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Abstract 

 

Of the 430+ extant species of Gyrodactylus, ectoparasitic monogenetic flukes of 

aquatic vertebrates, Gyrodactylus salaris Malmberg, 1957 is arguably the most well-

known. Following the introduction of this species into Norway in the 1970s with 

consignments of infected Atlantic salmon smolts, Salmo salar L., this species has had a 

devastating impact on the Norwegian Atlantic salmon population, decimating wild stocks 

in over 40 rivers. Gyrodactylus salaris is the only OIE (Office International des 

Epizooties) listed parasitic pathogen of fish and has been reported from 19 countries across 

Europe, though many of these records require confirmation. The UK, Ireland and some 

selected watersheds in Finland are currently recognised as G. salaris-free states; however, 

the threat that this notifiable parasite poses to the salmon industry in the UK and Ireland is 

of national concern. Current British contingency plans are based on the assumption that if 

G. salaris were to be introduced, the parasite would follow similar dynamics to those on 

salmonid stocks from across Scandinavia, i.e. that Atlantic strains of Atlantic salmon 

would be highly susceptible to infection, with mortalities resulting; that brown trout, Salmo 

trutta fario L., would be resistant and would lose their infection in a relatively short period 

of time; and that grayling, Thymallus thymallus (L.), would also be resistant to infection, 

but would carry parasites, at a low level, for up to 143 days.  

Two of the objectives of this study were to confirm the current distribution of G. 

salaris across Europe, and then, to investigate the relative susceptibility of British 

salmonids to G. salaris, to determine whether they would follow a similar pattern of 

infection to their Scandinavian counterparts or whether, given their isolation since the last 

glaciation and potential genetic differences, they would exhibit different responses. 
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It has been almost six years since the distribution of G. salaris across Europe was 

last evaluated. Some of the European states identified as being G. salaris-positive, 

however, are ascribed this status based on misidentifications, on partial data resulting from 

either morphological or molecular tests, or according to records that have not been 

revisited. Additional Gyrodactylus material from selected salmonids was obtained from 

several countries to contribute to current understanding regarding the distribution of G. 

salaris across Europe. From the work conducted in the study, G. salaris is reported from 

Italy for the first time, alongside three other species, and appears to occur extensively 

throughout the central region without causing significant mortalities to their rainbow trout, 

Oncorhynchus mykiss (Walbaum), hosts. The analysis of archive material from G. salaris-

positive farms would suggest that G. salaris has been in the country for at least 12 years. 

Material obtained from rainbow trout from Finland and Germany was confirmed as G. 

salaris supporting existing data for these countries. No specimens of G. salaris, however, 

were found in the additional Gyrodactylus material obtained from Portuguese and Spanish 

rainbow trout, only Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 

1999, a morphologically similar species was found. Gyrodactylus salaris is now reported 

from 23 out of ~50 recognised states throughout Europe, only 17 of these however, have 

been confirmed by either morphology or by an appropriate molecular test, and only ten of 

these records have been confirmed by a combination of both methods. 

To assess the susceptibility of English and Welsh salmonids to G. salaris, a number 

of salmonid stocks of wild origin, were flown to the Norwegian Veterinary Institute (NVI) 

in Oslo, where they were experimentally challenged with G. salaris. Atlantic salmon from 

the Welsh River Dee, S. trutta fario from the English River Tyne and T. thymallus from the 

English River Nidd, raised from wild stock in government hatcheries, were flown out and 

subsequently challenged with G. salaris haplotype A. After acclimation, each fish was 

infected with ~50–70 G. salaris and marked, so that parasite numbers on individual fish 
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could be followed. The dynamics on individual fish were followed against a control 

(Lierelva Atlantic salmon). The experiment found that the number of G. salaris on S. salar 

from the River Dee continued to rise exponentially to a mean intensity (m.i.) of ~3851 G. 

salaris fish
-1

 (day 40 post-infection). These salmon were highly susceptible, more so than 

the Norwegian salmon control (m.i. ~1989 G. salaris fish
-1

 d40 post-infection) and were 

unable to regulate parasite numbers. The S. trutta fario and T. thymallus populations, 

although initially susceptible, were able to control and reduce parasite burdens after 12 

(m.i. ~146 G. salaris fish
-1

) and 19 (m.i. ~253 G. salaris fish
-1

) days, respectively when 

peak infections were seen. Although the latter two hosts were able to limit their G. salaris 

numbers, both hosts carried infections for up to 110 days (i.e. when the experiment was 

terminated). The ability of S. trutta fario and T. thymallus to carry an infection for long 

periods increases the window of exposure and the potential transfer of G. salaris to other 

susceptible hosts. The potential role that brown trout may play in the transmission and 

spread of G. salaris in the event of an outbreak, needs to be considered carefully, as well as 

the interpretation of the term “resistant” which is commonly used when referring to brown 

trout’s susceptibility to G. salaris. The current British surveillance programmes for G. 

salaris are focused on the screening of Atlantic salmon and on the monitoring of the 

rainbow trout movements. The findings from this study demonstrate that G. salaris can 

persist on brown trout for long periods, and suggest that brown trout sites which overlap 

with Atlantic salmon or rainbow trout sites are also included within surveillance 

programmes and that the role that brown trout could play in disseminating infections needs 

to be factored into contingency/management plans. 

 Throughout the course of the study, a number of parasite samples were sent to the 

Aquatic Parasitology Laboratory at Stirling for evaluation. Some of these samples 

represented Gyrodactylus material that were associated with fish mortalities, but the 

species of Gyrodactylus responsible appeared to be new to science. A further aspect of this 
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study was, therefore, to investigate these Gyrodactylus related mortalities in aquaculture 

stock and to describe the species found in each case, which may represent emerging 

pathogens. The two new species, Gyrodactylus orecchiae Paladini, Cable, Fioravanti, 

Faria, Di Cave et Shinn, 2009 and Gyrodactylus longipes Paladini, Hansen, Fioravanti et 

Shinn, 2011 on farmed gilthead seabream, Sparus aurata L., were collected from several 

Mediterranean farms. The finding of G. orecchiae in Albania and Croatia was associated 

with 2–10% mortality of juvenile stock and represents the first species of Gyrodactylus to 

be formally described from S. aurata. Subsequently, G. longipes was found in Bosnia-

Herzegovina and Italy, and at the Italian farm site, it occurred as a mixed infection with G. 

orecchiae, but these infections did not appear to result in any loss of stock. Unconfirmed 

farm reports from this latter site, however, suggest that a 5–10% mortality of juvenile S. 

aurata was also caused by an infection of Gyrodactylus, which is suspected to be G. 

longipes. Additional samples of Gyrodactylus from a gilthead seabream farm located in the 

north of France have been morphologically identified as G. longipes, extending the 

geographical distribution of this potentially pathogenic species to three countries and three 

different coasts.  

In addition to these samples, some specimens of Gyrodactylus from a Mexican 

population of rainbow trout were sent for evaluation. These latter specimens were later 

determined to be a new morphological isolate/strain of Gyrodactylus salmonis (Yin et 

Sproston, 1948), a notable pathogen of salmonids throughout North America. The current 

material was of particular interest as it extends the current geographic range of this parasite 

from Canada and the USA to the south-eastern region of Mexico. This new Mexican 

isolate was genetically identical with G. salmonis from Canada and USA, although small 

morphological differences were evident in the marginal hook sickle shape, which allows to 

discriminate between the two strains. The results from this study are important as they 

reflect a similar situation in Europe with G. salaris and Gyrodactylus thymalli Žitňan, 
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1960, two morphological different but genetically similar species. Discriminating G. 

salaris from other species of Gyrodactylus infecting salmonids is difficult and, according 

to OIE, the identification should be based on a combination of data resulting from 

morphological and molecular approaches. 

 The impact of Gyrodactylus salaris in Norway currently costs £38 million p.a., 

including loss of revenue from tourism and angling restrictions, and also the cost of on-

going surveillance programmes and river treatments. The infection in certain rivers is 

removed through the addition of either 100 ppb biocide rotenone, which kills all the fish 

that are host to the parasite, or by a 10–14 day-treatment with 100 µg L
-1

 aluminium 

sulfate, which removes the parasite but does not kill its salmon host. If G. salaris were to 

enter the UK, it is unlikely that either of these compounds would be used because of the 

human health concerns (i.e. potential links to Parkinson’s and Alzheimer’s diseases) linked 

to their use. There are, however, very few compounds that could be used as alternatives for 

the control of wild infections, and there is little research investigating possible 

replacements. To begin exploring alternatives, a minor component of the study was to 

explore the effectiveness of two compounds: bronopol (2-bromo-2-nitropropane-1,3-diol) - 

a broad spectrum disinfectant - and tannic acid - a natural polyphenol that is released from 

the breakdown of plant material. The evaluation of bronopol was conducted against two 

strains of G. salaris from Atlantic salmon and on a single population of Gyrodactylus 

arcuatus Bychowsky, 1933 from three-spined sticklebacks, Gasterosteus aculeatus 

aculeatus L., as a continuous exposure and for 1 hour only. The results showed that there 

was a significant increase in the mortality rate of G. salaris as the dose of bronopol 

increased, but as time progressed, the influence of dose on mortality decreased. Bronopol 

had a statistically significant (p<0.001) greater effect on G. salaris than it did on G. 

arcuatus. The analysis suggested that the 1 hour-LC50 for G. salaris was ~384 ppm 

bronopol, while that needed to kill 50% of G. arcuatus within a 1 hour window of 
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exposure was ~810 ppm bronopol. The trial with tannic acid represented a preliminary 

assessment and its effects as a continuous exposure and as a 10 minute treatment on G. 

salaris only were determined. The effect of tannic acid caused the tegument of G. salaris 

to lift away and the 1 hour-LC50 for tannic acid was <100 ppm although lower doses 

administered over long periods of time (i.e. 10–14 days as is currently used for aluminium 

sulfate) may have greater impacts on the survival of the parasite population. While these 

results demonstrate that bronopol could be used to control infections of G. salaris in 

confined aquaria, this does not mean that this advocates its use in river systems, as there 

are a plethora of logistic, economic and environmental considerations to take into account. 

The study does, however, take important steps towards investigating alternative control 

agents for use in the event of an outbreak, and both these products are worthy of further 

evaluation.  
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Chapter 1 

 

 

General introduction 

 

 

Gyrodactylus arcuatus Bychowsky, 1933 and Apiosoma sp. on the skin of a three-spined stickleback, 

Gasterosteus aculeatus aculeatus L. [original image]. 
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1.1. Genus Gyrodactylus von Nordmann, 1832 

 

1.1.1. Biology and reproduction 

Monogeneans of the genus Gyrodactylus von Nordmann, 1832 are small (<1mm), 

viviparous, polyembryonic ectoparasites. The latter feature has earned them the colloquial 

label “Matryoshka dolls” or “Russian dolls” (dolls of decreasing sizes placed one inside 

the other) for their singular method of reproduction (Bakke et al., 2007). The first embryo 

contains in its uterus another embryo, which includes a third embryo, sometimes reaching 

up to 4 generations, one inside the other (see Fig. 1.1). This rare hyperviviparity and the 

ability to alternate between sexual and asexual modes of reproduction, allow for 

exponential increases in the size of the parasite population in relatively short periods of 

time (Cable & Harris, 2002).  

 

Figure 1.1. Light micrograph of Gyrodactylus salaris Malmberg, 1957 collected from a rainbow trout 

Oncorhynchus mykiss (Walbaum) reared in Italy, showing the hooks of the first and second embryos, one 

inside the other [original image]. 

 



Giuseppe Paladini                                                                                              Chapter 1 

 

3 

 

 

Figure 1.2. Light micrographs of Gyrodactylus longipes Paladini, Hansen, Fioravanti et Shinn, 2011, 

illustrating the division between the anterior part of the body (light yellow), which includes the prohaptor, 

and the posterior part of the body (light blue), which includes the opisthaptor. A: Pregnant G. longipes with 

daughter’s hooks visible in the uterus and no MCO; B: A specimen of G. longipes having recently given birth 

with an empty uterus and an MCO, which appears after the first birth, visible. Abbreviations: ag: anterior 

glands; cl: cephalic lobes; eb: excretory bladders; ic: intestinal crura; MCO: male copulatory organ; ph: 

pharynx; u: uterus [original images]. 

 

The first-born offspring develops at the centre of an immature embryo cluster in the 

parent’s uterus, which suggests that the first born daughter arises asexually (Cable & 

Harris, 2002). The second-born daughter develops from oocytes by parthenogenesis, whilst 

subsequent daughters develop either sexually or parthenogenetically (Harris, 1993), all of 

which are morphologically indistinguishable from their parent, both in size and in shape 

(Cable & Harris, 2002). Gyrodactylids are considered protogynous hermaphrodites, i.e. 

they are born “female” and following the first birth event develop visible external features 
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associated with the male reproductive system. The female reproductive system is a 

relatively simple one, in which gyrodactylids do not possess vaginae but in which cross-

fertilisation occurs through tegumental impregnation of sperm (Cable & Harris, 2002). 

 

Figure 1.3. Light micrographs of Ieredactylus rivuli Schelkle, Paladini, Shinn, King, Johnson, van 

Oosterhout, Mohammed et Cable, 2011 (Monogenea, Gyrodactylidae), a genus of viviparous flukes closely 

related to Gyrodactylus, showing (A) the anterior and posterior bulbs of the pharynx, and the male copulatory 

organ (MCO) connected to the seminal vesicle. Image (B) shows the MCO and associated seminal vesicle at 

higher magnification [original images]. 

 

 

Figure 1.4. Light micrographs of (A) Ieredactylus rivuli Schelkle, Paladini, Shinn, King, Johnson, van 

Oosterhout, Mohammed et Cable, 2011 (Monogenea, Gyrodactylidae) showing the male copulatory organ 

(MCO) in formation, and (B) Gyrodactylus salaris Malmberg, 1957 illustrating the presence of more than 

one testis [original images]. 
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Figure 1.5. Scanning electron micrographs (SEM) of the anterior region of Gyrodactylus salaris Malmberg, 

1957. A-B: details of the protruded pharynx (ph), possessing 8 processes, and the birth pore (bp); C-D: the 

male copulatory organ (MCO) bulb showing its aperture and a raised rim marking its periphery; this is the 

first time that SEMs of the MCO have been presented in the scientific literature; E: Gyrodactylus possesses a 

branched excretory system of ducts and flame cells that, in some species, terminate in bladders, but in all 

species empty onto the dorsal body surface via two excretory pores (ep); F: the prohaptor consists of two 

cephalic lobes, each equipped with a spike sensillum (ss) and a large number of elongated sensilla (es) and 

sensory pits constituting the sensory apparatus [original images]. 
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The male reproductive system is located in the anterior portion of the body (Fig. 1.2) 

and consists of an anterior seminal vesicle connected to the male copulatory organ (MCO) 

(Fig. 1.3), and of one or more posteriorly positioned testes (Fig. 1.4; Malmberg, 1957; 

Kritsky, 1971). The MCO is not present on new-born parasites, but is evident after the first 

birth event and becomes fully functional when the second embryo begins to develop 

(Harris, 1985). The MCO is a spherical muscular bulb armed with one principal hook used 

to penetrate the tegument of the partner, and several smaller surrounding spines, which 

serve to hold the MCO bulb in position during the process of fertilisation (Harris, 1993). A 

rim marking the external periphery of the MCO (Fig. 1.5C, D) may ensure a tight seal 

between mating partners and promote the efficient transfer of sperm. 

 

1.1.2. Life-cycle and transmission 

Species of Gyrodactylus are known to colonise a vast array of marine, brackish and 

freshwater hosts, making this genus one of the most commonly encountered groups of 

parasites (Williams & Jones, 1994). 

The life-cycle of Gyrodactylus is simple and direct (see Fig. 1.6): there is no specific 

transmission stage and the infection of new hosts occurs through a variety of different 

mechanisms. Once the parasite gives birth, the new-born attaches directly to the same host. 

After a period of feeding and/or subsequent birth events, the parasite may then transfer, by 

direct skin-to-skin (or fin) contact, to a new host. According to Bakke et al. (2002), 

transmission does not only occur between living hosts, but also by transfer from dead hosts 

and of those parasites attached to inorganic substrates. The transmission of Gyrodactylus 

salaris Malmberg, 1957 to Atlantic salmon, Salmo salar L., by detached parasites drifting 

in the water column has been demonstrated by Soleng et al. (1999), while the transfer 

between hosts by cannibalism and predation has been also suggested (Malmberg, 1973; 

Harris & Tinsley, 1987; El-Naggar et al., 2006). The re-attachment of detached parasites 
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from the substrate by water currents generated by the movement of the fish’s fin has also 

been demonstrated (Grano-Maldonado, 2012). 

 

Figure 1.6. Schematic diagram of the life-cycle of Gyrodactylus von Nordmann, 1832  

[original drawings]. 

 

1.1.3. Host specificity 

The term “host specificity” in parasitology should be considered with some caution 

and perhaps replaced with a more suitable term, such as “host preference” or “host range”, 

given that not all fish species have been tested against each and every parasite species. A 

parasite record typically indicates the preference for a host within a community. The 

current usage of the term “host specificity” does not, unfortunately, consider the infection 

potential of a parasite under all environmental conditions that it can be found and the hosts 

it could potentially encounter. The term “host specificity”, however, will be used in the 
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current thesis until a time when further studies are carried out to support the proposed 

change in terminology. 

Since the description of the first species (i.e. Gyrodactylus elegans von Nordmann, 

1832) and the erection of the genus, over 400 species have been subsequently described. 

Although the last review of species by Harris et al. (2004) listed 409 species, more than 50 

new species have since been discovered, making Gyrodactylus one of the largest genera 

within the class Monogenea Carus, 1863. The description of new species has been 

facilitated by a number of new methodologies; notably advancements in molecular 

technologies have helped in the characterisation of new strains (e.g. the haplotypes of G. 

salaris detailed by Ziętara & Lumme, 2002 and Hansen et al., 2003), but also in the 

discovery of cryptic species (i.e. distinct species but morphologically almost identical) 

such as Gyrodactylus ulinganisus García-Vásquez, Hansen, Christison, Bron et Shinn, 

2011 (see García-Vásquez et al., 2011). 

The genus Gyrodactylus is largely host specific, with the hosts listed in Harris et al. 

(2004) infecting ~200 teleosts (Bakke et al., 2002) and a small number of amphibian hosts, 

i.e. Gyrodactylus ambystomae Mizelle, Kritsky et McDougal, 1969 from Ambystoma 

macrodactylum Baird (see Mizelle et al., 1969); Gyrodactylus arcuatus Bychowsky, 1933 

from Hyla arborea L. (see Volgar-Pastukhova, 1959; Vojtkova, 1989), which probably 

represents an accidental host transfer (Prudhoe & Bray, 1982); Gyrodactylus aurorae 

Mizelle, Kritsky et McDougal, 1969 from Rana aurora aurora Baird et Girard (see 

Mizelle et al., 1969); Gyrodactylus catesbeianae Wootton, Ryan, Demaree et Critchfield, 

1993 and Gyrodactylus jennyae Paetow, Cone, Huyse, McLaughlin et Marcogliese, 2009, 

both from Rana catesbeiana Shaw (see Wootton et al., 1993; Paetow et al., 2009); and 

Gyrodactylus ensatus Mizelle, Kritsky et Bury, 1968 from Dicamptodon ensatus 

Eschscholtz (see Mizelle et al., 1968); plus a number of unidentified species (Paetow et al., 

2009).  
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Given that there are an estimated ~24,000 teleost species, it has been suggested by 

Bakke et al. (2007) that there could be as many as ~20,000 species of Gyrodactylus in the 

world. The mechanisms underlying host specificity, and therefore their ability to exploit 

different host species, are not completely clear, and could include several processes, e.g. 

survival instinct (when the parasite is “forced” to infect the first available host in order to 

survive when detached and subsequently adapting to this “new” host), parasite behavioural 

(host preference), host behavioural (parasites of demersal fish are more likely to transfer to 

other benthic hosts rather than pelagic fish), physiological (e.g. G. salaris experimentally 

infecting European eel, Anguilla anguilla (L.), fails to feed and reproduce, maybe due to 

non-specific mechanisms, e.g. thickness of mucus layer, or toxic components on eel skin), 

immunological (the host responds in some way), phylogenetic (closeness to other hosts), 

geographical (parasites exposed to different communities can transfer to new hosts from 

one area to another), and/or ecological (host-parasite interaction) (Harris, 1980; Madhavi 

& Anderson, 1985; Jansen et al., 1991; Bakke et al., 1992a; Poulin et al., 2011). For 

Gyrodactylus host specificity is very variable, with some species apparently showing strict 

host specificity and known to infect only a single host (e.g. Gyrodactylus margaritae Putz 

et Hoffman, 1963; Gyrodactylus imperialis Mizelle et Kritsky, 1967; Gyrodactylus 

neretum Paladini, Cable, Fioravanti, Faria et Shinn, 2010), whilst other species appear to 

be cosmopolitan (e.g. Gyrodactylus alviga Dmitrieva et Gerasev, 2000, recorded from at 

least 15 hosts; Gyrodactylus arcuatus, recorded from at least 12 hosts; G. salaris 

documented to be able to reproduce on at least eight salmonid hosts) (see Bychowsky, 

1933; Putz & Hoffman, 1963; Mizelle & Kritsky, 1967; Dmitrieva & Gerasev, 2000; 

Harris et al., 2004; Paladini et al., 2010a). Bychowsky (1957) considered Gyrodactylus the 

least-specific genus within the class Monogenea. Despite numerous species descriptions of 

Gyrodactylus having been associated with a single host, giving the impression that 

Gyrodactylus is narrowly host specific (Malmberg, 1970), this could represent a sampling 
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artefact and Bakke et al. (1992a) suggested that gyrodactylids are less host specific than 

generally believed. 

 

1.1.4. Diagnosis of Gyrodactylus species: taxonomic tools 

The identification and discrimination of Gyrodactylus species have, until recently, been 

based only on the morphological comparison of the opisthaptoral hard parts using light 

microscopy (e.g. Mizelle & Kritsky, 1967; Malmberg, 1970; Ogawa & Egusa, 1978; 

Ergens, 1980; Mo & Lile, 1998; Nack et al., 2005). With the advent of new techniques, 

such as the employment of molecular tools used in conjunction with morphological 

methods, the standards of the gyrodactylid species descriptions have improved 

considerably (e.g. see Christison et al., 2005; Le Blanc et al., 2006; Přikrylová et al., 

2012). The morphological studies of monogeneans supplemented by relatively new 

techniques, such as proteolytic digestion methods in order to release the hooks from the 

surrounding tissue (Harris & Cable, 2000; Paladini et al., 2009a), have led to a better 

examination of the opisthaptoral hard parts, supported also by phase-contrast microscopy, 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) and in 

some cases also by confocal laser scanning microscopy (CLSM) (see e.g. Shinn et al., 

1993, 2003; Huyse et al., 2004; Galli et al., 2007; King et al., 2009; Paladini et al., 2011a, 

b; Ziętara et al., 2012; García-Vásquez et al., 2012). 

Morphological studies are made principally on the opisthaptoral hard parts, which 

consist of a pair of centrally positioned anchors or hamuli, single ventral and dorsal bars, 

and 16 marginal hooks distributed round the periphery of the posterior haptor or 

“opisthaptor”, which is the principal attachment organ (Fig. 1.7; Shinn et al., 2004). The 

shape and configuration of the MCO spines (Figs. 1.4 and 1.8) are also used, but to a lesser 

degree, as these are present only in parasites having given birth at least once and, given 

their small size, are not always evident (Paladini et al., 2010a). 
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Figure 1.7. Light micrograph of Gyrodactylus salaris Malmberg, 1957 collected from farmed Italian rainbow 

trout, Oncorhynchus mykiss (Walbaum), showing the attachment structures of the opisthaptor, formed by 16 

peripherally distributed marginal hooks, two centrally positioned anchors or hamuli, one dorsal bar 

connecting the two hamuli together and one ventral bar over which the two hamuli pivot during attachment 

[original image]. 

 

 

Figure 1.8. Light micrographs of the male copulatory organs (MCOs) of (A) Gyrodactylus salaris 

Malmberg, 1957, (B) Gyrodactylus teuchis Latraite, Blanc, Thiery, Daniel et Vigneulle, 1999, and (C) 

Gyrodactylus derjavinoides Malmberg, Collins, Cunningham et Jalali, 2007 collected from farmed Italian 

Oncorhynchus mykiss (Walbaum). The figure shows the different spine arrangements of the MCO of the 

three species, used as a supporting morphological feature in the discrimination of species. Scale bars: 10 μm 

[images modified from Paladini et al. (2009a)]. 
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The taxonomic classification and identification of Gyrodactylus species is assisted by 

the differing morphologies of the marginal hook sickles, which are used as one of the key 

diagnostic criteria for discriminating species (see Fig. 1.9; Malmberg, 1970; Cunningham, 

2002; Shinn et al., 2004; Rubio-Godoy et al., 2010). 

For the morphological identification, Malmberg (1970) suggested a series of point-to-point 

morphometric measurements (18 in total: four for the hamulus, six for the ventral bar, two 

for the dorsal bar and six for the marginal hooks) to be taken from the opisthaptoral 

sclerites. These were subsequently modified by Shinn et al. (2004), who added 10 new 

descriptors and removed three from the previous set of measurements to give a total of 25 

point-to-point morphometric characters (11 for the hamulus, six for the ventral bar and 

eight for the marginal hooks; Figs. 1.10–1.13). 

 

 

Figure 1.9. Different morphologies of the marginal hook sickles of 10 species of Gyrodactylus von 

Nordmann, 1832 (a) G. arcuatus Bychowsky, 1933; (b) G. corleonis Paladini, Cable, Fioravanti, Faria et 

Shinn, 2010; (c) G. derjavinoides Malmberg, Collins, Cunningham et Jalali, 2007; (d) G. longipes Paladini, 

Hansen, Fioravanti et Shinn, 2011; (e) G. notatae King, Forest et Cone, 2009; (f) G. orecchiae Paladini, 

Cable, Fioravanti, Faria, Di Cave et Shinn, 2009; (g) G. salaris Malmberg, 1957; (h) G. salinae Paladini, 

Huyse et Shinn, 2011; (i) G. truttae Gläser, 1974; (j) G. turnbulli Harris, 1986 [images a, c, g, i and j 

courtesy of Dr A.P. Shinn; image e courtesy of Dr S. King; all other images are original]. 
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Figure 1.10. Light micrograph of the hamulus of Gyrodactylus teuchis Latraite, Blanc, Thiery, Daniel et 

Vigneulle, 1999 from Oncorhynchus mykiss (Walbaum), illustrating the point-to-point measurements that are 

typically obtained for a specimen of Gyrodactylus (modified from Shinn et al., 2004). HAA: hamulus 

aperture angle; HAD: hamulus aperture distance; HDSW: hamulus distal shaft width; HIAA: hamulus inner 

aperture angle; HICL: hamulus inner curve length; HPCA: hamulus point curve angle; HPL: hamulus point 

length; HPSW: hamulus proximal shaft width; HRL: hamulus root length; HSL: hamulus shaft length; HTL: 

hamulus total length [original images]. 

 

 

Figure 1.11. Scanning electron micrograph of the dorsal bar of Gyrodactylus longipes Paladini, Hansen, 

Fioravanti et Shinn, 2011 from Sparus aurata L., illustrating the point-to-point measurements that are taken. 

DBAPL: dorsal bar attachment point length; DBSW: dorsal bar shaft width, taken at the middle point of the 

dorsal bar; DBTL: dorsal bar total length [original image]. 

 



Giuseppe Paladini                                                                                              Chapter 1 

 

14 

 

 

Figure 1.12. Light micrograph of the ventral bar of Gyrodactylus teuchis Latraite, Blanc, Thiery, Daniel et 

Vigneulle, 1999 from Oncorhynchus mykiss Walbaum, illustrating the point-to-point measurements that are 

typically taken (modified from Shinn et al., 2004). VBMBL: ventral bar membrane length; VBML: ventral 

bar median length; VBPL: ventral bar process length; VBPML: ventral bar process-to-mid length; VBTL: 

ventral bar total length; VBTW: ventral bar total width [original images]. 

 

 

Figure 1.13. Scanning electron micrograph of the marginal hook of Gyrodactylus salinae Paladini, Huyse et 

Shinn, 2011 from Aphanius fasciatus (Valenciennes), illustrating the point-to-point measurements that are 

usually obtained from specimens (modified from Shinn et al., 2004). MHA: marginal hook aperture; 

MHI/AH: marginal hook instep/arch height; MHSiDW: marginal hook sickle distal width; MHSiL: marginal 

hook sickle length; MHSiPW: marginal hook sickle proximal width; MHSL: marginal hook shaft length; 

MHTL: marginal hook total length; MHToeL: marginal hook toe length [original images]. 
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The shape of the hamuli and the ventral bar are used to a lesser degree, whilst the shape 

of the dorsal bar generally makes a weak contribution to the separation of species. This is 

not always the case, however, as the shape of the dorsal bar is useful in separating some 

species of Gyrodactylus infecting poeciliids (e.g. Gyrodactylus bullatarudis Turnbull, 

1956; Gyrodactylus costaricensis Kritsky et Fritts, 1970; Gyrodactylus xalapensis Rubio-

Godoy, Paladini, García-Vásquez et Shinn, 2010; see review of species infecting poecilids 

in Rubio-Godoy et al., 2010). The marked peculiarities in the dorsal bar morphology of 

these latter species, for example, warranted the re-inclusion of two of the features 

originally proposed by Malmberg (1970), i.e. the total length (DBTL) and the dorsal bar 

shaft width (DBSW), and the proposal of one new feature, the length of the dorsal bar 

attachment point (DBAPL; Fig. 1.11), for the description of certain new species (Paladini 

et al., 2011b; Schelkle et al., 2011). 

In order to support morphological identification of existing species or new 

descriptions, the use of molecular tools has been stressed by many authors (Harris et al., 

1999; Cunningham et al., 2003; Huyse et al., 2004; Bakke et al., 2007; Paladini et al., 

2009b; Přikrylová et al., 2012; Ziętara et al., 2012), who use sequences from the rDNA 

spanning internal transcribed spacer ITS1, 5.8S and ITS2 regions, and where possible also 

the rRNA intergenic spacer (IGS) and the mitochondrial DNA cytochrome c oxidase 

subunit I (COI) gene to discriminate species. 

The ITS regions have been sequenced for the majority of the Gyrodactylus species 

existing in GenBank but are not entirely useful as molecular markers 

(www.ncbi.nlm.nih.gov). These markers successfully separate a large number of sibling 

species (e.g. Ziętara & Lumme, 2002, 2003), but in some cases, i.e. the discrimination of 

G. salaris and Gyrodactylus thymalli Žitňan, 1960 is not possible as their ITS regions are 

identical (see Cunningham, 1997; Meinilä et al., 2002; Ziętara & Lumme, 2002; Kuusela 

et al., 2005). To avoid this confusion in identification and the consequences of 
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misidentifications, a more sensitive DNA marker has been developed (Meinilä et al., 

2002). The circular mitochondrial genome is a good molecular marker for maternal 

patterns of inheritance as it is inherited via the oocyte cytoplasm and lacks recombination. 

COI was first sequenced for Gyrodactylus salaris by Meinilä et al. (2002) and since then it 

has been used to identify evolutionary patterns within the genus and to study mitochondrial 

haplotype diversity, which is a result of heteroplasmy (presence of more than one 

mitochondrial DNA due to mutation) (Hansen et al., 2003; Kuusela et al., 2005). 

 

1.1.5. Factors influencing hook morphology 

The chemical composition of the attachment hooks of Gyrodactylus have been 

suggested to consist of keratin-like and chitin-like proteins, depending on which haptoral 

structure is being considered (Kayton, 1983; Shinn et al., 1995). The hamuli and marginal 

hook elements are high in sulphur, whilst the ventral bar possesses a higher amount of 

calcium (Shinn et al., 1995). The significant presence of sulphur as a structural component 

in the hamuli and marginal hooks suggests a keratin-like component and gives strength to 

these structures, whilst the higher presence of calcium, rather than sulphur, in the ventral 

bar, which serves as an anchoring plate for many of the muscles within the opisthaptor, has 

been associated with a chitin-like substance, consisting in a long-chain polymer of a N-

acetylglucosamine, a derivative of glucose (Neville, 1975; Shinn et al., 1995). While 

certain environmental factors, such as temperature and host adaptation can influence the 

phenotypic plasticity of these hooks (Malmberg, 1970; Ergens, 1976; Solomatova & Luzin, 

1977; Ergens & Gelnar, 1985; Mo, 1991a, b; Shinn et al., 1995), much of the variation is 

linked to changes in size rather than shape (Mo, 1991a). Specifically, it has been 

demonstrated that the size of the haptoral hard parts increases with decreasing temperature, 

and vice versa (Malmberg, 1970; Mo, 1991a). This is explained by increases in water 

temperature accelerating embryonic development, reducing the lifespan of Gyrodactylus, 
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resulting in smaller-sized individuals with smaller-sized attachment hooks than their 

counterparts growing in colder waters (Ergens, 1976; Ergens, 1981; Kulemina, 1977; 

Jansen, 1989; Mo, 1991a). The hook plasticity is a key factor to consider when identifying 

economically important and pathogenic Gyrodactylus species, such as G. salaris. If species 

identifications are based on size alone, then specimens of the same species collected at 

different times of the year could appear as two different species which, in turn, could lead 

to misidentifications being made. Collecting gyrodactylid specimens throughout the year at 

different temperatures, is therefore highly recommended, when possible, in order to 

provide a better set of information, which includes the size range for certain structures, 

especially when new species are being described. Dmitrieva and Dimitrov (2002) also 

demonstrated the effect of temperature, alongside the host and salinity, on hamulus and 

marginal hook size of four Gyrodactylus species from the Black Sea, i.e. G. alviga 

Dmitrieva et Gerasev, 2000; G. crenilabri Zaika, 1966; G. flesi Malmberg, 1957; and G. 

sphinx Dmitrieva et Gerasev, 2000. According to Dmitrieva and Dimitrov (2002), 

freshwater Gyrodactylus species show larger hook sizes when the salinity is lower, while 

marine species have larger hook dimensions when the salinity is higher. As a general 

statement, the size of the opisthaptoral hard parts appear to increase when the parasite lives 

in favourable environmental conditions, as hostile environmental situations reduce the time 

of embryogenesis, which increases the reproduction rate, but at the same time, decreases 

the time for hook development (Dmitrieva & Dimitrov, 2002). Finally, the morphology of 

the opisthaptoral attachment hooks, it is suggested, can also be influenced by the host and 

by the site of attachment on the host (Huyse & Volckaert, 2002; Robertsen et al., 2007).  

 

1.1.6. Influence of salinity and temperature on parasite biology 

Salinity might also influence the site preference on the host. Gyrodactylus callariatis 

appears to prefer the body of Atlantic cod, when it is found in the marine environment, 
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however, when this host inhabits brackish waters, the parasite appears to principally infect 

the gills (Malmberg, 1970; Appleby, 1996). The same situation has been observed in G. 

arcuatus, with marine populations found on the skin and freshwater populations on the 

gills (Harris, 1993; Bakke et al., 2007). Temperature does not affect only the size of the 

opisthaptoral hard parts, but also the reproduction and survival of the parasite. It is known, 

for example, that the mean life-span of G. salaris is negatively correlated with water 

temperature, i.e. 33.7 days at 2.5°C and 4.5 days at 19°C (Jansen & Bakke, 1991). There is 

not, however, a standard temperature for the genus Gyrodactylus, as each species requires 

a different temperature range depending on the host and its geographical distribution. It is 

possible that certain species of Gyrodactylus can tolerate and “adapt” to a wide range of 

environmental conditions (e.g. salinity and temperature). This is the case for Gyrodactylus 

arcuatus from the three-spined stickleback Gasterosteus aculeatus aculeatus L. (see 

Harris, 1982); Gyrodactylus callariatis Malmberg, 1957 from Atlantic cod, Gadus morhua 

L.; and Gyrodactylus salinae Paladini, Huyse et Shinn, 2011 from the south European 

toothcarp Aphanius fasciatus (Valenciennes), amongst other species, which remain on their 

respective hosts even when the environmental conditions change drastically. Gyrodactylus 

callariatis for example, tolerates salinities from 5–35‰ (Malmberg, 1970), and, G. salinae 

survives on its host at temperatures ranging from 5–30°C and salinities ranging from 0–

65‰ (Paladini et al., 2011b).  

 

1.2. Impact of Gyrodactylus salaris and other emerging pathogenic species 

Over 430 species of Gyrodactylus have been described, excluding synonyms and 

erroneous reports (Harris et al., 2004; www.gyrodb.net; www.monodb.org); some species 

are recognised as being highly pathogenic. Their pathogenicity has been linked to feeding 

activity and to the pathology of parasite attachment, which creates micro-wounds that 

destroy the osmotic integrity of the epidermis and, consequentially, facilitate the entry of 
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secondary infections, i.e. viral, bacterial and fungal agents (Snieszko & Bullock, 1968; 

Cone & Odense, 1984; Bakke et al., 2006). Whilst species of Gyrodactylus have been 

reported from marine, brackish and freshwater environments in cold and warm latitudes, 

only a few species have gained notoriety and attention because of their pathogenicity to 

hosts. The most well-known pathogenic species is G. salaris, which is an OIE (Office 

International des Epizooties) listed pathogen, and a notifiable parasite in many European 

states, and which principally infects freshwater populations of Atlantic salmon (OIE, 

2012). Gyrodactylus salaris has had devastating impact on the juvenile Atlantic salmon 

populations in 46 Norwegian rivers, and it represents the most significant threat to the 

existence of natural Atlantic salmon populations (Johnsen et al., 1999; Bakke et al., 2007). 

Given the reported decrease in wild parr populations, which has been up to 86% in some 

infected rivers, the annual loss caused by G. salaris has been estimated to be between 250–

500 metric tonnes. The total cost of this parasite for the Norwegian government is now in 

excess of £330 million (Bakke et al., 2004). Although G. salaris has had a catastrophic 

impact in Norway, it has also been reported to have had a pathogenic effect on salmon 

populations elsewhere in Scandinavia and in Russia (Rintamäki, 1989; Ieshko et al., 1995; 

Alenäs, 1998; Alenäs et al., 1998). Gyrodactylus salaris has also been reported from 

rainbow trout, Oncorhynchus mykiss (Walbaum), from many European countries, where it 

is generally non-pathogenic (see Chapters 2 and 3). Some European states, including the 

UK, which is currently recognised as a G. salaris-free zone, now have mandatory 

surveillance programmes screening wild salmonid populations (e.g. brown trout Salmo 

trutta fario L., Arctic charr Salvelinus alpinus alpinus (L.), grayling Thymallus thymallus 

(L.), Atlantic salmon) for the presence of this notifiable pathogen. 

Gyrodactylus salaris, however, is not the only pathogenic species within the genus 

Gyrodactylus. Many other species have been reported to cause mortality to their hosts. For 

example, Gyrodactylus anarhichatis Mo et Lile, 1998 was found to be highly pathogenic 
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on farmed Atlantic wolffish, Anarhichas lupus L., and spotted wolffish, Anarhichas minor 

Olafsen, causing heavy infections, notably on adult specimens weighing up to 10 kg (Mo 

& Lile, 1998). Gyrodactylus callariatis has been responsible for heavy mortalities of 

farmed Atlantic cod juveniles in Norway (Appleby, 1994, 1996). Likewise, Gyrodactylus 

anguillae Ergens, 1960 was found to be one of the contributory factors resulting in the 

heavy mortality of the glass stage of the European eel collected from Spain (Grano-

Maldonado et al., 2011). Infections by Gyrodactylus salmonis (Yin et Sproston, 1948) are 

also worthy of note. This species has a low host specificity, has been widely recorded from 

several salmonid hosts (Rubio-Godoy et al., 2012; see Chapter 5 of the current thesis), and 

it is specifically highly pathogenic for brook trout, Salvelinus fontinalis (Mitchill), causing 

extensive damage of the fins as a consequence of parasite feeding and attachment 

activities: the marginal hooks penetrate deep into the host’s epidermis (Cone & Odense, 

1984; Cusack & Cone, 1986). Given the pathogenic potential this species poses to North 

American salmonid species, it has received almost as much attention as its European 

counterpart G. salaris. Buchmann and Uldal (1997) reported Gyrodactylus derjavinoides 

Malmberg, Collins, Cunningham et Jalali, 2007 (referred to as Gyrodactylus derjavini 

Mikhailov, 1975 before its later reclassification) causing a 10% mortality in brown trout 

fry even at low intensities of infection (i.e. 10 parasites fish
-1

), while on rainbow trout fry, 

losses of up to 22% were seen when the mean intensities of the parasite were ~26 parasites 

fish
-1

 (Busch et al., 2003). Gyrodactylus brachymystacis Ergens, 1978 on rainbow trout 

reared in China has been reported to be highly pathogenic, resulting in extensive caudal fin 

erosion (You et al., 2006). Given the potential damage that this parasite can cause, G. 

brachymystacis needs close monitoring as it may become a significant pest in aquaculture 

(You et al., 2006). Gyrodactylus cichlidarum Paperna, 1968 has been reported to be the 

cause of several mass mortalities of juvenile Nile tilapia, Oreochromis niloticus niloticus 
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(L.) (see Fryer & Iles, 1972; Roberts & Sommerville, 1982; García-Vásquez et al., 2007, 

2011).  

Recently, two outbreaks of gyrodactylosis on juvenile gilthead seabream, Sparus 

aurata L., in Albania and Croatia were of interest because of the reported losses attributed 

to this parasite and this may represent an emerging disease (Paladini et al., 2009b; see 

Chapter 4). The species of Gyrodactylus collected from S. aurata were previously 

unknown and the causal factors responsible for the outbreak can only be theorised upon, 

i.e. local climatic changes and/or the migration of fish species into the area from which the 

parasite transferred to the more susceptible host, S. aurata. The investigation of this 

mortality event led to the subsequent description of two new species (see Chapter 4). Of 

these two, Gyrodactylus orecchiae Paladini, Cable, Fioravanti, Faria, Di Cave et Shinn, 

2009 was found as a heavy infection (i.e. 1000+ parasites fish
-1

) resulting in a 2–10% loss 

of farm stock. The other new species that was found, Gyrodactylus longipes Paladini, 

Hansen, Fioravanti et Shinn, 2011, has been recorded from two sites located in Italy and 

Bosnia-Herzegovina, and most recently, from a further site in Northern France. The 

samples of S. aurata collected from the Italian site were found as a co-infection with G. 

orecchiae (see Paladini et al., 2011a; see Chapter 4). High numbers of G. orecchiae 

associated with the mortality of juvenile S. aurata raise concerns regarding the pathogenic 

potential of this species and the consequences of finding it as a co-infection with G. 

longipes. 

 

1.3. Global aquaculture production 

The Food and Agriculture Organization of the United Nations (FAO) describe 

aquaculture as follows: “…the farming of aquatic organisms: fish, molluscs, crustaceans 

and aquatic plants. Farming implies some form of intervention in the rearing process to 
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enhance production, such as regular stocking, feeding and protection from predators…” 

(see FAO, 2012). 

Globally, the largest source of aquaculture production is associated with the farming of 

fish. The culture of microalgae, also known as phytoplankton or microphytes, represents 

the second largest sector (see Fig. 1.14). The complete history of aquaculture is not known, 

but it is generally believed that the first practices of aquaculture concerned the raising of 

eels around 6000 B.C. by the indigenous Gunditjmara in Victoria, Australia, and then later, 

the production of common carp, Cyprinus carpio carpio L., in China around 2500 B.C. 

(Rabanal, 1988). 

 

Figure 1.14. Global aquaculture production during 1950-2010 expressed in million tonnes [image from 

http://en.wikipedia.org/wiki/Aquaculture, which is based from FAO data]. 

 

Aquaculture represents the fastest growing animal food-producing sector and the per 

capita consumption from aquaculture products has increased from 0.7 kg in 1970 to 7.8 kg 

in 2006, with a mean annual growth rate of 6.9% (FAO, 2012). The drivers for the 

development of aquaculture are various. For example, the indigenous Gunditjmara of 

Australia used to catch eels, and then keep them so that they could be eaten all year round. 

Today, some of the underlying reasons for the expansion in certain aquaculture production 
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systems are driven by the need to protect wild stocks from extinction, e.g. Atlantic bluefin 

tuna, Thunnus thynnus L. (see Safina & Kinlger, 2008), to alleviate pressure on wild 

fisheries stocks, and also to feed the increasing demand for fish and aquatic products 

(Naylor et al., 2000). This demand has increased rapidly and, in 2006, the total production 

from aquaculture was reported to be 51.7 million tonnes, worth an estimated £52 billion, 

representing a marked increase when compared with <1 million tonnes per year produced 

in the early 1950s (FAO, 2012). 

The intensification and expansion of aquaculture practices has, however, raised 

problems concerning the health status of the fish that are being grown. These include 

stocks being reared at higher densities and the stress caused by these intensive aquaculture 

systems, which can facilitate the establishment and manifestation of previously undetected 

pathogens (Smith, 1998; Kearn, 2004; pers. obs.).  

 

1.4. The role of salmonids in the world aquaculture 

The family Salmonidae is composed of three subfamilies: the Coregoninae, the 

Salmoninae and the Thymallinae, which collectively encompass ten genera. Of these, 

Oncorhyncus mykiss and Salmo salar represent the two species commanding the highest 

market value given the quality of their flesh (Farmer et al., 2000; Bugeon et al., 2010). 

Atlantic salmon production in freshwater began in the 19
th

 Century in the UK in order to 

stock local waters with parr for recreational purposes. The subsequent stages of Atlantic 

salmon, i.e. smolts to adults, were reared in sea cages in the 1960s in Norway to raise the 

fish to a commercial size. The successful production of salmon by the Norwegians drove 

the development of Atlantic salmon culture not only in Norway but also in Scotland, 

followed by Ireland, the Faroe Islands, Canada, USA, Chile and Australia. The current 

worldwide annual production of farmed Atlantic salmon (Figs. 1.15-1.16) now exceeds 1 

million tonnes and represents more than 50% of the total global salmon market (FAO, 
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2012). The main producer of Atlantic salmon is Norway, which produced 900,000 tonnes 

in 2010, followed by Chile with 288,000 tonnes and Scotland with 154,000 tonnes 

(sources: www.marineharvest.com, www.scottishsalmon.co.uk, last access November 

2012). Norway is by far the largest producer, but Chile has rapidly increased its production 

since Atlantic salmon were introduced from Norway and Scotland in the early 1980s. Chile 

benefits from low costs for labour and raw materials, and can therefore efficiently enter 

distant markets and compete with traditional producing countries. 

 

Figure 1.15. Countries, shown in orange, producing Atlantic salmon, Salmo salar L., through aquaculture 

[image from FAO, 2012]. 

 

 

Figure 1.16. The increasing global aquaculture production of Atlantic salmon, Salmo salar L., during the 

period 1950-2010 [graph from FAO, 2012]. 
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1.5. UK aquaculture industry and G. salaris national contingency plans 

Scotland represents the third largest producer of farmed salmon in the world and it is 

the major producer within the United Kingdom. The Scottish Salmon Producers 

Organisation (SSPO) (www.scottishsalmon.co.uk) reported that Scotland's salmon farmers 

contributed about £500 million to the economy in 2009, and that the worldwide retail value 

of Scottish farmed salmon is over £1 billion, with more than 60 countries importing fresh 

Scottish salmon in 2011. While the production of Atlantic salmon in 2010 in the UK was 

154,625 tonnes (of which 154,164 tonnes was produced in Scotland), it is important to 

consider other salmonid species cultured in the UK, such as rainbow trout and brown trout. 

In 2010, for example, the UK produced 11,988 tonnes of freshwater rainbow trout, 1,606 

tonnes from marine rainbow trout production and 574 tonnes of freshwater brown trout 

(listed as inland sea trout production; see FAO, 2012). Given the impact that G. salaris has 

on Atlantic salmon in Scandinavia and Russia (Rintamäki, 1989; Johnsen & Jensen, 1991; 

Ieshko et al., 1995; Alenäs, 1998; Alenäs et al., 1998), and the risk that other salmonid 

species pose as potential carrier hosts in the dispersal of G. salaris within and between 

countries, the OIE has listed this parasite as a notifiable disease (OIE, 2012). As the UK is 

currently recognised G. salaris-free (Platten et al., 1994; Shinn et al., 1995; European 

Commission Decision 2004/453/EC; http://eur-lex.europa.eu), and given the importance of 

wild Atlantic salmon stocks, the fish inspectorates throughout the UK now have mandatory 

surveillance programmes, which include the screening of wild salmonid populations, such 

as brown trout, Arctic charr, grayling and Atlantic salmon. The presence of this notifiable 

pathogen has not been recorded in the UK but the susceptibility of Scottish populations of 

Atlantic salmon to G. salaris has been experimentally tested, demonstrating high 

susceptibility of the fish (Bakke & MacKenzie, 1993). Given the value of the UK salmonid 

industry and the relevance of its wild stocks, it is important the UK’s G. salaris-free status 

is upheld. Current UK dispersion models and contingency plans for its control (see 
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www.defra.gov.uk) are based on the assumption that British stocks of Atlantic salmon 

would be highly susceptible to G. salaris if exposed, that brown trout would be unaffected 

by the parasite, and that grayling would be moderately resistant. Brown trout and grayling 

have been demonstrated to harbour low-level infections for a few weeks, without showing 

the pathogenic effects that G. salaris has on Atlantic salmon (see review in Bakke et al., 

2007). Whether native UK stocks of brown trout and grayling would respond in the same 

way as their Scandinavian counterparts is unknown, as they have been separated from 

mainland Europe since the last period of glaciation (Halvorsen & Hartvigsen, 1989). 

Should differences in susceptibility be demonstrated, then this could necessitate a revision 

of current contingency plans and a redrafting and analysis of current dispersion models 

(see Chapter 6). 

 

1.6. Previous studies on salmonid susceptibility to G. salaris 

A number of experimental studies have been carried out testing the susceptibility to G. 

salaris of different Atlantic salmon strains collected from Canada, Denmark, Norway, 

Russia, Scotland and Sweden (see Chapter 6). The majority of these studies have used G. 

salaris haplotype F, a strain that normally infects rainbow trout, but also Atlantic salmon, 

whilst only a few studies have used G. salaris haplotype A (see Chapter 6), a strain that 

typically infects Atlantic salmon in Norway and Sweden (Hansen et al., 2003). The 

susceptibility to G. salaris has been tested for several salmonid species (e.g. Bakke et al., 

1990; Bakke et al., 1991a; Bakke & Jansen, 1991a, b; Bakke et al., 1992a, b, c; Jansen & 

Bakke, 1995; Bakke et al., 1996; Lindenstrøm et al., 2000; Soleng & Bakke, 2001a, b; 

Dalgaard et al., 2004; Robertsen et al., 2007; Winger et al., 2008) and also for a number of 

non-salmonid hosts (Mo, 1987; Bakke et al., 1990; Bakke & Sharp, 1990; Bakke et al., 

1991b; Soleng & Bakke, 1998), which may represent suitable and undetected carriers 
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contributing to the dispersal of G. salaris (see Chapter 6). The results of these studies will 

be briefly considered below but also examined in greater detail in Chapter 6 of this thesis. 

 

1.6.1. Haplotypes and pathogenicity of G. salaris 

A total of 18 G. salaris mitochondrial haplotypes (Table 1.1.) have been identified by 

cytochrome oxidase I (COI) analysis (Hansen et al., 2003, 2006, 2007a, b; Meinilä et al., 

2004; Kuusela et al., 2005, 2007; Robertsen et al., 2007; Paladini et al., 2009a). Hansen et 

al. (2003) was the pioneer in characterising the first six haplotypes from Atlantic salmon 

from Latvia, Norway and Sweden, identified as haplotypes “A-F”, one of which, haplotype 

“F”, is also commonly encountered on rainbow trout from Sweden and Italy (Hansen et al., 

2003; Paladini et al., 2009a), and on Arctic charr from Norway (see Hansen et al., 2007a; 

Robertsen et al., 2007). All haplotypes were well supported and linked with their 

respective host and locality, with the exception of haplotype F (Hansen et al., 2003). 

Meinilä et al. (2004) subsequently described a further five haplotypes from Atlantic 

salmon, i.e. “Sal Keret1”, “Sal Keret2”, “Sal Lagan”, “Sal Tornio” and “Sal Vefsna” from 

Sweden, Finland and Russia, in addition to the previously known haplotype F from 

rainbow trout, recorded for the first time from Denmark. Furthermore, Meinilä et al. 

(2004) commented on the finding of haplotype F from Atlantic salmon in the River 

Pistojoki, in Russia, suggesting that this may have been introduced via rainbow trout 

farms.  

One year later, Kuusela et al. (2005) discovered two further haplotypes from Lake 

Onega (Russia), namely “Sal Lizhma” and “Sal Kumsha”, but the latter has been indicated 

by Kuusela et al. (2007) as a synonym of the haplotype “Sal Keret1”, previously described 

by Meinilä et al. (2004).  

In 2007, Kuusela et al. (2007) commented on other five new G. salaris haplotypes: 

“RBT2” (named accordingly to the GenBank accession number EF570120 provided in the 
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paper, otherwise named “specific” in the same article) infecting Ohrid trout, Salmo letnica 

(Karaman), from a fish farm in Macedonia; “Sal Ba06” from Finnish Atlantic salmon; “Sal 

Ba09” and “Sal Ba10” from Swedish Atlantic salmon; and “Sal Ba11” from Russian 

Atlantic salmon, together with haplotype F from a new locality in Russia.  

 

Table 1.1. Gyrodactylus salaris Malmberg, 1957 mitochondrial haplotypes listed in alphabetical order. 
 

No. 
Haplotype 

name 
Hosts Locality GenBank COI accession numbers Reference 

1 A Ss Norway AF542161, 6; AY146597-9; AY146606-7; 

AY258336, 38-42, 45-57; AY486488–96; 

AY486527-30, 33-38, 42-43 

Hansen et al. (2003, 2006) 

  Ss Sweden AY258337, 43-44, 48-49; AY486500, 08-

09, 11, 17-18, 21-22 

Hansen et al. (2003, 2006) 

2 B Sa Norway AY486497; AY486525 Robertsen et al. (2007) 

  Ss Norway AY146600-5; AY486497; AY486525-6; 

AF542162-5 

Hansen et al. (2003, 2006) 

  Ss Sweden AY258367-70; AY486499 Hansen et al. (2003, 2006) 

3 C Ss Sweden AY258358-661; AY486501-02, 04-06, 10, 

13-16, 23-24, 31-32 

Hansen et al. (2003, 2006) 

4 D Ss Latvia AY146593-4; AY486507 Hansen et al. (2003, 2006) 

5 E Ss Sweden AY258373-4; AY486512 Hansen et al. (2003, 2006) 

6 F Om Denmark AF4797502 Meinilä et al. (2004) 

  Om Finland AF4797502 Meinilä et al. (2004) 

  Om Italy none3 Paladini et al. (2009a) 

  Om Sweden AF4797502; AY146589-90; AY486503 Hansen et al. (2003, 2006); 

Meinilä et al. (2004) 

  Sa Norway DQ923578 Robertsen et al. (2007) 

  Ss Norway AY146591-2, 95-96; AY146614; 

AY258370-2; AY486498; AY486519-20, 

39-41 

Hansen et al. (2003, 2006) 

  Ss Russia AF479750; DQ517533; DQ7786282 Meinilä et al. (2004); 

Kuusela et al. (2007) 

7 RBT2 Sl Macedonia EF570120 Kuusela et al. (2007) 

8 Sal Ba06 Ss Finland DQ993189 Kuusela et al. (2007) 

9 Sal Ba09 Ss Sweden DQ993193 Kuusela et al. (2007) 

10 Sal Ba10 Ss Sweden DQ993194 Kuusela et al. (2007) 

11 Sal Ba11 Ss Russia EF117889 Kuusela et al. (2007) 

12 Sal Keret1 Ss Russia AF540891; AY8402234 Meinilä et al. (2004) 

13 Sal Keret2 Ss Russia AF5408925 Meinilä et al. (2004) 

14 Sal Lagan Ss Sweden AF5409046 Meinilä et al. (2004) 

15 Sal Lizhma Ss Russia AY8402227 Kuusela et al. (2005) 

16 Sal Nera Om Italy GQ370816 Paladini et al. (2009a) 

17 Sal Tornio Ss Finland AF5409058 Meinilä et al. (2004) 

18 Sal Vefsna Ss Norway AF5409069 Meinilä et al. (2004) 

Footnotes: 
1
Synonym: “SalBa08” (Kuusela et al., 2007); 

2
Synonyms: “OncFI-S-DK” (Meinilä et al., 2004) 

and “RBT” (Ziętara et al., 2006; Kuusela et al., 2007); 
3
Haplotype F from Italian rainbow trout has 100% 

COI identity with haplotype F from Swedish rainbow trout described by Hansen et al. (2003). Sequence not 

deposited in GenBank; 
4
Synonyms: “KA” (Kuusela et al., 2005), “SalBa01” (Kuusela et al., 2007) and 

“SalKumsha” (Hansen et al., 2007b); 
5
Synonyms: “KB” (Kuusela et al., 2005) and “SalBa02” (Kuusela et 

al., 2007);
 6

Synonym: “SalBa08” from Smedjeån (Kuusela et al., 2007);
 7

Synonym: “SalBa03” (Kuusela et 

al., 2007); 
8
Synonyms: “SalBa04” and “SalBa05” (Kuusela et al., 2007); 

9
Synonym: “SalBa07” (Kuusela et 

al., 2007). Abbreviations: Om: Oncorhynchus mykiss; Sa: Salvelinus alpinus; Sl: Salmo letnica; Ss: Salmo 

salar. 
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Robertsen et al. (2007) reported for the first time two G. salaris haplotypes from Arctic 

char, Salvelinus alpinus alpinus (L.), identical to haplotypes B and F described by Hansen 

et al. (2003).  

More recently, Paladini et al. (2009a) found a further haplotype, “Sal Nera”, on an 

Italian population of farmed rainbow trout from the River Nera, together with haplotype F. 

Although the differentiation of G. salaris strains through characterisation of their COI 

represents a useful molecular tool, it does not, however, provide information concerning 

their potential pathogenicity (Bakke et al., 2004; Hansen et al., 2007b), such that their 

potential virulence, with respect to each population of fish, needs to be investigated. Using 

the haplotype classification of G. salaris strains provided by Hansen et al. (2003), it is 

most likely that the strain of G. salaris collected originally from the River Lierelva and 

used by Bakke and co-workers in their salmonid susceptibility trials was haplotype F (see 

Chapter 6). 

 

1.6.2. Baltic strain of Salmo salar 

It is believed that the Baltic strain of Atlantic salmon, particularly the populations from 

the River Neva in Russia and the River Tornio between Finland and Sweden are more 

resistant to the pathogen G. salaris than the Atlantic strain (Bakke et al., 1990, 1992a; 

Anttila et al., 2008). The salmon populations from the Finnish Rivers Oulujoki, Lijoki and 

Kemijoki have also been shown to have a high resistance to natural infections of G. salaris 

(see Rintamäki-Kinnunen & Valtonen, 1996). This demonstrable resistance, however, is 

not always the case, as it has been demonstrated by several other studies with salmon 

populations from the Swedish Rivers Luleälven and Indalsälven (Bakke et al., 2002, 2004; 

Dalgaard et al., 2003) and with triploid salmon originating from the Estonian River Kunda 

(Ozerov et al., 2010). 
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There are at least three geographically separated groups of S. salar: the Western 

Atlantic, the Eastern Atlantic and the Baltic Sea populations (Ståhl, 1987). A comparison 

of the genetic distances between these three populations, however, suggests that relatively 

few differences have appeared among these three since the last glaciation (Ståhl, 1987). 

The observed different susceptibilities displayed by Atlantic and Baltic strains of S. salar 

to G. salaris (see Bakke et al., 1990) may result from the degree of “isolation” between the 

strains. 

 

1.6.3. Atlantic strain of Salmo salar 

One of the first experimental infection studies conducted, investigated three strains of 

S. salar infected with G. salaris (see Bakke et al., 1990). The two Atlantic strains were 

collected from the Rivers Alta and Lone (Norway), whilst one Baltic strain from the River 

Neva (Russia) was tested with a strain of G. salaris originating from S. salar from the 

River Drammenselva, Norway (most likely haplotype F, according to Hansen et al., 2003). 

The hatchery-reared Baltic strain showed innate resistance to the G. salaris infection, 

managing to respond within 3 weeks and to reduce the parasite number (Fig. 1.17). The 

Norwegian Alta and Lone salmon populations, however, were highly susceptible to 

infection (Bakke et al., 1990). The experiment was terminated after 5 weeks after several 

fish mortalities, probably due to external, unknown causes (Bakke et al., 1990). 

Similar results were also obtained by Bakke (1991) testing the susceptibility of the 

Atlantic Alta and Lone populations from Norway, and the Baltic Neva population from 

Russia plus two other Atlantic strains originating from the Norwegian Rivers 

Drammenselva and Lierelva. All four Norwegian strains were susceptible to G. salaris, 

whilst the Neva strain again was able to launch a good response to the infection (Bakke, 

1991). Atlantic salmon parr from the River Alta, Norway, showed moderate to high 

susceptibility to G. salaris infection over the 6-week (42 days) experiment (Bakke et al., 
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1999). Sixteen fish managed to control the infection after ~30 days, while eight fish did not 

manage to respond to the infection (Bakke et al., 1999). In both cases the experiment was 

terminated after 42 days and there is no evidence to suggest whether the infection in the 

responding fish would have ultimately crashed to extinction or not. 

 

Figure 1.17. Schematic example of the course of an experimental Gyrodactylus salaris Malmberg, 1957 

infection on two strains of Atlantic salmon, Salmo salar L., parr. Atlantic River Lone (Norway) stock (solid 

lines) and Baltic River Neva (Russia) stock (broken lines) [image from Bakke et al., 1990]. 

 

1.6.4. Experimental studies with Salmo trutta fario  

Brown trout is genetically the most closely related species of the family Salmonidae to 

the Atlantic salmon (Phillips et al., 1992) and could, therefore, represent a suitable host for 

G. salaris. Brown trout parr naturally infected with G. salaris at low intensities have been 

reported by several authors (Tanum, 1983; Mo, 1988; Malmberg & Malmberg, 1991; 

Johnsen & Jensen, 1992). The susceptibility of this host to G. salaris collected from 
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Atlantic salmon from the River Lierelva (Norway) (haplotype F, according to Hansen et 

al., 2003) has been experimentally tested by Jensen and Bakke (1995), using both 

anadromous and resident stocks in Norway. Twenty-one individually isolated and 22 

grouped anadromous brown trout were exposed to 25 infected salmon parr for 5 days. In 

the isolated brown trout, the G. salaris population declined gradually but persisted for 7 

weeks (49 days) post-infection with a mean intensity of 0.3 parasites fish
-1

 (range 1-5). 

Similarly, in the grouped fish after 49 days, there was still one parasite remaining (mean 

intensity was 0.05 parasites fish
-1

) (Jansen & Bakke, 1995). The same experiment was 

carried out with resident stocks, but the infection period was extended to 15 days. The 

results show that the infection persisted for 28 and 22 days, respectively (Jansen & Bakke, 

1995). In a third experiment, fed fish eliminated the infection briefly within 9 days, whilst 

the starved fish carried on the G. salaris infection for longer (27 days) (Jansen & Bakke, 

1995). These results open a discussion on the susceptibility of fish stocks conditioned by 

their general health status, which is higher if the host is stressed or starved (Gelnar, 1987). 

This was also demonstrated by Harris et al. (2000), who found that brown trout were more 

susceptible to G. salaris infection following the administration of hydrocortisone acetate. 

Other experimental infections of brown trout with G. salaris have demonstrated that the 

fish maintain their infection as long as they co-exist with infected Atlantic salmon in the 

same tank (Tanum, 1983; Mo, 1988). This was also demonstrated by Bakke et al. (1999), 

who found that brown trout from the River Fossbekk (Norway) eliminated their G. salaris 

(haplotype F) infection in less than two weeks, showing an innate resistance to this parasite 

(see Fig. 1.18). 

The lower rate of reproduction of G. salaris on brown trout does not exclude the 

risk of its dissemination within a river and spread to connecting systems, especially 

considering that the parasite population can remain on this host for up to 49 days under 

certain conditions (Jansen & Bakke, 1995). 
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Figure 1.18. Representation of the course of Gyrodactylus salaris Malmberg, 1957 (haplotype F) infection 

on individually isolated brown trout, Salmo trutta fario L., from the River Fossbekk (Norway), showing 

innate resistance to the infection [graph from Bakke et al., 1999]. 

 

1.6.5. Experimental studies with Salmo salar × Salmo trutta fario hybrids 

The susceptibility of Salmo salar × Salmo trutta fario hybrids to G. salaris from the 

River Lierelva (most likely haplotype F - see Hansen et al., 2003) was also investigated to 

determine whether there are differences in genetic resistance to gyrodactylid infection and 

to assess the role of interspecific salmonid hybridisation in the ecology of G. salaris (see 

Bakke et al., 1999; Figs. 1.19-1.20). Two experiments, one using female Atlantic salmon × 

male brown trout (hybrid 1), and a second using male Atlantic salmon × female brown 

trout (hybrid 2), were conducted by Bakke et al. (1999). The results showed that the first 

hybrid (n = 23) displayed a range of susceptibilities to G. salaris, with 9 fish eliminating 

the infection within two weeks; four fish sustaining the infection for the first 3 weeks 

before slowly declining over the following 2 months (one of them was still infected after 

70 days when the experiment was terminated); and 10 fish being highly susceptible for the 

first 3 weeks, after which period they responded, reducing the infection to almost zero by 

the end of the experiment (Bakke et al., 1999). The second set of hybrids (n = 24) 

demonstrated resistance to the G. salaris infection, eliminating the parasite population 

within the first two weeks of the trial, with the exception of one fish which, after an initial 
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decline in parasite burden, started to show increasing parasite numbers again (Bakke et al., 

1999). 

 

 

 

Figure 1.19. Representation of the course of Gyrodactylus salaris Malmberg, 1957 (haplotype F) infection 

on individually isolated hybrids of ♀Atlantic salmon, Salmo salar L., × ♂ brown trout, Salmo trutta fario L., 

showing (A) innately resistant specimens; (B) initially susceptible fish, responding and controlling the 

infection; (C) moderate to highly susceptible individuals, eliminating the infection after 1-2 months [graphs 

from Bakke et al., 1999]. 
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Figure 1.20. Course of Gyrodactylus salaris Malmberg, 1957 (haplotype F) infection on individually 

isolated hybrids of ♂Atlantic salmon, Salmo salar L., × ♀ brown trout, Salmo trutta fario L., demonstrating 

innately resistant fish eliminating the infection after 2 weeks [graph from Bakke et al., 1999]. 

 

1.6.6. Experimental studies with Thymallus thymallus 

Grayling, Thymallus thymallus, within the 11 species existing in the genus, is the only 

species of the subfamily Thymallinae that has been tested to determine its susceptibility to 

G. salaris (see Soleng & Bakke, 2001b; Figs. 1.21–1.22). The reason why this species is 

considered important is because grayling is the principal host of Gyrodactylus thymalli, a 

species that is morphologically and genetically similar to G. salaris (see McHugh et al., 

2000; Shinn et al., 2004). When Žitňan (1960) described this species from wild grayling 

taken from the Danubian headwaters in Moravia, he highlighted its morphological 

similarities to the pathogenic species G. salaris. Later, Cunningham (1997) found that both 

species had identical ITS (internal transcribed spacer) sequences, which did not permit 

their ready discrimination from one another. Gyrodactylus thymalli, however, is the only 

species to have been reported from wild grayling, i.e. G. salaris has not been recorded 

(Soleng & Bakke, 2001b). Nevertheless, the possibility that grayling may carry G. salaris 

remains a concern and a taxonomic challenge. 
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In the experiment conducted by Soleng and Bakke (2001b), the strain of G. salaris 

used was obtained from heavily infected Atlantic salmon caught in the River Lierelva, 

Norway (haplotype F, see Hansen et al., 2003). The grayling were aged 0+ (mean weight 

1.0 g; mean fork length 5.4 cm) and 1+ (mean weight 3.9 g; mean fork length 8.3 cm) and 

were hatchery-reared, Lake Sølensjøen (Norway) stock. 

The young grayling (i.e. 0+) were experimentally challenged as isolated individuals 

(n = 21 fish) and as groups of fish (n = 50 fish), by exposure to G. salaris for 24 hours. A 

second group of 1+ grayling were also tested individually (n = 20 fish) and as groups (n = 

100 fish), and exposed to G. salaris for a period of 7 days (Soleng & Bakke, 2001b). At the 

beginning of the experiment, all the fish became infected with G. salaris, and the results 

were divided by fish age. From Soleng and Bakke’s (2001b) study, of the 21 individually 

isolated 0+ fish, three were innately resistant eliminating the infection shortly within the 

first 3 weeks (Fig. 1.21.A), while on the remaining 18 fish, the parasite population 

increased slightly (Fig. 1.21.B). The infection declined after two weeks, persisting for up to 

35 days, when the experiment was terminated because of host mortalities; however, three 

of the grayling were still infected (Soleng & Bakke, 2001b). 

 

Figure 1.21. Course of infection of G. salaris (haplotype F) on grayling aged 0+: (A) individually isolated 

fish (n = 3) showing innate resistance; (B) individually isolated fish (n = 18) shown to be susceptible [graphs 

from Soleng & Bakke, 2001b]. 
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Figure 1.22. The course of G. salaris (haplotype F) infection on 1+ aged grayling: (A) individually isolated 

fish (n = 12) showing innate resistance; (B) individually isolated fish (n = 8) shown to be susceptible to 

infection [graphs from Soleng & Bakke, 2001b]. 

 

In the 0+ grayling infected as a group, the infection increased during the first week to its 

peak (mean infection 13.5 parasites fish
-1

), and subsequently declined until elimination 

after 35 days (Soleng & Bakke, 2001b). 

The 1+ grayling followed the same pattern of infection with twelve out of 20 

individually held fish showing an innate resistance (Fig. 1.22.A), while the remaining 8 

were susceptible to infection (Fig. 1.22.B). After 12 days, however, the parasite population 

increased and thereafter declined slowly, persisting on two fish for up to 47 days when the 

experiment was terminated because of host mortality (Soleng & Bakke, 2001b). The 

infection on the grouped fish (aged 1+) declined shortly after the first week, but in one of 

the two replicates the G. salaris population lasted for more than 50 days (Soleng & Bakke, 

2001b). These results demonstrated that the pathogen G. salaris can easily attach to and 

reproduce on grayling, with some differences between the host populations, where the 

innate resistance increases with the age of the fish, apart for the grouped fish. When 

grayling were held in isolation, i.e. not cohabited with S. salar, the infection period was 

short (Soleng & Bakke, 2001b). This indicates that T. thymallus might represent a carrier 

for G. salaris, but in absence of salmon, it is unable to develop the parasite infection. 
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In order to discriminate between G. salaris and G. thymalli, their host specificity and 

pathogenicity was tested experimentally by Sterud et al. (2002). Atlantic salmon that were 

experimentally infected with G. thymalli managed to eliminate the infection within 42 days 

when held as isolated individuals and within 70 days when held in groups of fish (Sterud et 

al., 2002). Using the same approach but infecting grayling with G. salaris from the River 

Lierelva (most likely haplotype F - see Hansen et al., 2003), the infection of G. salaris 

partially failed to reproduce and grow, but remained on two individually isolated fish for 

up to 143 days (one of the two, even increased from 5 parasites to 22 in the last count), 

when the experiment was terminated. In the trial using groups of fish, a single fish carried 

the infection with four G. salaris specimens until the end of the experiment at 143 days 

(Sterud et al., 2002).  

 

1.6.7. British salmonids previously tested with G. salaris 

The early surveys of Platten et al. (1994) and Shinn et al. (1995) conducted 

throughout the UK examined more than 4000 wild and farmed salmonids and did not find 

G. salaris. On-going surveillance programmes from that time have also taken samples 

from key sites and identified any collected Gyrodactylus specimens to ensure they were 

not G. salaris. Based on the combined data from these investigations the UK is considered 

to be G. salaris free (see European Commission Decision 2004/453/EC; EC Decision 

2006/272/EC; http://eurlex.europa.eu). If G. salaris, however, were to be introduced into 

the UK, then it is believed that the consequences of this could be potentially catastrophic. 

To determine whether UK stocks were susceptible, Atlantic salmon stocks from two 

Scottish rivers, the Conon and the Shin were experimentally challenged with G. salaris 

(see Bakke & MacKenzie, 1993; Dalgaard et al., 2003, 2004). Hatchery-reared 0+ salmon 

parr from both rivers were flown to Norway and exposed to a strain of G. salaris from the 

River Figga, Norway (most likely haplotype A, see Fig. 1 in Hansen et al., 2003). After 3 
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days exposure, the prevalence of infection was found to be 100% (Bakke & MacKenzie, 

1993). The 50 day experiment assessed fish held in isolation and as groups. During this 

period, none of the fish were able to completely eliminate their infection. Peak infections 

i.e. ~1500 parasites fish
-1

 were seen on between days 22 and 36, after which some fish 

appeared to mount a response and were able to considerably reduce their parasite burdens. 

Other fish, however, failed to respond and died during the experimental period (Bakke & 

MacKenzie, 1993; Fig. 1.23).  

 

       

Figure 1.23. The course of Gyrodactylus salaris Malmberg, 1957 (haplotype A) infection on individually 

isolated salmon parr originating from the Scottish River Conon (left) and from the River Shin (right), 

expressed as the average mean intensity of two replicates groups [graphs from Bakke & MacKenzie, 1993]. 

 

Later, Dalgaard et al. (2003) flew a sample of S. salar from the River Conon to Denmark 

and assessed their susceptibility to a strain of G. salaris collected from the River 

Lærdaselva, Norway (most likely haplotype F, see Hansen et al., 2003). The 0+ fish were 

either infected with G. salaris following the normal procedures or treated with 

corticosteroids in order to induce a state of stress before they were exposed to the parasite. 

As expected, the treated salmon were more susceptible to infection and had a mean 

intensity of ~280 parasites fish
-1

 by the end of the experiment (8 weeks). The untreated 

salmon, by comparison, had 98 parasites fish
-1

, and in both cases a 40% fish mortality 
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occurred (Dalgaard et al., 2003). A subsequent trial by Dalgaard et al. (2004) tested the 

River Conon population again alongside three other populations of S. salar from Canada, 

Denmark and Sweden, and a population of rainbow trout from Denmark, and the River 

Conon stock showed similar susceptibilities to G. salaris to those described by Dalgaard et 

al. (2003). 

 

1.7. Existing control methods and management 

The uncontrolled increases in parasite numbers on wild Atlantic salmon 

populations have necessitated extreme measures to manage infections, and in Norway 

these management measures have included the use of the plant extract rotenone, a broad 

spectrum piscicide, to “clean out” the entire fish population within a G. salaris infected 

river (Bakke et al., 2007). Rotenone has been used and reused in several Norwegian rivers 

with mixed success (e.g. River Skibotnelva was treated twice but both treatment failed to 

completely eliminate G. salaris infection; see Winger et al., 2012), but given 

environmental concerns regarding its use and its alternative “treatment”, i.e. aluminium 

sulfate, there is a drive to identify alternatives for use in farms and in rivers where approval 

has been granted. Gyrodactylus salaris currently costs Norway £38 million p.a.; £23 

million is linked to impacts on tourism and restrictions imposed on fishing and the 

associated industries, whilst the remaining £15 million results from on-going surveillance 

programmes and treatments. Whilst G. salaris infections in farmed fish populations can be 

readily controlled using formalin, etc., infections on wild fish pose a series of logistical 

problems including the scale and volume of certain water systems, their complexity and 

species diversity, treating salmonids which are highly mobile hosts, impacts on non-target 

species and on the environment, and cost (Shinn & Bron, 2012). Commonly used, 

alternative treatments are those used elsewhere in the salmonid industry, i.e. salt and 

formalin. Both of these latter control compounds are effective (Buchmann et al., 2004; see 
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treatment review of Schelkle et al., 2009, 2011), but salt treatment requires use of large 

quantities. Its use in the UK, for example, is now regulated by the local protection agency, 

and it is difficult to administer, and there are human health concerns regarding the use of 

formalin. In some countries like Italy, the use of formalin is already restricted. The current 

alternative to rotenone is aluminium sulfate, Al2(SO4)3 (see Soleng et al., 1999; Bakke et 

al., 2007). Acidified aluminium sulfate is being trialled as an alternative because it does 

not kill salmonids but does appear effective at removing G. salaris which is unable to 

survive at below pH 5. Current “treatments” are given as a 10 to 14 day regime followed 

by a rotenone treatment (dose ~100 μg L
-1

 for both treatments). Although trials using 

Al2(SO4)3 are on-going, within the UK at least, there are concerns regarding the impact of 

aluminium on the environment and on human health, e.g. Alzheimer’s (Doll, 1993). The 

UK’s concern is well-founded in that the UK’s largest poisoning incident involved 

undiluted aluminium sulfate entering the domestic water supply via the water treatment 

plant at Camelford, UK (www.guardian.co.uk/society/2012/mar/14/camelford-water-

poisoning-inquest). 

Temperature has also been explored to control G. salaris infections. Rintamaki 

(1989) demonstrated that the reproduction of G. salaris decreases if the water temperature 

exceeds 16°C and that the parasite prefers low temperatures (Malmberg, 1973). Salinity 

also appears to be an effective method to control the reproduction of G. salaris, which 

readily reproduces on rainbow trout at salinities of ~5‰. At higher salinities, i.e. 7.5‰, the 

population slowly declines (56 days at 6–12°C) (Soleng & Bakke, 1997). At higher 

salinities yet, i.e. 20‰, G. salaris can survive for a few days but can continue to reproduce 

if returned to freshwater after 8 hours. This tolerance to salinity supports the hypothesis 

that G. salaris may disperse through brackish water (Bakke et al., 2002). 

 Most recently the utility of octopamine-like compounds in disrupting the behaviour 

of gyrodactylids has been investigated (Brooker et al., 2011). These compounds affected 
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the ability of parasites to locate and remain on their hosts, inhibiting their movements and 

inducing death at low concentrations of 0.2 μM (Brooker et al., 2011). While such 

compounds, which are invertebrate specific, may have value, those tested in Brooker et al. 

(2011) were not chosen for their practical applicability, i.e. they were assessed to 

determine whether such classes of compound have an effect on Gyrodactylus species rather 

than these being candidate compounds to replace the use of rotenone and aluminium 

sulfate for use in rivers. There is much work to be done in this area of monogenean 

research and the situation of G. salaris in Norway and the threat it poses to salmon 

populations elsewhere, including the UK, gives urgency to the search for an effective, safe 

alternative treatment.  

 

1.8. Aims of the thesis 

The overarching aim of the current thesis is to improve our understanding of the 

emergence and control of gyrodactylid infections linked with fish diseases. To achieve this, 

the current research project investigates several lines of research surrounding Gyrodactylus 

salaris and other potentially pathogenic species associated with emergent disease 

problems.  

More in details, the specific aims of this thesis are as follows: 

1) To re-evaluate the geographical distribution of G. salaris throughout Europe. The 

first report of G. salaris in Poland and then subsequently in Italian populations of 

farmed rainbow trout (Paladini et al., 2009a; Chapter 2) in the early stages of this 

research project highlighted a need to define the distribution of G. salaris within 

Europe. To achieve this, a review of the known geographical distribution was 

required, including the collection of new Gyrodactylus material from salmonids 

obtained from a number of European states. This study and its findings are reported 

on and discussed in Chapter 3. 
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2) To identify and discriminate G. salaris from other potentially pathogenic 

Gyrodactylus species. This study required a comprehensive understanding of 

gyrodactylid taxonomy. To achieve this it was necessary to be exposed to a large 

number of species in a range of formats. The Aquatic Parasitology Laboratory 

within the Institute of Aquaculture regularly receives parasite material for either 

evaluation as part of its diagnostic service or has material donated for research 

purposes. Some of the fish and parasite samples received during the tenure of this 

study led to the discovery and description of several new species. Some of these 

new species, which impact on reared aquaculture species, are presented in Chapters 

4 and 5. Some of these are highlighted because they may represent potential 

emerging pathogens. 

3) To determine the relative susceptibilities of English and Welsh populations of 

salmonids, i.e. Atlantic salmon, brown trout and grayling, to G. salaris for the first 

time. National contingency plans in the UK have been based on the assumption that 

British salmonids would respond in the same way as their Scandinavian 

counterparts. This study, detailed in Chapter 6, represents one of the central issues 

of this research project. 

4) To investigate for alternative treatments to control and manage Gyrodactylus 

infections. While there is a general consensus that rotenone and aluminium sulfate 

are inappropriate options for the management of G. salaris infections, there has 

been little work to look for alternatives. Chapter 7 represents a preliminary 

investigation and begins by assessing the suitability of broad spectrum disinfectants 

such as bronopol and of natural compounds like tannic acid, determining whether 

they have an impact on the survival of different species of Gyrodactylus. The action 

of these two compounds is assessed against two species of Gyrodactylus, i.e. the 

OIE-notifiable pathogen G. salaris and Gyrodactylus arcuatus. 
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Chapter 2 

 

The first report of Gyrodactylus salaris in Italy 

 

 

Gyrodactylus salaris Malmberg, 1957 from farmed Italian rainbow trout, Oncorhynchus mykiss (Walbaum) 

[original image]. 

 

Paper I 

Paladini G., Gustinelli A., Fioravanti M.L., Hansen H., Shinn A.P. (2009). The first report of Gyrodactylus 

salaris Malmberg, 1957 (Platyhelminthes, Monogenea) on Italian cultured stocks of rainbow trout 

(Oncorhynchus mykiss). Veterinary Parasitology, 165: 290–297. 

 

 

 

Aspects of this paper were presented as: 

 

Paladini G., Hansen H., Fioravanti M.L., Shinn A.P. (2009). The potential impact of monogeneans on Italian fish stocks. 

Proceedings of the 6th International Symposium on Monogenea (ISM6), Cape Town, South Africa, 2nd-7th August 2009: 

P15 (poster).  
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2.1. General introduction of Paper I 

The following paper has been published in Veterinary Parasitology officially 

reporting for the first time in Italy the presence of Gyrodactylus salaris Malmberg, 1957, 

alongside three other species: Gyrodactylus derjavinoides Malmberg, Collins, Cunningham 

et Jalali, 2007; Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999; 

and Gyrodactylus truttae Gläser, 1974. These four species were found on Italian farmed 

rainbow trout, Oncorhynchus mykiss Walbaum, which were collected from several regions 

in the northern and central Italy. The report of G. salaris on Italian O. mykiss represents an 

important finding, given the economic impact that G. salaris has had on Atlantic salmon, 

Salmo salar L., in Scandinavia and the size of the Italian farmed rainbow trout industry.  

 

2.2. Authors’ contribution 

For this study, I personally visited all the farm sites and collected the gyrodactylid 

material with my colleague Dr Andrea Gustinelli from the University of Bologna. 

Following collection, all the material was transported to the Institute of Aquaculture, 

University of Stirling and then analysed. Prior to this study, Dr Andrew P. Shinn provided 

training in Gyrodactylus taxonomy and systematics. I carried out both morphometric and 

morphological methodologies, therefore, all the measurements and the pictures have been 

taken by me. Dr Haakon Hansen, working in an OIE-reference laboratory in Norway, 

performed the molecular part of this study. I drafted the first version of the paper which 

was subsequently revised with my co-authors Dr Andrew Shinn, Professor Maria Letizia 

Fioravanti, Dr Andrea Gustinelli and Dr Haakon Hansen. All authors read and approved 

the final version of the manuscript. 
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Chapter 3 

 

Geographical distribution of Gyrodactylus salaris Malmberg, 1957 

(Monogenea, Gyrodactylidae) throughout Europe 

 

 

The haptor of Gyrodactylus salaris Malmberg, 1957 haplotype A [original image]. 

 

 

 

Aspects of this work were presented as: 

 

 

Paladini G. (2012) Gyrodactylus: tales of invasion, resistance and control strategies. Aquaculture UK 2012, Aviemore, 

Scotland, 23rd-24th May 2012 (talk). 

 

 

Paladini G., Williams C., Hansen H., Taylor N.G.H., Rubio-Mejía O.L., Denholm S.J., Hytterød S., Bron J.E., Shinn 

A.P. (2012) Gyrodactylus salaris: the good, the bad and the ugly. Institute of Aquaculture 3rd PhD Research Conference, 

Stirling, Scotland, 24th October 2012: 16 (talk). 
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3.1. Introduction  

Gyrodactylus salaris Malmberg, 1957 has been shown to be extremely pathogenic 

to the Atlantic strain of Salmo salar L., and to a lesser degree to the Baltic strain (Bakke et 

al., 1990; Bakke, 1991; see Chapter 6). Whilst G. salaris has been reported from at least 

nine salmonid hosts (see www.gyrodb.net), its occurrence on rainbow trout, Oncorhynchus 

mykiss (Walbaum), a species which is traded extensively across Europe, is of particular 

concern (Peeler & Thrush, 2004; Peeler & Oidtmann, 2008). Rainbow trout have been 

demonstrated to be susceptible to G. salaris infection, and although these infections are 

self-limiting, they can persist for up to 90 days or more (Bakke et al., 1991a). Low levels 

of infection and the absence of evident clinical signs means that the parasite could go 

undetected in a consignment of fish (Peeler & Thrush, 2004; Peeler & Oidtmann, 2008). 

This, coupled with the ability of hosts to carry an infection for long periods, increases the 

window of exposure and raises concerns regarding the movement of rainbow trout, in 

terms of their potential role as a carrier and source of G. salaris infection of other 

susceptible fish populations, across Europe. 

 

3.1.1. OIE guidelines for the identification of G. salaris 

In the Manual of Diagnostic Tests for Aquatic Animals the Office International des 

Epizooties (OIE) recommends that the diagnosis of G. salaris should be based on 

information resulting from a combination of both morphological and molecular analyses 

(OIE, 2012). This approach has not always been followed in the past and certain G. salaris 

reports have been based solely on data derived from morphological investigations (e.g. 

recording of G. salaris in Germany by Lux, 1990) or, in other cases based on molecular 

data only (e.g. recording of G. salaris in Latvia by Hansen et al., 2003). To help 

understand the existing distribution and recording of G. salaris across Europe, a map 
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grayscale coding each G. salaris-positive country by the diagnostic method used to 

characterise the record is presented in Fig. 3.2 and Table 3.1. 

 

3.1.2. G. salaris vs G. thymalli: a taxonomic challenge 

The difficulty in discriminating G. salaris from Gyrodactylus thymalli Žitňan, 1960 

has been stressed and debated over by many authors (Malmberg, 1987; McHugh et al., 

2000; Sterud et al., 2002; Meinilä et al., 2004; Olstad et al., 2007). If morphology alone is 

considered, then while there are some subtle differences in the marginal hook sickles to 

permit the  discrimination of these two species (McHugh et al., 2000), host information is 

ideally required to support identification. Olstad et al. (2007), however, looking at a large 

data set of material collected from 10 populations, suggested that an a priori species 

delineation based on host alone is not possible and that more information is required to 

support identification. The study of Shinn et al. (2010), however, demonstrates that when 

all supporting information is removed and morphology experts are asked to make an 

identity based on the specimen only (i.e. no supporting information relating to host or 

location, etc.), then misclassification rates of between 4.88–29.27% for six G. salaris 

morphology experts and greater, i.e. 4.88–100%, for six Gyrodactylus morphology experts 

were seen. Although the internal transcribed spacer (ITS) region of the rRNA gene is 

frequently used in the description and discrimination of most Gyrodactylus species, this 

region for G. salaris and G. thymalli is nearly identical (Cunningham, 1997; Ziętara & 

Lumme, 2002), and so differences in the intergenic spacer (IGS) and cytochrome oxidase I 

(COI) are used instead to discriminate these two species (Sterud et al., 2002; Cunningham 

et al., 2003; Meinilä et al., 2004). Despite some morphological similarities, G. thymalli 

appears restricted to grayling, Thymallus thymallus (L.), whilst G. salaris has never been 

recorded from grayling in nature (Soleng & Bakke, 2001a). Although this study comments 

on whether the G. salaris-positive status of each country is valid, it does not necessarily 



Giuseppe Paladini                                                                                              Chapter 3 

 

57 

 

enter into debate on the validity of other species of Gyrodactylus parasitising salmonids, 

therefore, the distribution of G. thymalli from grayling throughout Europe is not 

considered.  

 

3.1.3. Aims of the study  

The aim of the present study is to provide a revised update of G. salaris in each 

European state, supplemented and supported by the analysis of additional Gyrodactylus 

specimens collected from salmonid populations from certain European states. Although the 

European distribution of G. salaris has been discussed several times in the scientific 

literature (Malmberg, 1993; Bakke et al., 2007; Paladini et al., 2009a), some of the 

countries reported as being G. salaris positive were based on misidentifications of 

morphologically similar species, whilst other G. salaris countries appear to have been 

overlooked.  

 

3.2. Materials and methods 

To further investigate the status inquirendae for the presence of G. salaris in 

certain European states, e.g. Portugal and Spain, additional salmonid samples were 

collected and screened. The results from each of these additional samples will be 

commented upon under the entry for each country. These specimens included new material 

from rainbow trout from Finland, Germany, Italy, Portugal and Spain between the period 

2008 and 2010. 

In order to provide a revised update of the G. salaris distribution across Europe, a 

literature review was necessary. This literature, however, was not always easily accessible, 

e.g. very old papers; no electronic versions; records only mentioning the presence of the 

parasite, but not providing any evidence of the correct identification; and, in many cases, 

the papers were published in their original country language; therefore, a translation to 
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English was necessary to extrapolate reports and data. Given the amount of work involved 

in hunting the literature and fill in the gaps of the countries with the unknown or unclear G. 

salaris-status, the historical records of each country where G. salaris has been reported, 

officially or unofficially, are listed below in the “Results” section, in chronological order. 

 

3.2.1. Acquisition of Gyrodactylus specimens from Finland, Germany, Italy, Portugal 

and Spain 

Ten ethanol fixed specimens of Gyrodactylus collected from a rainbow trout farm 

in the Jyväskylä region of Finland (location withheld for confidentiality) were donated to 

the Institute of Aquaculture (IoA), University of Stirling (UoS) by Professor E. Tellervo 

Valtonen. The specimens had already been removed from their hosts and no details 

regarding the number of hosts they were collected from, or the size of infection were 

available, but it is assumed they were taken from multiple hosts. The specimens were 

analysed following morphological and molecular methods. 

Twenty ammonium picrate glycerine-mounted specimens of Gyrodactylus 

collected from a rainbow trout stock from an undisclosed fish farm in Germany were sent 

to the Parasitology Laboratory at IoA (UoS) by Professor Ewa Dzika, and their identity 

was assessed by morphology and morphometrics only.  

Between the period 2008-2009, twenty-seven samples of Gyrodactylus were 

collected from twenty Italian rainbow trout farms located in seven different regions (Friuli-

Venezia Giulia, Lombardy, Piedmont, Trentino-Alto Adige, Tuscany, Umbria and Veneto) 

throughout the central and northern regions of Italy (fish farm sites undisclosed for 

confidentiality). From each site, ten fish ranging from 10-40 cm total length were sampled 

and examined for the presence of gyrodactylids. Fish were euthanised by an overdose of 

100 mg L
-1

 Finquel
®

 (Argent Chemical Laboratories, Redmond, WA, USA) and a sample 

of their mucus collected and fixed in 80% ethanol by scraping the body and fins of each 
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fish using the back edge of a scalpel blade. The parasites were identified by both 

morphological and molecular approaches. 

A Portuguese sample of fins removed from 10 fingerling rainbow trout (~15 cm 

total length), that had been fixed in 80% ethanol, were sent to IoA, UoS in December 2008 

(site details withheld). A total of three specimens of Gyrodactylus were found. Each 

specimen was subjected to morphological and molecular examination.  

A sample of 60 Gyrodactylus specimens collected from ten rainbow trout 

fingerlings from a farm in the Galicia region of Spain (site details withheld) in 2010 was 

sent by a local contact, and subsequently processed for morphological and molecular 

analyses. Representative specimens were prepared as whole mounts and cleared in situ 

using ammonium picrate glycerine.  

 

3.2.2. Morphological analysis 

The specimens collected were prepared for both morphological and molecular 

analyses following the methods detailed in Paladini et al. (2009a) and Shinn et al. (2010). 

When unmounted parasites were available, gyrodactylids were cleaned of extraneous 

mucus using mounted triangular surgical needles (size 16, Barber of Sheffield, UK) and 

observed under an Olympus SZ40 dissecting microscope at ×4 magnification. Each 

individual specimen was then transferred to a glass slide and cut in half with a scalpel 

blade. The anterior part was transferred to a 1.5 mL Eppendorf containing 95% ethanol for 

subsequent molecular characterisation (Paladini et al., 2009a). The posterior part of the 

specimen, containing the attachment organ, was subjected to proteolytic digestion, to 

remove tissue surrounding the attachment hooks, following the method detailed in Paladini 

et al. (2009a) which is a modification of the protocol given in Harris and Cable (2000). 

Tissue digestion was arrested and sclerites mounted in situ by the addition of 2 µl of a 1:1 

saturated ammonium picrate: 100% glycerine mix solution. The edges of the coverslip 
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were then sealed with common nail varnish to make a semi-permanent mount. The 

digested specimens were then photographed using a JVC KY-F30B 3CCD camera with an 

interfacing ×2.5 top lens fitted to an Olympus BH2 compound microscope with phase 

contrast. 

 

3.2.3. Molecular analysis 

The corresponding upper parts of the parasite bodies, previously stored in 95% 

ethanol, were subjected to molecular characterisation, which was performed by Dr Haakon 

Hansen at the Norwegian Veterinary Institute of Oslo. DNA was extracted only from the 

specimens collected from Finland, Italy, Portugal and Spain, using DNeasy
®
 Blood & 

Tissue minikit (Qiagen). To amplify (PCR) a fragment spanning the 3′ end of the 18S 

ribosomal RNA subunit, internal transcribed spacers 1 and 2 (ITS1 and ITS2), the 5.8S 

subunit and the 5′ end of the 28S subunit, the primer pair ITS1A (5′-

GTAACAAGGTTTCC GTAGGTG-3′) and ITS2 (5′-TCCTCCGCTTAGTGATA-3′) 

(Matejusová et al., 2001) were used. The PCR reactions were performed with PuReTaq 

Ready-To-Go™ PCR beads (GE Healthcare) following the manufacturer's instructions. 

The PCR program was as follows: 4 min at 95°C, followed by 35 cycles of 1 min at 95°C, 

1 min at 55°C and 2 min at 72°C. PCR products were then purified using a NucleoSpin
®

 

Purification Kit (Macherey–Nagel) and sequencing reactions were carried out on a 

MegaBACE 1000 analysis system (GE Healthcare) using DYEnamic ET dye terminators.  

For sequencing, the internal primers ITS4.5 (5′-CATCGGTCTCTCGAACG-3′) 

(Matejusová et al., 2001), ITS1R (5′-ATTTGCGTTCGAGAGACCG-3′), ITS18R (5′-

AAGACTACCAGTTCACT CCAA-3′), ITS2F (5′-TGGTGGATCACTCGGCTCA-3′) 

and ITS28F (5′-TAGCTCTAG TGGTTCTTCCT-3′) (Ziętara & Lumme, 2003) were used 

in addition to the PCR primers. The obtained sequences (ITS1, 5.8S and ITS2 only) were 
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proofread and assembled in Vector NTI 11 (Invitrogen) and subjected to a BlastN search 

(Zhang et al., 2000).  

 

3.3. Results 

A re-evaluation of the distribution of G. salaris across Europe showed that this 

species is currently known from 17 countries throughout Europe, although its presence has 

been reported from 23 countries (Fig. 3.2). The report from Slovakia is not considered 

valid, whilst the identity of the specimens recovered from some countries, e.g. France, 

Portugal and Spain, are questionable and their G. salaris status requires further re-

examination. The specimens from these latter three countries were most likely 

Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999, a species bearing 

some morphological similarities to G. salaris but undescribed at the time of the “G. 

salaris” report for each country.   

The G. salaris records for each European state are discussed below chronologically 

by the date of first official observation. The acquisition of new Gyrodactylus material from 

Finland, Germany, Italy, Portugal and Spain and its subsequently examination, is discussed 

under each European state. A summary table listing only the valid reports of G. salaris by 

country is presented in Table 3.1. 

 

3.3.1. Chronological record of G. salaris in each European state 

 

1951 - Sweden  

In 1951, Dr Göran Malmberg based at the University of Gothenburg, received a 

sample of Gyrodactylus collected from Atlantic salmon held at the experimental fish farm 

station in Hölle (now Hölleforsens Laxodling) situated on the River Indalsälven, Sweden. 

The findings from this material were reported on six years later, although the description of 
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G. salaris was performed on one specimen only (see Malmberg, 1957). In 1954, the 

salmon parr held at the Hölle farm were observed to harbour a heavy G. salaris infection. 

While the salmon from the River Indalsälven responded well to treatment, the salmon parr 

originating from the River Gullspångsälven, emptying into the Lake Vänern in western 

Sweden, proved to be more difficult to treat. This was the first observation regarding the 

differential sensitivity and susceptibility of Atlantic salmon stocks to G. salaris (see 

Malmberg, 2004). Since then, G. salaris has been recorded from salmonids from 11 rivers 

on the Swedish west coast draining into the Kattegat and Skagerak (Malmberg & 

Malmberg, 1993; Koski & Malmberg, 1995; Buchmann et al., 2000). The parasites found 

in the Swedish rivers draining into the North Sea, however, are suggested to originate from 

the Baltic Sea (Hansen et al., 2003). Gyrodactylus salaris is believed to occur naturally in 

Sweden and is not considered pathogenic in the wild, as supported by several records of G. 

salaris infection in the Baltic watershed, without causing any host mortalities (Malmberg 

& Malmberg, 1991, 1993).  

As a generalisation, whilst infections of G. salaris on Swedish populations of 

Atlantic salmon do not appear to be particularly pathogenic (Bakke et al., 2002; Dalgaard 

et al., 2003, 2004), not all the Baltic strains of Atlantic salmon are resistant to G. salaris. 

In 1998, Alenäs and colleagues (Alenäs, 1998; Alenäs et al., 1998) reported a 90% 

decrease in the salmon parr density from the River Säveån, a tributary to the River Göta 

älv, which were infected with high burdens (~1700 specimens fish
-1

) of G. salaris 

(tentatively haplotype E, based on the map and tables presented in Hansen et al., 2003). It 

is important to note that this river drains into Lake Mjörn, which is closer to the Atlantic 

side of Sweden than to the Baltic side. This could be a possible explanation for the 

unexpected pathogenicity of G. salaris on this strain of Atlantic salmon. Another 

hypothesis could be that the haplotype of G. salaris found on this S. salar stock may be 

more pathogenic than those found on the Baltic strain of S. salar. The haplotype 
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pathogenicity between different fish populations has not been tested yet, and therefore it 

would be interesting to verify their potentially different virulence. Gyrodactylus salaris 

haplotype A, which is widespread throughout Norway where it commonly infects Atlantic 

salmon, has also been found in Sweden from the Rivers Ätran and Surtan (Alenäs et al., 

1998; Hansen et al., 2003), suggesting that this pathogenic haplotype is not confined 

geographically and could be widespread. This is also the case for haplotype B, which has 

been recorded from Norway and Sweden, whilst haplotype F has also been reported from 

Denmark, Finland, Italy and Russia (Hansen et al., 2003; Meinilä et al., 2004; Jørgensen et 

al., 2008; Paladini et al., 2009a). 

 

1960 – Ukraine  

A parasitological survey on 295 fish sampled from two Ukrainian rivers, the Tisa 

and the Seret, found G. salaris on brown trout, Salmo trutta fario L., collected from the 

River Seret (Kulakovskaja, 1967). Later in 1973, Malmberg (1973) reported finding G. 

salaris on S. trutta fario collected from a Carpathian hatchery, and although he did not 

specify the exact location of the hatchery at the time, in a later account Malmberg (1993) 

indicated that these represented specimens originating from the River Seret that had been 

donated by Dr Kulakovskaja to Dr Malmberg back in 1960. Further records of G. salaris 

result from an investigation conducted by Tesarcik and Ivasik (1974) on brown trout and 

rainbow trout (referred to as its old name Salmo gairdneri irideus) sampled from a number 

of Carpathian ponds. The authors reported finding G. salaris on both hosts from ponds fed 

by the Rivers Dniester and Danube, within the Ukraine (Tesarcik & Ivasik, 1974).  

In 1983, Ergens described Gyrodactylus sp. material collected from the fins of S. 

trutta fario from two localities within the Autonomous Republic of Crimea, Ukraine. The 

first sample was taken in 1975 from the River Salgir, whilst the second sample, collected 

in 1976, was from the River Angara (Ergens, 1983). Ten years later, Malmberg (1993) 
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suggested that Gyrodactylus sp. sensu Ergens, 1983 was a synonym of G. salaris. No 

specimens of G. salaris collected from Ukrainian waters, however, have been confirmed 

by molecular methods. 

 

1967 – Bosnia and Herzegovina  

The first two reports of G. salaris from S. salar bred in Bosnia and Herzegovina 

date back to 1967 (Čanković & Kiškarolj, 1967; Žitňan, 1967). Žitňan and Čanković 

(1970) later recorded G. salaris from rainbow trout and brown trout from the Rivers Buna 

and Pliva, which run through two fish farms sited at Blagaj and Jezero, near the towns of 

Jajce and Mostar, respectively, and from Adriatic trout Salmo obtusirostris Heckel, from 

the River Buna site. Ergens (1983) listed the species of Gyrodactylus collected from the 

Rivers Buna and Pliva as Gyrodactylus truttae Gläser, 1974, and it is not clear whether 

Ergens (1983) based this assumption on a re-examination of the specimens that were 

collected during the earlier study or on the assessment of new material that was collected. 

The validity of this record was also questioned by Bakke et al. (1992a), an opinion based 

on Tanum’s (1983) assessment of the material, who considered the reports of G. salaris 

from O. mykiss and from S. trutta fario as misidentifications, but not the record of G. 

salaris from S. obtusirostris. Following Žitňan and Čanković’s (1970) study, several other 

reports of G. salaris infections from the skin and fins of rainbow trout fry were recorded 

from three fish farms situated at Blagaj near the town Jajce, Ljuta near Konjic and Jezero 

near Mostar, where mortalities of 3-5% were reported, and also from the River Ribnik 

(Imamović, 1984, 1987). Although the report of Imamović (1987) is considered as valid, it 

is not possible to verify this based on the drawings of the attachment hooks that are 

presented in the paper. 
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1972 – Russia (including the Republic of Karelia but not Kaliningrad) 

Specimens of Gyrodactylus sp. were collected by Ergens and Rumyantsev in June 

1972 from S. salar caught in Lake Ladoga, Republic of Karelia (Ergens, 1983). A 

subsequent re-examination of these specimens and a comparison with the re-described type 

material of G. salaris, confirmed that the Karelian material was G. salaris (see Ergens, 

1983). Although the first record of G. salaris in Russia appears to have been made by 

Yekimova (1976) working in the River Pechora, a subsequent re-examination of the 

specimens suggested that this was a misidentification (Dorovskikh, 2000; Kudersky et al., 

2003). One year after the re-description of G. salaris, its occurrence on S. salar from River 

Pyalma, Lake Onega, Republic of Karelia was reported (Permyakov & Rumyantsev, 

1984). Gyrodactylus salaris has also been recorded on salmon from the River Keret with 

prevalences close to 100% and mean intensities of approximately 300 parasites fish
-1

, 

suggesting that this parasite is a likely cause for the decline of the salmon parr population 

in this river (Ieshko et al., 1995). The introduction of G. salaris to the River Keret in 

Russia was suggested to originate from Finland by anthropogenic activities, following an 

epidemic in the White Sea salmon stock in Russia (Malmberg, 1993; Mo, 1994; Johnsen et 

al., 1999; Bakke et al., 2004), although it was not clear exactly when the parasite 

introduction took place. The confirmation of this though was not possible until a 

mitochondrial DNA-based analysis was conducted (Meinilä et al., 2002). Following 

mitochondrial characterisation, the presence of G. salaris in the River Keret appeared to 

originate from the Vyg (White Sea) hatchery during the period 1986-1989, when native 

salmon juveniles were transported by helicopter (Kuusela et al., 2005). Kuusela et al. 

(2005) and Ieshko et al. (2008) suggested that the same canvas bag had been used to 

transfer fish to Lake Onega, where the parasite normally resides and does not cause any 

damage. The presence of G. salaris has also been recorded from the landlocked salmon 

population in the River Pistojoki, Lake Kuitozero (Meinilä et al., 2004), but this strain of 
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G. salaris is most likely to have originated from rainbow trout that were stocked into fish 

farms in Kuusamo, Finland, upstream of the Pistojoki (Kuusela et al., 2005). The 

molecular identification of G. salaris from Russian S. salar has been confirmed by a 

number of authors (Cunningham et al., 2003; Meinilä et al., 2004; Kuusela et al., 2007, 

2009).  

Given the size of the Russian landmass, it might be advisable in the future to divide 

the country into zones when considering the occurrence of G. salaris. Defining these 

“zones”, however, is not a simple matter and may be restricted to G. salaris-positive 

watersheds, as there are no geographic features that would otherwise limit its spread across 

the entire country. Gyrodactylus salaris has not, however, been reported from the Russian 

exclave Kaliningrad, which is positioned between Poland and Lithuania. Although both 

latter states have been reported as being G. salaris positive, the record for Lithuania is 

based on a single web reference (Cefas; www.westcountry 

angling.com/pdf/gyrodactylus_salaris.pdf) and requires verification. Gyrodactylus 

material, therefore, from this region is required before comment on its G. salaris status can 

be made. 

 

1974 – Czech Republic 

The first report of G. salaris in Czech Republic results from the study conducted by 

Tesarcik and Ivasik (1974) which included the North-Moravian River Moravice in the 

Czech Republic and Carpathian ponds in the Ukraine. Specimens of G. salaris were 

collected from brown trout from the River Moravice, and although no images of the 

attachment hooks are presented in Tesarcik and Ivasik’s (1974) account, the record is 

considered as valid. 

The discovery of a G. salaris-morphologically similar species, namely 

Gyrodactylus bohemicus Ergens, 1992 from farmed O. mykiss and Salvelinus fontinalis 
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(Mitchill) in the Czech Republic (Ergens, 1992), raises the question of whether this is a 

valid species or a misidentification, also due to the absence of molecular data. Ergens 

(1992) commented on the morphological similarities of G. bohemicus with G. thymalli and 

Gyrodactylus magnus Konovalov, 1967, but made no reference to G. salaris. Although 

three paratypes of G. bohemicus are deposited in the monogenean collection maintained by 

the Institute of Parasitology, Czech Academy of Sciences, these represent valuable 

specimens and are not available for scientific loan. However, pictures of the paratypes of 

G. bohemicus were kindly taken by Dr Roman Kuchta, and their morphological 

examination during the course of this study suggests a very close similarity to G. salaris 

(personal identification; see Fig. 3.1). Lindenstrøm et al. (2003) also remarked on the 

similarities between the two species; further comments on this, however, must wait until 

more specimens can be collected and evaluated through a molecular comparison with 

congeners. It is for these latter reasons that Bakke et al. (2007) suggested that G. salaris is 

probably absent from the Czech Republic, but comments that a detailed study to establish 

its presence or otherwise would be worthwhile. In a study carried out by Matejusová and 

colleagues (2001), a single specimen of Gyrodactylus was recovered from a brown trout 

sampled from the River Vlára. The identity of this specimen, however, was not clearly 

defined and it was referred to as G. salaris/G. thymalli (see Matejusová et al., 2001). There 

are, however, other reports of “G. salaris” from the Czech Republic, which represent 

misidentifications of either Gyrodactylus derjavinoides Malmberg, Collins, Cunningham et 

Jalali, 2007 and/or G. truttae, neither of which had been discovered and described at the 

time the relevant “G. salaris” report was made. These include the record of Gyrodactylus 

specimens from brown trout from the River Osoblaha (Ergens, 1965) and from rainbow 

trout from a fish farm near the town Český Krumlov (Lucký, 1963). In a study by Řehulka 

(1973), specimens of brown trout, rainbow trout and brook trout were infected with G. 

salaris sensu Ergens, 1961, which later was determined to be a misidentification of G. 
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truttae, whose attachment hooks vary markedly in size from those of G. salaris (see Mo, 

1983; Ergens, 1992). 

 

 

Figure 3.1. Light micrographs of the paratypes (acc. no. M-342) of Gyrodactylus bohemicus Ergens, 1992 

from farmed Oncorhynchus mykiss (Walbaum) and Salvelinus fontinalis (Mitchill) from Czech Republic. a: 

hamulus complex; b–d: marginal hook sickles. Scale bars: a = 10 μm; b–d = 5 μm [images kindly provided 

by Dr R. Kuchta]. 

 

1975 – Norway 

The first observation of G. salaris in Norway was made in 1975 at the Akvaforsk 

fish hatchery in Sunndalsøra, Møre and Romsdal County (Bergsjö & Vassvik, 1977), 

although Johnsen and Jensen (1991) indicated that the first official record was made by 

Tanum (1983). In the same year (1975), G. salaris was found in the Rivers Lakselva and 

Ranaelva following the heavy loss of Atlantic salmon parr stocks (Johnsen, 1978). The 

first assumption was that G. salaris occurred naturally in Norway, but later studies 

suggested that this parasite had been introduced, most likely from Sweden (Heggberget & 
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Johnsen, 1982; Johnsen & Jensen, 1986, 1992; Mo, 1994) and that the Atlantic strain of S. 

salar was more susceptible to infection than the Baltic strain (Bakke et al., 2004). The true 

story on how the parasite has been introduced, however, is still controversial. According to 

Johnsen and Jensen (1991), G. salaris was accidentally introduced with a consignment of 

parr from Sweden into Norway for aquaculture purposes, whilst Winger (2009) suggested 

that in 1978, infected salmon smolts being transported by a vehicle were accidentally 

dumped in the Norwegian River Skibotnelva and one year later the presence of G. salaris 

was observed in that river (Heggberget & Johnsen, 1982; Mo, 1994). 

In 1983, gyrodactylosis on salmon by G. salaris was declared a notifiable disease 

in Norway and from then, the Norwegian government introduced active measures to 

control and eradicate the parasite from infected river systems (Mehli & Dolmen, 1986; 

Dolmen & Mehli, 1988). Given the high level of mortality seen in the wild, G. salaris-

infected salmon populations, the Norwegian salmon authorities approved the treatment of 

the rivers with the non-selective insecticide and pesticide rotenone, which is a natural 

extract of the leguminous plant Derris elliptica. This biocide, however, kills the fish as 

well as the parasites by inhibiting the transfer of electrons in mitochondria (Marking & 

Bills, 1976). Although rotenone has been administered in several rivers to control G. 

salaris infections (Arnekleiv et al., 2001; Eriksen et al., 2009), not all treatments have 

proven successful, with either some infected fish avoiding treatment or other infected fish 

moving in from elsewhere (Mo, 1988; Winger et al., 2007). As such, some rivers have had 

to be treated several times, e.g. although the River Skibotnelva in northern Norway has 

been treated twice, it is now re-infected again (Winger et al., 2007). Despite these 

problems, the cost–benefit plan made by Krokan and Mørkved (1994) justified the use of 

rotenone to be deployed on a large scale, with some modification to the treatment 

(Haukebø et al., 2000) after G. salaris was found to re-establish in certain rivers (Bakke et 

al., 2007). The dose of rotenone used ranges from 0.5–5.0 ppm of a 5% formulation, but 
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typically is around 2 ppm (i.e. 100 ppb active ingredient). In addition to the use of 

rotenone, the use of acidified aluminium sulfate [Al2(SO4)3] to eradicate the parasite 

infection in Norwegian rivers is now being explored, and current treatments are a 10–14 

day aluminium treatment followed by a rotenone treatment (Soleng et al., 1999; Poléo et 

al., 2004; Bakke et al., 2007). 

To date, 46 salmon rivers have been infected in Norway since the first record of G. 

salaris; current infections account for an estimated annual loss of between 250 and 500 

tonnes of salmon (see Table 2 in Bakke et al., 2007). The molecular identification of G. 

salaris throughout Norway has been confirmed by many authors (e.g. Cunningham et al., 

2003) with numerous sequences deposited in GenBank. Hansen et al. (2003) was the first 

to characterise six different G. salaris mitochondrial haplotypes from Atlantic salmon from 

throughout Norway and Sweden. Although further haplotypes have since been described 

(Meinilä et al., 2004; Hansen et al., 2007b; Paladini et al., 2009a), the studies suggest that 

instead of a single introduction of G. salaris into Norway, there have been several (Bakke 

et al., 2007; Hansen et al., 2007b). 

 

1983 – Georgia 

Malmberg (1993) suggested that Gyrodactylus salaris was also present in Georgia, 

given that the description of Gyrodactylus sp. sensu Ergens, 1983 was shown to be a 

synonym of G. salaris. The report of this species from S. trutta fario collected from 

Chernorechenskoye fish farm in 1978 by Ergens (1983), therefore, is considered as valid, 

although future collections should, additionally, be verified by molecular-based 

approaches. 
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1984 – Finland  

Although Rintamäki (1989) reported the presence of G. salaris on Baltic salmon 

dating back to 1984, the first official record of this parasite from Finnish fish farms was 

published in 1987 by Rimaila-Pärnänen and Wiklund (1987), who reported an infection on 

18 fish farms that were studied between 1986 and 1987. Rintamäki (1989) reported 

moderate to heavy infections of G. salaris on Baltic salmon from the Ossauskoski fish 

farm situated on the River Kemijoki, resulting in 8% mortality in the one-year-old fish 

stocks. The occurrence of G. salaris from salmon fish farms connected to the River Iijoki 

and the River Kemijoki and, also reported for the first time from Finland, on rainbow trout, 

presented no clinical signs of disease (Keränen et al., 1992). An additional investigation 

was carried out by Koski and Malmberg (1995) on a number of rainbow trout and salmon 

farms in northern Finland, who confirmed finding G. salaris on salmon and rainbow trout 

without linked mortality. During these surveys, they also found Gyrodactylus lavareti 

Malmberg, 1957 only on rainbow trout in a mixed infection with G. salaris (see Koski & 

Malmberg, 1995). The presence of G. salaris originating from Finland has also been 

confirmed by molecular analysis (see Cunningham et al., 2003; Meinilä et al., 2004; 

Kuusela et al., 2007). During the course of the present study, ten additional Gyrodactylus 

specimens from rainbow trout reared in the Jyväskylä region were confirmed as G. salaris 

by both morphology and molecular-based approaches (personal identification; part of the 

molecular results are also presented in Table 1 in Shinn et al., 2010). 

 Parts of Finland, however, have been declared G. salaris-free under EC Decision 

(see section below of G. salaris-free states). 

 

1990 – Germany 

Lux (1990) was the first to report G. salaris in Germany from a survey of rainbow 

trout farms in the Brandenburg, Saxony and Thuringia districts, but in the absence of 
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supporting molecular data, the validity of this particular report is doubtful (Bakke et al., 

2007). In 2003, however, Cunningham et al. (2003) acquired a sample of specimens from a 

rainbow trout in Berlin and confirmed them as being G. salaris by analysis of the 

ribosomal RNA intergenic spacer (IGS) region. In 2005, Dzika et al. (2009) sampled a 

rainbow trout pond at Rogg in Bavaria, on a tributary of the River Danube, and reported 

finding G. salaris alongside G. derjavinoides, G. truttae and G. teuchis. However, the 

accuracy of the G. salaris drawings, notably those of the marginal hooks, questions the 

validity of the identification, given that no reference specimens were deposited in a 

national collection, nor was molecular analysis conducted. During the course of the present 

PhD project, 20 specimens of Gyrodactylus from O. mykiss reared in Germany were kindly 

donated by Dr Ewa Dzika. These specimens were mounted in ammonium picrate glycerine 

and confirmed as G. salaris by morphological identification only, supporting the findings 

of Dzika et al. (2009), at least for G. salaris (personal identification). Voucher specimens 

of G. salaris from this sample will be deposited in the Parasitic Worms collection in The 

Natural History Museum, London (UK). 

 

1993 - Moldova (including Transnistria) 

Although G. salaris has not been reported from Moldova per se, it has been 

reported from S. trutta fario from the River Seret, Ukraine (Kulakovskaja, 1967), which is 

a tributary of the River Dniester, which forms the eastern boundary of Moldova and the 

breakaway territory of Transnistria. On the NHM, London host-parasite database, G. 

salaris is reported from S. trutta fario in the “Ukraine, including Moldavia” with the report 

being accredited to Malmberg (1993). Although Moldova and Transnistria attained 

independence in 1991 and 1990, Malmberg (1993) referred to this record as the [former] 

Ukraine. Based on this information Moldova and Transnistria can be considered as G. 

salaris-positive states. 
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1997 – Denmark  

Malmberg (1973) conducted a Gyrodactylus survey in three Danish rainbow trout 

hatcheries and reported the presence of two unidentified Gyrodactylus species that were 

very different to the highly pathogenic G. salaris. Although these most likely represented 

G. derjavinoides and G. truttae, both species were still undescribed at the time. In 1997, 

Buchmann and Bresciani (1997) published the first official report of G. salaris on Danish 

rainbow trout, which was found to co-occur alongside G. derjavinoides. Later, Nielsen and 

Buchmann (2001) confirmed the presence of G. salaris, alongside G. derjavinoides, from 

eight rainbow trout farms during an 11-month sampling, using both morphology and 

molecular-based approaches. Although the latter study found only G. salaris and G. 

derjavinoides, an earlier study on Danish brown trout and other salmonids found also other 

two species, i.e. G. truttae and G. teuchis (see Buchmann et al., 2000; Buchmann, 2005). 

During a survey of wild Atlantic salmon from the Fladså (River Ribe å system), only one 

specimen of G. salaris was found, which was identified by morphological and molecular 

analyses (Jørgensen et al., 2008). Three G. salaris variants have been reported from 

Denmark: two from farmed rainbow trout (see Lindenstrøm et al., 2003; Jørgensen et al., 

2007) and one from wild Atlantic salmon (see Jørgensen et al., 2008), all of them non-

pathogenic, suggesting a high rate of genetic variation within this parasite in Denmark. 

Bakke et al. (2007) suggested that there are no G. salaris epidemics on Danish wild 

salmon probably because the rainbow trout variants of G. salaris do not reproduce on 

Danish salmon, or due to the scarcity of wild salmon in Danish watersheds. There are only 

four Atlantic salmon rivers in Denmark, i.e. Rivers Guden, Haderup, Skjern and Varde 

(www.salmonatlas.com). A recent catch-and-release survey of 2153 Atlantic salmon 

represented 55% of the total number of rod-caught fish, which suggests that the total 

number is around 3915 salmon (ICES, 2012). 

 



Giuseppe Paladini                                                                                              Chapter 3 

 

74 

 

2000 – Italy 

A survey of five rainbow trout farms from four different regions in central and 

northern Italy by Paladini et al. (2009a; see Chapter 2) found that fish were infected with 

four species of Gyrodactylus, including G. salaris. The other three species were G. 

derjavinoides, G. teuchis and G. truttae. The specimens were collected throughout 2004–

2005 and the morphological identification was confirmed by molecular analysis (personal 

identification; part of the molecular results are also presented in Table 1 in Shinn et al., 

2010). An additional archived sample of formalin-fixed rainbow trout mucus scraped from 

infected fish dating back to 2000 was also found to contain G. salaris. Although these 

latter specimens were identified by morphology only, this confirmed that G. salaris had 

been in the country since at least 2000 and had persisted without causing any ascribed 

mortality (Paladini et al., 2009a). For the current study, an investigation conducted 

throughout 2008-2009 investigated the distribution of G. salaris throughout the central and 

northern regions of Italy, and found that 22 of the 27 (81.5%) samples collected were 

positive for the presence of Gyrodactylus spp. at low intensities of infection (4–30 

parasites fish
-1

). Gyrodactylus salaris and G. derjavinoides were found in 17 samples from 

all 7 regions; only two specimens of G. truttae were found, one in a sample from Veneto 

and one from Trentino-Alto Adige. Gyrodactylus teuchis was the predominant species 

found in all 22 Gyrodactylus positive samples from all seven regions (Paladini et al., 

2010b; Shinn et al., 2010). The origin of G. salaris haplotype F in Italy may be attributed 

to the trade in rainbow trout, given that this haplotype has also been recorded from rainbow 

trout in several European countries, including Denmark. Italy’s recent history of importing 

rainbow trout from Denmark and Spain, coupled with the fact that the same four 

Gyrodactylus species, i.e. G. derjavinoides, G. salaris, G. teuchis and G. truttae (see 

Lindenstrøm et al., 2003; Paladini et al., 2009a), have also been found in Denmark, lends 

support to one possible hypothesis that G. salaris haplotype F may have been introduced 
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via rainbow trout trade from Denmark. Voucher specimens of G. salaris and G. teuchis 

collected from Italy will be deposited in the Parasitic Worms collection held within The 

Natural History Museum, London (UK). 

 

2002 – Latvia 

Specimens of Gyrodactylus collected from Baltic salmon from a fish farm near to 

the River Gauja were identified as a new haplotype of G. salaris (haplotype D) by 

molecular analysis (Hansen et al., 2003). This new mitochondrial haplotype, which 

clusters with haplotypes A and B (from Norway and Sweden) and haplotype C (Sweden 

only) as a single clade of G. salaris strains that only infects Atlantic salmon, appears to 

differ from the other two haplotypes (i.e. haplotype E on Atlantic salmon only; haplotype F 

on Atlantic salmon and rainbow trout), which form two separate single-haplotype clades 

(Hansen et al., 2003). Later, Hansen et al. (2006) added further information by analysing 

the nucleotide sequence of the intergenic spacer (IGS) and the mitochondrial cytochrome 

oxidase I (COI) of G. salaris haplotype D from the same Latvian fish farm, finding the 

same IGS arrangements that are typical of G. salaris from Norway. 

 

2007 – Macedonia  

Although there is no specific mention in the literature of G. salaris occurring in 

Macedonia, DNA sequences of G. salaris from Ohrid trout, Salmo lectnica (Karaman), and 

from rainbow trout, both collected from a fish farm located on the River Vardar in the 

Aegean Sea basin, Macedonia are reported in Kuusela et al. (2007) and in Ziętara et al. 

(2010). 
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2007 – Poland 

The first survey of Gyrodactylus on Polish salmonids was made from a fish farm 

and from the Rivers Soła and Czarna by Prost (1991), who found two species: G. 

derjavinoides from S. trutta fario, O. mykiss and S. fontinalis; and G. truttae from S. trutta 

fario. Subsequently, Rokicka et al. (2007) reported finding specimens representing three 

molecular forms belonging to the G. salaris/G. thymalli group that were collected from 

Polish rainbow trout, sea trout (Salmo trutta trutta L.) and grayling from tributaries of the 

River Vistula, near Pomerania province. Identification of the forms was based on a PCR-

RFLP analysis of the nuclear ITS fragment of rDNA. These three forms were represented 

by: 1) the standard ITS type which is found only on grayling; 2) a heterogenic G. salaris 

type previously described by Lindenstrøm et al. (2003) found on rainbow trout and sea 

trout; and 3) a form found on rainbow trout, which was a complementary homozygous 

clone differing by three nucleotides. The molecular identification was supported by a 

parallel morphometric analysis, and from the drawings presented in Rokicka et al. (2007), 

it is clearly visible that the specimens of G. salaris and G. thymalli collected represent two 

distinct species, although not pointed out. In Rokicka et al. (2007) the measurements of the 

two forms of G. salaris from rainbow trout and from grayling were grouped together, but if 

the two species are considered separately as G. salaris and G. thymalli, then the 

measurements of the hamulus total length reported in the literature are 61–69 μm for G. 

salaris and 75–84 μm for G. thymalli (see Ergens, 1983), which together correspond with 

the range reported in Rokicka et al. (2007), i.e. 69.1–87.9 μm. 

 

2009 – Romania  

Although no official report exists, the recent findings in 2009 of the OIE Reference 

Laboratory in Norway would suggest that G. salaris is also present within Romania from 

an unspecified farmed fish (OIE, 2012). 
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2010 – Estonia 

Atlantic salmon populations from the Baltic basin are believed to be more resistant 

to G. salaris infection than are the salmon populations from the Atlantic and the White Sea 

coasts (Rintamäki-Kinnunen & Valtonen, 1996; Dalgaard et al., 2003; Bakke et al., 2004). 

A recent survey on triploid Atlantic salmon from the Baltic basin showed a high 

susceptibility to G. salaris infection (Ozerov et al., 2010). This fish population originated 

from a hatchery in northern Estonia, situated on the Kunda River, Gulf of Finland, Baltic 

Sea (Ozerov et al., 2010). Identification of G. salaris was confirmed by molecular 

analyses, including sequencing of the ITS rDNA and mitochondrial COI (Ozerov et al., 

2010). Although there is no doubt regarding the identification of these specimens, no 

morphological data was presented. According to the mtDNA sequences obtained by 

Ozerov et al. (2010), the closest relatives to the Estonian strain of G. salaris ‒ with a single 

nucleotide difference in the COI region ‒ are the strain of G. salaris found in Genevadsån 

on the Swedish west coast and those collected from the Raasakka hatchery, Iijoki, Gulf of 

Bothnia, Finland. 

 

3.3.2. Countries where the G. salaris status requires confirmation 

 

France  

The first record of G. salaris in France and also in Portugal was made by Johnston 

et al. (1996) with reference to material collected from rainbow trout and identified using 

morphology and a DNA probe. The subsequent discovery of G. teuchis, a species which 

has morphological similarities with G. salaris, makes the validity of this earlier G. salaris 

finding questionable (Lautraite et al., 1999). This latter study and that of Cunningham et 

al. (2001) ‒ which looked at material collected from a large scale survey of Atlantic 

salmon, rainbow trout and brown trout farms ‒ did not find G. salaris, and therefore was 
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unable to support the suggestion that France is a G. salaris-positive state. Given this 

results, the earlier report was most likely the result of a misidentification between G. 

salaris and G. teuchis.  

 

Kazakhstan and/or Tajikistan 

The Natural History Museum (NHM), London, maintains a “host-parasite” 

database (www.nhm.ac.uk) which was populated with published parasite data up to and 

including 2002. On this database, there is a record of G. salaris from Aral trout, Salmo 

trutta aralensis Berg, from Kazakhstan linked to a paper by Gvozdev and Karabekova 

(2001). From this reference, however, Amu-Darya trout Salmo trutta oxianus Kessler is 

listed as a host for G. salaris from the River Kafirnigan, in Tajikistan, which could have 

been misidentified with Gyrodactylus derjavini Mikhailov, 1975, the only “other” 

Gyrodactylus species previously recorded from this host (see www.gyrodb.net; Ergens, 

1983; Prof. Margaritov N.M., pers. comm.). An earlier, similar reference by Gvozdev and 

Karabekova (1990) does not mention G. salaris within the 43 listed species of 

Gyrodactylus, although the abstract indicates that 48 Gyrodactylus species are listed. The 

validity of the G. salaris report from Kazakhstan and/or Tajikistan is questionable, and 

although attempts have been made to contact the authors, no communication has been 

established. This report cannot be confirmed until further detailed information on this 

report is available, or specimens can be obtained and assessed. 

 

Lithuania 

The record of G. salaris in Lithuania is cited in an on-line publication published by 

Cefas (www.westcountryangling.com/pdf/gyrodactylus_salaris.pdf) and its occurrence is 

suggested, but not confirmed, in a second website (www.europe-

aliens.org/pdf/Gyrodactylus_salaris.pdf). Cefas have been contacted and asked if an 
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official statement can be provided. Although Lithuania sits in the middle of the suggested 

natural distribution of G. salaris, until further information is forthcoming this record 

cannot be verified. 

 

Portugal 

The assessment of Johnston et al. (1996) of the Gyrodactylus specimens collected 

from farmed Portuguese rainbow trout was based on both morphological and on molecular 

data. The specimens, however, were initially fixed in buffered formalin and then rinsed in 

70% ethanol before being assessed. It is likely that the formalin fixation would have 

prevented flat preparations of Gyrodactylus and, therefore, a clear view of the marginal 

hooks, which are considered the key morphological feature upon which to identify species. 

Gyrodactylus teuchis was an unknown species at the time of study and given the 

morphological similarities between this and G. salaris, it is possible that the subtle 

differences in hook shape were not recognised as deviating from those of G. salaris. 

Subsequent studies by Lautraite et al. (1999) and Cunningham et al. (2001) described G. 

teuchis and its discrimination from G. salaris by morphology and differences in PCR-

RFLP patterns of the ITS1, 5.8S gene and ITS1 regions. A survey of salmonids throughout 

France by both latter studies led to the conclusion that France was most likely a G. salaris-

free state and that the original report was a result of a misidentification. Although Eiras 

(1999) conducted a survey on several Portuguese rainbow trout and brown trout farms, no 

specimens of G. salaris were found. Johnston et al.’s (1996) identification of G. salaris 

from Portugal, therefore, remains in doubt until demonstrated otherwise. 

In September 2007, three specimens of Gyrodactylus were recovered from a sample 

of 20 Portuguese rainbow trout. All three specimens were confirmed, during the current 

study, as G. teuchis by morphological and molecular examinations (personal 
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identification). Voucher specimens of G. teuchis from Portugal will be deposited in the 

Parasitic Worms collection at The Natural History Museum, London (UK). 

 

Slovakia 

Ergens (1961, 1963) recorded the presence of G. salaris in Slovakia (formerly 

Czechoslovakia) from brown trout from the River Topl’a, near the town of Bardějov. A 

later re-examination of this material (Ergens, 1983) found that the species in question was 

G. truttae, a species not described at the time of Ergens’ original study. The identity of G. 

truttae was evident from the measurements of the haptoral hard parts (Gläser, 1974; 

Ergens, 1983). The record of G. salaris from Slovakia, therefore, is not considered valid. 

 

Spain 

Two drug trials conducted in Spain on the species of Gyrodactylus collected from 

rainbow trout from Carballo, La Coruña, were identified, on the basis of hook morphology, 

by Professor Göran Malmberg (University of Stockholm) as G. salaris (see Santamarina et 

al., 1991; Tojo et al., 1992). Similarly to the reports for France and Portugal, it is likely 

that these specimens were G. teuchis and were mistaken for G. salaris. A sample of 60 

Gyrodactylus specimens collected for the current study from rainbow trout fingerlings 

from a farm in the Galicia region of Spain, were all identified as G. teuchis by 

morphological and molecular analyses (personal identification). Voucher specimens from 

this collection will be deposited in The Natural History Museum, London (UK). 
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3.3.3. Gyrodactylus salaris-free states 

 

Finland 

Parts of the Finnish territory have been declared G. salaris-free under EC Decision 

2004/453/EC_(http://eurlex.europa.eu). These regions include the water catchment areas of 

the Tenojoki and Näätämönjoki, whilst the water catchment areas of the Paatsjoki, 

Luttojoki, and Uutuanjoki are considered as buffer zones. 

 

Republic of Ireland 

The Republic of Ireland is declared G. salaris-free under the EC Decision 

2004/453/EC (http://eurlex.europa.eu) based on evidence that its government submitted to 

the European Commission. 

 

United Kingdom 

Following the events in Norway, G. salaris was made a notifiable pathogen in the 

UK in 1987 under the Diseases of Fish Acts 1937 and 1983, which can impose movement 

restrictions on fish stocks from fish farms, rivers, or from entire catchments (OIE, 2012). 

Following notification, a survey of 7 rivers and 17 fish farms in Northern Ireland (Platten 

et al., 1994), and a parallel investigation of 63 fish farms and 164 wild salmonid sites 

throughout Great Britain by Shinn et al. (1995), set out to establish the G. salaris status of 

each. Neither survey found G. salaris or the morphologically similar G. teuchis, but the 

surveys did find Gyrodactylus arcuatus Bychowsky, 1933 and Gyrodactylus caledoniensis 

Shinn, Sommerville et Gibson, 1995 from S. salar; G. derjavinoides from O. mykiss, 

Salvelinus alpinus alpinus (L.), S. salar and S. trutta fario; G. truttae on S. trutta fario; and 

a number of unidentified Gyrodactylus morphotypes from S. alpinus alpinus and S. salar. 

Mandatory surveillance programmes by the relevant fish inspectorate authorities within 
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each constituent country continue to screen fish samples for G. salaris and other pathogens 

of concern. National contingency planning in the event of a G. salaris introduction began 

in 2006 in Scotland (www.scotland.gov.uk), in 2008 in England (www.oie.int) and Wales 

(http://wales.gov.uk), and in 2009 in Northern Ireland (www.dardni.gov.uk). Great Britain 

is officially a G. salaris-free zone under EC Decision 2004/453/EC and its subsequent 

amendments provided under EC Decision 2006/272/EC (http://eurlex.europa.eu). 

Although the UK is G. salaris-free, there is a single report of G. salaris from S. 

trutta fario from Loch Leven, Scotland (Campbell, 1974). Malmberg (1987) considered 

this a misidentification of G. derjavinoides or G. truttae, species that were both still 

undescribed at the time of publication. Salmonids from Loch Lomond were sampled 

during the study of Shinn et al. (1995) but no specimens of G. salaris were found.   

 

3.4. Discussion  

In Europe, Atlantic salmon are widespread and are found along the coasts of the 

North Atlantic including the Baltic Sea and their range extends from the Bay of Biscay to 

the White Sea. Colonisation of northern Europe most likely occurred from the sea after the 

last glaciation event (Halvorsen & Hartvigsen, 1989). Although most species of 

Gyrodactylus are fairly host specific (www.gyrodb.net), G. salaris displays lower host 

specificity and is able to colonise and reproduce on a range of salmonid hosts. 

Gyrodactylus salaris has, under natural conditions in the wild, been recorded from 

S. salar (see e.g. Ergens, 1983; Johnsen & Jensen, 1985), O. mykiss (see e.g. Mo, 1988), S. 

trutta fario (see e.g. Tanum, 1983; Malmberg & Malmberg, 1991), Salvelinus alpinus 

alpinus (see Mo, 1988), Salmo obtusirostris (see Žitňan & Čanković, 1970) and 

Platichthys flesus (see Mo, 1987), although the latter, as a non-salmonid species, has 

proven to be an unsuitable host (Bakke et al., 1992a). The relative susceptibility of these 
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hosts to G. salaris varies, as does the pathology induced (see e.g. Bakke et al., 1991b; 

Bakke & Jansen, 1991a, b; Bakke et al., 1992a, b; Soleng & Bakke, 2001a, b).  

 

 

Figure 3.2. Map of Europe highlighting Gyrodactylus salaris-positive states (dark grey colour). For 

territories such as France, Italy, Spain and Portugal only the status of the mainland is considered and larger 

islands (e.g. Balearic, Canary, Corsica, Sardinia, Sicily, etc) under their respective sovereignty are considered 

as separate geographic entities. For the purposes of this study, Kaliningrad, the Russian exclave, is 

considered as a separate geographic zone to the main Russian state. The reports of G. salaris from 

Kazakhstan and / or Tajikistan (not shown), France, Lithuania, Portugal, Slovakia and Spain (light grey 

colour) are questionable and need further verifications regarding the presence or absence of G. salaris. 

Republic of Ireland and the UK (dotted grey colour) are the only two countries currently declared G. salaris-

free. Countries where the status of G. salaris is unknown are left in white colour [original image]. 

 

Although G. salaris was initially classified as a List III pathogen under the 

European Council Directive 91/67/EEC regarding measures against certain diseases in 
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aquaculture animals, it has since been removed following EC Directive 2006/88/EC, but 

remains on OIE lists as a “significant disease” and “notifiable pathogen” (OIE, 2012). 

Of all the European countries, considerable stocks of wild salmon populations are 

present only in Norway, Scotland, Faroe Islands, Ireland and Iceland (Peeler et al., 2006). 

In other states within Europe (see Table 3.2) the number of salmon populations is small 

(Mills, 1991; Maitland & Campbell, 1992; Hendry & Cragg-Hine, 2003). The 

dissemination of G. salaris across Europe appears mainly to be linked to movements of 

rainbow trout between countries (Peeler & Thrush, 2004; Peeler et al., 2006; Bakke et al., 

2007). This appears to be the case for most of the G. salaris reports from southern Europe, 

e.g. Italy where salmon is not present, but G. salaris has been recorded all over the country 

where rainbow trout is farmed (Paladini et al., 2009a, 2010b). There are approximately 50 

states within Europe and although most contain salmonid species, others such as Gibraltar, 

Malta, Monaco and Vatican City, do not and, therefore, the G. salaris status of these 

cannot be assessed (Table 3.2). Although the Republic of San Marino is considered 

salmonid-free by the on-line database fishbase (www.fishbase.org), Lake Faetano, a small 

artificial lake created in 1968 for recreational fishing, does contain rainbow trout and 

brown trout, and the G. salaris status of these stocks requires establishing. The lack of 

clinical signs of gyrodactylosis on species such as rainbow trout, means that G. salaris 

infections may go undetected for many years, e.g. Italy where G. salaris infections had 

persisted unknown for at least 9 years prior to its first official report (Paladini et al., 2009a; 

see Chapter 2). This finding is an important consideration when moving salmonid stocks, 

and calls for more rigorous biosecurity control measures in the trade and transfer of fish 

species from one country to another. A lesson to learn from the past is the spreading of 

Gyrodactylus cichlidarum Paperna, 1968 on Nile tilapia, Oreochromis niloticus niloticus 

(L.), a species which from its African origins has been exported, undetected, with its host 
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worldwide, and being associated with mass mortalities of Nile tilapia (García-Vásquez et 

al., 2010). 

Gyrodactylus salaris has been reported from 23 out of ~50 recognised states 

throughout Europe (Tables 3.1-3.2). Only 17 of these records, however, are considered 

valid, having been identified by either morphology, molecular or a combination of both 

methods. Only ten of these reports though have been confirmed by a combination of both 

molecular and morphological approaches (Table 3.1). The records of G. salaris from 

France, Portugal, Slovakia and Spain all appear to have been based on misidentifications 

and although some additional specimens have been obtained from some of these countries, 

and found only to contain G. teuchis, larger numbers of samples are required before a 

definitive statement can be made. In the case of France, however, a large survey was 

conducted, but only the morphologically similar species G. teuchis was found. Likewise, 

the reports of G. salaris from Kazakhstan (and/or Tajikistan) and Lithuania are doubtful 

and further samples are required for evaluation. The records of G. salaris from Bosnia-

Herzegovina, Georgia, Moldova and Ukraine are all based on morphology only, and 

ideally these reports require confirmation by an appropriate molecular test. The only two 

states that are currently considered G. salaris-free are the Republic of Ireland and the 

United Kingdom; on-going government-based surveillance programmes continue to screen 

key salmonid sites in these countries.   
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Table 3.1. List of European countries from which Gyrodactylus salaris has been reported to occur on salmonids. Some of the records are questionable and the confirmation of the 

presence of G. salaris needs further verification. For each country only the mainland is considered; larger island groups are considered separately. 

 

Country Host ID status 
Method  

of ID* 

Presence 

in 

GenBank 

Representative references 

Bosnia-Herzegovina Om, Ss, Stf, So valid A no Čanković & Kiškarolj (1967); Žitňan (1960); Žitňan & Čanković (1970) 

Czech Republic Stf valid A+B no Tesarcik & Ivasik (1974); Matejusová et al. (2001) 

Denmark Om, Ss valid A+B yes Buchmann & Bresciani (1997); Lindenstrøm et al. (2003); Jørgensen et al. (2008) 

Estonia Ss valid B yes Ozerov et al. (2010) 

Finland Om, Ss valid A+B yes Rimaila-Pärnänen & Wiklund (1987); Kuusela et al. (2007); current study 

France1 Om unconfirmed A no Johnston et al. (1996) 

Georgia Stf valid A no Ergens (1983); Malmberg (1993) 

Germany Om valid A+B no Lux (1990); Dzika et al. (2009); Cunningham et al. (2003) 

Kazakhstan and / or 

Tajikistan 
Sto unconfirmed A no Gvozdev & Karabekova (2001) 

Italy1 Om valid A+B yes Paladini et al. (2009a); current study 

Latvia Ss valid B yes Hansen et al. (2003) 

Lithuania unknown unconfirmed unknown no unofficial reports2 

Macedonia Om, Sl valid B yes Kuusela et al. (2007); Ziętara et al. (2010) 

Moldova Stf valid A no Malmberg (1993) 

Norway Ss valid A+B yes Johnsen (1978); Cable et al. (1999); Meinilä et al. (2004) 

Poland Om, Stt valid A+B yes Rokicka et al. (2007) 

Portugal1 Om unconfirmed A no Johnston et al. (1996) 

Romania unknown valid A+B no OIE (2012) 

Russia Ss valid A+B yes Ergens (1983); Meinilä et al. (2004); Kuusela et al. (2007) 

Slovakia Stf not valid A no Ergens (1961, 1983) 

Spain1 Om unconfirmed A no Santamarina et al. (1991) 

Sweden Ss valid A+B yes Malmberg (1957); Meinilä et al. (2004) 

Ukraine Om, Stf valid A no Kulakovskaja (1967); Tesarcik & Ivasik (1974) 

 

Footnotes: *Method of identification: A. morphology only; B. molecular only; A+B. morphology + molecular characterisation. Abbreviations: Om: Oncorhynchus mykiss; Sl: Salmo 

letnica; So: Salmo obtusirostris; Ss: Salmo salar; Stf: Salmo trutta fario; Sto: Salmo trutta oxianus; Stt: Salmo trutta trutta. 
1
Large islands, such as Corsica (France), Sardinia and Sicily 

(Italy), Balearic and Canary Islands (Spain) or Madeira (Portugal) are included, although their G. salaris status should be considered separately from their respective mainland 

territories. 
2
Unofficial records of G. salaris from Lithuania were taken from two websites: www.westcountryangling.com/pdf/gyrodactylus_salaris.pdf and www.europe-

aliens.org/pdf/Gyrodactylus_salaris.pdf.
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Table 3.2. A summary of the occurrence of salmonids in each European state (independent and recognised 

territories), excluding those listed in Table 3.1 and the two G. salaris-free states (Republic of Ireland and the 

UK), with comments on the other species of Gyrodactylus recorded from them.  

European 

countries 
Gyrodactylus species Host References 

Presence 

of 

salmonids 

Status of  

G. salaris 

Albania - - - yes unknown 

Andorra - - - yes unknown 

Armenia - - - yes unknown 

Austria G. teuchis Stf Hahn et al. (2011) yes unknown 

 G. thymalli Tt Hahn C., pers. comm.1   

 G. truttae Saa Kadlec et al. (1997)   

Azerbaijan - - - yes unknown 

Belarus - - - yes unknown 

Belgium - - - yes unknown 

Bulgaria G. truttae Om, Stf 
Kakacheva-Avramova & 

Menkova (1982) 
yes unknown 

Croatia G. salmonis Om Zrnčić & Oraić (2008) yes unknown 

Cyprus - - - yes unknown 

Faroe Islands - - - yes unknown 

Gibraltar - - - no - 

Greece   - - - yes unknown 

Greenland - - - yes unknown 

Hungary - - - yes unknown 

Iceland - - - yes unknown 

Liechtenstein - - - yes unknown 

Lithuania G. rarus Om Host-parasite DB2 yes unknown 

Luxembourg - - - yes unknown 

Malta - - - no - 

Monaco - - - no - 

Montenegro - - - yes unknown 

Netherlands - - - yes unknown 

San Marino - - - yes unknown 

Serbia - - - yes unknown 

Slovenia G. thymalli Tt Hansen et al. (2007a) yes unknown 

Switzerland - - - yes unknown 

Turkey Gyrodactylus spp. Om Ozkan Ozyer (2008) yes unknown 

Vatican City - - - no - 

Footnotes: Om: Oncorhynchus mykiss; Saa: Salvelinus alpinus alpinus; Stf: Salmo trutta fario; Tt: Thymallus 

thymallus. 
1
G. thymalli has been found on both fresh and preserved museum materials from the Natural 

History Museum, Vienna, Austria, suggesting that this parasite has been there for at least 130 years, long 

before its description in 1960 (Hahn C., pers. comm.); 
2
Host-parasite database of the Natural History 

Museum of London (UK): www.nhm.ac.uk. 
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Chapter 4 

 

Gyrodactylus species associated with emergent disease problems 

 

Skin of gilthead seabream, Sparus aurata L., infected with Gyrodactylus orecchiae Paladini, Cable, 

Fioravanti, Faria, Di Cave et Shinn, 2009 [original image]. 

 

Paper II 

Paladini G., Cable J., Fioravanti M.L., Faria P.J., Di Cave D., Shinn A.P. (2009). Gyrodactylus orecchiae sp. 

n. (Monogenea: Gyrodactylidae) from farmed population of gilthead seabream (Sparus aurata) in the Adriatic 

Sea. Folia Parasitologica, 56: 21–28. 

Paper III 

Paladini G., Hansen H., Fioravanti M.L., Shinn A.P. (2011). Gyrodactylus longipes n. sp. (Monogenea: 

Gyrodactylidae) from farmed gilthead seabream (Sparus aurata L.) from the Mediterranean. Parasitology 

International, 60: 410–418. 

 

 

 

Aspects of these papers were presented as: 

Paladini G. (2011). Is my PhD a fluke? An Italian’s journey through the dark side of parasitology. Lunchtime seminar, 

University of Stirling, Stirling, Scotland, UK, 22nd November 2011 (talk). 

 

Paladini G., Williams C., Hansen H., Taylor N.G.H., Rubio-Mejía O.L., Denholm S.J., Hytterød S., Bron J.E., Shinn 

A.P. (2012). Gyrodactylus salaris: the good, the bad and the ugly. Proceedings of the Institute of Aquaculture 3rd PhD 

Research Conference, Stirling, Scotland, 24th October 2012: 16 (talk). 
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4.1. General introduction of Papers II and III 

The following two papers have been published in Folia Parasitologica and 

Parasitology International which describe two new species of Gyrodactylus infecting 

farmed populations of gilthead seabream, Sparus aurata L., in the Mediterranean. From 

my personal experience and that of other senior colleagues working at the Department of 

Veterinary Medical Sciences (formerly Dept. of Veterinary Public Health and Animal 

Pathology) of the University of Bologna (Italy), Gyrodactylus was never been reported on 

gilthead seabream, despite several years of rigorous screening and health assessments of 

farmed stocks. This study highlights that emerging diseases/new parasites can appear in 

long-established industries. The World Health Organisation (WHO) defines an emerging 

disease as “one that has appeared in a population for the first time, or that may have 

existed previously but is rapidly increasing in incidence or geographic range” 

(www.who.int/topics/emerging_diseases/en/). It could be speculated that these two new 

species, Gyrodactylus orecchiae Paladini, Cable, Fioravanti, Faria, Di Cave et Shinn, 2009 

and Gyrodactylus longipes Paladini, Hansen, Fioravanti et Shinn, 2011: 1) were already 

present in the environment around farm sites at a very low level below the limits of 

detection by routine sampling practices, but changes to local conditions (e.g. climate, farm 

practices) have enhanced the pathogenicity of these parasites; or 2) these parasites have 

been carried into the Mediterranean by another host species, which has then subsequently 

found an alternative susceptible host, i.e. gilthead seabream. The mortalities associated 

with the presence of these two parasites, and the recent record of G. longipes from northern 

France, highlight the potential pathogenicity of these two species and their wide 

geographic spread within the European area. Gyrodactylus orecchiae is currently known 

from three countries (Albania, Croatia and Italy) and G. longipes from other three (Italy, 

Bosnia-Herzegovina and France).  
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4.2. Authors’ contribution 

For both papers, I drafted the first version of each manuscript which were subsequently 

revised with my co-authors. All authors read and approved the final version of the two 

manuscripts. 

 

4.2.1. Paper II 

For the description of G. orecchiae, several samples of gilthead seabream from two 

sites in Albania were sent to me, while working at the University of Bologna with 

Professor Maria Letizia Fioravanti, for health assessing and parasite screening. Further 

samples from two sites in Croatia were sent at about the same time to an Italian colleague, 

Dr David Di Cave, who subsequently passed the material to me to evaluate. All samples 

were identified by myself as being the same species and, therefore, it was decided that the 

results would be prepared as a joint collaboration. All the material was transported to the 

Institute of Aquaculture of the University of Stirling, where I carried out the morphological 

and morphometric description under the guidance of Dr Andrew P. Shinn. Drawings and 

images of the light microscope (LM) and of the scanning electron microscope (SEM) were 

prepared, processed and produced by me. Technical support in using the SEM was 

provided by Mr Linton Brown (Stirling University), whilst assistance in reading the 

histopathology was provided by Professor Massimo Trentini (University of Bologna).  

Whilst I conducted some of my own molecular evaluation of the parasite material, the 

procedures and data used in this study was conducted by Dr Patricia J. Faria and Dr Joanne 

Cable from Cardiff University, Wales.  

 

4.2.2. Paper III 

For the description of G. longipes, two samples of gilthead seabream from Italy and 

from Bosnia-Herzegovina were sent to Professor Fioravanti and myself. As per the 

description of G. orecchiae, the two samples were identified by myself and described at the 
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University of Stirling, where I carried out the morphological and morphometric analyses 

under Dr Shinn’s close supervision. All the specimens used for light and scanning electron 

microscope evaluation were prepared by myself with some technical SEM assistance from 

Mr Linton Brown. Dr Haakon Hansen, from the National Veterinary Institute, Oslo, 

Norway, performed the molecular component of this study. 
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Chapter 5 

 

Other significant pathogens of farmed salmonids:  

Gyrodactylus salmonis in North America 

 

 

Gyrodactylus salaris Malmberg, 1957 haplotype A [original image]. 

 

Paper IV 

Rubio-Godoy M., Paladini G., Freeman M., García-Vásquez A., Shinn A.P. (2012). Morphological and 

molecular characterisation of Gyrodactylus salmonis (Platyhelminthes, Monogenea) isolates collected in 

Mexico from rainbow trout (Oncorhynchus mykiss Walbaum). Veterinary Parasitology, 186: 289–300. 

 

 

 

Aspects of this paper were presented as: 

Rubio-Godoy M., Paladini G., Freeman M.A., García-Vásquez A., Shinn A.P. (2011). Description of a new strain of 

Gyrodactylus salmonis (Platyhelminthes, Monogenea) collected in Mexico from rainbow trout (Oncorhynchus mykiss 

Walbaum): morphological and molecular characterization. Proceedings of the 86th Annual Meeting, American Society of 

Parasitologists, Anchorage, Alaska, 1st-4th June 2011: 92 (talk). 

  
Paladini G., Rubio-Godoy M., Freeman M.A., García-Vásquez A., Shinn A.P. (2011). Gyrodactylus salmonis: a strain-

ed relationship. Proceedings of the VIII International Symposium of Fish Parasites (ISFP8), Viña del Mar, Chile, 26th-

30th September 2011: 74 (talk). 
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5.1. General introduction of Paper IV 

The following paper has been published in Veterinary Parasitology and it describes 

a new strain/isolate of Gyrodactylus salmonis (Yin et Sproston, 1948), using a combination 

of morphological and molecular analyses, from a Mexican population of feral rainbow 

trout, Oncorhynchus mykiss Walbaum. Although this species seems to be widespread in 

northern North America, there is also an unconfirmed report of its occurrence on rainbow 

trout in Croatia (Zrnčić & Oraić, 2008). Gyrodactylus salmonis is another significant 

pathogen of farmed salmonids. It also exhibits low host specificity and is pathogenic to 

brook trout, Salvelinus fontinalis (Mitchill) (see Cone & Odense, 1984; Cusack & Cone, 

1986; Rubio-Godoy et al., 2012). Given the impacts that this parasite has on salmonid 

stocks, it can be regarded as the North American counterpart to G. salaris and, therefore, 

finding its occurrence outside its normal geographic range is worth reporting. This is the 

furthest south that this species has been found and highlights once again the risks of 

translocating pathogens into new areas with the movement of fish stocks. 

 

5.2. Authors’ contribution 

This published study is the result of an on-going collaboration between a Mexican 

colleague, Dr Miguel Rubio-Godoy from the Instituto de Ecologia, Xalapa, and researchers 

at Institute of Aquaculture, Stirling. Dr Rubio-Godoy collected the feral rainbow trout 

samples from Mexico and on finding specimens of Gyrodactylus contacted Dr Andrew P. 

Shinn and myself to carry out the morphological analyses and to identify the material. I 

personally processed the gyrodactylid material, took the morphometric measurements, took 

part of the light microscope images and produced the drawings. Dr Shinn and Dr Adriana 

García-Vásquez, a former PhD student at the University of Stirling, produced part of the 

figure plates and assisted with the morphological identification. Dr Mark A. Freeman, from 

the University of Malaysia and formerly from the University of Stirling, performed the 
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molecular characterisation. Dr Rubio-Godoy drafted the first version of the manuscript, 

with certain sections being written by myself and Dr Shinn. Subsequently drafts of the 

manuscript were revised by myself and the other co-authors. All authors read and approved 

the final version of the manuscript. 
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Fig. S1. Graphic illustration of the haptoral armature and male copulatory organ of Mexican isolates of 

Gyrodactylus salmonis from Oncorhynchus mykiss (Walbaum). (a) central haptoral hook complex of two 

hamuli linked by a dorsal bar and a ventral bar; (b) marginal hook sickle; (c) male copulatory organ with 1+8 

arrangement of spination; (d) marginal hook sickle (broken line) of the Mexican isolate of G. salmonis; (e) 

marginal hook sickle of G. salmonis; (f) size invariant overlay of Mexican isolate of G. salmonis (broken 

line) with that of G. salmonis (solid line) Scale bars: a, b, d-f = 10 μm; c = 5 μm. 

 

 

 

a 

b 

c 
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Fig. S2. Species of Gyrodactylus von Nordmann, 1832 recorded from other salmonids, populations of which 

occur throughout North America. (a) Mexican isolate of G. salmonis; (b) G. derjavini Mikailov, 1975 (image 

reproduced courtesy of Malmberg et al., 2007 and the Polish Institute of Parasitology); (c) G. nerkae Cone, 

Beverley-Burton, Wiles et McDonald, 1983 from a Canadian population of Oncorhynchus nerka (Walbaum) 

(redrawn from Cone et al., 1983); (d) G. salvelini Kuusela, Ziętara et Lumme, 2008 from a Finnish 

population of Salvelinus alpinus alpinus (L.) (image courtesy of J. Lumme, University of Oulu, Finland); (e) 

G. somnaensis Ergens et Yukhimenko, 1990 from Oncorhynchus keta (Walbaum) from China / Russia 

(redrawn from Ergens and Yukhimenko, 1990). Scale bars = 2.5 μm. 
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Chapter 6 

 

 

The experimental susceptibility of English and Welsh salmonids to  

Gyrodactylus salaris (Platyhelminthes, Monogenea) 

 

 

Experimental infection of Welsh Atlantic salmon, Salmo salar L., with Gyrodactylus salaris Malmberg, 1957 

[original image] 

 

 

Aspects of this work were presented as: 

 

Paladini G. (2012). Gyrodactylus: tales of invasion, resistance and control strategies. Aquaculture UK 2012, Aviemore, 

Scotland, 23rd-24th May 2012 (talk). 

 

 

Paladini G., Williams C., Hansen H., Taylor N.G.H., Rubio-Mejía O.L., Denholm S.J., Hytterød S., Bron J.E., Shinn 

A.P. (2012). Gyrodactylus salaris: the good, the bad and the ugly. Institute of Aquaculture 3rd PhD Research Conference, 

Stirling, Scotland, 24th October 2012: 16 (talk). 
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6.1. Introduction 

There are over 430 species of Gyrodactylus, small ectoparasitic monogenean 

worms principally infecting fish, some species of which are highly pathogenic (Harris et 

al., 2004; Shinn et al., 2012a, b; www.gyrodb.net; www.monodb.org). While most species 

of Gyrodactylus are non-pathogenic, causing little harm to their hosts, other species like 

Gyrodactylus salaris Malmberg, 1957 - which is a listed pathogen of Atlantic salmon, 

Salmo salar L., for OIE (Office International des Epizooties) - has had catastrophic effects 

on juvenile salmon populations in 46 Norwegian rivers (Johnsen et al., 1999; Bakke et al., 

2007). Uncontrolled increases in the size of the parasite population on resident salmon 

populations have necessitated extreme measures, such as the use of the biocide rotenone to 

kill-out entire river systems in order to remove the whole fish population within a river and 

with them the infecting G. salaris (see Bakke et al., 2007). Given the impact that G. salaris 

has had in Norway and elsewhere in Scandinavia and Russia (Rintamäki, 1989; Ieshko et 

al., 1995; Alenäs, 1998; Alenäs et al., 1998), Norway and the UK, now have mandatory 

surveillance programmes, the latest screening wild salmonid populations (i.e. brown trout 

Salmo trutta fario L., Arctic charr Salvelinus alpinus alpinus (L.), grayling Thymallus 

thymallus (L.), Atlantic salmon, etc) for the presence of the notifiable pathogen G. salaris, 

while Norway and Sweden screen only wild Atlantic salmon populations. The current 

study sets out to make a contribution to national G. salaris contingency planning by 

determining the responses of different English and Welsh salmonids to pathogenic strains 

of G. salaris. The study also aims to assess the extent to which laboratory conditions might 

affect the results of infection experiments, and gauge whether extrapolation from existing 

results is appropriate for UK contingency planning. 

The recent reports of G. salaris in Italy (Paladini et al., 2009a; Chapter 2 of the 

current thesis) and Poland (Rokicka et al., 2007) purportedly linked to the movement of 
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salmonid stocks across borders, emphasise the biosecurity risk this pathogen poses. Great 

Britain and Northern Ireland (forming the United Kingdom) are currently recognised G. 

salaris-free states (Platten et al., 1994; Shinn et al., 1995). Given the value of their 

respective salmonid industries (total Scottish and Northern Ireland salmon production 

157,385 tonnes in 2011, worth ~£540 million; ICES, 2012) and recreational salmon and 

sea tout fishing, which throughout the UK is worth in excess of £230 million, it is 

important the UK’s G. salaris-free status is upheld. Coarse and game angling figures for 

Scotland in 2010 were estimated at over £100 million (www.scotland.gov.uk), whilst 

recreational and commercial salmon and sea trout fisheries in England and Wales in 2001 

(last figures available) had a capital value of £130 million (www.cefas.defra.gov.uk). 

Existing UK dispersion models and contingency plans for the containment of G. 

salaris are based on the assumption that British stocks of Atlantic salmon would be 

vulnerable to G. salaris and therefore at risk (see Bakke et al., 1990; Bakke & MacKenzie, 

1993); that brown trout would be entirely resistant to infection and unaffected (see Jansen 

& Bakke, 1995; Bakke et al., 1999; Harris et al., 2000); and that grayling would be 

relatively resistant (see Soleng & Bakke, 2001a). Brown trout and grayling, following 

models determined for Scandinavian populations of these hosts (see review in Bakke et al., 

2007), are thought to harbour low-level infections for a few weeks, not displaying the 

exponential increase in numbers seen on Atlantic salmon. Native UK stocks of brown trout 

and grayling, however, have been separated from their Scandinavian counterparts since the 

last period of glaciation (Halvorsen & Hartvigsen, 1989), and their relative patterns of 

susceptibility and/or resistance may therefore differ from those predicted from Norwegian 

studies. If these differences are demonstrated, then current contingency plans would 

require redrafting and dispersion models re-designed and re-analysed. 

Assumptions that UK salmon are susceptible to G. salaris are derived from an 

earlier study by Bakke and MacKenzie (1993), which tested the susceptibility of two 
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Scottish populations of Atlantic salmon (i.e. from the Rivers Shin and Conon) to a 

Norwegian strain of G. salaris. The experimental exposure of other British salmonids (i.e. 

brown trout, grayling, etc.) to G. salaris has not been conducted to date. To ensure that G. 

salaris infections on English and Welsh salmonids follow the same infection dynamics as 

their Scandinavian counterparts, and that current national G. salaris contingency plans 

within England and Wales are appropriate, it was imperative that these trials were 

conducted to guarantee completeness of the existing contingency policy. The current study 

sets out to verify whether these assumptions were correct. To determine this, Atlantic 

salmon, brown trout and grayling eggs, stripped from wild fish, were reared in English and 

Welsh Government-run hatcheries and then transported to a secure research facility in 

Norway for experimental challenge with a strain of G. salaris (haploptype A) known to be 

pathogenic to Norwegian and Scottish Atlantic salmon. 

 

6.2. Materials and methods 

 

6.2.1. Origin of experimental salmonid populations 

 

i) Salmo salar from the River Dee, Wales 

In 2010/2011, eggs from wild Atlantic salmon caught in the River Dee, northern Wales, 

were stripped, fertilised and reared to 0+ parr in the Environment Agency Wales’ (EAW) 

Maerdy Hatchery, Corwen, Conwy, Wales (52º59’18.18” N; 3º27’48.18” W). The eggs 

began hatching around mid-January 2011. The fish were reared on ambient water (av. 2.7 

ºC) from the Afon Ceirw, in a natural photoperiod regime, and with a 1% body wt day
-1

 

daily ration of feed (Skretting Nutra parr 02). The fish weighed a mean of 3.4 ± 0.3 g at the 

time they were shipped to Norway. 
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ii) Salmo trutta fario from the River Tyne, England 

On the 11
th

 November 2010, adult sea trout broodstock were collected from the River 

Rede, a tributary of the River Tyne, Northumberland, northern England. The ripe female 

fish were stripped and fertilised on the 12
th

, 20
th

 and 30
th

 November 2010 and the eggs 

maintained at the EAW’s Kielder Hatchery (55º14’00.45” N; 2º34’39.69” W). Egg 

hatching occurred over the period 19
th

 March to the 2
nd

 April 2011. The eggs and fish were 

maintained at ambient water temperatures (0–18.5ºC), with natural photoperiod conditions 

and a 0.1–2.8% body wt day
-1

 daily feed ration (Skretting Emerald Fry 00, 01 and 02 

crumb) over the 303–316 days they were maintained until shipped to Norway. The fish had 

a mean weight of 4.45 ± 0.4 g at the time they were shipped. 

 

iii) Thymallus thymallus from the River Nidd, England 

Grayling broodstock originating from the River Nidd, Knaresborough, England were 

stripped and the eggs raised in the EAW’s Calverton Fish Farm (53º02’01.43” N; 

1º03’05.95” W). Egg hatching began on approximately the 13
th

 April 2011. The fish were 

reared on borehole water (mean 10 ± 1ºC), and a constant natural photoperiod (05.00-21.30 

without adjustment). First ad libitum feed was Artemia salina for approximately two 

weeks, then gradual weaning on Coppens TroCo Crumble Top and HE feed. Throughout 

rearing phase, dried diet was supplemented by gamma-radiated chironomids. The grayling 

had a mean length of 111.7 ± 0.8 mm and weight 12.7 g at the time of shipping to Norway 

in January 2012. 

 

iv) Salmo salar from the River Lærdalselva, Norway, as a control 

The Atlantic salmon stock used as a control was originating from the River 

Lærdalselva, Norway (approximately coordinates: 61º02’ N; 7º36’ W) and maintained in 
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the research aquarium of the Norwegian Veterinary Institute (NVI), Oslo (Norway). A 

single tank of 10 fish (mean weight 5.5 ± 0.5 g) was used during the trial. 

  

6.2.2. Transportation of salmonids to Norway 

In January 2012, 70 Atlantic salmon originating from the Welsh River Dee, 70 

brown trout from the English River Tyne, and 70 grayling from the English River Nidd 

were shipped to the NVI in Oslo. Each population of fish was prepared by EAW staff at 

the hatchery, by double-bagging the fish in polythene bags and placing them on chill 

packs, to ensure a stable temperature during shipping. These were sealed in International 

Air Transport Association (IATA)-approved robust polystyrene boxes, each of which 

measured 65 cm (depth) × 58 cm (length) × 49 cm (width). The polystyrene boxes were 

then placed inside a double-walled cardboard outer to ensure protection during 

transportation. The relevant permissions from the Chief Veterinary Officer in the UK and 

in Norway, from the Norwegian authorities (The Directorate for Nature Management and 

the Food Safety Authorities) and from the NVI, were obtained before the fish were 

shipped. The experimental procedure was approved by the Ethics Committee within the 

University of Stirling, UK and, additionally, was monitored by senior government officials 

and fish biologists within Defra (Department of the Environment, Fisheries and Rural 

Affairs), London, EAW (Environment Agency Wales), Brampton and at Cefas (Centre for 

Environment, Fisheries & Aquaculture Science), Weymouth Laboratory, UK. Despite the 

UK’s bacterial kidney disease (BKD) status, as the fish were being flown to a secure 

experimental facility no additional TRACES (TRAde Control and Expert System; 

http://europa.eu/legislation_summaries/food_safety/veterinary_checks_and_food_hygiene/ 

f84009_en.htm) documentation was required. The fish were flown using the specialist live 

animals courier, Gulf Agency Company (GAC) Logistics, through Manchester 

International airport to Gardermoen Airport, Oslo, Norway. Following their clearance by 
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the veterinary surgeon at Oslo, the fish were transported immediately by van to the NVI, 

Oslo research facility. The fish, still within their plastic bags, were transferred to 0.6 m 

(diameter) × 0.7 m (depth) fibreglass tanks supplied with a constant 11 ± 1°C water flow 

rate of 0.2 L min
-1

 and additional aeration, and the temperature of the water in the bags was 

allowed to adjust to that of the tank, before the bags were opened and the fish released. No 

fish were lost during the transportation exercise, which lasted in total for 6 hours, by the 

time of packing, to the arrival at the NVI. The fish were left to acclimate for a further 7 

days before the G. salaris infection trial was started. The source of the water used within 

the aquarium was from the Oslo city domestic supply, which was passed through a particle 

filter (Structural C-2160-F7 composite, 310 L) and an activated carbon filter (GAK 170) 

prior to use. 

 

6.2.3. Source of Gyrodactylus salaris used for the trial 

The G. salaris strain used in the experiment was obtained from wild Atlantic 

salmon juveniles, sampled by electrofishing in the River Fusta, Northern Norway. Based 

on sequencing of mitochondrial cytochrome oxidase I, this G. salaris population is 

characterised as haplotype A and it has been shown to be pathogenic to Atlantic salmon 

(see Hytterød et al., 2011). 

 

6.2.4. Gyrodactylus salaris infection procedure 

Thirty fish from each population were randomly selected and then infected by 

transferring them to a static 30 L tank with aeration into which approximately 3000 G. 

salaris had been added by gently scraping the excised fins of heavily infected aquarium-

held fish. This approach has been used effectively in the past (T.A. Bakke, pers. comm.) to 

ensure an infection of 50-70 parasites fish
-1

 over a 24 h exposure period. This technique 

assumes that the 50% of parasites will successfully transfer to the new host (e.g. 
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introducing 3000 parasites in a tank with 30 fish, the 50% will transfer, therefore 1500 

parasites, which if divided by 30 fish, it will give an infection of ~50 parasites fish
-1

). 

Following the exposure period, each fish was lightly anaesthetised in Finquel
®
 Vet. 100% 

(50 mg Finquel L
-1

), tattooed with a unique mark using alcian blue (40 mg ml
-1

), and the 

total number of G. salaris on each fin and body zone was counted (Fig. 6.1). Alcian blue 

marking was preferred as a rapid, reliable, easy, and long-lasting method (Bridcut, 1993), 

over fin clipping, as fins are the preferred microhabitat of G. salaris. 

 

 

Figure 6.1. (a) An example of a unique tattoo mark using Alcian blue; (b) The G. salaris burden on an 

anaesthetised grayling being assessed under a dissecting microscope [original images]. 

 

Each fish was then randomly assigned to one of three recovery tanks (5 L circular, 

flow-through 200 ml min
-1

 tanks). Each population was tested in triplicate (each replicate n 

= 10 juvenile fish), with the exception of the River Lærdalselva Norwegian Atlantic 

salmon control, which was already a standardised model previously tested in several trials 
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by the same research aquarium, and for which only a single tank of 10 fish was infected. 

The brown trout population, however, showed to be highly aggressive when separated into 

the three small tanks of 10 fish each. For this reason, a single 0.6 × 0.7 m fibreglass tank 

containing all 30 fish was used for the brown trout trial. 

Seven days later, each tank of fish was anaesthetised and the number of G. salaris 

on each individually marked fish determined by manual counting with the aid of a Leica 

MZ7.5 stereo-microscope. The fish were sampled approximately every 7 days until day 48 

and then every 14 days thereafter. The fish were fed once every two weeks. 

 

6.3. Results 

The dynamics of G. salaris infection on each of the three salmonid populations 

originating from England and Wales were compared against an infection of G. salaris on 

Norwegian Atlantic salmon over trials lasting up to 110 days. The parasite numbers on 

each individually marked fish are presented in Figures 6.2-6.3, while the mean parasite 

burden and the range of parasite number for each population of fish at each sampling time 

point are shown in Table 6.1 and Figures 6.4-6.5. The initial G. salaris infection burdens 

24 hours post-infection (p.i.) was 88.0 parasites fish
-1

 (29–218) on the Welsh salmon from 

the River Dee; 80.9 parasites fish
-1

 (47–110) on the Norwegian control; 65.3 parasites fish
-

1
 (32–221) on brown trout; and 60.7 parasites fish

-1
 (28–149) on grayling (see Table 6.1). 

The results obtained demonstrate that the Welsh salmon are highly susceptible to 

G. salaris infection (average intensity ~4000 parasites fish
-1

 in 40 d; see Fig. 6.2.A), when 

compared against the Norwegian control tank of fish which had a mean intensity of ~2000 

parasites fish
-1

 over the same time period (Fig. 6.2.B). These fish were unable to initiate a 

successful defence against the parasite and the experiment was terminated on day 40 p.i. 

due to concerns for fish welfare. 
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Figure 6.2. Experimental infection of Gyrodactylus salaris Malmberg, 1957 (Fusta strain, haplotype A) on 

(A) Atlantic salmon, Salmo salar L. (n = 30; three replicates of 10 fish each), from the River Dee in Wales, 

UK; and (B) the control group of Norwegian Atlantic salmon (n = 10) from the River Lærdalselva. Parasite 

numbers on the Welsh Atlantic salmon (A) rapidly increased to ~4000 G. salaris per fish by day 40 post-

infection, while on the control (B) increased to ~2000 parasites per fish. By day 40 p.i. the experiment was 

terminated due to fish welfare concerns. The growth on the two hosts (Welsh and Norwegian salmon 

populations) is shown on the same scale for direct comparison. 
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Figure 6.3. Experimental infection of Gyrodactylus salaris Malmberg, 1957 (Fusta strain, haplotype A) on a 

population of (A) brown trout, Salmo trutta fario L. (n = 30), from the River Tyne in England, UK; and (B) 

grayling, Thymallus thymallus (L.) (n = 30; three replicates of 10 fish each), from the River Nidd in England, 

UK. Brown trout and grayling were able to carry a G. salaris infection for at least 110 days (i.e. 7 of the 30 

brown trout were still infected with 1-6 G. salaris each; and only two grayling were still infected, one with 

five G. salaris, the other fish with a single parasite) when the experiment was terminated. The growth on 

brown trout and grayling is shown on the same scale for direct comparison. 
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Figure 6.4. Box-and-whisker plots illustrating the population dynamics of Gyrodactylus salaris Malmberg, 

1957 (Fusta strain, haplotype A) during the 40 day-experimental infection on (A) Atlantic salmon, Salmo 

salar L. (n = 30), from the River Dee in Wales, UK; and on (B) the control group of Norwegian Atlantic 

salmon (n = 10) from the River Lærdalselva. Upper and lower whiskers represent maximum and minimum 

values, respectively; boxes represent the 25
th

 (purple) and the 75
th

 percentiles (green), with the median value 

between them.  
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Figure 6.5. Box-and-whisker plots illustrating the population dynamics of Gyrodactylus salaris Malmberg, 

1957 (Fusta strain, haplotype A) during the 110 day-experimental infection on (A) brown trout, Salmo trutta 

fario L. (n = 30), from the River Tyne in England, UK; and on (B) grayling, Thymallus thymallus (L.) (n = 

30), from the River Nidd in England, UK. The growth on brown trout and grayling is shown on the same 

scale for direct comparison. Upper and lower whiskers represent maximum and minimum values, 

respectively; boxes represent the 25
th

 (purple) and the 75
th

 percentiles (green), with the median value between 

them. 
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The infections of G. salaris on the brown trout from the River Tyne peaked after 

~12 days (mean intensity 145.9 parasites fish
-1

; Fig. 6.3.A), whilst those on the River Nidd 

grayling peaked after ~19 days (mean intensity 252.6 parasites fish
-1

; Fig. 6.3.B). 

Thereafter, the size of parasitic infection decreased on both hosts. The G. salaris infection 

had almost disappeared on both sets of fish by the time the experiment was terminated on 

day 110 post-infection. The population of G. salaris on three of the 30 grayling that were 

tested appeared to display two peaks of infection on days 19 (av. 238.0 ± 49.4 parasites 

fish
-1

) and 33 (av. 250.3 ± 62.2 parasites fish
-1

) p.i., with a subsequent steady decrease in 

parasite numbers from day 26 p.i. until the experiment was terminated on day 110 p.i. 

Brown trout showed a similar response, with three brown trout displaying two peaks of 

infection on days 12 (av. 119.3 ± 14.2 parasites fish
-1

) and 26 (av. 83.0 ± 10.1 parasites 

fish
-1

) p.i., with a subsequent steady decrease in numbers from day 19 p.i. onwards. 

The experiment was terminated on day 110 p.i. for three reasons. First, that by day 

110 p.i., the infection on most fish had disappeared; only seven of the brown trout were 

still infected (range 1–6 parasites fish
-1

; see Fig. 6.3.A), and only two of the 30 grayling 

were infected (i.e. one with one parasite, the other with five G. salaris; see Fig. 6.3.B). 

Second, the experiment was terminated out of welfare concerns for the fish, in that 

sufficient data had been collected to inform the likely response of these populations of fish 

to a G. salaris (haplotype A) infection and that prolonging the infection was unlikely to 

result in additional information. Finally, the decision to terminate the experiment was 

based on the operational costs of the experiment. 

A power outage on day 69 p.i., which resulted in a temporary cessation in water 

flow to the grayling and brown trout tanks, resulted in the loss of five brown trout and five 

grayling; the stress induced on the remaining populations is the most likely explanation for 

the observed small increase in parasite numbers on day 76 p.i. Figures 6.6-6.7 show the 

average distribution of G. salaris across the body and fins of each fish species throughout 
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the experimental infection. The graphs show the importance of the fins as the preferred site 

of infection. 

 

 
 

 

Figure 6.6. The distribution of Gyrodactylus salaris Malmberg, 1957 (Fusta strain, haplotype A) on the fins 

and body of Atlantic salmon, Salmo salar L., from (A) the Welsh River Dee (n=30) and (B) the control from 

the River Lærdalselva, Norway (n=10), throughout the 40 day-infection and population-growth trial. The 

growth on the two Atlantic salmon populations is shown on the same scale for direct comparison. 
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Figure 6.7. The distribution of Gyrodactylus salaris Malmberg, 1957 (Fusta strain, haplotype A) on the fins 

and body of a population of (A) brown trout, Salmo trutta fario L., from the English River Tyne (n=30) and 

(B) grayling, Thymallus thymallus (L.), from the English River Nidd (n=30), throughout the duration of the 

110 day-experiment. The growth on brown trout and grayling is shown on the same scale for direct 

comparison. 
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Numbers on the Welsh salmon from the River Dee suggest that when the infection 

reaches ~2000 G. salaris per fish, there is no remaining space for further increases on the 

fins, and the numbers on the body subsequently rapidly increase (Fig. 6.6.A). The 

distribution of G. salaris on grayling and brown trout, for example, indicates that parasites 

have a preference towards occupying the pectoral fins and caudal fin, respectively (Fig. 

6.7.A-B). 

 

Table 6.1. Intensity of Gyrodactylus salaris Malmberg, 1957 (River Fusta haplotype A strain) infection on 

Salmo salar L. from the River Dee, Wales and from the Laerdalselva, Norway (control group), from Salmo 

trutta fario L. from the River Tyne, England and from Thymallus thymallus (L.) from the River Nidd, 

England. The mean intensity ±1 standard deviation and the range in parentheses are presented for each time 

point post-infection (p.i.) and host. Parasite numbers on the two groups of S. salar increased rapidly, the 

numbers by day 40 post-infection were such that the experiment was terminated out of welfare concerns for 

the fish. Although a small number of S. trutta fario and T. thymallus were still infected with a low number of 

G. salaris on day 110 p.i., the experiment was nevertheless terminated at this point. 

Time 

points 

(days) 

Salmo salar 

(R. Dee,  

Wales) 

Salmo salar (control) 

Laerdalselva, Norway 

Salmo trutta fario 

(R. Tyne, 

England) 

Thymallus 

thymallus 

(R. Nidd, England) 

1 88.0 ± 44.9  

(28–215) 

80.9 ± 20.9  

(47–110) 

59.7 ± 19.4  

(32–107) 

60.7 ± 24.0 

 (28–149) 

5 157.4 ± 61.4 

 (76–314) 

183.4 ± 53.6 

 (114–291) 

90.1 ± 46.7  

(39–280) 

93.4 ± 40.9  

(37–251) 

12 343.6 ± 116.5  

(151–615) 

349.1 ± 113.1 

 (184–544) 

145.9 ± 73.6  

(55–305) 

182.5 ± 46.2  

(94–310) 

19 581.6 ± 156.9 

 (200–923) 

560.4 ± 111.6 

 (385–679) 

74.0 ± 39.4  

(20–191) 

252.6 ± 64.3  

(144–385) 

26 1043.5 ± 296.2  

(511–1812) 

1003.1 ± 231.3  

(714–1284) 

52.0 ± 30.5  

(9–137) 

206.7 ± 81.1  

(77–436) 

33 1741.5 ± 510.2  

(810–2890) 

1459.7 ± 352.6  

(1114–2165) 

37.3 ± 30.0  

(4–138) 

151.1 ± 73.0  

(34–293) 

40 3850.7 ± 898.2 

 (2210–5805) 

1988.9 ± 233.5  

(1570–2300) 

20.7 ± 24.3  

(1–133) 

66.1 ± 42.6  

(5–158) 

49 
- - 

13.1 ± 15.6  

(0–84) 

29.7 ± 26.7  

(0–115) 

63 
- - 

11.8 ± 13.2  

(0–63) 

16.9 ± 14.7  

(0–48) 

77 
- - 

14.5 ± 16.7  

(0–70) 

8.5 ± 10.2  

(0–38) 

100 
- - 

10.6 ± 9.9  

(0–39) 

2.1 ± 4.5  

(0–21) 

110 
- - 

0.9 ± 1.6  

(0–6) 

0.3 ± 1.2  

(0–5) 

 

6.4. Discussion 

Great Britain and Northern Ireland are currently considered to be G. salaris free 

(see Chapter 3). Although it has been almost two decades since the first major surveys of 
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Platten et al. (1994) and Shinn et al. (1995), on-going surveillance programmes of natural 

water courses, recreational fisheries and fish farms by the relevant fish health inspectorate 

in each country of the UK screen specifically for G. salaris, among other notifiable 

pathogens, and to date, no specimens of G. salaris have been found. Current national 

contingency plans in the UK assume that the dynamics of G. salaris infection on native 

English and Welsh salmonids will follow those already modelled in Scandinavia. These 

Scandinavian studies suggest that Atlantic strains of salmon are susceptible to infection, 

whilst grayling are innately resistant, though G. salaris can survive and reproduce on 

Scandinavian grayling for 143 days, and that brown trout are entirely resistant to infection. 

  These definitions, relating to the relative susceptibility of fish to G. salaris 

infection, follow those detailed by Bakke et al. (2002), and  consider that fish can either 

be: 1) Susceptible - when G. salaris is capable of colonising and reproducing on a host, and 

the parasite population continues to grow to levels at which the host might die; 2) 

Responding - when the G. salaris infection grows initially and appears to be non-

pathogenic; the host’s immune system is able to respond, decreasing and eliminating the 

parasitic infection within few weeks; and, 3) Innately resistant - when the parasite 

population fails to grow, and the infection persists for only a short period without 

increasing and then disappears. 

While evaluating the relative susceptibility and response of each population of fish 

to G. salaris, it is also important to detail which strain of G. salaris is used. 

 

6.4.1. Earlier studies investigating the susceptibility of British salmonids to G. salaris 

Only a few studies of the susceptibility of British salmonids to G. salaris exist in 

the scientific literature. These studies are limited to the exposure of two Scottish 

populations of Atlantic salmon from the Rivers Conon and Shin (see Bakke & MacKenzie, 

1993; Dalgaard et al., 2003, 2004). The trials conducted by Bakke & MacKenzie (1993) 



Giuseppe Paladini                                                                                              Chapter 6 

 

146 
 

investigated G. salaris infections of these fish, both held communally in tanks and also 

held individually, over a period of 50 days. These infections employed G. salaris collected 

from the River Figga and, therefore, most likely haplotype A (see Table 6.2). During the 

experimental period, none of the fish were able to completely eliminate their G. salaris 

infection. Peak infections (i.e. ~1500 parasites fish
-1

) were seen on days 22 and 36 p.i., and 

towards the end of the experiment, some of the fish appeared to mount a response and 

markedly reduce the size of their parasitic burdens. Other fish within each group, however, 

were unable to respond and died as a consequence of rising parasite numbers (Bakke & 

MacKenzie, 1993). Dalgaard et al. (2003) similarly evaluated the susceptibility of River 

Conon Atlantic salmon from Scotland to a strain of G. salaris originating from the River 

Lærdaselva, Norway (most likely haplotype F, see Hansen et al., 2003). Aged 0+ fish were 

either infected with G. salaris, following the standard procedures detailed in the works of 

Bakke and colleagues, or treated with corticosteroids to induce a level of stress in the fish 

before they were exposed to G. salaris. As expected, the treated salmon were more 

susceptible to infection with a mean intensity of ~280 parasites fish
-1

 by the end of the 8 

week experiment. The untreated salmon, by comparison, had an average of 98 parasites 

fish
-1

; there was 40% fish mortality in both populations of fish (Dalgaard et al., 2003). A 

subsequent trial by Dalgaard et al. (2004), again using Atlantic salmon from the River 

Conon, investigated their relative susceptibility to G. salaris haplotype F (see Table 6.2) 

alongside Atlantic salmon from Canada, Denmark and Sweden and also rainbow trout 

from Denmark. The Atlantic salmon from River Conon displayed the same high 

susceptibility described by Dalgaard et al. (2003). 
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Table 6.2. A summary of the Gyrodactylus salaris Malmberg, 1957 haplotypes used in previous experiments conducted in Norway ascertaining the susceptibility of different strains 

of Salmo salar L. (A = Atlantic strain; B = Baltic strain). The haplotypes marked with an asterisk are tentatively proposed based on their geographic origin and their relative 

proximity to defined strains (see Hansen et al., 2003). The host response to G. salaris infection in each case is presented using the three categories defined by Bakke et al. (2002); i.e. 

susceptible, responding or innately resistant. 

Reference  Origin of Salmo salar tested in previous studies (rivers) 
Origin of the  

G. salaris strain 

G. salaris 

haplotype 
Parasite population dynamics  Host response 

Bakke (1991) A: Alta, Lone, Drammenselva and Lierelva (Norway) R. Drammenselva F exponential growth susceptible 

 B: Neva (Russia) R. Drammenselva F declining after 3 weeks responding 

Bakke & MacKenzie (1993) A: Conon and Shin (Scotland) and Lierelva (Norway) R. Figga A* exponential growth susceptible 

Bakke et al. (1990) A: Alta and Lone (Norway)  R. Drammenselva F exponential growth susceptible 

 B: Neva (Russia) R. Drammenselva F declining after 3 weeks 
innately resistant and 

responding 

Bakke et al. (1998) A: Akerselva (Norway) unknown unknown exponential growth susceptible 

Bakke et al. (1999) A: Alta (Norway) R. Lierelva F exponential growth susceptible 

 ♀A×♂brown trout hybrids: Alta (Norway) × Fossbekk (Norway) R. Lierelva F declining after 3 weeks 
innately resistant and 

susceptible 

 ♂A×♀brown trout hybrids: Alta (Norway) × Fossbekk (Norway) R. Lierelva F elimination in 2 weeks innately resistant 

Bakke et al. (2002) A: Lierelva (Norway) R. Rauma A exponential growth susceptible 

 A: Lierelva and Batnjjordselva (Norway) 
R. Batnfjordselva and 

Steinkjerselva  
A and A*  exponential growth susceptible 

 A: Namsen and Alta (Norway) R. Lierelva F exponential growth susceptible 

 A×B hybrids: Imsa (Norway) × Neva (Russia) R. Lierelva F declining after 4 weeks responding 

 B: Neva (Russia) R. Lierelva F declining after 3 weeks responding 

Bakke et al. (2004) A: Lierelva (Norway) R. Figga A* exponential growth susceptible 

 B: Indalsälv (Sweden) R. Figga A* slightly declining after 4 weeks responding and susceptible 

Cable et al. (2000) A: Alta and Lierelva (Norway) R. Lierelva F exponential growth susceptible 

 B: Neva (Russia) R. Lierelva F declining after 3 weeks 
innately resistant and 

responding 

Dalgaard et al. (2003) A: Conon (Scotland) R. Lærdalselva F exponential growth susceptible 

 B: Lule (Sweden) R. Lærdalselva F declining after 6 weeks responding 

Dalgaard et al. (2004) A: Conon (Scotland), Skjern (Denmark) and Bristol Cove (Canada) R. Lærdalselva F exponential growth susceptible 

 B: Mörrum (Sweden) R. Lærdalselva F exponential growth susceptible 

Jansen et al. (1991) A: Imsa (Norway) R. Lierelva F exponential growth susceptible 

 ♀A×♂B hybrids: Imsa (Norway) × Neva (Russia) R. Lierelva F exponential growth susceptible 

current study A: Dee (Wales), Lærdalselva (Norway) R. Fusta A exponential growth susceptible 
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6.4.2. Susceptibility of other salmonids to G. salaris 

Gyrodactylus salaris has been demonstrated to colonise and reproduce on a large 

number of salmonids, other than S. salar, and, under experimental studies, on a number of 

non-salmonid species as well (Mo, 1987; Bakke et al., 1990; Bakke & Sharp, 1990; Bakke 

et al., 1991b; Soleng & Bakke, 1998). Within the family Salmonidae, there are three 

subfamilies: the Coregoninae, the Salmoninae and the Thymallinae, which collectively 

embrace ten genera. Of these, only five genera have been evaluated for their susceptibility 

to G. salaris, and these are detailed in Table 6.3.  

The lack of clinical signs of disease on some of these hosts may mean that G. 

salaris infections may go undetected. This is well demonstrated by the study of Paladini et 

al. (2009a; also see Chapter 2), who on finding G. salaris in Italy for the first time then 

looked at formalin-preserved material in farm archives and found that the parasite had 

most likely been in the region for at least 9 years prior to discovery. Such asymptomatic 

hosts may represent a serious problem in that they can serve as significant carriers of the 

parasite and may also play an important role in the epidemiology and dispersal of G. 

salaris across Europe (Bakke et al., 2002; Peeler & Thrush, 2004; Peeler & Oidtmann, 

2008). Establishing the factors associated with the transmission and differential 

susceptibility of fish hosts to G. salaris, therefore, is central to the rational formulation of 

national contingency plans, regulating salmonid movements within Europe and developing 

programmes of management and control. The research agenda for the past two decades for 

European states with strong salmonid industries, therefore, has been to focus on each of 

these. 
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Table 6.3. The host subfamilies, genera and species of Salmonidae that have been experimentally tested with 

respect to their susceptibility to Gyrodactylus salaris Malmberg, 1957. The table also lists the genera that 

have yet to be assessed. 

 

 

6.4.3. The infection of G. salaris on English and Welsh salmonids 

Understanding how each salmonid population could respond to G. salaris, in the 

event of its introduction, can help support national contingency plans by confirming 

whether current assumptions are correct and that the remedial action that would be taken is 

appropriate. While standard operating procedures (SOPs) for the processing and 

Subfamily Genus 
Host species tested for 

susceptibility 

Representative 

references 

Coregoninae Coregonus L. Coregonus lavaretus (L) Soleng & Bakke (2001b) 

 Prosopium Jordan -  

 Stenodus (Güldenstädt) -  

Salmoninae Brachymystax Günther -  

 Hucho (Günther) -  

 Oncorhynchus Suckley Oncorhynchus mykiss 

(Walbaum) 

Bakke et al. (1991a);  

Lindenstrøm et al. (2000); 

Dalgaard et al. (2004) 

 Salmo (L.) Salmo salar L. Bakke et al. (1990); 

current study 

S. trutta fario L. Jansen & Bakke (1995); 

current study 

 Salvelinus Richardson Salvelinus alpinus alpinus (L) Bakke & Jansen (1991a); 

Bakke et al. (1996);  

Robertsen et al. (2007);  

Winger et al. (2008) 

S. fontinalis (Mitchill) Bakke et al. (1992b) 

S. namaycush (Walbaum) Bakke et al. (1992c) 

 Salvethymus Chereshnev et 

Skopets 

-  

Thymallinae Thymallus Linck Thymallus thymallus (L.) Bakke & Jansen (1991b); 

Soleng & Bakke (2001a); 

current study 
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identification of G. salaris in a given sample of Gyrodactylus specimens were recently 

addressed by Shinn et al. (2010), based on the information from the current study, it is 

suggested that some amendment to current contingency planning is required. 

The infection of Welsh Atlantic salmon from the River Dee followed the expected 

infection trajectory with fish being highly susceptible to G. salaris infection. The trial 

found infections rapidly rose to ~4000 parasites per fish in just 40 days. This finding is in 

close agreement with the response of Atlantic salmon (Atlantic strain) populations from 

elsewhere, including those tested from Scotland (Bakke & MacKenzie, 1993). The rate of 

parasite population increase (i.e. 17% d
-1

) on the River Dee salmon, however, was 

markedly faster than that on the Norwegian control group of salmon (i.e. 5% d
-1

). The 

number of G. salaris observed on the eyes of the Welsh salmon, although not given as a 

specific category in Figure 6.6, was seen to increase throughout the duration of the trial. 

The eye may represent an immunologically-privileged site (Barber & Crompton, 1997), 

given that the immune response to parasitic infection is believed to be lower in the eye 

(Cox, 1994). The observed increase in the number of parasites may reflect parasites 

moving away to avoid the host’s immune response, as also suggested by other researchers 

(e.g. Price, 1987; Sudhdeho & Mettrick, 1987). In Figures 6.2.A and 6.6.A, the number of 

parasites on the body was shown to change dramatically after day 33 p.i. While the fins are 

the favoured site of G. salaris infection, one explanation for this marked increase on the 

body is that as space on the fins becomes limited, the parasites then move on to the body 

where there is more space and less competition for resources. Buchmann & Bresciani 

(1998), however, suggested that this distribution on the host may be a consequence of 

differing mucous cell densities in different parts of the fish (Pickering, 1974) and that the 

parasites avoid the mucous-cell-rich areas during the response phase and escape localised 

immune reactions (Richards & Chubb, 1996; Buchmann & Bresciani, 1997; Buchmann & 

Uldal, 1997; Buchmann, 1998a, b). A third explanation is that, as the fins become 
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damaged, the parasites move away from these areas as secure attachment could be 

compromised, and also since sites of damage are likely to be subject to localised host 

immune responses.  

The River Tyne brown trout and the River Nidd grayling were both responsive to 

G. salaris infection, with parasite numbers increasing and then subsequently declining to 

near extinction over the 110 days the trial was run. There were no mortalities as a direct 

result of parasitic infection and there was no discernible change in fish behaviour. Brown 

trout were also observed to harbour a low infection of the ciliate protozoan Trichodina sp. 

that subsequently disappeared after the first two weeks. The Welsh salmon were found to 

be infected with the flagellate protozoan Ichthyobodo necator (Henneguy) Pinto, 1928, 

which was present throughout the duration of the experimental trial (see Fig. 6.8). The co-

occurrence of protozoans, such as I. necator and Trichodina sp., alongside Gyrodactylus 

infections, however, is a common finding on wild fish (personal observation) and has been 

specifically commented upon by Rintamäki (1989), working on G. salaris on a salmon 

farm in the Baltic region of Finland. 

 

6.4.4. The experimental infection procedure 

The period of experimental exposure used in the current study was 24 h and follows 

the methodology used in other G. salaris infection trials (see for example Bakke et al., 

1999; Cable et al., 2000; and Soleng & Bakke, 2001a). There is, however, no standard 

exposure period, and the times reported in the scientific literature appear to vary markedly, 

e.g. 48 h as used by Jansen et al. (1991), Bakke et al. (2004) and Dalgaard et al. (2004); 72 

h as employed by Bakke & MacKenzie (1993); and up to 2 weeks in the study by Bakke et 

al. (1990). The experimental exposure period used in the current trial, however, was shown 

to be effective, as demonstrated by the prevalences obtained, with 100% of fish 

successfully infected with G. salaris.  
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Figure 6.8. Scanning electron micrographs (SEM) showing a co-infection of Gyrodactylus salaris 

Malmberg, 1957 and Ichthyobodo necator (Henneguy) Pinto, 1928 on the eye of an Atlantic salmon, Salmo 

salar L. from the River Dee, Wales. (a) low resolution image of G. salaris on the top of the eye; (b), (c) G. 

salaris attached to the cornea of the eye in regions where the density of I. necator was marked; (d) close up 

of I. necator clearly showing the terminal flagella [original images]. 

 

6.4.5. The importance of including grayling in the current trial 

English and Welsh grayling are commonly infected with Gyrodactylus thymalli 

Žitňan, 1960, a congener morphologically and genetically similar to, and commonly 

confused with, G. salaris (see McHugh et al., 2000; Shinn et al., 2004). It has been 

suggested that G. thymalli may be conspecific with G. salaris (see Hansen et al., 2006; 

OIE, 2012), however Scandinavian grayling are unable to support experimental infections 

of G. salaris suggesting that G. thymalli is not conspecific with G. salaris (see Soleng & 

Bakke, 2001b). Given the debate regarding their conspecificity, that G. thymalli exists 
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within the UK and that the UK has been separated from mainland Europe for ~200,000 

years (Gupta et al., 2007), the inclusion and experimental exposure of British grayling to 

G. salaris was important. Earlier trials with Scandinavian populations of grayling using the 

Lierelva strain of G. salaris suggested that infections could persist for anything between 35 

(Soleng & Bakke, 2001b) and 143 days (Sterud et al., 2002). In both studies, the 

experiments were terminated with a low number of parasites still on their hosts. There was 

value, therefore, in determining the response of English grayling to infection. Likewise, the 

infections of G. salaris on grayling in the current study were not completely outside the 

expected response, with a low level of parasites remaining on fish for the duration of the 

110-day experiment. Only two out of the 30 grayling, however, were still infected at the 

end of the trial. The finding that English grayling can carry infections for long periods of 

time gives cause for concern in that they may play a role in extending the infection window 

for other more susceptible hosts. 

 

6.4.6. The importance of including brown trout in the current trial 

Perhaps the most interesting findings from the current trial arise from the infection 

of G. salaris on the population of brown trout from the River Tyne. Prior to this study, 

brown trout had been considered resistant to G. salaris infection. Jansen and Bakke (1995), 

for example, infecting both single and pooled samples of brown trout with the strain of G. 

salaris from the River Lierelva (haplotype F), found that fish could carry an infection for 

up to 50 days. The current study found that when a pool of brown trout were each given an 

initial infection of ~70 G. salaris per fish, then the G. salaris infections on these fish 

persisted for at least 110 days, when the experiment was terminated. Of these, 7 of the 30 

fish were still infected with between 1 and 6 parasites each. 

Brown trout parr naturally infected with G. salaris at low intensities have been 

reported by a number of authors (Tanum, 1983; Mo, 1988; Malmberg & Malmberg, 1991; 
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Johnsen & Jensen, 1992). The studies by Tanum (1983) and Mo (1988) also demonstrated 

that brown trout were able to maintain their G. salaris infections when cohabited with 

infected salmon. A study by Bakke et al. (1999) found that brown trout, exposed to 

infected fins of Atlantic salmon for 24 h and subsequently held in isolation, eliminated 

their G. salaris infections in less than two weeks, suggesting that they could be innately 

resistant. Harris et al. (2000) also considered brown trout to be innately resistant to G. 

salaris when, after exposing groups of fish to infected salmon fins for 24 h, the fish lost 

their infections within 42 days. In a survey by Jansen and Bakke (1995), anadromous 

brown trout from the River Lierelva were cohabited with heavily infected Atlantic salmon 

from the Lierelva for 5 days, and then either isolated and held individually or maintained 

as a group. In both cases, the infections of G. salaris on the brown trout persisted for 

approximately 49 days p.i. In a repeat trial using a stock of brown trout from Lake 

Tunhovd, the infection of G. salaris on the isolated brown trout (n = 21) persisted for 28 

days, whilst the infection on grouped fish (n = 21) lasted for 21 days p.i. These trials 

suggested that brown trout can serve as a carrier for disseminating the parasite, although it 

is not able to support an infection with G. salaris for long periods (Jansen & Bakke, 1995). 

The current study, however, found that English brown trout can carry an infection 

of G. salaris for 110 days, and this finding appears to contradict those of previous studies 

(i.e. Jansen & Bakke, 1995; Bakke et al., 1999; Harris et al., 2000). This might be 

explained by a potential different pathogenicity between G. salaris haplotypes; i.e. Jansen 

and Bakke (1995), Bakke et al. (1999) and Harris et al. (2000) used haplotype F, while in 

the current experiment we used haplotype A. Additional studies, therefore, are required to 

elucidate this further. 
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6.4.7. Findings in support of national contingency plans 

Although every precaution was taken to ensure fish welfare was upheld throughout 

the duration of the current susceptibility trial, the level of stress placed upon each 

population of fish during their transportation from the UK to Norway and in their 

experimental tanks is not known. Whilst the 110 day period of infection may not 

accurately reflect how British populations of brown trout in the wild would respond to G. 

salaris, if introduced into the UK, the trial has shown that the River Tyne population of 

brown trout are able to manage infections and keep numbers to a low level, even under 

periods of anticipated stress. Although there were no G. salaris-related brown trout 

mortalities, the concern is that populations of brown trout under stress may extend the 

period over which individuals can carry an infection of G. salaris, therefore, increasing the 

possible risk of parasite transfer to other fish species. Most of Bakke et al.’s experimental 

findings are based on studies using G. salaris “originating” from the River Lierelva 

(Norway), i.e. haplotype F according to the study of Hansen et al. (2003). This haplotype 

has been commonly found on rainbow trout, Atlantic salmon and Arctic charr (see Hansen 

et al., 2003; Hansen et al., 2007a; Robertsen et al., 2007). The study conducted by Bakke 

& MacKenzie (1993) on Scottish salmon, however, used a strain of G. salaris originating 

from the River Figga, Norway, most likely corresponding to haplotype A (though not 

stated, this is interpreted from the map of haplotype distribution presented in Hansen et al., 

2003), which is also known to be pathogenic to S. salar. The strain of G. salaris used in the 

current study was derived from the River Fusta in the Vefsna region of Norway and 

corresponds to haplotype A. It is not possible, therefore, to ascertain whether the observed 

differences displayed by the brown trout compared with previous studies are due to genetic 

differences between each population of trout, or due to the strain of G. salaris that was 

used. 
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The findings from this trial are significant in that they demonstrate that Welsh 

salmon, as with Scottish salmon, are also susceptible to G. salaris, that grayling respond in 

a similar manner to their Scandinavian counterparts and carry infections for up 110 days, 

and that English brown trout are responsive to a G. salaris infection, but can harbour 

infections for longer than those reported for Norwegian populations, i.e. 110+ days as 

opposed to 50 days. These extended windows of infection and the interpretation of 

“resistance” need to be considered carefully in terms of the role that brown trout could play 

within the context of national contingency planning and subsequent management in the 

event of a G. salaris outbreak.  

Current national surveillance programmes for G. salaris focus on areas where 

Atlantic salmon are dominant, with relevant sites being sampled on a regular basis i.e. at 

least once a year. Other sites, perhaps through limitations of manpower and other 

resources, are sampled less frequently. The demonstration from this study that G. salaris 

can persist on brown trout for long periods would suggest that during a suspected outbreak, 

the surveillance of brown trout farms and of watercourses inhabited by brown trout, 

especially where the two salmonids co-exist, should be increased. Given the suggested 

association of rainbow trout movements and emerging G. salaris infections, it is also 

suggested that during a suspected outbreak, brown trout in and around rainbow trout sites 

are carefully monitored. Current national contingency plans may, therefore, benefit from a 

clarification of the potential role that brown trout could play in the spread of G. salaris. 



Giuseppe Paladini                                                                                              Chapter 7 

 

157 

 

 

 

 

Chapter 7 

 

Alternative chemical strategies to control Gyrodactylus salaris 

 

 

Head of a three-spined stickleback, Gasterosteus aculeatus aculeatus L., with a natural infection of 

Gyrodactylus arcuatus Bychowsky, 1933 and Apiosoma sp. [original image] 

 

 

Aspects of this work were presented as: 

 

Paladini G. (2012). Gyrodactylus: tales of invasion, resistance and control strategies. Aquaculture UK 2012, Aviemore, 

Scotland, 23rd-24th May 2012 (talk). 
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7.1. Introduction 

While a range of integrated pest-management strategies are used in aquaculture to 

control parasite infections of stock, the use of chemicals remains the preferred method 

(Brooks, 2009; Shinn & Bron, 2012). Although a large number of studies have been 

conducted to identify compounds suitable for control of parasite infections in both farmed 

and ornamental populations of fish (see review by Schelkle et al., 2009, 2010 for those 

tested against Gyrodactylus), there are, unfortunately, only a small number of efficacious, 

licensed treatments that can be employed, with the permission for use of these being 

governed by the regulatory authorities within each country (Shinn & Bron, 2012). 

The impact of Gyrodactylus salaris Malmberg, 1957 in Norway currently costs £38 

million p.a., of which £23 million are linked to loss of tourism and angling restrictions, 

while the remaining £15 million represent the cost of on-going surveillance programmes 

and river treatments. Although this parasite is easily controlled under farming conditions 

using formalin or other licenced products, infections on wild fish present a range of larger 

logistical problems.  

Gyrodactylus salaris infections in Norway are currently managed through the use 

of the biocide rotenone (C23H22O6), which is an extract from the roots and stems of the 

plant Derris elliptica. Rotenone is a broad-spectrum biocide that is used to kill-out the 

entire fish population within the river system under treatment. Rotenone has an impact on 

the respiratory system and acts by interfering with the electron transport chain in 

mitochondria (Marking & Bills, 1976; Eriksen et al., 2009). The “treatment” of wild stocks 

using rotenone requires the handling of large volumes of chemical and heavy manpower to 

ensure that all parts of the water system are treated effectively. There are, however, 

considerations regarding the loss of non-target species, the impact on biodiversity and the 

environmental impact and cost more widely. Ideally, a suitable alternative should be 

equally as effective in removing the parasite, have a low environmental impact (short half-
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life, safe breakdown products, etc), and be able to reduce the problem of fish losses and 

impacts on non-target species, i.e. impacts on biodiversity. The alternative compound, 

however, may not circumvent the problems of chemical and manpower costs. 

Aqueous aluminium sulfate (100 µg L
-1

 Al2(SO4)3; given continuously over a 10–

14 day-period), followed by a rotenone treatment, is also being trialled for use in control of 

G. salaris infections in Norwegian river systems (Soleng et al., 1999; Poléo et al., 2004). 

There are, however, human health concerns regarding the use of both compounds. 

Rotenone has been suggested to be responsible for behavioural and pathological symptoms 

of Parkinson’s disease (Giasson & Lee, 2000; Newhouse et al., 2004; Cannon et al., 2009), 

whilst the use of aluminium sulfate has been identified as a risk factor in the development 

of Alzheimer’s Disease (WHO, 1998). The UK Government also has concerns regarding 

the use of either product. The UK’s largest water poisoning incident resulted when 

undiluted aluminium sulfate was accidentally added to the domestic water supply via the 

water treatment plant at Camelford, UK, with a recorded maximum concentration of 

620,000 μg L
-1

, which was 3100 times higher than the maximum concentration admissible, 

i.e. 200 μg L
-1

 (http://en.wikipedia.org/wiki/Camelford_water_pollution_ incident). 

Although rotenone and aluminium sulfate are regarded by some as unsuitable 

treatment options for the management of G. salaris infections in the wild, there has, 

unfortunately, been little effort to look for alternatives. Schelkle et al. (2009) provided a 

recent review of compounds that have been tested on gyrodactylids and then, in 2010, took 

a closer look at the impact of different concentrations of salt (NaCl) on the infection 

dynamics of Gyrodactylus bullatarudis Turnbull, 1956 and G. turnbulli (see Schelkle et 

al., 2010). More recently, Brooker et al. (2011) studied the effect of octopaminergic 

receptor agonists/antagonists, i.e. compounds that elicit a response by binding to a post-

synaptic receptor (on muscles or nerves), which mimic or block natural transmitters, and 

found that different concentrations affect the ability of gyrodactylids to attach or locate a 
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host when detached, and also their survival. The utility of these compounds, however, is 

merely of scientific interest at this stage, and these studies provide greater knowledge 

concerning whether these classes of compound are efficacious in affecting Gyrodactylus 

species, rather than suggesting that they be used as replacements to rotenone and 

aluminium sulfate. 

Bronopol (2-bromo-2-nitropropane-1,3-diol), marketed under the trade name of 

Pyceze
TM

 (Novartis Animal Vaccines Ltd.), is a broad-spectrum disinfectant, which has 

been demonstrated to cause membrane damage in microbial organisms through the 

inhibition of membrane-bound enzymes (Stretton & Manson, 1973; Shepherd et al., 1988). 

Bronopol is commonly used in aquaculture and is currently licensed within the EU for use 

against infections of the oomycete Saprolegnia parasitica (Coker) (see Branson, 2002; 

Novartis, 2002, 2006), and has been shown to be effective in the control of other 

ectoparasitic species, such as the ciliate protozoan Ichthyophthirius multifiliis Fouquet, 

1876 (see Picón-Camacho et al., 2012; Shinn et al., 2012c). 

UK contingency plans are currently based on a large number of experimental 

studies conducted within Scandinavia. These include the implicit assumption that the 

pattern of G. salaris infection and population growth observed in the laboratory 

environment, accurately reflect the dynamics of infection in the wild. If the experimental 

data are to be used to inform national contingency planning, i.e. with regard to 

surveillance, containment, treatment and management, then it is imperative that the 

influence of water chemistry on G. salaris infections is investigated. Almost all our current 

understanding of G. salaris population dynamics is derived from a single experimental 

protocol carried out using a common domestic water supply in Oslo (Soleng et al., 1999). 

It is known, however, that subtle deviations in water composition can affect the course of 

gyrodactylid infection, notably the addition of aqueous aluminium sulfate, which, as noted 

above, is being trialled as a remedial measure for the control of G. salaris (see Soleng et 
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al., 1999; Poléo et al., 2004). Permissible levels of other heavy metals, i.e. cadmium and 

zinc, typically found in UK domestic tap water (i.e. <5 µg L
-1

), have also been shown to 

impact significantly on the pattern of population growth of Gyrodactylus turnbulli Harris, 

1986 on guppies held in research aquaria (Carter, 2003; Gheorghiu et al., 2007). 

Given the apparent importance of water chemistry in the establishment of 

Gyrodactylus, the influence of different tannins and humic substances on the survival of 

gyrodactylids is also of interest. This natural organic material is produced from decaying 

vegetation and its concentration as dissolved organic carbon (DOC) in water can range 

from 4.3 to 14.5 mg L
-1

 (Sharp et al., 2006). Tannic acid (C76H52O46) is a polyphenol that 

is ubiquitous in plants, including tea. Its astringent properties are used in the formulation of 

several pharmaceutical anti-diarrhoeal, haemostatic and anti-haemorrhoidal products 

(Ashok & Upadhyaya, 2012). Tannins, by way of generalisation, have the ability to inhibit 

enzymes, precipitate proteins, and to scavenge free radicals. Given these properties, their 

use as anti-viral (e.g. HIV, see Lin et al., 2004), anti-bacterial (e.g. Staphylococcus aureus 

and Helicobacter pylori, see Akiyama et al., 2001; Funatogawa et al., 2004) and anti-

parasitic (e.g. Leishmania, see Kolodziej & Kiderlen, 2005) agents have been explored. 

The current study represents a preliminary investigation looking for alternative 

compounds for use against Gyrodactylus spp., and begins by assessing the potential 

suitability of broad-spectrum disinfectants, e.g. bronopol, and of natural compounds, e.g. 

tannic acid. This study evaluates the impact of bronopol on the survival of G. salaris and 

Gyrodactylus arcuatus Bychowsky, 1933, a common species of three-spined sticklebacks, 

Gasterosteus aculeatus aculeatus L., and then assesses the use of tannic acid against one 

species only, G. salaris. 
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7.2. Materials and methods  

 

7.2.1. Origin of experimental fish and parasite populations 

 

7.2.1.1. Source of fish and parasites for the bronopol trials 

The in vitro efficacy of bronopol was initially tested in the UK against G. arcuatus, 

a common species parasitising three-spined sticklebacks, and then subsequently against G. 

salaris from Atlantic salmon in Norway. Gyrodactylus arcuatus was selected as the 

species for chemical assessment in the UK because this species is easily acquired and is 

found in a wide range of aquatic habitats from freshwater to marine, and it therefore 

represents a good model for testing. 

Forty specimens of three-spined sticklebacks (each 3-6 cm in total length) naturally 

infected with G. arcuatus were collected from a tributary of the River Allan in Stirlingshire 

and transported to the Institute of Aquaculture, University of Stirling, UK. The fish were 

held in small tank (60×30×40 cm) with oxygen, under 12 h light:12 h dark photoperiod 

regime, at 6±1°C, fed on bloodworms and left to acclimate for one month to allow parasite 

numbers on the captive-held fish to increase. 

 For the trials using G. salaris (haplotype F) conducted in the Natural History 

Museum, Department of Zoology, University of Oslo (Norway), two groups, each of 10 

Atlantic salmon (each 10-15 cm in total length; weight ranging 5-20 g), were sampled from 

the Rivers Glitra and Lierelva, and subsequently maintained in 200 L aquaria supplied with 

6±1ºC dechlorinated Oslo tap water. The fish were fed ad libitum with a commercial pellet 

food, and kept under a photoperiod regime of 12 h light:12 h dark. The fish stock from the 

River Glitra had been maintained in the aquarium for a period of five months prior to the 

experiment, whilst the population of salmon collected from the River Lierelva had been 

kept in the University of Oslo research aquarium for a period of two years. The aim of the 
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study, using two different G. salaris populations, was to test if any host-parasite adaptation 

to aquarium condition may occur. 

 

7.2.1.2. Source of fish and parasites for the tannic acid trials 

The in vitro efficacy of tannic acid was tested at the Natural History Museum, 

Department of Zoology, University of Oslo (Norway), against one population of 

Gyrodactylus salaris only. The population of G. salaris (haplotype F) used in this study 

originated from the River Lierelva and was maintained and used in the same way as 

described under section 7.2.1.1. 

 

7.2.2. Bronopol exposure procedure 

Two sets of trials were conducted: a continuous-exposure trial and a 1 hour-

exposure to bronopol trial. For the continuous chemical-exposure trial, a fresh batch of 

bronopol was prepared at the following concentrations: 0, 25, 50, 100, 150, 250, 375, 500, 

625 and 750 ppm of bronopol, using water feeding the experimental tanks, filtered through 

a 0.2 µm filter. For the trials, a heavily Gyrodactylus-infected three-spined stickleback and 

a heavily Gyrodactylus-infected Atlantic salmon from each of the Norwegian populations 

(Glitra and Lierelva strains) were killed using a UK Home Office Schedule 1 method, and 

small pieces of fin, each with 10 Gyrodactylus specimens attached, were selected, removed 

and placed into a 5 cm Petri dish (Fig. 7.1) containing 10 ml of the relevant concentration 

of bronopol and maintained at 6±1°C. Each concentration was tested in triplicate, the 

parasites in each dish were assessed every hour, and the number of dead and live parasites 

determined. For the 1 hour-exposure trial, only three doses of bronopol were tested in 

addition to a control, i.e. 25, 50, 100 ppm (also in triplicate) on the two stocks of G. salaris 

(n = 50 parasites per replicate). 
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7.2.3. Tannic acid exposure procedure 

Trials involving continuous exposure to tannic acid, as well as a 10 minute-

exposure, were conducted. A 1 mM solution of tannic acid (Sigma-Aldrich, Steinheim, 

Germany) was prepared using 0.2 µm filtered, dechlorinated Oslo tap water at 6 ± 1°C and 

then serially diluted to give concentrations of 0.5, 0.25, 0.1, 0.075 mM and a control (0 

mM). Ten G. salaris haplotype F were placed into a 5 cm Petri dish containing 10 ml of 

each concentration, run in triplicate, including a control set. For the 10 minute-exposure 

trial, only one dose of tannic acid was tested, i.e. 0.5 mM (also in triplicate), on the same 

stock of G. salaris (n = 50 parasites per replicate). 

 

 

Figure 7.1. A: A fin of Atlantic salmon, Salmo salar L., with heavy infection of Gyrodactylus salaris 

Malmberg, 1957 (haplotype F). Ten specimens were removed and placed into each Petri dish used in the 

trial; B: 5 cm Petri dishes, each containing a relevant dose of either bronopol (Pyceze
TM

) or tannic acid for 

the in vitro assessments [original images]. 

 

7.2.4. Parasite survival/mortality assessment 

Parasite survival was assessed by monitoring the plates every hour during the 

treatment process. When the parasite is affected by the chemical, its body start twitching 

and subsequently the parasite detaches from the piece of fin. The parasite is considered 

dead when no movements occur and the body, initially transparent, become whitish in 

colour. 
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7.2.5. Statistical analyses 

Statistical analysis of the bronopol data was conducted by Dr N.G.H. Taylor during 

a visit to the Cefas Weymouth Laboratory. 

The influence of different doses of bronopol (Pyceze
TM

) on the survival of the 

different Gyrodactylus species and strains was compared using Cox proportional hazards 

regression. The analysis was conducted in R v2.13 using the coxph function in the survival 

library and the coxme function in the coxme library, to allow each replicate within each 

treatment to be incorporated as a random effect. Models were built by first fitting the 

maximal model, where dose was included as a covariate, and the species or strain of 

Gyrodactylus as a factor. An interaction term was also included between the continuous 

exposure dose of bronopol (ppm) and species or strain, as was an interaction term between 

dose and time, and species and time, to establish whether the association between these 

variables and the dependent variable changed over time. Interactions and explanatory 

variables with a probability of significance (p) greater than 0.05 were then systematically 

removed from the model (least significant first), until only variables significant at p<0.05 

remained. To account for variability between replicates, the influence of including a 

random intercept and random slope term in the model was also assessed. Where little 

variance was attributed to the random intercept term and its inclusion did not improve 

model fit (this was assessed graphically and through comparison of the Akaike’s 

Information Criterion (AIC) and parameter estimates obtained between models), it was 

assumed that there was little variance between the replicates, and a fixed effects model was 

therefore used in which data from the replicates were pooled.  

The influence of a short term (1 h), low-dose exposure (25, 50 and 100 ppm), as 

opposed to continuous exposure, on the subsequent survival of G. salaris, was assessed 

using the same methods. LD50s associated with a 1 h period of exposure to bronopol were 

then estimated for each of the Gyrodactylus species or strains that were tested using 
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logistic regression models, i.e. a generalised linear model assuming a binomial (or 

quasibinomial) error distribution and logit link function, where the proportion of parasites 

surviving was the dependent variable, and the dose to which they were exposed to, the 

explanatory covariate. Model fit was assessed by plotting the relationship between the logit 

of the dependant variable and various transformations of the explanatory covariate, and 

assessing reduction in residual deviance compared to the baseline model. As in the other 

analyses, the variability occurring between the replicates was assessed by including 

replicate as a random intercept term in the model, this time using the lmer function from 

the lme4 library of R. Where little variability was observed between replicates, a fixed 

effects model was used. The model providing the best fit (according to the greatest 

reduction in residual deviance) was then used to predict the LD50 for that exposure time. 

 

7.3. Results 

This study explores the potential of two compounds in killing specimens of 

different species and strains of Gyrodactylus. Given the Gyrodactylus material available 

for investigation, larger data sets were obtained from the trials using bronopol and the 

results of these will be looked at in greater detail. The trials for tannic acid are based on 

smaller datasets and can only be considered as preliminary; the results nonetheless are 

interesting and worthy of reporting. 

 

7.3.1. Bronopol 

The results of the bronopol trials are shown in Tables 7.1-7.3 where it can be seen 

that the action of bronopol on G. salaris (only the results for the G. salaris maintained on 

Glitra salmon are shown as both sets of results were similar) was markedly better than on 

G. arcuatus. 
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Table 7.1. The treatment efficacy of 0-750 ppm (mg L
−1

) bronopol (Pyceze
TM

) against Gyrodactylus 

arcuatus Bychowsky, 1933, against time (h) when continuously exposed. Yellow boxes highlight where all 

(i.e. 100%) the parasites were killed, while the light blue boxes highlight where 50-99% of the parasites were 

killed. Figures represent the combined results from three replicate dishes per dose, each containing 10 

parasites (total n = 30). 

G. arcuatus from 3-spined stickleback from the River Allan, UK 

continuous exposure (% dead) 

DOSE (ppm) 1h 2h 3h 4h 5h 6h 7h 24h 

0 (control) 0 0 0 0 0 0 0 0 

25 3.3 10 13.3 13.3 13.3 13.3 13.3 100 

50 0 0 0 0 6.7 6.7 6.7 100 

100 0 0 0 3.3 10 10 16.7 100 

150 0 0 0 0 0 0 20 100 

250 0 0 0 10 10 30 70 100 

375 3.3 3.3 6.7 13.3 16.7 70 93.3 100 

500 3.3 10 80 90 100    

625 3.3 6.7 90 90 100    

750 6.7 76.7 96.7 100     

 

 

 

 

Table 7.2. The treatment efficacy of 0-750 ppm (mg L
−1

) bronopol (Pyceze
TM

) against Gyrodactylus salaris 

Malmberg, 1957 (Lierelva strain, haplotype F), against time (h) when continuously exposed. Yellow boxes 

highlight where all (i.e. 100%) the parasites were killed, while the light blue boxes highlight where 50-99% 

of the parasites were killed. Figures represent the combined results from three replicate dishes per dose, each 

containing 10 parasites (total n = 30). 

G. salaris from Atlantic salmon from the River Glitra, Norway  

continuous exposure (% dead) 

DOSE (ppm) 1h 2h 3h 4h 5h 6h 7h 24h 

0 (control) 0 0 0 0 0 0 0 0 

25 0 0 6.7 30 40 56.7 70 100 

50 0 26.7 40 50 63.3 80 93.3 100 

100 20 30 83.3 100     

150 30 40 86.7 100     

250 46.7 70 100      

375 46.7 70 100      

500 50 100 
 

     

625 100        

750 100        
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Table 7.3. The treatment efficacy of 0-100 ppm (mg L
−1

) bronopol (Pyceze
TM

) against Gyrodactylus salaris 

Malmberg, 1957 (Lierelva strain, haplotype F) against time (h) when parasites are exposed for just one hour, 

after which the bronopol was replaced with fresh, dechlorinated, filtered Oslo tap water. Yellow boxes 

highlight where all (i.e. 100%) the parasites were killed, while the light blue boxes highlight where 50-99% 

of the parasites were killed. Figures represent the combined results from three replicate dishes per dose, each 

containing 50 parasites (total n = 150). 

G. salaris from S. salar from the River Glitra, Norway 

1 h-exposure (% dead) 

DOSE (ppm) 1h 2h 3h 4h 5h 6h 7h 24h 

0 (control) 0 0 0 0 0 0 0 0 

25 0 0 6 17.3 40 48 50.7 78 

50 7.3 15.3 21.3 38.7 63.3 70 83.3 100 

100 10 20 27.3 48.7 66 100   

 

 

7.3.1.1. Exposure of Gyrodactylus to a continuous dose of bronopol (Pyceze
TM

) 

The Cox proportional hazards regression test found that there was variability 

between the replicates and, therefore, a fixed effects model was used where the data were 

pooled between replicates. The results of Table 7.4 show that there was a significant 

relationship between dose and the likelihood of dying i.e. as the dose increases, so the 

likelihood of dying increases. There was also a significant interaction effect between dose 

and time, showing that the effect of increasing the dose of bronopol was reduction of the 

survival of Gyrodactylus as time increased. Both populations of G. salaris had a 

significantly higher mortality rate than that of G. arcuatus. The G. salaris population from 

Lierelva had the highest mortality rate but this was not significantly higher than the 

population of G. salaris collected from Glitra. There was no interaction effect between 

dose and species suggesting that an increased dose of bronopol led to the same increase 

over the baseline mortality rate in all three species, i.e. the treatment was equally effective 

at each dose on all species. There was also a significant interaction between dose and time 

suggesting that as time progressed, the influence of the dose of bronopol had less effect on 

the mortality rate. 
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Table 7.4. A summary of the Cox proportional hazards regression looking at the influence of different doses 

of bronopol on the survival of the different strains (G. salaris from Glitra and from Lierelva) and species of 

Gyrodactylus (G. arcuatus and G. salaris). All model terms are included in the table below (n = 660; number 

of events = 600). The reference level for the strain effect was G. arcuatus. 

 

 coef se(coef) z Pr(>|z|) 

Dose (ppm) 0.005 0.0002 23.244 2×10
-16

 

G. salaris (Glitra) 0.829 0.120 6.908 4.92×10
-12

 

G. salaris (Lierelva) 0.952 0.123 7.754 8.88×10
-15

 

Dose (ppm) vs Time (h) -0.0002 0.0001 -3.444 0.001 

 

R
2
 = 0.67 (max possible = 1) 

 

 

 

 

7.3.1.2. The proportion of Gyrodactylus specimens surviving at 1 h-continuous bath of 

bronopol 

A generalised linear model assuming a binomial (or quasibinomial) error 

distribution was used in R to determine the proportion of Gyrodactylus specimens 

surviving at 1 h-exposure to different doses of bronopol (Pyceze
TM

), i.e. the probability of 

death by the end of a 1 h-exposure event. The approach used in R is presented in Table 7.5. 

 

 

Table 7.5. The output from a generalised linear model used to determine the concentration of bronopol (ppm 

± SE) needed to kill different proportions of two populations of G. salaris and a population of G. arcuatus 

when continuously exposed to bronopol for one hour. All model terms are included in the table below. 

 

 
The coefficients were:  

              Estimate  Std.Err  t value  Pr(>|t|)     

(Intercept)   7.409 1.096 6.758 5.64×10
-9

 

Dose (ppm)         -0.009 0.001 -6.816 4.47×10
-9

 

G. salaris (Glitra)   -3.957 0.830 -4.767 1.17×10
-5

 

G. salaris (Lierelva)  -4.785 0.903 -5.298 1.64×10
-6

 
 

 

The dispersion parameter for the quasibinomial family was taken to be 3.34. 

 

Null deviance: 581 (65 df); residual deviance: 102 (62 df) 

 

 

 

The analysis found that both strains of G. salaris had significantly higher mortality rates 

than G. arcuatus (i.e. p<0.001), and as dose increased, the probability of their survival 

reduced significantly (i.e. p<0.001). The dose (± SE) of bronopol (ppm) needed to kill 
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different proportions (i.e. p=50% to 95%) of the G. salaris populations after a 1 h-

continuous exposure are presented in Table 7.6, while the concentrations needed to kill 

different proportions of G. arcuatus are presented in Table 7.7. 

 

Table 7.6. Dose (± SE) of bronopol (ppm) needed to kill different proportions (i.e. p=50% to 95%) of the 

two G. salaris strains after a continuous exposure of one hour, as estimated by the R “dose.p” function. 

 

Proportion (p) Dose (ppm) SE 

0.5 384 26.47 

0.9 659 46.81 

0.95 753 56.59 

 

 

 

Table 7.7. Concentrations of bronopol (ppm ± SE) needed to kill different proportions of Gyrodactylus 

arcuatus, as estimated by the R “dose.p” function. 

 

Proportion (p) Dose (ppm) SE 

0.5 810 30.49 

0.9 1051 39.45 

0.95 1132 44.04 

 

 

Higher doses of bronopol were required in this case because G. arcuatus was significantly 

less sensitive to treatment than both strains of G. salaris were, either due to inherently 

reduced susceptibility or due to differences in aspects of water quality or chemistry 

employed in the trial. 

 

7.3.1.3. Treatment of G. salaris using bronopol: continuous vs 1 hour-exposure 

A Cox proportional hazards regression was also used to investigate what doses of 

bronopol (Pyceze
TM

) when presented continuously would be needed to kill the two 

populations of G. salaris. The approach used in R is presented in Table 7.8. 
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Table 7.8. The output from the Cox proportional hazards regression used to determine the concentration of 

bronopol (ppm ± SE) needed to kill different proportions of two populations of G. salaris when presented 

continuously. All model terms are included in the table below (n = 1190; number of events = 797). 

Abbreviations: conc. = concentration; h = hour. 
 

 

 coef se(coef) z Pr(>|z|) 

Dose (ppm) 0.039 0.002 22.247 <2×10
-16

 

G. salaris (Lierelva) -0.447 0.104 -4.312 1.62×10
-5

 

Treatment (conc.) 1.782 0.143 12.440 <2×10
-16

 

Dose (ppm) vs Treatment (conc.) -0.030 0.002 -19.172 <2×10
-16

 

G. salaris (L) vs Treatment (conc.) 0.430 0.144 2.981 0.003 

Dose (ppm) vs Time (h) -0.003 0.0002 -13.386 <2×10
-16

 

 

R
2
 = 0.72 (max possible = 1) 

 

 

 

The results from Table 7.8 show that as in the previous analysis there was a significant 

increase in the mortality rate of G. salaris as the dose of bronopol increased, but as time 

progressed the influence of dose on mortality decreased. A continuous dose of bronopol, 

not surprisingly, was more effective than a 1 h-exposure, but the difference between these 

two types of treatment regime (i.e. continuous exposure vs 1 hour-exposure) got smaller as 

the dose of bronopol increased – this is demonstrated by the significant negative 

interaction effect between dose and treatment type. The population of G. salaris from the 

Lierelva had a significantly lower mortality rate than the population of G. salaris from the 

Glitra, and this difference in mortality rate was more pronounced under the continuous 

exposure regime when compared to the one hour-exposure approach, i.e. the G. salaris 

Glitra strain was more sensitive to the continuous exposure than was the population of G. 

salaris from the Lierelva. 

 



Giuseppe Paladini                                                                                              Chapter 7 

 

172 

 

7.3.2. Tannic acid 

Table 7.9 shows the efficacy of tannic acid in killing G. salaris haplotype F 

(Lierelva strain) when continuously exposed to tannic acid, demonstrating that low doses 

of tannic acid result in high percentage kills. A repeat trial using 0.5 mM tannic acid for 

only 10 minutes resulted in 90% parasite mortality within the first hour post-exposure 

(Table 7.10). The reason why only the dose of 0.5 mM tannic acid has been tested for the 

10 minute-trial is because 0.5 mM was the lowest dose killing the 100% of G. salaris 

within the first hour (see Table 7.9). The effect of tannic acid on G. salaris is shown in Fig. 

7.2, presenting clear evidence for swelling of the parasite and lifting off of the parasite 

tegument. 

 

Table 7.9. The treatment efficacy of 0-1 mM tannic acid against Gyrodactylus salaris (Lierelva strain 

haplotype F) against time (h) when continuously exposed. Yellow boxes highlight where all (i.e. 100%) the 

parasites were killed, while the light blue boxes highlight where 50-99% of the parasites were killed. Figures 

represent the combined results from three replicate dishes per dose, each containing 10 parasites (total n = 

30). 

G. salaris Lierelva strain haplotype F  

continuous exposure (% dead) 

DOSE (mM) 1h 2h 3h 4h 

0 (control) 0 0 0 0 

0.075 0 70 83.3 100 

0.1 50 96.7 100 
 

0.25 73.3 100   

0.5 100    

1 100    

 

 

 
Table 7.10. The treatment efficacy of 0-0.5 mM tannic acid against Gyrodactylus salaris (Lierelva strain 

haplotype F) against time (h) when parasites are exposed for just 10 minutes, after which the tannic acid was 

replaced with fresh, dechlorinated, filtered Oslo tap water. Yellow boxes highlight where all (i.e. 100%) the 

parasites were killed, while the light blue boxes highlight where 50-99% of the parasites were killed. Figures 

represent the combined results from three replicate dishes per dose, each containing 50 parasites (total n = 

150). 

G. salaris Lierelva strain haplotype F  

10 minute-exposure (% dead) 

DOSE (mM) 1h 2h 3h 4h 5h 6h 7h 24h 

0 (control) 0 0 0 0 0 0 0 0 

0.5 90 92.7 97.3 98 98.7 99.3 99.3 100 
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Figure 7.2. The effect of 0.5 mM tannic acid on Gyrodactylus salaris Malmberg, 1957 which causes 

swelling and lifting off of the tegument. A: dead parasites under the dissecting microscope; B: dead parasite 

mounted on a slide [original images]. 

 

7.4. Discussion 

Bronopol, licensed as Pyceze
TM

, is used extensively throughout the UK in the 

aquaculture industry for the control of the oomycete S. parasitica infecting salmonid fish 

and eggs (Pottinger & Day, 1999; Branson, 2002; Aller-Gancedo & Fregeneda-Grandes, 

2007); for the ciliated protozoan I. multifiliis (see Picon-Camacho et al., 2012; Shinn et al., 

2012c), and elsewhere for the dinoflagellate Amyloodinium ocellatum (Brown, 1931) 

Brown et Hovasse, 1946, the causative agent of “velvet disease” (Roberts-Thomson, 
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2007). Against Gyrodactylus, however, the efficacy of bronopol has never been tested 

prior to this study. Although these results demonstrate that bronopol could be used to 

control infections of G. salaris in confined aquaria, this does not mean that this advocates 

its use in river systems as there are a plethora of logistic, economic (e.g. 1 L of Pyceze
TM

 

costs about £35) and environmental considerations to take into account. This does, 

however, take important steps towards investigating alternative control agents for use in 

the event of an outbreak. The differences in susceptibility between G. salaris and G. 

arcuatus are very interesting. The reason why G. arcuatus is less sensitive than G. salaris 

to the treatment with bronopol may be explained by the fact that its host, Gasterosteus 

aculeatus aculeatus, is able to adapt to a wide range of environmental conditions, and so 

its parasites. This behaviour has also been observed in Gyrodactylus salinae Paladini, 

Huyse et Shinn, 2011, which can survive on its host, Aphanius fasciatus (Valenciennes), 

despite massive changes of water temperature and salinity (Paladini et al., 2011b). Another 

explanation could be that the water conditions under which the study was carried out were 

different in the two trials, although both parasite species, G. arcuatus and G. salaris, were 

tested keeping the same water temperature of the environment where they were collected 

from, in order to reduce at minimum the stress. The tolerance of its host to changes in 

environmental conditions may explain the higher doses needed to kill G. arcuatus. If the 

responses of G. arcuatus are correct, then this species it may serve as a useful species in 

the future for the evaluation of other anti-parasitic and anti-monogenean treatments. It is 

important to stress that the current study using bronopol, at this stage, must be considered 

as exploratory only, rather than a study that set out to define concentrations to 

subsequently deploy in a river. 

Tannic acid has never been employed in aquaculture to control parasitic infections 

and this is the first time that this has been evaluated in the current pilot study. No statistical 

analyses were conducted because larger datasets are required for a robust interpretation and 
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conclusion as to the efficacy of this compound. The study does suggest, however, that low 

doses do produce high percentage kills in relatively short periods of time, a feature perhaps 

imparted by its multiple phenyl groups (Figure 7.3) which are known to participate in the 

protein precipitation process. Further work, however, is needed to see whether these results 

can be repeated using larger numbers of specimens, and whether it is as effective as 

rotenone at equal or lower doses to those used when continuously deployed over longer 

time periods (i.e. up to 10 days as it is used for aluminium sulfate). Any future trials, 

however, must be supported by toxicity trials on a range of fish species and other indicator 

species such as Daphnia to begin to have a clearer understanding of what sort of impact 

these chemicals might have on biodiversity and species composition in rivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. The molecular structure of tannic acid (C76H52O46), a plant polyphenol. Its precise formulation 

varies depending on the plant source it is extract from, but its multiple phenyl groups (C6H5) attached to the 

hydroxyl groups (OH) may explain its ability to kill Gyrodactylus at low doses [image taken from Wikipedia; 

http://en.wikipedia.org/wiki/File:Tannic_acid.svg]. 
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Chapter 8 

 

Summary of findings and general discussion 

 

 

Scanning electron micrographs (SEMs) of (A) Gyrodactylus orecchiae Paladini, Cable, Fioravanti, Faria, Di 

Cave et Shinn, 2009, (B) Gyrodactylus arcuatus Bychowsky, 1933 and (C) Gyrodactylus salaris Malmberg, 

1957 [original images]. 
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8.1. General discussion 

The main objective of this research project was to investigate several lines of 

research surrounding Gyrodactylus salaris Malmberg, 1957 in order to provide a better 

understanding of the risks that this species poses to British salmonid stocks, and to 

determine the accuracy of assumptions dictating current practices, e.g. surveillance of wild 

salmonid stocks, estimates of the probability of detecting G. salaris in any given sample, 

and the related topic of national contingency planning. The most important objective was 

to determine the susceptibility of English and Welsh salmonids to Gyrodactylus salaris by 

conducting a series of infection trials, following the infection dynamics on individual fish 

to see if the trajectories and duration were similar to those seen on their Scandinavian 

counterparts. Current surveillance in the UK focuses on Atlantic salmon and rainbow trout. 

The role of brown trout and grayling thus need determining and this will be discussed later 

in this chapter. 

 This closing discussion chapter, however, will take a chronological walk through 

the PhD, discussing the order in which each study was conducted rather than the final order 

they are presented in this thesis. 

  

8.1.1. Sampling of Italian salmonids for Gyrodactylus material 

As the PhD was starting, it was necessary to become familiar with the biology, 

systematics and morphology of Gyrodactylus. A trip to Italy in the first months of the 

study was used to access a large number of rainbow trout, Oncorhynchus mykiss 

(Walbaum), samples that had been collected from fish farms throughout four regions of 

Italy in 2005 (see Chapter 2; Paladini et al., 2009a). Although gyrodactylosis represents a 

common and economically significant parasitic disease of rainbow trout farmed in Italy 

(Fioravanti & Caffara, 2007), a study of the Gyrodactylus species was lacking. Only a 

single species, Gyrodactylus derjavinoides Malmberg, Collins, Cunningham et Jalali, 2007 
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(reported as Gyrodactylus derjavini Mikhailov, 1975 prior to its later reclassification), was 

already known from Italian brown trout and rainbow trout (Malmberg, 1993). Mucus 

scrapes taken from a sample of 10–40 cm rainbow trout taken at each site subsequently 

resulted in the discovery of four known species of Gyrodactylus, including the OIE-

notifiable pathogen, G. salaris. This was the first record of G. salaris from Italy and the 

Italian authorities were duly informed via OIE. The other three species were G. 

derjavinoides, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999 

and Gyrodactylus truttae Gläser, 1974, which were the same four species previously 

reported from rainbow trout in Denmark (Buchmann & Bresciani, 1997; Lindenstrøm et 

al., 1999; Buchmann et al., 2000; Nielsen & Buchmann, 2001; Lindenstrøm et al., 2003). 

The subsequent examination of archive material, fixed in formalin, from a rainbow trout 

farm in Veneto region dating back to 2000 also revealed the presence of G. salaris, 

suggesting that this species has been present in Italy, undetected, for many years. The 

unobserved presence of G. salaris prior to the first official report (Paladini et al., 2009) 

may be due to three potential hypotheses: 1) a stable host-parasite relationship is 

established; 2) G. salaris was found in a fish farm, where fish are usually treated 

intensively, controlling therefore the infection; and 3) it is a non-pathogenic form of G. 

salaris. This finding highlights the need for more rigorous biosecurity control measures in 

the trade and transfer of salmonid stocks from one country to another. Given the Italian 

history of imported rainbow trout from Denmark and Spain, it is likely that G. salaris has 

been introduced via rainbow trout trade from Denmark, rather than a transfer from local 

indigenous fish species. Further evidence to support this hypothesis is provided from a 

molecular analysis of the specimens, which revealed the G. salaris to be haplotype F, 

together with the discovery of a new haplotype from River Nera (haplotype named here as 

“Sal Nera”). Haplotype F is commonly found on rainbow trout from Denmark, among 
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other countries (Hansen et al., 2003), and this therefore suggests that G. salaris in Italy 

may have been introduced from Denmark. 

 

8.1.2. Geographic distribution of G. salaris throughout Europe   

The last review of the G. salaris distribution across Europe was made in 2007 

(Bakke et al., 2007) in which G. salaris was reported as valid from 8 EU countries. The 

publication of the first record of G. salaris from Poland (Rokicka et al., 2007) prior to the 

start of this PhD, plus the new finding of G. salaris in Italy, suggested that the distribution 

of G. salaris across Europe required updating. A thorough search of the literature, much of 

it not in English, indicates that G. salaris has been reported from 23 out of ~50 recognised 

European states (see Chapter 3). Of these, the reports from only 17 countries are 

considered valid, as they have been identified by either morphology (n = 4), molecular (n = 

3) or a combination of both techniques (n = 10; Table 3.1 in Chapter 3). The records of G. 

salaris from France, Portugal, Spain and Slovakia, are all believed to have been 

misidentified, the first three with a morphologically similar species, i.e. G. teuchis, which 

was subsequently described from France (see Lautraite et al., 1999), while the record from 

Slovakia might represent a confusion with G. truttae. In order to provide an additional 

contribution to this study, re-evaluation of existing specimens and the collection of new 

Gyrodactylus material from salmonids from five states, i.e. Finland, Germany, Italy, 

Portugal and Spain were made. Finland was already listed as a G. salaris-positive country; 

Germany was reported as being G. salaris-positive; however, there were some personal 

concerns regarding the validity of this record. The G. salaris status of Portugal and Spain 

is assumed to have been based on misidentifications and we believe the parasite is absent 

from both these territories. The specimens collected from rainbow trout from Germany and 

Italy were both confirmed as G. salaris. Additional material from Italy was used to extend 

the current distribution in the country from 4 to 7 regions, suggesting that this species is 
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widely spread throughout the country (Paladini et al., 2009a; Paladini et al., 2010b). The 

additional specimens obtained from Spain and Portugal, however, consisted of a single 

species only, G. teuchis, lending further support to the hypothesis that G. salaris is absent 

from both states. 

The finding of a new G. salaris haplotype (“Sal Nera”) on Italian rainbow trout 

(see Chapter 2; Paladini et al., 2009a) highlights the wide haplotype diversity that exists 

for G. salaris and raises further questions regarding the pathogenicity of this strain to other 

salmonids. Knowledge of differences in disease patterns by haplotype differentiation 

would help in discriminating the pathogenic strains from the non-pathogenic strains, and 

would hopefully allow for a clearer understanding of the risks of importing certain 

salmonids between areas in Europe. The majority of studies that have looked at the 

susceptibility of several salmonids to G. salaris have used haplotype F, originating from 

the Rivers Drammenselva, Lierelva and Lærdalselva, whilst only a few other experimental 

challenges have been carried out using haplotype A, collected from the Rivers Figga, 

Batnfjordselva, Steinkjerselva and Rauma (see Table 6.2). The identification of haplotype 

A originating from the Norwegian Rivers Steinkjerselva (see Bakke et al., 2002) and Figga 

(see Bakke & MacKenzie, 1993; Bakke et al., 2004), however, is only tentatively proposed 

based on their geographic location and their relative proximity to defined strains, according 

to the map that is presented in Hansen et al. (2003). It is important to stress that G. salaris 

haplotype A was used in the current study (see Chapter 6) to challenge English and Welsh 

salmonids. The same haplotype was also used by Bakke and MacKenzie (1993) in their 

study, which assessed the susceptibility of Scottish populations of Atlantic salmon from 

the Rivers Conon and Shin to G. salaris. Two subsequent studies were carried out by 

Dalgaard et al. (2003, 2004) on the same two Scottish salmon populations using haplotype 

F originating from the River Lærdalselva, and were able to show that these populations 

were equally as susceptible to this haplotype as they were to haplotype A, although not 
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pointed out. Difference in haplotype pathogenicity, however, has never been tested 

consciously and no studies have been conducted since the discovery of different haplotype 

strains by Hansen et al. (2003). 

 

8.1.3. Taxonomic description of Gyrodactylus species 

To correctly identify G. salaris, a comprehensive understanding of gyrodactylid 

taxonomy and proficiency in discriminating species was required during the current study. 

Considering that the genus Gyrodactylus contains a large number of species (~450), part of 

the PhD training required that specimens of Gyrodactylus coming through the Aquatic 

Parasitology Laboratory within the Institute of Aquaculture could be accurately identified. 

Some of the material submitted was associated with the mortality of aquaculture stocks, 

and so this material was of particular interest in terms of determining which species were 

responsible and under what conditions they were causing problems. As a consequence of 

investigating this material, eight new species of Gyrodactylus and two new genera of 

Monogenea were subsequently described and published. Only three of these studies are 

presented in this thesis as they fall within the remit of the PhD framework; the others are 

detailed in the Appendix at the back of this thesis. 

Gyrodactylus orecchiae Paladini, Cable, Fioravanti, Faria, Di Cave et Shinn, 2009 

is the first species of this genus to be officially described from gilthead seabream, Sparus 

aurata L., farms in Croatia and Albania, where it was responsible for the loss of up to 10% 

of the juvenile fish stocks (see Chapter 4; Paladini et al., 2009b). Identification was 

performed using both morphological and molecular analyses. Subsequently, additional 

samples of gilthead seabream, but this time from Bosnia-Herzegovina and Italy, revealed a 

second new species, Gyrodactylus longipes Paladini, Hansen, Fioravanti et Shinn, 2011 

(see Chapter 4; Paladini et al., 2011a). The gilthead seabream from the Italian site, 

however, carried a mixed infection of both new species, with G. longipes being found 
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principally on the gills, whilst G. orecchiae was found on the skin. Following the 

description of G. longipes, unconfirmed farm reports from the same Italian site where the 

co-infection was recorded suggest that a 5–10% mortality of juveniles gilthead seabream 

was associated with a Gyrodactylus infection, suspected to be G. longipes. A subsequent 

sample of skin and fins mucus scrape from gilthead seabream collected from the north of 

France (undisclosed location) revealed the presence of G. longipes, extending further the 

geographical distribution of this species across Europe.  

The discovery of these two new species of Gyrodactylus in such a short time was 

surprising, given that gilthead seabream culture is well established in the Mediterranean 

and that samples had been screened by the Laboratory of Fish Pathology of the University 

of Bologna, Italy, among other diagnostic laboratories, for many years, but a Gyrodactylus 

infection had never been seen before. Possible explanations for their appearance and 

impact in the Mediterranean include local climatic changes, imposing additional stresses 

on aquaculture stock and the possible migration of fish species carrying the parasite into 

the area from which the parasite transferred onto a more susceptible host, i.e. gilthead 

seabream.  

Over 430 species of Gyrodactylus have been described so far, but only about 20% 

of these have been sequenced, principally their 18S small ribosomal internal transcribed 

spacer units (ITS 1 & 2). The growing number of species descriptions allows researchers to 

have a larger picture of the phylogenetic relationships between species. Earlier this year, a 

new species, Gyrodactylus chileani Ziętara, Lebedeva, Muñoz et Lumme, 2012 described 

from Helcogrammoides chilensis (Cancino) was published. A molecular evaluation of this 

species found that it clustered with G. orecchiae and an undescribed species from black 

goby, Gobius niger L., from the North Sea. A new lineage group called “the Gyrodactylus 

orecchiae lineage” was created, which extends from the Mediterranean and the North Sea 

to the South-Eastern Pacific, where G. chileani was collected from (Ziętara et al., 2012). 
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While G. orecchiae clusters with other marine species, the geographical area that these 

three species cover is enormous and ideally more marine species within this area are 

required before more detailed comments regarding their inter-relationships and the possible 

origins of G. orecchiae can be made.  

The description of G. longipes from Italy and Bosnia-Herzegovina represents the 

seventh and first marine species of Gyrodactylus respectively to be reported from each 

country.  

Sequences of the internal transcribed spacer regions (ITS1 and 2) have been widely 

used as species-specific reference sequences (barcodes) in the genus Gyrodactylus. To 

date, more than 100 Gyrodactylus species have been sequenced, and partial or complete 

ITS1 and 2 sequences are available in GenBank. This marker seems to match well to 

morphological markers, i.e. morphologically different species can be separated by the 

corresponding different ITS sequences. The discrimination of G. longipes from G. 

orecchiae can be easily obtained by morphological analyses, but also by comparing their 

ITS sequences, where the fragments containing ITS1 and 2 and the 5.8S of G. longipes are 

1002 bp and those of G. orecchiae are 1074 bp (see Chapter 4; Paladini et al., 2011a). 

While identifications of Gyrodactylus species based only on morphological studies are 

assumed to be correct, absolute confidence can only be attributed to those descriptions 

where the morphology is supported by molecular characterisation.  

Gilthead seabream that are heavily infected with G. orecchiae (1000+ 

gyrodactylids fish
-1

) associated with the mortality of juvenile stocks raises concerns 

regarding the potential pathogenicity that this species may have in the gilthead seabream 

industry throughout the Mediterranean. Gyrodactylus orecchiae is currently known from 

three countries within the Mediterranean (Albania, Croatia and Italy), but it is possible that 

its distribution may be wider than this. Given the impact this species has already had, it 

would be worth evaluating further samples from elsewhere in the Mediterranean and 
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monitoring this species carefully until more can be learnt about its host specificity and 

conditions underlying its pathogenicity. The same is also true for G. longipes, presently 

reported from three countries within the Mediterranean (Italy and Bosnia-Herzegovina) 

and the English Channel (France), which also appears to be associated with fish mortality 

(see Chapter 4; Paladini et al., 2011a).  

The new strain/isolate of Gyrodactylus salmonis (Yin et Sproston, 1948) described 

in Chapter 5 (Rubio-Godoy et al., 2012) is the first species of Gyrodactylus to be formally 

identified from Mexican populations of Oncorhynchus mykiss using a combination of 

morphological and molecular analyses. The intensity of infection of G. salmonis, at the 

time the samples were taken, was low and the infected fish did not show signs of damage, 

suggesting a stable host-parasite relationship. Gyrodactylus salmonis, however, is 

considered a threatening species as it is specifically highly pathogenic to brook trout, 

Salvelinus fontinalis (Mitchill), causing extensive fin damage as a consequence of the 

parasite’s feeding and hook attachment, which penetrates deep into its host’s epidermis 

(Cusack & Cone, 1986; Cone & Odense, 1984). 

Gyrodactylus salmonis is known to have a low host specificity and it has been 

recorded from several other salmonids, i.e. brown trout, Salmo trutta fario L. (see 

Malmberg, 1993), Atlantic salmon, Salmo salar L. (see Cone & Cusack, 1988; Malmberg, 

1993) and Salvelinus fontinalis (Mitchill) (see Cone & Cusack, 1988; Wells & Cone, 1990; 

Malmberg, 1993); as well as on native Mexican species, such as golden trout, 

Oncorhynchus aguabonita (Jordan) (see Cone et al., 1983), coho salmon Oncorhynchus 

kisutch (Walbaum) (see Cone et al., 1983) and Oncorhynchus clarkii clarkii (Richardson) 

(see Cone et al., 1983). This study represents the first report of Gyrodactylus salmonis 

from Mexican rainbow trout populations and the most reasonable explanation for its 

occurrence on this host is that the parasite was originally introduced with its translocated 
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fish host. It is not clear, however, whether rainbow trout acquired the parasite from other 

salmonids prior to its introduction or once in Mexico.  

This new Mexican isolate of G. salmonis has been confirmed by molecular 

analysis, although subtle morphological differences in the marginal hook shape allow for 

the G. salmonis from Mexico to be discriminated from those in the USA and Canada, 

where this species is normally distributed. The alignment of the partial 18S sequence from 

the Mexican isolate of G. salmonis with those determined by Gilmore et al. (unpublished 

results) from a Canadian G. salmonis confirmed that they were identical matches.  

Given that there is a general lack of suitability of using the 18S gene for 

discriminating certain Gyrodactylus species, and the 100% homology found across the ITS 

regions for these two populations of G. salmonis, the mitochondrial marker COI was also 

sequenced as a precautionary measure to provide further confidence in the results that were 

obtained. The COI showed a higher degree of variability when compared with the ITS 

region, but 1589 of the 1597 bases were identical with those of the American isolate of G. 

salmonis, i.e. 99.5% similar, confirming the identity of the Mexican isolate as G. salmonis  

(see Chapter 5; Rubio-Godoy et al., 2012). 

 

8.1.4. The susceptibility of English and Welsh salmonids to G. salaris 

To contribute to the British G. salaris contingency plans, one of the central issues 

in this study was to determine the relative susceptibilities of English and Welsh salmonid 

populations, in particular Atlantic salmon, brown trout and grayling, to G. salaris. 

Surveillance programmes in the UK, which are focused on the sampling of Atlantic salmon 

and monitoring of rainbow trout sites, have been based on the assumption that British 

salmonids would follow the same dynamics as their Scandinavian counterparts. While 

assessing the relative susceptibility and response of each population of salmonid to G. 

salaris, it was also important to consider which strain of G. salaris should be used. The 
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current study used G. salaris haplotype A, derived from the River Fusta in the Vefsna 

region of Norway, a strain which is commonly known to be pathogenic to Atlantic salmon 

as shown by a number of earlier studies (see Bakke & MacKenzie, 1993; Cable et al., 

2000; Bakke et al., 2002, 2004). The G. salaris infection of Welsh salmon from the River 

Dee followed the predicted projected infection trajectory for Atlantic salmon with parasites 

increasing exponentially until the burden of parasites on the fish were at a level where the 

experiment was terminated on health and welfare grounds (i.e. a mean intensity ~4000 

parasites fish
-1

 in only 40 days). The rate of parasite increase 17% d
-1

) on the River Dee 

salmon, however, was noticeably faster than that on the Norwegian control group of 

salmon (i.e. 5% d
-1

). The brown trout population from the English River Tyne and grayling 

from the English River Nidd, in contrast, were both able to respond to their G. salaris 

infection. Peak infections were reached on 12 days post-infection (p.i.) for brown trout and 

19 days p.i. for grayling; thereafter the number of parasites declined to near extinction over 

the remaining period of the trial which was terminated 110 days p.i. 

The findings from this study are potentially important and although they 

demonstrate that brown trout can manage to control an infection of G. salaris, they can 

harbour low parasite intensities for longer periods than those reported for Norwegian 

stocks, i.e. 110+ days as opposed to 50 days. Given these extended windows of infection, 

the interpretation of the term “resistance” needs to be clarified and considered wisely, in 

terms of the role that brown trout could play in the event of a G. salaris outbreak in the 

UK. Currently, the relevant fish inspectorates throughout the UK regularly monitor the 

health of fish at high profile Atlantic salmon sites and rainbow trout farms. Any specimens 

of Gyrodactylus found on these fish will be identified to ensure that they are not G. salaris. 

Other sites throughout the UK are sampled less regularly; however, the results from this 

study suggest that brown trout should be considered carefully during a suspected outbreak.  
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Gyrodactylus salaris has been experimentally demonstrated to colonise several 

salmonid hosts other than Atlantic salmon (see e.g. Bakke et al., 1991a; Bakke & Jansen, 

1991a, b; Bakke et al., 1992b, c; Bakke et al., 1996), but most of the records of G. salaris 

from across Europe are from rainbow trout (see Chapter 3), notably from countries where 

Atlantic salmon is not present, e.g. Italy. Given that the rainbow trout trade represents the 

largest risk in the dissemination of G. salaris between countries, this study suggests that it 

would be advisable, during a suspected outbreak, to ensure that brown trout sites, 

especially those in close proximity to rainbow trout farms are also carefully monitored. 

The potential role of brown trout in maintaining or spreading infections now needs 

consideration and to be factored into current management plans for containing or treating 

an infection, should it establish in the UK. 

 

8.1.5. Alternative compounds for the treatment of G. salaris 

The current cost of on-going surveillance programmes, river treatments and the 

impact on tourism from G. salaris in Norway is estimated to be about US$ 57M p.a. While 

farm-held stock can be readily treated using products such as formalin, infections in the 

wild represent a more challenging problem. The broad-spectrum biocide rotenone is widely 

used to eliminate parasites and hosts from infected rivers, which are consequentially either 

restocked with uninfected fish or allowed to repopulate by adult salmon returning to their 

native rivers to spawn. The environmental impact and loss of biodiversity through the use 

of rotenone though cannot be estimated. Although aluminium sulfate is now being trialled, 

which is given as a 10–14 day treatment to remove the parasite but not kill the salmon, the 

long-term impact that these sorts of treatments will have on the environment requires full 

evaluation. There is therefore a need for alternative compounds that are equally as effective 

but have minimal deleterious effects on the environment and non-target species. Much of 

the problem underlying the application of new compounds is linked to their licensing and 
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environmental impact. Many current studies of compounds are more academic in nature 

than directly practically applicable (see Brooker et al., 2011). Such studies, however, 

provide a better knowledge of whether certain classes of compound could be used to 

control Gyrodactylus infections.  

The current study set out to explore the potential utility of bronopol (Pyceze
TM

), a 

product that is licensed in the UK for use in the aquaculture industry for the control of the 

oomycete Saprolegnia parasitica infecting salmonid fish and eggs (Pottinger & Day, 1999; 

Branson, 2002; Aller-Gancedo & Fregeneda-Grandes, 2007). Its use as a potential 

treatment for whitespot, Ichthyophthirius multifiliis Fouquet, 1876 (see Picon-Camacho et 

al., 2012; Shinn et al., 2012c), and the causative agent of “velvet disease”, Amyloodinium 

ocellatum (Brown, 1931) Brown et Hovasse, 1946 (see Roberts-Thomson, 2007) has also 

been recently assessed. Although bronopol is a broad-spectrum disinfectant, it has not been 

tested on monogeneans before.  

The findings from the trials conducted in this study show that significant reductions 

in the G. salaris population, when tested in vitro, can be achieved within an hour (i.e. 1 

hour LC50 for G. salaris was ~384 ppm bronopol) although larger doses were required to 

effect the same percentage kill of Gyrodactylus arcuatus Bychowsky, 1933 a species 

commonly found on three-spined sticklebacks (i.e. 1 hour LC50 was ~810 ppm bronopol). 

Further work is now needed to test the efficacy of bronopol on infected hosts in vivo and to 

determine what concentrations are needed when deployed over longer periods (i.e. 10+ 

days) to obtain the same level of treatment as that achieved through the use of aluminium 

sulfate.  

The greater sensitivity displayed by G. salaris is interesting and suggests that G. 

arcuatus, a species which is readily available in the UK, may serve as an appropriate 

laboratory model given that live cultures of G. salaris are not permitted in the UK. 

Likewise, the pilot trials conducted with tannic acid appear to show some promise and 
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these ideally now need repeating on larger numbers of specimens, by testing on G. 

arcuatus, and by exploring a number of delivery regimes to reduce the amount of chemical 

needed to control infections. Nevertheless, tannic acid, a naturally occurring polyphenolic 

compound derived from the breakdown of plant material is worthy of further study as a 

potentially efficacious compound for controlling Gyrodactylus infections, and more 

extensive testing, as detailed for bronopol, is needed. While these compounds do show 

some promise, their study in this PhD does not advocate their use in rivers, but hopefully 

this study does begin to provide more data on “other alternative compounds for 

consideration”. 

 

8.2. Future work 

 

8.2.1. Investigating the presence of Gyrodactylus salaris in other European countries 

The current distribution of G. salaris within Europe highlights the potential role of 

trading fish species in the spreading of this notifiable pathogen through countries. The G. 

salaris status in many European countries, however, remains unknown and the assessment 

of gyrodactylid material collected from these countries would help in determining the 

actual geographical distribution range of G. salaris. In each case, a combination of 

morphological and molecular methods, as recommended by OIE, should be used to 

confirm the identity of specimens and to remove any potential doubt regarding their 

confusion with morphologically similar species such as G. thymalli or G. teuchis. 

 

8.2.2. Pathogenicity of Gyrodactylus strains 

The difference in pathogenicity of G. salaris mitochondrial haplotypes has never 

been tested. While it was hoped that there might be an opportunity to compare haplotypes 

A and F on the same hosts in this study, sufficient parasite material to conduct the trial was 
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unavailable. A study investigating the potential variable pathogenicities resulting from 

infection by different haplotypes on the same host would be informative regarding the 

potential risk that translocated haplotype strains might have on naïve populations. Much of 

our current understanding results from assessing the susceptibility of different salmonids to 

a single haplotype (i.e. F, see Table 6.2 in Chapter 6). As detailed in the introduction of 

this thesis, a total of 15 G. salaris haplotypes have been identified using COI analysis 

(Hansen et al., 2003; Meinilä et al., 2004; Kuusela et al., 2005; Hansen et al., 2007a, b; 

Robertsen et al., 2007; Paladini et al., 2009a); other strains may also exist and the 

pathogenicity that each of these causes to Atlantic salmon and other hosts should be 

evaluated. Likewise, the discovery of two new, potentially pathogenic, species of 

Gyrodactylus from gilthead seabream within the Mediterranean urgently requires 

evaluation to have a full appreciation of the risk they pose to aquaculture and wild stocks. 

At this time, it is not known whether gilthead sea bream is the principal host to these 

species or whether they originate from another economically important marine host species 

that is frequently farmed alongside gilthead seabream, i.e. European seabass, 

Dicentrarchus labrax (L.), or other sparids such as sharpsnout seabream, Diplodus 

puntazzo (Walbaum). The pathogenic potential of these two new Gyrodactylus species on 

these other hosts also requires establishing. 

 

8.2.3. Treatment development 

The results from the two treatment compounds that were trialled in this study 

appear encouraging and are worthy of further investigation. Further trials should not only 

employ larger numbers of specimens, and assess their effect on infected hosts, but also 

examine the mechanism of treatment delivery. Aluminium sulfate is currently deployed at 

low concentrations, <100 ppb Al2(SO4)3, over a period of 10–14 days. Similar or better 

results may be produced using the current compounds; however, factors such as their 
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toxicity on the host, cost, impact on the environment and non-target species, and half-life 

require establishing. 

 

8.2.4. Transcriptomics 

In Chapter 6, the susceptibility of different salmonids to G. salaris was investigated. 

Understanding the mechanisms of host resistance to infection during the infection cycle is 

clearly of interest, since it may inform the development of techniques to help protect 

susceptible species. Broad-scale transcriptomic analysis techniques provide tools that could 

help dissect the mechanisms of host-pathogen interaction and of the host’s defences against 

infection. The two major technologies that could be used to investigate this are oligo-

microarray and RNA-seq, the latter of which uses high-throughput sequencing. The first 

steps in this direction have already been carried out as part of the current work and the 

results are being analysed and will be reported on in the near future. 
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Scanning electron micrograph (SEM) of the marginal hooks of Gyrodactylus salaris Malmberg, 1957 

penetrating the skin of Atlantic salmon, Salmo salar L. [original image] 
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