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Abstract 
Phytolith analyses to compare changes in vegetation structure of Koobi Fora and Olorgesailie Basins 

through Mid-Pleistocene-Holocene Periods. 

By 

Rahab N Kinyanjui (Student No: 712138) 

Doctor of Philosophy in Palaeontology 

University of Witwatersrand, South Africa 

School of Geological Sciences, Evolutionary Science Institute (GEOS/ESI) 

Supervisor: Prof Marion Bamford. 

 

The Koobi Fora and Olorgesailie Basins are renowned Hominin sites in the Rift Valley of northern 

and central Kenya, respectively with fluvial, lacustrine and tuffaceous sediments spanning the 

Pleistocene and Holocene. Much research has been done on the fossil fauna, hominins and flora with 

the aim of trying to understand when and how the hominins evolved, and how the environment 

impacted on their behaviour, land-use and distribution over time. One of the most important factors in 

trying to understand the hominin-environment relationship is firstly to reconstruct the environment.  

Important environmental factors are the climate, rate or degree of climate change, vegetation structure 

and resources, floral and faunal resources. Vegetation structure/composition is a key component of the 

environments and, it has been hypothesized the openness and/or closeness of vegetation structure 

played a key role in shaping the evolutionary history not only of man but also other mammals. 

Various proxies have been studied to determine and reconstruct vegetation history. They include: 

fossil pollen, stable isotopes, fossilised wood and phytoliths.  

This study applied phytolith analyses to reconstruct the vegetation history of the Koobi Fora and 

Olorgesailie Basins during the Pleistocene to Holocene periods respectively. Firstly, modern phytolith 

analogues from plants and surface soils were used to interpret the past vegetation from fossil phytolith 

assemblages. Four vegetation structures were clearly recognisable: grasslands, wetlands/riparian, 

woodlands/forests and mixture of woody and herbaceous dicotyledons.  

Although the proposed goal of this study was to compare temporal changes in phytolith assemblage, 

hence vegetation structure for the two basins, this was not achieved due difference in the sampling 

strategies available for the two basins. A continuous sediment core was drilled  from the Olorgesailie 
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Basin representing ~970kyr to ~77kyr, while in Koobi Fora sampling was done from well dated 

archaeological and geological exposures representing the early Pleistocene period (2.525-2.51Ma) and 

the Holocene period (9.6kyr to 0.93kyr), lacking mid-late Pleistocene deposits Determining the 

vegetation structure from both basins was possible. Two approaches were applied, a general approach 

for vegetation reconstruction (phytolith abundance) and phytolith indices (aridity and tree cover 

indices). Phytolith assemblages from paleosols deposited between 1.525Ma and 1.52Ma suggest a 

general vegetation cover dominated by woodlands which shifted to woody mixed grasslands that 

resemble present savanna habitats and a moister grassland habitat is also reflected. From ~970kyr to 

~77kyr the vegetation structure comprised open grasslands, wooded grasslands, woodland/forest, and 

wetland/riparian/riverine habitats. These habitats fluctuated and the environments were unstable. The 

rate of fluctuations changed from high to low throughout the Olorgesailie sequence. From the Koobi 

Fora samples the Early Holocene (~9.6kyr to ~4.2kyr) was to the Early Pleistocene with woodlands 

remaining dominant, mixed grassland always present and a mosaic vegetation. A clear vegetation shift 

is noted during the late Holocene period (~1.34kyr to 0.93kyr), where woodlands declined while 

Chloridoideae grasses increased significantly indicating arid habitats similar to present-day savanna 

grasslands 

For future research directions it will be a valuable opportunity to have a long sediment core drilled 

from either the current Lake Turkana basin or a paleolake basin from which phytolith data can be 

analysed and studied to give a continuous vegetation reconstruction history. 

Key words: Phytoliths, Pleistocene, Holocene, Paleoenvironments, Koobi Fora, Olorgesailie 
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Part 1: General introduction 

CHAPTER ONE: BACKGROUND INFORMATION 
East Africa is famous for numerous early hominin sites that have provided quality archives of human 

evolutionary history data that address not only human evolution questions but also evolution of other 

faunal species dating back to the Miocene period. The region is also very rich in archaeological sites, 

from which various levels of toolkits have been discovered, technology transitions, for example, 

transition from Acheulean to Middle Stone Age (MSA) to Late Stone Age (LSA), have been preserved, 

human cultural interactions and their response to variable climatic events through time (Potts et al., 

1999; Basell, 2008; Tryon et al., 2010; Potts and Faith, 2015). 

Generally, East Africa experiences tropical climates, controlled by intersection and interactions of the 

following factors: the Intertropical Convergence Zones (ITCZ), the Congo Air Boundary (CAB), the El 

Nino-Southern oscillation (ENSO), the East African Monsoon (both SE and NE) and the Indian Ocean 

Sea Surface Temperature (SST) (Nicholson, 1996; 2000). In addition, a complex, regional topography 

ranging from mountain ranges, rift valleys and large lakes create diverse regional-local ecological 

niches (Nicholson, 1996; Mutai and Ward, 2000). Consequently, these interactions lead to dynamic 

cultural practices and dynamic land-use patterns.  

In the past, the global Quaternary Palaeoclimates shifted orbitally between glacial (cold) and interglacial 

(warm) phases in response to processional insolation changes (Milankovic cycles). In the African 

tropics, the Palaeoclimates were predicted to be dry with low lake levels during the glacial periods and 

wet with high lake-water levels during the interglacial phase (Trauth et al., 2001; 2003; Bergner et al., 

2009). 

However, recent multi-proxy and multidisciplinary studies of deep lake cores in Africa shown varied 

local conditions in the tropics contrary to what was initially predicted with greater variance than 

expected (Cohen et al, 2007; Scholz et al, 2007; Trauth et al., 2007; Bergner et al., 2009). Other than 

the influence of the Orbital scale precession insolation, factors such as sea-surface temperatures (SST), 

the irregular shifts in position of the Intertropical Convergence Zone (ITCZ) and the strength in 

Monsoon currents (Nicholson, 1996; 2000) affect local hydrologic cycles, hence local climates (Clark 

et al., 1999; Clement et al., 2004; Maslin and Christensen, 2007; Scholz et al., 2007; Bergner et al., 

2007). For example, during the last interglacial period (135ka-127ka, 110ka-85ka and 78ka-74ka) 

Palaeoclimates around Lake Malawi and Lake Tanganyika experienced extreme aridity, causing Lake 

Malawi to become a shallow saline lake surrounded by semi-deserts (Scholz et al., 2007; Bergner et al., 

2007). On the other hand, around similar time periods a series of high-lake stands were recorded in 
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Lake Naivasha (146ka-120ka, 139-133ka, 113ka-108ka and ~ 90ka), in Turkana-Suguta and Magadi-

Natron basins around 135ka-130ka (Trauth et al., 2001; 2003; Bergner et al., 2009).  

Recent studies suggest that tropical responses to climate changed during the 70ka, following closely the 

temperature fluctuations in the northern hemisphere on millennial and centennial scales observed in the 

Greenland records (Heinrich Events 1, 4-6, and some Dansgaard-Oeschger events). These climatic 

phases are expressed as sharp peaks and moisture in the tropics (Stager et al., 2005; Verschuren et al., 

2009a, b). 

The geological processes such volcanism resulted in the formation of the rift valley systems, new lake 

basins, while drying of others, provided an ideal scenario for abrupt sedimentation/ burial which was 

critical for good preservation of faunal and floral remains. Periodic volcanic eruptions deposited 

geological markers, in between fossil bearing sediments, that consist of uniquely identified chemical 

signatures that can be accurately dated using varied techniques. Subsequent rifting and volcanism 

exposed geological markers and sedimentary sequences in which fossils are preserved. Such sites are 

numerous especially within the rift valley system, distributed from north (Ethiopia) to south (Tanzania). 

Geological, paleontological and archaeological data from these sites justify why the Eastern Africa 

region has played a crucial role in evolutionary history, especially mammalian and human since 

Cretaceous-Tertiary (KT) boundary ~65Ma through the emergence of the modern man, Homo sapiens 

~300ka to present. 

Among these sites, Koobi Fora and Olorgesailie basins have contributed greatly to scientific data that 

have addressed various research questions not only in human evolutionary history but also other life 

forms, and palaeoenvironmental and palaeoclimatic reconstructions both temporally and spatially.  

Unique and important research findings have been published since late 70’s. Millions of 

paleontological, anthropological and archaeological collections from these sites have been analysed 

leading to thousands of publications not only in highly regarded peer reviewed journals but also in both 

main stream and social media (e.g. Behrensmeyer, 1970; Leakey, 1970; 1995; Isaac, 1971; Isaac et al., 

1971; Behrensmeyer et al., 1997; Potts et al., 2004; Bennet et al., 2009, among others). Consequently, 

making Kenya earn her glory of cradle of mankind. 

 Both basins are located within the Kenyan rift system; Olorgesailie in the Southern rift while Koobi 

Fora northern rift, approximately 900 km apart. However, despite the distance separating them both 

basins share some similarities in that they are located within semi-arid to arid regions and that they 

represent paleolake basins with lithostratigraphic sequences that span from Pleistocene and earlier, to 

Holocene periods and which are well correlated spatially across the landscapes (Baker and Mitchel, 

1976; Isaac 1978; Brown and Feibel, 1986; Harris et al., 1988; Deino and Potts, 1990).  
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In addition a common hominin species, Homo erectus, and the associated archaeological artefacts, have 

been preserved well in both basins (Brown et al., 1985; Potts et al., 2004). In contrast, while in the 

Olorgesailie basin there is only a single hominin species found (Homo erectus), in the Koobi Fora basin 

several species have been found (Australopithecus/ Paranthropus sp and Homo habilis) in addition to 

various specimens of Homo erectus. This could be partially due to the size of the basin; Koobi Fora is 

relatively larger than the Olorgesailie basin. 

Remarkable pilot studies in evolutionary history have been undertaken in the region, for example; 

testing the three major hypotheses to explain the events that led to human evolution from one clade to 

another; Savanna hypothesis (deMenocal, 1995; Cerling et al., 1992; 1997a), turnover-pulse hypothesis 

(Bobe et al., 2002; Bobe and Behrensmeyer, 2004) and the environmental variability hypothesis (Potts, 

1996; 1998). These studies so far have laid the foundation of the role of paleoclimates and 

palaeoenvironments in evolution history, particularly during Pliocene, Plio-Pleistocene and Pleistocene 

periods in East Africa (Wynn, 2004; Feakins et al., 2005; Behrensmeyer, 2006; Cerling et al., 2011).  

A model has been developed using various multiproxy datasets to illustrate the role of changing climates 

and consequential impact on the vegetation cover to shape the evolution trajectory of the Homo species 

(Figure 1). Carbon isotope ratio from terrestrial and lacustrine sediments indicated close correlation 

between the emergence of Paranthropus Genus with expansion of C4 grasslands around 3Ma while C3 

vegetation declined rapidly. More expansion of grasslands is noted around 2Ma corresponding with the 

period when Homo erectus appeared and migrated out of Africa (Lahr and Foley, 1998; Feakins et al., 

2005; McDougall et al., 2005). 

More so, faunal analyses are consistent with the above mentioned studies (deMenocal, 1995; Potts, 

1996; Bobe and Behrensmeyer, 2004), emphasizes that  vegetation cover remains critical to understand 

past ecological interactions. Late Pleistocene period, the relationship between the distribution and 

concentration of the Middle Stone Age (MSA) sites in East Africa clearly suggested that vegetation 

cover and climatic events played a great role in early human occupation choices and technological 

development (Basell, 2008). 
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Figure 1. Shows the plots of plant wax biomarkers and δ13 variation in relation to the Hominin 

Evolutionary tree (After, Feakins et al., 2005). 

Pollen analyses and stable isotopes were the main proxies analysed to address such questions (Owen et 

al., 1992; Bonnefille et al., 1986; Cerling et al., 1988; Levin et al., 2011). However, these proxies could 

not explicitly differentiate habitats with tall versus short grasses and lowland C4 versus highland C3 

grasslands, which are critical in understanding the palaeoenvironments. Recently, phytoliths, 

microscopic silica bodies deposited within and/or between plants cells, preserved in the sediments after 

parent plant decomposes (Piperno, 1988; 2006; Pearsall, 1989; Rapp and Mulholland, 1992a), have 

proved valuable in identifying and classifying grasses to their ecological significance beyond family 

level enabling researchers to reconstruct past vegetation cover especially those that surrounded early 

humans (Alexandre et al., 1997; Barboni et al., 1999; Albert et al., 2006, 2007). 

It is a general understanding that Pleistocene period is a critical period not only when the modern human 

(Homo sapiens) emerged but also when major global climatic events occurred (Lahr and Foley, 1998; 

McDougall et al., 2005; Tyron et al., 2010; Stewart and Jones 2016) that are associated with series of 

severe population reductions and subsequent rapid expansions (Lahr and Foley, 1994; Rogers and Jorde, 

1995, Basell, 2008). During such global events, it is suggested climates were extreme in the northern 

hemisphere, whereas equatorial and tropical Africa offered refugia and it is thought hominin species 

could have been maintained here (Basell, 2008). The earliest fossil evidence of Homo sapiens has been 
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found in the East African region (~ 195ka-130ka): Singa in South Sudan (Grun and Stringer, 1991; 

McDermott et al., 1996), Herto and Omo in Ethiopia (Brauer, 1984; Clark, 1988; McBrearty and 

Brooks, 2000; Clark et al., 2003; White et al., 2003; Haile Selassie et al., 2004; McDougall et al., 2005) 

and Mumba in Tanzania (Mehlman, 1987; 1991; Mabulla, 1996). 

As mentioned earlier, Pleistocene global climatic variabilities recorded contrasting effects to those 

recorded in the Northern hemisphere compared to the African continent, and even more unique effects 

are registered in different regions within the continent (see, Jones and Stewart, 2016). Considering that 

the earliest fossil evidence of anatomically modern man is found in East Africa (~195ka), (McDougall 

et al., 2005; Brown et al., 2012) and the probable source of human populations dispersal during the late 

Pleistocene (~70ka) out of Africa as indicated by genetic evidence (Soares et al., 2012; 2016), strongly 

suggest that Pleistocene climate variabilities played a great role in human evolutionary history (Lahr 

and Foley, 2016). More so., it is during this period when MSA technology is recorded at various 

archaeological sites across the continent (e.g. McBrearty and Brooks, 2000; McBrearty, 2007; Basell, 

2008). Nevertheless, the question on how the changes in climates influenced the direction of human 

evolution and consequent dispersal remains not fully resolved and is the main current debate among 

researchers in different field of specialities. Stewart and Jones (2016) have synthesized evidence derived 

from different regions in the African continent between Marine Isotope stages 6 and 2 (~191ka and 

14ka) and it stands out that the following challenges need to be addressed to conclusively address the 

question:-  

1) Discontinuity and /or lack of chronologies from various sites hindering evidence comparisons 

both spatially and temporally, 

2) Local responses to climate variabilities differed greatly, hence leading to some sites being 

favourable refugia, thus some sites having rich evidence while others lack of evidence (e.g. 

Basell, 2008) 

3) The nature of the African vegetation cover which was quite varied and largely controlled by 

local topography, the responses and resilience of these vegetation structures varied greatly 

across the continent (Stewart and Jones, 2016). 

One of the crucial step that has been undertaken in the past and needs to continue, is the 

multidisciplinary and multiproxy data analyses from a site/ core and which can be comparable from 

inter-and intra-basin scale to a regional scale. 

The research work presented here compares vegetation data inferred from a similar proxy, phytolith 

assemblage of two important prehistoric basins, the Olorgesailie basin in the southern Kenyan rift and 

the Koobi Fora basin north of the Kenyan rift. This research is unique in that, it presents the first 
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phytolith data from Koobi Fora basin and first long, continuous high resolution data from the 

Olorgesailie basin. In addition, the Olorgesailie data will be compared with other paleoenvironmental 

proxies analysed from the same levels to determine and interpret long-term environmental dynamics 

and the possible role these changes played in modifying the paleolandscapes.  Although data from 

Koobi Fora basin is not continuous, it provides well dated sequence covering the early Pleistocene and 

Holocene period which is missing from the Olorgesailie core. However, since this project is directed 

mainly by the overall objectives of the Olorgesailie Drilling Project (ODP) which only focused on 

sampling the Pleistocene sediments, the data of Holocene period is therefore not reported here.  

On the other hand, the Koobi Fora analysis is advantaged because it includes data for the Holocene 

period from a site that has published dates and can be compared to already within-site published 

palaeoenvironmentals data (Ashley et al., 2011). However, it suffers the setback of discontinued 

chronology since sampling was done from geological sections that were believed to expose paleosol 

layers that are chronologically placed within the Pleistocene period and the dates used are taken from 

the dated tuffs bracketing these paleosol layers. In addition, the existence of a disconformity occurring 

during Late Pleistocene made it difficult to compare phytolith datasets between the basins. 

Nevertheless, vegetation dynamics reflected by the phytoliths data from each basin are discussed and 

interpreted on basin-scale and the surrounding environments and inter-basin comparisons for the period 

~1Ma. In addition, the role played by the vegetation cover of the Pleistocene environments to influence 

human-environmental interaction is discussed for each basin and consequently compared. 

1.1. Highlights of major climatic events, vegetation cover and human impact in 

East Africa  

1.1.1. The Pleistocene period  

Detailed palaeoenvironmental and paleoclimate studies indicate that African climates were highly 

variable since early Pliocene to Holocene periods. The climates oscillated from warm-humid to cool-

dry episodes in response to the global orbital precession insolation (Milakovic) cycles (Trauth et al., 

2007) and vegetation cover was highly variable. Multiproxy climatic and palaeoenvironmental data 

from East Africa sites show that the region experienced significant episodes of climate change during 

the Pleistocene and Holocene epochs (Verschuren et al., 2000; 2009). Lacustrine rift basins have been 

identified as excellent archives of various proxies studied to reconstruct the past environments and 

climates, such as diatoms, pollen, lake sediments and minerals, stable isotopes, water chemistry and 

other faunal and floral remains preserved in these basins (Marchant and Taylor, 1998; Lamb and 

Verschuren, 2003; Rucina et al., 2010; Ashley et al., 2011). 
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Previous studies have demonstrated that African climates at during this period oscillated from warm 

and humid to cool and dry episodes (deMenocal, 1995; deMenocal and Bloemendal, 1995). This 

resulted in habitats varying between wooded vegetation to open savannah grasslands.  It has been 

hypothesised that this variability in habitats was an important driving factor for evolution and speciation 

of mammals (Environmental Forcing Hypothesis; Bobe et al., 2002). Kingston et al. (1994) found the 

palaeoenvironmental setting of the Kenyan rift was best described as “...a heterogeneous environment 

with a mix of C3 and C4 plants that persisted for the last 15.5 Ma”. Other hypotheses based on 

palaeoenvironmental changes, and associated with major fossil discoveries linked to human evolution 

and their interactions with environmental context are discussed and summarised in Table 3.1 by Potts 

(1998). Recent debate on the possible vegetation context in which Ardipithecus ramidus (Aramis ~4.4 

Ma) interacted with the surrounding environments in Ethiopia (WoldeGabriel et al., 2009; Cerling et 

al., 2010; White et al., 2010) is a perfect example that demonstrates the need for paleovegetation data 

from African hominin sites. 

Plio-Pleistocene and Pleistocene (4.2-0.6Ma) environments of the Koobi Fora basin were more mesic 

than present day. Varied palaeoenvironments were indicated from each Member of the Koobi Fora 

Formation which was controlled dominantly by the changes occurring in the paleo-Omo river channel 

and Lake Turkana basin Vegetation structure consisted of gallery forest along the ancient Omo river 

channel and seasonal grasslands on its flood plain (Feibel, 1988).  

1.1.2. The Holocene period 

Palaeoenvironmental proxies studied from different archives indicate that Africa in general and East 

African region in particular experienced significant climatic variability during the Holocene period 

(Owen et al., 1982; Stager et al., 2003; Ashley et al., 2004; Driese et al., 2004; Verschuren, 2004; Russel 

and Johnson, 2005; Olago et al., 2009; Verschuren et al., 2009). 

Rift valley lake basins have archived excellent data that have provided non-conflicting insights on past 

regional climatic changes during the Holocene period. This coupled with archaeological and 

paleobotanical data dated to Early-late Holocene; helps understand the impact of climate variability on 

palaeoenvironments and human socioeconomic strategies (e.g. Ndiema, 2011). 

Climate during early to mid-Holocene (10,000-7,000yrs BP) was warmer and wetter than the 

subsequent periods with expanding grasslands and decreased forests and woody species (deMenocal et 

al., 2000). High lake stands within the rift valley were evidenced, for instance Lake Turkana level rose 

to 80m above the current (1976) level ~365m a. s. l (Butzer, 1980; Harvey and Grove, 1982; Olago and 

Odada, 2000; Umer et al., 2004). This humid period is also referred to as the African Humid Period, 

and was as a result of orbitally-induced weakening of monsoon strength (Wright, 2017). 
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Available proxies indicate the mean climate regime during the late Holocene (~5000yrs BP) was 

significantly wetter than the mid Holocene (7000-5000yrs BP) at the equator. This has been attributed 

to the intensification of the north-eastern monsoon causing enhanced southern hemisphere summer 

insolation (e.g. Russell and Johnson, 2005; Verschuren et al., 2009; Wright, 2017).  

Climate variability continued to be experienced in the last 2500 years in the African tropics 

(Verschuren, 2004; Verschuren and Charman, 2008). The East African lakes and wetlands provide 

evidence of several decadal-to- century scale drought events (Verschuren et al., 2000; Stager et al., 

2003; Ashley et al., 2004; Driese et al., 2004; Russell and Johnson, 2005; 2007). 

The last 2500yrs BP was marked with more climate variability across East Africa with four dry events 

experienced during ~50BC-200AD, ~900-1250AD, ~1780-1830AD and ~1920-1960AD. These 

drought events were interrupted by two cool and moist events (Little African Ice-age (LIA)); early LIA 

between ~1250-1550AD and main LIA occurring between ~ 1550-1825AD (Verschuren et al., 2000; 

Stager et al., 2003; Ssemmanda et al., 2005). Pollen records from lake sediments further suggest 

vegetation changed in response to climatic variation during the late Holocene (e.g. Lamb 2001, Lamb 

et al., 2003, Rucina et al., 2010).  

Transition from warm and humid to cool and dry climates is associated with ecological conditions that 

were favourable for the emerging complex social systems not only in Africa but also in South western 

Asia where new agricultural practices emerged such as irrigation, new subsistence resources and 

extended resource exchange among different communities, which in some regions were managed by 

hierarchical leaders (Ndiema, 2011; Wright, 2017). 

Archaeological studies on how early humans interacted with the surrounding environments in response 

to the said climatic variability show great dynamism in social- economic and cultural adaptations to 

changing landscapes and resource availabilities (Robertshaw and Taylor, 2000, Taylor et al., 2000; 

Robertshaw et al., 2004; Ndiema, et al., 2011). In Lake Turkana region, for instance, humans switched 

social, economic and cultural practices and subsistence acquisition from hunters and gatherers to fishing 

to pastoralism between early-mid-late Holocene respectively (Ndiema, 2011).  

There are more extensive temporal paleo-vegetation studies based on pollen analyses for late 

Pleistocene to Holocene period than Early to Mid-Pleistocene periods. This is because of reliable lake 

sediment cores recovered from various lakes in East Africa. Some of these researches have analysed 

and discussed the possible impact the palaeoenvironments and paleoclimates had on early humans. 

However, there is a serious existing gap brought about by the inaccuracy of grass pollen grains to 

taxonomically identify grasses below family level (Twiss, 1992). We are aware from previous 

paleoenvironmental studies that expansions of C4 grasslands, especially in African arid and semi-arid 
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regions, have shaped evolutionary history of species since the Miocene period (Cerling and Hay, 1988; 

Cerling, 1992; Cerling et al., 1997, Bobe and Behrensmeyer, 2004; DeMenocal, 2004; Bobe, 2006; 

Levin et al., 2011). 

The critical role played by African grasslands is well explained in various paleontological and paleo-

environmental studies on African Late Quaternary Extinctions (LQE) suggesting that Late Pleistocene 

(126,000-12,000yrs ago) climates influenced the emergence of Homo sapiens between 200,000-

100,000yrs ago, landscape cover changes and eventual extinctions of various faunal species (Klein, 

1980; 1984; Bobe and Behrensmeyer, 2004; Bobe, 2006; Codron et al., 2008; Faith, et al., 2012, 2013). 

These studies observed that the most species extinctions were attributed to declining grasslands toward 

the end of Last Glacial Maximum (Klein, 1980; 1984, Brink and Lee-Thorp, 1992; Faith et al., 2012; 

2013). Other key factors highlighted include increased niche specialization (Cordron et al., 2008) and 

Late Stone Age (LSA) human impacts due to the improved hunting tools, particularly during 

Pleistocene-Holocene transitions (12,000-9,500yrs ago) (Klein 1980, 1984). 

Considering that grasslands are a key component in the African ecosystems both for the high and low 

altitude vegetation cover (Potts, 1998; DeMenocal, 2004; Plummer et al, 2009; Faith et al., 2012), it is 

therefore important to understand dynamics in the past ecosystems to more accurately reconstruct the 

past vegetation changes and discuss the implication of this over the palaeolandscapes. Fortunately grass 

phytoliths, especially the silica short  cells (GSSC) have been used not only to identify grasses beyond 

family level but also between wild and domesticated grasses such as cereals (Piperno and Pearsall, 

1998; Piperno, 2006). 

It is on the basis of this strength that this study applies phytolith analyses to reconstruct vegetation 

changes since the Pleistocene period. More so, phytoliths preserve well in a variety of depositional 

regimes including alkaline conditions as opposed to pollen grains, and hence are strong proxies to be 

studied in paleo-lakes such as Koobi Fora and Olorgesailie basins. 
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CHAPTER TWO: PHYTOLITH STUDIES  

2.1. Benchmark for phytolith data analytical approach 
This section reviews the existing published literature and modern phytolith data as a palaeoecological 

tool in reconstructing the past vegetation structure considered in this work. In addition, limitations and 

opportunities of using phytolith data are highlighted and their significance in this study is presented. 

Phytolith research is a field that has developed over time with a major milestone being a consulted 

attempt to standardize the classification system; International Code of Phytolith Nomenclature 

(Madella, 2005). Unfortunately not all specialists use this classification system, and a few only use it 

for certain morphotypes. This setback is partly due to variation of vegetation habitats across the globe, 

and partly because of different lab protocols used to extract and analyse phytoliths (10th International 

Meeting for Phytolith Research-IMPR).  

However, despite this setback, phytolith analyses have been used to determine domesticated versus wild 

crops in archaeological settings (Bozarth, 1996; Pearsall, 2000; Piperno and Pearsall, 1993), to 

determine and reconstruct vegetation structure (Alexandre, et al., 1997; 1999; Bremond et al., 2008) 

and define the prevailing climates in the past (Fredlund and Tieszen, 1997; Alexandre, 1999; Baker et 

al., 2000). Phytolith data is therefore a potential tool to investigate the vegetation dynamics of the 

Pleistocene-Holocene environments of the prehistoric basins reported here.  

2.1.1. What are phytoliths? 

Phytoliths are opaline silica deposits that form within and between plant cells (Piperno, 1988; 2006). 

They form when plants absorb soluble silica [Si (OH) 4] from ground water and then precipitate in and 

around plant cells at different locations through polymerisation processes (Piperno, 1988, 2006; 

Pearsall, 1989; Rapp and Mulholland, 1992a). On decay and decomposition of the plant, the silica 

“casts” are deposited in the soils preserving their original cells shapes and forms, as phytoliths. They 

therefore qualify as botanical micro-fossils and can provide significant paleobotanical and 

paleoenvironmental information (Rovner, 1988; Rapp and Mulholland, 1992a, Piperno, 2006).  

Phytoliths, like pollen are potential plants index microfossils, hence useful in reconstruction of 

vegetation history (Rovner, 1971; Piperno, 1988; 2006). Unlike pollen, phytoliths being inorganic are 

resistant to oxidation, hence, preserve well in a variety of sediments where pollen is poorly preserved 

(Brown, 1984; Piperno, 2006). More important, is the potential of phytoliths to distinguish grasses into 

subfamilies, tribes or genera (Twiss, 1992; Twiss et al., 1969, Brown, 1984; Mulholland and Rapp, 

1992; Piperno and Pearsall, 1998), making phytoliths the most preferred proxy to determine and 
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investigate East Africa’s vegetation dynamics, both temporally and spatially, which constitute largely 

of grasslands component (White, 1983; Timberlake et al., 2010). 

2.1.2. Phytolith formation in plants 

Phytoliths are present in angiosperms, gymnosperms and pteridophytes (Piperno, 1988). However, 

different plants species deposit silica variably depending on various factors; most monocotyledons are 

better phytolith producers than dicotyledonous plants (Bozarth 1992; Piperno, 1989; 2006). Plant 

families known to be consistent accumulators of identifiable phytoliths include the following: Poaceae, 

Cyperaceae, Cucurbitaceae, Asteraceae and Leguminosae. Nevertheless, production of phytolith is not 

exclusive only in the above listed families, other plants produce little or non-identifiable types. Some 

plants produce calcium phytoliths, for example Cactaceae family produce Calcium oxalate crystals 

formed in the wood, while Calcium carbonate crystals (cytoliths)  have been found in Urticaceae, 

Moraceae, Acanthaceae and Cannabinaceae ((see Rapp and Mulholland, 1992 and references therein). 

2.1.3. Plant silica functionality 

Available evidence suggests that silica uptake is both an active and passive process and, both genetic 

and environmental factors play an important role (Cooke and Leishman, 2011). It has been found that 

active silica uptake has some benefits to some plant species; they provide structural support (Kaufman 

et al., 1985, Piperno, 1988) and protection from herbivores (McNaughton et al., 1985; Massey and 

Hartley, 2009; Massey et al., 2007; Reynolds et al., 2009).  Recent studies have attributed silica 

deposition in some domesticated plants/crops such as Zea mays (maize) and Oryza sativa (rice) to be 

an adaptation mechanism against drought and leaf diseases (Chang et al., 2002; Ahmed et al., 2011b; 

Malhotra et al., 2016). 

2.1.4. Phytolith preservation and taphonomy 

Phytoliths are mainly inorganic and are resistant to a variety of chemical conditions that affect other 

types of plant remains. They are therefore well preserved in a variety of depositional regimes devoid of 

other plants’ macro-and micro-fossils especially in terrestrial environments.  

Taphonomic issues are also crucial for accurate interpretation of fossil phytolith assemblage. 

Differential dispersal associated with each morphotype or each size class affect their distribution in the 

sediments (Mulholland and Rapp, 1992; Cabanes et al., 2012; Cabanes and Shahack-Gross, 2015). 

Phytoliths are produced within many parts of the plants and are deposited directly in the humus layer 

of the soil during plants’decompostion, hence give signal of the local vegetation cover. In other 

instances, strong erosional process (fluvial, Aeolian) and fires lead to long-distance dispersal by water 

and wind. Phytoliths in the soils and sediments are affected by various active physical and chemical 
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processes. In particular, opaline silica dissolve easily under strong alkaline conditions (Mulholland and 

Rapp, 1992; Piperno, 2006). 

2.2 Phytoliths classification 

Classification system used in this work is guided by a combination of previous research depending on 

the diversity of morphotypes in the fossil assemblage. This is referenced accordingly. Modern phytolith 

reference based at the National Museums of Kenya is also consulted. Two broad classification 

categories is considered following Stromberg, (2004): 1) diagnostic and 2). Non-diagnostic 

morphotypes. 

2.2.1. Diagnostic morphotypes 

These are silica with distinctive shapes and sizes and are known to occur in high abundance in specific 

vegetation taxa. Examples of such phytoliths have been identified mostly in grasses, sedges and palms 

(Twiss et al., 1969; Twiss, 1992; Ollendorf, 1992; Albert et al.2006; 2015).  

The presence of diagnostic morphotypes in the fossil assemblage plays an important role in accurately 

defining past plant community structure and estimate potential climates. Since diagnostic morphotypes 

vary in size (2-800µm), it is therefore important to extract and analyse phytoliths of all size fractions in 

a given soil/sediment samples for accurate representation (Stromberg, 2002; 2004). 

The presence or abundance of morphotypes of taxa often associated with specific habitats and have an 

ecological preference such as wetlands, springs and/or a high water table, have been considered as 

habitat-diagnostic morphotypes, implying such habitats existed on the palaeolandscapes. Such 

morphotypes include GSSCs that are not specific to particular sub-family but are known to indicate 

grasslands, morphotypes derived from woody dicots but are not specific to particular species, here 

generalised as forest indicators (FI) and those generally derived from herbaceous taxa.  

These morphotypes have accurately defined Plio-Pleistocene, Pleistocene and Holocene vegetation 

habitats, (Barboni et al., 1999; Albert et al., 2006; Bamford et al., 2006; Ashley et al., 2010). However, 

their ecological application beyond the Plio-Pleistocene period has been questionable (see Stromberg, 

2002, Tertiary studies). Diagnostic category includes morphotypes derived from palms and sedges; 

globular echinate and papillae/hat-shaped respectively (non-grass category) and Arundinoideae, 

Panicoideae, Chloridoideae (GSSCs category) (see figure 2). 

The following is a detailed description of the diagnostic morphotypes: 



29 

 

 

Figure 2. Grass phytolith in modern and fossil assemblages; a-h) bilobates, i) cross j) polylobate, 

k-m saddles, n-q) towers/rondels, r) trapezoid, s-t) bulliforms, u) scutiform in-situ, r) long-cell; 

elongate type, v). saddle long, w) Hair cell. Scale bar=10µm 

f) g) h)

e)
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a) Palms 

Palm trees are key component of Tropical Savanna vegetation cover. They produce diagnostic 

morphotypes known as ‘globular echinate’ or spheroid echinate and are often included in the forest 

indictor category (Piperno, 1988; 2006: Barboni et al., 1999; 2007; Stromberg, 2004) and are considered 

as prolific phytolith accumulators (Albert et al., 2006; Bamford et al., 2006). However, most palms 

have specific ecological preferences and have been found in low frequencies in modern soil phytolith 

assemblage from dense forest (< 5%, Alexandre et al., 1997; Albert et al., 2015). Coconut and oil palms 

are cultivated, hence associated with human disturbance, forest clearing and open habitats (Boyd et al., 

1998). Based on current ecological distributions palms are mainly associated primarily with warm and 

humid habitats (Stromberg, 2003) especially in the West African region and gallery forests in 

association with springs, seeps and/ or high water tables within the East African savanna ecosystems 

(Albert et al., 2006; Bamford et al., 2006; WoldeGabriel et al., 2009; Ashley et al., 2010; Barboni et al., 

2010; Albert and Bamford, 2012). Accordingly, palm phytoliths are indicators of riparian/gallery forests 

with high water table, and are associated with warm and humid environments, especially in East African 

region. 

b). Grasses 

Grasslands have been a key component of various habitats in Africa throughout Pliocene Period. The 

evolution of grass-dominated ecosystems has been hypothesized to play a major role in the evolution 

history of humans and other mammals in Africa (Vrba, 1995; Bobe and Behrensmeyer, 2004).  

Molecular studies by the Grass Phylogeny Working Group (GPWG I) initially revised the evolutionary 

grass clade GPWG, (2001); Kellogg, (2001) and classified grasses into two main evolutionary clades 

according to their ability to tolerate drought and thrive in open, dry habitats. These clades are as follows: 

1) Pooideae (Festucoideae), which include Asian cereals, high elevation grasses of tropical latitudes 

and most northern temperate grasses and, 2) PACCAD, Panicoideae (tall grasses of tropical origin e.g. 

maize and sorghum), Arundinoideae (wetlands grasses such as reeds and Phragmites), 

Centhothecoideae (forest grasses e.g. Zeugites), Chloridoideae (drought-adapted short grasses of 

prairies and savannas), Aristidoideae (short grasses found in disturbed shallow soils mainly roadsides 

and footpaths) and Danthonioideae (found mainly in the southern hemisphere, in both open and closed 

habitats) (GPWG, 2001; Kellogg, 2001). 

A more recent phylogeny (GPWG II) has more advanced classification, which include more grasses. 

The two main clades according to their phosynthetic pathways: 1) BEP (Bambusoideae, Ehrhartoideae 

and Pooideae) all of which are C3 cool grasses and, 2) PACMAD (Panicoideae, Arundinoideae, 

Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) tropical grasses (GPWG, 2012). See 

figure 3. 
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The identified grass subfamilies are adapted to either C3 or C4 photosynthetic pathways depending on 

their ecological preference. In tropical Africa, the C3 grasses are mainly found in high elevation, and 

are associated with cool and wet climates although in South Africa they are found in low elevation 

regions unlike in the tropics. C4 grasses on the other hand are more commonly associated with warm 

climates but they spread along moisture gradients, with Panicoideae thriving best in warm but moist 

climates while Chloridoideae thrive in warm and dry climates (Twiss et al., 1969; Tieszen et al., 1979; 

Twiss, 1992; Rossouw, 2009). 

Grasses not only accumulate substantial amount of silica, they produce diagnostic morphotypes that can 

discriminate between sub-families (Twiss et al., 1969; Twiss, 1992, Stromberg, 2003; Piperno, 2006). 

This is possible because grasses with different photosynthetic pathways (C3 or/and C4), have their 

epidermal cells arranged differently and with differing sizes. Silica is either deposited on the cells’ 

outline or within the cell, the replicas/ casts retains the cell shape when deposited in the cell after the 

plant decompose (Twiss, 1992; Piperno, 2006).  

As mentioned earlier, grasslands have been an important vegetation component in Africa’s history, 

therefore understanding the evolution of grasslands and their role in evolutionary history is of 

importance. The fact that grasses accumulate substantial amounts of silica within and around the 

epidermal cells that form identifiable phytolith morphotypes that preserve well in sediments long after 

the grasses decompose, present a great opportunity to reconstruct the vegetation structure of the region.  

Despite the existing overlap, where some GSSC morphologies are produced across grasses with 

dissimilar ecological preference and of different subfamilies (Rovner, 1983), previous studies have been 

able to identify specific morphotypes that discriminate the subfamilies (Twiss et al., 1969; Twiss 1992; 

Piperno, 2006). The following is a selection of grass phytoliths that have been generally considered to 

discriminate grass subfamilies (Twiss et al., 1969; Mulholland, 1989; Twiss 1992; Madella et al., 2005): 

a) Pooideae C3: Rondels (pyramidal rodel (PY), conical rondel (CO) & keeled rondels (KR) types 

b) Panicoideae: Symmetrical & asymmetrical bilobates (dumbbells) figure 4a &h, cross-shaped 

figure (4i) and polylobate (4j) 

c) Chloridoideae: Saddle shaped figure (2k-m). 

Recent studies further described the above categories into more diverse morphotypes that permit further 

identification of the subfamilies. For instance, bilobates are further described using the form of the lobes 

(whether convex or concave) and the length of the mid-Shank (long or short) (see Fredlund and Tieszen, 

1994; Stromberg, 2003; Rossouw, 2009; Mercader et al., 2010). This has made it possible to 

discriminate Aristidoideae grasses as described in Piperno (2006) figures 4 (d-e). 
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In contrast, taxonomic attribution of some grass silica short cells is not always an obvious situation, it 

depends on the region they are found. For instance, rondels morphotype in temperate region are 

associated with Pooideae C3 grasses, however in tropical Africa they are only attributed to Pooideae 

only in high elevations while in low elevations, rondels have been found to be associated with C4 

grasses, especially Chloridoideae C4 short grasslands (Barboni and Bremond, 2007). 
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Figure 3. Shows grass phylogenetic tree based on combined molecular results (GPWG, 2001, after 

Stromberg, 2003) 

c). Sedges (Cyperaceae) 

Sedges are associated mainly with wetlands and swampy habitats. In palaeoecological records, they 

indicate proximity to water sources and swampy habitats (Stromberg, 2003) while in the archaeological 
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record they are mainly associated with human disturbance as they tend to form an important component 

of secondary vegetation (Piperno, 1988). Sedges produce unique conical shaped phytoliths that are 

distinguishable from other similar shapes produced in other plants. They have pointed apices and 

smooth surfaces which occur in achene bracts of sedges (Ollendorf, 1992; Piperno, 2006). These 

morphotypes are classified as achenes and papillae/hat-shaped (Honaine et al., 2009; Mercader et al., 

2013). These morphotypes are rare in modern soils and in sediments because they usually do not 

preserve well, Therefor, their presence in the fossil assemblage is an absolute indication of sedges on 

the paleolandscapes. Detailed description of morphotypes is given in Table 1. 

d). General forest indicators 

These are morphotypes that are produced by woody dicotyledons. They are associated with closed 

habitats and indicators of moist climates (Piperno, 2006). However, phytoliths derived from woody 

dicots suffer major setbacks; they have very little taxonomic significance and morphotypes are mostly 

redundant across taxa. Studies have also shown that dicots are poor silica accumulators; hence occur in 

low abundance in soil phytolith assemblages (Albert et al., 1999; Hodson et al., 2005; Piperno, 2006; 

Mercader, 2009). 

Key morphotypes often used to infer forest/woody habitats include: globular granulate (Runge, 1999; 

Neumann et al., 1999; Piperno, 2006; Mercader et al., 2009; 2013) figure (9j-l), treachery elements of 

xylem and sclerenchyma tissue (tracheid & sclereid) (Albert et al., 1999; Piperno, 2006; Mercader et 

al., 2009, 2013), decorated blocky type (Mercader et al., 2009, 2013), globular psilate (Mercader et al., 

2009, 2013) figure (9f) and stomatal cells, trichrome & hair bases (Mercader et al., 2010) figures (5c 

&4w). 

Presence and frequencies of the above mentioned morphotypes in the fossil assemblages are used to 

interpret the presence of woody components in the past vegetation structure (Albert et al., 2006; 

Mercader et al., 2009, 2013) and also help demonstrate the vegetation transition between open 

grasslands versus closed wooded habitats and the associated climates (Alexandre et al., 1997; Bremond 

et al., 2005; Barboni et al., 2007; Mercader et al., 2010; Novello et al., 2012). 

e). Herbaceous indicators 

Here we refer to non-woody plants except for grasses and sedges. Just as in woody dicots, herbaceous 

taxa are poor silica accumulators with phytoliths mostly restricted to fruits and seeds (Piperno, 2006). 

Most phytoliths derived from herbaceous taxa are similar morphologically to those produced in woody 

dicots, hence it is difficult to single out herbaceous taxa from woody dicots. Nevertheless, they are 

included in analyses and discussed within the woody and herbaceous taxa category (Figures 2, 4). These 

included spheroid/globular psilate, ellipsoid variants, epidermal assemblages among others. 
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2.2.2. Non Diagnostic morphotypes 

Also present in phytolith assemblages are morphotypes that have no taxonomic value and are classified 

as non-diagnostic/ variable (Albert et al., 1999). They are not used to reconstruct the vegetation history 

because their occurrence seems to be largely controlled by the environmental parameters under which 

the parent plants developed (Piperno, 1988). Such morphotypes include wavy and smooth elongates 

trichrome and bulliforms. Trichrome/ prickles for instance have been assigned to angiosperms in 

general (Evert, 2006), while most researchers assign bulliforms to grasses (Piperno, 2006). They can 

also be associated with graminoids.  

In this study, they have been included in the analyses because they give insights on environmental 

parameters and different habitats.  For example, since bulliforms have a positive correlation with 

moisture availability, their abundance in an assemblage not only reflect expansive grasslands (together 

with other GSSCs) but also indicate high moisture (Rovner, 1983). 
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Figure 4. Non-grass phytoliths in the fossil assemblages; a) Tracheid, b) elongate facetate, c) 

scutiform, d) papillae/hat-shaped e) achene, f) globular psilate, g-i) globular echinate, palm type, 

j-l) globular decorated /granulate(k-top left) Scale bar=10µm 

a)

g)

c)

f)d) e)

b)

l)k)j)

i)
h)
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Figure 5. Non-grass phytoliths; a-d) globular verrucate, e-g) sponge spicules and diatoms, h) 

parallelepiped, i) sponge spicules, j-k) parallelepiped variants. Scale bar=10µm 

b)a) c)

d) e)

h)

f) g)

k)

j)

i)
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2.3 Background of Phytolith studies 

Phytoliths were first recognised in 1675, described and classified by Ehrenberg in 1836 (Rapp and 

Mulholland, 1992). Application of phytolith studies have increasingly gained popularity in the 

following categories: - 1) Actualistic studies (plant systematics), 2) past human-plants interactions 

(archeobotany) and 3) paleoecology (past environmental reconstructions) (Piperno, 1988; Mulholland 

and Rapp, 1992 Piperno and Pearsall, 1998) as summarised below.  

 Phytoliths systematics has played a great role in the rapid development of phytolith research, (Twiss et 

al., 1969; 1992 Madella et al., 2005: Stromberg, 2007; Alexandre and Bremond, 2008), it suffers a great 

challenge because of insufficient data standardisation in both identification and quantification which 

hinders broader connectivity in interpreting phytolith data between sites and across regions (Zurro et 

al., 2009; Shillito, 2012). The only baseline that exists so far that guides on phytolith morphological 

description, the International Code for Phytolith Nomenclature (ICPN) was published by Madella et al., 

(2005) which is not always used by researchers (Shillito, 2012). In addition, taphonomic biases and 

insufficient count size make it difficult to relate and interpret fossil phytolith data/assemblages for 

different sites especially for palaeoecological significance (Stromberg, 2009; Shillito, 2012). 

Phytolith analyses have been used in archaeological studies since the 1970’s and came of age in Old 

and New worlds (Rovner, 1971; Piperno, 2006). On 1980’s application of phytolith was mainly focused 

on reconstruction of prehistoric agricultural systems (Piperno, 1988, Piperno and Pearsall, 1998; 

Piperno, 2009; Piperno et al., 2009) and archaeobotanical studies on various plants uses (Piperno, 1991). 

In Asia, investigating the agricultural development of rice, wheat and barley (e.g. Rosen 1992; Pearsall 

et al., 1995) and other historical non-food plant uses (Madella et al., 2002; Rosen, 2005; Albert et al., 

2000; 2008; 2010). 

In summary, these studies demonstrated that phytoliths can address the following archaeobotanical and 

agricultural questions which are critical in understanding the past human-plants interactions; 1) origins 

and dispersals of crop domestication and development of agricultural practices, 2) availability and 

socio-economic wild plants, 3) chronology of plant use and subsequent domestication, 4) functions of 

pottery and stone tools, 5) vegetation cover associated with archaeological sites and human-

environment interactions and 6) the relation between existing technology and socio-economic 

organization (Piperno 2006: pg. 139). This is achieved especially when samples are collected within 

archaeological sites and from identified features such as hearths, grain threshing areas, storage areas 

and refuse/dustbin areas. 
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In addition, phytolith data derived from archaeological settings also provide information on the local 

vegetation cover and the environments with which early humans interacted with. More so, human 

influences on land-use patterns across the palaeolandscapes are understood.  

In paleoecology, phytoliths are useful in quantitative indices of paleoclimates. This is especially so, 

because grass phytoliths distinguish C4 grasses from C3 grasses and computing their occurrence ratios, 

researchers have been able to infer past climates such moisture/rainfall and temperature gradients (e.g. 

Alexandre et al., 1997; Bremond et al., 2008). Phytolith assemblages identified from one fossil record 

provide interpretable data on past plant communities and vegetation structure e.g. forests vs grasslands 

(Stromberg, 2003; Rossouw, 2009). 

A detailed chronology of application of phytolith studies in various disciplines in Africa (e.g. Alexandre 

et al., 1997; Barboni et al., 1999; 2007) has been provided in Rossouw (2009). However, I will mention 

a few examples for each category; as palaeovegetation and paleoclimates proxies (Fredlund and 

Tieszen, 1997; Bremond et al., 2012; Aleman et al., 2012), in archaeological records to infer early 

human-environment interactions (Rossouw and Scott, 2011; Barboni et al 2010; Mercader et al., 2000); 

to investigate early plant uses, particularly both domesticated and wild cereals/grasses (Mercader et al., 

2009; Albert et al., 2008; Cabanes et al., 2010). In addition, other studies that document various 

phytolith morphologies and systematics as modern references to assist in identification and 

interpretation of fossil assemblage include (Bremond et al., 2005; Neumann et al., 2009; Novello et al., 

2012 and Novello and Barboni, 2015). 

Recent phytolith studies from various parts of Africa include work from Mozambique, quantitative and 

qualitative phytolith data to explore further on taxonomical strength of various morphotypes extracted 

from both grass and non-grass taxa (Mercader et al., 2009; 2010) and the taphonomic significance of 

phytoliths from modern top soils versus the  Miombo woodlands in Mozambique (Mercader et al., 

2011). 

In Central and West Africa, Neumann et al., (2009) studied phytolith assemblages and indices to 

reconstruct local environments of Ounjougou (Mali) during Pleistocene and Holocene periods.  In Chad 

central Africa, past fluvial habitats were reconstructed using phytolith analyses by distinguishing 

morphotypes based on modern analogue for aquatic vegetation studied in the region (Novello et al., 

2012). Recent studies from East African region shows the significance of phytolith analysis on 

palaeocological reconstructions from renowned archaeological sites (Albert et al., 2009; Kinyanjui, 

2012). 

Although application of phytolith analyses is increasingly being utilised, challenges such as the 

taphonomic issues regarding differential phytolith reproduction by different plants, mode of deposition 
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and their depositional regimes and, local/ regional preservation status need to be considered as well as 

the sample size to be analysed for a data interpretation (Strӧmberg 2009; Shillito, 2011), consultation 

of modern phytolith analogue remains critical (Rossouw, 2009; Kinyanjui, 2012). 

In addition, series of phytolith researches undertaken in West African tropical forest (e.g. Alexandre et 

al., 1997; Barboni et al., 1999) showed that fossil phytolith data can be reliably analysed to interpret 

changes in Holocene vegetation patterns and plant communities. The analytical approach applied here 

included extracting ~2-10µm volume of residue and using the ratio of selected morphotypes 

representing woody dicotyledons and Poaceae (dicot: Poaceae or D: P) respectively to interpret open 

and closed canopy vegetation structure. 

The popularly used dicot morphotypes include rugose spheres/globular granulate, while for Poaceae 

they include: bilobate short cell, cross, saddle, rondel, polylobate and trapeziform morphotypes and 

their ratios have been effectively used to determine tree cover index (Bremond et al., 2008). Modern 

soil phytolith assemblages collected from known vegetation cover suggest a D:P value greater than 1 

represents closed canopy such as tropical rain forest, while open environments are represented by D:P 

values close to 1 (savanna) and a value less than 1 represents open grasslands (Alexandre, et al., 1997). 

Although this may not be quite reliable for other parts of the world (e.g. North America) where plant 

communities may differ greatly from those in tropical Africa (Stromberg, 2003) the analytical approach 

has been successfully applied to reconstruct the African vegetation habitats (e.g. Neumann et al., 2009; 

Novello et al., 2012) whose phytolith assemblages match those of known soils derived from known 

habitats (Alexandre et al., 1997; Bremond et al., 2008). 

In addition, the presence of indicator morphotypes which identify certain habitat-specific species such 

as palms, sedges and grasses within the fossil assemblage, contribute highly in interpreting primarily 

closed versus open vegetation habitats as well as specific ecological niches (Barboni et al., 1999; 2007; 

Bamford et al., 2006; Ashley et al., 2010a, Olduvai Gorge). 

The data obtained in this study addresses the main objective of the research, to determine and understand 

the temporal vegetation dynamics of two localities and then climatic inferences are estimated. Similar 

phytolith studies related to hominin sites have successfully reconstructed the paleoenivironment and the 

vegetation cover in  East Africa ;  west side Awash, Ethiopia (Barboni et al., 1999); Olduvai Gorge 

(Albert et al., 2006; Bamford, 2006; Ashley et al., 2010 (a &b), Barboni et al., 2010 and Olorgesailie 

basin (Kinyanjui, 2013). 

Biases brought about by the differences in how various morphotypes are dispersed, transported and 

preserved (taphonomy; Piperno, 2006), are considered to have minimal influence on the assemblages 

identified and counted. This is because this study is based on assumption that the phytolith assemblages 
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analysed in both basins are representative of both local and extra-local plants and, geologically some of 

the sediments analysed are either paleosols (local terrestrial) or lacustrine (local aquatic & extra local 

terrestrial). For paleosol assemblages, there is a high likelihood that phytoliths are local with minimal 

extra-local brought in by Aeolian deposits, especially in open habitats. For the lacustrine settings, on 

the other hand, phytoliths are largely regional and brought in by wind and fluvial deposits with minimal 

local contributions from wetland associated plants such as palms and sedges (Stromberg et al., 2004). 

More so, temporal variation in vegetation structure is based on interpretation of the phytolith 

assemblage averaged through time/sampling profile. 

Previous studies suggested that grasses accumulate and produce more phytolith as opposed to woody 

dicotyledons and argued this would affect phytolith data in that, most assemblages will be over-

represented by grasses (see discussion in Piperno, 1988). However, later studies undertaken from 

tropical ecosystems of 5 continents showed that phytolith assemblages identified in tropical primary or 

secondary rainforest were mostly derived from dicotyledonous trees and shrubs (over 90% of the total 

assemblage) while those identified from soils underneath open grasses were dominated by up to 90% 

of grass silica short cells (GSSC) ( Piperno, 1993; Kealhofer and Piperno, 1994; Piperno and Becker, 

1996; Alexandre et al., 1997; 1999; Barboni et al., 1999; Runge, 1999; 2001; Mercader et al., 2000; 

Bremond et al., 2007). Two morphotypes considered as most important forest indicators are: 1) Rugose 

and smooth spheres found in leaves and wood of arboreal taxa, and 2) sclereids (silicified sclerenchyma 

cells) found in leaves of many tropical woody taxa (Piperno, 1988; Runge, 1996; 2001; Alexandre et 

al., 1997). 

Determining the fraction of key forest- versus grassland- indicators present in the overall assemblage, 

can reliably record how closed or open a given vegetation ecosystem could have been, especially so in 

tropical regions.  

2.3.1 Opportunities and limitations of phytolith data 

Application of phytolith studies in various disciplines dealing with either fossil or modern or both 

assemblages have developed over time to accurately identify their parent plant species. However, the 

production of similar morphotypes by plants of different species-redundancy on one hand, and the 

production of different morphotypes by a single plants species-multiplicity on the other hand, have not 

been fully addressed (Rovner, 1971, Piperno, 1988; 2006).  

Considering the broader application of phytolith studies to address various research questions and rate 

of research developments versus the challenges recently highlighted in Shillito (2012) and Zurro et al., 

(2009), it is clear that phytolith data have a great potential in determining introduction of various 



42 

 

domesticated crops and plants uses in archaeological context, plant diets from dental remains and 

reconstructing the vegetation history and dynamics in palaeoecological context (Alexandre et al., 1997; 

Barboni et al., 1999; Runge, 1999; Mercader et al., 2000; Stromberg 2003; Bremond et al., 2005; 

Rossouw, 2009; Ashley et al., 2010b).  

As more phytolith studies are undertaken across space and through time, improved and more 

standardised methods to bridge the gap between the advantages and disadvantage will be achieved. The 

more datasets from different regions/localities presented, the closer we get to standardized methods and 

interpretation (see also Zurro et al., 2015). 

It is on this basis that this research has been feasible. Koobi Fora and the Olorgesailie sites are paleolake 

basins and are located in semi-arid regions of the Kenyan rift systems. Plants microfossils are rare to 

absent in these basins due to poor preservation of organic materials. Fortunately, phytoliths, being 

inorganic in nature preserve well.  Previous studies have demonstrated application of phytolith studies 

to address different questions in African. 

2.4. Goals and Objectives 

The main goal of this study is to investigate the palaeoenvironments of two major hominin sites in 

Kenya through mid-Pleistocene to Holocene periods. The study will compare the past vegetation cover 

between Olorgesailie and Koobi Fora Basins during a sequential geological time frame. 

2.4.1. Justification 

Phytolith analyses have been successfully applied to reconstruct the vegetation context of the 

Olorgesailie basin, south rift valley during the mid-late Pleistocene period (Kinyanjui, 2012). This work 

will therefore provide more data regarding the vegetation component of the basin with provision of a 

more continuous chronology, from a core obtained by the Olorgesailie drilling project 2012 which spans 

through mid-Pleistocene to Holocene periods. Similar analyses will be undertaken from Koobi Fora 

basin covering the same time frame, to compare and contrast the vegetation cover of these 

palaeolandscapes.  This will contribute crucial information on the palaeoenvironments with which 

Homo erectus and other faunal populations interacted with, and the possible prevailing climates.  

2.4.2. Research questions 

1. What was the vegetation structure of Olorgesailie and Koobi Fora basin and how it has changed 

through the mid-Pleistocene-Holocene period? 

2. How different or similar is the vegetation structure represented in the both basins? 

3. Based on archaeological data, how did vegetation structure influence the faunal communities 

recorded from both basins?  
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2.4.3. Specific goals and objectives 

To achieve this, the above mentioned goal, the following specific objectives/goals are addressed:- 

1) Analyse and compare phytolith morphologies derived from palaeosols dated between mid-

Pleistocene and Holocene periods from both basins, 

2) Determine and compare the preservation status of fossil phytoliths from basins, 

3) Interpret the temporal changes of vegetation structure as represented by fossil phytolith 

assemblages from both basins, and 

4) Explain how the vegetation structure may have influenced faunal-environment interactions and 

adaptation strategies, including the hominins. 

2.4.4. Research Hypothesis 

Both the Koobi Fora and Olorgesailie basins have similar depositional regimes which include, alluvial, 

lacustrine and fluvial sediments and, they have varied habitats across the palaeolandscapes controlled 

by local topography and drainage systems (Brown and Feibel, 1986; Behrensmeyer et al., 2002). 

However, they differ greatly in the number of hominin species and faunal species preserved in the two 

basins as well as the concentration of archaeological artefacts associated with early hominins. In 

Olorgesailie, a single hominin fossil has been found in association with high density of Acheulean hand 

axes (Potts et al., 2004) while in Koobi Fora multiple hominin fossils have been found in association 

with a variety of archaeological artefacts (Brown et al., 1985; Braun et al., 2010). Moreover, Pollen 

analyses from the Olorgesailie basin showed poor pollen preservation due to oxidation (Mworia, 1999- 

unpublished) while in Koobi Fora although sparse, palynology data has contributed to the understanding 

of par of the basin’s palaeoenvironments (Bonnefille, 1995; Mohammed et al., 1995). The hypothesis 

developed from this, is that, although both basins have unique prehistoric evidence, it is possible the 

preservation of fossils is controlled largely by local environments that most likely differ from one basin 

to the other. If a common proxy is used to determine the palaeoenvironments within a similar time 

frame, the disparities noted could be well explained. 
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CHAPTER THREE: STUDY SITES 

3.1. Introduction 

The Rift valley system runs from Red Sea in far north to Malawi in south (Frostick, 1997). It is marked 

by a series of lake basins and volcanoes/ craters which are bordered on the two sides by high relief 

escarpments and plateaus that run parallel (Frostick, 1997; Olago et al., 2009). This rift systems 

influences local climates, hydrology and surface drainage system resulting in the formation of many 

closed hydrological basins (Garcin et al., 2009; Olago et al., 2009). The Turkana and Olorgesailie basins 

are located within the East African rift system. Lake Turkana is located at 36˚E, 3’N while Olorgesailie 

basin is located at 34’E 1˚S (Figure 6). 

 

Figure 6. Shows location of the study sites: Koobi Fora basin in north and Olorgesailie Basin in 

south 

3.1.1 Contemporary climates in East Africa 

The current climate variability of the East African region is largely determined by the strong regional 

fluctuations in rainfall regime (Nicholson, 1996) and temporal variation in surface air temperature 

(King’uyu et al., 2000). The four main factors that are responsible for these climatic phenomena include 

1) the inter-tropical convergence zone (ITCZ), 2) the Congo Air Boundary (CAB), 3) the El Niňo-
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southern Oscillation (ENSO) and 4) the East African Monsoon (Southeast (SE) and Northeast (NE) 

monsoons see figure 7.  

This is further enhanced by complex interactions between extra-regional atmospheric circulation 

processes, maritime influences such as Indian Ocean’s Sea Surface Temperatures (SST) and regional 

topography of mountain ranges, rift valley and large lake basins and general land-atmosphere feedbacks 

(Nicholson, 1996; 2000; Mutai and Ward, 2000).  

The annual migration of the ITCZ and CAB across the equator from south to north and vice versa, is 

responsible for the general bimodal rainfall regime in the region; with long rains occurring between 

March and May while short rains occur between September/October and (Nicholson 1996; 2000 Mutai 

and Ward, 2000). However, local topography and Monsoonal wind systems (westerlies and easterlies) 

largely interfere with temporal rainfall distribution and intensity (Conway, 2002). 

The strong relationship between monthly and seasonal rainfall patterns and phases of the ENSO 

enhances inter-annual rainfall variation where warm events of ENSO leads to above average rainfall 

(El-Niňo years) and the cold events lead to below average rainfall (La-Niňa) during the short rainy 

season (Nicholson, 1996; Nicholson and Kim, 1997; Mutai and Ward, 2000). Generally, mean annual 

rainfall varies from ~200-400mmyr-1 in the most arid region e.g. North-eastern Kenya, and exceeds 

1200mmyr-1 in the most humid region e.g. Mt Elgon. Seasonal rainfall patterns may vary greatly within 

a very short distance (10s of km) depending on local topography (Nicholson, 1996). The mean annual 

temperature varies from 21-26˚C (Tmax) to 10-15˚C (Tmin) (King’uyu et al., 2000). 

In between the two strong rainfall seasons, there are two pronounced dry seasons that are notable in 

their extreme year-to-year draughts occurring especially in the semi-arid and arid regions (Mutai and 

Ward, 2000). The climatic anomalies associated with El-Niňo and La-Niňa events result in extreme 

flooding and droughts respectively, which have varied local impacts on environmental and 

socioeconomic aspects in the region (Maruo, 2002). Arid and semi-arid lands with scarce vegetation 

cover and, where the main socioeconomic activity is pastoralism, suffer greatly during such events. The 

Olorgesailie and Koobi Fora basins are within the semi-arid regions within the East rift system, in south 

and north respectively. 
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Figure 7. General patterns of precipitation, trade winds, pressure and convergence over Africa 

during a) northeast monsoon and b) southeast monsoon, CAB patterns based on Nicholson, 1996. 

3.1.2. Contemporary vegetation in East Africa  

Vegetation cover in East African region varies from highland montane forest in the high altitudes 

(mountains), to lowland woodlands to grasslands savanna. They are characterised into Afro alpine, 

Alpine, montane forests, Guineo-Congolian, Zambezian, Sudanian and Somali Masai (White 1983). 

3.2. Olorgesailie basin 

The Olorgesailie basin is located at 36˚ 26′E, 1˚ 34′S, in southern part of Kenyan rift valley system, 

about 110km south west of Nairobi city, Kenya. Fossil bearing sediments cover approximately 150km2 

area and lies between 940-1040m above sea level. The drilling sites are located within the Koora plains, 

approximately 20km south of Mt. Olorgesailie (Figure 8). 
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Figure 8. Map showing the location of the Olorgesailie outcrops in north and the ODP drilling 

sites in the Koora plains ~20km, south of Mt. Olorgesailie y (after Behrensmeyer, 2002). 

3.2.1. Climate 

The climate of Olorgesailie basin and the immediate environs is characterised as semi-arid, with an 

average annual rainfall of 500mm and extremely high evapotranspiration rate of more than 2400mm 

per annum (Damnat and Taieb, 1995) see figure 1. This is as result of rainfall patterns altered by the 

topography within the central rift valley basin from normal bimodal rainfall pattern influenced by the 

seasonal ITCZ migration, to irregular rainfall pattern received in the basin in one season (Kenworthy, 

1966; Nicholson, 1996; Mutai and Ward, 2000). 

3.2.2. . Vegetation cover 

The current vegetation cover is characterised as Commiphora-Acacia bushland (White, 1983) also 

known as Northern Acacia-Commiphora bushland (WWF Eco-regions). The dominant woody species 

include; Acacia tortilis (Forssk.) Hayne, A. senegal (L.) Willd., A. mellifera, Balanites spp. Grewia 

bicolour Juss. G. villosa Willd; Boscia coriacea Pax., Salvadora persica L., Commiphora africana (A. 

Rich.) Engl., C. campestris/scheffleri Engl. and Terminalia sp. (after Mworia et al., 1988). 
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The shrub components include Sericocomopsis sp, Barleria sp. Aerva sp, and Indigofera sp. The 

grasslands are dominated with C4 grasses such as; Chloris roxburghiana Schuilt., Dactyloctenium 

bogdanii S.M. Phillips, Eragrostis cilianensis (All.) F.T. Hubb., Tetrapogon cenchriformis (A. Rich.) 

W.D. Clayton and Sporobolus jacquemontii Kunth (after Mworia 1988). A few riverine species are 

found along the dry river channels (“lugga”s), such as Syzygium sp. Terminalia sp and Delonix elata 

(L.) Gamble as well as wetland components like Brachyachne spp., Kyllinga alba Nees. and K. 

welwitchii Rindley (Mworia et al., 1988). 

3.2.3. . Geo-archaeology and core lithology 

The geo-archaeology of the basin is well studied and spans to Plio-Pleistocene period (Baker and 

Mitchel, 1976; Isaac, 1977; Potts, 1989; Deino and Potts, 1990; Potts et al., 1999; Brooks et al., 2007). 

The drainage system is controlled by the gradual North-South sloping of the rift valley floor over 

millennial scale (Behrensmeyer et al., 2002). The sediments are mainly diatomite, diatomaceous silts, 

clayey silts, volcanoclastic sands and gravels deposited in lacustrine, wetlands, fluvial and colluvial 

regimes which are well marked laterally across the basin (Deino and Potts, 1990). Primary core 

lithology described by Behrensmeyer et al., in progress is shown in the figure 9. 
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Figure 9. Showing the preliminary lithological and geochronological data and levels of sampling 

for phytolith, diatoms, CaCO3 mud and zeolite analyses 

The geological dates are obtained using a single crystal Ar40/Ar39 dating technique spanning from 

approximately 1.1Ma to 0.077Ma (Deino et al., in progress). 
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3.3. Koobi Fora basin 

Koobi Fora basin is located in the Northern part of the Kenyan rift valley system approximately 800km 

north of Nairobi city. It is part of the larger Plio-Pleistocene sedimentary sequence and is 

discontinuously exposed approximately 1200km2 along the eastern shore of Lake Turkana. It extends 

from Kenya-Ethiopia in north (Ileret) to Allia Bay in the south (Figure 10). It extends approximately 

30-40km eastwards from the modern lakeshore up to Surgei and Gombe, Miocene and Pliocene plateaus 

(Brown and Feibel 1986; Feibel, 1988). Much of the area lies within the Sibiloi National Park which 

was gazetted in the early 1970s to protect the region’s arid biodiversity and numerous, diverse, unique 

and well preserved faunal and floral fossils and archaeological artefacts that date back between Miocene 

and Holocene periods (Robertshaw, 1995; Willoughby, 2007). It was named as a UNESCO World 

Heritage site in 1997. The basin lies between ~360-560m a. s .l.  

 

Figure 10. Map showing Lake Turkana, Koobi Fora Basin and sampling localities (modified from 

Forman et al., 2014) 

3.3.1. Climate 

The general climate of the basin is categorised as arid to semi-arid with mean annual rainfall of ~130-

~150mm, estimated evaporation at ~2850mm per year and mean annual temperatures of 32˚C (Yuretich 

& Cerling 1983). The Koobi Fora region is considered as one of the 1% hottest land area on Earth 
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(Hijmans et al., 2005), with mean maximum temperature at ~37˚C, mean minimum temperature at 

~27˚C and soil temperatures (25cm –depth) at 37˚C. Strong south-easterly winds are prevalent in the 

region (Feibel, 1988). The rainfall pattern in the region is bimodal and is controlled by monsoon currents 

long rains between March and May, while short rains between September and November. The highest 

rainfall peaks in April and November for each season (See, Olago et al., 2009; Mbaluka and Brown, 

2016). In recent times, just like other parts of Kenya, the region has experienced drastic changes in the 

rainfall pattern, both in season duration and intensity which have reduced greatly leading to  devastating 

droughts that have caused deaths of both the wild and domesticated animals due to lack of pastures and 

drinking water. 

3.3.2. Vegetation cover 

The current vegetation cover for the general Lake Turkana basin is described as Acacia-Commiphora 

grassland and shrub lands (White 1983) and consists of woody riverine forest and semi-desert scrub, 

mainly Acacia, herbaceous vegetation and semi-desert grasslands with annual and perennial 

scrubs/bushes (Barthelme 1985; Butzer. 1982). Recent vegetation mapping from the Koobi Fora region 

shows the region has distinct flora heterogeneity that is highly controlled by the soil/rock type, 

topography and the drainage system (Mbaluka and Brown, 2016). 

Dwarf shrub lands/grasslands cover the largest area ~83% and are dominated with Indigofera spinosa, 

Dusperma longcalyx, Barleria spp., Sporobolus spicatus (perennial grasslands along the lake shore) 

and Aristida mutabilis (annual grasslands). Shrublands are mainly found on alluvium and outcrop 

exposures, dominated with Commiphora sp. Euphorbia cuneata, Acacia recifiens, Cadaba rotundifolia 

and Salvadora persica and are more prominent in the north, especially at Ileret. Woodlands and riparian 

vegetation cover are mainly associated with seasonal ponds and ephemeral stream channels (“lugga”s), 

are dominated with Hyphaene compressa, Acacia elatior, Ziziphus mauriatiaum, Cordia sinensis, 

Lawsonia inermis, Terminalia spinosa, Acacia tortilis and Grewia sp. These species constitute the 

riverine gallery forests along the river channels which grades rapidly into shrubs and grasslands. The 

herbaceous component constitutes predominantly with Barleria spp, Aloe sp, Sansveria sp. and C4 

grasslands (see Mbaluka and Brown, 2016 for more details). 

3.3.3. General geology and drainage system 

The entire Lake Turkana based is characterised by Tertiary to Pleistocene basalts, trachytes, phonolites 

and rhyolites that extend from the Ethiopian highlands in the north and outcrops of granitic volcanoes 

in the lower region towards the south and is largely covered by alluvium deposits brought in by the 

Omo River. The South and South Western part of the lake consist of extensive outcrops of Precambrian 

quartzite, amphibolite schists, biotite gneisses, hornblende gneisses, migmatites and plagioclase 
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amphibolites of the Upper Proterozoic Turbo-Kitale Group (Pallister, 1971; Halfman et al., 1989). On 

the Eastern edge, it is bordered by the volcanic plateau, Surgei-Assile (Ferguson and Harbolt, 1982). 

These rocks are overlain by a mixture of fluvial, fluvial-lacustrine and littoral lacustrine sediments that 

have been subjected to a series of erosional and deposition processes and range from Pliocene-

Pleistocene to Holocene periods which have preserved critical information on biological, behavioural 

and cultural evolution of living organisms including humans (e.g. de Heinzelin, 1983; Owen and 

Renault, 1983; 1986; Harris et al., 1988; Brown and Feibel, 1986; Olago et al., 2009).  

Sediments in the Koobi Fora basin are mainly conglomerates, sands, silt and clays deposited in 

lacustrine, deltaic and fluvial settings with distinct lateral variation (McDoughall and Brown, 2006). 

These sediments span the Pliocene through Pleistocene to Holocene periods and are found in the 

southeast, northeast and east of Lake Turkana basin. These sediments overlay Miocene volcanic rocks 

and they archive a long record of the landscapes changes with transition from forests into open arid 

grasslands vegetation cover. 

The current drainage system of the region flows in an E-W direction, draining into the Lake. Ephemeral 

streams, known as “lugga” cuts through the volcanic rocks, sedimentary outcrops and parts of alluvial 

surfaces and carry surface water only briefly, 1-2 days after the rains. Some larger streams carry below-

surface water ~1-3m depth, for longer periods, 6 to 12 months. 

Lake Turkana is a closed basin whose average alkalinity is about pH~9.2 and derives its waters from 

the Omo River which drains from the Ethiopian highlands in the north, the quasi perennial Turkwel and 

Kerio rivers in the west and the ephemeral streams/rivers that drain the surface flow to the lake only a 

few days to hours after a heavy downpour in East and West (Walsh and Dodson, 1969; Frostick and 

Reid, 1990; Olago and Odada 2000). The salinity increases from north to south. 

3.3.4.. Geo-archaeology 

The basin is part of the larger fossil bearing locality of the Turkana basin which constitute three main 

geological sequences; the Shungura, Mursi, and Usno Formations (Lower Omo valley) in the north (de 

Heinzelin, 1983); the Nachukui Formation in the west (Harris et al., 1988) and the Koobi Fora 

Formation on the northeast of present Lake Turkana (Brown and Feibel, 1986) all of which belong to 

the Omo Group (de Heinzelin, 1983). These sediments have a paleontological record that stretches back 

to the Pliocene period and archaeological record that dates back to 2.4 million years (Brown and Feibel, 

1986). The Koobi Fora region is further sub-divided into three main geographical sub-regions; Ileret 

sub-region in north, Koobi Fora in the central and Allia bay sub-region in south (Feibel, 1988). 
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The Koobi Fora Formation has an aggregate thickness of 560m, dated from 4.3 to 0.6 Ma (Brown and 

Feibel, 1986). It constitutes eight members, the older five are Pliocene (Lonyumun, Moiti, Lokochot, 

Tul Bor and Burgi) while younger three are Pleistocene (KBS, Okote and Chari). These Members are 

distinguished using volcanic ash horizons (tephra) which have a unique chemical composition (Figure 

11). Two significant unconformities occur within the Koobi Fora Formation; one within the Burgi 

Member, dividing this Member into two informal Members (lower and upper Burgi) and the second 

one occurs within the Chari Member. The Formation overlies “disconformably or unconformably on, 

or are in fault contact with Miocene and Pliocene volcanic rocks and /or associated sediments, and are 

disconformably overlain by the Holocene Galana Boi beds” (see detailed geological description of the 

Formations; Brown and Feibel 1986; Gathogo and Brown, 2006).  

The Holocene Galana Boi Formation overlay the Chari Member of the Koobi Fora Formation during a 

high lake stand (approximately 80m above the current lake level) of Lake Turkana during the Holocene 

Period (McDougall and Brown, 2006). There is a 40-10ka hiatus between the Pleistocene sediments, 

the Chari Member and the Holocene sediments, the Galana Boi Formation (Butzer et al., 1972; Owen 

and Renaut 1983; 1986; Olago et al., 2009). 

At Koobi Fora, the Galana Boi Formation constitutes lacustrine and shoreline deposits characterised by 

diatomaceous siltstones, sand and molluscs and fish remains (Owen and Renaut, 1986). Although the 

research history for both the Koobi Fora and Galana Boi Formations go back to the 1960’s, a lot more 

have been documented/published from the Koobi Fora Formation compared to the Galana Boi. Already 

the existing published paleoanthropological and archaeological research show more research have been 

done from the Koobi Fora Formation (e.g. Harris, 1978; Brown and Feibel, 1986; Feibel, 1988; Walker 

and Leakey, 1988; Rogers, 1997; Leakey et al., 2001; Braun, 2006) as opposed to research undertaken 

from the Galana Boi Formation (Owen et al., 1982; Barthelme 1985; Ndiema, 2011; Ndiema et al., 

2011). In addition, research from the Koobi Fora Formation has a longer history while in Galana Boi, 

it only started recently in 1980’s. ,  In terms of paeloboatanical works very little is known from both 

Formations especially on plants micro-fossils analyses.  The palaeoenvironmental significance of the 

Galana Boi Formation in particular offers a great opportunity of investigating the past vegetation cover 

across the Holocene palaeolandscape of the Koobi Fora basin (Ashley et al., 2011). 
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Figure 11. Map of Turkana basin showing the three “Omo-Group” Formations; Shungurra, 

Nachukui and Koobi Fora and their respective Members (Brown & Feibel, 1991; 1986; Cerling 

et al., 2015). 
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CHAPTER FOUR: MATERIALS AND METHODS 

4.1. MATERIAL 

To apply phytolith analysis as a tool for reconstructing the vegetation history of the Olorgesailie and 

Koobi For a paleo-sites, three sets of samples were collected and analysed for phytoliths. These 

included: 1) modern reference collection (from modern plants and soils), 2) Olorgesailie paleolake drill 

core (ODP core) and 3), Koobi Fora sediment samples (collected from geo-trench and archaeological 

excavation).  Sampling differed between sites as reported in the following below sections:-  

4.1.1. Modern soil samples 

Four modern surface samples were collected from different vegetation cover as shown in Table 1 

Table 1. showing the four vegetation habitats, where modern soil samples were collected. 

Sample no. Vegetation description Habitat Soil Types 

SS1 Acacia-Commiphora 

shrublands 

Short woodlands Shallow soils on rocky 

substrates 

SS2 Acacia-Syzygium-Sanseveria 

woodlands 

Riverine gallery 

woodland 

Sandy-silty fluvial clays 

along the “lugga”s 

SS3 Barleria sp. dominated 

scrubland 

Open scrubland Silty-sandy soils 

SS4 Open grasslands Grasslands Silty-sandy soils 

4.1.2. Fossil samples 

Different sampling approaches were used for each basin depending on the available resources. From 

the Koobi Fora basin, sampling was undertaken from sediment outcrops. Freshly dug geo-sections were 

measured and lithology described, samples were taken from all the paleosol layers. From the 

Olorgesailie Basin, a core was drilled from the paleo-lake basin under the Olorgesailie Drilling Project 

(ODP) in 2012. This is a multi-disciplinary and multi proxy project, whose sampling is targeted in all 

lithostratigraphic levels. However, while comparing the datasets from the both basins, only the paleosol 

layers that match similar time frames will be considered for this analysis. 

4.1.2.1. Olorgesailie samples 

Two sediment cores were obtained from two locations in the Koora plain, approx. 10-20km south of 

the Olorgesailie basin (figure 12). The cores were drilled where the basin’s depocenter occurred 

periodically over the past 500ka, based on the seismic survey data (Potts et al., in progress). The core 
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was recovered in segments ranging between 1m and 3m long. Sampling was done in all sediments types 

reflecting lacustrine, volcanic and terrestrial regimes/phases (see figure 13). A total of 272 (3cc) 

samples were collected from approximately 166m (below surface) sediment core at 48cm sampling 

interval. 

 

Figure 12. Map showing the drill location of the ODP sediment core. Note the proximity to the 

Olorgesailie Basin. Source: 

(http://humanorigins.si.edu/sites/default/files/styles/home_slider_phablet/public/Lake%20Koora

%20map.jpg?itok=dhIGtI7C&timestamp=1481139547)  
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Figure 13. Showing the image of a short section of the ODP sediment core with different lithologies 

and cm-scale ruler 

The overall goal of the ODP project is to build a detailed and continuous environmental record in the 

Olorgesailie basin during the last 1Ma. Detailed geological, anthropological and archaeological data 

have been recorded from the Olorgesailie outcrop that spans to 1.2Ma. However, crucial data for the 

last 500 ka-300ka, an interval corresponding to the oldest known evidence of a key shift in hominin 

behaviour and technological transitions is missing from the outcrops due to an erosional, non-deposition 

phase (Deino and Potts, 1990; 1992; Behrensmeyer et al., 2002). In the Olorgesailie basin, such 

evidence would have included the transition from Acheulean to Middle Stone Age (MSA) coupled with 

the extensive mammal turnover recorded from the nearby outcrops excavations (Potts et al., 1999; 

Brooks et al., 2007). 

Phytolith data reported here is one of the proxies analysed aimed to characterize changes in vegetation 

structure and environmental dynamics in relation to the overall ODP goal climate variability on a 

seasonal to orbital scale and  the possible impact on human evolution in the region will be discussed.  

4.1.2.1.1. Geochronology, stratigraphy and Age modelling 

The age model used here is obtained from 40Ar/39Ar dating technique on numerous tephra sampled from 

the sediment core as well as correlations to chronology available from the nearby archaeological and 

faunal sites. The preliminary age provisions span from ~1072kyr at the base of the core and ~77kyr at 

27m below surface (Deino et al., in progress). Preliminary lithologies show volcanic, siliciclastic and 

lacustrine deposition; formation of zeolite suggests alkaline lake phases (Behrensmeyer et al., in 

progress, see figure 14). 
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a). Sample chronology 

As mentioned earlier, the ODP project is a multi-disciplinary and multi-proxy project therefore has a 

common bench mark on which all the datasets can be compared and contrasted. The most critical aspect 

is the chronostratigraphic data which will be the main guideline on all other data acquisition, analyses 

and interpretation. The 272 samples were collected based on the available stratigraphic data analysed 

from 242 smear slides (Behrensmeyer et al., in progress) and chronological data obtained through 

40Ar/39Ar dating technique of 140 tephra samples (Deino et al., in progress).  

The core was drilled in phases and had to be matched according to depth to create an accurate vertical 

base sections. The different core sections have a varying degree of expansion depending on the 

lithological characteristics and mineral composition which varies from one section to another. 

Consequently, the initial core measurements taken using scales do not represent accurate down-core 

distance. Therefore, the down-core distance measured during the drilling are the “gold standard” for all 

resulting data and lithological data has to match these numbers (Behrensmeyer et al., 2013). 

The lithological description is based on sedimentological including grain size and micro-fossils data 

analysed from smear slides. The core log lithological data is transferred from the core sheets noting the 

measured down-distance for core sections tops and bottoms. This permitted to note the missing sections 

based on down-core distance measurements provided in the excel spread sheet. 

The sketched logs are adjusted such that lithological boundaries fit within the given measurements for 

core tops and bottoms (marked in red) e.g. a core section measuring 150cm in the lab and a base of 

35cm had expanded by 20cm after it was pulled up, thus the lithological section needed to be 

compressed into this distance (1.3m). See figures 14 & 15 for more details. 
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Figure 14. Explanation of a part of core section and lithological symbols by Behrensmeyer et al., 

unpublished report. 
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Figure 15. The key used to identify sedimentary structures and clasts 

The following criteria are considered (in order of priority) in order to develop the chronology of the 

core (Behrensmeyer et al., unpublished): 1) presence/absence of bedding especially continuous 

sequences of lamination. For instance fine lamination indicates slow, fairly regular deposition; such 

deposition was labelled “NO COMPRESSION” for the age model, 2) grain size analyses where fine 

grained reflect slow deposition while coarse grains (sand and grit) reflect rapid deposition. Pumices 

were not included in the analyses as they could either be part of slow or fast deposition depending on 

how they were emplaced, airborne, fluvial deposits or settling out after deposition, 3) sediment 

composition-the percentage proportion of vitric glass/tephra suggest the rate of sediment accumulation. 

More than 60% to 75% tephra presence indicates 70% compression; between 75% and 90% indicate 

90% compression. 40% non-tephra (e.g. quartz/feldspars) indicates influx and mixing with other 

sources thus slow accumulation. 

Root traces 

Pedogenic modification 

Brecciation, bioturbated blocks 
Pumices 

Mud cracks 

Coring disturbance 

No data (e.g., missing core, drilling mud) 
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Initial geochronological analyses on approximately 140 samples of tephra and the trachytic basement 

dated using 40Ar/39Ar dating technique suggest that the sequence extends from ~70ka at the top to 

~1.07Ma at the basement lava floor underlying the sedimentary sequence (Deino et al., unpublished). 

Although the dating work is still in progress, a reliable age model that has been derived from more than 

twenty 40Ar/39Ar dates shown in figure 16, below is being used for all the multi-proxy analyses 

undertaken from the ODP core. 

 

Figure 16. ODP age- model showing a smooth progression toward older ages with increasing core 

depth. 1.07Ma date is obtained from trachytic basement rock. 

The protocols followed accounted for tephra events and other rapid depositional episodes, an approach 

that compresses these rapid events in time relative to other types of sedimentation. The approach also 

ensured that new depth model referred to Z-prime that assigns interpolated ages (most probable ages) 

on a cm- by cm- scale throughout the core as shown in appendix I 
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4.1.2.2. Koobi Fora samples 

From the Koobi Fora basin, sampling was undertaken from selected geo-sections which are located in 

two localities, the Ileret area and Koobi Fora area. The locations were marked using a handheld GPS 

device. Although we had initially proposed to sample only the paleosols layers, this was not feasible in 

all the localities we sampled. We therefore, considered the availability of sediments dated to Pleistocene 

and Holocene periods as the primary criteria for our sampling. However, multiple samples were 

collected from thick (> 20cm) paleosols. A total of 36 samples were collected. We targeted mainly the 

paleosols layers exposed from various freshly dug geo-sections in different localities. See map in figure 

17. 

 

Figure 17. Map showing some of the Holocene sites sampled for this study (Red stars this study, 

grey circles (Ndiema, 2011) 

4.1.2.2.1. Sample distribution 

At Ileret, a total of thirty three samples were collected from Early Pleistocene sediments in two 

localities; 1A and 8 where either/or both the Okote Member (~1.56-1.36Ma) or the Ileret Complex 

[Lower Ileret Tuff (1.525 Ma), Ileret Tuff (1.52 Ma) and Northern Ileret Tuff (1.51 Ma)] Members were 

exposed. The ages of the samples therefore range between 1.53 Ma and < 1.36 Ma.  



63 

 

From locality 1A, a total of twenty one samples were collected from four geo-sections as follows; four 

samples from 6-11/1, five samples from 1A-DU-ET-11-01, seven samples from 1A-DU-ET-11-02 and 

five samples from AV-ET-11-1. A total of twelve samples was collected from a series of short geo-

sections in locality 8 namely 14A-8A-GS2-9. Of these samples, based on chronological correlation, 

twelve samples were selected for the analyses as will be described in the following sections of this 

chapter. 

A total of twenty samples was collected from the Holocene deposits (Galana Boi), from five 

archaeological sites, six samples from FxJj108 (early-Holocene), three samples from FxJj27 (early-

mid-Holocene), five samples from GaJ4 (mid-Holocene), three samples from FwJj25 (mid-Holocene) 

and three samples from FwJj5 (late-Holocene). The samples are estimated to date between ~9.6kyr to 

~0.93kyr.  

 4.1.2.2.2. Geochronology, lithostratigraphy and depositional environments 

Unlike the Olorgesailie samples, the chronology of the Koobi Fora samples is more complex. Sampling 

strategy and sequence are discontinuous but representative of Pleistocene and Holocene environments. 

The key driving factor for the sampling criteria is the availability of well dated sequence/sites. 

Pleistocene samples were collected from paleosol layers while Holocene samples were collected from 

highly silted and/or diatomaceous sandy layers, which are the main constituents of the Galana Boi 

Formation. 

Early Pleistocene samples have their age estimated based on the dates of the Ileret tuff complex (1.53Ma 

and 1.51Ma) embedded in the Okote Member of the Koobi Fora Formation (1.64Ma) (Cohen and 

Gibbard, 2016), while for the Holocene samples I used the existing site-based published dates spanning 

between ~9.6kyr and ~0.93kyr (see Ashley et al., 2011; Ndiema 2011). It is important to note the 

existence of a huge chronological gap between the -Pleistocene and the Holocene samples, partly 

because of the a major disconformity immediately after the Chari Member; the youngest of the Koobi 

Fora Formation (1.39Ma) and partly, because this member is extremely localised and therefore was 

missing from the geo-sections sampled for this study, and instead the samples are most likely from the 

Okote Member (~1.56 -1.36Ma). The geochronology of Plio-Pleistocene deposits was acquired using 

40Ar/39Ar dating technique (Brown and Feibel, 1991; Brown and McDougall, 2011). 

For clear understanding of the phytolith assemblages of various samples, below is a description of 

various geological characteristics of each site: 

a). Early-Pleistocene samples 

The samples were collected from the Plio- Pleistocene sediments of the Koobi Fora Formation in the 

Ileret area. The deposits are lithologically distinct from the overlying Holocene Galana Boi deposits. 
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They are composed of “brown and olive mudstones, calcite cemented sandstones, and undulated fine 

pebble conglomerates while Galana Boi deposits are characteristically whitish to olive grey loose 

siltstones and diatomaceous claystone” (Gathogo et al., 2006). Samples were collected from two 

designated localities, area 1A (FwJj14E-footprint site) and area 8A. (See table 3 for more details). The 

estimated age of the samples lies between 1.525 and 1.51, bracketed within the Ileret complex tuffs 

found in the Okote Member of the Koobi Fora Formation (see, figure 18, one of the geo-section sampled 

from area 1A). Figure 19 shows a photograph of one of the sections sample.  

 

Figure 18. A geo-section drawn by Amelia Villaseñor and Kay Behrensmeyer, showing some of 

the palaeosol sampled and their relationship to the Ileret Tuffs. 
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Figure 19. Photograph showing one of the geo-section sampled for Early Pleistocene samples 
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Table 2. Lithostratigraphic details of Early Pleistocene samples collected from Ileret area and their relative ages depending on their collection point in 

relation to the Ileret Complex Tuff. 

 

 

Geosection Sample # Lithology GPS co-ordinates/Elevation Loc in relation to Ileret complex

1A-DU-ET-11-02, Area 1A RK-15 Silty sandy paleosol with CaCO3  37N 0197263, E0477283 Z-402m Above Ileret tuff (1.52 Ma), 

Samples<1.52)

AV-ET-11-1, Area 1A RK-21 Paleosol wt hard CaCO3, roots  37N 0196763, E0477156 

AV-ET-11-1, Area 1A RK-18 Distinctive paleosol  37N 0196763, E0477156 

AV-ET-11-1, Area 1A RK-17 paleosol wt CaCO3  37N 0196763, E0477156 

AV-ET-11-1, Area 1A RK-20 Paleosol wt CaCO3, roots  37N 0196763, E0477156 

AV-ET-11-1, Area 1A RK-19 Paleosol wt CaCO3, roots  37N 0196763, E0477156 

1A-DU-ET-11-02, Area 1A RK-14 Silty paleosols with CaCO3  37N 0197263, E0477283 Z-402m

1A-DU-ET-11-02, Area 1A RK-13 sility Paleosol, pink in colour wt CaCO3  37N 0197263, E0477283 Z-402m

1A-DU-ET-11-02, Area 1A RK-12 Sandy Paleosol, roots casts  37N 0197263, E0477283 Z-402m

1A-DU-ET-11-02, Area 1A RK-11 Sandy silty paleosols, with CaCO3  37N 0197263, E0477283 Z-402m ~5cm Below Lower Ileret tuff, 

Samples>1.525Ma

Below Ileret tuff (1.52 Ma) 

Samples>1.52)

Above Lower  Ileret tuff (1.525Ma) 

Samples<1.525Ma

3.6m below lower Ileret tuff, samples 

>1.525 1.9m below the base of the Okote 

Member, 50-70 cm from the top of 

contact

RK-4 Silty sandy paleosol with CaCO314A-8A-GS-5 37N 0197836, E0471488, Z-431m

10 cm below lower Ileret tuff. 50-60 cm 

from the top of the paleosol

37N 0197644, E0471003, Z-440mBrown silty sand Paleosol,with CaCO3 

nodules

RK-114A-8A-GS-2
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b). FxJj108 (N4˚.101911N, E˚36.339443, Z-456m a. s. l.) 

The site is also within the Galana Boi Holocene deposits located in area 117, in Karari. Little is known 

from this site; however, recent archaeological findings and geological studies identify the site to be 

early Holocene site, with a high lake-level stand (80m above the current lake level). At least two 

occupation horizons has been so far been identified. So far, no available dates have been carried out 

from the site, but based on the available data, correlated with other sites with similar lithostratigraphic 

sequence and archaeological records; it is assumed to date between ~9.6kyr to ~6kyr. 

Six samples were collected from sediment profile as illustrated in table 3. 

Table 3.  Lithostratigraphic section for FxJj 108 (After Ashley et al., 2011). 

 

c). FxJj27 (N4˚.291200, E36˚.307083, Z-445m a. s. l)  

The site is found within the Galana Boi Holocene deposits located in area 10, Ileret. It has been dated 

between ~9.3 and ~4.2kyr, and it records cultural transition from early- to mid-Holocene period. 

Archaeological and geological findings show at least two distinct occupation; fisher-gathers during 

high-lake-stand and a later Pastoral-Neolithic occupation. Three phytolith samples were collected from 

the excavation profile as illustrated in table 4.  
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Table 4. Lithostratigraphic section for FxJj 27 (after Ashley et al., 2011). 

 

d). Dongodien (GaJj4) (N4˚.31513, E36˚.29741, Z-1829m a. s. l.) 

The site is located in the Holocene deposit known as Galana Boi overlying un-conformably on the Plio-

Pleistocene sediments of the Koobi Fora Formation. It is located in area 102 along the Koobi Fora ridge, 

East Turkana. It is well dated mid-Holocene using both OSL and radiometric Carbon to ~ 4.2kyr 

(Ashley et al., 2011; Ndiema et al., 2011). Five phytolith samples were collected from the five distinct 

stratigraphic units with medium to fine grains, moderately sorted, pale yellow-brownish yellow in 

colour. Ashley et al., (2011) found the mineralogical contents included quartz, magnetite and garnet 

traces (see table 5). 

The archaeological record and sedimentary process suggest Lake Turkana stood at 55m higher than 

today, but had dropped from 80m, the high lake stand recorded in mid-Holocene, indicating the 

inception of an increased aridity period (Barthelme, 1981; Ndiema, 2011). 

Table 5. Lithostratigraphic section for GaJj4 (after Ashley et al., 2011). 
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e). FwJj25 (N4˚.74314, E 37˚.0199546, Z-442m a. s. l.) and FwJj5 (N4˚.74387, E37˚.0200212, Z-

442m a. s. l.) 

FwJj25 and FwJj5 sites are located in area 10 (Koobi Fora designated palaeontological collection areas) 

(Figure 16). They are found within the Galana Boi deposits overlying an erosional contact with Plio-

Pleistocene deposits of the Koobi Fora Formation. FwJj25 was dated using OSL technique to ~4.2kyr 

(archaeological horizons) overlain by sterile layer dated ~1.34kyr (Ashley et al., 2011). The sediments 

grade upward from the most coarse-grained pebbles to medium-grained sands to fine-grained sands. 

This depositional trend is interpreted to represent a receding lake level which created a beach 

environment. Ashley et al., (2011), research showed a series of lake level changes i.e.  rising, then 

fluctuating and falling of the lake level producing a coarse beach deposit which is overlain by Aeolian 

dune sediments. The archaeological site is located on sediments indicative of a sand dune environment 

(Ashley et al., 2011). Three samples were collected from the site as illustrated in table 6. 

 

Table 6.  Lithostratigraphic section for FwJj25 (after, Ashley et al., 2011). 
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FwJj5 is OSL dated to ~0.93kyr and is composed of inter-bedded and highly variable sandy and silty 

sediments and two weakly developed paleosols. Carbonate nodules and Carbonate cemented sand (tufa) 

sand occurs throughout the sequence. The site represents a lake margin and fluvial environments. The 

presence of tufa is interpreted to indicate spring water resource (Ashley et al., 2011; Ndiema 2011). 

Three samples were collected from the weakly developed paleosol layers and the dated archaeological 

horizon as illustrated in table 7. 

Table 7. Lithostratigraphic section for FwJj5 (after, Ashley et al., 2011). 

 

4.2. METHODS 

To reconstruct the vegetation history from the fossil assemblages, two analytical approaches were 

adopted: 1). general approach, where vertical changes in relative abundance of various morphotypes  

described, and 2) two phytolith indices were calculated for both modern and fossil sediments samples. 

Modern phytolith assemblages extracted from modern plants were used to attribute fossil morphotypes 

to their respective vegetation types. 

4.2.1. Laboratory work 

4.2.1.1. Modern reference collection 

A modern phytolith database for plants observed and identified in the study sites is considered crucial 

to help in identification and classification of the morphotypes in the fossil assemblage to determine the 

past vegetation cover more accurately.  

The extraction of phytoliths from plant specimens (specific parts or whole plant, see appendix II for 

more details) followed a modified Albert and Weiner protocol (after Mercader et al., 2009) which 

included both quantitative and qualitative analyses. Plant specimens were soaked in 5% Calgon solution 

overnight while placed on an automatic shaker to loosen alien materials adhering to the specimens. 

They were then washed with distilled water through a 1mm sieve after which they were sonicated for 
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30min using a Fisher Scientific FS 60 sonicator. The specimens were then dried overnight at 100ºC, 

weighed and ashed in the muffle furnace at 500ºC for 12 hrs; some woody specimens were ashed for 

up to 36hrs to achieve complete combustion. 

The weight of the cooled dry ash was then recorded for each specimen to determine the proportion of 

combustible carbon. The ash was transferred into test tubes where 10ml of equivolume solution of 

hydrochloric acid (HCl) and nitric acid (HNO3) was added (at 3N). This was heated to boiling until the 

residue formed a paste. The samples were washed three times with distilled water (dH2O) each time 

centrifuging at 3000rpm for 5min. 10ml of hydrogen peroxide (H2O2) was added to each sample which 

was then transferred into Petri dishes, placed on the hot plate at 70ºC until the reaction ceased. The 

samples were transferred back to the test tubes, washed with dH2O three times at 3000rpm for 5min 

before drying in the oven at >100ºC. The resulting residue was weighed and stored in vials ready for 

mounting and microscopic analyses. 1 mg of each residue was finally mounted on the slide, mixing 

thoroughly with the mounting medium, “Entellan New”. 

4.2.1.2. Fossil assemblages 

There are various published phytolith extraction protocols that have been increasingly refined through 

time. The variation occurs in step-wise procedures and choice of treatment acids and heavy liquids. 

Different factors dictate on the best technique to be applied in various projects (Stromberg, 2003). 

Important factors determining the most appropriate lab techniques include: 1) research questions to be 

addressed in a particular study and the data needed to answer the questions, 2) what phytolith size 

fraction to be analysed (e.g. Alexandre et al., 1997), 3) whether pollen and other palynomorphs are to 

be extracted along with phytoliths (Lentfer and Boyd, 2000), 4) sediment type and clay content (Piperno 

1988, Lentfer and Boyd, 1998; Zhao and Pearsall, 1998) and 5) chronology (Stromberg, 2003). 

The factors that have contributed to the continued modification of the existing protocols are: efficiency, 

safety and cost effectiveness but ensuring research questions are adequately addressed by the data 

obtained (Lentfer and Boyd, 1998; Zhao and Pearsall, 1998; Albert et al., 1999; Parr, 2002, Katz et al., 

2010). Preliminary results in this study showed the processing protocol outlined in Katz et al., (2010) 

provided optimal results for samples selected randomly according to their lithological properties. In 

addition, the method is not complicated and saves more time.  

The extraction technique involved disaggregating phytoliths from the sediments, removal of organic 

materials and carbonates. Gravitational cleaning was carried out for the clay-rich samples. The 

procedure is as described in the following paragraphs.  

Sediments weighing between 30-50mg was put into a 10ml vial. 50µl of hydrochloric acid, 37% was 

added to dissolve carbonates, and 50µl hydrogen peroxide (H2O2) to oxidise/remove organic matter. 
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The supernatant was poured off and decant washed twice, centrifuging at 3000rmp for 3minutes to 

remove any remaining acids. 10ml of 2.4g/ml Sodium Polytungstate solution was then added for heavy 

liquid floatation process. The samples were thoroughly mixed and centrifuged at 3000rpm for 4 

minutes, the floating fraction was then transferred to another set of 10ml-centrifuge plastic tubes, and 

water washed till we got rid of all the salts. For those samples rich in clay minerals, Calgon detergent 

solution (5% Sodium Phosphate) was added to dislodge phytoliths from the clay particles. The samples 

were thoroughly shaken and left to decant/rest for at least 30 minutes before pouring off the supernatant 

and lastly the residue was oven dried. This process cleaned the samples for clarity during microscopy 

analyses. 

4.2.2. Counting and identification 

Approximately 1 mg aliquot was mounted on a 25.4mm X 76.2mm slide using “Entellan New” as the 

mounting media, thoroughly mixed, then a 11mm X 11mm coverslip was carefully placed ensuring no 

bubbles were trapped and the sample spread evenly on the slide. Phytolith identification and counting 

was carried out on freshly mounted slides to ensure that the sample was not dry and could be 

manipulated in three dimensions to optimise identification. This ensured that ecologically and 

taxonomic diagnostic morphotypes are accounted for (Rossouw, 2009; Stromberg, 2003). 

The counting was done along vertical transect across slide, identifying and counting all phytoliths 

encountered. However for phytolith-rich slides, tallying were done along random transects. This was 

carried out under an Olympus BX52 microscope at X400 magnification. For each sample/level, a total 

of 300 grass silica short  cells (GSSC) was counted except for those samples/levels that were completely 

“barren” or had insufficient count size even after preparing a second slide. 

Phytolith images were captured using image processing software; Image-Pros plus 5.1 and Infinity 

Capture software 2. Images were stored in the computer as TIFF/JPEG files from which some of the 

images were selected and presented in this work. 

4.2.3. Basic Analytical Approach 

Based on previous phytolith studies and the existing modern analogues, the following are the key factors 

considered to help define more accurately the Pleistocene vegetation structure as recorded in the 

phytolith assemblage extracted: 

a) The relative abundance of forest indicators relative to grasses to determine how closed or/and 

open vegetation structure was, 

b) Presence/abundance of key indicator taxa to determine specific ecosystems such as wetlands, 

and riverine forests, 
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c) Include all identified phytoliths irrespective of classes, taxonomic- and ecological- significance 

through time to understand temporal changes of the vegetation structure. 

4.2.3.1. Morphological classification 

Morphological description and classification scheme used in this work is based mainly on the 

International Code of Phytolith Nomenclature (ICPN, Madella et al., 2005), Albert, (1999) and Albert 

et al., (2009) unless otherwise stated. Modern reference collections were consulted in identifying plant-

specific morphotypes as well as previously published reference data (Fredlund and Tieszen, 1999; 

Rossouw, 2009; Mercader et al., 2009, 2010), standardised literature (Twiss et al., 1969, 1992; Piperno, 

1988, 2006; Mulholland and Rapp, 1992) and local modern reference collection (Kinyanjui, 2012, work 

in progress).Studies focused in East-Central African plants and extant vegetation reconstruction are 

considered  (Bamford et al., 2006; Barboni and Bremond, 2009; Barboni et al., 2007; Neumann et al., 

2009; Novello et al., 2012; Novello and Barboni, 2015).  

Emphasis is placed in the identification of the grass family since they are the most dominant component 

of vegetation cover in the East African region. Moreover, geographical distribution of various 

subfamilies is highly controlled by climatic factors such as precipitation, temperature and altitudinal 

gradient, hence very informative of past climatic and ecological regimes (Twiss et al., 1969, Mulholland 

and Rapp, 1992; Ollendorf, 1992; Twiss, 1992; Alexandre et al., 1997; Thorn, 2004; Barboni et al., 

2007; Bremond et al., 2008). The subfamilies identified in this work include, Panicoideae, 

Chloridoideae, Arundinoideae and Aristidoideae, all of which belong to the C4 category.  

In addition, phytoliths produced by sedges and palm trees are also identified as a single category each, 

for their ecological significance (Piperno, 1988; 2009). Other general categories are the woody and 

herbaceous taxa, and all classified together to represent dicotyledons category as shown in Table 8. 

Table 8. Morphotype categories identified from the modern phytolith reference collections and are 

used in this study.  

Categories-  Morphological 

description. 

Figure 

no 

References 

1. Bilobate  

(also known as dumbbells) 

Descriptions based on the outline 

of the lobes and length of the 

connecting shank)  

Grass silica short cells 

with two distinct lobes 

connected with a shank. 

(Twiss et al., 1969; 

Mulholland, 1989).  

 Twiss et al., 1969; 

Twiss, 1992; Madella 

et al., 2005; 

Stromberg, 2003; 

Rossouw, 2009; 

Mercader et al., 2010. 
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a) Bilobate convex outer 

margin short shank 

(BCXSS) c.f.  BI-7 

Bilobate with rounded 

lobes connected with a 

short shank. <20µm.  

Fig.1 &h Piperno and Pearsall, 

1998; Stromberg, 

2003; Fahmy, 2008; 

Mercader et al., 2010. 

b) Bilobate convex outer 

margin long shank 

(BCXLS) c.f.BI-5 

Bilobate with rounded 

outer lobes connected 

with long shank >20µm.  

Fig.1d Stromberg, 2003; 

Piperno, 2006; 

Fahmy, 2008; 

Mercader et al., 2010. 

c) Bilobate concave outer 

margin short Shank 

(BCCSS)c.f. BI-7 

Bilobate with caved 

lobes connected with 

short shank <20µm.  

Fig.1f Stromberg, 2003; 

Piperno, 2006; 

Fahmy, 2008; Barboni 

and Bremond, 2009; 

Mercader et al., 2010. 

d) Bilobate concave outer 

margin long Shank 

(BCCLS) c.f. BI-6 

Bilobate with caved 

lobes connected with 

long shank >20µm 

 Stromberg, 2003; 

Fahmy, 2008; Barboni 

and Bremond 2009; 

Mercader et al., 2010. 

e) Bilobate flattened outer 

margin short shank 

(BFSS)c.f. BI-1, BI-6 

Bilobate with outer 

margins squared, 

shank<20 µm 

Fig.1g Stromberg, 2003; 

Piperno and Pearsall, 

1998; Fahmy, 2008; 

Mercader et al., 2010. 

f) Bilobate flattened outer 

margin long Shank 

(BFLS) c. f. BI-6 

Bilobates with outer 

margin squared with 

shank >20µm 

 Piperno and Pearsall, 

1998; Stromberg, 

2003; Fahmy, 2008; 

Mercader et al., 2010. 

g) Bilobate Panicoid type c.f. 

BI-8 

Symmetrical bilobate 

with outer margin 

concave wide Shank 

<20 µm 

 Stromberg, 2003; 

Piperno, 2006; 

Fahmy, 2008; 

Mercader et al., 2010. 

2. Saddles (SAD) 

Chloridoideae 

Grass short silica cell 

with two opposite 

convex edges and two 

straight or concave 

edges (Twiss et al., 

1969; Mulholland, 

1989).  

 Twiss et al., 1969; 

Mulholland, 1989; 

Piperno and Pearsall, 

1998; Stromberg, 

2003; Madella et al., 

2005; Rossouw, 2009.  

a) Saddle long (SADL) 

Arundinoideae (e.g. Phragmites 

sp.) BI-14 

Saddles with long 

convex edges. 

Described as, bilobate 

Fig.1m Stromberg, 2003; 

Barboni and 

Bremond, 2009; 
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category (Stromberg, 

2003) 

Rossouw, 2009; 

Mercader et al., 2010. 

b) Saddle ovate (SADO)  

Aristidoideae (e.g. Aristida spp) 

Rondels rounded 

/rounds (Piperno and 

Pearsall, 1998; 

Mercader et al., 2010). 

Described as symmetry 

B bilobate (Stromberg, 

2003) 

 (Piperno and Pearsall, 

1998; Mercader et al., 

2010)Stromberg, 

2003; Barboni and 

Bremond, 2009; 

Mercader et al., 2010, 

Kinyanjui, 2013 

c) Saddle squat (SADS 

)c.f.BI-15 

Arundinoideae (e.g. in Phragmites 

sp.) 

 

Saddles with short 

convex edges. 

Described as collapsed 

saddle (Stromberg, 

2003, Piperno 2009) 

 Stromberg, 2003; 

Piperno, 2009; 

Barboni and 

Bremond, 2009; 

Rossouw, 2009; 

Mercader et al., 2010. 

d) Saddle plateau  

(SADp) c.f. BI-15 

Chloridoideae (e. g. in Eragrostis 

sp.) 

Saddle with side notches 

and much longer. 

 Twiss et al., 1969; 

Stromberg 2003; 

Barboni and 

Bremond, 2009; 

Mercader et al., 2010. 

3. Cross/quadra-lobate 

(QCR) c.f CR4-2, 6 

Panicoideae (e.g. in Melinis spp., 

Coelarichis spp.) 

Grass short silica cell 

with four lobates, 

symmetrical or 

asymmetrical (Twiss et 

al., 1969; Mulholland 

and Rapp, 1992) 

Fig.1i Twiss et al., 1969; 

Mulholland and Rapp, 

1992; Piperno and 

Pearsall, 1998; 

Stromberg, 2003; 

Madella et al., 2005; 

Barboni and 

Bremond, 2009; 

Mercader et al., 2010; 

Kinyanjui, 2013. 

4. Polylobate (PLY) c.f. PO 

Panicoideae e.g. Panicum sp. 

Grass short silica cell 

with more than two 

lobes 

Fig 1j Twiss et al., 1969; 

Stromberg, 2003; 

Madella et al., 2005; 

Mercader, 2009; 

Kinyanjui, 2013. 

5. Rondels (ROND) cf. KR; 

keeled rondel 

Grass silica short cells 

with conical, keeled and 

pyramidal forms, 

described in Twiss et al., 

(1969).  

Fig.1v Twiss et al., 1969; 

Twiss, 1992; Fredlund 

and Tieszen, 1994; 

Stromberg, 2003; 

Madella et al., 2005. 
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6. Towers (TW) c.f. BI-3-4 Variants of rondel 

categories; Stromberg, 

(2003); variants of 

trapeziforms in 

Bremond et al., (2008); 

Rossouw, (2009). 

 Stromberg, 2003; 

Bremond et al., 2008; 

Rossouw, 2009; 

Mercader et al., 2010; 

Kinyanjui, 2013. 

a) Tower horned (TWH) c.f. 

BI-4 

Panicoideae (e. g Hyparrhenia sp.) 

Rondels with apex ends 

in one or two outward 

apices/ top truncated 

Described as bilobate 

variant” in Stromberg 

(2003); “saddle variant 

1” (Rossouw, 2009); 

“rondel” (Neumann et 

al., 2009). 

Fig.1p Stromberg 2003; 

Barboni and 

Bremond, 2009; 

Mercader et al., 2010. 

b) Tower wide (TWD) BI-

10-11 

Rondel elliptical base/ 

tall body with 

tapering/flat apex; its 

base is at least three 

times wider than the 

apex. Described as 

“conical rondel” 

(Stromberg, 2003); 

“reniform” (Rossouw, 

2009). 

Fig.1q Stromberg, 2003; 

Barboni and 

Bremond, 2009; 

Mercader et al., 2010; 

Kinyanjui, 2013. 

7.  Trapeziforms 

sinuate/elongates/tabular 

crenate (TABCRE) 

(Panicoideae e.g. Oplismenus sp., 

Chloridoideae .e.g. Cynodon sp.) 

Elongate body with 

trapezoidal cross-section 

and wavy edges. 

Described as crenate in 

Stromberg (2003); 

trapeziform polylobate 

(Rossouw, 2009); 

“trapezoid sinuate” 

(Neumann et al., 2009. 

Fig.1r Stromberg, 2003; 

Rossouw, 2009; 

Barboni and 

Bremond, 2009; 

Neumann et al., 2009; 

Mercader et al., 2010; 

Kinyanjui, 2013. 

8. Bulliforms 
Epidermal cells located 

in mesophyll, usually 

three dimensional in 

appearance, highly 

silicified and are 

associated with moisture 

storage in the plants 

leaf. Also called-fan-

 Pearsall and Dinan, 

1992; Piperno, 2006 

P. 74 fig 3,9d. 
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shaped cells in some 

studies. 

Non-grass morphotypes (Dicot morphotypes) 

9. Tracheid elements 

(TRCH) 

Silicified vein-sheath 

cells  

 Fahn, 1990; Albert, 

1999; Piperno, 2006; 

Albert et al., 2009; 

Neumann et al., 2009; 

Novello et al., 2012. 

10. Sclereids (SCLD) Tracheary elements and 

other related silicified 

cells (Stromberg, 2003) 

Fig 4b Piperno, 2006 

11. Globular morphotypes Also identified as 

spheroids in various 

publications 

 Stromberg, 2003; 

Mercader et al., 2000; 

Madella et al., 2005; 

Albert et al., 2009; 

Barboni and 

Bremond, 2009; 

Neumann et al., 2009; 

Novello et al., 2012,  

a) Globular psilate (GBHS) Globular, smooth/sub-

smooth surface.  

Fig 4f Albert, 1999; Madella 

et al., 2005. 

b) Globular echinate 

(GBHEC) 

Globular, with 

spikes/pricks 

Fig 4j Albert et al., 2009; 

Barboni and 

Bremond, 2009, 

Novello and Barboni, 

2015. 

c) Globular granulate 

(GBHESC) 

Globular, with granular 

surface 

Fig 4k-l Albert, 1999; Piperno. 

2006. 

d) Globular verrucate 

(GBHEVE) 

Globular, rough 

irregular surface.  

Fig 5a-b Albert, 1999; Madella 

et al., 2005; Piperno, 

2006; Neumann et al., 

2009. 

Non-grass morphotypes (Herbaceous and other non-grass taxa) 

12. Ellipsoids/Oblong Longer than broad and 

with nearly parallel 

side 

 Albert, 1999; Madella 

et al., 2005; Albert et 

al., 2009. 

a) Ellipsoid psilate (ELLPS) Ellipsoid with smooth 

surface 

 Albert, 1999; Madella 

et al., 2005. 
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b) Ellipsoid scabrate 

(ELLSC) 

Ellipsoid with granular 

surface 

 Albert, 1999; Madella 

et al., 2005. 

c) Ellipsoid verrucate 

(ELLVE) 

Ellipsoid with rough 

irregular surface 

 Albert, 1999; Madella 

et al., 2005. 

13. Honeycomb 

Assemblages 

Net-like-connected cells 

in situ. Categorised as 

“spherical and sub-

spherical bodies” 

(Stromberg, 2003). 

 Bozarth 1992; Albert, 

1999; Madella et al., 

2005. 

a) Honeycomb elongates 

(HYE) 

Network of elongates 

silica cells 

 Albert, 1999; Madella 

et al., 2005. 

b) Honeycomb globular 

(HYGB) 

Network of 

circular/semi-circular 

cells. Described as 

“verrucate silica” 

(Stromberg, 2003). 

 Albert, 1999; Madella 

et al., 2005; 

Kinyanjui, 2103. 

14. Silica skeletons (SC) Silicified sections of 

epidermal cells 

 Bozarth, 1992; Rosen 

1992; Albert, 1999. 

15. Irregular forms (IRRF) Silica cells with no 

defined shape/don’t 

belong to any of the 

above category 

 Albert, 1999; 

Stromberg, 2003; 

Madella et al., 2005. 

a) Irregular verrucate 

(IRRVE) 

Irregular forms with 

rough surfaces 

 Albert, 1999; Madella 

et al., 2005. 

b) Irregular scabrate 

(IRRSC) 

Irregular forms with 

granulate surface 

 Albert, 1999; Madella 

et al., 2005. 

16. Epidermal appendages   Albert, 1999v 

17. Epidermal appendages Silicified mesophyll, 

epidermal & 

Parenchyma cells 

 Albert, 1999; Piperno, 

2005. 

a) Hair base (HB) Silicified mesophyll 

cells with radial outline 

 Albert, 1999; 

Mercader et al., 2009. 

b) Hair (HR) Silicified elongated 

outgrowths from 

mesophyll 

Fig 1w Albert, 1999; 

Mercader et al., 2009. 
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c) Stomata (STMT) Intercellular guard & 

subsidiary cells 

 Mercader et al., 2009 

18. Parallelepiped (P) Tabular body with 

opposite sides parallel to 

each other 

 Madella et al., 2005. 

a) Parallelepiped thin 

crenate (PPTCR) 

With psilate texture and 

scalloped edges 

Fig 5j Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010. 

b) Parallelepiped verrucate 

(PPVE) 

With rough irregular 

surface 

Fig 5k Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010. 

c) Parallelepiped dendritic 

(PPDT) 

With finely branched 

processes 

 Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010. 

d) Parallelepiped thin psilate 

(PPTP) 

With smooth surface, 

width<length 

 Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010. 

e) Parallelepiped blocky 

psilate (PPBP) 

With smooth surface, 

width >length 

 Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010 

f) Parallelepiped blocky 

scabrate (PPBS) 

With granular surface, 

width>length 

 Albert, 1999; Madella 

et al., 2005; Mercader 

et al., 2010. 

g) Parallelepiped  facetate 

(PPFC) 

With scalloped edges  Albert, 1999; 

Mercader et al., 2010. 

19. Cyperaceae phytoliths    

a) Papillae (PAPL) Hat-shaped silica bodies 

in sedges.  

Fig 4d Ollendorf, 1992; 

Novello et al., 2012; 

Piperno, 2006; 

Mercader et al., 2010; 

Kinyanjui, 2013. 

b) Achene (ACHN) Cone shaped silica 

bodies in sedges.  

Fig 4e Ollendorf, 1992; 

Piperno, 2006; 

Mercader et al., 2010; 

Kinyanjui, 2013 
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4.2.4. Data analyses 

Methods considered under this section were based on the ability to address the following questions: 1) 

the ability of the method to give the relationship between grass-derived morphotypes and forest 

indicator morphotypes more accurately, 2) and determine the composition of the grass-derived 

phytoliths (GSSCs) within the assemblage to determine the open-arid grasslands versus moist-closed 

grasslands and 3) determine the presence of specific habitats on the palaeolandscapes such as wetlands, 

gallery forests etc. The results will help reconstruct the vegetation structure and determine changes 

through time and between the two prehistoric basins. 

4.2.4.1. General approach (Abundance diagrams) 

These are abundance diagrams generated by computer programs; software packages called TILIA and 

TILIA GRAPH (Grimm, 2007). On the Tilia diagram, each morphotype is plotted in a single graph in 

relation to the total morphotypes within the assemblage. The horizontal axis represents the relative 

frequencies of each morphotype identified and tallied while the vertical axis represent sample/depth/age 

of the samples in which the morphotypes have been preserved. More so, for an easier interpretation of 

the data analysed, morphotypes indicating similar ecological and taxonomic affiliation can be grouped 

together, hence visual analyses of various habitats can be interpreted. Temporal zones are created using 

a Constrained Incremental Sum-of-Squares Cluster analysis (CONISS) which is one of the packages 

within the TILIA software. 

This analysis helped determine what morphotypes (grasses versus trees & shrubs) dominated the 

assemblage at any given level (per sample) and their percentage occurrence. Although phytoliths cannot 

show species richness in a given sample/level, Tilia graphs help identify the levels with the highest 

morphotype diversity. 

The visual characterization seen in Tilia diagrams help interpret vegetation cover changes as indicated 

by changes in the plotted morphotypes. These changes are discussed in relation to each other along the 

stratigraphic and chronological profile of the samples analysed where relative age or absolute dates are 

provided. For the Olorgesailie basin, dates are provided for every sample/level analysed while for the 

Koobi Fora samples in the Turkana basin, relative dates are used based on the available dated geological 

markers such as volcanic ashes and paleosols. Comparison of the vegetation structure present in both 

basins during the same time frame is noted and discussed in next chapters. 

4.2.4.2. Phytolith indices 

This approach is applied to describe the vegetation types indicated by the phytolith data and correlate 

this with climatic parameters such as temperatures and moisture gradient (Alexandre et al., 1997; 

Barboni et al., 1999; 2007; Bremond et al., 2005a, b; 2008; Alexandre and Bremond, 2009). They are 



81 

 

valuable tools to trace vegetation changes in tropical ecosystems as well as determining the prevailing 

climates, particularly for the grasslands and savannas (Neumann et al., 2009). 

Selected grass and dicotyledons morphotypes are considered for these analyses. Three indices are often 

used: 1) Ic index (Twiss 1969) is the relative proportion of C3 high elevation grasses versus C4 grasses 

reflecting temperature gradient (Bremond et al 2008), 2) Iph index is relative proportion of 

Chloridoideae versus Panicoideae grasses reflecting the dominance of either the short-arid-grasses or 

the long-moist-grasses, hence determining the aridity-humidity gradient in savanna grasslands 

(Bremond et al., 2005b Novello et al., 2012), 3) Fs index is the percentage of the fan-shaped bulliforms 

versus the sum of grass phytoliths reflecting water stress conditions (Bremond et al., 2005) and D:P 

(Dicots:Poaceae) is the relative proportion of dicotyledons versus grasses, reflecting tree cover densities 

(Barboni et al., 2007). 

The first three indices were developed based on the taxonomic significance of certain grass 

morphotypes to characterize grass subfamilies, originally defined by Twiss et al., (1969) and Twiss 

(1992). The following grass morphotypes are considered for the analyses: 

a) Saddles (Chloridoideae) 

b) Bilobates (dumbbells) and crosses (Panicoideae)  

The index D:P has been debated ever since it was proposed (Alexandre et al., 1997) as a proxy to 

determine tree cover density,  since more often it under-estimate the presence of woody components 

when compared to the actual proportions seen in the phytolith assemblages (e.g. Neumann et al., 2009; 

Novello et al., 2012). Consequently, the selected dicot indicator morphotypes have been inconsistent 

between vegetation regimes and studies with some researchers using only the globular granulate 

(Barboni et al., 2007; Bremond et al., 2008; Neumann et al., 2009), and others have included elongate 

faceted (Stromberg, 2002).  The above studies demonstrated that the morphotypes considered may vary 

for the temperate environments and for the tropical environments. This is because the main dicot 

morphotype considered as key forest-indictor (woody dicots) the globular granulate type is rare or 

absent in temperate ecosystems (see Neumann et al., 2009). 

Nevertheless, recent studies which analysed modern phytolith assemblages have shown the D: P 

coupled with other indices and general approach, would be a valuable tool to determine and reconstruct 

changes in tree/shrub cover densities in grasslands and savanna grasslands (Bremond et al., 2008; 

Neumann et al., 2009; Novello et al., 2012).  

This study uses D: P index as the ratio of the sum of globular granulate morphotype versus total sum of 

selected GSSCs morphotypes (saddles, bilobates short shank and crosses). Also included are   
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morphotypes such as rondels, trapeziform bilobates and trapeziform short cell (after Bremond et al., 

2008; Neumann et al., 2009; Novello et al., 2012)  

For the purpose of this study, we applied two indices, the aridity index (Iph) and the tree cover density 

index (D: P) but we didn’t consider climate index (Ic) because of rarity or lack of Pooideae-indicator 

morphotypes in the fossil assemblage. Both indices were calculated as follows:  

a) Iph= Globular granulate/ (saddles+ bilobates short shanks + crosses). 

b) D:P=Globular granulate/(saddles + bilobates short shank +crosses) 

Due to the wide range of D: P values in the fossil assemblages, the degree of vegetation 

openness/closeness was categorised into three vegetation structure/composition. The description of the 

categories also considered the general abundance of the selected morphotypes. The criterion used is as 

follows: 

a) D:P values ≤1 reflect low tree –cover-density, open grasslands  

b) D:P values ≤1  reflect moderate tree –cover-density, wooded grasslands 

c) D:P values ≥ reflect high tree –cover-density, woodlands/forests 

  



83 

 

Part II: Results 

CHAPTER FIVE: MODERN PHYTOLITH REFERENCE 

COLLECTION 

5.1. Introduction 

Although phytolith research has grown and developed for over two decades now, there still a few 

taxonomic challenges that exist especially in developing a standard nomenclature that includes all plant 

species or vegetation habitats and which can be globally applied (e.g. a case of saddle plateau in 

Neumann et al, 2009). Modern reference collection therefore is an essential prerequisite to interpret the 

Pleistocene assemblages.  

Phytolith were extracted from sixty three individual plant species collected from different altitudes and 

habitats as stated in appendix II. Plants that were observed to dominate in different habitats and are 

considered to characterise these habitats were collected so that they can qualify to be reliable analogues 

for the fossil assemblages. All plant parts indicated for each individual plant, were processed and 

analysed.  A total of 100 different morphotypes were identified and counted as shown in the appendix 

III. The data is part of work in progress geared to developing a phytolith database for the palynology 

and paleobotany section, Earth sciences Department at the National Museums of Kenya.  

5.2. Description of the morphotypes selected to reconstruct Early Pleistocene-

Holocene vegetation cover. 

Correspondence Analyses (CA) was ran through the whole phytolith data for both grass and non-grass 

plants to determine whether there is clear trend in the species clusters identified by similar morphotypes 

(Figure 18). The assignments of GSSCs morphotypes analysed from 42 grass species was determined 

by various statistical analyses performed on the modern reference collection (Correspondence analyses 

(CA), Frequency graphs) see Figure 20. Note that, more emphasis is put in grass analyses because of 

the strong  relation between GSSCs and their taxonomical & ecological affiliation. Hence, the analyses 

provide more elaborate and important habitat information. Frequency graph for morphotypes identified 

in non-grass species are also presented. 

5.2.1. Analyses of woody dicots, herbaceous and GSSCs morphotypes 

Correspondence Analyses (CA) for all individual plant species show a clear division between grass and 

non-grass species. Presence of diagnostic GSSCs in grasses and their rarity or/and absence in woody 

and herbaceous taxa is the determining factor of the first two groups (I and II). Diagnostic; papillae 
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(PAPL) morphotype present in Cyperaceae and is rare to absent in the plant categories id the underlying 

factor responsible for the third group (III), in  Figure 19. 

 

Figure 20. A scatter plot of Correspondence Analyses (CA) showing the relationship between the 

identified morphotypes and their parent species. Three clusters according to plants form and 

habits are identified. 

5.2.1.1. Cluster I-Grasses 

Cluster I consist mainly of all the grass species and their corresponding morphotypes. Morphotypes and 

the parent plant cluster faithfully with no notable outlier. 

5.2.1.2. Cluster II-Woody and herbaceous taxa 

Cluster II consist morphotypes derived from woody dicot and herbaceous taxa. The cluster is clearly 

defined except for one outlier, Abutilon sp. (ABTsp) which is a very poor phytolith accumulator, 

produces only two morphotypes that are non-diagnostic. The plants within cluster II, although are not 
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as good phytoliths producers as grasses, they seem to behave in a similar manner hence, fall under the 

same cluster. 

5.2.1.3. Cluster III-Sedges 

Out of the seven sedges analysed, four falls under this cluster. The other three are not well defined 

clusters. The four in cluster III include three species of the genus Cyperus and one species of the genus 

Eleocharis. The main morphotypes responsible for the cluster is Papillae (PAPL) which is common in 

the four species and are rare to absent the outlying species. 

5.2.2. Analyses of GSSCs morphotypes-Poaceae 

Figure 21 shows four main clusters of species which are influenced by similar morphotypes both in 

occurrence and in abundance. 
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Figure 21. A scatter plot of Correspondence Analyses (CA) showing the relationship between 

GSSCs morphotypes and grass species. Four clusters are defined which corresponds to the four 

grass sub-families analysed. 

5.2.2.1. Cluster I 

This cluster is influenced by high frequency of saddles (SAD) and saddle squat (SADS). These 

morphotypes were abundant in Eragrostis (5 species) Chloris (2 species), Cynodon (1 species) and 

Andropogon (1 species). The first three genera are all in Chloridoideae sub-family while Andropogon 

is in the Panicoideae subfamily. 84.9% of the total saddles were observed in Chloridoideae species 
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(Eragrostis, sp., E. racemosa, & Chloris sp.), while 15.1% were observed in Panicoideae (Andropogon 

sp.) grasses. 97.7% of the SADS were observed in Chloridoideae while 2.3% in Panicoideae (Digitaria 

sp.). 

5.2.2.2. Cluster II 

This cluster is influenced by bilobate variants (bilobate convex short shank (BCXMSS), bilobate 

concave short shank (BCOMSS), bilobate concave long shank (BCOMLS), bilobate nodular (BN), 

bilobate flattened short shank (BFOMSS)), polylobate (PLY) and crosses (QRC). The morphotypes 

were abundant in Melinis repens, Themeda spp., Pennisetum polystachion, Hyparrhenia spp. and 

Schizachyrium spp. all of which are Panicoideae grasses. Two species in this subfamily however did 

not produce these morphotypes; such as Andropogon sp. and Digitaria sp.  These morphotypes were 

not exclusively observed in Panicoideae grasses only, they were also observed in low frequencies in 

one Aristida sp. (Aristidoideae) and in one Eragrostis sp. (Chloridoideae). Bilobate concave short shank 

was the most abundant type (47.5%) in the Panicoideae grasses.   

5.2.2.3. Cluster III 

The cluster is highly influenced by two GSSCs morphotypes; saddle ovate (SADO) and saddle long 

(SADL). They were abundant in the two Phragmites species (Arundinoideae sub-family) and one 

Brachyachne sp. (Chloridoideae subfamily). Interestingly, 59.4% of the total SADL was observed in 

Brachyachne sp. while 29.7% were observed in the two Phragmites species. SADO on the other hand, 

occur in high abundance (94.5%) in Phragmites species but absent or rare in other grass species. 

5.2.2.4. Cluster IV 

The cluster is influenced by saddle plateau (SADP) and bilobate convex long shank (BCXMLS). 

Aristida species produced these morphotypes: 87.3% SADP and 75.9% bilobate convex long shank.  

5.2.3. Summarised results of GSSCs analyses 

Results of the grass morphotypes occurrence in the three sub-families represented by the grass species 

processed in this study is presented in the figure 22 below. 



88 

 

 

Figure 22. Relative abundance of phytoliths observed in grass sub-families. 

Panicoideae grasses exhibit the greatest diversity of morphotypes (n=1431). Bilobates accounted for 

47.6% of the total proportion. The following morphotypes are considered as possible key indicator of 

the family in order of abundance; bilobate concave short shank (22.2%), tower horned (11.7%), bilobate 

concave long shank (8.6%) and bilobate convex short shank (7.3%). Also considered in this category 

are cross/quadra-lobate and polylobate morphotypes which are exclusively abundant in the Panicoideae 

grasses (87.6% and 65% respectively) of the total assemblage. 

Chloridoideae grasses ranks second in morphotypes diversity and proportions (n=. 1312). Results 

suggest the following morphotypes as the possible key identifier of the sub-family: saddle (30.6%), 

tower flat (12.1%) and saddle squat (4.4%). 

In the Aristidoideae grasses, the most represented morphotypes are bilobate convex long shank (58.1%) 

and saddle plateau (18.6%). In Arundinoideae grasses, saddle ovate (61.3%) is the most presented 

morphotype which remains rare in other grasses subfamilies. 
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5.2.4. Analyses of non-GSSCs morphotypes 

The results presented here were analysed from the leaves of six herbaceous and seven woody species 

that accumulated silica in their cellular network. 

There was no identified trend or relationship between morphotypes produced by the dicot category, 

both woody and herbaceous species. There was variation in which different species produced phytoliths. 

This study, categorise plants species into two broad categories depending on plant form; 1) herbaceous 

and 2) woody taxa. 

5.2.4.1. Herbaceous taxa 

All six herbaceous taxa processed for modern reference phytoliths produced significant amounts of 

phytoliths but assemblages varied from one species to the other (see figure 23). We therefore highlight 

the morphotypes that were significant in either one or more species. Irregular forms have a significant 

presence in three species; Barleria sp (22.3%), Acanthus eminens (13.6%) and Vernonia brachaetus 

(16.7%). However, this morphotype was absent in Indigofera sp., Crotolaria sp. and Abutilon sp.  

Each species shows uniqueness in silica production. Among the herbaceous species, Acanthus eminens 

has the most variable morphotypes, with the most abundant type being cylindroid psilate forms (9.5%). 

Abutilon sp. on the hand produces only two morphotypes, cylindroid psilate (57.9%) and blocky 

polyhedral (42.1%). Other species have particular morphotypes dominating their assemblages as 

follows: Barleria sp. (platelets scabrate-29.7%), Vernonia brachaetus (irregular forms-16.7%, 

sclereids-11.7%), Indigofera sp. (globular granulate- 44.6%) and Crotalaria sp. (irregular verrucate-

34.7%). Of the 22 morphotype categories identified from these plants, 81.8% are non-diagnostic and 

18.2% diagnostic i.e. globular granulate, tracheids, sclereids and irregular verrucate. 
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Figure 23. Relative abundance of phytolith assemblages observed in herbaceous taxa 

5.2.4.2. Woody taxa 

Woody dicots exhibit the highest variation in silica production. All the seven species processed show 

some uniqueness in the types of morphotypes they produce (Figure 24). Diagnostic morphotypes 

(globular granulate, tracheid and sclereids) remain rare in most of the woody dicots processed. 

Phytolith assemblage produced in Capparis sp. is dominated by indeterminable (32.0%), parallelepiped 

elongates (16.3%) and irregular verrucate (9.8%). Other morphotypes include sclereids (7.2%) and 

platelets (7.2%). The Acacia sp. contains 100% ellipsoid scabrate. Rhus natalenis contains globular 

psilate (52.3%), platelets psilate (8.2%) and irregular forms (3.9%). Ficus natalensis is dominated by 

sclereids (40%), long cells verrucate (14.6%), silica skeletons with globular (6.2%) and silica skeletons 

psilate (4.6%). Tarrena graveolens is dominated by indeterminable (17.9%), irregular forms (16.6%), 

platelets psilate (13.8%), ellipsoid scabrate (9.0%) and platelets scabrate (7.6%). Rubus sp. is dominated 

by indeterminable (35.7%), globular granulate (14.3%), blocky polyhedral (14.3%) and irregular forms 

(7.1%). Grewia fallax is dominated by sclereids (25.8%), silica skeleton in-situ (25.8%), platelets 

scabrate (19.4%) and silica skeletons long cells (17.7%). 
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Figure 24. Relative abundance of phytolith assemblages in the seven woody species analysed 

4.2.4.3. Sedges (Cyperaceae) 

Among the eight sedges processed (Figure 25), Cyperus elatus and Scleria bovinni are the only 

Cyperaceae that didn’t produce the known sedge indicator morphotype: papillae. The other three species 

produced papillae morphotypes in abundance. Cyperus papyrus contained papillae (94.7%). Cyperus 

congensis contained epidermal crenate (29.8%), papillae (14.9%), cylindroid verrucate (12.3%), 

stomata (11.9%) and tabular crenate (8.9%). Cyperus elatus contained tabular trapezoid (63.1%) and 

cylindroid psilate bulbous (4.0%). Cyperus elephantinus contained papillae (95.4%) and stomata 

(4.6%). Kyllinga sp. contained papillae (22.2%), parallelepiped elongate (13.3%), cylindroid psilate 

bulbous (8.1%). Scleria bovinii contained tabular sinuate (67.8%), epidermal jig-saw (12.7%) and 

tabular crenate (11.7%). Eleocharis sp. contained papillae (94.9%) and tabular crenate (3.4%). 
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Figure 25. Relative abundance of phytolith assemblages observed in Cyperaceae 

5.2.5. Summarised results of non-grass analyses 

The results show that woody and herbaceous taxa accumulate less silica compared to grasses. The 

results do not show a clear difference between phytolith assemblages produced in the herbaceous and 

woody taxa processed. Ellipsoid verrucate, globular granulate, irregular forms and sclereids were 

mostly observed in woody taxa. No unique morphotypes were noted on the herbaceous taxa only. Other 

exceptions noted are the abundance of globular psilate observed in Rhus natalensis which is a tree while 

globular granulate was observed in abundance in Indigofera sp.  

In the Cyperaceae species, papillae are the most represented morphotype in six of the eight species, but 

absent in two species. This morphotype can be considered as a direct key indicator of the Cyperaceae 

in a fossil assemblage. Morphotypes such as tabular sinuates, tabular trapezoids and epidermal crenate 

can only be applied with caution. 

5.2.6. Testing the significance of the modern reference data as a benchmark to interpret fossil 

assemblage in this study  

The results in Table 9 show the confidence level of the modern phytolith collection to interpret the three 

different categories of plants analysed in this study. Despite the variation in the number of individual 

species processed in each category, the diversity and frequency of morphotypes identified, the level of 

confidence in each category is the same, 95.0%. 
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Table 9. Table showing three main plants’ categories and their corresponding statistical attributes. 

 

  

Grasses Sedges Woody dicots &herbs

Mean 135,5495 Mean 21,35135 Mean 22,54054

Standard Error 28,85533 Standard Error 10,40367 Standard Error 4,493453

Median 9 Median 0 Median 3

Mode 0 Mode 0 Mode 0

Standard Deviation 304,0098 Standard Deviation 109,6094 Standard Deviation 47,34146

Sample Variance 92421,96 Sample Variance 12014,23 Sample Variance 2241,214

Kurtosis 14,51865 Kurtosis 97,0794 Kurtosis 14,87903

Skewness 3,451122 Skewness 9,588239 Skewness 3,570833

Range 1992 Range 1129 Range 306

Minimum 0 Minimum 0 Minimum 0

Maximum 1992 Maximum 1129 Maximum 306

Sum 15046 Sum 2370 Sum 2502

Count 111 Count 111 Count 111

Confidence Level(95.0%) 57,1845 Confidence Level(95.0%) 20,61763 Confidence Level(95.0%) 8,904969
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CHAPTER SIX: OLORGESAILIE PHYTOLITH ASSEMBLAGE 

6.1. Introduction 

Results presented here are analysed from 272 sediment samples taken at 48cm sampling interval from 

a 166m core. A total of 48,638 phytolith were identified into 70 morphotype categories. 93% (N=153) 

of the samples yielded phytoliths. However, only 36.4% (N=99) of the samples yielded more than 200 

morphotypes. Of the 70 morphotype categories, 50% (n=35) are non-diagnostic morphotypes, 34.3% 

(n=24) are GSSCs, 11.4% (n=8) are diagnostic woody (dicots and palms) morphotypes and 2.9% (n=2) 

sedge morphotypes (see appendix III for more details). 

Table 10 categorises the major morphotypes into four broad abundance categories depending on the 

frequencies occurrence throughout the core. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. ODP phytolith spectra: Individual key morphotypes 

Phytolith assemblages identified and analysed from the ODP core are presented using a Tilia diagram 

while zones and sub-zones are identified by CONISS, a numerical clustering package within TILIA 

software (Figure 26 & 27). 

a) Abundant (>10%) 

Globular granulate, tracheids 

b) Common (>1-10%) 

Rondels, saddles, bilobate convex shortshank, bilobate flattened short sShank, bilobate 

panicoid, saddle long, saddle plateau, bulliforms, sclereids, globular verrucate, globular 

echinate, globular psilate, epidermal long cells, irregular scabrate, scutiform 

c) Uncommon (0.1-1%) 

Achene, bilobate concave long sshank, bilobate concave short shank, bilobate flattened long 

shank, crosses/quadra-lobate, polylobate, saddle collapse, saddle squat, tower variants, 

globular regulate, ellipsoid psilate ellipsoid scabrate, facetate, hair cell, irregular psilate, 

polyhedrals, prickle 

d) Rare (<0.1%) 

Papillae, bilobate concave long shank, saddle tall, trapezoid, globular scalloped, cylindroid 

variants, ellipsoid scabrate, honeycomb assemblage, mesophyll, parallelepiped variants, 

stomatal cells 

Table 10. Showing identified morphotypes from the ODP core assemblages of 48,638 categorised into 

four broad abundance classes (% of the total assemblage) ‘abundant’ (>10%), ‘common’(>1-10%), 

‘Uncommon’ (0.1-1.0%) and ‘rare’ (<0.1%). 
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The quantity of phytoliths identified in the lower part of the ODP core dated between 425kyr and 975kyr 

were scarce compared to the upper part of the core (~425-~75kyr) see figure 26 in some levels, 

phytoliths were completely absent 

6.2.1. Zone ODP I (975-675kyr) 

This zone has a low phytolith concentration, particularly the GSSCs morphotypes that are very rare to 

absent in most of the samples. Saddles, however are sporadically present at percentages of <20%. Forest 

indicators such as tracheids, sclereids, globular granulate and globular echinate are significantly present 

in most of the samples ranging between >20% and 60%.  Globular echinate (Palm) morphotype 

significantly present in this zone registering  >30% in one of the samples. 

The zone is sub-divided into two sub-zones by what appears to be a hiatus around 900kyr (NO DATA 

PHASE). Although similar morphotype assemblages are present in both subzones, ODP Ia has less 

forest indicator (FI) morphotypes such as globular echinate, globular regulate, sclereid and tracheids 

compared to subzones ODP Ib while there are GSSCs, particularly the  saddle morphotype in subzone 

ODP Ia. Globular echinate (Palm-type) contributes largely on the sub-division of the zone. 

6.2.2. Zone ODP II (675-325kyr) 

This zones show a marked increase in phytolith assemblages both in diversity and concentration in most 

samples. Key diagnostic morphotypes identifying  four categories; wetlands (achene, papillae), 

grasslands (saddles, bilobate convex short shank, saddle plateau), gallery forests (palm globular 

echinate) and forests (globular echinate, tracheid) are significantly present in most samples. Most 

distinctive is the high presentation of globular granulates in most  samples ranging between >20% and 

100%. Another additional feature noted in this zone is the sporadic appearances of various morphotypes 

indicative of woody and herbaceous dicotyledons. Palm globular echinate however, are distinctively 

absent or very rare in the zone. Saddles, tracheids and globular granulate are the prominent morphotypes 

that defines this zonation. 

Two distinct sub-zones are identified based on phytolith abundance and diversity at different levels. 

ODP IIa, by contrast has lower phytolith percentages and a notable hiatus around 600kyr compared to 

sub-zone ODP IIb. 

6.2.3. Zone ODP III (325-77kyr) 

The zone marks an increased proportion of GSSCs. Forest indicators remain significantly present in 

almost all the samples analysed. Woody and herbaceous dicotyledons indicators are much more in 

quantities and diversity than any other zone. Most samples in this zone have the highest quantity of 

unidentified morphotypes, the indeterminate.  
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Two subzones are identified in the zone most likely due to the abrupt reduction to absence of most of 

the morphotypes around 175kyr. Sub-zone ODP IIIa contrasts with ODP IIIb in that samples are much 

richer in phytolith assemblages of all the categories. Also notable is the absence of achene phytoliths in 

sub-zone ODP IIIb while they are present though in only a few samples (with a peak of >20%). Another 

contrast observed is the increased proportion of Panicoideae morphotypes such as bilobate convex short 

shank, bilobate concave short shank and crosses in ODP IIIa. Chloridoideae morphotypes are abundant 

in ODP IIIa and much reduced in abundance in ODP IIIb. 

6.3. Phytolith Indices-ODP 

Two phytolith indices are used in order to trace and understand changes in vegetation structure and 

composition such as woodland features and dominant grass subfamilies (table 11). Majority of samples 

had relevant morphotypes used to calculate the indices, however, there were levels with very poor 

preservation or no phytoliths present and were assumed to represent bare ground. . Here the indices 

values are presented and discussed temporally according to the zonation already identified above in the 

abundance diagrams.  

6.3.1. D: P index 

The D: P (tree cover density) was prominent in the ODP core with an average value of 7.4. D: P values 

are categorized into three groups: D: P ≤1, reflect low tree-cover-density/ open grasslands, D: P ≤ 10, 

moderate tree-cover-density/ wooded grasslands, D: P> 10, high tree-cover-density/woodlands/forests. 

The infinite value (∞) on the  D:P index is the results of the absence of GSSCs indicating absence of 

GSSCs and dense wooded vegetation, where the abundance of globular granulate is greater than 10 but 

for those levels with a zero are considered “not significant” (see table 11for details).  

6.3.1.1. ODP zone 1 (976.7-657.9kyr) 

There are six phases of high tree cover density, seven phases of moderate tree-cover-density and three 

phases of low tree cover densities. Between ~976kyr and ~944kyr, is a low tree cover density phase 

interrupted by a high peak of tree cover density (24.8) at ~966kyr. The vegetation structure is mostly 

open grasslands. Vegetation fluctuation rate during this period is low, but the shift from low- high-low 

tree cover density at ~966kyr, is drastic. 

Between ~933kyr and ~850kyr, D: P shifts between high to moderate phases. The rate of fluctuation is 

high, switching between each sampling level. Around 830kyr, a low D: P phase interrupts this trend 

briefly which reappear again from ~817.6kyr to ~658kyr. This zone is characterised by high to moderate 

tree-cover-density cover. Before ~850kyr, the fluctuation rate between low to high tree-cover-density 

is higher than from ~817kyr to ~658kyr.  The most conspicuous low tree-cover-density phase in this 

zone happened around 830.2kyr (0.1). 
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6.3.1.2. ODP zone II (644.0-325.9kyr)  

There are five phases of high tree-cover-density, fifteen phases of moderate tree-cover-density and 

fourteen phases of low tree-cover-density phases. The period between ~644kyr and ~612kyr, is high to 

moderate D: P phase, the shift is gradual through time. Between ~585kyr and ~488kyr, is a moderate 

to low the D: P phase with high fluctuation rates. The period between ~475kyr and ~419kyr shows a 

high rate and strong fluctuations phases; from high to moderate, high to low and moderate to high shifts. 

The period between ~410kyr and 378kyr is a moderate to low D: P phase, fluctuation rate is high in the 

beginning but stabilises in the last three levels with moderate D: P phase. Between 375.9kyr and 

325.9kyr, a high fluctuation rate is noted from high to moderate to low D: P. In the beginning, the D: P 

drops rapidly from high to low followed by sequence of moderate-low D: P phase to ~325kyr but which 

is interrupted by a high D: P index at ~355kyr. 

This zone is characterised by moderate to low tree-cover-density; wooded grasslands to open grasslands 

vegetation structure. Of the five high tree cover density phases, the 630kyr record the highest D: P value 

indicating highly dense woodland/forest phase. 

6.3.1.3. ODP zone III (322-77.5kyr):  

There are about twenty two phases of high tree-cover-density, twenty one phases of moderate D: P 

phases and nine low D: P phases. There are quite a number of samples that did not yield the required 

morphotypes to calculate the D: P index, particularly the GSSCs, and this levels have an infinite D: P 

value (∞). Four of these phases are worth mentioning since they are prolonged: (~322kyr to 302kyr), 

(299.7kyr to 83kyr), (214.4kyr to 213.8kyr) and (212.67kyr to 212.65kyr). The period between ~300kyr 

and ~250kyr is low D:P phase with low fluctuation. This changes suddenly to a high D:P phase from 

~246kyr to ~244kyr, it is worth noting the absence of GSSCs morphotypes while globular granulates 

are significantly present. Between ~243.1kyr and ~230kyr is a low-moderate D:P phase which 

interrupted occasionally by high D:P phases occurring between 235.7kyr and 232.3ky. The period 

between ~255kyr and 215.3kyr is mainly a high to moderate D:P value with a few punctuations of low 

and infinite D:P phases. The period is characterised by high rate fluctuation between phases. The period 

between ~213.8kyr and 212.6kyr is generally without GSSCs morphotypes with occasional moderate-

high D:P phases. Between 212.5 and 77kyrs is a low-moderate-high D:P phases which fluctuates 

gradually through time except for an abrupt shift from low D:P value (0.4) to a high D:P value (217.0) 

around 103.9kyr and 101.3kyr. Another significant D:P change is noted at ~188.7kyr with high peak of 

86.5. The vegetation structure therefore gradually shifts from woodlands to wooded grasslands to open 

grasslands in the upper part of the core. 
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6.3.2. Iph index 

Similarly, the Iph indices are presented following the zones already identified. They range between 0 

(low aridity; where Panicoideae dominate over the Chloridoideae grasses) and 1 (high aridity; where 

Chloridoideae dominated over the Panicoideae grasses), Iph index value of 0.5 suggest equal or almost 

equal representation of both grass sub-families as shown in table 11. 

6.3.2.1. ODP I (976.7-657.9kyr)  

Iph indices range between 0.6 and 1, general indication of more Chloridoideae than Panicoideae grasses, 

hence high aridity index. Two phases of high aridity are identified as follows: 976.7-884.6kyr (0.7-1) 

and 830.24-771.0kyr (0.6-1). Medium aridity (0.5) phases are two identified around 850.4kyr and 

713.1kyr. Only one phase of low aridity is clearly identified in this zone around 861.0kyr with Iph value 

of Zero. The other samples did not yield diagnostic GSSCs. 

6.3.2.2. ODP II (644.0-325.9kyr) 

There are thirteen phases of high aridity (0.6-1) in this zone, with two of them occurring for a longer 

period between 574.2kyr and 548.0kyr, and the second one occurring between 370.5kyr and 356.0kyr. 

Eight phases of medium aridity are identified in the zone, no prolonged period; most likely these are 

transition phases. There are nine phases of low aridity (0.0-0.2) which are brief. The other samples did 

not yield diagnostic GSSCs. 

6.3.2.3. ODP III (322-77.5kyr) 

There are twenty one low aridity (0.0-0.3) phases. Most of them represent brief events except for two 

prolonged ones: between 208.4kyr and 164.7kyr and between 138.1kyr and 79.4kyr. There are 

numerous samples that did not yield diagnostic morphotypes resulting in huge “no significant” gaps 

between the following dates: 319.5-308.0kyr, 246.1-244.0kyr, 236.9-232.3kyr, 229.7-225.4kyr, 223.2-

220.0kyr and 216.1-212.6kyr. Generally, aridity index in this zone indicate grasslands with high 

Panicoideae proportions. 
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Figure 26. Relative abundance of single morphotypes that identified vegetation habitats (top) versus age (left) of the ODP sediment core. Phytolith 

assemblage zones identified by CONISS in TILIA. 
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Figure 27. Relative abundance of key identified vegetation types /habitat versus age (left). Zones identified by CONISS in TILIA 
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Table 11. Showing aridity (Iph) and tree cover density (D:P) of the ODP core calculated from the 

selected GSSCs and globular granulate (modified from Bremond et al., 2008). Shading follows the 

D:P indices, not the aridity indices from the grasses. Note that the two do not correlate. 
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77,50 27,03 56 60 17 116 0,5 0,1
Medium 

aridity, P=C

Low tree density, Open 

grasslands

79,40 27,51 22 11 16 33 0,3 0,5
Low aridity, 

P>C

Low tree density, Open 

grasslands

81,45 27,98 89 51 41 140 0,4 0,3
Low aridity, 

P>C

Low tree density, Open 

grasslands

83,25 28,35 99 48 17 147 0,3 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

84,74 28,95 91 22 15 113 0,2 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

85,61 29,43 128 12 14 140 0,1 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

86,29 29,91 140 26 14 166 0,2 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

86,90 30,39 121 44 25 165 0,3 0,2
Low aridity, 

P>C

Low tree density, Open 

grasslands

87,46 30,87 29 9 90 38 0,2 2,4
Low aridity, 

P>C

Moderate density, 

wooded grasslands

88,10 31,44 51 10 115 61 0,2 1,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

88,57 31,83 37 9 88 46 0,2 1,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

89,18 32,32 41 5 58 46 0,1 1,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

89,87 32,8 29 6 165 35 0,2 4,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

90,90 33,34 41 8 88 49 0,2 1,8
Low aridity, 

P>C

Moderate density, 

wooded grasslands

91,52 33,82 25 1 139 26 0,0 5,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

92,63 34,31 19 18 75 37 0,5 2,0
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

95,57 35,75 240 86 39 326 0,3 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

96,67 36,21 22 16 142 38 0,4 3,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

98,04 36,68 61 34 178 95 0,4 1,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

100,50 37,18 15 7 357 22 0,3 16,2
Low aridity, 

P>C

High tree density, 

woodlands

101,30 37,66 1 0 217 1 0,0 217,0
Low aridity, 

P>C

High tree density, 

woodlands

103,86 38,15 45 11 22 56 0,2 0,4
Low aridity, 

P>C

Low tree density, Open 

grasslands

106,26 38,63 38 7 48 45 0,2 1,1
Low aridity, 

P>C

Moderate density, 

wooded grasslands

107,81 39,11 53 19 120 72 0,3 1,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

110,17 39,6 82 11 54 93 0,1 0,6
Low aridity, 

P>C

Low tree density, Open 

grasslands

113,50 40,21 13 0 9 13 0,0 0,7
Low aridity, 

P>C

Low tree density, Open 

grasslands

115,73 40,67 10 13 59 23 0,6 2,6
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

117,68 41,16 1 0 25 1 0,0 25,0
Low aridity, 

P>C

High tree density, 

woodlands

119,80 41,66 10 0 170 10 0,0 17,0
Low aridity, 

P>C

High tree density, 

woodlands

121,76 42,12 31 18 82 49 0,4 1,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

123,77 42,65 3 1 25 4 0,3 6,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

125,51 43,06 20 4 79 24 0,2 3,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

127,73 43,57 72 18 49 90 0,2 0,5
Low aridity, 

P>C

Low tree density, Open 

grasslands

129,79 44,05 155 11 50 166 0,1 0,3
Low aridity, 

P>C

Low tree density, Open 

grasslands

Interpretation
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115,73 40,67 10 13 59 23 0,6 2,6
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

117,68 41,16 1 0 25 1 0,0 25,0
Low aridity, 

P>C

High tree density, 

woodlands

119,80 41,66 10 0 170 10 0,0 17,0
Low aridity, 

P>C

High tree density, 

woodlands

121,76 42,12 31 18 82 49 0,4 1,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

123,77 42,65 3 1 25 4 0,3 6,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

125,51 43,06 20 4 79 24 0,2 3,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

127,73 43,57 72 18 49 90 0,2 0,5
Low aridity, 

P>C

Low tree density, Open 

grasslands

129,79 44,05 155 11 50 166 0,1 0,3
Low aridity, 

P>C

Low tree density, Open 

grasslands

132,32 44,54 26 0 70 26 0,0 2,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

134,94 45,02 46 4 152 50 0,1 3,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

138,07 45,5 31 17 68 48 0,4 1,4
Low aridity, 

P>C

Moderate density, 

wooded grasslands

139,95 45,99 4 6 123 10 0,6 12,3
High aridity 

P<C

High tree density, 

woodlands

141,42 46,47 4 0 236 4 0,0 59,0
Low aridity, 

P>C

High tree density, 

woodlands

144,06 46,96 0 0 30 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

145,66 47,44 0 0 12 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

157,20 47,92 3 2 38 5 0,4 7,6
Low aridity, 

P>C

Moderate density, 

wooded grasslands

161,81 48,4 0 0 29 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

164,74 48,89 13 4 125 17 0,2 7,4
Low aridity, 

P>C

Moderate density, 

wooded grasslands

174,93 49,45 4 0 27 4 0,0 6,8
Low aridity, 

P>C

Moderate density, 

wooded grasslands

180,74 49,85 0 0 23 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

184,29 50,34 1 0 32 1 0,0 32,0
Low aridity, 

P>C

High tree density, 

woodlands

185,07 50,82 23 9 36 32 0,3 1,1
Low aridity, 

P>C

Moderate density, 

wooded grasslands

185,82 51,3 37 4 253 41 0,1 6,2
Low aridity, 

P>C

Moderate density, 

wooded grasslands

186,66 51,78 57 11 58 68 0,2 0,9
Low aridity, 

P>C

Low tree density, Open 

grasslands

188,94 52,38 2 0 173 2 0,0 86,5
Low aridity, 

P>C

High tree density, 

woodlands

189,09 52,76 20 6 32 26 0,2 1,2
Low aridity, 

P>C

Moderate density, 

wooded grasslands

189,14 52,87 21 5 134 26 0,2 5,2
Low aridity, 

P>C

Moderate density, 

wooded grasslands

189,24 53,13 0 0 122 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

189,32 53,35 2 1 47 3 0,3 15,7
Low aridity, 

P>C

High tree density, 

woodlands

189,41 53,58 3 2 26 5 0,4 5,2
Low aridity, 

P>C

Moderate density, 

wooded grasslands

189,48 53,76 19 1 181 20 0,1 9,1
Low aridity, 

P>C

Moderate density, 

wooded grasslands

189,50 53,83 13 4 151 17 0,2 8,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

Interpretation



103 

 

 

A
g

e 
(k

y
r)

D
ep

th

P
a

n
ic

o
id

ea
e

C
h

lo
ri

d
o

id
ea

e

G
lo

b
u

la
r 

g
ra

n
u

la
te

P
a

n
ic

o
id

ea
e+

C
h

lo
ri

d
o

id
ea

e

Ip
h

D
:P

Iph D
:P

191,32 54,32 57 3 38 60 0,1 0,6
Low aridity, 

P>C

Low tree density, Open 

grasslands

193,02 54,8 41 3 159 44 0,1 3,6
Low aridity, 

P>C

Low tree density, Open 

grasslands

195,65 55,52 8 0 216 8 0,0 27,0
Low aridity, 

P>C

High tree density, 

woodlands

197,06 55,83 2 0 29 2 0,0 14,5
Low aridity, 

P>C

High tree density, 

woodlands

200,47 56,39 67 22 17 89 0,2 0,2
Low aridity, 

P>C

Low tree density, Open 

grasslands

202,74 56,87 54 3 104 57 0,1 1,8
Low aridity, 

P>C

Moderate density, 

wooded grasslands

203,50 57,36 39 10 144 49 0,2 2,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

205,53 57,84 35 9 147 44 0,2 3,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

208,44 58,49 4 0 49 4 0,0 12,3
Low aridity, 

P>C

High tree density, 

woodlands

209,22 58,95 0 0 76 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

209,83 59,31 1 0 41 1 0,0 41,0
Low aridity, 

P>C

High tree density, 

woodlands

210,13 59,86 0 0 36 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

210,43 60,4 11 0 108 11 0,0 9,8
Low aridity, 

P>C

Moderate density, 

wooded grasslands

212,47 61,52 30 5 24 35 0,1 0,7
Low aridity, 

P>C

Low tree density, Open 

grasslands

212,56 62 0 0 16 0 ∞∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

212,65 62,49 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 62,97 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 63,45 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 63,93 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 64,41 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 64,89 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,67 65,36 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

212,83 65,77 0 0 86 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

213,05 65,91 8 7 132 15 0,5 8,8
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

213,31 66,34 0 0 142 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

213,39 66,83 0 0 2 0 ∞ ∞

not 

significant, 

No grasses

Not significant

213,46 67,31 0 0 7 0 ∞ ∞

not 

significant, 

No grasses

Not significant
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213,54 67,8 4 0 31 4 0,0 7,8
Low aridity, 

P>C

Moderate density, 

wooded grasslands

213,61 68,36 0 0 7 0 ∞ ∞

not 

significant, 

No grasses

Not significant

213,61 68,76 0 0 13 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

213,62 69,24 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

213,67 69,73 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

213,76 70,28 0 0 46 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

213,82 70,7 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

213,82 71,18 0 0 5 0 ∞ ∞

not 

significant, 

No grasses

Not significant

214,21 71,66 0 0 6 0 ∞ ∞

not 

significant, 

No grasses

Not significant

214,37 72,14 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

214,42 72,62 0 0 4 0 ∞ ∞

not 

significant, 

No grasses

Not significant

215,79 73,72 0 0 28 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

215,86 74,25 0 0 12 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

216,10 74,39 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

216,30 74,51 11 2 21 13 0,2 1,6
Low aridity, 

P>C

Moderate density, 

wooded grasslands

216,61 74,69 11 21 37 32 0,7 1,2
High aridity 

P<C

Moderate density, 

wooded grasslands

217,46 75,17 4 4 49 8 0,5 6,1
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

218,31 75,65 37 0 71 37 0,0 1,9
Low aridity, 

P>C

Moderate density, 

wooded grasslands

218,46 75,82 0 0 26 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

218,93 76,13 8 1 5 9 0,1 0,6
Low aridity, 

P>C

Low tree density, Open 

grasslands

220,11 76,61 0 0 50 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

221,17 77,09 0 0 64 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

221,90 77,51 0 0 87 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

221,95 77,57 0 0 114 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

222,29 78,05 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

222,37 78,51 0 0 31 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands
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222,68 78,96 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

222,90 79,25 0 0 11 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

223,08 79,5 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

223,17 79,64 7 11 10 18 0,6 0,6
High aridity 

P<C

Low tree density, Open 

grasslands

223,35 79,98 9 0 54 9 0,0 6,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

223,70 80,46 0 0 19 0 ∞ ∞
Medium 

aridity, P=C

High tree density, 

woodlands

223,83 80,94 15 11 7 26 0,4 0,3
Low aridity, 

P>C

low tree density, Open 

grasslands

224,08 81,64 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

224,44 82,13 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

224,72 82,57 12 10 31 22 0,5 1,4
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

225,03 82,87 1 0 28 1 0,0 28,0
Low aridity, 

P>C

High tree density, 

woodlands

225,31 83,36 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

225,64 83,84 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

225,86 84,2 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

226,14 84,69 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

226,39 85,17 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

226,55 85,46 0 0 3 0 ∞ ∞

not 

significant, 

No grasses

Not significant

226,80 85,91 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

226,93 86,39 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

227,04 86,87 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

227,35 87,35 0 0 5 0 ∞ ∞

not 

significant, 

No grasses

Not significant

227,68 87,84 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

227,99 88,22 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

228,46 88,8 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

228,92 89,28 0 0 6 0 ∞ ∞

not 

significant, 

No grasses

Not significant

229,25 89,76 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant
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229,55 90,24 0 0 2 0 ∞ ∞

not 

significant, 

No grasses

Not significant

229,73 90,73 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

230,01 91,21 1 0 11 1 0,0 11,0
Low aridity, 

P>C

High tree density, 

woodlands

230,33 91,79 1 0 4 1 0,0 4,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

230,56 92,18 2 0 2 2 0,0 1,0
Low aridity, 

P>C

Low tree density, Open 

grasslands

230,84 92,62 1 0 2 1 0,0 2,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

231,24 93,14 3 1 0 4 0,3 0,0
Low aridity, 

P>C

Low tree density, Open 

grasslands

232,32 93,62 0 0 55 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

233,47 94,1 0 0 11 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

234,64 94,59 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

235,72 95,07 0 0 19 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

236,15 95,55 0 0 2 0 ∞ ∞

not 

significant, 

No grasses

Not significant

236,46 96,04 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

236,65 96,52 0 0 15 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

236,65 97,01 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

236,65 97,49 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

236,88 97,88 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

237,97 98,46 25 27 9 52 0,5 0,2
Medium 

aridity, P=C

Low tree density, Open 

grasslands

238,92 98,94 15 12 46 27 0,4 1,7
Low aridity, 

P>C

Moderate density, 

wooded grasslands

239,87 99,42 38 35 21 73 0,5 0,3
Medium 

aridity, P=C

Low tree density, Open 

grasslands

240,83 99,9 41 16 10 57 0,3 0,2
Low aridity, 

P>C

Low tree density, Open 

grasslands

241,85 100,38 84 21 14 105 0,2 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

243,06 100,86 48 11 5 59 0,2 0,1
Low aridity, 

P>C

Low tree density, Open 

grasslands

244,40 101,34 1 1 88 2 0,5 44,0
Medium 

aridity, P=C

High tree density, 

woodlands

244,40 101,82 0 0 62 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

244,40 102,3 0 0 25 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

245,32 102,78 0 0 65 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands
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246,14 103,26 0 0 40 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

249,83 104,23 0 0 1 0 ∞ ∞

not 

significant, 

No grasses

Not significant

250,09 104,72 11 8 32 19 0,4 1,7
Low aridity, 

P>C

low tree density, Open 

grasslands

250,52 105,2 0 0 46 0 ∞ ∞
Medium 

aridity, P=C

High tree density, 

woodlands

250,95 105,68 0 0 8 0 ∞ ∞
Medium 

aridity, P=C
Not significant

258,96 107,18 27 5 9 32 0,2 0,3
Low aridity, 

P>C

Low tree density, Open 

grasslands

261,31 107,58 8 31 15 39 0,8 0,4
High aridity 

P<C

Low tree density, Open 

grasslands

264,03 108,05 1 15 2 16 0,9 0,1
High aridity 

P<C

Low tree density, Open 

grasslands

266,73 108,53 2 90 9 92 1,0 0,1
High aridity 

P<C

Low tree density, Open 

grasslands

269,62 109,01 0 28 33 28 1,0 1,2
High aridity 

P<C

Moderate density, 

wooded grasslands

272,18 109,49 2 47 26 49 1,0 0,5
High aridity 

P<C

Low tree density, Open 

grasslands

274,84 109,97 25 96 5 121 0,8 0,0
High aridity 

P<C

Low tree density, Open 

grasslands

277,40 110,45 2 27 0 29 0,9 0,0
High aridity 

P<C

Low tree density, Open 

grasslands

279,96 110,94 8 25 0 33 0,8 0,0
High aridity 

P<C

Low tree density, Open 

grasslands

282,48 111,42 21 21 1 42 0,5 0,0
Medium 

aridity, P=C

Low tree density, Open 

grasslands

285,13 111,9 31 44 3 75 0,6 0,0
High aridity 

P<C

Low tree density, Open 

grasslands

287,80 112,39 1 0 0 1 0,0 0,0
Low aridity, 

P>C

Low tree density, Open 

grasslands

290,53 112,87 4 1 2 5 0,2 0,4
Low aridity, 

P>C

Low tree density, Open 

grasslands

293,15 113,36 1 11 2 12 0,9 0,2
High aridity 

P<C

Low tree density, Open 

grasslands

295,10 113,84 5 0 1 5 0,0 0,2
Low aridity, 

P>C

Low tree density, Open 

grasslands

297,56 114,32 3 7 0 10 0,7 0,0
Medium 

aridity, P=C

Low tree density, Open 

grasslands

300,27 114,79 7 23 0 30 0,8 0,0
Medium 

aridity, P=C

Low tree density, Open 

grasslands

302,61 115,28 0 0 5 0 ∞ ∞

not 

significant, 

No grasses

Not significant

305,20 115,76 1 7 4 8 0,9 0,5
Medium 

aridity, P=C

Low tree density, Open 

grasslands

308,81 116,43 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

311,66 116,87 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

314,09 117,35 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

316,86 117,84 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

319,50 118,32 0 0 0 0 ∞ ∞

not 

significant, 

No grasses

Not significant

322,01 118,8 1 0 2 1 0,0 2,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands
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325,93 119,5 7 25 7 32 0,8 0,2
High aridity 

P<C

Low tree density, Open 

grasslands

328,17 119,91 28 31 1 59 0,5 0,0
Medium 

aridity, P=C

Low tree density, Open 

grasslands

330,86 120,36 3 0 13 3 0,0 4,3
Low aridity, 

P>C

Moderate density, 

wooded grasslands

334,41 120,8 0 0 6 0 ∞ ∞

not 

significant, 

No grasses

Not significant

340,19 121,36 0 3 0 3 1,0 0,0
High aridity 

P<C

Low tree density, Open 

grasslands

343,51 121,84 2 0 12 2 0,0 6,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

347,29 122,47 3 10 5 13 0,8 0,4
High aridity 

P<C

Low tree density, Open 

grasslands

350,27 122,96 0 1 9 1 1,0 9,0
High aridity 

P<C

Moderate density, 

wooded grasslands

353,12 123,44 11 12 26 23 0,5 1,1
Medium 

aridity, P=C

low tree density, Open 

grasslands

355,98 123,92 1 9 122 10 0,9 12,2
High aridity 

P<C

High tree density, 

woodlands

358,73 124,37 51 65 17 116 0,6 0,1
High aridity 

P<C

Low tree density, Open 

grasslands

361,84 124,89 8 11 8 19 0,6 0,4
High aridity 

P<C

Low tree density, Open 

grasslands

364,75 125,37 1 15 50 16 0,9 3,1
High aridity 

P<C

Moderate density, 

wooded grasslands

367,68 125,85 6 33 10 39 0,8 0,3
High aridity 

P<C

Low tree density, Open 

grasslands

370,46 126,33 8 14 24 22 0,6 1,1
High aridity 

P<C

Low tree density, Open 

grasslands

373,21 126,81 3 2 256 5 0,4 51,2
Low aridity, 

P>C

High tree density, 

woodlands

375,85 127,28 1 0 36 1 0,0 36,0
Low aridity, 

P>C

High tree density, 

woodlands

378,69 127,78 4 7 27 11 0,6 2,5
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

381,73 128,26 0 5 9 5 1,0 1,8
High aridity 

P<C

Moderate density, 

wooded grasslands

384,78 128,74 0 15 19 15 1,0 1,3
High aridity 

P<C

Moderate density, 

wooded grasslands

387,82 129,23 0 0 9 0 ∞ ∞

not 

significant, 

No grasses

Not significant

390,70 129,71 27 64 48 91 0,7 0,5
High aridity 

P<C

low tree density, Open 

grasslands

393,73 130,2 6 13 54 19 0,7 2,8
High aridity 

P<C

Moderate density, 

wooded grasslands

396,74 130,68 18 48 17 66 0,7 0,3
High aridity 

P<C

Low tree density, Open 

grasslands

399,70 131,16 35 2 34 37 0,1 0,9
Low aridity, 

P>C

Low tree density, Open 

grasslands

403,62 131,65 32 13 52 45 0,3 1,2
Low aridity, 

P>C

Moderate density, 

wooded grasslands

410,40 132,13 10 36 139 46 0,8 3,0
High aridity 

P<C

Moderate density, 

wooded grasslands

419,26 132,61 0 0 23 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

428,12 133,1 2 4 16 6 0,7 2,7
High aridity 

P<C

Moderate density, 

wooded grasslands

436,49 133,58 21 17 8 38 0,4 0,2
Low aridity, 

P>C

Low tree density, Open 

grasslands

444,99 134,07 1 1 27 2 0,5 13,5
Medium 

aridity, P=C

High tree density, 

woodlands

453,19 134,55 1 1 2 2 0,5 1,0
Medium 

aridity, P=C

Low tree density, Open 

grasslands
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460,97 135,03 1 0 5 1 0,0 5,0
Low aridity, 

P>C

Moderate density, 

wooded grasslands

475,09 135,81 0 0 37 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

488,39 136,3 6 5 13 11 0,5 1,2
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

497,51 136,79 12 13 91 25 0,5 3,6
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

504,19 137,27 53 27 30 80 0,3 0,4
Low aridity, 

P>C

Low tree density, Open 

grasslands

509,44 137,79 25 23 20 48 0,5 0,4
Medium 

aridity, P=C

Low tree density, Open 

grasslands

514,48 138,24 1 2 2 3 0,7 0,7
High aridity 

P<C

Low tree density, Open 

grasslands

519,96 138,72 0 1 5 1 1,0 5,0
High aridity 

P<C

Moderate density, 

wooded grasslands

524,97 139,21 19 25 10 44 0,6 0,2
High aridity 

P<C

Low tree density, Open 

grasslands

529,84 139,69 3 4 4 7 0,6 0,6
High aridity 

P<C

Low tree density, Open 

grasslands

542,96 140,8 8 7 18 15 0,5 1,2
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

547,95 141,25 13 35 46 48 0,7 1,0
High aridity 

P<C

Low tree density, Open 

grasslands

553,28 141,79 27 68 56 95 0,7 0,6
High aridity 

P<C

Low tree density, Open 

grasslands

557,68 142,22 5 21 22 26 0,8 0,8
High aridity 

P<C

Low tree density, Open 

grasslands

562,50 142,69 0 7 53 7 1,0 7,6
High aridity 

P<C

Moderate density, 

wooded grasslands

567,94 143,17 1 6 56 7 0,9 8,0
High aridity 

P<C

Moderate density, 

wooded grasslands

574,16 143,66 31 91 126 122 0,7 1,0
High aridity 

P<C

Low tree density, Open 

grasslands

579,78 144,14 12 7 26 19 0,4 1,4
Low aridity, 

P>C

Moderate density, 

wooded grasslands

585,20 144,63 4 11 11 15 0,7 0,7
High aridity 

P<C

Low tree density, Open 

grasslands

591,16 145,11 0 0 5 0 ∞ ∞

not 

significant, 

No grasses

Not significant

612,84 146,87 10 5 36 15 0,3 2,4
Low aridity, 

P>C

Moderate density, 

wooded grasslands

618,57 147,35 3 7 29 10 0,7 2,9
High aridity 

P<C

Moderate density, 

wooded grasslands

624,51 147,83 0 2 7 2 1,0 3,5
High aridity 

P<C

Moderate density, 

wooded grasslands

630,23 148,31 0 1 101 1 1,0 101,0
High aridity 

P<C

High tree density, 

woodlands

636,64 148,8 1 1 24 2 0,5 12,0
Medium 

aridity, P=C

High tree density, 

woodlands

644,03 149,28 0 0 50 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

657,86 149,73 0 0 205 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

713,13 151,27 1 1 17 2 0,5 8,5
Medium 

aridity, P=C

Moderate density, 

wooded grasslands

726,86 151,66 0 21 42 21 1,0 2,0
High aridity 

P<C

Moderate density, 

wooded grasslands

755,50 152,43 0 0 54 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

758,50 152,78 0 0 21 0 ∞ ∞

not 

significant, 

No grasses

High tree density, 

woodlands

Interpretation
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Key 

 

6.3.3. Dynamism in both Iph and D/P indices 

Indices for all samples were plotted as a line graph (Figure 28) to visualize what phytolith assemblages 

can inform in terms of change frequency. The graph shows two major phases; rapid phase; the lower 

and top party of the core, where both indices fluctuates between the two extreme values more often (as 

shown by arrows in the figure 28) than the mid part of the core, where indices seem to have shifts that 

are more moderate.  

 

Figure 28. A graph showing rapid and gradual shifts in aridity (Iph, in red) and tree cover density 

(D/P, in blue) indices of the ODP core. The arrows shows the levels with wide range of vertical 

change.  

5.3.2. ODP Phytolith assemblages, δ18O and eccentricity 

ODP core provided a great opportunity to analyse phytolith assemblages in order to identify abrupt 

environmental changes and test how this relates to the known climatic shifts. 

Low aridity P<C
High tree density, 

woodlands

Medium aridity, P=C
Moderate density, 

wooded grasslands

High aridity, P>C
Low tree density, 

Open grasslands

not significant, No 

grasses Not signficant



111 

 

Three analyses were run on the phytolith data: (1) correspondence analysis (CA) on raw abundances, 

(2) principal coordinates analysis (PCoA) on a similarity matrix obtained using chord distance (a 

measure of dissimilarity for abundance data), and (3) Bayesian change point analysis (CPA) on the first 

coordinate of the PCoA. Any sample with less than five identified specimens was excluded. For the CA 

and PCoA, the first three axes/coordinates that describe the majority of the variance through the 

sequence were recorded; these values summarize the major changes in taxonomic composition across 

the sequence. 

CPA is used to identify abrupt shifts in the mean value of a time series. This was conducted only on the 

first coordinate of the PCoA. The relevant output is the Probability of a Change, which ranges between 

0 and 1, with higher values indicating that an abrupt shift has likely occurred as shown in figure 29 

(Data presented on a table in appendix IV). 

 

Figure 29. Showing woody cover (positive values) versus grasses (negative values). Phytolith data 

indicate more persistent woody signature at the top of the core and grassland expansion ~275kyr 

to 300kyr (at ~110m, depth). 
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CHAPTER SEVEN: KOOBI FORA PHYTOLITH ASSEMBLAGES 

7.1. Introduction 

This chapter present phytolith data extracted and processed from modern soil samples collected from 

different vegetation habitats and fossil phytolith data analysed from Early Pleistocene and Holocene 

sediments of the Koobi Fora basin. 

 Although this was not mentioned in the previous chapter on the Olorgesailie basin, the results of 

phytolith assemblages analysed from the modern soil samples are reliable in interpreting the vegetation 

habitats they were collected from and therefore are reliable modern analogous for classifying paleo-

habitats for the fossil assemblage, for both the Olorgesailie and Koobi Fora basins. 

7.2. Phytolith Assemblages: Site-based results 

Results of phytolith analyses from different sites/ time periods varied remarkably and due to lack of 

temporal continuity, phytolith data for each temporal period is presented separately. The most 

prominent key morphotypes identified and used to indicate various vegetation types included: 1). 

grasses-bilobates, rondels, saddles, crosses, bulliforms and towers, 2). woody dicots-tracheids, 

schlereids, globular granulate, globular echinate, 3) Palms-globular echinate-palm type, 4). Sedges-

papillae, achene and 5). Herbaceous-other non-diagnostic morphotypes listed in appendix IV.  In 

addition, fossil pollen, diatoms and sponges identified in the sediments are also considered as part of 

results to identify terrestrials and aquatic habitats. 

Phytolith data is presented as tibia diagrams which shows occurrence frequency of the identified 

morphotypes between samples. Morphotypes identified to indicate similar plant communities are 

grouped together to identify various vegetation types.  For comparison purposes, four broad phytolith-

identified taxa/habitats are considered: grasslands, woodlands, woody & herbaceous dicots and 

wetlands. Later in the section, changes in abundance/presence of key morphotypes through time are 

described as visualised in the composite abundance Tilia generated diagram. Absolute count data is 

shown in appendix IV. 

7.2.1. Early-Pleistocene assemblages 

Phytolith assemblages from twelve Early Pleistocene and Pleistocene paleosols with estimated dates 

between 1.525 and 1.51Ma consist of similar morphotype compositions except for three samples. 

Woodland indicators are the most prominent followed by GSSCs and lastly by other woody and 

herbaceous morphotypes. Sedges and wetlands indicators are rare. 

Out of 12 samples, six samples have similar phytolith assemblages with substantial representation of 

three major phytoliths categories i.e. FI, GSSCs and other non-diagnostic woody & herbaceous 
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morphotypes. These  samples are not significantly different except for the following that are highlighted 

for their distinctive unique phytolith composition (figure 31): 

1) 14A-8A-GS-2-RK-1 & 14A-8A-GS-5-RK-4- These two samples were collected from area 8A. 

The two sample are distinctively different in terms of the phytolith assemblages. The former 

consists of 80% GSSCs and 20% other non-diagnostic phytoliths that identify woody & 

herbaceous taxa. Forest indicators (FI) such as schelreids, tracheids, globular granulate and 

globular morphotypes  are completely absent in the sample, making this sample unique for 

lacking FI morphotypes.The latter is dominated with FI at 53.1% and non-diagnostic woody & 

herbaceous morphotypes; 43.8% with a notable rarity in GSSCs at 3.1% only.  

2) AV-ET-11-1-RK-18-This sample was collected from area 1A. It consists of 60% forest  

indictor-morphotypes, 30% other non-diagnostic woody & herbaceous morphotypes and 10% 

sedges. This sample is distinctly lacking GSSCs morphotypes. 

3) AV-ET-11-1RK-19-This sample was collected from area 1A. It consists of 15.6% GSSCs, 

68.8% forest  indicators morphotypes and 12.5% wetland/aquatic indicators such as papillae, 

diatoms and sponges indicating sedges, lichens and sponges respectively. 

4) 1A-Du-ET-11-02-RK11 & AV-ET-11-1-RK-17-These samples were collected from area 1A 

and are dominated with FI morphotypes ≥80% with <15% GSSCs.  

 

Figure 30. Percentage diagram of major habitats identified by phytolith assemblages in site FxJj-

14E, Area 1A (the top ten samples) and Area 8A (the bottom two samples)- Early-Pleistocene 

paleosols.  
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7.2.2. Early Holocene assemblages 

Six samples collected from FxJj108 (dated between ~9.6kyr and ~6kyr) consist of distinct phytolith 

compositions, differing remarkably from other sites studied. Morphotypes indicating riparian/gallery 

forests and aquatic habitats are notably present in all the samples analysed. Woodland morphotypes and 

GSSCs (especially Panicoideae indicators) are prominently present throughout the profile (figure 32). 

FI indicators contribute the highest percentages: 82.2% in RK-1, 56.8% in RK-2, 51.6% in RK-3, 43.2% 

in RK-4, 61.2% in RK-5 and 62.6% in RK-6. GSSCs morphotypes in contrast were present in all 

samples with 10.3% in RK-1, 10.3% in RK-2, 32.4% in RK-3, 17.9% in RK-4, 21.4% in RK-5 and 

17.6% in RK-6. Non-diagnostic  woody and herbaceous morphotypes are uncommon in the samples, 

with the highest occurrence of 16% in RK-2. Palm-globular-echinate morphotypes are rare but 

significantly present with 5.3%, 1.8% and 1% in RK-5, RK-3 and RK-4 respectively. Similarly sedge 

(achene) morphotypes are rare but significantly present in all the samples. They are most prominent in 

RK-1 with 8.6% and in RK-4 with 6.3%. Other aquatic indicators (sedges, diatoms and sponge spicules) 

occur significantly present in all samples, especially in RK-4 at 25.3%, in RK-6 at 8.4%, and >2.5% in 

the rest of the samples. 

 

Figure 31. Percentage diagram of major habitats identified by phytolith assemblages in site 

FxJj108, an early Holocene site. 

7.2.3. Early-mid-Holocene phytolith assemblages 

FxJj27 site is dated between ~9.3kyr and ~4.2kyr with archaeological evidence suggesting transition 

from fisher-gatherers to Pastoral-Neolithic economic occupations (Ndiema, 2011). The most dominant 

morphotypes are FI t (figure 33): 37.8% in RK-1, 90.6% in RK-2 and 80.2% in RK-3. GSSCs account 

for 28.9% in RK-1. 4.4% in RK-1, 4.4% in RK-2 and 15.3% in RK-3. Other non-diagnostic woody and 

0% 20% 40% 60% 80% 100%

FxJj108-RK1

FxJj108-RK2

FxJj108-RK3

FxJj108-RK4

FxJj108-RK5

FxJj108-RK6

Percentage proportion

Sa
m

p
le

#

Grasslands Woodlands Woody & Herbs Palm echinate Sedges Wetlands



115 

 

herbaceous morphotypes account for 33.3% in RK-1, 4.4% in RK-2 and 3.6% in RK-3. Aquatic 

morphotypes including diatoms and sponges are the rarest, with <1% in samples RK-2 and RK-3. 

 

Figure 32. Percentage diagram of major habitats identified by phytolith assemblages in site 

FxJj27, an early-mid-Holocene transition site. 

7.2.4 Mid-late-Holocene phytolith assemblages 

These are from three archaeological sites dated between ~4.2kyr and ~0.93kyr. Phytolith assemblages 

across samples are predominantly woodlands indicators (globular granulate, tracheids and sclereids) 

with >60% occurrence. Wetland indicators (papillae, diatoms and sponge spicules) are the rarest across 

the sites, occurring in only one sample and one site (see figure 34). 

In site GaJj4 (~4.2kyr- ~3.9kyr), forest indicator morphotypes dominate with percentages of 77.7% in 

RK-1, 70.2% in RK-2, 63.6% in RK-4 and lastly 62% in RK-3. GSSCs are less common with 

percentages of 23.8% in RK-2, 14.8% in RK-3, 8.3% in RK-4 and lastly 7.4% in RK-1. Other non-

diagnostic woody and herbaceous dicots are uncommon with percentages of 28.2% in RK-4, 23.1% in 

RK-3, 15.3% in RK-1 and 2.4% in RK-2. Papillae and other aquatics such as diatoms and sponges types 

occur only in RK-2 at 3.6%. 

In site FwJj25 (~4.2kyr- ~1.34kyr), GSSCs morphotypes are predominantly present with percentages 

of 75% in RK-3, then 31.3% in RK-1 and lastly 15.6% in RK-2. Woody morphotypes dominate in RK-

2 at 67.2%, then 62.5% in RK-1 and lastly 12.5% in RK-3. Other non-diagnostic woody and herbaceous 

morphotypes have a lower presence as follows: 17.2% in RK-2, 12.5% in RK-3 and 6.3% in RK-1 

In site FwJj5 (~0.93kyr), GSSCs are variably common in all the samples: 100% in RK-2, followed by 

60.7% in RK-3 and 31.8% in RK-1. Forest indicator phytoliths are significantly present with 54.5% in 

RK-1 and 39.3% in RK-3. Aquatic indicators are only present in RK-1 with a percentage of 13.6%. 
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Figure 33. Percentage diagram of major habitats identified by phytolith assemblages in mid-late-

Holocene sites. 

7.2.5. Modern phytolith surface samples   

Results of the four modern surface samples have varied percentage composition of each key taxa (Figure 

35). As expected, GSSCs dominate in the open grassland (sample-SS4) with 69.2%, followed by 32.7% 

occurrence in Barleria sp. scrubland (sample-SS3), then 11% occurrence in the Acacia-Syzygium-

Sanseveria riverine forest and least at 2% in Acacia-Commiphora shrubland (SS1). The woody 

morphotypes dominate with 94.3% in the gallery forest (sample SS2), followed by 80% in the Acacia-

Commiphora shrubland (SS1), then 53.8% in Barleria sp (SS3) scrubland and lastly by 11.1% 

occurrence in the open grasslands (SS4).  Other woody & herbaceous dicots occur sparingly in all 

samples: 19.7% in open grasslands (SS4), 9.6% in Barleria sp. scrubland (SS3), 5.7% in Acacia-

Commiphora shrubland (SS1) and lastly, 3.7% in gallery forest (SS2). 

The results of the phytolith assemblage composition for each sample accurately corresponds to the 

habitats, from which they were collected, hence are applicable as modern analogues for the fossil 

assemblages in this study. This concurs with other published studies (for example, Neumann et al., 

2009). These results are consistent with previous studies on modern soils in Africa (Runge 1999, 

Bremond et al., 2005, 2005, 2008; Barboni et al., 2007, Mercader et al., 2011, Aleman et al., 2012, 

2014, Novello et al., 2012, 2016, 2017). 
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Figure 34. Percentage diagram of major habitats identified by phytolith assemblages in modern 

surface samples. 

7.3. Temporal changes in phytolith assemblage of the Koobi Fora sequence 

This section describes phytolith assemblages identified from Early Pleistocene sediments of the Koobi 

Fora Formation and the Holocene Galana Boi deposits presented in the Tilia diagram.  Zonation of the 

abundance diagram follows the chronology of the samples (Figure 36). 

7.3.1. Early Pleistocene 

This zone present phytolith assemblages of paleosols associated with Ileret tuff complex. The 

assemblage is dominated with woody morphotypes with significance presence of non-diagnostic woody 

and herbaceous morphotypes. GSSCs morphotypes become prominently present though in low 

abundance <20% in samples below 1.52Ma, particularly saddles (Chloridoideae). Assemblages from 

samples between 1.53Ma and 1.52Ma do not vary too, both in abundance and in diversity. 

Samples below1.51Ma, consisted of woody morphotypes, non-diagnostic woody and herbaceous 

morphotypes and significant presence of Panicoideae (Panicoid bilobates, crosses, polylobate) 

morphotypes >30%. 

7.3.2. Early Holocene 

Woody morphotypes are the most common with >60% presence. Diagnostic GSSCs morphotypes 

indicating Chloridoideae and Panicoideae grass are sparingly present <10%. However, non-diagnostic 

GSSCs morphotypes and much more >20%. Other non-diagnostic woody and herbaceous morphotypes 

are low. The samples are distinctively characterised by the presence of wetland and/or riverine 

indicators such as: Palms, sedges, sponge spicules and diatoms. Panicoid bilobates, crosses & 

polylobate morphotypes s are also prominent in the samples. 
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7.3.3. Early-Mid transition 

Woody morphotypes remain common during the transition from the early- to mid-Holocene period. 

Wetland indicators are completely absent while GSSCs morphotypes especially saddles, bilobates and 

crosses (Chloridoideae and Panicoideae) rare but present <5%. Other non-diagnostic GSSCs, woody 

and herbaceous morphotypes are significantly present. 

7.3.4. Mid-Holocene 

The oldest sample from mid-Holocene sediments consists mainly of non-diagnostic GSSCs 

morphotypes, sedge-type and well preserved pollen grains of the following taxa: Hyphaene, 

Acanthaceae, Capparaceae, and Agavaceae; contrasting strongly with other samples preceding and after 

this deposition level (NB: The occurrence of pollen grains in this level during microscopic analysis was 

not ignored and I decided to have it included in the analyses). Notably, samples within the ~4.2kyr 

period are dominated by forest indicators, with an admixture of morphotypes from other non-diagnostic 

woody & herbaceous and Panicoideae morphotypes.  

7.3.5. Late Holocene 

Between ~1.34kyr and ~0.93kyr the conspicuous feature in this zone is the high abundance of 

Chloridoideae morphotypes (saddles). Woody, non-diagnostic woody, herbaceous and GSSCs 

morphotypes are also sparingly present, declining towards 0.93kyr. Diatoms and Typha are also present 

in this zone. 
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Figure 35. Relative abundance of key phytolith types, main vegetation habitats versus sample # and estimated age (right) of the Koobi Fora samples 
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7.4 Phytolith Indices-KOOBI FORA 

In general, Koobi Fora samples have very low GSSCs morphotype concentrations and the absolute 

counts as seen in Table 12. Nevertheless, the available data was used to calculate aridity (Iph) and tree-

cover-density (D:P) indices to estimate changes in moisture and tree cover temporally. Although the 

indices alone are not fully reliable to accurately reconstruct paleo-vegetation and palaeoenvironmental 

changes, when coupled with general abundance analyses, a better understanding of changes in habitats 

and paleoenvirnoments can be achieved especially on a broader scale (Stromberg, 2002; Barboni et al., 

2007; Bremond et al., 2008; Neumann et al., 2009).  

7.4.1. The D:P index  

The range of D:P values varied between 0 and 85. The values are used to describe relative closeness of 

the habitats and are categorised as follows: D:P value ≤1-low tree-cover-density, D:P≤10 moderate tree-

cover-density and D:P≥20 high tree-cover-density (see table 12). These categories are only used to 

describe temporal changes in palaeo-habitats of the Koobi Fora landscapes. 

7.4.1.1. Early-Pleistocene samples 

The D:P of the Early Pleistocene samples below lower Ileret tuff (1.525Ma) have infinite D:P value 

except for sample 14A-8A-GS-2-RK-1 with D:P value=9.7. One of the samples above the 1.52Ma tuff 

have infinite D:P value while the other two have 0.7 and 2.3 respectively. 

Area 1A samples collected below 1.52Ma have D:P value ranging between 0.0 and 20.5, while the 

sample above it has a value of 21.6. 

7.4.1.2. Holocene samples 

Early Holocene samples (FxJj108) have a D:P value ranging between 0.1 and 1.5. Samples from FxJj27, 

a site representing a transition from early to mid-Holocene period have D:P values ranging between 2.0 

and 2.5. Mid-Holocene samples (GaJj4) have the largest D:P value range between 2.7 and 85.0. There 

is one exception with D:P value of 0.0. Lastly, the late-Holocene samples (FwJj5), have D:P values 

ranging between 0 and 0.2. 

7.4.1.3. Modern samples 

The D:P values of the modern surface samples varied between samples as expected.  Samples SS1 and 

SS2 collected from Acacia-Commiphora and gallery forest respectively have an infinite D:P value. 

Sample SS3 collected from Barleria sp scrublands has D:P value of 6.7, while sample SS4 collected 

from open grassland habitat has a D:P value of 0. 
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7.4.2. Iph index 

The proportion of the diagnostic GSSCs morphotypes allowed the calculation of the aridity index in 

most of the fossil assemblages (Table 12). However, some samples did not yield diagnostic 

Chloridoideae and Panicoideae morphotypes leading to an infinite Iph value which is considered here 

insignificant in terms of reflecting aridity conditions. Those samples that yielded diagnostic 

morphotypes have aridity values range between 0 and 1; with 0.1 reflecting low aridity while 1 reflects 

high aridity. 

7.4.2.1. Early-Pleistocene samples 

Samples from the Early-Pleistocene period have variable Iph values ranging between 0.2 and 1. Most 

of the samples have aridity value less than 0.5. Samples below 1.525Ma have infinite Iph value except 

for sample 14A-8A-GS-2-RK1 with Iph value of 0.3. While the three samples above this tuff have Iph 

values drop from infinite to 0.3. The decreasing trend continues in samples below 1.52 Ma where Iph 

value decrease from 1.0 to 0.0 and then to ∞. The sample above 1.52Ma have Iph value of 0.2. 

7.4.2.2. Holocene samples 

Early Holocene samples (FxJj108) have variable Iph values ranging between 0 and 1. Most samples 

have an Iph value lower than 0.5. Of significant are samples FxJj108-3 and FxJj108-5 have Iph values 

of 0.7 and 1 respectively. 

Early-mid-Holocene samples (FxJj27) have Iph values decreasing gradually from 0.6 to 0.4. 

Mid-Holocene samples (GaJj4) have Iph values ranging between 0.3 and 1. The oldest sample has the 

lowest Iph value of 0.3 which increased through 0.7 to 1.0. In site FwJj25, the aridity value increases 

sharply from 0.1 to 1, then drops to zero. Late Holocene samples (FwJj5) have Iph values ranging 

between 0.9 and 1. 

7.4.2.3. Modern samples 

Samples SS1 and SS2 collected from Acacia-Commiphora and riparian habitats have ∞ Iph value while 

samples SS3 and SS4 collected from Barleria scrubland and open grasslands have Iph values of 0.8 and 

0.0 respectively. 
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Table 12. Iph and D:P indices of the phytolith assemblages of the Koobi Fora samples. Shading is 

according to different sites. NB: The two indices do no correlate 
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SS1 Acacia-Commiphora 

shrublands

0 0 16 0 ∞ ∞ Not significant high tree density, 

foresst/woodlands

SS2 Gallery/riparian forest 0 0 270 0 ∞ ∞ Not significant high tree density, 

foresst/woodlands

SS3 Barleria  scrubland 0 3 20 3 0 6,7 Not significant moderate tree density, 

wooded grasslands

SS4 Open grasslands 10 2 0 12 0,8 0,0 High aridity, 

P<C

low tree density, open 

grasslands

FwJj5-RK-3 ~0.93kyr 14 1 3 15 0,9 0,2 High aridity, 

P<C

low tree density, open 

grasslands

FwJj5-RK-2 ~0.93kyr 1 0 0 1 1,0 0,0 High aridity, 

P<C

low tree density, open 

grasslands

FwJj5-RK-1 ~0.93kyr 1 0 0 1 1,0 0,0 High aridity, 

P<C

low tree density, open 

grasslands

FwJj25-RK-3 ~4.2-1.34kyr 0 0 0 0 0,0 0,0 Not significant low tree density, open 

grasslands

FwJj25-RK-2 ~4.2-1.34kyr 1 0 25 1 1,0 25,0 High aridity, 

P<C

high tree density, 

foresst/woodlands

FwJj25-RK-1 ~4.2-1.34kyr 1 11 55 12 0,1 4,6 Low aridity, 

P>C

moderate tree density, 

wooded grasslands

GaJj4-RK-5 ~4.2kyr 1 0 0 1 1,0 0,0 High aridity, 

P<C

low tree density, open 

grasslands

GaJj4-RK-4 ~4.2kyr 1 0 85 1 1,0 85,0 High aridity, 

P<C

high tree density, 

foresst/woodlands

GaJj4-RK-3 ~4.2kyr 5 0 137 5 1,0 27,4 High aridity, 

P<C

high tree density, 

foresst/woodlands

GaJj4-RK-2 ~4.2kyr 2 1 8 3 0,7 2,7 High aridity, 

P<C

moderate tree density, 

wooded grasslands

GaJj4-RK-1 ~4.2kyr 1 3 29 4 0,3 7,3 Low aridity, 

P>C

moderate tree density, 

wooded grasslands

FxJj27-RK-3 ~9.3-4.2kyr 4 6 25 10 0,4 2,5 Low aridity, 

P>C

moderate tree density, 

wooded grasslands

FxJj27-RK-2 ~9.3-4.2kyr 1 1 4 2 0,5 2,0 Medium aridity 

P=C

moderate tree density, 

wooded grasslands

FxJj27-RK-1 ~9.3-4.2kyr 7 4 28 11 0,6 2,5 High aridity, 

P<C

moderate tree density, 

wooded grasslands

FxJj108-6 ~9.6 -6kyr 3 3 7 6 0,5 1,2 Medium aridity 

P=C

moderate tree density, 

wooded grasslands

FxJj108-5 ~9.6 -6kyr 2 0 3 2 1,0 1,5 High aridity, 

P<C

moderate tree density, 

wooded grasslands

FxJj108-4 ~9.6 -6kyr 14 31 12 45 0,3 0,3 Low aridity, 

P>C

low tree density, open 

grasslands

FxJj108-3 ~9.6 -6kyr 2 1 3 3 0,7 1,0 High aridity, 

P<C

low tree density, open 

grasslands

FxJj108-2 ~9.6 -6kyr 13 16 2 29 0,4 0,1 Low aridity, 

P>C

low tree density, open 

grasslands

FxJj108-1 ~9.6 -6kyr 0 8 5 8 ∞ 0,6 Low aridity, 

P>C

low tree density, open 

grasslands

Interpretation



123 

 

 

Legend. 

 

7.4.3. Dynamism in both Iph and D:P indices 

Iph and D:P indices were plotted to visualize the aridity and tree-cover-density changes from one 

geological time period to another in Figure 37. Aridity index fluctuates more rapidly between samples 

than D:P index. D:P index on the other hand is gradual with only one significant rise during the mid-

Holocene. 
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1A-Du-ET-11-02-RK-15 Younger than 1.52Ma 1 4 108 5 0,2 21,6 Low aridity, 

P>C

high tree density, 

woodlands/forest

1A-Du-ET-11-02-RK-21 Older than 1.52Ma 0 2 0 2 ∞ 0,0 Not significant low tree density, open 

grasslands

AV-ET-11-1-RK-18 Older than 1.52Ma 0 2 41 2 0,0 20,5
Low aridity

high tree density, 

woodlands/forest

AV-ET-11-1-RK-17 Older than 1.52Ma 1 4 2 5 0,2 0,4 Low aridity, 

P>C

low tree density, open 

grasslands

AV-ET-11-1-RK-20 Older than 1.52Ma 1 1 0 2 0,5 0,0 Medium aridity 

P=C

low tree density, open 

grasslands

AV-ET-11-1-RK-19 Older than 1.52Ma 4 0 5 4 1,0 1,3 High aridity, 

P<C

moderate tree density, 

wooded grasslands

AV-ET-11-1-RK-14 Younger than 1.525Ma 1 2 7 3 0,3 2,3 Low aridity, 

P>C

moderate tree density, 

wooded grasslands

1A-Du-ET-11-02-RK-13 Younger than 1.525Ma 8 2 7 10 0,8 0,7 High aridity, 

P<C

low tree density, open 

grasslands

1A-Du-ET-11-02-RK-12 Younger than 1.525Ma 0 0 46 0 ∞ ∞
Not significant

high tree density, 

woodlands/forest

1A-Du-ET-11-02-RK-11 Older than 1.525Ma 0 0 5 0 ∞ ∞
Not significant

high tree density, 

woodlands/forest

14A-8A-GS-2-RK-1 Older than 1.525Ma 1 2 29 3 0,3 9,7 Low aridity, 

P>C

moderate tree density, 

wooded grasslands

14A-8A-GS-5-RK-4 Older than 1.525Ma 0 0 3 0 ∞ ∞
Not significant

high tree density, 

woodlands/forest

Interpretation

Low aridity P<C
High tree density, 

woodlands

Medium aridity, P=C
Moderate density, 

wooded grasslands

High aridity, P>C
Low tree density, 

Open grasslands

not significant, No 

grasses Not signficant



124 

 

 

Figure 36. Shows a graph of both Iph and D:P indices and their variation between Early-Pleistocene to 

late-Holocene samples. 
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Part III: Interpretation and Discussion 

In this section, the phytolith data from both the Olorgesailie and Koobi Fora basins is interpreted and 

thereafter discussed. Chapter SEVEN reports on the interpretation of the phytolith assemblage of the 

ODP core, Olorgesailie basin. Significance of the results is also discussed. Chapter EIGHT presents 

interpretation of the Koobi Fora phytolith assemblage from each site. The significance of the results is 

discussed later in the chapter. Chapter NINE, discusses the significance of these results in the context 

of East African paleoclimatic and paleoenvironmental context.  

CHAPTER EIGHT: VEGETATION HISTORY AND 

ENVIRONMENTAL CHANGES IN THE OLORGESAILIE BASIN AND 

THE SURROUNDING ENVIRONS. 

8.1. INTEPRETATION 

The following section interprets the phytolith assemblage results and discusses the significance of the 

vegetation structure and environmental conditions reconstructed during Pleistocene period of the 

Olorgesailie basin.    

8.1.1. Understanding the last 1Ma of vegetation structure using the general 

approach  

Vegetation composition of the Olorgesailie basin, identified by key indicator morphotypes are 

summarised as a Tilia abundance diagram in figure 26. CONNISS cluster identified similar zonation 

pattern for both individual morphotype and the identified taxa diagrams. NO DATA levels possibly 

non-deposition phases (hiatus) are distinct and they coincide with the zonation boundaries (Figures 26 

& 27).  

Owing to the detailed outcrop research findings and the unfortunate lack of deposit continuity both 

temporally and spatially, the ODP team led by Potts, planned and executed the drilling of a long 

continuous sediment core that is close enough to be correlated with data acquired from the Olorgesailie 

Formation. This is hoped to capture a missing gap due to a major deposition unconformity in the past 

~500kyr and also will be ideal to correlate the acquired data with the existing outcrop findings.  

Two distinct sections are identified based on the abundance and diversity of phytoliths in the samples 

analysed. Samples collected in the lower part of the core, dated between 975kyr and 675kyr have low 

phytolith percentages and occur in fewer samples contrasting the upper part (675-77kyr) of the core 
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where higher phytolith abundance and diversity is observed in most of the samples analysed. Grasses 

in particular are rare to absent in most of the samples in the lower part of the core, figure 25.  

Woody and herbaceous dicotyledons are the most prominent vegetation feature throughout the 

sequence, but are more stable after 675kyr than in earlier periods. Mixed grasslands also appear to be a 

common feature in the upper part of the core. Zooming in to particular phytolith- stratigraphy, it is noted 

that assemblages fluctuated between samples as follows:  

The phytolith assemblage of ODP Ia (~ 975-900kyr) indicates mixed C3 and C4 vegetation structure 

that resembles today’s savanna woodlands. The presence of palm phytoliths indicates presence of 

freshwater environments on the landscape during the same period (Albert et al., 2009; Ashley et al., 

2010).  

Since the phytolith data here have a mixture of both local (terrestrial) and regional (lacustrine) input, it 

therefore suggests that wooded grasslands and open grasslands were widespread across the landscape. 

The grass component included both tall (Panicoideae) and short (Chloridoideae and Aristidoideae) sub-

families. Fossil and archaeological data that coincide with this period include Homo erectus cranial 

remains associated with a high concentration of Acheulean hand-axes and other mammalian remains 

(Potts et al., 2004). The significance of the above mentioned heterogeneous vegetation structure is that 

it indicates variable food resources, diverse habitats that would have reduced the competition among 

herbivores and hominins and availability of fresh water resources.  

After an erosional phase identified after ~900kyr (ODP Ib), vegetation becomes increasingly wooded, 

particularly palms and subtle presence of sedges indicating continued presence gallery forests (Albert 

et al., 2009; Neumann et al., 2009), while grasslands become rare up to ~670kyr.  

Another unconformity is recorded around 700kyr; the vegetation structure continues to be woody 

dominated with increased mixed grasslands occurring in most of the levels. This is interrupted by a 

“NO DATA” phase (~ 600kyr) then more stable wooded grasslands habitats re-appear briefly between 

~400kyr and 350kyr. The gaps noted in this sub-zone (ODP IIa) could be a result of brief expanding 

and receding of the lake margin (Owen et al., 2008). Lithological studies show this phase was 

predominantly terrestrial, hence phytolith assemblages reflect mostly local vegetation structure.  

Phytolith assemblages in the subzone (ODP IIa) show a series of vegetation shifts from open grasslands 

to open woodlands to wooded grasslands (~670kyr to ~435kyr), with instances of dense woodlands 

with admixture of other herbaceous dicots and sedges, a significant component of the undergrowth with 

significant decline to total absence of grasslands (~400kyr to ~325kyr). Generally, the vegetation 

structure during this period was quite unstable.  
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Immediately after ~325kyr, a ~25kyr sedimentation break is identified, hence no phytolith data. This is 

followed by vegetation structure dominated by grasslands which are predominantly Chloridoideae C4 

short grasses while woodlands declined significantly, an indication of savanna grasslands with scattered 

woody elements (~300kyr to ~250kyr).  Interestingly, these environments had fresh water resources 

possibly springs, as indicated by the presence of palms and sedges around this period.  

The scenario changed around 250kyr, with a sudden decrease of grasslands, especially Chloridoideae 

types while Panicoideae grasses remain significantly present coupled by increase in wooded vegetation 

structure. Perhaps of significance is a sudden rise of Cyperaceae and reappearance of palms, an 

indication of increased moisture and/or underground water resources during this period.  

The presence of Panicoideae grasses coupled with sedges and palms indicate wetlands/swampy habitats 

and higher humidity than the preceding period. Sedges and palms were significantly present, though 

sedges were more prominent indicating swampy habitats as opposed to gallery forests. The vegetation 

structure persisted up to ~180kyr when grasslands diminished almost completely (ODP IIIa). This 

signal is mostly regional since the predominant depositional environment is lacustrine (Behrensmeyer 

et al., in progress).  

One very significant change is the increased grass morphotypes noted between ~300kyr and 250kyr 

while woody and herbaceous dicotyledons decrease rapidly. Around this period, Chloridoideae grasses 

are the most prominent feature in the assemblage (zone ODP IIa). 

Immediately after ~180kyr, is a “NO DATA” phase. However, similar vegetation structure as indicated 

in the previous sub-zone continues to persist up to ~77kyr. Generally Chloridoideae grasses are 

relatively low compared to the Panicoideae grasses but which is not quite consistent between samples. 

Another significant change is the absence of Cyperaceae during this period, although, palms are still 

present but rare. This could possibly indicate presence of underground water or it marks the beginning 

of a drier period, responsible for diminishing wetlands/swampy habitats. Sedges, unlike palms are 

herbaceous and are likely to diminish almost immediately after the swamps/wetlands diminishes, but 

palms can persist longer, especially if water table is high.  

Stratigraphic analyses show the environmental setting during ~ 250kyr to ~77kyr is predominantly 

lacustrine (Behrensmeyer et al., in progress); hence the vegetation reflected here is both local and 

regional terrestrial signal, including palms and sedges which would be associated with lake-margin 

settings. Towards ~77kyr, Chloridoideae grasses increased while woodlands and Panicoideae grasses 

decreased. 
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8.1.1.1. Summary  

Phytolith assemblages analysed from the ODP core identified two main phases of vegetation structure 

based on the differences in phytolith composition and abundance. The period between ~970kyr and 

~300kyr (zones ODP I and II), phytolith abundance was relatively low compared to the period after 

~300kyr (zone ODP III). Although the general pattern shows that woody and herbaceous dicots were 

more prominent than grasslands before ~700kyr, vegetation structure was not quite stable; there are 

specific periods when grasslands expanded and were dominated by Chloridoideae grasses. On the other 

hand, the primary lithologies suggest more terrestrial environments punctuated by shorter periods of 

lacustrine environments, suggesting phytolith assemblages were primarily local representations rather 

than regional. Geochronology studies have identified at least two unconformities (Behrensmeyer et al., 

in progress), coinciding with the “NO DATA” zone reflected by the phytolith data. 

Following primary lithostratigraphic and geochronological data obtained from the ODP core which 

show a series of depositional environments which include: terrestrial, fluvial, lacustrine and volcanistic 

environments (Behrensmeyer et al., 2007; Deino et al., in progress) and, the phytolith zonation, a 

general trend of the changes in the vegetation cover has been interpreted the best way possible. The 

implication of these changes in understanding the palaeoenvironments with which early hominins 

interacted with and determine the possible driving factors that controlled technological transitions 

recorded in the Olorgesailie basin can be discussed comfortably. 

8.1.2. Application of indices: D:P and Iph 

The calculation of the phytolith indices is mainly to determine the climatic parameters affecting the 

vegetation structure identified by the general assemblages, as well as vegetation composition. However, 

the use of a few specific morphotypes which could be extremely rare or be overrepresented  in different 

vegetation habitats remain a major limitation in realizing the said objective (Stromberg, 2004; Bremond 

et al, 2008; Neumann et al., 2009). Such morphotypes include: globular granulate (woody dicots), 

saddles (Chloridoideae subfamily) and bilobates short cells, crosses & polylobates (Panicoideae 

subfamily). Nevertheless, when present in the phytolith assemblages, they are valuable tools in 

determining and estimating important climatic parameters such as aridity-moisture gradient (Iph) and 

woodlands/grasslands proportions of the identified vegetation structure. 

In this study phytolith assemblages indicate high variability in vegetation structure through time 

showing a general trend of woody and herbaceous dicots dominating most of the palaeolandscapes. 

Considering phases identified by the assemblages, the D:P index points to shifts between high to 

moderate tree cover density around ~978kyr to ~658kyr. In contrast the Iph index indicates that 

Chloridoideae grasses were more prominent than the Panicoideae grasses suggesting events of high 
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aridity persisted during this period. But around 860kyr, a period of Panicoideae dominated vegetation 

structure is reflected, suggesting high moisture events occurred. 

Between ~645kyr and ~325kyr, tree cover density shifted between moderate to low, suggesting wooded 

grasslands to open grasslands with an abrupt interruption phase of high tree-cover-density around 

630kyr. These changes seem sudden temporally from one level to the other. The aridity index oscillated 

between medium to high aridity, suggesting Chloridoideae grasses were more dominant.  

The most arid period happens between ~264kyr and ~275kyr peaking at ~266kyr. The vegetation cover 

during this period was mainly open arid grasslands with less or no tree cover. Phytolith assemblages in 

this period reflect both local and regional vegetation cover as two deposition environments are 

identified: fresh water shallow lakes and terrestrial (Behrensmeyer et al., in progress). Another similar 

brief event with high aridity occurs between ~250kyr and 245kyr, after which vegetation structure 

changed abruptly to mixed wooded tall grasslands, indicating warm but moister climates.  

Around ~100kyr, the climates became humid with denser vegetation cover and riverine forests as 

indicated by the presence of palms trees. Interestingly, phases of open grasslands, wooded grasslands 

and dense woodlands do not seem to last for long, they were variable throughout Pleistocene period, 

suggesting the climates were highly variable. 

8.1.2.1. Summary 

In summary, the aridity index (Iph), is significant in this study as it discriminated the distribution of tall 

grasslands (Panicoideae) versus short (Chloridoideae) throughout the core. More so, the aridity-

moisture gradient is well reflected and complements the assemblage abundance data. Although the Iph 

signal is more reliable than the D:P signal, when combined, estimates of climatic parameters, especially 

moisture gradient, and environmental inference has been made possible. 

8.2. DISCUSSION 

8.2.1. Significance of vegetation structure and the Palaeoenvironments of the Olorgesailie basin 

As mentioned in previous chapters, the ODP sediment core has a continuous high resolution 40Ar/39Ar 

chronology that gives a new opportunity to acquire a detailed palaeoenvironmental and palaeoclimatic 

record for the last 1Ma Deino et al, work in progress). For more than six decades, there have been 

numerous studies undertaken in the Olorgesailie basin geared to identify the environmental settings that 

supported early human populations and understand the linkages between climate change /variability 

and human evolution (Potts, 1994, 1996, 1998, 2001, 2004, 2007; Sikes et al., 1999; Behrensmeyer, et 

al., 2002; Brooks et al., 2007; Owen et al., 2008; Kinyanjui, 2013). 
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The existing rich and unique prehistoric findings that have contributed largely to addressing critical 

questions on the role of palaeoenvironments and Palaeoclimates in modelling the human evolution 

history and their adopted evolving technologies, have been analysed from Olorgesailie Formation. 

These deposits span between ~1.2Ma to 0.49Ma (Deino and Potts, 1990; 1991; Potts, 1998), and are 

found within exposed outcrops that are eroded periodically and at different times exposing new research 

opportunities.  

Comparing these results with those analysed from the outcrops (Kinyanjui, 2013), ODP core provided 

a higher resolution chronology of vegetation change. However on general trend, the results are 

consistent with phytolith data from the Olorgesailie Formation.  

The vegetation structure identified from the phytolith assemblage between ca. 975-900kyr was 

bushlands dominated with woody component, almost similar to present day’s savannah woodland. 

Previous studies on vegetation cover using Carbon isotope describes vegetation cover of the immediate 

preceding period ca. 990kyr, as more open C4 grasslands (Sikes et al., 1999).  Additionally, diatom 

assemblage analysed from the paleolake sediments indicate that  during this period the Olorgesailie 

basin was covered by lake that underwent a series of shifts involving the disappearance, reappearance 

and expansion of the lake margin (Potts, 1998; Owen et al., 2008), which was influenced mainly by 

geological processes such volcanic eruptions farther north (Behrensmeyer et al., 2002).  

These processes resulted in three landscape changes: fluvial, fluctuating lake-margins and stable 

terrestrial environments (Potts, 1998). Ongoing research from the core is investigating the role of 

climate in influencing the changes (Potts et al., in progress). Nevertheless such scenarios could have 

affected the taphonomy of phytolith deposition/preservation in the levels that either did not yield or had 

very low phytolith counts. Diatom and other trace fossils data from the Olorgesailie Formation dated 

within the same time bracket (~974kyr and ~780kyr) had broken diatoms due to poor preservation 

(Owen et al, 2008). 

Sedimentological, limnological and trace fossils analyses indicate unstable mid-Pleistocene period with 

a sequence of extreme droughts between 601kyr and 493kyr recorded in the upper Member 12 and 

Member 13 of the Olorgesailie Formation (Melson and Potts, 2001; Owen et al., 2008, 2009). This 

coincides with diminishing of the Acheulean technology in the southern rift, especially at the basin, 

where a transition technology is noted from Acheulean to Middle Stone Age transition (MSA) (Potts, 

1994; Potts et al., in progress). Additionally, fossil fauna that are related to the modern mammals such 

as: Equus grevyi (grazers), Laxodontat africana (browsers), Papio anubis (omnivore), Phacochoerus 

aethiopicus and Hippotamus amphibious appear around this period (~340kyr) in the Olorgesailie basin 

(Potts, 2007). Vegetation data indicate expansion of grasslands on the landscape around this period (ca. 
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340kyr) and continued being prominent in the region towards 70kyr. Hence, more grazers appearing on 

the landscape. 

Phytolith assemblage from the paleosols dated between ~320kyr and ~220kyr of the post-Olorgesailie 

FM (Olkesiteti and Oltepesi beds) indicate a heterogeneous vegetation structure across the mid-

Pleistocene landscapes similar to the present vegetation cover (Kinyanjui, 2013). The archaeological 

record suggests increased modern grazers on the landscape and oldest evidence of MSA technology is 

found in the basin dates to ~320kyr (Potts, 1994; Potts et al., 1999, Brooks et al., 2007).  

The sudden vegetation cover changes around 250kyr could be attributed to change in paleoclimate 

which probably led to transitions in the archaeological record which shows an increased toolkit 

innovation and hominin mobility in the African region, as hypothesized by Rick Potts that, sudden 

environmental changes and or high variability may have been a major driving factor in toolkit transitions 

and human behavioural change (Potts, 1998; see Basell, 2008 and references therein).  

Around 250kyr, diversity in MSA technology is recorded (Basell, 2008) and most importantly the 

emergence of the anatomically modern man (Homo sapiens) ca 200kyr (White et al., 2003; Haile-

Selassie et al., 2004). 

In summary, phytolith assemblages from the ODP core provide a unique opportunity to understand 

temporal vegetation changes with continuous geochronological data that can accurately characterise the 

Pleistocene environments in relation to hominin behaviour, human and other fauna evolutionary history 

and test the available hypotheses about role of climatic variability (high/low) to the aforementioned 

subjects.  

The major advantage of the ODP phytolith is their good preservation in most of the samples and their 

potential to identify various habitats that are critical in understanding the vegetation dynamics in the 

Olorgesailie basin.  Although other woody and herbaceous dicotyledons are identified, their role in the 

vegetation could not be fully exploited due to the ambiguity of the morphotypes used to identify this 

group. 

8.2.2. Phytolith data, δ18O and eccentricity 

In the previous chapter, ODP phytolith assemblages were compared with the following data sets δ18O 

and eccentricity (Figure 38). CA Axis 1 tracks the amount of woody cover (positive values) vs. grasses 

(negative values). The time series shows frequent fluctuations between wooded vegetation and 

grasslands especially the lower part of the core. 

Like observed in the Tilia diagrams previously, distinct boundaries are visible and are worth 

highlighting at the following depth: I) ~635kyr (148.80, 1.28), II) ~397kyr (130.68, -1.19), III) ~293kyr 
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(113.36, -2.39), IV) ~232kyr (93.62, 1.39), V) ~200kyr (56.39, -0.89), VI) ~144kyr (46.96, 0.95) and 

VII) ~83kyr (28.35, -1.16). Hence the vegetation cover fluctuated from densely wooded to grasslands 

with some woody elements to increased open grasslands then abruptly shifted to wooded vegetation 

around 232kyr. Thereafter mixed vegetation became more prominent towards 83kyr. 

Comparing the time series (phytolith data set) with δ18O record and eccentricity cycle (Tyler et al., in 

progress) shows that there is a strong relationship between changes in the phytolith assemblages and 

that of the two proxies (see figure 38 a &b). There is high variability; frequent shifts from very wet to 

very dry. Woody dominated vegetation appears to be within phases of high orbital eccentricity while 

grasslands dominated appear to be within phases of low orbital eccentricity. When compared with δ18O, 

although not obvious the relationship between phytolith data and orbital eccentricity, a trend is observed 

where grasslands dominate during cooler temperatures phase when more water was locked in ice 

volume while woody elements dominate during warmer temperatures when less water was locked in 

the ice volume. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 36-z. Phytolith data (red) arrayed against orbital eccentricity (blue) 

 

Figure 36-b. Phytolith data (red) arrayed against δ18O (blue) 
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Figure 37. Preliminary results indicate vegetation structure fluctuations a) correspond with a) orbital 

eccentricity cycle b) grasslands expansion correspond are in phase with δ18O record (Tyler et al., in 

progress). 
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8.3. Significance of the ODP phytolith data in relation to other proxies studied 

from the Olorgesailie Formation and surrounding regions.  

The vegetation structure comprised open grasslands, wooded grasslands, woodland/forest, and 

wetland/riparian/riverine habitats. These habitats fluctuated from one palaeolandscape to the other, 

hence the environments were unstable. The rate of fluctuations changed from high to low throughout 

the Olorgesailie sequence. The indices further indicated variation in composition of vegetation cover 

and guided in estimating the environmental and climatic parameters controlling these changes.  

The presence of varied vegetation habitats implies availability of varied resources required by hominins 

occupying these landscapes. Therefore variations and fluctuation rate of the vegetation structure 

through time would have most likely affected hominin-environment interactions. Keeping in mind that 

the archaeological sites in the Olorgesailie basin have been interpreted as occupations or stable camps 

of ancient hominins who were mainly hunters/meat eaters (Isaac, 1977; Potts, 1989), we highlight 

current inference of vegetation structure of specific time periods with known published data from the 

Olorgesailie Formation and discuss their relationship below:7.3.1. ~970kyr to ~900kyr period. 

This represents the Olorgesailie Formation, from the boundary between Members 6/7 and Member 5. 

During this period, cranial remains of the only hominin; Homo erectus, was excavated in association of 

other mammalian fossils and high concentration of Acheulean hand-axes (Potts et al., 2004). Phytolith 

data indicate vegetation structure during this period fluctuated between open to wooded savanna 

grasslands which was under high aridity environments, implying that the Hominin interacted with arid 

environments. The presence of large herbivores such as; Elephas reckii and Equus oldowayensis which 

are browsers and grazers (Potts, 1989), suggest wooded habitats and grasslands respectively (Kinyanjui, 

2013), agreeing with this inference. More archaeological findings interpreted that Members 7, 10 and 

11 artefacts were associated with ephemeral stream channels with seasonal fresh water (Owen and 

Renaut, 1981). The presence of palm phytoliths during this period further affirms these findings. 

8.3.1. ~500kyr to ~350kyr period 

This covers the period of Members 11 through 14 of the Koobi Fora Formation. Archaeological data 

indicate demise of Acheulean technology (Brooks et al., 2007) while limnological analyses indicate 

fluctuating lake levels and with changing salinity (Owen et al., 2009). Trace fossils showed a drier 

period during Member 13 environments and a wet period during Member 14 environments. ODP 

phytolith data suggest a highly fluctuating vegetation structure through time. The aridity indices 

fluctuate between low-medium-high, but the fluctuation rates do not correlate with D:P fluctuations. 

The hypothesis that rapid environmental and palaeoclimatic events were the driving factors for 

innovation of new and complex technologies such as MSA is supported by this study (Potts, 1998; 

2013). Previous phytoliths study did not fully capture this phase due to erosion (Kinyanjui, 2013). 
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8.3. 2. ~350kyr to 300kyr period 

Archaeological evidence shows the first appearance of the Middle Stone Age (MSA) technology 

(approx. age 320kyr) in the basin suggesting hominin behavioural change leading to technological 

innovations which were more complex than the earlier Acheulean tools (McBrearty and Brooks, 2000). 

The complexities of the MSA toolkit, particularly the presence of these tools in sites with raw material 

sources far from the sites, have been interpreted to indicate long distance exchange/mobility and 

economic intensification (McBrearty and Brooks, 2000). In addition, evidence comes from the initial 

transition of mammalian faunas from extinct populations to relatives of the modern mammals (Brooks 

et al., 2007). ODP phytolith data show vegetation structure ranging between open grasslands to wooded-

grasslands around 350kyr to 320kyr, followed by either paleolandscapes with no vegetation cover or a 

phase of erosional events/ unconformity phase. Iph indices indicate grasslands dominated by 

Chloridoideae grasses, hence arid environments. Probably increased aridity and open vegetation 

structure was the main driver to complete extinction or speciation of previous faunal communities.  

8.3.3. 225ky to 200kyr period 

Outcrop sediments are geologically described as post-Olorgesailie Formation which consist of the 

Olkesiteti beds (Behrensmeyer, 2010). Archaeological evidence from the post-Olorgesailie Formation 

(Olkesiteti beds) on the outcrops indicates a high concentration of MSA technology (Brooks et al., 

2007). This period also is critical because it has the earliest known appearance of Homo sapiens in East 

African region currently (White et al., 2003; Haile Selassie et al., 2004; McDougall et al., 2005). 

Phytolith data analysed from different localities across the basin suggest the existence of heterogeneous 

vegetation structure on the paleolandscapes (Kinyanjui, 2013) which is ideal for availability of varied 

resources. ODP phytolith data suggest vegetation structure that was predominantly wooded-to open-

grasslands. High rate of aridity fluctuations occurred during this period, with generally high aridity 

environments persisting over this period. Availability of fresh water resources on the landscape is 

indicated by the presence of sedges and palms in the phytolith assemblages, providing attractive spots 

for the hominins on the otherwise arid landscape.  

8.3.4. 200kyr to 100kyr period 

This period is represented by post-Olorgesailie deposits (Oltepesi beds) that have undergone a series of 

superimposed channel fills dating between ~220kyr and <12kyr, which altered the landscapes 

(Behrensmeyer, 2010). Several MSA sites have been found associated with these deposits distributed 

laterally across the basin. Lithostratigraphic analyses indicated an arid palaeolandscape during this 

period with channel substrates which were likely used by the hominins. Elsewhere, evidence of the first 

“Out Of Africa” to the north and later to the world around 110kyr and 90kyr is recorded (Osborne et al. 

2008). For this particular time period phytolith data indicate that around 110kyr the vegetation cover 
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was dense woodlands and humid environments. Chloridoideae grasses were absent during this time 

while palm phytoliths were notable. After 110kyr, the vegetation cover again became moderately 

wooded with mixed grasslands with much lower fluctuation rates. 

8.4.  Role of Olorgesailie vegetation cover on the Hominin landscapes 

The ODP core provides a unique opportunity to understand the role of vegetation dynamics and 

environmental conditions faced by the early hominins over the last ~1Ma. This is so partly because of 

the long continuous sediments sequence which is well dated and partly because of the ongoing 

multidisciplinary and multi-proxy research. Preliminary analyses show a strong relationship identified 

between the phytolith assemblages, δ18O record and the eccentricity cycles, show that woodland 

dominated during high orbital eccentricity while grasslands during period of low eccentricity (ODP 

team, analyses in progress).  

In addition grasslands dominated during cold periods while woodlands coincided with period of warm 

temperature which was more humid (Kingston et al., 1994; DeMenocal, 1995; DeMenocal and 

Blomendal, 1995).  

There data shows phases of both high and low variability in both assemblage composition and diversity 

which is attributed to be driven mainly by Pleistocene climate scenario which is considered to influence 

the behaviour of humans and other mammals in East Africa rift valley (Potts, 1998; Basell, 2008).  

Understanding the vegetational environments with which early hominins interacted will help 

understand their foraging behaviour and land-use patterns. In the Olorgesailie basin, the vegetation 

structure provided a variety of habitats from riparian forests, wooded grasslands to open grasslands 

providing a variety of resources that attracted and sustained hominins on these landscapes. Such plants 

resources that were likely exploited include food, shelter/shade and refuge from predators. Other 

secondary resources included meat resources from animals supported/specialised to interact with these 

vegetation habitats, making the basin preferable home bases for hunters and gatherers, Acheulean tool 

makers. 
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CHAPTER NINE: EARLY-PLEISTOCENE AND HOLOCENE 

VEGETATION DYNAMICS IN KOOBI FORA BASIN. 
Here the vegetation structure of the Koobi Fora basin is interpreted chronologically following site by 

site sequence. Although vegetation reconstruction from the Koobi Fora basin is a bit challenging due to 

discontinuous geochronological sequence, site-based-age correlation whose dates have been obtained 

from either selected tuffs that are related to the Early Pleistocene samples (Brown and Feibel, 1991; 

Brown and McDougall, 2011) or dates obtained from archaeological horizons of different Holocene 

deposits (Ashley et al., 2011) made it possible.  

9.1. INTERPRETATION 

9.1.1. Early Pleistocene vegetation structure 

Phytolith assemblages from paleosols deposited between 1.525Ma and 1.52Ma suggest a general 

vegetation cover dominated by woodlands which shifted to woody mixed grasslands that resemble 

present savanna habitats. A moister grassland habitat is also reflected between 1.52Ma and 1.51Ma. 

The presence of sponge spicules, though rare, further indicate occurrence of seasonal high humidity 

events (Neumann et al., 2006). A few exceptions are indicated when the vegetation cover was entirely 

mixed grasslands with admixture of other woody and herbaceous species not long before 1.525Ma. 

Phytolith assemblages reported here are within the Ileret complex dated tuffs. Sedimentological 

analyses have shown a series of depositional environments such as fluvial, lacustrine and terrestrial 

environments (Brown et al., 2006; Gathogo and Brown, 2006). More specifically, the phytolith data is 

associated with fluvial and terrestrial environments, since the Ileret tuffs were deposited at a time when 

the lake’s most northward margin was near the Koobi Fora region, south of Ileret, and the Omo River 

was flowing through the Ileret region to drain to the lake (Brown et al., 2006). 

Such environments were conducive to supporting a vegetation structure which would be highly 

unstable, that would vary depending on dynamism of the river system. It is therefore not surprising, to 

have incidences of abrupt vegetation shifts from woodlands to open grasslands as observed in some of 

the levels. In addition, the existence of riverine/riparian habitats would be paramount at some point 

during the Early Pleistocene period. 

These findings are consistent with conclusions made in Quinn and Lepre, (2005), that the region 

underwent periodic water table rise influenced by distal flood waters allowing “woodlands and scrub to 

colonize wet-dry grasslands”. The Early Pleistocene vegetation of the Ileret region was mainly 

controlled by the dynamism of the ancestral Omo River, resulting in the existence of grassland and 

woodland mosaic environments (Quinn and Lepre, 2005). 
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9.1.2. Holocene vegetation change and palaeoenvironments. 

Early Holocene (~9.6kyr to ~9.3kyr) assemblages suggest almost similar vegetation cover as indicated 

in Early Pleistocene palaeolandscapes. However, the woodlands were denser and more so, Palm trees 

were present suggesting riverine/riparian environments and possible fresh/spring water resources 

(Albert et al., 2009; Ashley et al., 2010).  

The presence of aquatic indicators such as sedges, sponge spicules and diatoms further suggest 

wetlands/swampy habitats. Moisture-loving grasslands are also significantly present. These results are 

consistent with ongoing sedimentological and archaeological studies indicating high lake stand at the 

site FxJj108 and FxJj27. Available faunal data point out that the main economic strategy was fishing as 

evidenced by the presence of numerous ichthyofaunal remains and bone harpoons in-situ (Forman et 

al., 2014; Wright et al., 2015; Ndiema et al., in progress).  

During the transition period from early- to mid-Holocene (~9.3kyr to ~4.2kyr), vegetation cover remain 

consistently dominated by woodlands with low mixed grasslands, creating mosaic environments. The 

presence of Panicoideae and Arundinoideae, although in low percentages indicate the humid 

environments.  

Archaeological evidence suggests a transition in economic subsistence from fishing to pastoralism; 

ichthyofaunal remains declined rapidly, replaced with caprine bone remains suggesting animal 

domestication (Ndiema, 2011). This period experienced rapid changes in lake levels after 9kyr; however 

evidence of human settlements associated with lake margins from cultural findings pointing to 

pastoralist-fisher-forager economies (Wright et al., 2015). 

Phytolith assemblages during mid-Holocene (~4.2kyr) indicate a more stable vegetation structure 

dominated especially by woodlands. The most likely habitats indicated by the assemblage are terrestrial 

environments bordered by two palaeolandscapes that contrast strongly with those in between. The 

phytolith assemblage in the oldest sample is unique; suggesting open but undefined grasslands, with a 

notable presence of sedges and fossilized pollen grains (Hyphaene, Capparaceae and Agavaceae taxa). 

Comparing with other studies, this is not surprising because from the same site, organic charcoal has 

been found well preserved and in fact was used for AMS dating (Ashley et al., 2011). This suggests the 

environments were conducive for preservation of organic plant materials with low oxidation activity.  

A clear vegetation shift is noted during the late Holocene period (~1.34ky to 0.93kyr), where woodlands 

declined while Chloridoideae grasses increased significantly indicating arid habitats similar to present-

day savanna grasslands. Although aquatic indicators (sedges and diatoms) are not consistently present 

in all the palaeolandscapes, their occurrence cannot be ignored because they indicate availability of 

wetlands resources in the midst of arid habitats.  Geological evidence from the site (FwJj5) indicates 
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existence of fresh/spring water inferred from the carbonate-cemented sand (tufa) analysed from the site 

(Ashley et al., 2011). 

9.1.3. Phytolith Indices 

To understand the vegetation and environmental dynamism of the Koobi Fora region, a systematic 

interpretation of the phytolith indices from Early Pleistocene and Holocene deposits is presented below: 

9.1.3.1. D:P index 

Interpretation of D:P and the Iph indices of the Koobi Fora phytolith assemblages was limited because 

of rarity and/or absence of the recommended morphotypes that are used in the calculations. 

Nevertheless, a general vegetation composition for different levels was possible to infer. During Early 

Pleistocene period, the D:P indices suggest moderate to high tree cover density indicating the wooded 

grasslands to woodlands vegetation structure. Only two palaeolandscapes were the exception with low 

tree cover density, suggesting more open grasslands. 

Early Holocene period (9.6-6kyr) was covered predominantly with open grasslands. Towards upper 

levels, tree-cover-density increased to moderate. During the Early-Mid Holocene transition (9.3-

4.2kyr), the vegetation cover shifts from open grasslands to wooded grasslands. Mid-Holocene period 

(4.2kyr) have varied habitats. Similar wooded grasslands noted in the previous sequence continue to 

persist before shifting to wooded vegetation structure with less grasslands but changing to open 

grasslands in the youngest sample. While Late Holocene period is dominantly open grasslands. 

The D:P values for modern soil samples varied as expected, with their values reflecting the modern 

vegetation cover above them. SS1 and SS2 both collected from wooded vegetation had their D:P value 

at ∞, indicating high tree-cover-density while SS3 and SS4 collected from scrubland and grasslands 

reflected moderate and low tree-cover-density respectively.  

9.1.3.2. Iph Index 

The aridity index of the Early Pleistocene samples indicate low aridity situation with less grasses on the 

landscapes. Two sample were exceptional, having an aridity value greater than 0.5: sample 1A-DU-ET-

11-02-RK-13 collected above lower Ileret tuff (1.525Ma) has an aridity value of 0.8 while sample AV-

ET-11-1-RK-19 collected above lower Ileret tuff (1.52Ma) has a value of 1.0. suggesting grasslands 

dominated by Chloridoideae short grasses.  

Early Holocene period experienced high aridity environmental conditions unlike the preceding early 

Pleistocene period. However, the conditions changed gradually with decreasing aridity around Early-

Mid Holocene transition phase. The scenario of low aridity conditions persisted through mid-Holocene 

becoming more arid towards late Holocene period. 



139 

 

Aridity indices for the modern soil samples were reflective of the habitat conditions from which they 

were collected. Sample collected from the open grasslands which was predominantly Chloridoideae 

short grasses had the highest Iph value (0.8). 

9.2. DISCUSSION 

9.2.1. Significance of vegetation structure and the Palaeoenvironments of the Koobi Fora basin 

The Koobi Fora region has preserved a long record of human and behavioural evolution from the 

Pliocene (~6Ma) to Holocene (~10kyr-3kyr) period. The region has experienced a series of rapid 

geological processes of erosional and sediment infillings resulting in rich and unique preservation of 

fossils. The fossil bearing deposits are well studied and have provided valuable information on the past 

human evolutionary history in biological, behavioural and cultural aspects (Barthelme, 1985; Brown 

and Feibel, 1986; 1991; Leakey et al., 2001; Quinn and Lepre, 2005; Braun et al., 2010; Ashley et al., 

2011; Ndiema, 2011; Archer et al., 2014). 

The Plio-Pleistocene to Pleistocene deposits belongs stratigraphically to the Koobi Fora Formation 

while the Holocene deposits are classified as Galana Boi Formation. Between these two formations is 

~40-10kyr hiatus (Brown and Feibel, 1986; Owen and Renaut, 1986; Garcin et al., 2009). The faulting 

and rifting processes resulted in changes in the basin’s topography which eventually impacted on 

vegetation cover, shifting from tropical forests to arid grasslands through time and across the landscapes 

(Wright et al., 2009). Phytolith data suggest transition of woodlands to woody grasslands during Early 

Pleistocene period creating mosaic environments. 

Dramatic changes in Holocene paleoclimates are well documented in the East African region, and the 

Galana Boi deposits in the Koobi Fora region are not left out (Owen et al., 1982; Ashley et al., 2011). 

Lake Turkana basin has also provided a rich archive of the Holocene paleoclimate proxies which are 

well studied and have confirmed that the region was equally affected by the rapid climatic changes 

(Halfman, et al., 1992; Garcin et al., 2009; Wright et al., 2009; Forman et al., 2014). 

Early Holocene (~12-9kyr) was a wet phase and the Turkana lake level was 80m higher than present 

day (1976) level (Owen et al., 1982). During this period the archaeological record demonstrates that the 

main economic subsistence was gathering-fishing-hunting of aquatic and wild terrestrial fauna; this is 

evidenced by the occurrence of aquatic and wild terrestrial faunal remains, bone harpoons, decorated 

and undecorated pottery shards. These sites are associated with beach /lake-shore line environments 

and are labelled as fish-camps (Barthelme, 1985; Ashley et al., 2011; Ndiema, 2011). Phytolith data 

indicate vegetation structure indicative of humid environments, fresh water resources and woodland 

vegetation cover during this period. Vegetation shifted towards open grasslands with well-developed 
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herbaceous cover, described as “sub-desert steppe” similar to present day open grassy Barleria 

dominated scrubland (Owen et al., 1982). These results are consistent with Owen et al., (1982) pollen 

data which indicated vegetation cover was mainly  

The mid-Holocene (~5-4kyr) climate became exceedingly drier with lake level falling by 25m to 55m 

a. s. l (Halfman et al., 1992). This period records the first evidence of domesticated animals dated to 

4kyr. These sites are mostly found adjacent to the lake margins and fluvial environments (Ashley et al., 

2011). The sites are labelled as pastoral camps and have yielded domesticated faunal remains (goats, 

sheep) in association with pottery and lithic artefacts (Barthelme, 1985; Ndiema, 2011).  

Archaeological research demonstrates that during this period, increased mobility of humans in search 

of raw materials and toolkit exchange across the landscapes (Ndiema et al., 2011). Phytolith data 

suggest vegetation structure dominated by woodlands with a decline in grasslands. Considering the 

climatic parameters, one would expect more grasslands than woodlands. However, it is possible that 

the decline in grasslands was as a result of intensive grazing from the domesticated animals, reducing 

grass components on the landscape.  This scenario can be compared with present day vegetation cover 

which is more heavily impacted by grazing than by prevailing arid climates. 

Late Holocene was a period of high climatic variability; humid events are recorded at 3.0kyr and 2-

1.3kyr (Forester et al., 2012). Drought phases are recorded at 3.3kyr and 2.5kyr when the lake levels 

declined abruptly. Archaeological records suggest humans adapted to specialized nomadic pastoralism, 

new land-use patterns and cultural resilience in response to extreme ecological changes (Forman et al., 

2014). Phytolith data indicate increased grasslands dominated by Chloridoideae short grasses that 

indicate high aridity conditions. Short events of increased moisture during this period, are not identified 

in the phytolith data.  

In summary, interpretation of the phytolith assemblage clearly shows that the vegetation structure 

changed in response to changing environmental settings that was mainly influenced by climatic factors 

especially changes in precipitation. The influence could either be primary; when increased rainfall 

resulted into vegetation shift from arid grasslands to woodlands/forest, or be a secondary influence of 

the lake levels and flooding Omo River discharge (Halfman et al., 1992). 

9.3. Significance of the phytolith data in relation to other studies in Koobi 

Fora region.  
Little is known about the vegetation component of the Early Pleistocene and Holocene landscapes of 

the Koobi Fora region, and more especially for the famous foot print site located at Ileret. This data has 

provided critical information of the general vegetation dynamics of the region. At least broad 
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pealeonvironmental reconstructions have been undertaken using various sedimentological and 

geological proxies (Behrensmeyer, 1970; Cohen, 1982; Brown and Feibel, 1986; 1991; Gathogo and 

Brown, 2006; Ashley et al., 2011), fossil vertebrates including hominids (Feibel et al., 1989; Quinn and 

Lepre, 2005; Bennet et al., 2009) and archaeological evidence (e.g. Bunn, 1994; Ndiema, 2011; Archer 

et al., 2014).  

This study is the first attempt to utilise phytolith assemblages to reconstruct the vegetation history of 

the Koobi Fora region. The good preservation of phytoliths in most of the sediments is a great advantage 

in this study. The discussion of the phytolith data in the Early-Pleistocene palaeoenvironmental context 

is quite challenging due to unavailability of comparable datasets. However, the Holocene data is 

consistent with previous palaeoclimatic interpretations of various datasets.  

Since diagnostic morphotypes are reliable in identifying specific vegetation type, it provided a great 

opportunity to reconstruct the vegetation structure of the Koobi Fora region and how this changed 

through time. Considering the indices, tree-cover-density and aridity indices provided crucial 

information regarding environmental conditions (Alexandre, et al., 1999; Stromberg, 2004; Barboni et 

al., 2007).  

However, the following are important points noted and discussed on application of indices in this study. 

The D:P indices have accurately reflected the tree cover density (Bremond et al., 2008). It is therefore 

not surprising to have over-representation of globular granulate in savanna shrublands or short 

woodlands, with few grasses and more shrubs. This is the most likely vegetation structure that existed 

on the Turkana basin palaeolandscapes during Early Pleistocene period.  

The Iph index was not quite consistent with the D:P index, showing high aridity conditions in levels 

that the D:P values showed high tree-cover-density. Such scenario can be interpreted as phases of 

wooded grasslands that are dominated by Chloridoideae grasses.  Similar disparity was noted in the 

Holocene phytolith assemblages.  

This study therefore shows that phytolith indices alone cannot be relied upon to reconstruct vegetation 

dynamics; they are valuable tools in complementing the abundance data to more accurately reconstruct 

vegetation structure using phytolith data. More often, climatic parameters can be estimated especially 

when Panicoideae and Chloridoideae grasses are represented in the assemblage. In summary, 

application of phytolith indices requires a lot of caution when determining vegetation structure and 

palaeoclimatic parameters from fossil assemblages. Such limitations have also been pointed out in 

previous phytolith studies (e.g. Stromberg, 2004; Neumann et al., 2009).  
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CHAPTER TEN: VEGETATION STRUCTURE OF THE 

OLORGESAILIE AND KOOBI FORA BASIN AND HOW IT CHANGED 

THROUGH PLEISTOCENE –HOLOCENE PERIODS 

10.1. Introduction 

Based on modern phytolith analogues (Chapter four ) and previously published modern phytolith data 

(e. g Alexandre et al., 1997; Bremond et al., 2008; Mercader et al., 2009; Rossouw and Scott, 2011), 

four vegetation categories were identified as follows: wetlands (sedges, globular echinate palm), 

grasslands (Chloridoideae, Panicoideae, Aristidoideae and undifferentiated grasses), woodlands/forests 

(globular granulate, schlereids, tracheids, globular verrucate) and other woody and herbaceous 

dicotyledons (globular variants, polyhedrals, facetates etc.). These categories were used to determine 

the vegetation changes through time depending on the present assemblages per sample/level. 

Additionally, two phytolith indices; D:P and Iph were calculated and used to trace changes in the 

proportions of forest/woodlands versus grasses (tree cover index) and changes in proportions of 

Panicoideae versus Chloridoideae grasses (aridity-humidity gradient) respectively (Alexandre et al., 

1997; Bremond et al., 2005; Barboni et al., 2007) for the fossil assemblages. 

10.2. Significance of the vegetation changes in the Olorgesailie Basin during the 

Pleistocene Period to Human evolution History 

The ODP sediment core provided a valuable opportunity to acquire continuous phytolith data that have 

given insights to the vegetation changes of the Olorgesailie basin during the Pleistocene period. 

Although not all levels yielded phytolith data most likely due to taphonomic limitations in some of the 

sediments, the majority of the samples yielded phytolith data that were significant enough to make 

inferences regarding the vegetation structure. 

10.3. Significance of the vegetation changes in the Koobi Fora Basin during Early-

Pleistocene and Holocene Periods to Human evolution History 

This study is the first attempt to reconstruct vegetation history of the Koobi Fora region using phytolith 

data as the only proxy. Phytolith assemblages analysed from modern soil surface samples from four 

main vegetation habitats found in the basin were used to interpret vegetation habitats in the fossil 

assemblage. The resolution of temporal vegetation structure reconstruction is quite coarse, because it is 

limited to the available dates that are site based. The main criterion of site choice is the availability of 

well dated stratigraphy and archaeological horizons. The significance of vegetation structure 

reconstructed here is therefore discussed based on archaeological sites and the available dates. 
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10.3.1. Early Pleistocene (FwJi14E)  

Also known as the “foot print” site located at Ileret. The age of the site is correlated with Ileret complex 

tuffs; the lower tuff dated ~1.53Ma and the upper tuffs dated 1.52 to 1.51Ma (Findlater, 1978; Bennett 

et al., 2009).  

Geological studies demonstrated that the site is associated with flood deposits with evidence of 

palaeosol development within this time bracket. Traces of hominin activities are found associated with 

a variety of ecological settings (Harris et al., 2002; Braun et al., 2010). The association of faunal fossils 

and stone tools with deltaic environments, lake-shore-lines has been argued to be a deliberate choice by 

the hominins as occupation sites (Bunn et al., 1980).  

Pollen data from an almost similar site (site 50) indicated a fairly open vegetation structure, composed 

of dry Acacia-Commiphora savanna with more than 80% grasslands (Vincens, 1979 in Bunn et al., 

1980). Riparian/gallery forests were also indicated by the presence of species such as Ficus sp.., 

Salvadora sp.  and Acacia sp.. (Bunn et al., 1980). These species occur in the area today so the 

possibility of contamination must be considered. 

Phytolith data indicate wooded grassland and dense woodlands and semi-arid environments. The 

presence of sponge spicules and diatoms indicate occurrence of seasonal high humidity (Neumann et 

al., 2009). The data therefore suggest that Homo erectus living on these landscapes interacted with a 

variety of vegetational environments that were largely controlled by local topography and hydrology, 

other than external climatic factors.  

10.3.2. Holocene  

Koobi Fora and the entire Lake Turkana basin have been well studied in the context of Holocene 

paleoclimates, paleoenvironments and human behavioural and cultural dynamics (Ashley et al., 2011; 

Ndiema, 2011; Ndiema et al., 2011; Garcin et al., 2012; Forman et al., 2014).  These studies 

demonstrated that the basin, just like other parts in tropical Africa, was not in isolation from the 

influence of dramatic climatic fluctuations, extremes and transitions (Garcin et al., 2012).  

The Holocene climatic history of tropical Africa impacted largely on the ecosystems shifting from arid 

to semi-arid environments, consequently affecting demographic and socioeconomic shifts (Brooks, 

2006; Ndiema, 2011).  In the Koobi Fora basin, three distinct climatic phases are shown and 

distinguished by different lake levels identified by the shifting beach-line and, well-preserved 

archaeological evidence (Ashley et al., 2011; Ndiema et al., 2011; Ndiema, 2011).  

The early Holocene period, the lake level was at the highest, 80m above the 1976 level. This was period 

of high humidity and the cultural-socio-economic strategies were hunter-fisher-gatherer reliance 



144 

 

(Ndiema, 2011). The vegetation reconstructed during this period was mainly dense woodland with a 

possibility of riparian/gallery forests as indicated by palms trees and sedges. Such vegetation structure 

was a great resource for hunting and gathering activities. 

The mid Holocene period is marked by decreased humidity, with the lake level falling to 55m (above 

the 1976 level) and lake food resources became increasingly scarce leading to domestication of animals 

(Ndiema, 2011) Vegetation composition was mostly savanna woodlands. Grasslands were scarce on the 

landscape but this could be probably due to increased grazing by the domesticated animals and other 

wild herbivores.  

The environments became increasing dry in late Holocene, and communities adopted specialised 

nomadic pastoralism which has persisted up to present. Wooded to open grasslands dominated with 

Chloridoideae arid grasses but which have been declining towards the present day, and most probably 

have long been replaced by the present Barleria sp. scrubland mixed with arid Acacia-Commiphora 

shrublands, mainly due to intensive overgrazing across the landscapes. Fresh water resources were 

available on the semi-arid landscapes as indicated by the presence of “tufa” (Ashley et al., 2011) and, 

sedges and diatoms in this study. 

10.4. How similar/different is the vegetation structure in Koobi Fora and 

Olorgesailie basins? 

To address the research question about how similar or dissimilar Koobi Fora and Olorgesailie basins 

are, could not be fully addressed. This is partly because of the available dates from both basins could 

not be correlated and partly because the available sampling strategies. However, the study has 

demonstrated that both basins were covered with vegetation cover that was dynamic. The indices also 

show varied environmental parameters, hence the paleoanevironments were unstable in general. With 

availability of a continuous phytolith profile capturing similar geological periods from the Koobi Fora 

region, more and better comparisons can discussed.  
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CHAPTER ELEVEN: CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

11.1 CONCLUSIONS 

Phytolith assemblages derived from two major hominin sites in Kenya’s rift system were used to 

reconstruct I) Pleistocene vegetation of the Olorgesailie basin (~1Ma to 77kyr) and, II) the Pleistocene 

–Holocene periods of the Koobi Fora basin (1.525-1.51Ma, ~9.6kyr-0.93kyr). Vegetation structure 

changed through time depending on the availability of moisture or hydrological changes.  

Correlation of these changes was limited by dissimilarity in sampling strategies and sample chronology.  

Determining the preservation status of phytolith assemblage as initially planned was not possible 

because the initially targeted palaeosol profiles were not always available in both samples. Instead, 

sampling was done in profiles with available dates which were critical to achieve the main goal of this 

study. 

In Koobi Fora, Pleistocene vegetation structure consisted of higher proportion of wooded plants and 

was more stable compared to Holocene vegetation cover. More vegetation variability is recorded in the 

Holocene environments and appear to be controlled mostly by changing climates. Holocene 

archaeological and geological record indicate climate was more variable in the region. 

ODP core on the other hand, phytolith record show the vegetation structure varied through time. More 

so, the rate of variability was much higher during mid-Pleistocene period ~500-300kyr. 

10.2. FUTURE RESEARCH DIRECTION 

This study is the first attempt to utilize phytolith analyses as the only proxy to reconstruct the vegetation 

history of the Koobi Fora prehistoric basin. The study has demonstrated that phytolith data is a  valuable 

tool to determine vegetation habitats especially so, because their preserve better in most of the 

depositional environments and they identify grasslands beyond family level. In addition, a broader 

perspective of the past environments are deduced and their significance extrapolated. However, 

vegetation reconstruction was site-based and limited to the available dates due to lack of continuous 

chronology. For future research therefore, need to explore the possibilities of long sediment core from 

the adjacent Lake Turkana which will offer opportunity to have a higher resolution phytolith data from 

which continuous vegetation reconstruction can be made.  
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APPENDICES 

Appendix I. Age versus depth of the ODP core; the model assigns depth age on a cm-by-cm scale (Deino et al., in progress) 

Slide number 

Depth                        
(meter below 

surface) 
Z prime                   

(m) 
Z prime                      

(cm) 

Age (years 
BP)                

95% CI lower 
bound 

Age (years 
BP)             

80% CI lower 
bound 

Age (year BP)                       
Most 

probable age 

Age (years BP)             
80% CI upper 

bound 

Age (years BP)              
95% CI upper 

bound 

    2.50% 10% 50% 90% 97.50% 

1 27.03 27.030 2703 58,177.6 67,605.5 77,498.6 85,518.8 88,561.0 

2 27.51 27.510 2751 62,434.3 70,556.6 79,400.6 86,301.9 89,540.4 

3 27.98 27.980 2798 67,266.5 73,696.6 81,449.8 87,490.6 90,650.4 

4 28.35 28.296 2829.6 71,758.9 76,256.5 83,246.7 88,677.5 91,792.2 

5 28.95 28.662 2866.2 75,219.5 78,273.0 84,739.9 89,777.2 92,811.6 

6 29.43 29.142 2914.2 76,616.5 79,231.3 85,606.3 90,659.9 93,513.9 

7 29.91 29.622 2962.2 77,620.5 80,031.5 86,290.4 91,348.7 94,017.1 

8 30.39 30.102 3010.2 78,236.1 80,812.3 86,896.8 91,857.1 94,470.8 

9 30.87 30.582 3058.2 79,002.3 81,626.8 87,461.7 92,354.3 94,829.6 

10 31.44 31.152 3115.2 79,777.5 82,545.5 88,100.5 92,916.8 95,679.1 

11 31.83 31.542 3154.2 80,266.8 83,207.6 88,567.7 93,448.2 96,256.7 

12 32.32 32.032 3203.2 80,681.6 83,840.8 89,176.6 94,039.2 97,030.7 

13 32.8 32.512 3251.2 81,459.9 84,480.2 89,865.7 94,761.6 97,590.7 

14 33.34 33.052 3305.2 82,572.3 85,537.0 90,899.7 95,617.9 98,347.5 

15 33.82 33.266 3326.6 83,233.9 86,277.9 91,519.9 96,234.8 99,134.8 

16 34.31 33.686 3368.6 84,713.5 87,703.1 92,627.7 97,399.8 100,748.3 

17 35.75 35.116 3511.6 88,614.9 91,183.2 95,574.4 101,129.8 105,777.0 

18 36.21 35.576 3557.6 89,660.7 92,027.6 96,667.4 102,208.3 107,534.1 

19 36.68 36.046 3604.6 90,936.1 93,264.7 98,043.9 103,923.3 110,252.4 
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20 37.18 36.412 3641.2 93,127.3 95,516.9 100,502.0 108,774.7 119,019.7 

21 37.66 36.536 3653.6 93,780.9 96,198.0 101,304.6 110,407.9 121,520.8 

22 38.15 36.970 3697 95,308.3 97,881.4 103,855.7 116,033.9 126,260.3 

23 38.63 37.450 3745 96,597.9 99,563.6 106,264.0 120,637.7 130,567.4 

24 39.11 37.769 3776.9 97,185.0 100,527.1 107,805.4 122,739.9 132,228.5 

25 39.6 38.250 3825 98,203.8 101,905.9 110,166.0 125,313.3 134,794.1 

26 40.21 38.860 3886 99,376.2 103,553.3 113,502.6 128,479.3 137,900.3 

27 40.67 39.320 3932 100,086.6 104,690.2 115,727.1 131,288.3 140,493.6 

28 41.16 39.810 3981 101,029.5 105,805.2 117,681.4 133,740.2 142,720.0 

29 41.66 40.310 4031 102,218.0 107,172.6 119,798.8 135,969.1 144,288.3 

30 42.12 40.770 4077 103,229.9 108,645.4 121,756.7 138,081.9 146,227.9 

31 42.65 41.300 4130 104,298.1 110,622.1 123,773.0 140,445.4 148,355.1 

32 43.06 41.710 4171 105,426.6 112,296.3 125,508.9 142,227.4 149,782.3 

33 43.57 42.220 4222 107,512.3 114,378.0 127,730.5 144,443.4 151,772.7 

34 44.05 42.700 4270 109,701.4 116,354.6 129,788.4 146,578.4 153,795.3 

35 44.54 43.190 4319 112,142.7 118,742.5 132,321.6 148,801.5 156,063.9 

36 45.02 43.670 4367 115,459.6 121,527.3 134,938.9 151,094.6 158,460.2 

37 45.5 44.150 4415 119,198.1 124,360.4 138,068.4 154,004.3 161,550.4 

38 45.99 44.374 4437.4 121,053.8 125,831.1 139,953.6 155,737.1 163,564.5 

39 46.47 44.512 4451.2 122,558.6 127,135.3 141,415.3 156,954.2 164,867.2 

40 46.96 44.591 4459.1 125,593.2 130,275.1 144,057.4 158,550.3 165,984.5 

41 47.44 44.639 4463.9 127,437.0 132,182.9 145,662.7 159,520.1 166,663.4 

42 47.92 44.984 4498.4 140,689.1 145,894.7 157,200.9 166,490.3 171,542.8 

43 48.4 45.205 4520.5 146,719.4 151,680.7 161,813.0 169,778.8 173,861.7 

44 48.89 45.352 4535.2 150,602.9 155,373.7 164,736.6 171,905.1 175,362.3 

45 49.45 45.844 4584.4 167,081.9 169,890.0 174,928.8 178,600.6 180,172.0 

46 49.85 46.244 4624.4 176,671.0 178,125.2 180,737.0 183,527.5 186,226.9 

47 50.34 46.734 4673.4 181,288.8 182,231.3 184,292.7 188,069.8 192,289.7 
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48 50.82 46.934 4693.4 181,748.2 182,747.2 185,071.1 189,386.2 193,383.5 

49 51.3 47.126 4712.6 182,110.7 183,217.8 185,815.4 190,369.5 194,243.8 

50 51.78 47.345 4734.5 182,477.4 183,739.9 186,662.5 191,323.6 195,111.7 

51 52.38 47.927 4792.7 183,345.5 185,072.7 188,943.5 193,363.0 196,795.7 

52 52.76 47.965 4796.5 183,399.7 185,158.4 189,093.2 193,484.4 196,890.9 

53 52.87 47.976 4797.6 183,415.3 185,183.3 189,136.5 193,519.5 196,918.4 

54 53.13 48.002 4800.2 183,452.5 185,242.1 189,238.6 193,603.1 196,982.9 

55 53.35 48.024 4802.4 183,485.4 185,294.0 189,322.2 193,678.6 197,030.2 

56 53.58 48.047 4804.7 183,519.8 185,348.3 189,409.5 193,757.6 197,079.7 

57 53.76 48.065 4806.5 183,546.7 185,390.7 189,477.9 193,819.4 197,118.5 

58 53.83 48.072 4807.2 183,557.2 185,407.3 189,504.5 193,843.4 197,133.5 

59 54.32 48.553 4855.3 184,268.6 186,550.9 191,318.8 195,489.5 198,192.1 

60 54.8 49.033 4903.3 184,972.2 187,799.7 193,023.1 197,095.7 199,467.1 

61 55.52 49.753 4975.3 187,840.3 190,684.8 195,651.4 199,940.8 202,315.3 

62 55.83 50.063 5006.3 189,797.9 192,292.3 197,061.0 201,489.3 203,874.6 

63 56.39 50.623 5062.3 194,298.4 196,152.4 200,465.1 204,940.4 207,170.4 

64 56.87 51.033 5103.3 196,366.3 198,700.2 202,736.8 206,702.9 208,973.0 

65 57.36 51.180 5118 196,993.3 199,479.8 203,502.1 207,378.7 209,546.3 

66 57.84 51.569 5156.9 198,771.7 201,538.1 205,533.4 209,216.7 211,172.3 

67 58.49 52.111 5211.1 201,984.8 204,359.6 208,440.9 212,169.6 214,285.3 

68 58.95 52.249 5224.9 202,769.2 205,062.8 209,217.9 212,991.5 215,219.3 

69 59.31 52.357 5235.7 203,383.0 205,613.1 209,825.9 213,634.8 215,950.3 

70 59.86 52.411 5241.1 203,690.0 205,888.3 210,129.9 213,956.5 216,315.7 

71 60.4 52.465 5246.5 203,996.9 206,163.5 210,434.0 214,278.1 216,681.2 

72 61.52 53.396 5339.6 205,882.1 208,410.3 212,474.8 216,317.6 218,338.2 

73 62 53.444 5344.4 205,963.8 208,508.0 212,561.2 216,410.2 218,400.0 

74 62.49 53.493 5349.3 206,047.2 208,607.7 212,649.4 216,504.7 218,463.2 

75 62.97 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 
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76 63.45 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 

77 63.93 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 

78 64.41 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 

79 64.89 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 

80 65.36 53.506 5350.6 206,070.3 208,633.8 212,671.4 216,527.8 218,478.8 

81 65.77 53.606 5360.6 206,257.0 208,829.7 212,827.6 216,688.3 218,588.4 

82 65.91 53.746 5374.6 206,518.2 209,104.0 213,046.3 216,912.9 218,742.0 

83 66.34 53.915 5391.5 206,833.6 209,435.1 213,310.2 217,184.0 218,927.3 

84 66.83 53.964 5396.4 206,925.1 209,531.1 213,386.8 217,262.6 218,981.0 

85 67.31 54.012 5401.2 207,015.3 209,621.9 213,462.9 217,335.8 219,031.7 

86 67.8 54.061 5406.1 207,109.5 209,704.9 213,544.3 217,398.8 219,077.6 

87 68.36 54.101 5410.1 207,186.4 209,772.7 213,610.7 217,450.2 219,115.0 

88 68.76 54.101 5410.1 207,186.4 209,772.7 213,610.7 217,450.2 219,115.0 

89 69.24 54.107 5410.7 207,197.9 209,782.9 213,620.6 217,457.9 219,120.6 

90 69.73 54.138 5413.8 207,257.5 209,835.4 213,672.1 217,497.7 219,149.6 

91 70.28 54.193 5419.3 207,363.2 209,928.5 213,763.4 217,568.4 219,201.0 

92 70.7 54.229 5422.9 207,432.4 209,989.5 213,823.1 217,614.6 219,234.7 

93 71.18 54.229 5422.9 207,432.4 209,989.5 213,823.1 217,614.6 219,234.7 

94 71.66 54.460 5446 207,876.4 210,380.8 214,206.6 217,911.4 219,450.7 

95 72.14 54.564 5456.4 208,029.8 210,550.2 214,365.4 218,040.1 219,547.8 

96 72.62 54.601 5460.1 208,074.1 210,608.9 214,418.8 218,084.8 219,582.2 

97 73.72 55.492 5549.2 209,503.4 212,032.2 215,793.0 219,153.5 220,412.4 

98 74.25 55.532 5553.2 209,571.1 212,107.5 215,860.4 219,193.4 220,451.4 

99 74.39 55.672 5567.2 209,799.3 212,380.7 216,098.4 219,326.2 220,589.3 

100 74.51 55.792 5579.2 209,994.9 212,615.0 216,302.4 219,440.0 220,707.4 

101 74.69 55.972 5597.2 210,288.3 212,966.3 216,608.4 219,610.8 220,884.7 

102 75.17 56.452 5645.2 211,435.2 213,795.2 217,455.1 220,180.5 221,355.0 

103 75.65 56.932 5693.2 212,417.5 215,022.4 218,312.4 220,831.4 221,923.9 
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104 75.82 57.012 5701.2 212,596.9 215,237.4 218,457.7 220,943.1 222,020.5 

105 76.13 57.252 5725.2 213,459.3 215,932.8 218,932.0 221,310.0 222,308.5 

106 76.61 57.732 5773.2 215,861.8 217,608.4 220,110.1 222,232.7 223,132.6 

107 77.09 58.102 5810.2 217,975.9 219,054.0 221,167.1 223,059.5 223,903.9 

108 77.51 58.389 5838.9 219,012.1 220,011.2 221,904.7 223,618.7 224,362.7 

109 77.57 58.407 5840.7 219,077.1 220,071.2 221,951.0 223,653.8 224,391.4 

110 78.05 58.542 5854.2 219,542.2 220,510.9 222,287.4 223,897.2 224,594.7 

111 78.51 58.578 5857.8 219,653.2 220,621.8 222,370.8 223,950.5 224,641.5 

112 78.96 58.713 5871.3 220,069.2 221,038.0 222,683.7 224,150.5 224,817.1 

113 79.25 58.807 5880.7 220,358.9 221,327.7 222,901.6 224,289.7 224,939.3 

114 79.5 58.882 5888.2 220,590.1 221,558.9 223,075.5 224,400.8 225,036.8 

115 79.64 58.924 5892.4 220,719.5 221,688.3 223,172.8 224,463.0 225,091.4 

116 79.98 58.999 5899.9 220,950.7 221,919.5 223,346.7 224,574.1 225,188.9 

117 80.46 59.143 5914.3 221,409.4 222,347.3 223,697.3 224,824.5 225,417.3 

118 80.94 59.199 5919.9 221,587.9 222,513.6 223,833.8 224,921.9 225,506.2 

119 81.64 59.301 5930.1 221,912.9 222,816.6 224,082.2 225,099.5 225,668.2 

120 82.13 59.448 5944.8 222,381.4 223,253.2 224,440.3 225,355.3 225,901.6 

121 82.57 59.601 5960.1 222,805.8 223,597.4 224,720.9 225,647.6 226,212.2 

122 82.87 59.804 5980.4 223,325.8 223,978.9 225,030.3 226,053.3 226,670.4 

123 83.36 59.988 5998.8 223,797.1 224,324.6 225,310.7 226,421.0 227,085.8 

124 83.84 60.468 6046.8 223,998.2 224,617.5 225,637.9 226,912.4 227,765.6 

125 84.2 60.828 6082.8 224,156.2 224,784.0 225,860.4 227,187.1 228,071.4 

126 84.69 61.318 6131.8 224,328.2 224,973.4 226,137.1 227,529.2 228,437.2 

127 85.17 61.798 6179.8 224,471.1 225,137.9 226,394.7 227,847.6 228,890.4 

128 85.46 62.088 6208.8 224,557.3 225,236.9 226,552.1 228,036.1 229,195.2 

129 85.91 62.538 6253.8 224,697.3 225,400.4 226,803.4 228,330.3 229,623.7 

130 86.39 62.766 6276.6 224,802.7 225,513.1 226,932.0 228,517.9 229,769.5 

131 86.87 62.952 6295.2 224,888.7 225,605.1 227,036.9 228,670.9 229,888.4 
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132 87.35 63.432 6343.2 225,090.9 225,813.7 227,350.0 229,050.8 230,277.8 

133 87.84 63.922 6392.2 225,263.4 226,043.7 227,677.7 229,534.8 230,754.5 

134 88.22 64.302 6430.2 225,588.1 226,333.9 227,986.7 229,993.5 231,290.2 

135 88.8 64.770 6477 225,967.3 226,773.7 228,461.7 230,696.7 232,578.6 

136 89.28 65.250 6525 226,270.4 227,152.5 228,918.5 231,362.5 233,956.3 

137 89.76 65.730 6573 226,513.0 227,394.5 229,251.1 231,889.5 234,904.8 

138 90.24 66.210 6621 226,732.6 227,609.5 229,551.4 232,450.2 235,596.5 

139 90.73 66.476 6647.6 226,867.7 227,738.4 229,728.1 232,790.9 235,859.3 

140 91.21 66.949 6694.9 226,987.6 228,015.4 230,007.1 233,482.9 236,483.1 

141 91.79 67.529 6752.9 227,138.8 228,342.7 230,332.9 234,150.2 237,234.2 

142 92.18 67.919 6791.9 227,312.9 228,530.3 230,560.7 234,683.1 237,862.8 

143 92.62 68.359 6835.9 227,514.0 228,748.4 230,839.2 235,291.5 238,680.2 

144 93.14 68.879 6887.9 227,853.7 229,040.9 231,238.5 236,198.3 239,488.3 

145 93.62 69.359 6935.9 228,745.6 229,880.1 232,317.8 237,889.8 241,073.5 

146 94.1 69.839 6983.9 229,548.5 230,838.1 233,471.9 239,207.4 242,178.0 

147 94.59 70.329 7032.9 230,396.2 231,710.5 234,643.0 240,149.0 242,929.0 

148 95.07 70.799 7079.9 231,085.9 232,483.3 235,723.4 241,080.3 243,602.2 

149 95.55 70.992 7099.2 231,324.3 232,793.9 236,150.3 241,483.9 243,872.2 

150 96.04 71.139 7113.9 231,472.6 232,977.1 236,462.1 241,684.6 244,061.1 

151 96.52 71.226 7122.6 231,559.2 233,083.7 236,646.2 241,799.7 244,172.4 

152 97.01 71.226 7122.6 231,559.2 233,083.7 236,646.2 241,799.7 244,172.4 

153 97.49 71.226 7122.6 231,559.2 233,083.7 236,646.2 241,799.7 244,172.4 

154 97.88 71.336 7133.6 231,668.7 233,218.5 236,879.0 241,945.3 244,313.0 

155 98.46 71.866 7186.6 232,453.7 233,990.9 237,972.6 242,652.3 244,975.1 

156 98.94 72.346 7234.6 233,109.9 234,740.9 238,918.6 243,410.1 245,451.7 

157 99.42 72.826 7282.6 233,603.3 235,558.6 239,871.3 244,092.3 245,829.2 

158 99.9 73.306 7330.6 234,419.5 236,452.2 240,829.6 244,767.0 246,555.2 

159 100.38 73.786 7378.6 235,433.0 237,551.6 241,848.1 245,486.5 247,499.4 
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160 100.86 74.266 7426.6 236,804.3 239,075.0 243,058.9 246,610.2 248,592.5 

161 101.34 74.586 7458.6 238,529.6 240,727.1 244,401.2 247,897.0 249,768.0 

162 101.82 74.586 7458.6 238,529.6 240,727.1 244,401.2 247,897.0 249,768.0 

163 102.3 74.586 7458.6 238,529.6 240,727.1 244,401.2 247,897.0 249,768.0 

164 102.78 74.700 7470 239,739.7 241,776.0 245,320.0 248,672.6 250,544.4 

165 103.26 74.802 7480.2 240,822.3 242,714.6 246,142.1 249,366.4 251,239.0 

166 104.23 75.232 7523.2 244,567.3 246,352.0 249,834.4 254,969.0 259,911.4 

167 104.72 75.260 7526 244,765.7 246,571.2 250,087.4 255,482.6 260,795.3 

168 105.2 75.308 7530.8 245,105.7 246,946.8 250,521.1 256,363.1 262,310.6 

169 105.68 75.356 7535.6 245,445.7 247,322.5 250,954.8 257,243.6 263,825.9 

170 107.18 76.613 7661.3 249,613.6 252,073.6 258,962.5 276,740.4 287,548.4 

171 107.58 77.013 7701.3 250,494.8 253,174.6 261,310.3 281,413.2 292,443.9 

172 108.05 77.483 7748.3 251,428.8 254,550.2 264,033.5 285,172.6 299,319.6 

173 108.53 77.913 7791.3 252,219.7 255,646.7 266,729.8 287,503.1 301,973.3 

174 109.01 78.393 7839.3 253,137.9 256,810.2 269,618.5 290,867.9 304,782.7 

175 109.49 78.873 7887.3 254,190.1 257,967.3 272,179.2 294,466.0 308,015.4 

176 109.97 79.353 7935.3 255,060.1 259,452.4 274,842.6 297,083.1 310,155.4 

177 110.45 79.833 7983.3 255,931.1 261,200.9 277,401.3 299,449.0 312,084.3 

178 110.94 80.323 8032.3 256,913.0 262,926.4 279,963.3 301,947.5 314,207.3 

179 111.42 80.803 8080.3 257,817.8 264,687.9 282,479.3 304,556.4 316,401.4 

180 111.9 81.283 8128.3 258,764.7 266,364.1 285,125.9 306,946.8 318,162.1 

181 112.39 81.773 8177.3 259,932.5 267,948.7 287,796.6 309,206.6 320,086.9 

182 112.87 82.253 8225.3 260,990.8 269,646.8 290,530.8 311,556.1 321,808.5 

183 113.36 82.703 8270.3 262,083.0 271,348.7 293,153.7 313,660.4 322,997.2 

184 113.84 83.063 8306.3 263,336.5 272,755.5 295,104.7 315,132.3 324,016.7 

185 114.32 83.543 8354.3 265,718.3 274,997.5 297,563.6 316,934.5 325,650.8 

186 114.79 84.013 8401.3 267,255.7 276,841.8 300,268.1 318,773.8 326,999.1 

187 115.28 84.503 8450.3 269,298.0 279,256.1 302,610.2 320,448.3 328,082.0 
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188 115.76 84.983 8498.3 270,868.8 282,119.6 305,199.3 322,069.2 329,424.6 

189 116.43 85.623 8562.3 274,970.8 285,897.1 308,809.8 324,292.5 330,542.0 

190 116.87 86.063 8606.3 277,970.9 288,797.9 311,659.6 325,764.9 331,300.0 

191 117.35 86.543 8654.3 280,676.6 291,823.2 314,092.3 327,752.6 332,619.2 

192 117.84 87.033 8703.3 284,512.5 295,530.4 316,859.6 329,153.5 333,665.6 

193 118.32 87.513 8751.3 288,243.2 299,474.9 319,497.0 330,598.2 335,032.4 

194 118.8 87.993 8799.3 292,036.1 303,015.6 322,009.4 331,958.4 336,032.5 

195 119.5 88.693 8869.3 298,904.7 310,846.1 325,927.3 334,012.4 337,711.2 

196 119.91 89.103 8910.3 304,180.5 315,462.4 328,168.0 335,556.0 338,808.3 

197 120.36 89.553 8955.3 310,929.0 321,083.0 330,864.8 337,545.6 340,524.3 

198 120.8 89.993 8999.3 325,641.5 328,732.1 334,407.6 340,215.5 342,892.4 

199 121.36 90.553 9055.3 330,391.5 333,499.2 340,194.8 350,698.4 364,757.6 

200 121.84 91.033 9103.3 332,449.8 335,712.5 343,510.0 358,210.9 369,699.0 

201 122.47 91.663 9166.3 334,608.1 338,394.0 347,285.1 365,247.3 376,119.8 

202 122.96 92.153 9215.3 336,027.3 340,276.4 350,267.7 369,610.9 380,088.1 

203 123.44 92.633 9263.3 337,163.6 341,900.9 353,117.7 372,504.8 382,977.5 

204 123.92 93.113 9311.3 338,206.0 343,482.8 355,976.4 375,664.1 385,108.1 

205 124.37 93.563 9356.3 339,394.1 345,307.5 358,727.7 378,675.0 387,581.6 

206 124.89 94.083 9408.3 340,733.6 347,234.6 361,842.2 381,150.2 389,933.2 

207 125.37 94.563 9456.3 341,703.6 349,034.8 364,746.3 383,329.0 391,792.0 

208 125.85 95.043 9504.3 342,697.4 350,756.9 367,675.1 385,560.9 393,029.7 

209 126.33 95.523 9552.3 344,149.3 352,358.5 370,455.1 387,642.0 394,864.5 

210 126.81 96.003 9600.3 345,562.9 354,347.1 373,212.6 389,963.5 396,270.9 

211 127.28 96.453 9645.3 346,870.9 356,846.5 375,849.6 391,562.9 397,265.4 

212 127.78 96.893 9689.3 349,183.4 359,254.2 378,692.1 393,602.7 398,317.1 

213 128.26 97.373 9737.3 351,990.5 361,672.3 381,734.2 395,343.9 399,422.0 

214 128.74 97.853 9785.3 354,568.3 364,280.7 384,783.4 396,952.2 400,364.1 

215 129.23 98.343 9834.3 357,436.2 367,460.1 387,817.4 398,359.9 401,495.7 
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216 129.71 98.823 9882.3 360,935.0 370,624.9 390,704.7 399,638.5 402,730.8 

217 130.2 99.313 9931.3 364,486.9 374,533.7 393,726.0 401,005.9 403,916.7 

218 130.68 99.793 9979.3 368,430.9 379,765.7 396,737.7 402,514.2 405,255.2 

219 131.16 100.273 10027.3 374,575.5 387,074.6 399,700.8 404,197.3 406,985.3 

220 131.65 100.763 10076.3 390,145.1 397,255.4 403,618.2 407,857.3 413,105.5 

221 132.13 101.243 10124.3 403,457.0 405,769.1 410,404.3 421,828.9 435,144.4 

222 132.61 101.723 10172.3 407,704.2 410,748.2 419,264.0 439,709.4 458,334.1 

223 133.1 102.213 10221.3 411,002.3 415,133.5 428,116.3 451,049.1 467,125.1 

224 133.58 102.693 10269.3 414,079.2 419,741.3 436,485.4 459,390.6 473,431.2 

225 134.07 103.183 10318.3 417,637.2 424,465.4 444,989.0 466,433.8 479,350.7 

226 134.55 103.663 10366.3 421,382.2 429,119.9 453,189.4 473,561.7 484,630.5 

227 135.03 104.143 10414.3 425,763.9 434,220.4 460,965.5 481,303.4 490,818.9 

228 135.81 104.923 10492.3 435,918.2 445,633.1 475,094.9 495,471.8 502,847.4 

229 136.3 105.413 10541.3 446,403.8 459,986.6 488,387.6 509,704.5 524,768.8 

230 136.79 105.893 10589.3 453,964.6 468,147.3 497,513.9 524,687.3 547,618.3 

231 137.27 106.373 10637.3 460,009.3 473,748.8 504,188.9 538,233.8 565,579.5 

232 137.79 106.843 10684.3 463,416.7 478,412.4 509,437.5 549,252.3 577,400.3 

233 138.24 107.293 10729.3 465,935.7 481,971.5 514,475.1 558,840.2 584,823.9 

234 138.72 107.773 10777.3 469,922.7 485,084.4 519,958.4 567,444.4 593,004.4 

235 139.21 108.263 10826.3 473,608.3 487,831.8 524,973.1 574,456.4 602,297.3 

236 139.69 108.743 10874.3 476,018.2 491,277.6 529,840.8 581,382.4 610,372.4 

237 140.8 109.853 10985.3 482,647.3 500,221.0 542,960.9 594,749.0 622,189.1 

238 141.25 110.303 11030.3 485,689.3 503,338.3 547,953.9 599,570.6 625,511.1 

239 141.79 110.843 11084.3 488,399.7 507,481.5 553,282.2 605,740.8 630,204.5 

240 142.22 111.273 11127.3 490,253.9 510,823.2 557,681.9 610,040.3 634,787.6 

241 142.69 111.743 11174.3 491,918.9 514,552.3 562,500.9 614,970.9 639,537.5 

242 143.17 112.223 11222.3 494,458.4 518,531.5 567,944.7 619,791.2 644,125.9 

243 143.66 112.713 11271.3 498,108.3 522,155.7 574,155.5 624,308.1 648,592.0 
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244 144.14 113.193 11319.3 501,470.5 525,849.3 579,775.2 628,941.0 652,205.9 

245 144.63 113.683 11368.3 505,810.0 530,174.4 585,201.2 633,440.3 655,488.4 

246 145.11 114.163 11416.3 510,134.6 534,484.3 591,159.0 638,822.0 659,132.3 

247 146.87 115.923 11592.3 529,307.9 553,063.8 612,840.9 655,151.4 671,990.8 

248 147.35 116.403 11640.3 534,885.0 559,333.0 618,574.9 660,438.2 675,368.7 

249 147.83 116.883 11688.3 539,236.2 565,656.7 624,506.6 665,741.2 678,543.3 

250 148.31 117.363 11736.3 543,263.4 574,041.7 630,226.3 670,899.0 682,110.6 

251 148.8 117.853 11785.3 547,679.8 585,457.1 636,640.7 675,740.2 685,800.6 

252 149.28 118.333 11833.3 556,446.7 602,839.6 644,032.6 681,983.5 690,321.2 

253 149.73 118.783 11878.3 577,988.6 625,292.9 657,858.5 693,764.8 708,129.4 

254 151.27 120.323 12032.3 657,886.5 679,254.7 713,132.3 736,008.3 748,600.2 

255 151.66 120.713 12071.3 668,105.5 691,603.9 726,859.0 745,137.5 755,050.3 

256 152.43 121.483 12148.3 706,936.2 716,313.0 755,498.8 770,419.0 775,642.5 

257 152.78 121.543 12154.3 712,091.0 721,235.1 758,497.0 774,301.7 782,890.5 

258 153.2 121.773 12177.3 733,990.1 744,498.0 770,997.5 791,658.9 818,659.5 

259 153.69 122.263 12226.3 768,030.3 775,641.0 790,780.0 831,527.6 873,605.0 

260 154.17 122.743 12274.3 781,288.3 785,846.9 804,364.4 864,569.8 908,245.4 

261 154.65 123.223 12322.3 785,512.8 791,050.7 817,636.0 886,891.6 932,083.3 

262 155.13 123.703 12370.3 789,340.8 795,628.7 830,243.6 904,886.8 948,620.5 

263 156.01 124.583 12458.3 794,586.9 803,663.9 850,386.6 932,939.9 979,029.2 

264 156.49 125.063 12506.3 797,536.4 808,279.7 861,016.1 945,713.6 994,784.9 

265 156.98 125.553 12555.3 800,482.9 812,927.8 873,247.5 956,469.9 1,003,828.0 

266 157.45 126.023 12602.3 803,262.2 817,751.0 884,607.6 969,990.2 1,012,605.0 

267 159.05 127.623 12762.3 816,065.4 840,778.9 921,820.1 1,002,393.0 1,039,764.0 

268 159.54 128.113 12811.3 820,469.2 848,415.4 933,234.1 1,013,967.0 1,045,406.0 

269 159.99 128.563 12856.3 823,185.8 854,764.4 944,196.1 1,021,732.0 1,049,146.0 

270 160.5 129.073 12907.3 827,315.5 862,188.1 955,139.2 1,030,765.0 1,056,893.0 

271 160.99 129.563 12956.3 835,291.8 872,280.7 966,203.9 1,037,906.0 1,062,305.0 
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272 161.47 130.043 13004.3 842,822.0 886,723.0 976,668.0 1,044,208.0 1,067,361.0 
 

Appendix II: List of plants species analysed for modern phytolith reference data 

Family Species Habitats/Altutude range/ site collected Plant part 

Poaceae Aristida junciformis Trin. & Rupr. 400-2100m (Olorgesailie); poor eroded or stony soils Whole 

Poaceae Aristida sp. 930-2000m (Olorgesailie) Whole 

Poaceae Aristida congesta Roem. & Schult. 

900-2100m (Taita hills); deciduous bushland often on 

eroded slopes Whole 

Poaceae Phragmites mauritianus Kunth 

0-1500m (Taita hills), shallow water streams, river 

banks & lakes, and swampy places whole 

Poaceae Phragmites australis (Cav.) Steud. 

600-1500m (Taita hills) shallow water streams, river 

& lake banks, in swampy places. Whole 

Poaceae 

Eragrostis racemosa (Thunb.) 

Steud. 

300-2300m (Olorgesailie); often on sandy/shallow 

stony soils Whole 

Poaceae 

Sporobulus africanus (Poir) 

Robyns & Tournay 

1300-2600m (Mt. Kenya), disturbed 

grounds/alongside paths Whole 

Poaceae Sporobulus consimilis Fresen. 390-1950m (Mt Kenya) flood plains and lake shores Whole 

Poaceae Chloris virgata Sw. 

10-2000m (Mt. Kenya), Wooded grasslands, 

bushlands & disturbed habitats Flowers 

Poaceae Sporobulus angustifolius A. Rich 1300-2600m (Mt. Kenya) Deciduous bushlands Whole 

Poaceae Chloris mossambicensis K. Schum 400-2000m (Olorgesailie) Wooded grasslands Whole 

Poaceae Bewsia biflora 2000-2400m (Mt Kenya) Whole 

Poaceae 

Cynodon aethiopicus Clayton & 

Harlan 0-2000m (Olorgesailie); mostly in disturbed places Whole 

Poaceae Cynodon sp. ~1000m Olorgesailie Whole 

Poaceae 

Brachyachne patentiflora (Stent & 

Rattray) C.E. Hubbard 2100m (Taita hills) shallow soils over rocky bed Whole 

Poaceae 

Dactyloctenium aegyptium (L.) 

Willd. 0-2100m (Taita Hills)open grasslands & woodlands Whole 

Poaceae Harpachne schimperi A. Rich. 200-2000m (Olorgesailie) bushlands and grasslands Whole 
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Poaceae Coelachyrum longiglume Napper 230-1500m (Olorgesailie) Dry grasslands Whole 

Poaceae 

Cypholepis yemenica (Schweinf.) 

Chiov. 

250-2070m (Olorgesailie) Grasslands, bushlands 

mostly on rocky ground Whole 

Poaceae 

Tripogon curvatus S.M. Phillips & 

Launert 1700-1950m (Olorgesailie) open grasslands Whole 

Poaceae Eragrostis pilosa (L.) P. 0-2000m (Olorgesailie), dry grasslands Whole 

Poaceae Eragrostis superba Peyr. 

0-1800m (Olorgesailie); open thicket/ wooded 

grasslands, often in disturbed ground Whole 

Poaceae Ischaemum rugosum Salisb. c4 1000-2600m (Taita hills) water logged grasslands Whole 

Poaceae 

Hyparrhenia drageana (Nees) 

Stent 

2200-2500m (Mt. Kenya); Open bushed and wooded 

grassland Whole 

Poaceae Schizachyrium jeffreysii  

0-900m (Olorgesailie) wooded grasslands on moist 

places Whole 

Poaceae Coelorhachis lepidura  Stapf 0-2300m (Taita hills); swampy grasslands Whole 

Poaceae Themeda triadra Forssk 

0-3200m (Mt. Kenya) Deciduous bushland/wooded 

grasslands. Whole 

Poaceae Hyparrhenia hirta (L.) Stapf 1300-2700m (Mt. Kenya) wooded grasslands Whole 

Poaceae 

Schizachyrium brevifolium (Sw.) 

Buse 0-900m (Olorgesailie) along stream banks Whole 

Poaceae Themeda villosa (Poir.) A. Camus 

0-3200m (Mt. Kenya) open grasslands & deciduous 

bushland Whole 

Poaceae Echinochloa sp. ~ 1800m Taita hills Whole 

Poaceae 

Cymbopogon caesius (Hock. & 

Arn.) Stapf 

100-1300m (Olorgesailie), deciduous bushland and 

semi-arid grasslands Whole 

Poaceae Melinis ambigua Hack. 1000-1720m (Taita hills) upland grasslands Whole 

Poaceae Melinis minutiflora P.Beauv. 

1000-1720m (Taita hills) open grasslands on rocky 

hills. Whole 

Poaceae Pennisetum purpureum Schumach. 0-2000m (Mt. Kenya) Forest margins & riverine  Whole 

Poaceae 

Pennisetum polystachion (L.) 

Schult. 

2000-2730m (Mt. Kenya) open grasslands & 

bushlands in disturbed areas Whole 

Poaceae Pennisetum polystachion 

2000-2730m (Mt. Kenya) open grasslands & 

bushlands in disturbed areas Whole 

Poaceae Melinis repens 930-2520m (Mt, Kenya)wooded grasslands Whole 
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Poaceae Digitaria ciliaris (Retz.) Koel. 150-600m (Olorgesailie); open grasslands Whole 

Poaceae 

Setaria sphacelata (Schumach.) 

Moss 

300-3300m (Mt. Kenya) grasslands & bushlands, 

stony hillside to river banks Whole 

Poaceae Panicum eickii Mez 

2800m (Mt. Kenya) Forest edges, swamp grasslands 

(uplands) Whole 

Poaceae Setaria poiretiana (Schult.) Kunth 300-2300m (Mt. Kenya) Bushed-grasslands Whole 

Poaceae Setaria plicatilis (Hochst.) Engl. 900-2400m (Mt. Kenya) Forest shade Whole 

Poaceae Setaria incrassata (Hochst.) Hack. 

0-2400m (Olorgesailie) Balck caly soils in open 

bushlands Whole 

Poaceae 

Oplismenus compositus (L.) P. 

Beauv. 0-2300m (Mt. Kenya) forest shade Whole 

Poaceae 

Oplismenus hirtellus (L.) P. 

Beauv. 0-2500m (Mt. Kenya) forest shade Whole 

Poaceae Panicum maximum Jacq. 

0-2400  (Olorgesailie) wooded grasslands, forest 

edges Whole 

Poaceae Brachiaria cf. semiundulata 0-1200m  (Taita hills) Whole 

Cyperaceae Cyperus dives 700-2000  (Olorgesailie) swampy areas Whole 

Cyperaceae Cyperus papyrus L. 650-2000m (Olorgesailie) swampy areas Flowers 

Cyperaceae Cyperus sp. 930-2000m (Olorgesailie) Whole 

Cyperaceae Cyperus spp. 1800-2200 ( Mt. Kenya) 

Stem, leaves, 

flowers 

Cyperaceae Kyillinga odarata Vahl 1140-1500  (Mt Kenya) Moist soils, forest edges                                     Stem/Leaf 

Cyperaceae Scleria boivinii Steudel 1140-1160m (Mt. Kenya) swampy forest edges Leaf 

Cyperaceae Eleocharis spp. 950-1200  (Olorgesailie) marshes at low altitudes Whole 

Acanthaceae Barleria titensis S. Moore 350-1050  (Taita hills), dry bushland/woodland Whole 

Acanthaceae Acanthus eminens C.B.CL. 1500-2650m (Mt. Kenya), Moist or dry forests 

stem, flowers 

roots 

Anarcadiaceae Rhus natalensis Krauss 

450-2700  (Mt. Kenya), Dry forest margins, thickets 

and wooded grassland 

stem, leaves, 

fruits 

Anarcadiaceae Rhus Vulgaris Meikle 

1200-2700m (Olorgesailie), wooded grassland, 

thickets, bushed grasslands in rocky sites. stems, leaves 

Anthericaceae Anthericum sp. 1980-2450m (Mt, Kenya) Leaves 
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Asteraceae Vernonia brachycalyx O.Hoffm. 
~1100m (Olorgesailie) riverine along lugga 

Stem, leaves, 

flowers 

Capparaceae Cadaba farinosa Forssk. 

1-1900m (Olorgesailie) Dry Acacia bushland, 

riverine thickets Leaves, fruits 

Leguminosae-

Mimosoideae Acacia brevispica Harms 

1-1800m (Olorgesailie), Dry Acacia bushland, 

woodland often on rocky or stony soil Stems, leaves 

Leguminosae-

Papilionoideae Indigofera lupatana Bak.f. 

250-2100m (Taita hills), Evergreen or deciduous 

bushland, bushed grassland leaves, flowers 

Leguminosae-

Papilionoideae Indigofera arrecta A. Rich 

350-2650 m (Olorgesailie), wooded grassland, forest 

margins in dry areas often near luggas Leaves, fruits 

Leguminosae-

Papilionoideae Crotalaria lachnocarpoides Engl. 

1200-2650 m (Mt. Kenya), forest margins, bushed 

grassland leaves, flowers 

Leguminosae-

Papilionoideae 

Rhynchosia hirta (Andr.) Meikle & 

Verdc. 

450-1850m (Olorgesailie), Bushed or wooded 

grasslands, forest margins Leaves, flowers 

Malvaceae Abutilon hirtum (Lam.)Sweet 

1-1800m (Olorgesailie), Dry Acacia bushland, 

usually near luggas or riverine Leaves, flowers 

Moraceae Ficus natalensis Hochst. 

900-1800m (Olorgesailie), Riverine and ground 

water forest 

stem, leaves, 

fruits 

Rosaceae Rubus apetalus Poir. 

1450-2700m (Mt. Kenya), Forest margins, secondary 

bush/grasslands, riverine forest 

Stem, leaves, 

fruits 

Rubiaceae 

Tarrena graveolens (S.Moore) 

Brem. 

1-2100m (Taita hills), bushland on rocky hills, drier 

forest margins, bushed grassland 

stem, leaves, 

fruits 

Rubiaceae Canthium dyscriton Bullock 750-1600m (Taita hills), rocky outcrops 

Stem, leaves, 

fruits 

Tiliaceae Grewia fallax K. Schum. 

350-1500m (Olorgesailie), Dry bushland, bushed 

grassland near luggas or rivers Leaves 

Myrsinaceae Maesa lanceolata Forssk. 1300-280 m  (Mt. Kenya) Often in secondary forests Leaves, fruits 

Salvadoraceae Salvadora persica L. 

1-1850m (Olorgesailie) along rivers, luggas, lakes or 

wells, dry Acacia bushland/wooded grassland Leaves, fruits 

Iridaceae Gladiolus candidus (Rendle) 

1300-2800 m (Mt. Kenya) forest edges,  wooded 

grasslands Whole 



186 

 

Appendix III: Table showing raw counts of phytolith assemblage identified in modern plants species. 

See also phytolith/plants codes and their corresponding names 
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Cyperaceae n/a Cyperus papyrus CYP pap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus dives CYP div 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0 0 0 0 0 139 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Andropon ANDRsp 0 0 0 0 0 0 0 0 0 0 0 0 235 0 0 0 0 24 0 0 0

Poaceae C4 Aristida congesta ARISTsp1 0 24 185 14 1 0 9 0 0 0 0 0 0 0 127 0 0 12 0 0 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 143 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0

Poaceae C4 Bewsia biflora BEWbif 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 0 0 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 1 7 210 9 0 0 0 0 0 0 0 0 0 0 59 0 0 8 0 0 0
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Poaceae C4 Cymbopogon caesius CYMBOcaes 0 67 44 32 0 0 4 0 0 0 10 0 8 0 0 0 0 39 0 0 0
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Poaceae C4 Dactyloctenium spp. DACTY sp 0 0 1 26 0 0 0 0 0 0 6 34 70 30 0 9 0 8 0 0 40

Poaceae C4 Digitaria ciliaris DIGITcilia 0 1 0 0 0 0 0 0 0 0 0 38 11 38 0 21 6 51 36 0 64
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Cyperaceae n/a Cyperus papyrus CYP pap 0 0 0 0 0 2 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus dives CYP div 0 0 0 0 0 24 0 0 37 0 5 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 0 0 0 0 0 0 0 0 9 3 36 2 2 0 0 0 0 0 10 0 22 4

Poaceae C4 Andropon ANDRsp 0 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida congesta ARISTsp1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Bewsia biflora BEWbif 0 0 0 0 4 0 0 94 58 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachyachne patentiflora BRACHNpaten 0 0 0 0 4 8 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachyachne spp. BRACHNsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris mossambiscensis CHLORmoss 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris virgata CHLORvir 0 0 0 0 0 0 0 123 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Coelorachis lepidura COELlep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Cymbopogon caesius CYMBOcaes 0 0 0 0 3 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Cynodon aethiopicus CYNODeathi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Dactyloctenium spp. DACTY sp 0 40 37 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 0

Poaceae C4 Digitaria ciliaris DIGITcilia 0 64 3 0 1 0 0 0 0 0 0 1 4 0 0 0 0 0 3 0 14 0
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Cyperaceae n/a Cyperus papyrus CYP pap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

Cyperaceae n/a Cyperus dives CYP div 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 2 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0 0 0 0 0 26 0 7 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 22 4 8 0 0 0 0 0 0 0 0 0 0 0 0 6 0 7 0 14 19 0

Poaceae C4 Andropon ANDRsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida congesta ARISTsp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Bewsia biflora BEWbif 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachyachne patentiflora BRACHNpaten 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachyachne spp. BRACHNsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris mossambiscensis CHLORmoss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 0

Poaceae C4 Chloris virgata CHLORvir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Coelorachis lepidura COELlep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

Poaceae C4 Cymbopogon caesius CYMBOcaes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0

Poaceae C4 Cynodon aethiopicus CYNODeathi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Dactyloctenium spp. DACTY sp 5 0 8 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

Poaceae C4 Digitaria ciliaris DIGITcilia 14 0 0 0 0 1 0 0 0 19 0 0 0 0 0 0 14 0 0 0 0 0
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Cyperaceae n/a Cyperus papyrus CYP pap 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230 0 0 0 0 0 0

Cyperaceae n/a Cyperus dives CYP div 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 36 0 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 0 0 0 12 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224 0 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 19 0 0 2 0 1 2 0 0 0 2 0 0 0 0 99 78 0 2 0 2 1

Poaceae C4 Andropon ANDRsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

Poaceae C4 Aristida congesta ARISTsp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0

Poaceae C4 Bewsia biflora BEWbif 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Poaceae C4 Brachyachne patentiflora BRACHNpaten 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113 0

Poaceae C4 Brachyachne spp. BRACHNsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris mossambiscensis CHLORmoss 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

Poaceae C4 Chloris virgata CHLORvir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0

Poaceae C4 Coelorachis lepidura COELlep 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 137 0

Poaceae C4 Cymbopogon caesius CYMBOcaes 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 0

Poaceae C4 Cynodon aethiopicus CYNODeathi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Poaceae C4 Dactyloctenium spp. DACTY sp 0 0 3 0 0 0 0 0 0 0 0 2 1 3 0 0 0 0 2 5 4 20

Poaceae C4 Digitaria ciliaris DIGITcilia 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 10 24 12 0 0
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Cyperaceae n/a Cyperus papyrus CYP pap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus dives CYP div 0 0 0 0 0 0 0 0 0 27 0 0 5 31 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 0 0 157 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0 0 0 0 0 10 2 0 0 0 0 3 0 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 2 1 0 59 1 5 6 1 7 0 0 0 0 0 0 0 0 1 0 0 0 25

Poaceae C4 Andropon ANDRsp 3 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida congesta ARISTsp1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Bewsia biflora BEWbif 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Brachyachne patentiflora BRACHNpaten 113 0 0 0 0 0 0 0 0 72 34 0 0 0 0 0 17 0 0 0 0 0

Poaceae C4 Brachyachne spp. BRACHNsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris mossambiscensis CHLORmoss 5 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Chloris virgata CHLORvir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Coelorachis lepidura COELlep 137 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 0 0 0 0 0

Poaceae C4 Cymbopogon caesius CYMBOcaes 57 0 0 0 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Cynodon aethiopicus CYNODeathi 1 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 0 0 0 0 0 0

Poaceae C4 Dactyloctenium spp. DACTY sp 4 20 0 6 0 0 13 9 9 0 0 0 0 0 0 0 0 0 0 0 0 23

Poaceae C4 Digitaria ciliaris DIGITcilia 0 0 2 1 0 0 18 3 10 0 0 0 0 0 0 0 0 0 0 2 0 0
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Cyperaceae n/a Cyperus papyrus CYP pap 0 0 0 0 0

Cyperaceae n/a Cyperus dives CYP div 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp1 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp2 0 0 0 0 0

Cyperaceae n/a Scleria boivinii SCL boiv 0 0 0 0 0

Cyperaceae n/a Cyperus spp. CYP sp3 0 0 0 0 0

Cyperaceae n/a Eleocharis spp. ELOC sp 0 0 0 0 0

Cyperaceae n/a Kyillinga ordarata KYIL orda 0 25 0 0 25

Poaceae C4 Andropon ANDRsp 0 0 0 0 0

Poaceae C4 Aristida congesta ARISTsp1 0 0 0 0 0

Poaceae C4 Aristida junciformis ARISTjun 0 0 0 0 0

Poaceae C4 Bewsia biflora BEWbif 0 0 0 0 0

Poaceae C4 Brachiaria c.f semiunudulata BRACHsp 0 0 0 0 0

Poaceae C4 Brachyachne patentiflora BRACHNpaten 0 0 0 0 0

Poaceae C4 Brachyachne spp. BRACHNsp 0 0 0 0 0

Poaceae C4 Chloris mossambiscensis CHLORmoss 0 0 0 0 0

Poaceae C4 Chloris virgata CHLORvir 0 0 0 0 0

Poaceae C4 Coelorachis lepidura COELlep 0 0 0 0 0

Poaceae C4 Cymbopogon caesius CYMBOcaes 0 0 0 0 0

Poaceae C4 Cynodon aethiopicus CYNODeathi 0 0 0 0 0

Poaceae C4 Dactyloctenium spp. DACTY sp 0 23 0 3 26

Poaceae C4 Digitaria ciliaris DIGITcilia 0 0 0 10 10
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Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 0 0 0 0 0 0 0 0 0 273 0 0 0 62 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 25 0 0 0 0 0 0 0 0 0 0 162 0 0 0 26 1 0 0

Poaceae C4 Eragrostis superba ERAGRsup 1 19 0 1 0 0 0 0 0 0 0 0 17 0 0 0 0 190 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 0 0 0 0 0 0 0 0 0 137 0 0 0 0 74 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 7 98 0 0 1 1 0 0 0 0 8 0 0 1 0 0 0 4 92 4

Poaceae C4 Hyparrhenia drageana HYPARdrag 13 36 3 26 6 8 11 0 0 0 15 0 0 0 0 0 0 0 117 0

Poaceae C4 Melinis ambigua MELambi 42 48 0 48 3 4 12 0 27 36 18 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 21 76 0 3 0 0 38 0 2 101 25 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 202 6 44 0 2 0 0 0 3 9 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 37 46 6 4 0 14 0 1 0 0 1 0 0 0 112 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 4 58 7 79 0 15 19 5 14 11 9 0 0 0 0 0 0 0 2 0

Poaceae C4 Panicum eickii PANICecki 72 108 1 14 0 6 5 1 0 0 13 0 0 0 0 0 0 0 2 0

Poaceae C4 Panicum maximum PANImax 55 133 0 64 0 0 13 2 0 0 2 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 36 59 6 39 0 5 25 4 1 37 24 0 0 0 0 0 0 0 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 19 23 7 5 0 0 34 64 2 33 55 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 0 2 13 57 0 0 0 0 0 0 1 0 0 1 0 0 0 2 151 7

Poaceae C3 Phragmites australis PHRAGaus 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 138 0 67 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 182 0 3 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 18 133 0 11 0 8 0 0 0 10 2 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 19 110 0 1 0 53 0 2 0 3 33 0 0 0 0 0 0 7 4 0

Poaceae C4 Schizachyrium spp. SCHIZspp 103 52 6 15 1 10 1 3 1 0 0 0 0 0 0 0 0 0 69 0

Poaceae C4 Setaria incrassata SETARincra 78 56 87 3 12 1 10 0 0 2 4 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 69 91 0 31 6 3 46 24 0 0 16 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 14 102 0 63 0 9 0 0 0 0 13 0 0 0 0 0 0 21 0 0
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Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis superba ERAGRsup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 92 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia drageana HYPARdrag 117 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis ambigua MELambi 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 0 0 0 0 0 4 0 0 0 2 0 7 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 2 0 0 0 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum eickii PANICecki 2 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum maximum PANImax 0 0 0 0 0 9 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 151 7 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites australis PHRAGaus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 0 0 0 0 0 9 42 0 0 9 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 4 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium spp. SCHIZspp 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria incrassata SETARincra 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis superba ERAGRsup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia drageana HYPARdrag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis ambigua MELambi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum eickii PANICecki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum maximum PANImax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 0 0 0 0 0 0 0 0 0 0 13 0 28 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites australis PHRAGaus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 0 0 0 0 0 0 0 0 0 0 62 0 7 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium spp. SCHIZspp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria incrassata SETARincra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis superba ERAGRsup 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia drageana HYPARdrag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis ambigua MELambi 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum eickii PANICecki 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum maximum PANImax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites australis PHRAGaus 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium spp. SCHIZspp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria incrassata SETARincra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



197 

 

 

Fa
m

ily

P
h

o
to

sy
n

th
e

ti
c 

p
at

h
w

ay

Sp
e

ci
e

s

H
ai

r 
b

as
e

s

H
ai

r

St
o

m
at

a/
H

ai
r

Sc
u

ti
fo

rm
/p

ri
ck

le
s

P
ar

al
le

le
p

ip
e

d
 e

lo
n

ga
te

 v
e

rr
u

ca
te

P
ar

al
le

p
ip

e
d

 f
ac

e
ta

te

P
ar

al
le

lip
ip

e
d

 e
lo

n
ga

te
 in

d
e

t.

P
ar

al
le

le
p

ip
e

d
 b

lo
ck

y 
p

si
la

te
 r

o
u

n
d

 h
e

ad
s

P
ar

al
le

le
p

ip
e

d
 b

lo
ck

y 
p

si
la

te
 s

q
u

ar
e

 h
e

ad
s

P
ar

al
le

le
p

ip
e

d
 t

h
in

 p
si

la
te

P
ar

al
le

le
p

ip
e

d
 e

lo
n

ga
te

 t
h

is
n

 r
u

gu
la

te

Fi
b

re
s 

se
n

su
 la

to

Ta
b

u
la

r 
cr

e
n

at
e

Ta
b

u
la

r 
d

e
n

d
ri

fo
rm

Ta
b

u
la

r 
e

lo
n

ga
te

Ta
b

u
la

r 
fa

ce
ta

te

Ta
b

u
la

r 
la

n
ce

o
la

te

Ta
b

u
la

r 
o

b
lo

n
g

Ta
b

u
la

r 
sc

ro
b

ic
u

la
te

Ta
b

u
la

r 
si

n
u

at
e

Ta
b

u
la

r 
tr

ap
e

zo
id

Tr
ap

e
zi

fo
rm

 c
re

n
at

e

C
o

d
e

s

H
B

H
R

ST
H

R

SC
P

R

P
A

EL
V

P
A

R
F

P
P

EI

P
B

P
R

P
B

P
SQ

P
TP

P
EL

TS

FB
L

TB
C

R

TA
D

E

TA
B

EL
G

TA
B

FA
C

TA
B

LA
N

TA
B

O
B

L

TA
B

SC
R

TA
B

SI

TA
B

TR
P

TR
A

P
C

R
E

Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 0 19 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis superba ERAGRsup 0 0 38 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 15 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 0 0 11 1 0 0 0 0 0 0 0 0 6 6 0 0 0 0 1 1 0 0

Poaceae C4 Hyparrhenia drageana HYPARdrag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis ambigua MELambi 0 0 38 4 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 0 0 15 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 0 0 54 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum eickii PANICecki 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Panicum maximum PANImax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 0 0 11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 0 0 95 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 0 0 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites australis PHRAGaus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 38 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 0 0 10 6 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium spp. SCHIZspp 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria incrassata SETARincra 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 0 0 0 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0
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Poaceae C4 Eragrostis pilosa ERAGRpil 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis racemosa ERAGROrac 0 0 0 0 0 0 0 0

Poaceae C4 Eragrostis superba ERAGRsup 0 0 0 0 0 0 0 0

Poaceae C4 Harpachne shimperi HARPshimp 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia  hirta HYPARhir 0 0 0 0 0 0 0 0

Poaceae C4 Hyparrhenia drageana HYPARdrag 0 0 0 0 0 0 0 0

Poaceae C4 Melinis ambigua MELambi 0 0 0 0 0 0 0 0

Poaceae C4 Melinis minuteflora MELminut 0 0 0 0 0 0 0 0

Poaceae C4 Melinis repens MELrep 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus compositus OPLIScomp 0 0 0 0 0 0 0 0

Poaceae C4 Oplismenus hirtellus OPLIShirt 0 0 0 0 0 0 0 0

Poaceae C4 Panicum eickii PANICecki 0 0 0 0 0 0 0 0

Poaceae C4 Panicum maximum PANImax 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum polystachion PENNpol 0 0 0 0 0 0 0 0

Poaceae C4 Ischaemum rugosum ISCHArug 0 0 0 0 0 0 0 0

Poaceae C4 Pennisetum purpureum PENNpurp 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites australis PHRAGaus 0 0 0 0 0 0 0 0

Poaceae C3 Phragmites mauritianus PHRAGmau 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium brevifolium SCHIZbrevi 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium jeffreysii SCHIZjeff 0 0 0 0 0 0 0 0

Poaceae C4 Schizachyrium spp. SCHIZspp 0 0 0 0 0 0 0 0

Poaceae C4 Setaria incrassata SETARincra 0 0 0 0 0 0 0 0

Poaceae C4 Setaria plicatilis SETARplic 0 0 0 0 0 0 0 0

Poaceae C4 Setaria poiretiana SETApoir 0 0 0 0 0 0 0 0
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Poaceae C4 Sporobulus africanus SPOROafri 0 0 0 0 0 0 0 66 85 11 37 0 0 0 15 0 0 18 21 0

Poaceae C4 Sporobulus consimilis SPOROcons 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 171 28

Poaceae C4 Themeda triadra THEMtria 49 94 21 39 10 8 0 2 0 2 14 0 0 0 0 0 0 0 0 0

Poaceae C4 Themeda villosa THEMvill 40 124 7 9 4 4 0 0 0 0 12 0 0 0 0 0 0 37 9 0

Acanthaceae C3 Barleria sp BARLsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0

Acanthaceae C3 Acanthus eminence ACANTHemin 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Anarcadiaceae C3 Rhus natalensis RHUnat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Asteraceae C3 Vernonia brachaetus VERNbrac 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Capparaceae C3 Cleome sp CLEOMsp 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leguminosae-Mimosoideae C3 Acacia sp1 ACACsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leguminosae-Papilionoideae C3 Indigofera sp. INDIGsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leguminosae-Papilionoideae C3 Crotalaria sp CROTSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Malvaceae C3 Abutilon sp. ABUTSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Moraceae C3 Ficus natalensis FICnat 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rubiaceae C3 Tarenna graveolens TARENgraveol 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

Rubiaceae C3 Rubus sp. RUBsp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tiliaceae C3 Grewia fallax GREWfallx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Poaceae C4 Themeda triadra THEMtria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Poaceae C4 Themeda villosa THEMvill 0 0 12 6 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

Acanthaceae C3 Barleria sp BARLsp 0 2 0 5 0 0 4 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0

Acanthaceae C3 Acanthus eminence ACANTHemin 0 2 0 11 0 3 38 0 14 9 6 9 0 0 0 0 0 0 0 0 0 0

Anarcadiaceae C3 Rhus natalensis RHUnat 0 0 6 1 0 0 0 0 2 0 0 5 0 0 0 0 0 0 0 0 0 0

Asteraceae C3 Vernonia brachaetus VERNbrac 0 0 0 0 0 0 0 3 8 0 0 5 0 0 0 0 0 0 0 0 0 0
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Tiliaceae C3 Grewia fallax GREWfallx 0 0 0 0 0 0 0 0



205 

 

Appendix III. Raw phytolith data counted in ODP core samples 
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Appendix IV: Raw phytolith assemblage count for Koobi Fora Basin 
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Modern samples Mid-Holocene samples (4.2-1.34kyr)Late Holocene samples 
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Bilobate convex long 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Saddle Plateau 7 2 0 1 0 0 0 0 2 0 0 0 0 0 0

Saddle squat 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0

Saddle collapse 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Saddles 12 3 1 0 1 9 1 0 1 0 2 2 0 1 0

Bilobate flattened short 2 2 2 0 1 4 0 0 0 0 3 2 1 0 0

Crosses 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Bilobate panicoid 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bilobate convex short 11 2 1 0 1 0 2 1 3 3 0 0 0 1 0

Bilobate concave short 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tower horned 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Polylobate 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Tower wide 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Saddle long 2 2 0 0 1 0 0 0 0 0 5 0 1 0 0

Tower long 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bilobate flattened long 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Tower tall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Poaceae pollen 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Epidermal GSSC 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Rondels 13 16 8 4 2 16 5 2 8 14 21 0 6 8 2

Bulliforms 20 2 5 0 14 0 2 0 0 0 3 1 2 6 2

Bilobate indet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Globular granulate 12 7 7 46 8 3 29 0 2 20 137 5 3 3 16

Tracheids 130 30 145 17 51 19 60 0 6 8 5 14 43 38 12

Sclereids 9 9 6 0 2 1 6 0 0 5 20 0 4 4 4

Globular echinate 10 6 2 0 0 0 11 0 0 0 6 2 3 1 2

Globular verrucate 0 0 0 0 0 0 0 0 0 0 5 0 6 0 0

Facetate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Early Plistocene samples (ca. 1.525Ma to 1.51Ma)Early Holocene samples (ca.9.6-6kyr)Early-Mid-Holocene transition 
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Bilobate convex long 0 0 0 0 0 0

Saddle Plateau 0 1 1 0 0 0

Saddle squat 0 0 0 0 0 0

Saddle collapse 0 0 0 1 0 0

Saddles 0 0 1 0 0 0

Bilobate flattened short 0 0 0 0 1 0

Crosses 0 0 2 0 0 0

Bilobate panicoid 0 0 1 0 1 0

Bilobate convex short 0 0 0 0 3 0

Bilobate concave short 0 0 0 0 0 0

Tower horned 0 0 0 0 0 0

Polylobate 0 0 0 0 0 0

Tower wide 0 0 0 0 0 0

Saddle long 0 0 0 0 0 0

Tower long 0 0 0 0 0 0

Bilobate flattened long 0 0 0 0 0 0

Tower tall 0 0 0 0 0 0

Poaceae pollen 0 0 0 0 0 0

Epidermal GSSC 0 0 0 0 0 0

Rondels 0 4 1 1 1 6

Bulliforms 0 1 9 5 0 0

Bilobate indet 0 0 0 0 1 0

Globular granulate 5 270 29 0 108 0

Tracheids 1 13 127 12 12 1

Sclereids 3 0 13 1 6 1

Globular echinate 0 9 8 0 17 1

Globular verrucate 1 1 4 0 31 0

Facetate 0 0 0 0 3 0

Early Plistocene samples (ca. 1.525Ma to 1.51Ma)
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Irregular verrucate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Palm echinate 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0

Scutiform 0 1 0 0 2 1 0 1 0 0 4 0 0 0 0

Ellipsoid scabrate 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Globular psilate 0 1 1 0 2 1 3 0 0 0 0 1 4 3 11

Prickle 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Ellipsoid psilate 10 5 0 0 1 0 0 0 0 0 1 0 0 3 0

Stomatal cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Polygonal 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Irregular psilate 8 0 0 0 0 0 0 0 0 0 0 0 6 20 16

Ellipsoid echinate 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

Longcell appendages 0 0 0 0 0 5 3 0 0 0 0 0 0 0 0

Hair cells 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0

Irregular scabrate 0 0 0 0 0 0 0 0 0 0 0 4 0 0 5

Honey assemblages 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedge/Achene 0 5 0 0 4 0 1 1 0 0 1 0 0 1 0

Cyperaceae 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0

Typhaceae 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0

Indeterminables 0 0 0 0 12 0 0 4 0 0 0 0 0 0 0

Agavaceae 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0

Hyphaene 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0

Acanthaceae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Capparaceae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Fossil pollen 0 0 0 0 0 0 0 0 0 0 3 0 0 0 2

Spicules 0 3 0 0 0 0 8 0 0 4 0 0 0 0 0

Diatoms 0 11 0 0 0 1 3 0 0 0 2 0 0 0 0

Palynomorphs 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

Total assemblage 118 281 14 3 114 160 143 64 92 32 248 78 27 91 251

Modern samples Mid-Holocene samples (4.2-1.34kyr)Late Holocene samples 
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Irregular verrucate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Palm echinate 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Scutiform 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

Ellipsoid scabrate 0 0 0 3 0 0 1 0 1 0 0 0 0 0 0

Globular psilate 2 1 1 1 1 0 5 1 0 0 3 0 0 5 0

Prickle 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Ellipsoid psilate 3 2 0 0 0 0 0 0 2 0 2 0 0 0 0

Stomatal cells 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Polygonal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Irregular psilate 0 0 0 0 0 0 0 0 0 5 11 0 0 0 0

Ellipsoid echinate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Longcell appendages 0 1 0 0 1 0 0 0 0 0 1 0 3 0 0

Hair cells 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0

Irregular scabrate 0 0 0 0 0 0 8 0 0 0 25 0 0 0 0

Honey assemblages 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Sedge/Achene 2 1 1 0 3 0 0 0 0 0 0 0 7 6 0

Cyperaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Typhaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Indeterminables 0 4 0 8 6 7 0 0 15 0 0 0 0 5 3

Agavaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hyphaene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Acanthaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Capparaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fossil pollen 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0

Spicules 0 0 7 0 0 0 0 0 0 0 0 0 3 3 1

Diatoms 8 0 1 0 3 0 0 0 0 2 0 0 1 21 0

Palynomorphs 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0

Total assemblage 284 98 191 80 100 67 132 5 42 57 249 28 85 104 42

Early Holocene samples (ca.9.6-6kyr)Early-Mid-Holocene transition Early Plistocene samples (ca. 1.525Ma to 1.51Ma)
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Irregular verrucate 0 0 1 0 35 0

Palm echinate 0 0 0 0 0 0

Scutiform 0 0 0 0 0 0

Ellipsoid scabrate 0 1 0 0 0 0

Globular psilate 1 0 6 0 1 0

Prickle 0 0 0 0 0 0

Ellipsoid psilate 1 0 2 0 0 0

Stomatal cells 0 0 0 0 0 0

Polygonal 0 0 0 0 0 0

Irregular psilate 0 0 0 0 0 0

Ellipsoid echinate 0 0 0 0 0 0

Longcell appendages 0 0 9 0 5 0

Hair cells 0 0 0 0 0 0

Irregular scabrate 0 0 0 0 7 0

Honey assemblages 0 0 1 0 0 0

Sedge/Achene 1 0 4 0 0 0

Cyperaceae 0 0 0 0 0 0

Typhaceae 0 0 0 0 0 0

Indeterminables 0 1 16 3 0 0

Agavaceae 0 0 0 0 0 0

Hyphaene 0 0 0 0 0 0

Acanthaceae 0 0 0 0 0 0

Capparaceae 0 0 0 0 0 0

Fossil pollen 0 0 0 0 3 0

Spicules 0 0 0 0 0 0

Diatoms 0 0 0 3 0 0

Palynomorphs 0 5 16 124 0 0

Total assemblage 13 306 251 150 235 9

Early Plistocene samples (ca. 1.525Ma to 1.51Ma)
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