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ABSTRACT 
 
 

Origins of the Y Genome in Elymus 
 
 

by 
 
 

Pungu Okito, Master of Science 
 

Utah State University, 2008 
 
 
Major professor:  Dr. Yanju Wu 
Department:  Plants, Soils, and Climate 
 
 

The Triticeae tribe DUMORTER in the grass family (Poaceae) includes the 

most important cereal crops such as wheat, barley, and rye.  They are also 

economically important forage grasses.  Elymus is the largest and most complex 

genus with approximately 150 species occurring worldwide.  Asia is an important 

centre for the origin and diversity of perennial species in the Triticeae tribe, and 

more than half of the Elymus are known to occur in the Asia.  Cytologically, Elymus 

species have a genomic formula of StH, StP, StY, StStY, StHY, StPY, and StWY.  

About 40% of Elymus species are still unknown for the genomic constitution and 

some have questionable genomic combination.  However, the origin of the Y 

genome is unknown.  In order to identify the origin of the Y genome, 212 

accessions of Elymus, Pseudoroegneria, and Hordeum species were tested using a 

Y genome specific Sequence Tagged Site (STS) marker.  We obtained evidence 

supporting the hypothesis that the Y genome in some Elymus species shared a 

progenitor genome with the St genome.  Our study suggested that Pseudoroegneria 
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spicata (PI 232134), P. ferganensis (T-219), and P. libanotica (PI401326) are the 

donors of the Y genome in the Elymus species.  The DNA sequences of the Y-

genome marker in these three Pseudoroegneria species are more similar to those 

obtained from Elymus species having the Y genome than those from Hordeum 

marinum and H. murinum, making the Xa and Xu genomes less likely the donors of 

Y genome. 

(76 pages) 
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INTRODUCTION 

Elymus 

 Elymus L. (Triticeae, Poaceae) is composed of approximately 150 perennial 

species; thus, it is the largest and most morphologically diverse genus in the Triticeae.  

Elymus plants are generally green, lax-leafed, caespitose, self-pollinating grasses.  Asia 

has the largest number of Elymus species, many of which have never been thoroughly 

studied.  Hence the genome constitution of many Elymus is not known (Barkworth, 

http://herbarium.usu.edu/Triticeae/genomes.htm).  The genus Elymus is a complex group 

of polyploids (more than 2x chromosomes) originated through a typical alloploidy 

(multiple copies of different genomes) process (Liu et al. 2006).  It has been reported by 

Stebbins and Ayala (1985)  that more than 80% of the Gramineae family have undergone 

polyploidization during their speciation.  The occurrence of polyploidy in Elymus may 

contribute to the facts that they are more resistant to cold, heat, and drought, and are 

better adapted to new environmental conditions than their diploid progenitors.  According 

to Stebbins and Vaarma (1954)  the ancestors of Pseudoroegneria spicata and Hordeum 

migrated from Asia to North America, hybridized and gave rise to some of the North 

America polyploids, and then later migrated to South America.  Polyploid species of 

Hordeum stenostachys are more widespread than diploid.  Therefore, the genus Elymus is 

a model for studying morphological variability, phenotypical plasticity, and natural 

hybridization.  The genus also provides excellent plant materials for cytogenetics, 

molecular genetics, and phylogeny investigations (Diaz et al. 1999b) .   
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The designation of individual basic genomes has been a problem in Triticeae 

since the tribe has many poorly studied species (Wang and Jensen 1994).  Among Elymus 

species, some still have questionable genomic constitutions and forty percent still have 

unknown genomes (Assadi and Runemark 1995; Svitashev et al. 1996).  The relation 

between the genomes in Triticeae perennial species is not fully established. 

 There has been confusion between some genome symbols used by scientists and 

researchers who were studying wheat and related species in the Triticeae tribe.  Several 

researchers have proposed a new system of designation which is less confusing and easy 

to understand (Wang and Jensen 1994; Wang et al. 1995) To design a genome they 

decided: (1) to use bold face, (2) the unknown genome should be designated with the 

letter X followed by a lower-case letter, for example, Xu for Hordeum murinum and Xa 

for Hordeum marinum, and (3) Y genome is retained to design an unidentified diploid 

species that contributed a genome to some species of Elymus. 

 In Triticeae, the basic haplome (individual with n chromosomes) is x = 7 (Wang 

et al. 1995).  The number of chromosomes in Elymus is between 2n = 4x = 28 to 2n = 8x 

= 56 (Jensen and Salomon 1995; Jensen and Asay 1996; Ellneskog-Staam et al. 2007). 

  Lu and Salomon (1993a) reported that Asia is an important center of origin and 

diversity for Elymus.  Asia has the highest number of Elymus species, differing in 

polyploidy levels, morphological characters, and genomic combinations.  They 

distributed the Elymus species according to their genomic constitution and geographic 

distribution in Asia (Figs. 1-4). 

Geographically, Elymus species from the Tibetan plateau of China have a higher 

genetic variation than those found in the Inner Mongolian plateau.  In contrast, E. glaucus  
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Fig. 1.  A general distribution map of StH genome Elymus species in Asia.  Excerpted 
from Lu (1993a) 

 

 
 
Fig. 2.  A general distribution of StY and StStY genome of Elymus species in Asia.  
Excerpted from Lu (1993a) 
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Fig. 3.  A general distribution of StYH genome Elymus species in Asia.  Excerpted from 
Lu (1993a  
 

 
 
Fig. 4.  A general distribution of StYP genome Elymus species in Asia.  Excerpted from 
Lu (1993a) 
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and E. longiaristatus have the lowest genetic diversity values (Yan et al. 2007).  Lu and 

Salomon (1993b) reported that the degree of genomic affinity between Elymus species is 

and E. longiaristatus have the lowest genetic diversity values (Yan et al. 2007).  Lu and 

Salomon (1993b) reported that the degree of genomic affinity between Elymus species is 

to a far larger degree associated with their geographic distribution than their 

morphological similarity.  The same results have been found with the StY genomes in 

Elymus nutans, which have the highest homology with the corresponding genomes in 

tetraploids such as Elymus pseudonutans, which occurs in the same region as Elymus 

nutans.  Lu (1993a) also found that StY in the tetraploid E. caucasius from West Asia 

and the StYW genomes in hexaploid E. scabrus from Australia have the lowest 

homology with StY genomes in E. nutans.  Lu (1993a) reported that the genomic affinity 

of Elymus and Pseudoroegneria gradually decreases with increasing geographic distance 

between the species.   

 Cytogenetic techniques have been used extensively in studies of Elymus species 

to clarify their evolutionary origins and genetic relationships.  Dewey (1980) was the first 

to describe the genomic constitution of Central Asian hexaploid (2n = 42).  Based on the 

system of classification and definition of the genome, it has been suggested that the 

genome combinations for Elymus species include: StH, StY, StP, StStH, StHY, StPY, 

and StWY (Dewey 1984; Baum et al. 1991; Wang 1992; Wang et al. 1995; Larson et al. 

2003) 

  Chromosome pairing in hybrids between Elymus and Pseudoroegneria species 

demonstrated that all the Elymus species share a common St genome originated from the 

genus Pseudoroegneria (Dewey 1980; Wang 1992).  The H genome originated from 
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Hordeum; P from Agropyrom and W from Australopyron.  The letters X and Y have been 

assigned by various authors to denote the unidentified genomes in Triticeae species 

(Wang et al. 1995).  The Y genome is found in many polyploidy species of Elymus from 

Central Asia, eastern to Japan (Dewey 1980).  About 30 StY genome Elymus species are 

found restrictedly in temperate Asia (Liu et al. 2006).  Torabinejad and Mueller (1993a)  

experimentally demonstrated that E. rectisetus and E. scabrus, which are endemic to New 

Zealand and Australia, shared the three genomes, St, Y, and W.  The W-genome in the 

two genera was reported to have fairly high homology, but the W genome has very low 

homology with any other genomes in Elymus (Torabinejad and Mueller 1993a) . 

 The chromosome pairing studies suggested that all the North American species of 

Elymus are StStHH allotetraploids (Mason-Gamer et al. 2002).  Elymus canadensis is an 

example of tetraploid (2n = 2x = 28) with a basic genome combination of StStHH.  

 Analysis of chromosome-pairing confirmed the presence of the St and Y genomes 

in E. borianus and suggested that the genomic formula of this species should be StYX, 

with X and Y symbolizing the unknown genomes (Svitashev et al. 1998).    

  From cytological analysis of artificial hybrids among StY species, evidence 

suggested that the degree of chromosome pairing in the hybrids gradually decrease with 

increase in geographical distance between the localities of their parental species (Lu and 

Salomon 1993b; Liu et al. 2006). 

 In addition to being the largest genus in the Triticeae, Elymus is also the most 

widely distributed (Dewey 1984; Jensen and Asay 1996).  Elymus occur from the Arctic, 

to temperate and subtropical regions, and they are most abundant in Asia and North 

America.  The genus extends from North America into Europe, South America, and 
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Australia (Barkworth and Dewey 1985; Wang 1992; Jensen and Asay 1996; Lewis et al. 

1996).  Approximately 80 of the known Elymus species originated in Asia.  North 

America has the second largest number of endemic Elymus, approximately 50 species 

(McMillan and Sun 2004).  Elymus inhabits various ecological niches including 

grassland, semi desert, mountain slopes, valleys, and forest regions (McMillan and Sun 

2004).  Elymus species have been examined in relation to structural and environmental 

variables, including vegetative structure, geographic and topographic position, soil 

physical characteristics and macronutrient levels, temperature, and precipitation, as well 

as factors of disturbance, including fire, light, grazing, and air pollution.   

 Abiotic factors such as waterlogging and salinity are not limiting factors for the 

distribution of Elymus species (Bockelmann and Neuhaus 1999).  However, waterlogging 

can cause severe yield reduction in wheat crops throughout the world (McDonald et al. 

2001).   

 Elymus are characterized as nitrophilous because of the high concentration of 

annual atmospheric nitrogen input of 16 kg ha-1 y-1 (Bockelmann and Neuhaus 1999).  

Distribution of Elymus can also be affected by the availability of additional atmospheric 

nitrogen.  Elymus species are also regarded as halophytic plants and are often found 

growing in salinity affected soils or where they are exposed to salt spray.  These habitats 

include saline semi-deserts, mangrove swamps, marshes, sloughs and seashores. 

 The review of the various species of Elymus might best be presented according to 

their genomic constitutions and geographic distribution. 

 StH genome species.  It is generally known that all American Elymus species 

contain St coming from Pseudoroegneria species and H from Hordeum bogdanii 
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Wilensky (Dewey 1980).  These include Elymus sibiricus, E. caninus, E. alaskanus, E. 

trachycaulus, E. elymoides, E. canadensis, E. lanceolatus, and E. glaucus.   

Elymus caninus (L.) L (2n = 4x = 28) grows from Iceland and the British Isles to 

Siberia and from the Sun-arctics to the Mediterranean (Diaz et al. 1999a; Sun et al. 1999).  

It inhabits forests with shaded canopies (Jensen 2005; Mizianty 2005).  Only two species 

of Elymus are found in Iceland, E. caninus L. and E. alaskanus (Scribn. &  Merr.) Löve.  

E. caninus tends to occur in birch shrubs on rather wet soils.  These two species are 

currently disappearing, probably due to grazing (Ørgaard and Anamthawat-Jónsson 

2001).  E. caninus is widespread, both towards the east and the west of Iceland (Ørgaard 

and Anamthawat-Jónsson 2001).  Elymus trachycaulus (Link) Gould ex Shiners (StH) 

extends from Eurasia through Alaska to Newfoundland, and to Mexico along the Rocky 

Mountains.  Usually it grows in the open forests and along roadsides (Sun et al. 2006).  

The E. trachycaulus complex probably originated from multiple North American 

populations.  There is a high genetic diversity found among species of the E. 

trachycaulus complex of North America (Sun et al. 2006).  Elymus trachycaulus (StH) 

complex is known to form stable hybrids but the genetic basis of the characters used to 

distinguish its taxonomy is not known (Sun et al. 2006).   

Elymus elymoides, having the genome combination StH (Stebbins and Vaarma 

1954), has been reported as the parent in natural hybrids between tetraploid Elymus 

species (Jensen et al. 1999).   

Elymus canadensis L., common name Canada wildrye, is a StH tetraploid (Dewey 

1975) originated from North America and is widely distributed throughout United States 

and northwestern Canada (Park and Walton 1990a).  E. canadensis has been hybridized 
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with other Triticeae grasses and cereals to develop new germplasm better adapted to 

environmental and disease stresses and to study genome relationships (Dewey 1984).  

Park and Walton (1989) reported that the nature of the St and H genomes and genetic 

variability in E. canadensis were not extensively studied.   

Elymus lanceolatus (Scribn.  & Smith) Gould is a StH tetraploid (Dewey 1984; 

Jensen and Wang 1991, 1997); with the common name thickspike wheatgrass.  It is a 

long lived native of northern Great Plains and Intermountain regions of North America 

(Humphrey and Pyke 1997).  It is found on the lower dry plains in the central Idaho and 

up to 10,000 ft in the Wasatch Mountains (Jensen et al. 2001).  It occurs in sagebrush 

steppe, where patchiness of soil resources is important (Jackson and Caldwell 1993).   

Elymus glaucus, blue wildrye, is a native species of North America found on the 

burned-over forest lands.  It is distributed in the western U.S., most commonly found in 

forested areas from western sea coast to the high elevation in the Rocky Mountain 

(Jensen et al. 2001).   

 StY genome species.  Elymus longearistatus (Boiss.) Tzvelev, StY (Jensen and 

Wang 1991), is found on the stony slopes and rocks in the middle and upper mountain 

belts of eastern Asia, and western Pamir of the former USSR, Turkmainia, and Iran 

(Tzvelev 1976).  Geographically, they are located around the Caspian Sea.   

Elymus gmelinii was originally described as Tritcum caninum L.  var.  gmilinii by 

Carl Friedrich Von Ledebour in 1829.  Its habitats include meadows, forest glades and 

sparse forest up to the middle mountain belt of Central Asia, including portions of 

Western Siberia (Jensen and Hatch 1989).  It is also found in the region of Japan 

(Tzvelev 1976; Lu and Salomon 1992).   
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 StPY genome species.  Elymus alatavicus (Drob.) A.  Love (StPY) are natives of 

Central Asia.  They grow on stony slopes and screes in the central and upper mountain 

belts of the Tien-Shan and Pamir-Altai mountain ranges of Central Asia (Tzvelev 

1976;(Tzvelev 1976; Jensen 1990).  Elymus kengii (Keng) Tzvelev (StPY) is a grass 

from west central China (Jensen 1990).  The presence of P genome in the E. kengii 

demonstrated that Agropyrum species have been involved in the evolution of polyploids 

within Elymus (Jensen 1990).   

 StHY genome species.  Elymus drobovii possesses the St, H, and Y genomes 

(Dewey 1980; Dewey 1984; Jensen 1990; Wang et al. 1995), reported that E. drobovii 

was not recognized as a valid species until 1932 when Nevski described it from a 

specimen collected in 1920 in the vicinity of the Tashkent in the former USSR.   

Elymus nutans Griseb is a hexaploid species (2n = 6x = 42) with genomic formula 

of StHY (Lu 1993b).  It has been described in the western Himalaya, but widely 

distributed in Asia and grows in grassland, among the bushes, along the river banks, on 

the mountain slopes and in the swales, at altitudes from 1000 m up to 5000 m (Lu 

1993b).  It is a well-known species in the Elymus genus and covers a large area in China, 

India, Pakistan, Mongolia and Russia, and it occupies various ecological habitats (Lu 

1993b).  Elymus nutans has the highest genomic homology among hexaploid Elymus.   

 StYW genome species.  Elymus rectisetus (Nees in Lehm.) A.  Love & Connor, 

hexaploid, has the genome combination StStYYWW.  Elymus rectisetus and E. scabrus 

are endemic to Australia and New Zealand and both share the same three genomes 

(Torabinejad and Mueller 1993b; Redinbaugh et al. 2000).   
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 Economic importance.  Elymus is an excellent model material for research on 

genetic diversity, cytogenetics, molecular genetics, phylogeny and speciation (Diaz et al. 

1999b).  The genus comprises both wheatgrasses and wildryes.  Only two wheatgrasses 

in Elymus, E. lanceolatus (thickspike wheatgrass) and E. trachycaulus (Link) (slender 

wheatgrass) are agronomically important.  They are known to be drought resistant 

(Dewey 1984; Jensen 1996; Jensen and Asay 1996), and are used for revegetation, soil 

stability, and erosion control (Knapp and Rice 1996).  Elymus trachycaulus (Link) is used 

for restoration of disturbed lands (Brown et al. 1978; Jensen et al. 2001).  It contains 

genes used to improve barley and wheat resistance to Russian wheat aphid (Aung 1991).  

It is a bunchgrass and was first native grass to be used in the revegetation program in the 

western US and Canada.  Elymus trachycaucus, known as slender wheatgrass is a short-

lived native bunchgrass with good seedling vigor and moderate palatability (Jensen et al. 

2001).  Due to its rapid seed germination and establishment, moderate salt tolerance and 

compatibility with other species, it is a valuable component in erosion-control and mine 

land reclamation seed mixes.  Slender wheatgrass is used as a cover or nurse crop during 

establishment of longer lived species (Jensen et al. 2001).   

Because of their excellent forage quality, rich in protein and lysine contents, 

Elymus genus are extensively used for grazing in some regions (Dewey 1984; Liu et al. 

1994; Sun 2002; Marley et al. 2007a; Marley et al. 2007b).  Marley (2007a) suggested 

incorporating alternative forage in the lamb diet to increase live weight and dry matter.   

 In Denmark and the Netherlands, Elymus arthicus have been used for grazing 

cows and sheep.  However, grazing also leads to edaphic factors such as soil compaction, 

high denitrification (nitrogen reduction) and lower mineralization (decomposition of 
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organic matter).  Elymus nutans is among the Elymus species which encompasses many 

economically important forage grasses (E. sibiricus L., E. trachycaulus (LINK) Gouldex 

SHINN., and E. canadensis L.).  Siberian wildrye (Elymus sibiricus L.), is a native 

Alaskan standard forage cultivar in common use in Alaska.  Elymus alaskanus 

(Scribn.and Merr.) Love s.1.  is mostly used for forage in Alaska.  Elymus elymoides, 

bottlebrush squirreltail, provides energy for grazing animals in winter and greens up early 

in spring.  It becomes unpalatable at maturity.  It is used as soil-covering plant for erosion 

control and as successional species in rangeland plantings (Jensen et al. 2001).  Elymus 

canadensis has been used for forage and hybridization with other Triticeae to produce a 

better germplam (Park and Walton 1990b).  It is a robust bunchgrass, well adapted to the 

cold winters and the north.  However, theses species have the lowest palatability and poor 

forage quality (Anng and Walton 1989).   

 Elymus genus has a number of valuable agronomic traits (such as disease 

resistance and stress tolerance, for example.  Elymus athericus is widely adapted and it is 

used for plant improvement of cereal crops such as wheat, barley, and rye (Crane and 

Carman 1987; Dong et al. 1992; Diaz et al. 1999b, a; Sun 2002; Yen et al. 2005; Yan et 

al. 2007).  Geneticists and plant breeders are introducing genes from wild Triticeae 

species into cultivated species such as wheat particularly for disease resistance 

(Hoisington et al. 1999).  

  
Pseudoroegneria 

 Pseudoroegneria (Löve, 1984) consists about 15 species (diploids and tetraploids) 

based on the St genome.  Pseudoroegneria grasses are perennial.  Dewey (1984) stated 
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that all the species of Pseudoroegneria were included in the Agroporym and Elytrigia 

before they were transferred to Pseudoroegneria by Löve (1984). 

 Genomic constitution and distribution.  Pseudoroegneria species are supposed 

to contain only the St-genome based on Löve’s genomic system of classification (Löve 

1984).  However, both artificial and natural hybrids of the StP genome constitution have 

been reported (Wang et al. 1985; Assadi and Runemark 1995).  For example, 

Pseudoroegneria tauri is a true allotetraploid having the StP genome formula (Wang et 

al. 1986; Jensen and Wang 1991).  Wang et al. (1986) reported that there is a natural 

hybrid between an Asian Pseudoroegneria species and crested wheatgrass, which has 

been identified and named Pseudoroegneria deweyi.  These StP species were renamed by 

Yen et al. (2005) as Douglasdeweya wangii and D.  deweyi, respectively.  Some 4x P. 

spicata behaved like allotetraploids during their meiosis. 

 Pseudoroegneria species are distributed in the northern hemisphere (Wang et al. 

1985) including North America, Western Europe and Middle East (see Pseudoroegneria 

world distribution map below).  P. spicata (Pursh) A.  Love is the North America species 

of the genus.  Its distribution in the U.S.  seems to be limited in the Western region.  It 

extends the south to north edge of Sonoran Desert, Washington, Montana, Colorado, and 

northern Canada (Jensen et al. 2001).  It is known as bluebunch wheatgrass mostly found 

on the dry mountain slopes and mountain-brush, at middle elevation with sagebrush, 

ponderosa pine, steppes, rocky slopes, and other shrubs and sometimes at subalpine 

elevations (Wang et al. 1985).  It persists on deep well-drained loamy soils.  Bluebunch 

wheat grass can withstand grazing early in the growing season if the soil water is 

adequate and grazing animals are removed before the boot stage.  Pseudoroegneria 
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spicata forma spicata, P. spicata forma inemis and P. spicata forma pubescens are found 

in Oregon, Idaho and Washington State. 

 Pseudoroegneria libanotica is a morphologically variable species with a 

distribution from Lebanon, throughout Turkey, Anatolia, Syria and Iran, to Caucasus, and 

North of Iraq (Assadi and Runemark 1995).  Pseudoroegneria ferganensis (Neski) A 

Löve is native to Tadzhitikistan, in Central Asia (see world Pseudoroegneria distribution 

map, Fig. 5).  They are mostly found in the dry igneous mountain slopes and limestone 

ravines at elevations that range from 1600-2000 m.  Dewey (1981)  reported that E. 

ferganensis grows on stony slopes in the Pamir and Alai mountain  ranges of Central 

Asia (Lu 1993a).  It is a perennial, winter hardly and densely tufted with no rhizome 

when grown under nursery conditions (Dewey 1981). 

Fig. 5.  World distribution map of three Pseudoroegneria species 

(www.Google/image.htm) 

 Economic importance. Pseudoroegneria spicata (bluebunch wheatgrass) and P. 

spicata ssp. inermis (Scribner & Smith) A. Löve (beardless wheatgrass) are used as 

P.Spicata

P.libanotica

P.ferganensisP.Spicata

P.libanotica

P.ferganensis
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forage for livestock and wildlife (Wang et al. 1986), and they are important native grasses 

of the Palouse Praire.  Because of its high nutritional value and palatability, bluebunch 

wheatgrass is one of the most important and valuable range forage grasses for livestock 

and wildlife.  However, bluebunch wheatgrass regrows rapidly after grazing and is not 

recommend as a hay crop (Jensen et al. 2001).  It can withstand early light grazing before 

elongation of flowering stems and heavier grazing after seed ripening, but not in between 

(Jensen et al. 2001).  Bluebunch wheatgrass is palatable to all classes of livestock and 

wildlife.  It is also preferred forage for cattle and horses year round but it is considered 

too coarse in summer.  It also is preferred forage for sheep, deer, antelope, sheep and elk 

in most seasons.  In spring the protein levels can be as high as 20% and decreases to 

about 4% as the plant matures (USDA-NRCS 2003).  Bluebunch wheatgrass is very 

drought resistant, persistent and adapted to stabilization of disturbed soils.  It is very 

compatible with slow-developing native species, such as thickspike wheatgrass (Elymus 

lanceolatus), western wheatgrass (Pascopyrum smithii) and needlegrass species 

(Achnatherum spp., Nassella spp and Hesperostipa spp).  This grass can be used in urban 

areas where irrigation water is limited and to stabilize ditchbanks, dikes and roadsides as 

a component of a mix (USDA-NRCS 2003).  P. spicata is highly self-sterile; crosses 

could be made without emasculation (Asay 1987).  Bluebunch wheatgrass is a long-lived 

drought-tolerant native bunchgrass that begins growth early in spring and regrows with 

the onset of fall rains (Jensen et al. 2001).  Bluebunch wheatgrass prefers coarse-textured 

soils but will establish and persist on deep well-drained loamy-soils (Jensen et al. 2001). 
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Hordeum 

 Hordeum L is a genus of the grass tribe Triticeae with approximately 37 species 

(Mizianty 2005; Yen et al. 2005; Mizianty 2006), which include the important cultivated 

barley (H. vulgare L.) (Baum and Bailey 1984).   

 Genomic constitution and distribution.   Hordeum species have three ploidy 

levels; diploids (2n = 2x = 14), tetraploids (2n = 4x = 28), and hexaploids (2n = 6x = 42) 

(Nishikawa et al. 2002), Critesion section of Hordeum constitutes a large group with the 

basic genome H (Bothmer et al. 1988).  Four genomes are recognized within Hordeum L: 

(1) the I genome (often referred to as the H genome by plant breeders) shared by H. 

vulgare and H. bulbosum, (2) the Xa genome of H. marinum (2x, 4x), (3) Xu genome of 

H. murinum (2x, 4x, 6x) and (4) the H genome in mostly the rest of the Hordeum species.  

Löve (1984) made a separation between Critesion Rafin from Hordeum but some 

scientists suggest two groups in the genus Critesion, they are H. murinum L.  (= section 

Trichosstachys (Dumortier) A.  Löve)  and Hordeum marinum Huds (=section marina) 

are different from other Critesion species (von Bothmer et al. 1988; Jaaska 1994; 

Nishikawa et al. 2002) , showed that Hordeum murinum is the single species that possess 

the Y genome and consists of three subspecies, (1) murinum (4x), (2) leporinum (4x and 

6x) and (3) glaucum (2x).  Hordeum murinum subsp.  leporinum (4x) participated in the 

formation of the hexaploid cytotype as the maternal parent (Nishikawa et al. 2002). 

 The wild Hordeum species are mainly distributed in temperate areas and more 

concentrated in southern South America and Central Asia (von Bothmer et al. 1988).  

Hordeum murinum and H. marinum are annual species found mostly in the Eurasia (von 

Bothmer et al. 1988).  Hordeum capense is one species of Hordeum that occurs in South 
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Africa; it seems to be close to the European H. secalinum, because of its relation to this 

group and has been referred as the Eurasian group (von Bothmer and Landström 1988; 

Taketa et al. 1999).  Hordeum murinum is native in Europe ranging from England to 

Sweden and from France to Hungary (Bowden 1962).  Members of the H. murinum 

complex are probably the most widespread of all Hordeum species (Mizianty 2006).  

Hordeum marinum is also a native of Europe, but occurs in the Western and Southern 

regions and along the shores of the Mediterranean to Egypt (Bowden 1962).  In Poland, 

Mizianty (2006) reported that H. murinum was found in north-eastern but Bothmer et al. 

(1988) reported that H. murinum does not occur in northern-eastern of Poland.  

According to Mizianty (2006), the geographic differentiation of the Polish populations of 

H. murinum might have resulted from their different routes of migration into Poland, 

either from Mediterranean area or from Southwest Asia. 

 Economic importance.  The genus Hordeum includes the important cereal crop 

barley (H. vulgare L.).  This genus has a dual importance economically and ecologically 

(Sharrow and Motazedian 1987).  Approximately 35% of the cultivated land in the world 

is used to grow the grains such as wheat, barley, oat and rye. 

 As forage, it is produced in two phases, fall and spring corresponding to its two 

types of growth (vegetative and reproductive).  The vegetative phase usually occurs in 

fall, and is characterized by 100% of leaf material, representing one-third to one-half of 

the total dry matter (DM) production.  The reproductive phase is in spring which is 

characterized by rapidly growing plants with an increasing proportion of stem  

representing one-half to two-third of the total dry matter production. 
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Hypothesis 

 No diploid species containing the Y genome has been identified, thus the donor 

species of Y genome in elymus is still unknown.  However, some researchers have 

hypothesized, based on nuclear ribosomal internal transcribed spacer (ITS) and 

chloroplast trnl-f sequences, that the St and Y genomes may have originated from the 

same ancestor genome (Liu et al. 2006).  To test this hypothesis, we screened 212 

accessions of the Elymus, Pseudoroegneria and Hordeum species to search for the 

diploid progenitor donor of the Y genome.  This work focused primarily on diploid 

species because allopolyploidy complicates molecular analysis of species relationships.  

 
Objective 

 The goal of this study is to identify candidate diploid donor of the Y genome in 

the Elymus among species and accessions from Pseudoroegneria, Hordeum, or both. 

 According to numerous published papers, the late Dr. Dewey made great 

contributions to the basic knowledge of genomic constitutions in most plants of the 

Triticeae family, but finding the diploid species that contributed the Y genome to these 

polyploid Elymus species had been a life long challenge for him.  Attempts to find Y 

genome specific sequence were unsuccessful (Svitashev et al. 1998; Yen et al. 2005). 

 In this study, some of the Elymus, Pseudoroegneria and Hordeum species were 

used for searching for the Y genome.  Those species were selected because of the 

hypothesis made by scientists that the diploid donor of the Y genome has not been found 

(Dewey 1984; Wang et al. 1986; McMillan and Sun 2004; Xu and Ban 2004; Yen et al. 
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2005), but the donor of the Y genome may be found in accessions of the 

Pseudoroegneria or Hordeum species. 

Fig. 6.  A diagram of phylogenic relationships among the following genera:  Agropyron, 
Australopyrum, Australoreogneria, Elymus, Hordeum, Kengylia, Campeiostachys, 
Douglasdeweya, Pseudoroegneria and Roegneria.  Campeiostachys (StStYYHH) 
originated from Roegneria tetraploid (StStYY) and Pseudoroegneria (StSt).  Elymus 
species have a variety of all the genomes from Pseudoroegneria and Hordeum.  
Excerpted from Yen et al. (2005). 
 
 

In the diagram of phylogenetic relationships among the genera Agropyron, 

Australopyrum, Australoroegneria, Elymus, Hordeum, Kengyilia, Douglasdeweya, 

Pseudoroegneria and Roegneria (Fig. 6), Yen et al. (2005) thought that Roegneria 

(StStYY) and Pseudoroegneria (StSt) may have diploid donors of the Y genome, but 

there was no evidence for such a hypothesis.  It was demonstrated in the diagram that 

species of Australoroegneria are hexaploids (StStWWYY) originating from diploid 

parents Australopyrum (WW), and Kengylia (PPStStYY) originated from Roegneria 

tetraploid (StStYY) and Agropyron diploid (PP).  Elymus originated from 

Pseudoroegneria diploid (StSt). 

Australoreogneria       Kengylia  Campeiostachys Elymus 

Hexaploid ( StStWWYY) (PPStStYY) (StStYYHH) (StStStStHH, StStHHHH)

Tetraploid Douglasdeweya Roegneria Elymus
(PPStSt) (StStYY) (HHStSt)

Diploid             Australopyrum Agropyron ?             Pseudoroegneria Hordeum
(WW) (PP) (YY)                  (StSt) (HH)

Australoreogneria       Kengylia  Campeiostachys Elymus 

Hexaploid ( StStWWYY) (PPStStYY) (StStYYHH) (StStStStHH, StStHHHH)

Tetraploid Douglasdeweya Roegneria Elymus
(PPStSt) (StStYY) (HHStSt)

Diploid             Australopyrum Agropyron ?             Pseudoroegneria Hordeum
(WW) (PP) (YY)                  (StSt) (HH)
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MATERIALS AND METHODS 

Plant materials 

A list of plant materials analyzed together with accession number, genomic 

constitution, ID number, and ploidy level are found in Tables 1-5. 

Table 1.  Genomic combination and references of species used in this work 
(http://www.herbarium.usu.edu/triticeae.htm) 
Taxon Genome Reference  
Pseudoroegneria St Yen et al. 2005 Pseudoroegneria 
Elymus     
E. alaskanus StH Oergaard & Anamthawat-Janson 2001 Elymus 
E. canadensis StH Dewey 1970; Redinbaugh et al. 2000 Elymus 
E .caninus StH Overgaard & Anamthawat-Jonson 2001 Elymus 
E. elymoides StH Mason-Gamer 2001; Larson et al. 2003 Elymus 
E. glaucus StH Dewey 1965; Mason-Gamer 2001, 2002 Elymus 
E. lanceolatus StH Dewey 1967 (as Agropyron dastachym); 

Mason-Gamer 2001; Mason-Gamer et al. 
2002 

Elymus 

E. sibiricus StH Dewey 1974 Elymus 
E. trachycaulus StH Dewey 1977; Redinbaugh et al. 2000; 

Mason-Gamer et al. 2002 
Elymus 

E. dahuricus StHY Redinbaugh et al. 2000 Campeiostachys 
E. drobovii StHY Dewey 1980 Campeiostachys 
E. nutans  StHY Lu 1993 Campeiostachys 
E. tsukushiensis StHY Lu & von Bothmer 1990a; Redinbaugh 

et al. 2000 
Campeiostachys 

E. caucasicus StY Jensen & Wang 1991; Lu & von 
Bothmer 1993b 

Roegneria 

E. gmelinii StY Jensen & Hatch 1989; Lu & Salomon 
1992 

Roegneria 

E. longearistatus StY Jensen & Wang 1991; Lu & von 
Bothmer 1993b 

Roegneria 

E. nevskii StY Lu & Salomon 1992; Redinbaugh et al. 
2000 

Roegneria 

E. alatavicus StPY Jensen et al. 1986; Redinbaugh et al. 
2000 

Kengylia 

E. batalini StPY Jensen et al. 1986; Redinbaugh et al. 
2000 

Kengylia 

E. kengii StPY Jensen et al. 1990b; Redinbaugh et al. 
2000 

Kengylia 

E. rectisetus StYW Torabinejad & Muller 1993; Redinbaugh 
et al. 2000 

Anthosachne 
(inlitt.2005/10/30) 

Hordeum marinum Xa von Bothmer et al. 1986  
Hordeum murinum Xu von Bothmer et al. 1987,1988a,1998b  
Hordeum, other H   
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Table 2  Elymus species with unknown genomic combinations 
(http://www.herbarium.usu.edu/triticeae.htm) 
 
Species Accession # 
E. curvatus PI 531579 
E. angustiglumis  PI 531639 
E. tianshanicus T210 
E. interruptus PI 531617 
E. laxiflorus KJ 278 
E. scabriglumis PI 202147 
E. kunlunshanicus  CPI 119942 
E. praecaespitosus X- 93019 
E. villosus PI 531703 
E. scabrifolius PI  531544 

Table 3.  Elymus species. 

    
Genus Species Accession # 

Genome 
symbols 

ID  
Sample Ploidy 

Agropyron  cristatum        PI  499389 P 7260 2x 
Australopyron   retrofractum PI 531553 W 5434 2x 
Elymus    longiaristatus PI 401282 StY  5992 4x 
   arizonicus PI 531558 StH 6749 4x 
   canadenisis PI 531565 StH 6750 4x 
   caucasicus PI 531572 StY  5026 4x 
   batalinii PI 314462 StPY 6745 6x 
   kengii PI 504457 StPY 6756 6x 
   villifer KJ-174 StHY 6766 6x 
   excelsus W 94039 StHY 6767 6x 
   rectisetus PI 533028 StYW 6112 6x 
   drobovii PI 314196 StHY 6747 6x 
   curvatus PI 531579 ? 6751 4x 
   angustigglumis PI 531639  ? 6769 4x 
   tianshanicus T 210 ? 3248 6x 
   tschimganicus PI 564498 StStY 6767 6x 
   fibrosus PI 547320 StH 6753 4x 
   gmelinii AJC  266 StY 6754 4x 
   elgmoides TAJ 90401 StH 2702 4x 
   nevski H-10215 StY 6758 4x 
   alatavicus PI 531709 StPY 7261 6x 
   caninus PI 547706 StH  6746 4x 
   interruptus PI 531617 ? 5027 4x 
   laxiflorus KJ 278 ? 6757 6x 
   scabriglumis PI 202147 ? 6762 6x 
   tangutorus CPI 11975 StHY 1280 6x 
   tsukushiensis PI 499624 StHY 5464 6x 
   nutans PI 531587 StHY 6759 6x 
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   glaucus PI 232565 StH 3991 4x 
   kunlunshanicus CPI 11942 ? 1426 6x 
   scabrus PI 533217 StYW 4967 6x 
   praecaespitosus X- 93019 ? 6760 6x 
   lanceolatus PI 469235 StH 2703 4x 
   dahuricus T 216 StHY 3254 6x 
   cylindricus Jinfeng StHY 1984 6x 
   trachycaulus PI 636525 StH 6764 4x 
   villosus PI 531703 ? 6765 4x 
   sibiricus PI  499464 StH 6763 4x 
    scabrifolius PI  531544 ? 6761 4x 
   praeruptus T 217 StY  3255 4x 
   sibiricus T 215 StH  3249 4x 
   macrochaetus T 211  StY 3249 4x 
   alatavicus W 6141 StYP 8118 6x 
   kengii KJ -328 StYP  8128 6x 
   longiaristatus PI 401278 StY 7302 4x 

Table 4.  Hordeum species having Xa and Xu genomes. 
 

Genus   Species Accession # ID sample Ploidy 
Hordeum  murinum  PI 283361 8144 N/A 
  murinum PI 289592 8145 N/A 
  murinum                          PI 304355 8146 4x 
  murinum  PI 304356 8147 N/A 
  murinum                          PI 304357 8148 4x 
  murinum                           PI 304358 8149 4x 
  murinum  PI 422469 8152 N/A 
  murinum                           Ciho15683 8139 2x 
  murinum ssp glaucum       NGB 6525.2 8173 2x 
  murinum ssp murinum      NGB 6526.2 8174 4x 
  murinum ssp glaucum       NGB 6528.2 8176 2x 
  murinum ssp glaucum      NGB 6535.2 8180 2x 
  murinum ssp leporinum      NGB 6529.2 8177 4x 
  murinum                             PI 206686 8140 4x 
  murinum  PI 223373 8141 4x 
  murinum                             PI 267990 8143 4x 
  murinum ssp glaucum  NGB 6846.3 8214 N/A 
  murinum ssp glaucum  NGB 6847.3 8215 N/A 
  murinum ssp glaucum        NGB 6848.2 8216 2x 
  murinum ssp glaucum        NGB 6849.2 8217 2x 
  murinum ssp glaucum       NGB 6850.2 8218 2x 
  murinum ssp glaucum  NGB 6851.3 8219 2x 
  murinum ssp leporinum      NGB 90350.1 8289 4x 
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  murinum ssp leporinum     NGB 90352.1 8290 4x 
  murinum ssp leporinum     NGB 90353.2 8291 4x 
  murinum ssp leporinum      NGB 90355.2 8292 4x 
  murinum ssp murinum      NGB 6530.2 8178 4x 
  murinum ssp murinum        NGB 6543.2 8188 4x 
  murinum ssp murinum       NGB 6870.2 8232 4x 
  murinum ssp leporinum     NGB 90251.2 8281 4x 
  murinum                                Ciho 15683 8139 2x 
  marinum                            PI 247055 8134 2x 
  marinum  PI 247056 8135 N/A 
  marinum  PI 283418 8136 N/A 
  marinum  PI 304353 8137 N/A 
  marinum PI 330510 8138 N/A 
  marinum  PI 401364 8153 2x 
  marinum  NGB 90606.2 8300 4x 
  marinum ssp gussoneanum NGB 6504.2  8154 2x 
  marinum ssp gussoneanum NGB 6507.2 8156 4x 
  marinum ssp gussoneanum  NGB 6508.2 8157 2x 
  marinum ssp gussoneanum  NGB 6509.2 8158 4x 
  marinum ssp gussoneanum NGB 6510.2 8159 4x 
  marinum ssp gussoneanum  NGB 6512.4 8160 2x 
  marinum ssp gussoneanum  NGB 6519.2 8167 4x 
  marinum ssp gussoneanum   NGB 6520.4 8168 4x 
  marinum ssp gussoneanum   NGB 6521.3 8169 4x 
  marinum ssp gussoneanum  NGB 6524.2 8172 2x 
  marinum ssp gussoneanum NGB 6831.2 8201 2x 
  marinum ssp gussoneanum  NGB 6832.2 8202 2x 
  marinum ssp gussoneanum  NGB 6833.2 8203 2x 
  marinum ssp gussoneanum NGB 6841.2 8210 4x 
  marinum ssp gussoneanum NGB 6843.2 8211 4x 
  marinum ssp gussoneanum  NGB 6844.1 8212 4x 
  marinum ssp gussoneanum  NGB 7294.2 8241 2x 
  marinum ssp gussoneanum   NGB 90031.2 8252 4x 
  marinum ssp gussoneanum  NGB 90128.2 8256 2x 
  marinum ssp gussoneanum  NGB 90131.2 8258 4x 
  marinum ssp gussoneanum  NGB 90237.2 8269 2x 
  marinum ssp gussoneanum NGB 90238.2 8270 2x 
  marinum ssp gussoneanum NGB 90240.2 8272 2x 
  marinum ssp gussoneanum   NGB 90241.2 8273 4x 
  marinum ssp gussoneanum   NGB 90242.2 8274 4x 
  marinum ssp gussoneanum   NGB 90245.2 8276 2x 
  marinum ssp gussoneanum   NGB 90249.2 8279 4x 
  marinum ssp gussoneanum   NGB 90344.2 8283 2x 
  marinum ssp gussoneanum   NGB 90561.1 8294 2x 
  marinum ssp gussoneanum  NGB 90562.1 8295 2x 



 24

  marinum ssp gussoneanum   NGB 90563.1 8296 2x 
  marinum ssp marinum          NGB 6506.2 8155 2x 
  marinum ssp marinum          NGB 6513.2 8161 2x 
  marinum ssp marinum          NGB 6514.2 8162 2x 
  marinum ssp marinum          NGB 6515.2 8163 2x 
  marinum ssp marinum          NGB 6516.2 8164 2x 
  marinum ssp marinum          NGB 6517.2 8165 2x 
  marinum ssp marinum          NGB 6518.2 8166 2x 
  marinum ssp marinum          NGB 6820.2 8190 2x 
  marinum ssp marinum          NGB 6821.2 8191 2x 
  marinum ssp marinum          NGB 6822.2 8192 2x 
  marinum ssp marinum          NGB 6823.2 8193 2x 
  marinum ssp marinum          NGB 6824.2 8194 2x 
  marinum ssp marinum          NGB 6825.2 8195 2x 
  marinum ssp marinum          NGB 6826.2 8196 2x 
  marinum ssp marinum          NGB 6827.2 8197 2x 
  marinum ssp marinum          NGB 6828.2 8198 2x 
  marinum ssp marinum          NGB 6829.2 8199 2x 
  marinum ssp marinum          NGB 6830.2 8200 2x 
  murinum ssp leporinum        NGB 90350.1 8289 4x 
  murinum ssp leporinum        NGB 90352.1 8290 4x 
  murinum ssp leporinum        NGB 90353.2 8291 4x 
  murinum ssp leporinum        NGB 90355.2 8292 4x 
  murinum ssp leporinum        NGB 90567.2 8298 4x 
  murinum ssp leporinum        NGB 90599.2 8299 4x 
  murinum ssp murinum          NGB 90251.2 8281 4x 
  murinum ssp murinum          NGB 90565.2 8297 4x 
  murinum ssp glaucum           NGB 6858.2 8223 2x 
  murinum ssp glaucum           NGB 6871.2 8233 2x 
  murinum ssp glaucum           NGB 6872.2 8234 2x 
  murinum ssp glaucum           NGB 6877.2 8237 2x 
  murinum ssp glaucum           NGB 7296.2 8243 2x 
  murinum ssp glaucum           NGB 90133.2 8260 2x 
  murinum ssp glaucum           NGB 90134.2 8261 2x 
  murinum ssp glaucum           NGB 90135.2 8262 2x 
  murinum ssp glaucum           NGB 90252.2 8282 2x 
  murinum ssp glaucum           NGB 90347.2 8286 2x 
  murinum sspglaucum            NGB 90348.2 8287 2x 
  murinum                                Ciho 15683 8139 2x 
  murinum                                PI 206686 8140 4x 
  murinum  PI 223373 8141 N/A 
  murinum                                PI 255142 8142 2x 
  murinum                                PI 267990 8143 4x 
  marinum ssp marinum          NGB 6845.2 8213 2x 
  marinum ssp marinum          NGB 7293.2 8240 2x 
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  marinum ssp marinum          NGB 7295.2 8242 2x 
  marinum ssp marinum          NGB 8551.2 8246 2x 
  marinum ssp marinum          NGB 8554.2 8247 2x 
  marinum ssp marinum         NGB 8559.2 8248 4x 
  marinum ssp marinum          NGB 90126.2 8254 2x 
  marinum ssp marinum          NGB 90127.2 8255 2x 
  marinum ssp marinum          NGB 90129.2 8257 2x 
  marinum ssp marinum          NGB 90153.2 8268 2x 
  marinum ssp marinum          NGB 90239.2 8271 2x 
  marinum ssp marinum          NGB 90345.3 8284 2x 
  marinum ssp marinum          NGB 90346.1 8285 2x 
 
 
Table 5.  Pseudoroegneria species. 

Species Accession no. DNA sample Ploidy 
libanotica PI  380649 8369 2x 
libanotica PI  222959 8364 2x 
libanotica PI  228391 8365 2x 
libanotica PI  228392 8366 2x 
libanotica PI  229581 8367 2x 
spicata D - 2837 8383 2x 
spicata D - 2838 8384 2x 
spicata D -2844 8385 2x 
spicata PI  739 8387 2x 
spicata PI  232140 8390 2x 
spicata PI  236668 4938 2x 
spicata PI  236681 8391 2x 
spicata KJ 10 8386 2x 
spicata P - 5B 2730 2x 
spicata PI  232127 8388 2x 
libanotica PI  401326 8376 2x 
libanotica PI  380652 8372 2x 
libanotica PI  401321 8374 2x 
libanotica PI  401325 8375 2x 
libanotica PI  401326 8376 2x 
ferganensis  PI  3540 7313 2x 
cognata PI  14033 8362 2x 
aegilopoides PI  499637 8355 2x 
aegilopoides PI  565082 8359 2x 
aegilopoides PI  531754 8357 2x 
libanotica PI  401336 8379 2x 
libanotica PI 401339 8381 2x 
libanotica PI 401319 8373 2x 
libanotica PI 380644 8368 2x 
libanotica PI 380650 8370 2x 
libanotica PI 401327 8377 2x 
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spicata PI 232134 8389 2x 
libanotica PI 380651 8371 2x 
aegilopoides PI 14037 8360 2x 
spicata MB-36-51-60 2048 2x 
spicata PI  372641 8392 2x 
aegilopoides PI  499638 8356 2x 
spicata inermis Whitmar 8396 2x 
libanotica PI  401331 8378 2x 
kuramensis PI  269864 8363 2x 
spicata inermis PI 236670 5176 2x 
ferganensis  T-219 3257 2x 
 

Cyltrimethyl-ammonium bromide (CTAB) DNA extraction 

 Approximately 100 mg of fresh leaf tissue was collected from each seedling in the 

greenhouse and placed in 2 ml microcentrifuge tubes containing three steel ball bearings 

(5mm in diameter).  These samples were subsequently frozen in liquid nitrogen and 

vortexed into fine powder.   

 One milliliter of extraction buffer, 2% cyltrimethyl-ammonium bromide (CTAB), 

1.4 M NaCl, 20 mM ethylenediaminetetra-acetic acid (EDTA), 100 mM Tris-HCl (pH 

8.0), 0.2% β-mercapto-ethanol, and 0.1 mg/ml RNase was added to the frozen leaf 

powder and incubated at 65ºC for 10 min.  A 24:1 (v/v) solution of chloroform-isoamyl 

alcohol was added and mixed vigorously prior to phase separation by centrifugation 

(14,000 rpm for 10 min) with the Eppendoff centrifuge 5417 R.  The upper aqueous 

phase containing nucleic acid was transferred to a 1.5 ml microcentrifuge tube and mixed 

with 0.7 ml of cold isopropanol. Nucleic acids were hooked out with a glass pipette, 

transferred to a new tube, and washed twice in a solution of 70% ethanol.  Samples were 

air dried and vacuumed dry for 5 min and then dissolved in TE Buffer (10 mM Tris-HCl 

and 1 mM EDTA, pH 8.0) (see Appendix).  Genomic DNA was quantified by Nanodrop 
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Spectrophotometer ND-1000 (Nanodrop Technologies, Rockland, DE) at the wavelength 

of 260 nm.  The genomic DNA was adjusted and normalized to 40 ng/µl with sterilized 

double distilled water.  DNA was evaluated by using 2% agarose gel stained with 

ethidium bromide (5 mg/ml) and visualized under UV light, then photographed in 

imaging system UVP 2UV Transilluminator (UVP, Inc, Upland, CA). 

 
Qiagen DNeasy 96-well plate protocol 

 This second method of isolation of genomic DNA from fresh leaf tissue was used 

only in Hordeum species.  Fresh, youngest leaves from various plants were harvested and 

weighted.  Fifty milligrams of each sample was put into collection racks on ice.  One 

tungsten carbide bead was added to each well.  Buffer AP1 and Reagent DX were 

preheated to 65ºC in a water bath.  Four hundred milliliters of the master mix containing 

45 ml of API Buffer, 112.5 µl of RNase A (100 mg/ml), and 112.5 µl of Reagent DX 

were delivered to each well containing sample.  The samples were disrupted in the Mixer 

Mill set a 30 Hz for 1 min, then, removed from the Mixer plates and reassembled in 

reverse order then disrupted for an additional 1 min.  This step was the most critical 

because the longer time could shear DNA.  The plate collection racks were placed in the 

centrifuge and spun up to 3000 rpm.  One hundred and thirty milliliters of AP2 Buffer 

was added to each sample then recapped with new caps.  The collection racks were 

shaken vigorously by hand, up and down, for 15 sec.  They were centrifuged and spun up 

to 3000 rpm for 5 min.  The racks were rotated in the centrifuge and spun for an 

additional 3 min at 6000 rpm.  Carefully, 400 µl of the supernatant was transferred into 

newly labeled racks of collection tubes.  A volume of 600 µl of AP3/E Buffer was added 
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and recapped with new caps.  The collection racks were shaken vigorously by hand, up 

and down, for 15 sec.  Collection racks were centrifuged and spun up to 3000 rpm.   

Labeled DNeasy plate was placed on top of the S-Block.  One milliliter of the solution 

was transferred to DNeasy plate and sealed with Airpore sheets, and then centrifuged for 

4 min at 6000 rpm.  The airpore sheets were removed and the 400 µl of AW Buffer was 

added to each sample.  To dry the DNeasy membranes, the samples were centrifuged for 

15 min at 6000 rpm.  Airpore tape was used to prevent cross contamination between the 

samples during the centrifugation and the caps were removed and discarded after each 

centrifugation step.  To release the DNA 50 µl of elution AE buffer was added at room 

temperature into DNeasy plates, sealed, and were incubated for 1 min, then centrifuged 

for 2 min at 6000 rpm.  The plate was labeled DNA collected and used for PCR analysis.   

The PCR reaction mixture was composed of 10 µl Buffer 10X, 0.2 mM of each 

deoxynucleotide 25 mM MgCl2, 10 mM dNTP, 1U Taq polymerase, 4 µl of each primer 

(Table 6; forward and reverse), and 200 ng Template DNA in a final volume of 25 µl.  

Another reagent, GoTaq Green master mix 2X, was compared with the first.  This master 

mix including MgCl2, dNTP and Taq polymerase was added to the DNA Template and 

then adjusted with nuclease-free water to the desired final volume of 25µl.  PCR was 

performed in the Applied Bio System 9700 Thermocycler.  

The initial denaturation occurred at 95˚C for 2 min.  The complete cycle 

consisted of a denaturing step of  95ºC for 2 min, an annealing step of 55ºC for 30 sec 

and an extension step of 72ºC for 5 min.  The reaction mixture was allowed to run for 30 

cycles. 
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Table 6.  Primer sequences used (www.operon.com). 
 
Primer names       Primer sequences    5’ to 3’                       Tm (ºC)      Size (bp) 

D15F       GTGCGGTGCGTCATAGA                    62.32   498 

D15R       ATCCGTGCTTAGAAAGGTAGCA            60.81   498 

B04F       GGACTGGAGTTCAGAGCAATC              62.57   341 

BO4R       GGACTGGAGTAGCTTTTCAAACA                 60.99   341 

B14F1       TCCGCTCTCGGGATGTGAC                     62.18              269 

B14R1             TCCTGAAGGTAAAACTTTCTGTTTTTT         58.28              269 

NO5F       GCCATCGAGACCTATGCAAT               60.4              520 

NO5R       ACTGAACGCCAAAGTGCG                          59.9              520 
 

Gel electrophoresis 

 Electrophoresis gel was used to confirm the size and the presence of the PCR 

product.  The PCR product was mixed with 10X loading dye solution, 7 µl of the total 25 

µl PCR reaction, and 3 µl of loading dye, and then analyzed by electrophoresis on a 2% 

agarose gel to confirm the presence of DNA.  The DNA was photographed in imaging 

system UVP, 2UV Transilluminator.  The size of the fragments was estimated using 100 

bp ladders (see Appendix).  All reactions were performed in triplicate and only the 

positive bands were considered for this study. 

 
Chromosome count analysis 

 The roots were pretreated in 5 ml of a saturated solution of P-dichlorobenzene at 

4ºC for 4 hours and fixed in 5 ml of Carnoy’s fixative (ethanol-chloroform-acetic acid).  

After being softened with 1.5% pectinase (Sigma) for 1 hour at room temperature and 
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hydrolysed in 1 N HCl at 60ºC for 10 min, chromosomes were stained in basic fucshin 

and squashed in 2% (W/V) acetic orcein.   

 
DNA cloning and sequencing 

 Plant materials selected for cloning and sequencing are listed in Table 7. 

 
Cloning and sequencing of the STS Y marker 

 Primers used for the STS Y marker (Table 8) were based on the RAPD marker 

JC51 identified in the laboratory of Dr.  Richard Wang at the United States Department 

of Agriculture (USDA), Agriculture Research Service (ARS) in Logan, Utah. 

The genomic DNA isolated from plants was used for PCR amplification of the 

STS marker.  Leaf tissue samples were collected from several individual plants for each 

accession and were frozen in liquid nitrogen.  DNA was extracted following the CTAB 

and Qiagen DNeasy 96-well plate methods.  PCR mixtures of total volume of 25 µl, 

containing 2 ng template DNA, and 12.5 µl of Go Taq Green master mix 2X, 4 µl of 

primer BO4 forward and reverse primers (Operon).  Amplification was performed in 

DNA Thermocycler.  The PCR program consisted of pre-denaturation at 95ºC for 2½ 

min, 30 cycles of 95ºC for 1 min, annealing at 55ºC for 30 sec and extension at 72ºC for 

1 min followed by a final extension for 5 min.  The PCR fragments were electrophoresed 

in 2% agarose gels stained with 0.5 mg/ml ethidium bromide and visualized under UV 

light.  PCR reactions producing appropriate size of DNA band were purified for cloning. 
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Table 7.  Plant materials selected for cloning and sequencing. 
 
Name of species ID # Accession # Ploidy Origin 

P. ferganensis T219 3257 2x Tajikistan, Russian 

P. spicata PI 232134 8389 2x Wyoming, USA. 

P. libanotica PI 401326 8376 2x Iran 

H. marinum NGB 90249.2 8279 4x Greece via Sweden 

H. murinum ssp lepor NGB 90251.2 8281 4x Greece via Sweden 

H. murinum  PI 206686 8140 4x Turkey via Aberdeen 

H. murinum ssp lepor NGB 90350.1 8289 4x Spain via Sweden 

E. longiaristatus PI 401282 5992 4x KBJ 

 

Table 8.  Primers used in searching for the Y-genome (www.operon.com). 

Primer names  Nucleotide sequences 

BO4 forward   5’-TCCGCTCTGGGATGTGAC-3’ 

BO4 reverse  5’-AAAACAGAAAGTTTTACCTTCAGGA -3’  

 

PCR product purification 

 This procedure was done by adding 5:1 ratio, 5 volumes of PB1 Buffer to 1 

volume of the PCR product.  To bind the DNA, the QIAquick spin columns were placed 

into collection tubes and centrifuged for 60 sec.  The flow trough was discarded and 

QIAquick columns were placed back and centrifuged for additional 60 sec.  PE buffer 

(0.75 ml) was added to wash the DNA and centrifuged for 60 sec.  The DNA was eluted 

by adding 35 µl of Buffer EB (10 mM Tris-Cl, pH 8.5) to the center of the QIAquick 

membrane and centrifuged for 60 sec.  The purified DNA was analyzed on 1% of agarose  
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gel and visualized under UV light.  The DNA was photographed in imaging system UVP, 

2UV Transilluminator. 

 
Cloning reactions 

  Purified fragments were ligated and cloned into pSC-A vector (Stratagene, La 

Jolla, CA) and transformed into Escherichia coli (StraClone Solopack competent cells). 

After ligation, 1 µl of the reaction was added to thawed StrataClone Solopack 

competent cells and mixed and incubated for 20 min on ice.  The reaction was heated 

shock at 42ºC for 45 sec and incubated for 2 min on ice.  To allow the competent cells to 

recover, 250 µl of SOC (see Appendix) medium was pre-warmed, and added to the 

reaction and agitated at 37ºC for 1 hour.  LB-ampicilin plates were prepared by spreading 

40 µl of 2% X-gal on each plate.  Twenty-five to 350 µl of the transformation mixture 

was plated on the LB ampicillin-X gal plates (see Appendix) and incubated overnight at 

37ºC.  The formation of blue or white colonies was observed the following day.   

 The white or light blue colonies were selected for PCR reaction using M13 

(forward and reverse) primers (Table 9), and the colonies that contained the correct sizes 

of DNA were cultured in the shaker overnight at 37ºC. 

Table 9.  Primers used to amplify cloned insert DNA (www.operon.com). 

Primers Primer sequence (5’ to 3’) 

M13  Forward GGAAACAGCTATGACCATG 

M13  Reverse ACTGGCCGTCGTTTTACAA 
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Plasmid DNA Extraction 

 Plasmid DNA preparation was performed using QIAprep Miniprep (Qiagen, 

Valencia, CA).  The cells were collected and suspended in 250 µl Buffer P1 and 

transferred to new microcentrifuge tubes.  To mix DNA, 250 µl of Buffer P2 was added 

and gently inverted 4-6 times until the solution became viscous and slightly clear.  Then, 

350 µl of N3 Buffer was added and centrifuged for 10 min at 13000 rpm.  The 

supernatant was collected and transferred to QIAprep spin column, then centrifuged for 

60 sec.  To wash the DNA, PE Buffer (0.75 ml) was added and the column was 

centrifuged for 60 sec; the flow-through was discarded and the column was centrifuged 

for an additional 60 sec.  To elute the DNA, 35 µl of EB Buffer (10 mM Tris-Cl, pH 8.5) 

was added in the center of each QIAprep pin column and centrifuged for 60 sec.  The 

plasmid DNA was quantified by Nanodrop Spectrophotometer ND-1000 at the 

wavelength of 260 nm.  The plasmid DNA concentration was adjusted to 50-100 ng/µl 

with sterilized double distilled water.  Plasmid DNA was sequenced on an Applied 

BioSystems 3730 (DNA Analyzer) automated sequencer (Applied BioSystems, Foster 

City, CA) at the Center of Integrated BioSystems, Utah State University. 
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RESULTS 

 
Polymerase Chain Reaction for STS marker 
of St and Y-genomes in Elymus species 

 The objective of this work was to find the diploid donor of the Y genome.  About 

two hundred twelve accessions of Elymus, Hordeum, and Pseudoroegneria were used in 

this study.  The accessions were tested for the presence or absence of the St and Y 

genomes.  A Polymerase Chain Reaction (PCR) method was used to amplify genome-

specific Sequence Tagged Site (STS) markers from the genomic DNA.  Agropyron and 

Australopyrum species were used as negative controls, because they possess the P and W 

genomes, respectively.  Elymus longiaristatus PI 401282 (StY) was used as the positive 

control.  Most of the species in the Elymus genus are tetraploid (2n = 4x = 28) and 

hexaploids (2n = 6x = 42).  The test for the St genome was carried out using three STS 

markers: 

1) B04F/R-fragment size 341 base pairs;  

2) D15F/R- fragment size 498 base pairs;  

3) N05F/R- fragment size 520 base pairs.   

The primers pair B14F1/R1, producing a fragment of 269 base pairs, was used for testing 

the presence of the Y genome. 

 Results of these PCR reactions are presented in Table 10.  As expected, all three 

STS-PCR tests were negative for Hordeum bogdanii (H genome), Agropyron cristatum 

(P), and Australopyrum retrofractum (W).  All Elymus species are supposed to have the 

St genome.  However, some STS-PCR tests failed to show the presence of the St genome 

in some Elymus species.  Elymus fibrosus, E. tsukushiensis, and E. praeruptus had 
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negative reactions from all three STS-PCR tests for the St genome.  All other Elymus 

species tested in this study had at least one positive STS-PCR even though some species 

yielded variant PCR products, i.e.  the fragments were of unexpected lengths.  Only E. 

tianshanicus and E. alatavicus were positive for all three St genome tests and yielded 

STS markers of the expected sizes.   

 The primer pair B14F1/R1 yielded one fragment of the expected size, 269 bp, in 

22 out of 23 Elymus accessions that are known to have the Y genome.  Only the StY E. 

praeruptus failed to produce positive result.  The following Elymus species were negative 

in all three replicated PCR tests for the Y genome: E. arizonicus, E. canadenisis, E. 

caninus, E. lanceolatus, E. trachycaulus, E. sibiricus, E. scabrifolius, and E. glaucus.  

These species contain St and H genomes (Table 10), thus the negative result was 

expected.  Only one StH tetraploid Elymus species, E. fibrosus, yielded the unexpected 

positive result with the Y genome test. 

 Ten Elymus species in this study had unknown genome constitutions.  Five of 

these species were positive for the Y genome test: E. curvatus, E. tianshanicus, E. 

laxiflorus, E. kunlunshanicus, and E. praecaespitosus.  The other five Elymus species, E. 

angustiglumis, E. interruptus, E. scabriglumis, E. villosus, and E. scabrifolius, were 

negative with the STS-PCR for the Y genome.   

 
Polymerase Chain Reaction for STS marker  

of Y genome in Hordeum species 

 A total of 126 accessions of Hordeum marinum and H. murinum were analyzed 

for the Y genome STS marker.  Twelve of these were tested positive for the Y genome 
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Table 10.  Results of STS-PCR test of Triticeae species using primer pairs designed for 
genome-specific STS marker of the St and Y genomes.  Each PCR test was run in three 
replications.  Numbers in parentheses represent fragments of unexpected sizes: 1 = 
600bp, 2 = 700bp, 3 = 800bp and 4 = 1000bp.) 

     St genome Y genome 
Genus Species Accession# Ploidy

   

Genome
symbols

 

B04F 
B04R 
341bp 

D15F 
D15R 
498bp 

N05F 
N05R 
520bp 

B14F1 
B14R1 
269bp 

Pseudoroegneria  spicata PI 610987 St 2x - +(1,4) + - 
Pseudoroegneria  stipifolia          PI 313960 St 2X - +(1) + - 
Hordeum  bogdanii PI 269406 H 2x - - - - 
Agropyron   cristatum        PI 499389 P 2x - - - - 
Australopyron   retrofractum PI 531553 W 2x - - - - 
Elymus    longiaristatus PI 401282 StY  4x + + - + 
   arizonicus PI 531558 StH 4x - +(1) - - 
   canadenisis PI 531565 StH 4x - +(1) + - 
   caucasicus PI 531572 StY  4x + - +(4) + 
   batalinii PI 314462 StPY 6x + + +(4) + 
   kengii PI 504457 StPY 6x + +(2) +(4) + 
   villifer KJ-174 StHY 6x + +(4) - + 
   excelsus W 94039 StHY 6x + + - + 
   rectisetus PI 533028 StYW 6x + + +(4) + 
   drobovii PI 314196 StHY 6x + + - + 
   curvatus PI 531579 ? 4x + +(2) +(4) + 
   angustiglumis PI 531639  ? 4x +    +(1,3) + - 
   tianshanicus T 210 ? 6x + + + + 
   tschimganicus PI 564498 StStY 6x + + +(4) + 
   fibrosus PI 547320 StH 4x - - - + 
   gmelinii AJC  266 StY 4x + + - + 
   elymoides TAJ 90401 StH 4x - +(1) - - 
   nevski H-10215 StY 4x + + - + 
   alatavicus PI 531709 StPY 6x + + - + 
   caninus PI 547706 StH  4x + +(1) - - 
   interruptus PI 531617 ? 4x + +(1) - - 
   laxiflorus KJ 278 ? 6x + +(1) - + 
   scabriglumis PI 202147 ? 6x - + - - 
   tangutorus CPI 11975 StHY 6x + + - + 
   tsukushiensis PI 499624 StHY 6x - - - + 
   nutans PI 531587 StHY 6x + +(2) +(2) + 
   glaucus PI 232565 StH 4x - +(1) + - 
   kunlunshanicus CPI 11942 ? 6x + + - + 
   scabrus PI 533217 StYW 6x + + +(4) + 
   praecaespitosus X- 93019 ? 6x - + + + 
   lanceolatus PI 469235 StH 4x - +(1) + - 
   dahuricus T 216 StHY 6x + + - + 
   cylindricus Jinfeng StHY 6x + + - + 
   trachycaulus PI 636525 StH 4x - - + - 
   villosus PI 531703 ? 4x - + + - 
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   sibiricus PI  499464 StH 4x - +(1) + - 
    scabrifolius PI  531544 ? 4x - +(1) + - 
   praeruptus T 217 StY 4x - - - - 
   sibiricus T 215 StH  4x + +(1) + - 
   macrochaetus T 211  StY 4x + +(1) + + 
   alatavicus W 6141 StYP 6x + + + + 
   kengii KJ -328 StYP  6x + +(1) +(4) + 
   longiaristatus PI 401278 StY 4x + + +(4) + 

Table 11.  Results of STS-PCR test of Hordeum species using primer pair designed for 
genome-specific STS marker of the Y genome. 

     Y genome 
B14F1 

Genus  Species Accession # 
DNA 
sample Ploidy B14R1 

     269bp 
Elymus  longiaristatus                         PI  401282 StY5992 4x ++ 
Hordeum  murinum  PI 283361 8144 na - 
  murinum  PI 289592 8145 na - 
  murinum                          PI 304355 8146 4x - 
  murinum  PI 304356 8147 na - 
  murinum                          PI 304357 8148 4x - 
  murinum                           PI 304358 8149 4x - 
  murinum  PI 422469 8152 na + 
  murinum                           Ciho 15683 8139 2x - 
  murinum ssp glaucum       NGB  6525.2 8173    2x - 
  murinum ssp murinum      NGB  6526.2 8174 4x - 
  murinum ssp glaucum       NGB 6528.2 8176 2x - 
  murinum ssp glaucum      NGB 6535.2 8180 2x - 
  murinum spp leporinum      NGB 6529.2 8177 4x - 
  murinum                             PI 206686 8140 4x + 
  murinum  PI 223373 8141 4x - 
  murinum                             PI 267990 8143     4x - 
  murinum ssp glaucum  NGB 6846.3 8214     na - 
  murinum ssp glaucum  NGB 6847.3 8215     na - 
  murinum ssp glaucum        NGB 6848.2 8216     2x - 
  murinum ssp glaucum        NGB 6849.2 8217     2x - 
  murinum ssp glaucum       NGB 6850.2 8218     2x - 
  murinum ssp glaucum  NGB 6851.3 8219     2x - 
  murinum ssp leporinum      NGB 90350.1 8289     4x - 
  murinum ssp leporinum     NGB 90352.1 8290     4x - 
  murinum ssp leporinum     NGB 90353.2 8291     4x + 
  murinum ssp leporinum      NGB 90355.2 8292     4x - 
  murinum ssp  murinum      NGB 6530.2 8178     4x + 
  murinum ssp murinum         NGB 6543.2 8188     4x - 
  murinum ssp murinum       NGB 6870.2 8232    4x + 
  murinum ssp leporinum     NGB 90251.2 8281    4x + 
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  murinum                                Ciho 15683 8139    2x - 
  marinum                            PI 247055 8134    2x - 
  marinum  PI 247056 8135  - 
  marinum  PI 283418 8136 na - 
  marinum  PI 304353 8137 na - 
  marinum PI 330510 8138 na - 
  marinum  PI 401364 8153 2x - 
  marinum  NGB 90606.2 8300 4x + 
  marinum sspgussoneanum  NGB 6504.2 8154 2x - 
  marinum ssp gussoneanum  NGB 6507.2 8156 4x - 
  marinum ssp gussoneanum  NGB 6508.2 8157 2x - 
  marinum ssp gussoneanum  NGB 6509.2 8158 4x - 
  marinum ssp gussoneanum  NGB 6510.2 8159 4x - 
  marinum ssp gussoneanum  NGB 6512.4 8160 2x - 
  marinum ssp gussoneanum  NGB 6519.2 8167 4x - 
  marinum ssp gussoneanum   NGB 6520.4 8168 4x - 
  marinum ssp gussoneanum   NGB 6521.3 8169 4x - 
  marinum ssp gussoneanum  NGB 6524.2 8172 2x - 
  marinum ssp gussoneanum  NGB 6831.2 8201 2x - 
  marinum ssp gussoneanum  NGB 6832.2 8202 2x - 
  marinum ssp gussoneanum  NGB 6833.2 8203 2x - 
  marinum ssp gussoneanum  NGB 6841.2 8210 4x - 
  marinum ssp gussoneanum  NGB 6843.2 8211 4x - 
  marinum ssp gussoneanum  NGB 6844.1 8212 4x - 
  marinum ssp gussoneanum  NGB 7294.2 8241 2x - 
  marinum ssp gussoneanum   NGB 90031.2 8252 4x - 
  marinum ssp gussoneanum  NGB 90128.2 8256 2x - 
  marinum ssp gussoneanum  NGB 90131.2 8258 4x - 
  marinum ssp gussoneanum  NGB 90237.2 8269 2x - 
  marinum ssp gussoneanum  NGB 90238.2 8270 2x - 
  marinum ssp gussoneanum  NGB 90240.2 8272 2x - 
  marinum ssp gussoneanum   NGB 90241.2 8273 4x - 
  marinum ssp gussoneanum   NGB 90242.2 8274 4x - 
  marinum ssp gussoneanum   NGB 90245.2 8276 2x - 
  marinum ssp gussoneanum    NGB 90249.2 8279 4x + 
  marinum ssp gussoneanum   NGB 90344.2 8283 2x - 
  marinum ssp gussoneanum    NGB 90561.1 8294 2x - 
  marinum ssp gussoneanum  NGB 90562.1 8295 2x - 
  marinum ssp gussoneanum   NGB 90563.1 8296 2x - 
  marinum ssp marinum            NGB 6506.2 8155 2x  
  marinum ssp marinum            NGB 6513.2 8161 2x - 
  marinum ssp marinum            NGB 6514.2 8162 2x - 
  marinum ssp marinum            NGB 6515.2 8163 2x - 
  marinum ssp marinum            NGB 6516.2 8164 2x - 
  marinum ssp marinum            NGB 6517.2 8165 2x - 
  marinum ssp marinum            NGB 6518.2 8166 2x - 
  marinum ssp marinum            NGB 6820.2 8190 2x - 
  marinum ssp marinum            NGB 6821.2 8191 2x - 
  marinum ssp marinum            NGB 6822.2 8192 2x - 
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  marinum ssp marinum            NGB 6823.2 8193 2x - 
  marinum ssp marinum            NGB 6824.2 8194 2x - 
  marinum ssp marinum            NGB 6825.2 8195 2x - 
  marinum ssp marinum            NGB 6826.2 8196 2x - 
  marinum ssp marinum            NGB 6827.2 8197 2x - 
  marinum ssp marinum            NGB 6828.2 8198 2x - 
  marinum ssp marinum           NGB 6829.2 8199 2x - 
  marinum ssp marinum            NGB 6830.2 8200 2x - 
  murinum ssp leporinum          NGB 90350.1 8289 4x + 
  murinum ssp leporinum        NGB 90352.1 8290 4x + 
  murinum ssp leporinum          NGB 90353.2 8291 4x + 
  murinum ssp leporinum          NGB 90355.2 8292 4x - 
  murinum ssp leporinum          NGB 90567.2 8298 4x - 
  murinum ssp leporinum          NGB 90599.2 8299 4x + 
  murinum ssp murinum            NGB 90565.2 8297 4x - 
  murinum ssp glaucum            NGB 6858.2 8223 2x - 
  murinum ssp glaucum            NGB 6871.2 8233 2x - 
  murinum ssp glaucum            NGB 6872.2 8234 2x - 
  murinum ssp glaucum            NGB 6877.2 8237 2x - 
  murinum ssp glaucum            NGB 7296.2 8243 2x - 
  murinum ssp glaucum            NGB 90133.2 8260 2x - 
  murinum ssp glaucum            NGB 90134.2 8261 2x - 
  murinum ssp glaucum            NGB 90135.2 8262 2x - 
  murinum ssp glaucum            NGB 90252.2 8282 2x - 
  murinum ssp glaucum            NGB 90347.2 8286 2x - 
  murinum ssp glaucum            NGB 90348.2 8287 2x - 
  murinum                                Ciho 15683 8139 2x - 
  murinum                                 PI 255142 8142 2x - 
  murinum                                 PI 267990 8143 4x - 
  marinum ssp marinum            NGB 6845.2 8213 2x - 
  marinum ssp marinum            NGB 7293.2 8240 2x - 
  marinum ssp marinum            NGB 7295.2 8242 2x - 
  marinum ssp marinum            NGB 8551.2 8246 2x - 
  marinum ssp marinum            NGB 8554.2 8247 2x - 
  marinum ssp marinum           NGB 8559.2 8248 4x - 
  marinum ssp marinum           NGB 90126.2 8254 2x - 
  marinum ssp marinum            NGB 90127.2 8255 2x - 
  marinum ssp marinum            NGB 90129.2 8257 2x - 
  marinum ssp marinum            NGB 90153.2 8268 2x - 
  marinum ssp marinum          NGB 90239.2 8271 2x - 
  marinum ssp marinum            NGB 90345.3 8284 2x - 
  marinum ssp marinum            NGB 90346.1 8285 2x - 
      
 Xa genome in H. marinum     
 Xu genome in H. murinum     
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marker, but all of them are tetraploids (Table 11).  Thus, all the diploid accessions of the 

two Hordeum species were negative for the Y genome.   

 
Polymerase Chain Reaction for STS marker of St 
 and Y genomes in Pseudoroegneria species 

 Forty-one accessions of Pseudoroegneria were tested for the Y- and St-genome 

STS markers (Table 12).  The results show that all the Pseudoroegneria species on the 

list (Table 12) possess the St genome, with the two exceptions of P. libanotica (PI 

401325 and PI 401331).  Three out of forty-one accessions of Pseudoroegneria species 

contained the Y genome.  All these three accessions (E. libanotica PI 401326, E. spicata 

PI 232134, and E. ferganensis T-219) were positive with all three STS-PCR tests for the 

St genome. 

 
Intensities of amplified Y genome STS marker 
 in selected accessions 

 To verify the results of Y genome marker amplification, template DNA 

concentration was normalized according to ploidy levels of tested species.  Results are 

shown in Fig. 7.  The three diploid Pseudoroegneria species and two tetraploid Hordeum 

species previously tested positive were included in this test along with species known to 

have or lack the Y genome.  The intensity of the marker band was much stronger in 

species known to have the Y genome than that in species having other genomes. 

 
Chromosome counts 

 To confirm the ploidy level of the Pseudoroegneria species that are putative 

donor of the Y genome, chromosome count was carried out for P. ferganensis T-219 (St),  
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Table 12.  Results of STS-PCR test of Pseudoroegneria species using primer pairs 
designed for genome-specific STS markers of the St and Y genomes. 

Y genome St genome 
B14R1 B04F D15F N05F 
B14F1 B04R D15R N05R 

Species Accession # DNA 
sample Ploidy

269bp 341bp 498bp 520bp 
libanotica PI  380649 8369 2x - - + - 
libanotica PI  222959 8364 2x - - + - 
libanotica PI  228391 8365 2x - - + - 
libanotica PI  228392 8366 2x - + + - 
libanotica PI  229581 8367 2x - + + - 
spicata D - 2837 8383 2x - + + + 
spicata D - 2838 8384 2x - + + + 
spicata D -2844 8385 2x - + + + 
spicata PI  739 8387 2x - + + + 
spicata PI  232140 8390 2x - + + + 
spicata PI  236668 4938 2x - + + + 
spicata PI  236681 8391 2x - + + + 
spicata KJ 10 8386 2x - - + + 
spicata P - 5B 2730 2x - + + + 
spicata PI  232127 8388 2x - - + + 
libanotica PI  401326 8376 2x + + + + 
libanotica PI  380652 8372 2x - - + - 
libanotica PI  401321 8374 2x - - + - 
libanotica PI  401325 8375 2x - - - - 
ferganensis  PI     3540 7313 2x - + + - 
cognata PI   14033 8362 2x - + + + 
aegilopoides PI  499637 8355 2x - + + + 
aegilopoides PI  565082 8359 2x - + + + 
aegilopoides PI  531754 8357 2x - + + + 
libanotica PI  401336 8379 2x - + + + 
libanotica PI 401339 8381 2x - + + - 
libanotica PI 401319 8373 2x - + + - 
libanotica PI 380644 8368 2x - + + - 
libanotica PI 380650 8370 2x - + + + 
libanotica PI 401327 8377 2x - + + - 
spicata PI 232134 8389 2x + + + + 
libanotica PI 380651 8371 2x - + + - 
aegilopoides PI 14037 8360 2x - - + - 
spicata MB-36-51-60 2048 2x - - + + 
spicata PI  372641 8392 2x - - + + 
aegilopoides PI  499638 8356 2x - - + + 
spicata inermis Whitmar 8396 2x - - + + 
libanotica PI  401331 8378 2x - - - - 
kuramensis PI  269864 8363 2x - - + + 
spicata inermis PI 236670 5176 2x - - + + 
ferganensis  T-219 3257 2x + + + + 
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Fig. 7.  Amplified Y genome STS marker.  B14 F1/R1-269bp, in species of 
Pseudoroegneria, Hordeum, Agropyron, Australopyrum, and Elymus.  Template DNA 
was normalized according to ploidy levels so that each genome was approximately 20 ng.  
Three DNA concentrations of diploid P. libanotica were used to show that 30 cycles of 
PCR amplification was appropriate for the test.  Note the similar band intensity between 
E. fibrosus (lane 11) and second accession of P. spicata (lane 15).  Lanes M (1 & 20) 
contains the 100-bp DNA ladders as size markers. 
 
 
P. spicata PI 232134 (St) and P. libanotica PI 401326 (St).  The chromosome count 

results showed that these accessions are diploid (2n = 2x = 14).   

 
Cloning and sequencing DNA from  
 Pseudoroegneria and Hordeum 

 The amplified B14F1/R1- 269-bp products (Table 13) from the genomic DNA of 

suspected Y-genome donor species were cloned and sequenced.  These sequences were 

compared and aligned to determine their similarities to the Y genome’s random amplified 
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polymorphic DNA (RAPD) marker, JC51.  After trimming off the primers, DNA 

sequences of cloned PCR products were analyzed with programs available at the 

European Molecular Biology Laboratory (EMBL) website and DNAstar (Lasergene® 7 

Software, Madison WI) at USU Stress Physiology Laboratory.  Phylogenic analyses were 

performed by grouping all nucleotides.  Multiple alignments were performed using the 

CLUSTAL W program (EMBL). 

 
Table 13.  Sequence alignments.  CLUSTAL W (1.83) Multiple Sequence Alignments 
(Sequence type explicitly set to DNA, Sequence format is Pearson). 

Sequence Number Name Size 

Sequence 1       JC51 Y marker  271 bp 
Sequence 2 8389-01-St-spicata   270 bp 
Sequence 3 8389-03-St-spicata   270 bp 
Sequence 4 8389-04-St-spicata     270 bp 
Sequence 5  8389-05-St-spicata             270 bp 
Sequence 6  8389-07-St-spicata   269 bp 
Sequence 7 8389-08-St-spicata              269 bp 
Sequence 8 8389-10-St-spicata     269 bp 
Sequence 9 8389-16-St-spicata      270 bp 
Sequence 10 8389-19-St-spicata      269 bp 
Sequence 11 8389-21-St-spicata 270 bp 
Sequence 12 8389-23-St-spicata      269 bp 
Sequence 13 8389-24-St-spicata      270 bp 
Sequence 14 3257-03-St-ferganensis     270 bp 
Sequence 15 3257-02-St-ferganensis         270 bp 
Sequence 16 3257-06-St-ferganensis     270 bp 
Sequence 17 3257-19-St-ferganensis     270 bp 
Sequence 18 3257-23-St-ferganensis    269 bp 
Sequence 19 8281-01-Xu-murinum         270 bp 
Sequence 20 8281-02-Xu-murinum          270 bp 

Sequence 21 8281-03-Xu-murinum         270 bp 
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Sequence 22 8281-04-Xu-murinum          270 bp 
Sequence 23 8281-06-Xu-murinum         270 bp 
Sequence 24 8281-07-Xu-murinum         271 bp 
Sequence 25 8281-09-Xu-murinum          270 bp 
Sequence 26 8281-12-Xu-murinum         270 bp 
Sequence 27 8281-13-Xu-murinum         270 bp 
Sequence 28 8281-15-Xu-murinum          268 bp 
Sequence 29 8281-16-Xu-murinum         270 bp 
Sequence 30 8281-17-Xu-murinum        270 bp 
Sequence 31 8281-20-Xu-murinum        270 bp 
Sequence 32 8281-22-Xu-murinum          270 bp 
Sequence 33 8281-23-Xu-murinum 270 bp 
Sequence 34 8281-25-Xu-murinum 265 bp 
Sequence 35 8281-27-Xu-murinum 270 bp 
Sequence 36 8281-28-Xu-murinum 268 bp 
Sequence 37 8140-01-Xu-murinum 270 bp 
Sequence 38 8140-03-Xu-murinum 270 bp 
Sequence 39 8140-04-Xu-murinum 270 bp 
Sequence 40 8140-07-Xu-murinum 270 bp 
Sequence 41 8140-09-Xu-murinum 268 bp 
Sequence 42 8140-10-Xu-murinum 270 bp 
Sequence 43 8140-11-Xu-murinum 270 bp 
Sequence 44 8140-34-Xu-murinum 269 bp 
Sequence 45 8140-35-Xu-murinum 270 bp 
Sequence 46 8299-01-Xu-murinum 270 bp 
Sequence 47 8299-06-Xu-murinum 270 bp 
Sequence 48 8299-08-Xu-murinum 270 bp 
Sequence 49 8299-09-Xu-murinum          267 bp 
Sequence 50 8299-11-Xu-murinum 270 bp 
Sequence 51 8299-17-Xu-murinum 270 bp 
Sequence 52 8299-18-Xu-murinum 270 bp 
Sequence 53 8299-19-Xu-murinum 270 bp 
Sequence 54 8299-20-Xu-murinum 270 bp 
Sequence 55 8299-21-Xu-murinum 270 bp 
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Sequence 56 8299-22-Xu-murinum 270 bp 
Sequence 57 8299-24-Xu-murinum 270 bp 
Sequence 58 5992-5-StY-E.longi          269 bp 
Sequence 59 5992-9-StY-E.longi 270 bp 
Sequence 60 5992-10-StY-E.longi 269 bp 
Sequence 61 5992-14-StY-E.longi 270 bp 
Sequence 62 5992-16-StY-E.longi 240 bp 
Sequence 63 5992-17-StY-E.longi 269 bp 
Sequence 64 5992-18-StY-E.longi 270 bp 
Sequence 65 5992-20-StY-E.longi 269 bp 
Sequence 66 8376-01-St-libanotica 270 bp 
Sequence 67 8376-02-St-libanotica 270 bp 
Sequence 68 8376-03-St-libanotica 269 bp 
Sequence 69 8376-04-St-libanotica 270 bp 
Sequence 70 8376-06-St-libanotica 269 bp 
Sequence 71 8376-08-St-libanotica 269 bp 
Sequence 72 8376-09-St-libanotica 270 bp 
Sequence 73 8279-04-Xa-marinum          270 bp 
Sequence 74 8279-05-Xa-marinum          267 bp 
Sequence 75 8279-06-Xa-marinum          270 bp 
Sequence 76 8279-08-Xa-marinum          270 bp 
Sequence 77 8279-09-Xa-marinum          270 bp 
Sequence 78 8279-10-Xa-marinum          270 bp 
Sequence 79 8279-11-Xa-marinum          270 bp 
 
 

Seventy-nine sequences were analyzed including the Y-genome RAPD marker, 

JC51 (GenBank accession BV679236), which was amplified from E. rectisetus (StWY).  

Twelve clones of plasmid DNA sequence were isolated from P. spicata (St), five from P. 

ferganensis (St), seven from P. libanotica (St), thirty nine from Hordeum murinum (Xu), 

seven from H. marinum (Xa), and eight from the positive control, Elymus longiaristatus 

(StY).  The phylogenic tree was based on the CLUSTAL W alignment of DNA 
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sequences.  Phylogeny tree was grouped into two main groups, I and II (Fig. 8).  

Members in each group shared high identity scores ranging from 92% to 100%.  

Nucleotide substitution rate varies from 0 to 9.3.   

Fig. 8.  A dendrogram depicting relationships among Y genome STS marker sequences 
of Pseudoroegneria (8389, 8376, and 3257) and Hordeum species (8140, 8281, 8299, 
8279) in relation to those from polyploidy Elymus rectisetus (JC51= BV679236) and E. 
longiaristatus (5992).  Numbers in parentheses are the number of identical sequences 
represented by the displayed sequence at the end of each branch. 

The original RAPD marker sequence (JC51) was aligned in the same subgroup (I-

1) with five clones from P. spicata (PI 232134).  Clones from Elymus longiaristatus were 

scattered in subgroups I-2 and I-3, where three clones from P. spicata and seven clones 

from P. libanotica were located.  Four clones from Pseudoroegneria spicata formed the 

subgroups I-4.  In subgroup I-5, five clones from P. ferganensis, had 100% identity.  

Group II was clearly defined by Hordeum species.  Sequences from both Hordeum 

murinum (Xu) and H. marinum (Xa) were intermingled in this group; thus, they were 

more distantly related to the Y genome sequences from E. longiaristatus than those from 
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any Pseudoroegneria species.  There was little difference among sequences from the two 

Hordeum species, H. murinum and marinum, which are grouped together. 
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DISCUSSION 

 The present study aimed at searching for the origin of the Y genome in Elymus 

species.  Two hundred twenty six accessions of perennial Triticeae, mainly in Elymus, 

Hordeum, and Pseudoroegneria, were screened for the Y genome specific STS marker, 

B14 F1/R1-269bp.  A total of forty three accessions of Elymus species were tested.  They 

were classified into three groups: (1) 23 accessions known to have the Y genome in their 

genomic constitution, (2) 10 accessions known not to have the Y genome, and (3) 10 

accessions with unknown or questionable genome combinations.   

In group I, only one out of 23 failed to detect the Y genome by the STS marker.  

Elymus praeruptus, T-217, previously classified as a tetraploid with StY genomes, did 

not amplify the three St and the one Y genome STS markers.  This result is surprising, 

because the species was previously known to possess the StY genomes.  The STS 

markers allowed the detection of Y genome in Elymus species with a 95% confidence 

(one out of 23 failure rate).  There are two possible explanations for this negative result 

(1) the used plant material was not the said species, or (2) the priming sites for the STS 

marker sequence had base changes during the evolutionary process of the species. 

 In group II, accessions known not to carry the Y genome, one out of ten 

accessions tested positive for the Y genome marker and nine other accessions were 

confirmed to lack the Y genome marker.  Elymus fibrosus (PI 547320), previously 

classified as containing the StH genome, was tested positive for the Y genome marker.  

However, with further scrutiny based on the intensity of the marker fragment in Fig. 7; 

this positive result could be attributed to the presence of Y genome sequence in the St 



 49

genome rather than the presence of a true present-day Y genome.  Therefore, E. fibrosus 

should still be regarded as an StH genome tetraploid. 

In group III species, for which the genomic formula is unknown, we found that 

five out of ten species possess the St and Y genomes.  They are: Elymus curvatus PI 

531579, E. angustigglumis PI 531639, E. laxiflorus KJ 278, E. kunlunshanicus CPI 

11942, and E. praecaespitosus X-93019.  However, the following accessions of Elymus 

species lack the Y genome but possess the St genome markers- E. interruptus PI 531617, 

E. scabriglumis PI 202147, E. villosus PI 531703, E. scabrifolius PI 531544 and E. 

angustigglumis PI 531639. 

 The presence of the St genome in the Elymus and Pseudoroegneria species was 

tested with three STS markers, B04F/R-341bp, D15F/R-498bp, and N05F/R-520bp.  

None of these three markers could singly detect the presence of St genome.  Even the use 

of all three markers failed to detect the St genome in three Elymus species (E. fibrosus, E. 

tsukushiensis, and E. praeruptus; Table 10) and two accessions of P. libanotica (PI 

401325 and PI 401331 (Table 12).  Comparing to these St genome STS markers, the Y 

genome marker is more reliable.  This may be due to the longer evolutionary passage 

experienced by the St genome than the more recently evolved Y genome. 

 Testing the Y genome marker in Hordeum with the primer pair B14F1/R1 

demonstrated that there is no diploid Hordeum species that could be the source of Y 

genome.  The accessions of Hordeum that tested positive for the Y genome marker are all 

tetraploids: H. murinum PI 422469, H. murinum PI 206686, H. murinum ssp leporinum 

NGB 90353.2, H. murinum sp murinum NGB 6530, H. murinum ssp murinum NGB 

6870.2, H. murinum ssp leporinum NGB 90251.2, H. marinum NGB 90606.2, H. 
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marinum ssp gussoneanum NGB 90249.2, H. murinum ssp leporinum NGB 90350.1, H. 

murinum ssp leporinum NGB 90352.1, H. murinum ssp leporinum NGB 90353.2, and H. 

murinum ssp leporinum NGB 90599.2 (Table 11).  Our study focused on the diploid 

donor of the Y genome.  These results suggested that Xa and Xu genomes in Hordeum 

are not candidate donors of the Y genome to the Elymus species.   

The Y genome must have higher copy numbers of the repetitive STS marker 

(lanes 5 - 8 of Fig. 7) than all other genomes.  The copy numbers of the Y genome 

marker in Hordeum are lower so that the bands are very faint compared to those in 

Pseudoroegneria.   

 The B14F1/R1-269bp STS marker has been found to be useful in searching for 

the Y genome donor in some of the Pseudoroegneria species.  Our results confirmed that 

Pseudoroegneria libanotica (PI 401326), P. spicata (PI 232134), and P. ferganensis (T-

219) are all diploids possessing the Y genome marker; thus, are potential donors of the Y 

genome.  The St genome STS markers B04F/R-341bp, D15F/R-498bp and N05F/R-

520bp were used to ascertain that these species have the St genome.  Both St  and Y 

genome STS markers were present in the three above-mentioned accessions of 

Pseudoroegneria diploids, making them the prime candidate donors of the Y genome to 

the StY genome Elymus species.  Our results added additional evidence in supporting the 

hypothesis that the St and Y genomes may have originated from the same ancestor (Yen 

et al. 2005; Liu et al. 2006).   

 To further elucidate the relationships among Y genome markers in Elymus, 

Pseudoroegneria and Hordeum species, the amplified B14F1/R1-269 STS markers from 

suspected Y genome donor species were cloned, sequenced and aligned.  Twelve clones 
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were isolated from Pseudoroegneria spicata (St), five from Pseudoroegneria ferganensis 

(St), seven from Pseudoroegneria libanotica (St), thirty nine from Hordeum murinum 

(Xu), seven from Hordeum marinum (Xa), and eight from the positive control Elymus 

longiaristatus (StY).  These sequences were compared and aligned to determine their 

similarities to the Y genome’s random amplified polymorphic DNA (RAPD) marker, 

JC51 (GenBank accession BV679236). 

 The phylogenic tree was based on the CLUSTAL W alignment of DNA 

sequences after identical sequences within a species were consolidated (Fig. 8).  The 

phylogeny tree separated into two main groups, I & II.  Each group was formed by high 

sequence identity; scores ranged from 92% to 100%.  Nucleotide substitution varied from 

0-9.3. 

 Y genome specific sequences amplified from Pseudoroegneria species showed a 

high level of similarity to JC51.  Three distinct sequences from P. spicata accession were 

placed in the first group (Group I).  One sequence of P. spicata is closely related to JC51 

(Subgroup I-1).  Two sequences of E. longiaristatus and one sequence from P. spicata 

are in subgroup I-2.  One sequence each from E. longiaristatus and P. libanotica are 

located in subgroup I-3.  In the subgroups I-4, and I-5, there is only one sequence each 

from P. spicata and P. ferganensis, respectively (Fig. 8).   

 Based on these results, it is clear that Pseudoroegneria spicata contains sequences 

that are most closely related to the Y genome STS marker in both E. rectisetus (StWY) 

and E. longiaristatus (StY).  Therefore, Pseudoroegneria spicata is the prime candidate 

as donor of the Y genome to the Elymus species containing StY, StPY, StWY or StHY 

genome constitution.   
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The second group (II) in the phylogeny tree contains sequences from Xu and Xa 

genomes of Hordeum murinum and H. marinum, respectively.  In contrast with McMillan 

and Sun’s (2004) results, we found a clear separation between the StY, XaXa and XuXu 

genomes (Fig. 8).  Based on both the copy number (Fig. 7) and sequence homology (Fig. 

8), it is clear that the Y genome STS sequences in Hordeum species are more distantly 

related to that in present-day Y genome than those in the three Pseudoroegneria species 

identified in this study. 

 Stebbins (1975) stated that the ancestors of Pseudoroegneria spicata and 

Hordeum migrated from Asia to North America, hybridized and gave rise to some of the 

North America polyploids, and then later migrated to South America.  The present study 

identified P. spicata as the prime source of Y genome in polyploid Elymus species having 

StY, StPY, StWY or StHY genome constitution.  Then, these Elymus species must have 

been evolved before the migration of an ancestral species of Pseudoroegneria spicata 

from Asia to North America. 

 Generally, the evolution of plants is a very complicated process.  Lu (1993c) 

reported that it is difficult to make a complicated evolutionary process fit a man-made 

taxonomic classification system.  However, discovery of the origin of Y genome will 

contribute to our understanding of evolutionary process of Elymus species that have this 

genome.  It can be speculated that the Y genome marker was either eliminated or 

remained unamplified during speciation for many Pseudoroegneria species.  On the other 

hand, a species with an St genome having the Y marker sequence hybridized with one 

having an St genome without the Y marker sequence.  Rapid amplification of the 

repetitive marker sequence followed the hybridization and polyploidization events.  This 
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amplification enriched the marker sequence in one of the two St genomes, leading to 

genome differentiation and allopolyploidy.  The St genome with enriched Y marker 

sequence became the Y genome in the newly formed StY genome tetraploid species.  

Then, this StY species hybridized with species having H, P or W genome, resulting in 

hexaploid Elymus species with StHY, StPY, or StWY, respectively. 
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CONCLUSION 

 The St genome of Pseudoroegneria is the most important component in the 

genomic constitution of the Elymus genus at present.  Based on Dewey’s genomic 

classification system, the St genome is present in all Elymus species.  However, the 

genomic constitution of approximately 40% of all Elymus species is still unknown and 

some have questionable genomic formulas.  Using a Y genome specific STS marker, we 

obtained evidence supporting the hypothesis that the Y genome in some Elymus species 

shared a progenitor genome with the St genome.  The STS markers allowed the detection 

of Y genome in Elymus species with at least a 95% confidence level (1 out of 23 failure 

rate).  The STS marker for the Y genome is useful to analyze all polyploid Triticeae 

species whose genome constitutions are still unknown.   

 Three out of 43 accessions of Pseudoroegneria tested, were positive for the Y 

genome marker.  Chromosome counts were carried out for these three accessions and 

were confirmed to be diploids (2n = 14).  The DNA sequences of this Y genome marker 

in these three Pseudoroegneria species are more similar to those obtained from Elymus 

species having the Y genome than those from Hordeum marinum and H. murinum, which 

have the Xa and Xu genome, respectively.  Thus, specific accessions of Pseudoroegneria 

spicata (PI 232134), P. libanotica (PI 401326), and P. ferganensis (T-219) are being 

suggested as donors of the Y genome to Elymus species having the StY, StHY, StPY, or 

StWY genome constitution.  Their genome symbol could be designated as StY.  If P. 

spicata were the source of Y genome, polyploidization event forming the StStY tetraploid 
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species that eventually evolved to StY species should have occurred before the migration 

of an ancestral species of P. spicata from Asia to North America. 
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Media formulation 

 

LB Agar (per liter) 

10 g of NaCl 

10 g of tryptone 

5 g of yeast extract 

20 g of agar  

Add deionized H2O to final volume of 1 liter 

Adjust pH to 7.0 with 5N NaOH  

Autoclave   

Pour into Petri dishes (25 ml/100 mm plates) 

LB-Ampicillin Agar (per liter) 

1 liter of LB agar, autoclaved  

Cool to 55ºC 

Add 10 ml of 10 mg/ml filter-sterilized ampicilin 

Pour into Petri dishes (25 ml/100 mm plate)  

2% X-gal (per 10 ml) 

0.2 g of 5-bromo-4-chloro-3-indly-ß-D-galactopyranoside (X-Gal) 

10 ml of dimethylformamide (DMF) 

Store @ -20ºC 

Spread 40 µl per LB-agar plate 

 SOB Broth (per liter) 

20.0 g of tryptone 

5.0 g of yeast extract 

0.5 g of NaCl 

Add deionized water to final volume of 1 liter 

Autoclave  

Add the following filter-sterilized supplements prior to use 

10.0 ml of M MgCl2 

10.0 ml of M MgSO4 
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SOC Broth (per 100 ml) 

2 ml of filter-sterilized 20 % (w/v) glucose or 1 ml of filter sterilized 2 M glucose  

SOB medium (autoclaved) to final volume of 100 ml. 

 

Working solution for DNeasy 96-well plate protocol 

     Volume per sample volume for 2 x 96 sample  

Buffer AP1 (Preheated to 65 ºC)        400 µl    90 ml 

RNase A (100 mg/ml)    1 µl    225 µl  

Reagent DX     1 µl    225 µl  

 

 

DEFINITIONS  

  Plasmid is a small, circular piece of DNA that is often found in bacteria. These 

innocuous molecular bacteria survive in the presence of an antibiotic, for example, due to 

the genes it carries. 

 Vector is generally the basic type of DNA molecule used to replicate your DNA, 

like plasmid. 

  Insert is a piece of DNA we have purposely put into another (vector) so that we 

can replicate it. 
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