2 ∫ t

t0

∫ t

t0

dt′dt′′Θ(t′ − t′′)
[[
Ô(t), V̂ (t′)

]
, V̂ (t′′)

]
+ . . . .

(D.30)

One recovers the Kubo formula for linear response theory at first order in the
perturbation [94]:

〈O(t)〉 = Tr [O(t)ρ(t0)] =

= Tr
[
Ô(t)ρ(t0)

]
− i

~

∫ t

t0

dt′Tr
{[
Ô(t), V̂ (t′)

]
ρ(t0)

}
+ o(V 2) =

= 〈O(t)〉0 −
i

~

∫ t

t0

dt′
〈[
Ô(t), V̂ (t′)

]〉
0

+ o(V 2), (D.31)

where the symbol 〈. . .〉0 stands for expectation values with respect to ρ(t0),
i.e. over an unperturbed ensemble.

D.2 Equilibrium Green’s functions

The problem of equilibrium Green’s function is generally stated as follows. We
want to evaluate

G(x, t;x′, t′) = −i
〈
T [ψ(x, t)ψ†(x′, t′)]

〉
= −iTr

{
ρT [ψ(x, t)ψ†(x′, t′)]

}
,

(D.32)
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where ψ(x, t) and ψ†(x′, t′) are fermionic operators in Heisenberg picture.2 The
T operator generates the following expression for G:

G(x, t;x′, t′) = −i
〈
ψ(x, t)ψ†(x′, t′)

〉
Θ(t− t′) + i

〈
ψ†(x′, t′)ψ(x, t)

〉
Θ(t′ − t).

(D.33)
We now write the field operators in the interaction picture using Eq. (D.29):

G(x, t;x′, t′) =

= −i
〈
Û †(t, t0)ψ̂(x, t)Û(t, t0)Û †(t′, t0)ψ̂†(x′, t′)Û(t′, t0)

〉
Θ(t− t′)+

+ i
〈
Û †(t′, t0)ψ̂†(x′, t′)Û(t′, t0)Û †(t, t0)ψ̂(x, t)Û(t, t0)

〉
Θ(t′ − t) =

= −i
〈
Û †(t, t0)ψ̂(x, t)Û(t, t′)ψ̂†(x′, t′)Û(t′, t0)

〉
Θ(t− t′)+

+ i
〈
Û †(t′, t0)ψ̂†(x′, t′)Û(t′, t)ψ̂(x, t)Û(t, t0)

〉
Θ(t′ − t). (D.34)

In equilibrium perturbation theory, one usually considers the reference initial
instant in the far past, t0 → −∞. We assume that the system was initially
unperturbed, and the term V (t) was adiabatically switched on starting from
the far past. Thus, inserting U †(+∞, t)U(+∞, t) = I we can rewrite G as

G(x, t;x′, t′) =

= −i
〈
Û †(t,−∞)U †(+∞, t)U(+∞, t)ψ̂(x, t)Û(t, t′)ψ̂†(x′, t′)Û(t′,−∞)

〉
×

×Θ(t− t′)+
+ i
〈
Û †(t′,−∞)U †(+∞, t′)U(+∞, t′)ψ̂†(x′, t′)Û(t′, t)ψ̂(x, t)Û(t,−∞)

〉
×

×Θ(t′ − t) =

= −i
〈
Û(−∞,+∞)T [ψ̂(x, t)ψ̂†(x′, t′)Û(+∞,−∞)]

〉
, (D.35)

where we used the fact that each term in U(+∞,−∞) acts in the proper order
under the T operator. Here the physical structure of the term

T [ψ̂(x, t)ψ̂†(x′, t′)Û(+∞,−∞)] (D.36)

is evident. Let us assume, for example, t > t′. We start the time evolution from
t0 = −∞ and propagate up to the time t′ where we find the field ψ̂†(x′, t′). The
operator U(t, t′) then brings us to time t, corresponding to the field ψ̂(x, t).
Finally we travel all the way up to +∞ through the action of U(+∞, t).

Let us now assume an equilibrium configuration at zero temperature. We
are thus evaluating the expectation value with respect to the ground state |GS〉
of H at t0 = −∞ (remember that the perturbation is absent at t0 = −∞, and

2 Here we are considering the case of fermionic operators, but the present formalism
applies to the bosonic case as well.

169



Appendix D. Keldysh contour formalism

we know the eigenstates of H). We have

G(x, t;x′, t′) =

= −i 〈GS(−∞)| Û(−∞,+∞)T [ψ̂(x, t)ψ̂†(x′, t′)Û(+∞,−∞)] |GS(−∞)〉 .
(D.37)

Now the crucial assumption comes. We assume that the perturbation is
adiabatically switched on and off, that is, the Hamiltonian is of the form
H = H + e−ε|t|V (t) with ε → 0. Under this condition, the adiabatic theo-
rem ensures that the system will stay in the ground state even at t → +∞,
acquiring at most a phase factor eiγ [96]. We can write

U(+∞,−∞) |GS(−∞)〉 = |GS(+∞)〉 = eiγ |GS(−∞)〉 , (D.38)

with eiγ = 〈GS(−∞)|GS(+∞)〉 = 〈GS(−∞)|U(+∞,−∞)|GS(−∞)〉. Fi-
nally, denoting |GS(−∞)〉 with |G0〉 for simplicity, we obtain

G(x, t;x′, t′) = −i〈G0| T [ψ̂(x, t)ψ̂†(x′, t′)Û(+∞,−∞)] |G0〉
〈G0|U(+∞,−∞)|G0〉

, (D.39)

that is a nice expression suitable for a perturbative expansion. We can now
apply Wick’s theorem to work out the Feynman diagrams allowed by the per-
turbation V (t).

This procedure seems very reasonable in high energy physics, where one
deals with unperturbed free particle states both at t0 = −∞ and t → +∞.
Perturbation acts only for intermediate times, when particles collide with each
other. However this picture immediately fails if we try to apply similar methods
to out-of-equilibrium configurations, as we can see from a fundamental exam-
ple. In the context of condensed matter physics, for instance, the simplest
non-equilibrium setup we may run into is the following: two tunnel-coupled
systems driven out of equilibrium with an external voltage (which is exactly the
kind of system we are inspecting in this thesis). Here the adiabatic switching
on seems to be reasonable, but the perturbation is never switched off. Usually
we are interested in a steady state solution for out-of-equilibrium systems, and
this means that we are looking for a solution where the perturbation is still
acting at t → +∞. It is clear that Eq. (D.38) does not hold anymore in this
regime. Moreover, the Gell-Mann and Low theorem holds only for the ground
state, while in condensed matter we often deals with a finite temperature,
and states other than the ground state may be involved in calculations. How
can we bypass these limitation? A clever solution was firstly pointed out by
J. Schwinger and L.V. Keldysh and will be developed in the next section [204,
205].
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D.3 Non-equilibrium Green’s functions: closed time
contour

Let us have a deeper look at Eq. (D.35). What does its intrinsic structure
suggest? We start from t0 = −∞ and evolve all the way up to t → +∞,
counting every field operator featuring in the Green’s function of interest.
Then, operator U(−∞,+∞) brings us back to t0 = −∞. Schwinger thus
proposed to introduce a new time-ordering operator TK whose action is defined
along the time contour cK extending from −∞ to +∞ and then back to −∞
(see Fig. D.1). The operator TK orders time variables along the contour cK, so
that times along the backward portion of cK are always greater (in the contour
sense) than times on the forward segment, independently of their real values.
We can now include U(−∞,+∞) under the new time-ordering operator and
write the Green’s function in Eq. (D.35) as

G(x, t;x′, t′) = −i
〈
TK[ψ̂(x, t)ψ̂†(x′, t′)S(−∞,−∞)]

〉
, (D.40)

with S(−∞,−∞) = TK exp
[
−i
∫
cK
dτV̂ (τ)

]
. We have recovered a good start-

ing point for a perturbative expansion even in the finite temperature case,
since now we can evaluate expectation values on statistical ensembles as

G(x, t;x′, t′) = −iTr
{
ρ(−∞)TK

[
ψ̂(x, t)ψ̂†(x′, t′)S(−∞,−∞)

]}
, (D.41)

with ρ(−∞) = Z−1e−βH the equilibrium density matrix in the far past (re-
member that the adiabatic switching on assumption still holds, and states in
the far past are at equilibrium!). One just needs to avoid any reference to the
asymptotic future, rewinding the time contour back to the past.

As shown in Fig. D.1, it is customary to split the time contour in two
branches, namely C+ and C−, accounting for the forward and backward evo-
lution respectively. One can then label each time variable with an index
η = {+,−} and write

Gη,η′(x, t;x′, t′) = G(x, tη;x′, t′
η′

) =

= −i
∑
η

〈
TK[ψ̂(x, tη)ψ̂†(x′, t′

η′
)e−iη

′′ ∫+∞
−∞ dτV̂ (τη

′′
)]
〉
. (D.42)

It is clear that the Green’s function (D.42) has now the structure of a 2 × 2
matrix. However, each entry of the matrix is related to the following real-time
Green’s functions:

G>(x, t;x′, t′) = −i
〈
ψ(x, t)ψ†(x′, t′)

〉
, (D.43a)

G<(x, t;x′, t′) = i
〈
ψ†(x′, t′)ψ(x, t)

〉
, (D.43b)

GT (x, t;x′, t′) = Θ(t− t′)G>(x, t;x′, t′) + Θ(t′ − t)G<(x, t;x′, t′), (D.43c)

GT̃ (x, t;x′, t′) = Θ(t′ − t)G>(x, t;x′, t′) + Θ(t− t′)G<(x, t;x′, t′). (D.43d)
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Figure D.1: Schwinger-Keldysh contour and time-ordering. Time vari-
ables are labeled with η = {+,−} according to the branch of the contour
they lie on (forward or backward). Accordingly, Green’s functions acquire
a 2× 2 matrix structure in the space of contour labels.

Indeed, when both time variables lie on C+ (that is, η = η′ = +) we recover
the usual time-ordered Green’s function GT , while η = η′ = − gives rise to
the anti-time-ordered function GT̃ , since time on C− flows from +∞ to −∞.
Mixed terms (η, η′) = (+,−) and (−,+) correspond, respectively, to the lesser
and greater Green’s function G< and G>, since TK automatically orders times
on C− ahead of times on C+. In a compact matrix form we can write

G(x, t;x′, t′) =

(
G++(x, t;x′, t′) G+−(x, t;x′, t′)
G−+(x, t;x′, t′) G−−(x, t;x′, t′)

)
=

=

(
GT (x, t;x′, t′) G<(x, t;x′, t′)

G>(x, t;x′, t′) GT̃ (x, t;x′, t′)

)
. (D.44)

As a final remark, we note that the majority of the Schwinger-Keldysh contour
is somewhat unnecessary. If we know that the system at the finite time t0 is
described by the equilibrium density matrix ρ(t0), we can simply write

G(x, t;x′, t′) = −i
〈
TK[ψ̂(x, t)ψ̂†(x′, t′)S(t0, t0)]

〉
, (D.45)

where the contour extends from t0 to max{t, t′} and then back to t0, as in
Fig. D.2. This is exact, since the evolution from max{t, t′} to +∞ and from
+∞ to max{t, t′} does not give any significant contribution (there are no
additional fields from max{t, t′} on).
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Figure D.2: Closed Schwinger-Keldysh contour.
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Appendix E
Bosonic correlation function

The present Appendix deals with the calculation of the bosonic correlation
function

GR/L(x, t) = 〈φR/L(x, t)φR/L(0, 0)− φ2
R/L(0, 0)〉, (E.1)

where field operators φR/L(x, t) are obtained from the chiral time evolution of
ΦR/L(x) given in Eq. (3.56) of the main text and read

φR/L(x, t) = i

√
2π

L

∑
k>0

e−ak/2√
k

[
e−ik(vt∓x)bR/L,k − eik(vt∓x)b†R/L,k

]
. (E.2)

The upper sign refers to the right-moving edge, while the lower sign is for the
left-moving mode. The free Hamiltonian for bosonic chiral fields has a linear
spectrum with velocity v,

H =
v

4π

∫
dx
[
(∂xφR)2 + (∂xφL)2

]
=
∑
k>0

vkb†R,kbR,k +
∑
k>0

vkb†L,kbL,k, (E.3)

and bosonic occupation numbers are thus distributed according to the Bose-
Einstein distribution function

〈b†R/L,kbR/L,k′〉 =
δk,k′

eβvk − 1
, (E.4)

with β = 1/θ the inverse temperature (and kB = 1). Note that we have
neglected terms ∼ 1/L in Eq. (E.3), since we are assuming an infinite edge.
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It’s easy to check that the following equalities hold:

〈φR/L(0, 0)φR/L(0, 0)〉 =
2π

L

∑
q>0

e−aq

q

(
2

eβvq − 1
+ 1

)
, (E.5)

〈φR/L(x, t)φR/L(0, 0)〉 =
2π

L

∑
q>0

e−aq

q

[
e−iq(vt∓x)

(
1

eβvq − 1
+ 1

)
+
eiq(vt∓x)

eβvq − 1

]
.

(E.6)

In the limit of infinite edge, L → ∞, we transform the sum into an integral
through the substitution

∑
q>0 →

∫∞
0

L
2π
dq and get

GR/L(x, t) =

∫ ∞
0

dq
e−aq

q

1

eβvq − 1

[
eβvqe−iq(vt∓x) + eiq(vt∓x) − (eβvq + 1)

]
.

(E.7)
We notice that space and time coordinates appear only through the chiral
combination vt ∓ x. Thus, we can write both the right and left moving cor-
relation functions in terms of a new function G(z) of one single variable. We
have GR/L(x, t) = G

(
t∓ x

v

)
, with G(z) given by

G(z) =

∫ ∞
0

dω

ω
e−ω/ωc

[
1

tanh βω/2
(cosωz − 1)− i sinωz

]
, (E.8)

where we introduced the high energy cutoff ωc = v
a
. It’s useful to isolate two

terms in G representing the zero temperature and finite temperature contribu-
tions, denoted with G(0) and G(β) respectively. They are given by

G(0)(z) =

∫ ∞
0

dω

ω
e−ω/ωc(e−iωz − 1), (E.9)

G(β)(z) =

∫ ∞
0

dω

ω
e−ω/ωc

(
1

tanh βω/2
− 1

)
(cosωz − 1). (E.10)

We observe that G(β) is indeed a finite temperature contribution, since it van-
ishes for θ → 0:

lim
θ→0

(
1

tanh βω/2
− 1

)
= lim

β→+∞

(
eβω/2 + e−βω/2

eβω/2 − e−βω/2 − 1

)
= 0. (E.11)

Consider now the zero-temperature contribution G(0). Writing the exponential
as a power series we obtain

G(0)(z) =

∫ ∞
0

dω e−ω/ωc

∞∑
n=1

(−iz)nωn−1

n!
=
∞∑
n=1

(−iωcz)n

n
= − ln(1 + iωcz),

(E.12)
where we resorted to the integral representation of the Gamma function,

Γ(x) =

∫ ∞
0

ux−1e−udu, (E.13)
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and to the Taylor series for the logarithm,

ln(1− x) = −
∞∑
n=1

xn

n
. (E.14)

The finite temperature contribution necessitates of some additional algebra.
As a first step, we re-elaborate G(β) as follows:

G(β)(z) =

∫ ∞
0

du
u−1

1− e−u
{

exp

[
−u
(

1 +
1

βωc

− iz

β

)]
+

+ exp

[
−u
(

1 +
1

βωc

+
iz

β

)]
− 2 exp

[
−u
(

1 +
1

βωc

)]}
. (E.15)

The latter expression corresponds to the limit

G(β)(z) = lim
s→0

Γ(s)

[
ζ

(
s, 1 +

1

βωc

− iz

β

)
+

+ζ

(
s, 1 +

1

βωc

+
iz

β

)
− 2ζ

(
s, 1 +

1

βωc

)]
, (E.16)

where we recognized the integral representation of the Hurwitz Zeta function,
given by [80]

ζ(s, q) =
1

Γ(s)

∫ ∞
0

us−1e−uq

1− e−u du. (E.17)

We then expand the functions Γ(s) and ζ(s, q) around s = 0. The leading
terms are

Γ(s) ≈ 1

s
, (E.18)

ζ(s, q) ≈ 1

2
− q +

(
ln Γ(q)− ln 2π

2

)
. (E.19)

Substituting into Eq. (E.16) we obtain

G(β)(z) = ln

[
Γ

(
1 +

1

βωc

− iz

β

)
Γ

(
1 +

1

βωc

+
iz

β

)]
− ln

[
Γ

(
1 +

1

βωc

)]2

.

(E.20)
From the integral representation of the Gamma function, Eq. (E.13), it’s im-
mediate to verify that the following property holds true:

Γ(x)Γ(x∗) = Γ(x)Γ∗(x) = |Γ(x)|2. (E.21)

Thus, we can write the finite temperature contribution G(β) in the compact
expression

G(β)(z) = ln

∣∣∣Γ(1 + 1
βωc
− iz

β

)∣∣∣2
Γ2
(

1 + 1
βωc

) . (E.22)
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Recasting together the two contributions in Eqs. (E.12) and (E.22), we obtain
the full expression for G. It reads

G(z) = ln

∣∣∣Γ(1 + 1
βωc
− iz

β

)∣∣∣2
Γ2
(

1 + 1
βωc

)
(1 + iωcz)

. (E.23)

Since ωc is the high-energy cutoff (and thus the largest energy scale involved
in any calculation), we will always work in the limit βωc � 1. In this regime
we can use the identity

|Γ(1 + iy)|2 =
πy

sinh(πy)
, y ∈ R, (E.24)

so that the bosonic correlation function at finite temperature finally takes the
form

G(z) = ln

[
πθz

sinh(πθz)

1

1 + iωcz

]
. (E.25)

In terms of the original right and left moving modes we have

GR/L(x, t) = G
(
t∓ x

v

)
= ln

{
πθ
(
t∓ x

v

)
sinh

[
πθ
(
t∓ x

v

)] 1

1 + iωc

(
t∓ x

v

)} . (E.26)

It’s evident from the above equation that correlation functions at x = 0 are
equal, namely GR(0, t) = GL(0, t) = G(t).
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Here we calculate the Fourier transform P̂g(E) of the function Pg(t) = egG(t),

and show some useful properties of P̂g(E). The Fourier transform is defined
as

P̂g(E) =

∫ +∞

−∞
dt eiEtPg(t), (F.1)

with inverse transform given by

Pg(t) =
1

2π

∫ +∞

−∞
dE e−iEtP̂g(E). (F.2)

The function Pg(t), which is essentially the Green’s function for electron and
quasiparticle fields (depending on the value of the parameter g), is given by

Pg(t) =


∣∣∣Γ(1 + 1

βωc
− it

β

)∣∣∣2
Γ2
(

1 + 1
βωc

)
(1 + iωct)


g

. (F.3)

First, it is convenient to rewrite the argument of Pg(t) as∣∣∣Γ(1 + 1
βωc
− it

β

)∣∣∣2
Γ2
(

1 + 1
βωc

)
(1 + iωct)

=
Γ
(

1
βωc

+ it
β

)
Γ
(

1 + 1
βωc
− it

β

)
βωcΓ2

(
1 + 1

βωc

) , (F.4)

thanks to the recurrence relation Γ(1 + z) = zΓ(z) of the Gamma function
[80]. We then make the change of variable t′ = t − iβ/2 in the definition of
P̂g(E), Eq. (F.1). Let us notice that this would generate an imaginary part in

the limits of the integral, which now reads
∫ +∞−iβ/2
−∞−iβ/2 dt

′ . . . . This is however
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identical to a simple integration along the real axis, as one can readily verify
by choosing a suitable contour in the complex plane and exploiting the Cauchy
theorem [109–111]. We obtain

P̂g(E) =

∫ +∞

−∞
dt′ eiEt

′
eEβ/2

Γ
(

1
2

+ 1
βωc

+ it′
β

)
Γ
(

1
2

+ 1
βωc
− it′

β

)
βωcΓ2

(
1 + 1

βωc

)
g , (F.5)

which in the limit βωc � 1 becomes

P̂g(E) =

∫ +∞

−∞
dt eiEteEβ/2

Γ
(

1
2

+ it
β

)
Γ
(

1
2
− it

β

)
βωc

g . (F.6)

We now note that the Gamma function satisfies the property [80]

Γ

(
1

2
+ iy

)
Γ

(
1

2
− iy

)
=

π

coshπy
, (F.7)

which allows to rewrite P̂g(E) as

P̂g(E) =

∫ +∞

−∞
dt eβE/2(cosEt+ i sinEt)

[
π

βωc cosh(πt/β)

]g
. (F.8)

Both cos(Et) and cosh(πt/β) are even functions of the variable t, while sin(Et)
is odd. Thus, we are only left with

P̂g(E) = 2eβE/2
∫ +∞

0

dt cosEt

[
π

βωc cosh(πt/β)

]g
. (F.9)

We can perform the integral in Eq. (F.9) exploiting two changes of variable,
in such a way to connect Eq. (F.9) to the Euler Beta function B(z, w). An
integral representation of B(z, w) is given by [80]

B(z, w) =

∫ 1

0

dt tz−1(1− t)w−1. (F.10)

First, we introduce the new variable z = e−πt/β, by which Eq. (F.9) becomes

P̂g(E) =
2

ωc

eβE/2
(

2π

βωc

)g−1 ∫ 1

0

dz zg−1 z
−iEβ/π + ziEβ/π

(1 + z2)g
. (F.11)

Then, we perform the second substitution s = z2

z2+1
(i.e. 1 − s = 1

z2+1
) which

leads to

P̂g(E) =

(
2π

βωc

)g−1
eβE/2

ωc

∫ 1/2

0

ds×

×
[
s
g
2
−1+iEβ

2π (1− s) g2−1−iEβ
2π + s

g
2
−1−iEβ

2π (1− s) g2−1+iEβ
2π

]
. (F.12)
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F.1. Useful properties

The last equation is very similar to the integral representation of the Euler
Beta function, Eq. (F.10). We only need to substitute the variable s in the
second term of Eq. (F.12) with s′ = 1− s. We finally get

P̂g(E) =

(
2π

βωc

)g−1
eβE/2

ωc

∫ 1

0

ds s
g
2

+iEβ
2π
−1(1− s) g2−iEβ2π −1 =

=

(
2π

βωc

)g−1
eβE/2

ωc

B
(
g

2
+
iEβ

2π
,
g

2
− iEβ

2π

)
. (F.13)

We notice that the order of the arguments z and w in the Beta function B(z, w)
is irrelevant, as B(z, w) = B(w, z). One can easily check this starting from Eq.
(F.10) and introducing again the variable s′ = 1− s. Moreover, B(z, w) has a
simple representation in terms of the Gamma function, namely

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (F.14)

Then, P̂g(E) can be written in the simpler form

P̂g(E) =

(
2π

βωc

)g−1
eβE/2

Γ(g)ωc

∣∣∣∣Γ(g2 +
iEβ

2π

)∣∣∣∣2 . (F.15)

The detailed balance relation is now manifest, since one immediately finds
P̂g(−E) = e−βEP̂g(E) from Eq. (F.15). However, one should notice that we
resorted to the limit βωc � 1 at the beginning of the calculation. For com-
pleteness we will also give a general proof of the detailed balance relation in
Sec. F.2, regardless of the value of βωc. We also quote the zero temperature
limit of Eq. (F.15), which is readily obtained from the asymptotic expansion
|Γ(x + iy)| ∼

√
2π|y|x−1/2e−π|y|/2, valid for y → ±∞ [80]. For θ → 0 (that is,

β →∞) the function P̂g(E) reads

P̂g(E) =
2π

Γ(g)ωgc
Eg−1Θ(E). (F.16)

Finally, it’s useful to notice that P̂g(E) is linked to the Fermi distribution
multiplied by an effective tunneling density of states. Indeed, introducing
nF(E) = 1/(eβE + 1), we have P̂g(E) = Dg(E)nF(−E) with

Dg(E) =
(2π)g

Γ(g)ωc

(
θ

ωc

)g−1
∣∣Γ (g

2
− i E

2πθ

)∣∣2∣∣Γ (1
2
− i E

2πθ

)∣∣2 . (F.17)

F.1 Useful properties

Here we demonstrate some useful properties of P̂g(E) used in the main text.
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Prop. 1 ∫
dE

2π
P̂g1(E)P̂g2(ω − E) = P̂g1+g2(ω). (F.18)

This is basically the energy-space counterpart of Pg1(t)Pg2(t) = Pg1+g2(t), that
follows directly from the definition of Pg(t) = egG(t). The proof is given here
below:∫

dE

2π
P̂g1(E)P̂g2(ω − E) =

∫
dE

2π

∫
dt

∫
dt′eiEtei(ω−E)t′Pg1(t)Pg2(t

′) =

=

∫
dt eiωtPg1(t)Pg2(t) =

=

∫
dt eiωtPg1+g2(t) =

= P̂g1+g2(ω). (F.19)

Prop. 2 ∫
dE

2π
EP̂g1(E)P̂g2(ω − E) =

g1

g1 + g2

ωP̂g1+g2(ω). (F.20)

This second property comes from [∂tPg1(t)]Pg2(t) = g1
g1+g2

∂tPg1+g2(t). Indeed,

since the Fourier transform of ∂tPg(t) is −iEP̂g(E), we have∫
dE

2π
EP̂g1(E)P̂g2(ω − E) = i

∫
dE

2π

∫
dt

∫
dt′eiEtei(ω−E)t′ [∂tPg1(t)]Pg2(t

′) =

= i

∫
dt eiωt[∂tPg1(t)]Pg2(t) =

= i

∫
dt eiωt

g1

g1 + g2

∂tPg1+g2(t) =

=
g1

g1 + g2

ωP̂g1+g2(ω). (F.21)

Prop. 3 and Prop. 4.∫
dE

2π
P̂g1

(
E +

ω

2

)
P̂g2

(ω
2
− E

)
= P̂g1+g2(ω)∫

dE

2π
EP̂g1

(
E +

ω

2

)
P̂g2

(ω
2
− E

)
=
ω

2

g1 − g2

g1 + g2

P̂g1+g2(ω).

(F.22)

(F.23)

They both follow from the substitution E ′ = E − ω/2 in Prop. 1 and Prop. 2.
Prop. 5∫ +∞

−∞

dE

2π
E2P̂g1(E)P̂g2(ω − E) =

P̂g1+g2(X)

1 + g1 + g2

[
g1g2π

2θ2 +
g1(1 + g1)

g1 + g2

ω2

]
.

(F.24)
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This can be proved using the Barnes’ Beta Integral [80]∫ +∞

−∞

dt

2π
Γ(a+it)Γ(b+it)Γ(c−it)Γ(d−it) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
.

(F.25)
In particular, we massage Eq. (F.24) a little bit in such a way to match the four
Gamma functions in the Barnes’ Beta Integral. This can be done by writing
E2 as

E2 = (2πθ)2

[(g1

2

)2

−
(
i
E

2πθ

)2

−
(g1

2

)2
]

=

= (2πθ)2

[(
g1

2
+ i

E

2πθ

)(
g1

2
− i E

2πθ

)
− g2

1

4

]
. (F.26)

We also exploit the recurrence formula Γ(1 + z) = zΓ(z) and Prop. 1 to obtain∫ +∞

−∞

dE

2π
E2P̂g1(E)P̂g2(ω − E) =

=

(
2πθ

ωc

)g1+g2 eω/2θ

Γ(g1)Γ(g2)

∫
dE

2π
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2
+ i

E

2πθ
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2
+ i

ω − E
2πθ

)∣∣∣∣2 +

− g2
1

4
(2πθ)2P̂g1+g2(ω). (F.27)

Using Eq. (F.25) with a = c = 1 + g1
2

and b = d∗ = g2
2
− i ω

2πθ
we now get∫ +∞

−∞

dE

2π
E2P̂g1(E)P̂g2(ω − E) =

= P̂g1+g2(ω)(2πθ)2

{
(1 + g1)g1

(1 + g1 + g2)(g1 + g2)

[(
g1 + g2

2

)2

+
( ω

2πθ
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]
− g2

1

4

}
=

=
P̂g1+g2(ω)

1 + g1 + g2

[
ω2 (1 + g1)g1

g1 + g2

+ π2θ2g1g2

]
. (F.28)

F.2 Detailed balance from general considerations

Here we demonstrate the detailed balance relation relying on symmetry prop-
erties of correlation function in the imaginary time domain. Firstly, we recall
that P̂g(E) is defined as

P̂g(E) =

∫ +∞

−∞
dt eiEtegG(t), (F.29)

where g is a real parameter and G is the bosonic correlation function G(t) =
〈φ(0, t)φ(0, 0)−φ2(0, 0)〉 (we have dropped the label R/L since it’s unimportant
for x = 0). The latter satisfies the property

G(−t) = G(t− iβ), (F.30)
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which is readily demonstrated. Indeed, invariance under time translations
implies that

G(−t) = 〈φ(0,−t)φ(0, 0)− φ2(0, 0)〉 = 〈φ(0, 0)φ(0, t)− φ2(0, 0)〉. (F.31)

Taking into account the term explicitly dependent on t and performing the
thermal average we have

〈φ(0, 0)φ(0, t)〉 =
1

Z
Tr[e−βHφ(0, 0)φ(0, t)] =

=
1

Z
Tr[eiHiβφ(0, 0)e−iHiβeiHiβφ(0, t)]. (F.32)

The operator eiHiβφ(0, 0)e−iHiβ is equivalent to the time evolution of φ(0, 0)
at the imaginary time t̃ = iβ. Recalling the cyclic property of the trace we get

〈φ(0,−t)φ(0, 0)〉 =
1

Z
Tr[e−βHφ(0, t)φ(0, iβ)] =

= 〈φ(0, t)φ(0, iβ)〉 = 〈φ(0, t− iβ)φ(0, 0)〉, (F.33)

thus proving the validity of Eq. (F.30). Let us now consider the function
P̂g(−E). Thanks to Eq. (F.30) we have

P̂g(−E) =

∫ +∞

−∞
dt e−iEtegG(t) =

∫ +∞

−∞
dt eiEtegG(t−iβ). (F.34)

We now make the change of variable t′ = t − iβ, which transforms the last
equation into

P̂g(−E) =

∫ +∞−iβ

−∞−iβ
dt eiEte−βEegG(t). (F.35)

As discussed previously, shifting the integration limits into the complex plane
has no effect on the final result. The function P̂g(−E) thus becomes

P̂g(−E) = e−βE
∫ +∞

−∞
dt eiEtegG(t) = e−βEP̂g(E). (F.36)

Equation (F.36) is the detailed balance relation.
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Acronyms

2DEG Two-Dimensional Electron Gas.

DOS Density Of States.

EQO Electron Quantum Optics.

FQH Fractional Quantum Hall.

HBT Hanbury Brown-Twiss.

HOM Hong-Ou-Mandel.

PASN Photoassisted Shot Noise.

QH Quantum Hall.

QPC Quantum Point Contact.
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[200] M. Moskalets, G. Haack, and M. Büttiker, “Single-electron source: Adi-
abatic versus nonadiabatic emission”, Phys. Rev. B 87, 125429 (2013).

[201] I. S. Gradshteyn, and I. M. Ryzhik, Table of integrals, series, and prod-
ucts, 7th ed. (Academic Press, San Diego, 2007).

[202] A. Kamenev, and A. Levchenko, “Keldysh technique and non-linear σ-
model: basic principles and applications”, Adv. Phys. 58, 197 (2009).

[203] H. Bruus, and K. Flensberg, Many-Body Quantum Theory in Con-
densed Matter Physics: An Introduction (Oxford University Press, Ox-
ford, 2004).

[204] J. Schwinger, “Brownian Motion of a Quantum Oscillator”, J. Math.
Phys. 2, 407 (1961).

[205] L. V. Keldysh, “Diagram technique for nonequilibrium processes”, Sov.
Phys. JETP 20, 1018 (1965), [Russian original: Zh. Eksp. Teor. Fiz. 47,
1515 (1964)].

200

http://dx.doi.org/10.1103/PhysRevLett.113.166403
http://dx.doi.org/10.1103/PhysRevLett.113.166403
http://dx.doi.org/10.1103/PhysRevLett.112.046802
http://dx.doi.org/10.1103/PhysRevB.87.125429
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727
http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list

	Introduction
	Noise in mesoscopic physics
	``The noise is the signal''
	Thermal noise
	Shot noise
	Partition noise
	Two particle interferometry

	An introduction to the scattering matrix formalism
	Experiments on shot noise
	Tunnel junctions
	Conductance and noise of a quantum point contact

	Photoassisted shot noise
	Tien-Gordon model
	Floquet scattering matrix


	Electron quantum optics
	The quantum Hall effect
	Berry phase and topology
	Edge states

	Electron quantum optics
	Single-electron sources
	The leviton
	Experimental evidence

	Towards electron quantum optics at fractional filling factor
	The fractional quantum Hall effect
	Measuring a fractional charge
	Anyons and fractional statistics
	Electron quantum optics with fractional states


	Minimal excitations at fractional filling factor
	Edge state theory of the FQHE
	Bosonization
	Voltage pulse sources and equations of motion
	Infinitely long voltage contacts
	Finite-length contacts

	Tunneling at the QPC
	Current
	Noise
	Zero temperature expression
	Current and noise due to a dc bias

	Excess noise and minimal excitations
	Particle-hole excitations due to voltage pulses
	Minimal excitation states

	Photoassisted spectroscopy
	Results


	Minimal excitations for heat transport
	Heat transport in the quantum Hall regime
	Model
	Heat current operator in the chiral Luttinger liquid
	Averaged backscattered heat current
	Zero-frequency heat and mixed noise
	Zero temperature

	Excess signals and noiseless drive
	From Schottky formula to the ac regime
	Physical content of the excess signals

	Multiple Lorentzian pulses

	Hong-Ou-Mandel interferometry
	Shot noise in a two-sources interferometer
	Hong-Ou-Mandel ratio

	Results
	Multiple leviton collisions
	Asymmetric collisions


	Conclusions and perspectives
	Appendices
	Photoassisted coefficients
	Single source
	Cosine wave
	Square wave
	Lorentzian wave
	Leviton

	Two sources: Hong-Ou-Mandel setup
	Multiple pulses
	Useful sum rule for the photoassisted coefficients

	Bosonic commutators and point splitting
	Bosonic commutators
	Bosonization at integer filling factor using point splitting
	Particle density
	Hamiltonian density


	Baker-Campbell-Hausdorff theorem
	Theorem
	Useful identities

	Keldysh contour formalism
	Time evolution pictures
	Schrödinger picture
	Heisenberg picture
	Interaction picture

	Equilibrium Green's functions
	Non-equilibrium Green's functions: closed time contour

	Bosonic correlation function
	Fourier transform of the Green's function
	Useful properties
	Detailed balance from general considerations

	Acronyms
	Bibliography

