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ABSTRACT 

Agrobacterium tumefaciens has been adopted to become a greatest tool for plant genetic engineering. Since 

Agrobacteria predominantly integrate single copy of the transgene into the nuclear genome, the transgene 

expression is relatively low. In contrast, transgene expression from chloroplasts allows high expression. 

Therefore, my first objective was to develop a new method of chloroplast transformation by modifying 

Agrobacterium genetics. I attempted to transform tobacco chloroplasts by Agrobacterium carrying the 

VirD2 protein with inactivated nuclear localization signals (NLSs) fused to a chloroplast transit peptide. 

However, the transformation of tobacco chloroplasts was unsuccessful. It suggested that the transit peptide 

was overridden by a novel cryptic NLS of VirD2. My second objective was to determine a novel NLS in 

VirD2. I discovered the novel NLS in VirD2 by subcellular localization analyses of fusion proteins 

(fragment of VirD2-green fluorescent protein) in plant cells. My discovery contributed to characterization 

of VirD2. 



v 
 

ACKNOWLEDGEMENTS 

 I am truly grateful for what I have experienced under the supervision of Dr. Alicja Ziemienowicz 

and Dr. Igor Kovalchuk. I cannot describe how much I appreciate their support other than saying thank you. 

Thank you for giving me the opportunity to be your student. Thank you for all your time, effort, guidance 

and support in pushing me forward to complete my program. Thank you for being fantastic supervisors.  

I would like to thank my committee members Dr. François Eudes and Dr. Jim Thomas for their 

advice and support. I always felt their sincere kindness and enthusiasm towards my success.   

I sincerely appreciate Dr. Pal Maliga for agreeing to be my external examiner. Because of you, I 

had a chance to present my research at the Plant Transformation Technologies III conference in Vienna in 

2014. Thank you for giving me the amazing opportunity. I would like to thank Dr. Stewart Rood for being 

my internal examiner. I hope my research is interesting to you. I would like to thank Dr. Theresa Burg for 

being the chair of my thesis defence. I hope I entertained you during my defence. I am truly thankful to Dr. 

Henry Daniell at the University of Pennsylvania, Philadelphia for providing me with the chloroplast 

transformation vector. Your kind gift led my project to a new direction. I am also gratefully thankful to Dr. 

Jonathan Monroe at James Madison University, Virginia, for providing me with the binary vectors. I was 

able to identify a novel NLS in VirD2 because of your kind, caring gift. 

I would like to thank all past and present people at both Kovalchuks’ labs for helpful discussions 

and technical assistance, including Dr. Andrey Golubov for his suggestion on the transit peptides, and Nina, 

Rommy and Vladimir for their green thumbs. Special thanks to Dr. Andriy Bilichak for our discussions 

which helped me to connect the dots in my head. I would like to thank Valentina Titova for correcting my 

thesis. I would like to thank Neema, Dr. Elizabeth Schultz and Doug Bray for assistance and suggestions 

with confocal microscopy. 

I would like to thank the University of Lethbridge and the Alberta Innovates Technology Futures 

for the financial support, and the University Library for letting me work throughout my undergraduate and 

graduate programs.  

Finally, I would like to thank everyone I met in Lethbridge including people on campus and off. I 

am so fortunate I met such amazing people. They are treasures in my life. Thank you all for being you.  



vi 
 

Table of Contents 

  

Thesis Exam Committee Members .............................................................................................................. ii 

Dedication ..................................................................................................................................................... iii 

Abstract ......................................................................................................................................................... iv 

Acknowledgements ........................................................................................................................................ v  

Table of Contents .......................................................................................................................................... vi 

List of Tables .................................................................................................................................................. x 

List of Figures ............................................................................................................................................... xi 

List of Abbreviations .................................................................................................................................. xiv 

 
Chapter 1: Introduction ................................................................................................................................ 1 

1.1. Agrobacterium-mediated plant transformation .................................................................................... 1 

1.1.1. Transformation overview .............................................................................................................. 1 

1.1.2. Vir proteins ................................................................................................................................... 3 

1.1.2.1. Sensory units: VirA and VirG .............................................................................................. 3 

1.1.2.2. Type IV secretion system: VirB1-11 and VirD4 .................................................................. 4 

1.1.2.3. Overdrive binding proteins: VirC1 and VirC2 ..................................................................... 5 

1.1.2.4. Relaxosome: VirD1 and VirD2 ............................................................................................ 6 

1.1.2.5. Single stranded DNA binding protein: VirE2 and VirE1 ..................................................... 7 

1.1.2.6. Adaptor and putative transcription activator ........................................................................ 8 

1.1.2.7. F-box effector: VirF ............................................................................................................. 8 
1.1.2.8. Translocated effector: VirD5................................................................................................ 8 

1.1.3. Development of an efficient transformation method: Binary vector systems ............................... 9 

1.1.4. Challenges and improvements of Agrobacterium-mediated plant transformation ..................... 10 

1.1.4.1. Expansion of the host range ............................................................................................... 10 
1.1.4.2. Improvement of transformation efficiency ......................................................................... 11 
1.1.4.3. T-DNA integration at the precise genomic location ........................................................... 13 

1.2. Chloroplast/plastid transformation ..................................................................................................... 14 

1.2.1. Benefit of chloroplast/plastid transformation ............................................................................. 14 

1.2.2. Chloroplast/plastid transformation vectors ................................................................................. 15 

1.2.3. Chloroplast/plastid transformation methods ............................................................................... 16 

1.2.4. Growing research interest in chloroplast/plastid transformation ................................................ 17 

1.2.5. Challenges of chloroplast/plastid transformation  ....................................................................... 18 

1.3. Intracellular protein trafficking .......................................................................................................... 18 

1.3.1. Nuclear import  ............................................................................................................................ 18 

1.3.2. Chloroplast protein import .......................................................................................................... 20 

1.4. Agrobacterium VirD2 protein ............................................................................................................ 22 

1.4.1. Discovery of the virD2 gene ....................................................................................................... 23 

1.4.2. Domains and signal sequences in VirD2 .................................................................................... 24 

1.4.2.1. Relaxase domain ................................................................................................................ 24 

1.4.2.2. Nuclear localization signals (NLSs) ................................................................................... 25 

1.4.2.3. Omega domain ................................................................................................................... 26 

1.4.3. Plant proteins that interact with VirD2 ....................................................................................... 27 

1.4.3.1. Cytoplasmic proteins .......................................................................................................... 28 

1.4.3.1.1. Cyclophilins ...................................................................................................... 28 

1.4.3.1.2. Caspases ............................................................................................................ 29 

1.4.3.2. Cytoplasmic-nuclear proteins ............................................................................................. 30 

1.4.3.2.1. Phosphatase ....................................................................................................... 30 

1.4.3.2.2. Importin proteins ............................................................................................... 31 

1.4.3.3. Nuclear proteins ................................................................................................................. 32 

1.4.3.3.1. Cyclin-dependent kinase activating kinases and TATA box-binding protein ... 32 

1.4.3.3.2. Histones ............................................................................................................ 33 

1.5. Objectives .......................................................................................................................................... 33 

 

 



vii 
 

Chapter 2: Modification of Agrobacterium VirD2 Protein for Chloroplast Transformation ............... 35 

2.1. Abstract .............................................................................................................................................. 36 

2.2. Introduction ........................................................................................................................................ 37 

2.3. Materials and Methods ....................................................................................................................... 43 

2.3.1. Construction of TP-mVirD2 vectors ........................................................................................... 43 

2.3.1.1. Modifications of VirD2 NLSs to generate mVirD2 ........................................................... 43 

2.3.1.2. Construction of TP-mVirD2 ............................................................................................... 43 

2.3.2. VirD2 and TP-mVirD2 cleavage activity assay .......................................................................... 44 

2.3.2.1. Construction of expression vectors .................................................................................... 44 

2.3.2.2. The determination of optimal conditions for the overproduction of recombinant proteins 45 

2.3.2.3. Overproduction and purification of wild type VirD2 ......................................................... 46 

2.3.2.4. Overproduction of RbcS-TP-mVirD2-58 ........................................................................... 47 

2.3.2.5. Cleavage activity assay ...................................................................................................... 48 

2.3.3. Agrobacterium-mediated chloroplast transformation by tobacco leaf incision .......................... 49 

2.3.3.1. The binary vector system for Agrobacterium-mediated plant transformation.................... 49 

2.3.3.1.1. Construction of pAVD plasmids carrying TP-mvirD2 ...................................... 49 

2.3.3.1.2. Generation of Agrobacterium carrying helper plasmids containing  

TP-mvirD2 .......................................................................................................... 49 

2.3.3.1.3. Construction of a binary vector carrying the chloroplast expression cassette ... 50 

2.3.3.2. Growth conditions of Nicotiana tabacum plants ................................................................ 50 

2.3.3.3. Agrobacterium-mediated chloroplast transformation by tobacco leaf incision .................. 51 

2.3.3.3.1. The first trial ..................................................................................................... 52 

2.3.3.3.2. The second trial ................................................................................................. 52 

2.3.3.3.3. Transgene detection by PCR ............................................................................. 52 
2.4. Results ................................................................................................................................................ 57 

2.4.1. Construction of TP-mVirD2 vectors ........................................................................................... 57 

2.4.2. Overproduction of VirD2 and TP-mVirD2 ................................................................................. 61 

2.4.3. Cleavage activity analyses of VirD2 and RbcS-TP-mVirD2-58 ................................................ 67 

2.4.4. The generation of Agrobacterium strains for chloroplast transformation ................................... 70 

2.4.4.1. The binary vector system for Agrobacterium-mediated chloroplast transformation  ......... 70 

2.4.4.1.1. The generation of Agrobacterium carrying a helper plasmid, pPM6000AM  

containing TP-mvirD2 ........................................................................................ 70 

2.4.4.1.2. Construction of a binary vector carrying the chloroplast expression cassette ... 71 

2.4.5. Agrobacterium-mediated chloroplast transformation ................................................................. 72 

2.4.5.1. The first trial ....................................................................................................................... 72 

2.4.5.2. The second trial .................................................................................................................. 72 

2.5. Discussion .......................................................................................................................................... 76 

2.5.1. Recombinant protein analysis on SDS-PAGE ............................................................................ 76 

2.5.2. Cleavage activity ........................................................................................................................ 77 

2.5.3. Chloroplast transformation  ........................................................................................................ 78 

 
Chapter 3: Discovery of a Novel Nuclear Localization Signal in Agrobacterium VirD2 Protein .......... 84 

3.1. Abstract .............................................................................................................................................. 85 

3.2. Introduction ........................................................................................................................................ 86 

3.3. Materials and Methods ....................................................................................................................... 91 

3.3.1. Construction of pEZT-NL derivatives ........................................................................................ 91 

3.3.1.1. Construction of pEZT-NL-DCL-TP and pEZT-NL-RbcS-TP ........................................... 91 

3.3.1.2. Construction of pEZT-NL-DCL-TP-mVirD2-58 and pEZT-NL-RbcS-TP-mVirD2-58,  

pEZT-NL-DCL-TP-mVirD2-80 and pEZT-NL-RbcS-TP-mVirD2-80 ............................ 91 

3.3.1.3. Construction of pEZT-NL-VirD2, pEZT-NL-mVirD2-58 and pEZT-NL-mVirD2-80 ..... 92 

3.3.1.4. Construction of pEZT-NL carrying the partial virD2 or mvirD2 gene encoding the  

N-terminal region of VirD2 or mVirD2 ............................................................................ 93 

3.3.1.4.1. Construction of pEZT-NL-VirD2-N1/2 and pEZT-NL-mVirD2-58/80-N1/2 .. 93 

3.3.1.4.2. Construction of pEZT-NL-VirD2-N1/3 and pEZT-NL-mVirD2-58/80-N1/3 .. 93 

 

 



viii 
 

3.3.1.5. Construction of pEZT-NL carrying the partial virD2 or mvirD2 gene encoding the  

C-terminal region of VirD2 or mVirD2 ............................................................................ 94 

3.3.1.5.1. Construction of pEZT-NL-VirD2-C1/2, pEZT-NL-mVirD2-58-C1/2 and  

pEZT-NL-mVirD2-80-C1/2 ............................................................................... 94 

3.3.1.5.2. Construction of pEZT-NL-VirD2-C1/3, pEZT-NL-mVirD2-58-C1/3,  

pEZT-NL-mVirD2-80-C1/3 and pEZT-NL-mVirD2-80-C1/3-EGFPx2 ............ 94 

3.3.1.5.3. Construction of pEZT-NL-VirD2-C1/3ΔNLS3, pEZT-NL-mVirD2-80- 

C1/3ΔNLS3 and pEZT-NL-mVirD2-80-C1/3ΔNLS3-EGFPx2 ......................... 95 

3.3.1.6. Construction of pEZT-NL-VirD2-M1/3 carrying the central region of the virD2 gene ..... 95 
3.3.1.7. Construction of pEZT-NL-NLS3 derivatives: pEZT-NL-NLS3, pEZT-NL-NLS3-EGFPx2  

and pEZT-NL-EGFPx3 ..................................................................................................... 96 

3.3.1.8. Construction of pEZT-NL-78bp from pCAMBIA1302 derivatives: pEZT-NL-78bp,  

pEZT-NL-78bp-EGFPx2 and pEZT-NL-78bp-EGFPx3  ................................................. 97 

3.3.2. Protein analyses using the online software ................................................................................. 97 

3.3.2.1. Identification of a novel NLS (NLS3) ................................................................................ 97 

3.3.2.2. Protein size prediction ........................................................................................................ 97 

3.3.2.3. Sequence alignment............................................................................................................ 98 

3.3.3. Growth conditions of plants ........................................................................................................ 98 

3.3.3.1. The growth condition of Arabidopsis thaliana .................................................................. 98 

3.3.3.2. The growth condition of Nicotiana benthamiana............................................................... 98 

3.3.4. Agrobacterium-mediated plant transformation ........................................................................... 98 

3.3.4.1. Stable transformation of Arabidopsis by the Agrobacterium-mediated floral dip method . 98 

3.3.4.2. Selection of transgenic Arabidopsis by glufosinate ammonium ........................................ 99 

3.3.4.3. DAPI staining of transgenic Arabidopsis seedlings ........................................................... 99 

3.3.4.4. Transient transformation of tobacco leaves by the Agrobacterium-infiltration method ... 100 

3.3.4.5. DAPI staining of infiltrated tobacco leaves ...................................................................... 100 

3.3.4.6. Confocal laser scanning microscopy ................................................................................ 100 

3.4. Results .............................................................................................................................................. 104 

3.4.1. Construction of pEZT-NL derivatives containing the DCL-TP, RbcS-TP, virD2, mvirD2,  

a partial virD2 or partial mvirD2 genes ......................................................................................... 104 

3.4.2. Confocal microscopy of untransformed leaves of Arabidopsis and tobacco leaves ................. 110 

3.4.3. Subcellular localization of the recombinant proteins in leaves in the stably transformed  

Arabidopsis  

plants and the transiently transformed tobacco leaves ............................................................. 112 

3.4.3.1. Subcellular localization of DCL-TP-EGFP and RbcS-TP-EGFP in Arabidopsis and  

tobacco leaves ................................................................................................................. 112 

3.4.3.2. Subcellular localization of DCL-TP-mVirD2-58-EGFP, RbcS-TP-mVirD2-58-EGFP,  

DCL-TP-mVirD2-80-EGFP and RbcS-TP-mVirD2-80 in Arabidopsis and tobacco  

leaves .............................................................................................................................. 115 

3.4.3.3. Subcellular localization of VirD2-EGFP, mVirD2-58-EGFP and VirD2-80-EGFP in 

Arabidopsis and tobacco leaves ...................................................................................... 122 

3.4.4. Subcellular localization of fusion proteins carrying the N-terminal parts of VirD2 and mVirD2 

in stably transformed Arabidopsis and transiently transformed tobacco leaves ............................ 125 

3.4.4.1. Subcellular localization of VirD2-N1/2-EGFP, mVirD2-58/80-N1/2-EGFP, VirD2-N1/3- 

EGFP and mVirD2-58/80-N1/3-EGFP in Arabidopsis and tobacco leaves .................... 125 

3.4.5. Subcellular localization of the fusion proteins carrying the central region of VirD2 in stably  

transformed Arabidopsis and transiently transformed tobacco leaves .......................................... 131 

3.4.6. Subcellular localization of the C-terminal parts of VirD2 and mVirD2-EGFP in stably  

transformed Arabidopsis and/or transiently transformed tobacco leaves ...................................... 131 

3.4.6.1. Subcellular localization of VirD2-C1/2, mVirD2-58-C1/2, mVirD2-80-C1/2, VirD2-C1/3,  

mVirD2-58-C1/3, mVirD2-80-C1/3 and mVirD2-80-C1/3-EGFPx2 in Arabidopsis and  

tobacco leaves ................................................................................................................. 131 

3.4.6.2. Subcellular localization of VirD2-C1/3ΔNLS3-EGFP, mVirD2-58-C1/3ΔNLS3-EGFP and  

mVirD2-80-C1/3ΔNLS3-EGFP in tobacco leaves ......................................................... 140 

3.4.7. Subcellular localization of NLS3-EGFP and 26aa-EGFP in tobacco leaves ............................ 146 

 



ix 
 

3.5. Discussion ........................................................................................................................................ 153 

3.5.1. Chloroplast targeting by DCL-TP and RbcS-TP ...................................................................... 153 

3.5.2. Chloroplast/nuclear targeting of TP-mVirD2 ........................................................................... 154 

3.5.3. Lack of expression of full-length VirD2 and the central part of VirD2 in Arabidopsis or  

tobacco .......................................................................................................................................... 155 

3.5.4. Nuclear targeting of mVirD2 .................................................................................................... 156 

3.5.5. Nuclear import of the N-terminal fragments of VirD2 and mVirD2 ........................................ 157 

3.5.6. Nuclear import of the C-terminal fragments of VirD2 and mVirD2 ........................................ 158 

3.5.7. Discovery of a novel NLS3 in VirD2 ....................................................................................... 159 

3.5.8. Protein size limit to diffuse through the nuclear pore ............................................................... 163 

 
Chapter 4: Conclusions and Future directions ....................................................................................... 169 

 

References .................................................................................................................................................. 172 
 

 
 

           

 
 

 



x 
 

List of Tables 

 

Table 2.3a. Agrobacterium strains and plasmids used in this work .............................................................. 53 

Table 2.3b. Primers used to construct vectors containing mvirD2 orTP-mvirD2 ......................................... 54 

Table 2.4.2. Description of recombinant proteins illustrating differences in the predicted protein weight  

and mobility in SDS-PAGE  .......................................................................................................................... 64 

Table 2.4.5.2. The number of regenerated plants from different treatments in the second trial ................... 75 

Table 2.5.3. TP-mVirD2 protein sequences and their predicted subcellular localization using various 

prediction software ........................................................................................................................................ 82 

Table 3.3.1. Primers used to construct pEZT-NL derivatives ..................................................................... 102 

Table 3.4.1. Description of pEZT-NL derivatives, recombinant proteins and their subcellular  

localization  ................................................................................................................................................. 106 

Table 3.5a. Summary of previous studies on the nuclear targeting properties of VirD2 NLSs .................. 165 

Table 3.5b. cNLS Mapper prediction ......................................................................................................... 166 

 

 

 

 

 

 

 



xi 
 

List of Figures 

 

Figure 1.1.1. Schematic representation of Agrobacterium-mediated plant transformation ............................ 3 

Figure 1.2. Chloroplast expression cassette for leaves  ................................................................................. 16 

Figure 1.3.1. Nuclear protein import by the importin α/β pathway .............................................................. 20 

Figure 1.3.2. Chloroplast protein import ...................................................................................................... 22 

Figure 1.4. Schematic representation of VirD2 with domains and motifs .................................................... 23 

Figure 2.2a. Schematic representation of VirD2 .......................................................................................... 41 

Figure 2.2b. Top – Agrobacterium-mediated plant nuclear genome transformation; Bottom –

Agrobacterium-mediated chloroplast transformation .................................................................................... 42 

Figure 2.4.1a. Schematic representation of the virD2 gene in pVD43 ......................................................... 58     

Figure 2.4.1b. Schematic representation of the DCL-TP-mvirD2-58 gene in pVD58-DCl-TP .................... 59     

Figure 2.4.1c. Schematic representation of the RbcS-TP-mvirD2-58 gene in pVD58-RbcS-TP .................  59 

Figure 2.4.1d. Schematic representation of the DCL-TP-mvirD2-80 gene in pVD80-DCl-TP .................... 60     

Figure 2.4.1e. Schematic representation of the RbcS-TP-mvirD2-80 gene in pVD80-RbcS-TP .................. 60 

Figure 2.4.2a. Construction scheme of TP-mVirD2 ..................................................................................... 63     

Figure 2.4.2b. Coomassie blue stained polyacrylamide gels containing non-induced (N) and induced (I) 

cultures of BL21b[pLysS] carrying expression vectors incubated at 37 or 28
o
C .......................................... 65     

Figure 2.4.2c. Western blot detection of VirD2 and TP-mVirD2 series in non-induced (N) and induced  

(I) cultures of BL21b[pLysS] carrying expression vectors probed with anti-VirD2 antibody ...................... 65 

Figure 2.4.2d. Samples throughout the protein purification steps on polyacrylamide gels stained  

with GelCode
TM

 Blue Stain ........................................................................................................................... 66    

Figure 2.4.3a. An electrophoretogram of cleavage products by VirD2 and RbcS-TP-mVirD2-58 using the 

fluorescently labelled oligonucleotide ........................................................................................................... 68    

Figure 2.4.3b. Quantification of the cleavage activity of VirD2 and RbcS-TP-mVirD2 on the fluorescently 

labelled oligonucleotide substrate ................................................................................................................. 69    

Figure 2.4.4.1.1. Construction of pPM6000AM derivatives ........................................................................ 71 

Figure 2.4.5. Top – The untransformed chloroplast genome. Bottom – the transformed chloroplast genome 

with the chloroplast expression cassette ........................................................................................................ 74 

Figure 2.4.5.2. An electrophoretogram of PCR products detecting the presence of the transgene in the 

chloroplast genome from the second trial ...................................................................................................... 75 

Figure 3.3.1. Fragments of VirD2, mVirD2-58 and mVirD2-80 ................................................................ 101 
Figure 3.4.1a. VirD2 amino acid sequence analyzed by cNLS Mapper ..................................................... 109 
Figure 3.4.1b. mVirD2-58 amino acid sequence analyzed by cNLS Mapper ............................................ 109 
Figure 3.4.1c. mVirD2-80 amino acid sequence analyzed by cNLS Mapper ............................................. 109 
Figure 3.4.2. Untransformed wild type 2.5 weeks old transgenic Arabidopsis leaves (Top panels) and 

tobacco leaves (Bottom panels) examined under the confocal microscope ................................................. 111 
Figure 3.4.3.1a. DCL-TP-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in 

the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after DAPI 

staining) examined under the confocal microscope ..................................................................................... 113 

Figure 3.4.3.1b. RbcS-TP-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in 

the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after DAPI 

staining) examined under the confocal microscope ..................................................................................... 114 

Figure 3.4.3.2a. DCL-TP-mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top 

row) and in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: 

after DAPI staining) examined under the confocal microscope .................................................................. 117 

Figure 3.4.3.2b. RbcS-TP-mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top 

row) and in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: 

after DAPI staining) examined under the confocal microscope .................................................................. 118 
Figure 3.4.3.2c. DCL-TP-mVirD2-80-EGFP subcellular localizationin transgenic Arabidopsis leaf (Top 

row) and in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: 

after DAPI staining) examined under the confocal microscope .................................................................. 119 
Figure 3.4.3.2d. RbcS-TP-mVirD2-80-EGFP subcellular localization in transgenic Arabidopsis leaf (Top 

row) and in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: 

after DAPI staining) examined under the confocal microscope .................................................................. 120 
 



xii 
 

Figure 3.4.3.2e. Original and autocorrected pictures indicating subcellular localization of recombinant 

proteins  ....................................................................................................................................................... 121 
Figure 3.4.3.3a. mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and  

in the tobacco leaves 48 hours after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 123 
Figure 3.4.3.3b. mVirD2-80-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and  

in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 124 
Figure 3.4.4.1a. VirD2-N1/2-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and  

in the tobacco leaves 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 127 
Figure 3.4.4.1b. mVirD2-58/80-N1/2-EGFP subcellular localization in the tobacco leaves 48 h after  

agro-infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the 

confocal microscope .................................................................................................................................... 128 
Figure 3.4.4.1c. Subcellular localization of VirD2-N1/3-EGFP in the tobacco leaves 48 h after agro-

infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal 

microscope  ................................................................................................................................................. 129 
Figure 3.4.4.1d. Subcellular localization of mVirD2-58/80-N1/3-EGFPin the tobacco leaves 48 h after 

agro-infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the 

confocal microscope .................................................................................................................................... 130 
Figure 3.4.6.1a. Subcellular localization of VirD2-C1/2-EGFP in the tobacco leaf 48 h after agro-

infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the  

confocal microscope .................................................................................................................................... 133 
Figure 3.4.6.1b. Subcellular localization of mVirD2-58-C1/2-EGFP in the tobacco leaf 48 h after agro-

infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal 

microscope  ................................................................................................................................................. 134 
Figure 3.4.6.1c. mVirD2-80-C1/2-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) 

and in the tobacco leaf 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 135 
Figure 3.4.6.1d. VirD2-C1/3-EGFP subcellular localization in the tobacco leaf 48 h after agro-infiltration 

(Top row: before DAP staining; Bottom row: after DAPI staining) examinedunder the confocal  

microscope .................................................................................................................................................. 136 
Figure 3.4.6.1e. mVirD2-58-C1/3-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) 

and in the tobacco leaf 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 137 
Figure 3.4.6.1f. mVirD2-80-C1/3-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) 

and in the tobacco leaf 48 h after agro-infiltration (Middle row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope .......................................................................... 138 
Figure 3.4.6.1g. mVirD2-80-C1/3-EGFPx2 subcellular localization in the tobacco leaf 48 h after agro-

infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal 

microscope  ................................................................................................................................................. 139 
Figure 3.4.6.2a. VirD2-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after agro-

infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal 

microscope .................................................................................................................................................. 142 
Figure 3.4.6.2b. mVirD2-58-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after 

agro-infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the 

confocal microscope   ......................................................................................................................... 143 
Figure 3.4.6.2c. mVirD2-80-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after 

agro-infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under the 

confocal microscope .................................................................................................................................... 144 
Figure 3.4.6.2d. mVirD2-80-C1/3ΔNLS3-EGFPx2 subcellular localization of in the tobacco leaf 48 h  

after agro-infiltration (Top row: before DAP staining; Bottom row: after DAPI staining) examined under 

the confocal microscope .............................................................................................................................. 145 
Figure 3.4.7a. NLS3-EGFP subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top 

row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope .. 147 
 



xiii 
 

Figure 3.4.7b. 26aa-EGFP subcellular localization of in the tobacco leaf 48 h after agro-infiltration  

(Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal 

microscope .................................................................................................................................................. 148 
Figure 3.4.7c. NLS3-EGFPx2 subcellular localization in the tobacco leaves 48 h after agro-infiltration  

(Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal  

microscope .................................................................................................................................................. 149 
Figure 3.4.7d. 26aa-EGFPx2 subcellular localization in the tobacco leaves 48 h after agro-infiltration  

(Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal  

microscope .................................................................................................................................................. 150 
Figure 3.4.7e. NLS3-EGFPx3subcellular localization in the tobacco leaves 48 h after agro-infiltration  

(Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal  

microscope .................................................................................................................................................. 151 
Figure 3.4.7f. 26aa-EGFPx3 subcellular localization in the tobacco leaves 48 h after agro-infiltration  

(Top row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal  

microscope .................................................................................................................................................. 152 
Figure 3.5.5a. Schematic representation of VirD2 with the proposed VirD2 NLS3  

(dash line: omitted amino acids) .................................................................................................................. 164 
Figure 3.5.5b. Alignment of VirD2 amino acid sequences encoded by octopine and nopaline type  

plasmids  ...................................................................................................................................................... 167 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of Abbreviations 

 

aadA – aminoglycoside 3’ adenylyltransferase gene 

ACE2 – angiotensin-converting enzyme 2 

AGO2 – ARGONAUTE2 

Ang-(1-7) – a cleaved product of Angiotensin II 

aphA-6 – aminoglycoside (3’) transferase (APH(3’)-VI) gene 

ATPases – adenosine triphosphatase 

AvrRps4 – Pseudomonas savastanoi Type III effector 

BABA – beta-aminobutyric acids  

bar – BIALOPHOS RESISTANCE gene 

BiFC – biomolecular fluorescence complementation 

bp – base pair 

BR – basic regions 

BSA – bovine serum albumin 

CAK– CDK-activating kinase 

CaMV – cauliflower mosaic virus 

CDKs – cyclin-dependent kinases 

cDNA – complementary DNA 

cNLS – classical nuclear localization signal  

CRISPER/Cas system – regularly interspaced short palindromic repeats/CRISPR-associated system 

crRNA – CRISPR RNA 

CsA – cyclosporin A 

CTB – cholera toxin B subunit 

CTD – C-terminal domain 

DAPI – 4′,6-diamidino-2-phenylindole 

DCL-TP – tomato defective chloroplasts and leaves transit peptide 

Δ – deletion 

DNA – deoxyribonucleic acid  

DNase – deoxyribonuclease 

dNTP – deoxynucleotide 5ʹ triphosphate 

EBV – Epstein-Barr virus 

E. coli – Escherichia colis 

EGFP – enhanced green fluorescent protein 

EPSP – 5-enolpyruvylshikimate-3-phosphate synthase gene 

EBNA-1 – EBV nuclear antigen 1  

GFP – green fluorescent protein 

GOI – gene of interest  

GUS – β-glucuronidase 

HIV – human immunodeficiency virus 

Hop – Hsp70/Hsp90 organizing protein 

HPPD – 4-hydroxyphenylpyruvate dioxygenase 

Hsp70 – heat shock protein 70 

Hsp90 – heat shock protein 90 

IgG – Immunoglobulin G  

IPTG – isopropyl-beta-D-thiogalactopyranoside 

IR region – Inverted repeat region 

kDa – kilodaltons 

LB – T-DNA left border 

LB medium – Luria-Bertani broth medium 

L-Gln – L-glutamine  

LOH1– ceramide synthase 

MBP – myelin basic protein 

MS medium – Murashige and Skoog medium 

mVirD2 – modified VirD2 

NBT/BCIP – nitro-blue tetrazolium chloride and 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt 



xv 
 

List of Abbreviations (Continued) 

 

Nef – Negative Regulatory Factor 

NIa – a tobacco etch virus protein containing plant functional NLS 

NLS – nuclear localization signal 

NPC – nuclear pore complex 

nptII – neomycin phosphotransferase II gene 

NtGPDL –  tobacco glycerophosphodiesterase-like protein 

OD600 – the optical density of bacterial cell culture at λ=600 nm 

ω domain – omega domain 

OEP61 – outer envelope membrane protein 61 

P5βR2 gene –  progesterone 5β-reductase gene 

PAT– phosphinotricin acetyl transferase 

PCR – polymerase chain reaction 

PEG – polyethylene glycol 

PP2C – 2C Ser/Thr protein phosphatase  

PpsbA – promoter and 5’ regulatory element of plastid D1 protein of photosystem II 

prFdIII – non-photosynthetic ferredoxin III 

prRBCS – ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 

Prrn – plastid RNA operon promoter 

pTi – tumor inducing plasmid 

RanGAP – Ran GTPase activating protein 

RB – T-DNA right border 

RbcS-TP – tobacco ribulose bisphosphate carboxylase (Rubisco) small subunit transit peptide  

RIM – root inducing medium 

RNase- ribonuclease 

SCF – Skp1-Cdc53-F box protein 

SDS-PAGE – Sodium dodecyl sulphate Polyacrylamide gel electrophoresis 

SIM – shoot inducting medium 

SNAT – serotonin N-acetyl transferase 

SPP – the stromal processing peptidase 

ssDNA – single stranded DNA 

SV40 – simian virus 40 

T1 – first generation transgenic plant 

T4SS – type IV secretion system  

TALE – transcription activator-like effectors 

TALEN – transcription activator-like effector nuclease 

Taq – Thermus aquaticus 

TBE – Tris/borate/EDTA 

TBP – TATA binding protein 

T-complex – VirD2 covalently attached to the 5’ end of the T-strand which is coated with VirE2 proteins 

T-DNA – transferred DNA 

T-DNA – VirD2 complex – VirD2 covalently attached to the 5’ end of the T-strand  

TIC – translocon at the inner envelope membrane of chloroplasts 

TOC – translocon at the outer envelope membrane of chloroplasts 

TP – transit peptide 

TPR– tetratricopeptide repeat  

TpsbA – 3’ regulatory element of plastid D1 protein of photosystem II 

Tris – Tris(hydroxymethyl)aminomethane 

trnA – plastid tRNA-Alanine gene 

trnI – plastid tRNA-Isoleucine gene 

Trps16 – 3’untranslated region of the plastid ribosomal protein S16 gene 

TRV – Tobacco rattle virus 

TSP – total soluble protein 

T-strand – a single stranded T-DNA  

VBF – VIP1-binding F-box 



xvi 
 

List of Abbreviations (Continued) 
 

VIGS – virus-induced gene silencing 

VIP1 – VirE2 interacting protein1 

vir region – virulence region 

Vir protein – virulence protein 

Y29 – tyrosine 29 

YEB medium – yeast extract beef extract medium 

YEP medium – yeast extract peptone medium 

YFP – yellow fluorescent protein 

ZFN – zinc-finger nuclease 

 



1 
 

Chapter 1: Introduction 

 

1.1. Agrobacterium-mediated plant transformation 

Agrobacterium tumefaciens, a Gram-negative phytopathogenic bacterium, is often called a natural 

genetic engineer because it can perform an intricate plant transformation to cause plant crown gall disease.  

Once the main principle of the transformation was understood, Agrobacterium was the most popular tool to 

introduce transgenes into the plant nuclear genome. It has been just over thirty years since first successful 

Agrobacterium-mediated plant transformation (Barton et al., 1983). Since then, extensive studies on 

Agrobacterium-mediated plant transformation have revealed that many bacterial proteins and plant host 

proteins are involved in the complex transformation processes. The newly acquired knowledge was applied 

to address the challenges associated with the Agrobacterium-mediated transformation. This resulted in an 

expansion of the host range, improvement of transformation efficiency and the ability to integrate the 

transgene precisely into the host genome.  

 

1.1.1. Transformation overview  

 Agrobacterium carries an octopine or a nopaline tumor inducing plasmid (pTi) consisting of 

several regions including the transferred DNA (T-DNA) region and the virulence (vir) region (Gelvin, 

2003). The T-DNA region is edged by 25 bp direct repeats called the right border (RB) and the left border 

(LB). The T-DNA contains genes encoding enzymes involved in biosynthesis of plant growth hormones 

including indole acetic acid (an auxin) from tryptophan and isopentenyl adenosine monophosphate (a 

cytokinin) from adenosine monophosphate, and genes encoding enzymes involved in opine synthesis and 

secretion (Ream, 2008). The vir region includes the vir genes encoding Vir proteins essential for the 

transformation process such as VirA, VirB, VirC, VirD, VirE, VirF and VirG. These proteins function in 

recognition of plant signals, processing and transfer of the T-DNA. The transformation process includes the 

following steps (Figure 1.1.1). First, phenolic compounds, which are secreted from the wounded plant, are 

sensed by the VirA/VirG signal transduction system, resulting in activation of the vir genes. Upon 

activation, the VirD1/VirD2 endonuclease cleaves the RB and LB sequences. VirD2 attaches to the 5’ end 

of the cleaved T-DNA which is displaced as a single stranded DNA (T-strand) from the pTi, forming the T-
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DNA-VirD2 complex. The complex and several other bacterial proteins such as VirD5, VirE2, VirE3 and 

VirF are translocated through the type IV secretion system consisting of VirB and VirD4 proteins into the 

plant cell. VirE2 proteins coat the T-strand of the complex forming the T-complex in the plant cell to 

protect it from the host nucleases. Finally, the T-complex is guided into the nucleus, where the T-DNA is 

integrated at random locations in the plant genome. Expression of the aforementioned genes involved in the 

plant hormone biosynthesis results in tumorigenesis (Gelvin, 2003, 2010b; Meyers et al., 2010; 

Ziemienowicz, 2001), while production of opines provides nutrition for the bacterium. For plant 

biotechnology purposes, T-DNA genes are replaced with genes of interest (transgenes). Vir proteins have 

been examined extensively; meanwhile the efficient Agrobacterium systems namely binary vector systems 

were developed to introduce transgenes into the plant genome. The Agrobacterium-mediated plant 

transformation methods have faced many challenges, and many of them were overcome by the tremendous 

efforts of researchers around the world.  
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Figure 1.1.1. Schematic representation of Agrobacterium-mediated plant transformation.  

Selected proteins are shown. P: phosphorylation. Arrows: movement of the complex. 

 

 

1.1.2. Vir proteins 

1.1.2.1. Sensory units: VirA and VirG 

The membrane bound protein VirA and the cytoplasmic response regulator VirG function in the 

signal transduction system. VirA is composed of 7 domains: a short 18 amino acid N-terminal cytoplasmic 

domain, two membrane-spanning domains, a periplasmic sensor domain, the two linkers of kinase and 

receiver domains in the cytoplasmic C-terminal domain (Nair et al., 2011). Plant wounds release chemical 

stimuli including acidic pH, monosaccharides and certain phenolic compounds which are sensed by VirA. 

The VirA linker domain binds to phenolic compounds, and monosaccharides and pH signaling are 

recognized by the periplasmic domain. Upon binding of phenolic compounds to the linker domain, VirA 

autophosphorylates the phosphoacceptor histidine residue in the kinase domain. Subsequently, the 

phosphate from VirA is transferred to the aspartate residue of VirG. Phosphorylated VirG is suggested to be 

dimerized to activate transcription of vir genes by binding to the vir box which locates in all vir gene 

promoter regions (Gao et al., 2006; Lohrke et al., 1999; Nair et al., 2011). In the Agrobacterium-mediated 
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plant transformation, a phenolic compound acetosyringone can be added in the bacterial culture to 

artificially activate the VirA/VirG sensory unit resulting in the activation of the vir operons (Soltani et al., 

2008). 

 

1.1.2.2. Type IV secretion system: VirB1-11 and VirD4 

 After activation of the vir genes, the T-DNA is processed and transferred through the type IV 

secretion system (T4SS) from the bacterium to the plant cell. In addition, several Vir proteins are also 

transferred along with the T-DNA into the plant cell. T4SS consists of 12 Vir proteins notably VirB 

proteins and VirD4. VirB4, VirB11 and VirD4 are ATPases which supply the energy for T4SS biogenesis 

and its function (Ripoll-Rozada et al., 2013). VirB11 belongs to the traffic ATPase superfamily which is 

proposed to act as a switch between pilus biogenesis and DNA transport. VirB4 associates with the core 

complex at the inner membrane. VirB4 is assisted by VirB11 to dislocate VirB2 pilin. VirD4 is suggested to 

displace VirB4 from the base of the channel and to interact with Vir11 for substrate transport (Ripoll-

Rozada et al., 2013). 

Inner-membrane translocase components are VirB3, VirB6 and VirB8 (Atmakuri and Christie, 

2008). VirB3 is an inner membrane protein containing one periplasmic domain and the C-terminal residues 

in the cytoplasm. It stabilizes VirB4, VirB7 and VirB8 (Mossey et al., 2010). VirB6 contains four or five 

transmembrane segments and is suggested to stabilize VirB3 and VirB5, and assist in formation of VirB7 

and VirB9 complexes (Hapfelmeier et al., 2000; Jakubowski et al., 2004; Jakubowski et al., 2003; Judd et 

al., 2005a; Judd et al., 2005b). VirB8 is an inner membrane protein composed of a cytoplasmic N-terminal 

domain, a transmembrane helix and a C-terminal domain in the periplasm (Das and Xie, 1998). VirB8 

stabilizes VirB1, VirB3, VirB4, VirB5, VirB6, VirB7 and VirB11. The interface of VirB8 homodimers is 

required for VirB2 to associate to the T-pilus assembly site (Sivanesan and Baron, 2011).  

Outer membrane components called the core complex are VirB7, VirB9 and VirB10 (Ilangovan et 

al., 2015). VirB7 is the monotopic lipoprotein, which is exposed at the periplasmic surface (Fernandez et al., 

1996; Jakubowski et al., 2003). VirB9 consists of several β strands, and its non-covalent interactions and 

the formation of the disulfide bridges between VirB7 are necessary to generate an active VirB7-VirB9 

heterodimers (Bayliss et al., 2007). VirB10 was thought to be an inner membrane protein; however, it was 



5 
 

identified to have both the inner membrane and outer membrane parts (Chandran et al., 2009; Jakubowski et 

al., 2009). VirB10 contains several domains including the proline rich region which extends across the 

periplasm and the β-barrel domain which interacts with the VirB7-VirB9 channel complex (Jakubowski et 

al., 2009).  

VirB1 localizes in the periplasm and belongs to a lytic transglycosylase family (Atmakuri and 

Christie, 2008). It is proposed to be required for the T4SS assembly. The N-terminal lytic transglycosylase 

domain would modify the peptidoglycan for the core complex assembly. VirB1*, the C-terminal third of the 

VirB1, is cleaved and secreted to the outside of the bacterial cell. VirB1* might promote the assembly of 

the T-pilus subunits via protein-protein interactions (Zupan et al., 2007). VirB5 localizes in the periplasm, 

and it is also a component of the pilus (Atmakuri and Christie, 2008). VirB5 is a single domain protein 

consisting of mostly α-helices and localizes in the periplasm and to the tip of the T-pilus, which might be 

important for host-cell recognition (Aly and Baron, 2007; Ilangovan et al., 2015; Yeo et al., 2003). 

VirB2 is a major component of the cyclized T-pilus. A 12.3 kDa of an initial VirB2 protein is 

processed into a 7.2 kDa protein. The processed VirB2 protein consists of the hydrophilic region, which is 

likely responsible for lining the pore, and hydrophobic region, that is possibly required for the pilin-pilin 

interaction within the pilus assembly (Kerr and Christie, 2010; Lai and Kado, 1998). 

 

1.1.2.3. Overdrive binding proteins: VirC1 and VirC2 

VirC1 belongs to the ParA/MinD ATPase superfamily containing a deviant Walker A nucleotide 

triphosphate-binding motif; it binds to the overdrive sequence near the right border (Koonin, 1993; Toro et 

al., 1989). VirC1 is proposed to recruit the relaxosome composed of VirD1 and VirD2 at the T-DNA 

borders and to activate the VirD1/VirD2 nuclease activity. VirC1 then delivers the T-DNA-VirD2 complex 

to the VirD4 receptor (Atmakuri et al., 2007). VirC2 is a double stranded DNA specific DNA binding 

protein and interacts with VirC1 to stimulate assembly of the VirD1 and VirD2 relaxosome. VirC2 also 

binds through its ribbon-helix-helix domain to the double stranded DNA generated from folding of the 

single stranded T-DNA. Binding of VirC2 to the folded double stranded T-DNA results in protection of the 

T-DNA from the nucleolytic degradation and/or other functions for T-DNA transfer (Atmakuri et al., 2007; 

Lu et al., 2009).  
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1.1.2.4. Relaxosome: VirD1 and VirD2 

VirD2 is one of the most well characterized Vir proteins essential for Agrobacterium-mediated 

plant transformation. VirD2 contains several domains and signal sequences, including a relaxase domain, 

nuclear localization signals (NLSs) and ω domain (Gelvin, 2012). VirD2 alone can cleave the single 

stranded DNA containing the T-DNA border sequences, but VirD2 requires VirD1, another bacterial 

protein, to cleave the double stranded T-DNA border sequences (Scheiffele et al., 1995; Steck et al., 1990). 

VirD2 attaches to the 5’ end of the single stranded T-DNA via Y29 to form the T-DNA-VirD2 complex 

(Vogel and Das, 1992). NLSs of VirD2 are a monopartite type and a bipartite type at the N and C-terminus 

of the protein, respectively (Herrera-Estrella et al., 1990; Howard et al., 1992; Tinland et al., 1992). 

Previous studies that used reporter proteins fused to the C-terminal NLS demonstrated that this NLS was a 

strong nuclear localization signal (Howard et al., 1992; Tinland et al., 1992). Ziemienowicz et al. (2001) 

reported that VirD2 can import short fluorescently labelled single stranded DNA into the nuclei of tobacco 

protoplasts, while VirD2 lacking the C-terminal NLS was unable to direct single stranded DNA into the 

nucleus. Thus, the C-terminal NLS participates primarily in nuclear targeting of the T-complex, while the 

N-terminal NLS does not function due to its proximity to Y29 (Rossi et al., 1993; Ziemienowicz et al., 

2001). VirD2 is imported into the nucleus by the importin α/β pathway through its NLSs. Importin α is an 

adaptor protein to recognize an NLS of a protein, and then it interacts with importin β. The protein cargo is 

targeted to the nuclear pore complex and translocated the cargo into the nucleus by importin β (Lange et al., 

2007). Seven Arabidopsis importin α proteins (IMPa-1, IMPa-2, IMPa-3, IMPa4, IMPa-6, IMPa7 and 

IMPa-9) have been shown to interact with VirD2 in the yeast two-hybrid, plant biomolecular fluorescence 

complementation (BiFC) and in vitro protein-protein interaction assays (Bhattacharjee et al., 2008). The 

impa-4 mutant Arabidopsis plants showed the rat (resistant to Agrobacterium transformation) phenotype, 

which was rescued by overexpression of other importin α isoforms. This indicated the importance of the 

IMPa-4 during the transformation (Bhattacharjee et al., 2008). The C-terminal end including the C-terminal 

NLS of VirD2 showed a strong interaction with IMPa-4. The C-terminal NLS and its adjacent amino acids 

of VirD2 were suggested to be important for nuclear targeting of the T-strand (Bhattacharjee et al., 2008). 
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The ω domain was suggested to play parts in T-DNA translocation from the bacterium to the plant 

cell and T-DNA integration into the plant genome; however, its function is the object of debate due to 

conflicting results (Bravo-Angel et al., 1998; Mysore et al., 1998; van Kregten et al., 2009).  

 

1.1.2.5. Single stranded DNA binding protein: VirE2 and VirE1 

VirE2 is another extensively studied Vir protein. This protein contains a single stranded DNA 

(ssDNA) binding domain and a bipartite NLS. VirE2 proteins are translocated into the plant cell and bind to 

the T-strand forming a solenoidal (telephone cord-like coiled) structure, which protects the T-strand from 

the host nucleases (Citovsky et al., 1997; Citovsky et al., 1989; Sundberg and Ream, 1999). Hence, VirE2 is 

suggested to maintain T-strand integrity and also shape the T-complex for translocation into the nucleus 

(Gelvin, 2012; Ziemienowicz et al., 2001). VirE2 is known to interact with plant proteins, including VirE2 

interacting protein1 (VIP1) that also interacts with the host importin α proteins (Gelvin, 2010b). The role of 

VirE2 NLS is controversial due to conflicting results using the reporter protein fused to either the N or C-

terminus of the protein (Gelvin, 2010b). VirE2 along with VirD2 were shown to interact with the 

abovementioned seven Arabidopsis importin α isoforms, and IMPa-4 was found to be more efficient than 

other isoforms in delivering VirE2 into the plant cell nucleus. Fusion proteins of VirE2 attached to the N or 

C-terminus of the yellow fluorescent protein (YFP) were constructed to observe their subcellular 

localization in the wild type and the impa-4 mutant Arabidopsis and in wild type tobacco cells. The fusion 

proteins were localized in the cytoplasm as aggregates. Yet, the BiFC indicated that overexpression of 

IMPa-4 resulted in nuclear localization of VirE2 (Bhattacharjee et al., 2008). These results indicate 

importance of IMPa-4 in Agrobacterium-mediated plant transformation due to its interaction with both 

VirD2 and VirE2 (Bhattacharjee et al., 2008). 

VirE1 is a small protein (7 kDa) without known enzymatic activity, although it interacts with 

VirE2. VirE2 oligomerizes to form filamentous aggregates in vitro in the absence of VirE1. In the 

bacterium, VirE1 interacts with VirE2 by electrostatic interaction to prevent oligomerization. VirE1 is 

likely removed from the VirE2 by mechanical action in bending the domains at the secretion channel, while 

VirE2 is translocated to the plant cell (Deng et al., 1999; Dym et al., 2008). 
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1.1.2.6. Adaptor and putative transcription activator  

VirE3 is also translocated into the plant cell along with other Vir proteins and the T-DNA-VirD2 

complex from Agrobacterium, and it binds to both VirE2 and importin α proteins acting as an adaptor 

molecule like the plant protein VIP1 (Lacroix et al., 2005). VirE3 also contains the nuclear localization 

signals, monopartite and bipartite types. In addition, interactions between VirE3 and pCsn5, a component of 

COP9 signalosome, VirE3 and pBrp, a plant specific general transcription factor IIB-related protein, were 

observed. VirE3 could induce the transcription of DNA through the GAL4-binding domain in yeast. This 

suggested that VirE3 may induce transcription of a transgene by interacting with the transcription factor 

pBrp (Garcia-Rodriguez et al., 2006). 

 

1.1.2.7. F-box effector: VirF  

VirF is a unique protein specific to the octopine type Ti plasmids, while it is absent in the nopaline 

types. This protein was first thought to be a host-range factor due to different transformation efficiency of 

Nicotiana glauca among octopine and nopaline strains of Agrobacterium (Melchers et al., 1990). Later, it 

was shown that VirF contains the F box motif which interacts with SCF (Skp1-Cdc53-F box protein) 

complex for ubiquitination and then proteolysis, and VirF is involved in proteolysis of VirE2 and VIP1 in 

the nucleus (Schrammeijer et al., 2001; Tzfira et al., 2004). Interestingly, a host plant protein F-box protein, 

VBF (VIP1-binding F-box), acts similarly to VirF. This VBF expression is induced by Agrobacterium 

(Magori and Citovsky, 2011c; Zaltsman et al., 2010). 

 

1.1.2.8. Translocated effector: VirD5 

VirD5 is another protein that is exported into the plant cell from the bacterium (Vergunst et al., 

2005). It localizes in the nucleus due to four putative NLSs, and its function was found to be to stabilize 

VirF which is rapidly degraded by the host proteolytic enzymes (Magori and Citovsky, 2011a). VirD5 can 

form homodimers in the plant nucleus and bind to a specific DNA sequence, named VirD5 response 

element. In addition, VirD5 was proposed to be a transcriptional activator-like Vir protein because VirD5 

was shown to act as a transcription factor in yeast. VirD5 can also interact with VIP1 in Arabidopsis, which 
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prevents binding of VBF to VIP1. Thus, the coat proteins might be protected by VirD5 from rapid 

degradation by the host proteins (Wang et al., 2014). 

 

1.1.3. Development of an efficient transformation method: Binary vector systems 

Because of the amazing ability of Agrobacterium to transform the plant genome, Agrobacterium 

was “disarmed” by removing the genes affecting plant hormone synthesis, and transgenes were initially 

cloned into the T-DNA region of the Ti plasmid. However, the large size and low copy number of Ti 

plasmids made it difficult to manipulate and isolate plasmids. The binary vector system has been developed 

to perform Agrobacterium-mediated plant transformation more efficiently. Two plasmids are essential in 

the system:  

1) the helper plasmid originated from the Agrobacterium Ti plasmid containing the vir genes 

without a functional T-DNA region. 

2) the binary vector composed of the gene of interest flanked by right and left T-DNA border 

sequences and the origin(s) of replication that can function in both Escherichia coli and Agrobacterium 

(Lee and Gelvin, 2008; Meyers et al., 2010). T-DNA also typically includes commonly used plant 

selectable marker genes, such as those encoding aminoglycoside antibiotic resistance such as kanamycin or 

hygromycin and those encoding herbicide resistance such as phosphinothricin/gluphosinate (Lee and Gelvin, 

2008). Expression of both the gene of interest and plant selection marker gene is regulated by plant-specific 

transcription control elements; e.g., 35S promoter (Chen et al., 2006).  

Several antibiotics are used for the bacterial selection in the binary system. Many Agrobacterium 

strains carry a mutation in their chromosomal DNA conferring resistance to rifampicin (Lee and Gelvin, 

2008). These strains frequently harbor helper plasmids with genes for resistance to kanamycin, carbenicillin, 

erythromycin or gentamicin (Lee and Gelvin, 2008). Binary vectors with different selection markers from 

the abovementioned markers should be used. 

Timentin, a mixture of ticarcillin and clavulanic acid, is used to suppress the growth of 

Agrobacterium in the plant culture (Ieamkhang and Chatchawankanphanich, 2005). Ticarcillin is a 

penicillin derivative which inhibits bacterial cell wall synthesis, and it is inactivated by β-lactamase 

produced by a wide variety of bacteria (Miller et al., 2001). Tricarcillin together with a β-lactamase 
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inhibitor clavulanic acid can enhance the activity of tricarcillin (Ieamkhang and Chatchawankanphanich, 

2005).   

 

1.1.4. Challenges and improvements of Agrobacterium-mediated plant transformation  

The development of the binary vector systems provided many possibilities to transform plants 

more efficiently. However, due to the nature of Agrobacterium, this transformation method suffers from 

some limitations including the host range, transformation condition/efficiency and random integration of 

the T-DNA into the plant genome. Numerous different approaches have been taken to solve these problems. 

 

1.1.4.1. Expansion of the host range  

Agrobacterium can infect various types of dicotyledons, whereas monocotyledons are much less 

susceptible to Agrobacterium infection (Decleene, 1985). There are several reasons for difficulties with the 

monocot transformation via Agrobacterium. For example, composition of the cell wall differs in the dicots 

and monocots: β-linked glucose residues with interlocking chains of β-D-xyloglucans in the dicot cell wall, 

and the glucuronoarabinoxylans and linear chains of β-D-xylose with interlocking polysaccharides in 

monocots. Due to this monocot cell wall composition, the bacterial attachment to the monocot cell is 

inefficient (Sood et al., 2011). Monocots produce very few vir inducers such as a hydrophilic high 

molecular mass compound and a low molecular mass ethyl ferulate; moreover, they also release inhibitors 

of Agrobacterium virulence, including 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one and 2-

hydroxy-4,7-dimethoxybenzoxazin (Lacroix and Citovsky, 2013; Sood et al., 2011). Revealing the negative 

factors associated with transformation of monocots led to optimization of the transformation conditions. 

Successful rice transformation was reported in 1994 (Hiei et al., 1994). In this study, different explants 

including shoot apex, root segment, scutellum, immature embryo, root callus, scutellum callus and 

suspension cells were used for transformation with addition of acetosyringone. Scutellum callus showed a 

high transformation rate between 12.8% and 28.6% among three rice cultivars (Hiei et al., 1994). Maize 

was transformed using calli from immature embryos, and between 5 and 30% transformation efficiency was 

observed with the use of acetosyringone (Ishida et al., 1996). An updated maize transformation protocol has 

been established to achieve approximately 50% of the transformation efficiency using immature embryos 
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(Ishida et al., 2007). Also, freshly isolated immature embryos, precultured immature embryos and 

embryogenic calli of wheat were used for transformation using acetosyringone resulting in a transformation 

efficiency between 0.3% and 4.3% among three types of explants (Cheng et al., 1997). Barley can be 

transformed using immature embryos to have an average of 25% transformation efficiency (Bartlett et al., 

2008). Interestingly, acetosyringone was found to be unnecessary to barley transformation (Bartlett et al., 

2008). The host range of Agrobacterium has expanded to generate transgenic rice, maize and wheat among 

other monocots (James, 2014).  

 

1.1.4.2. Improvement of transformation efficiency 

Some plant species are highly susceptible to Agrobacterium-mediated transformation (An, 1985; 

Wroblewski et al., 2005). After the transformation, plant regeneration is a necessary step to obtain stably 

transformed plants which may be difficult and not optimized for some plant species. Addition of 

compounds such as 6-benzyladenine and 5-azacytidine and 2,4-dichlorophenoxyacetic acid in the growth 

media have been used to improve the regeneration of Bambusa ventricosa and Acca sellowiana, 

respectively (Fraga et al., 2012; Wei et al., 2015). More robust approach is the use of ammonium nitrate in 

the plant cultivation medium, which resulted in an increase of regeneration rate of explants and stable 

transformation rate of tobacco, Triticum aestivum and Triticosecale (Boyko et al., 2009; Greer et al., 2009). 

This approach was further modified and combined with potassium chloride or rare earth elements, namely, 

cerium and lanthanum (Boyko et al., 2011; Maheshwari and Kovalchuk, 2013). Different concentrations of 

each element and different combinations of elements were shown to improve transformation efficiency, and 

a more intact right border of the T-DNA was detected in the transgenic plants, suggesting improved quality 

of transgenic integration (Boyko et al., 2011; Maheshwari and Kovalchuk, 2013). The exact function of 

ammonium nitrate, potassium chloride and rare earth elements in the transformation process is unknown. 

Since they have been shown to affect the recombination frequency, it was suggested that these elements 

may have an effect on the host recombination machinery, which possibly promotes transformation 

efficiency (Maheshwari and Kovalchuk, 2013). 

Manipulating host proteins involved in post-transcriptional gene silencing and transcriptional 

gene-silencing is a new approach to improve transformation. Bilichak et al. (2014) demonstrated enhanced 
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efficiency of Agrobacterium-mediated Arabidopsis transformation by transient down-regulation of the RNA 

silencing machinery namely AGO2 and NRPD1a (a subunit of RNA polymerase IV). Either AGO2 or 

NRPD1a genes in the reproductive organs of Arabidopsis was transiently down-regulated using the 

Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) technique. Although TRV can enter 

the ovules of tobacco plants, it is not transmitted through seeds. Due to this unique feature of the virus, 

VIGS technique was used to transiently downregulate the AGO2 or NRPD1a genes in Arabidopsis. After 

confirmation of down-regulation of the two genes by real-time PCR, those plants were used for 

Agrobacterium-mediated transformation via the floral dip method. Results showed an increase in the 

transformation efficiency by successfully down-regulating the two genes transiently (Bilichak et al., 2014). 

Downregulation of AGO2 or NRPD1a genes decreased global DNA methylation in the plant genome, 

which led to an increase in DNA strand breaks (Bilichak et al., 2014). It is possible that higher DNA strand 

break levels resulted in efficient T-DNA integration by non-homologous end joining, by which T-DNA is 

most likely integrated into the plant genome (Magori and Citovsky, 2011b). 

Alternative approaches were also used to improve plant transformation. Zhang et al. (2013a) 

reported that addition of a plant defense response inhibitor in the culture medium and cold treatment of calli 

increased transformation significantly. Pretreatment of calli of perennial ryegrass with a cold shock (20 min 

on ice) and addition of L-glutamine (L-Gln) prior to and during transformation, respectively, resulted in 

highest transformation efficiency (84%).  L-Gln is known to inhibit beta-aminobutyric acids (BABA) which 

are produced by plants upon a bacterial infection, yet the molecular mechanism of BABA inhibition by L-

Gln is still not understood (Zhang et al., 2013a). Attenuating plant defense responses was indeed effective 

to increase transformation efficiency. Additionally, exposure to abiotic stresses such as cold, aluminum salt 

and paraquat were shown to affect methylation status in the coding region of a glycerophosphodiesterase-

like protein (NtGPDL) of the tobacco genome (Choi and Sano, 2007). This change in methylation status 

may cause genome instability as seen before (Bilichak et al., 2014), which could enhance the frequency of 

T-DNA integrations.  
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1.1.4.3. T-DNA integration at the precise genomic location 

Precise integration of transgenes was a long time goal for the nuclear genome transformation via 

Agrobacterium-mediated plant transformation as well as other transformation methods. The T-DNA was 

thought to be usually integrated into the gene-rich areas of the genome in a non-random manner; however, 

this integration pattern is likely observed due to the use of a selection process of the transformants using 

exposure to herbicide or antibiotics, favoring regeneration of plants with high level of expression of 

transgenes (and antibiotic resistance markers) (Gelvin and Kim, 2007). Work by Gelvin and Kim (2007) 

demonstrated that T-DNA is integrated into the genome in a relatively random manner. Attempts to 

increase frequency of homologous recombination between T-DNA and the targeted site by introducing 

homologous sequences in T-DNA region were made, but without major success; such events were 

extremely rare (Gelvin, 2003). Targeting the T-DNA (or individual transgenes) into precise genome 

locations can now be achieved by zinc-finger nucleases (ZFNs), transcription activator-like effector 

nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 

(CRISPER/Cas) system. ZFNs are fusions of newly engineered zinc-finger arrays of a DNA binding 

domain to a non-specific DNA-cleavage domain of the FokI type II restriction endonuclease. The arrays 

consist of 3-6 or more C2H2 fingers, in which each finger consists of 30 amino acids folded into a ββα 

structure, and these DNA binding domains target specific DNA sequences 9-18 base pairs long (Liu et al., 

2013; Porteus and Carroll, 2005). The ZFN system was successfully used to insert an herbicide resistance 

gene cassette flanked by short homologous sequences of the endogenous endochitinase gene into the 

tobacco genome (Cai et al., 2009).  

TALENs also contain the FokI nuclease domain but with transcription activator-like effectors 

(TALE) as DNA binding domains. TALEs are built in tandem arrays of 33-35 amino acid repeats, and each 

array recognizes a single base pair in the major groove. TALEs can be designed to bind to specific DNA 

sequences (Kim and Kim, 2014). TALEN was used to target the Sur genes encoding an enzyme involved in 

the amino acid biosynthesis in tobacco protoplasts transformed by the polyethylene glycol (PEG)-mediated 

method. The YFP gene was successfully inserted to the target site. Authors suggested that their data would 

be a framework for Agrobacterium or on other transformation methods to engineer plant genomes using 

TALENs (Zhang et al., 2013b).  
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The CRISPR/Cas system is more user friendly than ZFNs and TALENs which require complicated 

design and laborious assembly of the specific DNA binding domains for each target gene (Belhaj et al., 

2013). In the CRISPR/Cas system, Cas9 nuclease is guided to the target genomic DNA adjacent to the 

protospacer adjacent motif sequence by two customizable small non-coding RNAs, CRISPR RNA (crRNA) 

and trans-activation crRNA or one synthetic RNA chimera; subsequently, Cas9 cleaves the target genomic 

DNA, which is repaired by both non-homologous end joining and homology-directed repair mechanisms 

leading to mutations inactivating the target gene (Belhaj et al., 2013). Agrobacterium is used as an efficient 

tool to introduce the CRISPR/Cas system in Arabidopsis and tobacco, and it can be used for rice and wheat 

(Belhaj et al., 2013). Agrobacterium-mediated plant transformation is also a useful tool in delivering ZFNs 

and TALENs because of the established transformation methods. 

 

1.2. Chloroplast/plastid transformation 

Although Agrobacterium-mediated plant transformation has been successful to introduce 

transgenes in the nuclear genomes of various plants, it still faces some issues. Since Agrobacteria integrates 

primarily single copies of transgenes at a single location in the nuclear genome, the level of a transgene 

expression is relatively low in the stably transformed plants (Meyers et al., 2010). Also, some recombinant 

proteins are toxic in the cytoplasm. For example, a cholera toxin B subunit (CTB) a candidate oral subunit 

vaccine for cholera, a trehalose, which provides abiotic stress tolerance, and an enzyme xylanase, which can 

be used in applications such as paper and fiber manufacture are harmful in the cytoplasm of transgenic 

plants (Daniell et al., 2005). In addition, due to the ability of plants to cross-pollinate, transgenes carried by 

pollen can escape and contaminate wild type plants (Daniell, 2002; Meyers et al., 2010). Chloroplast/plastid 

transformation provides solutions to these issues. Chloroplast transformation is a type of plastid 

transformation. Transformation of all types of plastids including chloroplast and other plastids such as 

proplastids, chromoplasts and amyloplasts are collectively referred to as plastid transformation.  

 

1.2.1. Benefit of chloroplast/plastid transformation 

Plastids exist in plant cells in various forms including the undifferentiated proplastids in 

meristematic tissues, the green chloroplasts in photosynthetic cells, the colored chromoplasts in flowers and 
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fruits and the starch storage amyloplasts in tubers and endosperm in seeds (Bock, 2007; Pyke and Pyke, 

2009). All plastid types contain identical copies of the genome, yet their gene expression is influenced by 

their environment (Bock, 2007; Pyke and Pyke, 2009). Ten to 100 plastid genome copies exist in a plastid, 

and 10-100 plastids are in a plant cell and the number varies due to cell age and the tissue type (Daniell et 

al., 2002). This is an attractive aspect of plastid transformation because multiple copies of transgenes can be 

integrated, which would result in higher expression of the transgene. High expression of transgenes 

stemming from transformed chloroplasts/plastids (such plants are called transplastomics) is common; 

recombinant proteins accumulate to 5-25% of the total soluble protein (TSP) (Meyers et al., 2010). Even 

more than 70% TSP has been seen (Oey et al., 2009).  

Plastids of most angiosperms are inherited maternally, since plastid exclusion occurs during the 

first pollen mitosis, plastid degradation in the generative cell and plastid exclusion during fertilization occur 

(Bock, 2007). Because of this, cross-pollination between transplastomic and transgenic plants can be 

prevented. Also, chloroplast compartmentalization provides protection to the cell. Transplastomic plants 

expressing CTB, a trehalose or a xylanase showed a normal phenotype (Daniell et al., 2005).  

Multiple transgenes can be arranged in an operon-like structure which can be efficiently expressed 

in chloroplasts (Meyers et al., 2010; Zhou et al., 2007). The transgenes are flanked by the chloroplast 

homologous sequences which promote integration of the transgenes via homologous recombination. This 

prevents position effects (Meyers et al., 2010). Plastid transformation in higher plants has been significantly 

improved since the first successful transformation event (Svab et al., 1990), including optimized design of 

chloroplast transformation vectors.  

 

1.2.2. Chloroplast/plastid transformation vectors 

Chloroplast transformation vectors have been designed and efficiently used to transform several 

plant species. The common characteristic of these vectors is the presence of the chloroplast expression 

cassette which is flanked by chloroplast homologous sequences which are necessary to promote 

homologous recombination between the vector and the chloroplast genome (Lutz et al., 2007; Verma and 

Daniell, 2007; Verma et al., 2008). The order of the elements is shown in Figure 1.2.  
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Figure 1.2. Chloroplast expression cassette for leaves (modified from Verma et al., 2008).  

trnI and trnA: chloroplast homologous sequences; Prrn: promoter; PpsbA; promoter and  

5’ regulatory element; ggagg : 5’ regulatory element; Trps16 and TpsbA: 3’ regulatory elements;  

aadA (conferring spectinomycin resistance): selectable marker; GOI: gene of interest. 

 

 

The chloroplast homologous sequences trnI and trnA are commonly selected due to their location in 

inverted repeat (IR) regions in the genome. When the transgene is integrated into one of the IR region, the 

transgene is duplicated into the other IR region by a mechanism called copy correction (Verma and Daniell, 

2007).  

Several selectable markers have been used; commonly used markers in higher plants are antibiotic 

resistance genes including aadA (spectinomycin and streptomycin resistance), nptII and aphA-6 (kanamycin 

resistance), and herbicide resistance genes including bar (phosphinothricin resistance), EPSP (glyphosate 

resistance), and HPPD (diketonitrile resistance) (Day and Goldschmidt-Clermont, 2011). These selectable 

markers can be removed efficiently by a recombination pathway mediated by DNA direct repeats and a site 

specific recombinase/integrase. Thus, a selectable marker needs to be flanked by these necessary sequences. 

The Cre site-specific recombinase recognizes 34 bp loxP sites, and the phi C31integrase recognizes non-

identical 34 bp attB and 39-bp attP, resulting in excision of the region in between loxP sites and attB-aatP 

sites (Day and Goldschmidt-Clermont, 2011; Lutz et al., 2007). 

 

1.2.3. Chloroplast/plastid transformation methods 

Two methods are used to transform plastids; i.e., biolistic or PEG-mediated methods. The biolistic 

system requires tungsten or gold particles with 0.6 µm mean diameter and a biolistic device (Verma et al., 

2008). The DNA-coated metal particles are accelerated toward the target by high-pressure helium to 

penetrate the cells, and a portion of the DNA may be stably integrated into the host genome (Kikkert et al., 

2005). 

In the PEG-mediated method, protoplasts are incubated in a solution containing various ions, PEG 

and the foreign DNA. The plasma membrane is affected by the solution allowing transgenes to penetrate 

and move into the cytoplasm (Kofer et al., 1998). The exact role of PEG in the transgene delivery through 

the chloroplast envelope is unclear (Kofer et al., 1998). 
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There are drawbacks associated with these methods. For example, the biolistic technique requires a 

costly device and is pricy because it involves gold particles. The regeneration protocols through somatic 

embryogenesis are required for chloroplast transformation, and the established protocols are available only 

for selected plant species (Daniell et al., 2005; Liu et al., 2013). The PEG-mediated method is typically 

used to transform protoplasts, preparation, maintenance, treatment and regeneration of which require 

complex protocols (Meyers et al., 2010). Regardless of these limitations, the biolistic technique is the most 

common method used to transform chloroplasts. 

 

1.2.4. Growing research interest in chloroplast/plastid transformation 

 Chloroplast transformation has been getting attention for its possibility to be the most efficient 

method to produce various pharmaceutical proteins. Chloroplast-derived pharmaceutical proteins 

(bioencapsulated proteins) offer a significant reduction in costs associated with synthesis and purification of 

proteins (Davoodi-Semiromi et al., 2010). There are several successful cases of production of 

pharmaceutical proteins via chloroplast transformation. The CTB of Vibrio cholerae was fused to malarial 

vaccine antigens; apical membrane antigen-1 and merozoite surface protein-1 were expressed in lettuce and 

tobacco chloroplasts, which were used to immunize mice by subcutaneous injection using purified antigens 

or by oral administration with tobacco leaves (Davoodi-Semiromi et al., 2010). Both types of immunized 

mice elicited strong immunity against the malarial parasite and cholera toxin (Davoodi-Semiromi et al., 

2010). Another interesting example is the chloroplast-derived human immunodeficiency virus (HIV)-1 

capsid protein p24 and p24 fused to Nef (the negative regulatory protein). A high level of p24-Nef (about 

40% TSP) was observed in transplastomic tobacco. Strong antigen-specific serum IgG response was 

observed after mice were immunized by subcutaneous injection with purified p24 and oral administration of 

partially purified p24-Nef after injection of p24 or Nef (Gonzalez-Rabade et al., 2011).  

 Bioencapsulated proteins produced in the transplastomic tobacco were also used to decrease ocular 

inflammation by angiotensin-converting enzyme 2 (ACE2) and Ang-(1-7), a cleaved product of 

Angiotensin II. The mice fed with chloroplast-derived ACE2/Ang-(1-7) showed significant reduction in 

pulmonary hypertension, a lung disease that causes a heart failure and death (Shil et al., 2014). Chloroplast-

derived protein, myelin basic protein (MBP) fused with the transmucosal carrier CTB was also evaluated to 
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cross blood-brain and blood-retinal barriers for possible treatment of Alzheimer’s disease (Kohli et al., 

2014). Amyloid β42, can be cleaved to different fragments which then form aggregates and plaques – a 

major characteristic of Alzheimer’s disease. The synaptic structural integrity and communication between 

axon and dendrites are lost by these newly formed aggregates and plaques. The chloroplast-derived MBT-

CTB was orally administrated to the Alzheimer`s disease mice. The results showed that the MBT-CTB 

successfully crossed the blood-brain barrier and blood-retinal barrier, resulting in a decrease in formation of 

amyloid β42 in mice (Kohli et al., 2014). In addition, transplastomic plants can be administered directly for 

treating certain conditions. As a result, there is a growing interest in chloroplast-derived proteins and 

transplastomic plants to be used as pharmaceuticals.  

 

1.2.5. Challenges of chloroplast/plastid transformation 

 Despite all the success in transforming chloroplasts of various plants for production of 

recombinant proteins, only rice proplastids were successfully transformed using rice calli among all the 

monocot plants (Lee et al., 2006). Proplastids are approximately 5 fold smaller than well-developed 

chloroplasts, which makes them a difficult target for biolistics (Lee et al., 2006). The smaller particle size 

was suggested to enhance the transformation of proplastids (Lee et al., 2006). Gold particles with an 

average between 0.07 and 0.3 µm were used to transform chloroplasts using tobacco leaf (Okuzaki et al., 

2013). The highest chloroplast efficiency was observed with 0.3 µm particles (Okuzaki et al., 2013). Their 

findings have not been applied for plastid transformation in monocots. Biolistics is a robust transformation 

system to introduce transgenes in to plants and animals. However, the biolistics method is still not ideal for 

chloroplasts transformation, especially in monocots.  

 

1.3. Intracellular protein trafficking 

1.3.1. Nuclear import 

 Smaller proteins (<60 kDa) can diffuse through the nuclear pore complex (NPC), while bigger 

proteins require NLSs which are recognized and imported by the importin α/β pathway (Wang and Brattain, 

2007). The NLSs typically contain stretches of basic amino acid residues (lysine and argentine) (Wang and 

Brattain, 2007). Importin α carries two NLS binding grooves; the major and minor binding sites are located 
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at N-terminal Armadillo (Arm) repeat 2-4 and the C-terminal Arm repeat 7 - 8, respectively (Kosugi et al., 

2009a). Each repeat is composed of three α helices (Wang and Brattain, 2007). The six classes of NLSs 

have been identified (Kosugi et al., 2009a).  

1) Class 1: A classical monopartite NLS containing a single cluster of basic amino acid residues which 

binds to the major binding groove of importin α. Consensus sequence: KR(K/R)R, K(K/R)RK. 

2) Class 2: A classical monopartite NLS containing a different basic core than Class 1 NLS. The major 

binding groove of importin α binds to the class 2 NLSs. Consensus sequence: (P/R)XXKR(ˆDE)(K/R) 

(X: any amino acids; ˆDE: any amino acids but aspartate or glutamate. 

3) Class 3: A non-canonical monopartite NLS which binds to the minor binding groove of importin α. 

Consensus sequence: KRX(W/F/Y)XXAF. 

4) Class 4: A non-canonical monopartite NLS which binds to the minor binding groove of importin α. 

Consensus sequence : (R/P)XXKR(K/R)(ˆDE). 

5) Class 5: A plant-specific NLS. Consensus sequence: LGKR(K/R)(W/F/Y). 

6) Bipartite: Two imperfect monopartite NLSs. The class 3/class 4 NLS at the N-terminal region and the 

class 1/class 2 NLS at the C-terminal region. Consensus sequence: KRX10–12K(KR)(KR) and KRX10–

12K(KR)X(K/R) (X10-12: any 10-12 amino acids). 

 

The protein nuclear import pathway is illustrated in Figure 1.3.1. The adaptor protein importin α 

directly binds the NLS in the protein in the cytoplasm. Importin β then binds to the importin α forming the 

trimeric complex to facilitate the interaction and translocate the complex through the NPC. Inside the 

nucleus, RanGTP binds to improtin β causing a conformational change to release the importin α-cargo 

complex. Association of an autoinhibitory region on the importin β-binding domain of importin α with the 

nucleoporin Nup2 (in yeast) causes dissociation of the cargo from importin α. A RanGTP-importin β 

complex and RanGTP-Nup2-importin α with the export receptor for importin α (Ces1 in yeast) are exported 

back to the cytoplasm. RanGAP at the cytoplasmic face of the NPC hydrolyzes RanGTP to RanGDP on the 

complexes to dissociate it to individual components (Lam and Dean, 2010; Lange et al., 2007). 
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Figure 1.3.1. Nuclear protein import by the importin α/β pathway. 

Modified from Lam and Dean, 2010; Lange et al., 2007. 

 

 

 

 

 

 

 

1.3.2. Chloroplast protein import 

More than 95% of chloroplast proteins are encoded in the nuclear genome, and majority of them 

contain chloroplast transit peptides at their N-terminus to be directed to the chloroplasts by the import 

machinery (Jarvis and Lopez-Juez, 2013; Lee et al., 2013; Shi and Theg, 2013). These proteins containing 

the transit peptide are called precursors. Although the transit peptides are known, their structure and 

interactions with the chloroplast import machinery has not yet completely understood. There is some new 

information about transit peptides based on sequence analysis. Transit peptides do not contain consensus 

sequences in their primary structure, and the length of transit peptides varies in size from about 20 to >100 

residues. Some characteristics are commonly observed including a high content of hydroxylated amino 

acids and a formation of α-helical structures in hydrophobic environments as reviewed elsewhere (Jarvis 

and Lopez-Juez, 2013; Lee et al., 2013; Shi and Theg, 2013). Several transit peptides have been used to 

examine their efficiency in chloroplast targeting of the recombinant proteins to achieve the accumulation of 
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a particular recombinant protein or modification of a metabolic pathway (Gnanasambandam et al., 2007; 

Lee et al., 2008). Some transit peptides have preference for different plastid types. For example, the non-

photosynthetic ferredoxin III (prFdIII) transit peptide and the ribulose-1,5-bisphosphate 

carboxylase/oxygenase small subunit (prRBCS) transit peptide of wheat can direct a green fluorescent 

protein (GFP)-fusion protein into pollen amyloplasts and to plastids in endosperm by the prFdIII transit 

peptide and the prRBCS transit peptide, respectively (Li and Teng, 2013). Also, at least three transit peptide 

groups are defined to be imported into the plastids of a different age: Group 1) targeting young chloroplasts, 

2) targeting any age of the chloroplasts, and 3) targeting older chloroplasts (Li and Teng, 2013). 

Proteins which are imported into the chloroplasts must go through a TOC (translocon at the outer 

envelope membrane of chloroplasts) and a TIC (translocon at the inner envelope membrane of chloroplasts), 

illustrated in Figure 1.3.2. The core TOC complex is composed of Toc34, Toc75 and Toc159. Toc34 and 

Toc159 are GTPases and receptors for the precursors. Toc75 is a β-barrel membrane channel in which 

precursors can cross the outer membrane (Lee et al., 2013; Paila et al., 2015). Tic20, Tic21 and Tic110 are 

suggested to be channels across the inner membrane, and several other Tic proteins are involved in 

translocation of proteins (Li and Teng, 2013; Paila et al., 2015). Some cytosolic proteins are required for 

chloroplast import. The heat shock protein 90 (Hsp90) can bind both the transit peptide and the N-terminal 

region of the mature protein. The cytosolic Hsp90 has been shown to form a complex with Hsp70/Hsp90 

organizing protein (Hop) and immunophilin FKBP. This complex binds to precursor protein and guides it to 

Toc64 that contains a cytosolic tetratricopeptide repeat (TPR) domain. In the cytoplasm, proteins having the 

TPR domain participate in the formation of Hsp70-Hsp90 chaperone complexes. Therefore, the TPR in 

Toc64 is thought to facilitate transfer of the precursor proteins from Hsp90 to the TOC complex (Lee et al., 

2013; Paila et al., 2015). The cytosolic Hsp70 and 14-3-3 proteins can bind to the transit peptide. The 14-3-

3 can also interact with the region of the mature protein. Binding of the guidance complex (Hsp70 and 14-

3-3) to the transit peptide can escort the precursor protein to the TOC receptors. An outer envelope 

membrane protein 61 and an Hsp70 receptor at the outer envelope membrane have been proposed to 

facilitate the transfer of the precursor protein from the guidance complex to the TOC receptors (Lee et al., 

2013; Paila et al., 2015). Interestingly, some precursor proteins do not require the guidance complexes to be 

directed to the TOC complex, yet the interactions of Hsp90 and Hsp70 with the precursor proteins could 
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potentially prevent misguiding or misfolding of the precursor proteins (Lee et al., 2013; Paila et al., 2015). 

During the translocation, the stromal processing peptidase cleaves off the transit peptide in the stroma, and 

mature proteins are released (Lee et al., 2013). 

 

 

Figure 1.3.2. Chloroplast protein import.  

Selected proteins are shown (modified from Lee et al., 2013; Paila et al., 2015). OEP61: outer envelope 

membrane protein 61; SPP: the stromal processing peptidase. 

 

 

1.4. Agrobacterium VirD2 protein 

Agrobacterium VirD2 protein is one of the best studied virulence proteins. It is essential for the 

transformation process because of its relaxase domain involved in cleavage of the T-DNA border sequences 

and its nuclear localization signals (Figure 1.4 containing all other motifs). Mutational analyses have been 

done on VirD2 to define its structural and functional role in the transformation for more than thirty years. 

Interactions between VirD2 and several plant proteins are also known. It seems that characterization of 

VirD2 is completed.  
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Figure 1.4. Schematic representation of VirD2 with domains and motifs.  

NLS C-ter1 and NLS C-ter2: the C-terminal bipartite NLS. NLS3 (see Chapter 3). 

 

1.4.1. Discovery of the virD2 gene 

An octopine (pTiAch5) and a nopaline (pTiC58) Ti plasmids of Agrobacterium were analyzed to 

construct detailed physical maps of the two plasmids by Southern blotting and by electron microscope 

heteroduplex analysis in 1981 (Engler et al., 1981). Based on the map of the plasmid, transposon insertion 

mutations were introduced into the regions of the plasmid to determine the change in virulence on 

Kalanchoe daigremontiana stems and leaves or carrot slices by Klee et al. (1983). Authors found five 

different loci (the virulence region) which affected tumor induction. These loci were named virA, virB, virC, 

virD and virE (Klee et al., 1983). Later on, virG along with virA were shown to be required to activate 

expression of the vir genes (Horsch et al., 1986; Stachel and Nester, 1986). The virD operon was suggested 

to contain two or more cistrons and encode a site specific endonuclease, which is involved in generation of 

the single stranded T-DNA (T-strand) (Stachel and Nester, 1986; Stachel et al., 1987; Yanofsky et al., 

1986). Molecular characterization of the virD operon was performed to identify the individual virD genes, 

virD1, virD2, virD3, virD4 and virD5 (Porter et al., 1987). Since then, the structure and functions of VirD2 

have been revealed. VirD2 contains several domains and signals such as a relaxome domain, the nuclear 

localization signals (NLSs) and ω domain. In addition, VirD2 has been shown to interact with plant host 

proteins to play an important role in the transformation process.  
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1.4.2. Domains and signal sequences in VirD2 

1.4.2.1. Relaxase domain 

VirD2 was first shown to be involved in cleavage of the T-DNA border sequences and attachment 

to the 5’ end of the T-DNA (Herrera-Estrella et al., 1988; Ward and Barnes, 1988; Young and Nester, 1988). 

Later on, it was shown that the first 228 amino acids of the VirD2 proteins of an octopine and nopaline Ti 

plasmid had 82% homology (Steck et al., 1990). This region called the relaxase domain is required for 

endonuclease activity of VirD2. The relaxase domain was further minimized to 204 amino acids according 

to sequence comparison between different relaxases (van Kregten et al., 2009). The particular motif of the 

relaxase domain is critical for its activity. A comparison of amino acid sequences between VirD2 and other 

bacterial proteins presented that VirD2 contains a homologous region which is conserved in many 

replication initiation and mobilization proteins such as TraI, Mob and Rlx (Ilyina and Koonin, 1992). This 

region, called HxDxxx(P/u)HuHuuux (H: His; D: Asp; x: any residue; u: a bulky hydrophobic residue) 

motif, was analyzed in detail (Ilyina and Koonin, 1992). Relaxases are one of two major classes of the 

endonuclease superfamily, the HUH endonuclease. The HUH endonuclease contains the HUH motif (H: 

His; U: a bulky hydrophobic residue) consisting of two His residues separated by a bulky hydrophobic 

residue and a Y motif including one or two Tyr residues separated by several amino acids (Chandler et al., 

2013). VirD2 contains the HUH motif in a form of HxDxxx(P/u)HuHuuux motif (residues 126-139 of 

VirD2: HVDRDHPHLHVVVN) (Vogel et al., 1995). When the conserved motif was substituted with 

different amino acids, the cleavage activity of VirD2 was abolished or reduced severely (Vogel et al., 1995). 

In VirD2, the His residues (133 and 135), which are absolutely conserved among the family of the virulence 

and mobilization proteins, were proposed to function as a metal binding motif (Vogel et al., 1995). In fact, 

HUH enzymes require a divalent metal ion to facilitate their cleavage activity (Chandler et al., 2013). Mg
2+

 

was proven to be necessary for the cleavage activity of VirD2 (Scheiffele et al., 1995).  

Tyr residues in VirD2 were suggested to be the place of attachment to the 5’ end of the T-strand 

(Durrenberger et al., 1989). Two scenarios of the nicking reaction and the covalent attachment were 

proposed: 1) a one-step process in which two reactions occur simultaneously and 2) a two-step process in 

which the covalent attachment takes place after cleavage of the T-DNA border sequences (Vogel and Das, 

1992). Therefore, alteration of the necessary Tyr residue would destroy the cleavage activity of VirD2 in 
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the first case, whereas in the latter case, a change in a Tyr residue would not affect the cleavage activity of 

VirD2, subsequently another Tyr may attach to the T-strand. Tyr residues at position 29, 68, 99, 119, 121, 

160 and 195 within the relaxase domain of VirD2 were substituted with phenylalanine to observe the effects 

of these mutations (Vogel and Das, 1992). The results showed that a change in Tyr 29 and 121 to 

phenylalanine abolished the cleavage activity. Further mutations in these two Tyr residues showed that any 

change in Tyr 29 destroys the cleavage activity, while Tyr 121 can be replaced by a Trp residue (Vogel and 

Das, 1992). These results clearly demonstrated that Tyr 29 is essential for the nicking of the T-DNA border 

sequences which is accompanied by its covalent attachment.  

 

1.4.2.2. Nuclear localization signals (NLSs) 

VirD2 NLSs are the most characterized domains among other domains. Two types of NLSs exist 

in the protein: a monopartite type and a bipartite type at the N and C-terminal region, respectively. Initially, 

Herrera-Estrella et al. (1990) suggested the presence of the N-terminal NLS by examing the β-galactosidase 

activity in the plant cell fractions of transgenic tobacco expressing VirD2 (first 292 amino acids)-β-

galactosidase fusion protein. The nuclear fraction showed approximately a three fold higher β-galactosidase 

activity than the cytosol fraction. Based on the results and the consensus sequences for nuclear targeting, a 

monopartite N-terminal NLS (RKGR) was suggested (Herrera-Estrella et al., 1990). Different VirD2 

proteins among octopine and nopaline types have high homology in two short stretches of 4-5 amino acids 

in the C-terminal region of the proteins. These stretches have also extensive homology to the nuclear 

localization signals of other proteins, which led to a proposition of a bipartite C-terminal NLS of VirD2 

(Howard et al., 1992). Truncated VirD2 was fused at the C-terminus of β-glucuronidase (GUS) to observe 

the GUS activity in transiently transformed tobacco protoplasts by electroporation. The results showed that 

GUS-truncated VirD2 with the absence of the N-terminal NLS and the presence of the C-terminal NLS was 

detected in the nucleus, whereas GUS-truncated VirD2 proteins, which contain the wild type N-terminal 

NLS and lack the C-terminal NLS with either deleted 158 C-terminal amino acids or only eliminated 

bipartite sequences, were detected in the cytosol (Howard et al., 1992). Therefore, the bipartite C-terminal 

NLS was confirmed, yet the N-terminal NLS was shown to be non-functional. This discrepancy regarding 

the N-terminal NLS of VirD2 was solved by other researchers, discussed below. Tinland et al (1992) used 
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several fragments of VirD2 fused to the N-terminus of β-galactosidase to study its NLSs. The fusion 

consisting of N-terminal NLS of VirD2 (11 amino acids) and β-galactosidase was detected by indirect 

immunofluorescence in the nucleus of transiently transformed tobacco protoplasts and yeast cells. The 

fusion of C-terminal NLS of VirD2 (20 amino acids) to β-galactosidase was also detected in the nucleus of 

protoplast and yeast cells (Tinland et al., 1992). These results supported the presence of functional N and C-

terminal NLSs.  

A different transformation system and reporter construct were used in the study by Relic et al. 

(1998). Subcellular localization of the GFP fused to the N-terminus of VirD2 variants was examined in 

transiently transformed mammalian cells. GFP-VirD2 carrying the N-terminal NLS and a deletion of the C-

terminal NLS by NruI (removal of 45 amino acids) was localized in the nucleus, while GFP-VirD2 lacking 

both NLSs were localized in the cytoplasm (Relic et al., 1998). Another approach was taken to observe 

subcellular localization of the fluorescently labelled VirD2 variants, which were directly introduced into the 

permeabilized tobacco protoplasts (Ziemienowicz et al., 2001). Confocal microscopy showed that VirD2 

with an N-terminal NLS and lacking a C-terminal NLS deleted by NruI was localized in the nucleus. 

However, when this VirD2 variant without the fluorescent label was introduced to the permeabilized 

protoplasts and mammalian cells with the fluorescently labelled single stranded DNA, the nuclear import of 

single stranded DNA was not observed (Ziemienowicz et al., 1999; Ziemienowicz et al., 2001). It was 

indicated that due to the proximity between the N-terminal NLS of VirD2 and Tyr 29, the N-terminal NLS 

is masked when the protein attaches to DNA which may cause a conformational change in VirD2 (Rossi et 

al., 1993; Ziemienowicz et al., 1999; Ziemienowicz et al., 2001). 

 

1.4.2.3. Omega domain 

 The omega domain (DGRGG), which is located at the C-terminus of VirD2, was first proposed by 

Shurvinton et al. (1992). In their exerpiments, various mutations were introduced into VirD2 to analyze the 

effects on tumorigenesis on potato tuber discs. The results showed that deletion of three amino acids of the 

omega doamin and one adjacent amino acid (bold underlined) (DDGR) caused a decrease in tumorigenesis 

to 3%. The omega domain was thought to facilitate proper protein folding, which may indirectly affect 

nuclear targeting of the C-terminal NLS, or to be involved in transfer of the T-DNA-VirD2 complex from 
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the bacterium to the plant cell (Shurvinton et al., 1992). A few years later, two groups examined the 

function of the omega domain more closely. Mysore et al. (1998) mutated the omega domain of VirD2 by 

deleting DDGR and showed that Agrobacterium harbouring the VirD2 mutant had lower T-DNA transfer 

efficiency but more severe defect was observed in the T-DNA integration (Mysore et al., 1998). Thus, their 

conclusion was that the omega domain is important for T-DNA integration. Bravo-Angel et al. (1998) 

examined the function of the omega domain using two different VirD2 variants in tobacco seedling 

transformation: 1) precisely eliminating the omega domain (DGRGG) (strain ATvirD2Δω) and 2) 

substituting Asp and Arg to Gly (GGGGG: substituted amino acids in bold) (strain ATvirD2ω/G). Their 

results showed that both mutants had a reduction in T-DNA transfer efficiency. Strain ATvirD2Δω 

decreased the efficiency to a third relative to the wild type strain, while strain ATvirD2ω/G resulted in a 

transfer efficiency of 6% relative to the wild type strain. This suggested that pentaglycine likely had a more 

severe influence on the transfer step than the deletion mutation. Neither the T-DNA integration efficiency 

nor the T-DNA integration pattern was affected by these mutations. Thus, the omega domain was suggested 

to be important for the T-DNA transfer (Bravo-Angel et al., 1998). The discrepancy between the studies by 

Mysore el al. (1998) and Bravo-Angel et al. (1998) was suggested to be due to the use of different 

mutations in the omega domain (Gelvin, 2012). van Kregten et al. (2009) examined the domain of unknown 

function (DUF: amino acids 205-395) which is poorly conserved among VirD2. They constructed several 

fragments of VirD2, and Agrobacterium strains harboring the VirD2 variants were used to transiently and 

stably transform Arabidopsis roots. The results showed that the C-terminal 40 amino acids including the 

omega domain were necessary for the T-DNA translocation to the plant cell. Also, the region between 

amino acids 205 and 264 provided function in the T-DNA translocation into the plant cell, while amino 

acids 265-373 were thought dispensable (van Kregten et al., 2009). Despite of these results, the exact 

function of the omega domain is not yet clear.  

  

1.4.3. Plant proteins that interact with VirD2 

Since VirD2 is translocated into the plant cell, it is exposed to many host proteins for interactions. The 

interactions between VirD2 and several plant proteins including cytoplasmic and nuclear proteins have been 

examined. It was found that some interactions are necessary for the transformation process, whereas for 
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some the possible role in the process of transformation or some other unknown functions is yet to be 

discovered. 

 

1.4.3.1. Cytoplasmic proteins 

1.4.3.1.1. Cyclophilins 

Cyclophilins are present in all subcellular compartments and involved in many cellular processes 

such as protein trafficking and maturation, stabilization of receptor complexes, apoptosis, receptor signaling, 

RNA processing and spliceosome assembly (Romano et al., 2004). Since the discovery of the plant 

cyclophilins (Gasser et al., 1990), 14 Arabidopsis cyclophilin genes have been identified. In addition, 15 

genes encoding putative proteins containing cyclophilin-like domains were discovered (Romano et al., 

2004). Some of them are known to localize in the cytoplasm including rotamase cyclophilin (ROC) 1-3 and 

5-6, while ROC4 is targeted to the stromal compartment of the chloroplast (He et al., 2004; Romano et al., 

2004). VirD2 was shown to interact with three cyclophilins ROC1, ROC4 and ROC5 (CrypA) by the yeast 

two-hybrid system and in vitro protein binding assay (Deng et al., 1998). ROC4 showed the weakest 

interaction with VirD2, suggesting that ROC4 was likely not involved in the T-complex trafficking in the 

cytoplasm (Deng et al., 1998). The immunosuppressive drug cyclosporin A (CsA), a cyclic 11 amino acid 

peptide produced by the fungus Tolypocladium inflatum, interacts with the cyclophilin to form a complex 

which binds to inhibit calcineurin, a calcium-calmodulin-activated Ser/Thr specific protein phosphatase. 

This prevents nuclear import of proteins which require activity of this type of phosphatise (Wang and 

Heitman, 2005). Addition of CsA during binding of VirD2 and Roc1 and Roc5 inhibited association of 

VirD2 with both types of cyclophilins (Deng et al., 1998). Moreover, CsA inhibited Agrobacterium-

mediated transient transformation of tobacco cell suspension and Arabidopsis roots. The results of the yeast 

two-hybrid analysis using different regions of VirD2 determined that regions 174 to 337 and 274 to 337 are 

required for ROC1 and ROC5 interactions, respectively (Deng et al., 1998). Interestingly, however, 

Agrobacterium containing VirD2 with only the first 204 amino acids of VirD2 attached to SV40 NLS at its 

N-terminus and a translocation signal of VirF at its C-terminus was still able to transform plants both 

transiently and stably (van Kregten et al., 2009). Thus, interactions between VirD2 and cyclophilins do not 

likely have a specific role in the transformation step. Some of cyclophilin-like proteins (AtCYP59, 
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AtCYP63 and AtCYP95) are predicted to localize in the nucleus (He et al., 2004; Romano et al., 2004). It 

might be interesting to examine if VirD2 interacts with these putative cyclophilin in the nucleus, which 

might have some effects during the transformation.  

 

1.4.3.1.2. Caspases 

Caspases belong to a family of Cys proteases which cleave their substrates after an Asp residue. 

These proteases are well known to be associated with programmed cell death in mammalian cells, and they 

are also involved in the programmed cell death in plants through the hypersensitive response caused by 

pathogen invasion (Coll et al., 2011). Interestingly, VirD2 was found to be one of the caspase substrates 

(Chichkova et al., 2004). VirD2 was fragmented after incubation with the human caspase-3, which 

suggested that targeted Asp residues were located close to the C-terminus of VirD2. The C-terminal 86 

amino acid region of VirD2 was fused to GFP at its N or C-terminus. The results of cleavage products by 

the caspase-3 showed that putative target sites were GEQD and TATD. Asp residues were substituted with 

Ala residues (GEQA and TATA), which did not allow the caspase-3 to cleave the sequence. A partially 

purified tobacco caspase specifically cleaved the TATD sequence (Chichkova et al., 2004). Based on this 

study, Reavy et al. (2007) substituted GEQD to GEQA and TATD to TATA in the nopaline VirD2. 

Agrobacterium harbouring this mutated VirD2 was used for transient expression of GFP in tobacco, spinach, 

barley, physalis and oil seed rape. The total area of GFP-expressed cells increased about 4-5 fold in tobacco, 

spinach and barley, and about 20 fold in physalis and oil seed rape relative to Agrobacterium harbouring the 

wild type VirD2 protein. Thus, these mutations in VirD2 were suggested to improve Agrobacterium-

mediated plant transformation by preventing cleavage of VirD2 by plant caspase-like proteins (Reavy et al., 

2007). Interestingly, two target sites (GEQD and TATD) exist in the nopaline type VirD2 protein 

(accession number: NC_003065), while the opine type VirD2 protein (accession number: CP007228) 

contains only GEQD. Since a tobacco caspase-like protein did not target the GEQD sequence, the 

substitution of an Asp residue may not have any influence on transformation using the octopine VirD2.  
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1.4.3.2. Cytoplasmic-nuclear proteins 

1.4.3.2.1. Phosphatase  

VirD2 has been shown to interact with phosphatase in the cytoplasm. Tomato DIG3, type 2C 

Ser/Thr protein phosphatase (PP2C) was tested for its interaction with VirD2 (Tao et al., 2004). A tomato 

cDNA library was first searched for the protein that binds specifically to VirD2. Tomato DIG3 was found to 

be strongly associated with the C-terminal region of VirD2 defined by the yeast two-hybrid analyses. The 

amino acid analysis of DIG3 suggested that its likely encodes PP2C. The results of DIG3 phosphatase 

activity assay indicated DIG3 indeed possesses the PP2C activity. The DIG3 potential target site was 

predicted to be Ser 394 in the proximity of the C-terminal NLS of VirD2. Effect of DIG3 on subcellular 

localization of GUS-cVirD2 (the C-terminal half of VirD2) was examined using electroporated tobacco 

protoplasts. GUS-cVirD2 in plants lacking DIG3 showed 80-90% of the GUS activity exclusively in the 

nucleus, while nuclear localization of GUS-cVirD2 in plants overexpressing DIG3 decreased to about 40%. 

A Ser 394 was substituted with an Ala residue in GUS-cVirD2 (GUS-mcVirD2) to observe the effect of 

DIG3. The GUS activity was about 50% regardless of DIG3. GUS-NIa (a tobacco etch virus protein 

containing plant functional NLS) was used to see any effects by DIG3, and DIG3 did not affect GUS-NIa at 

all. Thus, DIG3 is specific to a Ser at the C-terminal NLS of VirD2 (Tao et al., 2004). In conclusion, a 

phosphorylation/dephosphorylation target site is likely Ser 394 which can modulate VirD2 NLS activity. 

Phosphorylation of a Ser residue has been shown to up-regulate nuclear import by increasing its affinity for 

a specific importin. For example, phosphorylation of Ser 385 in NLS of the Epstein-Barr virus (EBV) 

nuclear antigen 1 (EBNA-1) protein enhances its nuclear import by promoting its binding affinity for 

importin α5, while replacement of serine 385 with an Asp residue decreases the binding affinity for this 

particular importin (Nardozzi et al., 2010). The NLS of the large tumor antigen of simian-virus 40 (SV40) is 

likely one of the best characterized NLSs. SV40 NLS (KKKRKV) does not contain a serine, but upstream 

of NLS has several Ser residues that can be phosphorylated. Although phosphorylation of serine residues of 

the classical monopartite NLS has been shown to accelerate the nuclear import of some proteins including 

SV40 large T-antigen, it does not increase the affinity of the NLS to the importin such as importin α1. Thus, 

phosphorylation upstream of NLS is suggested to alter the recognition of the NLS by the importin protein 
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(Nardozzi et al., 2010). It is possible that phosphorylation of VirD2 helps its nuclear import by the importin 

α/β pathway. 

 

1.4.3.2.2. Importin proteins 

The proteins containing NLSs are imported into the nucleus by the importin α/β pathways. NLSs 

are recognized by the adaptor protein importin α, which interacts with a heterodimeric import receptor 

composed of the β-karyopherin (importin β) that mediates interactions with the nuclear pore complex to 

release cargo into the nucleus (Walde and Kehlenbach, 2010). Since VirD2 contains a monopartite NLS and 

a bipartite NLS at its N and C-terminal regions, several importins have been identified. First, interaction 

between VirD2 and Arabidopsis AtKAPα (IMPa-1) was identified in 1997 by Ballas and Citovsky. VirD2 

carrying the precise deletion (KRPR and RKRER of a nopaline type VirD2) of the C-terminal NLS 

(VirD2ΔNLS) did not interact with IMPa-1 in vitro and in the yeast two-hybrid system (Ballas and 

Citovsky, 1997). When fluorescently labeled VirD2ΔNLS was introduced into permeabilized yeast cells 

expressing IMPa-1, VirD2ΔNLS was not imported into the nucleus (Ballas and Citovsky, 1997). Bako et al. 

(2003) indicated interactions of VirD2 with IMPa-3, IMPa-4 and IMPa-6 in the yeast two-hybrid system. 

Later, Bhattacharjee et al. (2008) confirmed the interaction between VirD2 and the previously mentioned 

importin α proteins, and they also reported several other importin α proteins were able to bind to VirD2. In 

this study, seven importin α (IMPa-1, IMPa-2, IMPa-3, IMPa-4, IMPa-6, IMPa-7 and IMPa-9) were 

examined in vitro, by the yeast two-hybrid system and by biomolecular fluorescence complementation 

(BiFC) (Bhattacharjee et al., 2008). All examined importin α proteins were shown to interact in vitro and in 

yeast, while only IMPa-1, IMPa-4, IMPa-7 and IMPa-9 were detected to form a complex with VirD2 in 

tobacco protoplasts using the BiFC system (Bhattacharjee et al., 2008). Four VirD2 deletion mutants were 

constructed to examine IMPa-4 specifically: 1) ΔNLS: precise deletion of the C-terminal NLS (KRPR and 

KRAR) of an octopine VirD2, 2) ΔNruI: deletion of 45 amino acids including the C-terminal NLS, 3) 

ΔKpnI: a 70% internal deletion of VirD2 with presence of the N and C-terminal NLS, and 4) ATG-BamHI: 

an N-terminal half of VirD2. IMPa-4 interaction was almost abolished in VirD2ΔNruI and VirD2 ATG-

BamHI, whereas VirD2ΔNLS and VirD2ΔKpnI still showed high interaction with IMPa-4 in the yeast two-

hybrid system (Bhattacharjee et al., 2008). It would be interesting to see the interactions between VirD2 and 



32 
 

IMPa-5/IMPa-8, and to check the effect phosphorylation/dephosphorylation status of VirD2 may have on 

binding affinity to different importins. 

 

1.4.3.3. Nuclear proteins 

1.4.3.3.1. Cyclin-dependent kinase activating kinases and TATA box-binding protein 

 Cyclin-dependent kinases (CDKs) are in the Ser/Thr protein kinase family, which regulates a 

number of the cellular and developmental processes in eukaryotes. For example, CDKs can increase or 

decrease transcription by phosphorylating transcription factors or indirectly interacting with suppressors 

and activators. In addition, CDKs can associate with the C-terminal domain (CTD) of RNA polymerase II 

where a CDK consensus phosphorylation site exists (Doonan and Kitsios, 2009). CDKs are first 

phosphorylated by a CDK-activating kinase (CAK) to be activated to regulate cellular processes (Umeda et 

al., 2005). Alfalfa CAK (CAK2Ms) was found to phosphorylate VirD2 and also phosphorylate the C-

terminal domain of RNA polymerase II large subunit where the TATA box-binding protein is recruited 

(Bako et al., 2003). VirD2 was reported to have several possible phosphorylation sites such as Ser and Thr 

motifs for Pro-directed protein kinases. First, abilities of a nuclear kinase and a cytoplasmic kinase to 

phosphorylate predicted sites of VirD2 were examined. The purified nuclear protein fraction and 

cytoplasmic protein fraction were used to examine which fractions contain the kinase that phosphorylates 

VirD2. The results showed that a high level of the phosphorylation on VirD2 was observed in the nuclear 

fraction, whereas a low level of the kinase activity was observed in the cytoplasmic protein fraction. Hence, 

a nuclear kinase plays a major role in phosphorylation of VirD2 (Bako et al., 2003). Subsequently, the 

regions between 2-109 and 248-447 amino acid of VirD2 were identified as phosphorylation sites. Due to 

amino acid sequence homology and the kinase activity on VirD2 and CTD, the alfalfa CAK2Ms kinase is a 

close homolog of Arabidopsis CAK2At and rice R2Os. Furthermore, the histidine-triad (HIT) motif 

containing (His-X-His-X-His: X as any amino acids) which associates with CAKs was found in the 

relaxase-domain of VirD2. This motif was identified as the binding site of the TATA binding protein (TBP), 

which is involved in tight association between VirD2 and TBP (Bako et al., 2003).  

This low level of phosphorylation of VirD2 found in the cytoplasmic fraction might answer the 

question which kinase is involved to enhance nuclear import of phosphorylated VirD2, which might be 
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dephosphorylated by phosphatase. It might be interesting to see the levels of kinases and phosphatases in 

different organisms and different cell types in a given plant and to check whether these levels might affect 

VirD2 activity and change transformation efficiency. 

 

1.4.3.3.2. Histones 

Histones, especially H2A have been shown to be critical factors during the T-DNA integration 

process. Arabidopsis with an integration of the T-DNA into the 3’ untranslated region of the histone H2A-1 

gene, one of the 13 member family of histone H2A, exhibited a rat (resistance to Agrobacterium 

transformation) phenotype (Mysore et al., 2000). Interestingly, overexpression of H2A-1 enhanced the 

transformation (Mysore et al., 2000). H2A-1 expression was examined closely to discover that the H2A-1 

gene was expressed in many non-dividing cells, namely in the elongation zone of the root, which are highly 

susceptible to Agrobacterium transformation (Yi et al., 2002). The association between Agrobacterium 

proteins and histones was described by Lacroix et al. (2008). VirE2 interacting protein 1 (VIP1) was shown 

to interact with mononucleosomes containing the core histone proteins (H2A, H2B, H3 and H4) of 

cauliflower florets in vitro, while VirD2 was unable to bind to any histones  (Lacroix et al., 2008). Recently, 

Wolterink-van Loo et al. (2015) reported the interactions between VirD2 and histones of the yeast. BiFC 

was used to confirm interactions between VirD2 and yeast histones, H2A, H2B, H3 and H4. Among four 

histones, H2A and H2B showed more efficient interaction with VirD2 (Wolterink-van Loo et al., 2015). 

This study challenged the finding of Lacroix et al. (2008). It would be interesting to revisit VirD2 for its 

interaction with plant histones using BiFC or other approaches. Nevertheless, Wolterink-van Loo et al. 

(2015) showed the interaction of VirD2 with histones; they also suggested a possible role of VirD2 in T-

DNA integration.  

 

1.5. Objectives 

 Agrobacterium-mediated plant transformation is a well characterized process. Each Vir protein has 

been examined to elucidate their structure and function. Optimized transformation protocols are available 

for a number of plant species. Chloroplast transformation offers great potential to produce high levels of 

recombinant proteins, but only two methods, biolistic and PEG-mediated methods, are available.  
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Therefore, the first objective of my thesis was to develop a new method of transforming 

chloroplasts via Agrobacterium by modifying Agrobacterium genetics. I hypothesized that VirD2 carrying 

inactivated NLSs and an additional transit peptide (tomato defective chloroplasts and leaves transit peptide 

or tobacco ribulose bisphosphate carboxylase small subunit transit peptide) would direct the T-DNA 

complex to the chloroplast instead of the nucleus. I examined the cleavage activity of the modified VirD2 

carrying the transit peptide to be sure that it was not disturbed by the presence of the transit peptide.  

 I performed Agrobacterium-mediated chloroplast transformation by tobacco leaf incision; however, 

the transformation of tobacco chloroplasts was unsuccessful. Although known functional NLSs were 

eliminated in the modified VirD2 containing a strong chloroplast transit peptide, the transit peptide was 

overridden by an unknown factor. Therefore, the second objective of my thesis was to identify a novel 

NLS(s) in the VirD2 protein.  
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Chapter 2  

 

Modification of Agrobacterium VirD2 Protein  

for Chloroplast Transformation 
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2.1. Abstract 

Agrobacterium is often referred to as a natural genetic engineer because of its ability to transform 

the plant nuclear genome. Agrobacterium-mediated plant transformation has been a springboard for the 

development of plant biotechnology. The transformation process has been examined extensively, and it was 

revealed that the Agrobacterium VirD2 protein is one of the key factors in the process of nuclear genome 

transformation due to its relaxase domain and nuclear localization signals (NLSs). VirD2 forms a complex 

with the transferred DNA (T-DNA) containing the transgene and pilots the complex termed the T-complex 

into the nucleus where the transgene is integrated into the nuclear genome. Knowledge of the 

Agrobacterium transformation mechanism has been applied to plant biotechnology. Various plant species 

have been transformed by the Agrobacterium-mediated method to introduce new traits such as abiotic/biotic 

resistance and herbicide tolerance. These transgenic plants are commercially available worldwide. 

 Chloroplast transformation is an alternative to plant nuclear genome transformation and offers 

attractive benefits. For example, chloroplast maternal inheritance prevents transgene escape through pollen. 

High transgene expression is usually observed due to a high copy number of chloroplast genomes. However, 

protocols for the regeneration through somatic embryogenesis are essential in chloroplast transformation, 

yet the established protocols are available only for selected plants species. Furthermore, the complete 

chloroplast genome sequence required for designing a chloroplast transformation vector is available for 

selected plant species. Since a natural genetic engineer for chloroplasts does not exist, biolistics is the most 

common method to transform chloroplasts. Interestingly, in the past, Agrobacterium has been used to 

transform chloroplasts without modifying Agrobacterium proteins, but it has never been repeated.  

Based on the defined AgrobacteriumVirD2 structure and function, we hypothesize that VirD2 

which carries inactivated NLSs and is fused to a chloroplast transit peptide would guide the T-complex to 

chloroplasts instead of the nucleus. We generated Agrobacterium producing such modified VirD2, 

examined its cleavage activity, and transformed tobacco leaves by the leaf incision method. The results 

indicated that the addition of a transit peptide to the modified VirD2 protein did not affect the cleavage 

activity required at the early transformation step. However, the transformation of tobacco chloroplasts was 

unsuccessful. These puzzling results lead us to hypothesize a possibility of a novel cryptic NLS in VirD2. 
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2.2. Introduction 

Agrobacterium tumefaciens, a Gram-negative phytopathogenic bacterium causing plant crown gall 

disease is often referred to as a natural genetic engineer because of the bacterial ability to transfer its DNA 

into the plant nuclear genome (Meyers et al., 2010; Pacurar et al., 2011). Agrobacterium possesses a tumor- 

inducing (Ti) plasmid containing a transferred DNA (T-DNA) that is integrated into the plant nuclear 

genome upon plant genetic transformation (Gelvin, 2003; Meyers et al., 2010). Agrobacterium virulence 

(Vir) proteins encoded in the Ti plasmid and their interactions with a plant during the transformation 

process have been analyzed in detail, yet it is still an ongoing progress (Gelvin, 2010b). One of the well-

studied Vir proteins is the VirD2 protein which contains the relaxase domain that cleaves the T-DNA right 

and left border sequences at the early stage of transformation. Upon cleavage of the border sequences, 

VirD2 covalently attaches to the 5’ end of the single-stranded T-DNA (T-strand) via Y29 to form the T-

DNA-VirD2 complex. Subsequently, the complex and other Vir proteins such as VirE2 are transferred to a 

plant cell through a type IV secretion system consisting of VirB and VirD4 proteins. In the plant cell, VirE2 

proteins bind to the T-strand of the complex forming the T-complex to protect it from degradation (Gelvin, 

2010b, 2012).  

Nuclear targeting of the T-complex is mediated via nuclear localization signals (NLSs) of VirD2 

and possibly VirE2. VirD2 contains monopartite and bipartite types of NLSs at its N and C-terminal regions, 

respectively (Figure 2.2a) (Herrera-Estrella et al., 1990; Howard et al., 1992; Tinland et al., 1992). However, 

the N-terminal NLS is suggested to be non-functional in nuclear targeting of the T-complex due to its 

proximity to Y29 where the 5’ end of T-DNA is attached (Vogel and Das, 1992). The C-terminal NLS of 

VirD2 is essential for nuclear targeting of the T-complex (Rossi et al., 1993; Shurvinton et al., 1992). In 

addition,VirE2 contains a bipartite NLS positioned in the central region, yet the role of its NLS is the 

subject to debate because of conflicting reports summarized in a review (Gelvin, 2012); nonetheless, VirE2 

is important to maintain T-strand integrity. 

Knowledge of the Agrobacterium infection mechanism has been applied to plant biotechnology by 

developing a method to manipulate the plant genome since 1983 (Barton et al., 1983). Over the years, the 

binary system has been developed to modify the plant nuclear genome more efficiently. Two plasmids are 

necessary in this system: 1) the helper plasmid originated from the Agrobacterium Ti plasmid containing 
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the vir genes but lacking a functional T-DNA region, and 2) the binary vector composed of the gene of 

interest flanked by right and left T-DNA border sequences and an origin(s) of replication that can function 

in both Escherichia coli and Agrobacterium (Lee and Gelvin, 2008; Meyers et al., 2010). Various types of 

genes have been placed in the T-DNA region for nuclear genome transformation. Furthermore, optimization 

of transformation conditions and plant regeneration protocols has made it possible to extend the range of the 

Agrobacterium host to include various dicot and monocot plants. Thus, currently transgenic plants with new 

traits such as abiotic/biotic tolerance and herbicide resistance which have been produced by Agrobacterium-

mediated plant transformation are commercially available worldwide (James, 2014).  

 Chloroplast transformation is another way to modify the plant genome, namely, the chloroplast 

genome. Chloroplast transformed plants called transplastomic plants offer different benefits from plants 

with modified nuclear genomes. For example, chloroplast maternal inheritance prevents transgene 

transmission through pollen (Bock, 2014; Liu et al., 2013). High expression of the transgene, normally 5-

25% TSP, is usually observed due to a high copy number of the chloroplast genome per chloroplast (Maliga, 

2003; Meyers et al., 2010). In addition, transgenes are integrated into the chloroplast genome by 

homologous recombination at precise locations, and they are not silenced (Bock, 2014; Liu et al., 2013).The 

compartmentalization of chloroplasts helps minimize the toxicity of foreign proteins which are sometimes 

toxic in the cytosol (Daniell et al., 2002; Daniell et al., 2005). 

Because a natural genetic engineer to transform the chloroplast genome does not exist, typically 

the biolistics system has been used to transform chloroplasts. The first successful experiment to transform 

chloroplasts was reported in 1988 using the unicellular green alga, Chlamydomonas reinhardtii (Boynton et 

al., 1988). Shortly after, chloroplasts in Nicotiana tabacum were transformed, and stable transplastomic 

plants were generated (Svab et al., 1990). To date, the DNA delivery system and regeneration protocol have 

been optimized for selected plant species (Verma and Daniell, 2007; Verma et al., 2008), yet chloroplast 

transformation still faces limitations. For example, regeneration protocols through somatic embryogenesis 

are required for chloroplast transformation, and established protocols are available only for selected plant 

species (Daniell et al., 2005; Liu et al., 2013). Furthermore, the chloroplast genome sequence is required to 

design the vector with a homologous sequence for recombination, but availability of the complete 

chloroplast genome sequence is limited (Liu et al., 2013; Verma and Daniell, 2007). Another challenge is to 



39 
 

obtain high expression of the gene of interest in non-green plastids because gene regulation differs; for 

example, it differs among chloroplasts in leaves, chromoplasts in tomato fruits, and amyloplasts in potato 

tuber (Kahlau and Bock, 2008; Valkov et al., 2009). Despite these obstacles, chloroplast transformation is 

an attractive alternative to nuclear genome transformation. Interestingly, two cases of Agrobacterium-

mediated chloroplast transformation have been reported in the past (Block et al., 1985; Venkateswarlu and 

Nazar, 1991). In either study, none of the aforementioned Agrobacterium Vir proteins was modified to pilot 

the T-complex into chloroplasts. Unfortunately, Agrobacterium-mediated chloroplast transformation has 

never been reproduced since. 

Because Agrobacterium is extremely useful for transformation of the plant nuclear genome in 

various plant species and regeneration protocols are established, our objective was to modify 

Agrobacterium genetics for Agrobacterium-mediated chloroplast transformation. We hypothesized that 

VirD2 carrying inactivated NLSs and fused to a chloroplast-targeting signal, a transit peptide, would 

facilitate directing the T-complex into the chloroplast instead of the nucleus (Figure 2.2b). 

VirD2 NLSs have been previously modified. A precise deletion eliminating solely each part of the 

bipartite C-terminal NLS or a large deletion eliminating the C-terminus one third of VirD2 was fused to a 

reporter protein, and the fusion proteins were detected in cytosol despite the presence of the N-terminal 

NLS (Howard et al., 1992). Howard et al. (1992) proposed that fusing GUS to the N-terminus of VirD2 

might have resulted in masking the N-terminal NLS. Moreover, VirD2 carrying a precise deletion or a 

broad deletion, which eliminated a region encoding 45 amino acids including the C-terminal NLS by NruI, 

reduced the transient and stable transformation efficiency (Rossi et al., 1993; Shurvinton et al., 1992). 

Several point mutations were also introduced in the N-terminal NLS. Only one type of mutation (a change 

from arginine to threonine) in the N-terminal NLS reduced transient expression of the reporter gene. In 

addition, this N-terminal NLS mutation with a broad deletion for the C-terminal NLS led to low expression 

of the reporter gene (Rossi et al., 1993). 

The mechanisms of chloroplast protein import have been described. More than 95% of chloroplast 

proteins are encoded in the nuclear genome, and they are post-translationally imported into the chloroplasts. 

Majority of the chloroplast proteins contain a transit peptide at their N-terminus which mediates chloroplast 

protein import. Cytosolic sorting factors such as 14-3-3 protein, Hsp70, Hsp90, FKBP, and HOP are 
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involved in recognition of the transit peptide and facilitate protein import through the translocon at the outer 

envelope membrane of chloroplasts and the translocon at the inner envelope membrane of chloroplasts. 

Upon import into the stroma of the chloroplast, the transit peptide is removed by the stromal processing 

peptidase, and then proteins are properly folded or directed to appropriate compartments within the 

chloroplast. Interestingly, transit peptides lack consensus sequences, and the length of transit peptides varies 

in size from about 20 to >100 residues. However, some common characteristics are defined including a high 

content of hydroxylated amino acids and formation of α-helical structures in hydrophobic environments 

reviewed elsewhere (Jarvis and Lopez-Juez, 2013; Lee et al., 2013; Shi and Theg, 2013). Several transit 

peptides have been used to examine their efficiency in chloroplast targeting of recombinant proteins to 

serve the purpose of accumulation of particular recombinant proteins or modification of metabolic 

pathways (Gnanasambandam et al., 2007; Lee et al., 2008). 

According to the acquired knowledge of VirD2 and chloroplast protein import, we selected the 

following modifications on VirD2 and transit peptides. In order to ensure that none of the NLSs of VirD2 is 

functional, we chose an N-terminal modification (a change from arginine to threonine) and a broad deletion 

by NruI or a precise deletion of the C-terminal NLS to generate two different types of modified VirD2 

(mVirD2; Figure 2.4.2a). Furthermore, we selected the transit peptides (TPs) from tomato defective 

chloroplasts and leaves (DCL) and the tobacco ribulose bisphosphate carboxylase (Rubisco) small subunit 

(RbcS) based on a high efficiency of targeting the fusion protein of the transit peptide-green fluorescent 

protein (TP-GFP) to chloroplasts (Gnanasambandam et al., 2007). Consequently, four different TP-mVirD2 

proteins were generated in this study (Figure 2.4.2a). Moreover, we constructed expression vectors carrying 

TP-mvirD2 and determined the cleavage activity of the recombinant TP-mVirD2 protein to confirm that 

addition of the transit peptide to mVirD2 did not disrupt the cleavage activity of VirD2 required to process 

the T-DNA border sequences. Subsequently, we generated Agrobacterium producing the TP-mVirD2 

fusion protein for Agrobacterium-mediated chloroplast transformation by the tobacco leaf incision method. 

Here, we report that we were successful to purify one of the TP-mVirD2 proteins, and it retained cleavage 

activity. However, the transformation of tobacco chloroplasts was unsuccessful, suggesting that transit 

peptides were not functional during Agrobacterium-mediated chloroplast transformation. Our results raise a 

possibility of the existence of a novel cryptic NLS in VirD2. 
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Figure 2.2a. Schematic representation of VirD2.  

NLSs are indicated in black. Y29 and ω domain are indicated in red. 
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Figure 2.2b. Top – Agrobacterium-mediated plant nuclear genome transformation;  

Bottom –Agrobacterium-mediated chloroplast transformation.  

vir region: virulence region encoding all Vir proteins; mvir region: the modified vir region encoding the 

modified VirD2 protein and all other wild type Vir proteins; VirB/VirD4: a type IV protein secretion 

system; VirD2: wild type VirD2; TP-mVirD2: VirD2 carrying inactivated NLS fused to a transit peptide. 
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2.3. Materials and Methods  

A description of all initial and newly constructed plasmids and primer sequences are listed on Table 2.3a 

and 3.3b, respectively. The scheme of TP-m-VirD2 construction is illustrated in Figure 2.4.2a. The newly 

constructed plasmids illustrated in Figure 2.4.1a-e were confirmed by sequencing.     

 

2.3.1. Construction of TP-mVirD2 vectors 

2.3.1.1. Modifications of VirD2 NLSs to generate mVirD2 

A ClaI-EcoRI fragment of pAVD44was cloned into the ClaI-EcoRI digested pVD43 resulting in 

pVD44 (Table 2.3a). The N-terminal NLS coding sequence was amplified as a SmaI and PstI fragment 

using pVD43 to introduce a point mutation in the N-terminal NLS coding sequence by PCR. PCR was 

performed in a 20 µL reaction mixture containing 5 ng of pVD43, 0.5 µM of primers AZ44 and AZ45 

(Table 2.3b), 0.02 U/µL of Phusion DNA Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 µM of 

each dNTP. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 66

o
C 

for 30 s, 72
o
C for 30s, and one cycle at 72

o
C for 10 min. The SmaI-PstI digested PCR product was cloned 

into the SmaI-PstI cut pVD70 resulting in pVD80. 

The SmaI-PstI fragment of mvirD2 carrying the modification in the N-terminal NLS coding 

sequence was amplified to introduce the AgeI site just after the start codon of virD2 by PCR. PCR was 

performed in a 20 µL reaction mixture containing 5 ng of pVD80, 0.5 µM of primers AZ44 and 

AZ47(Table 2.3b), 0.02 U/µL of Phusion DNA Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 

µM of each dNTP. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 

72
o
C for 30 s, 72

o
C for 30s, and one cycle at 72

o
C for 10 min. The SmaI-PstI digested PCR product was 

cloned into the SmaI-PstI cut pVD44 and pVD80 resulting in pVD58-AgeI and pVD80-AgeI, respectively. 

 

2.3.1.2. Construction of TP-mVirD2 

Total genomic DNA of a commercially available tomato (Solanum lycopersicum cultivar Roma) 

was isolated using GenElute
TM

 Plant Genomic DNA Miniprep kit (Sigma) according to the manufacture’s 

protocol. The sequence coding for DCL transit peptide plus a short amino acid sequence of the mature 

protein was amplified and flanked by AgeI sites by PCR. PCR was performed in a 20 µL reaction mixture 
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containing 100 ng of tomato gDNA, 0.5 µM of primers AZ40 and AZ41(Table 2.3b), 0.125 U/µL of Taq 

DNA Polymerase (Fermentas), 1x Taq Buffer (Fermentas), 200 µM of each dNTP. PCR parameters were as 

follows: one cycle at 95
o
C for 3 min, 30 cycles at 95

o
C for 30 s, 58

o
C for 30 s, 72

o
C for 1 min, and one 

cycle at 72
o
C for 10 min. The PCR product was purified using QIAquick® PCR Purification kit (Qiagen) 

according to the manufacturer’s protocol. PCR was again performed using 1 ng of the purified PCR product, 

0.5 µM of primers AZ48 and AZ50 (Table 2.3b), 0.125 U/µL of Taq DNA Polymerase (Fermentas), 1x Taq 

Buffer (Fermentas), 200 µM of each dNTP. PCR parameters were as follows: one cycle at 95
o
C for 3 min, 

30 cycles at 95
o
C for 30 s, 66

o
C for 30 s, 72

o
C for 1min, and one cycle at 72

o
C for 10 min. This PCR 

product was digested with AgeI, and then cloned into the AgeI-digested pVD58-AgeI and pVD80-AgeI 

resulting in pVD58-DCL-TP and pVD80-DCL-TP, respectively. 

Total RNA was isolated from Nicotiana tabacum cultivar Big Havana wild-type plants using Tri 

Reagent® (Molecular Research Center, Inc.) according to the manufacturer’s protocol. cDNA was 

synthesized from total RNA using RevertAid H Minus First Strand cDNA Synthesis kit (Fermentas) 

according to the manufacturer’s protocol. PCR was performed to amplify the sequence coding for tobacco 

RbcS transit peptide and a short amino acid sequence of the mature protein using cDNA by PCR. PCR was 

performed in a 20 µL reaction mixture containing 2 µL of tobacco cDNA, 0.5 µM of primers AZ51 and 

AZ53 (Table 2.3b), 0.02 U/µL of Phusion DNA Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 

µM of each dNTP. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 

50.3
o
C for 30 s, 72

o
C for 30 s, and one cycle at 72

o
C for 10 min. The AgeI-digested PCR product was 

cloned into the AgeI site of pVD58-AgeI and pVD80-AgeI resulting in pVD58-RbcS-TP and pVD80-RbcS-

TP, respectively. 

 

2.3.2. VirD2 and TP-mVirD2 cleavage activity assay 

2.3.2.1. Construction of expression vectors 

The DCL-TP-mvirD2-58 and DCL-TP-mvirD2-80 flanked by NheI and XhoI sites were amplified 

by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pVD58-DCL-TP or pVD80-

DCL-TP, 0.5 µM of primers AZ61 and AZ68 (Table 2.3b), 0.02 U/µL of Phusion Hot Start DNA 

Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 µM of each dNTP. PCR parameters were as 
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follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 68.5

o
C for 30 s, 72

o
C for 1 min, and one 

cycle at 72
o
C for 10 min. The NheI/XhoI-digested PCR fragments from pVD58-DCL-TP and pVD80-DCL-

TP were cloned into NheI/XhoI-digested pET21b resulting in pET21b-DCL-TP-mVirD2-58 and pET21b-

DCL-TP-mVirD2-80, respectively. 

The RbcS-TP-mvirD2-58 and RbcS-TP-mvirD2-80 flanked by NheI and XhoI sites were amplified 

by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pVD58-RbcS-TP or pVD80-

RbcS-TP, 0.5 µM of primers AZ67 and AZ68 (Table 2.3b), 0.02 U/µL of Phusion Hot Start DNA 

Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 µM of each dNTP. PCR parameters were as 

follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 71.4

o
C for 30 s, 72

o
C for 1 min, and one 

cycle at 72
o
C for 10 min. The NheI/XhoI-digested PCR fragments from pVD58-RbcS-TP and pVD80-

RbcS-TP were cloned into NheI/XhoI-digested pET21b resulting in pET21b-RbcS-TP-mVirD2-58 and 

pET21b-RbcS-TP-mVirD2-80, respectively. 

 

2.3.2.2. The determination of optimal conditions for the overproduction of recombinant proteins 

E. coli strain BL21[pLysS] was transformed with pET3a-VirD2 (pETD2-His6) encoding wild- 

type VirD2  (Pelczar et al., 2004), pET21b-DCL-TP-mVirD2-58, pET21b-RbcS-TP-mVirD2-58, pET21b-

DCL-TP-mVirD2-80, and pET21b-RbcS-TP-mVirD2-80. The bacterial culture was plated on solid LB 

supplemented with 100 mg/L carbenicillin and 35 mg/L chloramphenicol. Transformants were used to 

inoculate 1 mL LB containing the aforementioned antibiotics. The bacterial cultures were incubated at 37
o
C 

for 2.5 h with vigorous shaking and then transferred into 10 mL LB containing the previously mentioned 

antibiotics. The cultures were incubated at either at 37 or 28
o
C till OD600 between 0.45 and 0.6 was reached. 

The virD2and TP-mvirD2 genes were induced by 1 mM IPTG, and the bacterial cultures were incubated at 

either 37 or 28
o
C for 4 to 5 h. Culture aliquots containing the same number of bacterial cells according to 

OD600 readings of non-induced and induced cultures were centrifuged and then resuspended in 120 µL of 2x 

SDS-PAGE loading buffer. The samples were placed in the boiling water for 5 min. Twenty four µL of 

samples were loaded onto SDS-PAGE. Gels were stained by Coomassie blue staining. 

Western blotting was performed using a primary antibody (rabbit polyclonal anti-VirD2 antibody 

in 1:2,000 dilution) and a secondary antibody (Abcam, goat polyclonal antibody to rabbit IgG in 1:10,000 
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dilution). The detection was carried out with NBT/BCIP solution according to the manufacturer’s 

instructions (Roche). 

Molecular weights of recombinant proteins were predicted using Science Gateway 

(http://www.sciencegateway.org/tools/proteinmw.htm). 

 

2.3.2.3. Overproduction and purification of wild type VirD2 

E. coli BL21[pLysS] was transformed with pET3a-VirD2. The bacterial culture was plated on 

solid LB supplemented with 100 mg/L carbenicillin and 35 mg/L chloramphenicol. Four individual colonies 

of transformants were used to inoculate 100 mL LB medium containing the aforementioned antibiotics. 

Cells were grown at 37
o
C for 2.5h with shaking. Twenty five mL of 100 mL culture was transferred into 

four 250 mL LB media with the aforementioned antibiotics. Bacteria were grown at 37
o
C with shaking till 

OD600 between 0.45 and 0.6 was reached. The virD2 gene was induced by 1 mM IPTG, and the bacterial 

cultures were incubated at 37
o
C for 4 to 5 h. The cells were harvested at 5,000xg for 25 min at 4

o
C and 

resuspended in 40 mL of pre-chilled 1xLysis buffer [50 mM Tris-HCl pH 8.0, 150 mM KCl, 5 mM MgCl2, 

10% glycerol, 1 tablet of Protease inhibitor, cOmplete EDTA free (Roach) per 40 mL]. Subsequently, 1 mL 

of Lysozyme (40 mg/mL) was added to the bacterial suspension which was then incubated on ice for 30 

min with inversion every 10 min. The bacterial suspension was incubated at 37
o
C for 5 min and 

subsequently placed on ice. The cells were sonicated for 90 sec. Forty µL of 1 mg/mL DNase and 40 µL of 

1 mg/mL RNase were added to the suspension, and the suspension was incubated on ice for 15 min. The 

cell suspension was centrifuged at 17,700xg for 30 min at 4
o
C. The supernatant (Lysate I) was collected. 

The pellet was resuspended in 20 mL of Buffer A (50 mL Tris-HCl pH8.0, 150 mM KCl, 5 mM MgCl2, 10 

mM imidazole, 10% glycerol, 8 M urea) and incubated at room temperature for 2 h with rocking. The 

suspension was centrifuged at 17,700xg for 30 min at room temperature.  

The supernatant (Lysate II) was collected and loaded onto 5 mL Ni column (GE Healthcare) which 

was equilibrated with 10 column volumes of Buffer A. The column was washed with 10 column volumes of 

Buffer A. Proteins were eluted with 100 mL linear gradient of 10-500 mM imidazole in Buffer A. Elution 

factions were pooled (Pool I) and then dialysed against 2 L of Buffer B [50 mM Tris-HCl pH8.0, 150 mM 

KCl, 5 mM MgCl2, 10% glycerol, 2 tablets protease inhibitor (cOmplete, Roche) per 1 L] at room 

http://www.sciencegateway.org/tools/proteinmw.htm
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temperature overnight. Dialysis was again carried out against 1 L cold Buffer B at 4
o
C for 2 h. The dialysed 

sample was centrifuged at 17,700xg for 30 min at 4
o
C. The supernatant (Load II) was loaded onto 5 mL 

Heparin column (GE Healthcare) which was equilibrated with 20 column volumes of Buffer B. The column 

was washed with 10 column volumes of Buffer B. Proteins were eluted with 10 column volumes of a linear 

gradient of 150 mM – 1 M KCl in buffer B. The elution fractions were pooled (Pool II) and then dialyzed 

against 1 L of Buffer B at 4
o
C overnight. The sample was centrifuged at 16,100xg for 95 min at 4

o
C, and 

the supernatant containing purified VirD2 was collected and quantified using the Bio-Rad Protein Assay 

(Bio-Rad) according to the manufacturer’s protocol (Bio-Rad). The samples throughout the purification 

steps were quantified by the aforementioned Protein Assay and analyzed on SDS-PAGE. The gel was 

stained by GelCode™ Blue Stain (Thermo Scientific) according to the manufacturer’s protocol.  

 

2.3.2.4. Overproduction of RbcS-TP-mVirD2-58  

E. coli BL21[pLysS] was transformed with pET21b-RbcS-TP-mVirD2-58. The bacterial culture 

was plated on solid LB supplemented with 100 mg/L carbenicillin and 35 mg/L chloramphenicol. Twenty 

individual colonies of transformants were used to inoculate 500 mL LB containing the aforementioned 

antibiotics. The cells were grown at 37
o
C for 2.5h with shaking. One hundred mL of 500 mL culture was 

transferred into four 1 L LB media with the aforementioned antibiotics. Bacteria were grown at 37
o
C with 

shaking till OD600 between 0.45 and 0.6. The RbcS-TP-mvirD2-58 gene was induced by 1 mM IPTG, and 

the cultures were incubated at 28
o
C for 4 to 5 h. A one litre culture was centrifuged at 5,000xg for 25 min at 

4
o
C and resuspended in 40 mL of pre-chilled 1xLysis buffer [50 mM Tris-HCl pH 8.0, 150 mM KCl, 5 mM 

MgCl2, 10% glycerol, 1 tablet of protease inhibitor (cOmplete, Mini, EDTA-free, Roche) per 40 mL]. 

Afterwards, 1 mL of Lysozyme (40 mg/mL) was added to each bacterial suspension which was then 

incubated on ice for 30 min with inversion every 10 min. The bacterial suspension was incubated at 37
o
C 

for 5 min and then placed on ice. The cells were sonicated for 90 sec and then centrifuged at 4,000xg for 5 

min at room temperature. The supernatant (Lysate I) was kept, and the pellet was resuspended in 40 mL of 

B-PER® Bacterial Protein Extraction Reagent (Thermo Scientific) with 1 mL of Lysozyme (40 mg/mL), 40 

µL of DNase (5 mg/mL), and 40 µL of RNase A (10 mg/mL). The cell suspension was rocked for 5 min at 

room temperature and then centrifuged at 17,700xg for 30 min at 4
o
C.  
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The supernatant (Lysate II) was collected. The pellet was resuspended in 50 mL of BufferA (50 

mM Tris-HCl pH8.0, 150 mM KCl, 5 mM MgCl2, 10 mM imidazole, 10% glycerol, 8 M urea). The 

suspension was centrifuged at 17,700xg for 30 min at room temperature. The supernatant (Lysate III) was 

collected and loaded onto 5 mL Ni column (His-Trap HP, GE Healthcare) which was equilibrated with 20 

column volumes of Buffer A. The column was washed with 10 column volumes of Buffer A and 10 column 

volumes of buffer A containing 40 mM imidazole. The proteins were eluted with 10 column volumes of a 

linear gradient of 40-300 mM imidazole in buffer A. The elution fractions were pooled (Pool I) and then 

dialysed against 2 L of Buffer C [50 mM Tris-HCl pH8.0, 20 mM KCl, 10% glycerol, 2 tablets protease 

inhibitor (cOmplete, Roche) per 1 L] at room temperature overnight. Dialysis was again carried out against 

1 L cold Buffer C at 4
o
C for 2 h. The dialysed sample was centrifuged at 17,700xg for 30 min at 4

o
C. The 

supernatant (Pool II) was loaded onto 1 mL Q-Sepharose column (HiTra Q HP, GE Healthcare), pre-

equilibrated with 10 column volumes of buffer C. The column was washed with 10 column volumes of 

Buffer C. The proteins were eluted with 10 column volumes of a linear gradient of 20 mM – 1 M NaCl in 

Buffer C. The elution factions were pooled (Pool III) and then dialyzed against 1 L of Buffer B at 4
o
C 

overnight. The sample was centrifuged at 16,100xg for 30 min at 4
o
C. The supernatant containing purified 

RbcS-TP-mVirD2-58 was collected. The purified protein was concentrated using ULTRAFREE® 0.5 

Centrifugal Filter Device (MILLIPORE) according to the manufacturer’s instructions and quantified using 

the Bio-Rad Protein Assay (Bio-Rad) according to the manufacturer’s protocol (Bio-Rad). The samples 

throughout the purification steps were quantified by the aforementioned Protein Assay and analyzed on 

SDS-PAGE. The gel was stained by GelCode™ Blue Stain (Thermo Scientific) according to the 

manufacturer’s protocol. The percent impurity was estimated using the Image J program (NIH, 

http://rsbweb.nih.gov/ij/).  

 

2.3.2.5. Cleavage activity assay 

The cleavage activity assay was performed using various amounts of purified VirD2 and RbcS-TP-

VirD2-58 (0, 0.04, 0.08, 0.16, 0.3, 0.45, 0.6, and 0.9 µg) as described previously with the following 

modifications (Ziemienowicz et al., 1999). Recombinant proteins were incubated with 0.5 pmol of 

fluorescently labelled oligo AZ3 (Table 2.3b) in TKM buffer (50 mM Tris-HCl pH 8.0, 150 mM KCl, 1 
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mM MgCl2) at 37
o
C for 1 h. The reactions were terminated by the addition of the stop solution (30% 

formamide, 1xDNA gel loading buffer, 10 mM EDTA pH 8.0) and incubated at 95
o
C for 3 min. Ten µL of 

the reaction were loaded on a 20% polyacrylamide and 8 M urea denaturing gel which was pre-run at 750 V 

for 30 min. The gel was covered with aluminum foil to protect the fluorescently labelled oligonucleotides 

during electrophoresis in 1xTBE buffer at 600 V for 1h and then 750 for 1 h. Fluorography was performed 

using a Typhoon system (GE Healthcare). The efficiency of the cleavage activity was calculated using the 

ratio between the cleavage product and the uncleaved substrate by the Image J program (NIH, 

http://rsbweb.nih.gov/ij/).  

 

2.3.3. Agrobacterium-mediated chloroplast transformation by tobacco leaf incision 

2.3.3.1. The binary vector system for Agrobacterium-mediated plant transformation 

2.3.3.1.1. Construction of pAVD plasmids carrying TP-mvirD2 

 pVD58-DCL-TP, pVD58-RbcS-TP, pVD80-DCL-TP, and pVD80-RbcS-TP were digested with 

PsiI and EcoRI. The digestion product (1.5 kb) containing theTP-mvirD2 fragment was used to replace the 

virD2gene in pAVD44 resulting in pAVD58-DCL-TP, pAVD58-RbcS-TP, pAVD80-DCL-TP, and 

pAVD80-RbcS-TP, respectively. 

 

2.3.3.1.2. Generation of Agrobacterium carrying helper plasmids containing TP-mvirD2 

pAVD derivatives were introduced into Agrobacterium strain GV3101[pPM6000K] (Rossi et al., 

1993)  by either freeze-thaw method (Hofgen and Willmitzer, 1988) or electroporation (Mattanovich et al., 

1989). The bacterial cultures were plated on YEP medium (10 g peptone, 10 g yeast extract, 5 g NaCl2, 10 

mM MgSO4, 20 g agar per litre, pH 7) containing rifampicin (100 mg/L), carbenicillin (25 mg/L), and 

kanamycin (50 mg/L). Colony PCR was performed to confirm the generation of GV3101[pPM6000AM] 

derivatives with following conditions: in a 20 µL reaction mixture containing a colony, 0.5 µM of primers 

AZ48 and AZ173 for GV3101[pPM6000AM2 or 4] and AZ182 and AZ173 for GV3101[pPM6000AM3 or 

5] (Table 2.3b), 0.125 U/µL of Taq DNA Polymerase (Fermentas), 1x Taq Buffer (Fermentas), 200 µM of 

each dNTP. PCR parameters were as follows: one cycle at 95
o
C for 3 min, 40 cycles at 95

o
C for 30 s, 65

o
C 
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for GV3101[pPM6000AM2], 70
o
C for GV3101[pPM6000AM4], and 55

o
C for GV3101[pPM6000AM3 or 

5]  for 30 s, 72
o
C for 90 s, and one cycle at 72

o
C for 10 min. 

 

2.3.3.1.3. Construction of a binary vector carrying the chloroplast expression cassette 

A chloroplast transformation vector (pLD-CtV) was kindly provided by Dr. Daniell (University of 

Pennsylvania, Philadelphia, PA). The chloroplast expression cassette (trnI-Prrn-aadA-TpsbA-trnA) in pLD-

CtV was amplified and flanked by PacI and HindIII by PCR. PCR was performed in a 20 µL reaction 

mixture containing 10 µg of pLD-CtV, 0.5 µM of primers AZ269 and AZ270 (Table 2.3b), 0.02 U/µL of 

Phusion DNA Polymerase (Fermentas), 1xHF Buffer (Fermentas), 200 µM of each dNTP. PCR parameters 

were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 55

o
C for 30 s, 72

o
C for 1 min, and 

one cycle at 72
o
C for 10 min. The spectinomycin resistance gene for bacterial selection in pPZP500 (Ali et 

al., 2012) was replaced with the chloramphenicol gene prior to this study. A region of the modified 

pPZP500 excluding the kanamycin resistance gene was amplified and flanked by HindIII and PacI by PCR. 

PCR was performed in a 20 µL reaction mixture containing 10 µg of pPZP500, 0.5 µM of primers AZ273 

and AZ274 (Table 2.3b), 0.02 U/µL of Phusion DNA Polymerase (Fermentas), 1xHF Buffer (Fermentas), 

200 µM of each dNTP. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 

10 s, 65
o
C for 30 s, 72

o
C for 2 min, and one cycle at 72

o
C for 10 min. PCR fragment containing the 

chloroplast expression cassette and pPZP500 PCR product were digested with HindIII and PacI, then they 

were ligated together resulting in pPZP500-aadA (Table 2.3a).  

 

2.3.3.2. Growth conditions of Nicotiana tabacum plants 

Seeds of the N. tabacum cultivar Big Havana were surface-sterilized with 10% sodium 

hypochloride for 10 min and then rinsed three times with distilled water for 5 min. The seeds were stored in 

distilled water at 4
o
C for 2 days. Subsequently, two seeds were placed in a glass jar (diameter 5 cm, height 

10 cm) with solid MS medium (4.43 g MS with vitamins Phytotechnology) supplemented with 30 g of 

sucrose per litre, pH 5.3-5.6, and transferred to a growth chamber (Enconair, Winnipeg, MB, Canada); the 

light was provided by Octron T8 Fluorescent bulbs (Sylvania, Mississauga, ON, Canada). Upon 
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germination, one seedling was removed from the jar for growing (one plant per jar). After the plants grew to 

a sufficient size (about 2-3 month later), their leaves were used for Agrobacterium-mediated transformation. 

 

2.3.3.3. Agrobacterium-mediated chloroplast transformation by tobacco leaf incision  

Agrobacterium strain GV3101[pPM6000AM::pPZP500-aadA] series were used to inoculate 2 mL 

YEP medium containing rifampicin (100 mg/L), carbenicillin (25 mg/L), kanamycin (50 mg/L), and 

chloramphenicol (35 mg/L). The cultures were shaken at 28
o
C overnight. One mL of the overnight culture 

was transferred into 100 mL YEP medium containing the appropriate antibiotics and incubated at 28
o
C 

overnight with vigorous shaking. The bacterial cultures were centrifuged at 3,200xg for 20 min at room 

temperature. The bacterial pellet was resuspended in 25 mL of MS medium (Murashige and Skoog, 1962) 

by gentle vortex. The centrifugation and resuspension were repeated. After OD6oo was adjusted to 0.5 using 

MS medium, acetosyringone (a final concentration of 100 µM) was added to the bacterial suspensions that 

were then incubated for 30 to 60 min at room temperature.  

Tobacco leaves were submerged into the bacterial suspension in a Petri dish. Incisions were made 

by a scalpel on the adaxial side of leaves parallel to side veins and avoided on the midrib and leaf margins. 

The leaves were submerged in the bacterial suspension for 10 min and then were dried on a sterilized paper 

towel. The leaves were placed on solid MS medium with the abaxial side up and stored at 22
o
C in the dark 

for co-cultivation. The leaves were well rinsed with distilled water and blotted dry. Then they were 

transferred onto the shoot-inducing medium (SIM) (4.43 g MS with vitamins (Phytotechnology), 30 g 

sucrose, 200 mg myo-inositol, 0.8 mg indole-3-acetic acid, 2 mg kinetin, 8 g agar per litre, pH 5.7 with 

NaOH) for callus and shoot regeneration with cefotaxime or timentin and spectinomycin in two trials.  

In all trials, the leaves were transferred to fresh SIM with cefotaxime or timentin and 

spectinomycin every 3 - 4 weeks. The developed shoots were transferred to the root-inducing medium (4.43 

g MS with vitamins Phytotechnology, 30 g sucrose, 200 mg myo-inositol, 0.5 mg α-naphthalene-acetic acid, 

8 g agar per litre, pH 5.7 with NaOH) with the aforementioned antibiotics. After sufficient root 

development, the plants were transferred to soil. 
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2.3.3.3.1. The first trial  

In the first trial, 100 mg/L cefotaxime, 100 mg/L timentin, and 500 mg/L spectinomycin were used 

in SIM. For the regeneration of negative controls, the untransformed leaves were placed on the 

aforementioned plates to examine the amount of spectinomycin that would prevent the regeneration of 

untransformed calli/shoots.  

 

2.3.3.3.2. The second trial 

In the second trial, four different treatments were conducted with leaves after co-cultivation: 1) the 

leaves were placed on SIM with 100 mg/L timentin, 2) the leaves were placed on SIM with 100 mg/L 

timentin, and then the regenerated shoots were later transferred onto SIM with 100 mg/L timentin and 100 

mg/L spectinomycin, 3) the leaves were placed on SIM with 100 mg/L timentin and 100 mg/L 

spectinomycin, 4) the leaves were placed on SIM with 100 mg/L timentin and 250 mg/L spectinomycin. For 

the regeneration of negative controls, the untransformed leaves were placed on SIM containing 100 mg/L 

timentin and 100 mg/L spectinomycin, and SIM containing 100 mg/L timentin and 250 mg/L 

spectinomycin. 

 

2.3.3.3.3. Transgene detection by PCR 

Plant total DNA was isolated from 100 mg leaf samples using the cetyltrimethylammonium 

bromide method (Doyle and Dickson, 1987) with modifications according to Molecular Cytogenetics 

Research Group protocols (http://www.le.ac.uk/bl/phh4/dnaiso.htm). DNA was quantified using NanoDrop 

(Thermo Scientific). 

In the second trial, PCR was performed in a 20 µL reaction mixture containing in average 250 ng 

of total DNA, 0.5 µM of primers AZ187 and AZ200, 0.125 U/µL of Taq DNA Polymerase (Fermentas), 

1xFermentas Buffer (Fermentas), 200 µM of each dNTP. PCR parameters were as follows: one cycle at 

95
o
C for 3 min, 30 cycles at 95

o
C for 1 min, 55

o
C for 30 s, 72

o
C for 3 min, and one cycle at 72

o
C for 10 

min. 

http://www.le.ac.uk/bl/phh4/dnaiso.htm
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Table 2.3a. Agrobacterium strains and plasmids used in this work. 

Name Characteristics Reference 

Agrobacterium strains   

GV3101[pPM6000] Cured C58 nopaline strain containing 

pPM6000 which is a derivative of 

pTiAch5 (octopine plasmid) and has no 

T-DNA 

(Bonnard et al., 1989) 

GV3101[pPM6000K] Same as above but containing virD2 

deleted by KpnI  

(Rossi et al., 1993) 

GV3101[pPM6000AM2] Same as above but carrying pAVD58-

DCL-TP in pPM6000K 

This study 

GV3101[pPM6000AM3] Same as above but carrying pAVD58-

RbcS-TP in pPM6000K 

This study 

GV3101[pPM6000AM4] Same as above but carrying pAVD80-

DCL-TP in pPM6000K 

This study 

GV3101[pPM6000AM5] Same as above but carrying pAVD80-

RbcS-TP in pPM6000K 

This study 

pVD derivatives Contains the ampicillin resistance gene  

pVD43 pUC18 containing virD2 under the 

control of the promoter and the Shine-

Dalgarno sequence of virD1 

(Rossi et al., 1993) 

pVD44 Same as above but carrying NruI 

deletion of the C-terminal NLS in 

virD2 

(Rossi et al., 1993) 

Reconstructed in this study 

pVD58 Same as pVD44 but carrying a point 

mutation in the N-terminal NLS  

(Rossi et al., 1993) 

 

pVD58-AgeI Same as pVD58 but carrying the AgeI 

site before the virD2 start codon 

This study 

pVD70 Same as pVD43 but carrying a precise 

deletion of the C-terminal NLS 

(Rossi et al., 1993) 

pVD80 Same as pVD70 but carrying a point 

mutation in the N-terminal NLS 

(Rossi et al., 1993) 

Reconstructed in this study 

pVD80-AgeI Same as pVD80 but carrying the AgeI 

site before the virD2 start codon 

This study 

pVD-TP derivatives   

pVD58-DCL-TP Same as pVD58-AgeI but carrying the 

DCL-TP sequence 

This study 

pVD58-RbcS-TP Same as pVD58-AgeI but carrying the 

RbcS-TP sequence 

This study 

pVD80-DCL-TP Same as pVD80-AgeI but carrying the 

DCL-TP sequence 

This study 

pVD80-RbcS-TP Same as pVD80-AgeI but carrying the 

RbcS-TP sequence 

This study 
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Table 2.3a. Continued. 

Name Characteristics Reference 

pAVD derivatives pARO 181, pUC derivative containing 

the kanamycin resistance gene and the 

virD promoter and various virD2 genes  

 

pAVD44 Same as above but containing the 

virD2 gene with NruI deletion  

(Daniell et al., 1998; Rossi 

et al., 1993) 

pAVD58-DCL-TP Same as above but containing the DCL-

TP-mvirD2-58 gene 

This study 

pAVD58-RbcS-TP Same as above but containing theRbcS-

TP-mvirD2-58 gene 

This study 

pAVD80-DCL-TP Same as above but containing the DCL-

TP-mvirD2-80gene 

This study 

pAVD80-RbcS-TP Same as above but containing theRbcS-

TP-mvirD2-80 gene 

This study 

Chloroplast expression vector   

pLD-CtV 

 

The chloroplast expression vector 

carrying the chloroplast expression 

cassette: aadA driven by Prrn and 

TpsbA flanked by trnI and trnA 

(Daniell et al., 1998) 

Binary vectors   

pPZP500 A binary vector containing the 

chloramphenicol resistance gene* as a 

bacterial selection marker and the 

kanamycin resistance gene as a plant 

selection marker  

(Ali et al., 2012) 

NCBI (Accession: 

JX025644) 

pPZP500-aadA A binary vector carrying the 

chloramphenicol resistance gene as a 

bacterial selection marker and the T-

DNA containing the chloroplast 

expression cassette from pLD-CtV  

This work 

Protein expression vectors   

pET3a-VirD2  

(pETD2-His6) 

pET3a containing the virD2-His tag 

coding sequence 

(Pelczar et al., 2004) 

pET21b-DCL-TP-VirD2-58 pET21b containing the DCL-TP-

mvirD2-58-His tag coding sequence 

This work  

pET21b-RbcS-TP-VirD2-58 pET21b containing the RbcS-TP-

mvirD2-58-His tag coding sequence 

This work 

pET21b-DCL-TP-VirD2-80 pET21b containing the DCL-TP-

mvirD2-80-His tag coding sequence 

This work 

pET21b-RbcS-TP-VirD2-80 pET21b containing the RbcS-TP-

mvirD2-80-His tag gene 

This work 

* The spectinomycin resistance gene for bacterial selection in pPZP500 was replaced with the 

chloramphenicol gene prior to this study. 
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Table 2.3b. Primers used to construct vectors containing mvirD2 orTP-mvirD2. 

Primer Sequence (5’-3’) Description 

AZ3 CGGTATATATCCTG^CCAGTCAGGTCGACA

GTTGC 

34-mer, a substrate for VirD2 activity, 

34-mer+VirD2=20-mer-VirD2+14-mer 

(^, cleavage site; underlined, the right 

border sequence) 

AZ40 AGCAGCAGTTAGTTTTCAGCAC The forward primer to amplify a 419 bp 

fragment coding for tomato DCL transit 

peptide and 6 amino acids of the mature 

protein (Gnanasambandam et al., 2007) 

AZ41 CATCCGATTCCTCCTTCACCAA The reverse primer to amplify a 419 bp 

fragment coding for tomato DCL transit 

peptide (Gnanasambandam et al., 2007) 

AZ44 GAACGCTGCAGTTCCAGCTTTCCCTTCGTGG

ACAGGTACTCC 

The reverse primer to modify N-terminal 

NLS (RT) of VirD2 and flank it by the 

PstI site 

AZ45 GGGCTAGACTTTAATCTGTCTACCCGGGCA

CATTTCGTGC 

The forward primer to amplify a ~180 bp 

fragment containing the N-terminal NLS 

coding sequence and to introduce the 

SmaI site 

AZ47 CTACCCGGGCACATTTCGTGCTGGAGTATT

CAGACCCTTCCGCTTTTTTTGGAGGAAGCT

ATGACCGGTCCCGATCGCGC 

The forward primer to amplify ~180 bp 

fragment and to introduce the AgeI site 

after ATG codon of virD2, SmaI site 

AZ48 CAGACCGGTATGGCTTCAATTTGTACTTCAA 

 

 

  

The forward primer to amplify sequence 

coding 50 amino acids of tomato DCL 

transit peptide + 6 amino acids of the 

mature protein (Gnanasambandam et al., 

2007) and to introduce the AgeI site 

AZ50 CCAAACCGGTCCCTCCTCCCTCTGAACC The reverse primer to amplify sequence 

coding 50 amino acids of tomato DCL 

transit peptide + 6aa of the mature 

protein and to introduce the AgeI site 

AZ51 GATACCGGTATGGCTTCCTCAGTTCTTTCCT

CTG 

The forward primer to amplify ~200  bp 

fragment coding for tobacco RbcS transit 

peptide (57 amino acids) + 5 amino acids  

of the mature protein and to introduce the 

AgeI site 

AZ53 CCGACCGGTTGGCCACACCTGCAT The reverse primer to amplify ~200 bp 

fragment coding for tobacco RbcS transit 

peptide (57 amino acids) + 5 amino acids 

of the mature protein and to introduce the 

AgeI site 

AZ61 CCACATATGGCTAGCATGGCTTCAATTTGTA 

CTTCAAATTTTCAC 

Forward primer to amplify DCL-TP-

mvirD2 and to introduce the NheI site 

AZ67 CCACATATGGCTAGCATGGCTTCCTCAGTTC

TTTCCTCTG 

The forward primer to amplify RbcS-TP-

mvirD2 and to introduce the XhoI site 

AZ68 CCGCTCGAGGGTCCCCCCGCGCCCATCG The reverse primer to amplify virD2 

gene without STOP codon and to 

introduce the XhoI cloning site 

AZ173 CTAGGTCCCCCCGCGC The reverse primer which anneals to the 

end of the virD2 gene 

AZ182 ATGGCTTCCTCAGTTCTTTCCTCTGC The forward primer which anneals to the 

beginning of RbcS-TP coding sequence 
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Table 2.3b. Continued. 

Primer Sequence (5’-3’) Description 

AZ187 GGGCTATTAGCTCAGTGGTAGAGCG The forward primer which anneals to trnI 

of the chloroplast genome 

AZ200 CGCCGACTCCAACTACCGTC The reverse primer which anneals to trnA 

of the chloroplast genome 

AZ269 TTTTTAATTAAGGCCTCTTCGCTATTACGCC

AG 

The forward primer to amplify the 

chloroplast expression cassette in pLD-

CtV and to introduce PacI 

AZ270 CGATAAGCTTTGTATCGGCTAAGTTCACG The reverse primer to amplify the 

chloroplast expression cassette from 

HindIII in pLD-CtV  

AZ273 TTTTTAATTAATGTTTACACCACAATATATCC The forward primer to amplify the region 

excluding T-DNA in pPZP500 and to 

introduce PacI 

AZ274 ATATAAGCTTGTAAACCTAAGAGAAAAGAG 

CG 

The reverse primer to amplify the region 

excluding T-DNA in pZP500 and to 

introduce HindIII 

The introduced restriction sites are indicated in italics; ^ indicates the VirD2 cleavage site. 
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2.4. Results  

2.4.1. Construction of TP-mVirD2 vectors 

Modifications of VirD2 to inactivate the N- and C-terminal NLSs were introduced according to a 

previous study (Rossi et al., 1993) using pVD43 as one of the initial plasmids (Figure 2.4.1a). Arginine in 

the N-terminal NLS was changed to threonine; additionally, two types of the C-terminal NLS deletion were 

selected: 1) a broad deletion of NLS (eliminating 45 amino acids including the C-terminal NLS by NruI), 

and 2) a precise deletion of NLS (exclusively eliminating bipartite sequences) (Figure 2.4.2a). Initial 

plasmids: pAVD44 encoding a board deletion of the C-terminal NLS of VirD2, pVD43 encoding a wild-

type VirD2, pVD80 encoding a precise deletion of the C-terminal NLS (Table 2.3a), and the PCR product 

containing the modification in the N-terminal NLS coding sequence were used to generate plasmids 

carrying the mvirD2 gene encodingVirD2 with the inactivated N and C-terminal NLSs. As a result, two 

plasmids containing the NLS sequences with modifications were generated: 1) pVD58-AgeI encoding the 

modified N-terminal NLS, a board deletion of the C-terminal NLS, and the AgeI site and 2) pVD80-AgeI 

encoding the modified N-terminal NLS, a precise deletion of the C-terminal NLS and the AgeI site (Table 

2.3a).  

Tomato DCL and tobacco RbcS transit peptides were chosen due to their strong chloroplast 

targeting activity (Gnanasambandam et al., 2007). Tomato DCL-TP and tobacco RbcS-TP with short 

mature protein coding sequences were amplified by PCR using gDNA and cDNA, respectively. The 

restriction-digested PCR product encoding 50 amino acids of tomato DCL transit peptide and one amino 

acid of the mature protein were inserted into the beginning of the mvirD2 genes in pVD58 and pVD80 

derivatives, resulting in pVD58-DCL-TP and pVD80-DCL-TP, respectively (Table 2.3a). Similarly, the 

restriction-digested PCR product coding for 57 amino acids of tobacco RbcS transit peptide and five amino 

acids of the mature protein were inserted into the beginning of the modified virD2 genes in pVD58 and 

pVD80 derivatives, resulting in pVD58-RbcS-TP and pVD80-RbcS-TP, respectively (Table 2.3a). As a 

result, these vectors encoding four different variants of the modified VirD2 protein were generated (Figure 

2.4.2a and Figure 2.4.1b-e). The sequencing confirmed that all plasmids were successfully constructed. 

These four vectors were used to construct all expression vectors as well as helper plasmids. 
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Figure 2.4.1a. Schematic representation of the virD2 gene in pVD43.  

SD: the Shine-Dalgarno sequence; C-terminal NLS1 and 2: C-terminal bipartite NLS;  

some restriction sites are shown. pVD43-virD2 (linear)
1578 bp

virD2
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virD promoter
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Sma I  (199)

Kpn I  (531)

Kpn I  (1416)

Nru I  (799)

Nru I  (1368)

Nru I  (1503)virD2 
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Figure 2.4.1b. Schematic representation of the DCL-TP-mvirD2-58 gene in pVD58-DCl-TP. 

SD: the Shine-Dalgarno sequence; some restriction sites are shown. 

 

 

 

 

 
Figure 2.4.1c. Schematic representation of the RbcS-TP-mvirD2-58 gene in pVD58-RbcS-TP.  

SD: the Shine-Dalgarno sequence; some restriction sites are shown. 
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Figure 2.4.1d. Schematic representation of the DCL-TP-mvirD2-80 gene in pVD80-DCl-TP. 

SD: the Shine-Dalgarno sequence; some restriction sites are shown. 

 

 

 

 

Figure 2.4.1e. Schematic representation of the RbcS-TP-mvirD2-80 gene in pVD80-RbcS-TP. 

SD: the Shine-Dalgarno sequence; some restriction sites are shown. 
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2.4.2. Overproduction of VirD2 and TP-mVirD2 

The previously constructed pET3a-VirD2 encoding the wild-type VirD2 fused to His-tag was also 

used in this study (Pelczar et al., 2004). The TP-mvirD2 genes of pVD58-DCL-TP, pVD58-RbcS-TP, 

pVD80-DCL-TP, and pVD80-RbcS-TP were cloned into an expression vector, pET21b, to fuse the TP-

mvirD2 with the His-tag coding sequence. As a result, all the TP-mVirD2 recombinant proteins illustrated 

in Figure 2.4.2a contain His-tag at the C-terminus. The presence of His-tag makes it easy to purify fusion 

proteins by the nickel affinity chromatography. At first, an optimal condition for the overproduction of the 

recombinant proteins in E. coli BL21[pLysS] carrying pET3a-VirD2 or pET21-TP-mVirD2 derivatives 

were examined. The bacterial cultures were incubated at 28 and 37
o
C, and then virD2 and TP-mvirD2 were 

induced by IPTG when the suggested OD600 readings for the pET system by the manufacturer (Novagen) 

were reached. The non-induced and induced cultures were analyzed on SDS-PAGE and western blotting 

using anti-VirD2 antibody.  

Polyacrylamide gels stained with Coomassie blue staining showed strong bands corresponding to 

56 kDa and 55 kDa from the cultures grown at 37
o
C with pET3a-VirD2 and pET21b-RbcS-TP-VirD2-58, 

respectively, whereas distinct bands were not observed from the cultures with any other plasmids (Figure 

2.4.2b). However, western blot analysis using anti-VirD2 antibodies detected low amounts of the DCL-TP-

mVirD2-58, DCL-TP-mVirD2-80 and RbcS-TP-mVirD2-80 proteins (Figure 2.4.2c). These amounts were 

unsatisfactory for efficient production of recombinant proteins. Interestingly, recombinant proteins from all 

plasmids were detected on the western blot at slightly larger size than the predicted protein weight (Figure 

2.4.2c and Table 2.4.2). 

In order to improve the production of the recombinant VirD2 proteins, a lower culture temperature 

(28
o
C versus 37

o
C) was tested. A large amount of wild type VirD2 from pET3a-VirD2 was produced as it 

was visible from the strongest bands at 56 kDa from 37 and 28
o
C, and smaller proteins detected in western 

blot were likely from degraded VirD2 (Figure 2.4.2c). RbcS-TP-mVirD2-58 from pET21b-RbcS-TP-

mVirD2-58 was also detected in a higher amount at 55 kDa as compared to other TP-mVirD2 (Figure 

2.4.2c). The production of DCL-TP-mVirD2-58 remained unaffected by a lower culture temperature, and 

the production of DCL-TP-mVirD2-80 and RbcS-TP-mVirD2-80 was only slightly induced at 28C. Since 

the large amounts of VirD2 from both 37
o
C and 28

o
C cultures and RbcS-TP-mVirD2-58 from 28

o
C culture 
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were detected on the Coomassie blue stained polyacrylamide gels and the western blot, only these two 

recombinant proteins were purified.  

VirD2 forms inclusion bodies when it is overproduced in bacteria (Jasper et al., 1994). Therefore, 

inclusion bodies of VirD2 were solubilised in urea after cell lysis. Two-step affinity chromatography 

purification procedure was used to isolate recombinant wt VirD2: Ni column chromatography followed by 

protein renaturation by dialysis and then Heparin chromatography. During the purification process, five 

samples were collected: 1) Lysate I after the lysis of bacterial cells, 2) Lysate II after the denaturation of 

proteins in urea which was loaded onto the nickel column, 3) PoolI, the collection of elution factions from 

the Ni column, 4) Load II, a loading sample for the Heparin column after the renaturation by dialysis, and 

5) Pool II, the collection of elution factions from the Heparin column. All samples were analyzed on SDS-

PAGE (Figure 2.4.2d). VirD2 was purified successfully without any visible impurities on the Coomassie 

blue stained polyacrylamide gel (Figure 2.4.2d Left).  

Rbc-TP-mVirD2-58 was also solubilised in urea after cell lysis. The purification procedure 

included affinity chromatography using the Ni column followed by protein renaturation by dialysis and then 

ion-exchange chromatography using the Q-sepharose column. Finally, the purified protein was concentrated 

by a centrifugal filter device. During the purification process, five samples were collected: 1) Lysate II after 

the lysis of bacterial cells and denaturation of protein, 2) Lysate III, a loading sample for the nickel column, 

3) Pool I, the collection of elution factions from the Ni column, 4) Pool II, a loading sample for the Q-

Sepharose column after the renaturation by dialysis, and 5) Pool III, the collection of elution factions from 

the Q-Sepharose column. All samples were analyzed on SDS-PAG (Figure 2.4.2d). A protein impurity with 

the size of about 45 kDa was detected in the purified RbcS-TP-mVirD2-58 protein (Figure 2.4.2d Right), 

and the percentage of this impurity was estimated as 20% according to the Image J analysis. Since a 80% 

purity of RbcS-TP-mVirD2-58 was obtained, further purification was not performed. The purified 

recombinant proteins were used for the cleavage activity assay. 
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Figure 2.4.2a. Construction scheme of TP-mVirD2.  

NLS are indicated in bold letter, and a modified amino acid in the N-terminal NLS is in red. In a precise deletion of the C-terminal NLS, one amino acid change 

(ED) underlined was made previsouly, and it was found to have no influence at all (Rossi et al., 1993) (N:NruI; D: DCL-TP with one amino acid from the 

mature protein; R: RbcS-TP with five amino acids from the mature protein). 
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Table 2.4.2. Description of recombinant proteins illustrating differences in the predicted protein 

weight and mobility in SDS-PAGE. 

Plasmid Recombinant protein 
Amino acid 

length 

Predicted 

protein 

weight 

(kDa) 

Mobility in 

SDS-PAGE 

(kDa) 

pET3a-VirD2 (pETD2-His6) VirD2 430 48 56 

pET21b-DCL-TP-mVirD2-58 DCL-TP-mVirD2-58 437 49 53 

pET21b-RbcS-TP-mVirD2-58 RbcS-TP-mVirD2-58 450 50 55 

pET21b-DCL-TP-mVirD2-80 DCL-TP-mVirD2-80 466 52 56 

pET21b-RbcS-TP-mVirD2-80 RbcS-TP-mVirD2-80 479 53 56 
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Figure 2.4.2b. Coomassie blue stained polyacrylamide gels containing non-induced (N) and induced (I) cultures of BL21b[pLysS] carrying expression 

vectors incubated at 37 or 28
o
C. 

 

 

 
Figure 2.4.2c. Western blot detection of VirD2 and TP-mVirD2 series in non-induced (N) and induced (I) cultures of BL21b[pLysS] carrying expression 

vectors probed with anti-VirD2 antibody. 
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Figure 2.4.2d. Samples throughout the protein purification steps on polyacrylamide gels stained with GelCode

TM
 Blue Stain.  

Left – Purification of VirD2, N:20 µL of non-induced culture; I: 20 µL of induced culture; Lysate I: 25 µg; Lysate II: 25 µg; Pool I: 17.5 µg; Load II: 7.6 µg; 

Pool II: 0.26 µg; V2: 1 µg of purified VirD2.  

Right – Purification of RbcS-TP-mVirD2-58; N: 20 µL of non-induced culture; I: 20 µL of induced culture; Lysate II: 25 µg; Lysate III: 25 µg; Pool I: 0.97 µg; 

Pool II: 0.25 µg; Pool III: 0.068 µg; R-m58:1 µg of purified RbcS-TP-mVirD2-58. 
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2.4.3. Cleavage activity analyses of VirD2 and RbcS-TP-mVirD2-58 

In order to assess whether modifications of the VirD2 protein affect its activity crucial for the 

formation of the T-complex, the ability of the purified recombinant proteins VirD2 and RbcS-TP-mVirD2-

58 to cleave the pTi border sequence was tested. The VirD2 site-specific ssDNA cleavage activity assay has 

been applied previously using the radioactively labelled ssDNA (Ziemienowicz et al., 1999; Ziemienowicz 

et al., 2001). We employed the same strategy using the fluorescently labelled ssDNA at the 5’ end 

containing the right border sequence to detect the uncleaved substrate (34-mer) and the cleaved product 

(14-mer) generated by VirD2 and RbcS-TP-mVirD2 proteins. The reaction mixtures were separated on 

polyacrylamide/urea denaturing gel, and then the cleavage efficiency was determined based on a ratio 

between the uncleaved substrate and the cleaved product. 

An electrophoretogram illustrates that VirD2 and RbcS-TP-mVirD2 were able to cleave 34-mer 

ssDNA and produce the cleaved product (14-mer) (Figure 2.4.3b). The quantity of cleavage product was 

comparable between both proteins. In addition, the maximum cleavage activity estimated by the Image J 

based on electrophoretograms was not significantly different among two proteins (VirD2: 77±4%, RbcS-

TP-mVirD2-58: 73±4%) (Figure 2.4.3b). Three different phases of the cleavage efficiency were observed 

depending on the amount of the recombinant proteins: 1) a linear phase between 0 – 0.16 µg of protein, 2) 

an intermediate phase between 0.16 – 0.45 µg of protein, and 3) a plateau at > 0.45 µg of protein. It was 

concluded that changes in the VirD2 amino acid sequence resulting from mutations of NLSs and the 

addition of chloroplast targeting peptides; e.g., RbcS-TP, did not affect its cleavage activity.  
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Figure 2.4.3a. An electrophoretogram of cleavage products by VirD2 and RbcS-TP-mVirD2-58 using the fluorescently labelled oligonucleotide. 

34-mer: a cleavage substrate; 14-mer: the cleaved product; % activity: the cleavage activity estimated by Image J. 
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Figure 2.4.3b. Quantification of the cleavage activity of VirD2 and RbcS-TP-mVirD2 on the 

fluorescently labelled oligonucleotide substrate. 

 The data were generated using electrophoretograms (n=3±s.d.). 
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2.4.4. The generation of Agrobacterium strains for chloroplast transformation 

2.4.4.1. The binary vector system for Agrobacterium-mediated chloroplast transformation 

2.4.4.1.1. The generation of Agrobacterium carrying a helper plasmid, pPM6000AM containing TP- 

mvirD2 

 Since pVD derivatives are originated from pUC, they do not replicate in Agrobacterium. Thus, the 

TP-mvirD2 genes from pVD derivatives need to be located in pAVD derivatives carrying an 

Agrobacterium-compatible origin of replication. Therefore, the TP-mvirD2 genes in pVD derivatives were 

used to replace the virD2 gene in pAVD44 resulting in new pAVD derivatives (pAVD58-DCL and RbcS-

TP, and pAVD80-DCL and RbcS-TP). The newly constructed pAVD derivatives were then introduced into 

an Agrobacterium strain GV3101[pPM6000K] where the integration by homologous recombination 

between pAVD and a helper plasmid, pPM6000K, (Rossi et al., 1993) allowed for a replacement of the 

virD2 gene with its modified versions (Figure 2.4.4.1.1). The helper plasmid, pPM6000K, carries an 

internal 70% deletion of the virD2 gene by KpnI. When pAVD derivatives with the TP-mvirD2 gene are 

integrated into pPM6000K, the functional TP-mvirD2 genes are present in Agrobacterium resulting in new 

helper plasmids, pPM6000AM derivatives (Table 2.3a). A stable pPM6000AM derivative in Agrobacterium 

was obtained through at least the eighth passage of replica plating. 
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Figure 2.4.4.1.1. Construction of pPM6000AM derivatives. 

Amp
R
: the ampicillin resistance gene; Kan

R
: the kanamycin resistance gene; pBR322 ORI: pBR322 origin 

of replication; cross lines: where homologous recombination occurs. 

 

 

2.4.4.1.2. Construction of a binary vector carrying the chloroplast expression cassette 

 The chloroplast transformation vector (pLD-CtV) contains the chloroplast expression cassette 

carrying the aadA gene encoding the aminoglycoside 3’ adenylyltransferase which confers spectinomycin 

and streptomycin resistance driven by the chloroplast regulatory elements, the 16S rRNA promoter (Prrn) 

and the psbA 3’ terminator from a gene coding for a photosystem II reaction center component (TpsbA). 

The aadA gene expression cassette is flanked by chloroplast trnI and trnA regions required for a stable 

integration into the chloroplast genomes (Daniell et al., 1998). The kanamycin resistance gene in T-DNA of 

a modified binary vector pPZP500 was replaced with the chloroplast expression cassette (trnI-Prrn-aadA-

TpsbA-trnA) resulting in pPZP500-aadA. Subsequently, pPZP500-aadA was introduced into 

Agrobacterium GV3101[pPM6000AM] derivatives to complete the binary vector system, 

GV3101[pPM6000AM::pPZP500-aadA] (Table 2.3a). 
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2.4.5. Agrobacterium-mediated chloroplast transformation 

Leaves of the wild type N. tabacum cultivar Big Havana were transformed by the leaf incision 

method. A different concentration of spectinomycin between 0 and 500 mg/L was used in SIM medium in 

two different trials. Regeneration positive controls were provided using untransformed leaves on SIM 

without spectinomycin, and the shoots were regenerated from these leaves in all trials that will not be 

discussed any further. The untransformed leaves were placed on SIM containing spectinomycin served as 

regeneration-negative controls (selection controls).  

 

2.4.5.1. The first trial 

Tobacco leaves were transformed with derivatives of Agrobacterium strains 

GV3101[pPM6000AM::pPZP500-aadA], and the transformants were selected on SIM containing 500 mg/L 

spectinomycin. The untransformed leaves did not produce callus on SIM containing the aforementioned 

antibiotic as expected. Thus, 500 mg/L spectinomycin in SIM was sufficient to suppress the growth of 

untransformed plants. However, no regeneration of callus or shoot was also observed under these conditions 

from the leaves used for the transformation. Therefore, lower concentrations of the selection agent were 

used in the next transformation trials. 

 

2.4.5.2. The second trial  

Tobacco leaves were transformed with derivatives of Agrobacterium strains 

GV3101[pPM6000AM::pPZP500-aadA] and were grown on SIM without or with 100 mg/L or 250 mg/L 

spectinomycin. A total of 550 plants were regenerated on SIM without spectinomycin among all constructs 

(Treatment 1; Table 2.4.5.2). In Treatment 2, leaves were initially plated on SIM without spectinomycin to 

allow for the formation of calli/shoots. After shoots were emerged, they are placed on SIM containing 100 

mg/L spectinomycin. Only six shoots from Agrobacterium carrying pPM6000AM4 survived on SIM with 

spectinomycin (Treatment 2; Table 2.4.5.2). In a total of five plants, three plants from Agrobacterium 

carrying pPM6000AM3 and two plants from the bacterium carrying pPM6000AM5 were regenerated when 

the leaves were first placed on SIM with 100 mg/L spectinomycin (Treatment 3). No regeneration of callus 
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or shoot was observed when the leaves were first placed on SIM with 250 mg/L spectinomycin (Treatment 

4; Table 2.4.5.2). 

PCR was performed to examine the presence of the transgene in the chloroplast genome. Primers 

AZ187 and AZ200 anneal to the trnI gene and the trnA gene, respectively (Figure 2.4.5). The total DNA of 

an untransformed plant would give a 1.1 kb PCR fragment (Figure 2.4.5, Top), while the transformed plant 

would produce a 2.5 kb PCR fragment due to the presence of an insert (Figure 2.4.5, bottom). Only a 1.1 kb 

PCR fragment was produced from all regenerated plants shown on the agarose gel (Figure 2.4.5.2). Thus, 

there was no integration of the transgene into the chloroplast genome. The untransformed leaves did not 

form callus and died on SIM with 100 mg/L spectinomycin, thus confirming that 100 mg/L spectinomycin 

provided a sufficient selection pressure.  
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Figure 2.4.5. Top – The untransformed chloroplast genome. Bottom – the transformed chloroplast 

genome with the chloroplast expression cassette.  

The chloroplast expression cassette: Prrn-aadA-TpsbA; Primers: AZ187 and AZ200;  

homologous recombination site: trnI-trnA. 
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Table 2.4.5.2. The number of regenerated plants from different treatments in the second trial. 

Treatment 1: no spectinomycin; Treatment 2: leaves were initially placed on SIM without spectinomycin to 

allow for the growth of calli/shoots, and then shoots were transferred to SIM containing 100 mg/L 

spectinomycin; Treatment 3: SIM with 100 mg/L spectinomycin;  

Treatment 4: SIM with 250 mg/mL spectinomycin. 

Construct 

Treatment 

1 2 3 4 

GV3101[pPM6000AM2::pPZP500-aadA] 33 0 0 0 

GV3101[pPM6000AM3::pPZP500-aadA] 245 0 3 0 

GV3101[pPM6000AM4::pPZP500-aadA] 173 6 0 0 

GV3101[pPM6000AM5::pPZP500-aadA] 99 0 2 0 

Total 550 6 5 0 

 

 

 

 
Figure 2.4.5.2. An electrophoretogram of PCR products detecting the presence of the transgene in the 

chloroplast genome from the second trial.  

From left to right, 3.10 through 3.9 – selected transgenic lines, Wt: the untransformed wild type plant;  

P+: positive control pPZP500-aadA. 
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2.5. Discussion  

Agrobacterium is an excellent tool to modify the plant nuclear genome. Many Agrobacterium 

proteins are involved in the transformation process. VirD2 plays important roles in T-DNA processing by 

its relaxase domain and in nuclear targeting of the T-complex by its NLSs (Gelvin, 2003, 2010b, 2012). 

However, Agrobacterium proteins have never been modified to transform the chloroplast genome. In theory, 

adding a chloroplast-targeting signal to VirD2 that lacks NLSs would direct the T-complex to the 

chloroplast, yet the transformation of tobacco chloroplasts was unsuccessful in our study. Thus, the 

presence of a strong transit peptide was overridden by an unknown factor. 

 

2.5.1. Recombinant protein analysis on SDS-PAGE 

 The western blot of VirD2 and TP-mVirD2 using non-induced and induced cultures detected 

proteins with a slightly higher molecular weight than a predicted size (Figure 2.4.2c and Table 2.4.2). The 

predicted size of VirD2 is 48 kDa, but this protein is known to migrate as a 56 kDa polypeptide in SDS-

PAGE, the phenomenon is called gel shifting (Jasper et al., 1994; Relic et al., 1998; Yanofsky et al., 1986). 

RbcS-TP-mVirD2-58 also migrated differently from the predicted size in SDS-PAGE (Figure 2.4.2c). 

Interestingly, this type of gel shifting is commonly seen in membrane proteins and cytosolic proteins with 

the amino acid substitution or post-translational modification (Rath et al., 2009; Shi et al., 2012). The gel 

shifting is proposed to occur due to detergent binding to hairpin structures in the proteins (Rath et al., 2009). 

In addition, the net charge of the protein is another factor; for example, a protein with a domain containing 

a high net negative charge migrates slowly in SDS-PAGE (Shi et al., 2012). These factors might lead to the 

gel shifting observed for VirD2 and TP-mVirD2 in SDS-PAGE.  

The incubation temperature was critical for the induction of the TP-mvirD2 genes. In previous 

studies, bacterial cultures were incubated at 16
o
C or 37

o
C after the induction of the virD2 gene (Pelczar et 

al., 2004; Ziemienowicz et al., 1999). In our study, a high production of the VirD2 protein was observed 

even at 37 and 28
o
C (Figure 2.4.2b and c). The lower temperature (28

o
C) was more effective for the 

overproduction of RbcS-TP-mVirD2-58 than 37
o
C. No difference was observed from non-induced and 

induced cultures containing DCL-TP-mVirD2-58, DCL-TP-mVirD2-80, and RbcS-TP-mVirD2-80, yet the 

western blot detected small amounts of these proteins (Figure 2.4.2b and c). The conditions for the 
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overproduction of these proteins still need to be optimized. A high production of a recombinant protein, 

plant progesterone 5β-reductase, was observed when the P5βR2 gene was induced at early log-phase 

(OD600 0.1) of the bacterial culture, and then the culture was incubated at 4
o
C for 72 h (San-Miguel et al., 

2013). These conditions might be effective for the overproduction of the DCL-TP-mvirD2-58, DCL-TP-

mVirD2-80 and RbcS-TP-mVirD2-80 proteins.  

 

2.5.2. Cleavage activity 

The successfully purified VirD2 and RbcS-TP-mVirD2-58 were used for the cleavage activity 

assay. The endonuclease activity of VirD2 to cleave the T-DNA border sequences lies on the relaxase 

domain. The domain region is located within the N-terminal 228 amino acids where 82% homology is 

observed between pTiC58 and pTiA6, and it is necessary for T-strand processing (Scheiffele et al., 1995; 

Steck et al., 1990). However, based on a similarity between different relaxases, it is further minimized to 

204 amino acids (van Kregten et al., 2009). In our study, the relaxase domain was not removed, and amino 

acid modifications were not introduced. Yet, since the DCL or RbcS transit peptide was fused to the N-

terminus of mVirD2, we examined whether the additional amino acids would affect the protein folding and 

the cleavage activity of DCL- or RbcS-TP-mVirD2 fusion proteins. Figures 2.4.3a and b illustrate a similar 

pattern of cleavage products by VirD2 and RbcS-TP-mVirD2-58. Therefore, the addition of the RbcS 

transit peptide does not affect the cleavage activity of mVirD2. Only RbcS-TP-mVirD2-58 carrying 57 

amino acids of the transit peptide and five amino acids from the mature protein out of four TP-mVirD2 

proteins was purified and used for the cleavage activity assay in the study. Nevertheless, we assumed that 

these proteins would not differ from the tested one in their cleavage activity. RbcS-TP-mVirD2-80 is 

expected to show the same activity as the tested RbcS-TP-mVirD2-58 because they share the same transit 

peptide and differ only in the C-terminal part of VirD2 which is not involved in the cleavage activity. The 

DCL transit peptide in DCL-TP-mVirD2-58 and 80 would likely have no influence on the endonuclease 

activity of the proteins because it is a short domain containing 50 amino acids of the transit peptide and one 

amino acid of the mature protein. 

Three phases of the cleavage efficiency were observed (Figure 2.4.3b). A linear phase indicated a 

high cleavage efficiency of both recombinant proteins at a lower amount of proteins, and the efficiency was 
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reduced in the intermediate phase. Finally, it reached a plateau when more than 0.45 µg of proteins were 

added (Figure 2.4.3b). A similar pattern of the cleavage efficiency was observed using the adeno-associated 

virus replication protein (Costello et al., 1997). Since the amount of the cleavage substrate and recombinant 

proteins is not a limiting factor in our case, it is possible that compartments of protein storage buffer might 

inhibit the cleavage activity of recombinant proteins, or a high amount of proteins may require more 

enzyme co-factors, Mg
2+

, in the reaction mixture.  

 

2.5.3. Chloroplast transformation 

The aadA gene conferring resistance to spectinomycin and streptomycin is the most widely used 

selectable marker gene for chloroplast transformation (Miki and McHugh, 2004). In addition, the 

recommended concentration of spectinomycin is 100 to 500 mg/L for the selection of transplastomic plants 

(Verma et al., 2008). Therefore, 500 mg/L and 100-250 mg/L spectinomycin in SIM were used in the first 

and second trials, respectively. However, shoots were not regenerated at all on SIM containing 500 or 250 

mg/L spectinomycin (Table 2.4.5.2). Only three and two plants were regenerated on SIM supplemented 

with 100 mg/L spectinomycin from the leaves transformed by GV3101[pPM6000K-AM3::pPZP500-aadA] 

and GV3101[pPM6000K-AM5::pPZP500-aadA], respectively (Table 2.4.5.2); however, the transgene was 

not detected in the chloroplast genome by PCR (Figure 2.4.5.2). These regenerated plants might be 

untransformed escape plants that are observed when a lower concentration of the selection agent is used (Ye 

et al., 2003). Moreover, these untransformed escapes could have spontaneous mutations in the rrn16 gene 

in the chloroplast genome causing growth in the presence of spectinomycin (Dudas et al., 2012; Svab and 

Maliga, 1991).  

The DCL and RbcS transit peptides in TP-mVirD2 were not recognized by the cytosolic 

chloroplast import machinery and did not facilitate chloroplast targeting of the T-complex at all. However, 

these transit peptides are strong chloroplast-targeting signals that have been shown to deliver the TP-GFP 

fusion protein to chloroplasts in turnip, radish, cabbage, cauliflower, broccoli, Arabidopsis, tobacco, 

sugarcane, wheat, lettuce, carrot and barley (Gnanasambandam et al., 2007). Furthermore, the subcellular 

localization prediction software available online predicted that DCL/RbcS-TP-mVirD2 proteins constructed 

in this study would localize in chloroplasts as shown in Table 2.5.3 (Briesemeister et al., 2010a, b; 
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Emanuelsson et al., 2000; Horton et al., 2007; Shatkay et al., 2007). Nevertheless, the DCL and RbcS 

transit peptides in DCL/RbcS-TP-mVirD2 were hampered for some unknown reason. Byeon et al. (2014) 

also observed a dysfunctional transit peptide of serotonin N-acetyltransferase (SNAT) in the fusion protein. 

When a rice SNAT transit peptide was fused to sheep SNAT, the fusion protein was localized to the 

cytoplasm instead of chloroplasts. Although the precise reason of the dysfunctional transit peptide in the 

fusion protein remains unknown, two possibilities were proposed: 1) the rice SNAT transit peptide may 

have a weak targeting activity and 2) the mature protein may not be suitable for chloroplast targeting 

because internal signals downstream of transit peptides is important for an additional targeting motif for 

chloroplast translocation (Byeon et al., 2014; Ha et al., 2004). Since DCL and RbcS transit peptides with an 

additional motif, a small part of the mature proteins, are strong chloroplast-targeting signals, both 

possibilities do not apply in the case of DCL/RbcS-TP-mVirD2. Our puzzling results lead to a question 

about nuclear targeting of the T-complex by VirD2 NLSs. 

VirD2 NLSs have been examined in several studies. The first study that claimed the presence of 

the N-terminal NLS was conducted in 1990, and the C-terminal bipartite NLS was discovered in 1992 

(Herrera-Estrella et al., 1990; Howard et al., 1992; Tinland et al., 1992). In these studies, a reporter protein 

was fused to VirD2 or a fragment of VirD2. The N-terminal NLS of VirD2 was examined by generating a 

fusion protein of first 292 amino acids of VirD2 excluding the C-terminal NLS to β-galactosidase that was 

detected in isolated tobacco nuclei (Herrera-Estrella et al., 1990). Thus, the presence of the N-terminal NLS 

of VirD2 was proposed. The experiments involving the C-terminal NLS of VirD2 were performed by 

constructing a fusion protein of β-glucuronidase-VirD2 carrying different deletions within VirD2 (Howard 

et al., 1992). Their results demonstrated that the fusion proteins containing the C-terminal NLS of VirD2 

were localized in the nucleus of tobacco protoplasts. In the same year, Tinland et al (1992) fused only the N 

or C-terminal NLS to the N-terminus of β-galactosidase. The fusion proteins with either NLS were 

localized in the nuclei of tobacco protoplasts (Tinland et al., 1992). In addition, more recent studies reported 

that the fluorescently labelled VirD2 and the modified VirD2 protein with the active N-terminal NLS and 

lacking the C-terminal NLS by NruI deletion were found to be localized to the nuclei of tobacco protoplasts 

(Ziemienowicz et al., 2001).  Since then, VirD2 NLS study has not been conducted in the plant system.  
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Nevertheless, different approaches have been taken to observe the VirD2 function in various steps 

of plant transformation in addition to nuclear targeting. For example, the tumorigenesis was examined on 

potato tubers transformed by Agrobacterium strain carrying VirD2 with NruI deletion of the C-terminal 

NLS. The tumorigenesis was reduced to 1%, whereas a precise deletion of the C-terminal NLS decreased 

the tumorigenesis only to 60% (Shurvinton et al., 1992). On the other hand, a transient expression study on 

tobacco seedlings demonstrated that both a precise deletion and NruI deletion of the C-terminal NLS caused 

a decrease in GUS activity to 4% (Rossi et al., 1993). This discrepancy suggested that the deleted domain 

might be involved in T-DNA integration which is necessary for a stable plant transformation but not for a 

transient expression of T-DNA (Janssen and Gardner, 1990; Lacroix et al., 2006; Nam et al., 1999; Rossi et 

al., 1993).  

The involvement of VirD2 in the integration of T-DNA into the plant genome has been the subject 

of debate. The H-R-Y motif of the recombinase domain located at the N-terminal part of VirD2 was 

claimed to play a role in the integration of T-DNA, yet another study indicated that the VirD2 ω domain,  

present in the C-terminus near the C-terminal NLS may function in T-DNA integration, as reviewed 

elsewhere (Gelvin, 2012). Ziemienowicz et al. (2000) investigated the VirD2 fucntion in joining the 5’ 

terminus of the T-DNA to plant DNA in vitro by the ligation-integration assay. Their results showed that 

VirD2 did not have a function as a DNA ligase in the reaction, while ligation between the 5’ end of T-DNA 

from the artificial T-DNA-VirD2 complex and a partly double-stranded olignuceotide was observed in the 

reactoin with the presence of plant enzymes from plant extracts (Ziemienowicz et al., 2000). Although 

VirD2 does not act as a DNA ligase, VirD2 may still play a role in T-DNA integration through its 

interaction with plant proteins. VirD2 has been shown to be phosphorylated by the kinase CAK2M which 

also phosphorylates the C-terminal regulatory domain of RNA polymerase II that can recruit the TATA 

box-binding protein. Additionally, a tight association between VirD2 and the TATA binding-protein 

suggests that VirD2 interacts directly with the transcription machinery and help during the T-DNA 

integration process, as reviewed elsewhere (Ziemienowicz et al., 2008) 

Moreover, van Kregten et al. (2009) investigated the region of VirD2 called the domain of 

unknown function (DUF) between the relaxase domain and the C-terminal NLS (amino acids 265 to 373) 

for its function during the translocation and integration of T-strands into host plant cells. Various 
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truncations were made within DUF, and a SV40 NLS was added to the N-terminus of all truncated VirD2 

proteins. Also, the region containing the C-terminal NLS and ω domain was removed from some constructs, 

which then fused to a short translocation signal derived from VirF. Their results revealed that the DUF of 

VirD2 is not required for transformation processes, and the entire translocation domain or part of it is 

positioned in the C-terminal 40 amino acids of VirD2 including NLS and ω domain (van Kregten et al., 

2009).  

Although the function of VirD2 NLSs and other functions of VirD2 have been examined in 

various occasions, our results still cannot be explained by the previous findings, and they suggest the 

existence of a new domain of VirD2. In fact, a major finding of our study is that VirD2 with the inactivated 

NLSs in the presence of the transit peptide does not direct the T-complex to chloroplasts. Therefore, there 

must be an unknown factor that overrides a strong transit peptide not allowing the T-complex to enter the 

chloroplasts. Interestingly, the chloroplast-targeting signal was overridden in the fusion protein of the 

transit peptide to VirD2 containing an active C-terminal NLS which was localized into the nucleus (Barbara 

Hohn; personal communication). Although we were not able to clearly demonstrate the fact that modified 

complex still targeted the nucleus, it led us to hypothesize that VirD2 contains a novel NLS which could 

inhibit a function of the transit peptide. In conclusion, Agrobacterium-mediated chloroplast transformation 

by modifying the VirD2 protein was unsuccessful; nevertheless, our findings provide different perspectives 

on VirD2 NLSs. 
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Table 2.5.3. TP-mVirD2 protein sequences and their predicted subcellular localization using various prediction software.  

DCL and RbcS transit peptide and additional mature protein sequences are underlined. 

 

    Predicted Protein Subcellular Localization  

    The name of the website Wolf Psort  TargetP   SherLoc  YLOC  

    URL 

http://www.ge

nscript.com/ps

ort/wolf_psort.

html  

http://www.cb

s.dtu.dk/servic

es/TargetP/ 

http://abi.inf.uni-

tuebingen.de/Serv

ices/SherLoc/  

http://abi.inf.uni-

tuebingen.de/Serv

ices/YLoc/webloc

.cgi  

    Reference 

(Horton et al., 

2007) 

(Emanuelsson 

et al., 2000) 

(Shatkay et al., 

2007) 

(Briesemeister et 

al., 2010a, b) 

Plasmid Protein Amino acid sequence         

pVD58

-DCL-

TP 

DCL-TP-

mVirD2-

58 

MASICTSNFHFLCRKNNSSPISHHLLLSPSSLSFSRCG

GLRLCRCAAVKTGPDRAQVIIRIVPGGGTKTLQQIIN

QLEYLSTKGKLELQRSARHLDIPVPPDQIRELAQSW

VTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTA

AYEASREWAAEMFGSGYGGGRYNYLTAYHVDRDH

PHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKK

MAEISLRHGIVLDATSRAERGIAERPITYAEHRRLER

MQAQKIQFEDTDFDETSPEEDRRDLSQSFDPFRSDPS

TGEPDRATRHDKQPLEQHARFQESAGSSIKADARIR

VSLESERSAQPSASKIPVIGHFGIETSYVAEASVRKRS

GIFGTSRPVTDVAMHTVKRQQRSKRRNDEEAGPSG

ANRKGLKAAQVDSEANVGEQDTRDDGRGGT 

Chloroplast Chloroplast Chloroplast Chloroplast 

pVD58

-RbcS-

TP 

RbcS-

TP-

mVirD2-

58 

MASSVLSSAAVATRSNVAQANMVAPFTGLKSAASF

PVSRKQNLDITSIASNGGRVQCMQVWPTGPDRAQVI

IRIVPGGGTKTLQQIINQLEYLSTKGKLELQRSARHL

DIPVPPDQIRELAQSWVTEAGIYDESQSDDDRQQDL

TTHIIVSFPAGTDQTAAYEASREWAAEMFGSGYGG

GRYNYLTAYHVDRDHPHLHVVVNRRELLGHGWLK

ISRRHPQLNYDGLRKKMAEISLRHGIVLDATSRAER

GIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEE

DRRDLSQSFDPFRSDPSTGEPDRATRHDKQPLEQHA

RFQESAGSSIKADARIRVSLESERSAQPSASKIPVIGH

FGIETSYVAEASVRKRSGIFGTSRPVTDVAMHTVKR

QQRSKRRNDEEAGPSGANRKGLKAAQVDSEANVG

EQDTRDDGRGGT 

Chloroplast Chloroplast Chloroplast Chloroplast 

http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
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Table 2.5.3. Continued. 

 

    Predicted Protein Subcellular Localization  

    The name of the website Wolf Psort  TargetP   SherLoc  YLOC  

    URL 

http://www.

genscript.co

m/psort/wolf

_psort.html  

http://www.cbs.

dtu.dk/services/

TargetP/ 

http://abi.inf.uni-

tuebingen.de/Serv

ices/SherLoc/  

http://abi.inf.uni

-

tuebingen.de/Se

rvices/YLoc/we

bloc.cgi 

    Reference 

(Horton et 

al., 2007) 

(Emanuelsson et 

al., 2000) 

(Shatkay et al., 

2007) 

(Briesemeister 

et al., 2010a, b) 

Plasmid Protein Amino acid sequence         

pVD80

-DCL-

TP 

DCL-

TP-

mVirD

2-80 

MASICTSNFHFLCRKNNSSPISHHLLLSPSSLSFSRCGGL

RLCRCAAVKTGPDRAQVIIRIVPGGGTKTLQQIINQLEY

LSTKGKLELQRSARHLDIPVPPDQIRELAQSWVTEAGIY

DESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWA

AEMFGSGYGGGRYNYLTAYHVDRDHPHLHVVVNRRE

LLGHGWLKISRRHPQLNYDGLRKKMAEISLRHGIVLDA

TSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDET

SPEEDRRDLSQSFDPFRSDPSTGEPDRATRHDKQPLEQH

ARFQESAGSSIKADARIRVSLESERSAQPSASKIPVIGHF

GIETSYVAEASVRKRSGIFGTSRPVTDVAMHTVKRQQR

SKRRNDEEAGPSGANRKGLKAAQVDSEANVGEQDTR

DDSNKAADPVSASIGTEQPEASPDLGNRRDDGRGGT 

Chloroplast Chloroplast Chloroplast Chloroplast 

pVD80

-RbcS-

TP 

RbcS-

TP-

mVirD

2-80 

MASSVLSSAAVATRSNVAQANMVAPFTGLKSAASFPV

SRKQNLDITSIASNGGRVQCMQVWPTGPDRAQVIIRIVP

GGGTKTLQQIINQLEYLSTKGKLELQRSARHLDIPVPPD

QIRELAQSWVTEAGIYDESQSDDDRQQDLTTHIIVSFPA

GTDQTAAYEASREWAAEMFGSGYGGGRYNYLTAYHV

DRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLR

KKMAEISLRHGIVLDATSRAERGIAERPITYAEHRRLER

MQAQKIQFEDTDFDETSPEEDRRDLSQSFDPFRSDPSTG

EPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLES

ERSAQPSASKIPVIGHFGIETSYVAEASVRKRSGIFGTSR

PVTDVAMHTVKRQQRSKRRNDEEAGPSGANRKGLKA

AQVDSEANVGEQDTRDDSNKAADPVSASIGTEQPEASP

DLGNRRDDGRGGT 

Chloroplast Chloroplast Chloroplast Chloroplast 

http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/SherLoc/
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi
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Chapter 3 

 

Discovery of a Novel Nuclear Localization Signal in  

Agrobacterium VirD2 Protein  
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3.1. Abstract 

Agrobacterium VirD2 protein is one of the best characterized bacterial proteins. It contains two nuclear 

localization signals: N-terminal NLS as a monopartite type and C-terminal NLS as a bipartite type. 

Mutations in the NLS coding sequences have been shown to decrease the efficiency of Agrobacterium-

mediated plant transformation. Nuclear targeting of a VirD2 fusion protein to a reporter protein 

demonstrated that mutations in the NLS coding sequence inactivated its NLS activity. Therefore, we 

introduced a point mutation in the N-terminal NLS coding sequence and a broad or a precise deletion of the 

C-terminal NLS to generate the modified VirD2 (mVirD2) protein lacking both functional NLSs. This was 

done in attempt to engineer Agrobacteria that would deliver the T-DNA into chloroplasts rather than into 

the nucleus. For this purpose, a chloroplast transit peptide was fused to the N-terminus of mVirD2. Despite 

the aforementioned modifications, the T-complex was not delivered into chloroplasts. This indicated that 

the presence of a strong chloroplast transit peptide was likely overcome by an additional unknown VirD2 

NLS or NLSs. Thus, we re-examined NLSs of VirD2 to clarify the dysfunction of transit peptides. We 

constructed several truncated VirD2 proteins fused to the enhanced green fluorescent protein (EGFP). The 

subcellular localization of recombinant proteins in transgenic Arabidopsis plants and transiently 

transformed tobacco leaves indicated that the C-terminal part of mVirD2 still showed a strong nuclear 

targeting activity. We used cNLS Map software to predict a putative NLS named NLS3. NLS3 with several 

additional amino acids were fused to EGFP resulting in the NLS3-EGFP fusion protein (33 kDa). This 

fusion protein was localized in the cytoplasm and in the nucleus of tobacco leaf cells likely due to its small 

size causing the diffusion of the protein through the nuclear pore. However, when two additional EGFPs 

were fused, this recombinant protein (NLS3-EGFPx3, 89 kDa) was localized exclusively in the nucleus of 

tobacco leaf cells. Therefore, we confirmed the presence of a novel NLS in VirD2.  
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3.2. Introduction 

Agrobacterium tumefaciens has been a great tool in plant biotechnology because of the bacterial 

ability to transfer its DNA (transferred DNA, T-DNA) into the plant cell and then into the nucleus where 

the T-DNA is integrated. Although the journey of the T-DNA into the host nucleus is an intricate process, 

continuous efforts of researchers have shed light on the transformation mechanism and the interplay 

between Agrobacterium and plant proteins. 

 Agrobacterium carries the tumor inducing plasmid (pTi) wherein the virulence (vir) genes and the 

T-DNA are located. The vir genes encode several Vir proteins including VirA, VirB, VirC, VirD, VirE, 

VirF and VirG. These proteins play important roles in the transformation process. First, phenolic 

compounds which are secreted from the wounded plant are sensed by the VirA/VirG signal transduction 

system, resulting in an activation of the vir genes. Upon activation, the VirD1/VirD2 endonuclease cleaves 

the T-DNA border sequences, namely the right and left borders, which are edging T-DNA. In the meantime, 

VirD2 attaches to the 5’ end of the cleavedT-DNAwhich is displaced as a single stranded DNA (T-strand) 

from the pTi forming the T-DNA-VirD2-complex. The complex is passing through the type IV secretion 

system consisting of VirB and VirD4 proteins into the plant cell. VirE2 proteins coat the T-strand of the 

complex forming the T-complex in the plant cell to protect it from host nucleases. Finally, the T-complex is 

guided into the nucleus where the T-DNA is integrated into the nuclear genome (Gelvin, 2003, 2010b; 

Meyers et al., 2010; Ziemienowicz, 2001). 

VirD2 is an essential protein for T-DNA processing and transfer. This protein contains the relaxase 

domain which cleaves the left and right borders with a help of VirD1 (Scheiffele et al., 1995). This domain 

resides in the N-terminal half of the protein which is a highly (85%) conserved domain among different 

Agrobacterium strains (Howard et al., 1992). The ω domain at the C-terminus of the protein was suggested 

to be important but not essential for T-DNA translocation to the host cell (Bravo-Angel et al., 1998). VirD2 

also carries the nuclear localization signals (NLS) to pilot the T-complex into the nucleus. A monopartite 

and a bipartite NLS are at the N-terminal and C-terminal regions of VirD2, respectively. At first, the 

presence of the N-terminal NLS was suggested by Herrera-Estrella et al. (1990). Tobacco leaf discs were 

transformed by Agrobacterium harboring a plasmid containing the sequence coding for the first 292 amino 

acids of VirD2 fused to the lacZ gene. A VirD2 (292 amino acids)-β-galactosidase fusion protein was 
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detected by the β-galactosidase activity in plant cell fractions. Approximately a three-fold higher β-

galactosidase activity was observed in the nuclear fraction than in the cytosol fraction. According to the 

results and the proposed consensus sequences for nuclear targeting of proteins, an N-terminal NLS (RKGR) 

was suggested (Herrera-Estrella et al., 1990). In addition, the proposed bipartite C-terminal was tested by 

GUS activity using fusion proteins of β-glucuronidase (GUS) and several types of truncated VirD2 in 

tobacco protoplasts (Howard et al., 1992). The results showed that the GUS-truncated VirD2 protein in the 

absence of the N-terminal NLS and the presence of a C-terminal NLS was detected in the nucleus. On the 

contrary, the GUS-truncated VirD2 proteins that contain the wild type N-terminal NLS but lack a C-

terminal NLS by removing the C-terminal 158 amino acids or eliminating only bipartite sequences were 

detected in the cytoplasm (Howard et al., 1992). This discrepancy regarding the N-terminal NLS of VirD2 

was solved by other researchers.  

Another study on NLSs of VirD2 was published by Tinland et al. (1992). In their experiments, 

VirD2-β-galactosidase fusion proteins were constructed to observe their subcellular localization in yeast 

and tobacco protoplasts. VirD2 missing the C-terminal 29 amino acids, including the C-terminal NLS fused 

to β-galactosidase, was localized in yeast nuclei, but it was not tested in the plant system. Eleven amino 

acids of VirD2 containing the N-terminal NLS fused to β-galactosidase and 20 amino acids of VirD2 

carrying the C-terminal NLS fused to β-galactosidase were detected in the nucleus of tobacco protoplasts by 

indirect immunofluorescence (Tinland et al., 1992). These results reinforced the presence of the N and C-

terminal NLSs. These findings were further confirmed by a confocal microscopy study of fluorescently 

labelled wild-type VirD2 and a mutant lacking the C-terminal NLS, both were localized in the nuclei 

isolated from tobacco protoplasts (Ziemienowicz et al., 2001). However, the discovery of a covalent linkage 

between the T-DNA and tyrosine 29 (Y29) of VirD2, just in a few amino acids proximity of the N-terminal 

NLS, questioned the efficiency of the N-terminal NLS activity in nuclear targeting of the T-complex (Vogel 

and Das, 1992). It was suggested that the N-terminal NLS was likely inactivated because the linkage 

between VirD2 and the T-DNA might cause a conformational change in VirD2 (Rossi et al., 1993). 

While VirD2 NLSs have been examined using the reporter constructs, various types of 

modifications were made within VirD2 to observe the importance of VirD2 during a stable and transient 

transformation in several types of plant systems. For example, different regions of VirD2 were deleted to 
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examine the effect on tumorigenesis using potato tubers (Shurvinton et al., 1992). The deletion of a large 

portion of the relaxase domain led to the abolishment of tumorigenesis. Other mutations in VirD2 caused a 

severe or moderate reduction intumorigenesis. For example, removing 45 amino acids including the C-

terminal NLS (a broad deletion of the C-terminal NLS by NruI) of VirD2 reduced tumorigenesis to 1%. 

However, the elimination of exclusively the bipartite C-terminal NLS of VirD2 reduced tumorigenesis to 

60% (Shurvinton et al., 1992). Furthermore, Rossi et al. (1993) observed an effect of modified VirD2 

proteins on the transient expression of GUS by measuring the GUS activity in tobacco seedlings. Both the 

aforementioned broad and precise deletions of the C-terminal NLS of VirD2 reduced the transient 

expression to 1.9 and 4%, respectively. Four different point mutations were introduced to the N-terminal 

NLS, and only one point mutation (a change from arginine to threonine) decreased the transient expression. 

Three other mutations did not have a significant impact on GUS expression (Rossi et al., 1993). They 

concluded that the N-terminal NLS of VirD2 did not have a critical role in nuclear targeting of the T-DNA. 

Furthermore, a decrease in transient expression of GUS by a modification of the N-terminal NLS (a change 

from arginine to threonine) of VirD2 was suggested to be due to the interruption of T-DNA processing 

rather than due to the lower capacity for its nuclear targeting (Rossi et al., 1993). However, other studies 

reported that the deletion of the C terminal NLS did not abolish the cleavage activity of the modified VirD2 

protein (Ziemienowicz et al., 1999), but it eliminated the NLS (Ziemienowicz et al., 2001). 

 Plant proteins interacting with VirD2 have been identified. Arabidopsis thaliana karyopherin α 

(AtKAPα renamed IMPa-1) of the importin α family was first discovered to interact with the C-terminal 

NLS of VirD2 (Ballas and Citovsky, 1997). Other importin α isoforms such as IMPa-2, IMPa-3 and IMPa-4 

have been determined to interact with VirD2 (Bhattacharjee et al., 2008). Ballas and Citovsky (1997) 

showed that a precise deletion of the C-terminal NLS of VirD2 abolished nuclear import of VirD2 via 

KAPα, whereas Bhattacharjee et al. (2008) reported that VirD2 carrying a slightly different precise deletion 

was still able to be transferred into the nucleus via the importin α pathway. This discrepancy was suggested 

to be due to the difference in the type of deletions (Bhattacharjee et al., 2008). In addition, an interaction 

between IMPa-4 and VirD2 was abolished by a broad deletion of the C-terminal NLS of VirD2 via NruI 

(Bhattacharjee et al., 2008).  
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VirE2 also contains a bipartite NLS in the central region of the protein, but its nuclear targeting is 

controversial. Studies on subcellular localization of VirE2 demonstrated either nuclear or cytoplasmic 

localization reviewed elsewhere (Gelvin, 2010a, 2012). Ziemienowicz et al. (2001) demonstrated that VirE2 

was essential for the nuclear entry but not for nuclear targeting of the T-complex because VirE2 did not 

cause an accumulation of the fluorescently labelled ssDNA in the nucleus in the absence of VirD2, while 

the presence of VirD2 caused the accumulation of ssDNA in the nucleus of tobacco protoplasts. It was 

suggested that NLSs of ssDNA-bound VirE2 are unavailable to the import machinery (Ziemienowicz et al., 

2001). However, the ssDNA-VirE2 complex was detected in the nucleus of stamen hair cells of 

Tradescantia virginiana (Zupan et al., 1996). The discrepancy between two studies was thought to be due 

to different systems used. Interestingly, another study showed that the ssDNA-VirE2 complex could still 

interact with importins, particularly IMPa-4 in vitro (Bhattacharjee et al., 2008). Subcellular localization of 

the ssDNA-VirE2 complex was not examined in this study. Thus, the function of VirE2 NLS in the nuclear 

import of the T-complex is still unclear. 

Proteins targeted to the nucleus require NLS, while proteins imported into chloroplasts contain 

specific chloroplast transit peptides. More than 95% of chloroplast proteins are encoded in the nuclear 

genome. Therefore, most of these proteins possess transit peptides that enable protein import through the 

translocon at the outer chloroplast membrane and the translocon at the inner chloroplast membrane 

facilitated by cytosolic sorting factors such as 14-3-3 proteins, Hsp70, Hsp90, FKBP and HOP. Transit 

peptides lack consensus sequences and vary in length (Jarvis and Lopez-Juez, 2013; Lee et al., 2013; Shi 

and Theg, 2013). To find an efficient transit peptide to direct recombinant proteins into chloroplasts, 

Gnanasambandam et al. (2007) employed the tomato defective chloroplasts and leaves (DCL) and the 

tobacco ribulosebisphosphate carboxylase (Rubisco) small subunit (RbcS) transit peptides that were fused 

to the green fluorescent protein (GFP), and they demonstrated a high efficiency of chloroplast import of the 

recombinant proteins by these transit peptides in several monocot and dicot plants. 

According to previous studies on VirD2 NLSs and findings of Gnanasambandam et al. (2007), we 

constructed modified VirD2 (mVirD2) proteins carrying inactivated NLSs (a change from arginine to 

threonine in the N-terminal NLS and a broad or a precise deletion of the C-terminal NLS) fused to a 

chloroplast transit peptide (TP) for Agrobacterium-mediated chloroplast transformation by tobacco incision 
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method (see Chapter 2). We tested the TP-mVirD2 cleavage activity to ensure that an addition of TP at the 

N-terminus of mVirD2 did not disturb its cleavage activity using fluorescently labelled oligos containing a 

right border sequence with the VirD2 cleavage site. The efficiency of cleavage activity of RbcS-TP-

mVirD2-58 (VirD2 carrying the modified N-terminal NLS and a broad deletion of the C-terminal NLS) and 

wild type VirD2 was comparable (see Chapter 2). Thus, an additional TP did not affect the relaxase domain 

in TP-mVirD2. Furthermore, we used the chloroplast expression vector (pLD-CtV) (Daniell et al., 1998) to 

construct a vector containing the chloroplast expression cassette (trnI-Prrn-aadA-TpsbA-trnA). The newly 

constructed binary vector carrying the chloroplast expression cassette was used to transform tobacco leaves 

by Agrobacterium harboring the plasmid with TP-mvirD2 genes. None of the regenerated plants contained 

transgene in the chloroplast, but possibly in the nucleus. These results led to a new hypothesis of the 

presence of a novel NLS.  

Here, we constructed various types of truncated VirD2 fused to the enhanced GFP (EGFP) to 

observe the subcellular localization of fusion proteins in transgenic Arabidopsis plants and in transiently 

transformed tobacco leaves via agro-infiltration. We added extra EGFPs to the fragment of VirD2 to 

increase the protein size and avoid the diffusion of the fusion protein through the nuclear pore. Also, we 

used the cNLS Mapper software available online to predict a putative novel NLS named as NLS3 which 

may interact with importin α (Kosugi et al., 2009b). Our results showed that NLS3 fused to three EGFPs 

was localized exclusively in the nucleus. Therefore, the presence of NLS3 was confirmed. Interestingly, this 

NLS3 was not as strong as the C-terminal NLS of VirD2. It is possible that because of this weak NLS3 

activity, it was overshadowed by the C-terminal NLS. Our finding added a new feature to VirD2. 
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3.3. Materials and Methods  

3.3.1. Construction of pEZT-NL derivatives 

All binary vectors to examine the subcellular localization of recombinant proteins were constructed using 

pEZT-NL (http://deepgreen.stanford.edu/) containing the analine polylinker and EGFP coding sequences, a 

kind gift from Dr. Monroe (James Madison University, Virginia). The generation of plasmid pVD 

derivatives was described in Chapter 2 (Table 2.3a). Primers used in this study are indicated in Table 3.3.1a. 

The names of VirD2 fragments are illustrated in Figure 3.3.1a. 

 

3.3.1.1. Construction of pEZT-NL-DCL-TP and pEZT-NL-RbcS-TP 

The DCL-TP sequence was amplified and flanked by XhoI sites by PCR. PCR was performed in a 

20 µL reaction mixture containing 5 ng of pVD58-DCL-TP (see Chapter 2, Table 2.3a) and primers AZ204 

and AZ267 (Table 3.3.1), 0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ 

Buffer (Takara Bio USA), 200 µM of each dNTP Mixture (Takara Bio USA). PCR parameters were as 

follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 55

o
C for 30 s, 72

o
C for 30 s, and one cycle at 

72
o
C for 10 min. The XhoI-digested PCR product was cloned into the XhoI-cut pEZT-NL resulting in 

pEZT-NL-DCL-TP (Table 3.4.1). 

The RbcS-TP sequence was amplified and flanked by XhoI sites by PCR. PCR was performed in a 

20 µL reaction mixture containing 5 ng of pVD58-RbcS-TP (see Chapter 2, Table 2.3a) and primers AZ205 

and AZ268 (Table 3.3.1), 0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ 

Buffer (Takara Bio USA), 200 µM of each dNTP Mixture (Takara Bio USA). PCR parameters were as 

follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 55

o
C for 30 s, 72

o
C for 30 s, and one cycle at 

72
o
C for 10 min. The XhoI-digested PCR product was cloned into the XhoI-cut pEZT-NL resulting in 

pEZT-NL-RbcS-TP (Table 3.4.1). 

 

3.3.1.2. Construction of pEZT-NL-DCL-TP-mVirD2-58 and pEZT-NL-RbcS-TP-mVirD2-58, pEZT-

NL-DCL-TP-mVirD2-80 and pEZT-NL-RbcS-TP-mVirD2-80 

The DCL-TP-mvirD2-58 and DCL-TP-mvirD2-80 genes were amplified and flanked by XhoI sites 

by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pVD58-DCL-TP or pVD80-

http://deepgreen.stanford.edu/
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DCL-TP (see Chapter 2, Table 2.3a), 0.5 µM of primers AZ204 and AZ203 (Table 3.3.1), 0.025 U/µL of 

TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ Buffer (Takara Bio USA), 200 µM of 

each dNTP Mixture (Takara Bio USA). PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 

cycles at 98
o
C for 10 s, 62

o
C for 30 s, 72

o
C for 90 s, and one cycle at 72

o
C for 10 min. The XhoI-digested 

PCR products were cloned into the XhoI-cut pEZT-NL resulting in pEZT-NL-DCL-TP-mVirD2-58 or 

pEZT-NL-DCL-TP-mVirD2-80, respectively (Table 3.4.1). 

The RbcS-TP-mvirD2-58 and RbcS-TP-mvirD2-80 genes were amplified and flanked by XhoI sites 

by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pVD58-RbcS-TP or pVD80-

RbcS-TP (see Chapter 2, Table 2.3a), 0.5 µM of primers AZ245 and AZ203 (Table 3.3.1), 0.025 U/µL of 

TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ Buffer (Takara Bio USA), 200 µM of 

each dNTP Mixture (Takara Bio USA). PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 

cycles at 98
o
C for 10 s, 70

o
C for 30 s, 72

o
C for 90 s, and one cycle at 72

o
C for 10 min. The XhoI-digested 

PCR products were cloned into the XhoI-cut pEZT-NL resulting in pEZT-NL-RbcS-TP-mVirD2-58 or 

pEZT-NL-RbcS-TP-mVirD2-80, respectively (Table 3.4.1). 

 

3.3.1.3. Construction of pEZT-NL-VirD2, pEZT-NL-mVirD2-58 and pEZT-NL-mVirD2-80 

The virD2 gene was amplified and flanked by XhoI sites by PCR. PCR was performed in a 20 µL 

reaction mixture containing 5 ng of pVD43 (see Chapter 2, Table 2.3a), 0.5 µM of primers AZ202 and 

AZ203 (Table 3.3.1), 0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ 

Buffer (Takara Bio USA), 200 µM of each dNTP Mixture (Takara Bio USA). PCR parameters were as 

follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 69

o
C for 30 s, 72

o
C for 90 s, and one cycle at 

72
o
C for 10 min. The XhoI-digested PCR product was cloned into the XhoI-cut pEZT-NL resulting in 

pEZT-NL-VirD2 (Table 3.4.1). 

The mvirD2-58 and mvirD2-80 genes were amplified and flanked by XhoI sites by PCR. PCR was 

performed in a 25 µL reaction mixture containing 5 ng of pVD58-AgeI or pVD80 (see Chapter 2, Table 

2.3a), 0.5 µM of primers AZ202 and AZ203 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA 

Polymerase (New England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP 

Mixture. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 72

o
C for 
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30 s, 72
o
C for 20 s, and one cycle at 72

o
C for 2 min. The XhoI-digested PCR products were cloned into the 

XhoI-cut pEZT-NL resulting in pEZT-NL-mVirD2-58 or pEZT-NL-mVirD2-80, respectively (Table 3.4.1). 

 

3.3.1.4. Construction of pEZT-NL carrying the partial virD2 or mvirD2 gene encoding the N-terminal 

region of VirD2 or mVirD2 

3.3.1.4.1. Construction of pEZT-NL-VirD2-N1/2 and pEZT-NL-mVirD2-58/80-N1/2 

The sequences coding for the N-terminal halves of the proteins in the virD2 and mvirD2-58/80 

genes were amplified and flanked by XhoI sites by PCR. PCR was performed in a 25 µL reaction mixture 

containing 5 ng of pVD43 or pVD80 (see Chapter 2, Table 2.3a), 0.5 µM of primers AZ202 and AM23 

(Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase (New England Biolabs), 1xQ5 

Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. PCR parameters were as follows: 

one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 64

o
C for 30 s, 72

o
C for 10 s, and one cycle at 72

o
C for 

2 min. The XhoI-digested PCR products were cloned into the XhoI-cut pEZT-NL resulting in pEZT-NL-

VirD2-N1/2 or pEZT-NL-mVirD2-58/80-N1/2, respectively (Table 3.4.1). 

 

3.3.1.4.2. Construction of pEZT-NL-VirD2-N1/3 and pEZT-NL-mVirD2-58/80-N1/3 

The sequences coding for the N-terminal one third of VirD2 and mVirD2-58/80 in the virD2 and 

mvirD2-58/80 genes were amplified and flanked by XhoI sites by PCR. PCR was performed in a 25 µL 

reaction mixture containing 5 ng of pVD43 or pVD80 (see Chapter 2, Table 2.3a), 0.5 µM of primers  

AZ202 and AM25 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase (New 

England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 72

o
C for 30 s for pVD43 

and 60
o
C for pVD80, 72

o
C for 10 s, and one cycle at 72

o
C for 2 min. The XhoI-digested PCR products were 

cloned into the XhoI-cut pEZT-NL resulting in pEZT-NL-VirD2-N1/3 or pEZT-NL-mVirD2-80/80-N1/3, 

respectively (Table 3.4.1). 
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3.3.1.5. Construction of pEZT-NL carrying the partial virD2 or mvirD2 gene encoding the C-terminal 

region of VirD2 or mVirD2 

3.3.1.5.1. Construction of pEZT-NL-VirD2-C1/2, pEZT-NL-mVirD2-58-C1/2 and pEZT-NL-

mVirD2-80-C1/2 

The sequences coding for the C-terminal half of the protein in the virD2, mvirD2-58 and mvirD2-

80 genes were amplified and flanked by XhoI sites by PCR. PCR was performed in a 25 µL reaction 

mixture containing 5 ng of pVD43, pVD58-AgeI or pVD80 (see Chapter 2, Table 2.3a), 0.5 µM of primers 

AM24 and AZ203 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase (New 

England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 67

o
C for 30 s, 72

o
C for 

10 s, and one cycle at 72
o
C for 2 min. The XhoI-digested PCR products were cloned into the XhoI-cut 

pEZT-NL resulting in pEZT-NL-VirD2-C1/2, pEZT-NL-VirD2-58-C1/2 or pEZT-NL-VirD2-80-C1/2, 

respectively (Table 3.4.1). 

 

3.3.1.5.2. Construction of pEZT-NL-VirD2-C1/3, pEZT-NL-mVirD2-58-C1/3, pEZT-NL-mVirD2-80-

C1/3 and pEZT-NL-mVirD2-80-C1/3-EGFPx2 

The sequences coding for the C-terminal one third of the protein in the virD2, mvirD2-58 and 

mvirD2-80 genes were amplified and flanked by XhoI sites by PCR. PCR was performed in a 25 µL 

reaction mixture containing 5 ng of pVD43, pVD58-AgeI or  pVD80 (see Chapter 2, Table 2.3a), 0.5 µM of 

primers AM28 and AZ203 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase 

(New England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. 

PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 72

o
C for 30 s, 72

o
C 

for 10 s, and one cycle at 72
o
C for 2 min. The XhoI-digested PCR products were cloned into the XhoI-cut 

pEZT-NL resulting in pEZT-NL-VirD2-C1/3, pEZT-NL-mVirD2-58-C1/3 or pEZT-NL-mVirD2-80-C1/3, 

respectively (Table 3.4.1). 

The sequences coding for the alanine linker and EGFP were amplified and flanked by EcoRI and 

SmaI sites by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pEZT-NL, 0.5 µM 

of primers AM42 and AM43 (Table 3.3.1), 0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio 
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USA), 1xExTaq™ Buffer (Takara Bio USA), 200 µM of each dNTP Mixture (Takara Bio USA). PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 70

o
C for 30 s, 72

o
C for 1 

min, and one cycle at 72
o
C for 2 min. The EcoRI/SmaI-digested PCR product was cloned into the 

EcoRI/SmaI-digested pEZT-NL-mVirD2-80-C1/3 resulting in pEZT-NL-mVirD2-80-C1/3-EGFPx2 (Table 

3.4.1). 

 

3.3.1.5.3. Construction of pEZT-NL-VirD2-C1/3ΔNLS3, pEZT-NL-mVirD2-80-C1/3ΔNLS3 and 

pEZT-NL-mVirD2-80-C1/3ΔNLS3-EGFPx2 

The sequences coding for the C-terminal part of the protein excluding NLS3 were amplified and 

flanked by XhoI sites by PCR. PCR was performed in a 20 µL reaction mixture containing 5 ng of pVD43, 

pVD58-AgeI or pVD80 (see Chapter 2, Table 2.3a), 0.5 µM of primers AM37 and AZ203 (Table 3.3.1), 

0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio USA), 1xExTaq™ Buffer (Takara Bio USA), 

200 µM of each dNTP Mixture (Takara Bio USA). PCR parameters were as follows: one cycle at 98
o
C for 

30 s, 30 cycles at 98
o
C for 10 s, 62

o
C for 30 s, 72

o
C for 30 s for pVD43 and 10 s for pVD58-AgeI and 

pVD80, and one cycle at 72
o
C for 2 min. The XhoI-digested PCR products were cloned into the XhoI-cut 

pEZT-NL resulting in pEZT-NL-VirD2-C1/3ΔNLS3, pEZT-NL-mVirD2-58-C1/3ΔNLS3 or pEZT-NL-

mVirD2-80-C1/3ΔNLS3, respectively (Table 3.4.1). 

The sequences coding for the alanine linker and EGFP were amplified and flanked by EcoRI and 

SmaI sites (Section 3.3.1.5.2). The EcoRI/SmaI-digested PCR product was cloned into the EcoRI/SmaI-

digested pEZT-NL-mVirD2-80-C1/3ΔNLS3 resulting in pEZT-NL-mVirD2-80-C1/3ΔNLS3-EGFPx2 

(Table 3.4.1). 

 

3.3.1.6. Construction of pEZT-NL-VirD2-M1/3 carrying the central region of the virD2 gene 

The central region of virD2 encoding the central/middle part of VirD2 was amplified and flanked 

by XhoI sites by PCR. PCR was performed in a 25 µL reaction mixture containing 5 ng of pVD43 (Chapter 

2, Table 2.3a), 0.5 µM of primers AM26 and AM27 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-

Fidelity DNA Polymerase (New England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM 

of each dNTP Mixture. PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 
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10 s, 60
o
C for 30 s, 72

o
C for 10 s, and one cycle at 72

o
C for 2 min. The XhoI-digested PCR product was 

cloned into the XhoI-cut pEZT-NL resulting in pEZT-NL-VirD2-M1/3 (Table 3.4.1). 

 

3.3.1.7. Construction of pEZT-NL-NLS3 derivatives: pEZT-NL-NLS3, pEZT-NL-NLS3-EGFPx2 and 

pEZT-NL-EGFPx3 

The putative NLS3 coding sequence was amplified and flanked by XhoI sites by PCR. PCR was 

performed in a 20 µL reaction mixture containing 5 ng of pVD43 (see Chapter 2, Table 2.3a), 0.5 µM of 

primers AM29 and AM30 (Table 3.3.1), 0.025 U/µL of TakaraExTaq™ DNA Polymerase (Takara Bio 

USA), 1xExTaq™ Buffer (Takara Bio USA), 200 µM of each dNTP Mixture (Takara Bio USA). PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 60

o
C for 30 s, 72

o
C for 

10 s, and one cycle at 72
o
C for 2 min. The XhoI-digested PCR product (84 bp) was cloned into the XhoI cut 

pEZT-NL resulting in pEZT-NL-NLS3 (Table 3.4.1). 

The sequences coding for the alanine linker and EGFP were amplified and flanked by HindIII and 

SmaI sites by PCR. PCR was performed in a 25µL reaction mixture containing 10 ng of pEZT-NL, 0.5 µM 

of primers AM56 and AM57 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase 

(New England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. 

PCR parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 67

o
C for 30 s, 72

o
C 

for 10 s, and one cycle at 72
o
C for 2 min. The HindIII/SmaI-digested PCR product was cloned into the 

HindIII/SmaI-cut pEZT-NL resulting in pEZT-NL-NLS3-EGFPx2 (Table 3.4.1). 

The sequences coding for the alanine linker and EGFP were amplified and flanked by SmaI sites 

by PCR. PCR was performed in a 25 µL reaction mixture containing 10 ng of pEZT-NL, 0.5 µM of primers 

AM63 and AM64 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase (New 

England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 68

o
C for 30 s, 72

o
C for 

10 s, and one cycle at 72
o
C for 2 min. The SmaI-digested PCR product was cloned into the SmaI-cut pEZT-

NL-NLS3-EGFPx2 resulting in pEZT-NL-NLS3-EGFPx3 (Table 3.4.1). 
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3.3.1.8. Construction of pEZT-NL-78bp from pCAMBIA1302 derivatives: pEZT-NL-78bp, pEZT-

NL-78bp-EGFPx2 and pEZT-NL-78bp-EGFPx3 

The first 78 bp of the gfp gene in pCAMBIA1302 (http://www.cambia.org/daisy/cambia/585), a 

kind gift from Dr. Monroe (James Madison University, Virginia), was amplified and flanked by XhoI sites 

by PCR. PCR was performed in a 25 µL reaction mixture containing 10 ng of pCAMBIA1302, 0.5 µM of 

primers AM70 and AM71 (Table 3.3.1), 0.02 U/µL of Q5® Hot Start High-Fidelity DNA Polymerase (New 

England Biolabs), 1xQ5 Reaction Buffer (New England Biolabs), 200 µM of each dNTP Mixture. PCR 

parameters were as follows: one cycle at 98
o
C for 30 s, 30 cycles at 98

o
C for 10 s, 60

o
C for 30 s, 72

o
C for 

10 s, and one cycle at 72
o
C for 2 min. The XhoI-digested PCR product was cloned into the XhoI-cut pEZT-

NL resulting in pEZT-NL-78bp (Table 3.4.1).  

The sequences coding for the alanine linker and EGFP were amplified and flanked by HindIII and 

SmaI sites using pEZT-NL and primers AM56 and AM57 (Table 3.3.1). PCR parameters were mentioned 

previously (Section 3.3.1.7). The HindIII/SmaI-digested PCR product was cloned into the HindIII/SmaI-cut 

pEZT-NL-78bp resulting in pEZT-NL-78bp-EGFPx2 (Table 3.4.1).  

The sequences coding for the alanine linker and EGFP were amplified and flanked by SmaI sites 

using pEZT-NL and primers AM63 and AM64 (Table 3.3.1) with the aforementioned PCR parameters 

(Section 3.3.1.7). The SmaI-digested PCR product was cloned into the SmaI-cut pEZT-NL-78bp-EGFPx2 

resulting in pEZT-NL-78bp-EGFPx3 (Table 3.4.1). 

 

3.3.2. Protein analyses using the online software  

3.3.2.1. Identification of a novel NLS (NLS3) 

Amino acid sequences of VirD2, mVirD2-58 and mVirD2-80 were analyzed on cNLS Mapper 

(Kosugi et al., 2009b).  

 

3.3.2.2. Protein size prediction 

Molecular weights of the recombinant proteins were predicted using Science Gateway 

(http://www.sciencegateway.org/tools/proteinmw.htm). 

 

http://www.cambia.org/daisy/cambia/585
http://www.sciencegateway.org/tools/proteinmw.htm
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3.3.2.3. Sequence alignment 

The VirD2 amino acid sequences from several octopine and nopaline type plasmids were aligned 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

 

3.3.3. Growth conditions of plants 

3.3.3.1. The growth condition of Arabidopsis thaliana 

Seeds of Arabidopsis thaliana (cultivar Columbia) were sowed on the mixture of All purpose 

potting soil (Plant Etc; Lethbridge, AB, Canada) and vermiculite (The Professional Gardener Co LTD, AB, 

Canada) in a 4:1 ratio in 2x2 inch square pots. Miracle-Gro fertilizer (Scotts Canada Ltd., Mississauga, ON, 

Canada) was used to pre-soak the soil as described previously (Bilichak, 2013).The seeds were placed at 

4
o
C for 2 days to break the dormancy; subsequently, they were moved to a growth chamber (Biochambers, 

model SPRS-1115, Winnipeg, MB, Canada), set at high light conditions (32.8 μEm
-2

s
-1

) at 22°C under a 16-

hour light regime and at 18°C under an 8-hour dark regime under a constant humidity of 65%. The soil was 

continuously moistened with tap water. 

 

3.3.3.2. The growth condition of Nicotiana benthamiana 

N. benthamiana seeds were placed on the previously mentioned soil mixture (Section 3.3.3.1) in 

5x5 square pots which were then placed in a growth chamber (Biochambers, model SPRS-1115, Winnipeg, 

MB, Canada) with the aforementioned settings (Section 3.3.3.1). Five to six week-old plants were used for 

the following Agrobacterium infiltration.   

 

3.3.4. Agrobacterium-mediated plant transformation  

3.3.4.1. Stable transformation of Arabidopsis by the Agrobacterium-mediated floral dip method 

Arabidopsis was stably transformed by the floral dip method as previously described with some 

modifications (Zhang et al., 2006). Agrobacterium strain GV3101[pPM6000] was transformed with pEZT-

NL derivatives by electroporation (Mattanovich et al., 1989). Bacteria were plated on YEP medium (10 g 

peptone, 10 g yeast extract, 5 g NaCl2, 10 mM MgSO4, 20 g agar per litre, pH 7) containing rifampicin (100 

mg/L), carbenicillin (25 mg/L), and gentamicin (25 mg/L). Subsequently, the bacteria were grown in 5 mL 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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YEP containing the aforementioned antibiotics at 28
o
C with shaking overnight. One mL overnight culture 

was transferred to 200 mL YEP with the aforementioned antibiotics and then incubated at 28
o
C for 16-24 h. 

The bacterial cells were harvested at 1,500xg for 20 min at room temperature. The bacterial pellet was re-

suspended in the infiltration medium (5% sucrose) to OD600 0.8. Subsequently, 0.005% Silwet L-77 (Lahile 

seeds, USA) was added to the infiltration medium. Plants with floral buds were submerged in the inoculum 

for 1 min. They were kept in the dark for 48 h supplemented with water in the greenhouse. Afterward, the 

plants were grown until siliques were developed. Seeds (T1) were harvested and then dried overnight at 

37
o
C.  

 

3.3.4.2. Selection of transgenic Arabidopsis by glufosinate ammonium 

The selection was made according to the previously published protocol (Bilichak, 2013). T1 seeds 

harvested from the floral dip were sowed on the soil mix pre-soaked with a fertilizer in 2-inch deep pots. 

The seeds were placed at 4
o
C for 2 days and then moved to the growth chamber (Section 3.3.3.1). After two 

or three days of germination, seedlings were sprayed with the Liberty 150 CN Herbicide diluted 1000x and 

Crop Desiccant stock solution (Aventis CropSciense Canada Co, Canada, 150 g/L concentration of 

glufosinate ammonium in the stock solution) once a day for a minimum of 7 days continuously. Transgenic 

plants were green, while non-transgenic plants were smaller than transgenic plants and had bleached 

cotyledons. The transgenic plants were transferred into individual pots for further growth. T2 seeds were 

harvested. 

 

3.3.4.3. DAPI staining of transgenic Arabidopsis seedlings 

T2 Arabidopsis seeds were sowed on the soil mix pre-soaked with a fertilizer in 2x2 inch square 

pots. The seeds were placed at 4
o
C for 2 days and then moved to the growth chamber (Section 3.3.3.1). 

Leaves of 2.5 week-old seedlings were submerged in the DAPI solution [1 µg/mL4,6-diamidino-2-

phenylindole (SIGMA), 1% v/v Triton X-100 (EM Science)] and vacuum infiltrated for 5 min. The leaves 

were rinsed with distilled water three times and examined under the confocal microscope.   
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3.3.4.4. Transient transformation of tobacco leaves by the Agrobacterium-infiltration method 

Transient expression of recombinant proteins in tobacco leaves by Agrobacterium infiltration was 

done according to the established protocol (Sparkes et al., 2006) with the following modifications. 

Agrobacterium GV3101[pPM6000] was transformed with pEZT-NL derivatives by electroporation 

(Mattanovich et al., 1989). The bacteria were plated on YEP medium containing rifampicin (100 mg/L), 

carbenicillin (25 mg/L), and gentamicin (25 mg/L). They were used to inoculate 5 mL YEB (5 g beef 

extract, 5 g peptone, 5 g sucrose, 1 g yeast extract, 2 mM MgSO4 per litre, pH 7.5) with the aforementioned 

antibiotics, and the culture was incubated at 28
o
C with shaking overnight. The overnight culture (1.5 mL) 

was centrifuged at 1,000xg for 10 min at room temperature. The bacterial pellet was resuspended in 1 mL 

of the infiltration medium (0.5% w/v D-glucose, 50 mM MES, 2 mM Na3PO4•12H2O, 0.1 mM 

acetosyringone). The cell suspension was diluted to OD600 0.05with the infiltration medium. The abaxial 

side between two veins of a leafwas infiltrated with the OD adjusted cell suspension. The plants were 

placed in the growth chamber with the previously mentioned settings. Two days post infiltration, a small 

piece of the infiltrated region of the leaf was examined under the confocal microscope described below. 

 

3.3.4.5. DAPI staining of infiltrated tobacco leaves 

Small pieces of the infiltrated region of tobacco leaves were examined under the confocal 

microscope to ensure the EGFP expression before DAPI staining. After the presence of EGFP was detected, 

the same leaf samples were incubated in the DAPI solution for 30 min at room temperature (Section 

3.3.4.3). The leaves samples were rinsed with distilled water three times and then examined under the 

confocal microscope.   

 

3.3.4.6. Confocal laser scanning microscopy 

The leaf samples were mounted in water and analyzed under the Nikkon D-Eclipse C1 confocal 

microscope (Nikon) equipped with following lasers and detectors: a UV laser (408 nm) and its detector 

(450/35) for the DAPI stained nuclei, an argon laser (488 nm) and its detector (515/30) for the fluorescence 

from EGFP, a helium-neon laser (638 nm) and its detector (605/75) for the autofluorescence from 

chloroplasts. A differential interference contrast was also used. The laser and detector settings were 
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identical within Arabidopsis leaf samples. Tobacco leaves prior to the DAPI staining were examined at a 

constant setting. After staining, a detector (605/75) for a helium-neon laser (638 nm) was reduced to 

decrease the background noise. All other settings were the same before DAPI staining, and the settings were 

identical in all tobacco leaf samples. The color of some pictures was enhanced using Auto Correct in 

Microsoft Office Picture Manager to emphasize the subcellular localization of recombinant proteins. 

Original photos are presented in Figure 3.4.3.2e. 

 

  

 
 

Figure 3.3.1. Fragments of VirD2, mVirD2-58 and mVirD2-80.  

Black bars: N-terminal NLS and C-terminal NLS;magenta cross: modified N-terminal NLS; red cross in 

mVirD2-58: a broad deletion of the C-terminal NLS; red crosses in mVirD2-80: a precise deletion of the C-

terminal NLS; red bar: NLS3; Δ1: VirD2-C1/3ΔNLS3; Δ2: mVirD2-80-C1/3ΔNLS3.N1/2: an N-terminal 

half of VirD2; C1/2: a C-terminal half; N1/3: an N-terminal one third of VirD2; M1/3: one third 

representing central/middle region of VirD2; C1/3: a C-terminal one third of VirD2.  

Motif/Domains shown: T: HIT motif to interact with TATA box-binding protein; CyP interacting domain: 

cyclophilin interacting domain. 
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Table 3.3.1. Primers used to construct pEZT-NL derivatives. 

Primer Sequence (5’-3’) Description 

AZ202 TATACTCGAGATGCCCGATCGCGCTC The forward primer which anneals to the 

beginning of the virD2 gene and to 

introduce the XhoI site 

AZ203 ATATCTCGAGGGTCCCCCCGCGC The reverse primer which anneals to the 

end of the virD2 gene and to introduce 

XhoI site 

AZ204 ATATCTCGAGATGGCTTCAATTTGTAC The forward primer which anneals to the 

beginning of the DCL-TP sequence  and 

introduce the XhoI site 

AZ205 ATATCTCGAGATGGCTTCCTCAGTTC The forward primer which anneals to the 

beginning of the RbcS-TP sequence and 

introduce the XhoI site 

AZ245 ATATCTCGAGATGGCTTCCTCAGTTCTTTC 

CTC 

The forward primer which anneals to the 

beginning of the RbcS-TPsequence  and 

introduce the XhoI site 

AZ267 AAACTCGAGACCGGTCTTCACCGCCGCGCA 

ACG 

The reverse primer which anneals to the 

end of the DCL-TP sequence and 

introducetheXhoI site 

AZ268 AAACTCGAGACCGGTTGGCCACACCTGCAT 

GCA  

The reverse primer which anneals to the 

end of the RbcS-TP gene and introduce 

the XhoI site 

AM23 TTACTCGAGTTCGAATTGAATCTTTTG The reverse primer which anneals to the 

middle of virD2 gene and introduce the 

XhoI site 

AM24 AAACTCGAGATGGATACAGATTTTGATGA The forward primer which anneals to the 

middle of virD2 and introduce the XhoI 

site and a new ATG codon 

AM25 TTTCTCGAGCCGACGATTGACCACGAC The reverse primer to amplify the N-

terminal 1/3 of VirD2 coding sequence 

and introduce the XhoI site  

AM26 ATACTCGAGATGGAACTTCTGGGGCACGG The forward primer to amplify the 

middle of the virD2 gene and introduce 

the XhoI site and a new ATG codon 

AM27 AAACTCGAGCTCGCTCTCCAATGATAC The reverse primer to amplify the middle 

of the virD2 gene and introduce the XhoI 

site  

AM28 ATACTCGAGATGCGGAGTGCCCAACCATC The forward primer to amplify the C-

terminal 1/3 of VirD2 coding sequence 

and introduce the XhoI site and a new 

ATG codon 

AM29 ATACTCGAGATGAAG CGCCAGCAGCG The forward primer to amplify the 

NLS3coding sequence and introduce the 

XhoI site and a new ATG codon 

AM30 AAACTCGAGCTTCAATCCTTTACGGTTTG The reverse primer to amplify the NLS3 

coding sequence and introduce the XhoI 

site  

AM37 ATACTCGAGATGGCTGCGCAAGTTGATTC The forward primer which anneals to just 

after the NLS3 coding sequence and 

introduce the XhoI site and a new ATG 

codon 

AM42 ATAGAATTCCGGCTGCTGCCGCTGCC The forward primer to amplify Ala(10)-

EGFP sequence  and introduce the 

EcoRI site  
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Table 3.3.1. Continued. 

Primer Sequence (5’-3’) Description 

AM43 AAACCCGGGCCTTGTACAGCTCGTCCA 

  

The reverse primer to amplify Ala(10)-

EGFP sequence without a stop codon, 

introduce the SmaI site and add Cto 

make in frame 

AM56 

 

TTTAAGCTTGCTGCTGCCGCTGCCGCTG The forward primer to amplify Ala(10)-

EGFP sequence and introduce the 

HindIII site 

AM57 

 

TATTCCCGGGCCTTGTACAGCTCGTCCA The reverse primer to amplify Ala(10)-

EGFP sequence gene without a stop 

codon, introduce the SmaI site and add C 

to make in frame  

AM63 ATACCCGGGTAGCTGCTGCCGCTGCCGC The forward primer to amplify Ala(10)-

EGFP sequence gene, and introduce the 

SmaI site and add TA to make in frame 

AM64 AATCCCGGGTCTTGTACAGCTCGTCCATG The reverse primer to amplify Ala(10)-

EGFP sequence gene, and introduce the 

SmaI site and add T to make in frame  

AM70 AAACTCGAGATGGTAGATCTGACTAGTAAA 

G 

The forward primer which anneals to the 

beginning of the gfp sequence in 

pCAMBIA1302 and introduce the XhoI 

site 

AM71 ATACTCGAGAACATCACCATCTAATTCAAC The reverse primer which anneals to a 

part of the gfp sequence in 

pCAMBIA1302 and introduce the XhoI 

site 

The introduced restriction sites are indicated in italics. Added nucleotides are bold.
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3.4. Results 

In the previous chapter, we demonstrated that strong transit peptides were overridden by an unknown factor 

that did not allow the T-complex to reach the chloroplasts. Thus, we attempted to analyze this unknown 

factor. We examined the subcellular localization of fusion proteins, TP-mVirD2-EGFP and mVirD2-EGFP 

lacking known VirD2 NLSs. Several regions of VirD2 and mVirD2 were fused to EGFP to define a 

putative NLS. 

 

3.4.1. Construction of pEZT-NL derivatives containing the DCL-TP, RbcS-TP, virD2, mvirD2, a 

partial virD2 or partial mvirD2 genes 

The modifications of the N and C-terminal NLSs were introduced in our previous study (see 

Chapter 2). Previously constructed pVD58 derivative contains the mvirD2-58 encoding the N-terminal 

modified NLS (change from arginine to threonine) and a broad deletion of the C-terminal NLS (removing 

45 amino acids including the C-terminal NLS by NruI). In addition, pVD80 derivative contains the mvirD2-

80 encoding the aforementioned N-terminal modified NLS and a precise deletion of the C-terminal NLS 

(exclusively eliminating bipartite sequences). The tomato DCL-TP or tobacco RbcS-TP sequence was 

cloned into pVD58 and pVD80 derivatives resulting in pVD58-DCL-TP, pVD58-RbcS-TP, pVD80-DCL-

TP and pVD80-RbcS-TP (see Chapter 2, Table 2.3a).  

The DCL-TP, RbcS-TP, virD2, and mvirD2 genes in pVD derivatives were cloned into pEZT-NL 

resulting in various pEZT-NL derivatives (Table 3.4.1). The sequence coding for the N-terminal half of 

VirD2 was cloned from pVD43 carrying the wild type virD2 gene into pEZT-NL resulting in pEZT-NL-

VirD2-N1/2. pVD58 and pVD80 derivatives contain the same sequence coding for the N-terminal half; thus, 

the sequence coding for the N-terminal half or the N-terminal one third of mVirD2 was cloned into pEZT-

NL resulting in pEZT-NL-mVirD2-58/80-N1/2 or pEZT-NL-mVirD2-58/80-N1/3, respectively. 

The central (middle) regions of VirD2 and mVirD2 named M1/3 are identical in both proteins 

(Figure 3.3.1). This central coding sequence was cloned into pEZT-NL resulting in pEZT-NL-VirD2-M1/3 

(Table 3.4.1). 

The sequences coding for the C-terminal half or one third of the VirD2 and mVirD2 were cloned 

into pEZT-NL resulting in pEZT-NL-VirD2-C1/2, pEZT-NL-VirD2-C1/3, pEZT-NL-mVirD2-58-C1/2, 
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pEZT-NL-mVirD2-58-C1/3, pEZT-NL-mVirD2-80-C1/2 and pEZT-NL-mVirD2-80-C1/3 (Figure 3.3.1 

and Table 3.4.1). In addition, an extra alanine linker and EGFP coding sequence were cloned into pEZT-NL 

containing the C-terminal VirD2 coding sequence; pEZT-NL-VirD2-C1/3-EGFPx2 and pEZT-NL-

mVirD2-80-C1/3-EGFPx2 were successfully constructed (Table 3.4.1). 

The amino acid sequences of VirD2 and mVirD2 were analyzed using cNLS Mapper (Figure 

3.4.1a-c). The N-terminal NLS was not recognized by the program, while the C-terminal NLS of VirD2 was 

predicted to be a strong bipartite NLS (score 13.6 in Figure 3.4.1a). VirD2, mVirD2-58, and mVirD2-80 

were predicted to have another monopartite type NLS named NLS3 (score 7 in Figure 3.4.1a-c). 

 After recognition of NLS3, we attempted to clone the sequence coding only for the NLS3 core 

region (QRSKRRNDEE, 10 amino acids) or shorter NLS3 (RSKRRN, 6 amino acids) into pEZT-NL, yet 

we were unsuccessful either with cloning or with transit expression in tobacco leaves (data not shown). 

Therefore, the sequence coding for 26 amino acids including the NLS3 core sequence with the flanking 

amino acids and a newly added methionine (MKRQQRSKRRNDEEAGPSGANRKGLK, 26 aa) was 

cloned into pEZT-NL resulting in pEZT-NL-NLS3 (Table 3.4.1). Hereafter, NLS3 in our constructs 

designates the 26 amino acid. One or two extra alanine linker and EGFP sequences were cloned into pEZT-

NL-NLS3 resulting in pEZT-NL-NLS3-EGFPx2 or pEZT-NL-NLS3-EGFPx3, respectively (Table 3.4.1). 

 The C-terminal parts of VirD2 and mVirD2 were revisited after the NLS3 recognition by cNLS 

Mapper. The sequences coding for the C-terminal part of VirD2, mVirD2-58, and mVirD2-80 excluding 25 

amino acids containing NLS3 were cloned into pEZT-NL resulting in pEZT-NL-VirD2-C1/3ΔNLS3, 

pEZT-NL-mVirD2-58-C1/3ΔNLS3 and pEZT-NL-mVirD2-80-C1/3ΔNLS3 (Table 3.4.1).  

Since pEZT-NL does not express EGFP well without addition of the coding sequence 

(http://deepgreen.stanford.edu/), the 78 bp coding for first 26 amino acids of GFP in pCAMBIA1302 was 

cloned into pEZT-NL to serve as the nuclear targeting negative control resulting in pEZT-NL-78bp. One or 

two extra alanine linker and EGFP coding sequences were cloned into pEZT-NL-78bp resulting in pEZT-

NL-78bp-EGFPx2 or pEZT-NL-78bp-EGFPx3, respectively (Table 3.4.1). 

 

http://deepgreen.stanford.edu/
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Table 3.4.1. Description of pEZT-NL derivatives, recombinant proteins and their subcellular localization. 

Binary vector Recombinant protein 

Protein 

size 

(kDa) 

Subcellular localization 

Arabidopsis 

(Stable) 

Tobacco 

(Transient) 

pEZT-NL carrying the TPsequence     

pEZT-NL-DCL-TP DCL-TP-EGFP 36 Chloroplast Chloroplast 

pEZT-NL-RbcS-TP RbcS-TP-EGFP 37 Chloroplast Chloroplast 

pEZT-NL carrying  

the TP-mvirD2 gene     

pEZT-NL-DCL-TP-mVirD2-58 DCL-TP-mVirD2-58-EGFP 78 Nucleus Nucleus 

pEZT-NL-RbcS-TP-mVirD2-58 RbcS-TP-mVirD2-58-EGFP 79 

Mainly in the nucleus 

Little in chloroplasts 

Mainly in the nucleus 

Little in chloroplasts 

pEZT-NL-DCL-TP-mVirD2-80 DCl-TP-mVirD2-80-EGFP 81 Nucleus 

Mainly in the nucleus 

Some in the cytoplasm 

pEZT-NL-RbcS-TP-mVirD2-80 RbcS-TP-mVirD2-80-EGFP 82 

Mainly in the nucleus 

Some in chloroplasts 

Mainly in the nucleus 

Some in chloroplasts 

pEZT-NL carrying the virD2 or  

mvirD2 gene  

   

pEZT-NL-VirD2 VirD2-EGFP 78 Not viable No expression 

pEZT-NL-mVirD2-58 mVirD2-58-EGFP 73 Nucleus 

Nucleus and aggregates in the 

cytoplasm 

pEZT-NL-mVirD2-80 mVirD2-80-EGFP 76 Nucleus 

Nucleus and aggregates in the 

cytoplasm  

pEZT-NL carrying the sequence coding 

for the N-terminal partial VirD2  

or partial mVirD2  

   

pEZT-NL-VirD2-N1/2 VirD2-N1/2-EGFP 54 Nucleus and cytoplasm  Aggregates in the cytoplasm 

pEZT-NL-mVirD2-58/80-N1/2 mVirD2-58/80-N1/2-EGFP 54 Unsuccessful Aggregates in the cytoplasm 

pEZT-NL-VirD2-N1/3 VirD2-N1/3-EGFP 46 Unsuccessful 

Nucleus and cytoplasm 

Aggregates in the cytoplasm 

pEZT-NL-mVirD2-58/80-N1/3 mVirD2-58/80-N1/3-EGFP 46 Unsuccessful 

Nucleus and cytoplasm 

Aggregates in the cytoplasm  
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Table 3.4.1. Continued. 

Binary vector Recombinant protein 

Protein 

size 

(kDa) 

Subcellular localization 

Arabidopsis 

(Stable) 

Tobacco 

(Transient) 

pEZT-NL carrying the 

sequence coding forthe 

central region of VirD2  

   

pEZT-NL-mVirD2-M1/3 mVirD2-M1/3-EGFP 47 Unsuccessful No expression 

pEZT-NL carrying C-

terminal portion  

   

pEZT-NL-VirD2-C1/2 VirD2-C1/2 54 Unsuccessful Nucleus 

pEZT-NL-mVirD2-58-C1/2 mVirD2-58-C1/2-EGFP 49 Unsuccessful Nucleus 

pEZT-NL-mVirD2-80-C1/2 mVirD2-80-C1/2-EGFP 52 Nucleus and cytoplasm  Nucleus 

pEZT-NL-VirD2-C1/3 VirD2-C1/3-EGFP 46 Unsuccessful Nucleus 

pEZT-NL-mVirD2-58-C1/3 mVirD2-58-C1/3-EGFP 41 

Strong in the nucleus and  

the cytoplasm  

Strong in the nucleus  

and moderately the cytoplasm  

pEZT-NL-mVirD2-80-C1/3 mVirD2-80-C1/3-EGFP 44 

Strong in the nucleus and  

the cytoplasm 

Strong in the nucleus 

 and moderately the cytoplasm 

pEZT-NL-mVirD2-80-C1/3-

EGFPx2 mVirD2-80-C1/3-EGFPx2 71 Not tested Nucleus 

pEZT-NL carrying 1/3 C-

terminal ΔNLS3     

pEZT-NL-VirD2-C1/3ΔNLS3 VirD2-C1/3ΔNLS3-EGFP 38 Not tested Nucleus 

pEZT-NL-mVirD2-58-

C1/3ΔNLS3 

mVirD2-58-C1/3 

ΔNLS3-EGFP 34 Not tested 

Nucleus and cytoplasm, 

more in cytoplasm than  

mVirD2-58-C1/3-EGFP 

pEZT-NL-mVirD2-80-

C1/3ΔNLS3 

mVirD2-80-C1/3 

ΔNLS3-EGFP 36 Not tested 

Nucleus and cytoplasm, 

 more in cytoplasm than  

mVirD2-80-C1/3-EGFP 

pEZT-NL-mVirD2-80-

C1/3ΔNLS3-EGFPx2 

mVirD2-80-C1/3 

ΔNLS3-EGFPx2 63 No tested 

Nucleus and cytoplasm, 

similar to mVirD2-80-C1/3-EGFP 

localization 
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Table 3.4.1. Continued. 

Binary vector Recombinant protein 

Protein 

size 

(kDa) 

Subcellular localization 

Arabidopsis 

(Stable) 

Tobacco 

(Transient) 

pEZT-NL carrying NLS3     

pEZT-NL-NLS3 NLS3-EGFP 33 Not tested Nucleus and cytoplasm 

pEZT-NL-NLS3-EGFPx2 NLS3-EGFPx2 60 Not tested 

Mostly in the nucleus 

Some in the cytoplasm 

pEZT-NL-NLS3-EGFPx3 NLS3-EGFPx3 89 Not tested Nucleus 

pEZT-NL carrying 78bp from pCAMBIA1302     

pEZT-NL-78bp 26aa-EGFP 33 Not tested Nucleus and cytoplasm 

pEZT-NL-78bp-EGFPx2 26aa-EGFPx2 60 Not tested Nucleus and cytoplasm 

pEZT-NL-78bp-EGFPx3 26aa-EGFPx3 88 Not tested Nucleus and cytoplasm 
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MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPVPPDQIRELA 

                 N-terminal NLS 

QSWVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGYGGG

RYNYLTAYHVDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKKMA 

EISLRHGIVLDATSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEEDRRD 

LSQSFDPFRSDPSTGEPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLESERSAQ 

PSASKIPVIGHFGIETSYVAEASVRKRSGIFGTSRPVTDVAMHTVKRQQRSKRRNDEE 

          NLS3 (score 7) 

 

AGPSGANRKGLKAAQVDSEANVGEQDTRDDSNKAADPVSASIGTEQPEASPKRPRD 

   C-terminal bipartite NLS  

RHDGELGGRKRARGNRRDDGRGGT                           

   C-terminal bipartite NLS (score 13.6) 
 

Figure 3.4.1a. VirD2 amino acid sequence analyzed by cNLS Mapper.  

Letters in red: predicted NLSs. NLS3 was recognized as a monopartite type. The C-terminal NLS was 

recognized as a bipartite type. Bold letters: core NLS sequences. Yellow highlighted sequences (25 amino 

acids) were cloned into pEZT-NL. Score of >10 means that the protein is exclusively in the nucleus due to  

a strong NLS. 

 

 

 

MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSTKGKLELQRSARHLDIPVPPDQIRELA 

                                                          Modified N-terminal NLS 
QSWVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGY

 GGGRYNYLTAYHVDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKKMA 

EISLRHGIVLDATSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEEDRRD 

LSQSFDPFRSDPSTGEPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLESERSAQ 

PSASKIPVIGHFGIETSYVAEASVRKRSGIFGTSRPVTDVAMHTVKRQQRSKRRNDEE 

        NLS3 (score 7) 
AGPSGANRKGLKAAQVDSEANVGEQDTRDDGRGGT 

  

Figure 3.4.1b. mVirD2-58 amino acid sequence analyzed by cNLS Mapper.  

Letters in red: predicted NLSs. NLS3 was recognized as a monopartite type. Yellow highlighted sequences 

(25 amino acids) were cloned into pEZT-NL. Score of 7 means that the protein is mostly in the nucleus and 

some in the cytoplasm. 

 

 

 

MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSTKGKLELQRSARHLDIPVPPDQIRELA 

                                               Modified N-terminal NLS 
 

QSWVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGY 

GGGRYNYLTAYHVDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKKMA 

EISLRHGIVLDATSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEEDRRD 

LSQSFDPFRSDPSTGEPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLESERSAQ 

PSASKIPVIGHFGIETSYVAEASVRKRSGIFGTSRPVTDVAMHTVKRQQRSKRRNDEE 

        NLS3 (score 7) 
AGPSGANRKGLKAAQVDSEANVGEQDTRDDSNKAADPVSASIGTEQPEASPDLGNR 

RDDGRGGT 

 

Figure 3.4.1c. mVirD2-80 amino acid sequence analyzed by cNLS Mapper.  

Letters in red: predicted NLSs. NLS3 was recognized as a monopartite type. Yellow highlighted sequences 

(25 amino acids) were cloned into pEZT-NL. Score of 7 means that the protein is mostly in the nucleus and 

some in the cytoplasm. 
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3.4.2. Confocal microscopy of untransformed leaves of Arabidopsis and tobacco leaves 

The same settings of the laser and its detector levels were used for all Arabidopsis leaves. Wild 

type Arabidopsis leaf was stained with DAPI and then examined under the confocal microscope. No EGFP 

was detected, as expected (Figure 3.4.2). DAPI stained nuclei and autofluorescence from chloroplasts were 

detected (Figure 3.4.2). Thus, 5 min of vacuum infiltration was sufficient to stain Arabidopsis nuclei. 

Transmission between different channels was not observed. 

In the case of transiently transformed tobacco leaves, recombinant protein expression was first 

examined under the confocal microscope. Settings of the laser and its detector levels were kept constant for 

all leaf samples. With this setting, EGFP was not detected in the untransformed leaf (data not shown). The 

leaf samples were examined prior to the DAPI staining to check the expression of the recombinant proteins 

and to ensure that the staining would not alter the localization of the recombinant proteins. After DAPI 

staining using the same leaf samples, the samples were again observed under the confocal microscope. The 

DAPI stained nuclei and chloroplast autofluorescence were detected, but EGFP was not observed as 

expected (Figure 3.4.2). The staining procedure did not influence the localization of the recombinant 

proteins in all other transiently transformed leaves. The laser and its detector levels were optimally set to 

prevent transmission between the channels (Figure 3.4.2).  
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                 DAPI                                    EGFP                             Autofluorescence                           DIC                                     Merge 

 
 

 
 
 

 

Figure 3.4.2. Untransformed wild type 2.5 weeks old transgenic Arabidopsis leaves (Top panels) and tobacco leaves (Bottom panels) examined  

under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 

Arabidopsis 

Tobacco 
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3.4.3. Subcellular localization of the recombinant proteins in leaves in the stably transformed 

Arabidopsis plants and the transiently transformed tobacco leaves 

pEZT-NL vector carries the T-DNA containing the bacterial BIALOPHOS RESISTANCE gene 

(BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT) (http://deepgreen.stanford.edu/), 

which provides resistance to glufosinate ammonium (Weigel and Glazebrook, 2006). The genes of interest 

were cloned upstream of the alanine poly linker and EGFP coding sequence. The polylinker gives the 

flexibility between the protein of interest and EGFP to fold a fusion protein in a proper conformation. 

pEZT-NL derivatives were introduced to Agrobacterium strain GV3101[pPM6000]. Arabidopsis was 

transformed by the floral dip method using some constructs (Table 3.4.1). Transgenic Arabidopsisplants 

were screened using glufosinateammonium. The leaves of T2 seedlings were stained with DAPI and 

analyzed under the confocal microscope. In addition, N.benthamiana leaves were agro-infiltrated to see 

transient expression of the gene of interest. Subcellular localization of the recombinant proteins was 

observed 48 hours post infiltration. 

 

3.4.3.1. Subcellular localization of DCL-TP-EGFP and RbcS-TP-EGFP in Arabidopsis and tobacco 

leaves 

Tomato DCL and tobacco RbcS transit peptides were shown to direct the recombinant proteins 

into chloroplasts of various plants (Gnanasambandam et al., 2007). However, in our previous experiments, 

use of TP-mVirD2 derivatives did not result in the transformation of the chloroplast genome (see Chapter 2). 

Therefore, efficiency of DCL-TP and RbcS-TP chloroplast targeting was re-examined in our recombinant 

proteins and the transformation system. 

The leaves of stably transformed Arabidopsis and agroinfiltrated tobacco leaves exhibited 

localization of DCL-TP-EGFP and RbcS-TP-EGFP in chloroplasts (Figure 3.4.3.1a and b). Despite the 

small size of the fusion proteins, less than 40 kDa (Table 4.4.1), diffusion of the recombinant proteins 

through the nuclear pore was not observed (Figure 3.4.3.1a and b). These results confirmed that DCL-TP 

and RbcS-TP were highly efficient to import recombinant proteins into chloroplasts. 

http://deepgreen.stanford.edu/
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Figure 3.4.3.1a. DCL-TP-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-infiltration 

(Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei, EGFP: recombinant protein fused to EGFP, Autofluorescence: chloroplast autofluorescence, DIC: differential interference contrast, 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.3.1b. RbcS-TP-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-infiltration 

(Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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3.4.3.2. Subcellular localization of DCL-TP-mVirD2-58-EGFP, RbcS-TP-mVirD2-58-EGFP, DCL- 

TP-mVirD2-80-EGFP and RbcS-TP-mVirD2-80 in Arabidopsis and tobacco leaves 

DCL-TP and RbcS-TP proved to be strong chloroplast-targeting signals in both Arabidopsis and 

tobacco leaves. Thus, these signals should be functional in fusion proteins of DCL-TP or RbcS-TP fused to 

mVirD2-58 carrying the modified N-terminal NLS and a broad deletion of the C-terminal NLS and 

mVirD2-80 carrying the modified N-terminal NLS and a precise deletion of the C-terminal NLS.  

DCL-TP-mVirD2-58-EGFP was detected exclusively in the nucleus of Arabidopsis and tobacco 

leaf cells (Figure 3.4.3.2a). There was no transmission between EGFP and autofluorescence channels in the 

Arabidopsis leaf, whereas EGFP channel transmitted to autofluorescence detector in the tobacco leaf (* 

mark in Figure 3.4.3.2a). However, since the DAPI stained nucleus merged with EGFP, DCL-TP-mVirD2-

58-EGFP was localized in the nucleus. 

In the Arabidopsis and tobacco leaves, RbcS-TP-mVirD2-58-EGFP was localized mainly in the 

nucleus and very little in chloroplasts (arrows in Figure 3.4.3.2b). Also in the tobacco leaf, chloroplasts 

containing the recombinant protein were not detected in most areas (Figure 3.4.3.2b); thus, most of the 

recombinant protein was not imported into chloroplasts. Instead, it clearly localized in the tobacco leaf 

nuclei. Some nuclei did not show transmission from the EGFP to autofluorescence channel in the 

Arabidopsis leaf (** mark in Figure 3.4.3.2b). There was some transmission between EGFP and 

autofluorescence channels in tobacco leaves (* mark in Figure 3.4.3.2b). Despite transmission between the 

channels, overlap of the DAPI stained nuclei and EGFP suggested that RbcS-TP-mVirD2-58-EGFP was 

mainly localized in the nucleus and very little in chloroplasts of the Arabidopsis and tobacco leaves. 

The expression of DCL-TP-mVirD2-80-EGFP in the Arabidopsisleaf was low. The recombinant 

protein was detected in the nucleus (Figure 3.4.3.2c); also very low intensity signals of EGFP were 

overlapping with the nuclei (open arrow in Figure 3.4.3.2c). There was no transmission between EGFP and 

autofluorescence channels in the Arabidopsis leaf. The recombinant protein was also detected mostly in the 

nucleus and little in the cytoplasm of the tobacco leaf cell (Figure 3.4.3.2c). Transmission occurred between 

EGFP and autofluorescence channels in the tobacco leaf (* mark in Figure 3.4.3.2c). Although slightly 

different localization of DCL-TP-mVirD2-80-EGFP was observed in the Arabidopsis and tobacco leaves, 

the recombinant protein was localized mainly in the nucleus. 
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RbcS-TP-mVirD2-80-EGFP was localized largely in the nucleus and slightly in chloroplasts in the 

Arabidopsis leaf (arrows in Figure 3.4.3.2d). However, there was a larger amount of the recombinant 

protein localized in the chloroplast as compared to RbcS-TP-mVirD2-58 protein in Arabidopsis. In the 

agro-infiltrated tobacco leaf, RbcS-TP-mVirD2-80-EGFP was also localized mainly in the nucleus and 

slightly in the chloroplasts (arrows in Figure 3.4.3.2d). DAPI was unable to stain the same cell as the 

observed one before the DAPI staining in Figure 3.4.3.2d, yet EGFP fluorescence was detected strongly in 

the nucleus as the DAPI staining merged with EGFP in both before and after DAPI stained cells (Figure 

3.4.3.2d). EGFP did not transmit to the autofluorescence channel in tobacco before DAPI staining, but there 

was slight transmission between EGFP and autofluorescence channels in the Arabidopsis and tobacco 

leaves after the DAPI staining (* mark in Figure 3.4.3.2d). Regardless of the slight transmission between 

two channels, overlay of DAPI stained nuclei and EGFP suggested that RbcS-TP-mVirD2-EGFP was 

localized mainly in the nucleus and slightly in chloroplasts in the Arabidopsis and tobacco leaves. 
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Figure 3.4.3.2a. DCL-TP-mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.3.2b. RbcS-TP-mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI; EGFP, Autofluorescence and DIC, arrows: chloroplasts; * mark: transmission from EGFP; 

** mark: no transmission to Autofluorescence; A: auto corrected. Scale bar = 10 µm. 
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Figure 3.4.3.2c. DCL-TP-mVirD2-80-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; open arrows: nuclei; * mark: transmission from EGFP; A: auto corrected. Scale bar = 10 µm. 
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Figure 3.4.3.2d. RbcS-TP-mVirD2-80-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; arrows in Arabidopsis EGFP: EGFP in chloroplasts; * mark: transmission from EGFP;  

A: auto corrected. Scale bar = 10 µm. 
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Figure 3.4.3.2e. Original and autocorrected pictures indicating subcellular localization of 

recombinant proteins.  

Autocorrection was done to enhance only green colour to make the subcellular localization of  

the recombinant proteins more explicit. 
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3.4.3.3. Subcellular localization of VirD2-EGFP, mVirD2-58-EGFP and VirD2-80-EGFP in 

Arabidopsis and tobacco leaves 

The subcellular localization of TP-mVirD2 suggested that DCL and RbcS-TP were not strong 

chloroplast targeting signals when they were fused to mVirD2. Thus, the subcellular localization of 

mVirD2-58-EGFP and mVirD2-80-EGFP was examined in leaves of stably transformed Arabidopsis and 

transiently transformed tobacco leaves to confirm the active nuclear targeting of these proteins. 

The mvirD2-58 and mvirD2-80 genes in pVD58-AgeI and pVD80 were cloned into pEZT-NL 

resulting in pEZT-NL-mVirD2-58 and pEZT-NL-mVirD2-80, respectively (Table 3.4.1). Furthermore, the 

virD2 gene was cloned into pEZT-NL giving rise to pEZT-NL-VirD2 (Table 3.4.1). VirD2-EGFP was 

planned to be used as a nuclear targeting control. However, neither generation of transgenic Arabidopsis 

transformants nor transient transformation of tobacco leaves was successful for VirD2-EGFP in any of three 

attempts.  

mVirD2-58-EGFP and mVirD2-80-EGFP were localized exclusively in the nucleus of the 

Arabidopsis leaves, while in the tobacco leaf the recombinant proteins were localized mainly in the nucleus 

and also formed aggregates in the cytoplasm (circles in Figure 3.4.3.3a and b). There was no transmission 

between EGFP and autofluorescence channels in the Arabidopsis leaves. In the tobacco leaf, transmission 

between two channels was observed from some nuclei (* marks in Figure 3.4.3.3a and b), yet some other 

nuclei did not show transmission between the channels (** marks in Figure 3.4.3.3a and b). The overlay of 

the DAPI stained nuclei and EGFP suggested that mVirD2-58-EGFP and mVirD2-80-EGFP were localized 

in the nucleus of the tobacco leaf cell. These results demonstrated that recombinant proteins without known 

VirD2 NLSs could still be imported largely to the nucleus in Arabidopsis and tobacco leaves. 
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Figure 3.4.3.3a. mVirD2-58-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 hours after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; circles: EGFP aggregates; * mark: transmission from EGFP; 

** mark: no transmission to Autofluorescence. Scale bar = 10 µm. 
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Figure 3.4.3.3b. mVirD2-80-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-infiltration 

(Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; circles: EGFP aggregates; * mark: transmission from EGFP;  

** mark: no transmission to Autofluorescence. Scale bar = 10 µm. 
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3.4.4. Subcellular localization of fusion proteins carrying the N-terminal parts of VirD2 and 

mVirD2in stably transformed Arabidopsis and transiently transformed tobacco leaves 

 

3.4.4.1. Subcellular localization of VirD2-N1/2-EGFP, mVirD2-58/80-N1/2-EGFP, VirD2-N1/3-EGFP 

and mVirD2-58/80-N1/3-EGFP in Arabidopsis and tobacco leaves 

To examine an effect of a change from arginine to threonine in the N-terminal NLSin mVirD2, the 

N-terminal half of mVirD2-58/80 were fused to EGFP. Additionally, the N-terminal half of VirD2 was 

fused to EGFP to serve as a nuclear targeting control. The sequences coding for the N-terminal half of 

VirD2 and mVirD2-58/80 were cloned into pEZT-NL resulting in pEZT-NL-VirD2-N1/2 and pEZT-NL-

mVirD2-58/80-N1/2 (Table 3.4.1a). In addition, smaller fragments of the N-terminal one third of VirD2 and 

mVirD2-58/80 were fused to EGFP resulting in VirD2-N1/3-EGFP and mVirD2-58/80-N1/3-EGFP, to 

observe if there would be the different subcelluar localization from VirD2-N1/2-EGFP and mVirD2-58/80-

N1/2-EGFP. The sequences coding for the N-terminal one third of VirD2 and mVirD2-58/80 were cloned 

into pEZT-NL resulting in pEZT-NL-VirD2-N1/3 and pEZT-NL-mVirD2-58/80-N1/3, respectively (Table 

3.4.1a). 

VirD2-N1/2-EGFP was found in the nucleus and little in the cytoplasm of Arabidopsis leaf cells 

(Figure 3.4.4.1a). However, this recombinant protein formed aggregates in the cells of the tobacco leaves, 

what most likely prevented its targeting to a specific subcellular location (Figure 3.4.4.1a). In the tobacco 

leaves, transmission from EGFP to autofluorescence channel was observed (* mark in Figure 3.4.4.1a). 

Arabidopsis transformation was unsuccessful using Agrobacterium carrying pEZT-NL-mVirD2-

58/80-N1/2-EGFP in three transformation attempts; however, mVirD2-58/80-N1/2-EGFP was successfully 

detected in the transiently transformed tobacco leaves. The subcellular localization of the recombinant 

protein formed aggregates in the cell (Figure 3.4.4.1b), similar to VirD2-N1/2-EGFP. 

Arabidopsis transformation was unsuccessful in the case of VirD2-N1/3-EGFP and mVirD2-

58/80-N1/3-EGFP in three transformation attempts. In the tobacco leaves, both proteins were detected in 

the cytoplasm (some in aggregates) and weakly in the nucleus (Figure 3.4.4.1c and d). This localization was 

most likely caused by diffusion of the proteins through the nuclear pore due to their moderate size (54kDa; 
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Table 3.4.1). Transmission of EGFP to autofluorescence channels was not observed in Arabidopsis or 

tobacco leaves.  
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Figure 3.4.4.1a. VirD2-N1/2-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaves 48 h after agro-infiltration 

(Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei, EGFP: recombinant protein fused to EGFP, Autofluorescence: chloroplast autofluorescence, DIC: differential interference contrast, 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC, circles: EGFP aggregates, * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.4.1b. mVirD2-58/80-N1/2-EGFP subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining, 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei, EGFP: recombinant protein fused to EGFP, Autofluorescence: chloroplast autofluorescence, DIC: differential interference contrast, 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.4.1c. Subcellular localization of VirD2-N1/3-EGFP in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining, Bottom 

row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei, EGFP: recombinant protein fused to EGFP, Autofluorescence: chloroplast autofluorescence, DIC: differential interference contrast, 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.4.1d. Subcellular localization of mVirD2-58/80-N1/3-EGFP in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining, 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei, EGFP: recombinant protein fused to EGFP, Autofluorescence: chloroplast autofluorescence, DIC: differential interference contrast, 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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3.4.5. Subcellular localization of the fusion proteins carrying the central region of VirD2 in stably 

transformed Arabidopsis and transiently transformed tobacco leaves 

The sequence coding for the central region of VirD2 illustrated in Figure 3.3.1 was cloned from 

pVD43 containing the wild type virD2 gene into pEZT-NL. Neither stable transformation of Arabidopsis 

nor transient expression in tobacco leaves was successful.  

 

3.4.6. Subcellular localization of the C-terminal parts of VirD2 and mVirD2-EGFP in stably 

transformed Arabidopsis and/or transiently transformed tobacco leaves 

 

3.4.6.1. Subcellular localization of VirD2-C1/2, mVirD2-58-C1/2, mVirD2-80-C1/2, VirD2-C1/3, 

mVirD2-58-C1/3, mVirD2-80-C1/3, and mVirD2-80-C1/3-EGFPx2 in Arabidopsis and tobacco leaves 

mVirD2-58 and mVirD2-80 lack the C-terminal NLS by broad and precise deletions, respectively. 

Thus, when the C-terminal halves of mVirD2-58 and mVirD2-80 were fused to EGFP, it was predicted that 

the fusion proteins would not be localized in the nucleus. The sequences coding for the C-terminal halves 

and the C-terminal one third of VirD2, mVirD2-58 and mVirD2-80 were cloned into pEZT-NL resulting in 

pEZT-NL-VirD2-C1/2, pEZT-NL-mVirD2-58-C1/2, pEZT-NL-mVirD2-80-C1/2, pEZT-NL-VirD2-C1/3, 

pEZT-NL-mVirD2-58-C1/3 and pEZT-NL-mVirD2-80-C1/3 (Table 3.4.1).  

Arabidopsis transformation was successful only for pEZT-NL-mVirD2-80-C1/2, pEZT-NL-

mVirD2-58-C1/3 and pEZT-NL-mVirD2-80-C1/3, and unsuccessful when pEZT-NL-VirD2-C1/2, pEZT-

NL-mVirD2-58-C1/2 and pEZT-NL-VirD2-C1/3 were used in three transformation attempts (Table 3.4.1). 

Transient expression in tobacco leaves was successful for all constructs. VirD2-C1/2-EGFP was localized 

exclusively in the nucleus of the tobacco leaf, as expected, due to its C-terminal NLS (Figure 3.4.6.1a). 

However, mVirD2-58-C1/2-EGFP and mVirD2-80-C1/2 lacking the C-terminal NLS were still localized 

exclusively in the nucleus of tobacco leaves (Figure 3.4.6.1b and c). mVirD2-80-C1/2-EGFP was detected 

in the nucleus and partially in the cytoplasm in the transgenic Arabidopsis leaf (Figure 3.4.6.1c). In tobacco 

leaves, transmission of EGFP to autofluorescence was observed for mVirD2-58-C1/2-EGFP and mVirD2-

80-C1/2, but not for VirD2-C1/2-EGFP (* mark in Figure 3.4.6.1b and c). Overlay of the DAPI stained 

nuclei and EGFP indicated that the recombinant proteins were in the nuclei. 
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VirD2-C1/3-EGFP was localized exclusively in the nucleus of the tobacco leaf (Figure 3.4.6.1d), 

whereas mVirD2-58-C1/3-EGFP and mVirD2-80-C1/3-EGFP were found in the cytoplasm and strongly in 

the nuclei of Arabidopsis and tobacco leaves (Figure 3.4.6.1e and f). The observed localization of mVirD2-

58-C1/3-EGFP and mVirD2-80-C1/3-EGFP might be caused either by their diffusion through the nuclear 

pore due to their small size (41 and 44 kDa; Table 3.4.1) or by the presence of a cryptic NLS, or both.  

In order to exclude the possibility of diffusion of the recombinant proteins through the nuclear 

pore, an extra alanine linker and EGFP was fused to mVirD2-80-C1/3-EGFP giving rise to mVirD2-80-

C1/3-EGFPx2. Only transient expression in tobacco leaves was detected. mVirD2-80-C1/3-EGFPx2 was 

localized exclusively in the nucleus (Figure 3.4.5.1g). An increase in size from 44 kDa (mVirD2-80-C1/3-

EGFP) to 71 kDa (mVirD2-80-C1/3-EGFPx2) restricted the subcellular localization of the recombinant 

protein. These results suggested that mVirD2 contains a cryptic NLS. 
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Figure 3.4.6.1a. Subcellular localization of VirD2-C1/2-EGFP in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; Bottom 

row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.6.1b. Subcellular localization of mVirD2-58-C1/2-EGFP in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.6.1c. mVirD2-80-C1/2-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaf 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.6.1d. VirD2-C1/3-EGFP subcellular localization in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: 

after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.6.1e. mVirD2-58-C1/3-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaf 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope. 

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.6.1f. mVirD2-80-C1/3-EGFP subcellular localization in transgenic Arabidopsis leaf (Top row) and in the tobacco leaf 48 h after agro-

infiltration (Middle row: before DAP staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.6.1g. mVirD2-80-C1/3-EGFPx2 subcellular localization in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; Bottom 

row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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3.4.6.2. Subcellular localization of VirD2-C1/3ΔNLS3-EGFP, mVirD2-58-C1/3ΔNLS3-EGFP and 

mVirD2-80-C1/3ΔNLS3-EGFP in tobacco leaves 

VirD2 and mVirD2 amino acid sequences were analyzed using cNLS Mapper, and the predicted 

relative levels of NLS activity (score) were recorded (Figure 3.4.1a-c). Analysis showed a putative NLS 

(QRSKRRNDEE) named NLS3 (score 7: mainly in the nucleus, partially in the cytoplasm) which was 

about a half of the strength of the predicted bipartite of the C-terminal NLS (score 13.6: exclusively in the 

nucleus) (Figure 3.4.1a-c). To examine the nuclear targeting function of NLS3, the region containing 

sequence coding for NLS3 and the flaking amino acids (KRQQRSKRRNDEEAGPSGANRKGLK) was 

deleted, indicated as ΔNLS3, from VirD2-C1/3-EGFP, mVirD2-58-C1/3-EGFP and mVirD2-80-C1/3-

EGFP resulting in recombinant proteins VirD2-C1/3ΔNLS3-EGFP, mVirD2-58-C1/3ΔNLS3-EGFP and 

mVirD2-80-C1/3ΔNLS3-EGFP. The extra NLS3 flanking sequence was included because cloning of the 

shorter sequence cloned into pEZT-NL was not successful and/or transient transformation was not 

successful in the tobacco leaf as explained in Section 3.5.6 (data not shown). The sequence coding for the 

aforementioned proteins with ΔNLS3 in pVD43, pVD58-AgeI and pVD80 were cloned into pEZT-NL 

resulting in pEZT-NL-VirD2-C1/3ΔNLS3-EGFP, pEZT-NL-mVirD2-58-C1/3ΔNLS3-EGFP and pEZT-

NL-mVirD2-80-C1/3ΔNLS3-EGFP (Table 3.4.1). 

VirD2-C1/3ΔNLS3-EGFP was detected exclusively in the nucleus as expected due to the presence 

of the C-terminal NLS (Figure 3.4.6.2a), whereas mVirD2-58-C1/3ΔNLS3-EGFP and mVirD2-80-

C1/3ΔNLS3-EGFP were found in the nucleus and in the cytoplasm. The cytoplasmic localization was 

slightly stronger than in the case of mVirD2-58-C1/3 and mVirD2-80-C1/3 (Figure 3.4.6.2b-c). EGFP 

transmission to autofluorescence was observed only in mVirD2-80-C1/3ΔNLS3-EGFP (Figure 3.4.6.2c). 

The EGFP distribution pattern was not largely different between mVirD2-58-C1/3-EGFP and mVirD2-58-

C1/3ΔNLS3-EGFP as well as between mVirD2-80-C1/3-EGFP and mVirD2-80-C1/3ΔNLS3-EGFP 

(Figure 3.4.6.1e-f and Figure 3.4.6.2b-c). This observation might be due to the small protein size: mVirD2-

58-C1/3-EGFP (41 kDa), mVirD2-58-C1/3ΔNLS3-EGFP (34 kDa), mVirD2-80-C1/3-EGFP (44 kDa), and 

mVirD2-80-C1/3ΔNLS3-EGFP (36 kDa) (Table 3.4.1a). The absence of NLS3 in mVirD2-58-C1/3ΔNLS3-

EGFP and mVirD2-80-C1/3ΔNLS3-EGFP likely caused diffusion of the recombinant proteins through the 

nuclear pore. An extra alanine linker and EGFP were added to mVirD2-80-C1/3ΔNLS3 resulting in 
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mVirD2-80-C1/3ΔNLS3-EGFPx2 (63 kDa) to prevent passive translocation of the proteins through the 

nuclear pore. The sequence coding for the alanine linker and EGFP was cloned into pEZT-NL-mVirD2-80-

C1/3ΔNLS3 resulting in pEZT-NL-mVirD2-80-C1/3ΔNLS3-EGFPx2.  

Despite a larger protein size, mVirD2-80-C1/3ΔNLS3-EGFPx2 (63 kDa) localization showed a 

similar pattern to mVirD2-80-C1/3ΔNLS3-EGFP (36 kDa) in the tobacco leaf (Figure 3.4.6.2b and d). 

Nevertheless, the results of localization of mVirD2-80-C1/3-EGFPx2 in the nucleus (Section 3.4.6.1) and 

localization of mVirD2-80-C1/3ΔNLS3-EGFPx2 showed that the absence of NLS3 altered the localization 

of the recombinant protein.  
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Figure 3.4.6.2a. VirD2-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.6.2b. mVirD2-58-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.6.2c. mVirD2-80-C1/3ΔNLS3-EGFP subcellular localization of in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; 

Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.6.2d. mVirD2-80-C1/3ΔNLS3-EGFPx2 subcellular localization of in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP 

staining; Bottom row: after DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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3.4.7. Subcellular localization of NLS3-EGFP and 26aa-EGFP in tobacco leaves 

Since the deletion of the NLS3 with the extra sequence had a negative impact on nuclear targeting 

of mVirD2-80-C1/3ΔNLS3-EGFPx2, we examined the nuclear targeting function of NLS3. The sequence 

coding for NLS3 and its flanking amino acids (KRQQRSKRRNDEEAGPSGANRKGLK) was amplified 

using pVD43 carrying the wild type virD2 and then cloned into pEZT-NL, resulting in pEZT-NL-NLS3 

(Table 3.4.1). A nuclear targeting negative control was also constructed to ensure that addition of the same 

number of amino acids would not cause nuclear localization of the recombinant protein. For this purpose, 

the 78 bp long-sequence coding for first 26 amino acids of GFP in pCAMBIA1302 was cloned into pEZT-

NL resulting in pEZT-NL-78bp. The recombinant protein was named as 26aa-EGFP (Table 3.4.1). One or 

two alanine and EGFP coding sequences were added into pEZT-NL-NLS3 and pEZT-NL-78bp resulting in 

pEZT-NL-NLS3-EGFPx2, pEZT-NL-NLS3-EGFPx3, pEZT-NL-78bp-EGFPx2 and pEZT-NL-78bp-

EGFPx3. These additions were made to increase the size of recombinant proteins (Table 3.4.1).  

Both NLS3-EGFP and 26aa-EGFP were detected in the nucleus and in the cytoplasm of tobacco 

leaf cells (Figure 3.4.7a and b). Transmission of EGFP to the autofluorescence channel was observed in 

NLS3-EGFP (* mark in Figure 3.4.7a). NLS3-EGFPx2 was found mainly in the nucleus and slightly in the 

cytoplasm where it formed some aggregates (circle in Figure 3.4.7c). Transmission was observed from 

EGFP in the one nucleus to the autofluorescence channel, whereas EGFP from other nuclei was not 

transmitted to the autofluorescence channel (* and ** marks in Figure 3.4.7c). Therefore, it was clear that 

NLS3-EGFPx2 was localized mainly in the nucleus. A high expression of 26aa-EGFPx2 was observed, and 

it was detected in the nucleus and the cytoplasm (Figure 3.4.7d). Finally, NLS3-EGFPx3 was localized 

exclusively in the nucleus, whereas 26aa-EGFPx3 was still found in the nucleus and the cytoplasm (Figure 

3.4.7e and f), likely due to diffusion through the nuclear pore despite its size (88 kDa; Table 3.4.1). 

Transmission between the channels was not observed in either 26aa-EGFPx3 or NLS3-EGFPx3. It was 

concluded that NLS3 (KRQQRSKRRNDEEAGPSGANRKGLK) was able to direct the recombinant 

protein into the nucleus. This confirmed the presence of a new NLS in VirD2.  
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Figure 3.4.7a. NLS3-EGFP subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.7b. 26aa-EGFP subcellular localization of in the tobacco leaf 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP. Scale bar = 10 µm. 
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Figure 3.4.7c. NLS3-EGFPx2 subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; * mark: transmission from EGFP; ** mark: no transmission to Autofluorescence;  

circle: aggregates. Scale bar = 10 µm. 
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Figure 3.4.7d. 26aa-EGFPx2 subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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Figure 3.4.7e. NLS3-EGFPx3 subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC; ** mark: no transmission to Autofluorescence. Scale bar = 10 µm. 
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Figure 3.4.7f. 26aa-EGFPx3 subcellular localization in the tobacco leaves 48 h after agro-infiltration (Top row: before DAP staining; Bottom row: after 

DAPI staining) examined under the confocal microscope.  

DAPI: DAPI stained nuclei; EGFP: recombinant protein fused to EGFP; Autofluorescence: chloroplast autofluorescence; DIC: differential interference contrast; 

Merge: merged photo of DAPI, EGFP, Autofluorescence and DIC. Scale bar = 10 µm. 
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3.5. Discussion 

In our previous study on Agrobacterium-mediated chloroplast transformation, we introduced the 

modifications to VirD2 NLSs, a point mutation (from arginine to threonine) to the N-terminal NLS and a 

broad or a precise deletion of the C-terminal NLS, to inactivate its nuclear targeting according to the 

previous study (Rossi et al., 1993); additionally, DCL or RbcS chloroplast transit peptide was added at the 

N-terminus of the mVirD2 proteins to direct the T-complex into the chloroplast instead of the nucleus. Our 

results indicated that the chloroplast genome was not transformed despite all the modifications (see Chapter 

2). We hypothesized that a novel unidentified NLS was still driving the modified VirD2 to the nucleus in 

spite of the presence of the transit peptide. We generated various fragments of the VrD2 or mVirD2 fused 

to EGFP to investigate the presence of a novel cryptic NLS. 

 

 

3.5.1. Chloroplast targeting by DCL-TP and RbcS-TP  

The tomato DLC or tobacco RbcS transit peptide was fused to the modified VirD2 proteins with 

inactivated NLSs (see Chapter 2). However, these transit peptides were not functional in Agrobacterium-

mediated chloroplast transformation; therefore, we re-examined DCL and RbcS transit peptides to observe 

their chloroplast targeting efficiency in our plant systems. DCL-TP-EGFP and RbcS-TP-EGFP were 

exclusively localized in chloroplasts in leaf cells of transgenic Arabidopsis and transiently transformed 

tobacco plants (Figure 3.4.3.1a and b). Therefore, DCL-TP and RbcS-TP are effective chloroplast targeting 

signals for the recombinant proteins.   

Various transit peptides have been examined for their efficiency in chloroplast targeting of 

recombinant proteins. The RbcS transit peptides of different plant species have been tested for their 

efficiency in chloroplast targeting. Interestingly, the presence of a short amino acid sequence from the 

mature protein can influence the import of the recombinant proteins into the chloroplasts. For example, the 

presence of first 24 amino acids from the mature pea RbcS transit peptide was necessary for chloroplast 

import of the fusion protein of RbcS-TP fused to 5-enolpyruvyl 3-phosphoshikimate synthase of Salmonella 

typhimurium. The recombinant protein accumulated in the chloroplasts of tobacco protoplasts and 

transgenic tobacco (Comai et al., 1988). The recombinant protein without the fragment of the mature 
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protein failed to be detected in the chloroplasts (Comai et al., 1988). However, another recombinant protein, 

the pea RbcS transit peptide fused to the bacterial neomycin phosphotransferase II (NPT-II), was 

constructed only with the first methionine of mature RbsS and seven amino acid linker between the RbcS 

transit peptide and NPT-II. This recombinant protein successfully accumulated in chloroplasts of transgenic 

tobacco plants (Vandenbroeck et al., 1985). This approach was employed using maize or pea RbcS transit 

peptide fused to the yellow fluorescent protein or GFP, respectively. Fusion proteins were localized in 

chloroplasts of transgenic maize (Sattarzadeh et al., 2010). Tobacco RbcS transit peptide is another robust 

chloroplast targeting signal in monocot and dicot plants. For example, tobacco RbcS transit peptide with 

five amino acids from mature RbcS protein was fused to GFP. The recombinant protein was detected in 

chloroplasts of monocot and dicot plants (Gnanasambandam et al., 2007). DCL transit peptidewith six 

amino acids from mature DCL protein fused to GFP was also employed, and was also localized to 

chloroplasts of the monocot and dicot plants (Gnanasambandam et al., 2007). In our study, RbcS-TP-EGFP 

contains the transit peptide plus five amino acids from the mature RbcS protein, while DCL-TP-EGFP 

includes only one amino acid from the mature DCL protein. The length of the mature protein in the 

recombinant proteins was not critical for DCL-TP-EGFP and RbcS-TP-EGFP to be imported into 

chloroplasts in our case. 

 

3.5.2. Chloroplast/nuclear targeting of TP-mVirD2 

DCL-TP and RbcS-TP showed a strong chloroplast targeting in DCL-TP-EGFP and RbcS-TP-

EGFP; however, when these transit peptides were fused to mVirD2, they did not function as efficient as TP-

EGFP. DCL-TP-mVirD2-58-EGFP was detected only in the nucleus of both transgenic Arabidopsis and 

transiently transformed tobacco leaves (Figure 3.4.3.2a). DCL-TP-mVirD2-80-EGFP was also observed 

mainly in the nucleus in Arabidopsis, whereas a small amount of the recombinant protein was detected in 

the cytoplasm of tobacco leaves (Figure 3.4.3.2c). Therefore, DCL-TP was not functional to direct mVirD2 

into chloroplasts. Interestingly, RbcS-TP-mVirD2-58-EGFP and RbcS-TP-mVirD2-80-EGFP were mainly 

localized in the nuclei and weakly in chloroplasts of Arabidopsis and tobacco leaves (Figure 3.4.3.2 b and 

d). These proteins contain five amino acids of the mature RbcS-TP which might have a positive impact on 

chloroplast targeting. Otherwise, it is possible that RbcS-TP can be more effective than DCL-TP for 
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chloroplast targeting of the recombinant proteins. Regardless of the presence of the strong transit peptides, 

TP-mVirD2 derivatives were largely localized in the nucleus.  

Dysfunctional transit peptide has been observed previously. A rice serotonin N-acetyl transferase 

(SNAT) transit peptide was fused to the N-terminus of the sheep SNAT. This recombinant protein was 

localized in the cytoplasm of the transiently transformed tobacco leaves (Byeon et al., 2014). The weak 

chloroplast targeting of rice SNAT transit peptide and unsuitability of sheep SNAT as a mature protein 

were suggested as possibilities why the tested transit peptide was dysfunctional (Byeon et al., 2014). 

However, a definitive reason why the aforementioned transit peptide was dysfunctional is still not known. 

Since TP-mVirD2 was localized mainly in the nucleus, there must be another explanation other than the 

weak chloroplast targeting activity. 

 

3.5.3. Lack of expression of full-length VirD2 and the central part of VirD2 in Arabidopsis or tobacco 

In order to have a nuclear targeting control, wild type VirD2 was fused to EGFP (VirD2-EGFP). 

The central part of VirD2 was also fused to EGFP (VirD2-M1/3-EGFP) to investigate the presence of a 

putative NLS in the region. Arabidopsis plants stably expressing VirD2-EGFP and VirD2-M1/3-EGFP 

could not be obtained. Also, VirD2-EGFP and VirD2-M1/3-EGFP were not detected when they were 

transiently expressed in tobacco leaves. The constitutive expression of the full-length virD2 gene from a 

cauliflower mosaic virus (CaMV) double 35S promoter was observed to be toxic to Arabidopsis, yet the 

reason of toxicity was unknown (Hwang et al., 2006). In our experiments, the virD2 and virD2-M1/3 genes 

were also expressed from the CaMV double 35S promoter in pEZT-NL. The expression of these proteins 

could also be toxic to plants. This toxicity might be caused by interaction with plant proteins. Cyclophilins 

and the TATA box-binding protein have been shown to interact with VirD2 (Bako et al., 2003; Deng et al., 

1998). Figure 3.3.1 illustrates overlap of these domains with VirD2-M1/3. It is possible that a high 

expression of VirD2-EGFP and VirD2-M1/3-EGFP may cause unavailability of these plant proteins for 

normal plant function which leads to dysfunction in cellular regulations. Recently, VirD2 was revealed to 

interact with yeast histones H2A, H2B, H3 and H4 in vitro (Wolterink-van Loo et al., 2015). The 

biomolecular fluorescence complementation experiments confirmed the interaction between VirD2 and 

histones (Wolterink-van Loo et al., 2015). Continuous expression and/or transient expression of VirD2-
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EGFP and VirD2-M1/3-EGFP might cause instability of the chromatin structure which may prevent viable 

seed production when floral dip infiltration is used for transformation.  

 

3.5.4. Nuclear targeting of mVirD2 

NLSs of both mVirD2-58 and mVirD2-80 have been modified by introducing a point mutation 

(from arginine to threonine) to the N-terminal NLS and by removing the C-terminal NLS by a broad or a 

precise deletion. mVirD2-58-EGFP and mVirD2-80-EGFP were exclusively localized in the nucleus in 

Arabidopsis and tobacco leaves, and aggregates were observed only in the transiently transformed tobacco 

leaves (Figure 3.4.3.3a and b). Aggregates were likely because a very high level of expression from the 

vector leads to the saturation and formation of aggregates upon transient transformation of plants (Escobara 

et al., 2003). Moreover, aggregates may have been formed because of changes in isoelectric point. 

The subcellular localization of a recombinant protein may differ in transgenic plants and the 

transiently transformed plant system. For example, a fusion protein (AvrRps4-GFP) was detected in the 

cytoplasm and in the nucleus, while the recombinant protein was localized in chloroplasts in transgenic 

Arabidopsis (Heidrich et al., 2011; Li et al., 2014; Sohn et al., 2012). Since we did not observe the different 

subcellular localization of mVirD2-58-EGFP and mVirD2-80-EGFP in transgenic Arabidopsis and 

transiently transformed tobacco leaves, it was highly likely that these recombinant proteins without known 

NLSs localized in the nucleus of both plant systems. The nuclear localization of mVirD2-58 and mVirD280 

was surprising because it was expected that mutation of both known NLSs of VirD2 would abolish nuclear 

targeting of the modified protein. This expectation was supported by previous studies on VirD2 with 

mutated N and C-terminal NLSs which showed that these mutations resulted in a dramatic reduction of 

plant transformation (Rossi et al., 1993) and in the cytoplasmic localization of GFP-mVirD2 in mammalian 

cells (Relic et al., 1998). This discrepancy may be due to use of different systems, since a nuclear targeting 

efficiency of modified NLS sequences is known to vary in yeast, plant and mammalian cells (Kosugi et al., 

2009a). Our results suggested two possibilities: 1) modification of the N-terminal NLS did not inactivate its 

NLS activity and 2) a novel NLS exists in VirD2. The mVirD2 fragment-EGFP fusion proteins were 

analyzed for their subcellular localization to consider these possibilities.  
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3.5.5. Nuclear import of the N-terminal fragments of VirD2 and mVirD2  

Although the wild type N-terminal NLS is present in VirD2-N1/2-EGFP, the recombinant protein 

was detected in the nucleus and cytoplasm of transgenic Arabidopsis, yet only aggregates were observed in 

the tobacco leaf (Figure 3.4.4.1a). These aggregates occur in the cells of tobacco leaves likely due to the 

high expression form the vector (Escobara et al., 2003). Additionaly, changes in isoelectric point may have 

caused aggregation. It was generally thought that proteins with a maximum size of 60 kDa could diffuse 

through the nuclear pore, yet proteins up to 90 - 110 kDa were found to enter passively the nuclei of 

mammalian cells (Wang and Brattain, 2007). The size of VirD2-N1/2-EGFP (54 kDa; Table 3.4.1) may 

cause diffusion of the protein into the nucleus in transgenic Arabidopsis.  

mVirD2-58/80-N1/2-EGFP contains a point mutation (arginine to threonine) in the N-terminal 

NLS. Transgenic Arabidopsis carrying this construct could not be obtained, and transiently expressed 

protein only formed aggregates in the tobacco leaf (Figure 3.4.4.1a). Thus, the effect of this modification on 

the nuclear targeting activity of the N-terminal NLS could not be assessed, unfortunately. 

 VirD2-N1/3-EGFP (46 kDa) and mVirD2-58/80-N1/3-EGFP (46 kDa) mainly formed aggregates, 

and weak signals were detected in the nucleus and cytoplasm of tobacco leaf cells (Figure 3.4.4.1c and d). 

Since VirD2-N1/3-EGFP was not detected exclusively in the nucleus and mVirD2-58/80-N1/3-EGFP was 

not only in the cytoplasm, we cannot exclude the possible diffusion of the proteins through the nuclear pore 

due to their small sizes (Wang and Brattain, 2007). It is possible that small sizes of VirD2-N1/3-EGFP (46 

kDa) and mVirD2-58/80-N1/3-EGFP (46 kDa) caused diffusion of these proteins into the nucleus easier 

compared to VirD2-N1/2-EGFP (54 kDa) and mVirD2-58/80-N1/2-EGFP (54 kDa) that were larger in size 

(Table 3.4.1).  

VirD2-N1/2-EGFP and VirD2-N1/3 contain the wild type N-terminal NLS. Regardless of the size 

of these proteins, the presence of the N-terminal NLS should contribute to a strong nuclear targeting of 

these proteins as shown previously (summarized in Table 3.5a) (Relic et al., 1998; Tinland et al., 1992; 

Ziemienowicz et al., 2001). Different transformation systems and reporter proteins used in our and previous 

studies might contribute to this difference. VirD2 (11 amino acids containing the N-terminal NLS) fused to 

the β-galactosidase fusion protein was detected in the nucleus of N. plumbaginifolia mysophyll protoplasts 

(Tinland et al., 1992). GFP-VirD2 carrying the NruI deletion of the C-terminal NLS was detected in the 
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nuclei of mammalian cells (Relic et al., 1998). Fluorescently labelled VirD2 carrying the NruI deletion of 

the C-terminal NLS was detected in the nucleus of permeabilized N. tabacum (BY2) protoplasts from the 

cell suspension culture (Ziemienowicz et al., 2001). It has been shown that an addition of the reporter 

protein at the N or C-terminus of the protein of interest could alter the subcellular localization of fusion 

proteins (Marion et al., 2008). For example, when GFP was fused to the N or C-terminus of the Arabidopsis 

ceramide synthase (LOH1), the subcellular localization of fusion proteins was different in transiently 

transformed tobacco leaves: LOH1-GFP in the Golgi apparatus and GFP-LOH1 in the Golgi apparatus, the 

nucleus and the cytoplasm (Marion et al., 2008). A different transformation system might be another factor 

to alter the subcellular localization as seen before with a fusion protein AvrRps4-GFP (Heidrich et al., 

2011; Li et al., 2014; Sohn et al., 2012). Thus, despite the presence of the N-terminal NLS in VirD2-N1/2-

EGFP and VirD2-N1/3-EGFP, it was not strong enough to direct the fusion protein exclusively into the 

nucleus in transiently transformed tobacco leaves. 

mVirD2-58/80-N1/2-EGFP and mVirD2-58/80-N1/2-EGFP have a modification in the N-terminal 

NLS (a change from arginine to threonine). Similar amino acid substitution was done in the unique region 

of in the capsid proteins of porcine parvovirus (Boisvert et al., 2014). This unique region is called five basic 

regions (BR1 through BR5). Various amino acid substitutions were introduced into those regions. When 

changes from arginine to threonine and from lysine to asparagines were introduced in BR2, the EGFP-BR2 

mutant was detected throughout porcine fibroblast cells. Meanwhile, EGFP with other BRs containing 

mutations were slightly more enriched in the nucleus (Boisvert et al., 2014). Hence, it is possible that a 

change from arginine to threonine in the N-terminal NLS of VirD2 had an influence on its activity. 

However, since our results were ambiguous, we cannot conclude this amino acid change in fact inactivated 

the nuclear localization activity of the N-terminal NLS. 

 

3.5.6. Nuclear import of the C-terminal fragments of VirD2 and mVirD2 

VirD2-C1/2-EGFP containing the wild type C-terminal NLS of VirD2 was localized exclusively in 

the nucleus of the tobacco leaf (Figure 3.4.6.1a). Surprisingly, mVirD2-58-C1/2-EGFP and mVirD2-80-

C1/2-EGFP carrying a broad and precise deletion of the C-terminal NLS were still exclusively localized in 

the nucleus (Figure 3.4.6.1b and c). In transgenic Arabidopsis cells, mVirD2-80-C1/2-EGFP was localized 
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largely in the nucleus and some in the cytoplasm (Figure 3.4.6.1c). This slight inconsistency could be 

caused by a stable transformation versus transient transformation as well as different plant systems used (Li 

et al., 2014), but it does not diminish the main finding that VirD2 lacking the known functional NLSs 

targeted the GFP fusion protein into the nucleus of the plant cell. 

 VirD2-C1/3-EGFP (46 kDa) still possesses the active C-terminal NLS; thus, its nuclear 

localization in transgenic Arabidopsis and transiently transformed tobacco was expected (Figure 3.4.6.1d). 

mVirD2-58-C1/3-EGFP and mVirD2-80-C1/3-EGFP still showed strong EGFP signals in the nucleus and 

moderate level of EGFP from the cytoplasm were detected in the transgenic Arabidopsis and the tobacco 

leaf cells (Figure 3.4.6.1e and f). It is inevitable that the size of mVirD2-58-C1/3-EGFP (41 kDa) and 

mVirD2-80-C1/3-EGFP (44 kDa) may cause the diffusion into the nucleus. Therefore, mVirD2-80-C1/3-

EGFPx2 containing an extra alanine linker-EGFP was generated to increase the size of the protein to 71 

kDa which may prevent a passive translocation of the recombinant proteins through the nuclear pore. The 

result presented that mVirD2-80-C1/3-EGFPx2 was exclusively localized in the nucleus (Figure 3.4.6.1g). 

This was surprising because when GUS was fused to the VirD2 lacking the C-terminal NLS by precise 

deletion, it was localized in the cytoplasm in tobacco protoplasts regardless of the N-terminal NLS (Howard 

et al., 1992). Furthermore, when GFP was fused to the N-terminus of VirD2 lacking both N-terminal NLS 

and the C-terminal NLS by NruI deletion, the fusion protein was detected only in the cytoplasm of 

mammalian cells (Relic et al., 1998). Our analysis of subcellular localization was performed using two 

different systems - a stable transformation of Arabidopsis and transient transformation of tobacco. We 

constructed a recombinant protein of EGFP fused to the C-terminus of the VirD2 variants. It is possible that 

the difference in the transformation system and a reporter protein used for fusion in our case compared to 

previous studies might have affected the subcellular localization of the recombinant proteins (Heidrich et al., 

2011; Li et al., 2014; Marion et al., 2008; Sohn et al., 2012). Since our results strongly suggested the 

presence of a novel NLS, we examined it more closely. 

 

3.5.7. Discovery of a novel NLS3 in VirD2 

According to the cNLS Map analysis (Figure 3.4.1a-c), there was a putative monopartite NLS, 

named NLS3 (QRSKRRNDEE). Due to technical reasons including a lack of success with cloning of 
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smaller fragments and a failure of transient expression in tobacco using shorter fragments fused to EGFP, 

we used NLS3 together with extra amino acid  sequences from around NLS3 to construct the fusion protein. 

Thus, NLS3 indicates the following sequence hereafter: MKRQQRSKRRNDEEAGPSGANRKGLK (M is 

newly added methionine). In addition, the peptide of the same length (26 amino acids) from GFP in 

pCAMBIA1302 was fused to EGFP to serve as a nuclear targeting negative control. Figure 3.4.7a and b 

shows that both NLS3-EGFP and 26aa-EGFP were detected in the nucleus and cytoplasm. These proteins 

are only 33 kDa, which can cause diffusion through the nuclear pore (Wang and Brattain, 2007; Xu and 

Meier, 2008). We applied the strategy used in previous studies to increase proteins by additional two and 

three alanine linker-EGFPs (Crawford and Zambryski, 2000; Wang and Brattain, 2007). NLS3-EGFPx2 

and 26aa-EGFPx2 containing an extra alanine linker-EGFP, resulting in 60 kDa proteins, formed 

aggregates and localized mainly in the nucleus and some in the cytoplasm (Figure 3.4.7c). 26aa-EGFP 

showed a high expression and still was found in the nucleus and cytoplasm (Figure 3.4.7d). NLS3-EGFPx3 

and 26aa-EGFPx3 are 88 kDa and 89 kDa, respectively, due to additional three alanine-EGFPs (Table 

3.4.1). The results indicated clearly that NLS3-EGFPx3 was localized exclusively in the nucleus (Figure 

3.4.7e), yet 26aa-EGFPx3 still likely diffused through the nuclear pore by passitve transport (Figure 3.4.7f). 

Therefore, presence of NLS3 was confirmed, and this sequence can be indicated in the updated scheme of 

the VirD2 protein (Figure 3.5.5a). NLS3 is not a strong nuclear targeting signal as the C-terminal NLS 

because VirD2-C1/3-EGFP containing the wild type C-terminal NLS (46 kDa) was found exclusively in the 

nucleus (Figure 3.4.6.1d), while NLS3-EGFP (33 kDa) and NLS3-EGFPx2 (60 kDa) were still detected in 

the nuclei and the cytoplasm (Figure 3.4.7a and c). Other studies did not detect the presence of NLS3; 

VirD2 lacking the C-terminal NLS was not able to direct the fluorescently labelled single stranded DNA 

into the nuclei of permeabilized tobacco protoplasts and mammalian cells (Table 3.5a) (Ziemienowicz et al., 

1999; Ziemienowicz et al., 2001). It is not clear why this modified VirD2 that should have contained NLS3 

was not functional to direct the complex into the nucleus in the aforementioned experimental systems. 

Moreover, GFP-VirD2 with the absent N- and C-terminal NLSs localized in the cytoplasm of mammalian 

cells (Relic et al., 1998), despite that it contained NLS3. It is possible that weak NLS3 was not recognized 

before in the different constructs and transformation systems. However, NLS3 was strong enough to 

override DCL-TP and RbcS-TP in the TP-mVirD2 proteins to direct the T-complex into the nucleus. This is 
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likely one of the reasons why Agrobacterium-mediated chloroplast transformation did not work (see 

Chapter 2). 

We analyzed the VirD2 sequence from octopine and nopaline pTi types (Figure 3.5.5b). NLS3 is 

not highly conserved between octopine and nopalineplasmids, yet cNLS Mapper also predicted the presence 

of a putative monopartite NLS at the same region (RQRRAKRPHDD, score of 8, Figure 3.5.5b). Six 

classes of NLS and their consensus sequences have been identified. Class 1 and 2 are classical monopartite 

types and bind to a major binding site of importin α. Class 3 and 4 are noncanonical NLSs and bind to a 

minor binding site of importin α. Class 5 is the plant-specific NLS. The last class, class 6 is bipartite NLSs 

(Kosugi et al., 2009a). According to class 1 consensus sequences KR(K/R)R and K(K/R)RK (Kosugi et al., 

2009a), NLS3 belongs to this class, and a more specific sequence of NLS3 is predicted to be KRRN. The 

presence of asparagines after arginine likely decreases the nuclear targeting activity. Interestingly, when 

asparagines in NLS3 (QRSKRRNDEE, score 7) is substituted to lysine and arginine, the scores become 9 

and 12, respectively (Table 3.5b). It would be interesting to prove changes in strength of NLS activity upon 

single amino acid substitution experimentally. Due to technical reasons, NLS3 with extra sequences was 

fused in this study; nuclear targeting of NLS3 without the extra sequences should be tested in the future to 

confirm the specific sequence of NLS3. However, these sequences beside NLS3 may influence the 

efficiency of nuclear targeting (Kosugi et al., 2009a).  

Class 5 NLS which is functional only in plant cells suggested that the efficiency of NLS activity 

vary in yeast, plant and mammalian cells (Kosugi et al., 2009a). Different modifictions in NLSs alter the 

strength of NLS acitivty in yeast, plant and mammalian cells (Kosugi et al., 2009a). For example, GUS-

GFP-AKRIRVT (class 2 NLS; Bold underlined) NLS3 (score 7 by cNLS Mapper) is about a half of the 

strength of the C-terminal NLS (score 13.6 by cNLS Mapper). The predicted score of NLS3 and NLS 

sequence suggests that this NLS might not be efficient in the mammalian cells in which GFP-VirD2 with 

the absent N and C terminal NLSs but the present NLS3 was localized in the cytoplasm (Relic et al., 1998). 

The identification of NLS3 can answer to some puzzling results from previous studies. Rossi et al. 

(1993) also suggested a cryptic NLS in VirD2 after they still observed a low transient expression (lowest 

0.3%) of the transgene from VirD2 lacking the C-terminal NLS. In fact, the presence of a putative NLS 

(KRRNDEEAGPSGANRRGLK – bold letters for nuclear targeting) was proposed by Shurvinton et al. in 
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1992. In their stduy, VirD2 proteins carrying different C-terminal trunctions were used for tumorigenesis on 

tobacco stems and potato discs (Shurvinton et al., 1992). A precise deletion of the C-terminal NLS and the 

putative NLS reduced the tumorigenesis to 60% (Shurvinton et al., 1992), but the deletion of the putative 

NLS resulted only in a 10% reduction of tumorigenesis Therefore, the putative additional NLS was never 

taken into account to test its nuclear targeting activity. The identification of NLS3 determined that their 

prediction on a putative NLS was correct, yet it cannot be explained why a high tumorigenesis efficiency 

was still observed. The involvement of VirE2 in nuclear targeting of the T-complex was proposed 

(Shurvinton et al., 1992). The importance of VirE2 proteins in T-DNA transfer was analyzed by Gelvin 

(1998). Transgenic tobacco overexpressing VirE2 was used for leaf disc transformation. Agrobacterium 

virE2-virD2ΔNLS (a precise deletion of the C-terminal NLS) double mutation was capable of forming 

tumors on such transgenic tobacco leaves, while leaves of wild-type plants were not transformed (Gelvin, 

1998). Hence, the importance of VirE2 was suggested, yet its nuclear tareting of the T-complex and its 

subcellular localization remain controversial due to conflicting results, as reviewed elsewhere (Gelvin, 

2012).  

Despite the fact that many VirD2 domains including a relaxase domain, NLSs, and ω domain are 

well studied, there is a large domain of unknown function (DUF) that resides between the relaxase domain 

and the C-terminal NLS. DUF was examined thoroughly using several VirD2 truncations possessing a 

different combination of the C-terminal NLS, ω domain, a translocation signal from VirF, and parts of DUF 

supplemented with NLS of a simian virus 40 (SV40) large tumor (T)-antigen. These VirD2 proteins were 

used in transient and stable transformation in the Arabidopsis by root transformation assay. Translocation 

domain was found to be in the region of the C-terminal 40 amino acids of VirD2 including the C-terminal 

NLS and ω domain (van Kregten et al., 2009). Importantly, a region of DUF (204-264 amino acids) 

strongly enhances the T-strand transfer, whereas a section of amino acids 265-373 was said to be 

dispensable (van Kregten et al., 2009). Another function of VirD2 is mediating DNA substrate docking with 

VirD4 via its C-terminus; this interaction is necessary for the activation of VirB10  in type IV secretion 

system (Cascales et al., 2013). Unfortunately, our NLS3 is in the region of 335-344 amino acids within the 

so-called dispensable region (265-373 amino acids). Since van Kregten et al. (2009) supplemented VirD2 
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variants with SV40 NLS, it would be intersting to study the transformation using VirD2 carrying only the 

relaxase domain, NLS3, DUF (204-264 amino acid) and the translocation domain of VirF. 

Although the previous study indicated that NLS3 did not have a significant impact on 

transformation (Shurvinton et al., 1992), the presence of NLS3 is evident. Our finding provides a new 

feature of VirD2. 

 

3.5.8. Protein size limit to diffuse through the nuclear pore 

It was thought that the maximal size of a protein that can diffuse through the nuclear pore was 60 

kDa which was predicted by the diameter (about 9-12 nm) of the nuclear pore complex (Ma et al., 2012; 

Wang and Brattain, 2007). However, Wang and Brattain (2007) reported the passive nuclear import of 

proteins much larger than 60 kDa in mammalian cells. Plasmids encoding several GFP fusion proteins 

(GFP1-GFP5) with a protein range of 28 kDa to 140 kDa were constructed, and the subcellular localization 

of these GFP proteins was observed 8 h after transfection of HeLa cells (Wang and Brattain, 2007). GFP3 

with the size of around 90 kDa showed an efficient passive diffusion through the nuclear pore, while GFP4 

with the size of around 110 kDa was passively imported in a less efficient manner. However, GFP5 around 

140 kDa was predominantly localized in the cytoplasm (Wang and Brattain, 2007). Wiegert et al. (2007) 

reported that the different transformation system affected the size limit for passive protein import through 

the nuclear pore. A plasmid encoding the extracellular signal-regulated kinase was fused to the N-terminus 

of GFP (about 70 kDa), and this fusion protein was localized in the nucleus and cytoplasm of the 

transfected hippocampal neurons due to the passive nuclear import (Wiegert et al., 2007). When bovine 

serum albumin (BSA 40 kDa) was introduced to hepatoma cells by microinjection, BSA was excluded from 

the nucleus. This suggested the 40 kDa was an exclusion limit (Lang et al., 1986). These previous studies 

showed the importance of the type of the system used to observe the protein subcellular localization; the 

system used can affect the size limit of the passive nuclear import of proteins. Most importantly, the 

maximal size of proteins to diffuse through the nuclear pore was suggested to be from 90 to 110 kDa, and 

this can also depend of the structure of the protein (Wang and Brattain, 2007). 

In plant systems, the size exclusion limit (up to 60 kDa) of the passive diffusion through the 

nuclear pore was thought to be the same as in the mammalian system. Our finding and previous studies 
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raise a question on the passive nuclear import in plants. For example, when dextrans (70 kDa) were 

introduced to permeabilized tobacco protoplasts by the nuclear import assay, dextran molecules did not 

diffuse through the nuclear pore, which suggested the nuclear exclusion limit was 70 kDa (Merkle et al., 

1996). In this study, we presented that 26aa-EGFPx3 (88 kDa) was still able to be passively translocated 

through the nuclear pore in the transiently transformed tobacco cells (Figure 3.4.7f). GFP4 (110 kDa) has a 

compact structure (Wang and Brattain, 2007). 26aa-EGFPx3 propably has a compact structure as well, 

which made the passive nuclear import easier. It would be useful to have information on the passive nuclear 

import of proteins in different protein and transformation systems. 

In conclusion, we did not only discover a novel NLS3 in VirD2 but also provided useful 

information about protein diffusion through the nuclear pore using this particular transformation system. 

 

 

 

Figure 3.5.5a. Schematic representation of VirD2 with the proposed VirD2 NLS3. 

Dash line: omitted amino acids. 
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Table 3.5a. Summary of previous studies on the nuclear targeting properties of VirD2 NLSs. 

 

 

Organisms 

Transformation 

methods 

Stable/ 

Transient Detection methods References VirD2 variants 

Subcellular 

localization 

N. tabacum (W38) 

Leaf discs 
Agro-mediated Stable 

β-galactosidase 

activity using cellular 

factions 

(Herrera-

Estrella et al., 

1990) 

 

 
First 292 amino acids of VirD2 

Nucleus 

N. tobacum 

(XD) 

Protoplasts from 

cell suspension 

culture 

Electroporation Transient 
GUS activity in 

protoplasts 

(Howard et al., 

1992) 

 

 
 

Nucleus 

 

 
 

Cytoplasm 

 

 
Precise deletion of the C-terminal NLS 

Cytoplasm 

N. plumbaginifolia 

Mesophyll 

protoplast 

PEG Transient 

Indirect 

immunofluorescence 

 

(Tinland et al., 

1992) 

 

 
11 amino acids including the N-terminal NLS 

Nucleus 

 

 
20 amino acids including the C-terminal NLS 

Nucleus 

Mammalian cells: 

HEK 293 cells 

HeLa cells 

Calcium 

phosphate 

method-

transfection 

Transient 

Indirect 

Immunofluorescence 

Staining 

(Relic et al., 

1998) 

 

 
 

Nucleus 

 

 
NruI deletion of the C-terminal NLS 

Nucleus 

 

 
Deletion of the N-terminal NLS  

NruI deletion of the C-terminal NLS 

Cytoplasm 

Mammalian cells: 

HeLa cells 

Permeabilized 

cell 
Transient 

Confocal microscopy: 

Fluorescently labelled 

single stranded DNA 

(Ziemienowicz 

et al., 1999) 

 

 
NruI deletion of the C-terminal NLS 

Cytoplasm 

(ssDNA) 

GFP 

+ ssDNA 

GFP 

GFP 

β-gal 

β-gal 

GUS 

GUS 

GUS 

β-gal 
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Table 3.5a. Continued. 

Pink line: N-terminal NLS; Red line: NLS3; Black lines: C-terminal NLS. 

 

 

 

 

 

 

 

 

 

  Table 3.5b. cNLS Mapper prediction.  

Name Predicted NLS sequence Score 

NLS3 QRSKRRNDEE 7 

NLS3 (NK) QRSKRRKDEE 9 

NLS3 (NR) QRSKRRRDEE 13 

Changed amino acid is indicated in red. 

Organisms 

Transformation 

methods 

Stable/ 

transient Detection methods References  

Subcellular 

localization 

N. tabacum (BY2) 

Protoplasts from 

cell suspension 

Permeabilized 

protoplasts 
Transient 

Confocal microscopy: 

Fluorescently labelled 

protein (Ziemienowicz 

et al., 2001) 

 

 
NruI deletion of the C-terminal NLS 

Nucleus 

Confocal microscopy: 

Fluorescently labelled 

single stranded DNA 

 

 

NruI deletion of the C-terminal NLS 

Cytoplasm 

(ssDNA) 
+ ssDNA 
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pTil5955_octopine      MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPVPPDQIRELAQS 60 

pAch5_octopine         MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPVPPDQIRELAQS 60 

pTiBo542_octopine      MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPVPPDQIRELAQS 60 

pTiC58_nopaline        MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGRLELQRSARHLDIPLPPDQIHELARS 60 

                       **********************************:*************:*****:***:* 

 

pTil5955_octopine      WVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGYGGGRYN 120 

pAch5_octopine         WVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGYGGGRYN 120 

pTiBo542_octopine      WVTEAGIYDESQSDDDRQQDLTTHIIVSFPAGTDQTAAYEASREWAAEMFGSGYGGGRYN 120 

pTiC58_nopaline        WVQETGTYDESQPDEERQQELTTHIIVSFPAGTSQVAAYAASREWAAEMFGSGAGGGRYN 120 

                       ** *:* *****.*::***:*************.*.*** ************* ****** 

 

pTil5955_octopine      YLTAYHVDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKKMAEISLRHGIVLDA 180 

pAch5_octopine         YLTAYHVDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDGLRKKMAEISLRHGIVLDA 180 

pTiBo542_octopine      YLTAYHVDRDHPHLHVVVNRRELLGQGWLKISRRHPQLNYDGLRKKMAEISLRHGIVLDA 180 

pTiC58_nopaline        YLTAFHIDRDHPHLHVVVNRRELLGHGWLKISRRHPQLNYDALRIKMAEISLRHGIALDA 180 

                       ****:*:******************:***************.** ***********.*** 

 

pTil5955_octopine      TSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEEDRRDLSQSFDPFRSDPS 240 

pAch5_octopine         TSRAERGIAERPITYAEHRRLERMQAQKIQFEDTDFDETSPEEDRRDLSQSFDPFRSDPS 240 

pTiBo542_octopine      TSRAERGIAERPITYAEYRRLERMQAQKIQFEDTDFDETSPEEDRRDLSQSFDPFRSDAS 240 

pTiC58_nopaline        SRRAERGITERPITYAQYRRLEREQARQIRFEDADLEQSSPQGDHPEFSQPFDTSPFEAS 240 

                       : ******:*******::***** **::*:***:*::::**: *: ::**.**.   :.* 

 

pTil5955_octopine      TGEPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLESERSAQPSASKIPVIGHFGI 300 

pAch5_octopine         TGEPDRATRHDKQPLEQHARFQESAGSSIKADARIRVSLESERSAQPSASKIPVIGHFGI 300 

pTiBo542_octopine      AGEPDRATRHDKQPLEPHARFQEPAGSSIKADARIRVPLESERGAQPSASKIPVTGHFGI 300 

pTiC58_nopaline        AGGPEDMPRPNNRQNESQVHLQEPAGVSNEAGVLVRVALETERLAQPFVSETILADDIGS 300 

                       :* *:  .* :::  * :.::**.** * :*.. :**.**:** *** .*:  : ..:*  

 

 

pTil5955_octopine      ETSYVAEASVRKRSGIFGTSRPVTDVAMHTVK-RQQRSKRRNDEEAGPSGANRKGLKAAQ 359 

pAch5_octopine         ETSYVAEASVRKRSGIFGTSRPVTDVAMHTVK-RQQRSKRRNDEEAGPSGANRKGLKAAQ 359 

pTiBo542_octopine      ETSYVAEASVPKQSGNSDTSRPVTDVAMHTVE-RQQRSKRRHDEEAGPSGANRKRLKAAQ 359 

pTiC58_nopaline        GSSRVAEGRVESANRTPDIPRAATEAATHTTHDRQRRAKRPHDDDGGPSGAKRVTLEGIA 360 

                        :* ***. * . .   . .*..*:.* **.. **:*:** :*::.*****:*  *:.   
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pTil5955_octopine      VDSEANVGEQDTRDD-------------------SNKAADPVSASIGTEQPE-ASPKRPR 399 

pAch5_octopine         VDSEANVGEQDTRDD-------------------SNKAADPVSASIGTEQPE-ASPKRPR 399 

pTiBo542_octopine      VDSEANVGEPDGRDD-------------------SNKAADPVSASIRTEQPE-ASPTCPR 399 

pTiC58_nopaline        VGPQANAGEQDGSSGPLVRQAGTSRPSPPTATTRASTATDSLSATAHLQQRRGVLSKRPR 420 

                       *..:**.** *  ..                   :..*:*.:**:   :* . . .. ** 

 

pTil5955_octopine      DRHDGELGGRKRARGNRRDDGRGGT-- 424 

pAch5_octopine         DRHDGELGGRKRARGNRRDDGRGGT-- 424 

pTiBo542_octopine      DRHDGELGERKRARGNRRDDGRGGT-- 424 

pTiC58_nopaline        EDDDGEPSERKRERDERSKDGRGGNRR 447 

                       : .*** . *** *.:* .*****.   

 

Figure 3.5.5b. Alignment of VirD2 amino acid sequences encoded by octopine- and nopaline-type plasmids.  

Sequences are retrieved from NCBI (Accession number - pTil5955: NG_035347; pAch5: CP007228; pTiBo542: DQ058764; pTiC58: NC_003065) and 

aligned using ClustalW2, (Letters highlighted in yellow: NLS3; Letters highlighted in green: C-terminal NLS;  

Red box: sequence used for the recombinant protein; Bold letters: predicted NLS by cNLS Mapper). 
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Chapter 4: Conclusions and Future directions 

 

In this project, VirD2 was modified to inactivate NLSs (mVirD2): a point mutation (arginine to 

threonine) in the N-terminal NLS and removal of the C-terminal NLS broadly or precisely based on the 

previous study (Rossi et al., 1993). The strong chloroplast transit peptide either tomato DCL or tobacco 

RbcS was fused to the N-terminus of mVirD2. As a result, four types of TP-mVirD2 were constructed: 

DCL-TP-mVirD2-58, RbcS-TP-mVirD2-58, DCL-TP-mVirD2-80 and RbcS-TP-mVirD2-80. RbcS-TP-

mVirD2-58 was successfully purified in this study, and it was shown to retain the cleavage activity. This 

indicated that the presence of the transit peptide did not disturb the cleavage activity of TP-mVirD2. I 

attempted to transform tobacco chloroplasts by Agrobacterium carrying the TP-mvirD2 gene and a binary 

vector containing the chloroplast expression cassette to achieve the initial objective of development of an 

Agrobacterium-mediated chloroplast transformation method. Results indicated that Agrobacterium-

mediated chloroplast transformation was unsuccessful using TP-mVirD2. These undesirable results, 

however, created an interesting question: “Why are strong chloroplast transit peptides dysfunctional in the 

TP-mVirD2 proteins without any known functional NLSs?” We hypothesized the presence of an unknown 

NLS in VirD2. We tested our hypothesis in the second project. 

Several fragments of VirD2 and mVirD2 were fused to EGFP. These fusion proteins were used to 

observe their subcellular localization in stably transformed Arabidopsis and transiently transformed tobacco 

leaf cells. The fusion proteins containing the N-terminal one third of VirD2/mVirD2 containing either the 

wild type NLS or the modified NLS were localized in the nucleus and the cytoplasm of the tobacco cells. 

Since these fusion proteins were small in size (46 kDa), it probably allowed protein diffusion through the 

nuclear pore. Therefore, it is inconclusive that the point mutation indeed inactivated the N-terminal NLS, 

and it requires further investigation. Fusion proteins containing the C-terminal part of mVirD2 without any 

known functional NLS were localized exclusively in the nucleus. The amino acid NLS prediction software 

(Kosugi et al., 2009b) indicated the putative NLS (NLS3) upstream of the C-terminal NLS. We confirmed 

the presence of the novel NLS (NLS3) in VirD2 by showing exclusive nuclear localization of the NLS3-

EGFPx3 fusion protein in tobacco cells. 

Another interesting finding was that fusion protein 26aa-EGFPx3 (88 kDa) serving as negative 

control for the nuclear import was still able to be passively imported through the nuclear pore. The size 



170 
 

exclusion of the protein is up to 110 kDa in the mammalian cells. This was in contrast to the previously 

published data demonstrating that the protein size exclusion of diffusion through the nuclear pore was 70 

kDa in the evacuolated permeablized tobacco cells (Merkle et al., 1996). This suggested that the type of 

transformation method, organisms and reporter proteins likely affect the protein diffusion through the 

nuclear pore. Our results suggest that in the agro-infiltrated tobacco leaf, 88 kDa (26aa-EGFPx3) can be 

passively imported into the nucleus through the nuclear pore easily. In the future, it would be useful to 

obtain data indicating the diffusion limit according to the type of transformation method, organism and 

reporter proteins. For this, we can construct larger proteins by adding one or two EGFPs to 26aa-EGFPx3 

resulting in 26aa-EGFPx4 (117 kDa) and 26aa-EGFPx5 (145 kDa). Subcellular localization of these 

proteins can be determined by confocal microscopy using agro-infiltrated tobacco leaves. Western blotting 

needs to be performed to ensure the proper size of the recombinant proteins are produced in the plant cells. 

These data would help to define the diffusion limit of EGFP constructs in the agro-infiltrated tobacco leaves.  

I was able to achieve the second objective by discovering a new NLS in VirD2 protein - NLS3. 

Although I could not develop a method of Agrobacterium-mediated chloroplast transformation, information 

provided in Table 3.5b could be useful to improve nuclear targeting of the T-complex in Agrobacterium-

mediated plant transformation in general. It might be interesting to investigate if a change in NLS3 from 

aspartate to lysine or arginine (score 9 or 13, respectively in Table 3.5b), improves the plant nuclear 

genome transformation efficiency. Moreover, interaction of NLS3 with the nuclear import machinery could 

be studied. Arabidopsis contains nine genes encoding importin α proteins (Bhattacharjee et al., 2008). 

Bimolecular fluorescence complementation (BiFC) can be used to determine which importin α proteins 

strongly interact with NLS3. In addition, a change from aspartate to lysine or arginine in NLS3 may alter 

the strength of interactions between NLS3 and importin α.  

According to van Kregten et al. (2009), NLS3 is in the “dispensable” region of VirD2, since it is 

not a part of the minimal region of VirD2 required for transformation of the nuclear genome. Hence, for 

Agrobacterium-mediated chloroplast transformation, VirD2 can be modified to a short VirD2 (1-204 amino 

acids of the relaxase domain) supplemented with the translocation signal from VirF at its C-terminus and a 

transit peptide at its N-terminus. In my study, I used tomato DCL and tobacco RbcS transit peptides 

because they are strong transit peptides to import the recombinant proteins into chloroplasts. The non-
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photosynthetic ferredoxin III precursor (prFdIII) and root NADP
+
-oxidoreductase (prFNR) precursor were 

imported into root plastids (Li and Teng, 2013). Transit peptides of these proteins might also be useful for 

fusion to a short VirD2 for targeting the T-complex to root plastids.  

Another important factor VirE2 carries a bipartite NLS (Citovsky et al., 1992). It is likely that this 

protein also has to be modified to avoid the possibility of nuclear targeting of the T-complex. However, it is 

inevitable to abolish VirE2-VirE2 interaction while the bipartite NLS is removed because it overlaps with 

one cooperativity domain which is necessary for cooperative interaction between VirE2 and single stranded 

DNA (Citovsky et al., 1992; Sundberg and Ream, 1999). A few amino acids insertion between the bipartite 

NLS of VirE2 retained the single stranded DNA binding activity of VirE2 but caused a significant reduction 

in tumorigenesis (Dombek and Ream, 1997). At first, subcellular localization of the modified VirE2 protein 

needs to be analyzed. VirE2-YEP (yellow fluorescent protein) and YEP-VirE2 fusion proteins showed 

cytoplasmic aggregates in Arabidopsis root, while BiFC showed interactions between VirE2 and several 

importin α proteins (Bhattacharjee et al., 2008). Thus, BiFC would be useful to determine if modified VirE2 

interacts with importin α proteins.  

Protocols for Agrobacterium-mediated plant transformation are optimized for several monocot 

species (see Chapter 1). It might be possible that these optimized protocols are effective with use of 

Agrobacterium carrying the modified VirD2 and VirE2 for chloroplast transformation.  

My initial attempt to develop a new method to transform chloroplast by modifying Agrobacteirum 

genetics was unsuccessful at this time. However, because of the results from these first experiments, an 

endeavor was taken to discover a novel NLS3. My results provided useful information on VirD2.  
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