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Article

Adaptive Diversification
of the Lateral Line System
during Cichlid Fish Radiation
Duncan E. Edgley1,2,* and Martin J. Genner1,*

SUMMARY

The mechanosensory lateral line system is used by fishes to sense hydrodynamic stimuli in their envi-

ronment. It provides information about flow regimes, proximity to substrate, and the presence and

identity of prey and predators and represents a means of receiving communication signals from other

fish. Thus we may expect lateral line system structures to be under strong divergent selection during

adaptive radiation. Here, we used X-ray micro-computed tomography scans to quantify variation in

cranial lateral line canal morphology within the adaptive radiation of Lake Malawi cichlids. We report

that cranial lateral line canal morphology is strongly correlated with diet and other aspects of cranio-

facial morphology, including the shape of oral jaws. These results indicate an adaptive role for the

lateral line system in prey detection and suggest that diversification of this system has taken an impor-

tant role in the spectacular evolution of Lake Malawi’s cichlid fish diversity.

INTRODUCTION

The lateral line system is an important mechanosensory system used to detect hydrodynamic stimuli in

aquatic environments (Webb, 2014; Klein and Bleckmann, 2015). It is found in all fishes, including lampreys,

and some amphibians (Gelman et al., 2007; Schlosser, 2012), indicating that it may be a primitive vertebrate

character. In teleost fishes, it comprises two key components with separate receptive abilities: the super-

ficial neuromasts and the canal neuromasts (Bleckmann and Zelick, 2009). The superficial neuromasts, pre-

sent on the surface of the fish, are thought to assess direct current and are used for sensing the direction

and speed of water flow (Bleckmann and Zelick, 2009; Wark and Peichel, 2010). Canal neuromasts are sit-

uated within fluid-filled canals between skeletal openings (pores) and are thought to bemore important for

detecting pulses in water movement, such as those associated with the movement of other organisms

(Montgomery et al., 1994; Coombs et al., 2001), against background noise (Engelmann et al., 2000) (Fig-

ure 1). A widened lateral line canal phenotype, accompanied with increased pore size, is thought to convey

increased sensitivity to certain hydrodynamic stimuli (Webb, 2014; Klein and Bleckmann, 2015: Schwalbe

andWebb, 2015). Collectively, the transduction of flow stimuli through the superficial and canal neuromasts

is thought to inform multiple key behaviors in fishes, including rheotaxis (Montgomery et al., 1997; Kulpa

et al., 2015), prey detection (Montgomery and McDonald, 1987; Janssen, 1996; Pohlmann et al., 2004;

Schwalbe et al., 2012), predator avoidance (Stewart et al., 2014), shoaling behavior (Faucher et al., 2010),

and male-male competition (Butler and Maruska, 2015). Thus we may expect them to have been subject

to strong divergent selection during adaptive radiation into multiple ecologically and behaviorally distinct

species.

Cichlid fishes are one of the largest and most diverse of all vertebrate families, comprising over 3,000 spe-

cies (Seehausen, 2006; Salzburger, 2018) and reaching their highest diversity in the Great Rift Valley lakes of

East Africa (Seehausen 2006, 2015). The Lake Malawi haplochromine radiation alone comprises over 500

species that have evolved from common ancestry within the last 1.1 Ma (Malinsky and Salzburger, 2016;

Malinsky et al., 2018). These cichlids have diversified extensively in habitat preferences, diet, body shape,

craniofacial morphology related to prey capture and processing (Turner, 1996; Albertson et al., 2003;

Konings, 2016), breeding behaviors (Konings, 2016; York et al., 2018), and sensory abilities, notably vision

(Parry et al., 2005). However, knowledge of their lateral line system diversification is limited to (1) anatomical

work that has shown variation among genera in the size and development of cranial canal morphology

(Eccles and Trewavas, 1989; Schwalbe et al., 2012; Bird and Webb, 2014; Becker et al., 2016) and (2) behav-

ioral work showing that two Lake Malawi species with differences in cranial canal morphology differ in their

ability to locate live prey in dark environments (Schwalbe et al., 2012; Schwalbe and Webb, 2015). Thus we
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conducted the first large-scale comparative study of lateral line system morphology across the phyloge-

netic and ecomorphological diversity of an African cichlid radiation and tested for interspecific associations

between morphology and ecological variables.

RESULTS AND DISCUSSION

Lateral Line Morphology and Head Shape Covary

We focused our analysis on the lateral line canal components of the head and used X-ray micro-computed to-

mography scans to study lateral and ventral views of cranial morphology, including the size and position of cra-

nial canal pores (Figure S2; Table S2). We quantified cranial lateral line system variation among 52 species of

Lake Malawi cichlids using landmark-based geometric morphometrics (Figures 2, S2, and S3; Table S1) and

tested for associations with gross morphology and ecology using distance-based redundancy analysis (Legen-

dre and Anderson, 1999). We initially found that variation in cranial lateral line pore morphology was strongly

coupled with variation in gross cranial morphology (Figures 3A–3C). For example, larger pores were associated

with longer and broader jaw bones (Figures 4A–4C, 5A, and 5B). Previous work has demonstrated considerable

modularity of the cichlid skull, including amajor preorbital module that encompasses both the upper and lower

oral jaws (Parsons et al., 2011). Our findings suggest that the cranial lateral line canal system is an intrinsic part of

this more complex preorbital module. Although oral jaws have typically been considered to have a primary role

in the handling and processing of prey in cichlid fishes (Turner, 1996; Albertson et al., 2003; Hulsey andGarcı́a de

Figure 1. Overview of the Cranial Canal Lateral Line System of the Lake Malawi Cichlid Astatotilapia calliptera

(A and B) (A) Ventral view and (B) lateral view. The positions of canals (blue) and pores (red) are shown. Approximate

position of canal neuromasts are shown as asterisks. MC, mandibular canal; PR, preopercular canal; SO, supraorbital

canal; IO, infraorbital canal; OT, otic canal; PO, post-otic canal; ST, supratemporal canal; TC, trunk canal. Positioning of

canal neuromasts is from staining of A. calliptera with DASPEI, corroborated with evidence from Butler and Maruska

(2015) who studied the congeneric Astatotilapia burtoni.
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León, 2005; Muschick et al., 2011; Parsons et al., 2012; Konings, 2016), these results additionally highlight a role

for the lateral line canals of the lower jaw in hydrodynamic sensing of prey.

Diet Predicts Cranial Lateral Line Morphology

Our results demonstrated dietary grouping to be a significant predictor of both ventral and orbital canal

morphologies (Figures 3B and 3C), but not preopercular canal morphology (Figure 3A). This is notable

as canals in the ventral and orbital regions can be considered to have ventral- (or anterior-) facing

pores (Figures S2A and S2C). Specifically, the ventral view of the head encompassed the ventral-facing

mandibular canal and ventral arm of the preopercular canal (Figures 1A and S2A), whereas the orbital

lateral line pore morphology we measured encompassed primarily anterior-/ventral-facing pores,

including the infraorbital canal within the lacrimal bone (Figures 1B and S2C). In contrast, the pores of

the preopercular canal can be considered to be more lateral facing (Figures 1B and S2B). Anterior- or

ventral-facing pores have been proposed to be functional during feeding behavior, specifically in relation

to the observed ‘‘sonar’’ feeding by wild Aulonocara and other benthic genera, where foraging fish angle

their body and probe for cryptic buried prey (Turner, 1996; Schwalbe et al., 2012; Konings, 2016). Our results

are therefore supportive of this proposed role for the cranial lateral line in prey detection.

Benthic invertebrate feeders and molluscivores appear to have the largest cranial canal pores (Figures 4A–

4C), consistent with widened canals and enlarged pores associating with detection of cryptic prey within

the substrate (Turner, 1996; Schwalbe et al., 2012; Konings, 2016). Behavioral trials in light-limited

Figure 2. The Diversity of Cranial Lateral Line Canal Morphology Among the LakeMalawi Cichlid Species Included

in Our Study

Individuals are grouped into the six major evolutionary lineages (Malinsky et al., 2018) and color coded by dietary

preference. Micro-computed tomographic images are not to scale. The positions of pores (red) and approximate position

of canals (blue) are shown on the left side of each fish. R, Rhamphochromis; D, Diplotaxodon; U, utaka; SB, shallow

benthic; DB, deep benthic; M, mbuna. A full list of species is provided in Table S1 and Figure S1.
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Figure 3. The Proportion of Variance in Morphology Explained by Each Morphological or Ecological Explanatory Variable, Calculated through

Distance-Based Redundancy Analysis and Analysis of Variance

(A–F, left) Sets of landmarks used as independent variables for our analysis, illustrated on micro-computed tomographic images of Astatotilapia calliptera.

Red dots are landmarks, and yellow dots are semi-landmarks. Semi-landmarks slide along blue lines between landmarks. Approximate canal positioning is

illustrated in blue. Full explanation of landmarks is provided in Figure S2.

(A–F, right) Proportion of variance in morphology explained by each explanatory variable as calculated through distance-based redundancy analysis.

yVariable omitted from model; *p < 0.05; **p < 0.01; ***p < 0.001.

(A) Preopercular lateral line pore morphology.

(B) Orbital (infra- and supraorbital) lateral line pore morphology.

(C) Ventral head lateral line pore morphology.
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environments have shown that Aulonocara stuartgranti, a species with large pores, is able to forage more

effectively on live arthropod prey than Tramitichromis sp., which possesses comparatively smaller pores

and narrower canals (Schwalbe and Webb, 2015). Our results emphasize the need to further explore the

limits of benthic prey detection associated with the range of lateral line morphologies of these cichlids,

ideally focusing on natural prey items and substrates mirroring those present in Lake Malawi. Our results

also reveal variation among other trophic groups, with variation in pore size and positioning present in pis-

civores, zooplanktivores, and herbivores (Figures 4A–4C).

Diet was also a significant predictor of the variation in gross cranial morphology, which covaried extensively

with the cranial lateral line canal morphology (Figures 3D–3F). Species in each dietary grouping had a com-

bination of traits specific to those diets. For example, molluscivores tended to have shorter downward-fac-

ing oral jaws andmore robust pharyngeal jaws, piscivores hadmore elongated forward-facing oral jaws and

narrower pharyngeal jaws, and benthic algivores had short downward-facing oral jaws coupled with rela-

tively robust pharyngeal jaws (Figures 5A–5C). The fin biter and scale eater Genyochromis mento was

unique in possessing wide, but short oral jaws (Figures 5A–5C). We note that the elongated jaw phenotype

of piscivores and the broad jaw phenotype of algivores (Figures 5A and 5B) were both paired with a rela-

tively small pore size (Figures 4A–4C), whereas the relatively large pores of benthic invertebrate feeders

tended to be coupled with widened preopercular bones in particular (Figures 5A and 5B). Our results

confirmed our expectations of an association between lower pharyngeal jaw morphology and diet in

Malawi cichlids (Figures 5C and 3F), as has been shown in Tanganyika cichlid fishes (Muschick et al.,

2011). This is important in the context of this study as it demonstrates that our methods are reliably able

to recover functional associations between diet and morphology. Taken together, our results are support-

ive of natural selection being a major driver of cranial ecomorphological diversification in cichlids, with se-

lection on traits related to the detection of hydrodynamic stimuli produced by prey being an important yet

largely overlooked component of this diversification process.

Lateral Line Diversification Is Partially Independent of Phylogenetic Constraint

Recent work has confirmed that phylogeny corresponds closely with previously defined ecomorphological

groupings (Genner and Turner, 2012) across the endemic Lake Malawi haplochromines (Malinsky et al.,

2018) (Figure S1). We included representatives of all the major lineages known to comprise the radiation,

including open water piscivores (Rhamphochromis), deep water predators (Diplotaxodon-Pallidochromis),

open water zooplanktivores (utaka), shallow water rock cichlids (mbuna), the typically shallow water sedi-

ment-associated cichlids (shallow benthic), and the typically deep water sediment-associated cichlids

(deep benthic). For our analyses we placed the shallow water generalist Astatotilapia calliptera within

the mbuna grouping, given their recent shared evolutionary history (Malinsky et al., 2018) (Figure S1).

When previous adaptation limits future evolutionary pathways despite the presence of strong selection

pressures we may consider an evolutionary lineage to be phylogenetically constrained (McKitrick, 1993).

For example, in the context of cichlid fishes, it may be possible for some taxa possessing broad oral jaw

bones to develop larger pores as a sensory specialization for feeding on motile benthic prey. Other taxa

with narrow oral jaw bones may be unable to follow this evolutionary trajectory. It is notable that no species

within the mbuna, Rhamphochromis, orDiplotaxodon lineages have widened lateral line canal phenotypes

(Figures 2 and 4). We suggest that constraints conferred by head shape including the thin, laterally com-

pressed piscivore phenotype, and the flat, anteroposteriorly compressed algivore phenotype (Figures

5A and 5B), may both prevent the evolution of broad preopercular and mandibular bones and hence

also prevent the evolution of widened canals and pores. Such phylogenetic constraints would manifest

in traits associating more strongly with phylogenetic grouping than with ecology. Our results showed

that both gross cranial morphology (Figures 3D and 3E and S2D) and preopercular lateral line pore

morphology (Figures 3A and S2B) were significantly associated with phylogenetic grouping. However,

this was not the case for both the diet-associated ventral and infraorbital cranial canal pore morphologies

(Figures 3A, 3B, S2A, and S2C). These results indicate that diet-associated traits are able to diversify some-

what independent of phylogenetic constraint and is further suggestive of the lateral line system being un-

der selection during rapid adaptive radiation.

Figure 3. Continued

(D) Gross lateral head cranial morphology.

(E) Gross ventral head cranial morphology.

(F) Lower pharyngeal jaw morphology.
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Figure 4. Variation in Cranial Lateral Line Pore Morphology Observed Among Dietary Groupings within the Lake

Malawi Haplochromine Radiation

(A–C, left) Arrangements of landmarks used in our analysis illustrated on micro-computed tomographic images of

Astatotilapia calliptera. Red dots represent landmarks, and the approximate positioning of the relevant lateral line canals

are shown in blue. Full explanation of landmark positioning is provided in Figure S2.

(A–C, right) Variation in morphology of cranial lateral line pores among our 52 study specimens. Variation is shown for

each landmark set, calculated using canonical variates analysis, displaying canonical variate (CV) scores on the first two

6 iScience 16, 1–11, June 28, 2019



Associations with Depth and Habitat

Research on the lateral line systems within the Lake Malawi radiation has highlighted a contrast

between the ‘‘widened’’ canals or pores of a dark-adapted benthic genus (Aulonocara) and the relatively

‘‘narrow’’ canals and pores of a shallow water genus (Tramitochromis) (Schwalbe et al., 2012). Our analyses

show for the first time that depth (and hence light level) does not consistently predict this morphology

(Figures 4B and 4C). For example, shallow-living species such as the benthic arthropod feeding Fossoro-

chromis rostratus and themollusc-specialist Trematocranus placodon also have relatively large mandibular

and preopercular canal pores (Figures 2 and 4A–4C). Given that these species are commonplace in

clear water soft-sediment littoral habitats, we suggest that a range of benthic invertebrate feeders may

use motion cues for location of prey within the sediment, independent of depth and light levels.

Habitat was not a consistent predictor of either gross craniofacial morphology or cranial lateral line canal

morphology in our analyses. This may in part be related to the cranial lateral line system being useful for

sensing benthic prey multiple habitat types, as indicated by cichlid genera with enlarged cranial lateral

line canal pores occupying a range of habitats. For example, Aulonocara are found in both deep water

soft-sediment habitats (e.g., Aulonocara sp. ‘‘copper’’) (Turner, 1996) and in shallow water cave-like habi-

tats (e.g., Aulonocara jacobfreibergi) (Konings, 2016). The decoupling of lateral line morphology and

habitat may also reflect the diversity of trophic-specialist taxa present within each of the habitats. For

example, a rich diversity of piscivores and zooplanktivores are found in soft-sediment habitats along

with benthic invertebrate feeding species (Turner, 1996; Konings, 2016). Given the range of potential diets

within each habitat type, an equivalent diversity of corresponding craniofacial morphologies would be pre-

dicted to be present within each to enable the detection, capture, and processing of available prey items.

Modularity and the Cranial Lateral Line System

The degree of modularity within a skeletal system is thought to either constrain or facilitate rapid evolu-

tionary divergence (Pugliucci, 2008; Parsons et al., 2011, 2012; Bird andWebb, 2014). The bones of the pre-

orbital region of the cichlid head, which comprises the oral jaws and supporting structures, form a func-

tional module (Cooper et al., 2010; Parsons et al., 2011). This module has limited axes of variation

available during adaptation to specific trophic resources (Parsons et al., 2012), which is perhaps one

contributing factor to the striking parallel evolution of craniofacial morphology present among the Lake

Malawi, Lake Victoria, and Lake Tanganyika cichlid radiations (Young et al., 2009).

Our study has shown covariance between jaw morphology and aspects of lateral line morphology, such as

the positioning of pores, when the Lake Malawi radiation is considered as a whole. However, our study also

confirms observations that species with very distinct jaw phenotypes can possess similar narrow canal phe-

notypes, demonstrating that cranial lateral line morphology can decouple from gross jawmorphology (Bird

and Webb, 2014). Detailed comparative analysis of cichlid canal phenotypes has demonstrated that the

phenotypic differences observed among large-pored and small-pored species can largely be attributed

to rate heterochrony (Bird and Webb, 2014; Webb et al., 2014). Thus future studies concentrating on the

evolution of interspecific variation in lateral line morphology should have a strong focus on the relative

rate of phenotypic development among taxa.

Concluding Remarks

Our study provides insights into the scale of cranial lateral line system variation across a major vertebrate

adaptive radiation. We provide quantitative evidence showing that cranial canal lateral line pore

morphology covaries with gross oral jaw morphology, and that additional variation is explained by species

Figure 4. Continued

axes. Individuals are grouped by diet, and for CV scores, 95% confidence ellipses are shown for all dietary groupings

with n > 2. Changes in landmark arrangement associated with each axis are illustrated on wireframe graphs

(Klingenberg, 2013). Wireframe graphs along each axis show consensus landmark arrangement for the 52 species

(gray dots and lines) and landmark position shifts associated with each CV axis (black dots and lines). The two

wireframe graphs on each axis illustrate changes in landmark positioning associated with the highest and lowest

values for each CV on that axis (black dots and lines).

(A) Preopercular lateral line pore morphology.

(B) Orbital (infraorbital and supraorbital) lateral line pore morphology.

(C) Ventral head lateral line pore morphology.
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Figure 5. Variation in Gross Cranial Morphology Observed Among Dietary Groupings within the Lake Malawi

Haplochromine Radiation

(A–C, left) Arrangements of landmarks used in our analysis illustrated on micro-computed tomographic images of

Astatotilapia calliptera. Red dots represent landmarks, and yellow dots represent semi-landmarks. Semi-landmarks were

8 iScience 16, 1–11, June 28, 2019



ecology, most strikingly by diet (Figures 3A–3C). Collectively these data demonstrate the importance of

ecological variables as predictors of both the gross craniofacial morphology and subtle variation in the

size and positioning of cranial lateral line canal pores. Our evidence suggests that the cranial lateral line

system can adapt readily, like other aspects of trophic morphology, including the lower pharyngeal jaw

(Muschick et al., 2012) and oral jaws (Albertson et al., 2003; Albertson and Kocher, 2006; Parsons et al.,

2012). We suggest that our findings indicate an important role for the system in facilitating trophic segre-

gation within the wider adaptive radiation context.

Taking an integrated approach will be important for a more robust understanding of the role of the lateral

line system in trophic diversification within the radiation. This will include identifying the genetic basis of

lateral line system diversity and examining superficial neuromasts alongside canal morphology (Wark

and Peichel, 2010; Wark et al., 2012; Becker et al., 2016). To date, research on the genetic basis of lateral

line system diversity has focused on superficial neuromasts of the trunk (Becker et al., 2016). Research

has identified genes associated with both superficial neuromast morphology and schooling behavior

(Wark et al., 2012; Mills et al., 2014; Greenwood et al., 2016). However, identifying the genetic basis for

the phenotypic diversity of a system as varied and complex as the cichlid lateral line will be challenging,

due to potential epistatic and pleiotropic effects of associated loci (Albertson et al., 2003; Wark et al.,

2012; Mills et al., 2014; Greenwood et al., 2016).

In addition, understanding the system’s influence on adaptive radiation will require investigating aspects of

cichlid behavior and ecology not considered within the scope of this study (Faucher et al., 2010; Stewart

et al., 2014; Butler and Maruska, 2015, 2016; York et al., 2018), and evaluating lateral line systems in a multi-

modal sensory context (Parry et al., 2005; Schwalbe and Webb, 2015). Our findings could extend to other

teleost fish radiations, including the cichlid fish radiations of Lake Victoria and Lake Tanganyika. We note

that at least one genus in the Lake Tanganyika radiation, Trematocara, contains species with enlarged

lateral line pores comparable to those of the Lake Malawi Aulonocara genus (Takahashi, 2002).

Limitations of the Study

Our study focused on interspecific morphological variability in cranial lateral line morphology, yet ontoge-

netic variation in cichlid lateral line morphology has been shown in some cichlid species (Bird and Webb,

2014; Webb et al., 2014), and it is possible that sexual dimorphism in morphology may be present if this is

associated with ecological factors such as diet. We included one specimen per species in this study, which

enabled us to capture broader patterns of interspecific variation. However, a more detailed understanding

of intraspecific ontogenetic or sex-associated morphological variation is required.

Our study considered phylogenetic relationships from the perspective of membership of monophyletic

clades, as resolved through analyses of whole-genome data (Malinsky et al., 2018). However, whole-

genome data are currently not available for all 52 species considered in this study, so we assumed clade

membership of some species based on other phylogenetic studies, or knowledge of the phylogenetic

placement of congeneric species (Figure S1). In practice, it may not be possible to fully account for phylo-

genetic history during interspecific analyses across the diversity of cichlids in the Lake Malawi radiation:

even with whole-genome data it is not possible to generate a single tree that consistently and adequately

resolves all species relationships due to hybridization and incomplete lineage sorting (Malinsky et al.,

2018). Finally, the lateral line system is thought to be important for several aspects of species behavior

Figure 5. Continued

placed at equal distances between landmarks along blue lines. Full explanation of landmark positioning is provided in

Figure S2.

(A–C, right) Variation in gross cranial morphology among our 52 study specimens. Variation is shown for each landmark

set using canonical variate analysis, displaying canonical variate (CV) scores on the first two axes. Individuals are grouped

by diet, and for CV scores, 95% confidence ellipses are shown for all dietary groupings with n > 2. Changes in landmark

arrangement associated with each axis are illustrated on wireframe graphs (Klingenberg, 2011). Wireframe graphs along

each axis show consensus landmark arrangement for the 52 species (gray dots and lines) and landmark position shifts

associated with each CV (black dots and lines). The two wireframe graphs on each axis illustrate changes in landmark

positioning associated with the highest and lowest values for each CV on that axis (black dots and lines).

(A) Gross lateral head cranial morphology.

(B) Gross ventral head cranial morphology.

(C) Lower pharyngeal jaw morphology.
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and ecology we did not consider here, including shoaling behavior (Faucher et al., 2010), aggressive intra-

specific interactions (Butler and Maruska, 2015), and habitat light level (Schwalbe et al., 2012). Further

comparative work will help to establish whether these factors have additionally contributed to the remark-

able diversity we observed.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.05.016.
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Supplemental Information:  

Edgley, D.E. and Genner, M.J. Adaptive diversification of the 

lateral line system during cichlid fish radiation 

 

Table S1. The specimens used in this study, ordered alphabetically. Related to Figures 2-5. 

All specimens collected by M.J. Genner unless otherwise stated. Phylogenetic group derived primarily 

from Malinsky et al. (2018) (Figure S1). Diet, habitat and depth data primarily from Ribbink et al. 

(1983), Turner (1996), Genner and Turner (2012), Konings (2016), or personal observations. In depth 

sources of dietary information are listed. Head size is defined as distance from anterior limit of 

dentary bone to posterior limit of operculum.  BI=Benthic Invertebrates; Z=Zooplankton; A=Algae; 

F=Fish; S=Scales/fins; M=Molluscs. For dietary references: [1] Turner (1996); [2] Konings (2016) [3] 

Duponchelle et al. (2005); [4] Ribbink et al. (1983); [5] Hanssens (2004); [6] Genner et al., (2007). 

*Putatively undescribed taxon. **Wild caught by S.M. Grant Ltd, specific location of capture 

unknown. ***Dietary information derived from personal observations, from examining gut contents 

or feeding behaviour. †For Hemitaeniochromis sp. ‘longjaw’, diet was assigned based on morphology 

and the fact that all other Hemitaeniochromis species are piscivores/paedophages (From both Turner, 

1996 and Konings, 2016). 

Species Collection Date 

(mm/yy) 

Sex Sampling 

Location 

Diet Minimum 

Depth (m) 

Maximum 

Depth (m) 

Head Size 

(mm) 

Habitat Phylogenetic 

group 

Alticorpus peterdaviesi 02/05 M Monkey Bay, 

Malawi 

BI [1] 50 125 35.78 Soft Deep Benthic 

Astatotilapia calliptera 07/11 M Lake Itamba, 

Tanzania 

BI*** 0 9 25.15 Soft Mbuna 

Aulonocara jacobfreibergi 09/14 M Cape Maclear, 

Malawi 

BI [1] 2 35 32.20 Hard 

Cave 

Deep Benthic 

Aulonocara nyassae 09/14 F Cape Maclear, 

Malawi 

BI [1] 15 50 27.13 Soft Deep Benthic 

Aulonocara sp. ‘copper’ 02/05 M Monkey Bay, 

Malawi 

BI [1] 60 120 34.08 Soft Deep Benthic 

Aulonocara sp. ‘yellow collar’ 09/14 M Cape Maclear, 

Malawi 

BI [1] 40 95 25.06 Hard 

Cave 

Deep Benthic 

Aulonocara stuartgranti 09/12 M Unknown** BI [1] 5 15 33.65 Soft Deep Benthic 

Buccochromis nototaenia 09/14 F Lake Malombe, 

Malawi 

F [1,2] 18 44 42.63 Soft Shallow Benthic 

Copadichromis chrysonotus 08/14 F Mangochi, Malawi Z [1,2] 0 30 29.85 Pelagic Utaka 

Copadichromis cf. likomae 09/14 M Cape Maclear, 

Malawi 

Z [1] 0 30 33.60 Soft Utaka 
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Copadichromis virginalis 09/14 M Cape Maclear, 

Malawi 

Z [1,3] 7 114 29.48 Pelagic Utaka 

Ctenopharynx nitidus 09/14 F Cape Maclear, 

Malawi 

BI [1,2] 18 65 32.39 Soft Shallow Benthic 

Cynotilapia zebroides 06/97 M Monkey Bay, 

Malawi 

Z [4] 0 40 20.35 Hard Mbuna 

Dimidiochromis 

compressiceps 

11/11 F Mangochi, Malawi F [1,2] 0 10 39.84 Weed Shallow Benthic 

Dimidiochromis dimidiatus 09.14 F Cape Maclear, 

Malawi 

F [1,2] 0 5 39.71 Soft Shallow Benthic 

Dimidiochromis strigatus 08/14 M Mangochi, Malawi F [1,2] 2 10 48.13 Soft Shallow Benthic 

Diplotaxodon greenwoodi 11/04 F Cape Maclear, 

Malawi 

F [1,2] 50 148 57.53 Pelagic Diplotaxodon 

Diplotaxodon limnothrissa 08/04 M Cape Maclear, 

Malawi 

Z [1,3] 20 220 40.4 Pelagic Diplotaxodon 

Diplotaxodon sp. ‘macrops 

ngulube’ 

02/05 M Nkhata Bay, 

Malawi 

Z [1] 50 100 42.47 Pelagic Diplotaxodon 

Fossarochromis rostratus 06/97 F Nkhata Bay, 

Malawi 

BI [1,2] 0 10 29.91 Soft Shallow Benthic 

Genyochromis mento 06/97 F Nkhata Bay, 

Malawi 

S*** [1,2] 0 40 27.07 Hard Mbuna 

Hemitaeniochromis sp. 

‘longjaw’* 

08/14 F Mangochi, Malawi F† 35 55 33.35 Soft Shallow Benthic 

Hemitaeniochromis 

spilopterus 

03/05 M Monkey Bay, 

Malawi 

F [1,2] 28 32 36.45 Soft Shallow Benthic 

Hemitilapia oxyrhynchos 08/14 M Mangochi, Malawi A [1,2] 2 20 35.21 Weed Shallow Benthic 

Iodotropheus sprengerae 01/11 F Chiofu, Malawi A [2,4] 0 40 18.89 Hard Mbuna 

Labeotropheus trewavasae 09/12 M Unknown** A [2,4] 0 34 21.70 Hard Mbuna 

Lethrinops gossei 05/05 M Tokombo, Malawi BI [1,3] 46 128 41.97 Soft Deep Benthic 

Lethrinops lethrinus 09/14 M Lake Malombe, 

Malawi 

BI [1] 0 34 35.72 Soft Shallow Benthic 

Lethrinops sp. ‘yellow head’ 09/14 M Cape Maclear, 

Malawi 

BI [1] 40 75 31.47 Soft Deep Benthic 

Lethrinops sp. ‘zebra’ 05/05 M Nkhata Bay, 

Malawi 

BI [1] 50 100 34.85 Soft Deep Benthic 

Lichnochromis acuticeps 09/14 F Cape Maclear, 

Malawi 

F [1,2] 5 15 30.33 Hard Shallow Benthic 

Melanochromis parallelus 06/97 F Nkhata Bay, 

Malawi 

A [2,4] 0 40 19.70 Hard Mbuna 

Mylochromis anaphyrmus 09/14 F Cape Maclear, 

Malawi 

M [1,3] 15 72 23.83 Soft Shallow Benthic 

Nimbochromis livingstonii 09/12 M Unknown** F [1,2] 2 114 36.42 Hard Shallow Benthic 

Otopharynx tetrastigma 09/14 M Cape Maclear, 

Malawi 

BI [1,2] 1 7 40.38 Soft Shallow Benthic 

Pallidochromis tokolosh 05/05 M Kasuza, Malawi F [1] 50 126 78.42 Pelagic Diplotaxodon 

Placidochromis electra 09/12 F Unknown** BI [1,2,5] 0 15 29.44 Soft Shallow Benthic 

Placidochromis milomo 05/05 F Monkey Bay, 

Malawi 

BI [1,2,5] 4 35 55.92 Hard Shallow Benthic 

Placidochromis platyrhynchos 09/14 M Cape Maclear, 

Malawi 

BI [1,5] 118 126 30.56 Soft Deep Benthic 

Placidochromis polli 03.05 M Monkey Bay, 

Malawi 

BI [1,5] 45 128 38.87 Soft Deep Benthic 

Pseudotropheus aurora 09/14 M Cape Maclear, 

Malawi 

A [4] 3 12 23.77 Hard Mbuna 

Pseudotropheus sp. ‘elongatus 

aggressive’ 

09/14 M Cape Maclear, 

Malawi 

A [4] 0 25 20.84 Hard Mbuna 

Rhamphochromis esox 07/04 M Nkhata Bay, 

Malawi 

F [1,2] 2 65 51.49 Pelagic Rhamphochromis 

Rhamphochromis sp. 

‘chilingali’ 

11/04 F Lake Chilingali, 

Malawi 

F*** [6] 0 100 30.39 Soft Rhamphochromis 

Rhamphochromis sp. 

‘longiceps grey-back’ 

02/05 M Dwangwa, Malawi F [1] 20 90 51.18 Pelagic Rhamphochromis 



 

3 

 

Sciaenochromis 

psammophilus 

10/04 M Maldeco Fisheries, 

Malawi 

F [1,2] 5 60 46.50 Soft Shallow Benthic 

Stigmatochromis modestus 09/14 F Cape Maclear, 

Malawi 

F [2] 5 20 34.65 Hard Shallow Benthic 

Stigmatochromis sp. ‘guttatus’ 06/96 M Nkhata Bay, 

Malawi 

F [2] 24 100 37.11 Soft Shallow Benthic 

Taeniochromis holotaenia 09/14 F Cape Maclear, 

Malawi 

F [1,2] 15 64 31.70 Soft Shallow Benthic 

Taeniolethrinops praeorbitalis 08/14 F Mangochi, Malawi BI [1,3] 2 55 54.82 Soft Shallow Benthic 

Trematocranus placodon 04/05 M Monkey Bay, 

Malawi 

M [1,2] 2 20 41.89 Soft Shallow Benthic 

Tyrannochromis macrostoma 06/97 M Nkhata Bay, 

Malawi 

F [1,2] 0 40 37.52 Hard Shallow Benthic 
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Table S2. Scanning information for all 52 species, and all 14 scans. Related to Figures 1-5. 

Scans were carried out in two sessions, on the 23rd January 2017 and 6th February 2017. The scanner 

used was a Nikon XTH225ST system in the Life Sciences Building at the University of Bristol. Each 

scan lasted 45-60 minutes. 

Scan Species Analysis 

order 

Species ID Scan Voxel 

Size (mm) 

X-ray 

kV 

X-ray 

µA 

X-ray 

mW 

No. 

projections 

Date of 

scan 

DELL16-

01_LOWER 

Dimidiochromis compressiceps 13 213 0.067 130 230 29900 3141 06/02/2017 

Aulonocara jacobfreibergi 2 123 

Lethrinops lethrinus 27 185 

Melanochromis parallelus 32 MP 

DELL16-

01_UPPER 

Aulonocara nyassae 3 134 0.064 130 230 29900 3141 06/02/2017 

Copadichromis virginalis 10 152 

Stigmatochromis sp. ‘guttatus’ 45 SG 

Nimbochromis livingstonii 33 NL 

DELL16-

02_LOWER 

Taeniochromis holotaenia 48 111 0.066 130 205 26650 3141 06/02/2017 

Lichnochromis acuticeps 25 130 

Placidochromis platyrhynchos 39 160 

Stigmatochromis modestus 46 118 

DELL16-

02_UPPER 

Buccochromis nototaenia 7 175 0.068 130 205 26650 3141 06/02/2017 

Ctenopharynx nitidus 9 135 

Lethrinops sp. ‘yellow head’ 29 164 

Labeotropheus trewavasae 28 LT 

DELL16-

03_LOWER 

Genyochromis mento 20 200 0.068 130 235 30500 3141 23/01/2017 

Tyrannochromis macrostoma 49 201 

Fossorochromis rostratus 19 202 

Rhamphochromis sp. ‘chilingali’ 42 203 

DELL16-

03_UPPER 

Cynotilapia zebroides 11 204 0.081 130 225 29250 3141 23/01/2017 

Diplotaxodon sp. ‘macrops ngulube’ 17 205 

Placidochromis milomo 38 206 

DELL16-

04_LOWER 

Diplotaxodon limnothrissa 16 207 0.074 130 225 29250 3141 23/01/2017 
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Lethrinops sp. ‘zebra’ 30 209 

Mylochromis anaphyrmus 31 132 

Pseudotropheus sp. 'elongatus aggressive' 37 129 

DELL16-

04_UPPER 

Placidochromis polli 40 210 0.074 130 225 29250 3141 23/01/2017 

Hemitaeniochromis sp. 'longjaw' 21 33 

Copadichromis chrysonotus 12 32 

Hemitaeniochromis spilopterus 23 211 

DELL16-

05_LOWER 

Diplotaxodon greenwoodi 15 215 0.073 130 205 26650 3141 06/02/2017 

Otopharynx tetrastigma 34 217 

Trematocranus placodon 50 220 

Copadichromis cf. likomae 8 167 

DELL16-

05_UPPER 

Iodotropheus sprengerae 24 214 0.064 130 205 26650 3141 06/02/2017 

Astatotilapia calliptera 0 218 

Aulonocara stuartgranti 5 219 

Dimidiochromis dimidiatus 14 162 

DELL16-

06_LOWER 

Pseudotropheus aurora 35 159 0.068 130 205 26650 3141 06/02/2017 

Aulonocara sp. ‘yellow collar’ 6 144 

Hemitilapia oxyrhynchos 22 40 

Placidochromis electra 36 221 

DELL16-

06_UPPER 

Sciaenochromis psammophilus 47 222 0.068 130 205 26650 3141 06/02/2017 

Alticorpus peterdaviesi 4 223 

Aulonocara sp. ‘copper’ 1 224 

Lethrinops gossei 26 225 

DELL16-09 Dimidiochromis strigatus 18 39 0.085 130 220 28600 3141 06/02/2017 

Taeniolethrinops praeorbitalis 51 31 

Rhamphochromis sp. 'longiceps grey-back’ 44 212 

Rhamphochromis esox 43 208 

DELL16-10 Pallidochromis tokolosh 41 216 0.076 130 205 26650 3141 06/02/2017 
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Figure S1. A cladogram for the 52 species included in our study, based primarily on Malinsky et 

al. (2018), coloured by diet. Related to Figures 2-5. 

*Grouping assigned based on systematic evidence from congenerics (19/52 cases). Aulonocara 

species and the deep water Lethrinops were assigned to the deep benthic group based on both 

morphology and evidence from mtDNA (Genner and Turner 2012; Konings, 2016; Malinsky et al., 

2018). Labeotropeus trewavasae and Lichnochromis acuticeps were assigned to the mbuna and 

shallow benthic groups respectively based on Genner and Turner (2012). Melanochromis parallelus 

was assigned as mbuna based on congeneric Melanochromis elastodema (Genner and Turner, 2012). 
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Pseudotropheus aurora and Pseudotropheus sp. ‘elongatus aggressive’ were assigned to mbuna based 

on the congeneric Pseudotropheus acei (Joyce et al. 2011; Malinsky et al. 2018). Hemitaeniochromis 

sp. ‘longjaw’ was assigned to shallow benthic based on congeneric Hemitaeniochromis spilopterus 

(Malinsky et al. 2018). Sciaenochromis psammophilus was assigned as shallow benthic based on 

congeneric Sciaenochromis benthicola (Genner and Turner, 2012). Tyrannochromis macrostoma was 

assigned as shallow benthic based on congeneric Tyrannochromis nigriventer (Malinsky et al. 2018).  
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Figure S2. Landmark configurations used in this study, illustrated on 2D images from microCT 

reconstructions of Astatotilapia calliptera. Related to Figures 3-5. 
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Red dots are landmarks and yellow dots are sliding semi-landmarks. Semi-landmarks are placed at 

equal distance between landmarks along blue lines. Semi-landmarks were digitised at equal distance 

between the two landmarks, and were converted to landmarks for analysis. (A) Ventral head lateral 

line pore landmarks. Groups of 4 landmarks were digitised in the following order: left pore limit; right 

pore limit; anterior pore limit; posterior pore limit. 17-19 were digitised: left pore limit; anterior pore 

limit; right pore limit. 24-26 were digitised: left pore limit; posterior pore limit; right pore limit. (B) 

Preopercular lateral line pore landmarks. Groups of 4 landmarks were digitised as follows: dorsal pore 

limit, ventral pore limit, anterior pore limit, posterior pore limit. (C) Orbital lateral line pore 

landmarks. Groups of 4 landmarks were digitised as follows: anterior pore limit, posterior pore limit, 

dorsal pore limit, ventral pore limit. (D) Gross ventral head landmarks. Structures referred to as being 

‘left’ are on the upper half, and those referred to as ‘right’ are on the lower half. 1: anterior limit of 

meeting point of left and right dentary bones; 2: posterior outer limit of right dentary bone; 3: 

Posterior inner limit of right dentary bone; 4: posterior limit of meeting point of left and right dentary 

bones; 5: posterior inner limit of left dentary bone; 6: posterior outer limit of left dentary bone; 7: 

right-most limit of right angulo-articular bone; 8: posterior limit of right angulo-articular bone; 9: 

posterior limit of inner edge of right angulo-articular bone; 10: anterior limit of right angulo-articular 

bone; 11: anterior limit of left angulo-articular bone; 12: posterior limit of inner edge of left angulo-

articular bone; 13: posterior limit of left angulo-articular bone; 14: left-most limit of left angulo-

articular bone; 17-21: Sliding landmarks along outer edge of right dentary bone, from in line with 

midpoint of anterior-most right dentary pore (17) to in line with midpoint of posterior-most right 

dentary pore (21); 22-26: Sliding landmarks along outer edge of left dentary bone, from in line with 

midpoint of anterior-most left dentary pore (22) to in line with midpoint of posterior-most left dentary 

pore (26); 27-31: Sliding landmarks along outer edge of right preoperculum, from in line with 

midpoint of anterior-most right preopercular pore (27) to in line with midpoint of 3rd anterior-most 

right preopercular pore (31); 32-36: Sliding landmarks along inner edge of right preoperculum from in 

line with midpoint of anterior-most right preopercular pore (32) to in line with midpoint of 3rd 

anterior-most right preopercular pore (36); 37-41: Sliding landmarks along inner edge of left 

preoperculum from in line with midpoint of anterior-most left preopercular pore (37) to in line with 
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midpoint of 3rd anterior-most left preopercular pore (41); 42-47: Sliding landmarks along outer edge 

of left preoperculum from in line with midpoint of anterior-most left preopercular pore (42) to in line 

with midpoint of 3rd anterior-most left preopercular pore (47). (E) Gross lateral head landmarks. 1: 

anterior limit of dentary bone; 2: dorsal limit of premaxilla; 3: posterior limit of oral cavity; 4: ventral 

limit of premaxilla; 5: Joint of angulo-articular and quadrate; 6: dorsal limit of bony orbit; 7: ventral 

limit of bony orbit; 8: anterior limit of bony orbit; 9: posterior limit of bony orbit; 10: anterior limit of 

supraoccipital crest; 11: dorsal limit of supraoccipital crest; 12: posterior ventral point of 

supraoccipital crest; 13: anterior limit of quadrate; 14: posterior limit of operculum; 15: anterior limit 

of cleithrum; 16: posterior limit of pelvic girdle; 17-24: sliding landmarks along dorsal/anterior edge 

of preoperculum; 25-36: sliding landmarks along ventral/posterior edge of preoperculum. (F) Lower 

pharyngeal jaw landmarks followed Muschick et al. 2011.  
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Figure S3. Principal Component Analysis of gross lateral head landmarks of individuals 

subjected to repeated landmarking. Related to Figures 3-5. 

Landmarks used are shown in Figure S1E. Landmark data was aligned using Procrustes analysis. Shapes 

indicate landmarking event (square = original, repeat = circle), while each colour represents a separate 

individual (=species).  
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Transparent Methods 

Contact for reagent and resource sharing 

Further information and requests for resources and files should be directed to and will be fulfilled by 

Duncan Edgley (duncan.edgley@bristol.ac.uk). 

 

Experimental model and subject details 

Our study included one specimen from each of 52 cichlid species from the Lake Malawi catchment 

(Lake Malawi, Lake Malombe, Lake Itamba and Lake Chilingali), collected between 1997 and 2014 

(Table S1). Specimens were chosen to represent the phylogenetic, morphological and ecological 

diversity within the flock (Genner and Turner, 2012; Konings, 2016; Malinsky et al., 2018). Species 

from all major trophic groups, habitats and depths were included in the sample set (Turner, 1996; 

Konings, 2016) (Table S1). Specimens had been fixed in either formalin or ethanol in the field, and 

later transferred to 70% ethanol. 

 

This study focusses on larger patterns of interspecific variation across the Lake Malawi species flock, 

and like equivalent studies of other aspects of morphological variation in adaptive radiations we use 

one representative individual of each species (Young et al., 2009; Cooney et al., 2018). We note that 

by including one only specimen of each species, we do not capture intraspecific variation, and that use 

of more specimens would have increased the precision of our estimates. 

 

MicroCT Scans and 3D Reconstructions 

A Nikon XTH225ST microCT scanning system was used to generate the images. In total fourteen scans 

were conducted, each lasting approximately 45 minutes. Each scan used 3141 projections and included 

between three and six individuals (Table S2). Scan resolution was determined by the size of the region 

of interest for each scan, which in term was determined by specimen size. There was a trade-off between 

mailto:duncan.edgley@bristol.ac.uk
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scan resolution and the size and number of specimens in each scan. To optimise resolution, we 

conducted preliminary scans and carefully observed that the smallest structures of interest (lateral line 

canal pores, and orbital bones) were visible in each slice. We concluded that a voxel size of 60-80µm 

was adequate for the desired analysis. Image stacks from the scans were exported into VG Studio 3.0 

(Volume Graphics GmbH, 2016) and reconstructed into a 3D model of each specimen. From these 3D 

reconstructions, we captured 2D images from the ventral head perspective (Figures S2A and D) and 

lateral head perspective (Figure S2B and E). We used Avizo 8.0 (Hillsboro, OR) to isolate the lower 

pharyngeal jaw (LPJ) from the rest of the skeleton, and images of the resulting isolated LPJs were 

captured from the dorsal perspective (Figure S2F). The LPJ was included in our analysis to: i) test the 

expected relationship between diet and LPJ morphology previously shown in Tanganyika cichlids 

(Muschick et al., 2011), and ii) provide a method of evaluating the ability our analytical approach to 

resolve associations between morphology and ecological variables. 

 

Landmark Digitisation 

Lateral line canal landmarks were chosen to capture information on the size and distribution of pores in 

the cranial lateral line canal system (Figure S2A-C). Some cranial canal pores could not be seen clearly 

enough to be consistently and accurately landmarked in all 52 scans (such as pores of the post-otic and 

supratemporal canals) and were therefore omitted. To ensure the number of landmarks did not exceed 

the sample size (Webster and Sheets, 2010), we only digitised the pores on one side of the fishes’ heads 

when quantifying ventral head lateral line pore morphology, as illustrated in Figure S2A. Gross skeletal 

morphology landmarks (Figure S2E) were chosen to reflect elements with relevance to the lateral line 

system, for example the shape of the dentary bones and the preoperculum. Skeletal elements were 

chosen which were clearly visible on all species and all qualities of scan. To capture the shape of curved 

elements such as the preoperculum and the dentary bones, we appended equidistant sliding semi-

landmarks to curves between two landmarks. For analysis purposes these were converted to landmarks 

in tpsUtil64 1.74 (SUNY Stony Brook, NY). Landmarks used for comparing LPJ morphology followed 

Muschick et al., 2011 (Figure S2F).  
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Landmarks and semi-landmarks were digitised using tpsDig2 2.30 for Windows (SUNY Stony Brook, 

NY), using the images exported from VG Studio 3.0. Image files were constructed using tpsUtil64 1.74, 

as was conversion of semi-landmarks to landmarks, and construction of slider files (to specify the 

identity of semi-landmarks). Semi-landmarks were converted to landmarks in tpsUtil64 1.74 for 

analysis in MorphoJ 2.0 (Klingenberg, 2011). Through Procrustes analysis, we accounted for the effect 

of  rotation, translation and scaling. In instances where pores appeared closed, yet the location was still 

typically discernible, and four landmarks were placed on top of each other. In total we had six sets of 

landmarks to digitise, with each set comprising 52 images. Each landmark set was digitised in one 

session, and by the same person (D. Edgley). 

 

Ecological data collection 

Ecological variables with potential associations with craniofacial morphology were chosen, including 

diet, substrate type and depth (Turner, 1996; Konings 2016). Species were assigned to one of six 

primary dietary classes: benthic algivore, benthic arthropod feeder, zooplanktivore, molluscivore, 

piscivore and scale eater/fin biter (Ribbink et al., 1983; Turner, 1996; Hassens, 2004; Duponchelle et 

al., 2005; Hanssens, 2004; Genner et al., 2007; Konings 2016). They were also assigned one of five 

primary habitats: soft substrate, hard substrate, weed, cave and pelagic (Turner, 1996; Konings 2016). 

Minimum and maximum depth was derived from the literature (Ribbink et al., 1983; Turner, 1996; 

Genner and Turner, 2012; Konings, 2016) or given as best estimate from personal observations (M. 

Genner) where literature was unavailable. We also assigned species to one of six major phylogenetic 

groupings: Diplotaxodon-Pallidochromis; mbuna (including Astatotilapia calliptera); 

Rhamphochromis; utaka; deep-benthic; and shallow-benthic (Genner and Turner, 2012; Malinsky et al., 

2018) (Figure S1). Ecological variables are summarized in Table S1. 

Quantification and statistical analysis 
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We carried out a Procrustes fit on each set of landmarks, aligned by principal axes in MorphoJ 2.0 

(Klingenberg, 2011).  Raw Procrustes coordinates were then standardised (mean = 0, SD = 1). Distance-

based redundancy analyses (dbRDA) were used to investigate relative strengths of association between 

predictor variables (diet, habitat, minimum depth, maximum depth, phylogenetic grouping, and the 

relevant morphological variables) and cranial lateral line canal pore morphology (Legendre and 

Anderson, 1999) (Figure 3). Data (categorical ecology variables, phylogenetic grouping and 

standardised Procrustes coordinates) were converted to dissimilarity matrices in PAST 3.15 (Oslo). The 

package “vegan 2.4-3” was used to carry out the analysis in R 2.15.1 for Windows (R Core team, 2012) 

(Oksanen et al., 2017): Head size, minimum depth and maximum depth were imputed as continuous 

variables. We used the ordistep procedure to identify the optimal model, using default settings. 

Significance tests were carried out with 10,000 permutations. To ordinate morphological variables in 

relation to ecological grouping, we used Canonical Variate Analysis (CVA), in MorphoJ (Figure 4; 

Figure 5) (Klingenberg, 2011). To visualise changes in landmark placement associated with each 

canonical variate in relation to consensus landmark arrangement, we constructed wireframe graphs in 

MorphoJ (Figure 4; Figure 5) (Klingenberg, 2011; Klingenberg, 2013). To test for landmark digitization 

error, we re-digitised 20 individuals using gross lateral head landmarks (Figure S2E). We then 

performed a Procrustes alignment using the R package “geomorph” (Adams et al., 2018), followed by 

a Principal Component Analysis on the Procrustes coordinates. We quantified differences among 

species and landmarking events (original vs. repeat) using Analysis of Variance using R on each of the 

two main Principal Component axes, that collectively captured 78.1% of the variance. We found highly 

significant differences between species (PC1, F(19, 19) = 20391.93, P < 0.001; PC2, F(19,19) = 1824.47, P 

< 0.001), but not between landmarking events (PC1, F(1, 19) = 1.017, P = 0.326; PC2, F(1,19) = 1.931, P 

= 0.181) (Figure S4).  
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