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Summary 

My thesis focuses on the symbiosis between the marine flatworm host Paracatenula, which 
lacks mouth and digestive system, and the alphaproteobacterial symbiont Candidatus Riegeria. 
Both host and symbiont are unique partners across all known symbioses – no other flatworm 
besides Paracatenula hosts chemosynthetic symbionts, and Ca. Riegeria is the only known 
chemosynthetic symbiont within the Alphaproteobacteria. Contained in specialized cells within 
the trophosome of Paracatenula, the Ca. Riegeria symbionts can comprise up to a half of the 
total host volume, representing the highest ratio of symbiont-to-host biomass among animal-
bacteria symbioses. Ca. Riegeria have been transmitted vertically between host generations 
for at least 500 million years, leading to the presumption that their genomes contain signatures 
of reductive genome evolution. Yet only little is known about the genetic repertoire of Ca. 
Riegeria, their ecophysiology and how reductive genome evolution progressed over their 
evolutionary history. 

I have characterized key aspects of the Paracatenula symbiosis emphasizing the physiology of 
Ca. Riegeria and how it compares to “typical” gammaproteobacterial chemoautotrophs, and 
describe the consequences of reductive genome evolution on retained functions in the 
symbionts. To perform an integrated multi-disciplinary study of the Paracatenula-Ca. Riegeria 
physiology (Chapter 2), I used a highly abundant Paracatenula species from Mediterranean 
sediments (Paracatenula sp. standrea). I succeeded to cultivate stable populations of this 
species under laboratory conditions. The genome of its symbiont, Ca. R. standrea, is drastically 
reduced when compared to its closest alphaproteobacterial relatives and yet, they are fully 
autonomous for energy generation and biomass formation. Ca. R. standrea has a unique 
physiology which unites versatility and energy efficiency and therefore differs from all other 
chemosynthetic symbionts with similarly reduced genomes. Genomic predictions were 
supported by correlative imaging, expression data, metabolomics and physiological 
experiments, indicating that despite its compact genome, the symbiont can provide flexible 
carbon and energy storage support for its host. Analyses of symbiont and host gene expression 
along with ultrastructural analysis of the host suggest that the flatworm obtains its nutrition 
through digestion of either vesicles derived from the symbionts or entire symbiont cells.  

For the first time, I describe the processes of genome reduction in geographically and 
phylogenetically diverse chemosynthetic symbiont clades (Chapter 3). I deciphered the gene 
fragmentations and genome rearrangements of three Ca. Riegeria clades which have been 
separated hundreds of millions of years ago. My results provide evidence for divergent 
trajectories of genome evolution in these clades. I conclude that genome reduction patterns 
in Ca. Riegeria unlikely reflect subsequent stages of the reduction process like it has been 
proposed previously for other symbionts. 

Characteristic for many flatworms including Paracatenula is their enormous regenerative 
capacity which is associated with asexual reproduction. I investigated the role of the symbionts 
in tissue regeneration of the host (Chapter 4). Surprisingly, I observed massive changes of 
gene expression in symbionts during head regeneration of host animals. 
Overall, I demonstrate that Paracatenula and Ca. Riegeria share an intimate biological 
connection that has been shaped over their long evolutionary history. 

 

 

 

 



Zusammenfassung 

 6 

Zusammenfassung 

Die vorliegende Doktorarbeit beschreibt die Symbiose zwischen dem mund- und darmlosen 
marinen Plattwurm Paracatenula und seinem alphaproteobakteriellen Symbionten Candidatus 
Riegeria (Ca. Riegeria). Sowohl der Wirt als auch die Symbionten sind unter den Symbiosen 
einzigartig. Paracatenula ist der einzige bekannte Plattwurm der in Symbiose mit 
chemosynthetischen Symbionten lebt und diese sind wiederum die einzigen 
chemosynthetischen Bakterien aus der Gruppe der Alphaproteobakterien. Die Symbionten, die 
in spezialisierten Zellen innerhalb des Trophosoms leben, können bis zur Hälfte der Biomasse 
des Wirts ausmachen – mehr als in jeder anderen bekannten Symbiose zwischen einem Tier 
und Bakterien. Da die Symbionten seit mindestens 500 Millionen Jahre von einer 
Wirtsgeneration zur nächsten übertragen wurden, ist zu erwarten, dass die 
Symbiontengenome auf für die Symbiose essentiellen Funktionen hin angepasst wurden. 
Sowohl über die Ökophysiologie und das genetische Repertoire von Ca. Riegeria als auch über 
die Prozesse, die zur Genomreduktion über einen solch langen Zeitraum führen, ist bisher 
wenig bekannt. 

Ich habe Schlüsselaspekte der Paracatenula Symbiose untersucht. Dabei lag das Hauptgewicht 
meiner Arbeit auf Untersuchungen zur genomabgeleiteten Physiologie von Ca. Riegeria, vor 
allem im Vergleich zu „typischen“ gammaproteobakteriellen Symbionten und auf einer Analyse 
der Genomreduktionsvoränge in verschiedenen Kladen. Es ist mir gelungen, Plattwürmer einer 
abundanten Paracatenula Art (Paracatenula sp. standrea) aus mediterranen Sedimenten über 
Jahre hinweg im Labor in Kultur zu halten und mit multidisziplinären Ansätzen zu untersuchen. 
Trotz des im Vergleich zu freilebenden Nahverwandten stark reduzierten Genoms konnte ich 
zeigen, dass Ca. R. standrea sowohl bezüglich der Energiegewinnung als auch 
Biomasseproduktion autonom ist (Kapitel 2). Einzigartig im Vergleich zu anderen 
chemoautotrophen Symbionten mit ähnlich stark reduziertem Genom ist Ca. R. standrea in 
Bezug auf metabolische Flexibilität und Energieffizienz. Die aus den Genomdaten abgeleiteten 
Schlussfolgerungen wurden durch Ergebnisse korrelativer Bildgebung, Expressionsdaten, 
Metabolomik und durch physiologische Experimente unterstützt. Ein wichtiger Befund ist, dass 
die Symbionten trotz eines kompakten Genoms Kohlenstoff und Energiespeicherstoffe dem 
Wirt zur Verfügung stellen können. Symbionten- und Wirtsexpressionsdaten kombiniert mit 
Ultrastukturanalysen zeigten außerdem, dass die Symbionten ihren Wirt entweder über 
Membranvesikel mit Nahrung versorgen oder dass sich der Wirt durch Verdau der gesamten 
Symbiontenzellen mit Nahrung bzw. Energie versorgt. 

Genomreduktionen wurden in geographisch und phylogenetisch unterschiedlichen 
chemosynthetischen Symbiontenkladen erstmalig am Beispiel von drei Ca. Riegeria Kladen 
untersucht, die schon seit einigen hundert Millionen Jahren getrennt sind (Kapitel 3). Die 
beschriebenen Genfragmentierungen bzw. Genumlagerungen deuten auf unterschiedliche 
Ablaufprozesse seit der Trennung der Kladen hin. Ich postuliere daher, dass die 
Genomreduktion in Ca. Riegeria Symbionten nicht nach einem systematischen 
Einzelschrittschema verläuft, wie dies für andere Symbionten beschrieben ist, sondern 
unabhängig und Kladen-spezifisch. 

Ein charakteristisches Merkmal vieler Plattwürmer, einschließlich Paracatenula, ist ihre enorme 
Fähigkeit zur Regeneration, die häufig mit asexueller Fortpflanzung einhergeht. Ich habe die 
Notwendigkeit und Rolle der Paracatenula Symbionten bei der Regeneration ihres Wirten 
untersucht (Kapitel 4). Überraschenderweise wurden während der Regeneration des Wirts 
deutliche Genexpressionsänderungen bei den Symbionten festgestellt, die funktionelle 
Rückschlüsse erlauben.  

Insgesamt weisen meine Ergebnisse darauf hin, dass Paracatenula und Ca. Riegeria eine intime 
biologische Gemeinschaft darstellen, die durch einen langen gemeinsam Evolutionsprozess 
geformt und optimiert wurde. 
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List of abbreviations 

3-HPB  3-hydroxypropionate bi-cycle 

AAI    Amino acid identity 

ATP    Adenosine triphosphate 

CARD-FISH   Catalyzed reporter deposition-fluorescence in situ hybridization 

CBB cycle  Calvin-Benson-Bassham cycle 

COG    Clusters of Orthologous Genes 

DIC    Differential interference contrast 

dsrAB   Dissimilatory sulfite reductase genes A and B 

GC-MS  Gas chromatography-mass spectrometry 

gGC    Genomic GC content 

HGT    Horizontal gene transfer 

KEGG    Kyoto Encyclopedia of Genes and Genomes 

LCA    Last common ancestor 

Mb    Megabase pairs 

mRNA   Messenger ribosomal ribonucleic acid 

NMDS   Non-metric multidimensional scaling 

NSAF   Normalized spectral abundance factor 

OMV   Outer membrane vesicle 

PHA    Polyhydroxyalkanoates 

PHB    Polyhydroxybutyrate 

PPi   Pyrophosphate 

rDSR   Reverse-acting dissimilatory sulfite reductase 

rRNA    Ribosomal ribonucleic acid 

rTCA cycle  Reverse TCA cycle 

RuBisCO  Ribulose-1,5-bisphosphate carboxylase/oxygenase 

SNP    Single-nucleotide polymorphism 

SOX   Sulfur oxidation pathway 

TCA cycle  Tricarboxylic acid (TCA) cycle 

TEM    Transmission electron microscopy 

TMM   Trimmed mean of M-values 

TPM   Transcripts per million 

tRNA    Transfer RNA 
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Chapter I: Introduction 

An introduction into symbiosis 

Interactions between organisms can be short when they involve competition for food or 

predation. In other cases, two or more different species do not only coexist but rather live in 

close association and interdependently for longer periods – a lifestyle referred to as “symbiosis” 

(de Bary, 1879). The first perception of symbiosis was more than 100 years ago in lichens, 

which are composed of two independent organisms, i.e. a fungus and algae, that live together. 

The word symbiosis derives from the Greek syn “together” and bios “life”. It was coined in 

1877 by Albert Bernhard Frank with the word symbiotismus (Frank, 1877) and is used when 

two species establish a long-term biocoenosis. A more elaborated concept by de Bary included 

any associations between different species with persistent physical contact and can broadly be 

divided into groups that have positive (= mutualism), neutral (= commensalism) or negative 

(= parasitism) impacts on the partners involved (de Bary, 1879). Although de Bary explicitly 

included all three kinds of interaction, the term “symbiosis” was often misinterpreted by 

biologists as a synonym for mutualistic and cooperative interactions (Martin and Schwab, 

2012). Another source of inconsistency is the definition of symbiosis as an association for a 

“longer period”. At the present time, it is widely accepted that symbiotic organisms live 

together for at least a substantial portion of their lives but not necessarily their complete 

lifespan (Douglas, 2010). In my thesis I will use the term “symbiosis” when I refer to 

mutualistic interactions between a larger organism such as the animal host, and a smaller 

organism such as a bacterial partner to which I refer as symbionts.  

A symbiotic lifestyle represents a successful biological strategy that has evolved among all 

kinds of living organisms and is ubiquitous in terrestrial, freshwater and marine communities 

dominating the biota of many habitats (Moran, 2006; Douglas, 2010). Symbiosis often has 

played a key role in the evolution of complex and multicellular life. For example, mitochondria 

and chloroplasts evolved from free-living bacteria through symbiosis within a eukaryotic host 

cell (Margulis, 1970; Margulis and Fester, 1991). Such endosymbiosis events paved the way 

for the evolution of a broad eukaryotic diversity in animals, plants as well as fungi. 

Most commonly studied interactions include symbioses between bacterial symbionts and their 

hosts, but numerous symbioses also exist between higher organisms (Figure 1A–I). In the 
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famous symbiosis between sea anemones and clown fish, for example, the anemone host serve 

the fish as shelter where the fish is protected by the stingy nematocysts in the tentacles of the 

host (Figure 1A). In return, the clown fish allow their host to flourish. Another mutualistic 

symbiosis involves the leafcutter ants. They inoculate pieces of leaves to serve as the 

nutritional substrate for their fungal cultivates. In return for a mulchy compost of fresh leaves, 

the fungus breaks down the plant material to produce nutritious, edible structures which the 

ants can digest. In return, the ants ensure that the fungus stays disease-free (Figure 1C). 

Moreover, nitrogen fixation via bacterial symbionts allows legumes to inhabit soils with limited 

nitrogen availability, and at the same time establishes a distinctive bacterial community with 

essential effects on plant growth and the plant´s ecological performance (Figure 1E) (Zgadzaj 

et al., 2016). 

The association with symbiotic bacteria allows the hosts to thrive and adapt to new niches that 

would not be possible aposymbiotically (Little, 2010). One reason for these adaptations is the 

enhancement of the host´s ability to obtain nutrients from bacterial symbionts (Moran, 2006). 
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Figure 1. An overview of the diversity of symbiotic interactions. A, Clown fish living in protective 
anemones. B, Squid with bacterial symbionts located in the light organ that allow camouflage. C, Leafcutter 
ant that provides fungi they cultivate with leaves. D, E, Termites and root nodules that both harbor 
nitrogen-fixing symbionts. F, Hitch-riding remora fishes on a shark. G, Ship-boring bivalves that harbor 
cellulose-digesting symbionts. H, Sponge harbor bacteria with various functions ranging from antibiotic 
resistance to nutrition. I, Giant tubeworms harbor chemosynthetic symbionts. Source of the photographs 
is indicated on the images. 

The definition of chemosynthesis 

Shortly after the term symbiosis was coined, a process called chemosynthesis was discovered 

by the biologist Sergei Winogradsky (Winogradsky, 1887). He was puzzled by the presence of 

sulfur in cells of the bacterium Beggiatoa and he asked what it might be used for (Winogradsky, 

1887; Dworkin, 2012). His discoveries were pioneering as he suggested that: “[…] the sulfur 

in these organisms is the sole respiratory source, and in that sense plays the same role as that 

of carbohydrate in other organisms […]” (Winogradsky, 1887). This was surprising at that time 

since it was believed that all life on Earth was dependent on sunlight as the sole source of 

energy and on photosynthesis driving the primary production of organic carbon. By now, 

however, sulfur is also well known to function in various biogeochemical reactions that affect 

both the carbon and oxygen cycles (Hurtgen, 2012). In fact, free-living bacterial communities 

are capable of using organic compounds to reduce the oxidized form of sulfur – which is 

primarily sulfate – to sulfide which serves as terminal electron acceptor in the absence of 
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oxygen. In the oxidative portion of the sulfur cycle, sulfur-oxidizing bacteria such as Beggiatoa 

are capable of synthesizing organic compounds from the oxidation of reduced sulfur species, 

closing the sulfur cycle in another way of primary production (Van Dower, 2000). This microbial 

process is referred to as chemosynthesis, since chemical energy instead of sunlight drives the 

synthesis of organic carbon through the fixation of inorganic carbon (Figure 2). The 

biogeochemical significance of chemosynthesis, and thus giving the answer to Winogradsky´s 

question, was finally understood with the discovery of chemosynthetic-driven primary 

production at deep-sea hydrothermal vent systems (Jannasch, 1985; Van Dower, 2000). 

 

Figure 2. Strategies of energy conservation. A, Photosynthesis vs. chemosynthesis. Modified after 
Kreutzmann, 2017 and Somero, 1984. B, Metabolic options and substrates for the conservation of energy 
in chemosynthetic organisms. 



Chapter I: Introduction 

 12 

Marine chemosynthetic symbioses and the benefits to 

both partners 

Chemosynthetic symbioses were discovered in the late 1970s in the deep sea at hydrothermal 

vents (Cavanaugh et al., 1981; Felbeck, 1981). These findings changed the previously 

common view that the deep sea is a desert-like habitat with limited food resources. The 

animals thriving at these vents were found to be associated with abundant bacterial symbionts. 

One of the dominating animals, the vestimentiferan tubeworm Riftia pachyptila, reduced 

mouth and digestive organs, and instead harbors bacterial symbionts in its trophosome 

(Cavanaugh et al., 1981). Consistent with this observation, the vestimentiferans tubeworms 

were first suggested to live on “molecular food” as they were shown to host endosymbiotic 

bacteria with chemosynthetic activities (Cavanaugh et al., 1981; Felbeck, 1981; Jones, 1981). 

It is reasonable to assume that these endosymbiotic bacteria feed their host via 

chemosynthesis, even though the exact mechanisms of the nutrient transfer are still 

unknown (Bright et al., 2000). 

Chemosynthetic symbioses were also discovered in environments other than the deep-sea 

vents and in diverse marine invertebrates (Cavanaugh et al., 1981; Cavanaugh, 1983). 

Convergent evolution has led to the establishment of chemosynthetic symbioses in several 

animal phyla and ciliates (Dubilier et al., 2008). The evolution of symbioses between bacteria 

and their various hosts appears to have often resulted in the complete loss of mouth and 

digestive system – similar to the vetimentiferan tubeworms from the deep sea. Such organs 

reductions cause symbiont dependencies, resulting in new organisms that evolved through 

symbiosis (Kiers and West, 2015). 

The benefits of a symbiosis between invertebrates and chemosynthetic bacteria can be diverse 

for the two partners. For example, the symbionts allow their hosts to thrive in “hostile” 

environments such as sulfide-rich habitats or even deep-sea gas and oil seeps (Cavanaugh, 

1983; Rubin-Blum et al., 2017). In such environments, host-internal symbionts help to 

overcome carbon limitation if they are capable of using inorganic carbon that is not accessible 

for the host, and incorporate it into biomass. This biochemical conversion provides an essential 

supply of carbon to deep-sea animals as only 0.1 to 1% of the carbon-containing material from 

the surface reaches down into the deep sea (Bopp et al., 2015).  
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Chemosynthetic symbioses are often found in sulfide-rich environments. At certain 

concentrations, sulfide can be deadly because it can bind to proteins of the respiratory chain 

and thereby inhibits its normal function (Jiang et al., 2016). Chemosynthetic symbionts are 

hypothesized to detoxify sulfide concentration in the host, but it is also possible that the hosts 

are simply insensitive to sulfide (Powell, 1989; Hentschel et al., 1999; Jan et al., 2014). 

Besides carbon, animals additionally require other essential resources such as nitrogen, which 

can also be provided by their symbionts (Petersen et al., 2016). A typical way of acquiring 

nitrogen from the environment is through the uptake of ammonium or nitrate by the symbionts 

(Lee et al., 1992; Lee and Childress, 1994). Certain symbionts even allow the recycling of host 

waste products, which is advantageous in symbiotic systems which exist in nutrient-poor 

environments (Kleiner, Wentrup, et al., 2012). 

The benefits for chemosynthetic bacterial symbionts are just as versatile as they are for the 

hosts. For such bacteria, the respective host provides a sheltered environment with reduced 

competition, and at the same time serves to protect them from predators (Ott et al., 2005). 

Free-living bacteria often encounter limited energy resources in their natural environment. For 

example, sediment bacteria have to cope with distinct spatial distributions of reduced and 

oxidized nutrients. Bacteria that live in symbiosis with a mobile meiofaunal organism, however, 

can overcome such limitations by using their host as a “shuttle service” that moves along the 

redoxcline longitudinally (Giere et al., 1991; Ott et al., 1991; Jäckle, 2018). In the case of 

sessile organisms, like the vestimentiferan tubeworms, specific hemoglobin molecules allow 

the storage of both oxygen and sulfide in numerous tentacles to provide their bacterial 

symbionts with conditions needed for their growth (Jones, 1981; Arp and Childress, 1983; Zal 

et al., 1998). Collectively, these few arguments indicate that hosts provide a stable 

environment in which the symbionts – and in return also the host – can thrive and that the 

symbiotic partnership also increases the fitness of both symbiotic partners. In addition, these 

arguments suggest that symbiosis allows organisms to survive and to populate habitats which 

are otherwise hostile to both partners.  

Environments of chemosynthetic symbioses 

Convergent evolution of chemosynthetic symbioses in different lineages of marine 

invertebrates with various bacterial taxa argues for a successful and omnipresent life strategy 
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(Dubilier et al., 2008). Since the discovery that the deep-sea vent fauna is often driven by 

chemosynthesis, it became clear that chemosynthetic symbioses are common to different 

types of ecosystems (Cavanaugh, 1983; Dubilier et al., 2008). These ecosystems include whale 

and wood falls, cold seeps, mud volcanoes, continental margins and omnipresent shallow-

water coastal sediments (reviewed by Dubilier et al. 2008). At a first glance, these ecosystems 

appear to be highly distinct from one another in terms of their abiotic factors. For example, 

the fauna of hydrothermal vents is exposed to high pressure which is a very different feature 

when compared to shallow-water sediments. In spite of the different abiotic factors, 

chemosynthetic ecosystems share key features that include a continuous supply of reduced 

energy sources serving as electron donors for chemosynthetic bacteria and the presence of 

oxygen that is normally essential for the animal host (Dubilier et al., 2008). 

Hydrothermal vents represent areas in the sea floor where water that is heated by volcanic 

activity reaches the surface at tectonic plate boundaries. Vents are distributed along the mid-

ocean ridges and they can be found at sites where two tectonic plates diverge, an event that 

causes new oceanic crust to be formed. Abiotic processes cause the enrichment of different 

electron donors – the fuel for chemosynthesis – in seawater by interactions with basalt rocks. 

As the heated water travels through fissures, it creates a water flow resulting in the formation 

of hydrothermal vents (Jannasch, 1985; Van Dower, 2000). During the travel through basalt 

rocks, the chemical composition of the seawater is altered and, in turn, it causes changes in 

chemical properties as well as resulting in temperatures of ≥ 460 °C (Edmond et al., 1982; 

Perner et al., 2014). Vent fluids are typically enriched in inorganic substrates such hydrogen, 

hydrogen sulfide and methane which all represent potential energy sources for a broad vent 

community of living matter. At the border to the overlaying seawater, iron sulfides precipitate, 

resulting in the formation of so-called chimneys which are typical for distinct formations called 

black smokers. In addition to the already mentioned giant vestimentiferan tubeworms, 

communities at hydrothermal vents are dominated by vesicomyid clams, bathymodiolin 

mussels and shrimps which all live in symbiosis with chemosynthetic bacteria (Dubilier et 

al., 2008). 

At sea areas more closely to the water surface, whale and wood falls represent dynamic 

ecosystems and the chemosynthetic faunal community can adapt quickly. These ecosystems 

can be colonized by both free-living bacteria and chemosynthetic symbioses as both 
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environments are obviously limited by the locally and temporally restricted input of massive 

organic material (Bienhold et al., 2013). The colonizers of these environments include besides 

free-living filamentous sulfur bacteria also a variety of marine invertebrates such as 

vestimentiferan tubeworms, vesicomyid clams, mytilids, limpets, snails, polynoid polychaetes 

and ciliates which all also rely on sulfur-oxidizing symbionts (Feldman et al., 1998; Laurent et 

al., 2009). Reducing conditions by elevated sulfide concentrations in the sediments are caused 

by the degradation of the organic materials by the free-living microbial communities which are 

established adjacent to the organic falls (Laurent et al., 2009; Treude et al., 2009). 

No matter whether one considers the deep or the shallow areas of the sea, it is the 

chemosynthetic fauna that dominates marine sediments worldwide. In the beginning of the 

1970s and before the discovery of vent chemosynthetic symbioses, the “sulfide system” of 

marine shallow-water sediments was discovered as a sheltered environment for marine 

invertebrates (Fenchel and Riedl, 1970; Sterrer and Rieger, 1974). At the time, however, it 

has already been known by bacteriologists that these sediments consist of an oxidized layer 

and an anaerobic and reduced black zone. This knowledge was almost completely ignored by 

marine zoologists. Clearly, shallow-water ecosystems are dependent on organic carbon that 

originates from photosynthetic-driven primary production, an important aspect which stands 

in contrast to the situation at hydrothermal vents (Fenchel and Riedl, 1970; Dubilier et al., 

2008). In sediments, reduced sulfur mostly originates from sulfate-reducing bacteria which 

are responsible for up to 29% of demineralized organic matter and are of key importance for 

the sulfur cycling (Bowles et al., 2014; Wasmund et al., 2017). Several lineages of marine 

invertebrates have been identified in alike enriched sediments including platyhelminths, 

nematodes, oligochaetes and also marine ciliates, and one can assume that the diversity is 

much larger than currently known and as previously anticipated (Fenchel and Riedl, 1970; 

Dubilier et al., 2008). The early observations on nutritional speciation to bacterial food have 

led the basis for studying chemosynthesis, as already in the 70´s meiofaunal organisms were 

suggested to feed on sulfur bacteria or were discovered to lack digestive tracks, but contain 

“little granular bodies” (Fenchel and Riedl, 1970; Sterrer and Rieger, 1974). 
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Inorganic energy sources utilized by chemoautotrophic 

symbionts 

In chemosynthetic symbioses, the symbionts produce biomass by the oxidation of reduced 

inorganic compounds. Although the first and the most described chemosynthetic symbioses to 

date rely on the oxidation of reduced sulfur compounds, a variety of additional substrates for 

energy conservation are known (Cavanaugh et al., 1981; Felbeck, 1981). A few years after 

the discovery of thioautotrophy in symbionts of vestimentiferan tubeworms, the first methane-

driven symbionts were discovered in deep-sea mussels of the genus Bathymodiolus (Childress 

et al., 1986; Cavanaugh et al., 1987). Methane, which can serve as energy- and carbon source, 

is assumed to be a widely used chemosynthetic substrate (Pimenov et al. 2000; Borowski et 

al. 2002; Schmaljohann & Flugel 1987; Rubin-Blum et al. submitted manuscript). Besides 

sulfur and methane, hydrogen also represents an electron donor with comparably high energy 

yield for biomass production by chemosynthetic symbionts (Amend and Shock, 2001). This 

energy source was shown to be utilized by the symbionts of for example Bathymodiolus that 

inhabit vent sites with high hydrogen concentrations in the environment (Petersen et al., 

2011). Hydrogen is not only restricted to deep-sea vents but also occurs together with carbon 

monoxide in seagrass sediments of marine shallow waters, where both substrates can also be 

utilized by the thiotrophic symbionts of gutless oligochaetes (Kleiner, Wentrup, et al., 2012; 

Kleiner et al., 2015). 

Biodiversity of chemosynthetic symbioses 

The diversity of chemosynthesis is not only represented by the ecosystems in which various 

host groups thrive. It is also reflected by several symbiont lineages, the location of the 

symbionts either inside or outside the host organism, in the way how the symbionts are 

acquired or passed on to new generations and finally also reflected in the electron donors they 

can utilize. Not surprisingly, chemosynthetic animals often undergo drastic developmental, 

physiological and behavioral adaptations, some of these features will be described more 

detailed in this thesis. I will first introduce some selected symbiotic systems which are of 

primary interest for my study (Figure 3). This introduction will be followed by a detailed 

description of the marine flatworm genus Paracatenula which was used for the 

study presented. 
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The vestimentiferan tubeworm Riftia pachyptila – often referred to as the giant tubeworm – 

represents the largest known chemosynthetic invertebrate. Riftia tubeworms grow fast 

compared to other marine invertebrates and reach tube lengths of up to 1.5 m (Jones, 1981; 

Lutz et al., 1994; Gaill et al., 1997). Riftia has four body regions including a tentacular plume, 

the vestimentum, trunk and an opisthosoma (Jones, 1981). Riftia lacks both mouth and gut. 

Thus, for nutrition, they rely on symbionts which are located in the so-called trophosome 

(Cavanaugh et al., 1981; Felbeck, 1981; Cavanaugh, 1983). The trophosome is connected to 

the site of gas exchange in the obturacular plume and its vessels are filled with blood 

(Cavanaugh et al., 1981; Jones, 1981). The blood has a high viscosity and contains hemoglobin 

that simultaneously binds sulfide and oxygen. Both substrates are provided to the symbionts 

to be used for chemosynthesis (Jones, 1981; Arp and Childress, 1983; Arp et al., 1987).  

Clams of the genus Calyptogena were characterized as abundant fauna of hydrothermal vents 

and seeps (Boss and Turner, 1980). Representatives of the species Calyptogena magnifica 

reach sizes of ~26 cm in length, possess a mouth and host symbionts in the gill tissues (Boss 

and Turner, 1980; Cavanaugh, 1983). Although Calyptogena has highly reduced labial palps 

and retained a short gut, its digestive system was suggested to be at least partially functional 

since the animals´ stomach has been reported to be filled with particles (Boss and Turner, 

1980; Le Pennec et al., 1995). 

Clams of the genus Solemya are also symbiotic animals. However, they are found in shallow-

water ecosystems (Figure 3). For more than a hundred years, these organisms were of interest 

to researchers because of their vestigial or even absent digestive systems, and their nutritional 

mode remained a mystery until the discovery of chemosynthetic symbioses (Pelseneer, 1891; 

Reid and Bernard, 1980). As observed with other bivalves, Solemya clams host symbionts in 

their fleshy gills and were proposed to completely rely on these symbionts for nutrition 

(Cavanaugh, 1983; Stewart and Cavanaugh, 2006). In fact, the solemyid class of clams has 

developed a unique behavioral strategy to access sulfide and oxygen simultaneously by digging 

in a Y-shaped burrow spanning the redoxcline. This way, the clam can position itself at the 

junction of the Y, where it can either pump oxygenated water from the surface layers or it can 

access sulfide that is diffusing upward from the deeper layers of the sediment. Most likely, this 
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strategy is an adaptation to ensure that the symbionts are provided with their redox 

requirements (reviewed in Stewart & Cavanaugh 2006). 

In addition to the above-mentioned clams of the genus Calyptogena, mussels of the genus 

Bathymodiolus also belong to the common deep-sea fauna and are highly abundant at 

hydrothermal vents and seeps (Kenk and Wilson, 1985; Lorion et al., 2013). The anatomy of 

these mussels largely resembles the body plan of other mytilid relatives, but they show unique 

characteristics such as the large gills filled with bacterial symbionts and a reduced digestive 

tract (Le Pennec and Hily, 1984; Fiala-Médioni et al., 1986). 

Furthermore, gutless oligochaetes are part of the typical marine meiofauna of tropical and 

subtropical shallow-water sediments (Figure 3) (Bright and Giere, 2005; Dubilier et al., 2006; 

Giere, 2009). Although the first species has already been described in the 1970s, the absence 

of both gut and mouth along with the presence of thiotrophic bacteria was only noted after the 

gutless vestimentiferan deep-sea tubeworms were identified (Giere, 1985). Gutless 

oligochaetes also lack excretory organs such as nephridia (Giere and Erséus, 2002). Below the 

cuticle of the gutless oligochaetes, as many as six different bacterial symbionts were found 

and assigned to essential nutritional function and waste recycling (Blazejak et al., 2005, 2006; 

Ruehland et al., 2008, Kleiner, Wentrup, et al., 2012). 
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Figure 3. Diversity of shallow-water meiofauna. Modified after Dubilier et al., 2008 and Gruber-
Vodicka (2011). Selected logos were kindly provided by Brandon Seah. Animals and plants are not drawn 
to scale. 

External and internal association of chemosynthetic symbionts 

Chemosynthetic symbionts can be associated with their host in several ways. Their association 

can be either inside or outside the host as endo- or ectosymbionts, respectively. In 

endosymbiotic associations, the symbionts either live extracellularly – outside of cells – or 

intracellularly within the host organism. An example for endosymbionts are the symbionts of 

the deep-sea tubeworm Riftia which are located intracellularly within the trophosome tissue in 

specialized host cells called bacteriocytes (Cavanaugh et al., 1981; Jones, 1981; Hand, 1987). 

In vestimentiferans including Riftia, the trophosome tissue has derived from mesodermal 

tissue and it had been proposed that it evolved convergently from different tissues among the 

siboglinid tubeworms and flatworms (Bright and Sorgo, 2003; Nussbaumer et al., 2006; Dirks 

et al., 2011). In other cases like the gutless oligochaetes, endosymbionts can be hosted 

extracellularly and are restricted to the epidermal-cuticle interface (Giere, 1981; Giere and 

Erséus, 2002). 

The location of symbionts within or on a host does not allow to predict their long-term stability 

and specificity. In ectosymbioses such as nematodes, shrimps and ciliates, the symbionts are 
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attached to the outside of their hosts (Dubilier et al., 2008). Even though one could assume 

that the attachment of ectosymbionts to hosts is unspecific, the opposite, i.e. specificity, was 

found for the nematode Leptonemella spp. where the attached ectosymbionts were found to 

be highly specific (Zimmermann et al., 2016). Likewise, the mode of transmission cannot be 

predicted on the basis of the external or internal location of the symbionts. For example, both 

the endosymbionts of the vestimentiferan tubeworm Riftia and the bathymodiolin mussel 

Bathymodiolus are localized inside their hosts but taken up from surrounding seawater without 

evidence for simultaneous diversifications (Won et al., 2003; Nussbaumer et al., 2006; 

Fontanez and Cavanaugh, 2014; Zimmermann et al., 2016). Another mode is exemplified by 

some nematode ectosymbionts which can be transmitted vertically from one host generation 

to another (Zimmermann et al., 2016). 

Diversity of chemosynthetic symbionts and their transmission 

The known diversity of chemosynthetic symbionts includes primarily Proteobacteria species 

(Dubilier et al., 2008). Typically, the symbionts belong to Gamma- and Epsilonproteobacteria 

which are either vertically transmitted or acquired horizontally through the environment 

(Dubilier et al., 2008; Assié et al., 2016; Seah et al., 2017). Most sulfur-oxidizing bacteria, 

both free-living and symbiotic, belong to Gammaproteobacteria (Dubilier et al., 2008). At least 

nine phylogenetically distinct gammaproteobacterial symbiont clades are identified, most of 

which were intermixed phylogenetically with free-living bacteria (Dubilier et al., 2008). 

Although the various hosts are dependent on their symbionts for nutrition, many of these 

acquire their symbionts horizontally from the pool of free-living representatives (Nussbaumer 

et al., 2006; Wentrup et al., 2014; Russell et al., 2017). The horizontal acquisition of symbionts 

indicates a facultative symbiotic lifestyle in which at least one part of their lifestyle is symbiont-

free, a phenomenon not seen with vertically transmitted symbionts (Bright and Bulgheresi, 

2010). For example, the gammaproteobacterial thiotrophic symbionts of Bathymodiolus 

mussels are closely related and group with the cluster of free-living SUP05 (Ponnudurai et al., 

2017). It is known that these symbionts phylogenetically intermix with free-living organisms 

such as Candidatus Thioglobus, and it is postulated that these symbionts have established 

their symbiotic associations with multiple host species of deep-sea mytilid mussels 

independently (Petersen et al., 2012). The exact mechanisms of horizontal symbiont uptake 
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in Bathymodiolus mussels is yet not known (Wentrup et al. 2014, M. Franke personal 

communication). In the case of Riftia tubeworms the gammaproteobacterial symbionts are 

also horizontally acquired and, notably, they possess a symbiont-free larval stage (Di Meo et 

al., 2000; Nussbaumer et al., 2006). To date, there is only one exception known where 

alphaproteobacterial chemosynthetic symbionts are associated with a marine flatworm, 

Paracatenula (Gruber-Vodicka et al., 2011) which will be described separately below since this 

symbiosis is the subject of my studies described here. 

Thiotrophic symbionts have diverse physiological profiles 

The symbionts of chemosynthetic invertebrates often vary in genome sizes and in their 

physiological capabilities (Kleiner, Petersen, et al., 2012) (Figure 4). Their genome sizes can 

range from being highly reduced with sizes no more than 1.02 to 4.88 Mb and being 

metabolically more flexible (Kuwahara et al., 2007; Newton et al., 2007; Petersen et al., 2016). 

These differences suggest diverse metabolic as well as ecological strategies. The most reduced 

genomes of thiotrophic symbionts can be found in the symbionts of vesicomyid clams with 

sizes of 1.02–1.16 Mb (Kuwahara et al., 2007; Newton et al., 2007). The genome of the 

symbiont Ca. R. magnifica was characterized as encoding all metabolic pathways that are 

typical of free-living chemoautotrophs (Newton et al., 2007). These pathways include the PPi-

dependent Calvin-Benson-Bassham (CBB) cycle for carbon fixation, the reverse-acting 

dissimilatory sulfite reductase (rDSR) for sulfur oxidation as well as synthesis pathways for 

nitrogen assimilation, amino acid production, cofactor and vitamin synthesis (Newton et al., 

2007; Kleiner, Wentrup, et al., 2012) (Figure 4A). The genomes of the Bathymodiolus 

symbionts are only slightly larger with sizes between 1.7–2.3 Mb and have extended metabolic 

capabilities (Sayavedra et al., 2015). Besides encoding for components of the sulfur oxidation 

pathway (SOX) for sulfide and thiosulfate oxidation, these symbionts have the ability to acquire 

energy from the oxidation of hydrogen when compared to most other known symbionts 

(Petersen et al., 2011; Sayavedra et al., 2015). Additionally, the Bathymodiolus symbionts 

express a wide repertoire of toxin-related genes that might function in interactions with their 

host and serve as a protection against parasites (Sayavedra et al., 2015). In contrast to the 

clam symbionts, the Bathymodiolus symbionts encode substrate transporters involved in the 

uptake of organic compounds (Newton et al., 2007; Sayavedra et al., 2015). However, key 

enzymes of the tricarboxylic acid (TCA) cycle appear to be missing in the coding capacity of 
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these two symbionts, leaving open whether the symbionts can actually utilize sugars or are 

obligate autotrophs (Wood et al., 2004; Kuwahara et al., 2007; Newton et al., 2007; 

Sayavedra et al., 2015). 

A larger metabolic flexibility is given in symbionts of the clam Solemya, the gutless oligochaete 

Olavius and the tubeworm Riftia with genome sizes of ~2.5 up to 4.5 Mb (Markert et al., 2011; 

Gardebrecht et al., 2012; Dmytrenko et al., 2014, J. Wippler, personal communication). The 

intracellular symbionts of Solemya were proposed to have a broad thiotrophic and sugar 

metabolism based on a complete TCA cycle, besides a large number of transporters for 

exchanges with their environment (Dmytrenko et al., 2014). The Gamma-1 (now referred to 

as Thiosymbion) have the additional ability to recycle waste products of the host by the 

assimilation of e.g. acetate, propionate and malate through a 3-hydroxypropionate bi-cycle 

(Kleiner, Wentrup, et al., 2012). In addition, this pathway is proposed to be linked to the 

synthesis of storage compounds such as polyhydroxyalkanoates (PHA) (Kleiner, Wentrup, et 

al., 2012). The Gamma-3 symbiont of Olavius, however, lacks these abilities but encodes a 

full TCA cycle and was suggested to use carbon monoxide as energy source. The tubeworm 

symbionts of the genera Riftia and Tevnia are unique since both encode an additional 

autotrophic pathway, the reverse TCA (rTCA) cycle in addition to the CBB cycle which is thought 

to bring increased metabolic flexibility (Markert et al., 2007, 2011; Gardebrecht et al., 2012; 

Li et al., 2018). Until recently, chemosynthetic symbionts were suggested as being nutritional 

symbionts, although the analyses were primarily focused on the ability of the symbionts to 

make inorganic carbon sources available. The chemosynthetic symbionts of the clam Loripes 

and the nematode Laxus extend the typical functions of thiotrophic symbionts by nitrogen 

fixation (Petersen et al., 2016). Their symbionts possess the so far largest known genomes 

with sizes between 4.33–4.88 Mb (Petersen et al., 2016). Their characterization indicates that 

they otherwise resemble functionally the genomes of other chemosynthetic symbionts 

(Petersen et al., 2016). Since symbioses involving these symbionts are often found in nutrient-

poor environments, nitrogen-fixation is thought to provide an additional source of substrates 

to the host and to the ecosystem they live in (Petersen et al., 2016). 

Taken together, the variable metabolic makeup of the different symbionts genomes suggests 

a high degree of metabolic flexibilities. However, up to now, it has not been possible to reveal 

the essential functions of thiotrophic symbionts on which their host animals depend on. 
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Figure 4. Metabolic pathways of selected gammaproteobacterial thiotrophic symbionts. A, The 
reduced symbionts of Calyptogena and Bathymodiolus. B, Thiosymbion of the gutless oligochaete Olavius 
algarvensis. C, Gamma-3 symbiont that often co-occurs in O. algarvensis. D, Symbionts of Riftia and 
Tevnia. The figure was adapted from Kleiner, Petersen, et al., 2012, and modified according to Sayavedra 
et al., 2015. 
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Symbiont transmission and impacts on genome sizes: 

processes of reductive genome evolution 

The mode of symbiont transmission can influence the genome structure, the genetic repertoire 

and consequently genome size during the evolution of a long-term symbiotic partnership 

(Bright and Bulgheresi, 2010; McCutcheon and Moran, 2012). The genomes of continuously 

horizontally transmitted bacteria from the environment are typically large and genetically 

diverse. Organisms are continuous targets of genome mutations such as base substitutions, 

deletions and other genetic changes. However, it appears that such mutations do usually not 

accumulate in horizontally transmitted symbionts. Although numerous mutations might appear 

in the genomes of such symbionts, the majority of them will be lost within a few generations 

as new symbionts will be horizontally acquired by the hosts and thus, only a limited fraction 

of mutations can contribute to the host-symbiont evolution (Ohta, 1992). This can be explained 

by large effective population sizes where it takes a very long time for a mutation to be fixed 

(Ohta, 1992). An increased chance for the accumulation and fixation of mutations in the active 

population is therefore more likely when a small and rather homogeneous population of 

symbionts is present in the host and this population is then transmitted to the next host 

generation as in the case of vertically transmitted symbionts (Ohta, 1973; Funk et al., 2001; 

Bright and Bulgheresi, 2010). The reduction in symbiont numbers transferred to the next 

generation represents a genetic bottleneck that is known to have critical consequences for the 

genetic and ecological evolution of symbiotic bacteria, which results in higher substitution rates 

(Mira and Moran, 2002). 

Purifying selection against naturally occurring mutations has only minor effects on vertically 

transmitted symbionts but usually results in genome deletions (McCutcheon and Moran, 2012). 

In such organisms an irreversible ratchet mechanism – usually referred to as Muller´s ratchet 

– prevents selection of organisms that lack recombination (Muller, 1964). In the processes of 

Muller´s ratchet, the genomes constantly accumulate normally deleterious mutations – a 

trigger for the processes of reductive genome evolution if the affected individuals and their 

offspring survive (Moran, 1996; McCutcheon and Moran, 2012). 

Genome reduction is universally seen with most bacteria and archaea, and can be found in 

free-living organisms, thermophilic archaea, insect symbionts as well as in chemosynthetic 

symbioses (Moran, 2002; Giovannoni et al., 2005; Kuwahara et al., 2007; Newton et al., 2007; 
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Wolf and Koonin, 2013; Nicks and Rahn-Lee, 2017; Tian et al., 2017). Intracellular bacterial 

symbionts appear to represent prime examples for these processes as they reproduce 

asexually, have small effective population sizes and are exposed to narrow bottlenecks for 

their survival (McCutcheon and Moran, 2012). Most models for reductive genome evolution are 

derived from studies on insect symbioses and usually illustrate a linear progression from a 

free-living state to streamlined obligate symbiotic organisms (Figure 5A). In insects, the co-

evolution and vertical transmission of bacterial symbionts for millions of years repeatedly 

resulted in highly specialized interactions going along with a downstream into tiny genomes 

(McCutcheon et al., 2009a; McCutcheon and Moran, 2012). In these cases, the endosymbionts 

are inherited from the parental hosts to their offspring and they provide various functions to 

their host that include the provision of essential amino acids, vitamins and cofactors, i.e. 

nutrients that are missing in the animal-host diet (Shigenobu et al., 2000; Wu et al., 2006; 

McCutcheon and Moran, 2007; Moya et al., 2008). The switch from a free-living state to an 

intracellular lifestyle implies the loss of unnecessary genes over time, when genetic material 

of the symbiont is lost without detrimental effects on the organism (Moya et al., 2008). The 

mentioned bottlenecks favor a random genetic drift that often affects non-essential genes and 

the loss of DNA repair and recombination genes, whereas genes that are critical for survival of 

the symbionts in intracellular environments must be retained in the genome (Gonza et al., 

2003; Moya et al., 2008; McCutcheon and Moran, 2012; Shimamura et al., 2017). Most drastic 

losses are usually found in metabolic genes, but only those which are not essential for the 

survival and fitness benefits of both the host and the symbiont in a given environment (Moya 

et al., 2008). 

The switch of bacteria from a free-living state to an obligate symbiont involves dynamic 

processes involving gene content reductions (Moya et al., 2008). During the first stages of this 

process, mobile elements within the genome proliferate. Such elements are typically abundant 

in the genome of bacterial symbionts that were acquired recently by their hosts (Moran and 

Plague, 2004; Moya et al., 2008; Plague et al., 2008). Mobile elements integrate into genomes 

and have been implicated as a source for genome rearrangements and gene inactivation (Moya 

et al., 2008). Side effects of mobile elements proliferation include scattered homology along 

the chromosome causing increased spontaneous rates of homologous recombination as well 

as activation of gene expression for various types of neighboring genes (Moran and Plague, 
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2004). Clear-cut signs for bacterial genomes in transition to an obligate symbiont stage are 

the accumulations of pseudogenes, a phenomenon that is well-investigated in the genomes of 

the insect symbionts Serratia (Figure 5B) (Moran and Plague, 2004; McCutcheon and Moran, 

2012; Manzano-Marín and Latorre, 2016). Later stages of genome reduction include gradual 

gene losses along the genome, starting with single-nucleotide erosions. The process continues 

with rapid reduction in gene length until they are finally completely eroded (Gómez-Valero et 

al., 2007; Moya et al., 2008; McCutcheon and Moran, 2012; Manzano-Marín and Latorre, 

2016). Accumulations of pseudogenes and the reduction of metabolic redundancies result in a 

continuous loss of genes, along with the decrease in mobile elements and the fixation of 

rearrangements, which result in a stable genome structure and streamlined genomes 

(Andersson, 2006; Moya et al., 2008; McCutcheon and Moran, 2012). 

Another side effect of reductive genome evolution are changes in the base composition 

(McCutcheon and Moran, 2012). Small genomes usually have shifted their genomic GC (gGC) 

contents from G+C to A+T, resulting in a gGC of ~13.5% in the case of spittlebug symbionts, 

which is low compared to its free-living relative E. coli which has a gGC of ~50% (Sueoko, 

1962; Moya et al., 2008; Hershberg and Petrov, 2010; Hildebrand et al., 2010; McCutcheon 

and Moran, 2010; Raghavan et al., 2012; Venton, 2012). The reasons for and consequences 

of these shifts are still debated, especially because there are exceptions such as small symbiont 

genomes that do not follow the trend of an increased A+T content (McCutcheon et al., 2009b; 

McCutcheon and Moran, 2012; Venton, 2012). In more general terms, bacteria favor increased 

G+C contents despite a mutational bias towards A+T (Raghavan et al., 2012). Multiple forces 

are thought to be the drivers of GC shift. For example, the loss of DNA repair and recombination 

genes during the genome reduction lead to changes in the G+C versus the A+T content 

because mutations are no longer repaired (Lind and Andersson, 2008; Moran et al., 2008; 

McCutcheon and Moran, 2012). This allows mutations towards increasing the A+T content in 

tiny genomes, and shifts of the average gGC towards higher AT content values (McCutcheon 

and Moran, 2012). 

Although it is fascinating to study genome reductions in insect symbioses, such processes also 

occur in symbionts of chemosynthetic animals which are less intensively studied. More than a 

decade ago, the chemosynthetic symbionts of vesicomyid clams were shown to have reduced 

genomes (Kuwahara et al., 2007; Newton et al., 2007). Just recently, the chemosynthetic 
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symbionts of a deep-sea sponge were shown to have reduced genomes as well (Tian et al., 

2017). The co-adaption of the vesicomyid clam symbionts and their host resulted in reduced 

symbiont genomes where genes coding for essential metabolic functions for both partners are 

retained. However, genes encoding non-essential functions such as diverse sets of substrate 

transporters, cell division genes (e.g. ftsZ) and DNA repair genes, as well as mobile elements 

were lost from their genomes (Kuwahara et al., 2007, 2008; Newton et al., 2007). Although 

these initial studies showed clear indications for reductive genome evolution, most of the 

follow-up studies focused mostly on the analysis of homologous recombination events and the 

gradual loss of DNA repair genes (Kuwahara et al., 2011; Shimamura et al., 2017; Tian et al., 

2017). General predictions, and how these processes compare to those of insect symbionts, 

are not yet addressed. 

 

Figure 5. Principles of reductive genome evolution deduced from insect symbioses. A, General 
principles of ongoing processes, redrawn after Nicks & Rahn-Lee 2017 and Toft & Andersson 2010. B, 
“Snapshots” of genome reduction in the insect symbionts Serratia symbiotica. Colored lines indicate types 
of mobile elements scattered throughout the genomes. Modified after Manzano-Marín & Latorre 2016. 

The Paracatenula symbiosis 

Marine flatworms of the genus Paracatenula are of particular interest and, for multiple reasons, 

ideal subjects to study the host-symbiont relationship in detail. In the 1970s, these flatworms 

were identified as typical meiofaunal representatives of sheltered sulfidic sediments of warm 
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temperate to tropical regions (Sterrer and Rieger, 1974). They belong to the order Catenulida 

of the phylum Platyhelminthes (Larsson and Jondelius, 2008). The name Paracatenula 

originates from the latin catenula “small chains” since they are known to reproduce asexually 

by paratomy (Borkott, 1970; Larsson and Jondelius, 2008; Dirks, Gruber-Vodicka, Leisch, et 

al., 2012). Paracatenula were morphologically classified as members of the family 

Retronectidae comprised of two genera, Retronectes and Paracatenula, which both can be 

found in sulfidic habitats (Sterrer and Rieger, 1974). While Rectronectes flatworms still have 

mouth, pharynx, gut lumen and protonephridia, Paracatenula lack all these organs. Although 

the phylogenetic placement of Paracatenula within the Catenulida is robust and was confirmed 

by molecular studies, there is no molecular data available for Retronectes (Figure 6) (Larsson 

and Jondelius, 2008; Littlewood, 2008; Gruber-Vodicka et al., 2011; Ngamniyom and 

Panyarachun, 2016). 

 

Figure 6. A phylogenetic tree based on 18S rRNA sequences covering a broad diversity of 
Platyhelminthes indicate the clustering of Paracatenula within the order Catenulida. The tree 
was modified from Ngamniyom & Panyarachun 2016. The micrographs show a representative of the genus 
Stenostomum, adapted from Egger et al. 2017. Caenorhabditis elegans was used as outgroup. The scale 
bar represents estimated sequence divergence in %, the black dots indicate bootstrap proportions ≥ 90%. 

To date, five Paracatenula species have been described, and more species were identified 

morphologically and molecularly from sampling spots distributed among the world´s sediments 
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(Sterrer and Rieger, 1974; Dirks et al., 2011; Gruber-Vodicka et al., 2011). The extraordinary 

morphological structures of the mouthless Paracatenula flatworms were in an early need of 

explanations as it was unclear whether food uptake might occur via the epidermis similar to 

what is described for parasites. This feeding scenario, however, turned out to be rather unlikely 

(Sterrer and Rieger, 1974). Instead it was also hypothesized that being mouth- and gutless 

could represent a temporary stage in their life cycle (Sterrer and Rieger, 1974). However, 

already early drawings of live Paracatenula specimens documented their lifestyle by showing 

that the flatworms were filled with up 10 µm long rod-like inclusions in their gut rudiment 

which were later identified as microorganisms (Figure 7) (Sterrer and Rieger, 1974; Ott et al., 

1982). Although the functional role of the microorganisms was unclear at the time, a 

mutualistic symbiosis was proposed (Ott et al., 1982). 

 

Figure 7. Morphological drawings of Paracatenula specimens in 1974. A, General morphology 
drawn from live Paracatenula spp. individuals. B, Orientation of anterior body region, the rostrum and part 
of the trophosome that is highlighted in orange. The figures were modified after Sterrer & Rieger 1974.  

Almost 30 years later, studies on the Paracatenula using a variety of different methods such 

as ultrastructural visualizations as well as molecular and biochemical techniques were 

performed on both partners of the symbiosis. Furthermore, after including two additional 

species descriptions, the diverse Paracatenula hosts were shown to form a well-separated 

monophyletic clade within the Catenulida, indicating the presence of at least 16 species 
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(Sterrer and Rieger, 1974; Larsson and Jondelius, 2008; Dirks et al., 2011; Gruber-Vodicka et 

al., 2011; Leisch et al., 2011). Morphological studies have revealed that Paracatenula are 

composed of a symbiont-free anterior body part, called rostrum, and a posterior part filled 

with symbiont-containing bacteriocytes which form the trophosome in analogy to the 

vestimentiferans (Figure 7, 8, Dirks et al. 2011).  

Gene sequences of the reversely operating dissimilatory sulfite reductase (dsrAB) from 

Paracatenula samples were identified to cluster with Alphaproteobacteria (Loy et al., 2009). At 

the time, contaminations could not be excluded. However, few years after this discovery the 

sequences could be assigned to originate from the genome of the symbionts (Gruber-Vodicka, 

2011; Gruber-Vodicka et al., 2011). The symbionts of Paracatenula are the bacteria 

Candidatus Riegeria that form a monophyletic group within the order Rhodospirillales, which 

is a basally branching order within the class Alphaproteobacteria (Williams et al., 2007; 

Gruber-Vodicka et al., 2011). The phylogeny of Ca. Riegeria could not be precisely resolved 

based on 16S rRNA marker genes (Figure 8D) but the chemoautotrophic lifestyle of Ca. 

Riegeria could be determined on the basis of identified key genes for the oxidation of sulfur 

(dsrAB, aprA) and the fixation of carbon (cbbM), combined with the storage of elemental sulfur 

(Gruber-Vodicka et al., 2011). Until now, Ca. Riegeria are the only known alphaproteobacterial 

chemosynthetic symbionts. 

Evidence for strict vertical transmission of the symbionts originates from congruent 

phylogenies of symbionts and hosts over a long evolutionary time (Figure 8E) (Gruber-Vodicka 

et al., 2011). Paracatenula is thought to completely rely on their endosymbionts for nutrition, 

which make up half of the total volume (Ott et al., 1982; Dirks et al., 2011; Gruber-Vodicka 

et al., 2011). The symbiosis is ancient and likely represents the oldest known association 

between animals and chemoautotrophic bacteria with an estimated age of more than 500 

million years (Gruber-Vodicka et al., 2011). A decreased average GC content of the coding 

sequences of three symbiont genes compared to other representatives of the family 

Rhodospirillales suggested population bottlenecks and a high genetic drift pointing to ongoing 

genome reduction processes. Apart from this, nothing was known about the genomes of Ca. 

Riegeria, neither with respect to their genetic repertoires, their functionality in the 

Paracatenula symbiosis, their ecophysiology nor their evolution over millions of years. 
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Figure 8. Paracatenula and its alphaproteobacterial symbionts. A, Habitus of Paracatenula 
individuals kept in laboratory conditions for 1066 days. B, Microscopy image of Ca. Riegeria symbionts 
indicating multiple intracellular inclusions. C, Visualization of Paracatenula intracellular symbionts on 
sections (red). Host nuclei were shown in blue. D, Phylogenetic placement of Ca. Riegeria symbionts within 
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the Alphaproteobacteria. Scale bar indicates 5% sequence divergence. E, Coevolution of Ca. Riegeria 
symbionts and their respective Paracatenula hosts. The trees are based on 16S rRNA for symbiont, and 
18S and 28S rRNA for host phylogeny. Image shown in panel C was published in Kiers & West 2015. 
Phylogenetic trees shown in panel D and E were adapted from Gruber-Vodicka et al. 2011. 

Regeneration events in Paracatenula 

Paracatenula shares a fascinating feature with other Platyhelminthes that reproduce asexually. 

After cutting off their rostrum, means decapitation, the flatworms can regenerate their rostrum 

(Dirks, Gruber-Vodicka, Leisch, et al., 2012; Wanninger, 2015). For this process, which takes 

about two weeks in Paracatenula galateia, the so-called neoblasts were shown to be essential 

(Dirks, Gruber-Vodicka, Leisch, et al., 2012). Neoblasts have stem cell-like properties and they 

are distributed throughout the flatworm´s trophosome region (Wanninger, 2015). 

Interestingly, these cells are the source for both rostrum-regenerating cells and the symbiont-

containing bacteriocytes (Dirks, Gruber-Vodicka, Leisch, et al., 2012).  

The processes of tissue and rostrum regeneration include three steps: (i) closing the wound, 

(ii) proliferation of cells and the formation of a blastema, and (iii) differentiation of cells leading 

to morphogenesis (Figure 9) (Dirks, Gruber-Vodicka, Leisch, et al., 2012; Wanninger, 2015). 

In studies where tissue regeneration was induced, the locomotion of rostrum-decapitated 

Paracatenula galateia is first affected, but can be restored within five days after regeneration 

(Dirks, Gruber-Vodicka, Egger, et al., 2012). While longitudinal nerves end blindly in the wound 

area after decapitation, first indications of the reorganization can be observed after seven days 

(Dirks, Gruber-Vodicka, Egger, et al., 2012). The time for the complete rostrum regeneration 

in Paracatenula galateia, which takes two weeks, is long compared to other flatworms such as 

a Catenula species (~60 h), Microstomum lineare (~45 h) or Paracatenula cf. polyhymnia (48–

72 h) (Moraczewski, 1977; Palmberg, 1991; Dirks, Gruber-Vodicka, Leisch, et al., 2012). This 

difference can be explained on the basis of the different morphologies, Paracatenula galateia 

has to generate a larger body fragment than the other flatworms which are comparably smaller 

with diameters less than 100 µm (Dirks, Gruber-Vodicka, Egger, et al., 2012). 

While a gradient of morphogens along the body in tissue development is known to be important 

for re-establishing the body axes in tissue-regenerating flatworms, it is not well understood      

how the symbiont abundance and function influences their regeneration abilities (Adell et al., 

2010; Dirks, Gruber-Vodicka, Egger, et al., 2012). 
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Figure 9. Rostrum regeneration in the species Paracatenula galateia. Images A–D show 
interference contrast micrographs of different rostrum stages between 2 and 11 days after sectioning. 
Images E–H show overlays of fluorescence micrographs of serotonergic nerves (red, labeled by serotonin 
staining) and neoblasts (green, labeled by EdU) labeled specimens. The images were modified from Dirks, 
Gruber-Vodicka, Egger, et al. 2012. 

Mouth and gut reduction – what do chemosynthetic animals 

feed on? 

The relationship of chemosynthetic symbionts with their animal hosts are usually considered 

to be nutrition-based. This implies that the primary role of the symbionts is to serve as a 

source of nutrition for their host (Dubilier et al., 2008). Chemosynthetic symbionts of 

gammaproteobacterial origin were indeed shown to perform this core function in terms of 

thioautotrophy, i.e. to provide organics to the host via the fixation of inorganic carbon into 

biomass by using reduced sulfur compounds as energy source (Kleiner, Petersen, et al., 2012). 

In Gammaproteobacteria, the same mode of nutrition has evolved convergently multiple times 

where key genes for thioautotrophy were taken up by horizontal gene transfer. In this case, 

the convergent evolution of host and symbionts is supported by incongruent phylogenies of 

symbionts and hosts (Kleiner, Petersen, et al., 2012). Despite the partial understanding of 

these thioautotrophic features, there are still open questions concerning which metabolites are 

made accessible for the host, to what extent the symbionts contribute to the hosts proliferation 

and how similar global functions are among different host and symbiont groups.  

One way to explain the nutrient transfer from symbiont to host is via transport through 

membranes, since some symbionts are known to harbor a broad variety of exporters for 

organic substrates whereas others lack most of them (Kuwahara et al., 2007; Newton et al., 

2007; Kleiner, Wentrup, et al., 2012; Dmytrenko et al., 2014). Most recent studies focused on 

carbon fixation and the transfer of the products to the host. These studies indicate that in 
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addition to carbon, inorganic sources of nitrogen from the environment can be made accessible 

by the symbionts to be used by the hosts (Bright et al., 2000; König et al., 2016; Petersen et 

al., 2016).  

The question of the metabolic contribution of the symbionts to the host metabolism is even 

more complex in cases where hosts have partially functioning digestive systems or have the 

ability to filter-feed. For example, in Bathymodiolus mussels which still contain an attenuated 

gut, filter-feeding can occur to a certain degree (Page et al., 1990; Pile and Young, 1999). This 

way, supplemental nitrogen can be provided while phosphorous and other minerals are thought 

to be additionally supplemented by the symbionts (Page et al., 1990; Pile and Young, 1999). 

Similarly to Bathymodiolus, the vesicomyid clams kept their ability to filter-feed, supported by 

stomachs that were filled with various particles, although the gut itself is reduced (Le Pennec 

et al., 1995). In both cases the enzymatic digestion of symbionts is an additional way to make 

substrates available to the host (Fiala-Médioni et al., 1986; Newton et al., 2007; Kádár et al., 

2008). 

Although there is a first and partial understanding what symbionts have to provide in terms of 

nutrition for the host, it is still not understood what essential nutritional functions the 

symbionts have to provide to qualify as a long-term partner. Also, close to nothing is known 

to what extent the nutrient exchange has to occur. 

Aims of this thesis 

My thesis focuses on several unexplored aspects of the symbiosis between the marine flatworm 

Paracatenula and its symbiotic bacteria Ca. Riegeria. My goal was to reduce the gap left in our 

knowledge of this symbiotic association. In my study I aimed towards a better understanding 

of convergent evolutionary patterns in terms of metabolism and the function of an unusual 

alphaproteobacterial thioautotrophic symbiont. In addition, I present data concerning the 

patterns of reductive genome evolution and the gene reduction processes. Part of the results 

were obtained in collaboration to apply a large set of techniques such as correlative imaging 

approaches and physiological experiments, and to generate expression data to address the 

host and its symbionts functions that were unexplored in the Paracatenula-Ca. Riegeria 

symbiosis. Parts of my studies also involved fieldwork in the Mediterranean and Belize, which 

included the morphological classification of meiofauna organisms and the performance of 



Chapter I: Introduction 

 35 

physiological experiments. All laboratory experiments and most of my studies were performed 

on Paracatenula specimens collected from Elba, Italy, for which I optimized the cultivation 

conditions to keep them alive for by now more than three years. 

In the following three chapters, I present data concerning (i) the physiological characterization 

of the nutritional symbiosis between the mouthless Paracatenula flatworm and its symbiont 

Ca. Riegeria, (ii) the processes of reductive genome evolution in the Ca. Riegeria symbionts 

and (iii) the potential role of Ca. R. standrea in the rostrum regeneration processes of the host.  

In the first part of my thesis, I focus on the physiology of the Paracatenula symbionts. The 

Paracatenula symbiosis is suggested to be nutritional, but besides a phylogenetic placement 

of the host and its symbionts, the observation of strict coevolution and thioautotrophic 

potential, exact functions remained unclear. Together with my collaborators, I have analyzed 

the metabolism and ecophysiology of the symbionts of one Paracatenula species that occurs 

in the marine sediments of Elba, Italy. A variety of culture-dependent and culture-independent 

approaches were optimized to the experimental needs and applied, mostly on single specimen. 

The methods included the cultivation of Paracatenula specimens, isotope-labelling combined 

with bulk measurements and microautoradiography, transmission electron microscopy (TEM), 

fluorescence in situ hybridization (FISH) and confocal laser-scanning microscopy, Raman 

spectroscopy, and current techniques of genomics, transcriptomics (for symbiont and host 

expression), metabolomics and proteomics. 

Since Ca. Riegeria symbionts are unusual in their phylogenetic placement within the 

Alphaproteobacteria, we characterized and compared the core functions of chemosynthetic 

symbionts across divergent host and symbiont taxa. The data indicated that Ca. Riegeria 

standrea expresses a versatile physiology with a broad ability for the accumulation and 

mobilization of intracellular inclusions, despite having a highly reduced genome compared to 

its free-living relatives. The mode of nutrition seems to be through outer membrane vesicles 

or digestion of symbiont cells. The combination of its high abundance within the Paracatenula 

host along with the large carbon and energy stocks, indicates a so far undescribed role of 

symbionts not only as biosynthetic factories but also as primary energy storage for its host. 

The manuscript of this study is submitted to PNAS. 
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The second part of my thesis concerns the processes of reductive genome evolution in the Ca. 

Riegeria symbionts. The symbionts have highly reduced genome sizes when compared to their 

next relatives which have a 3–4 times larger genomes. Although chemosynthetic symbionts 

were shown to have reduced genomes, the processes underlying reductive genome evolution 

have not yet received much attention. Additionally, nothing was known on how these reduction 

processes compare to those in insect symbioses or in clades of closely related organisms. 

To study footsteps of reductive genome evolution, the metagenomes of 35 Paracatenula 

organisms, including those that had been collected during my fieldtrips, were established and 

analyzed. Together with collaborators, I used bioinformatic tools to study gene conservations 

as well as gene losses over a large symbiont clade. I could show that in addition to the shared 

core metabolism, the symbionts revealed differential signs of gene losses. Gene losses affected 

parts of the DNA repair and cell division machinery and were lineage-specific, appeared 

stochastic and ranged from base pair erosions to full gene deletions. Genome syntenies 

between organisms were lineage-specific and highly variable, with one Ca. Riegeria clade 

displaying several 100-fold more rearrangements than other clades of similar phylogenetic 

distance. Furthermore, contrasting and atypical trajectories among the symbiont clade such 

as differential gene-length fragmentations and ancient genome rearrangements were identified 

and compared to the linear reductive trajectories known from insect symbioses. 

A manuscript containing the results of this study is currently in the pre-submission state. Both 

co-authors have already reviewed the manuscript. 

In the third part of my thesis, I address the potential role of Ca. R. standrea in the rostrum 

regeneration processes of their host. While the regeneration process is well studied in 

flatworms in general, literally nothing is known about the needs and contributions of the 

bacterial symbionts to this process. To at least partially fill this gap of knowledge, a 

transcriptome of decapitated Paracatenula was generated together with collaborators, after 

the flatworms have regenerated their rostrum. The results of this study were surprising and 

showed that more than 10% of the symbiont genes are differentially regulated. The majority 

of these genes were related to basic cellular processes such as translation, transcription and 

carbon and energy metabolism, implying that the metabolism of the symbionts is affected by 

induced tissue regeneration. 

The research of this study represents a draft version of a manuscript. 
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Abstract 

Hosts of chemoautotrophic bacteria typically have much higher biomass than their symbionts 

and consume symbiont cells for nutrition. In contrast to this, chemoautotrophic Ca. Riegeria 

symbionts in mouthless Paracatenula flatworms comprise up to half of the biomass of the 

consortium. Each species of Paracatenula harbors a specific Ca. Riegeria and the symbionts 

have been vertically transmitted for at least 500 million years. Such prolonged strict vertical 

transmission leads to streamlining of symbiont genomes and the retained physiological 

capacities reveal the services the symbionts provide to their hosts. Here we studied a species 

of Paracatenula from Sant´Andrea, Elba, Italy using genomics, gene expression, imaging 

analyses as well as targeted and untargeted mass spectrometry. We show that its symbiont, 

Ca. R. standrea has a drastically smaller genome (1.34 Mb) than the symbiont´s free-living 

relatives (4.29–4.97 Mb), but retains a versatile and energy-efficient metabolism. It encodes 

and expresses a complete intermediary carbon metabolism and enhanced carbon fixation 

through anaplerosis, and accumulates massive intracellular inclusions such as sulfur, 

polyhydroxyalkanoates, and carbohydrates. Compared to symbiotic and free-living 

chemoautotrophs, Ca. R. standrea’s versatility in energy storage is unparalleled in 

chemoautotrophs with such compact genomes. Transmission electron microscopy as well as 

host and symbiont expression data indicates that Ca. R. standrea provisions its host via outer 

membrane vesicle secretion. With its high share of biomass in the symbiosis and large standing 

stocks of carbon and energy reserves, it has a unique role for bacterial symbionts – serving as 

the primary energy storage for its animal host. 

Significance statement 

Animals typically store their primary energy reserves in specialized cells. Here we show that 

in the small marine flatworm Paracatenula, this function is performed by its bacterial 

chemosynthetic symbiont. The intracellular symbiont occupies half of the biomass in the 

symbiosis and has a highly reduced genome, but efficiently stocks up and maintains carbon 

and energy, particularly sugars. The symbiont provides the bulk nutrition by secreting outer 

membrane vesicles that are digested by the host. Under normal conditions, these vesicles 

completely support the host demands. This is in contrast to all other nutritional symbioses 
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where the hosts digests full cells of a small and ideally growing symbiont population without 

long-term buffering capacity during nutrient limitation. 

Introduction 

The discovery of dense animal communities at deep-sea hydrothermal vents in the late 1970s 

led to paradigm shifts in deep-sea ecology and animal physiology. Large macrofauna was 

shown to be independent of photoautotrophic production and instead lives off primary 

production performed by chemosynthetic bacterial symbionts (1–3). In the most extreme 

forms, animals such as the giant tubeworms have lost their mouth and digestive system and 

instead are nutritionally dependent on their symbionts (4). 

Since then, chemosynthetic symbioses have been documented from diverse habitats and in 

various lineages of marine invertebrates and protists (5, 6). The symbionts are all 

Proteobacteria, typically Gamma- or Epsilonproteobacteria, that are either vertically 

transmitted or horizontally acquired from the environment (5–12). Genomes from 

chemosynthetic symbionts can range from 4.88 Mb to 1.02 Mb, reflecting varying metabolic- 

and ecological strategies (13–15). Surprisingly, some mouth- and gutless hosts take up their 

symbionts anew in every generation, although the lack of a digestive system suggests extreme 

dependence on their symbionts (12, 16). As these symbionts have to thrive in both free-living 

environmental and symbiotic states, it is difficult to attribute their genomic features to either 

services they provide to their host, or functions that are necessary for environmental survival 

or to both. 

The smallest genomes of chemoautotrophic symbionts have been observed for the 

gammaproteobacterial symbionts of vesicomyid clams that are directly transmitted between 

host generations (13, 14). Such strict vertical transmission leads to substantial and ongoing 

genome reduction. Reduced genomes of intracellular symbionts reflect the essential set of 

functions that the symbionts provide to their invertebrate hosts (17–23). Host provisioning by 

chemosynthetic bacteria is accomplished through a conveyor belt-like turnover of symbiont 

cells and compared to their hosts, they only have a small share of the total biomass in the 

consortium (24). The patterns of genome reduction in the symbionts of vesicomyid clams 
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mirror this mode of nutrition since they only retained limited metabolic and storage capacities 

and primarily serve as biosynthesis factories (13, 14, 18).  

A second host group that lives in obligate symbiosis with vertically transmitted chemosynthetic 

symbionts is Paracatenula, a genus of marine flatworms that can be a dominant member of 

the meiofauna in shallow-water sediments (9). Unlike the vesicomyid clams that can still filter 

feed (3, 25), Paracatenula lack both a mouth and gut and are completely dependent on 

intracellular endosymbionts for nutrition (9, 26). All Paracatenula host species harbor a 

species-specific symbiont phylotype (9). These symbionts, called Candidatus Riegeria, 

comprise a third to a half of the total animal volume and are housed in specialized cells, the 

bacteriocytes, that make up the nutritive trophosome organ (9, 27). Ca. Riegeria are the only 

known alphaproteobacterial chemosynthetic symbionts (9). They are the oldest extant clade 

of symbiotic chemoautotrophic bacteria, having been passed on in strict vertical transmission 

for more than 500 million years since the last common ancestor of all Paracatenula species (9). 

In this study, we focus on a Paracatenula species that is highly abundant in the coarse shallow-

water sediments of the bay Sant´Andrea on Elba, Italy (Supplementary Note 1). We propose 

the name Ca. Riegeria standrea for its endosymbionts, in reference to the collection site. Based 

on the genome of Ca. R. standrea that we generated using shotgun metagenomics, we 

analyzed its metabolism, ecophysiology and evolution. Compared to free-living 

alphaproteobacterial relatives from the Rhodospirillaceae, the genome is highly reduced. We 

reconstructed the physiology of Ca. R. standrea by integrating transcriptomics and correlative 

imaging approaches with highly sensitive mass spectrometry based methods for proteomics 

and metabolomics. Despite the reduced genome, the symbiont performs energy-efficient 

sulfide oxidation and couples it to versatile means of carbon fixation and carbon storage. The 

symbionts likely provision their host via outer membrane vesicle (OMV) secretion. With its 

large share of the biomass in the consortium, the symbiont has a unique role in animal-bacteria 

associations – serving as the bulk storage of carbon and energy reserves for its animal host. 
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Results and Discussion 

Ca. R. standrea belongs to Rhodospirillaceae and has a reduced genome 

The complete Ca. R. standrea genome was assembled into one contig from the sequenced 

metagenome of a single Paracatenula sp. standrea specimen. The genome had a size of 1.34 

Mb, encoding 1344 protein-coding and 56 RNA genes at a coding density of 83.9% and a 

genomic GC of 51.8% (Supplementary Figure 1). The Ca. R. standrea genome encoded 

pathways for sulfur oxidation based on reverse-acting dissimilatory sulfate reductase (rDSR) 

and for carbon fixation using the Calvin-Benson-Bassham (CBB) cycle, indicating that Ca. R. 

standrea could acquire energy and carbon via thioautotrophy (Supplementary Note 2). 

Ca. R. standrea was classified as a member of the family Rhodospirillaceae within the class 

Alphaproteobacteria, based on a phylogenetic analysis of 43 conserved single-copy marker 

genes (Figure 1). It was phylogenetically nested among Rhodospirillaceae taxa that have 

genome sizes of 4.29 to 4.97 Mb, indicating that massive genome reduction has occurred in 

the lineage leading to Ca. R. standrea (Figure 1, Supplementary Table 1). The 

Rhodospirillaceae are remarkably diverse and include photoheterotrophs, chemoheterotrophs 

but also chemoautotrophs, diazotrophs and even magnetotactic genera (28–31). The taxa 

most closely related to the Ca. R. standrea symbiont included Rhodospirillum rubrum [56.19% 

amino acid identity (AAI)], Novispirillum itersonii (56.22% AAI), Caenispirillum salinarum 

(56.99% AAI) and Magnetospirillum magneticum (57.01% AAI). 



Chapter II: Symbiont physiology 

 54 

Figure 1. The symbiont Ca. R. standrea clusters deeply within Rhodospirillaceae. Phylogenetic 
reconstruction based on a protein alignment of 43 conserved marker genes calculated using FastTree and 
rooted with Rickettsiales as outgroup.�

Ca. R. standrea is a chemoautotroph with a versatile carbon metabolism 

despite its reduced genome 

To investigate the physiology of Ca. R. standrea, we applied a combination of genomics, 

transcriptomics and imaging analyses with sensitive mass spectrometry protocols that allow 

proteomic and metabolomic measurements from single microscopic animals. The expression 

data from specimens sampled directly from the environment covered up to 1288 out of 1400 

predicted genes (n = 3 transcriptomes), of which 407 were also identified in the proteomes 

generated from single Paracatenula individuals as well as pools of up to three specimens (n = 

8) (Figure 2, Dataset S1–S3). 
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Figure 2. The chemoautotroph Ca. R. standrea expresses a versatile metabolism. Metabolic 
reconstruction of Ca. R. standrea, pathways or enzymes are colored by expression levels in the 
transcriptome (mean of three samples). Only the highest 10% of expressed genes were colored relative 
to DNA gyrase A (gyrA) mean expression. Expressed proteins detected in the proteome samples are 
indicated. Not all genes of certain pathways were transcribed, and not all transcribed genes were found in 
the proteomes (Dataset S2, S3). Dotted arrows correspond to indirect synthesis of metabolites. 
Abbreviations used: 3-HPB: 3-hydroxypropionate bi-cycle pathway; Apr: sulfite reductase; bc1: 
cytochrome C oxidase type bc1; Cyt. a3: cytochrome C oxidase type a3; Cyt. C: cytochrome C; FccAB: 
flavocytochrome c sulfide dehydrogenase; Mce: mammalian cell entry proteins Mla; NDH: NADH-quinone 
oxidoreductase/dehydrogenase; PckG: Phosphoenolpyruvate carboxykinase; PDH: pyruvate 
dehydrogenase complex; PHA: polyhydroxyalkanoates; Pst: high-affinity phosphate transporter; rDsr: 
reversely operating dissimilatory sulfite reductase; Sat: ATP sulfurylase; SDH: succinate dehydrogenase; 
Sec: secretion pathway; TCA: tricarboxylic acid; TST: thiosulfate sulfur transferase (rhodanese); TPS: 
trehalose-P-synthase; Tat: twin-arginine translocation. 

Genes of the rDSR sulfur oxidation and CBB carbon fixation pathways were highly expressed 

and underline the thioautotrophic role of Ca. R. standrea [sum of 8 CBB cycle proteins 4.88% 

± 1.17 normalized spectral abundance factor (NSAF), sum of 14 rDSR pathway proteins 7.48% 

± 0.95 NSAF, n = 8 proteomes] (Figure 2, Supplementary Figure 2, 3, Supplementary Note 

2). CBB cycle genes including the RuBisCO subunits cbbL and cbbS were among the top 10% 

of most highly represented genes in transcriptomes as well as proteomes (Supplementary 

Figure 2, 3).  

Microautoradiography corroborated the gene expression data, as signals for carbon fixation 

were limited to the symbiont-bearing trophosome region. Without addition of an external 
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electron donor supply, the symbionts fixed 9.48 ± 10.2 µmol C g-1 h-1 (mean ± standard 

deviation, max.: 33 µmol C g-1 h-1) (Supplementary Figure 4–6, Dataset S4). These rates were 

in the range determined for other sulfur-oxidizing symbionts of e.g. Ifremeria nautilei (0.7 

µmol C g-1 h-1) and Riftia pachyptila (27 µmol C g-1 h-1) (32). The calculated fixation rates 

would be sufficient to sustain a doubling of the length of a Paracatenula sp. standrea specimen 

in 10 to 34 days (Dataset S4). Such growth rates together with frequent asexual reproduction 

(33, 34) could explain their high abundances at the sampling site where they occurred in 

densities of 233–5400 individuals per m3 of sediment (mean 1809 ± 1483, n = 40). 

The CBB cycle encoded in Ca. R. standrea was missing fructose-1,6-bisphosphatase and 

sedoheptulose-1,7-bisphosphatase, which could be replaced by a reversible and PPi-dependent 

6-phosphofructokinase (35). Ca. R. standrea encoded two 6-phosphofructokinases (PFK), an 

ATP-dependent ATP-PFK and a PPi-PFK. The PPi-PFK had a ten-fold higher expression [mean 

transcripts per million (TPM) 5073 ± 780, n = 3] than the ATP-PFK (mean TPM 504 ± 128, n 

= 3) and was among the top 10% of highest expressed genes (Supplementary Figure 2, 3). 

Together with the PPi-energized proton pump (PPi-H+-pump), which also was among the 10% 

most expressed genes (mean TPM 1686 ± 163, n = 3), the PPi-dependent variant of the CBB 

cycle can save up to 31.5% of the ATP invested in carbon fixation (35). We tested for a possible 

lateral gene transfer of the PPi-PFK and PPi-H+-pump genes to Ca. R. standrea as the PPi-

dependent CBB cycle has also been found in gammaproteobacterial chemosynthetic symbionts, 

including the symbionts of gutless oligochaetes, vestimentiferans tubeworms and the bivalve 

Solemya (35–37). In contrast to the Gammaproteobacteria, the PPi-PFK and PPi-H+-pump 

genes in Ca. R. standrea did not form an operon (35). Both genes were of alphaproteobacterial 

origin and clustered with gene sequences of related Rhodospirillaceae (Supplementary Figure 

7, 8, Supplementary Note 2). Other Rhodospirillaceae such as Rhodospirillum rubrum only 

lacked a sedoheptulose-1,7-bisphosphatase, but still encoded a canonical fructose-1,6-

bisphosphatase for the last step in the CBB cycle that has the highest energy saving potential 

(35) (Dataset S1). This suggests that the most energy-efficient variant of PPi-dependent CBB 

cycle evolved independently in Ca. R. standrea, possibly due to the same energy constraints 

that led to the selection of the most efficient sulfur oxidation pathway across the diversity of 

thiotrophic symbionts (38) (Supplementary Note 2). 
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The Ca. R. standrea symbiont encoded form IA RuBisCO for carbon fixation rather than the 

form II RuBisCO that was previously identified by PCR amplification in another Ca. Riegeria 

species, Ca. R. galateia (9) (Supplementary Figure 9). The presence of two different RuBisCO 

forms in the Ca. Riegeria clade that both clustered with sequences from Alphaproteobacteria 

suggests that the last common ancestor encoded both forms and that descendants 

differentially retained only one. Several members of the family Rhodospirillaceae are known to 

encode more than one RuBisCO form per genome, including forms IA and II (39). As form IA 

is adapted to higher oxygen and lower carbon dioxide levels compared to form II, the retention 

of form IA in Ca. R. standrea could indicate a preference for habitats with higher oxygen 

concentrations for Paracatenula sp. standrea compared to P. galateia (39). Niche 

differentiation via different forms of RuBisCO has been observed in free-living thiotrophic 

bacteria, e.g. in strains of Ca. Thiomargarita nelsonii (40), but not within a single clade of 

chemoautotrophic symbionts (15, 36, 41, 42). 

Characteristic of obligate autotrophs such as the vesicomyid clam symbionts is an incomplete 

TCA cycle that lacks the alpha-ketoglutarate dehydrogenase complex (13, 14). In contrast, 

Ca. R. standrea encoded a complete TCA cycle, which in combination with glycolysis allows it 

to use sugars and other organic substrates such as fatty acids as carbon and energy sources 

(Figure 2, Supplementary Figure 10). While these pathways might indicate a heterotrophic 

lifestyle, the results of our analysis of the transporters suggest that Ca. R. standrea uses these 

pathways for internal cycling of carbon stocks (Supplementary Note 2). We identified seven 

import transporters in the symbiont’s genome with transmembrane domains and found only a 

very low number of importers of organic compounds (Supplementary Figure 11, Dataset S5). 

The symbionts can only take up selected peptides, but no sugars or fermentation end products 

that might be present in the sediments or originate from the hosts metabolism.  

Still, TCA cycle genes were highly transcribed, and the corresponding proteins were abundant, 

constituting a total of 3% ± 0.49 NSAF (sum of 7 proteins, n = 8 proteomes) of all measured 

proteins in the proteomes (Figure 2, Supplementary Figure 2, 3). We hypothesize that carbon 

fixation and the TCA cycle do not operate simultaneously in a single cell but are expressed in 

separate symbiont populations to avoid futile cycling. To replenish intermediates of the TCA 

cycle and to synthesize and convert acetyl-CoA into biomass, Ca. R. standrea expresses the 

ethylmalonyl-CoA pathway and an incomplete 3-hydroxypropionate bi-cycle (3-HPB) pathway. 
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The ethylmalonyl-CoA pathway (sum of 5 proteins 2.25% ± 0.34 NSAF, n = 8 proteomes) is 

typical for Alphaproteobacteria (43–45) and has a similar function to the glyoxylate shunt that 

operates in many Gammaproteobacteria, but additionally allows the anaplerotic co-assimilation 

of carbon dioxide (43) (Figure 2). For three molecules of acetyl-CoA that enter the 

ethylmalonyl-CoA pathway, two molecules of CO2 can be fixed at the expense of only one ATP 

(46). A similarly highly expressed but incomplete 3-HPB pathway (sum of 5 proteins 1.94% ± 

0.42 NSAF, n = 8 proteomes) could allow the assimilation of organic compounds such as 

acetate, propionate, succinate and malate, even though several key reactions that would 

permit it to function autotrophically were not predicted in Ca. R. standrea (35, 47). The 

elements of the 3-HPB pathway that are encoded represent an anaplerotic pathway, similar to 

the ethylmalonyl-CoA pathway, and consume 1 ATP for the fixation of one molecule of CO2 

(35, 47). Compared to the 4 1/9 ATP that would be needed in the PPi-dependent CBB cycle for 

the fixation of two molecules CO2 (35), both the ethylmalonyl-CoA pathway and the 3-HPB 

pathway would allow for a cheaper maintenance and expansion of carbon stocks in Ca. R. 

standrea. The total proteomic investment in both anaplerotic pathways was as high as for 

primary carbon fixation via the PPi-dependent CBB cycle (Supplementary Figure 3). This 

suggests, in combination with the highly expressed TCA cycle, that the two pathways 

contribute substantially to carbon assimilation in Ca. R. standrea. While this has been shown 

for other mixotrophs (46) or apparent heterotrophs like SAR11, one of the most successful 

clades of marine bacteria (48), it has not been observed in chemosynthetic symbioses. How 

much the possible anaplerotic fixation in Ca. R. standrea contributes to the total carbon fixation 

in the symbiosis remains to be shown. It is however tempting to speculate that without an 

essential benefit to the efficiency of the symbiont, one or both pathways would have been lost 

as they are not essential to replenish the intermediates of the TCA cycle that they synthetize. 

The exact same gene set of the partial 3-HPB pathway described above has also been found 

in thiotrophic gammaproteobacterial symbionts of gutless oligochaetes (35). Our phylogenetic 

analyses showed that most of the Ca. R. standrea homologs of genes characteristic for the 3-

HPB pathway clustered with genes from these two gammaproteobacterial symbiont groups, 

except for one that clustered with sequences from other Rhodospirillaceae (Supplementary 

Figure 12). For three out the five enzymes, the cluster of sequences from thiotrophic symbionts 

were the sister clade to homologs from Rhodospirillaceae, whereas two of them (Meh and Mct) 
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had no homologs in Rhodospirillales. This extended phylogenetic distribution for several of the 

enzymes corroborates an origin of these genes for enzymes of the 3-HPB pathway outside of 

the Chloroflexi and points to the Alphaproteobacteria as one possible group of origin (49). 

Paracatenula sp. standrea shares the Sant´Andrea bay sediments with several groups of 

chemosynthetic meiofauna such as gutless oligochaetes, stilbonematinae nematodes and the 

ciliate Kentrophoros (6, 50, 51). The most abundant taxon is the gutless oligochaete Olavius 

algarvensis followed by Paracatenula sp. standrea. They represent the most contrasting forms 

of these chemosynthetic symbioses. O. algarvensis hosts a mixotrophic consortium of five 

bacterial symbionts (52) with little signs of genome reduction in any of the symbiont groups 

(50), while Paracatenula relies on a single symbiont with a drastically reduced genome. These 

contrasting metabolic capabilities likely reflect their different ecological niches. The Olavius 

symbiosis can use several energy sources in addition to sulfur oxidation, such as carbon 

monoxide, hydrogen and small organic compounds (35, 53), whereas the Paracatenula-Ca. 

Riegeria symbiosis is an energy-efficient specialist with sulfur oxidization as its main 

energy source. 

Specialization and convergence in intracellular thiotrophic symbionts  

To test for deviating evolutionary patterns in the alphaproteobacterial Ca. R. standrea 

symbionts we compared its genome to those of 62 bacteria representing free-living relatives 

of Ca. Riegeria, parasites, non-thiotrophic mutualistic symbionts as well as thiotrophic bacteria 

from other symbiotic and non-symbiotic clades (for a list of genomes see Dataset S6). We 

analyzed the cellular processes encoded in each their genomes in a non-metric 

multidimensional scaling (NMDS) ordination of the distribution of each their genes to clusters 

of orthologous genes (COGs) and to modules of the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Figure 3, Supplementary Note 3). 

Apart from Ca. R. standrea, the thiotrophic symbiont genomes formed a spectrum that was 

dependent on their genome sizes, suggesting that COG and KEGG based profiles and genome 

contents in the other symbionts with small genomes were largely convergent. At the other end 

of this spectrum, the profiles of symbionts with non-reduced genomes overlapped with free-

living thiotrophs such as Allochromatium vinosum and Thiocapsa marina (Dataset S7, S8). 
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Figure 3. The unique functions in Ca. R. standrea allow efficient maintenance of large carbon 
and energy stocks. A, B, Functional diversity of thiotrophic symbionts and selected reference bacteria. 
The diameter of each circle represents the genome sizes. Free-living bacteria include Alpha- and 
Gammaproteobacteria and one Cyanobacterium. A list of genomes used and the raw plots can be found in 
Dataset S6, n = 63. A, NMDS plot of COG category distributions with a 2D stress of 0.152. B, NMDS plot 
of KEGG module distributions with a 2D stress of 0.147. C, Unique pathways in vertically transmitted 
thiotrophic symbionts with reduced genomes. Biosynthetic pathways specific for Ca. R. standrea or shared 
between two or more symbionts are highlighted. See details in Dataset S9A. 

While Ca. R. standrea had the most similar distribution of encoded functions to vesicomyid 

symbionts, another group of vertically transmitted chemosynthetic symbionts, its profile stood 

out in the observed NMDS patterns across the categories of COGs and KEGG modules (Figure 

3A, Supplementary Figure 13, Supplementary Note 3, Dataset S7, S8, for a list of genomes 

see Dataset S6). Ca. R. standrea deviated from the vesicomyid symbionts with an enrichment 

of genes coding for carbohydrate transport and metabolism (COG category G), lipid transport 

and metabolism (COG category I) und coenzyme transport and metabolism (COG category H) 

(Dataset S7). We could corroborate this pattern in a comparison on the level of pathways as 

Ca. R. standrea encoded 37 unique pathways that allow for flexible carbon fixation and the 
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versatile storage of carbohydrates (Figure 3B, Supplementary Note 3). In particular, the 

capabilities to synthesize long-chain fatty acids and PHA as well as trehalose and glycogen 

underline a possible dual role of the symbionts in the Paracatenula symbiosis, where the 

symbionts provide large storage capacities for the association (Figure 3B, Dataset S9). This is 

in contrast to all other chemosynthetic symbioses and could be coupled to the high proportion 

of the total biomass that the Ca. Riegeria cells achieve in the Paracatenula consortium (9). 

While Ca. R. standrea has substantial set of unique pathways, it also shared 107 pathways 

with the thiotrophic symbionts with the most reduced genomes, Ca. R. magnifica and Ca. V. 

okutanii. Besides energy conservation through sulfur oxidation, these shared pathways were 

largely related to biosynthesis and include carbon fixation via the CBB cycle and pathways for 

amino acid, nucleoside, nucleotide, fatty acid and lipid synthesis (Supplementary Note 3, 

Dataset S9). These pathways represent the core functions of a nutritional chemosynthetic 

symbiont and reflect the strong selection based on the conserved metabolic needs of their 

invertebrate hosts. In such nutritional symbioses essential biosynthetic pathways must be 

retained because their loss would lead to a decrease in fitness or even the extinction of the 

affected host (13, 14, 17). In contrast, a loss of catabolic pathways might not severely impact 

the symbionts but might in return even benefit the consortium as it leaves resources accessible 

to the host. 

Ca. R. standrea is a major carbon and energy buffer in the 

Paracatenula symbiosis 

Our comparative analyses showed that Ca. R. standrea possessed and expressed a surprising 

number of pathways for a chemoautotrophic symbiont with a reduced genome, many 

connected to carbon metabolism and storage. The pathways included the synthesis of 

polyhydroxyalkanoates (PHA), trehalose and glycogen (Supplementary Figure 10, Dataset 

S9A). We observed a large number of intracellular inclusions in the symbionts in both light and 

electron microscopy that caused the orange-white appearance of the trophosome region and 

further highlighted the symbionts storage capabilities (Figure 4 A–C). By combining Raman 

spectroscopic imaging with sensitive mass spectrometry protocols, we were able to account 

for most of these storage molecules that make up large proportion of the total Ca. R. standrea 

volume (Supplementary Figure 14, 15). 
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Figure 4. Ca. R. standrea are large endosymbiotic bacteria with massive storage inclusions. A, 
Habitus of Paracatenula sp. standrea. The white trophosome contains endosymbionts while the anterior 
and transparent part of the worm (rostrum) is bacteria-free. B, Differential interference contrast image of 
Ca. R. standrea symbionts indicated multiple intracellular inclusions. C, Confocal laser-scanning image of 
CARD-FISH combined with a lipophilic staining (Nile Red) on a transverse section of a Paracatenula 
specimen in the symbiont-bearing region. Overlay of DAPI signal (blue), Nile Red (red) and probe targeting 
the symbionts (green, EUB I–III). 

Two conspicuous inclusions were detectable in differential interference contrast microscopy. 

One of them, identified using Raman spectroscopy, was elemental sulfur that appears as light-

refractile granules of 1–2 µm in diameter (Figure 4B, Supplementary Figure 14). The second 

type of inclusions was larger, with sizes of up to 3.5 µm in diameter, apparent in most cells 

and occupied 13.1 ± 9.4% of the cell volumes (n = 40 symbiont cells) (Figure 4C). These were 

likely composed of PHA, as they were selectively stained by the lipophilic dye Nile Red, and 

both the polymer polyhydroxyvalerate and its monomer hydroxyvalerate could be identified 

by gas chromatography–mass spectrometry (GC-MS) (Supplementary Figure 15). 

Furthermore, genes for PHA synthesis and the phasin protein PhaP were highly transcribed, 

and PhaP was the most abundant protein in six out of eight proteomes (mean 6.67% ± 1.83 

NSAF, n = 8 proteomes) (Supplementary Figure 2, 3). Besides storing carbon, PHA might 

function as an electron sink under anoxic conditions (54–56). The host animal Paracatenula 

likely traverses the oxic and anoxic sediment layers on a regular basis to provide its symbionts 

with sulfide, a behavior shown for invertebrate meiofauna with thiotrophic symbionts (57, 58). 

The Ca. R. standrea symbiont had the necessary genes for aerobic respiration coupled with 

ATP synthesis but lacked terminal oxidases for utilization of nitrate or alternative inorganic 

electron acceptors (Figure 2, Supplementary Note 2). A possible electron sink for the oxidation 
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of sulfide to elemental sulfur when oxygen is absent could be the synthesis of PHA from acetyl-

CoA, which would simultaneously function as both a store of energy and of carbon. The 

accumulation of PHA under anaerobic conditions has also been shown in other 

Alphaproteobacteria that live in changing redox conditions, such as the free-living Ca. 

Defluviicoccus tetraformis (59). A similar mechanism was shown for Ca. Accumulibacter 

phosphatis (Betaproteobacteria) and was also proposed for the unrelated 

gammaproteobacterial thiotrophic symbionts of Olavius algarvensis (54, 55, 60). 

Electron dense granules resembling glycogen were identified in both host and symbiont tissue 

(Supplementary Figure 16). Glycogen is widely used in both bacteria and animals to store 

energy and carbon and is considered to be a long-term energy reserve under anaerobic 

conditions (35, 61–63). Proteins for glycogen metabolism were also detected in the symbiont 

proteomes, although their genes were not highly expressed (Figure 2, Supplementary Figure 

2, 3). We detected proteins for both biosynthesis and degradation in the same samples, 

suggesting a dynamic switching between synthesis and utilization, possibly distributed in sub-

populations of the symbionts (Dataset S3). 

Unexpectedly, the disaccharide trehalose was by far the most abundant soluble metabolite 

measured in Paracatenula holobionts (Supplementary Figure 15, 17). We could link the 

trehalose pool to the symbionts as it was not detectable in host tissue without symbionts 

(anterior rostrum fragments; n = 3, Supplementary Figure 17A). The Ca. R. standrea symbiont 

uses the OtsAB pathway for trehalose synthesis from UDP-glucose and glucose-6-phosphate. 

The alpha, alpha-trehalose-phosphate synthase was among the 10% most highly expressed 

genes and was detectable in the proteome (Supplementary Figure 2, 3). Trehalose can be 

found in a wide spectrum of eukaryotes and bacteria and has multiple biological functions 

including carbon storage but also the protection from osmotic stress e.g. due to varying 

salinities (64). Paracatenula sp. standrea could experience lower salinities due to freshwater 

input into Sant´Andrea bay in periods of prolonged precipitation. Changes in salinity during 

salinity tolerance tests however had no effect on trehalose levels, indicating a storage rather 

than osmolyte function. Specimens survived 5 hour treatments in seawater of a salinity ranging 

from 25 to 45‰, but no significant differences in trehalose concentrations could be measured 

(salinities from 20 to 50‰, n = 5 , two-sided t-test, Supplementary Figure 17B). 
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Based on expression data, chemical measurements and visualizations, Ca. R. standrea has an 

unique ability to accumulate massive amounts of multiple energy and carbon storage 

compounds. Our chemical characterization and quantification showed that all of these carbon 

and energy stocks are available with large standing stocks, and that most – elemental sulfur, 

PHA and trehalose – can be solely attributed to the symbionts. Taken together, our 

observations imply that the symbiont performs the primary energy storage for the whole 

animal-microbe symbiosis. 

Outer membrane vesicles secreted by the symbiont form the basis of 

host nutrition 

Like many marine invertebrates associated with thiotrophic symbionts, Paracatenula lacks a 

mouth and a gut and depends on its symbionts for essential nutrients. This was reflected in 

the broad genomic repertoire and the expression of amino acid, vitamin and cofactor 

biosynthesis pathways in the symbiont (Supplementary Figures 18, 19, Supplementary 

Note 2). 

Active export across the symbiont membrane is limited as we only identified 15 export-related 

gene products in Ca. R. standrea, eight of which had at least one transmembrane (TM) domain 

based on the identification using the Transporter Classification Database (TCDB) 

(Supplementary Figure 11, Dataset S5, S6, Supplementary Note 2, n = 63). The main 

identified transporters were the Tat and Sec secretion systems that could translocate folded 

and unfolded proteins to the periplasm. A Type I secretion system could export unfolded 

proteins across the outer membrane and in the hosting vacuoles but no secretion systems for 

the transfer of proteins into the host bacteriocyte could be detected. Although several 

transporters such as secretion systems have essential functions conserved across bacteria (65) 

and might be involved in the nutrition of the host, surprisingly only the Tat secretion system 

for the translocation of folded proteins was highly expressed (Figure 2, Dataset S2A).  

Given that we could not find genomic evidence for substantial export via transporters, we were 

surprised that we also found no evidence for lysosomal digestion of symbiont cells in freshly 

collected Paracatenula based on transmission electron microscopy (TEM) (n = 3). Lysosomal 

digestion of symbiont cells is readily observed in bacteriocytes of other hosts, e.g. members 

of the deep-sea mussel genus Bathymodiolus as well as in vesicomyid clams (66, 67). In 
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freshly collected Paracatenula specimens host gene expression in such samples indicated 

lysosome formation and trafficking as well as proteolysis, all likely involved in the digestion of 

symbiont biomass (Dataset S10). Important enzymes in the lysosomal digestion of bacteria 

are lysozymes that cleave the bonds of peptidoglycan and lead to cell lysis. Surprisingly, the 

host did not express lysozymes, despite the expression of several types of digestive enzymes. 

We could e.g. detect the cysteine protease cathepsin B that has been shown to play a major 

role in the digestion of gut-bearing flatworms and is also expressed in the symbiotic gutless 

annelid Olavius algarvensis (68, 69) (Dataset S10). Since the symbiont has a peptidoglycan 

cell wall (Figure 2), the absence of lysozymes suggests that complete symbiont cells are not 

the main target for the lysosomal digestion expressed in freshly collected Paracatenula 

specimens. This corroborates the ultrastructural observations, but is in contrast to other 

animals with nutritional bacterial symbionts. Divergent hosts such as the Bathymodiolus deep-

sea mussels but also insects, e.g. aphids, have been shown to constitutively express lysozymes 

that play a key role in symbiont digestion and the control of symbiont populations (66, 70). 

Our data rather suggests that the main mode of symbiont to host transfer is likely based on 

the release of outer membrane vesicles (OMVs) and their digestion by the host. OMVs package 

proteins, lipids and nucleic acids, but despite increased attention into their role in symbiotic 

interactions they have not been shown to be broadly involved in host nutrition in animal 

microbe interactions (71). We observed several clusters of small OMVs in close proximity to 

symbiont cells (Figure 5A–D). Correspondingly, we identified a highly expressed 

intermembrane lipid transport system (ILTS, also known as mammalian cell entry proteins, 

mlaED) of the symbiont that has been shown to play an important role in the formation of 

OMVs (72). The two most highly expressed genes of the ILTS (mlaE and mlaD, mean TPM 

2536 ± 682 and 2097 ± 531, respectively, n = 3) were among the top 10% of expressed 

genes and represent the subunits that form the transport pore in the inner membrane (73) 

(Figure 2). In contrast, the outer membrane protein of the ILTS, VacJ, had 60x lower 

expression (VacJ, mean TPM 39 ± 13, n = 3). VacJ maintains outer membrane asymmetry by 

removing phospholipids from the outer leaflet and supports trafficking of phospholipids from 

the outer membrane (74). The observed low expression of VacJ has been linked to increased 

OMV formation in VacJ deficient Gammaproteobacteria (72). Uptake and digestion of symbiont 
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OMVs via phagocytosis and the subsequent lysosomal digestion via a phagolysosome would 

explain the expression for lysosome formation observed in freshly collected samples. 

 

Figure 5. Ca. R. standrea nourishes the host with outer membrane vesicles and is only digested 
after prolonged starvation. A–D TEM images of Paracatenula sp. standrea. A, Overview of a 
intracellular bacterial symbionts Ca. R. standrea (B). B–D Represent magnified areas indicated in A 
highlighting the outer membrane vesicles (O). A. E, A symbiont cell (B), a large storage inclusion (S) and 
a lysosomal structure (L) in a bacteriocyte surrounded by a host membrane (H). The enclosed structure 
in the lysosome resembled a PHA granule (Figure 4C). F, Two P. sp. standrea of pale and white coloration. 
G, A single P. sp. standrea with changing coloration within its trophosome. The dotted square indicates a 
tail-like structure. H, Microscopic image of a tail-like structure. No symbionts can be detected in this area. 

In addition to the role of OMVs in the nutrition of the Paracatenula host, we could also observe 

digestion of complete symbiont cells, but only in specimens from long-term husbandry 

experiments (Figure 5E). These experiments often led to a decoloration of the trophosome 

regions as well as to a formation of an epidermal tail-like structure (Figure 5F–H). Both 

observations suggest starvation of the host that led to consumption of storage material and 

symbiont cells, thereby reducing the volume of the trophosome. We detected lysosomal 
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structures with diameters of ca. 3 µm in such starved specimens after 7 months of husbandry 

(n = 2) (Figure 5E). We also identified electron-dense structures that resemble the PHA 

granules of intact cells within lysosomes surrounded by membrane stacks, but no symbionts 

in ongoing digestion. The observed PHA granules also corresponded to the extracellular 

position of some of them in the Nile Red-staining (Figure 4C). 

Based on (i) the missing transporter-based export of substrates by the symbionts, (ii) the 

observation of OMV formation and corresponding symbiont expression profiles, (iii) the 

detection of host expression of lysosomal digestion but no expression of lysozymes and (iv) 

the absence of digestion of full symbiont cells we propose that digestion of symbiont material 

in the form of OMVs is the main mode of nutrition in the Paracatenula symbiosis. The symbiont 

builds up and efficiently maintains the primary energy storage for the whole animal-microbe 

consortium. The host then directly accesses all these stockpiles together with vitamins, amino 

acids and all other nutritive constituents via digestion of symbiont derived OMVs. Only in cases 

of higher demands or starvation, a subpopulation of its symbionts is digested, in contrast to 

all other chemoautotrophic symbioses where symbiont cell digestion drives biomass transfer. 

Conclusion 

After 500 million years of strict vertical transmission and reductive genome evolution, Ca. R. 

standrea has a drastically reduced genome compared to its free-living relatives. It has retained 

a versatile carbon metabolism and carbohydrate storage, in stark contrast to the similarly 

reduced vesicomyid clam symbionts that appear to be optimized only for autotrophic biomass 

production. The versatile function of Ca. R. standrea might be connected to its ancestry in 

Rhodospirillaceae, with many of which they share a complete intermediary carbon metabolism 

as well as the ethylmalonyl-CoA pathway that is common in Alphaproteobacteria (43). In 

addition, Ca. R. standrea has several unexpected features, even for a versatile 

alphaproteobacterial background that are shared with gammaproteobacterial symbionts – an 

incomplete 3-HPB pathway and a PPi-dependent CBB cycle. In Ca. R. standrea, the majority of 

the genes involved in these pathways are of alphaproteobacterial origin and not acquired via 

lateral gene transfer. Instead of showing an acquisition as proposed for the 

gammaproteobacterial symbionts, our analyses extended the phylogenetic distribution of these 
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energy-efficient and versatile pathways and shed new light on their origins and possible 

histories of transfer from the metabolically flexible Alphaproteobacteria.  

The key elements in the physiology of Ca. R. standrea such as enhanced modes of carbon 

fixation, intermediary carbon metabolism and sulfur oxidation are optimized for high energy 

efficiency. The symbionts can create and maintain versatile carbon pools as they represent the 

bulk storage organ for the consortium and support its host via OMV secretion. This unique 

integration of storage and transfer into a single and streamlined chemoautotrophic organism 

with a reduced genome represents a new type of bacteria-animal interaction. Ca. R. standrea 

extends the spectrum of nutritional symbioses that range from single vitamin or amino acid 

supplementation to full nutrition (17–23), and adds the function of primary energy and carbon 

storage that in all other animal hosts is performed by the animal itself.  

Materials and Methods 

Sample collection 

Paracatenula sp. standrea specimens were collected between 2013 and 2017 from sediments 

in the bay off Sant´Andrea, Elba, Italy. Specimens were sampled with 10 liter buckets and 

extracted by decanting the sediment collected by divers at 6–7 m water depth. Individual 

specimens were picked manually using glass pipettes and stored in 5.9 ml glass vials filled 

with seawater (38‰) and natural sediment that was rinsed twice with fresh- and seawater to 

remove other meiofauna. The abundance of Paracatenula per m³ of Sant´Andrea sediment 

was estimated from specimen counts in 10 L buckets (n = 40) collected during two fieldtrips 

in 2014 and 2016. Paracatenula specimens for nucleic acid extractions and proteomics were 

fixed in RNAlater (Ambion) and stored at 4 °C. Specimens for metabolomics were fixed in 

methanol and stored at -20 °C.  

Paracatenula worms for transmission electron microscopy (TEM) were kept for up to seven 

months in 12 ml glass vials filled with washed natural sediment and filtered seawater 

supplemented with trace elements. The vials had an air-filled headspace, and up to five pellets 

(Ø 0.5 cm) of seagrass leaves were placed at the bottom of the glass vials to induce a redox 

gradient due to microbial sulfate reduction around the rotting seagrass. Specimens were 

visually checked and transferred into freshly prepared glass vials every one to two months. 
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Light microscopy 

Images of live Paracatenula were recorded in incident light using a Nikon SMZ25 

stereomicroscope (Nikon). To image the bacteria of live organisms, specimens were first 

transferred onto glass slides and squeezed to bursting by applying pressure with cover slips. 

Single bacteria were then visualized using transmitted light with differential interference 

contrast (DIC) on a Zeiss LSM 780 confocal laser microscope (Carl Zeiss AG). 

Electron microscopy 

Specimens freshly collected from the environment and those kept in glass vials for seven 

months were fixed overnight with 2.5% (w/v) glutaraldehyde buffered with 1.5x PHEM and 

9% w/v sucrose as described by Montanaro and colleagues (75). Samples were then either 

post-fixed with 1% w/v osmium tetroxide and directly embedded in resin or further processed 

using a Leica EM ICE high-pressure freezer (Leica Microsystems). Samples subjected to high-

pressure freezing were freeze-substituted in acetone with 1% w/v osmium tetroxide and 

warmed to room temperature for 120 min as described by McDonald and Webb (76). All 

samples were embedded in Low Viscosity Resin (Agar Scientific) using centrifugation 

embedding (77). After polymerization for 12 h at 65 °C, 70 nm sections were cut on an 

ultramicrotome (Leica UC7, Leica Microsystems), mounted on formvar-coated slot grids and 

contrasted with 0.5% w/v aqueous uranyl acetate (Science Services) for 20 min and with 2% 

w/v Reynold's lead citrate for 6 min. Sections were imaged at 30 kV with a Quanta FEG 250 

scanning electron microscope (FEI Company) equipped with a STEM detector using the xT 

microscope control software v6.2.6.3123. 

CARD-FISH and staining procedures 

CARD-FISH was performed on paraffin sections of Paracatenula sp. standrea as previously 

described (78) with minor modifications of the protocol. Specimens were fixed overnight at 4 

°C in 2% paraformaldehyde (PFA) (w/v) and dehydrated in an increasing series of ethanol 

[50%, 80%, 90%, 100% (v/v)]. Dehydrated samples were then infiltrated with Roti-Histol 

(Carl Roth GmbH) (40 min, then overnight), a 1:1 (v/v) mixture of Roti-Histol/paraffin (50 

min, 60 °C) and finally paraffin (3 x 30 min, overnight, 3 x 2 h, 60 °C) and solidified at room 

temperature for up to one week. 4 µm sections were cut on a microtome (Leica RM2165, Leica 
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Microsystems) and baked on glass slides for 2 h at 57 °C. In situ hybridization was performed 

for 3 h at 46 °C with the general bacteria probe EUB I–III (79, 80) (8.42 pmol μl-1) mixed in 

hybridization buffer (1:150 v/v) at a formamide concentration of 30% (v/v). Slides were 

washed in washing buffer (15 min) at 48 °C followed by washing in 1x PBS (20 min). Sections 

were incubated in amplification buffer with tyramide fluorochromes (Alexa Fluor 488 tyramide, 

Life Technologies) at 46 °C for 30 min. Slides were washed in 1x PBS (20 min) and in deionized 

water. Sections were counterstained with DAPI (1 µg ml-1) and Nile Red (2.5 μg ml-1) for 10 

min each, rinsed in deionized water and dried and mounted in a mixture of Vector 

Shield/Citifluor mounting solution (1:5.5 v/v). Samples were imaged with a Zeiss LSM 780 

using a 40x/1.3 oil immersion objective (Carl Zeiss AG). The following excitation and emission 

spectra were used: tyramide Alexa488, excitation: 488 nm, emission: 490 to 525 nm; DAPI, 

excitation: 405 nm, emission: 419 to 525 nm; Nile Red, excitation: 561 nm (CY3), emission: 

570–623 nm. Histograms were adjusted using the Zen software (2012, Carl Zeiss AG). The 

relative volume of Nile Red-stained inclusions to the symbionts cell volume was estimated 

using ImageJ v1.47. 

DNA extraction and genome sequencing 

DNA was extracted using the DNeasy Blood and Tissue Micro Kit (Qiagen) following the 

manufacturer´s instructions with two modifications: to increase the overall DNA yield, the 

proteinase K digestion was performed for four days and the DNA was eluted twice with a total 

volume of 40 µl each. The Ovation Ultralow Library System V2 (NuGEN) was used for paired-

end library preparations following the manufacturer’s protocol. 6 million 250 bp paired-end 

reads were generated with an average insert size of 508 ± 210 bp. Library preparation and 

sequencing on the Illumina MiSeq platform was performed at the Max Planck Genome Centre 

in Cologne, Germany (http://mpgc.mpipz.mpg.de/home/). 

Metagenome assembly and binning  

Prior to assembly, adapters and low-quality reads were removed with bbduk (from the software 

package BBmap v38.06 (http://sourceforge.net/projects/bbmap/) using a minimum quality 

value of two and a minimum length of 36. Single reads were excluded from further analyses. 

To remove the host genomic reads, reads were sorted based on a kmer frequency analysis 
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using bbnorm (BBmap). Only reads with average kmer frequencies of more than 20 at a kmer 

length of 31 were kept using bbnorm (BBmap). The assembly was performed with SPADes 

v3.8 with kmers 21, 33, 55, 77, 99 and 127 (81). Initial binning was done by collecting all 

contigs linked to the contig that contained the symbiont 16S rRNA sequence using the FASTG 

files of the SPAdes assembly in Bandage v0.81 (82). Reads were mapped onto the binned 

contig set and reassembled with SPADes in an iterative approach that was stopped when no 

more reads could be recruited. Average nucleotide coverage of the final Ca. R. standrea 

assembly was 58x.  

Metabolic reconstructions and comparison 

The Ca. R. standrea genome assembly was annotated by RAST v2 (83) along with the genomes 

used for comparison (Supplementary Table 1). Annotations of specific genes discussed in detail 

were verified manually using NCBI PSI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (84) 

against the NCBI nr database. Protein sequences were assigned to Clusters of Orthologous 

Genes (psiCOGs) and KEGG Orthologs (KOs) with eggNOG (85). Metabolic features were 

predicted from KOs with the KEGG Mapper Reconstruct Module tool 

(http://www.genome.jp/kegg/tool/map_module.html) and from RAST annotations with the 

PathoLogic module of Pathway Tools v19.5 (86). Transporters were annotated with Transporter 

Classification (TC) numbers by BLASTp v2.2.29 against the Transporter Classification Database 

(TCDB) (87) (accessed 17 Nov 2017), taking the best-scoring hit with E-values <10-5, >30% 

amino acid identity and >70% coverage of the reference sequences (parameters from Yelton 

et al. (88)). Hits to TC families or subfamilies that had been manually designated as uptake or 

export transporters for organic substrates were analyzed. 

To compare COG category composition between genomes, the number of genes per COG 

category was counted. To account for varying genome sizes, compositions were expressed as 

percentages of COG assignments per genome. To compare KEGG Module composition, the 

predicted completeness per module per genome was encoded into a binary matrix (complete 

or missing up to 2 genes: 1, incomplete or absent: 0). The NMDS analyses were performed 

using the metaMDS function from the R package ‘vegan’ (http://cran.r-

project.org/package=vegan) (Bray-Curtis distances) and visualized with ggplot2. Non-

redundant pathways predicted by Pathway Tools were amended for polyhydroxyalkanoate 
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(PHA) synthesis and the incomplete 3-hydroxypropionate bi-cycle pathway (3-HPB). The 

presence of pathways was compared between Ca. R. standrea, Ca. R. magnifica and Ca. V. 

okutanii and represented in a Venn diagram. 

RNA extraction and transcriptome analyses 

For symbiont transcriptomics, RNA was extracted from single Paracatenula sp. standrea 

specimens that had been fixed in RNAlater directly after collection in the bay of Sant´Andrea, 

Elba. RNA was extracted with the RNeasy plus micro kit (Qiagen) following the manufacturer´s 

protocol, and eluted in 11 µl RNase-free water. cDNA was synthesized from total RNA with the 

Ovation RNASeq System v2 (NuGEN) following the manufacturer's protocol, sheared to 350 bp 

target size with the Covaris microTUBE system (Covaris) and cleaned up with the Zymo 

Genomic DNA Clean & Concentrator Kit (Zymo Research). Sequencing libraries were prepared 

from cDNA with the NEBNext Ultra DNA library preparation kit (New England Biolabs) for 

Illumina and sequenced on the Illumina HiSeq 2500 platform using 2 x 100 bp paired-end 

reads. Both library preparation and sequencing were performed at the Max Planck Genome 

Centre in Cologne. 6 to 7 million single-end 100 bp reads per library were sequenced and 

transcript counts were generated from raw reads using kallisto v0.44 (89). The expression 

values [transcripts per million (TPM)] were averaged for the three replicates and normalized 

to the expression of the housekeeping gene DNA gyrase A (gyrA) that has a high expression 

stability (90). 

For host transcriptomics, Paracatenula specimens of different physiological states were 

sequenced in triplicates on the Illumina HiSeq 2500 platform using 2 x 100 bp paired-end 

reads to a depth of 11–15 million reads. Sequencing adapters were removed and quality 

trimming was performed as described for the metagenome. Host mRNA reads were filtered out 

by removing rRNA reads with BBSplit (from the software package BBmap) using the reference 

databases provided by SortMeRNA v2.1 (91) and the Ca. R. standrea genome. A de novo 

transcriptome assembly for the pooled reads of all 12 Paracatenula sp. standrea libraries was 

generated with Trinity v2.5.1 (92). Final assembly cleaning was performed with BLAST 

searches against the NCBI nr database on GenBank (93) to filter out contaminant sequences 

using MEGAN v6 (94). To remove duplicated transcripts the assembly was clustered to 97% 

identity using the centroid-based algorithm of VSEARCH v1.1.3 (95). Assembly quality and 
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completeness was analyzed with the utility scripts provided by the Trinity package (96) and 

BUSCO v3 (97). The final host transcriptome consisted of 54,926 predicted genes represented 

by 63,868 assembled transcripts and contained 79.1% complete or fragmented metazoan 

BUSCOs. Functional annotation of the assembly was conducted with Trinotate v3.0.1 following 

the developer´s guidelines (http://trinotate.github.io/). 

Protein extraction and proteomic analyses 

For proteomics, tryptic digests from eight samples (4x one animal, 4x three animals pooled) 

were prepared following the filter-aided sample preparation (FASP) protocol (98). In brief, 35 

µl of SDT-lysis buffer (4% (w/v) SDS, 100 mM Tris-HCl pH 7.6, 0.1 M DTT) was added to each 

sample. Samples were heated for lysis to 95 °C for 10 min and the entire lysate (without 

pelleting) was mixed with 200 µl of UA solution (8 M urea in 0.1 M Tris/HCl pH 8.5) in a 10 

kDa MWCO 500 µl centrifugal filter unit (VWR International) and centrifuged at 14,000 x g for 

40 min. 200 µl of UA solution was added again and centrifugally filtered at 14,000 x g for 40 

min. 100 µl of IAA solution (0.05 M iodoacetamide in UA solution) was added to the filter and 

incubated at 22 °C for 20 min. The IAA solution was removed by centrifugation and the filter 

was washed 3x by adding 100 µl of UA solution and then centrifuging. The buffer on the filter 

was then changed to ABC (50 mM ammonium bicarbonate), by washing the filter 3x with 100 

µl of ABC. 2 µg of mass spectrometry grade trypsin (Thermo Scientific Pierce) in 40 µl of ABC 

was added to the filter and filters were incubated overnight in a wet chamber at 37 °C. The 

next day, peptides were eluted by centrifugation at 14,000 x g for 20 min, followed by addition 

of 50 µl of 0.5 M NaCl and another centrifugation. Peptides were not desalted. Approximate 

peptide concentrations were determined using the Pierce Micro BCA assay (Thermo Scientific 

Pierce) following the manufacturer’s instructions. Peptide concentrations in all samples were 

below the detection limit of the assay. 

Samples were analyzed by 1D-LC-MS/MS. Two wash runs and one blank run were performed 

between samples to reduce carry over. For each run, 20 µl of peptide solution was loaded onto 

a 5 mm, 300 µm ID C18 Acclaim PepMap100 pre-column (Thermo Fisher Scientific) using an 

UltiMate 3000 RSLCnano Liquid Chromatograph (Thermo Fisher Scientific) and desalted on the 

pre-column. After desalting the peptides, the pre-column was switched in line with a 50 cm x 

75 µm analytical EASY-Spray column packed with PepMap RSLC C18, 2 µm material (Thermo 
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Fisher Scientific) heated to 45 °C. The analytical column was connected via an Easy-Spray 

source to a Q Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher 

Scientific). Peptides were separated on the analytical column using a 260 min gradient as 

described by Kleiner and colleagues (99) and mass spectra were acquired in the Orbitrap as 

described by Petersen and colleagues (15). Roughly 110,000 MS/MS spectra were acquired 

per sample. 

For protein identification a database was created using all protein sequences predicted from 

the Ca. R. standrea genome. The cRAP protein sequence database 

(http://www.thegpm.org/crap/) containing protein sequences of common laboratory 

contaminants was appended to the database. The final database contained 1460 protein 

sequences. For protein identification MS/MS spectra were searched against the database using 

the Sequest HT node in Proteome Discoverer v2.0.0.802 (Thermo Fisher Scientific) as 

described previously (15). Only proteins identified with medium or high confidence were 

retained resulting in an overall false discovery rate of < 5%. False discovery rate was controlled 

using the FidoCT node in Proteome Discoverer. A total of 407 different symbiont proteins 

were identified. 

Phylogenetic analyses 

Distance analysis 

16S rRNA and dsrB sequence identities between the symbionts of two Paracatenula species, 

Ca. R. standrea and Ca. R. galateia, were determined from Muscle alignments (100). Only 

overlapping regions were taken into account. The average amino acid identities (AAI) of Ca. 

R. standrea and free-living relatives were calculated with the AAI calculator (http://enve-

omics.ce.gatech.edu/aai/). 

Conserved marker genes 

Publicly available genomes of representatives from different alphaproteobacterial groups 

(Rhodospirillales, Sphingomonadales, Rhodobacteraceae, Rhizobiales and Rickettsiales) were 

downloaded from the NCBI database. 43 conserved marker genes were identified and aligned 

using the CheckM pipeline v1.0.5 (101). The tree was estimated from the amino acid alignment 

using maximum likelihood with FastTree v2.1 (102) using the JTT substitution model with 20 
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rate categories of sites and SH-like support values. The tree was visualized with iTOL 

v3.5.4 (103). 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) 

The Ca. R. standrea CbbL sequence was used to query the NCBI nr database using BLASTx 

and the top 100 hits were included in a phylogenetic analysis (84). Additionally, RuBisCO 

sequences were retrieved from available sequences deposited in the NCBI database based on 

a RuBisCO matrix analyzed previously (9). OrfPredictor was used to identify protein-coding 

regions in the nucleic acid sequences and for the translation of the open reading frames in the 

short Ca. R. galateia sequence (104) (http://proteomics.ysu.edu/tools/OrfPredictor.html). 

Amino acid sequences were aligned using MAFFT with the iterative refinement method G-INS-

I (105) and manually inspected in Geneious v11 (106) (http://www.geneious.com). The 

maximum-likelihood RuBisCO tree was estimated with PhyML (107) using the LG+I+G4 

substitution model (108) with 100 bootstrap replicates. The tree was visualized in Geneious 

and rooted with CbbL. 

PPi-dependent phosphofructokinase (PPi-PFK) 

The translated PPi-PFK sequence of Ca. R. standrea was extracted from the genome and used 

to query the Swissprot database (20 best hits based on % identity extracted for the PPi-PFK) 

and the Uniprot database (100 best hits based on % identity extracted) by BLASTp. Hits for 

ATP-PFK from this BLAST search were removed from the gene database. To cover the 

translated ATP-PFK sequence of Ca. R. standrea, the sequence was used to query the Uniprot 

database by BLASTp, and the 50 best hits based on % identity were added to the gene 

database. Sequences without annotations were removed and the gene database was 

streamlined for analysis, retaining only one representative sequence per genus and gene type. 

In addition, selected PPi-PFK sequences of thiotrophic symbionts were added from the NCBI 

database and the superfamily database. The sequences (n = 51) were aligned using MAFFT 

with the iterative refinement method G-INS-I. The PFK tree was estimated using IQ-TREE 

v1.5.6 and the LG+G4 evolutionary model with aLRT support values and nonparametric 

bootstraps (109–111). Tree visualization was performed with iTOL. For the protein motif 

analysis the ATP-PFK sequence of E. coli (accession nr. WP_000591795) was included in the 

MAFFT G-INS-I alignment and the search for GGDG/D and PG/KTIDXD motifs performed 

in Geneious. 
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PPi-energized proton pump (PPi-H+-pump) 

The translated PPi-H+-pump sequence of Ca. R. standrea was extracted from the genome and 

used to query the Uniprot database by BLASTp. From the best hits based on % identity, only 

one representative sequence per genus was added to the gene database. In addition, selected 

PPi-H+-pump sequences of thiotrophic symbionts were added from the NCBI database. The 

sequences (n = 32) were aligned using MAFFT with the iterative refinement method G-INS-I. 

The tree was estimated using IQ-TREE v1.6.7 and the LG+F+I+G4 evolutionary model with 

aLRT support values and nonparametric bootstraps. Tree visualization was performed 

with iTOL. 

Incomplete 3-hydroxypropionate bi-cycle (3-HPB) pathway 

Five key proteins of the 3-HPB pathway (Mch, Mcl, Smt, Mct, Meh) were used for single 

phylogenetic reconstructions. We used the homologues to proteins of the 3-HPB pathway in 

Chloroflexus aurantiacus as previously described (112). The amino acid sequences were 

obtained from the UniRef50 clusters containing the C. aurantiacus sequences in the UniProt 

database. The sequences were aligned with the Ca. R. standrea homologues using Muscle. The 

maximum-likelihood trees were estimated with FastTree v2.1.7 applying the same settings as 

for the conserved marker genes. Tree visualizations were performed with iTOL. 

Physiological experiments 

All physiology experiments were performed with biological replicates, the numbers are 

indicated in each experiment. Individual worms served as technical replicates for the carbon 

fixation experiments. To normalize measurements by the size of each Paracatenula specimen, 

digital images of each specimen were recorded with a Canon EOS 700D camera (Canon) 

mounted on a Nikon SMZ-745T dissecting microscope (Nikon) and the areas (in mm2) of each 

specimen were determined using ImageJ v1.47. 

Visualization and quantification of carbon fixation 

Carbon fixation was studied with Paracatenula specimens using two experimental approaches. 

The first approach was conducted in two independent experiments. Specimens (2 and 3 

individuals per replicate, 3 replicates each) were incubated in 3.9 ml glass vials filled with 

artificial seawater (ASW) (113) containing 13C (final concentration 2.3 mM) and 14C-labelled 

bicarbonate (0.02 mM, 160 KBq per vial) with glass beads as sterile sediment replacement 
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[2:1 ratio of 0.75–1 mm (Roth) and 0.4–0.6 mm beads (Sartorius)]. In the second approach 

(5 individuals per replicate, 3 replicates), 14C-labelled bicarbonate (0.02 mM, 166 KBq per vial) 

was used again, but this time in natural Mediterranean seawater and with Sant´Andrea 

sediment that had been washed three times in freshwater and then was stored in 

Mediterranean seawater. This second experiment mimicking natural conditions was conducted 

because the carbon fixation rates were surprisingly low using the artificial seawater and glass 

beads setup. In the first experiment (ASW + glass beads) one time point was stopped after 6 

h by washing in non-labeled seawater and transferring the specimens into 2% PFA (w/v) for 

24 h followed by washing in 1x PBS and storage in 1x PBS/EtOH (1:1) (v/v) at 4 °C. In the 

second incubation experiment (natural seawater + sediment), samples were incubated (pulse) 

for up to 6 h (5 time points) or transferred to non-labeled seawater after the pulse and kept 

for 5 d to chase radioactive signals. Incubations were stopped by washing in non-labeled 

seawater followed by fixation in 2.5% (w/v) glutaraldehyde in 1.5x PHEM with 9% sucrose 

(w/v). Fixation was done for up to 14 h followed by 3x washing in 4.5x PHEM buffer and 

samples were stored in 1.5x PHEM with 9% sucrose (w/v) added. Non-incubated specimens 

as well as dead controls that were fixed for 2 min in 2% PFA and incubated for 6 h under same 

conditions served as negative controls. 

Individual specimen replicates were cut transversely into a posterior half of only the symbiont-

containing trophosome region and an anterior half that included both the bacteria-free rostrum 

and trophosome tissue. Bulk 14C incorporation of the posterior half of each specimen was 

measured in Ultima Gold scintillation fluid (PerkinElmer) using a Tri-Carb 2900Tr (PerkinElmer) 

liquid scintillation counter and calculated as decays per minute (DPM) per mm² specimen. 

For microautoradiography (MAR), anterior halves of specimens were dehydrated in a graded 

series of ethanol that was then replaced by mixtures of ethanol and LR-White (London Resin 

Company) [2:1; 1:1; 1:2 (v/v)] with modifications to the procedure explained elsewhere (16). 

The mixture was replaced with pure LR-White resin (3x, 30 min each) and incubated overnight 

at room temperature. Specimens were transferred into gelatin capsules filled with LR-White 

and polymerized at 50 °C for 5 d. 1 μm sections were cut on an ultramicrotome (Leica EM UC7, 

Leica Microsystems) and placed on Superfrost Plus glass slides (Thermo Fisher Scientific). 

Microautoradiography was applied using the ILFORD nuclear emulsion K5 (Ilford) following the 

manufacturer´s instructions with modifications. The photoemulsion was melted at 40 °C and 
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diluted with pre-warmed deionized water (1:1 v/v, total volume 7 ml) in a slide holder. Slides 

were dipped in photoemulsion for 3 sec, held vertically for 10 sec, followed by drying on 

aluminum ice blocks for 7 min. Slides were stored at 4 °C for up to 10 days (1, 2, 3, 6, 7, 10 

days) in a light-tight box containing silica beads. Exposure was stopped by transferring the 

slides into mixtures of Ilford phenisol developer (1:4 v/v, 4 min), followed by Ilford Ilfostop 

pro (1:19 v/v, 1 min) and Ilford hypam (1:4 v/v, 4 min) in deionized water. Slides were washed 

with deionized water for 4 min, post-fixed using 2.5% glutaraldehyde for 1 h at room 

temperature followed by washing in 0.2% HCl (v/v) for 1 min and rinsing in deionized water. 

Sections were stained with toluidine blue and washed in deionized water at 37 °C (25 min). 

Slides were dried and mounted with Permount (Fisher Scientific) for light microscopy. The 

overview image (Supplementary Figure 4A) was stitched from eight tiles and blended with 

Adobe Photoshop CS5 allowing only rotation and translation of the individual tiles. 

Impact of salinity on trehalose concentrations  

Specimens were incubated in 5.9 ml glass vials filled with glass beads as sterile sediment 

replacement and filtered natural seawater of three different salinities: 25‰ (diluted with 

deionized water), 45‰ (supplemented with NaCl) and two variants of 38‰ – Mediterranean 

seawater and seawater first increased to 50‰ salinity using NaCl and then diluted with 

deionized water to 38‰. Five replicates of single specimens were incubated at 19 °C in 

darkness. Incubation was stopped after five hours by transferring specimens into 250 µl pre-

cooled methanol and stored at -20 °C until the trehalose measurement. For a separate batch 

of freshly collected specimens, the trophosome and rostrum regions were separated prior to 

trehalose measurements. 

Metabolite measurements 

Metabolites were extracted from single (trehalose quantification) and from 25 (bulk 

metabolome analysis) Paracatenula specimens for chemical analysis as previously described 

by Liebeke and Bundy (114) with a few modifications. Additionally, three Paracatenula 

specimens were sectioned to separately analyze equal sized fragments of rostrum (symbiont-

free, anterior) and trophosome (symbiont-hosting, posterior). Samples in tubes were 

transferred to bead-beater vials [200 µl of 1.0–1.2 mm, SiLibead Typ ZY-S, (Sigmund Lindner 

GmbH)], the sample tubes were washed with 0.75 ml acetonitrile/methanol/water-solution 
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mix (AMW) (2:2:1 v/v) and the AMW was also transferred to the bead-beater vials. For 

extraction blanks and standard samples 250 µl AMW were used. Bead beating was performed 

4 x for 30 sec (4 m/sec) using FastPrep (MP Biomedicals), samples were centrifuged and the 

supernatant was transferred into new tubes. The remaining pellets were again extracted with 

1 ml AMW, vortexed, centrifuged and the supernatants combined. 

Prior to drying of the extracts, 100 µl ribitol solution [200 mg l-1 (1.3 mM)] was added per 

sample aliquot as an internal standard for GC-MS measurements. Samples were dried for 4 to 

7 h at 30 °C and afterwards derivatized with 40 µl methoxyamine hydrochloride solution 

(0.02% w/v in pyridine) at 37 °C for 90 min followed by the addition of 40 µl N-Methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) and further heating at 37 °C for 30 min. Both 

derivatization steps where performed under constant shaking at 1350 rpm. After quick spin-

down, the supernatant was transferred to a small GC-vial for GC-MS analysis. 

The GC-MS analysis was performed on an Agilent 8990B gas chromatograph connected to an 

Agilent 5977A MSD (Agilent Technologies). Samples were injected in splitless mode (1 µl) with 

an Agilent 7693 autosampler injector and separated using a DB5-MS column (Agilent 

Technologies) and helium as carrier gas. Further data acquisition and processing details has 

been described elsewhere (114). 

PHA measurements 

Paracatenula specimens were dried by centrifugal evaporation for 4 h at 30 °C using the 

Concentrator plus (Eppendorf). Pellets were re-suspended in 0.5 ml chloroform, vortexed and 

ultrasonicated (EMAG) for 5 min at 100% efficiency. Suspensions were transferred into GC-

vials and 0.1 ml sodium benzoate solution (0.01% w/v) and 0.5 ml of 6% sulfuric acid solution 

(v/v) were added. The suspensions were boiled for 2 h at 100 °C. After cooling for 5 min at 

RT, 1 ml of deionized water was added and samples were vortexed. After 30 min of phase 

separation, the lower phase (nonpolar, chloroform) was transferred into a GC inlet for 

subsequent GC-MS analysis. To separate PHA monomer derivatives, a different temperature 

gradient was applied on the otherwise identical GC-MS equipment mentioned above: the 

gradient started with 50 °C for 1 min, increased to 120 °C at 10 °C/min, further increased to 

280 °C at 45 °C/min, held 280 °C for 3 min, increased to 300 °C at 45 °C/min and held 300 

°C for 3 min; mass detection was done from 35–400 Da. 
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Raman spectroscopy 

Raman microscopy was performed on live Paracatenula sp. standrea specimens using a 

NTEGRA Spectra confocal spectrometer (NT-MDT Spectrum Instruments) configured with an 

inverted Olympus IX71 microscope (Olympus Corporation). For spectral analysis, the sample 

was excited by a solid-state laser at 532 nm and laser power was adjusted to a maximum of 

1.5 mW. The pinhole aperture was set to 55 μm, resulting in a spatial resolution of 

approximately 250–300 μm. Raman scattered light was dispersed with a 150 line · mm-1 

grating and collected by an electron multiplying charge coupled device (EMCCD) camera (Andor 

Technology) cooled to -70 °C. Exposure time was set to 0.6 s. Raman spectra were acquired 

in the spectral range of 0 and 4500 cm-1 with a spectral resolution of 0.2 cm-1. Raman spectra 

were processed for normalization using the software Nova_Px v3.1.0.0 (NT-MDT Spectrum 

Instruments). For further peak determinations, data were exported to Excel (Microsoft). 

Data availability 

The assembled and annotated Ca. R. standrea genome was deposited at the European 

Nucleotide Archive (ENA) and is accessible under the project PRJEB26644 and the assembly 

accession GCA_900576755. Raw total RNA library reads were deposited in ENA under the 

accession no. PRJEB27565 and the host assembly under the accession no. PRJEB28271. 

The mass spectrometry proteomics data and the protein sequence databases have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository (115) for the 

pure culture data with the dataset identifier PXD009856 [Reviewer access: log in at 

http://www.ebi.ac.uk/pride/archive/ with Username: reviewer86761@ebi.ac.uk and 

Password: s5iurznD]. 

Code availability 

The script that was used to classify the transporter families is available at 

http://github.com/kbseah/tcdbparse_sqlite. 
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Supplementary Material 

The Dataset is available on the CD-ROM provided with the thesis. 

Supplementary Note 1 

Characterization of the Paracatenula sp. standrea host 

A formal species description would be beyond the scope of this study and will be published 

elsewhere. So far, the morphotype of Paracatenula sp. standrea was exclusively sampled from 

coarse sediments in the bay off Sant´Andrea on Elba, Italy at waters depths of 5–10 meters 

in the vicinity of Posidonia oceanica meadows. 

Paracatenula sp. standrea reach sizes of up to 1.5 cm and are the only Paracatenula species 

found at this sampling site. The specimens had a white-orange coloration and a smooth 

swimming behavior with the ability of backward movements that are characteristic for 

Paracatenula flatworms (Figure 4). A transparent central line of symbiont-free tissue that has 

also been observed in other Paracatenula species divides the trophosome into two lateral 

parts (33).  

Morphologically, they most closely resembled Paracatenula urania (116). The bacteriocytes 

were interspersed by clusters of bacteria-free and transparent cells that gave the trophosome 

region a “fluffy” appearance. Each bacteriocyte had an orange inclusion visible in both high 

magnification dissecting microscopy using a Nikon SMZ25 with incident light and Olympus 

BX53 compound microscope with transmitted light. These orange inclusions reached sizes of 

approx. 3 µm and exhibited autofluorescence with the highest intensity at 628 nm with an 

excitation of 561 nm (Supplementary Figure 20). The function of these inclusions is yet 

unknown. Non-motile sperm typically described in Paracatenula species were so far not 

detected (33, 116, 117). However, Paracatenula sp. standrea individuals occasionally carried 

clumps of darker colored cells that resembled developing eggs and might be an indication of 

sexual reproduction in this species (Supplementary Figure 20C). 
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Supplementary Note 2 

Extended physiological description of Ca. R. standrea  

Sulfur oxidation 

The symbionts encoded the reverse-acting dissimilatory sulfite reductase (rDSR) pathway for 

the oxidation of sulfur to sulfite of which dsrAB and aprAB were among the highest transcribed 

and translated genes (Figure 2, Supplementary Figure 2, 3). Thiosulfate might be an important 

potential electron donor given the fluctuating sulfide concentrations in the sediments of 

Sant’Andrea Bay, Elba (7, 35, 50, 118). Two genes encoding putative thiosulfate rhodanese 

for the direct oxidation of thiosulfate to sulfite were encoded and also expressed. 

Genes for the sulfur oxidation pathway via SOX (thiosulfate) have been found in related 

Alphaproteobacteria, e.g. in Magnetospirillum species, that encode genes for SOX and rDSR 

(119–121). Our genomic analysis also showed that Caenispirillum salinarum encoded a 

complete SOX pathway, but was missing the rDSR (Dataset S1, S11). The Ca. R. standrea 

genome only encoded SoxY and SoxZ that could function in carrying covalently bound reduced 

sulfur intermediates (122). The selection for the energy-efficient rDSR pathway is convergent 

to the thiotrophic gammaproteobacterial symbionts of Olavius algarvensis and Riftia pachyptila 

(35, 38, 63). 

Autotrophy 

The Ca. R. standrea symbiont can fix carbon dioxide using a modified Calvin-Benson-Bassham 

(CBB) cycle (Figure 2, Supplementary Figure 2, 3, 7–9, Dataset S4). Based on our phylogenetic 

analysis, we could exclude lateral gene transfer for both genes, the PPi-dependent 

phosphofructokinase (PPi-PFK) and the PPi-energized proton pump (PPi-H+-pump) from 

Gammaproteobacteria as (i) the distinguishing- and active motifs of ATP- and PPi-PFK 

sequences were conserved for Alpha-, Beta- and Gammaproteobacteria, and (ii) Ca. R. 

standrea PPi-PFK and PPi-H+-pump gene sequences both clustered with genes from other 

Alphaproteobacteria (Supplementary Figure 7, 8). 

The Ca. R. standrea symbiont expressed a carbonic anhydrase that converts bicarbonate to 

carbon dioxide (Dataset S2). This enzyme sustains high concentrations of carbon dioxide as 
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shown for the chemoautotrophic vesicomyid symbionts and in gills of Bathymodiolus mussels 

and could thus enhance carbon fixation (35, 63, 123). 

Aerobic respiration�

The aerobic respiration is driven by an electron transport chain consisting of NADH quinone 

oxidoreductase, succinate dehydrogenase and cytochrome bc1-type ubiquinol oxidoreductase 

(cytochrome C1 and cytochrome B) in conjunction with a F0F1-type ATP synthase (Figure 2). 

Several of these genes were among the highest expressed, but only the cytoplasmic ones could 

be detected in the proteome (Supplementary Figure 2, 3, Dataset S3). The aa3-type 

cytochrome c (cytochrome c oxidase polypeptide I–III) oxidase present operates best under 

atmospheric oxygen concentrations (124, 125). 

Amino acid, cofactor and vitamin biosynthesis�

In the biosynthesis of 20 amino acids, only the pathway for histidine was missing one step that 

we could not explain by comparative analyses, while the two other missing steps likely are 

substituted by yet unknown reactions as they were also missing in related Rhodospirillales 

(Supplementary Figure 18). The Ca. R. standrea symbiont expressed the pathways for both 

essential and non-essential amino acids as well as for vitamins such as cobalamin (vitamin 

B12), biotin (vitamin H), thiamine (vitamin B1), folate (Vitamin B9), ubiquinone, riboflavin 

(vitamin B2), pantothenate (vitamin B5), pyridoxine (vitamin B6) and the cofactors heme, 

nicotinamide adenine dinucleotide (NAD), lipoate, tetrahydrofolate and coenzyme A 

(Supplementary Figure 19). 

Limited import of organic compounds points to internal cycling of 

carbon stocks 

The versatile intermediary carbon metabolism of the Ca. R. standrea symbiont, integrating 

glycolysis, the TCA cycle, the ethylmalonyl-CoA pathway and an incomplete 3-HPB pathway 

suggests a potential for mixotrophy (Figure 2). Evidence for such heterotrophy in 

chemoautotrophic symbionts was reported for several of the Olavius symbionts, symbionts of 

the scaly-foot snail, of Solemya, of the nematode Laxus oneistus and the lucinid bivalve Loripes 

lucinalis (15, 36, 41, 42, 50). These symbionts have diverse types of substrate uptake 

transporters to fuel a heterotrophic metabolism (36). To assess the potential importance of 
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net heterotrophy in contrast to internal cycling of carbon stocks in Ca. R. standrea, we 

performed a targeted reanalysis of the transporters using the transporter classification 

database (TCBD) (87) (Dataset S5A). Our data showed that Ca. R. standrea had a limited set 

of importers (10), similar to vesicomyid clam endosymbionts (2 and 5) (Supplementary Figure 

11, for a list of genomes see Dataset S6). The symbiont could import small peptides/opines or 

nickel, the sugars fructose or mannose and phenylpropionate from its hosts cellular 

environment. Although this small set of transporters was expressed in its entirety the recycling 

of metabolites from host fermentation is unlikely – a process suggested e.g. in the Ca. 

Thiosymbion symbionts of Olavius algarvensis (35). In summary, it is more likely that Ca. R. 

standrea retained the versatile carbon metabolism for the efficient turnover of internal carbon 

stocks rather than the import of nutrients from its host environment. 

Limited export of organic compounds 

We identified fewer export transporters in Ca. R. standrea (15 with and without 

transmembrane domains) than in most other thiotrophic symbionts (up to 85 in Ca. Endoriftia 

persephone), similar to the vesicomyid clam symbionts (18 and 25) (Supplementary Figure 

11, Dataset S5). 

Supplementary Note 3 

COG profile conservation across vertically transmitted chemosynthetic 

symbionts 

Eight COG categories that highlighted important cellular functions were overrepresented in all 

vertically transmitted thiotrophic symbionts with reduced genomes – Ca. R. standrea, a sponge 

symbiont and the two vesicomyid symbionts (n = 4), such as nucleotide transport and 

metabolism (category F), coenzyme transport and metabolism (H), translation, ribosomal 

structure and biogenesis (J) and posttranslational modification, protein turnover, chaperones 

(O) (Supplementary Figure 13). In contrast, the eight underrepresented COG categories 

including carbohydrate transport and metabolism (G), cell motility (N), secondary metabolite 

biosynthesis, transport and catabolism (Q) and defense mechanisms (V). These patterns of 

enrichment or depletion in reduced genomes were consistent with an intracellular lifestyle and 
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vertical transmission where they are physically confined to their host, experience no external 

competition and live in a sheltered and predictable environment. 

KEGG profile conservation across vertically transmitted chemosynthetic 

symbionts 

A similar distribution of thiotrophic symbionts with reduced vs. non-reduced genomes was also 

recovered with a NMDS ordination using the predicted metabolic modules of the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Figure 3C, Dataset S7, S8, for a list of genomes 

see Dataset S6). These modules represent discrete functional units such as glycolysis or the 

tricarboxylic acid (TCA) cycle and are more specific than the broad COG categories. KEGG 

modules that were encoded by the majority of the thiotrophic symbionts with non-reduced 

genomes but absent in the reduced genomes included a broad set of transporters for peptides 

and sugars (PTS-systems), two-component systems, nitrogen assimilation and fixation and 

secretion systems. 

Pathways for breakdown and assimilation are lost in reduced 

chemoautotrophic genomes 

To characterize the core functions of thiotrophic symbionts with reduced genomes, we 

identified the shared metabolic pathways based on matches to the BioCyc database (Figure 

3C). Ca. R. standrea encoded 154 pathways, which was slightly more than the symbionts of 

vesicomyid clams with similarly reduced genomes (120 / 131 pathways). In contrast, free-

living relatives of Ca. R. standrea encoded 203 to 251 predicted pathways in genomes that 

were up to 3.7 times larger. Much of the difference between the free-living relatives and the 

thiotrophic symbionts with reduced genomes can be explained by the loss of pathways for 

breakdown and assimilation of organic substrates (Ca. R. standrea: 33, vesicomyid clam 

symbionts: 19 / 22, free-living: 62 to 84) (Supplementary Figure 10A, Dataset S1, S9, S11). 
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Supplementary Table and Figures 

Supplementary Table 1. Genomes used for comparative analysis. 
 

        Species 

 

     Group 

 

  Location 

 

  Transmission 

 

         Study 

 

Genome source 

 

Size (bp) 

 

 

Ca. R. standrea 

 

α-proteob. 

 

Intracellular 

 

Vertical 

 

Present study 

 

GCA_900576755 

 

1342908 

 

Solemya symbiont γ-proteob. Intracellular Mixed mode (36) JRAA00000000 2702377 

 

Ca. V. okutanii γ-proteobac. Intracellular Vertical (14) NC_009465 1022154 

 

Ca. R. magnifica γ-proteob. Intracellular Vertical (13) NC_008610 1160782 

 

Ca. E. persephone γ-proteob. Intracellular Horizontal (126) AFOC01000000 3481040 

 

T. crunogena γ-proteob. Free-living - - NC_007520 2427734 

 

E. coli K12 γ-proteob. Free-living - (127) NC_000913 4641652 

 

M. magneticum α-proteob Free-living - (128) NC_007626 4967148 

 

C. salinarum α-proteob. Free-living - (129) ANHY00000000 4952465 

 

R. rubrum α-proteob. Free-living - - AAAG00000000.2 4403907 

 

N. itersonii α-proteob. Free-living - - ARMX00000000 4289611 

 

B. aphidicola γ-proteob. Intracellular Vertical (130) NC_002528 640681 
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Supplementary Figure 1. Quality assessment of the Ca. R. standrea genome bin. The high 
completeness of the Ca. R. standrea genome was evaluated with CheckM using the lineage-specific 
workflow for Alphaproteobacteria. A, Visual representation of completeness, contamination and strain 
heterogeneity within the Ca. R. standrea (= standrea_812A_finished) genome bin. Single-copy marker 
genes are indicated by green bars – missing marker genes in gray. If markers were found multiple times 
they would be indicated by shades of blue (≥ 90% amino acid identity (AAI) or red (< 90% AAI). B, Visual 
representation of the position of marker genes on the bin sequence (1.34 Mbp). The coloration indicates 
the number of marker genes per position. 
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Supplementary Figure 2. Most abundant transcribed genes (top 10%) in Ca. R. standrea. The 
transcription levels were shown as transcripts per million (TPM), genes were sorted by their function and 
shown for each replicate composed of three pooled specimens. 
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Supplementary Figure 3. Expression of abundant proteins in Ca. R. standrea. The bar chart shows 
the abundance of proteins for selected metabolic pathways identified by proteomics in eight different 
Paracatenula samples (P1–P8). Samples were either a pool of three individuals or single specimens 
(indicated by the icons). Only proteins that are unique for a pathway were included in this representation 
(Dataset S3). NSAF (%) = normalized spectral abundance factor. 
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Supplementary Figure 4. Carbon fixation of Ca. R. standrea symbionts visualized by 
microautoradiographs of 14C-bicarbonate incubated Paracatenula sp. standrea. A, 6 h incubated 
specimen after 3 d exposure. Signals were present in the trophosome region while the rostrum was signal-
free. The image is composed of eight stitched images recorded at 40x magnification. Raw images are 
shown in Supplementary Figure 5. B–C, Controls after 6 days exposure. B, Dead control. C, Negative 
control fixed without 14C incubation. 
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Supplementary Figure 5. Raw image data for Supplementary Figure 4 – Carbon fixation of Ca. 
R. standrea symbionts visualized by microautoradiographs of 14C-bicarbonate incubated 
Paracatenula sp. standrea. 6 h incubated specimen after 3 d exposure. A, Overview image at 10x 
magnification. B–I, Raw images (40x) for the stitched overview shown in Supplementary Figure 4. E and 
F show the same area but different focal planes. No white balancing of images was performed.�
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Supplementary Figure 6. Microautoradiographs on sections of 14C-bicarbonate incubated 
Paracatenula sp. standrea individuals to visualize carbon fixation of the symbionts. Specimens 
were incubated for 6 h in labeled bicarbonate and resin sections were exposed to radiosensitive emulsion 
(K5, Ilford) for up to 10 days. A, Sections of the same organism as shown in Supplementary Figure 5 after 
3 days exposure and 6 days exposure. An increase in signal was observed with time. No signal in host 
tissue. Controls stayed signal-free. B, Different replicate from a second incubation experiment. Exposure 
to emulsion for 7 days. No signal in host tissue and 0 h control stayed signal-free. C, Again a different 
replicate from another experiment. Left panel, specimen was incubated for 6 h followed by a 5 day chase 
(absence of 14C-HCO3

-) to potentially see transfer into host material. Right panel, 6 h dead control. 
Exposures of same individual but different sections were done for 24 h to up to 240 h. Instead of artificial 
seawater we used seawater spiked with 14C-HCO3

-. More signals were observed within shorter time. No 
signal in host tissue (= no transfer). Dead control stayed signal-free. Abbreviations: E = epidermis; B = 
bacterial symbionts, H = host; C = cilia.  
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Supplementary Figure 7. Phylogenetic placement of PFK sequences indicates an 
alphaproteobacterial origin of PPi-PFK in Ca. R. standrea. The PPi-PFK sequence of Ca. R. standrea 
clustered with sequences of related Alphaproteobacteria. The amino acid sequence alignment was 
calculated with MAFFT (GIN-S-I) and the tree estimated using maximum likelihood with IQ-TREE with the 
LG+G4 model. The tree was rooted with the ATP-PFK clade. Respective conserved motifs for ATP-PFK and 
PPi-PFK shared by groups are shown in light blue. ? = Short sequence missing respective motif. Bootstrap 
proportions are shown as SH-aLRT support values and nonparametric bootstraps. White half-circles 
represent support values lower 70%. Scale bar represents 10% estimated sequence divergence. 
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Supplementary Figure 8. Phylogenetic placement of PPi-H+-pump sequences indicates an 
alphaproteobacterial origin in Ca. R. standrea. The PPi-H+-pump sequence of Ca. R. standrea 
clustered with sequences of related Rhodospirillaceae. The amino acid sequence alignment was calculated 
with MAFFT (GIN-S-I) and the tree estimated using maximum likelihood implemented in IQ-TREE with the 
LG+F+I+G4 model. The tree was rooted with the gammaproteobacterial sequences. Bootstrap proportions 
are shown as SH-aLRT support values and nonparametric bootstraps. White half-circles represent support 
values lower 70%. Scale bar represents 10% estimated sequence divergence. 



Chapter II: Symbiont physiology 

 96 

 

Supplementary Figure 9. Phylogenetic reconstruction of RuBisCO sequences indicates an 
alphaproteobacterial origin of RuBisCO in Ca. R. standrea. The CbbL sequence of Ca. R. standrea 
clustered within the group RuBisCO form I and the sequence of Ca. R. galateia in the group RuBisCO form 
II. The amino acid sequence alignment was calculated with MAFFT (GIN-S-I) and the tree was estimated 
using maximum likelihood with PhyML with the LG substitution model and 100 BS. The tree was rooted 
with the CbbL clade. Bootstrap proportions are indicated. Scale bar represents 10% estimated sequence 
divergence. 
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Supplementary Figure 10. Comparison of biosynthetic and catabolic processes of Ca. R. 
standrea, free-living and symbiotic bacteria and thiotrophic symbionts. A, A comparative 
metabolic analysis. Present pathways (based on Pathway Tools/BioCyc classification) were indicated as 
black lines. B, Occurrence of metabolic features in Ca. R. standrea, other thiotrophic symbionts with 
reduced genomes and free-living bacteria (Dataset S11). Genomes used are summarized in 
Supplementary Table 1.  
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Supplementary Figure 11. Transporters in Ca. R. standrea and other organisms. Only hits against 
the TCDB with at least one transmembrane (TM) domain and ≥ 30% identity are shown. The light blue 
arrow indicates the counts for Ca. R. standrea. The complete list of genomes used can be found in 
Dataset S6. 
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Supplementary Figure 12. Phylogenetic trees of representative genes of the incomplete 3-HPB 
pathway indicate an origin of the Ca. R. standrea genes outside of the Chloroflexi. Three out of 
five key genes clustered with sequences of other Rhodospirillaceae, and two had no homologs in 
Rhodospirillales. The amino acid alignments were calculated with Muscle and the tree estimated using 
maximum likelihood. Midpoint rooting was used for each of the five trees. Mch, mesaconyl-C1-CoA 
hyratase; McI, malyl-CoA/beta-methylmalyl-CoA/citramalyl-CoA (MMC) lyase; Mct, mesaconyl-CoA C1-C4 
CoA transferase; Meh, mesaconyl-C4-CoA hydratase; Smt, succinyl-CoA:(S)-malate-CoA transferase. 
Bootstrap proportions ≥80% are indicated. Scale bar represents 10% estimated sequence divergence.�
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Supplementary Figure 13. COG assignments in Ca. R. standrea, and a comparative analysis with 
free-living bacteria, thiotrophic symbionts with reduced and non-reduced genomes. The 
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complete list of genomes used can be found in Dataset S6. A, Relative abundance of COGs in Ca. R. 
standrea that were assigned using eggNOG-mapper. The list of categories was taken from 
ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/fun2003-2014.tab. B–C, The distribution of COG 
categories based on absolute (B) and relative (C) numbers among free-living Alphaproteobacteria, 
thiotrophic symbionts with reduced and non-reduced genomes. The names of COG categories are indicated 
at the top of the plot. Categories R, X, and Y were not shown as no orthologs were assigned. n = 28 (free-
living bacteria); n = 4 (thiotrophic symbionts with reduced genomes that are Ca. R. standrea, Ca. R. 
magnifica, Ca. V. okutanii and GSub); n = 7 (thiotrophic symbionts with non-reduced genomes). 
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Supplementary Figure 14. Raman analysis of storage compounds in Ca. R. standrea. A, Optical 
micrograph of symbionts. Scale bar: 5 μm. The red box indicates the area shown in B. B, A Raman-map 
showing the intensity of the 473 cm-1 cm peak corresponding to the S-S bond stretch of elemental sulfur. 
Scale bar: 2 μm. C, Point spectra of sulfur measured within the cells shown in red compared to an 
elemental sulfur standard shown in black (Roth 33 GmbH). 
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Supplementary Figure 15. Metabolomic analysis of Paracatenula sp. standrea specimens. A, GC-
MS chromatogram of bulk measurement (25 Paracatenula specimens) in polar phase. Compounds with 
>65% confidence identity were indicated. B, GC-MS chromatograms of Polyhydroxyvalerate (PHV) 
measured in the Paracatenula extract shown in red compared to a Polyhydroxybutyrate (PHB):PHV 
standard shown in black. Note the absence of the PHB peak in the Paracatenula extract. 
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Supplementary Figure 16. Glycogen storages in host and symbiont. A, Host tissue and B, Symbiont 
cell (B) with glycogen storages (G) next to a lysosome (L). Additionally, large storage inclusions (S) are 
present in the symbiont. Panel A is a magnified area from Figure 5E. 
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Supplementary Figure 17. Trehalose in Paracatenula sp. standrea under changing salinities. A, 
Separation of head (=rostrum, bacteria-free) and trophosome suggested the presence of trehalose as 
dominant metabolite only present in the trophosome region. n = 3. Error bars are shown as SD� B, 
Trehalose concentration of Paracatenula specimens after 5 h in seawater with different salinities. No 
significant differences between treatments could be detected. n = 5. Error bars are shown as SD.�
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Supplementary Figure 18. Amino acid biosynthesis transcription in Ca. R. standrea. TPMs were 
normalized to the housekeeping gene gyrA. Black lines indicate potentially missing enzymes but a 
comparison with M. magneticum and E. coli indicated that in most cases these steps were only specific to 
E. coli. * = indicates that genes were not assigned based on Pathway Tools but identified using a manual 
search. ! = indicates alternative pathways (i.e. for serine synthesis it is the non-phosphorylated pathway 
using serine hydroxymethyltransferase).
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Supplementary Figure 19. Cofactor and vitamin biosynthesis transcription in Ca. R. standrea. 
TPMs were normalized to the housekeeping gene gyrA. Black lines indicate potentially missing enzymes. 
? = the comparison with M. magneticum and E. coli indicated that in most cases these steps were only 
specific to E. coli. * = indicates that genes were not assigned based on Pathway Tools but identified using 
a manual search. 
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Supplementary Figure 20. Morphology of Paracatenula sp. standrea with characteristic 
inclusions in bacteriocytes. A, Confocal laser-scanning microscopy (Zeiss LSM 780 confocal laser 
microscope) showed the overlay of autofluorescence (excitation: 561 nm, emission. 570 nm–695 nm) with 
the respective DIC image. Inclusions (arrow) were not detected in symbionts but their surrounding tissue, 
most likely within bacteriocytes. B, Bar plot showing results of the lambda spectra. C, Microscopic image 
of the trophosome region with its orange inclusions (arrow) and the typical midline (double arrow) and D, 
a structure that resembled an egg. Images were taken with a Jenamed microscope (Carl Zeiss AG) with 
air objectives and a mounted Canon EOS 700D camera. 
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Highlights 

•� The Ca. Riegeria symbionts form a diverse clade, have reduced genomes and a low but 

stable genomic GC content 

•� The Ca. Riegeria symbionts share most of their metabolic functions  

•� Phylogenetic subclades of Ca. Riegeria have unique metabolic ‘fingerprints’ of retained or 

lost functions or genes e.g. involved in cell division and DNA repair 

•� The three clades show different modes of genome evolution that have previously been 

interpreted as successive stages of reductive genome evolution 

o� For divergent subclades we observe either full gene loss or nucleotide-based erosion 

that increases pseudogenization 

o� The divergent patterns for the loss of recombination and mobile genetic elements are 

highlighted by a conserved gene order in one clade and completely rearranged gene 

orders in a second clade of similar phylogenetic distance�

•� Despite strict vertical transmission of the symbionts, and their intracellular location in a 

nutritionally dependent host, one of their key metabolic genes encoding RuBisCO form I, 

has seen replacement by horizontal gene transfer 

Significance statement 

It is an open question if genomes of closely related endosymbionts follow convergent 

trajectories of reductive evolution. General predictions of genome reduction processes could 

yet not be drawn as most established models on underlining processes have been derived from 

studies on highly specialized insect symbioses. In this study, we compared the members of a 

diverse clade of vertically transmitted flatworm endosymbionts, which allowed us to look for 

convergent patterns in the evolution of reduced genome. We showed that each of the 

symbionts kept species- and lineage-specific metabolic ‘fingerprints’. Besides indications for 

parallel and group-specific reductive genome evolution, we identified contrasting trajectories 

among the symbiont clade including different degrees of gene fragmentation as well as genome 

rearrangements. Our results on the flatworm symbioses highlight convergent and stochastic 

genome evolution processes that are comparable to those in insect symbioses. 

  



Chapter III: Genome reduction 

 117 

Abstract 

The marine flatworm Paracatenula lacks a mouth and gut, and gains its nutrition from 

chemosynthetic Alphaproteobacteria named Ca. Riegeria. These intracellular symbionts are 

vertically transmitted between host generations, a transmission mode which is known to lead 

to rampant genome reduction in symbionts. However, given the complete reliance of the 

flatworm on its symbionts for nutrition, there should be strong selective constraints on 

symbiont genome reduction. 

To trace how reduced genomes evolved in Ca. Riegeria, we sequenced 35 symbiont genomes 

of 23 Paracatenula species from the Mediterranean and the Caribbean. The symbiont genomes 

were highly reduced with sizes between 1.19 to 2.04 Mb and genomic GC contents of 45.1 to 

55.2%. Gene losses that affected parts of the DNA repair and cell division machinery were 

specific for some Ca. Riegeria lineages. This lineage-specific gene loss appeared to be 

stochastic, and ranged from nucleotide-centered erosions to full gene deletions. Genome 

synteny was lineage-specific and highly variable, with one Ca. Riegeria lineage displaying 

several 100-fold more rearrangements than other lineages of similar phylogenetic distance. 

Despite the central importance of autotrophic carbon fixation in the symbioses, one of the key 

metabolic genes for autotrophic carbon fixation encoding RuBisCO form I, has seen 

replacement through horizontal gene transfer in one Ca. Riegeria species. Our comparative 

analyses revealed that current models of genome reduction processes of vertically transmitted 

endosymbionts, which are largely based on insect-bacteria symbioses, do not adequately 

represent the stochastic nature of parallel genome evolution we observed in the Paracatenula 

– Ca. Riegeria symbiosis.  
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Introduction 

Genome reduction is a universal process of gene loss, diminution of genome size, and 

simplifying of genetic information in eukaryotic fungi, bacterial and archaeal genomes 

(McCutcheon and Moran, 2012; Hauser, 2014; Nicks and Rahn-Lee, 2017). The reduction and 

loss of genes can occur in microbes from different habitats and ecological roles, including 

thermophilic archaea, free-living bacteria, insect symbionts and in chemosynthetic symbionts 

of marine invertebrates (Moran, 2002; Giovannoni et al., 2005; Kuwahara et al., 2007; Newton 

et al., 2007; McCutcheon and Moran, 2012; Wolf and Koonin, 2013; Nicks and Rahn-Lee, 

2017; Tian et al., 2017). 

Vertically transmitted bacteria living in obligate intracellular symbiosis with their hosts are 

particularly affected by extensive genome reduction that often results in tiny genomes down 

to not more than 0.112 Mb (McCutcheon and Moran, 2012; Bennett and Moran, 2013; Moran 

and Bennett, 2014; Anbutsu et al., 2017). While genes for essential functions, such as 

information processing or biosynthesis of key metabolites are retained by the symbionts, those 

regions not related to the provision of the host often get inactivated or even lost in the 

processes of reductive genome evolution (Moran, 2002; Morris et al., 2012). For example, 

insect symbionts that have co-evolved with their hosts for millions of years have evolved highly 

specialized metabolic interactions which can be as specific as the provision of a single type of 

amino acid (McCutcheon et al., 2009; McCutcheon and Moran, 2012). 

Established models for the dynamic processes of reductive genome evolution are mostly 

derived from studies on insect symbioses, and postulate various stages in the evolution from 

a free-living to an obligate intracellular lifestyle (Toft and Andersson, 2010; McCutcheon and 

Moran, 2012). Early stages are characterized by the acquisition of genes from the environment, 

rapid modification and gene duplication events (Toft and Andersson, 2010). Mobile elements 

can also proliferate, which causes recombination events, and the interruption and 

fragmentation of coding sequences (Toft and Andersson, 2010; McCutcheon and Moran, 2012). 

Genome reduction is initiated by single-nucleotide mutations which cause pseudogenization, 

followed by a reduction in length of the affected genes until their complete erosion. Genes 

affected by erosion are often related to DNA repair and metabolic redundancy (Moya et al., 

2008; Toft and Andersson, 2010; Manzano-Marín and Latorre, 2016). In later stages, mobile 
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elements and the ability to recombine will be lost, causing gene order to be fixed and creating 

a genome stasis that can persist for over millions of years (Tamas et al., 2002; Manzano-Marín 

and Latorre, 2014, 2016). In insect symbioses, whether the symbionts finally become reduced 

into organelle-like organisms is thought to depend on how co-adapted, metabolically 

integrated, and independent the symbionts and their host are, but it is still under debate if 

sequence erosion will eventually come to a halt (Tamas et al., 2002; Andersson, 2006; Toft 

and Andersson, 2010; McCutcheon and Moran, 2012). 

Does this progression of stages postulated for insect symbioses also apply to other types of 

endosymbionts associated with different classes of animal hosts, and does it always follow the 

same sequence? Most comparative studies thus far have compared reduced obligate 

endosymbionts with closely related microbes, or based their comparisons on selected genes or 

categories of genes, such as those associated with DNA repair (Kuwahara et al., 2011; 

Manzano-Marín and Latorre, 2016; Shimamura et al., 2017). In this study, we compared the 

genomes of a diverse clade of obligate chemosynthetic symbionts called Ca. Riegeria. These 

bacteria are vertically transmitted, intracellular, and form a nutritional symbiosis with the 

marine flatworm genus Paracatenula, with whom they have been associated for 500–620 

million years (Gruber-Vodicka et al., 2011). A recent genomic analyses of one Ca. Riegeria 

species has revealed its high genome reduction (Jäckle et al., 2018). Analysis of the Ca. 

Riegeria clade as a whole would permit us to test whether each lineage follows a similar 

trajectory of reductive genome evolution, or if it is not as linear as previously supposed.  

Here we characterized the genome evolution in 23 Ca. Riegeria species covering a broad 

diversity of Paracatenula symbionts. Combining genomics, phylogenetics and functional 

analyses we could unravel a largely conserved metabolism with lineage-specific functions. We 

identified varying patterns of gene losses unique for some of the Ca. Riegeria lineages. Clade-

specific genome rearrangements indicated a dynamic genome structure despite the ancient 

association. We also observed stabilization processes with early losses of mobile genetic 

elements only in some clades. Our analyses revealed that current models of genome evolution 

of vertically transmitted endosymbionts, which are largely based on insect-bacteria symbioses, 

do not adequately represent the stochastic nature of the processes observed in the 

Paracatenula – Ca. Riegeria symbiosis. 
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Results and Discussion 

Ca. Riegeria symbionts form a phylogenetically diverse clade with reduced 

genomes and low but stable genomic GC content 

We collected 35 single Paracatenula specimens from three localities (Belize, Bahamas, Italy) 

around the world, and assembled the genomes of each their Ca. Riegeria symbionts from 

shotgun metagenomic sequences. The sampled diversity represented 23 species and covered 

the known diversity of Paracatenula hosts (Gruber-Vodicka et al., 2011). The symbiont genome 

assemblies ranged in size between 1.19–2.04 Mb on 1–249 contigs with coding densities 

between 69.57–88.23% (mean 82.92% ± 6.17 standard deviation) (Supplementary Table 1). 

Two genomes could be assembled into closed, circular contigs; estimates of their completeness 

based on conserved marker genes were 89.64% and 91.89%, indicating genome reduction 

rather than incomplete genome assemblies. All Ca. Riegeria symbionts clustered into a single, 

well-supported monophyletic group within Rhodospirillaceae (Alphaproteobacteria) which 

concurs with previous phylogenetic analyses (Gruber-Vodicka et al., 2011; Jäckle et al., 2018) 

(Figure 1A). The Ca. Riegeria clade covered a large diversity with the lowest amino acid identity 

(AAI) in the whole clade of 69.93% and could be further divided into at least three subclades 

that agrees with the morphological classifications of their Paracatenula flatworm hosts (Figure 

1B, Supplementary Data set, S1). Ca. Riegeria symbionts of clade 1 had a lowest AAI of 

92.94%, whereas clade 2 and clade 3 were more divergent with lowest within-clade AAIs of 

78.36% and 79.07%. 

The genomes of Ca. Riegeria were both smaller (1.35 Mb ± 0.29) and had lower average 

genomic GC (gGC) content (45.07–55.19%, mean 50.64% ± 1.69) than their closest relatives 

in the family Rhodospirillaceae. For example, relatives such as Magnetospirillum magneticum 

and Rhodospirillum rubrum have genome sizes of up to 4.97 Mb and gGC ranging from 62–

69% (Gruber-Vodicka et al., 2011; Jäckle et al., 2018). Vertically transmitted endosymbionts 

often have lower gGC than their relatives, which has been explained by genetic drift due to 

population bottlenecks (Moran, 1996; Moran et al., 2009; Roeselers et al., 2010; Gruber-

Vodicka et al., 2011). The nucleotide content of genomes is not uniform, with the nucleotide 

usage in the third codon position being relatively unconstrained because of the redundancy in 

the genetic code. Non-coding regions of a genome are also under a lower selective pressure 
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and the comparison between gGC, non-coding regions GC and third codon position can reveal 

underlying trajectories of gGC evolution masked by gGC alone (Muto and Osawa, 1987). The 

high GC content (83.23% ± 5.95) in the third codon position in the free-living 

Rhodospirillaceae suggests their genomes are under strong selection towards high gGC 

(Supplementary Data set, S2). In contrast, the GC contents of non-coding regions (47.26% ± 

2.52) and the third codon position (49.22% ± 3.93) in Ca. Riegeria were similar to their gGC 

of 50.64% ± 1.69. This indicates a stationary equilibrium of the Ca. Riegeria gGC contents at 

approximately 50% and suggests an absence of the selective pressure observed in other 

Rhodospirillaceae. The stationary gGC of Ca. Riegeria contradicts the mutational bias towards 

high AT typically observed in insect symbionts (McCutcheon and Moran, 2012).�

 

Figure 1. Phylogenomic tree of the Ca. Riegeria clade. A, The phylogenetic tree is based on an 
alignment of 43 conserved genes, calculated using FastTree and rooted with Rickettsiales. The placement 
of the three Ca. Riegeria clades was highlighted by a blue, green and orange box, and alphaproteobacterial 
relatives by a gray box. Genome sizes based on CheckM estimations were included using iTOL. B, 
Micrographs of representative host individuals of each clade. Images are not to scale. 
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The Ca. Riegeria symbionts share most of their metabolic functions and 

differ in ecologically relevant functions 

A large proportion of orthologous genes and metabolic pathways were shared by the diverse 

Ca. Riegeria symbionts suggesting that they retained a broad core metabolism (Figure 2, 

Supplementary Figure 1, 2). The core genome of all 35 Ca. Riegeria symbionts represented 

55.3% ± 4.6 of the total gene repertoire of each symbiont and consisted of 721–735 genes. 

The majority of conserved core genes included those for basic cellular functions such as 

translation, energy, amino acid and cofactor metabolism – physiological functions that are 

usually retained in primary endosymbionts with reduced genomes (Wernegreen, 2017) 

(Supplementary Figure 2). The metabolic similarity of Ca. Riegeria symbionts was corroborated 

by how their genomes clustered together in a non-metric multidimensional scaling (NMDS) 

analysis. The NMDS was based on the distribution of annotated genes in COG categories, and 

compared Ca. Riegeria with free-living bacteria, parasitic and non-parasitic symbionts, as well 

as other chemosynthetic symbionts (n = 95, Figure 2B). This suggests functional conservation 

among Ca. Riegeria symbionts, which may be because they need to provide their host’s 

nutrition (Jäckle et al., 2018). Three Ca. Riegeria genomes from clade 2 diverged from the 

main Ca. Riegeria cluster, which could be explained by their relative enrichments in COG 

categories such as T (signal transduction mechanisms) for two Ca. Riegeria genomes, and L 

(replication, recombination and repair) for one genome, compared to other Ca. Riegeria. These 

categories are not directly related to biomass production, but might point to either different 

habitat preferences, niche adaptations and nutritional needs by the host, or the symbionts 

being in different stages of reductive genome evolution. 

The pan genome of Ca. Riegeria consisted of 7235 genes and each subclade or lineage within 

Ca. Riegeria had its own clade-specific genetic features (Figure 2A, C). Furthermore, most of 

the genes (5636 genes, 78%) were not annotated with a known function, and likely included 

pseudogenes. Genes or groups of genes that were specific to certain lineages encoded for 

example RuBisCO form II in clade 1, urea degradation-related genes in both clades 1 and 2 

and trehalose synthesis genes in clades 2 and 3 (Figure 2C).  

Two different species of Ca. Riegeria have already been shown to encode different forms of 

RuBisCO, the key protein of the Calvin-Benson cycle for carbon fixation, which suggested that 

different species have dissimilar affinities for carbon dioxide and oxygen in the habitat (Jäckle 
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et al., 2018). This was thought to originate from the differential loss of one or another copy of 

the gene encoding RuBisCO from a common ancestor that had encoded both forms of RuBisCO 

(Jäckle et al., 2018). Unexpectedly, the gene encoding RuBisCO form I present in clade 2 and 

clade 3 organisms had likely seen horizontal replacement in at least one of the studied 

symbionts, as its phylogeny showed a disjunction compared to the 16S rRNA genes 

(Supplementary Figure 3). Horizontal gene transfer (HGT) events were not expected in Ca. 

Riegeria as they have an obligate intracellular lifestyle and such events typically only occur in 

early stages of adaptation to the within-host environment (Toft and Andersson, 2010). Genes 

encoding RuBisCO have often been reported to undergo HGT in both free-living and symbiotic 

Gammaproteobacteria (Baxter et al., 2002; Kleiner et al., 2012). We therefore hypothesize 

that one Ca. Riegeria species has taken up a second copy of a RuBisCO form I-encoding gene 

belonging to a different form of the protein and lost the original. 
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Figure 2. Conserved and unique features in Ca. Riegeria symbionts. A, Ca. Riegeria core genes are 
shown in black, summing up to a pan genome shown in gray. Core genes include those found in Ca. R. 
sp. galateia 737A and in subsequently analyzed organisms. The pink squares represent the number of 
hypothetical proteins contributing to the pan genome. B, The NMDS plot was generated from COG category 
distributions with a 2D stress of 0.1135. The diameter of circles represent the genome sizes. The Ca. 
Riegeria clade and other reduced thiotrophs are highlighted. C, Shared and unique genes of Ca. Riegeria 
clades. Genes of interest were highlighted. 

Ca. Riegeria harbor lineage-specific nucleotide and gene deletions 

Vertically transmitted endosymbionts can gradually lose non-essential genes, leading to highly 

reduced and specialized genomes (McCutcheon and Moran, 2012). We examined the pattern 

of gene loss across the three Ca. Riegeria clades to determine whether the genes lost are 

paralleled in each lineage. We could identify clade-specific reductions and losses of fts genes 

and DNA repair genes among the three Ca. Riegeria clades (Supplementary Figure 4–6, Figure 
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3A). Only the genes ftsH and ftsZ were conserved among the symbionts, showed no degrees 

of reduction and only one clade 2 symbiont appeared to lack the ftsZ gene. Varying degrees 

of gene reduction, ranging from shortened genes up to drastic gene diminutions, were 

observed for ftsQ and ftsA in clade 2 and clade 3 whereas these genes were retained in clade 

1 organisms (Figure 3B). Other symbiotic bacteria with reduced genomes have gene 

diminutions in some fts genes, e.g. ftsK and ftsN, but the encoded proteins were shown to be 

still functional (Manzano-Marín and Latorre, 2016). Thus, we could not exclude that gene 

remnants encoding essential protein domains were still present and the enzymes might still 

be functional. 

We identified four DNA repair genes (unG, ntH, recA, ligA) that were conserved in all Ca. 

Riegeria symbionts (Supplementary Figure 5, Supplementary Data set, S3). Genes such as 

ogT, recF, recO that are involved in direct damage reversal and DNA recombination were 

conserved in at least one clade. The Ca. Riegeria symbionts encoded fewer DNA repair genes 

(8–20, 11.08 ± 2.41) compared to other thiotrophic symbionts such as clam symbionts (11–

23, 16.50 ± 4.50), but more than insect symbionts (0–12, 5.75 ± 4.92) (Moran et al., 2008; 

McCutcheon and Moran, 2012). The set of genes conserved in Ca. Riegeria may explain the 

stationary gGC of Ca. Riegeria symbionts, as the loss of DNA repair genes often results in DNA 

damage such as cytosine deamination and guanine oxidation, which bias a genome towards a 

lower GC content (Lind and Andersson, 2008; McCutcheon and Moran, 2012). The largest 

number of DNA repair genes were found in a clade 2 symbiont with the largest known genome 

among Ca. Riegeria with 2.04 Mb, indicative for a less streamlined state (Supplementary Figure 

5, 6). The conservation of specific DNA-repair gene repertoires in Ca. Riegeria is a usual feature 

of insect symbioses and suggests convergent processes of genome reduction (Moran et al., 

2008; McCutcheon and Moran, 2012). 

While the loss of DNA repair genes is common in endosymbionts undergoing genome reduction, 

the fragmentation and degradation of cell division-related fts genes over a diverse clade of 

symbionts was unknown and unexpected (McCutcheon and Moran, 2012). Although fts genes 

encode proteins that play key roles in bacterial cell division, several bacteria, both free-living 

and symbiotic, are known to lack some elements such as ftsZ and hence must use alternative 

molecular mechanisms for division (Sayavedra, 2016). In contrast, the most basally branching 

clade of Ca. Riegeria (clade 1) has an intact set of fts genes whereas the other clades show 
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gradual erosion and loss (Figure 3). This suggests that in the latter two clades the genes lost 

have no essential function for cell division processes or the symbionts encode an alternative 

mechanism for cell division than clade 1. Lineage-specific absence of fts genes is supporting 

evidence for ongoing progressive and parallel genome reduction in the Ca. Riegeria clade. 

The presence of distinct stages of ongoing reductive genome evolution in the Ca. Riegeria 

clades is further supported by investigating gene length distributions as indicators for 

pseudogenes. We identified a dichotomy between organisms of the three different Ca. Riegeria 

clades based on their abundances of short-length genes. Gene length histograms of clade 2 

and clade 3 symbionts showed higher abundances of short-length genes (100–200 bp) 

compared to clade 1 symbionts (Figure 3C). The majority of these genes were annotated as 

hypothetical proteins and likely represent gene remnants as a result of pseudogenization, and 

also inflate the total gene count for the Ca. Riegeria pan genome (Figure 1A). The accumulation 

of remnants in these two clades could lead to the assumption that these symbionts were in an 

early stages of reductive genome reduction. Molecular clock estimates, in combination with 

their stable gGC contents contradict this assumption, as they suggested that this symbiotic 

setting is instead ancient and was established hundreds of million years ago (Gruber-Vodicka 

et al., 2011) (Supplementary Data set, S4). Slow but ongoing processes of reductive genome 

evolution might be an explanation for the presence of gene fragments in the Ca. Riegeria 

symbionts, or drastic reductions even came to a halt – a scenario that is still under debate to 

occur in insect symbionts (Andersson, 2006). 
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Figure 3. Patterns of genome reduction in Ca. Riegeria symbionts. A, Schematic representation of 
the fts gene cluster in four Ca. Riegeria symbionts showing different degrees of gene reductions. 
Homologous genes are indicated by their colorations. B, Zoom-in into the nucleotide alignment of the 
ftsQAZ gene cluster. Gaps indicate nucleotide deletions. Blue and pink squares indicate zoom-ins of the 
alignment of the ftsQ (left) and the ftsA gene (right) and illustrate gaps in the Ca. Riegeria genetic code. 
The alignment was done with MUSCLE using a maximum number of iterations of eight. C, Gene length 
distributions based on ORF-predictions in the Ca. Riegeria clades indicate fragmentations in derived Ca. 
Riegeria clades. 

Subclades show varying modes of genome evolution that resemble 

successive stages of reductive genome evolution in insect symbionts 

Generally, bacterial symbionts that live in an obligate intracellular symbiosis and are vertically 

transmitted show high degrees of genome stability and only few examples are known that do 

not follow this general trend (Sloan and Moran, 2013). Our analysis of genome architectures 

within Ca. Riegeria allowed us to compare ongoing genome dynamics between clades and to 

investigate if this general prediction holds true. The degree of genome rearrangements was 

estimated by counting the number of breakpoints in pairwise genome alignments of organisms 

from the three symbiont clades. 

The genomes of Ca. Riegeria from clade 1 and clade 3 were highly syntenic within the 

respective clades, with few indications of recent genome rearrangements (Figure 4). The 

genome sequences of clade 1 and clade 3 symbionts had fixed gene orders with 1–13 

breakpoints (at in average 95.29% ± 3.58% AAI, and lowest number of breakpoints at 
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91.96%) and 0–16 breakpoints (at in average 82.54% ± 5.86% AAI, and lowest number of 

breakpoints at e.g. 78.06%). In contrast to this, genomes within clade 2 had similar average 

AAI (83.24% ± 6.48%) but less conserved genome architectures, having on average 201 ± 

133 breakpoints between each pair of genomes (Figure 4A–D).  

High degrees of genome instability were identified when comparing genomes between the 

three Ca. Riegeria clades. Comparing clade 1 and clade 2 organisms resulted in an average 

AAI of 71.3% and 921 breakpoints, clade 2 and clade 3 in 494 breakpoints at an average AAI 

of 73.4% and clade 1 and clade 3 in 916 breakpoints at an AAI of 69.5%.  

The breakpoint distances in clade 2 are phylogenetically correlated, as the tree based on 

breakpoint distances had a similar branching pattern as the molecular phylogeny based on 

conserved marker genes (Figure 4E). This illustrated that within clade 2 we still find ongoing 

and recent genome rearrangements which are absent within clade 1 and clade 3 organisms, 

indicating that these organisms have lost genetic mobile elements. 

Genome syntenies that vary from being conserved to highly rearranged stand in contrast to 

the relatively stable genome structures in pairwise comparisons of vertically transmitted 

symbionts with comparable genetic distances such as Buchnera, Portiera and chemosynthetic 

clam symbionts (Supplementary Figure 7) (Tamas et al., 2002; Sloan and Moran, 2013). The 

architectural conservations in two Ca. Riegeria clades was surprising as they all encoded the 

recombination protein RecA. The lack of the RecA protein is assumed to be key for preserving 

genome syntenies, although its function was recently suggested for reconsideration what 

agrees with our findings (Kuwahara et al., 2008; Shimamura et al., 2017). 

Genome rearrangements are often a consequence of mobile genetic elements movements such 

as transposases in early stages of reductive genome (Toft and Andersson, 2010; McCutcheon 

and Moran, 2012). An alternative to mobile elements is the accumulation of restriction-

modification systems that are known to be associated with genome rearrangements (Zheng et 

al., 2015). We found both, a remnant of a transposase as well as two remnants of type I 

restriction-modification systems in the largest genome of a clade 2 representative with a 

genome size of 2.04 Mb. All other Ca. Riegeria genomes were lacking these gene remnants, 

and thus, this Ca. Riegeria species is likely in an earlier stage of reductive genome evolution 

compared to clade 1 and clade 3 organisms. Additional evidence for an earlier stage was given 

by the presence of five flagellar genes (motB, flbT, flaA, flip, flil) in this species of which two 
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were also shared with other clade 2 organisms. These genes showed signatures of a 

alphaproteobacterial phylogeny and might be indications for a previous free-living state before 

the establishment of a symbiosis (Supplementary Data set, S5). Not surprisingly, clade 2 

organisms had the lowest coding densities (mean: 72.88% ± 2.10) compared to clade 1 

(mean: 87.73% ± 0.44) and clade 3 (mean: 86.00% ± 1.31) symbionts. And exactly the clade 

2 symbiont with the largest genome had also the lowest coding density of 69.57%, that is 

lower compared to the average bacterial coding density of 85–90% (Kuo et al., 2009). This is 

indicative for clade 2 organisms being in an earlier stage of genome reduction compared to 

the other clades (Kuo et al., 2009). 

 

Figure 4. Pairwise whole-genome alignments of Ca. Riegeria symbionts. A schematic 16S rRNA 
gene tree is shown above each pairwise Mauve alignment to highlight the representatives compared. Each 
colored block represents likely homologous segments. Homologous segments are connected by colored 
lines. Pairwise comparisons were done with A, Ca. R. ‘ruetzleri’ (clade 3) and ‘bindfaden’ (clade 2) 
(identity: 76.3%), B, Ca. R. ‘ruetzleri’ (clade 3) and galateia (clade 1) (identity: 72.0%). C, Ca. R. 
‘ruetzleri’ (clade 3) and ‘frankfurter’ (clade 3) (identity: 79.9%). Identity values are based on amino acid 
identities (AAI). D, Quantification of synteny breakpoints vs. amino acid identity values. E, Genome 
syntenies represent phylogenetic distances of Ca. Riegeria symbionts. The left side shows a phylogenetic 
tree that is based on 32 orthologous genes and the right tree is based on a distance matrix from the 
breakpoint analysis. 

For the first time we could provide evidence for the presence of different modes of genome 

evolution within a single monophyletic group of symbionts (Figure 5). We additionally identified 
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parallel gene losses among the three clades which agrees with previous studies on insect 

symbioses (Williams and Wernegreen, 2015; Boscaro et al., 2017; Klasson, 2017; Kinjo et al., 

2018). Our study on a diverse symbiont clade allowed to track ‘steps along the way’, that are 

usually missing as most symbioses only transitioned once (Klasson, 2017). The different stages 

among the Ca. Riegeria clades have previously been interpreted as successive stages of 

genome reduction. The Ca. Riegeria symbiont genomes ranged from one clade affected by 

genome rearrangements, pseudogenes and low coding densities to clades with more 

streamlined genomes, suggesting that these processes are neither linear in Ca. Riegeria 

symbionts, nor directly linked to the age of a symbiotic clade (Supplementary Data set, S4). 

 

Figure 5. Model of the reductive stages in the three Ca. Riegeria clades. Likewise as in insect 
symbionts, a free-living bacterium that was incorporated is affected by dynamic genome changes. Once 
taken up as intracellular symbiont, these changes result in losses of DNA repair genes, metabolic genes, 
the accumulation of pseudogenes and genome rearrangements. Although the Ca. Riegeria symbionts from 
the three clades are ancient and have evolved from a last common ancestor, they show different modes 
and stages of genome reduction. 

Conclusion 

Although general mechanisms of convergent reductive genome evolution in insect symbioses 

are well understood it is still an open question if these processes are predictable or random 

and if they would apply to symbioses hosted by other animals. One of the challenges is that 
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such symbiotic systems, with symbionts that are vertically transmitted and have reduced 

genomes, often are ancient and phylogenetically divergent from their last common ancestor. 

Additionally, these symbioses were often established once with few known exceptions resulting 

in no apparent “traces” left to finally result in reduced genomes (Boscaro et al., 2017). A 

similar symbiotic setup that allows studying such questions is represented by the ancient 

symbiosis between the flatworm Paracatenula and its vertically transmitted symbionts 

Ca. Riegeria. 

With our comparative analysis of the diverse Ca. Riegeria symbionts we could show that each 

symbiont left behind species- or even lineage-specific ‘footprints’ among three distinct Ca. 

Riegeria clades. Besides indications for parallel and group-specific reductive genome evolution 

we identified atypical traces among the Ca. Riegeria clades. These differences included gene-

length fragmentations as well as ancient genome rearrangements. We provided evidence for 

three different stages of genome reduction among the Ca. Riegeria symbionts that most likely 

originated from a shared last common ancestor. These results suggest that the Ca. Riegeria 

symbiont clades undergo reductive genome evolution under different selective pressures and 

different outcomes. Our results on the flatworm symbioses highlight convergent and 

comparably stochastic genome reduction processes as suggested for insect symbioses. 

Materials and Methods 

Sample collection 

Paracatenula specimens were collected between 2013 and 2015 from sediments in the bay off 

Sant´Andrea, Elba, Italy, from Carrie Bow Cay, Belize, and from the Bahamas. Specimens 

were extracted by decanting the sediment collected by divers at 6–7 m water depth in Elba, 

and from sediment in 1–3 m water depths in Carrie Bow Cay and the Bahamas. Individual 

specimens were picked manually using glass pipettes and stored in glass vials filled with 

seawater and natural sediment that was rinsed with fresh- and seawater to remove other 

meiofauna. Paracatenula specimens for nucleic acid extractions were fixed in RNAlater 

(Ambion) and stored at 4 °C. 
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Light microscopy 

Live Paracatenula specimens were transferred onto glass slides and squeezed by applying 

pressure to the cover slips. Microscopy was performed using transmitted light with differential 

interference contrast (DIC) on a modified Zeiss Jenamed microscope (BW-Optik). 

DNA extraction and genome sequencing 

DNA from single Paracatenula specimens was extracted using the DNeasy Blood and Tissue 

Micro Kit (Qiagen) following the manufacturer´s instructions as explained by Jäckle and 

colleagues (Jäckle et al., 2018). Between 5 and 20 million 250 bp paired-end reads were 

generated with an insert size of 300–600 bp. Library preparations and sequencing on the 

Illumina HiSeq 2500 or 3000 were performed at the Max Planck Genome Centre in Cologne, 

Germany (http://mpgc.mpipz.mpg.de/home/). 

Metagenome assembly and binning  

Prior to assembly, adapters and low-quality reads were removed with bbduk (part of BBmap 

v36.2, https://sourceforge.net/projects/bbmap/) using a minimum quality value of two and a 

minimum length of 36. Single reads were excluded from further analyses. To remove the host 

genomic reads, reads were sorted based on a kmer frequency analysis using bbnorm (BBmap). 

Symbiont genome kmer peaks were identified by plotting the kmer frequency spectra as well 

as using the bbnorm peak prediction. Only reads with average kmer frequencies of more than 

1/3 of the start of the symbiont´s kmer peak were kept using the bbnorm function outhigh. 

The assembly was performed with SPADes v3.8 with kmer lengths 21, 33, 55, 77, 99 and 127 

(Bankevich et al., 2012). Binning was performed by collecting all contigs or scaffolds linked to 

the contig that contained the symbiont 16S rRNA sequence using the FASTG output files of the 

SPAdes assembly and the FASTG ‘fishing’ script available with phyloflash v3 

(https://github.com/HRGV/phyloFlash). 

Annotation and metabolic comparisons 

Assembly sizes, completeness and contamination were estimated using 225 marker genes 

conserved across Alphaproteobacteria using CheckM v1.09 (Parks et al., 2015). 35 Ca. Riegeria 

genome assemblies were annotated by RAST v2 (Aziz et al., 2008) along with the genomes 

used for comparisons (Supplementary Table 1). Annotations of specific genes discussed in 
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detail were verified manually using NCBI PSI-BLAST (Altschul et al., 1997) against the NCBI 

nr database. 

Functional annotations and the presence of cell division and DNA repair genes among the 

different bacterial genomes were manually checked. Gene length patterns in the Ca. Riegeria 

symbionts were studied by exporting the predicted gene lengths from the RAST annotation 

pipeline (Overbeek et al., 2014) to Geneious v11 (Kearse et al., 2012), transferring into tabular 

format and a representation as histograms. fts gene sequences were aligned with Muscle 

v3.8.425 (Edgar, 2004) to identify conserved vs. lost gene regions. 

Shared and unique orthologous genes of the three defined core genomes of Ca. Riegeria clades 

were analyzed using reciprocal best hits calculated with the EDGAR software (Blom et al., 

2009). The core genomes of each clade were defined using reciprocal best BLAST hits with one 

clade representative set as reference (clade 1: Ca. R. galateia 737A; clade 2: Ca. R. ‘bindfaden’ 

737E; clade 3: Ca. R. ‘standrea’ 812A) – unique genes were added to the respective pan 

genomes. The relative proportions of genes contributing to the coregenome was estimated 

from the total number of genes encoded in each Ca. Riegeria organism. Sequences of the core 

genomes were extracted and transformed into FASTA format and annotated by RAST v2. The 

Venn diagram was calculated based on reciprocal BLAST hits, manually curated and genes of 

interest were highlighted. 

The core- vs. pan genome analysis was conducted using fractional pan genome calculations 

implemented in EDGAR. Ca. R. galateia 737A was set as reference and further Ca. Riegeria 

genomes were added to the analysis in a stepwise process.  

To compare Clusters of Orthologous Genes (COGs) category composition between genomes, 

protein sequences were assigned to COGs using EggNog (Huerta-Cepas et al., 2016). The 

numbers of sequences per COG category were tabulated and expressed as percentages of COG 

assignments per genome to account for varying genome sizes, as described in Jäckle et al. 

(Jäckle et al., 2018). The NMDS analysis was performed using the metaMDS function from the 

R package ‘vegan’ (cran.r-project.org/package=vegan) with Bray-Curtis distances, and was 

visualized with ggplot2. 

Phylogenomic analysis 

The Ca. Riegeria symbiont phylogeny was calculated from a concatenated alignment of 43 

conserved marker genes as implemented in the CheckM tree pipeline (Parks et al., 2015). In 
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brief: publically available genomes of representatives from different alphaproteobacterial 

groups (Rhodospirillales, Sphingomonadales, Rhodobacteracaea, Rhizobiales and 

Rickettsiales) were downloaded from the NCBI database. The amino acid sequences of marker 

genes of each genome were aligned with HMMER v3.1b2 (Eddy, 2011). The maximum 

likelihood phylogenomic tree was estimated with FastTree v2.1 (Price et al., 2010), using the 

JTT substitution model with 20 per-site rate categories and SH-like support values. The 

annotated tree was visualized with iTOL v3.5.4 (Letunic and Bork, 2016) and edited with Adobe 

Illustrator CS5. 

Phylogenetic distances and gGC analysis 

The average amino acid identities (AAI) of Ca. Riegeria and free-living relatives were calculated 

with either the AAI calculator (http://enve-omics.ce.gatech.edu/aai/) or with the tool 

implemented in the EDGAR software (https://edgar.computational.bio.uni-giessen.de/cgi-

bin/edgar_login.cgi). The gGC content of full genomes, non-coding regions, coding regions, 

and coding regions by codon position were estimated by predicting rRNAs and coding regions 

using Barrnap (http://www.vicbioinformatics.com/software.barrnap.shtml) and prodigal 

(Hyatt et al., 2010), and by generating codon usage tables with the EMBOSS tool cusp (Rice 

et al., 2000) and custom scripts. 

Genome rearrangements 

To visualize genome synteny for selected genomes, genomes were aligned in pairs with the 

mauveAligner algorithm (Mauve version snapshot 13 February 2015). The degree of genome 

synteny and rearrangements for 38 Ca. Riegeria genomes (including additional species of clade 

2 and 3) was quantified by counting the number of breakpoints between conserved segments 

in all pairs of genomes. All 703 possible pairs were aligned by their amino-acid translations 

using the Promer tool from Mummer v3.07, with standard settings (Kurtz et al., 2004). The 

results were filtered with the command delta-filter to retain only bidirectional best hits (options 

–q and –r). Coordinates were reported with show-coords, removing alignments that overlap 

other better-scoring alignments (option -k), in the btab format (option -B). Breakpoints were 

counted and plotted with scripts available at https://github.com/kbseah/mummer-

breakpoints. The definition of breakpoints by Sankoff & Blanchette (Sankoff and Blanchette, 

1997) was used, except that breakpoints falling at contig boundaries were regarded as 
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ambiguous and were not counted, to account for genome assembly fragmentation. The data 

matrix of breakpoint counts between each genome pair was used as a distance matrix to 

calculate a neighbor-joining distance tree with BIONJ (Gascuel, 1997). The phylogeny was 

calculated from a set of 32 orthologous proteins containing conserved markers used by the 

CheckM pipeline, and which were present in a single copy in each genome. Each protein 

sequence was aligned with Muscle, and a phylogeny was calculated from the concatenated 

alignment using RAxML v8.1.3 (Stamatakis, 2014) with CAT-based likelihood and WAG 

substitution matrix, 10 randomized maximum-parsimony starting trees, and SH-like support 

values. The breakpoint distance tree was drawn as a tanglegram vs. the phylogenetic tree 

based on orthologous conserved proteins, using Dendroscope (Huson and Scornavacca, 2012). 
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Supplementary Table and Figures 

The Supplementary Data set is available on the CD-ROM provided with the thesis. 

 

Supplementary Table 1. Genomes used for comparative analysis. 
 

             Organism 

 

Size 

(Mb) 

 

gGC 

(%) 

 

Contigs 

 

Complete 

(%) 

 

Contamination 

(%) 

Ca. R. galateia 13K 1.26 50.4 108 94.93 0.00 

Ca. R. galateia 17N 1.26 50.4 102 94.93 0.00 

Ca. R. galateia 08F 1.24 51.2 139 94.93 0.00 

Ca. R. galateia 12J 1.24 51.2 106 94.93 0.00 

Ca. R. galateia 737A 1.23 51.3 13 94.93 0.00 

Ca. R. galateia 737B 1.23 51.1 12 94.93 0.00 

Ca. R. ‘chickenburger’ 05D 1.51 45.1 18 95.95 0.34 

Ca. R. ‘urania’ 07E 1.50 50.3 39 92.57 0.34 

Ca. R. ‘bindfaden’ 10H 2.04 55.2 249 98.31 0.00 

Ca. R. ‘silky’ 01A 1.67 50.5 33 92.23 0.00 

Ca. R. ‘bindfaden’ 141 1.57 50.8 80 91.89 0.34 

Ca. R. ‘bindfaden’ 737E 1.56 50.8 15 91.89 0.34 

Ca. R. ‘bindfaden’ 737F 1.57 50.8 25 91.89 0.34 

Ca. R. ‘bindfaden’ 11I 1.54 51.2 63 94.59 0.34 

Ca. R. ‘bindfaden’ 151 1.54 50.7 84 92.91 0.34 

Ca. R. ‘polyhymnia’ 117 1.24 50.1 12 90.52 0.34 

Ca. R. ‘polyhymnia’ 116 1.24 50.1 12 90.52 0.34 

Ca. R. ‘polyhymnia’ 118 1.24 50.1 12 90.52 0.34 

Ca. R. ‘schlauchi’ 103 1.23 49.0 3 89.64 0.34 

Ca. R. ‘schlauchi’ 112 1.23 49.0 1 89.64 0.34 

Ca. R. ‘schlauchi’ 090 1.23 49.0 3 89.64 0.34 

Ca. R. ‘frankfurter’ 136 1.23 48.5 9 89.86 0.34 

Ca. R. ‘frankfurter’ 137 1.23 48.5 9 89.86 0.34 

Ca. R. ‘frankfurter’ 099 1.23 48.5 9 89.86 0.34 

Ca. R. ‘punkti’ 03C 1.22 48.5 6 90.54 0.34 

Ca. R. ‘longnose’ 055 1.27 53.6 6 93.24 0.68 

Ca. R. ‘longnose’ 089 1.27 53.3 18 91.89 0.68 

Ca. R. ‘standrea’ 812A 1.34 51.8 1 93.24 0.34 

Ca. R. ‘urania’ 057 1.19 50.7 12 91.22 0.34 

Ca. R. ‘schnitzel’ 02B 1.31 51.8 12 93.92 0.34 

Ca. R. ‘schnitzel’ 09G 1.29 51.5 12 91.22 0.34 

Ca. R. ‘urania’ 14L 1.29 51.5 12 91.22 0.34 

Ca. R. ‘’ruetzleri’ 16M 1.29 51.9 6 91.89 0.34 

Ca. R. ‘ruetzleri’ 737C 1.29 51.9 4 91.89 0.34 

Ca. R. ‘ruetzleri’ 737D 1.29 51.9 1 91.89 0.34 
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Supplementary Figure 1. Coregenome and pan genome development and genome conservation 
in Ca. Riegeria symbionts. A, Coregenome and pan genome development plots of 35 different Ca. 
Riegeria symbionts. B, Comparison of minimal 16S rRNA gene similarity, core genome conservation and 
average genome sizes. The different coloration indicates the average genome sizes. Data taken and 
modified from Grote et al., 2012. 
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Supplementary Figure 2. COG assignments in Ca. Riegeria core. Relative abundance of COGs in Ca. 
Riegeria core that consists of 735 genes that were assigned using EggNog-mapper. The list of categories 
was taken from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/fun2003-2014.tab. The relative 
abundances are similar to Ca. R. standrea (Jäckle et al., 2018).  
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Supplementary Figure 3. Comparison of 16S rRNA and CbbM/L phylogenies shows congruency. The 16S 
rRNA tree shown is based on MAFFT-qinsi alignment and was calculated with PhyML (100 bootstraps). 
Scale bar: 20% estimated sequence divergence. The RuBisCO gene tree is based on MUSCLE nucleotide 
alignments. The tree shown was calculated using PhyML (100 bootstraps) and rooted based on the CbbM-
clade. Scale bar: 50% estimated sequence divergence.  
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Supplementary Figure 4. Fts-genes in free-living Alphaproteobacteria and Ca. Riegeria 
symbionts. The phylogenetic tree using 16S rRNA genes is based on MAFFT nucleotide alignment 
incorporating predicted secondary structure information and was estimated under the HKY85 substitution 
model using PhyML with 100 bootstraps. Present genes are shown in blue, absent genes in white and those 
fragmented (below 80% of length when compared to standard length) in orange. 
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Supplementary Figure 5. DNA-repair gene reduction in Ca. Riegeria symbionts, free-living 
Alphaproteobacteria, reduced symbiotic thioautotrophs and highly reduced insect symbionts. 
Present genes were shown in blue, absent genes in white. 
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Supplementary Figure 6. Number of DNA-repair genes plotted against genome sizes. The 
comparison includes Ca. Riegeria symbionts, free-living relatives (Caenispirillum salinarium, Novispirillum 
itersonii, Rhodospirillum rubrum and Magnetospirillum magneticum), thioautotrophic symbionts (Ca. V. 
okutanii, Ca. R. magnifica, Gsub and Solemya symbionts) and reduced insect symbionts (Buchnera 
aphidicola APS, Blochmannia floridanus, Ca. Carsonella ruddii and Ca. Hodgkinia cicadicola). 
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Supplementary Figure 7. Pairwise whole-genome alignments of vertically transmitted closely 
related symbionts. A, The whitefly symbionts Ca. P. aleyrodidarum BT-B and TV, B, The aphid symbionts 
Buchnera aphidicola SG and APS and C, The clam symbionts Ca. V. okutanii and Ca. R. magnifica. AAI 
values are indicated. 
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Highlights 

•� Paracatenula flatworms have the ability to regenerate a rostrum within two weeks 

•� They harbor nutritional symbionts that provide nutrition and serve as primary 

energy storage 

•� The symbiont population changes gene expression in response to fragmentation 

and regeneration 

•�  Symbiont populations in Paracatenula individuals regenerating a rostrum showed 

differential expression in 168 of 1344 genes  

•� Most upregulated genes were involved in cellular processes such as translation, 

transcription and energy conservation 

•� Some genes were involved in the biosynthesis of amino acids and the vitamin thiamine 

•� The large-scale change of gene expression suggests an active function of the symbionts in 

rostrum regeneration  
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Abstract 

Most flatworm species have the ability to regenerate parts of their body within hours up to a 

few days. Marine flatworms of the genus Paracatenula are mouthless and live in endosymbiosis 

with nutritional symbionts. The symbionts are housed in the trophosome region that is 

posterior to the brain while the anterior located rostrum is symbiont-free. Their symbionts 

provide both bulk nutrition and primary energy storage for their host. In Paracatenula, asexual 

reproduction appears to be the predominant mode of reproduction that naturally includes 

tissue regenerating capabilities. Within a few days, Paracatenula can perform wound healing 

and regrowth of the its rostrum within two weeks after induced sectioning. 

Here we provide evidence that Ca. R. standrea symbionts are involved in tissue regeneration 

processes in the flatworm Paracatenula sp. standrea. The symbionts change their expression 

in 168 out of 1344 protein-coding genes. The majority of differentially expressed genes were 

upregulated and related to basic cellular processes such as translation, transcription as well as 

carbon and energy metabolism. This upregulation suggests a boost of their metabolism under 

such conditions. Additionally, some genes were involved in the biosynthesis of amino acids and 

the vitamin thiamine, which reflect a potential importance of the symbionts in nutrient 

supplementation. We conclude that the transcriptome response of Ca. R. standrea to tissue 

regeneration shows an active function of the symbionts in complex host processes as rostrum 

regeneration.  
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Introduction 

The regeneration of body parts is widespread in several species of Platyhelminthes (Egger et 

al., 2007). Underlying processes of tissue regeneration were well studied in model systems 

such as Schmidtea mediterraneae, Dugesia japonica and Macrostomum lignano and recently 

investigated in the symbiotic flatworm Paracatenula (Newmark and Sánchez Alvarado, 2002; 

Agata, 2003; Saló, 2006; Gentile et al., 2011; Dirks, Gruber-Vodicka, Egger, et al., 2012). 

The ability for regeneration tissues varies as some flatworms are capable to regrowing into a 

complete animal from tiny flatworm pieces while others can only regenerate the posterior 

fragment when brain and pharynx are present (Wanninger, 2015). In general, regenerative 

abilities are more pronounced in taxa that contain species with asexual reproduction as 

regeneration is essential for their survival (Egger et al., 2007). 

Stem cells, so-called neoblasts, confer the remarkable ability of tissue regeneration in 

flatworms (Newmark and Sánchez Alvarado, 2000; Bode et al., 2006; Wanninger, 2015). 

These cells are scattered throughout the animal body but are absent in the head tip and 

pharynx (Wanninger, 2015). Neoblasts can differentiate into all cell types and were shown to 

have critical functions for regeneration in e.g. Tricladida and basally branching Catenulida 

(Moraczewski, 1977; Palmberg, 1990; Wagner et al., 2011). The regenerative abilities of some 

flatworms involve the de novo synthesis of a functional central nervous system (Cebrià et al., 

2007; Agata and Umesono, 2008; Umesono et al., 2011; Fraguas et al., 2012). 

The mouthless flatworms genus Paracatenula reproduce by asexual fragmentation (Dirks, 

Gruber-Vodicka, Leisch, et al., 2012). They belong to the order Catenulida that are known for 

their excellent regeneration capabilities (Egger et al., 2007). The species Paracatenula galateia 

can regrow the region anterior of the brain (rostrum) within two weeks after sectioning (Dirks, 

Gruber-Vodicka, Egger, et al., 2012). It has been shown, that regeneration can only occur in 

the presence of a sufficient trophosome fragment size because tissue-regenerating neoblasts 

are restricted to this region. (Dirks, Gruber-Vodicka, Egger, et al., 2012). Such neoblasts were 

identified as the source of bacteriocytes – the symbiont-containing cells – and all other somatic 

cell types (Dirks, Gruber-Vodicka, Leisch, et al., 2012). In tissue regeneration, the neoblasts 

migrate through the worms body to the wounded regenerating part (Dirks, Gruber-Vodicka, 

Leisch, et al., 2012). Within two days after rostrum sectioning, the cutting wound is closed by 
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surrounding epidermal cells and longitudinal nerves end blindly in the wound area. In this 

stage, neoblasts start to accumulate in the wound area to initiate complex regeneration 

processes. With the start of the rostrum regeneration clusters of proliferating neoblasts 

(blastema) are formed, and within a week of regeneration, the rostrum appears in its 

characteristic shape (Dirks, Gruber-Vodicka, Egger, et al., 2012). 

What has mostly been ignored in processes of Paracatenula regeneration is their symbiotic 

counterpart, the bacterial symbionts Ca. Riegeria, that can comprise up to half of the biomass 

(Gruber-Vodicka et al., 2011). The mutualistic symbionts of Paracatenula sp. standrea were 

previously shown to provide both nutrition as well as primary energy storage for their 

mouthless host (Jäckle et al., 2018). The Ca. Riegeria symbionts likely interact with their host 

during tissue regeneration. 

A function of a bacterial microbiome in tissue regeneration was recently illustrated in planarian 

flatworms (Arnold et al., 2016). While healthy individuals of Schmidtea mediterraneae showed 

a higher abundance of a certain type of bacteria (Bacteriodetes vs. Proteobacteria), an 

experimental-induced shift of bacteria towards the Proteobacteria caused tissue degeneration, 

presumably because signaling pathways responsible for complex tissue regeneration were 

affected. 

In this study, we investigated what functions the bacterial symbionts perform in trophosome 

regions undergoing rostrum regeneration. Paracatenula individuals performed rostrum 

regeneration for five days. Transcriptomic sequencing showed that the symbionts changed 

their gene expression in 12.5% of all genes present. The majority of genes (121 out of 168) 

were significantly upregulated and of these, most were related to information processing and 

energy and carbon metabolism. Our results provide first evidence for potential supporting 

function of endosymbionts in tissue regeneration in Platyhelminthes. 

Results and Discussion 

Rostrum regeneration in Paracatenula sp. standrea occurs within two weeks 

The sectioning of Paracatenula sp. standrea specimens in an anterior (with rostrum) and a 

posterior (without rostrum) fragment was performed so that both parts still consisted of 

trophosome tissue (Figure 1A). The anterior part continued its smooth swimming behavior and 
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the posterior part moved in circles, similar to what has been observed in sectioned 

Paracatenula galateia individuals (Dirks, Gruber-Vodicka, Egger, et al., 2012; Jäckle et al., 

2018). The progress of tissue regeneration was photodocumented for the posterior 

‘trophosome region’ for the next 11 days, as the anterior ‘rostrum region’ just performs wound 

healing. Already within five days after rostrum sectioning, wound closure and regeneration had 

started, as a forming blastema could be observed at the tip of the wound (Figure 1B). As the 

regeneration process was initiated but not completed after five days, this timepoint was chosen 

for the transcriptomics experiment. Only six days later, the regenerated rostrum had already 

formed its characteristic shape and will just continue growing in length reaching ~0.4 mm for 

a few days (Figure 1C). Our observations on Paracatenula sp. standrea resemble previous 

results on Paracatenula galateia and suggest that the tissue regeneration patterns are 

characteristic for the genus Paracatenula. 

 

Figure 1. Head regeneration in Paracatenula sp. standrea observed over 11 days. Representative 
microscopic images and schematics illustrating early and later stages of head regeneration in a single 
specimen. A, Paracatenula specimen before and just after rostrum sectioning. B, After 5 days of 
regeneration; healing and head regeneration is in process. C, Late stage of head regeneration after 11 
days; the rostrum has its typical shape and will continue growing in length. Gene expression of 
Paracatenula symbionts was investigated after 5 days. 

Differential gene expression of Ca. R. standrea in the rostrum-regenerating 

trophosome region 

To study potential functions of symbionts adjacent to the regenerating area, we investigated 

gene expression changes in specimens five days after sectioning (Figure 1B). The mRNA was 

sequenced from individuals that performed rostrum regeneration for five days, wound-healing 

individuals and compared to control individuals kept for five days under the exact same 

conditions and one specimen from each glass vial (n = 3) was sampled for transcriptomics. No 
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differential expression was observed for individuals that performed wound healing compared 

to the control samples. In individuals that performed rostrum regeneration we identified 168 

significant differentially expressed genes in Ca. R. standrea symbionts accounting for 12.5% 

of all genes affected. Of the 1344 protein-coding genes, 1336 genes were expressed, being 

indicative for covering almost all genes in the transcriptomics. Of these 168 differentially 

expressed genes, 47 were downregulated and 121 were upregulated, with significant 

expression differences of ≥ 1.23-fold at false-discovery rate (FDR) < 0.05 (Figure 2A). To 

categorize the cellular functions of up- and downregulated genes in Ca. R. standrea symbionts, 

the differentially expressed genes were assigned to Clusters of Orthologous Genes (COGs) 

(Supplementary Table 1, Figure 2B). Of all differentially expressed genes, 83.9% could be 

assigned to COG categories, and of those that could not be assigned, 39.3% were annotated 

as hypothetical proteins. 

 

Figure 2. Differential expression of Ca. R. standrea genes in head-regenerated trophosome 
region. A, Volcano plot. Differentially expressed genes (FDR < 0.05) and ≥ 1.23-fold expression difference 
are shown in red. 168 genes were differentially expressed. B, Categorization of the differentially expressed 
genes based on Clusters of Orthologous Genes (COGs). 141 out of 168 genes could be grouped into COGs. 
The list of COGs was taken from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/fun2003-2014.tab. A 
detailed list of genes categorized in COGs, there functional categories and functional processes is listed in 
Supplementary Table 1. 

Upregulation of information processing and energy metabolism in Ca. R. 

standrea 

Most upregulated genes in Ca. R. standrea symbionts that were assigned COGs were classified 

to function in the production and conversion of energy (category C) (Figure 2B). Upregulated 

genes in this category included those for the tricarboxylic acid cycle (TCA), suggesting a 

potential role of utilizing sugars and other organics. Of the eight enzyme-encoding genes of 

the TCA cycle, five were upregulated (Figure 3, Supplementary Data set, S1). Those genes 
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included the 2-oxoglutarate dehydrogenase (E3), succinyl-CoA ligase, the succinate 

dehydrogenase complex and the fumarate hydratase. The primary source of acetyl-CoA utilized 

in the TCA cycle originates from the breakdown of sugars by glycolysis that is present in Ca. 

R. standrea (Jäckle et al., 2018). Only two genes involved in glycolysis were upregulated that 

included the glucokinase, phosphorylating glucose to retain it in the bacterial cell, and a 

bifunctional PPi-dependent phosphofructokinase, while the fructose-bisphosphate aldolase for 

formation of two C3 molecules was downregulated (Supplementary Data set, S1). At this point 

a clear functioning of energy conservation cannot be claimed. Alternatively, the TCA cycle could 

operate as the central carbon metabolism producing a variety of metabolic intermediates 

serving for e.g. amino acid synthesis and vitamin synthesis (Figure 3B). We identified 

upregulated genes for the synthesis of the amino acids glutamine, lysine and serine, as well 

as the vitamin thiamine and the cofactor NAD+ although not all genes of the respective 

pathways were affected. (Supplementary Data set, S1). 

Pathways for thioautotrophy such as thiosulfate oxidation and the Calvin Benson-Bassham 

(CBB) cycle were upregulated under regeneration conditions (Figure 3, Supplementary Data 

set, S1). Genes related to sulfur oxidation included a thiosulfate sulfurtransferase (rhodanese) 

for the oxidation of thiosulfate to sulfite (Figure 3A). Sulfite could then be further oxidized to 

adenosine-5'-phosphosulfate by the upregulated adenylylsulfate reductase (alpha and beta 

subunit). The upregulated sulfur oxidation starting from thiosulfate was surprising, as the 

symbionts of freshly collected individuals typically express a reverse-acting dissimilatory sulfite 

reductase for the oxidation of other types of sulfur species (Jäckle et al., 2018) that was not 

differentially expressed. Thiosulfate often represents a small dynamic pool of reduced sulfur 

that can serve as electron donor in chemosynthetic symbiont but nothing is known about its 

concentrations in the habitat of Paracatenula (Giere et al., 1988; Jørgensen, 1990; Dubilier et 

al., 2006). 

To fix carbon dioxide into biomass, the Ca. R. standrea symbionts use a modified PPi-dependent 

version of the CBB cycle (Jäckle et al., 2018) of which four genes fulfilling five enzymatic 

reactions were found to be upregulated (Figure 3). The upregulated genes included both the 

small and large RuBisCO subunit (cbbL and cbbM), the multifunctional PPi-dependent 

phosphofructokinase (PPi-PFK) and the PPi-energized proton pump (PPi-H+-pump). The fixed 

carbon could then be stored as trehalose or polyhydroxyalkanoates (PHA) granules, as genes 
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encoding the alpha,alpha-trehalose-phosphate synthase as well as a phasin and the 

acetoacetyl-CoA reductase were also upregulated (Figure 3, Supplementary Data set, S1). 

To avoid futile cycling, it was recently suggested that both the CBB cycle and the TCA cycle do 

not operate at the same time but rather in subpopulations of the Ca. R. standrea symbionts 

(Jäckle et al., 2018) (Figure 3). We cannot exclude that we investigated gene expressions of 

symbiont populations in varying microniches and therefore different metabolic activities. 

Another possibility would be that a simultaneous cycling could be a short-term response of the 

symbionts to increase their net C productivity and facilitate the host nutritional needs. To fix 

2 molecules of carbon dioxide 4 1/9 ATP are needed (Kleiner et al., 2012) while the complete 

oxidation of 2 molecules of acetyl-CoA in the TCA cycle (4 CO2) and redox chain results in 30 

ATP. Thus, the oxidation of acetyl-CoA yields additional energy (10 8/9 ATP) that can then be 

used for the fixation of carbon dioxide and could increase the net carbon pool in Ca. R. 

standrea. However, as only the succinyl dehydrogenase genes but no further downstream 

reactions in the respiratory chain and the ATP-synthase were affected in their expression, the 

functioning of the TCA cycle for the synthesis of intermediate instead of energy conservation 

is more likely than for energy conservation. 

A large proportion of upregulated genes in Ca. R. standrea from the rostrum-regenerating 

trophosome region were assigned to function in translation, ribosomal structure and biogenesis 

(category J) (Figure 2B, Figure 3A, Supplementary Data set, S1). While the cell division gene 

ftsZ was significantly downregulated and indicated reduced proliferation in the trophosome, 

the upregulation of protein biosynthesis genes suggests a general increase in the physiological 

performance of the symbionts. The biosynthesis genes included those encoding tRNAs for the 

attachment of the amino acids proline, phenylalanine, and lysine. Additionally, these genes 

included those encoding eleven ribosomal proteins and the translation elongation factors Tu, 

G, P that are involved in the elongation cycle of protein biosynthesis (Supplementary Data set, 

S1). Together, these results point to an upregulation of functionality and biomass production, 

combined with increased carbon and energy densities in non-growing cells, a hypothesis that 

still has to be proven. 

The most prominent downregulated genes included those involved in the formation of two 

cofactors (Supplementary Data set, S1). Four iron-sulfur cluster proteins (sufBCD and sufS) 

were affected that were located on one operon in the Ca. R. standrea genome (Figure 3A). 
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Iron-sulfur cluster proteins play vital roles in e.g. regulation of enzyme activity, cofactor 

biogenesis and gene expression regulation (Wollers et al., 2010; Xu and Møller, 2011). Also, 

these proteins were shown to function as a scaffold-complex receiving and transferring sulfur 

to other proteins for the assembly of Fe-S clusters (Wollers et al., 2010; Xu and Møller, 2011). 

The assembly of Fe-S clusters typically occurs under conditions when sufficient amounts of 

bioavailable iron and sulfide are present (Ali and Nozaki, 2013). We hypothesize that the 

downregulation of iron-sulfur cluster genes indicates a critical need of free sulfide, not being 

used for the utilization of iron-sulfur proteins but rather for its oxidation to generate energy. 

A lack of free sulfide would agree with our finding that the rDSR pathway typically expressed 

in Ca. R. standrea was not affected in its expression (Figure 3, Supplementary Data set, S1). 

Additionally, genes encoding an adenosylcobyric acid synthase and an adenosylcobinamide-

phosphate guanylyltransferase were downregulated, indicative for energy saving for the 

synthesis of this complex vitamin. 
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Figure 3. Upregulated energy metabolism of Ca. R. standrea symbionts in rostrum-regenerated 
trophosome region. A, A selection of differentially expressed genes covering several metabolic functions. 
A complete list of genes is shown in Supplementary Data set, S1. B, Metabolic scheme highlighting 
upregulated reactions. The scheme was adapted from a previous study on the Paracatenula symbiosis 
(Jäckle et al., 2018). Pathways or enzymes are colored by their expression levels in the transcriptome 
(mean of three samples). Only upregulated genes are shown in the illustration. Not all genes of certain 
pathways were differentially transcribed. Dotted arrows correspond to indirect synthesis of metabolites. 
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The importance of the Ca. R. standrea symbionts in head regulation processes is suggested by 

their upregulation of genes related to the central carbon metabolism, storage compounds and 

transcription and translation (Figure 4). The reported genes showed significant differential 

expression, and although an increase in expression was observed for the housekeeping genes 

gyrA and recA this change was not significant (Supplementary Data set, S1). The significant 

upregulation of certain metabolic processes allows the production of versatile metabolites such 

as carbon and energy storages as well as amino acids and vitamins that can serve the host 

during nutrient-demanding regeneration processes. The transfer of nutrients likely occurs via 

leaking or digestion as it has been recently suggested in Ca. R. standrea under natural 

conditions (Jäckle et al., 2018). 

 

Figure 4. Model summarizing the functions of Ca. R. standrea in rostrum regeneration. A, 
Schematic of Paracatenula after five days rostrum regeneration and B, A CARD-FISH-image [EUB I�III, 
(Amann et al., 1990; Daims et al., 1999)] of the rostrum-trophosome area. The FISH image was adapted 
from Kiers et al., 2015 (Kiers and West, 2015). C, Major steps of the central carbon metabolism that were 
affected in their gene expression. The white arrows indicate substrate and electron flows, the gray arrows 
indicate reactions which enzymatic reactions are yet. Dotted arrows indicate indirect reactions. 

Conclusion 

The regeneration of a rostrum is a fascinating process, especially if it occurs in mouthless 

flatworms that are completely dependent on their symbionts for nutrition. While some species 

of Platyhelminthes lack the ability for tissue regeneration, flatworms of the genus Paracatenula 

can regenerate a complete rostrum within two weeks. Regeneration is a natural process 

because Paracatenula reproduce by asexual fission. 

Our study shows that the Ca. R. standrea symbionts are involved in the processes of rostrum 

regeneration. As a response to sectioning and tissue regeneration, the symbionts change their 

expression profile in mostly nutrition-related genes within five days of regeneration. Tissue 
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regeneration represents a natural scenario as Paracatenula flatworms proliferate by paratomy. 

Regeneration experiments, however, have shown that rostrum fragments have limits in their 

ability of regeneration (Dirks, Gruber-Vodicka, Egger, et al., 2012). The role of endosymbionts 

in these regeneration processes by the provision of e.g. carbon and energy resources is likely 

the explanation for previously observed absence of posterior growth in the related species 

Paracatenula galateia (Dirks, Gruber-Vodicka, Egger, et al., 2012). As the symbionts are 

essential for the host, the number and density of symbionts in the trophosome will be key for 

regeneration. Furthermore, physiochemical conditions such as oxygen and sulfide availability 

will have great influence on the pace of tissue regeneration, as these influence the metabolic 

performance of the symbionts. It was shown in regenerating planarians that the presence of 

morphogen gradients along the body is essential for tissue development (Adell et al., 2010). 

It is still unclear if and to what extend the symbionts might be involved in regulating such 

signaling molecules, either in their production, transfer or depletion.  

It remains unresolved if the responses in expression are consistent in symbiont populations of 

different regions of the trophosome. If we assume an underlying cellular communication 

between the host and the symbionts the signal could either be consistent for all symbiont cells, 

or be increased in regions close to the regenerating fragment. Single-cell transcriptomics could 

reveal if the symbiont´s gene expression change over the distance to the wound area, likely 

with largest responses close to it.  

A deeper understanding of host-symbiont interaction especially on a cellular level, as well as 

the investigation of host changes of expression during rostrum regeneration will be of great 

importance to understand interdependent symbiotic associations such as the Paracatenula-Ca. 

Riegeria symbiosis. 

Materials and Methods 

Sample collection and sectioning experiment 

Paracatenula sp. standrea specimens were collected in 2013 and 2016 from sediments in the 

bay off Sant´Andrea, Elba, Italy. Specimens were extracted as previously described (Jäckle et 

al., 2018). A razor blade was used to section the living individuals transversally posterior to 

the brain region in way there was still trophosome that allowed the rostrum to regenerate 
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(Figure 1A). The anterior and posterior fragments were placed to 2 ml glass vials filled with 

washed natural sediment and filtered seawater without the addition of external energy or 

carbon sources. The vials had an air-filled headspace. The experiment was performed with 

biological replicates (n = 3 each). Untreated individuals kept for 5 days under identical 

conditions served as comparison group. Additionally, those fragments that performed wound 

healing as well as non-incubated controls were prepared but not further analyzed in this study. 

Paracatenula specimens for nucleic acid extractions were fixed in RNAlater (Ambion) and stored 

at 4 °C. 

To document the different stages of rostrum regeneration in Paracatenula sp. standrea, the 

steps described above were repeated, and digital images of each individual were recorded with 

a Canon EOS 700D camera (Canon) mounted on a Nikon SMZ-745T dissecting 

microscope (Nikon). 

RNAseq and differential expression 

For symbiont transcriptomics, RNA was extracted from single Paracatenula sp. standrea 

specimens. RNA was extracted with the RNeasy plus micro kit (Qiagen) following the 

manufacturer´s protocol, and eluted in 11 µl RNase-free water. The cDNA was synthesized 

from total RNA with the Ovation RNASeq System v2 (NuGEN) following the manufacturer's 

protocol, sheared to target sizes of 300 bp with the Covaris microTUBE system (Covaris) and 

cleaned up with the Zymo Genomic DNA Clean & Concentrator Kit (Zymo Research). 

Sequencing libraries were prepared from cDNA with the NEBNext Ultra DNA library preparation 

kit (New England Biolabs) for Illumina and sequenced on the Illumina HiSeq 2500 platform 

using 2 x 100 bp paired end reads. Both library preparation and sequencing were performed 

at the Max Planck Genome Centre in Cologne. 6 to 7 million single-end 100 bp reads per library 

were sequenced and to quantify gene expression, the reads were mapped against the Ca. R. 

standrea genome (accession no. GCA_900576755) with BBMap v38.06 and quantified with 

featureCounts v1.5.0-p1 (Liao et al., 2014). Differential gene expression of Ca. R. standrea 

between rostrum-sectioned individuals and the 5 day controls was analyzed with the accessory 

scripts implemented in Trinity v2.5.1 (Grabherr et al., 2011) using the Bioconductor package 

edgeR (Robinson et al., 2010). Significance was accepted at a False-Discovery-Rate (FDR) of 

< 0.05. For normalization of each sequenced library a normalization factor was estimated 

based on the trimmed mean of M-values (TMM) implemented in the edgeR package. The 
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differentially expressed genes were assigned to Clusters of Orthologous Genes with eggNOG 

(Huerta-Cepas et al., 2016). 
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Supplementary Table 

The Supplementary Data set is available on the CD-ROM provided with the thesis. 

 
Supplementary Table 1. Differentially expressed functional categories and processes based on 
COG categories. 
 

 

Functional category 

 

 

Functional process 

 

Abbrev. 

 

Upreg. 

 

Downreg. 

Information storage 
and processing 

Translation, ribosomal structure and biogenesis J 19 3 

Transcription K 4 0 

Replication, recombination and repair L 2 2 

Cellular processes 
and signaling 

Cell cycle control, cell division, chromosome partitioning D 0 2 

Defense mechanisms V 1 0 

Signal transduction mechanisms T 0 0 

Cell wall/membrane/envelope biogenesis M 3 1 

Cell motility N 0 0 

Intracellular trafficking, secretion, and vesicular transport U 2 0 

Posttranslational modification, protein turnover, chaperons O 5 2 

Metabolism  

Energy production and conversion 

 

C 

 

21 

 

1 

Carbohydrate transport and metabolism G 5 6 

Amino acid transport and metabolism E 12 6 

Nucleotide transport and metabolism F 6 2 

Coenzyme transport and metabolism H 6 6 

Lipid transport and metabolism I 4 2 

Inorganic ion transport and metabolism P 3 2 

Secondary metabolites biosynthesis, transport and catabolism Q 2 0 

Other functions 

 

 

General function prediction only 

Function unknown 

 

R 

S 

 

0 

7 

 

0 

4 

Mobilome: prophages, transposons X 0 0 

Extracellular structures W 0 0 

Chromatin structure and dynamics B 0 0 

 

 

Cytoskeleton 

Nuclear structure 

Z 

Y 

0 

0 

0 

0 

 

 

 

 

Total 

 

 

 

 

 

102 

 

 

39 
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Chapter V: General discussion and perspectives 

A mutualistic symbiosis between microorganisms and the marine flatworm of the genus 

Paracatenula has been proposed already 36 years ago (Ott et al., 1982). Since then, few 

studies have been performed on the mouthless Paracatenula flatworms. These studies mainly 

focused on morphological characterizations and molecular developmental aspects such as 

tissue and rostrum regeneration (Dirks et al., 2011; Leisch et al., 2011; Dirks, Gruber-Vodicka, 

Egger, et al., 2012; Dirks, Gruber-Vodicka, Leisch, et al., 2012). Only one study examined 

their unusual symbionts, the first known chemoautotrophic symbionts of the class 

Alphaproteobacteria and their role in this ancient symbiosis (Gruber-Vodicka et al., 2011). This 

study revealed the phylogenetic placement of the symbiont and their co-speciation with the 

Paracatenula host for hundreds of millions of years. Additionally, key genes for thioautotrophy 

of the symbionts were characterized and it was reported that the symbionts store sulfur. 

However, the genetic repertoire and function in the symbiosis with Paracatenula, their 

ecophysiology as well as their evolution during several million years have not been analyzed 

and thus, left a knowledge gap which has been closed by the studies reported here. 

The data presented here contribute substantially to the knowledge in the fields of microbial 

ecology, symbiosis and developmental biology by elucidating the essential functions of 

chemosynthetic symbionts in mouthless host animals (Chapter 2), their evolutionary history 

and processes of genome evolution (Chapter 3) and their requirement during rostrum (anterior 

region with brain) regeneration of the host after its sectioning (Chapter 4). 

What are essential functions of chemosynthetic symbionts in 

mouth- and gutless animals? 

“What do Paracatenula flatworms feed on?” and “How do they get access to nutrients?” were 

the first questions I addressed in my studies. Chemosynthetic symbioses are characterized by 

the fixation of carbon and oxidation of reduced compounds such as sulfur (Kleiner et al., 2012). 

However, it has been unknown which additional contributions of the chemosynthetic symbionts 

are required to nurture the host organisms. Tackling such a research question in 

chemosynthetic symbioses has been so far quite challenging since no suitable experimental 

system for these analysis could be established for several reasons. One reason is the mode of 

horizontal transmission, in which the host organism takes up the symbionts newly from the 
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environment in every generation. Examples of this mode of symbiont acquisition are the 

bathymodiolin mussel Bathymodiolus and the vestimentiferan tubeworm Riftia (Nussbaumer 

et al., 2006; Russell et al., 2017). It implies that the symbionts taken up are able to survive 

in a free-living stage in the environment without a host, and in symbiosis. A free-living stage 

of a symbiont requires a flexible metabolic and genetic makeup that is reflected in the wide 

range of genome sizes up to 4.5 Mb (Kuwahara et al., 2007; Newton et al., 2007; Petersen et 

al., 2016). Thus, the essential set of core functions that have to be performed by the bacteria 

living in symbiosis with their host animal cannot be determined. 

Instead, a second way to answer this question would be to investigate conserved functions of 

symbionts that underwent genome streamlining over generations and time, supposedly down 

to a critical core (Kuwahara et al., 2007; Newton et al., 2007). In contrast to studying 

Paracatenula, most other systems would not allow unambiguous results. In theory, the 

vertically transmitted symbionts of the vesicomyid clams would be an ideal system to explore 

the host-chemosynthetic symbiont interdependence, because they have reduced genomes. 

Thus, they would be a suitable study system to investigate which genes encoding metabolic 

pathways are maintained. Nevertheless, similar to Bathymodiolus mussels, the vesicomyid 

clams still filter feed (Cavanaugh, 1983; Le Pennec et al., 1995). They have reduced or 

rudimentary guts, feeding appendages and their stomach was found to be filled with various 

particles. This suggests an at least partially functioning digestive system, which could mask 

the essential functions that are provided by a chemosynthetic symbiont.  

I have taken advantage of the symbiosis of Paracatenula sp. standrea and its chemosynthetic 

symbionts Ca. Riegeria standrea from Elba (Italy) to study the physiology of their symbionts 

(Chapter 2) to explore the above outlined questions. This system has the advantage that 

Paracatenula lacks mouth and gut and transmits its symbionts vertically (Sterrer and Rieger, 

1974; Gruber-Vodicka et al., 2011). Also, the symbionts have reduced genome sizes, 

suggesting that they have evolutionarily co-adapted with their host over millions of years. My 

analyses shows that Ca. R. standrea, in addition to its dual function as biosynthesis factory 

and storage organ (see below and Chapter 2), shares a large part of its metabolic functions 

with other reduced chemosynthetic symbionts such as the symbionts of vesicomyid clams. 

Considering the environments the hosts live in, i.e. the vesicomyid clams in the deep sea and 

Paracatenula in shallow-water sediments, these common functions of their genome repertoires 
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seemed surprising at a first. Unexpectedly, our findings represent an example of convergent 

evolution and show that essential functions in chemosynthetic symbioses are independent of 

phylogeny and the environment, and rather reflect the nutritional needs of the host organism. 

The data indicate that the Paracatenula symbiosis is mainly driven by energy-efficient carbon 

fixation via a PPi-dependent Calvin-Benson-Bassham (CBB) cycle and sulfur oxidation. Core 

functions shared with other reduced thioautotrophs included genes encoding enzymes for the 

synthesis of amino acids, nucleosides and nucleotides, vitamins, cofactors and fatty acids. The 

exchange of these nutrients via transporters is not a critical process. Similar to the symbionts 

of the vesicomyid clams, Ca. R. standrea contains only few genes encoding substrate 

transporters when compared to other chemosynthetic symbionts with non-reduced genomes. 

Instead, the synthesized nutrients are more likely to be provided to the host through outer 

membrane vesicles (OMVs) or lysosomal digestion of symbionts – the exact mechanisms need 

to be addressed in future studies. 

The Ca. R. standrea symbionts have a unique and powerful set of additional metabolic tools 

compared to other chemosynthetic symbionts with reduced genomes. These features include 

genes for enzymes that constitute a complete intermediary carbon metabolism with different 

ways of incorporating carbon into biomass. The corresponding genes were missing in other 

reduced thiotrophic symbionts (Kuwahara et al., 2007; Newton et al., 2007). Additionally and 

in contrast to the vesicomyid symbionts, Ca. R. standrea has the capability of storing carbon 

by at least three different means, i.e. glycogen, trehalose and polyhydroxyalkanoates (PHA). 

These storage compounds allow a wider metabolic flexibility. To which dimensions this occurs 

still needs to be investigated. 

What might be the importance of storage compounds in 

Ca. Riegeria? 

Chemosynthetic meiofaunal residents face challenges in their natural environment as oxygen 

and sulfide are both spatially distributed (Fenchel and Riedl, 1970). Storage compounds 

generally represent physiological buffers that are either produced and accumulated or utilized, 

depending on the availability of carbon and energy sources (Wilkinson, 1959). The Ca. R. 

standrea symbiont can build up a variety of storage compounds of which sulfur and PHA are 

the most prominent components. These storages can be easily identified as large inclusions (1 
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to 3 µm in diameter) in the bacterial cells. During the cultivation process of Paracatenula, the 

flatworms constantly migrated through the redoxcline and rested in the anoxic sediment layer 

for longer times (own observation). This leads to the speculation that under these anoxic 

conditions, environmental sulfide diffuses into the bacterial cells and is being oxidized, forming 

elemental sulfur granules (Figure 1). As oxygen is absent, the formation of PHA could serve 

as an electron sink for sulfide oxidation as previously proposed for Thiosymbion, the 

gammaproteobacterial thiotrophic symbionts of gutless oligochaetes (Kleiner, 2012). Under 

oxic conditions, stored sulfur could be oxidized to sulfate, and by this, provide energy for 

carbon fixation. The fixed carbon is either stored as glycogen or as trehalose. Together with 

these additional storage compounds, the Ca. Riegeria symbionts could shift their carbon 

intermediates and adapt to the altered environmental redox conditions they are exposed to. 

 

Figure 1. Energy buffering in Ca. Riegeria and possible exchange with its host. A schematic model 
of interactions and metabolism under oxidized (black) and reduced (red) conditions. A selection of possible 
symbiont carbon substrates that could be utilized by the host are indicated in blue. The figure was adapted 
from Chapter 4. 

It still remains unclear what additional functions these storage compounds might play in the 

Paracatenula symbiosis. It can be assumed that both trehalose and PHA serve as nutrition. 

While the symbionts lack enzymes for the degradation of trehalose to form glucose monomers, 
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the host encodes a trehalose synthesis enzyme (TreS, own preliminary data) with bidirectional 

function previously demonstrated in C. glutamicum (Carpinelli et al., 2006). Alternatively or in 

addition, trehalose could simply function as a protective from osmotic stress (Zhang et al., 

2011). However, we could yet not confirm the function and both explanations are not exclusive 

(Chapter 2). 

My results are consistent with the proposal that the Paracatenula symbionts, including their 

storage content, will be digested by lysosomes under starvation conditions (Chapter 2). 

Symbiont digestion has also been suggested to occur in chemosynthetic symbioses such as 

the clams Lucina, Bathymodiolus and Calyptogena (Fiala-Médioni et al., 1986; Liberge et al., 

2001; Newton et al., 2007). In fresh Paracatenula, however, lysosomes were not abundant 

but host gene expression of transcripts related to lysosome formation, trafficking and 

proteolysis were indicative for ongoing digestion procedures. Besides the rare occasion of 

digestion, we could find evidence for OMV formation in the symbiont membrane based on 

symbiont expression data and TEM. As OMVs are known sources of for example carbon and 

nitrogen we propose that they represent the main mode of how Paracatenula gets its nutrition 

from the symbionts (Schwechheimer and Kuehn, 2015; Lynch and Alegado, 2017). 

In one of the lysosomes of a starving Paracatenula, an electron-dense structure that resembled 

the PHA granules that were typically detected inside intact symbiont cells could be found using 

TEM (Chapter 2). It is noteworthy that no gene encoding a PHA depolymerase for the 

degradation of these granules could be found in the genome of Ca. R. standrea. It is, however, 

unlikely that these energy and carbon rich compounds represent only remnants of symbiont 

digestion in an energy-efficient and optimized symbiosis. The degradation of PHA might 

therefore either occur via unknown enzymatic reactions by the symbionts or by enzymes 

encoded by the host. This way, the substrate could deliver both energy and carbon. Such a 

scenario has not been demonstrated yet. However, bioinformatic analysis of the Paracatenula 

gene sequences predicts four kinds of PHA depolymerases in the host transcriptome 

(preliminary data). It remains to be analyzed whether these sequences represent 

contaminations with bacterial DNA or whether they are truly transcripts encoded by the host. 

This could be done by for example phylogenetic analyses and by the visualization of gene 

expression using mRNA in situ hybridization to localize the transcripts within the host. 
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Furthermore, it remains to be shown whether the predicted enzymes are functional according 

to the bioinformatic prediction. 

In addition to having a possible function as carbon and energy storage, there is increasing 

evidence for additional physiological roles of the polymer PHA. These functions include the 

facilitated uptake of DNA by the formation of complexes with calcium and polyphosphate 

(Madison and Huisman, 1999) which have been described to participate in stress response 

(Pham et al., 2004) and in the retention of efficient energy metabolism (Escapa et al., 2012). 

Typically, high intracellular charges are characterized by the presence of acetyl-CoA, NAD(P)H 

and ATP which all boost the formation of PHA (Haywood et al., 1988; Uchino et al., 2007; 

Narancic et al., 2016). Moreover, the presence of stored PHA [specifically polyhydroxybutyrate 

(PHB)] has been reported to stimulate the assimilation of acetate into biomass instead of 

further into PHB in the bacterium Rhodospirillum rubrum (Narancic et al., 2016). Additionally, 

an ongoing assimilation of PHB has been shown to cause a decreased activity of RuBisCO under 

anaerobic conditions, contradicting the typical known carbon fixation activities under such 

conditions (Narancic et al., 2016). Altogether, these findings on the PHA metabolism in R. 

rubrum are consistent with our results on the Ca. Riegeria symbionts and could indicate an 

additional function of PHA for the following reasons: 

(i) PHA formation in Ca. R. standrea is likely to occur under anaerobic conditions to form sulfur 

granules from sulfide for its complete oxidation via the rDSR pathway (Figure 1), 

(ii) Ca. R. standrea expresses a RuBisCO form IA that is adapted to higher oxygen and lower 

carbon dioxide concentrations (Chapter 2). Thus, carbon fixation rather occurs under 

oxic conditions, 

(iii) there is no unambiguous evidence yet for the degradation of PHA granules from neither 

the symbionts nor the host. 

Nevertheless, further studies are needed to address possible additional functions of the diverse 

storage compounds in the Paracatenula symbiosis. 
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Is the Paracatenula-Ca. Riegeria symbiosis a “dead-

end street”? 

Paracatenula has co-evolved with its endosymbionts for hundreds of millions of years (Gruber-

Vodicka et al., 2011) which resulted in a significant genome reduction in its symbionts (Chapter 

2). Such a close and obligate long-term symbioses of two organism often results in highly 

specialized interactions between the two partners (e.g. McCutcheon et al., 2009; McCutcheon 

and Moran, 2012; Bennett and Moran, 2013). In bacterial insect symbionts, the processes of 

reductive genome evolution frequently cause tiny symbiont genomes down to sizes below 

0.2 Mb (McCutcheon and Moran, 2012; Bennett and Moran, 2013; Moran and Bennett, 2014; 

Anbutsu et al., 2017). Because the genome sizes usually correlate with the number of coding 

sequences, these organisms end up with ten times lower gene numbers (~140) as also 

observed with the Ca. Riegeria symbionts (Lynch, 2006; Bennett and Moran, 2013) (Chapter 

2, 3). Symbionts of the leafhopper Macrosteles quadrilineatus called Ca. Nasuia bacteria 

encode the enzymatic pathway of two amino acids and components for DNA replication, 

transcription and translation while genes e.g. for ATP synthesis were lost in streamlining 

processes (Bennett and Moran, 2013). In the case of the Nardonella, symbionts that are 

associated with weevils, only genes for the synthesis of the amino acid tyrosine were retained 

in its highly reduced genome (Anbutsu et al., 2017). In both examples, the symbionts co-

evolved with their host for 100–260 million years (Bennett and Moran, 2013; Anbutsu et al., 

2017). During this process, both symbiont genomes underwent modifications and reductions, 

down to a point that they fail to support cellular life outside their hosts or without a different 

co-existing symbiont (McCutcheon and Moran, 2012). In the case of the leafhopper, a co-

primary symbiont exists with Ca. Nasuia which complements the insufficient function of the 

other symbiont (Bennett and Moran, 2013). Such a scenario has not been reported for the 

weevil symbionts, but it may potentially be established by the infection through a secondary 

facultative symbiont or by gut associates (Anbutsu et al., 2017). The metabolic 

complementation is thought to provide essential functions to overcome a collapsing scenario 

resulting in reduced fitness of the host (Andersson, 2006; Pérez-Brocal et al., 2006). 

According to the genome streamlining theory, smaller genomes provide more adaptive 

advantages than larger genomes as every function that loses its beneficial effect brings a cost 

(Ochman and Moran, 2001; Giovannoni et al., 2005). This concept was extended by the Black 
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Queen Hypothesis, addressing the evolution of dependencies in a given population that is 

based on the loss of costly functions (= loss of genes), and by the principle of “common and 

public goods” (Morris et al., 2012; Mas et al., 2016). In insect symbiont communities, functions 

can thus be lost in one symbiont genotype and complemented by a second symbiont. Ca. 

Riegeria represents the “Black Queen genotype” and the symbiont must provide most if not all 

nutritional functions for the host. Its genome is under large selection pressure to retain various 

metabolic functions to maintain its symbiotic partnership with Paracatenula. Also, an ongoing 

gene loss towards functional organelles is rather unlikely in Ca. Riegeria for the 

following reasons: 

(i) The symbionts have evolved with their host for a long period of supposedly 500 million 

years and they retained a broad versatile metabolic toolkit (Chapter 2, 3). Despite this long 

period of co-evolution, the Ca. Riegeria symbionts have not yet undergone an extensive 

genome reduction as observed with insect symbionts during much shorter periods of co-

evolution. Also, Ca. Riegeria shows no signs of losing symbiotic capacities (Chapter 3). 

(ii) The Ca. Riegeria symbionts have to provide more extensive functions than the insect 

symbionts since their host is unable to feed. In other words, Paracatenula relies nutritionally 

mostly or completely on its symbionts, whereas the insect symbionts often only supplement 

the diet of the host with vitamins or amino acids (McCutcheon and Moran, 2012). The 

continuous additional loss of metabolic functions in Ca. Riegeria would therefore most likely 

affect the fitness of the host in a negative way. 

(iii) An uptake of a secondary symbiont by Paracatenula that takes over lost functions as in 

insect symbionts is unlikely, since there is no intensive exchange with their environment. 

Additionally, Paracatenula is less likely than freely movable terrestrial insects to move large 

distances which could prevent significant changes of the habitat. 

What is the role of symbionts in tissue regeneration? 

In animals, bacteria are known to support wound healing and tissue regenerating processes 

(Poutahidis et al., 2013; Arnold et al., 2016; Lukic et al., 2017). For example in mammalian 

wounds, the provision of a lactic acid bacterium such as Lactobacillus reuteri as probiotics has 

been noted to enhance the healing by upregulating the synthesis of the hormone oxytocin and 

by initiating downstream reactions (Poutahidis et al., 2013). Furthermore, a shift in the healthy 
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microbiome of the flatworm Schmidtea mediterraneae has been shown to strongly affect tissue 

regeneration and results in negative effects (Arnold et al., 2016). However, the exact 

mechanisms and interactions underlying this phenomenon are not yet understood. 

Ca. R. standrea displays nutritional functions in Paracatenula flatworms under environmental 

conditions (Chapter 2). When the flatworms perform their most fascinating feature, i.e. the 

regeneration of body parts, 168 of their genes were found to be up- or down-

regulated (Chapter 4). Most of the upregulated genes were related to energy and carbon 

metabolism as well as transcription and translation. Our findings suggest an increased biomass 

production by the symbionts in regenerating Paracatenula flatworms. The simultaneous 

operation of carbon fixation via the PPi-dependent CBB cycle and the utilization of organic 

compounds through the tricarboxcylic acid (TCA) cycle might indicate a need for the synthesis 

of intermediary metabolites required for the synthesis of amino acid, vitamins or cofactors. 

Yet, it is uncertain what metabolites produced by the symbionts are essential for the 

regeneration process or whether a cocktail of nutrients is needed. In addition of satisfying the 

nutritional needs of the host, the findings suggest underlying cell signaling and communication 

pathways as described for the Schmidtea mediterranea flatworm (Arnold et al., 2016). 

Perspective 

Understanding genome reduction in Ca. Riegeria clades 

The presence of different genome reduction stages is one of the most puzzling observations in 

the Ca. Riegeria clades (Chapter 3). Occasions of parallel genome reduction processes have 

been reported within symbiont clades which result in a different genetic makeup but without 

drastic differences in the overall genome architecture such as genome rearrangements 

(Williams and Wernegreen, 2015; Boscaro et al., 2017; Kinjo et al., 2018). It can be 

hypothesized that different genes retained in the Ca. Riegeria clades might be the reason for 

such variations, but finding an answer to this question by experimental evidence would 

compare to the search of a needle in a haystack. 

To address the evolutionary events that have occurred in the three Ca. Riegeria clades, it is 

critical to reconstruct the last common ancestral (LCA) genome of Ca. Riegeria. Ancestral 

genome reconstructions are often applied to understand what traits in a genome are ancestral 

and which genomic constellation was present within the LCA genome. Such an analysis 
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provides information concerning the genes which were derived when the organisms have 

transitioned and adapted to new or changing environments (Schluter et al., 1997; Larsson et 

al., 2011; Latysheva et al., 2012; Oyserman et al., 2016). Also, studies exploring gene gain 

and gene loss situations can be performed to illuminate the influence of horizontal gene 

transfer (HGT) events that is known to contribute to the enrichment of metabolic tools (Pál et 

al., 2005). HGT events were indeed likely to have occurred during early stages of the 

Paracatenula-Ca. Riegeria symbiosis, when lateral exchanges with the environment were 

still feasible. 

Reconstructing the LCA genome of Ca. Riegeria symbionts would further help to illuminate 

which metabolic frameworks were gained from the environment and maintained to establish 

Ca. Riegeria as a successful and most suitable partner within the Paracatenula symbiosis. Such 

a detailed analysis would help to better understand the presence of three stages of genome 

reduction in the Ca. Riegeria clades as well as their trajectories (Chapter 3). 

Single-nucleotide polymorphism (SNPs) and evolutionary 

pressures in Ca. Riegeria symbionts 

The processes of genomic changes and reductive genome evolution in intracellular symbionts 

are mainly driven by transmission bottlenecks, mutations and genetic drift (McCutcheon and 

Moran, 2012). However, during these processes, gene loss is not completely random and genes 

that encode essential functions are usually conserved (Moya et al., 2008; McCutcheon and 

Moran, 2012). Until now, the rate of evolution of the diverse Ca. Riegeria symbionts is 

unknown, although it can be assumed that their genes also accumulate slightly deleterious 

substitutions (Chapter 3). Single-nucleotide polymorphisms (SNPs) among bacteria within a 

population as well as between populations can be used as sensitive measure to detect small 

genomic changes and to possibly take them as indicators of directional selection. The 

investigation of microdiversity at the level of nucleotides and single genes can help to enlighten 

the evolutionary history and selective pressures during the evolution of symbiont populations 

(Syvänen, 2001). In Ca. Riegeria symbionts, SNP analyses can establish the mutation rates of 

single genes among the different symbiont species. For instance, such an analysis can be 

performed on symbionts of individuals of the offspring from a single Paracatenula sp. standrea 

species that was cultured under defined conditions in the laboratory over a time period of more 

than three years. 
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Alternatively, SNP analyses can also be applied to detect evolutionary pressures of single genes 

among closely related Ca. Riegeria species, e.g. those that belong to the same clade, or 

between the clades, to identify fixed differences in their genomes. The number, frequency and 

the type of SNPs will allow to identify candidate genes which are subject to a negative selection 

pressure (“purifying selection”), neutral selection pressure (“non-effective”) or a positive 

selection pressure (“adaptive selection”). The SNP type then determines whether the mutation 

leads to a change in the encoded amino acid sequence (“non-synonymous”, N) of the protein 

product or whether the substitution translates into the same amino acid (“synonymous”, S). 

The ratio of these SNP types can be used to calculate ratios such as dN/dS values between 

species and pN/pS values between populations that are indicative for either rapid (high ratio) 

or slow protein evolution for example caused by deleterious mutations. These values are 

indicative of the direction of selection applying, for example, McDonald-Kreitman-based tests 

(Vos et al., 2013). Furthermore, SNP frequencies indicate loci representing local adaptation 

across populations (Pfeifer and Lercher, 2018). Taken together, these analyses would elucidate 

if Ca. Riegeria genes are under selective pressure and might be modified or even lost in the 

ongoing processes of genome evolution. 

Function of symbiont subpopulations and the host in tissue 

regeneration 

Symbionts showed significant differences in the expression patterns five days after host 

rostrum sectioning (Chapter 4). These differences suggest that metabolites produced by the 

symbionts participate or are even essential for the regeneration process in Paracatenula. 

However, due to limitations in the experimental setup, which only allows to scratch at the 

surface of the regeneration phenomenon, some questions remained unanswered. 

The results shown here only indicate that the symbionts are essential for rostrum regeneration 

and that there are changes in the expression profiles of a subset of symbiont genes. However, 

these results do not reveal (i) possible differential gene activities of distinct symbiont 

subpopulations along the body axis of the flatworm as well as (ii) different temporal activities 

of the symbionts or symbiont populations during the temporal progression of the tissue 

regeneration process. Thus, further experiments are required to explore the importance of the 

symbionts and to determine the function of the differentially expressed genes which contribute 

to the metabolically demanding regeneration process. 
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In the presented study, I have analyzed the differentially expressed symbiont transcripts five 

days after sectioning and in the process of rostrum regeneration. However, since the 

regeneration processes start immediately after sectioning, it is possible that major steps and 

expression changes have been missed. Thus, I propose a continuous sampling of individuals 

from early stages up to eleven days when the rostrum regeneration is mostly completed. 

Without such a data collection, it is difficult to assign gene functions and to separate them 

according to cause and consequences. Also, it appears challenging to determine the function 

of the genes, and their contribution to possible steps of the regeneration process. Finally, it 

could also be possible that anterior and posterior trophosome regions contain subsets of the 

symbiont population with different gene activities in general, or in response to sectioning and 

during regeneration. Despite these uncertainties, it remains interesting that after five days, 

which is about half the time until the rostrum is completely regenerated, the expression 

patterns of the symbionts have changed. 

Since symbiont-free flatworms in the absence of a trophosome are also able to regenerate an 

entire flatworm, it is unlikely that the symbionts contribute any “regeneration factors” or 

morphogens to the host development. Therefore, it is more likely that the regeneration process 

of Paracatenula requires both energy supply and substrates for biosynthesis which are supplied 

by their symbionts. The observed differential expression of metabolic pathway components by 

the symbionts during the regeneration process of Paracatenula is consistent with this 

conclusion. Future studies addressing the mentioned gaps should therefore aim towards the 

temporal and spatial profiles of the differentially expressed genes and establishing their 

function. A correlative study concerning the expression profiles can be performed with the 

currently available methodology, whereas the assessment of the gene functions has to await 

the development of new tools which make gene functions even more accessible. As 

Paracatenula can be kept in the laboratory its paves the way into this direction, provided that 

the genome of the symbionts or the host can be genetically manipulated by applying for 

example RNA interference knockdown or knock-out experiments. 

One aspect that needs further investigation is the contribution of the host to its rostrum 

regeneration. In fact, bioinformatic tools allow the assembly of host transcriptomes (Chapter 

2) and the investigation of the genes that are differentially expressed. These tools also allow 

the comparison with other flatworm transcriptomes which are not known to carry nutritional 
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symbionts such as planarian flatworms of the genus Schmidtea (Levin et al., 2016; 

Stückemann et al., 2017) or Catenula, a close relative of Paracatenula (Ngamniyom and 

Panyarachun, 2016). Underlying signaling pathways that are involved in other tissue-

regenerating flatworms might be affected in the presence and absence of a trophosome region 

as found in Paracatenula. Additionally, such a comparison is of particular interest since the 

upregulation of nutrition-related genes, such as transporters and degrading enzymes, might 

give hints to key roles of metabolites which are provided by the Paracatenula symbionts. 
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An aerial view of the island Carrie Bow Cay with its Smithsonian Institution research 
station (light blue). The island is surrounded by different habitats that include algae, 
seagrass, and coral reef sediments

Mouthless in Marine Sediments – 
Symbiosis Makes it Possible

Oliver Jäckle 

When symbiosis researchers from Bremen think about the Caribbean 
Sea, it is the hidden diversity in these sediments that comes to mind. Only 
with a microscope is it possible to detect the various organisms of the 
“meiofauna” which move between sand grains. Almost all animal phyla 
are represented here, and some are even endemic to this environment. 
Thousands of tiny worms with an intense white coloration can be 
discovered in a single litre of sediment. This sediment smells of rotten 
eggs, indicating the presence of hydrogen sulphide, which also explains 
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Seagrass meadow adjacent to sediment hills with appreciable amounts of 
chemosynthetic symbioses

the white coloration of the animals: the worms are densely colonised by 
bacteria that are capable of storing sulphur in the form of small, spherical 
granules. Sulphur serves as an energy source for the bacteria in the 
energy-gaining process of chemosynthesis, whereby sulphide is oxidised 
in the presence of oxygen. Since oxygen and sulphide do not share 
the same spatial distribution in the sediment, free-living bacteria may 
not encounter both reduced and oxidised conditions. Perhaps for this 
reason, some of the free-living bacteria formed symbiotic relationships 
with worms a long time ago to use them as elevators to travel through 
the sediment’s redox gradient. To compensate for this “shuttle service”, 
the bacteria deliver energy and essential nutrients to the host – an 
interdependent benefit called mutualistic symbiosis.

All organic material that ends up in these sulphidic sediments 
originates in mangroves, dense algae, seaweed, and seagrass meadows, 
or on the land. Bacteria that are present in these sediments colonise the 
surfaces and degrade the plant debris. When the oxygen in the sediments 
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is respired, anaerobic processes take over and sulphate is chemically 
transformed to what we experience as malodorous sulphide.

To explore the fascinating world of chemosynthetic symbioses, a team of 
researchers led by Nicole Dubilier at the Max Planck Institute for Marine 
Microbiology regularly head out on sampling trips. The Carrie Bow Cay 
field station operated by the US Smithsonian Institution provides one of 
our favorite sampling spots, located 24 km off the shore of the Belizean 
mainland on the Meso-American Barrier reef. Its sediments provide 
ideal habitats for chemosynthetic symbioses. The diverse symbioses 
have evolved convergently in protists, and at least eight animal phyla – 
including Mollusca, Nematoda, and Platyhelminthes – with bacteria form 
diverse phylogenetic groups. The evolution of such tight interdependent 
symbioses between bacteria and their hosts often resulted in complete 
losses of mouth, gut, and digestive systems in the host animals.

A small selection of the diversity of white meiofaunal worms including 
annelids, nematodes and a flatworm that host chemosynthetic bacterial 
symbionts in Belizean sediments
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Flatworms of the genus Paracatenula lack a mouth, gut, and a digestive 
system and instead live in an ancient symbiosis with their bacteria that 
make up half of their body volume. This lack means that these worms 
depend entirely on their symbionts for nutrition. Conversely, their 
symbiotic bacteria gain a stable and sheltered environment and a shuttle 
service. Based on morphology and molecular analyses, seven different 
Paracatenula species were identified in Belize. Surprisingly, each of 
them hosts its own, species-specific symbiont. Recent data even suggests 
that this symbiosis was established more than 500 million years ago, i.e. 
long before the dinosaurs became extinct and the human species evolved 
among the primates.

So the next time you’re at the beach and suddenly sense the odour of 
rotten eggs, just remember: you might be stepping on sediments that are 
full of chemosynthetic symbiosis miracles!

Microscopic image of Paracatenula   sp. “schlauchi”. Bacteria with storage compounds 
are shown in black



 198 

 

�

Name: Oliver Jäckle          Ort, Datum: Bremen, den 7.11.2018 

Anschrift: Bürgermeister-Deichmann-Straße 63, 28217 Bremen 

�

�
�
�
�
�
 
ERKLÄRUNG 
 

 

Hiermit erkläre ich, dass ich die Doktorarbeit mit dem Titel: 

Evolution and physiology of the Paracatenula symbiosis 

selbstständig verfasst und geschrieben habe und außer den angegebenen Quellen keine 

weiteren Hilfsmittel verwendet habe. 

 

Ebenfalls erkläre ich hiermit, dass es sich bei den von mir abgegebenen Arbeiten um drei 

identische Exemplare handelt. 

 

 

 

 

 

 

 

___________________________ 

 Oliver Jäckle 

�
�
�
�
�


