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Zusammenfassung—Die Knochenhistologie von Schildkrötenpanzern liefert wertvolle 

Ergebnisse zur Osteoderm- und Panzergenese, zur Rekonstruktion von fossilen 

Weichgeweben, zu phylogenetischen Hypothesen und zu funktionellen Aspekten des 

Schildkrötenpanzers, wobei Carapax und das Plastron generell ähnliche Ergebnisse zeigen. 

Neben intrinsischen, physiologischen Faktoren wird die Mikrostruktur des Panzerknochens 

von einem Mosaik phylogenetischer and funktionaler Faktoren beeinflusst. Das Verhältnis 

beider Einflüsse variiert sehr stark unter den Schildkrötengroßgruppen. Nur wenn funktionelle 

Aspekte nur schwach ausgeprägt sind, können phylogenetische Signale abgeleitet werden. Die 

Knochenhistologie kann demnach zur Überprüfung bestehender (morphologischer, 

molekularer oder serologischer) Verwandtschaftshypothesen genutzt werden. 

Gruppen, die gut definierte Knochenmikrostrukturen aufweisen, sind die Bothremydidae, 

Pleurosternidae, Chelydridae, Plesiochelyidae und Thalassemydidae, Dermochelyidae, 

Dermatemydidae, Carettochelyidae, und Trionychidae. Weiterhin kann die systematische 

Position unsicher zugeordneter Taxa (z.B. aff. Platychelys sp., Platysternon megacephalum), 

sowie unzureichend bekanntes Materials bestimmt werden. Aff. Platychelys sp. sowie der 

Kirtlington Histomorph I werden beide den Pleurosternidae zugeordnet. Die Zuordnung des 

Histomorph I führt zu einer Ausdehnung des Fossilberichts der Pleurosternidae in den 

Mittleren Jura hinein. P. megacephalum zeigt einige histologische Gemeinsamkeiten mit den 

Chelydridae, was wiederum eine Unterstützung älterer morphologischer Hypothesen darstellt. 

In den restlichen Großgruppen ist kein klares phylogenetisches Signal vorhanden, oder es 

kommt zu einer Überprägung des Signals durch funktionelle Faktoren. 

Die Anpassung der Knochenmikrostruktur des Panzers an das aquatische Milieu gehört zu 

den stärksten funktionellen Faktoren. Hierdurch konnte eine Gruppierung aller untersuchten 

Schildkröten in vier Kategorien (I „terrestrischer Lebensraum“ bis IV „extremste Anpassung 

an das aquatische/marine Milieu) bezüglich ihrer Ökologie/Palökologie vorgenommen 

werden. Vergleiche der ältesten Vertreter der Schildkröten mit rezenten ‚aquatischen’ und 

‚terrestrischen’ Vertretern belegen unabhängig die terrestrische Palökologie der basalen 

Testudinata. 

Die Knochenpanzermikrostrukturen wurden weiterhin zur Klärung des Ursprungs der 

Schildkröten genutzt. Basierend auf dem Vergleich von basalen Schildkröten und 

verschiedenen Außengruppenvertretern, welche Pareiasaurier, Placodontier, Mammalier, 

Archosauromorphe und Lepidosaurier beinhalteten, wird ein Ursprung innerhalb der Diapsida 

mit naher Verwandtschaft zu Archosauriern hypothetisiert. Für den Panzer der Placodontier 

wird weiterhin ein, in Osteodermen bisher unbekanntes knorpeliges Gewebe (´postkranialer 

faserknorpelhaltiger Knochen´), sowie ein generelles Modell der Osteogenese vorgestellt.



 

Abstract—The bone histology of the turtle shell is valuable for addressing osteoderm and 

shell formation, reconstruction of fossil integumentary soft-tissue structures, phylogenetic 

hypotheses and functional aspects of the turtle shell, with both carapace and plastron showing 

similar results. Besides intrinsic physiological factors, the shell bones are proposed to be 

influenced by a mosaic of phylogenetic and functional factors influencing the microstructural 

properties. The ratio between phylogenetic and functional constraints is highly variable 

among the major turtle groups, and only where functional aspects are less dominant, 

phylogenetic signals can be deduced from the bone histology. The bone histology can thus be 

used to verify existing intra-specific phylogenetic (e.g., morphological, molecular and 

serologic) hypotheses among turtles. 

Groups that are well defined by bone histological characters are Bothremydidae, 

Pleurosternidae, Chelydridae, Plesiochelyidae and Thalassemydidae, Dermochelyidae, 

Dermatemydidae, Carettochelyidae and Trionychidae. Furthermore, the systematic position of 

uncertainly assigned taxa (e.g., aff. Platychelys sp., Platysternon megacephalum) and poorly 

known shell material (e.g., Kirtlington turtles) could be assessed. Aff. Platychelys sp., as well 

as Kirtlington histomorph I are both assigned to Pleurosternidae herein. Assignment of the 

latter taxon would indicate that the fossil record of Pleurosternidae has to be extended back 

into the Middle Jurassic. P. megacephalum was found to share some histological features with 

Chelydridae, thus supporting prior morphological hypothesis. In the other major turtle groups, 

the bone histology does not show clear phylogenetic signals or functional factors override 

existing phylogenetic signals respectively. 

One functional aspect that profoundly influences turtle shell bone microstructures is the 

adaptation to an aquatic habitat and life-style. In this respect, all turtles were grouped into 

four categories (I “terrestrial environment” to IV “extreme adaptation to aquatic/marine 

environments”), based on their ecology/palaeoecology. Comparison of the oldest known 

turtles with recent ‘aquatic’ and ‘terrestrial’ turtles independently revealed a terrestrial 

palaeoecology for the basal Testudinata. Shell bone microstructures can further elucidate the 

origin of turtles. Based on the comparison of basal turtles and several outgroup taxa including 

osteoderm-bearing pareiasaurs, mammals, placodonts, archosauromorphs and lepidosaurs, the 

origin of turtles is hypothesised to lie within Diapsida, with close relationships to archosaurs. 

In the case of placodont armour, a unique bone tissue (here termed ´postcranial fibro-

cartilaginous bone`) is described and a general model of osteogenesis is proposed. 
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1. Introduction 

1.1 General introduction 

Turtles are long since subject of scientific interest because of their highly unusual body 

bauplan. However, a comparative histological analysis of the main feature of the turtle, its 

shell, has never been conducted. In the last decades, bone histology emerged as an invaluable 

tool to analyse the biology of fossil vertebrates. Physiological, functional, and systematic 

questions were approached using this powerful scientific tool. This study was conducted to 

elucidate how bone histology can be applied to questions about the formation and origin of 

the turtle shell, its function and its systematic value for turtle interrelationships. 

 

1.2 Morphology and anatomy of the turtle shell 

The turtle shell (Figure 1) consists of a domed, dorsal carapace and a rather flat, ventral 

plastron (e.g., Młynarski, 1969, Zangerl, 1969). Generally, the carapace consists of eight 

neurals, eight costals, twenty-two peripherals (eleven on each side), a nuchal, one or two 

suprapygals and a pygal plate. From anterior to posterior, the plastron is organised into the 

paired epiplastra, a single entoplastron, two hyo-, two hypo- and two xiphiplastra. The 

elements of the plastron are usually thought to be associated with the clavicles (epiplastron), 

the interclavicle (entoplastron) and three to five paired bones, possibly from the gastral 

skeleton, of basal reptilians (e.g., Zangerl, 1939, 1969; Cherepanov, 1984; Gaffney and 

Meylan, 1988; Cherepanov, 1997). Basal turtles may retain also a pair of mesoplastra between 

the hyo- and hypoplastra, as well as a number of additional elements in the carapace (Zangerl, 

1969). The marginal surfaces of adjacent shell elements are usually dominated by bony 

protrusions that interlock with the next shell element. This causes a characteristic suture 

between the shell elements, leading to a pattern that is of high taxonomic relevance (e.g., 

Zangerl, 1969). General descriptions of the shell morphology can be found, for example, in 

Zangerl (1939, 1969), Carroll (1988, 1993), Benton (2005) and Rieppel (2001). 
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Figure 1: General schematic external view of A) carapace and B) plastron of a modern turtle 

shell modified after Zangerl (1969). Shield boundaries (double lines) are removed on the left 

hand side of each drawing to show bone boundaries (single full and stipled lines). n: neural; 

c: costal; p: peripheral; sp: suprapygal; lines marked with X and L: orientation of major 

transverse (X-section) and longitudinal (L-section) planes of sectioning 

 

With the exception of Trionychidae, Carettochelys insculpta and Dermochelys coriacea, the 

shell bones of all extant turtles are covered by epidermal keratin shields/scutes. The bone 

sutures and the shield boundaries generally do not overlap. This composite structure of bones 

and overlying shields is generally interpreted to fulfil some kind of armour function (Zangerl, 

1969). Similarly to the characteristic bone sutures, the shield/scute impressions, called sulci, 

are of high taxonomic value. In the three taxa that do not show keratin shields, the bones are 

covered with a thick leathery integument instead. 

Both shell halves are usually connected by a lateral bony bridge, consisting of the dorsal 

peripherals of the bridge region and the dorsolateral processes of the hyo- and hypoplastron. 

In some taxa, e.g., in the Southeast Asian box turtles (Cuora spp., Bataguridae) or the New 

World box turtles (Terrapene spp., Emydidae), the reduction of the bridge into a loose joint 

allows the kinetic closure of the shell by pulling up the anterior and posterior plastral lobes. 
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The development of kinetic hinge systems in the shell is very common. It can further be found 

within pelomedusid, kinosternid and in testudinid turtles (Zangerl, 1969). 

Among Testudinidae, the hinge-back tortoises (Kinixys spp.) have developed one of the 

most aberrant hinge systems. Instead of movable plastral lobes, a hinge has developed within 

the carapace through which the posterior part can be dorsoventrally raised and lowered. Other 

turtle taxa, including the Trionychidae and the Chelydridae, reduce the bridge until the ventral 

and dorsal armour elements are connect only by bony protrusions and soft connective tissue. 

In several turtle lineages, the adult shells show a reduced number of bony elements as well 

as the retainment of large fontanelles between the shell bones. Otherwise, large fontanelles are 

characteristic for juvenile turtles, and they are usually closed during ontogeny (e.g., Zangerl, 

1969). However, some shell variation has to be treated with caution for taxonomic purpose. In 

modern turtles, the shell morphology can be highly plastic due to exogenic factors (e.g., 

basking periods), malnutrition and pathologies (e.g., Frye, 1991, Sinn, 2004). 

In cheloniid turtles, large fontanelles are retained between the costals and the peripherals of 

the carapace, as well as in the plastron. In trionychid turtles, the complete set of peripherals is 

reduced (with the exception of the posterior peripheral bones in Lissemys punctata, see 

4.3.24) with the free rib ends being embedded in the marginal soft dermal rim. In 

Dermochelyidae, the primary (thecal) shell bones are almost completely reduced and a 

secondary (epithecal) mosaic armour of numerous small polygonal bony platelets developed 

(e.g., Zangerl, 1939; see Fig. 2).  

For Trionychidae, Kordikova (2000, 2002) noted that many morphological differences of 

the turtle shell may be explained by the occurrence of heterochronic effects, especially of 

paedomorphosis. The delay or acceleration of certain shell elements compared to others leads 

to the loss of shell elements or the preservation of fontanelles in adult individuals (Kordikova, 

2000). 
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Figure 2: Comparison of turtles shells that show different stages of ossification. A) Carapace, 

B) plastron, connected by a bony bridge, of an almost completely ossified turtle shell 

(Trachemys scipta; IPB R590). C) Carapace and D) plastron of the reduced shell of a 

trionychid turtle (Trionyx triunguis, IPB R260). Peripherals and a bony bridge are not 

developed. Schematic drawing of E) the carapace and F) the plastron of Dermochelys 

coriacea (modified after Zangerl, 1939; not to scale). In E), the right side of the secondary 

(epithecal) armour, consisting of numerous small polygonal platelets and seven larger 

carapacial platelet ridges, is removed. Below the epithecal armour, the ribs and the only thecal 

remnant, the nuchal, is seen. In F), the thecal elements are still present (except the 

epiplastron) as thin bony rods and five plastral ridges are indicated through scattered platelets. 

co=costal; ep=epithecal ossification; epi=epiplastron; hyo=hyoplastron; hypo=hypoplastron; 

n=neural; nu=nuchal; p=peripheral; r=rib; xiphi=xiphiplastron. 
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1.3 Aims of the study 

1.3.1 Implications for turtle systematics 

Taxomomic studies of fossil and recent turtles usually focussed only on the osteological 

analysis of cranial and postcranial material. But is the turtle shell microstructure (carapace 

and plastron) also of systematic value? Can taxa of uncertain systematic status be assigned to 

existing genera or more inclusive taxa, based on their shell histology?—The first comparative 

approaches on bone histological sampling of turtle shells (e.g., Zangerl, 1969; Moss, 1969), 

already yielded interesting similarities and variation of the microstructures among turtle taxa. 

Those studies, however, focussed only on a few well known and easily available extant 

species. Easily recognised differences were found for example between tortoises and sea 

turtles (i.e., due to the reduction of internal cortical bone in sea turtles). 

To address these questions, two composite phylogenetic trees were compiled to serve as 

working hypotheses for the turtle relationships. The first tree (Fig. 3) shows the 

interrelationship of the major groups of Testudinata. In the second tree (Fig. 4), all sampled 

turtle taxa are incorporated. The first tree is mainly based on published results of Gaffney and 

Meylan (1988), Meylan and Gaffney (1989), Rougier et al. (1995), Gaffney (1996), Hirayama 

(1998), Sukhanov (2006) and Joyce (2007). The second tree is based on many more 

individual data sets that were incorporated also in the morphological description of 

Testudinata (chapter 4). On this basis, the shell bone microstructures will be discussed and 

interpreted for each taxon and group. The existing hypotheses were tested and evaluated in 

the light of the new data presented in the current study. Special interest was paid to turtle taxa 

of uncertain phylogenetic position. Please note that there occur differences in nomenclature of 

turtle taxa between authors that follow the ICZN and those that follow the PhyloCode (sensu 

Joyce et al., 2004). A comparison of both systems is found in Danilov (2005:table 32). 
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Figure 3: Phylogenetic working hypothesis of the major groups of Testudinata. Fossil taxa 

are marked by a cross. For source of data see text. 
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Figure 4: Phylogentic working hypothesis of all sampled taxa of Testudinata. For source of 

data see text. Fossil taxa are marked by a cross. Taxa of uncertain phylogenetic position are 

marked with a question mark. 1=Testudinata; 2=Pleurodira; 3=Cryptodira; 4=Paracryptodira; 

5=Eucryptodira; 6=; 7=Chelonioidea; 8=Chelydridae; 9=Testudinoidea; 10=Testudinidae; 

11=Geoemydidae/Bataguridae; 12=Emydidae; 13=Trionychoidea; 14=Kinosternoidea; 

15=Trionychia;16=Carettochelyidae; 17=Trionychidae 

 

1.3.2 Implications for turtle shell functional morphology 

The turtle shell is generally seen as armour, an adaptation against predation (see Burke, 

1989a; Zangerl, 1969). Are there microstructural adaptations to strengthen the shell? Are 

form and functional constraints that influence the bones strongly enough to override potential 

phylogenetic signals?—Structural strengthening, e.g., through the development of plywood 

patterns, has been discussed for a wide variety of skeletal hard tissues among animals (e.g., 

Märkel and Gorny, 1973; Giraud et al., 1978; Pfretzschner, 1986, 1994; Kamat et al., 2000; 

Ricqlès et al., 2001; Scheyer and Sander, 2004). The strengthening structures are usually 

interpreted as being optimised against effecting stresses. Besides an armour function, the 

turtle shell serves as a support for the vertebral column within the carrying system and as 

attachment area for connective soft-tissues (e.g., breathing musculature). All these functions 

are hypothesised herein to influence the outer morphology of the shell bones as well as the 

internal bone microstructures. In the current study, the functionality of the turtle shell 

elements is analysed in context with the epidermal keratinous shields, whose borders do not 

overlap with the sutures of the underlying shell bones where appropriate. 

Body size is a fundamental variable correlated with a large variety of aspects of the life 

history and anatomy of organisms, including bone structure (e.g., Klingenberg 1998; Liem et 

al. 2001). Are there functional differences in the turtle shell related to the size of the turtle?—

The structure of the turtle shell bone is also likely to be determined by size and constrained by 

phylogenetic history. Bone histology can be influenced by size- and age-related factors, as 

discussed by Hailey and Lambert (2002) in a study of phenotypic and genetic differences in 

the growth of giant Afrotropical tortoises. In this context, the study of species at the end of the 

size spectrum variation is of special interest (i.e. small sized pelomedusoid turtles compared 

to giant Stupendemys geographicus). 
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In the case of the marine Dermochelyidae, secondary (epithecal) armour developed after an 

initial, almost complete reduction of the ancestral primary (thecal) shell. Are there differences 

between the primary and secondary turtle armour?—It is to be assessed if the smaller, 

secondary armour platelets are derived in their microstructure (optimised against stresses?), 

while at the same time providing higher mobility in the water. 

Shell kinesis appears in several turtle lineages. What evidence can be found for shell kinesis 

on the microscopical level?—If shell kinesis is present in a turtle taxon, it proposedly alters 

the appearance of the normal sutured bone elements. Consequently, as these taxa adapt to the 

kinetic strains by remodelling their shell elements, the bone microstructure should also be 

affected. Muscle- or tendinous attachments of bones within hinges might be recognised in the 

form of specifically orientated collagen fibres (Sharpey’s fibres) in the bone. The variation in 

the sutural contact of the bone as well as the presence of the Sharpey’s fibres can be an 

indicator for functional constraints acting on the turtle shell. 

 

1.3.3 Implications for turtle origins 

Turtles are unique among all living reptiles in having an anapsid skull, a body encased in a 

rigid shell and limb girdles that are shifted into the rib cage (Zangerl, 1969). Proganochelys 

quenstedti, the basal-most turtle, and Proterochersis robusta, the oldest known turtle, already 

display such a bauplan, thus aggravating the reconstruction of turtle origins (Gaffney, 1990). 

While morphological hypotheses interpret turtles either as the last descendants of ‘anapsid’ 

parareptiles related to small procolophonids (Laurin and Reisz, 1995) or large herbivorous 

Permian pareiasaurs (Gregory, 1946; Lee, 1993, 1996, 1997, 2001), or as diapsid reptiles 

close to sauropterygians (Rieppel and deBraga, 1996; deBraga and Rieppel, 1997; Rieppel 

and Reisz, 1999) or lepidosaurs (e.g., Müller, 2003; Hill, 2005), recent molecular studies 

favour a turtle-archosaur relationship (e.g., Kumazawa and Nishida, 1999; Rest et al., 2003; 

Iwabe et al., 2004). While morphological hypotheses rely on the presence of extensive dermal 

armour in fossil and living groups for comparison (e.g., Lee, 1997; deBraga and Rieppel, 

1997), embryological studies propose the turtle body plan to be a neomorphic structure (e.g., 

Burke, 1989b, 1991; Loredo et al., 2001; Gilbert et al., 2001; Kuraku et al., 2005). Increasing 

evidence of the current molecular studies results in the necessity to test the newly proposed 
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turtle-archosaur relationship against the older, mainly morphology-based hypotheses that 

turtles represent the last descendants of the parareptilian lineage. 

Up to date, the origin of turtles is still hotly debated (Fig. 5). In this respect, can the 

comparison of histological features of turtle and outgroup taxa provide evidence for common 

ancestors?—A preliminary comparative approach that uses amniote osteoderm and turtle 

shell bone histological data is attempted to elucidate the origin of turtles. The sampling 

includes armour elements from taxa that are discussed as potential outgroups to the 

Testudinata. Similarities of the micro-structural arrangement of the armour elements may 

provide strong evidence for, or against, proposed sistergroup relationships. 

 

Figure 5: Proposed positions of turtles among amniotes that are to be tested by bone 

histological comparison of turtle shell bones and dermal skeletal elements of outgroup taxa. 

Hypothesis A) turtles are parareptiles and deeply nested within pareiasaurs; hypothesis B) 

turtles are derived diapsids most closely related to sauropterygians; hypothesis C) turtles are 

derived diapsids most closely related to lepidosaurs; hypothesis D) turtles are derived 

diapsids most closely related to archosaurs. For source of data on phylogenetic hypotheses of 

turtles see text. 1= Synapsida; 2= Parareptilia; 3= Diapsida 
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1.3.4 Implications for the ecology of turtles 

During the Early Carboniferous, early tetrapods left the water to become the first terrestrial 

animals. They retained an amphibious life-style spending time on land and in water. With the 

evolution of the amnion egg, the Amniota were able to leave the aquatic habitat permanently. 

Since then, several groups of tetrapods, however, reversed their ecology and secondarily went 

back into the water (e.g., Seymour, 1982; Ricqlès and Buffrénil, 2001). In some cases, this 

secondary adaptation is so strong that the animals cannot leave the water anymore. Modern 

amphibians (e.g., Anura), modern crocodilians and also seals and sea lions (Pinnipedia) still 

have an amphibious life-style. The whales (Cetacea) or the dugong (Sirenia), on the other 

hand, are so strongly adapted that they could not live on land anymore. In the case of sea 

turtles, the adaptation is not complete because, being oviparous animals, they still have to 

visit their terrestrial nesting sites for egg deposition (Musick, 1999; Godley et al., 2002; Hays 

et al., 2003). Other marine animals like whales, dolphins and sirenians are viviparous and they 

do not leave the water at all. Besides those recent groups of animals, several fossil lineages 

among vertebrates are known that purely lived in a marine environment, including for 

example the mosasaurs (e.g., Caldwell and Lee, 2001) or the ichthyosaurs (e.g., Motani, 

2005). Similar to modern whales and dolphins, their bodies were optimised for fast and agile 

swimming that did not allow movement on land anymore. 

According to its preferred habitat, the vertebrate body plan begins to adapt over time. For 

example, many terrestrial animals are characterised by stout limbs necessary for movement on 

land. The bone histology of those limbs, particularly of the long bones, shows a stress-

optimised build. Heavy bone tissue like cortical bone is used sparingly in a tube-like structure, 

while the bone interior comprises either a medullary cavity or, towards the epiphyseal ends of 

the bone, less heavy cancellous bone tissue (e.g., Castanet, 1985; Castanet et al., 1993). The 

network of bone trabeculae in the cancellous tissue is subject to continuous remodelling 

processes during growth (e.g., Francillon-Vieillot et al. 1990). Animals that retain an 

amphibious life-style may show a mixture of terrestrial and aquatic characteristics in bone 

histology (e.g., Esteban, 1990). In marine animals, adaptive changes in bone remodelling 

follows two general trends, first an increase in bone mass and second a decrease in bone mass 

(see Ricqlès, 1989; Ricqlès and Buffrénil, 2001 for overview). In the first case, bone can 

become more compact to counter buoyancy and to enable a hydrostatic stabilisation. These 

processes acting on the bone tissue are known as non-pathological pachyostosis and 
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osteosclerosis. This can be seen for example in the compact ribs of the sirenian Dugong 

dugon (Buffrénil and Schoevaert, 1988) that lives in a near-shore environment. Parts of the 

long bones of fossil pachypleurosaurs are composed of calcified cartilage, thus also increasing 

bone mass (e.g., Ricqlès, 1989; Ricqlès and Buffrénil, 2001). Second, a reversal from the 

compact condition to a well vascularised, spongy condition is observed, as compact bone 

layers show increasing amounts of primary osteons and vascular canals (e.g., Esteban, 1990). 

Consequently, the most advanced modification of bone histology is reached usually in pelagic 

marine taxa, e.g., Dermochelys coriacea (e.g., Rhodin et al., 1981). The compact and 

cancellous parts of the bone are no longer distinguishable from each other and a rather 

homogeneous spongy bone tissue is developed. The strong vascularisation of the bone may 

hint at fast growth and bone deposition. A medullary cavity is not developed. Furthermore, 

such a bone tissue characterises fast and agile swimmers. Examples for this stage are found 

for example among the dolphins (Buffrénil and Schoevaert, 1988), the fossil ichthyosaurs 

(Buffrénil et al., 1987; Buffrénil and Mazin, 1990) and the fossil mosasaurs (Sheldon, 1997). 

During their evolutionary history, turtles show a wide range of adaptations, covering fully 

terrestrial to fully aquatic habitats. Today, only one group of turtles, the tortoises 

(Testudinidae), is completely terrestrial. All other crown-group turtles are either mainly 

aquatic or amphibious. As shown quantitatively by Joyce and Gauthier (2004), the turtle’s 

adaptation to a life in water versus a purely terrestrial life may be expressed in the outer 

morphology of its limbs. While short and stout limbs seem to be more related to a terrestrial 

environment, longer and slender limbs are more characteristic for aquatic environs, with 

marine turtles showing the strongest adaptations in the development of flippers. The pig-

nosed turtle Carettochelys insculpta constitutes an exception in present time, because, while 

sporting front flippers, it is not a marine turtle but lives in large freshwater river systems. 

Furthermore, due to the work of Joyce and Gauthier (2004), it is now possible to analyse 

fossil turtle palaeoecology independently of the sedimentary facies they are found in, by 

calculating size and length ratios of their limb bones. Still, well preserved limb material is a 

prerequisite for these studies, as well as a close comparison to extant turtles. Importantly, the 

authors concluded that the most basal turtles had a predominantly terrestrial life-style. The 

adaptation to the aquatic medium apparently occurred somewhere on the stem line before the 

turtles split into the two branches of the side-necked turtles (Pleurodira) and the hide-necked 

turtles (Cryptodira). While it is not unusual for vertebrates to secondarily return to the water 
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(e.g., the Cetacea, the Pinnipedia and the Sirenia) as described above, it is highly unusual for 

such a group to reverse ecology again to a terrestrial lifestyle. 

Not only the outer shape of bones, but also the bone microstructures are influenced by the 

habitat that the animal lives in. Can the ecology/palaeoecology of turtles be inferred by bone 

histology in this respect? What is the plesiomorphic palaeoecology for turtles?—Although 

these questions are greatly dependent on functional aspects and phylogenetic constraints, they 

gained more and more importance as my study progressed. Thus, it became necessary to 

adress them in a separate section. Furthermore, the ecological/palaeoecological aspects are 

intricately linked with the question about the origin of turtles. Central to the 

ecology/palaeoecology of turtles is how the varying degree of adaptation to the aquatic 

environment is expressed in the bone histology of the turtle shell. This is of special interest 

because of the wide range of habitats of living turtles and the unusual situation that the 

tortoises, a group of exclusively terrestrial turtles, are secondarily terrestrial. The actualistic 

concept allows the comparison of the modern and fossil bone histological data sets. The 

sampling comprises a variety of modern and fossil terrestrial, semi-aquatic, to fully marine 

turtles, including turtles from the Upper Jurassic ‘Solothurn turtle limestone’ of northern 

Switzerland. These turtles are regarded as important for the interpretation of marine 

adaptation among the Testudinata, because the Solothurn turtle assemblage represents the first 

marine radiation of turtles. The ecological data thus gained from the bone histology of the 

turtle shell is transferred to existing phylogenetic hypotheses to understand the ecological 

transitions from terrestrial to aquatic and even fully marine back to terrestrial in the 

evolutionary history of turtles. 

A characterisation of the degree of adaptation to the aquatic environment of a specific turtle 

group based on the bone histology of its shell is attempted. It will thus be possible to test the 

palaeoecological results obtained by Joyce and Gauthier (2004) that were based on limb 

proportions. In addition, the current bone histological approach allows the investigation of 

many fossil taxa which lack preserved limbs. All fossil turtles can thus provide data, as long 

as the preservation of the microstructure of the shell is sufficiently good. The bone 

histological results thus provide an independent way of testing the degree of aquatic 

adaptation of a specific turtle, and the results will help to elucidate the unique habitat shifts 

during the evolutionary history of the group. Furthermore, to address the second question, the 

bone histology of basal Testudinata is compared to that of recent turtles, for which ecology 
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and life-style is well known. It is hypothesised that similar ecologies would result in similar 

bone microstructures. 

 

1.4 Previous work 

1.4.1 Historical aspects on bone histology 

Since the invention of the microscope in the17th century, histological study has developed 

alternatively to the study of gross morphological/osteological features (e.g., Leeuwenhoek, 

1693; Havers, 1691, in Francillon-Vieillot et al., 1990). Research on fossil bone was 

subsequently carried out by Seitz (1907), Gross (1934) and Amprino (1947), as well as Enlow 

and Brown (1956, 1957, 1958). Summaries on aspects of skeletal and bone formation can be 

found for example in Castanet et al. (1993), Francillon-Vieillot et al. (1990), Halstead (1974), 

Ricqlès et al. (1991) and Schmidt (1967). Since bones and teeth are the most abundant 

remains in the fossil record of vertebrates, they are the major source for palaeontological data 

collection. Instead of being restricted to questions of fossilisation, taphonomy and skeletal 

reconstruction, the histology of the aforementioned hard tissues provides access to data that is 

usually restricted to biologists that study recent animals. Although the original mineral and 

soft-tissue content is altered or simply not preserved respectively, fossil bone shows 

extremely good preservation of the original bone structure down to the bone cell-level (note 

that while the original bone cells, the osteocytes, are gone, the cell lacunae and even finer 

structures like their communicating canals, the canaliculi, can be superbly preserved in fossil 

bone). By examining these microstructures of, e.g., bone cell lacunae, blood vessel canals and 

bone tissue types, palaeontologists are able to apply aspects of biology and behaviour to fossil 

animals, which in many cases have no comparable living descendant. 

 

1.4.2 Dermal bone histology and metaplastic bone formation 

Since the turtle shell is largely composed of dermal bones, a small overview of dermal bone 

histology and dermal bone formation is following. Postcranial dermal bones, i.e., postcranial 

osteoderms, develop intramembraneously or metaplastically within layers of connective tissue 
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of the integument (e.g., Francillon-Vieillot et al., 1990; Hall, 2005). No cartilage precursor is 

involved in the process of osteoderm formation. In the process known as metaplastic bone 

formation (Haines and Mohuiddin, 1968), localised areas of mesenchymal aggregation in the 

dermis develop that are subsequently ossified, thus a fully differentiated tissue (i.e., 

connective tissue of the dermis) is transferred into another (i.e., bone tissue). 

In living bone, the orientation of the collagenous fibres and fibre bundles also determines 

the orientation of the hydroxyapatite crystallites, i.e., the associated mineral phase of the 

bone. In the fossil bone, the original crystallite orientation is retained, thus allowing the 

reconstruction of the soft-tissue part of the bone that is usually lost during fossilisation (e.g., 

Francillon-Vieillot et al., 1990). Furthermore, by studying the microstructure of metaplastic 

osteoderms, the fossil dermal structure in which the bone formed can be reconstructed (see 

discussions in Scheyer and Sander, 2004; Scheyer et al., 2007). Thus, the study of tissues on 

the microscopic level allows the acquisition of additional data on gross morphology. This is 

especially important for the description and classification of specimens with similar outward 

appearances or specimens that lack classifiable, morphological characters. 

 

1.4.3 Reptile dermal bone histology 

Compared to the abundant studies on general fossil bone histology, reptile dermal bone 

histology received little attention until the 1970s. Hutton (1986), for example, used 

osteoderms for age estimations in crocodiles. Zylberberg and Castanet (1985) and Levrat-

Calviac and Zylberberg (1986) presented data of squamate osteoderms. Research on 

Stegosaurus sp. dermal armour bone histology was mainly carried out by Farlow et al. (1976), 

Buffrénil et al. (1986), McWhinney et al. (2001) and lately by Hayashi and Carpenter (2006). 

Blows (1987), was the first to publish on the histology of ankylosaur armour. The last 

comparative histological works on the dermal bone of thyreophoran dinosaurs were done by 

Scheyer and Sander (2004) and Main et al. (2005). 
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1.4.4 Turtle shell bone histology 

Work on the histology of turtles began with the analysis of the microstructural aspects of the 

turtle integument and the internal organs (e.g., Rathke, 1848; Hoffmann, 1878, 1890; 

Schmidt, 1921; Lange, 1931). However, with the exceptions of the more recent studies by 

Kälin (1945), Suzuki (1963) and Wallis (1928), the focus of the work still laid only on soft-

tissue anatomy and not so much on the bones of the turtle shell as well. As a result, 

comparative histological data on the shell bones in the literature is scarce with only occasional 

descriptions of thin-sections (e.g., Kälin, 1945; Meylan, 1987; Suzuki, 1963; Wallis, 1928; 

Zangerl, 1969). In the last three decades, numerous scientific approaches have been carried 

out on the bone histology of turtles, elucidating and validating the age and growth of turtles 

based on skeletochronology (e.g., Castanet and Cheylan, 1979; Peters, 1983; Zug et al., 1986; 

Castanet, 1987, 1988; Klinger and Musick, 1992, 1995; Zug and Parham, 1996; Zug and Glor, 

1998; Coles et al., 2001; Zug et al., 2001; Snover and Hohn, 2004). However, most of these 

studies focussed mainly on the sampling of long bone material or, in the case of Zug and 

Parham (1996), the sclerotic ossicle ring, of marine turtles and tortoises. These two taxa 

harbor the largest living turtles today. Zug and Parham (1996), like most of the other workers 

did not include samples of the bony shell in their analyses. 

The domed turtle shell bone itself is a composite structure and of a similar nature to a 

human skull diploe (e.g., Bloom and Fawcett, 1994), i.e. a flat bone in which interior 

cancellous bone is framed by an external and internal compact bone layer. The cancellous 

bone consists mostly of bone trabeculae, whereas the compact bone tissue typically shows 

growth marks that can be similar or quite distinct from lines of arrested growth (LAG; e.g., 

Castanet, 1981) and radial vascular canals (Zangerl, 1969). According to Francillon-Vieillot 

et al. (1990) and Castanet et al. (1993), secondary reconstruction appears seldom in the turtle 

shell bone. 

 

1.4.5 Historical introduction to the development of the turtle shell 

By the end of the 18th century, Georges Cuvier was among the first that gave comparative 

anatomical descriptions of animals, including reptiles. In the following decades, the works of 
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Geoffroy St. Hillaire (1809), Bojanus (1819-1821) and Carus (1828) profoundly improved the 

knowledge about turtle anatomy and from the histological point of view these works, which 

are almost two centuries old, are still in many ways strikingly up to date. Since the second 

half of the 19th century, there was a significant increase of works addressing the development 

of the peculiar novel bauplan of the turtle shell, (e.g., Rathke, 1848; Hoffmann, 1878, 1890; 

Goette, 1899; Newman, 1906; Stehli, 1910; Ogushi, 1911; Schmidt, 1921; Hay, 1922, 1928; 

Ruckes, 1929; Deraniyagala, 1930; Lange, 1931; Zangerl 1939; Vallén, 1942; Kälin, 1945; 

Williams and McDowell, 1952; Suzuki, 1963; Yntema, 1968, 1970a,b; Mahmoud et al., 

1973). This list is by no means exhaustive. I will refrain from listing all works that comprise 

developmental studies, because extensive bibliographies can be found for example in Vallén 

(1942), and especially the works of Miller (1985) and Ewert (1985) are general compendia 

focussing on the embryology and development of turtles. 

 

1.4.6 Current consensus on the development of the turtle shell 

In the following paragraph, a short overview of the shell bone formation is given. This 

overview mainly represents recent developmental works of Burke (1985, 1987, 1989a,b, 

1991), Rieppel (1993), Brüllmann (1999, unpubl. MSc-thesis), Gilbert et al. (2001), Loredo et 

al. (2001), Greenbaum, (2002), Sheil (2003), Cebra-Thomas et al. (2005), Kuraku et al. 

(2005) and Sheil (2005), as well as some of the classical works stated above (e.g., Goette, 

1899; Vallén, 1942; Kälin, 1945; Suzuki, 1963; Zangerl, 1969). These authors show that the 

nature of the shell of turtles, with its peculiar bauplan, i.e. shoulder girdle and pelvis within 

the rib cage, develops early in ontogeny. Sectioned embryos revealed the migration of 

mesenchymal cells into a dorsolateral bulge dorsal to the limb bud. This bulge, the carapacial 

ridge, consists of dorsal ectoderm and dermal mesoderm and it is hypothesised to entrap the 

primordial ribs in the carapacial development (Burke 1989b). Although certain parallels exist 

between the development of limb buds, i.e., in chicks, and the turtle carapace, it largely 

remains unclear how and by which molecular mechanisms and gene expressions, the turtle 

shell forms (see Loredo et al., 2001; Vincent et al., 2003; Kuraku et al., 2005). Early in 

ontogeny, the keratinous shields develop fully prior to hatching, while the bones below the 

shields still have to form (Suzuki, 1963; Zangerl, 1969). The earliest bones to ossify within 

the turtle shell are the elements of the plastron (Rieppel, 1993; Sheil, 2003). 
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In the turtle shell, only the costals and the neurals develop as a mixture of dermal and 

endoskeletal bone. In addition to the parts of dermal bone, the endoskeletal bone of the ribs is 

incorporated into the costal plates. The neurals, on the other hand connect dermal bone and 

endoskeletal bone of the neural arches. All other bony elements of the carapace (nuchal, 

pygal, suprapygals and peripherals) and the plastron (epi-, ento-, hyo-, hypo- and xiphiplastra) 

are of purely dermal origin. Kälin (1945), Suzuki (1963) and Cherepanov (1997) give 

exemplary descriptions of the development of neurals and costals during early ontogeny. A 

summary of the turtle shell development was recently given by Cebra-Thomas et al. (2005), 

so only a short summary will be given here. The ossification of the carapace starts along the 

median neural row above the vertebral column to proceed mediolaterally along the ribs 

towards the margins of the shell (e.g., Goette, 1899). In studying early ossification in 

Chelydra serpentina, Rieppel (1993) showed that the ossification of the neural arches is 

decoupled from the ossification of the centra and that the ossification of the neural arches 

starts ventrally from two separate ossification centres (one anterior and one posterior). 

Furthermore, as noted by this author, there seems to be no apparent anteroposterior gradient 

for the ossification sequence of vertebrae in C. serpentina. Generally, ossification of the 

neurals is induced by the periosteum of the vertebral arches, and the ossification of the neurals 

essentially follows the development described for the costal plates below. 

The ossification of the costals starts at the cartilaginous rods of the ribs that are sheathed in 

a thin periosteum (e.g., Vallén, 1942; Suzuki, 1963; Cherepanov, 1997; Brüllmann, 1999, 

unpubl. MSc-thesis). Lateral-trending consolidation of mesenchymal parts within the soft 

tissue of the dermis leads to a preformation of a three-dimensional spongy meshwork in the 

integument. Concurrently, small bone spiculae grow laterally from the periosteum of the rib 

into the adjacent dermal layers (e.g., Suzuki, 1963). A periosteum is directly involved in this 

initial stage in shell bone formation (see Kälin, 1945). The successive ossification then 

proceeds along the mesenchymal aggregations, forming a primary cancellous bone structure. 

The concept of the involvement of metaplastic ossification in turtle shell bone osteogenesis 

was first noted by Menger (1922) and then further elaborated by Kälin (1945). Concurrently, 

the internal cortical bone layer develops (e.g., Suzuki, 1963; Zangerl, 1969; Cherepanov, 

1997; Brüllmann, 1999, unpubl. MSc-thesis). Second, the internal cortical bone increases in 

thickness and the external cortical bone layer develops through metaplastic ossification of 

preformed dermal structures, thus framing the interior area of cancellous bone. Internal and 
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external bone layers of the sandwich-like shell reflect distinct dermal structures with different 

collagenous fibre bundle orientations (Zangerl, 1969). 
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2. Material and Methods 

2.1 Sampling Strategy 

The study of the microstructure of turtle shell bone is based upon fossil and extant turtle 

shell material. Therefore, the gross part of the material was obtained from two major sources, 

the palaeontological collections and the zoological collections of museums and research 

institutes. This approach holds some general advantages. It allowed the substantial systematic 

coverage of the turtle taxa, because sufficient material for the study was available. This fact is 

not to be underestimated if the work involves destructive sampling of the material. It 

furthermore enabled the close comparison of the microstructure of fossil and recent material. 

And last, it was thus possible to place the fossil taxa into a phylogenetic framework that is not 

restricted to focus mainly on morphological data, but that also includes for example 

physiological, developmental, and molecular data sets. At the same time, several potential 

outgroup taxa were sampled. Overall, 102 fossil and recent turtle taxa and 18 fossil outgroup 

taxa have been studied within the scope of the project. The complete list of all the sampled 

specimens has been compiled into Appendix 1. Additionally, literature data on 

archosauromorphs osteoderm (Scheyer and Sander, 2004) and on lepidosaur osteoderms was 

used (e.g., Moss, 1969; Moss, 1972; Zylberberg and Castanet, 1985; Levrat-Calviac and 

Zylberberg, 1986) for comparison. 

The material was surveyed on site in the zoological and palaeontological museums and 

institutional collections. In collaboration with the respective experts and collections managers, 

it was then decided which turtle shell material was best suited for studying the bone histology. 

Based on the fragmentary nature of some of the fossil specimens, an assignment of the 

material was possible only to the generic level or to even more inclusive taxa (i.e., “family” 

level). The sampling of the shell was either done by cutting whole shell elements and shell 

fragments or by core-drilling (usually in the recent specimens preserved in liquid). This 

technique worked especially well with the extant turtle taxa and proved useful in rare and 

endangered species where material has to be used sparingly. In several cases, a large amount 

of time and paperwork was invested to obtain necessary CITES-permits (list of endangered 

species) for the recent specimens. It is important to know that most if not all recent sampled 

turtles were so-called “no data specimens”, meaning they lacked the information about the 

locality or date of the find. Several of these specimens originate from legal or illegal pet-trade. 
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As a result, they are not very useful to biologists besides being representatives of a certain 

genus or species in the collections. On the other hand, in the cases of rare and endangered 

species, it was very helpful to core-drill the shell, because the rest of the turtle (including the 

inner organs) was not severely harmed. 

Macerated and disarticulated or whole articulated turtle specimens were used for gross 

morphological and osteological comparison (kindly provided by IPB; MTD; N. Klein, private 

collection). Additionally, soft tissue samples of the integument of extant Trionychidae were 

used for comparative work on fossil and recent trionychid shell bones (kindly provided by 

YPM and ZFMK). 

 

2.2 Preparation 

2.2.1 Sampling of turtle shell elements 

The subsequent preparation of the material was carried out at the Institute of Palaeontology, 

University of Bonn. Generally, the preparation of fossil bone material for thin-sectioning is 

difficult and requires quite a few steps of manual labour that cannot be automated. The 

preparation of recent (fresh) bone that was either frozen, that had been preserved in liquid 

(alcohol or formalin) or that was already macerated is even more delicate. Overall, 102 turtle 

taxa were sampled, thus covering the basal turtles, all major fossil turtle clades and all living 

crown-group turtle clades. Furthermore, 18 outgroup taxa were obtained for the study, 

providing essential data on the origin of turtles, as well as data about the bone histology of 

dermal armour and dermal ossifications in general. Usually, several elements of each taxon 

were sampled, including neurals, costals, peripherals and elements of the plastron. 

 

2.2.2 Sampling by core-drilling 

In the case of recent, unmacerated turtle specimens preserved in alcohol or other 

preservative liquids (standard procedure in zoological collections), the sampling was also 

realised by core-drilling (Fig. 6). Note that the method works equally well for articulated, 
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dried and macerated turtle specimens that cannot be disassembled. This method was first 

invented and used in the field of palaeontology by Sander (2000). Because of the large size of 

the then studied sauropod long bones, the method was developed to take core samples out of 

the mid shaft region of the bones. The advantages were that the long bones did not have to be 

moved far, a feat usually requiring a lot of logistic energy and manpower, and that they 

remained in the collections. Even more important, the damage done to the fossil material was 

held at a minimum level, because former techniques to study the microstructure of the bones 

usually relied on whole bone cross-sections. 

In the current study, the whole turtle shell was put under a drill press equipped with a 

standard power drill with adjustable drilling speed (Fig. 6). To pull the cores, diamond-

sintered hollow drill bits of 12 mm and 22 mm in diameter were used. Slowly revolving and 

cooled with water as lubricant, the cores could be removed without damaging the rest of the 

shell or the internal organs. 

 

Figure 6: Sampling of the turtle shell by core-drilling. The cores (12 and 22 mm in diameter) 

are taken with diamond-sintered hollow drill bits and a standard power drill with adjustable 

drilling speed mounted on a drill press. 



Material and Methods 
 

 23

The use of oil as lubricant is not necessary for the drilling of alcohol or formalin-soaked 

turtle specimens. Neither was is feasible to build small dams to contain the cooling water, 

because then the collagenous matrix of the drilled bone was clogging the drill bit and 

obscured the drill site (as done by Klein and Sander, 2007). Instead, the drill site was cooled 

by adding small amounts of water to the drill bit. The position on the shell, the inner and outer 

surfaces, as well as the orientation compared to the long-axis of the animal was marked on 

each core. Where possible, the keratinous shield or soft shell cover and connective tissue was 

left in place on the bony core. The bone cores were then dried before the embedding in 

synthetic resin and the following steps in preparation (see chapter 2.2.4). 

 

2.2.3 Planes of Sectioning 

If possible, each turtle taxon was sampled from different bones of the carapace and the 

plastron. The samples were generally sectioned in two planes (see Fig. 1). The neurals were 

sectioned transversely (‘X-section’; perpendicular to the anteroposterior axis of the carapace). 

Because the peripheral row is curved, the planes of sectioning were chosen to be 

perpendicular to the anteroposterior axis of each peripheral (‘X-section’). The peripheral 

bones of the trionychid turtle Lissemys punctata were sampled as described for the peripherals 

of other taxa. The costals were sectioned either perpendicular to the progression of the rib (‘L-

section’, parallel to the anteroposterior axis of the carapace) or parallel to the rib (‘X-section’; 

perpendicular to the anteroposterior axis of the carapace). The elements of the plastron were 

sectioned either parallel (‘L-section’) or perpendicular (‘X-section’) to the anteroposterior 

axis of the plastron. Isolated osteoderms of turtles and osteoderms of turtle outgroups were 

either sectioned parallel or perpendicular to their respective long axis. In a few cases, a third 

plane of sectioning (e.g., tangential to the external bone surface) was chosen to better 

elucidate the microstructural composition of the bones. The individual planes of sectioning 

are marked as ‘X-section’ and ‘L-section’ in Appendix 1. The specimens where the plane of 

sectioning could not clearly be determined (e.g., fragments of uncertain orientation in the 

shell) are indicated by a question mark. 
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2.2.4 Preparation of standard petrographic thin-sections 

All bone samples were processed into standard petrographic thin-sections. Therefore, the 

bone samples (whole shell elements, fragments and drilled cores) had to be stabilised by 

embedding into synthetic resins (Araldite-2020® or Biresin-L84®). In a second step, the 

specimens were cut and ground successively with SiC powder (220, 500, 800 and 1000) to 

eradicate saw marks and smooth out the relief. Third, the bone material was subsequently 

processed into thin-sections of a thickness around 80 μm or less, again using the SiC 

grounding powders mentioned above. Because of the highly porous nature and inner 

vascularisation, some specimens had to be impregnated in vacuum several times with 

synthetic resins (Araldite-2020® or Biresin-L84®). 

The thin-sections of fossil specimens had two important advantages over the thin-sections 

made from recent bone. First, the fossil bone was generally easier to process into thin-sections 

as the mineral component is almost 100% instead of about 46% in recent bone. Due to its high 

content of organic tissue, i.e. the collagen matrix, recent bone is still prone to shrink or 

expand if heat or water is applied while processing the sections. And second, again due to the 

increased mineral content of the fossil bone, the polarising abilities of the thin-sections are 

better, resulting in high-contrast microscopic images. 

 

2.2.5 Analysis and documentation 

To understand the three-dimensional arrangement of the observed structures of the bone, the 

study and documentation of the microstructure was carried out with a binocular microscope 

(magnifications: 16x and 63x; normal transmitted light) and with a LEICA DMLP® 

compound polarising microscope (magnifications: 40x, 100x, 400x; normal transmitted and 

polarised light). The latter one was equipped with a special wide-field lens (1.6x) and a Nikon 

COOLPIX®-LCD-camera (E995) that allowed high-resolution photographs of histological 

details. Alternatively, the microscope could be equipped with a KAPPA CF15/4 RGB camera 

(incl. external control box), connected to a computer via a Hauppauge® framegrabber with 

SVideo-support. Where low magnification was of special import, additional 

photomicrographs were shot with a digital camera (Nikon® D1 2,7 mega-pixels and macro 
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lens) or with COOLPIX®-LCD-cameras (E995 or 3100). Drawings, as well as figure 

compositions were done using Macromedia Freehand® and Adobe Photoshop®. 

In the case of trionychid shell bones, scanning electron microscope (SEM) photographs 

were made to elucidate the characteristics of the structure (micro- and nano-scale) of the 

collagenous fibre bundles of the bony elements. Therefore, polished planar sections of the 

turtle shell elements were etched for three to five seconds with hydrochloric acid (10%). After 

the acid has been neutralised with distilled water, the sections were then fixated, sputter-

coated with gold and analysed under the SEM. 

 

2.2.6 Picture credits 

The following photographs were taken by G. Oleschinski, Insitute of Palaeontology, 

University of Bonn: Fig. 2c, d; 8a,b; 9a, b; 10a, b; 11a-d; 12a; 13a; 14a; 15a; 16a-d; 17a, b; 

26a; 49a, b; 54e, f; 56a; 64a-d; 65a. All other photographs were taken by me. 

 

2.3 Terminology 

The description of the turtle shell elements follows Zangerl (1969), and the histological 

descriptions are mainly based on Francillon-Vieillot et al. (1990), Scheyer and Sander (2004) 

and Scheyer et al. (2007). The terms ‘costal’ and ‘pleural’ that both occur extensively in the 

literature are treated as being synonymous. The terms ‘external’ and ‘internal’ are used 

throughout the text instead of ‘dorsal’ and ‘ventral’ to prevent confusion among dorsal 

carapacial and ventral plastral bones of the turtle shell (e.g., the ‘dorsal’ surface of a carapace 

bone would be the true dorsal bone surface, while the ‘dorsal’ surface of a plastral bone 

would indicate the visceral side of the shell element). The term ‘interior’ pertains to the core 

or centre of the shell bone (i.e., cancellous bone) that is usually framed by the external and 

internal cortex (Fig. 7). A short glossary and a list of common abbreviations is compiled in 

Appendix 2. 
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Figure 7: Schematic drawing illustrating topographic terminology of a turtle shell bone in 

thin-section 

 

In the case of the placodont outgroups, the postcranial armour plates are referred to by the 

more neutral terms “plate” instead of “osteoderm”, because the nature of the placodont 

armour is to be assessed in the current project as well. 

 

2.4 Institutional abbreviations 

Bone material for the study was obtained from the following museums and research 

institutes: FM[NH] The Field Museum, Chicago, Illinois, USA; GUI-CHE Testudinate 

material of Guimarota coal mine currently housed in the collections of the Institut für 

Geowissenschaften – Fachrichtung Paläontologie, Freie Universität Berlin, Germany 

(material will be finally deposited in the collections of the Servicio Geológico de Portugal, 

Lisboa [Geological Survey of Portugal, Lisbon]); HLMD Hessisches Landesmuseum 

Darmstadt, Darmstadt, Germany; IPB Goldfuss-Museum, Institute for Palaeontology, 

University of Bonn, Bonn, Germany; IPFUB Institut für Geowissenschaften [formerly Institut 

für Paläontologie], Freie Universität Berlin, Germany; NHM Naturmuseum Solothurn, 

Solothurn, Switzerland; NHMM Natuurhistorisch Museum Maastricht, Maastricht, The 

Netherlands; MAGNT Museum and Art Gallery of the Northern Territory, Darwin, Australia; 

MB Naturhistorisches Forschungsinstitut and Museum für Naturkunde, Zentralinstitut der 

Humboldt-Universität zu Berlin, Germany; MHI Muschelkalkmuseum Hagdorn, Ingelfingen, 

Germany; MTD, Staatliches Museum für Tierkunde Dresden, Germany; MVZ Museum of 

Vertebrate Zoology, University of California at Berkeley, California, USA; NRM Swedish 
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Museum of Natural History, Stockholm, Sweden; QM The Queensland Museum, Brisbane, 

Queensland, Australia; ROM Royal Ontario Museum, Toronto, Ontario, Canada; SAM Iziko: 

South African Museum, Cape Town, South Africa; SGP Sino-German Project, currently 

housed at the Institute and Museum of Geology and Palaeontology, University of Tübingen, 

Germany; SMNK Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, Germany; 

SMNS Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany; TMM Texas 

Memorial Museum, University of Texas at Austin, Austin, Texas, USA; TMP Royal Tyrrell 

Museum of Palaeontology, Drumheller, Canada; UCMP Museum of Palaeontology, 

University of California at Berkeley, California, USA; UNEFM Centre of Archaeology, 

Anthropology and Palaeontology, Universidad Nacional Experimental Francisco de Miranda, 

Coro, Falcon, Venezuela; UMZC University Museum of Zoology, Cambridge University, 

Cambridge, Great Britain; YPM Peabody Museum of Natural History at Yale University, 

New Haven, Connecticut, USA; ZFMK Zoologisches Forschungsinstitut und Museum 

Alexander Koenig, Bonn, Germany; ZMB Zoologische Sammlung, Museum für Naturkunde, 

Humboldt-Universität zu Berlin, Germany. 
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3. Morphological description of outgroup taxa 

To better understand amniote integuments that include ossified dermal armour and for 

character polarisation of the microstructure of turtle shell bones, dermal ossifications / armour 

plates of amphibians (Temnospondyli), mammals (Xenarthra), placodonts (Placodontoidea 

and Cyamodontoidea), pareiasaurs, lepidosaurs (Anguidae, Gekkonidae) and 

archosauromorphs (Parasuchia, Crocodylia and Dinosauria) were included in this research. 

The following chapters address the specimens of each sampled taxon, as well as available 

data on locality and age of the specimens. Furthermore, summaries of the respective outer 

morphologies and bone surface structures are given. If appropriate, the systematic status of 

each taxon is also addressed in brief. 

 

3.1 Outgroup 1: Temnospondyl amphibians 

The sampling of Temnospondyli included the capitosaur Mastodonsaurus giganteus (SMNS 

91011), the plagiosaur Gerrothorax pustuloglomeratus (SMNS 91012) and the basal 

temnospondyl Trimerorhachis sp. (TMM 40031-59, TMM 40031-60). Due to the fragmentary 

nature of all samples, it could not be ascertained if the dermal bone elements belong to skulls 

or shoulder girdles respectively. Detailed morphological descriptions for the taxa, including 

paragraphs about the dermal sculpturing patterns, can be found for M. giganteus in Schoch 

(1999) and Schoch and Milner (2000), for G. pustuloglomeratus in Hellrung (2003) and for 

Trimerorhachis in Colbert (1955) and Holmes (2000). 

 

3.1.1 Trimerorhachis sp. 

As opposed to most temnospondyl groups, Trimerorhachoidea (both juveniles and adults) 

remain completely aquatic (Holmes, 2000). Two specimens of Trimerorhachis sp. were 

sampled. Both specimens (TMM 40031-59, TMM 40031-60) are thin bone fragments most 

probably from the shoulder girdle region of the animal. The genus Trimerorhachis (Case, 

1935) is restricted to the Sakmarian, Lower Permian (Ruta et al., 2003). The specimens were 
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recovered from the Tit Mountain locality, Archer County, Texas, USA (Petrolia Formation, 

Lower Permian). The external surface of the bone shows a sculpturing pattern of reticular 

ridges in the centre and radially arranged low ridges towards the margins. 

 

3.1.2 Mastodonsaurus giganteus (Jaeger, 1828) 

The specimen of M. giganteus (SMNS 91011) was collected in the Erfurt-Formation 

(‘Lettenkeuper’, Ladinian, Upper Triassic) of Kupferzell, southern Germany. 

Macroscopically, the dermal bone fragment appears massive in cross-section. The internal 

surface of the bone is smooth, the external surface heavily sculptured with prominent ridges. 

Some of these ridges anastomose to form a reticular pattern. The margins of the bone 

fragment are sutured. 

 

3.1.3 Gerrothorax pustuloglomeratus (Huene, 1922) 

The sampled dermal bone fragment (SMNS 91012) of G. pustuloglomeratus is a thick bone 

fragment of the cranium or the shoulder girdle. It was also found in the Erfurt-Formation 

(‘Lettenkeuper’, Ladinian, Upper Triassic) of Kupferzell, southern Germany. The external 

surface of the bone is sculptured with low ridges, pustules and knobs. The internal surface is 

smooth with few foramina inserting into the internal cortical bone. 

 

3.2 Outgroup 2: Mammalia 

There are few groups among the Mammalia that bear armour plates within the integument. 

All those groups, fossil and recent, belong to the Xenarthra. Within the Xenarthra, the 

Folivora (= Phyllophaga) and the Cingulata have osteoderms. While fossil giant ground sloths 

(Phyllophaga) like Paramylodon harlani (Pleistocene, North America) had small, isolated and 

unfused osteoderms embedded in the skin, the fossil glyptodonts and extant armadillos and 

their fossil relatives (Cingulata), on the other hand, carry extensive dorsal armoured shells. 
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While glyptodont dorsal body armour was rigidly fused together, armadillos have movable 

bands within their armour. The material and the thin-sections of the Xenarthra used in this 

study were prepared and described by D. Wolf (2006, unpubl. MSc-thesis). While the 

morphological and bone histological descriptions are essentially based on his results, I had the 

opportunity to look at his samples and thin-sections myself to verify the given data. Out of 

this work, material of the taxa Paramylodon harlani (Owen, 1840), Glyptodon clavipes 

Owen, 1839 and of the genus Propalaehoplophorus Ameghino, 1887 were used for 

comparison. Similar to the work of D. Wolf, a recent study by Hill (2006), focussed on the 

bone histology of xenarthran osteoderms. The results given below and those of Hill (2006) 

essentially agree with each other. 

 

3.2.1 Folivora (Xenarthra) 

3.2.1.1 Paramylodon harlani (Owen, 1840) 

The giant ground sloth P. harlani from the Pleistocene of North America had small, isolated 

and unfused osteoderms embedded in the skin. The gross morphology of these osteoderms 

can be highly divergent. Some of these osteoderms are irregularly star-shaped, some 

elongated and some are round and pillow-like. The planes of sectioning followed either the 

long axis of the osteoderm or cut perpendicularly through conspicuous ridges or 

protuberances (Wolf, pers. comm.). The largest sampled elongated osteoderm reached 21 mm 

(TMM 30967-1006) in length while others had diameters ranging between 13 mm and 18 mm 

(e.g., TMM 30967–2632). All bone surfaces are strongly rugose and are often pitted with 

foramina that insert into the bone tissue. 

 

3.2.2 Cingulata (Xenarthra) 

3.2.2.1 Propalaehoplophorus sp. 

The studied osteoderms of Propalaehoplophorus sp. (Miocene, South America) are of 

hexagonal shape (e.g., IPB M6151; IPB M6444). The interior part of the bone elements is 
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usually thinner than the marginal areas. The two longest margins trend parallel to each other, 

giving the osteoderms a peculiar rectangular appearance. The internal surfaces of the bones 

are usually slightly concave and smooth, while several scattered foramina insert into the 

internal bone tissue. The external surface of the bone is flat to slightly convex, with a large 

central, rounded-polygonal figure. Further ornamental figures may be present towards the 

margins. Osteoderm lengths ranged between 29 and 32 mm, width between 20 and 25 mm 

and thicknesses between 6 and 7 mm. 

 

3.2.2.2 Glyptodon clavipes Owen, 1839 

The material of G. clavipes was found in the Pampean Formation (Pleistocene), Santa Cruz 

Province, Patagonia, Argentina, South America. Two buckler osteoderms of different 

localities of a fused carapace (YPM 12214) were sampled. Both osteoderms were supposedly 

sectioned in a sagittal or near-sagittal plane, while one osteoderm half was then also sectioned 

transversely. Both elements have a hexagonal shape. However, the parallel margins are the 

longest margins in one osteoderm, while they are the shortest margins in the other. The 

external surfaces of the two bones are strongly pitted. A central figure surrounded by a groove 

as well as hair follicles are present. The internal surface of the bones has a fibrous texture and 

nutrient foramina insert into the internal bone cortex.  

 

3.3 Outgroup 3: non-testudinatan Reptilia 

Besides the few armour-bearing mammalian outgroups, Reptilia are the dominant amniote 

clade that is typically associated with the development of dermal armour. The oldest 

representatives of Reptilia (i.e. Hylonomus lyelli) were discovered in Upper Carboniferous 

(about 315 Ma; Pennsylvanian) rocks at Joggins, Nova Scotia, Canada. For a discussion about 

the phylogeny of Reptilia and its terminology see Modesto and Anderson (2004). 
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3.3.1 Parareptilia (Pareiasauria) 

Pareiasaurs are a group of mostly large, herbivorous parareptiles that lived during the Late 

Permian. Two osteoderms each of the pareiasaur genera Bradysaurus, Pareiasaurus and 

Anthodon from South Africa were be sampled. While basal pareiasaurs like Bradysaurus only 

had small osteoderms sitting over the median vertebral column, moderately derived forms like 

Pareiasaurus were already extensively covered with larger, if still unfused, osteoderms (e.g., 

Lee, 1996). According to Lee (1997), the dorsal trunk region was heavily armoured in highly 

derived dwarf pareiasaurs, e.g., Anthodon serrarius, with overlapping osteodermal plates that 

sometimes are sutured together. The specimens of A. serrarius that were sampled in this 

study, however, lacked sutured margins. 

 

3.3.1.1 Bradysaurus seeleyi Haughton and Boonstra, 1929 

The specimen SAM-PK-8941 (catalogued as B. vanderbyli in the SAM collections) found at 

the Permian locality of Mynhardtskraal, Beaufort West District, South Africa, had the 

superficial appearance as a round knoblike osteoderm structure. Thin-sectioning, however, 

revealed that the only bony matter that could be found in the specimen was restricted to a very 

tiny sliver at the internal margin of the specimen. The rest of the specimen comprises 

carbonate rock. While Kuhn (1969) listed B. vanderbyli Haughton and Boonstra, 1929 still as 

a separate species, the taxon is now regarded to be synonymous with Bradysaurus seeleyi 

Haughton and Boonstra, 1929 (see also Lee, 1997; Jalil and Janvier, 2005). 

 

3.3.1.2 Bradysaurus sp. 

Two specimens (SAM-PK-4348; SAM-PK-12140) of Bradysaurus sp. were sampled. 

Specimen SAM-PK-4348, from Wilgerfontein, Prince Albert District, South Africa, 

comprises a fragmentary osteoderm fused to an underlying bone, probably from the skull 

region. The whole specimen is still largely embedded in carbonate matrix, thus little of the 

external surface of the osteoderm is seen. However, the part of the osteoderm which is free of 

surrounding rock has irregular ridges extending over the external bone surface. Due to the 
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fragmentary nature of the specimen and its embedding in carbonate rock, measurements were 

not possible. Specimen SAM-PK-12140 comprises an isolated osteoderm from Rietfontein, 

Prince Albert District, South Africa. The margins of the specimen are partly broken. The 

internal surface of the bone is flat to slightly concave. The external surface of the bone is 

convex and knoblike, with the apex sitting slightly off-centre. The diameter of the osteoderm 

varies between 34 and 40 mm, its maximum thickness, measured at the apex, is 19 mm. 

 

3.3.1.3 Pareiasaurus serridens Owen, 1876 

Specimen SAM-PK-K10036 of P. serridens is an isolated osteoderm that was found in the 

Late Permian locality Farm127, near Doornplaats, Graaff-Reinet District, South Africa. The 

osteoderm is still largely covered in carbonate matrix, however, the outer shape of the 

osteoderm is recognisable. The external surface of the osteoderm is strongly convex, the 

internal surface similarly strongly concave. The external surface of the bone is ornamented 

and carries a central boss. The internal bone surface has a rough texture with numerous 

foramina inserting into the internal cortex. The cross-section of the specimen revealed that the 

margins of the osteoderm are not sutured. 

 

3.3.1.4 Pareiasaurus sp. 

Four osteoderms (UMZC R381 T702: one osteoderm; SAM-PK-1058: three osteoderms) of 

Pareiasaurus sp. were sectioned. Specimen UMZC R81 T702 was found in the 

Tapinocephalus zone (Late Permian), Hottentots River, Prince Albert District, South Africa. 

The specimens of SAM-PK-1058 were found in Permian strata of Welgevonden, Graaff-

Reinet District, South Africa. While the larger slab of SAM-PK-1058 comprises two separate 

osteoderms still embedded in carbonate matrix, one of which has a broken margin, the smaller 

slab contains a complete isolated osteoderm. The margins of UMZC R381 T702 are also not 

preserved. The margins in the well preserved specimens (SAM-PK-1058) are not sutured. All 

specimens (UMZC R381 T702; SAM-PK-1058) comprise flat to slightly concave internal 

bone surfaces, while the external bone surfaces are strongly ornamented with irregular ridges. 



Comparative bone histology of the turtle shell   
 

34 

3.3.1.5 Anthodon serrarius Owen, 1876 

The two isolated osteoderms (SAM-PK-10074) of A. serrarius come from the Late Permian 

locality of Dunedin, Beaufort West District, South Africa. The osteoderms have oval shapes 

in externointernal view, a central external boss and an external sculpturing pattern consisting 

of ridges that extend radially from the centre of the boss to the margin of the osteoderm. The 

margins were not sutured. The internal surfaces of the osteoderms are rather flat. The smaller 

but thicker osteoderm is 40 mm long, 30 mm wide and has a maximum thickness of 15 mm 

(measured at the central boss). The larger but thinner osteoderm is 45 mm long, 36 mm wide 

and has a maximum thickness of 9 mm (also at the central boss). 

 

3.3.2 Eureptilia (Placodontia) 

The Placodontia are an enigmatic group of sauropterygian reptiles restricted to the Triassic. 

The taxon includes the largely unarmoured Placodontoidea (e.g., Nopcsa, 1923; Rieppel and 

Zanon, 1997; Rieppel, 2000) and the heavily armoured Cyamodontoidea (Nopcsa, 1923; 

Peyer and Kuhn-Schnyder, 1955; Westphal, 1975, 1976; Mazin and Pinna, 1993; Rieppel and 

Zanon, 1997; Rieppel, 2000, 2002). According to Rieppel (2000), the Placodontoidea are 

presumably paraphyletic with relationships being (Paraplacodus (Placodus, 

Cyamodontoidea)). While the basal placodontoid Placodus gigas sports only a single row of 

dermal plates above its spine, derived cyamodontoids superficially resemble turtles in 

enclosing their body in an armour shell. 

 

3.3.2.1 Placodontoidea 

3.3.2.1.1 Placodus gigas Agassiz, 1833 

A single keeled plate (SMNS 91006) from the dorsal vertebral column was sampled. SMNS 

91006 was found in the Trochitenkalk Formation (‘Upper Muschelkalk; Lower 

Hauptmuschelkalk’, ?m7; Ladinian, Middle Triassic) in Bühlingen near Rottweil, Germany. 

The plate is roughly triangular in anteroposterior cross-section. The mediolaterally curved 
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anterior surface and the straight posterior surface form a sharp external keel, slightly off-

centre towards the posterior margin of the plate. Both surfaces are sculptured with a fine 

striation pattern that extends externointernally and medially dips slightly towards the external 

keel. The internal convex surface of the plate has rounded, blunt edges, instead of distinctly 

sharp ones. The internal surface also has a rugose texture due to numerous foramina of 

various sizes. The maximum height as measured from the convex internal surface to the apex 

of the keel spans 24.5 mm. 

 

3.3.2.2 Cyamodontoidea 

3.3.2.2.1 Psephosaurus suevicus Fraas, 1896 

Four specimens were sampled, including one armour plate (SMNS 91007) from sediments 

of the Erfurt Formation (Ladinian, Middle Triassic, k1) of Hoheneck near Ludwigsburg, 

Germany and three plates (MHI 1426/1-3) from the quarry “Hohenloher Steinwerk”, 

Kirchberg/Jagst (Erfurt Formation, Ladinian, Middle Triassic, k1, “Anthrakonit-Bank, 

Basisbonebed“). 

The small spiked plate (SMNS 91007) is of circular shape in external view and has a central 

apex. The maximum as measured between the midpoint of the internal surface and the apex is 

11.0 mm. The diameter of the base is 27.0 mm. In externointernal view, concentric growth 

marks are seen from the apex down to the margin of the plate. Concurrently, the spiked plate 

shows a very fine radiating striation extending from the apex to the margin of the base of the 

plate (see Rieppel, 2002). The spiked plate is still embedded in sediment, thus the flat to 

slightly concave internal surface is only visible in sections. There are no apparent foramina 

inserting from the internal surface of the bone into the interior of the plate. 

The second specimen (MHI 1426/1) resembles a procumbent spike. The external surface of 

the spike constitutes two pronounced straight edges tapering into an off-centre apex. Opposite 

to the apical region, the external surface ends a half-circle. At the half-circle end of the plate, 

the margin is sutured. At the apical side, the margins internal to the external straight edges 

constitute flat to slightly concave rectangular bone surfaces that meet in a low angle in the 
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midline of the plate. From the apex and the straight edges, the flat rectangular bone surfaces 

are also strongly dipping in a 45° angle back towards the internal bone surface. The whole of 

the external surface of the bone has a pattern of very fine shallow vascular grooves radiating 

from the apex towards the opposite half-circle margin. Additionally, thin flat ridges radiate 

from the apex towards the opposite half-circle margin. Being framed by the two angled flat to 

slightly concave rectangular marginal surfaces, the internal bone surface is a small rugose 

area of bone of oval shape with a short protrusion at the apical side, thus mirroring the shape 

of the external surface of the bone. The flat to slightly concave rectangular marginal surfaces 

of the bone proposedly overlap an adjacent plate in these areas. The largest diameter of the 

half-circle end of the plate is 13 mm, the distance between the apex and the opposite half-

circle margin is 12 mm. While the height of the plate ranges between 5.0 mm at the half-circle 

margin it measures 11 mm between the internal surface of the bone and the external off-

centred apex. 

The last two specimens of P. suevicus include a larger (MHI 1426/2) and a smaller plate 

(MHI 1426/3) of hexagonal shape. Both specimens have slightly convex external and slightly 

concave internal bone surfaces. The margins are sutured in both elements. The external 

surface of the smaller bony element is rather smooth; the internal one rough due to a shallow 

reticular pattern. On the external surface of the smaller specimen, a shallow groove is present 

at the margins, surrounding a central apex. According to Rieppel (2002), similar grooves in 

part of the holotype of P. suevicus (SMNS 7113) indicate a congruence of the plates with 

overlying keratinous scutes. The distances between margins in the smaller specimen range 

from 12 to 15 mm, whereas the height measures between 6.0 and 7.0 mm. The larger 

specimen experienced lateral deformation, thus the marginal sides of the plate are strongly 

angled. There are no grooves as in the smaller specimen, but the external surface exhibits a 

very fine superficial vascular pattern radiating outward from the central apex. The internal 

surface texture of the larger element also appears rough because of shallow reticular bone 

tissue structures. The diameter of the larger plate (measured at the external surface of the 

bone) ranges between 23 and 25 mm, while the thickness ranges between 10 mm at the 

margins and 11 mm in the plate centre. The elements described above may represent the two 

plate types of the armour of P. suevicus observed already by Fraas (1896; see also Rieppel, 

2002), where the larger plates are surrounded and separated from each other by the smaller 

type. 
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3.3.2.2.2 Psephosaurus sp. 

Two armour plates (SMNS 91008, 91009) of Psephosaurus sp. were sampled. Both plates 

were found in the Erfurt Formation (Ladinian, Middle Triassic, k1) of Hoheneck near 

Ludwigsburg, Germany. Similar to Psephosauriscus sinaiticus Haas (see Rieppel, 2002:fig. 

28), the two samples of Psephosaurus sp. from the Erfurt Formation (Ladinian, Middle 

Triassic) of southern Germany likely represent divergent armour plate morphologies for the 

carapace and plastron of that taxon. The specimen SMNS 91008 is a flat plate that has a 

hexagonal contour in external view, while the plate margins are indented, probably 

representing scute sulci. The plate is hypothesised to be derived from the carapace (see 

Rieppel, 2002). Its thickness ranges from 4.5 mm in the centre to 6.5 mm at the margins of the 

plate. The maximum elongation of the plate is 23.0 mm. The bone is still embedded in 

sediment, thus the slightly concave internal surface of the plate is only observed in cross-

section. In the second specimen (SMNS 91009), the base of the plate has a rhomboidal 

contour in externointernal view, and the external surface is convex with a slightly raised off-

centre ridge. This plate is hypothesised to be derived from the plastral region (see Rieppel, 

2002). The apical portion of the ridge is broken off, so only a minimum height of 14.0 mm 

was measured. A maximum distance of 27.0 mm was measured for the subparallel margins of 

the plate. A small and shallow marginal groove, again interpreted as a scute sulcus, extends 

all around the raised ridge of the external surface. The internal surface of the armour plate is 

flat, and the lateral margins show some weak growth lines. 

 

3.3.2.2.3 Cf. Placochelys sp. 

One dermal armour plate (SMNS 91010) of cf. Placochelys sp. was sampled. The specimen 

was recovered in sediments of the Grabfeld Formation (‘Estherienschichten, Anatinabank’ k2, 

Lower Carnian, Upper Triassic) of Willsbach near Heilbronn, Germany. Though specimen 

SMNS 91010 was not found in Hungary, but was recovered from sediments of Carnian age 

(Upper Triassic) of southern Germany, it strongly resembles some of the plates of the 

holotype of Placochelys placodonta Jaekel from Hungary (compare to Rieppel 2002:12, fig. 

12). The triangular armour spike is somewhat unusual in that it is flatly positioned in the 

armour and not upright as is usually the case with pointed or spiked osteoderms. The spike 
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has three distinct surfaces. First, one side, the external surface, is broad and convex. Second, 

the opposite surface, the internal surface, is flat to slightly concave, giving the spike a slightly 

curved appearance. These two surfaces form two rather blunt marginal edges that taper 

towards a pointed apex. The third surface opposite the apex represents a marginal surface 

rather than the “base” of the spike. The long axis of this oval third surface measures 24.0 mm, 

the short axis 12.0 mm. This latter surface is roughly oval in shape and concave. The spiked 

plate measures 25.0 mm between apex and midpoint of the concave third surface and a 

maximum of 27.0 mm between apex and opposite margin. Roughly concentric growth marks 

are recognisable from the apex down to the concave surface. One of the margins between the 

external and internal side was broken off and has been reconstructed in plaster prior to the 

current study. 

 

3.3.2.2.4 Psephoderma sp. 

Specimen NRM-PZ R.1759a consists of a row of four sutured osteoderms partly embedded 

in a compact, shell-bearing limestone matrix. The material was found in Wadi Raman 

(Makhtesh Ramon; ‘Muschelkalk’, Middle Triassic), Negev, Israel. The armour plates are 

polygonal in externointernal view, but their exact shapes (?hexagonal) remain hidden by the 

carbonate matrix. Two of the plates appear smaller in cross-section, but it cannot be deduced 

if this is an artefact of sectioning irregularly arranged plates or if it is a true size reduction of 

the armour plates. All plates are well sutured and rectangular in cross-section without a spike 

or ridge. The bone surfaces have a rough texture. The external bone surface is flat to slightly 

convex and slightly wavy with shallow pits or grooves (the deeper grooves may represent 

scute sulci in cross-section). The internal bone surface is flat to slightly concave. The 

thicknesses of the fused plates range between 8,0 mm and 10,0 mm. 

 

 

 

 



Morphological description of outgroup taxa 
 

 39

3.3.3 Eureptilia (Lepidosauria) 

Osteoderms are generally not viewed as being synapomorphic for Lepidosauria. 

Morphological and bone histological descriptions of lepidosaur osteoderms are yet quite rare 

(e.g., Moss, 1969, 1972 for detailed work on osteoderms of Heloderma horridum; Zylberberg 

and Castanet, 1985; Levrat-Calviac and Zylberberg, 1986). For comparative purposes, the 

histological data of the works of Zylberberg and Castanet (1985) about Anguis fragilis and of 

Levrat-Calviac and Zylberberg (1986) about Tarentola mauritanica were used in this study. 

Please refer to the original literature for data on gross morphology. 

 

3.3.4 Eureptilia (Archosauromorpha) 

Because osteoderms are a potential synapomorphy of archosaurs (Benton and Clark, 1988), 

histological comparison of shell bones of turtles and archosaur osteoderms becomes possible. 

Several osteoderms of Archosauromorpha were sampled, including basal parasuchians 

(Phytosauria), fossil and recent crocodiles and thyreophoran dinosaurs. Many of those 

osteoderm bone histologies were already comparatively described by Scheyer and Sander 

(2004), thus only new material is described below. The study by Scheyer and Sander (2004) 

focussed on thyreophoran dinosaurs and included the following taxa: Ankylosauridae indet., 

Eusuchia indet., Gastonia sp., Goniopholis sp., Nodosauridae indet., Phytosauria indet., 

Pinacosaurus grangeri, Polacanthus foxii, Saichania chulsanensis, Scelidosaurus sp., 

Stegosaurus stenops, Stegosaurus sp. and Struthiosaurus sp. In the following, only the new 

material of the Triassic parasuchian cf. Mystriosuchus sp. and the Jurassic thalattosuchid 

crocodyliform Steneosaurus sp. (Teleosauridae) will be described, because they were not part 

of the earlier bone histological study. Please note that another bone histological study 

focussing on Thalattosuchia also included two teleosaurid osteoderms, one belonging to 

Teleosaurus and one belonging to Steneosaurus (Hua and Buffrénil, 1996). 
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3.3.4.1 Cf. Mystriosuchus sp. 

The basal archosaur cf. Mystriosuchus sp. (Parasuchia, Pseudopalatinae) exhibits extensive 

dermal armour, including four dorsal anteroposterior trending rows of unsutured osteoderms 

(see MacGregor, 1906; Hungerbühler, 2002). The studied osteoderm fragment (SMNS 91013) 

was found in the Upper Triassic Löwenstein Formation of Heslach near Stuttgart, Germany. 

The fragment has a strong medial external keel trending anteroposteriorly over the osteoderm. 

Three quarters of the margins of the osteoderm are broken, thus only the keel and one 

unbroken margin could be sampled. The external surface of the osteoderm fragment is further 

ornamented by low ridges that extend mediolaterally from keel to osteoderm margin. The 

internal surface of the osteoderm fragment is flat to slightly convex. The internal surface of 

the bone exhibits a superficial pattern of crosshatched collagenous fibre bundles. A few 

scattered foramina insert into the internal cortical bone. While the length of the osteoderm 

cannot be reconstructed due to its fragmentary nature, the width of the osteoderm is 

reconstructed to be 65 mm. The maximum height of 18 mm was measured at the medial keel 

of the osteoderm fragment. 

 

3.3.4.2 Steneosaurus sp. 

Thalattosuchia, mostly long slender snouted crocodyliforms (Brochu, 2001; Gasparini et al., 

2006), are the only archosaurian lineage that is completely adapted to a marine life-style 

(Langston, 1973). A recent phylogeny of Thalattosuchia is found for example in Gasparini et 

al. (2006). In Thalattosuchia, the genus Steneosaurus falls into the Teleosauridae. For the 

current study, one fragmentary osteoderm was sectioned. The specimen was part of a larger 

collection of armour plates that was found in the Kimmeridgian (Upper Jurassic) ‘turtle-

limestone’ of Solothurn, Switzerland (NMS 7152). The fragment consists of the larger part 

(about two thirds) of an ovoid osteoderm with a flat internal bone surface, a convex external 

bone surface, and smooth margins. The external bone surface shows large, deep circular pits. 
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4. Morphological description of Testudinata 

4.1 Basal Testudinata 

In addition to Proganochelys quenstedti Baur, 1887, several groups seem to belong to the 

stem group of turtles, the basal Testudinata (Sukhanov, 2001, in Danilov, 2005; Joyce et al., 

2004, Joyce, 2007; Sukhanov, 2006). Among the basal forms are also some taxa that have 

been previously recognised as pleurodires (i.e., Proterochersis robusta Fraas, 1913) or 

cryptodires (i.e., Kayentachelys aprix, Meiolania sp.) (e.g., Gaffney et al., 1987; Rougier et 

al., 1995; Gaffney, 1996). For the current study, these taxa are treated as sister taxa to the 

more derived Cryptodira and Pleurodira (crown group turtles; Casichelydia Gaffney, 1975c). 

Of these, only material of Palaeochersis talampayensis Rougier et al., 1995, a basal turtle 

from the upper part of the Triassic Los Colorados Formation, north-western Argentina, South 

America and Heckerochelys romani Sukhanov, 2006 from the Middle Jurassic Peski locality, 

Moscow Region, Russia, were not available for this study. According to Rougier et al. (1995), 

P. talampayensis belongs to the Australochelyidae, a group that was originally erected to 

accomodate Australochelys africanus Gaffney and Kitching, 1994, a basal turtle from the 

Early Jurassic Elliot Formation of South Africa. Sukhanov (2006) hypothesised the 

relationships of basal turtle genera as follows: (Proganochelys (Australochelys, 

Palaeochersis) (Proterochersis (Heckerochelys (Kayentachelys (Selmacryptodira 

(Platychelys, Eupleurodira))))))). 

 

4.1.1 Proganochelyidae 

Proganochelyidae is a monospecific taxon with the Upper Triassic Proganochelys 

quenstedti Baur, 1887 from southern Germany being the type species. P. quenstedti is still the 

basal-most turtle known (e.g., Gaffney, 1990; 1996, Joyce et al., 2004, Sukhanov, 2006) It 

was first discovered from the middle and upper “Stubensandstein” of the Keuper (Norian, 

Late Triassic) of Trossingen-Aixheim and Tübingen, Southern Germany (e.g., Gaffney, 

1990). Further material was then discovered from Halberstadt, eastern Germany. Today, 

remains of the genus Proganochelys are known from other Late Triassic localities in Thailand 
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(Broin, 1984) and Greenland (Jenkins et al., 1994). Even though Proganochelys quenstedti is 

younger than Proterochersis robusta, it is still the oldest, most completely known turtle. 

 

4.1.1.1 Proganochelys quenstedti Baur, 1887 

The material of P. quenstedti that was obtained for the study included a piece of crushed 

shell with bits of a plastron fragment and a peripheral of shell fragment SMNS 17203 (see 

Gaffney, 1990:150-151, fig.99, 100), as well as the smallest of three fused posterior 

peripherals of SMNS 17203 (see Gaffney, 1990:154, fig.103). Additionally, a costal fragment 

of shell fragment MB.R. 3449.2 was sectioned. SMNS 17203 derives from the upper 

Löwenstein-Formation (upper “Stubensandstein”, Norian, Late Triassic), Plateosaurus quarry 

in Trossingen, southern Germany (see also Gaffney, 1990:15). MB.R.3449.2 derives from 

sediments of the same age (Löwenstein-Formation, Norian, Late Triassic) from Halberstadt, 

eastern Germany. Due to lack of data, it is assumed that, similar to another specimen 

(MB.1910.45.2), this specimen was recovered from Baerecke and Limpricht Quarry, 

Halberstadt (see Gaffney, 1990:13). In the first sample, the plastral part is quite thin and flat, 

while the adjacent peripheral is triangular in cross-section. The second sample, the small 

posterior peripheral, has an oval base and tapers into an off-centred pointed apex. The 

peripheral is dorsoventrally flattened, resulting in two lateral ridges that extend from base to 

apex. The third sample, the costal fragment, has a flat external bone surface. The internal 

surface of the bone is medially bulged where the rib extends through the costal plate. While 

the bone material from Trossingen is strongly diagenetically altered, the material from 

Halberstadt is, although fractured, fairly well preserved. Furthermore, the specimens from 

Trossingen do show slight marks of preparation, while the bone surfaces of the specimen 

from Halberstadt are largely undisturbed. 

 

4.1.2 Proterochersidae 

Proterochersidae is a monospecific taxon with the Upper Triassic Proterochersis robusta 

Fraas, 1913 from southwestern Germany being the type species. Only postcranial material is 
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known of this taxon. In Danilov (2005), Murrhardtia staeschei Karl and Tichy, 2000 is 

treated as a junior synonym of Proterochersis robusta. The basal turtle P. robusta occurs in 

sediments that are slightly older (lower “Stubensandstein”, early Norian, Late Triassic) than 

the ones where remains of P. quenstedti were found in. However, P. robusta exhibits some 

postcranial characters that are more derived compared to P. quenstedti. 

 

4.1.2.1 Proterochersis robusta Fraas, 1913 

The material of specimen SMNS 16442 of P. robusta used in this study included a 

fragmentary peripheral and a small plastron fragment (?hyo- or hypoplastron) from the lower 

Löwenstein-Formation (lower “Stubensandstein”, early Norian, Late Triassic), from a 

“Fleinswerk” at Murrhardt, southern Germany. The peripheral fragment consists of a straight 

proximal part and a distal bulging part that tapers into a distal edge. The plastral fragment is a 

flat plate that locally increases in thickness. This thicker part presumably belongs to a bridge 

buttress. The external surfaces of the shell elements lack ornamentation. However, the internal 

and external surfaces of the bones have a slightly rough texture due to a faint and shallow 

reticular vascularisation pattern. 

 

4.1.3 Kayentachelyidae 

Kayentachelyidae is a monospecific taxon, with Kayentachelys aprix Gaffney et al., 1987 

from the Early Jurassic of Arizona being the type species (Joyce et al., 2004). In Gaffney et 

al. (1987), Kayentachelys was hypothesised to be the oldest cryptodiran turtle. However, 

according to newer analyses, Kayentachelys is now thought to represent one of the basal 

Testudinata instead (Joyce et al., 2004; Joyce, 2007). 
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4.1.3.1 Kayentachelys sp. 

The sample of Kayentachelys sp. included a neural (TMM 43669-4.2), the proximal part of 

a costal (UCMP V85010/150228), another costal fragment (TMM 43669-4.1), two 

peripherals (UCMP V82319/130079; UCMP V85013/150230) and a plastron fragment (?hyo- 

or hypoplastron; UCMP V85013/150229). The shell material from the UCMP collections was 

found in Early Jurassic Kayenta Formation, Coconino Co., Arizona, USA (the type 

Kayentachelys aprix Gaffney et al., 1987 was described from Coconino Co.). The material 

from TMM collections derives from Early Jurassic Kayenta Formation, Gold Spring Wash 

locality, Navajo Nation, Arizona, USA. The neural has a slightly curved plate that is roughly 

square, although one margin is broken off. The neural is roof-shaped in cross-section. The 

costal fragments are flat bones. A rib head protrudes from the internal bone surface of the 

proximal costal fragment. Both peripherals are triangular in cross-section. The plastron 

fragment has a flat external bone surface. The internal surface, however, is flat at one broken 

margin and gently rises towards the opposite broken margin. Scute sulci were best preserved 

in the peripheral (UCMP V82319/130079). All elements had a faintly rough external bone 

surface texture but otherwise lacked a sculpture. The internal surfaces of the bones generally 

appeared smooth. 

 

4.1.4 Meiolaniidae 

The Meiolaniidae are a group of extinct turtles that lived in the southern hemisphere from 

the Eocene to the Pleistocene, with possible Cretaceous meiolaniid remains occurring in 

Chubut Province, Argentina (Gaffney, 1996). Meiolaniid turtles share the presence of cranial 

horns or flanges of bone and a bony tail club. According to Gaffney (1996), the Meiolaniidae 

are Centrocryptodira, based on cervical vertebral shape and articulation and the morphology 

of the floor of the canalis caroticus within the skull. However, unlike other cryptodires, they 

were not able to retract their head. Hirayama et al. (2000), followed by Danilov (2005), 

thought that Meiolaniidae are basal Cryptodira. Based on characters that group the 

Meiolaniidae with other basal turtles, however, Joyce (2007) argues that the Meiolaniidae do 

not belong to the Cryptodira at all, instead being basal Testudinata (Joyce et al., 2004). 
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4.1.4.1 Meiolania sp. 

The only studied material of Meiolania sp. is specimen MB.R. 2426.1. Morphologically, the 

fragmentary piece of shell bone does not allow an unambiguous identification pertaining to 

the locality in the bony shell. The shell bone thickness is slightly decreasing from one end of 

the element to the other. Identifiable sutures or scute sulci are not present. Both the internal 

and the external surfaces of the fragment show a slight striation. However, based on the poor 

preservation, it remains unclear if the striation is a primary structure or a 

preservational/preparatory artefact. 

 

4.2 Pleurodira 

Besides the crown-group clades Pelomedusidae, Podocnemidae and Chelidae, the 

Pleurodira comprises also some purely fossil clades (the basal Dortokidae and Platychelyidae 

and the more advanced Bothremydidae and Araripemydidae). The Araripemydidae and the 

Dortokidae were not included in the present study. Taking into account the biogeography of 

both recent and fossil clades, the Pleurodira have to be considered to represent a cosmopolitan 

group of turtles. Because Proterochersis robusta is not treated as a pleurodire herein, the 

fossil record of Pleurodira thus commences with the Upper Jurassic. 

Podocnemidae, Bothremydidae and Pelomedusidae form the clade Pelomedusoides 

(Antunes and Broin 1988), one of the two major crown clades of Pleurodira, the other being 

Chelidae. Pelomedusa Wagler, 1830 is monospecific with recent African helmeted turtle P. 

subrufa (Bonnaterre, 1789) being the only representative. P. subrufa occurs today in 

subtropical and tropical regions of Africa (e.g., Ernst and Barbour, 1989). Please note that for 

example Iverson (1992) or Joyce et al. (2004) give precedence of authority to Bonnaterre 

(1789) instead of Lacépède (1788) based on unavailability of the latter work as using non-

binominal nomenclature. This was recently validated by the ICZN (BZN, Vol. 62, Pt. 1, 2005: 

opinion 2104 (case 3226)). The same applies to the kinosternid species Kinosternon 

subrubrum Bonnaterre (1789) and the trionychid species Lissemys punctata Bonnaterre 

(1789). 
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According to Meylan (1996) and Noonan (2000), the Podocnemidae together with the fossil 

clade Bothremydidae forms the Podocnemoidae. Specimens of Taphrosphys sulcatus (Leidy, 

1856a), revised by Gaffney, 1975d (see also Gaffney and Zangerl, 1968), Bothremys barberi 

(Schmidt, 1940) and of “Foxemys cf. F. mechinorum” (see Tong et al., 1998; Tong and 

Gaffney, 2000; Lapparent de Broin, 2001) were sectioned to sample the Bothremydidae. The 

first two species are well known from Late Cretaceous marine sediments of North America. 

The last taxon, “Foxemys cf. F. mechinorum”, derives from Late Cretaceous fluvial sediments 

of southern France. According to Tong et al. (1998), “Foxemys” is tentatively assigned to be a 

basal bothremydid and is thus treated as sister taxon to the clade (Taphrosphys (Bothremys + 

Rosasia)). Following Lapparent de Broin (2001), the species is valid, but the generic name 

“Foxemys” has to be considered a junior synonym of Polysternon. Notwithstanding the 

taxonomic and nomenclatural discussions surrounding “Foxemys cf. F. mechinorum” (Tong 

and Gaffney, 2000; Lapparent de Broin, 2001), the studied fossil material clearly represents a 

bothremydid. Adult bothremydid taxa can reach shell lengths of up to 150 cm (e.g., Gaffney 

2001). However, shell lengths could not be ascertained with exactitude for the sampled 

specimens. 

 

4.2.1 Platychelyidae 

Platychelyidae comprises only the fossil genus Platychelys with Platychelys oberndorferi 

Wagner, 1853 from the Late Jurassic of Europe as type species. According to Joyce et al. 

(2004), P. oberndorferi is one of only three taxa that are currently hypothesised to 

unambiguously represent the stem-group of Pleurodira. P. oberndorferi was first described 

from lithographic shales (Upper Jurassic) near Kehlheim, southern Germany, but the taxon 

became much better known from the Upper Jurassic shallow marine limestones that were 

quarried near Solothurn, Switzerland (Bräm, 1965). Fossil remains of P. oberndorferi are 

relatively scarce, though. The taxon is hypothesised to have been a freshwater turtle that 

inhabited fluvial systems, swamps and lakes of near-shore environments (Bräm, 1965). 

Compared to the other turtle taxa from the Solothurn limestone (also known as the Solothurn 

‘turtle-limestone’ or ‘Schildkrötenkalk’) that most probably lived in the near-shore marine 

environments, P. oberndorferi represents an allochthonous faunal element that was only 

occasionally brought into the marine limestone series. 
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4.2.1.1 Platychelys oberndorferi Wagner, 1853 

The studied material of P. oberndorferi includes a complete costal (?left c3) with free distal 

rib end (NMS 20076), a peripheral (?p5) from the bridge region (NMS 20070) and a left 

hypoplastron (NMS 20076). The external surface of the hypoplastron is smooth with only a 

very faint striation pattern, while the costal and the peripheral are strongly sculptured with 

humps and ridges. 

 

4.2.1.2 Aff. Platychelys sp. 

Additionally to the material of P. oberndorferi, specimens of aff. Platychelys sp. from the 

Kimmeridgian Guimarota coal mine near Leiria, Portugal, (Bräm, 1973; Gassner, 2000; 

Lapparent de Broin, 2001) were used for studying the microstructure of the shell bones. The 

material included two small fragments of costal plates (GUI-CHE-50; GUI-CHE-51) and a 

small fragment of a peripheral (GUI-CHE-52). No sutures were preserved in the fragments. 

While the bone surface of the peripheral fragment appeared rather smooth, the bone surfaces 

of the costal fragments were heavily sculptured with humps. 

 

4.2.2 Pelomedusidae 

4.2.2.1 Pelomedusa subrufa (Bonnaterre, 1789) 

A recent Pelomedusa subrufa (Bonnaterre, 1789), a small specimen with a SCL of 150 mm, 

was sampled as a representative for the Pelomedusidae. In the case of specimen MVZ 

230517, no complete shell elements, but drilled cores of the shell were sub-sampled. Of the 

shell, a right costal, a right peripheral and the right hyoplastron were sampled. These samples 

were of the few that did preserve the interface between the shield cover above, connective 

tissue in between and bone below in the shell. 
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4.2.3 Bothremydidae 

Bothremydidae comprises a group of widely distributed fossil turtle taxa that, according to 

Antunes and Broin (1988), used near-shore environments for their dispersal while some taxa 

like ”Foxemys cf. F. mechinorum” inhabited fluvial or lacustrine environments (Tong et al., 

1998). 

 

4.2.3.1 Bothremys barberi (Schmidt, 1940) 

The sampling of specimen FM P27406 of B. barberi included a neural, a costal, a peripheral 

and a plastron fragment. An ornamentation pattern was not recognised partly due to the 

weathered condition of the surfaces of the bones. The specimens of B. barberi were found in 

the Campanian Mooreville Chalk (Late Cretaceous), Selma Group, Dallas County, Alabama, 

USA. 

 

4.2.3.2 Taphrosphys sulcatus (Leidy, 1856a) 

The sample of specimen YPM 40228 of T. sulcatus comprises a neural (figured in Scheyer 

and Sánchez-Villagra, 2007, figs. 2, 5), a peripheral, a costal fragment and a fragmentary 

?hyo- or hypoplastron. The shell material of T. sulcatus was found in the Middle Marl Bed 

(Middle Marl Bed may equal Hornerstown Formation, thus it would indicate a Late 

Maastrichtian age), Cretaceous, Birmingham, Burlington County, New Jersey, USA. All shell 

elements were ornamented with a reticular pattern on the external surface.  

 

4.2.3.3 “Foxemys cf. F. mechinorum” Tong et al., 1998 = Polysternon mechinorum (Tong 

et al., 1998) fide Lapparent de Broin (2001) 

All elements derive from Late Cretaceous (early Maastrichtian) fluvial sediments, Cruzy, 

Hérault, southern France. The sampling included four specimens: part of a neural (IPB R556), 
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a fragmentary ?hyo- or hypoplastron (IPB R559), an indeterminate plastron fragment (IPB 

R558) and a costal fragment (IPB R557). All shell elements were slightly ornamented with a 

reticular pattern on the external surface. IPB R559 is figured in Scheyer and Sánchez-Villagra 

(2007, fig. 2F). 

 

4.2.4 Podocnemidae 

Podocnemidae comprises South American and African taxa and probably originated in the 

Late Cretaceous (Gaffney and Forster 2003; see Joyce at al. 2004 for discussion). 

Stupendemys geographicus, for which the complete skull is yet unknown (e.g., Gaffney et al., 

1998a), is included in Podocnemidae based on morphological characters of the postcranium, 

especially on the saddle-shaped central articulations of the cervicals (Wood 1976; Lapparent 

de Broin et al., 1993). As another representative of Podocnemidae, Podocnemis 

erythrocephala (Spix, 1824), a small living relative of S. geographicus from the northern 

parts of South America (Ernst and Barbour, 1989) that can reach a SCL of about 300 mm, 

was sampled. Podocnemis spp. and S. geographicus, among other taxa, may belong to a less 

inclusive taxon, Podocnemidinae, within Podocnemidae (e.g., Lapparent de Broin et al., 1993; 

Fuente, 2003). According to Gaffney and Wood (2002) Bairdemys, is also a member of 

Podocnemidae (Podocnemididae sensu Gaffney and Wood, 2002) based on skull features. 

 

4.2.4.1 Cf. Bairdemys sp. 

A single large shell fragment of cf. Bairdemys sp. could be sampled. The specimen 

(UNEFM uncat.) may represent a fragment of a large costal, but because of the weathered and 

diagenetically altered condition a clear assignment could not be made. Its external surface is 

curved and appears smooth. Because of the weathered condition of the bone surface as well as 

due to a thick iron oxide and mineral crust, bone surface textures, sculpturing patterns and 

scute sulci are obscured. The internal surface has a medial bulge slightly bent towards 

anterior, that may represent the progression of the rib. However, the structure is broken. The 

internal surface is also weathered and covered by a thin iron oxide and mineral crust. The 
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fragment is proximally thickened (thickness about 16 mm) and thins out distally (thickness 

about 11 mm). The maximum thickness between external surface and internal (?rib) bulge is 

42 mm. The margins of the specimen extend mostly subparallel or are slightly curved. The 

maximum length of the element measures 145 mm, its maximum width 95 mm. 

 

4.2.4.2 Podocnemis erythrocephala (Spix, 1824) 

A beginning fusion of its individual bony elements was present in the carapacial disk of 

specimen YPM 11853 of P. erythrocephala. The fusion started with the neural elements in the 

middle of the carapacial disc and continued towards half of the length of the costals. The 

distal ends of the costals and the peripherals were sutured but still unfused. Samples of P. 

erythrocephala (YPM 11853) include neural2 and right costal3, left costals1-3, a right 

peripheral and right hypoplastron. 

 

4.2.4.3 Stupendemys geographicus Wood, 1976 

Two fragmentary costals (A and B) of specimen UNEFM-CIAPP-2002-01 of S. 

geographicus (Aguilera et al., 1994), measuring 3.3 meters in SCL and 2.18 meters in MCW 

were sampled. The costal fragment A from the mid-region of the carapace has an overall 

thickness of 3.0 cm, whereas fragment B from the posterior part of the carapace is 

significantly thinner (about 1 cm). It is assumed that both costal fragments were of similar 

thickness in the living turtle, thus the cortical bone and broken bone trabeculae of fragment B 

represent only the lower third part of fragment A. Additionally, articulated pieces of a neural 

from a smaller fragmentary specimen (UNEFM-101) were also obtained for sectioning. The 

bone histology of S. geographicus was thus observed in two different size categories (Figs. 

2A, B, 3). With a calculated SCL of two to three meters, the smaller specimen plots well 

within other known, certainly adult, complete specimens of S. geographicus (Wood 1976; 

Scheyer and Sánchez-Villagra, 2007), even though the lateral parts of the neural fragment are 

only a third of the thickness of costal fragment A of UNEFM-CIAPP-2002-01. Compared to 

the slight stages of erosion found in the neural, both costal fragments express medium to 
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strong surface damages. It has to be assumed that neither fragment presents the complete 

histological evidence of undamaged cortices. Likewise measurements of the thicknesses of all 

fragments give only approximate values that have to be treated with caution. Costal fragment 

A is figured in Scheyer and Sánchez-Villagra (2007, figs. 2, 3). 

 

4.2.5 Chelidae 

The Chelidae are the second major crown clade of Pleurodira, the other being 

Pelomedusoides. Today, Chelidae represents 52 living species in twelve genera (Joyce et al., 

2004), but the fossil record of Chelidae is still considered to be poor. Both modern and fossil 

Chelidae are restricted to the South American continent and Australasia (Australia and New 

Guinea, see Georges et al., 1998). Fossil chelids are unambiguously known from the Late 

Cretaceous of South America (Broin, 1987; Fuente et al., 2001; Lapparent de Broin and 

Fuente, 2001) and from the Miocene and lately the Eocene/?Palaeocene of Australia (Gaffney 

et al., 1989; Lapparent de Broin and Molnar, 2001). According to Joyce et al. (2004) turtle 

remains from the Early Cretaceous of South America may represent stem-group taxa of the 

Chelidae. 

There is still an ongoing controversial discussion about the interrelationships of chelid 

turtles. In the classical morphological approaches (e.g., Boulenger, 1888a,b; Burbidge et al., 

1974; Gaffney, 1977; Gaffney and Meylan, 1988; Shaffer et al., 1997), the long-necked 

genera of South America (i.e. Chelus, Hydromedusa) and Australasia (i.e. Chelodina) and the 

South American and Australasian short-necked chelid genera (e.g., Phrynops, Platemys, 

Emydura) are thought to be closely related. Please note, as Gaffney et al. (1989:7) pointed 

out, that the “Emydura group is characterised almost entirely by features that are 

plesiomorphic for Chelidae”. In contrast, new analyses that rely on molecular and serological 

data support the idea (even though the support is weak in most cases) that long-necked and 

short-necked South American chelids on the one hand, and long-necked and short-necked 

Australasian chelid taxa on the other hand are more closely related to each other respectively 

(Fujita et al., 2004; Georges et al., 1998; Near et al., 2005; Shaffer et al., 1997). Overall, 

seven chelid specimens including three long-necked genera and three short-necked genera 

were sampled. 
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Short-necked Australasian Chelidae are represented by two turtle specimens (one fossil and 

one recent) of the genus Emydura Bonaparte, 1836. Emydura spp. reach carapace lengths of 

up to about 300 mm. All species are semi-aquatic and restricted to New Guinea and Australia 

(Iverson, 1992; Ernst and Barbour, 1989). The carapace of this chelid group usually lacks 

neurals, so the costals meet medially (e.g., Ernst and Barbour, 1989). E. albertisii Boulenger 

(1888b) is considered to be a junior synonym of Emydura subglobosa (Krefft, 1876) by 

Iverson (1992) and Ernst and Barbour (1989). 

Chelodina longicollis (Shaw, 1794) represents the long-necked Australasian Chelidae 

herein. Its thin neck measures about 60 % of the total carapace length (Ernst and Barbour, 

1989). C. longicollis is known to adapt its skin-colour to the surrounding background by 

melanophore cell contraction and expansion (Woolley, 1957, in Ernst and Barbour, 1989). 

Short-necked Chelidae of South America are represented by Platemys platycephala 

(Schneider, 1791) and by Phrynops geoffroanus (Schweigger, 1812). While P. geoffroanus 

reaches CL of about 350 mm, P. platycephala is smaller (CL up to 180 mm) and more gracile 

(e.g., Ernst and Barbour, 1989). While both taxa are similarly distributed in northern South 

America, P. platycephala does not occur as far south and southeast as P. geoffroanus, which 

also inhabits areas of east-central South America (e.g., Pritchard, 1979; Ernst and Barbour, 

1989). 

Hydromedusa tectifera Cope, 1870a and Chelus fimbriatus (Schneider, 1783) were sampled 

as long-necked South American Chelidae. While H. tectifera is a rather inconspicuous turtle 

that prefers a snail diet (e.g., Pritchard, 1979), C. fimbriatus or Matamata from South America 

is one of the most bizarre turtles alive today. The fringes at the flat triangular head and long 

neck, together with the brownish colour and the highly humped, keeled and serrated shell 

effectively help to dissolve the general shape of the turtle. This and a gape-and-suck feeding 

mechanism make the Matamata an effective ambush predator (e.g., Pritchard, 1979; Ernst and 

Barbour, 1989). 
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4.2.5.1 Emydura subglobosa (=Emydura albertisii) (Krefft, 1876) 

 A recent specimen of E. subglobosa (ZFMK-58215), preserved in alcohol, was sampled. 

The shell has a CCL of 155 mm, a CCW of 125 mm and a SPL of 130 mm. The specimen 

derived from New Guinea, but no further data was available. Generally, E. subglobosa dwells 

in rivers, lakes and lagoons (e.g., Ernst and Barbour, 1989). Sampling was done by core-

drilling where two cores, each with a diameter of 12 mm, were removed from the proximal 

part of the left ?costal2 and the left hyoplastron respectively. 

 

4.2.5.2 Emydura sp. 

Four fossil shell elements of cf. Emydura sp. were sampled. A closer identification to 

species-level was not possible, because of the fragmentary nature of the material. The fossils 

were collected in the Miocene Etadunna Formation of South Australia (see Gaffney, 1979a; 

1981). The material included a thinner (max. 4 mm) and a thicker (max. 9 mm) costal 

fragment and a peripheral (UCMP V5762/57055) as well as a larger plastron fragment (?hyo- 

or hypoplastron; max. 12 mm in thickness; UCMP V5774/57270). The plane of sectioning 

runs craniocaudally for the thicker costal and the plastron fragment and proximodistally for 

the thinner costal and the peripheral. The costal and plastron fragments showed a 

characteristic sculpturing consisting of shallow reticular anastomosing grooves on the external 

bone surfaces. The internal surface of the bones was smooth. The sculpturing patterns as well 

as two scute sulci (each again in proximodistal orientation) were present on the external 

surfaces (both dorsal and ventral) of the peripheral. A scute sulcus also extended 

proximodistally on the external bone surface of the thinner costal. Furthermore, at least five 

small shallow pits of different depths are present on the external bone surface of the 

peripheral. It is apparent that these pits are not part of the sculpturing pattern. However, it is 

unclear if those pits appeared pre-mortem in the living animal, e.g., as the result of some kind 

of shell disease, or if they represent post-mortem diagenetic or decay structures. 
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4.2.5.3 Chelodina longicollis (Shaw, 1794) 

C. longicollis is known from eastern Australia where it inhabits sluggish streams, swamps 

and lagoons (e.g., Ernst and Barbour, 1989). The sampled specimen (ZMB 27258) of C. 

longicollis has a CCL of 210 mm, a CCW of 173 mm and a CPL of 178 mm. Sampling was 

done by core drilling. Two cores with 22 mm diameter each were removed from the left 

?costal2 and the right hyoplastron. In both cases, the keratinous shields are still attached to the 

bone cores. The external scute surface of the core from the carapace is rugose, and it shows 

parts of the sulci of the vertebral2 and of pleural1 and 2. The external scute surface of the core 

from the hyoplastron is rather smooth, however, due to various degrees of shell necrosis, the 

keratin layers of the scutes easily flake off. 

 

4.2.5.4 Platemys platycephala (Schneider, 1791) 

The sampling of P. platycephala, the recent twist-necked turtle of South America, included 

two drilled cores of a small alcohol-preserved specimen (SMNS 10035). The specimen has a 

SPL of about 135 mm. The keratinous shields were already removed from the specimen in the 

locations of the drill spots, thus they were not sampled together with the bone core. The first 

core of the shell bone (22 mm in diameter) covers part of the right costal2 and proximal-most 

part of the left costal2, as well as the associated vertebra. As stated for example by Ernst and 

Barbour (1989), neurals are usually not developed and the costals meet at the midline of the 

shell. The second core (12 mm in diameter) covers the proximal part of the left hypoplastron. 

The plane of sectioning runs craniocaudally in the hyoplastron, while it runs proximodistally 

through the sampled costals. The maximum thicknesses of both carapace and plastron 

samples is 2 mm (excluding the vertebral centrum). 

 

4.2.5.5 Phrynops geoffroanus (Schweigger, 1812) 

As a second South American short-necked species, P. geoffroanus was sampled (YPM 

12611). The carnivorous species lives in a wide range of freshwater habitats with slow 

currents and is basking frequently (e.g., Ernst and Barbour, 1989). Several complete bony 
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elements of a macerated shell were prepared into thin-sections, including a neural3, a costal3, 

a peripheral3 and a hyoplastron. Due to the fact that the shell was already disarticulated prior 

to sampling, its length was not measured. The costal3 has two planes of sectioning, one 

proximodistally and one craniocaudally. The plane of sectioning trends proximodistally, both 

in the peripheral3 and the hyoplastron. The neural3 was sampled in cross-section 

perpendicular to the vertebral column. 

 

4.2.5.6 Hydromedusa tectifera Cope, 1870a 

The specimen (ZFMK 51656) of H. tectifera comes from an area near Montevideo, 

Uruguay, but no further data was available. It had a CCL of 223 mm, a CCW of 163 mm and 

a SPL of 155 mm. Sampling of the alcohol-preserved specimen was done by core drilling. 

Bone cores (each 22 mm diameter) were removed from the proximal part of the left ?costal2 

and the left hyoplastron respectively. The keratin shields are still attached to the bone cores. 

In the case of the carapacial core, sulci of the first and second vertebral and the first pleural 

are present. In the case of the plastral core, the external scute surface is flat and smooth and 

carries the sulcus of the pectoral shield. 

 

4.2.5.7 Chelus fimbriatus (Schneider, 1783) 

C. fimbriatus is found in all major drainage systems of South America where it prefers 

habitats with slow-moving water (e.g., Ernst and Barbour, 1989). The shell shows three major 

keels and the flat triangular head and long neck sport fringelike appendages of the skin 

mimicking dead leaves, while it catches its prey with a gape-suck mechanism. The specimen 

(FMNH 269459) that was sampled by core-drilling is quite exceptional in another way. Prior 

to its current storing in the FMNH collections, it was submerged and stored in a preservation 

liquid of unknown chemistry that stained the shell bone and all other visible bone green. The 

three core samples (each 22 mm in diameter) of the shell bone are thus homogeneously 

stained. The locations of the cores were chosen to cover part of a costal and the peripheral 

region of the carapace, as well as the right hyoplastron respectively. The SPL measures about 
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338 mm. The thickness of the shell bones ranges from 6 mm in the costal, to a maximum of 

10 mm in the peripheral and to 4.5 mm in the hyoplastron. The planes of sectioning run 

craniocaudally in the hyoplastron and in the costal and proximodistally in the sampled 

peripheral. 

 

4.3 Cryptodira 

The Cryptodira, including the crown-group taxa Chelonioidea (Cheloniidae and 

Dermochelyidae), Chelydridae, Testudinoidea (Platysternon megacephalum, Testudinidae, 

Bataguridae and Emydidae) and Trionychoidea (Kinosternoidea and Trionychia) are still the 

most abundant group of turtles. Besides the crown-clades, there exist a large number of fossil 

clades, from which some could be included in this study (e.g. Solemydidae). The taxonomic 

status of the recent big-headed turtle Platysternon megacephalum Gray, 1831b which was 

sampled is still under discussion. While morphological analyses grouped P. megacephalum as 

sister taxon to Chelydridae (e.g., Brinkman and Wu, 1999), it was lately hypothesised by 

Joyce et al. (2004) to represent the sister taxon to Testudinoidea in the clade Cryptoderinea 

(=Platysternidae and Testudinoidea). Molecular analyses, however, oppose a close 

relationship of P. megacephalum and Chelydridae (e.g., Haiduk and Bickham, 1982; Cervelli 

et al., 2003; Krenz et al., 2005; Parham et al., 2006). The latest analysis by Parham et al. 

(2006) retrieved P. megacephalum as the sister taxon to Emydidae within Testudinoidea. The 

Cryptodira include the basal, solely fossil, Paracryptodira and the advanced Eucryptodira 

(e.g., Gaffney, 1975c; Gaffney and Meylan, 1988; Gaffney, 1996; Hirayama et al., 2000). 

The Solemydidae comprise a group of poorly known turtles that lived from the Late Jurassic 

to the Early Cretaceous in North America and Europe/Asia (Lapparent de Broin and 

Murelaga, 1996). Referred indeterminate solemydid material is also reported from the Upper 

Cretaceous of France (Lapparent de Broin, 2001). After Danilov (2005), Solemydidae, 

Meiolaniidae and three other taxa (Chengyuchelyidae, Kallokibotionidae and 

Mongolochelyidae) are basal cryptodiran taxa, however, affinities to Pleurosternidae were 

also proposed (see Milner, 2004 for discussion). Typical for all solemydid taxa is a peculiar 

ornamentation of single raised knob- or pillar-like structures on the external bone surfaces. 

All taxa had scutes covering the ornamented shell bones. The fossil North American 
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solemydid material from the Upper Jurassic of Montana, USA, was described as Naomichelys 

sp. based on plastral bones (Hay, 1908). Hirayama et al. (2000) considered Naomichelys Hay, 

1908 a junior synonym of Tretosternon Owen, 1842. Milner (2004), however, argues that 

Tretosternon is a nomen dubium, and the relevant material should accordingly be reassigned 

to the senior synonym Helochelydra Nopcsa, 1928. There is still an ongoing discussion 

pertaining to the naming and validity of other solemydid taxa (see Lapparent de Broin, 2001; 

Milner, 2004; Danilov, 2005). The studied material is referred to as Solemydidae gen. et sp. 

indet. (aff. Naomichelys sp.) in the current study. 

The Baenidae, a group of turtles endemic to North America, the more wide-spread 

Pleurosternidae (e.g., Gaffney, 1975c; Brinkman and Nicholls, 1993; Gaffney, 1996) and the 

newly described basal paracryptodiran taxon Arundelemys dardeni Lipka et al., 2006 are 

included into the Paracryptodira. The latter taxon is known from Early Cretaceous Potomac 

Formation, Muirkirk, Maryland, USA, and only includes a single isolated skull. The Baenidae 

are found in strata from the Early Cretaceous to the late Eocene (e.g., Gaffney, 1972; Gaffney 

and Meylan, 1988). The Pleurosternidae occur in the Upper Jurassic and the Lower 

Cretaceous of North America and Europe (e.g., Gaffney, 1996; Brinkman et al., 2000; Milner, 

2004). See Danilov (2005) and Lipka et al. (2006) for a summary of synapomorphies of 

Paracryptodira. If the material that is so far tentatively classified as ‘cf. Pleurosternidae’ 

would be positively assigned to that taxon, the fossil record of the taxon would be extended 

from the Upper Jurassic back into the Bathonian, Middle Jurassic (see Evans and Milner, 

1994; Danilov, 2005). 

The term Eucryptodira, introduced by Gaffney (1975c), comprises all crown-group 

cryptodires as well as solely fossil taxa. Basal eucryptodiran taxa are Plesiochelyidae, 

Eurysternidae, Thalassemydidae and Xinjiangchelyidae. The more derived eucryptodiran 

taxa, including the fossil Sinemydidae, Adocidae and Nanhsiungchelyidae, are combined 

within Centrocryptodira (e.g., Gaffney and Meylan, 1988; Gaffney, 1996; Danilov 2005; 

please note that meiolaniid turtles are not regarded as Centrocryptodira but as basal 

Testudinata herein). The fossil record of Eucryptodira (e.g., of Plesiochelyidae) reaches at 

least back into the Upper Jurassic (e.g., Lapparent de Broin, 2001; Danilov, 2005). 

While amphicoelous vertebrae with weakly developed central articulations are still found in 

the basal eucryptodiran taxa Xinjiangchelyidae, Plesiochelyidae, Eurysternidae and 



Comparative bone histology of the turtle shell   
 

58 

Thalassemydidae (e.g., Danilov, 2005), the derived Centrocryptodira only have procoelous 

and opisthocoelous vertebrae with well developed articulation surfaces (Gaffney and Meylan, 

1988). See Gaffney (1975c, 1996), Gaffney and Meylan (1988) and Danilov (2005), for more 

detailed characterisations of Eucryptodira and Centrocryptodira. 

Described by Lapparent de Broin (2001:162) as “littoral” forms, the Plesiochelyidae, 

Eurysternidae and Thalassemydidae represent the first marine radiation of turtles, although 

protostegid turtles also occur already in the Upper Jurassic. All three groups are endemic to 

Europe. While Thalassemydidae and Eurysternidae are restricted to the Upper Jurassic, the 

Plesiochelyidae also range up into the Lower Cretaceous (Lapparent de Broin et al., 1996; 

Hirayama et al, 2000; Lapparent de Broin, 2001). 

The material used in this study derives from the Kimmeridgian (Upper Jurassic) limestone 

quarries of Solothurn, Switzerland, famous for their richness in fossil turtle remains (also 

referred to ‘Solothurner Schildkrötenkalke’ in German). Mainly based on divergent shell 

morphologies, several genera and species have been described from the Solothurn turtle 

limestone (e.g., Rütimeyer, 1873; Bräm, 1965). Later on, the focus shifted towards newly 

discovered cranial material and many species were synonymised (e.g., Gaffney, 1975b). 

However, due to the subsequent discovery and description of associated cranial and 

postcranial material, the validity and taxonomic status of several taxa from Solothurn is still 

under discussion. 

After Gaffney (1975b), the genus Craspedochelys would have to be treated as synonymous 

with Plesiochelys, thus, e.g., the species Craspedochelys picteti Rütimeyer, 1873 would have 

to be renamed to Plesiochelys picteti (Rütimeyer, 1873). Lapparent de Broin (2001), however, 

still lists C. picteti Rütimeyer, 1873 as a valid species. 

Furthermore, according to Gaffney (1975b), Plesiochelys etalloni is the only recognised 

species of the genus found in Central Europe based on cranial material and the species P. 

solodurensis, P. jaccardi, P. sanctaeverenae, Craspedochelys picteti and Craspedochelys 

crassa are synonymous with P. etalloni. After Lapparent de Broin et al. (1996) and Lapparent 

de Broin (2001), however, the material described by Bräm (1965) as Plesiochelys etalloni 

would in fact represent the lost and rediscovered holotype of Plesiochelys solodurensis 

Rütimeyer, 1873 (see also Joyce, 2000 for further discussion). 
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Thalassemys hugii Rütimeyer, 1873 and Tropidemys langi Rütimeyer, 1873 are considered 

as valid species by Lapparent de Broin et al. (1996) and Lapparent de Broin (2001), with 

Thalassemys hugii being the only thalassemydid representative from Solothurn limestone. 

While Bräm (1965) tentatively assigned Tropidemys langi to the Thalassemydidae, the taxon 

is regarded as a plesiochelyid instead by Lapparent de Broin (2001). 

Joyce (2000) rejects proposals to synonymise Eurysternum ignoratum Bräm, 1965 (the 

species described from Solothurn) with Solnhofia parsonsi Gaffney, 1975a. After Lapparent 

de Broin (2001), Eurysternidae is, among other taxa, represented by Solnhofia parsonsi 

Gaffney, 1975a, Idiochelys fitzingeri Meyer, 1839a and Eurysternum spp. To complicate 

matters, a revision of Eurysternum wagleri Meyer, 1839b (the type species of the genus) by 

Joyce (2003) revealed that the holotype was lost during the Second World War and syntypes 

and lectotypes were not assigned by Meyer. Furthermore, suitable specimens for neotype 

designation have not been found yet, thus the only available material of E. wagleri and its 

description is based solely on an illustration (Joyce, 2003). 

Taxa that are characterised by procoelous and opisthocoelous vertebrae with well developed 

articulation surfaces (Gaffney and Meylan, 1988) are included into the Centrocryptodira. 

Centrocryptodira includes the basal “Sinemydidae” and “Macrobaenidae”, as well as the more 

derived crown group Cryptodira and their close fossil relatives (Polycryptodira Gaffney, 1984 

=Cryptodira Cope, 1868 sensu Joyce et al., 2004). According to Parham and Hutchison 

(2003) and Parham (2005), “sinemydid” and “macrobaenid” groups of turtles are still poorly 

understood and monophyly has not been sufficiently established yet. 

The taxon Chelonioidea includes the recent marine turtles, Cheloniidae (hard-shelled sea 

turtles) and Dermochelyidae (leatherback turtle), as well as the fossil Protostegidae with 

Cheloniidae being the sister taxon the (Protostegidae, Dermochelyidae) (e.g., Hirayama, 1997, 

1998; Danilov, 2005). The well preserved Santanachelys gaffneyi Hirayama, 1998 from the 

Early Cretaceous Santana Formation of Brazil, South America, is hypothesised to be the 

oldest and basal-most representative of the Protostegidae (e.g., Hirayama, 1998; Joyce et al., 

2004; Danilov, 2005). The origin of Chelonioidea as well as their relationship to 

Plesiochelyidae and Macrobaenidae is still in focus of discussion (e.g., Joyce et al., 2004; 

Danilov, 2005). While chelonioid taxa flourished during the Cretaceous and Palaeogene 

(Wood et al., 1996; Hirayama, 1997), the modern marine turtle fauna is greatly reduced in 
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diversity (Fritz, 2005). A recent review of Cheloniidae and Dermochelyidae is given by Joyce 

and Bever (2005) and Bever and Joyce (2005) respectively. 

The Testudinoidea include the recent families Emydidae, Bataguridae/Geoemydidae, 

Testudinidae, and the species Platysternon megacephalum Gray, 1831b. All three former 

groups appear in the Northern hemisphere during the Palaeogene (Danilov, 2005). Today, 

Testudinoidea are known from all continents except Antarctica and Australia (e.g., Pritchard, 

1979; Ernst and Barbour, 1989; Lapparent de Broin, 2001; Danilov, 2005). The monophyly of 

‘Testudinidae’ seems reasonably well established, a monophyletic ‘Emydidae’ is not well 

supported and the monophyly of ‘batagurid/geoemydid’ turtles has not been sufficiently 

tested yet (Joyce and Bell, 2004). Thus, a review of the comparative morphology of extant 

testudinoid turtles was recently given by Joyce and Bell (2004), in which the authors re-

evaluate the characters that are usually taken into account for testudinoid turtle phylogenies. 

Furthermore, as already pointed out, the taxonomic status of the recent big-headed turtle 

Platysternon megacephalum Gray, 1831b is still under discussion, with the most recent 

molecular study favouring P. megacephalum as sister taxon to Emydidae (Parham et al., 

2006). 

The Trionychoidea include the Kinosternoidea, Nanhsiungchelyidae, Adocidae and 

Trionychia. Based on morphological characters, Trionychoidea sensu Gaffney and Meylan 

(1988) are a monophyletic group, however, Shaffer et al. (1997) postulated the distinctiveness 

of Trionychia based on molecular data. This result was for example recently corroborated by 

Fujita et al. (2004). As was shown by Meylan and Gaffney (1989), Adocidae is a basal 

member of Trionychoidea (see also Brinkman, 2003a), as is the monophyletic 

Nanhsiungchelyidae, which itself is sister group to Peltochelys Dollo, 1884 and advanced 

Trionychia (see Meylan, 1988; Meylan and Gaffney, 1989). Kinosternoidea include the 

Dermatemydidae and the Kinosternia. Kinosternia further include the genus Hoplochelys and 

Kinosternidae (Gaffney and Meylan, 1988; Joyce et al., 2004). 

Trionychia sensu Joyce et al., 2004, =Trionychoidae sensu Shaffer et al. (1997), include the 

Carettochelyidae and the Trionychidae. As stated by Engstrom et al. (2004), several 

molecular studies strengthen this proposed sister relationship of the groups (Shaffer et al., 

1997; Fujita et al., 2004; Krenz et al., 2005). However, there is discussion about the 

systematic position of Trionychia (Gaffney and Meylan, 1988; Meylan and Gaffney, 1989; 
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Krenz et al., 2005). Following the more traditional approach, Trionychia is here regarded as 

highly nested in Cryptodira with sister group relationships to Kinosternoidea, 

Nanhsiungchelyidae and Adocidae. 

 

4.3.1 Cryptodira incertae sedis (Kirtlington turtle sample; Solemydidae) 

4.3.1.1 Kirtlington turtle sample 

Turtle material was found in the Kirtlington Cement Quarry (Mammal Bed, 3p layer of 

McKerrow et al., 1969), Bathonian, Middle Jurassic, Kirtlington, Oxfordshire, Great Britain. 

Gillham (1994) described shell and skull material from the Kirtlington site that carried 

cryptodiran characteristics, but the material was only tentatively assigned to cf. 

Pleurosternidae, because clear synapomorphies were not preserved in the material. In the 

same year, a review of British microvertebrate sites by Evans and Milner (1994) listed the 

occurrence of cf. Pleurosternidae for two other British sites (Skye and Watton) besides the 

Kirtlington locality. The sample used in the current study includes six small shell fragments 

(IPB R583-589) that were, because of their fragmentary condition, difficult to assign to a 

location on the shell (i.e., carapace or plastron fragment). One of the shell bone fragments has 

a sculptured external surface (IPB R586), while the other fragments have fairly straight bone 

surfaces. Due to the broken and weathered nature, not much more can be said about the outer 

morphology of the shell material. 

 

4.3.1.2 Solemydidae gen. et sp. indet. (aff. Naomichelys sp.) 

The material that could be obtained for thin-sectioning includes two costals (TMP 90.60.07; 

FM PR 273), two peripherals (TMP 90.60.07; FM PR 273), one indeterminate plastron 

fragment (TMP 2000.16.01), two indeterminate shell fragments (TMP 90.60.07) and two 

osteoderms (FM PR 273). FM PR 273 derives from the Antlers Formation, Trinity Group, 

Albian, Early Cretaceous, Montague County, Texas, USA. The fragments that are stored in 

the TMP collections on the other hand, derive from the Foremost Formation, Judith River 

Group, Milkriver and Pinhorn Ranch, SE Alberta, Canada. Because of the fragmentary nature 
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of most of the specimens, a secure orientation of the elements was not always possible. 

Generally, the shell fragments are sculptured with highly characteristic tubercles or columns. 

The tubercles/columns can be densely packed or can be regularly spaced across the external 

surface of the bones. Furthermore, the pillar-like tubercles can protrude over several 

millimetres from the bone surface and where broken off, a circular structure is still seen on 

the external bone surface. The internal bone surfaces are smooth. The smaller osteoderm has a 

circular or oval base that is excavated and an external slightly off-centred pointed apex. The 

larger osteoderm has a circular, slightly excavated internal surface and a convex external 

surface. A blunt flat lying apex is situated beyond the margin of the internal surface, giving 

the osteoderm a flat half-moon shape in cross-section. Both osteoderms are sculptured with 

low tubercles or ridges. Small scattered nutrient foramina insert into the internal bone surface 

of both elements. 

 

4.3.2 Baenidae 

Gaffney (1972) gave a comparative account of the North American Baenidae and presented 

a first cladogram. The Early Cretaceous genus Trinitychelys and the Upper Cretaceous/Early 

Palaeogene genus Neurankylus may represent successive sister taxa of the derived baenid 

turtles referred to as Baenodd/Baenodda (see Gaffney 1972; Gaffney and Meylan, 1988; 

Brinkman and Nicholls 1993). Neurankylus is the only representative of the “primitive grade” 

of baeind turtles found in the Late Cretaceous of Alberta, Canada (Brinkman, 2003a:559). 

The genus Plesiobaena is the basal-most member of the more exclusive derived grade, the 

Baenodda (Brinkman, 2003b). The sampled taxa Boremys sp., from the Cretaceous Dinosaur 

Park Formation of Dinosaur Provincial Park of Alberta, Canada, and Chisternon sp., from the 

Eocene Bridger Formation of Wyoming, USA, represent derived taxa within the Baenodda 

(Brinkman and Nicholls, 1991, 1993). 
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4.3.2.1 Neurankylus sp. 

The specimens of Neurankylus sp. derive from Late Cretaceous Dinosaur Park Formation, 

Judith River Group, near Drumheller, Alberta, Canada. The sectioned specimens include a 

neural (TMP 86.36.308), a proximal part of a costal (TMP 85.58.26), a peripheral (TMP 

91.36.786) and a fragmentary hyoplastron (TMP 94.666.35). The external surface of the 

bones is flat and has a leathery texture of very fine irregular wrinkles. The spatial orientation 

of these leathery wrinkles increases somewhat towards the sutured margins of the bone 

elements. Here, the wrinkles trend more parallel to each other and extend perpendicular 

towards the bone margins. The internal surface of the bone is smooth or has a fibrous, striated 

texture. This characteristic is especially pronounced in the hyoplastron, where the internal 

surface of the bone appears to comprise fibre bundles that trend generally sub-parallel to each 

other. Scute sulci are present on the external surfaces of the hyoplastron and on the peripheral. 

 

4.3.2.2 Plesiobaena sp. 

The sampling of Plesiobaena sp. includes a neural (TMP 86.78.97), the proximal part of a 

costal (TMP 93.108.07), a peripheral (TMP 91.36.852) and a right hyoplastron (TMP 

84.67.97). The specimens were found in the Late Cretaceous Judith River Group, Dinosaur 

Provincial Park, Alberta, Canada. Internal surfaces of the bones are generally smooth. The 

external surfaces are smooth or faintly wrinkled. These faint wrinkles, which are most 

pronounced on the external surface of the hyoplastron, give the margins of the external bone 

surfaces a lightly striated texture. 

 

4.3.2.3 Boremys sp. 

The sampled specimens of Boremys sp. from the Late Cretaceous Dinosaur Park Formation, 

Dinosaur Provincial Park, Alberta, Canada, comprise a neural (TMP 93.108.03), the proximal 

part of a costal (TMP 1994.12.325), a peripheral (TMP 1986.78.29) and the right hypo- and 

xiphiplastron (TMP 84.163.70). The external surface of the neural, the costal and the 

peripheral are strongly sculptured with humps, while the external surfaces of the plastral 
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elements are smooth. The humps are strongly pronounced in the neural and the costal, but 

weakly developed in the peripheral. The internal surfaces of all elements are rather smooth or 

in the plastral elements, faintly striated. The faint striation on the internal surface of the 

plastral elements seems to be a preparatory artefact; however, the exact nature of the fine 

striation could not be deduced because of a lacquer coating that covers the surfaces of the 

bones. 

 

4.3.2.4 Chisternon sp. 

The material of Chisternon sp. derives from the Eocene Bridger Formation, Uinta County 

(and Sweetwater County?), SW Wyoming, USA. The sample includes a fused neural and 

costal (UCMP V94071/150182), a peripheral (UCMP V94076/150189), a peripheral fragment 

from the bridge region of the carapace (UCMP V94076/150189) and a plastron fragment 

(?hyo- or hypoplastron; UCMP V94078/150190). The external and internal surfaces of the 

shell elements appear smooth with few scattered pits and grooves. Because of diagenetic 

compaction and weathering, a more detailed description of the bone surfaces is not possible. 

 

4.3.3 Pleurosternidae 

Pleurosternidae sensu Gaffney (1979b), Gaffney and Meylan (1988) and Gaffney (1996) 

include only the two genera Glyptops and Pleurosternon (=Mesochelys Evans and Kemp, 

1975). See also discussion in Tong et al. (2002) on basal cryptodiran turtles. A possible 

relation of Compsemys to Pleurosternidae was already proposed by Hutchison (1987), but 

only recently, skull material of Compsemys victa Leidy, 1856b was described (Hutchison and 

Holroyd, 2003). While Lapparent de Broin (2001:172, 194-195) was unsure if Desmemys 

with type species D. bertelsmanni Wegner, 1911 from the Lower Cretaceous of Germany 

belongs to “?Pleurosternidae (incertae sedis)” or “Chelonii incertae sedis”, Milner (2004) 

confirmed the inclusion of Desmemys within Pleurosternidae. Brinkman et al. (2000) 

proposed relationships of the genera to be (Pleurosternon ((Dinochelys, Desmemys) 

Glyptops)). Material of Glyptops plicatulus (the validity of the species was discussed by 
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Gaffney, 1979b) from the Upper Jurassic Morrison Formation of Wyoming, USA, 

Compsemys sp. from the Hell Creek Formation of Montana, USA, and unidentifiable material 

of Pleurosternidae of Upper Jurassic of Guimarota coal mine, Portugal, were included in this 

study. 

 

4.3.3.1 Glyptops plicatulus (Cope, 1877) 

The studied specimens of G. plicatulus were found in Quarry 9, Como Bluff, Wyoming, 

USA (Morrison Formation, Upper Jurassic). The sample comprises a neural (YPM 57160), 

the proximal part of a costal (YPM 57161), a costal (YPM 57162), a peripheral (YPM 57163) 

and a plastron fragment (YPM 57164; ?hyo- or hypoplastron). The external surface of the 

shell elements are sculptured with small vermiculate low ridges and tubercles, surrounded 

with a marginal seam of elongate parallel low ridges extending perpendicular towards the 

sutures of the bone. 

 

4.3.3.2 Compsemys sp. 

The material of Compsemys sp. derives from the early Palaeocene part of the Hell Creek 

Formation, McCone County, Montana, USA. A neural (UCMP V90077/150197), two costals 

(UCMP V90077/150195; UCMP V90077/150196), a peripheral (UCMP V87192/150199) 

and a plastron fragment (?hyo- or hypoplastron; UCMP V87192/150198) are included. The 

external surface of the shell bones is sculptured with low fine tubercles that only occasionally 

form short low ridges. Especially at the margins isolated tubercles fuse to form parallel short 

ridges that extend perpendicular to the sutures of the bones. It is noteworthy that the 

sculpturing pattern of the samples is generally fainter than the sculpturing pattern of G. 

plicatulus. 
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4.3.3.3 Pleurosternidae gen. et sp. indet. 

Several specimens that could be studied come from Kimmeridgian (Upper Jurassic) beds of 

the Guimarota coal mine near Leiria, Portugal. The sample includes a costal (GUI-CHE-53), 

the proximal part of a costal (GUI-CHE-54) and a plastron fragment (?hyo- or hypoplastron; 

GUI-CHE-55). Furthermore, two specimens, a neural (IPFUB P-Barkas-20) and a peripheral 

(IPFUB P-Barkas-21), from Upper Jurassic (Tithonian-?Berriasian) alluvial fan deposits of 

Porto das Barcas, Lourinha, Portugal, were sampled. The external surface of the neural 

appears weathered and strongly pitted. The external surface of the other shell elements is 

sculptured with vermiculate low short ridges and tubercles framed by a marginal seam of 

parallel low ridges extending perpendicular towards the sutures of the bones (compare to 

specimens of Glyptops plicatulus). The internal surface of all shell elements appears smooth. 

 

4.3.4 Eurysternidae 

4.3.4.1 Eurysternum sp. and ?Eurysternum sp. 

Three shell elements, a costal (NMS 21908), a left hyoplastron (NMS 20981) and a plastral 

fragment (NMS 21922) of Eurysternum sp. from Solothurn were sampled. Further sampling 

included a costal fragment and a plastron fragment (both SMNS 91005) of ?Eurysternum sp. 

from the Upper Jurassic (Tithonian) of Tönniesberg near Hannover, Germany. All elements 

have a fragile appearance. The external and internal surfaces of the bones show various 

degrees of abrasion and weathering so that the interior spongy structure of the bone becomes 

visible. The external surface of the hyoplastron (NMS 20981) also shows some minor pitting 

structures and a shallow striation pattern towards the bridge and the sutured margins. It also 

shows part of the central plastral fontanella. The external surface of the costal is smooth and 

unsculptured. The internal surfaces of all bones are also smooth or, in case of the plastra, 

locally faintly striated. 
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4.3.5 Plesiochelyidae and Thalassemydidae 

4.3.5.1 Plesiochelys sp. 

The material of Plesiochelys sp. includes specimens that are stored in the NMS, the SMNS 

and the IPB collections. Material from Solothurn of Plesiochelys sp. included a neural3 (NMS 

8730; labelled as P. sanctaeverenae), the proximal part of a right costal3 (NMS 8849), a 

marginal part of a carapace (NMS 9214; distal part of costals, peripherals) and an 

indeterminate small fragment from a carapace (NMS 8876). The external surfaces of neural3 

and costal3 (NMS 8730, NMS 8849) are partly sculptured with wrinkles and low ridges as 

seen in the proposed holotype of Plesiochelys sanctaeverenae Rütimeyer (in Bräm, 1965: 

fig.27). At first glance, the external surface of the small fragment of the carapace (NMS 8876) 

appears strongly weathered and pitted. However, it is not the external surface of the bone but 

the internal surface, because the bone was broken several times and is preserved now with a 

strongly concave external bone surface. The internal surfaces of all sampled bones are 

generally smooth. 

Specimen IPB R13, a proximal part of a costal, derives from the Kimmeridgian (Upper 

Jurassic) of Ahlem near Hannover, Germany. The specimen was labelled as Plesiochelys 

hannoverana. However, the taxon might be synonymous with Plesiochelys 

(=Craspedochelys) brodiei Lydekker, 1889, a form known from the Wealden of England (see 

Lapparent de Broin, 2001). SMNS 55831 constitutes a fragment of a hypoplastron of 

?Plesiochelys sp. from the Lower Kimmeridgian (Upper Jurassic) of the Galgenberg 

(Landeskrankenhaus) locality near Hildesheim, Germany. The internal surfaces of the costal 

and the hypoplastron (IPB R13, SMNS 55831) appear smooth with occasional small pores 

opening into the internal cortical bone, while the external bone surfaces have a very light and 

inconspicuous roughened texture. 

 

4.3.5.2 Thalassemys cf T. hugii Rütimeyer, 1873 and Thalassemys sp. 

The material of Thalassemys sp. includes a proximal part of a left costal5 (NMS 8859), the 

posterior part of a carapace (NMS 9201; neural7; suprapygal1+2; left costal7+8), an oblong 
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neural (NMS 9159) and a plastron fragment (NMS 9168; possibly a right hyoplastron). NMS 

8859 and NMS 9201 are tentatively assigned to Thalassemys cf. T. hugii based on the shape 

of both, the costal and the posterior part of the carapace and the scute sulci on the external 

surface of the bones (compare to Bräm, 1965: fig. 29). Internal surfaces of the bones are 

smooth. The external surfaces are slightly weathered, and in the case of the neural and the 

partial carapace (NMS 9159 and NMS 9201), pitted to various degrees. It remains unclear if 

the occasional hatched lines on the external surfaces of the shell fragments are a preparatory 

artefact, chemical weathering or shallow biological feeding structures. 

 

4.3.5.3 Tropidemys sp. 

The studied material consists of the posterior part and left margin of a carapace (NMS 8991) 

including the posterior neural row, as well as peripherals and distal parts of costal plates. 

Tropidemys has a high-domed keeled carapace, thus the neurals like in NMS 8991 are 

strongly arched like a roof. The partial left margin is crushed, resulting in internal collapse of 

the bone interior and shattered external bone surfaces. The internal and external surfaces of 

the carapace fragment appear smooth and unsculptured. 

 

4.3.6 Xinjiangchelyidae 

Xinjiangchelyidae are mainly known from the Middle and Upper Jurassic of Asia. There is 

no solid bridge of bone connecting the dorsal carapace and the ventral plastron, instead, the 

connection of both shell elements is ligamentous (Danilov, 2005). According to the 

phylogenetic analysis of Hirayama et al. (2000), Brodiechelys brodiei (Lydekker, 1889) from 

the Early Cretaceous of England is a close relative of (or even within) Xinjiangchelyidae (see 

also Danilov, 2005). Lapparent de Broin (2001:176) classifies B. brodiei as “? 

Plesiochelyidae or new family aff. Plesiochelyidae”. The Xinjiangchelyidae are seen now as 

direct sister group to Centrocryptodira (Gaffney, 1996; Gaffney et al., 1998b; Brinkman and 

Wu, 1999; Hirayama et al., 2000). See Tong et al. (2002), Matzke et al. (2004a) and Danilov 

(2005) for further description and discussion on Xinjiangchelyidae. 
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4.3.6.1 Xinjiangchelys chowi Matzke et al., 2005 

Three elements of this recently described taxon (Matzke et al., 2005) could be sampled, 

including a peripheral (SGP 2001/34a) and two unidentified shell fragments (SGP 2001/34b, 

c). The material comes from the Upper Middle Jurassic Toutunhe Formation, Liuhonggou 

locality, near the Toutunhe River, southern Junggar Basin, 50km SW of Urumchi, Xinjiang, 

China. All bone fragments are small (20-23 mm in length; thicknesses ranging between 4 and 

6 mm). The external surface of the peripheral is slightly convex and smooth. The surfaces of 

the two other bone elements are fractured and weathered, thus a more detailed description is 

not possible. Matzke et al. (2005) described a slight surface ornamentation with grooves and 

ridges that increase anteroposteriorly over the carapace. According to the authors’ description 

(Matzke et al., 2005:67), the grooves and ridges “always start in the anterior regions of the 

vertebrals [scutes], run posteromedially, and vanish in the posterior parts”. 

 

 

4.3.6.2 Xinjiangchelys sp. 

The material of Xinjiangchelys sp. included a costal (SGP 2002/4a), two peripherals (SGP 

2002/4b, c) and a plastral fragment (?hyo- or hypoplastron; SGP 2002/4d). The specimens 

were found in the Upper Middle Jurassic Toutunhe Formation, near Toutunhe River, southern 

Junggar Basin, 50km SW of Urumchi, Xinjiang, China. Although of similar dimensions as the 

fragments of X. chowi, these specimens show a better preservation with the surfaces of the 

bones still largely intact. The progression of the rib is partly seen on the internal surface of the 

costal fragment, while a small ridge flanked by grooves extends along the external surface of 

the bone. One peripheral is triangular in shape. The other one is more robust and has a 

rounded apex. The dorsal external surfaces are flat to slightly convex and the ventral external 

surfaces are slightly concave in both peripherals, thus resulting in a slightly upturned apical 

region. The external surface of the plastral fragment is flat, while the internal surface is 

convex towards the plastral pillar. The external surfaces of the bones are generally smooth or 

with a very faint vascular pattern imprinted into the bone surface. 
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4.3.7 “Sinemydidae” and “Macrobaenidae” 

“Macrobaenid” turtles, first believed to be restricted to the Cretaceous and Palaeocene of 

Asia are now also recognised in North America (e.g., Parham and Hutchison, 2003), and the 

fossil record now reaches back into the Upper Jurassic (Danilov, 2005). “Sinemydid” turtles, 

on the other hand, are only known from the Cretaceous of Asia (e.g., Parham and Hutchison, 

2003; Danilov and Sukhanov, 2006). 

In their revision of “Sinemys” efremovi Khosatzky, 1996, Danilov and Sukhanov (2006) 

restudied several “sinemydid/macrobaenid” taxa. As results of their work, “Sinemys” efremovi 

was presented as a senior synonym of the taxon Dracochelys wimani Maisch et al., 2003 and 

“S.” efremovi was assigned to the genus Wuguia Matzke et al., 2004b. The sectioned material 

is here referred to Wuguia efremovi (=Dracochelys wimani) accordingly. 

According to Parham (2005), the postcranium and the skull of the type specimen of 

Osteopygis emarginatus Cope, 1869 belong to different turtles, the skull being a cheloniid 

now referred to Euclastes wielandi (Hay, 1908) and the postcranium resembling a 

“macrobaenid”. Following Parham (2005), the postcranial material of Osteopygis 

emarginatus is here referred to Eucryptodira incertae sedis (cf. “Macrobaenidae”). 

 

4.3.7.1 Wuguia efremovi (Khosatzky 1996) (=Dracochelys wimani) 

The material (SGP 2001/35) derives from the Lianmuxin Formation (Uppermost Lower 

Cretaceous) of the Tugulu Group, Liuhonggou, west of the Toutunhe River, Junggar Basin, 

Xinjiang, China. Included in the sample are two fragmentary neurals (SGP 2001/35a, b), two 

costal fragments (SGP 2001/35c, d), two peripherals (SGP 2001/35e, f) and two plastral 

fragments (?hyo- or hypoplastra; SGP 2001/35g, h). The larger neural fragment measures 

about 10 mm in width, while the smaller specimen measures max. 5 mm. The first costal 

fragment comprises the proximal part of the costal. The other fragment derives from a more 

distal mid-part of a costal. The peripherals also represent two locations on the carapace. The 

peripheral from the anterior or posterior part of the shell is flat and triangular. Its apex is not 

upturned. The second peripheral is a thicker bony element with a blunt margin and a slightly 
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upturned apex. In the latter specimen, the external bone surfaces, one flat to convex and one 

slightly concave, extend in a high angle to each other. Preservation of all elements is 

generally good. External surfaces of the specimens show a very faint vascularisation pattern 

or additional light striations (i.e., neurals, plastral fragments). The internal surfaces are 

generally smooth. 

 

4.3.7.2 Eucryptodira incertae sedis (cf. “Macrobaenidae”) 

The material (YPM 1585) labelled ‘Osteopygis emarginatus’ includes a neural, a costal, a 

peripheral and a plastral fragment (?hyo- of hypoplastron). The specimens were found in the 

Late Cretaceous ?Hornerstown Formation, Mullica Hill, New Jersey, USA. The exact aging 

of fossils is sometimes difficult in these sediments, because both the lower Palaeocene 

Hornerstown Formation and the Uppermost Cretaceous Tinton Formation are lithologically 

nearly identical in comprising glauconitic sands (see also Miller, 1955; Parham, 2005). The 

shell elements are quite large and thick (neural: max. anteroposterior length 60 mm, max. 

width 42 mm; thickness10 mm; costal fragment: min. length 65 mm; width about 50 mm, 

marginal thickness 6 mm, medial thickness 10 mm; peripheral: mediolateral width 64 mm; 

anteroposterior length max. 80 mm, proximal thickness about 10 mm, maximum diameter of 

distal bulge 22 mm; plastral fragment (broken margins!): mediolateral width min. 88 mm, 

anteroposterior length min.66 mm, thickness between 12 and 17 mm). The shell elements 

carry a shallow superficial reticular vascularisation pattern on their external bone surface. 

Internal surfaces of the bones are smooth or have a slightly striated texture. 

 

4.3.8 Cheloniidae “sensu lato” 

Several genera with problematic taxonomic status are combined within the Cheloniidae 

“sensu lato” (after Parham and Fastovsky, 1997; see also Lapparent de Broin, 2001; Karl, 

2002; Lynch and Parham, 2003; Danilov, 2005). Representatives in this study include 

Rupelchelys breitkreutzi Karl and Tichy, 1999 from the Oligocene of Germany, Ctenochelys 

cf. C. stenoporus (Hay, 1905) (=Ctenochelys cf. C. acris Zangerl, 1953) from Upper 
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Cretaceous strata of USA and UK and Allopleuron hofmanni (Gray, 1831a) from the Upper 

Maastrichtian (Late Cretaceous) of The Netherlands. 

R. breitkreutzi was hypothesised by Karl and Tichy (1999) to be a member of the taxon 

Cheloniinae within Cheloniidae. According to Danilov (2005), however, the relationship of 

the genus Rupelchelys Karl and Tichy, 1999 to crown group Cheloniidae remains unclear, 

thus listing the taxon in Cheloniidae “sensu lato”. 

The genus Ctenochelys is either considered to be a.) a close relative to Cheloniidae (e.g., 

Gaffney and Meylan, 1988) within Chelonioidea, b.) nested within Cheloniidae (Hirayama, 

1998; Lehman and Tomlinson, 2004) or hypothesised to represent one of the oldest 

pancheloniids (Joyce et al., 2004) and c.) “transitional (intermediate stem-taxa [together with 

sister taxon Toxochelys]) between continental testudines and derived, pelagic chelonioids” 

(Kear and Lee, 2006:116). Specimens were labelled as Ctenochelys cf. C. acris in the FM 

collections. Although, according to Hirayama (1997), the species is synonymous with 

Ctenochelys stenoporus (Hay, 1905). 

The taxon Allopleuron hofmanni (Gray, 1831a) is proposed to be one of the largest 

Cretaceous turtles that seems well adapted to a life in pelagic environments (e.g., Moody, 

1997). Gaffney and Meylan (1988) proposed that Allopleuron is basal to Dermochelyoidea 

Baur, 1888 (Protostegidae and Dermochelyidae). Hirayama (1997) described A. hofmanni as a 

cheloniid turtle (close to modern cheloniids) that constitutes a starkly reduced shell and lacks 

keratinous scutes, thus resembling dermochelyid turtles in this respect. Danilov (2005) 

stressed that, because of the mixture of typical dermochelyid and cheloniid characters the 

phylogenetic position of A. hofmanni is still under discussion. However, as was shown by 

Mulder (2003), several specimens of A. hofmanni do have faint impressions interpreted as 

scute sulci, thus further debilitating proposed dermochelyid affinities. By adding A. hofmanni 

to the character state matrix of Parham and Fastovsky (1997), Mulder (2003) recovered A. 

hofmanni together with the Miocene genus Syllomus Cope, 1896 as unresolved sister group to 

Cheloniidae “sensu stricto”. 
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4.3.8.1 Rupelchelys breitkreutzi Karl and Tichy, 1999 

Two costals, a peripheral, a fragment that is either a free distal rib end of a costal or the 

distal part of a plastral element and an unidentified shell fragment (fragmentary ?costal), all 

accessioned as SMNS 87218, were sampled. The elements were found in the Lower 

Oligocene (Rupelian, ‘Unterer Meeressand’), Neumühle near Weinheim, Germany. The 

surfaces of the bones show various stages of weathering thus the external surfaces of the 

bones and also some of the internal surfaces have a porous, rough texture. The surfaces of the 

peripheral are convex and concave respectively, resulting in a half-moon shape. All shell 

elements are highly fragmentary with few genuine margins. The thicknesses of the shell 

elements range between 5 and 9 mm. 

 

4.3.8.2 Ctenochelys cf. C. stenoporus (Hay, 1905) (=Ctenochelys cf. C. acris Zangerl, 1953) 

The sample (FM PR 442) of the taxon included a neural, a costal, a fragmentary peripheral 

and a plastral fragment. The material derived from the Campanian Mooreville Chalk (Late 

Cretaceous), Selma Group, Dallas County, Alabama, USA. The shell elements appear thin 

and fragile, and especially the costal and neural experienced increased crushing and 

weathering. The neural is roof-shaped with a central anteroposterior keel and sloping sides. 

The costal is crushed, thus the exact form is difficult to reconstruct. The sutured lateral 

margins of the costal extend parallel to each other and the progression of the incorporated rib 

is observable on the internal surface of the element. The peripheral fragment consists of two 

sutured parts of adjacent peripherals, whose two flat external bone walls form a distinct distal 

edge. Most of the interior bone of the peripherals is not preserved. A closer determination of 

the plastral fragment was not possible. The fragment consists of a flat area of bone with one 

arcuated margin. Where the external surfaces of the shell elements are better preserved, they 

appear unsculptured with a faint vascularisation imprinted into the bone surfaces. The internal 

surfaces are also weathered, but in the area of the incorporated rib of the costal, it appears to 

be rather smooth. 
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4.3.8.3 Allopleuron hofmanni (Gray, 1831a) 

A. hofmanni is well known from the Maastrichtian (latest Cretaceous) of The Netherlands. 

The material for study from the Maastrichtian type area, Maastricht, The Netherlands, 

included a larger (NHMM uncat.) and a smaller costal fragment (NHMM uncat.), a peripheral 

(NHMM uncat.) and several fragmentary plastral rods (NHMM uncat.; distal ends of, e.g., 

hyo- or hypoplastron). The costal fragments have smooth, unsculptured external surfaces that 

show little erosion or weathering. A light striation pattern is observed towards the sutured 

margin of the larger costal element. Broken margins of both bone fragments reveal only 

spongy bone internal to a compact external layer. The peripheral is roughly triangular in 

anteroposterior view, with a lateral edge and strongly concave internal surface. The peripheral 

tapers anteroposteriorly from a broad, well and deeply sutured margin to the opposite, weakly 

sutured margin. With its curved marginal keel and the trace of a weakly developed rim (see 

Mulder, 2003: plate 28), the specimen (NHMM uncat.) resembles one of the lateral-most 

peripherals (?peripheral7). Towards the sutured margins, the external surface of the peripheral 

is striated. The internal surface is smooth with few smaller (0.5 to 1.5 mm in diameter) and 

one larger (3 mm in diameter) foramen. Anteroposterior length of the peripheral is 100 mm, 

its maximum proximodistal width 62 mm. The free rib ends together with the dorsomedial 

protrusions of the costals (compare to Mulder, 2003: plate 28) do not enter in distinct grooves 

or pits in the peripheral (Mulder, 2003). This feature was, among others (e.g., very large 

fontanelles in carapace; extremely short costal plates), interpreted as neoten by Mulder 

(2003). The plastral elements resemble the finger-like distal ends of the hyo- and hypoplastra 

(compare to Mulder, 2003; plate 33). The elements are proximally thickened, have a straight 

shaft and a tapering distal point. Flange-like protrusions of the plastral rods are common. 

Surfaces of the plastral rods are crushed and weathered to various degrees and sometimes 

show sharp edges. The sampled plastral rod has a minimum length of about 90 mm. The plane 

of section cuts through the rod and its lateral flange-like protrusion. 

 

4.3.9 Cheloniidae “sensu stricto” 

Crown group sea turtles and their close relatives are combined in Cheloniidae “sensu 

stricto” (after Parham and Fastovsky, 1997; see also Lynch and Parham, 2003; Joyce et al., 
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2004; Joyce and Bever, 2005; Danilov, 2005). In contrast to the only other extant marine 

turtle species Dermochelys coriacea, the modern cheloniid turtle taxa (Caretta caretta 

(Linnaeus, 1758); Chelonia mydas (Linnaeus, 1758); Eretmochelys imbricata (Linnaeus, 

1766); Natator depressus (Garman, 1880); Lepidochelys kempii (Garman, 1880), L. olivacea 

(Eschscholtz, 1829)) have a hard shell consisting of internal set of bones covered by 

epidermal keratinous scutes. In N. depressus, the keratin shields wear away with time so that 

shield contours can fade in old individuals (Zangerl et al., 1988). 

 

4.3.9.1 Caretta caretta (Linnaeus, 1758) 

The sampling (FMNH 98963) of C. caretta (‘no data’ specimen) was done by core drilling 

of the left costal2 and the left hyoplastron. This individual had a SPL of about 425 mm. 

Drilled cores had a diameter of 22 mm and range between 9 and 10 mm in thickness. The 

keratinous shields were still attached to the bone and are thus also present in the thin-sections. 

 

4.3.9.2 Chelonia mydas (Linnaeus, 1758) 

An isolated costal fragment (MB.R. 2857) of C. mydas was sampled. The specimen had no 

accompanying data besides the note ‘Zehlendorf (Berlin)’. One margin of the costal fragment 

is still present where a slim part of an adjacent costal is still in sutural contact with the 

specimen. The external surface of the bone is rugose with numerous fine porous spaces and 

larger vascular grooves inserting into the external cortical bone. While one end of the grooves 

ends in a foramen that extends into the cortical bone, the opposite end gets increasingly 

shallow before it tapers off on the bone surface. The internal surface of the bone is smooth 

with a light striation pattern that extends sub-parallel to the sutured margin of the costal plate. 

Three of the apparent striations are slightly elevated compared to the surrounding bone 

surface. Small holes in the elevations reveal that the structures are a kind of sub-surface 

hollow tubes (vascular canals?) that extend proximodistally through the costal. 
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4.3.9.3 Eretmochelys imbricata (Linnaeus, 1766) 

The neural2, the right costal2 and the right ?peripheral1 of a carapace of E. imbricata 

(SMNS 12604) were sub-sampled by core drilling. The keratin shield covering the neural2 

and costal2 was already missing thus ?peripheral1 is the only element that shows the 

keratinous shield in connection with the underlying bone. The specimen (isolated carapace) 

was illegally brought to Germany and was confiscated by customs. The species is known to 

occur in tropical waters of the Atlantic and Indo-Pacific Ocean (e.g., Bass, 1999). The cores 

all had a diameter of 12 mm. Thicknesses range between 4 and 5 mm for the neural2, between 

4 and 7 mm for the costal2 and between 4 and 6 mm for the ?peripheral1. 

 

4.3.10 Protostegidae 

During the Lower and Middle Cretaceous, protostegid turtles were a diverse group of 

chelonioid turtles. As a possible protostegid representative (e.g., Hirayama, 1997; Hooks, 

1998), material of Archelon ischyros Wieland, 1896 was sampled. However, after a recent 

study by Joyce (2007, pers. comm.), A. ischyros might not be a chelonioid at all, but is a basal 

eucryptodiran turtle that shows affinities to Plesiochelyidae, Eurysternidae and 

Thalassemydidae. Impartial from its phylogenetic status, giant A. ischyros is well known from 

the Upper Campanian (Late Cretaceous) of North America where it inhabited open marine 

environments of the Western Interior Seaway (Wieland, 1896; Hirayama, 1997; Danilov, 

2005). As suggested by Karl (2002), the genus Archelon may also be present in Upper 

Cretaceous strata of Europe. 

 

4.3.10.1 Archelon ischyros Wieland, 1896 

The material (YPM 1783) of A. ischyros included a peripheral, a shell fragment that may be 

a part of the peg-like protrusions of a star-shaped plastron element (i.e., hyo- or hypoplastron) 

and another indeterminate shell fragment. The exact locality is not known for the material. 

However, it may have been found in the Niobrara Formation of South Dakota, USA, as 

Wieland was excavating there in 1899. The peripheral has a tapered proximal part and a 
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flattened bulged distal end. Sutures are not preserved and the bone surfaces are weathered. 

Maximum length from tapered apex to distal bulge is 96 mm. The diameter of the distal bulge 

varies approximately between 50 and 60 mm. The peg-like shell fragment has a general oval 

or lentil shape with the lateral parts tapering into defined edges. One of the lateral margins is 

eroded or broken. The bone surface shows a mixture of light and strong stages or weathering. 

The short axis of the shell fragment measures 25 mm, the long axis was reconstructed to be 

around 47 mm. The indeterminate shell fragment is a massive cube of bone with well 

developed external and internal surfaces, but all margins are broken. The internal surface is 

flat with a rugose texture. The external surface of the bone is lightly convex and the whole 

surface of the bone is gently dipping on one side towards internal. The external surface of the 

bone further shows a strong striation pattern with deep furrows extending mostly parallel over 

the whole surface of the fragment. The plane of sectioning of this specimen was arranged to 

cut perpendicular to the striation pattern. Minimum height of the cube-like fragment is 32 

mm, maximum height is 41 mm. 

 

4.3.11 Dermochelyidae 

Dermochelyid turtles appeared in the Upper Cretaceous (Hirayama and Chitoku, 1996). It 

becomes now increasingly evident that the extensive fossil record of Dermochelyidae mirrors 

a complex evolution towards the single modern species Dermochelys coriacea (Vandellius, 

1761). Basal members of Dermochelyidae (i.e., Mesodermochelys undulates Hirayama and 

Chitoku, 1996 from Japan; Corsochelys haliniches Zangerl, 1960 from North America) still 

lack epithecal armour, while still retaining neurals, costals, peripherals and keratinous shields 

(Hirayama and Chitoku, 1996; Hirayama, 1997; Wood et al., 1996; Bever and Joyce, 2005). 

The only living representative of Dermochelyidae is D. coriacea. It is the largest and most 

cosmopolitan turtle species ranging throughout the Pacific, Atlantic and Indian oceans (e.g., 

Pritchard, 1980). It also occurs in cool waters up to 69° North and down to 47° South (Frazier 

et al., 2005). The carapace is characterised by a thick leathery hide and lack of keratinous 

scutes, seven longitudinal keels along the carapace and the unique secondary carapace of 

thousands of epithecal polygonal platelets (e.g., Wood et al., 1996). The primary thecal 

armour is greatly reduced or absent (exception: nuchal (proneural); Bever and Joyce, 2005). 
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The thecal elements of the plastron are still present, but only as thin bony rod-like elements. 

After Brongersma (1969), the plastron is also covered by isolated rows of small epithecal 

platelets that coincide with six plastral keels (see also Bever and Joyce, 2005). 

The genus Psephophorus Meyer, 1846 is known from the Miocene to Pliocene (also 

possibly Oligocene) of Europe (Moody, 1997; Lapparent de Broin, 2001; Danilov 2005). 

Over a long period of time many dermochelyid fossils were combined in the ‘waste-bucket’ 

genus Psephophorus. Taxonomic revisions later elucidated the situation a little, but many 

forms, currently still assigned to the genus Psephophorus, may actually represent other genera 

(see Joyce and Bever, 2005). The carapace of Psephophorus polygonus Meyer, 1847a closely 

resembles that of the recent D. coriacea. Whether it is a direct descendant is still under 

debate. 

 

4.3.11.1 Dermochelys coriacea (Vandellius, 1761) 

The sampling of three specimens (hatchling, subadult, adult) of D. coriacea was carried out 

as part of a lab project by Tamara Fletcher under supervision of Dr. Steven Salisbury at the 

School of Integrative Biology, University of Queensland, Brisbane, Australia. The finished 

thin-sections were then sent over to serve as comparison to other marine turtles in this study. 

The following description of the material is mainly based on the report of Tamara Fletcher. 

The sampling included the carapace of a hatchling (specimen QMJ 58751; previously fixed 

in formalin and stored in 70% alcohol). “The section was from above a rib on the left side of 

the hatchling, cranial to the left hind flipper, to approximately three millimetres past the 

centre of the carapace to include the osteoderms above the vertebrae”. 

The subadult specimen (QMJ 581592) was first kept in ice for few days before it was 

preserved in 90 percent ethanol preventing desiccation. “The location of the preserved section 

on the original carapace was not recorded; however, it appears to be from the caudal left, as 

the rib that runs through it gets thinner and ends running from right to left if so aligned. The 

carapace then thickens towards the left, which is interpreted as thickening towards the fusion 
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of the plastron and carapace. The cranial orientation of the section was interpreted from the 

shape of the rib”. 

Remains of the adult leatherback turtle (QMJ 73979; UQVPI) were left ashore in the 

mangroves for several months (during which it partially desiccated), before the carapace was 

collected for the Winton Dinosaur Project Laboratory (WDPL) of the University of 

Queensland. Due to the desiccation process the carapace locally separated from the ribs. 

 

4.3.11.2 Psephophorus sp. 

A single polygonal bony platelet (MB. R. 2532.1) of Psephophorus sp. was sampled. The 

specimen was found at Boom near Antwerp, Belgium. The smooth external surface is flat to 

slightly concave towards the sutured margins. The flat to slightly convex internal surface of 

the platelet appears rugose and spongy. A shallow trench surrounds the slightly raised centre 

on the internal surface of the plate. The diameter of the platelet ranges between 28 and 33 mm 

with a maximum thickness of 8 mm (measured between external and internal surface at centre 

of the plate). 

 

4.3.12 Chelydridae 

The origin of Chelydridae is still under discussion, but it is assumed that they are related to 

macrobaenid turtles (Sukhanov, 2000; Hutchison, 2000, in Danilov, 2005; Parham and 

Hutchison, 2003; see Danilov, 2005 for further discussion). The Chelydridae first appear in 

the fossil record of North America in the Late Cretaceous (Turonian) from where they spread 

to Eurasia during the Palaeocene/Eocene. Today, the taxon comprises two living species, the 

common snapping turtle Chelydra serpentina (Linnaeus, 1758) and the alligator snapping 

turtle Macrochelys temminckii (Troost, in Harlan, 1835). Although Macrochelys and 

Macroclemys are both used widely in the literature for the alligator snapper, according to 

Webb (1995), Macrochelys has precedence over Macroclemys (see also Crother, 2000). C. 

serpentina is more widespread (Canada down to Mexico and northern South America) than 

M. temminckii, which occurs in south-central USA (e.g., Ernst and Barbour, 1989). 



Comparative bone histology of the turtle shell   
 

80 

Representing fossil taxa of Chelydridae, Chelydropsis murchisoni (Bell, 1832) and 

Chelydropsis sp. from the middle Miocene of Germany could be sampled. The original 

description of C. murchisoni as “Chelydra Murchisonii” (Bell, 1832:380) indicates a close 

relation of the outer morphology of the fossil specimen with modern snapping turtles. Besides 

differences in cranial morphology, variations in the shell (e.g., wider bridge, a stronger 

serrated posterior margin of the carapace and larger epiplastra; see Danilov, 2005), however, 

led to the assignment of the material to the new fossil genus Chelydropsis Peters, 1868. 

 

4.3.12.1 Chelydropsis murchisoni (Bell, 1832) 

The specimens of C. murchisoni that could be sampled for this study include a costal 

(SMNS 88994), two peripherals (SMNS 88995, 88996), as well as a plastron fragment 

(SMNS 88997; ?hyo- or hypoplastron). All elements were found in the middle Miocene 

(MN7) of Steinheim am Albuch, southern Germany. The costal is a flat bone that broadens 

distally. The distal margin of the costal is curved, and the tip of the rib end protrudes 17 mm 

over the margin. The peripheral is half-moon shaped and medially carries a triangular groove, 

where the free rib end of the costal fits in. External surfaces of the bones are unsculptured but 

have a fine reticular or polygonal vascularisation pattern. Internal surfaces are generally 

smooth or in the case of the plastral element slightly striated. 

 

4.3.12.2 Chelydropsis sp. 

The material of Chelydropsis sp. derives from the middle Miocene (MN5) lignite strip 

mining pit Hambach of the company ‘Rheinbraun AG’, Germany. The turtle fauna of this 

locality has been recently described by Klein and Mörs (2003). Two elements of Chelydropsis 

sp. from the fauna, one fragmentary peripheral (IPB HaH-3266) and a free distal end of a rib 

(IPB HaH-3486), were sampled. IPB HaH-3266 is a massive element with a thin tapering 

proximal part and a thickened distal bulge. The margin tapers to an edge where the dorsal and 

ventral external surfaces of the bone meet. The ventral external surface of the bone further 

shows a small area with a narrow depression for the attachment of the integument. The 
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external surface of the bone has a fine reticular vascularisation pattern. IPB HaH-3486, the 

broken part of a free rib end, resembles a flattened oval in section with margins tapering into 

well defined edges. The external surface of the bone carries long thin ridges that extend 

parallel to the margins. The internal surface of the specimen is smooth. 

 

4.3.12.3 Chelydra serpentina (Linnaeus, 1758) 

Material (YPM 10857) of the recent C. serpentina included a neural3, costal3, peripheral3 

and an articulated hyo- and hypoplastron. The neural3 has a flat external plate and extremely 

long internal neural spine. The plate of neural3 is not symmetrical, because of a lateral 

convexity of the bone. The costal3 is thin and almost flat. The distal free rib end is triangular 

in shape with a distal pointed tip that lightly curves towards internal. The progression of the 

incorporated rib is seen over the full length of the internal surface of the shell element. On the 

proximal end of the costal3, the proximal part of the rib is well elevated from the internal 

surface of the bone, and the rib head surmounts the proximal margin of the plate. The 

peripheral3 carries a distinct triangular groove on its internal side to accommodate the free rib 

end of the costal. The lateral parts of the hyo-and hypoplastron are flared and end in striated 

bony protrusions. The marginal rim at these protrusions appears porous. The internal surfaces 

of all elements are generally smooth, while the external surfaces locally carry a reticular to 

polygonal pattern of shallow vascular grooves. The complete plastron length of C. serpentina 

was not directly measurable, because only the right hyo- and hypoplastron were obtained for 

sectioning. The medial anteroposterior extension of hyo- and hypoplastron was measured to 

span 170 mm. In comparison, the medial anteroposterior extension of the hyo- and 

hypoplastron in a smaller macerated specimen (N. Klein, private collection) with a complete 

SPL of about 140 mm is 85 mm. If a linear growth of the two plastral elements (and the 

anteroposterior extension) is assumed, the reconstructed plastron length would measure about 

280 mm. 
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4.3.13 Testudinoidea indet. 

4.3.13.1 Platysternon megacephalum Gray, 1831b 

P. megacephalum occurs in mountainous areas of southern China and adjacent countries 

down to northern Thailand and southern Burma, where it inhabits cool rocky streams (Ernst 

and Barbour, 1989). The carapace is flat with a slight vertebral keel. The head with the 

hooked beak cannot be retracted into the shell. One specimen of P. megacephalum (SMNS 

3757; preserved in alcohol) was sampled by core drilling. One drilling site (22 mm diameter) 

sub-sampled a neural and the adjacent right costal. The second core (12 mm diameter) 

included two adjacent costals. The third site (12 mm diameter) sub-sampled the left 

hypoplastron. All three cores still have the keratinous shields still attached to the bone. 

Sampling of the second specimen (YPM 12615) was done by processing whole macerated 

shell elements (neural3, costal3, peripheral3 and hypoplastron). No chemicals were used 

during the maceration process. This juvenile P. megacephalum was a pet trade specimen that 

died due to disease and exhaustion (W.G. Joyce, pers. comm.). 

 

4.3.14 Emydidae 

The classification of Emydidae is based on the morphological analysis of Gaffney and 

Meylan (1988) and the combined morphological-molecular data of Stephens and Wiens 

(2003). The Emydidae are sub-divided into the more basal Deirochelyinae (e.g., well 

developed bony bridge and plastral buttresses; no plastral kinesis) and the more derived 

Emydinae (e.g., bony bridge reduced; often kinetic plastron) (see McDowell, 1964; Gaffney 

and Meylan, 1988; Danilov, 2005). Emydid turtles are present in North America since the 

early Eocence, in Central Asia since the upper Eocene and in Europe since the upper Miocene 

(e.g., Estes and Hutchison, 1980; Lapparent de Broin, 2001; Fritz, 2003; Danilov, 2005). 

The sampling of Emydidae included three extant species (E. orbicularis, T. c. triunguis and 

P. peninsularis), one fossil species from the Pleistocene (T. scripta) and fossil material of 

Emydidae indet. from the Eocene. The latter is unofficially termed ?Platysternoid “C” (J. H. 

Hutchison, pers. comm.), because the sample might not belong to an emydid turtle at all. 
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Emys orbicularis (Linnaeus, 1758) is the only living representative of the Old World 

Emydinae and the only turtle that is distributed over most of Europe and the Middle East, i.e. 

Iran (e.g., Pritchard, 1979; Ernst and Barbour, 1989; Tortoise & Freshwater Turtle Specialist 

Group, 1996). It occurs in a wide variety of habitats with slow moving water. The species is 

recognised in the fossil record since the Pleistocene (Fritz, 2003, in Danilov, 2005). 

Terrapene carolina triunguis (Agassiz, 1857) is one of six currently recognised sub-species 

of T. carolina Linnaeus, 1758 (Ernst and Barbour, 1989). T. carolina triunguis occurs in 

southern USA, where it inhabits mostly dry open woodlands (Ernst and Barbour, 1989). 

Although the material was labelled as Pseudemys floridana peninsularis, Seidel (1994) 

argued for the elevation of P. peninsularis Carr, 1938 into the rank of a valid species. The 

species ranges throughout peninsular Florida where it dwells in almost all low-current aquatic 

environments (Ernst and Barbour, 1989). 

Trachemys scripta (Schoepff, 1792) ranges through most of the southern States of the USA, 

Central America and north-western South America (Ernst and Barbour, 1989). Although the 

species now has a cosmopolitan distribution due to the pet trade, wild populations are 

increasingly threatened. A re-evaluation of fossil Trachemys sp. was given by Jackson (1988). 

 

4.3.14.1 Emydidae indet. (?Platysternoid “C”) 

The sample comprised a neural (UCMP V81092/126372), the proximal part of a costal, 

another costal, a peripheral UCMP V81092/126432 and a plastron fragment (?hyo- or 

hypoplastron). The latter specimens share the same accession number (UCMP 

V81092/126432). All shell bones were found in the Eocene Willwood Formation 

(Wasatchian), Washakie County, Wyoming, USA. The neural is a small bone of hexagonal 

shape with a curved shield sulcus impressed on the external bone surface. Posterior and 

anterior margins are curved (one concave, the other convex). The larger costal fragment has a 

rectangular straight shape. The smaller costal fragment comprises the proximal part of the 

plate with a broken off rib head on the internal bone surface. Scute sulci of a central and two 

pleurals meet in a triradiate pint on its external bone surface. The peripheral has a proximal 
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thin part and a distal bulging part that tapers in an upturned distal edge. There is a distinct 

kink or bend between the proximal and distal parts of the element. Furthermore scute sulci of 

a pleural and two marginals are visible. The plastron fragment comprises only the buttress 

part, while the flatter plate part is almost completely missing. 

 

4.3.14.2 Emys orbicularis (Linnaeus, 1758) 

The sampled shell of E. orbicularis (SMNS 6880; “no data” specimen) has a SPL of 117 

mm, a SCL of 121 mm and a SCW of 96 mm. The sampling of the shell included the neural6, 

the left costal6, the left peripheral8 and the right hyoplastron. The neural6 is of hexagonal 

shape with a concave anterior margin and a convex posterior margin. The costal6 is straight to 

slightly curved and broadens distally. Shield impressions of the central4 and the pleurals3 and 

4 are visible on the external surface of the bone. The peripheral8 has a thin proximal part and 

a thickened distal bulge that tapers into a sharp edge. Shield impressions of the pleural3 and 

the marginals8 and 9 are found on the external bone surface. The right hyoplastron articulates 

with the right hypoplastron and the left hyoplastron in straight lines. Anterior and lateral to 

the suture of the hyoplastra, the element articulates with the rectangular-shaped entoplastron 

and the epiplastron. The bridge part of the hyoplastron, i.e. the axillary buttress, is low and 

broad. Shield sulci of the humeral, pectoral and abdominal are found extending generally 

mediolaterally. The shell elements, with the exception of the peripheral bulge, are thin 

(generally about 2 mm in thickness). The external bone surfaces of all shell elements are flat 

with few scute growth impressions (especially in the plastron). Otherwise, the external bone 

surfaces have a slightly rough texture that is often increased due to shell necrotic pitting. The 

internal bone surfaces are smooth instead. 

 

4.3.14.3 Terrapene carolina triunguis (Agassiz, 1857) 

A complete shell of T. c. triunguis (FMNH 211806) from ?Kentucky, USA, was sampled. 

Although the carapace of the specimen was fairly crushed (car accident?) prior to sampling, 

the plastron was still intact. The latter had a SPL of 126 mm. A neural and a right costal were 
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sampled in a combined section. Additionally, a peripheral was sectioned, and the left hyo- and 

hypoplastron were sub-sampled by core drilling (about 12 mm in diameter). The keratin 

shields were still attached to the bone samples. Due to the crushed nature of the shell and the 

shield coverage, a description of the gross morphology of the bones is not given here. 

 

4.3.14.4 Pseudemys peninsularis Carr, 1938 

Four shell bone elements, the neural3, the right costal3, the right peripheral4 and the left 

hypoplastron of an adult specimen of P. peninsularis (YPM 13878) were sampled. The 

animal was found dead in the wild at Lakeland, Polk County, Florida, USA. The neural is 

elongated and of hexagonal shape, with an anterior concave margin and a posterior slightly 

convex margin. The irregular scute sulcus of the vertebral3 and 4 extends over the posterior 

third of the neural. The element is about 32 to 34 mm long, has a maximum width of 30 mm 

and a plate thickness of about 9 mm. The overall rectangular costal3 has a broader proximal 

part (width 38 mm) and distal part (width 45 mm) and a narrow shaft (width 35 mm). The 

anterior margin is concave, the posterior margin straight. Scute sulci of the vertebral2 and 3 

and the pleural2 are present. The distal margin of the plate forms three processes. The middle 

one is overlying the rib, while the anterior and posterior processes are just formed by the 

costal plate. The costal plate has an overall thickness of 7 to 8 mm. The peripheral4 is a thin, 

distal ridged u-shaped bridge peripheral. The dorsal part of the peripheral is slightly longer 

than the ventral part. Shield impressions of pleurals1 and 2 and marginals3 and 4 are present. 

The external bone surface is unsculptured. The internal bone surface is smooth at the margins, 

but carries a reticular vascularisation pattern and small foramina towards the centre of the 

plate. The hypoplastron is a large element of gross quadrangular shape with a prominent 

inguinal buttress. The external bone surface has a rough texture. Shield impressions of the 

abdominal, the pectoral, the inguinal and posterior inframarginals are well imprinted. The 

internal surface of the bone is smooth. 
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4.3.14.5 Trachemys scripta (Schoepff, 1792) 

For this study, fossil specimens of Trachemys scripta were sectioned, including a neural 

(ROM 34387), a costal fragment (ROM 34289), a peripheral (ROM 33693) and a fairly 

complete left hypoplastron (ROM 33978). The neural and the costal were found in the 

Pleistocene of Englewood, Charlotte County, Florida, USA. The peripheral comes from the 

Pleistocene strata of Sarasota County, Florida, USA, while the hypoplastron was recovered 

from the Pleistocene of Port Charlotte, Charlotte County, Florida, USA. The neural is of 

hexagonal shape. A slightly curved scute sulcus and a low medial keel is present on the 

external bone surface. Its length measures 33 to 35 mm, the maximum width is about 30 mm 

and the thickness of the plate ranges between 12 and 15 mm. The costal roughly resembles a 

rectangle, but the distal part of the plate is not preserved. Its external surface is ornamented 

with straight ridges or with curved and wavy ridges and tubercles. Scute sulci of a vertebral 

and two pleurals meet in a triradiate point. Arrangement and style of ornamentation seems to 

change among the three sectors of external surface that are divided by the scute sulci. The 

internal surface of the bone is smooth. The peripheral is triangular in section with a slightly 

concave dorsal part of the external surface and a strongly convex ventral part. The resulting 

bulge tapers into an upturned edge. Scute sulci of a pleural and two marginals are present and 

the distal margin of the element is lobed. The proximal margin of the peripheral also shows a 

circular striated socket to receive a free rib end of a costal. The fragmentary hypoplastron 

constitutes most of the hypoplastral plate and part of the buttress. The fragment has a square 

shape although its lateral margin is broken. The external surface of the bone appears mostly 

smooth, but it is also locally pitted (?pathology) and abraded. A transverse scute sulcus 

(abdominal and femoral shield) is present. The internal surface of the bone is smooth, and few 

foramina insert into the bone. 

 

4.3.15 Bataguridae/Geoemydidae 

Both taxon names are very common in the literature and the discussion about which term 

has precedence over the other seems far from over (see Joyce et al., 2004 for discussion). For 

the purpose of this study, Bataguridae Gray, 1870 and Geoemydidae Theobald, 1868 are used 

synonymous. Furthermore, there is a lively debate about the taxonomy and relationships of 



Morphological description of Testudinata 
 

 87

the taxa included into the Bataguridae/Geoemydidae (e.g., Lapparent de Broin, 2001; Honda 

et al., 2002; Hervet, 2004a,b; Claude and Tong, 2004; Feldman and Parham, 2004; Spinks et 

al., 2004; Danilov, 2005). 

Though often referred to as ‘Old World pond turtle’, Rhinoclemmys pulcherrima (Gray, 

1855) is a species from South America. In their phylogenetic approach, Spinks et al. (2004) 

recovered a monophyletic Rhinoclemmys group as the basal sister-group to all other derived 

Bataguridae/Geoemydidae. 

The genus Echmatemys Hay, 1906 is found in North America and Asia (Hirayama, 1984) 

during the Eocene. Bartels (1993, in Zonneveld et al., 2000) notes that E. wyomingensis 

(Leidy, 1869) was mostly restricted to fluvial environments (note that E. wyomingensis was 

not explicitly named in the original abstract of Bartels, 1993). Claude and Tong (2004:40) 

recovered Echmatemys in a basal polytomy: (Echmatemys, Rhinoclemmys (“three-keeled 

Geoemydidae”)). See also McCord et al. (2000) and Spinks et al. (2004) for a more detailed 

phylogenetic analysis of the more derived geoemydid/batagurid taxa. 

Cyclemys dentata (Gray, 1831a) is known from East India in the West to Southeast China 

and south to Malaysia, the Philippines and ?Indonesia where it lives in mountainous and 

lowland rivers (e.g., Ernst and Barbour, 1989) 

Based on morphological characters and the terrestrial habitat preference, some authors 

reassigned Cuora flavomarginata (Gray, 1863) and Cuora galbinifrons (Bourret, 1939) to the 

distinct genus Cistoclemmys Gray, 1863 (e.g., Bour, 1980; Hirayama, 1984; Gaffney and 

Meylan, 1988; Yasukawa et al., 2001). Mostly based on results of DNA analyses, however, 

other authors (Honda et al., 2002; Spinks et al., 2004; Stuart and Parham, 2004), argued for 

the synonymy of Cuora and Cistoclemmys. Cuora galbinifrons (Bourret, 1939) is known from 

Taiwan and southern China (Ernst and Barbour, 1989) where it prefers a woodland and forest 

habitat. 

While Ernst and Barbour (1989) synonymised Mauremys mutica (Cantor, 1842) with M. 

nigricans (Gray, 1834), Joyce et al. (2004) list both M. mutica and M. (=Chinemys) nigricans 

as separate valid species. M. mutica is known from southern China, Vietnam, Taiwan and 

Japan, where it prefers aquatic habitats with slow currents (Ernst and Barbour, 1989). 
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The material that was included in this study was previously identified as belonging to 

‘Ocadia’ sophiae (Ammon, 1911) by Klein and Mörs (2003), based on the vast literature that 

states that Ocadia is present in the Tertiary of Europe. At that time, the authors noted that a 

more thorough revision of the ‘Ocadia-Palaeochelys-Mauremys group’ is strongly needed. 

Because of the current changes in fossil and recent batagurid/geoemydid taxonomy as 

discussed above, the material is now referred to as Mauremys (= ‘Ocadia’) sophiae (Ammon, 

1911) sensu Hervet (2004a). 

The small sized taxa of the genus Ptychogaster Pomel, 1847 appear in Europe at the 

Eocene-Oligocene boundary (Lapparent de Broin, 2001; Danilov, 2005). Hervet (2004a,b) 

includes Ptychogaster Pomel, 1847, Geiselemys Khosatzky and Młynarski, 1966, 

Clemmydopsis Boda, 1927 and other, yet unidentified and recently described material (sensu 

Hervet, 2003; Hervet, 2004b) into a ‘Ptychogasteridae’ group. According to Danilov (2005), 

Ptychogaster spp. developed a hinge between hyo- and hypoplastron similar to recent 

Terrapene spp. and Emys spp. However, because the bridge has not been reduced as in the 

recent forms, the anterior plastral lobe of Ptychogaster was still well attached to the carapace.  

There is still discussion whether material is assigned to Kachuga (Pangshura) tentoria 

(Gray, 1834) or, if Pangshura is a valid genus, to Pangshura tentoria (Gray, 1834) instead. 

Following more recent studies of Spinks et al. (2004) and Joyce et al. (2004), the material is 

here referred to Pangshura tentoria (Gray, 1834). 

A revision of the genus Clemmydopsis Boda, 1927 by Młynarski and Schleich (1980) led to 

the revaluation of Clemmydopsis steinheimensis as a valid species, after Williams (1954) 

synonymised the taxon with C. turnauensis (Meyer, 1847b). The most recent analysis by 

Gross (2004), however, again supported the synonymy with C. turnauensis. Interestingly, 

Clemmydopsis spp. have a very aberrant shield configuration (e.g., loss of first three 

vertebrals; therefore very prominent and laterally expanded centrals). Other genera with 

peculiar shield configurations are Sakya Bogačev, 1960 and Sarmatemys Chkhikvadze, 1983. 

Due to this similarity, the three genera are grouped together in the clade (former tribe) Sakyini 

by some authors (e.g., Młynarski, 1976; Chkhikvadze, 1983). Please note that Clemmydopsis 

Boda, 1927 is included into a ‘Ptychogasteridae’ group sensu Hervet (2004a). 
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4.3.15.1 Rhinoclemmys pulcherrima (Gray, 1855) 

A specimen of R. pulcherrima (MVZ 230924), which was preserved in alcohol, was 

sampled by core-drilling. Though the exact locality of this specimen is unknown, the species 

is known to occur in the lowlands of Mexico and Costa Rica, Guatemala and Honduras in 

Central America (Ernst and Barbour, 1989). Two bone cores, each with a diameter of 12 mm, 

were removed from the proximal part of a right costal and from the right hyoplastron. The 

keratin shields were still attached to each of the two bone cores. The surface of the keratin 

scutes covering the costal is sculptured externally due to the scute sulci and growth marks of 

the vertebral pleural shields. The internal bone surface is smooth and shows the medial rib 

bulge. The core of the hyoplastron is rather flat instead, although a few growth marks of the 

pectoral can be deeply impressed. 

 

4.3.15.2 Echmatemys wyomingensis (Leidy, 1869) 

The sample of E. wyomingensis includes a neural7 (UCMP V81110/150186), a proximal 

part of costal4 (UCMP V81110/150184), a proximal part of costal8 (UCMP V81110/150183), 

a peripheral4 (UCMP V81110/150188) and a plastron fragment (hyo- or hypoplastron, UCMP 

V81110/150225). All specimens were recovered from the Eocene Bridger Formation, 

Sweetwater County, Wyoming, USA. External bone surfaces are flat with a faint rugose 

texture. Scute sulci are impressed on the external bone surfaces of the costal fragments and 

the peripheral4. Internal surfaces of all shell elements are generally smooth. The shell material 

can be quite thick, e.g., the thickness of the plate of neural7 is max. 11 mm. 

 

4.3.15.3 Cyclemys dentata (Gray, 1831a) 

Sampling of C. dentata was carried out on a macerated and disarticulated shell (YPM 

13290). The shield cover was already removed during preparation. A neural, a costal3, a 

peripheral3 and the right hyoplastron of the shell were sectioned. The neural is rectangular 

with a maximum width of 19 mm and a maximum length of 14 mm. The neural is roof-like in 

cross-section. A medial low keel is present. The costal3 is also rectangular. Scute sulci are 
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found proximally and in the mid-region of the costal. The peripheral3 consists of a thin 

proximal part and a irregularly formed distal bulge that tapers into a pointed edge. Scute sulci 

and growth marks of the shield cover (vertebral and marginals) are deeply impressed onto the 

external bone surface of the peripheral. The hyoplastron consists of a flat plate and the 

protruding axillary buttress. The buttress is situated marginally, thus the distal suture with the 

bridge peripherals extends to the apex of the axillary buttress. A curved scute sulcus (convex 

towards anterior) is found in the posterior part of the hyoplastron. Small pits and grooves 

were observed posterior to the curved scute sulcus. A rather straight sulcus extends 

proximodistally over the anterior part of the bone surface. The external surfaces of the shell 

bones are faintly rugose, while the internal bone surfaces are smooth. 

 

4.3.15.4 Cuora picturata Lehr et al., 1998 

A macerated articulated shell (YPM 13877) of C. picturata, formerly known as C. 

galbinifrons picturata Lehr et al., 1998 was sampled. The specimen has a SPL of 151 mm. 

The neural6, left costal6, left peripheral8 and the right hyoplastron were chosen for 

sectioning. The neural6 is hexagonal, wider (mediolaterally) than long (anteroposteriorly) and 

lacks a keel. The costal6 is narrow proximally and broadens distally. The anterior sutured 

margin is slightly convex while the posterior sutured margin is slightly concave, giving the 

costal a bend appearance. The peripheral8 consists of a thin proximal part and a distal bulging 

part. The bulge forms through an internal thickening of the bone. The external bone surface is 

flat, tapering into a distal upturned edge. The internal surface is convex in the bulge region. 

The posterior margin of the hyoplastron is straight and the suturing to the hypoplastron is 

reduced to allow the kinetic hinge. Instead, the sutures to the entoplastron and epiplastron are 

well developed with long bony protrusions. The anterior and medial sutured margins of the 

hyoplastron are half-circle shaped. The axillary buttress is short and weak (the same is true for 

the hypoplastron, thus the closure of the shell by lifting the anterior and posterior plastral 

lobes is possible). Scute sulci are generally not deeply impressed onto the external bone 

surfaces and shield growth marks are only faintly present. Otherwise, the external and internal 

bone surfaces of the shell elements are smooth. 
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4.3.15.5 Mauremys cf. M. mutica (Cantor, 1842) 

A macerated and disarticulated shell of the semiaquatic turtle Mauremys cf. M. mutica 

(SMNS 6876) was sampled. The distribution of the taxon is restricted to southern China, 

Vietnam, Taiwan and Japan (e.g., Ernst and Barbour, 1989; Asian Turtle Trade Working 

Group, 2000), where it inhabits aquatic milieus with slow moving water. The sampling 

included a neural3, a left costal3, a left peripheral2 and the right hyoplastron. The neural3 is 

of hexagonal shape with a low medial keel. The costal3 is of rectangular shape with a 

proximodistal flexure. The free rib head protrudes from the very proximal margin of the 

internal surface of the costal plate. The progression of the rib is barely traceable. The 

peripheral is triangular in cross-section tapering in a sharp distal edge. The base of the 

hyoplastron is flat. The well developed axillary buttress is long and protrudes at a high angle 

from the base of the hyoplastron. The external surfaces of all bones have a faintly rough 

texture and lack ornamentation. The internal surfaces of the shell elements are generally 

smooth. 

 

4.3.15.6 Mauremys (= ‘Ocadia’) sophiae (Ammon, 1911) 

The sample of this taxon from the middle Miocene lignite strip mining pit of the company 

‘Rheinbraun AG’, Hambach, Germany, included the proximal part of a left costal3 (IPB HaH-

3348) and a left peripheral8 (IPB HaH-3225) (see Klein and Mörs, 2003). The costal plate 

shows a small ventral rib bulge and both the external and the internal surfaces of the bone are 

slightly rough. Shield impressions are not seen. The peripheral has a thin proximal and a 

bulging distal part. A shield sulcus extends proximodistally over the dorsal and ventral side of 

the external surface of the bone. The bone surface texture is smooth to slightly rugose. 

 

4.3.15.7 Mauremys (= ‘Ocadia’) sp. 

Material of Mauremys (=‘Ocadia’) sp. is a single specimen (SMNK Me 295) from the 

Middle Eocene Messel pit near Darmstadt, Germany. The specimen is a small carapace 

fragment that constitutes the sutured proximal parts of two costals. The specimen is slightly 
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curved with a convex external and a concave internal bone surface. The proximal ends of the 

incorporated ribs are visible in the respective costal plates. Both bone surfaces are smooth 

with the external one showing slight shield impressions. 

 

4.3.15.8 Ptychogaster sp. 

Several shell elements of Ptychogaster sp. from the Lower Miocene (MN1) of 

Tomerdingen, Germany, were sampled. The sample included two costals (SMNS 88988, 

88989), two peripherals (SMNS 88990, 88991) and two plastron fragments (?hyo- or 

hypoplastron: SMNS 88992; ?xiphiplastron: SMNS 88993). The costal fragments are rather 

flat elements with a low proximodistal curvature. In SMNS 88988, the broken-off rib head 

protrudes from the plate near the proximal sutural margin. The peripherals are triangular in 

cross-section. SMNS 88990 is a small and flat peripheral with a distally upturned tapering 

sharp edge. SMNS 88991 is a larger, thicker peripheral with a more rounded distal ridge. 

Much of the interior cancellous part of the bone and the internal cortices are not preserved. 

SMNS 88992 mainly comprises the swelling buttress part of the plastral element, while the 

flat plate part was broken off prior to sampling. The external surface of the bone element is 

slightly convex. SMNS 88993 is flat and triangular in cross-section, tapering to a sharp, 

slightly convex edge. The external bone surface texture of the elements is slightly rugose 

while the internal surface texture of the bones is smooth. 

 

4.3.15.9 Pangshura (=Kachuga) tentoria (Gray, 1834) 

Several shell elements (FMNH 259431) from a female specimen (SPL about 185 mm; note 

that plastron was disarticulated) of the Indian tent turtle (labelled as Kachuga tentoria) from 

?Bangladesh (no further data) were sampled, including a neural (?neural4), a costal, a 

peripheral and a xiphiplastron. The sampled neural has a characteristic anterior medial keel 

that ends in a posterior-pointed apex. The apex protrudes about 6 mm over the external 

surface of the neural. The costal and the xiphiplastron are flat elements. The peripheral is 

hook-shaped with a straight proximal part and a thickened and angled distal part. The internal 
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surface of the peripheral is smoothly curved, while the external surface has a distinct edge 

between the proximal and distal part. 

 

4.3.15.10 Clemmydopsis turnauensis (Meyer, 1847b) 

The sampling of C. turnauensis included a costal (SMNS 88998), a peripheral (SMNS 

88999) and a plastral fragment (hyo- or hypoplastron; SMNS 89000). The costal is a straight 

element with little proximodistal curvature. The peripheral divides into a proximal thin part 

and a distally thickened tapering part. The distal bulge occurs due to an increased convexity 

of the ventral bone surface. The plastral fragment has a flat plate part and a raised buttress 

part. The external bone surface of the elements is slightly rugose, while the internal bone 

surfaces are generally smooth. The costal and the flat plate part of the plastral fragment have a 

thickness of about 2 mm. Only the bridge part of the plastral fragment and the bulging distal 

part of the peripheral have higher thicknesses (5 to 7 mm). 

 

4.3.16 Testudinidae 

The Testudinidae, commonly known as tortoises, are the only group of purely terrestrial 

turtles. The oldest known representative of Testudinidae may come from the upper 

Palaeocene of Mongolia (V. B. Sukhanov, pers. comm., in Danilov, 2005). Based on an 

extensive fossil record, tortoises are today a highly diverse, wide ranging group of turtles 

(Ernst and Barbour, 1989). There is still ongoing discussion about exact relationships among 

Testudinidae (for discussion see Claude and Tong, 2004; Danilov, 2005). 

Both the extant genus Manouria Gray, 1852 and the fossil genus Hadrianus Cope, 1872a 

from the Eocene of Asia, North America and Europe are basal representatives of Testudinidae 

(e.g., Claude and Tong, 2004). Because of similar morphologies, it was first proposed that 

Hadrianus was synonymous to Manouria (Auffenberg, 1974; Crumly, 1984). However, other 

authors argued for the validity of Hadrianus Cope, 1872a as a separate genus (e.g., Broin, 

1977; Takahashi et al., 2003, in Danilov, 2005; Claude and Tong, 2004). As stated by Meylan 

and Sterrer (2000), skull material is still not known for the genus Hadrianus Cope, 1872a. 
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According to Hutchison (1980), specimens of Hadrianus can have carapace lengths of over 

61 cm. 

Several size categories of Testudinidae are covered with the samples herein. Hesperotestudo 

crassiscutata is a giant tortoise (>1000 mm CL) from the Pleistocene of Florida, USA 

(Meylan, l995). The Asian Manouria emys (to 600 mm CL), the African Geochelone pardalis 

(up to 680 mm CL) and the South American Geochelone carbonaria (to 510 mm CL) 

represent an intermediate size class. The West African Kinixys homeana (up to 210 mm CL) 

and the Indian Geochelone elegans (to 280 mm CL) represent the smaller species (Ernst and 

Barbour, 1989). 

Kinixys spp. are the only turtles that have a movable hinge in the carapace, by which the 

posterior part of the carapace can be raised and lowered. 

 

4.3.16.1 Hadrianus majusculus Hay, 1904 

The specimens of H. majusculus were found in the ‘Main Body’ unit of the Eocene Wasatch 

Formation (Wasatchian), Sweetwater County, Wyoming, USA. The sample comprises a 

neural (UCMP V74024/150212), two costal fragments (UCMP V74024/150213; UCMP 

V74024/150214), a plastron fragment (UCMP V74024/150215) and a thick shell fragment 

(UCMP V74024/150216). The neural has a convex external bone surface and a single medial 

protrusion (=neural spine) on its concave internal bone surface. Costal fragment (UCMP 

V74024/150213) is strongly curved anteroposteriorly with a prominent rib bulge on the 

internal surface of the bone. Costal fragment (UCMP V74024/150214), on the other hand, is 

flat and the internal rib bulge is not as pronounced. The plastron fragment consists of a flat 

tabular plate and two original unbroken margins. The external surface of the element shows a 

straight scute sulcus, while the internal bone surface is locally bulged. The external surfaces 

of the shell elements are rough with a fine vermicular striation pattern. Hutchison (1980) 

already noted a distinct surface texture present in the genus, without giving a more detailed 

description. Laterally, a marginal seam is recognisable on the external bone surface where the 

striation extends more perpendicular towards the margins of the shell elements. With the 
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exception of the thick shell fragment which has a thickness between 17 and 19 mm, the 

thicknesses of the other elements is significantly lower (5 to 10 mm). 

 

4.3.16.2 Hadrianus corsoni (Leidy, 1871a) 

A single peripheral (UCMP V98009/150191) of H. corsoni was sampled. The element 

derives from the Eocene Bridger Formation, Uinta County, Wyoming, USA (see also 

Lapparent de Broin, 2001). With the dorsal part of the external surface of the bone being flat 

to slightly wavy and the ventral part of the external surface being convex, the peripheral is 

lentil-shaped tapering to a pointed distal edge. Only a small, ventrally situated proximal part 

of the peripheral comprises internal bone surface  

 

4.3.16.3 Manouria emys (Schlegel and Müller, 1844) 

With up to max. 60 cm CL (?CCL), M. emys is the largest tortoise of Asia (e.g., Ernst and 

Barbour, 1989). The sampled specimen (FMNH 260395; 470 mm SPL) derives from 

?northern Malaysia (no further data available), where it lives in tropical highland monsoon 

woodlands (Ernst and Barbour, 1989). The carapace and plastron both lack hinges. Sampling 

occurred through core drilling of the macerated shell where two cores were removed. One 

core sub-sampled the distal part of the right costal2 and the second core sub-sampled the right 

hyoplastron. The bone surfaces of the costal appeared smooth with the sulcus of the first 

vertebral extending along the external surface of the core. Pitting of the external surface of the 

shell increased in the vicinity of the scute sulci. The external surface of the right hyoplastron 

was also smooth, but a striation pattern was present towards the sutures. 
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4.3.16.4 Hesperotestudo (Caudochelys) crassiscutata (Leidy, 1889) 

The specimens of H. crassiscutata derive from Pleistocene sediments of Florida, USA 

(compare to Meylan, 1995). The sample included a neural (ROM 51460), a ?peripheral 

fragment (ROM 55400), a costal fragment (ROM 55400) and a xiphiplastron (ROM 55400). 

Only for the neural is more precise locality known (Pleistocene [Irvingtonian], Port Charlotte, 

Charlotte County, Florida, USA). Furthermore, a separate osteoderm of unknown position on 

the body (ROM 34014) could be sampled. The osteoderm was found in the Pleistocene 

locality of Grassy Point, Charlotte County, Florida, USA. The neural has a hexagonal shape. 

It was measure to have an anteroposterior length of 90 to 100 mm, a maximum width of 147 

mm and a thickness that ranges between 24 mm and 34 mm. The external surface of the 

neural is irregular and humped. The costal fragment is a large rectangular block of bone 

where the proximal and distal regions of the costal are broken off, but the lateral sutures are 

still preserved. The ?peripheral fragment is a thick bulging bone fragment with a straight 

dorsal and a convex ventral surface. The bulge part tapers into a distal upturned edge. The 

xiphiplastron is a large and fairly complete element with a maximum anteroposterior length of 

130 mm, a maximum width of 120 mm (please note that the medial margin of the 

xiphiplastron is damaged, therefore the value is too low) and a thickness that ranges between 

20 and 32 mm. All shell bone elements have a very rough and rugose (almost spongy) 

external surface texture, while the internal surface of the bone is rather smooth with slightly 

striation. The bone histology of specimens ROM 51460 and ROM 55400 of H. crassiscutata 

was best preserved in the xiphiplastron, the peripheral and the costal fragment, whereas the 

bone of the neural shows strong diagenetic alteration. 

 

4.3.16.5 Kinixys homeana Bell, 1827 

A macerated and disarticulated juvenile pet trade specimen (W. G. Joyce, pers. comm.) of 

K. homeana was sampled. The species occurs in forests of West Africa, from Liberia 

eastward to Zaire (Ernst and Barbour, 1989). The studied material (YPM 13876) included the 

neural series 6-8, costals7 and 8, peripheral series 6-9 and a hyoplastron. All external bone 

surfaces of the sampled bones have a faintly rough and pitted texture. Scute growth marks and 

scute sulci are well impressed on the external bone surfaces. The internal surfaces are rather 
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smooth and small scattered foramina can occur. During ontogeny, the sutured bone margins 

that will be involved in the peculiar hinge system are gradually resorbed, leading to 

corrugated and rounded margins. In the sampled elements, the hinge costals and neurals are 

still weakly sutured, while the hinge peripherals are already detached from each other. 

 

4.3.16.6 Geochelone pardalis (Bell, 1828) 

G. pardalis occurs only in northeast to southwest Africa (Sudan to South Africa) where it 

lives in savannah, plain, dry woodland, thorn scrub and grassland habitats (Ernst and Barbour, 

1989). The specimen, a shell with strongly domed carapace and sawed off flat plastron, was 

confiscated by German customs and was then stored at the zoological collections in Stuttgart 

(SMNS 12605). The plastron has a SPL of 245 mm. While the second vertebral was already 

removed from the carapace, only the underlying bone was sampled. The sub-sampling of the 

neural2 and the right costal2 was done by core drilling (12 mm core diameter). Likewise, the 

right hypoplastron was sub-sampled with the 12 mm core bit. Even though the abdominal 

shield was still attached to the plastral bone, only the bone itself was sampled in this case. 

 

4.3.16.7 Geochelone carbonaria (Spix, 1824) 

G. carbonaria ranges from the Caribbean down to east-central South America, where it 

dwells in humid forests and moist savannahs, plains, dry woodlands, thorn scrub and 

grasslands (Ernst and Barbour, 1989). The sampled specimen, formerly part of the collections 

of the Insitute of Zoology, University of Bonn, had a CCL of 310 mm, a CCW of 285 mm and 

a SPL of 235 mm. Sampling was done by core drilling, which resulted in three bone cores 

(IPB R560a-c) with keratinous shields still attached. Each core has a diameter of 22 mm. The 

first and second core sub-sampled the proximal part of a left costal and the distal part of a left 

costal (bridge region) respectively. The third core sub-sampled mainly the left hypoplastron 

and the suture to the left hyoplastron. The core through the proximal costal was difficult to 

remove, because the carapace was strongly humped, with vertebral and pleural shields having 

an elevated central aureole (=apex) with steep dropping flanks towards the sulci. While the 
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bone was expanded below the humps, the thickness of the bone reduced to a minimum 

internal to the scute sulci. Furthermore, connective tissue, i.e. muscle tissue, was still firmly 

attached to the internal bone surface and had to be carefully removed. The core through the 

distal part of the costal and through the plastral elements were easily removed instead from 

the visceral tissue. 

 

4.3.16.8 Geochelone elegans (Schoepff, 1795) 

A specimen of G. elegans with 185 mm CCL, 175 mm CCW and 127 mm SPL was 

sampled. The exact locality is not known, however, the species occurs today in tropical 

deciduous forest and dry savannahs of peninsular India and Sri Lanka where it is still 

dependent on sufficient water supply (Ernst and Barbour, 1989). Sampling of the alcohol-

preserved specimen (formerly part of the collections of the Institute of Zoology; University of 

Bonn) was done by core drilling, resulting in two cores (IPB R561a,b). The right side of the 

carapace and the left side of the plastron was drilled, thus two bone cores (22 mm diameter) 

with keratinous shields still attached have been removed from the shell. The first core (IPB 

R561a) includes the proximal part of a costal and the margin of the adjacent neural. The 

second core (IPB R561b) includes the posterior part of the left hyoplastron and anterior part 

of the hypoplastron. Both cores were easily removed from the internal visceral tissue (lung 

tissue almost immediately internal to the costal; ?muscle fascia internal to the plastron). 

 

4.3.17 Eucryptodira incertae sedis (aff. ?Trionychoidea) 

According to Hutchison (1998) and Holroyd et al. (2001), phylogenetic relationships of the 

early Eocene turtle Planetochelys remain unclear, however it may be related to 

Trionychoidea. Morphologic traits of the genus indicate partly terrestrial habits (Hutchison, 

1998). Furthermore, Planetochelys is the only early Eocene turtle genus that has a specialised 

plastral hinge where the hyo- and hypoplastra are not fused together (Holroyd et al., 2001). 

 



Morphological description of Testudinata 
 

 99

4.3.17.1 Planetochelys sp. 

The sample of Planetochelys sp. included a neural (UCMP V81203/130914) as well as five 

additional associated shell fragments (UCMP V81071/159356). The five fragments comprise 

a small proximal part of a costal, a larger, more distal part of another costal fragment, a 

peripheral and two plastron elements (?hyo- or hypoplastron) with one margin belonging to a 

hinge system. All elements were recovered from the Eocene Willwood Formation 

(Wasatchian), Washakie County, Wyoming, USA. The external surfaces of the bone 

fragments are slightly rugose, while the internal surfaces are generally smooth. Of special 

interest in this taxon are the margins of the hinge elements of the plastron, because they do 

not show interlocking sutures. Instead, the bone surfaces are smooth with a shallow oblong 

groove extending over the length of the margin. In both plastral elements, the external surface 

of the bone narrowly surmounts the internal bone surface, thus the hinge groove is slightly 

angled. 

 

4.3.18 Dermatemydidae 

Dermatemydidae currently encompasses the only living species Dermatemys mawii Gray, 

1847 and the fossil genus Baptemys from the Eocene of North America (Gaffney and Meylan, 

1988; Joyce et al., 2004). Other genera like Adocus Cope, 1868, Nanhsiungchelys Yeh, 1966, 

Basilemys Hay, 1902, Agomphus Cope, 1871, were once included in Dermatemydidae, but the 

genera are now recognised as belonging to the Adocidae (Adocus), Nanhsiungchelyidae 

(Basilemys, Nanhsiungchelys) and Kinosternia (Agomphus) respectively (Yeh, 1966; 

Hutchison and Bramble, 1981; Meylan and Gaffney, 1989; Joyce et al., 2004). Danilov and 

Parham (2006) most recently defined the new clade ‘Adocusia’ to include the fossil adocid 

and nanhsiungchelyid taxa. Because Trachyaspis Meyer, 1843 is most probably a Cheloniidae 

“sensu stricto” instead of a dermatemydid turtle (e.g., Weems, 1974), there are no 

Dermatemydidae known from Europe (Lapparent de Broin, 2001). After Gaffney (1975c), D. 

mawii is closely related with carettochelyid, trionychid and kinosternid turtles, comprising the 

Trionychoidea. For this study shell material of B. garmanii and D. mawii was sampled. 
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4.3.18.1 Baptemys garmanii (Cope, 1872b) 

The sampling of B. garmanii included a neural (UCMP V74024/150224), two costal 

fragments (UCMP V74024/150219; UCMP V74024/150220), a peripheral (UCMP 

V74024/150222) and a plastral fragment (?hyo- or hypoplastron, UCMP V74024/150221). 

All elements derive from the ‘Main Body’ unit of the Eocene Wasatch Formation 

(Wasatchian), Sweetwater County, Wyoming, USA. The neural carries a low, 

anteroposteriorly extending medial ridge. The costal are rather flat to slightly flexed elements. 

The peripheral is straight to slightly externally curved with a round distal edge. The plastral 

bone has a slightly convex external surface and a gently raising part towards the bridge. All 

sampled elements have scute sulci on their external bone surfaces. These shield impressions 

are most prominent in the peripheral, resulting in a deeply grooved bone surface. Besides the 

scute sulci, the external surfaces of the shell elements are unsculptured. 

 

4.3.18.2 Dermatemys mawii Gray, 1847 

The almost fully aquatic Central American river turtle (also known as Tabasco turtle) is 

restricted to a small areal between Central Mexico and north-western Honduras, where it 

inhabits larger rivers, lakes and lagoons and even brackish waters of deltas and estuaries (e.g., 

Pritchard, 1979; Ernst and Barbour, 1989). The strong adaptation of D. mawii to the buoyant 

aquatic medium expresses itself for example in the weak development of its extremities that 

are almost too weak to carry it on land over long periods of time (e.g., Pritchard, 1979; Ernst 

and Barbour, 1989). The sampled specimen (ZMB 9558) of D. mawii is relatively small with 

a CCL of 215 mm, a CPL of 172 mm and a CCW of 200 mm. The proximal part of the left 

costal2 and the right hyoplastron were sub-sampled by core drilling (22 mm core diameter). 

In both cases, the extremely thin (skin-like) keratinous shield coverage mostly came apart in 

small flakes and is thus only partly attached to the bone core (see also Pritchard, 1979). 
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4.3.19 Kinosternia 

Kinosternia, as introduced by Gaffney and Meylan (1988), includes the genus Hoplochelys 

and Kinosternidae. The Palaeocene genus Hoplochelys Hay, 1908 from North America, 

together with Late Cretaceous Agomphus Cope, 1871 also from North America, may 

represent the phylogenetic stem of Kinosternidae (Hutchison and Bramble, 1981; Meylan and 

Gaffney, 1989; Joyce et al., 2004). Please note, that, as stated by Meylan and Gaffney (1989), 

the taxon Agomphus Cope, 1871 may not be monophyletic. After Meylan et al. (2000) and 

Holroyd and Hutchison (2002), the genera Hoplochelys and Agomphus are known only from 

shell material, while cranial material and non-shell postcranial material has not been found 

yet. 

 

4.3.19.1 Hoplochelys sp. 

The sample of Hoplochelys sp. included a neural (UCMP V2811/150210), a proximal part 

of a costal (UCMP V2811/150204), a more distal costal fragment (UCMP V2811/150203), a 

right peripheral3 (UCMP V2811/150207), a left peripheral8 (UCMP V2811/150206) and a 

plastron fragment (?hyo- or hypoplastron, UCMP V2811/150208). All shell elements derive 

from the Palaeocene Nacimiento Formation (Puercan), San Juan County, New Mexico, USA. 

The neural has a low medial keel flanked by two lateral shallow and wide grooves. A curved 

scute sulcus crosses perpendicular over the keel. The costal fragments have a slightly humped 

external bone surface. Costal fragment UCMP V2811/150204 carries a scute sulcus. The rib 

head does not protrude far over the internal bone surface of this specimen. The progression of 

the rib can be observed as an internal bulge of the internal surface of costal fragment UCMP 

V2811/150203. Peripheral3 is bulged and roughly triangular in cross-section with a distally 

tapering blunt edge. Peripheral8 has a proximal slender straight part and terminating in a 

distal circular bulge. The plastron fragment has a flat rough external surface with scattered 

pits. The internal surface of the element is convex with a smooth to faintly striated texture. 
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4.3.20 Kinosternidae 

Following Hutchison (1991), the exclusively New Wold group Kinosternidae is subdivided 

into the Staurotypinae and the Kinosterninae. In the fossil record, Kinosterninae appear since 

the Eocene, while Staurotypinae do not occur until the Pleistocene (Hutchison, 1991). Turtles 

of the Staurotypinae were not sampled in this study. A basal representative of the 

Kinosternidae might be the Upper Cretaceous Emarginachelys Whetstone, 1978 from North 

America (Gaffney and Meylan, 1989). Originally, the skull of Emarginachelys was 

considered to belong to a chelydrid turtle instead of a kinosternid turtle (Whetstone, 1978).  

The Eocene Baltemys Hutchison, 1991 with its type species B. staurogastros Hutchison, 

1991 is a small turtle with a maximum carapace length of 100 mm (Holroyd et al., 2001). 

Phylogenetically, Baltemys might be basal to all other Kinosterninae (Hutchison, 1991). 

The species Sternotherus minor (Agassiz, 1857) is known from southeastern North America 

where it inhabits all kinds of freshwater habitats (e.g., Ernst and Barbour, 1989; please note 

that the species is listed herein as Kinosternon minor). 

K. subrubrum (Bonnaterre, 1789) is already known from the Pleistocene of Wisconsin, USA 

(Ernst and Barbour, 1989). Today, it ranges through eastern, central and southern states of the 

USA, where it mostly dwells in soft-bottomed slow moving water bodies (Ernst and Barbour, 

1989). 

The plastron of Kinosternon spp. either has a single transverse hinge between the pectoral 

and abdominal shield or two transverse hinges, one anterior and one posterior of the 

abdominal shield. Furthermore, the plastron lacks an entoplastron (e.g., Ernst and Barbour, 

1989). 

 

4.3.20.1 Baltemys sp. 

The specimens of Baltemys sp. were collected in the Eocene Willwood Formation 

(Wasatchian), Big Horn County, Wyoming, USA. The sample included a neural and two 

costal fragments (UCMP V78106/122542) and a peripheral and plastron fragment (UCMP 
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V78106/122545) respectively. All elements and bone fragments were of small size (<20 mm). 

The neural has two low parasagittal keels that extend anteroposteriorly over the external bone 

surface. One costal fragment is rectangular with a free distal rib end protruding over the plate 

margin. The second costal fragment includes a more proximal part of the costal plate. The 

peripheral consists of a slender proximal part and a distal lentil-shaped bulge that tapers into a 

distinct edge. The small plastral fragment is flat and one sutured margin is still preserved. The 

other margins are broken. 

 

4.3.20.2 Sternotherus minor (Agassiz, 1857) 

A macerated and disarticulated specimen (SMNS 6879) of S. minor was sampled. A neural, 

a costal, a peripheral and the right hyoplastron were taken for analysis. The neural is a small, 

oblong and of hexagonal shape. The costal and the peripheral are associated, thus the long 

pointed free rib end fits into the groove of the peripheral. The costal plate is curved, and the 

progression of the rib is not recognised as a distinct bulge on the internal bone surface. The 

rib head protrudes over the costal plate only a few millimetres short of the proximal margin of 

the costal plate. The hyoplastron consists of a rectangular laterally broadening flat plate and a 

thick elevated laterally flaring buttress part. The medial suture to the adjacent left hyoplastron 

as well as the anterior suture to the epiplastron (entoplastron is absent) are well developed. 

The posterior margin is weakly sutured to the hypoplastron over the full width of the element 

including the lateral buttress part (anterior lobe kinesis, see also Hutchison, 1991). All shell 

elements have a faintly rough external bone surface and rather smooth internal bone surfaces. 

 

4.3.20.3 Kinosternon subrubrum (Bonnaterre, 1789) 

The sampling of K. subrubrum (YPM 13875), a macerated and disarticulated specimen, 

included a neural3, a costal3, a peripheral3 and the left hyoplastron. The specimen was caught 

in the wild by a breeder near ?New Orleans, Louisiana, USA. The neural3 has a hexagonal 

shape and carries no external keel. The costal3 is moderately flexed. The progression of the 

rib in the costal is faintly traceable as a proximodistally orientated bulge of the internal 
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surface of the costal bone plate. The peripheral3 consists of a proximal narrow part and a 

distal rounded bulge. The hyoplastron has a rectangular flat plate and a broad distally flaring 

buttress part. The external surfaces of the shell elements had a faintly roughened texture, 

while the internal bone surfaces were smooth. 

 

4.3.20.4 Kinosternon sp. 

A specimen of Kinosternon sp. (SMNS 7440), which was preserved in alcohol, was 

sampled by core-drilling. The specimen has a SPL of about 105 mm. Three bone cores, each 

with a diameter of 22 mm, were removed from the right costal2, the anterior hinge system 

(right epi- and hyoplastron) and the posterior hinge system (right hypo- and xiphiplastron) of 

the shell, respectively. The keratin shields were still attached to each of the three bone cores. 

The core of costal2 is slightly curved with a maximum thickness of 2.5 mm. The progression 

of the rib is faintly visible as a bulge of the internal surface of the costal plate. The two cores 

of the plastron range in thickness between 2.5 and 4.5 mm. The elements that are involved in 

the hinge systems show a slight swelling or bulge adjacent to the hinge line. The keratin 

shields (pectoral, abdominal and femoral) covering the plastron elements have a wrinkled 

surface texture. Besides the shield sulci, the shields (vertebral1 and pleural1 and 2) covering 

the costal2 were smooth and flat. 

 

4.3.21 Adocidae 

According to Brinkman (2003a), Adocidae Cope, 1870b comprises a group of large aquatic 

turtles from the Late Cretaceous of Asia and North America. Only specimens of the genus 

Adocus Cope, 1868 were sampled in this study. Detailed osteological description of the taxon 

is found in Meylan and Gaffney (1989). According to Meylan and Gaffney (1989:24), “the 

entire surface [of the carapace] is finely sculptured with a very regular arrangement of minute 

tubercles lying close enough together that the pattern could also be described as rows of small 

depressions”. 
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4.3.21.1 Adocus sp. 

The sample of Adocus sp. included a neural (UCMP V73096/150202), a proximal part of a 

costal (UCMP V87101150200), a distal peripheral fragment (UCMP V87101/150201) and a 

plastral element (?hyo- or hypoplastron; UCMP V87071/150192). All shell elements derived 

from lower Palaeocene (Puercan) rocks (Hell Creek Formation and overlying Tullock 

Formation) of Montana, USA. The neural is of oblong hexagonal shape. Both, the neural and 

the costal fragment have flat finely sculptured external surfaces. In the costal fragment, the rib 

bulge is asymmetrical with a steep flank and a flank that is rising more gently. The peripheral 

is triangular in cross-section with a blunt rounded edge. The plastral fragment is flat and most 

of the internal surface of the bone is not preserved. Although the sculpturing pattern of the 

external surfaces of the shell elements is regular and well observable in most fragment (see 

description above), it becomes not as distinct in size and elevation as in Basilemys sp. (see 

below). 

 

4.3.22 Nanhsiungchelyidae 

Nanhsiungchelyidae comprise the genera Zangerlia, Hanbogdemys, Anomalochelys, 

Nanhsiungchelys and Basilemys (Brinkman and Nicholls, 1993; Brinkman and Peng, 1996; 

Hirayama et al., 2000, 2001; Joyce and Norell, 2005). The different phylogenetic hypotheses 

among Nanhsiungchelyidae are discussed in Joyce and Norell (2005). Only material of 

Basilemys Hay, 1902 from the Cretaceous of Asia and North America (Hirayama et al., 2000) 

could be sampled. The assignment of Basilemys to Nanhsiungchelyidae seems valid (Nessov, 

1986; Meylan and Gaffney, 1989). The external surfaces of the shell bones of Basilemys, 

Zangerlia and Nanhsiungchelys share a regular “pock-marked” sculpturing pattern 

(Młynarski, 1972:86, 1976; see also Meylan and Gaffney, 1989). In Basilemys, the 

sculpturing pattern can extend fairly wide into the interior of the shell openings, so that the 

internal surfaces of bones adjacent to these openings are also heavily sculptured (pers. obs.). 

Several morphological features (i.e., triturating surfaces of maxilla; robust elephantine limbs, 

well ossified limb armour, strong epiplastral projections) characterise Basilemys as an 

ecological pendant of tortoises in being terrestrial and herbivorous (Sukhanov and 

Narmandakh, 1977; Hutchison and Archibald, 1986; Brinkman, 2003a). 
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4.3.22.1 Basilemys sp. 

The studied material of FM P27371 of Basilemys sp. included a neural fragment, a costal 

fragment, a pair of sutured peripherals, a plastral fragment (?hyo- or hypoplastron), as well as 

a marginal shell fragment which could not be unambiguously assigned to either the carapace 

or the plastron. All material of FM P27371 was found in the Late Cretaceous Kirtland Shale, 

McKinley County, New Mexico, USA. Further shell material included a large isolated 

peripheral (YPM 9703) from the Cretaceous Laramie Beds, Schneider Cn., Converse County, 

Wyoming, USA and two osteoderms (TMP 2003.12.278; TMP 80.08.296) from the ?Oldman 

Fm. or Dinosaur Park Fm., Judith River Group, Dinosaur Provincial Park, Alberta, Canada. 

The exact location of the osteoderms on the body is unknown. The costal fragment and the 

neural fragment of FM P27379 are of similar thickness but the external surfaces of both bones 

are weathered. The peripherals, the plastral fragment, the shell fragment and the osteoderms 

show the very regular ‘pock-mark’ sculpturing pattern with rhomboidal to honeycomb shaped 

pits that often align in rows. The internal surface of the plastral fragment is smooth with a 

faint striation pattern. In the case of the smaller osteoderm, a striation of the internal and 

lateral margin is visible. The larger osteoderm on the other hand shows numerous small 

foramina inserting both into the internal and external cortices. 

 

4.3.23 Carettochelyidae 

The fossil record of Carettochelyidae reaches back into the middle Cretaceous with the 

Asian Kizylkumemys schultzi (Joyce et al., 2004). Hirayama et al. (2000) reported even older 

fossil Carettochelyidae from the Lower Cretaceous (Hauterivian) of Japan, which may 

represent the phylogenetic stem of Carettochelyidae (Joyce et al., 2004). According to 

Danilov (2005), the oldest well known representative of the genus Kizylkumemys Nessov, 

1977 is known from the Upper Cretaceous (Cenomanian) of Karakalpakia, western 

Uzbekistan. During the Eocene, Carettochelyidae had its greatest diversity in Asia, Europe 

and North America. Today, Carettochelyidae is monospecific with the recent Carettochelys 

insculpta Ramsay, 1887. A detailed anatomical description of the shell of a specimen of C. 

insculpta can be found in Walther (1922). The Carettochelyidae can be divided into the more 

basal Anosteirinae, with Kizylkumemys Nessov, 1977, Anosteira Leidy, 1871b and 
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Pseudanosteira Clark, 1932, and the more advanced Carettochelyinae including 

Carettochelys Ramsay, 1887, Allaeochelys Noulet, 1867, Burmemys Hutchison et al., 2004 

and Chorlakkichelys Broin, 1987 (e.g., Meylan, 1988; Meylan and Gaffney, 1989; Hutchison 

et al., 2004; Danilov (2005). While the former group is characterised by smaller body size, a 

medial keel with bony protrusions of the neurals and the retention of scute sulci, the latter 

group reaches larger body size and, in adults, lack the shield cover and scute sulci (Meylan, 

1988; Hutchison et al., 2004; Danilov, 2005). Anosteira Leidy, 1871b is known from the 

Eocene of Asia and North America, while the closely related Pseudanosteira Clark, 1932 is 

known only from the Eocene of western North America (e.g., Hutchison et al., 2004). Only 

few characters in carapace morphology (i.e. neural sequence) separate both taxa from each 

other (Meylan and Gaffney, 1989; Hutchison et al., 2004). Broin (1977) viewed 

Pseudanosteira as being synonymous with Anosteira. The genus Allaeochelys Noulet, 1867 is 

the only representative found in Europe (Lapparent der Broin, 2001). Following Meylan 

(1988), Allaeochelys Noulet, 1867 further represents the sister taxon to Carettochelys 

Ramsay, 1887. 

 

4.3.23.1 Anosteira sp. 

The samples of Anosteira sp. (FM PR 819) were found in the Uinta Formation (horizon C, 

lower part), late Eocene, Uintah County, Utah, USA. The shell material included a neural and 

adjacent proximal part of a costal, another costal, a peripheral and a left hypoplastron. The 

neural has a prominent dorsal bony protuberance with a distinct medial apex. The proximal 

part of the still attached costal as well as the separate costal plate is flat to proximodistally 

flexed, with slightly concave internal and slightly convex external bone surfaces. The 

peripheral appears triangular in proximodistal section. The distal edge is blunt and the 

external surfaces of the peripheral enclose a rather large angle of 70 to 80 degrees. The 

peripheral also has a characteristic circular groove to accommodate the free rib end of a 

costal. The hypoplastron has an anteroposterior length of 27 mm and a maximum width of 31 

mm. The sculpturing pattern of radiating tubercles and low ridges is best seen on the 

peripheral, while it is not so distinct on the external surfaces of the other shell elements. Scute 

sulci are seen on the external surfaces of the neural and of both costal fragments. 
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4.3.23.2 Pseudanosteira pulchra Clark, 1932 

A neural, a proximal part of a costal, another costal fragment, a peripheral and a 

fragmentary plastral element (all UCMP V78031/131731) of P. pulchra were sampled. The 

neural is of rectangular shape, with a maximum length of 14 mm, a maximum width of 6 mm 

and a height of the plate of about 4 mm. The costal fragments are flat with a light 

proximodistal flexure. The peripheral is triangular in cross-section with a distinct distal 

pointed edge and a concave internal surface. The angle between the external surfaces of the 

peripheral was measured between 45 to 50 degrees. The plastral fragment is strongly striated 

towards the lateral margin and the striation gets most pronounced at the sutural pegs at the 

margin. The sculpturing pattern of mainly radiating knobs and tubercles is best observed on 

the external surface of the peripheral. The external bone surfaces of the neural, the costal 

fragments and the plastral fragment are weathered and the sculpturing pattern is weak here. 

 

4.3.23.3 Allaeochelys cf. A. crassesculpta (Harrassowitz, 1922) 

The material (HLMD-Me 10468) of cf. A. crassesculpta from the Eocene Messel pit near 

Darmstadt, Germany, includes a costal and two peripheral fragments. The costal is a thin 

straight bone which slightly broadens distally. The free rib end extends beyond the distal 

margin of the costal. One peripheral derives from near the bridge region, the other one is 

situated either at the anterior or the posterior margin of the shell. The first peripheral has a 

strongly concave internal surface and a distinct edge in its external surface. The external sides 

of the bone include an angle of about 90 to 100 degrees. The second peripheral is highly 

flattened with a distal tapering edge that slightly bends towards dorsal. The internal surfaces 

of the bones are smooth while the external surfaces are faintly wrinkled with low ridges and 

tubercles. 
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4.3.23.4 Carettochelys insculpta Ramsay, 1887 

The Fly River or pig-nosed turtle C. insculpta, which can reach a CL of over 55 cm, occurs 

in rivers and lacustrine habitats with slow currents and it may also enter brackish waters (e.g., 

Ernst and Barbour, 1989). The species is restricted to New Guinea and Northern Territory of 

Australia (e.g., Ernst and Barbour, 1989). The shell is highly domed in adults and well 

ossified. Compared to Trionychidae, the peripherals are well developed. Several elements of a 

larger specimen (MAGNT R12640) could be acquired for this study, including a neural, a 

costal, a peripheral and the left hyoplastron. The material was already macerated and 

disarticulated, thus the skin cover of the shell was not included in the sample. The neural is a 

diminutive oblong and slender bone compared to the size of the rest of the shell elements. The 

sampled costal has a narrow proximal shaft that broadened distally. The distal margin of the 

costal is slightly curved, with the free distal rib end protruding a little further over the margin 

of the plate. The peripheral tapers distally into a dorsally upturned edge, while the internal 

surface of the bone is strongly concave. The hyoplastron is of general rectangular shape with 

a long sutured posterior margin. The posterior margin is slightly wavy to suture with the epi- 

and entoplastron. All shell elements show the typical wrinkled external sculpturing pattern 

with radiating or parallel tubercles and low ridges. Generally the sculpturing of the external 

bone surfaces is not as pronounced as in trionychid turtles. The internal surfaces of all bones 

are very smooth, and no foramina were observed to insert the internal bone surfaces. The 

marginal sutures of the shell elements were further composed of rather short and uniform 

bony interdigitating round pegs or flat bone sheets. 

 

4.3.24 Trionychidae (Plastomeninae, Cyclanorbinae and Trionychinae) 

Confirmed Trionychidae first occur in the Lower Cretaceous of North America and Asia 

(Meylan and Gaffney, 1992; Nessov, 1995; Hirayama et al., 2000; Danilov, 2005). 

Trionychidae can be subdivided into three taxa, the Cyclanorbinae, the Trionychinae and the 

exclusively fossil Plastomeninae (e.g., Meylan, 1987). The morphology-based monophyly of 

both Cyclanorbinae and Trionychinae (e.g., Meylan, 1987; Gaffney and Meylan, 1988) was 

supported by recent molecular study (Engstrom et al., 2004). The value of trionychid 

carapacial features for taxonomic and phylogenetic analyses is discussed in Gardner and 
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Russell (1994) and Gardner et al. (1995). In this respect, the ornamentation pattern of 

trionychid shells has to be treated with caution.  

The Plastomeninae are restricted to the Upper Cretaceous and Palaeocene of North 

America, but there may be additional ‘plastomenine’ turtles from Kazakhstan (Chkhikvadze, 

1990, in Danilov, 2005; Holroyd and Hutchison, 2002; Hutchison and Holroyd, 2003). The 

group has a well ossified plastron and the central fontanella of the plastron is small or even 

absent (see Holroyd and Hutchison, 2002; Hutchison and Holroyd, 2003). Helopanoplia Hay, 

1908, that died out at the K/T boundary, shows plastomenine affinities in the development of 

a distinctive “punctate sculpture on the plastron” (Holroyd and Hutchison, 2002:184). 

In the fossil record, Cyclanorbinae are known from the Miocene of Saudi Arabia and the 

Pliocene of Africa and India (Danilov, 2005). Among other characteristics, representatives of 

the group have a massively ossified shell and fused hyo- and hypoplastra (e.g., Meylan, 1984, 

1987; Gaffney and Meylan, 1988; Danilov, 2005). As pointed out by Meylan (1987), the 

group includes three recent genera with the following species: Cyclanorbis elegans (Gray, 

1869), C. senegalensis (Duméril and Bibron, 1835); Cycloderma aubryi (Duméril, 1856), C. 

frenatum Peters, 1854; Lissemys punctata (Bonnaterre, 1789), L. scutata (Peters, 1868). 

While Ernst and Barbour (1989) list only five species in three genera, Joyce et al. (2004) 

recognise L. scutata (Peters, 1868) as a valid species instead of sub-species. There is general 

agreement, that Lissemys spp. are today the most basal representatives of the Trionychidae. 

Furthermore, Lissemys spp. still retain small bone elements in the periphery of the soft dermal 

part of the shell. Even though the V-shaped bone elements strongly resemble peripherals of 

hard-shelled turtle genera, there is still discussion if they are truly homologous structures (see 

Meylan 1987). Based on the V-shape and diploe-structure of the peripheral bones of Lissemys 

punctata in cross-section, Meylan (1987) argued for the homology of the elements with 

peripherals of other turtle taxa. 

Trionychinae comprises all soft-shelled turtles whose plastral bones are not firmly fused 

together but are loosely bonded by connective dermal tissue (e.g., Meylan, 1987; Gaffney and 

Meylan, 1988). Based on Meylan (1984), the Trionychinae is supposedly monophyletic. 

Sensu Joyce et al. (2004), the group includes eleven recent genera, of which the two species 

Apalone ferox (Schneider, 1783) and Trionyx triunguis (Forskål, 1775) were sampled. In the 

fossil record, trionychine turtles are known from the Lower Cretaceous of North America 
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(Meylan and Gaffney, 1992; Nessov, 1995, in Danilov, 2005). Trionychid taxa from the 

Upper Cretaceous of North America were revised by Gardner et al. (1995). In this study, three 

taxa of Aspideretoides (A. foveatus (Leidy, 1856c), A. splendidus (Hay, 1908) and A. alleni 

(Gilmore, 1923)) and one taxon of Apalone (A. latus (Gilmore, 1919) were recognised as 

valid species. If these four taxa are indeed crown trionychids as proposed by Gardner et al. 

(1995), this would expand the age of the crown clade into the Late Cretaceous (Joyce et al., 

2004). A fifth taxon (Trionychidae gen. et sp. indet.) was further recognised by Gardner et al. 

(1995) based on the characteristic fusion of hyo- and hypoplastron (see also Brinkman, 

2003a). 

The carapace of Apalone ferox (Schneider, 1783) has a reduced pair of costals8. In the 

plastron, only four callosities appear: two on the fused hyo-hypoplastra; and two on the 

xiphiplastra (see also Meylan, 1987). 

 

4.3.24.1 Plastomenus sp. 

The sample of Plastomenus sp. includes a neural (UCMP V81108/150227), a proximal part 

of a costal (UCMP V81108/150227), a distal part of a costal (UCMP V81110/150231), two 

other costal fragments (UCMP V81108/150227; UCMP V81110/150231) and a plastron 

fragment (UCMP V81108/150227). All specimens were recovered from the Eocene Bridger 

Formation, Sweetwater County, Wyoming, USA. The external surfaces of the shell elements 

show an even sculpture with low ridges and fine pits (see also Hay, 1907). The ornamentation 

changes in appearance towards the margins. Here, the low ridges are aligned in a parallel 

fashion and extend perpendicular towards the margins. Where the preservation is adequate, 

the internal surfaces of the specimens appeared generally smooth. 

 

4.3.24.2 Helopanoplia sp. 

Only a single specimen, a costal (UCMP V87051/150193) of this taxon was sampled. The 

specimen was found in the Puercan (Uppermost Cretaceous?), Hell Creek Formation, 

McCone County, Montana, USA. Only a single margin of the fragment shows the original 
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suture, the other margins of the fragment are broken off. The external surface of the bone 

shows a raised ‘punctate’ sculpturing pattern of low tubercles and short meandering ridges. 

The smooth internal surface of the bone fragment is medially elevated where the rib 

progresses through the costal plate. Few scattered tiny foramina insert into the internal surface 

of the bone. The bone itself has a high mass, because inner spaces of the bone are filled with 

pyrite. 

 

4.3.24.3 Lissemys punctata (Bonnaterre, 1789) 

L. punctata occurs in India and adjacent countries (e.g., Pakistan, Nepal, Bangladesh, Sri 

Lanka) where it dwells in shallow and quiet riverine, lake and pond habitats (Ernst and 

Barbour, 1989). Two specimens were sampled for the study. The sampling of SMNS 3705, a 

small alcohol-preserved specimen, was carried out by core-drilling. One core (12 mm in 

diameter) was removed from the carapace, sub-sampling ?neural3, together with its skin cover 

and vertebra. The sampling of YPM 11645, a larger macerated specimen, included whole 

shell elements, a neural, a costal3, a plastral fragment (?hyo- or hypoplastron) and a 

‘peripheral’ element. All shell elements showed the typical external pustulate ornamentation 

with ridges, pits and knobs (see Meylan, 1987). 

 

4.3.24.4 Cyclanorbis senegalensis (Duméril and Bibron, 1835) 

The Central African C. senegalensis occurs in Sudan, Cameroon, Gabon, Senegal and 

Ghana (e.g., Ernst and Barbour, 1989). A single costal of C. senegalensis (ZFMK-83284) was 

sampled. The specimen derives from a dried carapace where the skin was still attached to the 

bony carapacial disc. The prominent sculpturing pattern is easily traceable through the 

overlying skin cover in this specimen. The rib extends proximodistally through the whole 

costal, while the rib head protrudes significantly from the internal surface of the costal. 

 

 



Morphological description of Testudinata 
 

 113

4.3.24.5 Aspideretoides foveatus (Leidy, 1856c) 

Only a single neural (TMP 81.20.30) of A. foveatus was sampled. The specimen (part of 

larger associated sample of neurals) was recovered either from the ?Oldman Formation or the 

Dinosaur Park Formation, Judith River Group, Dinosaur Provincial Park, Alberta, Canada. 

The neural has a hexagonal shape. Due to weathering, the typical sculpturing pattern is seen 

only in the centre of the external bone surface while the margins are almost smooth. The 

element has maximum length of 22 mm. Its plate thickness spans about 4 mm. 

 

4.3.24.6 Aspideretoides splendidus (Hay, 1908) 

The fossils of A. splendidus, a fairly large trionychid species, were found either in the 

?Oldman Formation or the Dinosaur Park Formation, Judith River Group, Onefour Area, SE 

Alberta, Canada. The sample (TMP 89.116.61) included a fragmentary neural, the distal parts 

of two sutured costals, a small plastron fragment and the distal tip (bony peg) of a plastron 

element. The neural is a fairly high, reaching a maximum thickness of about 10 mm for the 

flat plate part. Internal to the plate part, the massive neural arch spans another 11 mm. The 

anteroposterior length of the neural fragment is 35 mm. The distal margin is preserved in the 

well sutured costal fragments. The margin itself is sloped, thus first the external 

ornamentation disappears, followed by a zone of unornamented external bone surface, 

followed by a broad margin of vascularised, spongy bone. The internal surface of the costal 

fragments shows a light proximodistal striation. The thickness of the costals spans about 14 to 

16 mm (measured at the ornamented part of the costals). The small plastron fragment mostly 

consists of the external sculptured bone surface and a round margin that lacks a suture. The 

piece has a maximum thickness of 13 mm. The peg-like distal tip of the plastron fragment is 

oval in cross-section with numerous circumferential grooves covering the bone surface. The 

peg-like fragment was a about 18 to 20 mm long, while its maximum diameter was measured 

to be 9 and 14 mm for its axes respectively. 
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4.3.24.7 cf. Aspideretoides sp. 

The sample of cf. Aspideretoides sp. included a neural (IPB R533d) and two costal 

fragments (IPB R533a-c, IPB R533e). IPB R533a and IPB R533b are figured in Scheyer et al. 

(2007, figs. 3, 4). All shell bones were found in the Late Cretaceous Judith River Group, 

Kennedy Coulee, North of Goldstone, Montana, USA. The neural has a hexagonal shape. The 

plate part of the neural is 5 mm thick. The length of the neural is 23 mm. The margins of the 

costal fragments were mostly broken off, thus length and width could not be measured. 

Thicknesses ranged between 7 and 8 mm for the costal plates. All external surfaces of the 

shell bones are typically sculptured with grooves and ridges. A faint striation pattern was 

locally spotted at the broken margins of the costals directly internal to the extensive external 

sculpturing pattern. 

 

4.3.24.8 Apalone ferox (Schneider, 1783) 

A. ferox occurs today in freshwater bodies of Florida and parts of adjacent states (South 

Carolina, Georgia and Alabama) of south-eastern USA (Ernst and Barbour, 1989). An adult 

macerated specimen (YPM 13874) was sampled. The material for sectioning included the 

neural5, the left costal5 and the right xiphiplastron. The quadrangular oblong plate of the 

neural5 is symmetrical with convex anterior and posterior margins. The slender proximal part 

of the costal5 broadens distally. The distal margin of the costal is convex with a protruding 

free rib end. The progression of the rib through the costal is clearly observable on the internal 

bone surface. Foramina insert on the internal surface of the costal plate on both sides of the 

rib bulge. The xiphiplastron has a kidney-shaped flat plate from which two anterior and two 

posterior pointed processes protrude. All sampled elements carried the typical sculpture of 

grooves, pits and ridges on their external bone surfaces. The internal bone surface of the 

element is smooth. 
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4.3.24.9 Trionyx triunguis (Forskål, 1775) 

T. triunguis, a large species (overall carapace length of over 1000 mm), occurs at the coasts 

of the eastern Mediterranean countries (from Turkey southwards) to East- and West Africa 

(e.g., Pritchard, 1979; Iverson, 1992; Ernst and Barbour, 1989). It prefers low-currency 

freshwater bodies but is sometimes also found in brackish waters and occasionally in ocean 

waters (Ernst and Barbour, 1989). A single right costal2 from a dried juvenile specimen (IPB 

R260) was sampled. Details of IPB R260 are figured in Scheyer et al. (2007, fig. 2). The shell 

had an overall carapace length of ca. 200 mm, whereas the bony carapacial disc had a CCL of 

147 mm. The costal2 had a proximodistal plate length of 51 mm. The costal plate itself is 

almost flat. The free rib end protruded another 20 mm over the distal plate margin. The 

external bone surface is sculptured with ridges and grooves. The internal bone surface is 

smooth and the progression of the rib is visible as a massive bulge of the internal bone 

surface. Medially, the free massive rib head meets the articulation facet between two 

vertebrae and articulates with both. Scattered foramina insert on the internal bone surface on 

both sides of the rib bulge. 

 

4.3.24.10 Trionyx sp. 

Additional material of Trionyx sp. included three costal fragments (HLMD-Me 8084; IPB 

HaH-3120; IPB HaH-3164) and a plastron fragment (SMNS 86264). HLMD-Me 8084, the 

distal part of a costal, derives from the Eocene Messel pit, near Darmstadt, Germany. A gentle 

rib bulge is seen on the internal bone surface of this element, but the free rib end is broken 

off. IPB HaH-3120 and IPB HaH-3164 were recovered from the middle Miocene lignite strip 

mining pit of the company ‘Rheinbraun AG’ at Hambach, Germany (see also Klein and Mörs, 

2003). The costal fragments from Hambach are of similar thickness (7 to 9 mm) but lack 

distinctive morphological features besides the sculpture. One sutured original margin is 

present in IPB HaH-3164. SMNS 86264 was found during road building work in the Lower 

Miocene (MN4b), Langenau 2, (development of highway A2; “Einschnitt Lettenberg”), 

Germany. All margins of the plastron fragment are broken off, making an orientation difficult. 

The element increases in thickness towards one of the broken margins. All external bone 

surfaces of the shell elements show the typical sculpture pattern of grooves, pits and ridges. 
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5. Bone histological results of outgroup taxa 

To quickly assess the nature of the sampled bones, fossil outgroup taxa are marked by a 

cross in parentheses (†) behind the names in the respective headings. Descriptions of the 

abbreviations used in the text and figures are compiled in Appendix 2.  

 

5.1 Outgroup 1: Temnospondyl amphibians 

5.1.1 Trimerorachis sp. (†) 

The two samples of Trimerorhachis sp. show a diploe with distinct external cortex, 

cancellous bone and internal cortex (Fig. 8a, b). The external and internal cortices that frame 

the interior cancellous bone are of similar thickness and are similarly well vascularised (Fig. 

8c). The primary osteons and secondary osteons share a similar orientation in the bone. 

External cortex—The external cortex consists of parallel-fibred bone with a scattered 

arrangement of primary osteons, primary vascular canals and few secondary osteons (Fig. 8c). 

Growth of the parallel-fibred bone is following the wavy ornamentation pattern consisting of 

ridges and troughs, but distinctive cyclical growth marks are not observable. Fibre bundles 

that are extending diagonally to the external bone surface in the parallel-fibred bone are 

dominating the bone tissue. Few fibre bundles insert perpendicular to the bone surface. These 

fibre bundles are best seen in the areas internal to the ridges of the ornamentation pattern. 

Cancellous bone—The trabecular bone of the cancellous bone appears stout, and the 

vascularisation is characterised by few larger cavities (Fig. 8a-c). Interstitial primary bone 

tissue that consists of interwoven structural collagenous fibre bundles (ISF) and scattered 

primary osteons are still found within the centres of larger trabeculae, while the trabecular 

walls are lined with secondary lamellar bone. Towards external and internal, newly formed 

erosion cavities lack a complete lamellar bone lining and instead show irregular erosion 

fronts. 

Internal cortex—Towards internal, the ISF of the cancellous bone is grading into parallel-

fibred bone of the internal cortex proper (Fig. 8d, e). The nature of the parallel-fibred bone is 
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best studied in longitudinal sections cut parallel to the ridges of the ornamentation and the 

long axis of the bone elements. Vascularisation occurs mostly through primary vascular 

canals that resemble elongated tubes in longitudinal sections and few scattered secondary 

osteons. 

Figure 8: Bone histology of dermal bones of Trimerorhachis sp. (a) specimen TMM 40031-

59 and (b) specimen TMM 40031-60 in normal light. (c) Close-up of specimen TMM 40031-

60 that shows the diploe structure of the sculptured bone. Detail of the parallel-fibred bone of 

the internal cortex of TMM 40031-60 in (d) normal light and (e) polarised light. 

 

5.1.2 Mastodonsaurus giganteus (Jaeger, 1828) (†) 

Macroscopically, the heavily sculptured bone elements of M. giganteus appear quite 

massive (Fig. 9a, b). The microstructure of the sampled bone, however, reveals a diploe with 

clear distinction between external cortex, internal cortex and interior cancellous bone. The 

cortices share a similar thickness. 
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External cortex—The most external layers of the external cortex consist of parallel-fibred 

bone that towards internal changes to primary ISF (Fig. 9c, d). Weakly developed growth 

marks are present in the parallel-fibred bone, though their course through the external cortex 

is difficult to follow. The external cortex is vascularised by primary osteons and primary 

vascular canals. The primary vascular canals locally reach plexiform organisation. Especially 

in the troughs between the ornamental ridges, the primary osteons usually follow the 

progression of the layers of the parallel-fibred bone. In the centre of each ridge, the fibre 

bundles of the parallel-fibred bone cross each other at moderate angles. At the areas of 

overlap, Sharpey’s fibres, i.e. conspicuously angled connective fibre bundles, insert 

perpendicular into the bone tissue of the external cortex. Sharpey’s fibres are restricted to the 

ridges of the ornamentation pattern, while they are absent in the troughs in between the 

ridges. 

Cancellous bone—The external front of the cancellous bone is slightly wavy because it 

parallels the progression of the troughs and ridges of the ornamentation pattern. The 

cancellous bone consists of primary ISF with numerous vascular cavities of small to medium 

size. The bone trabeculae that extend parallel to the external and internal bone surfaces are 

more prominent. However, extensive remodelling affects the whole of the cancellous bone, 

leading to the formation of larger secondary erosion cavities and numerous secondary 

osteons. In some of the larger bone trabeculae, the secondary osteons form clusters of 

Haversian bone (Fig. 9e, f). Interstitial primary ISF and primary osteons are also present 

within the larger trabeculae, while the walls of the trabeculae usually consist of lamellar bone. 

The bone elements show sutured margins with short interdigitating bony pegs. Towards the 

centre of the cancellous bone, remnants of the former growth stages of the bony pegs are 

observed, although these sutural pegs are subject to increased remodelling. 

Internal cortex—The internal cortex (Fig. 9g) consists of parallel-fibred bone in which only 

the internal-most layers (deposited last) are avascular. Subsequent vascularisation of the bone 

tissue begins at the transition to the interior cancellous bone. Smaller scattered vascular 

cavities fuse through further erosion to form larger vascular cavities. Some of the resulting 

elongated and flat erosion cavities are still without secondary lining with lamellar bone. Some 

layers of the parallel-fibred bone are not parallel but slightly angled towards the bone surface, 

thus gradually thinning out along the surface of the bone. 
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Figure 9: Bone histology of dermal bone of Mastodonsaurus giganteus. Specimen SMNS 

91011 sectioned (a) perpendicular and (b) parallel to the ornamental ridges in normal light. 

Close-up of the parallel-fibred bone of the external cortex and ornamentation of SMNS 91011 

(perpendicular section) in (c) normal and (d) polarised light. Detail of extensive secondary 

osteon clusters forming Haversian bone of the interior cancellous bone of the same specimen 

(perpendicular section) in (e) normal and (f) polarised light. (g) Close-up of the internal cortex 

of the same specimen (perpendicular section) in polarised light. 
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5.1.3 Gerrothorax pustuloglomeratus (Huene, 1922) (†) 

The specimen of G. pustuloglomeratus shows a diploe with distinct external cortex, internal 

cortex and interior cancellous bone (Fig. 10a, b). The external and internal cortices are of 

similar thickness.  

External cortex—The eponymous ornamentation pattern consisting of fine isolated pustules 

and short ridges has a slightly wavy appearance in cross-section (Fig. 10c). The 

ornamentation pattern constitutes parallel-fibred bone best observed in the intermediate 

shallow troughs with fibre bundles overlapping at moderate angles in the pustules and ridges. 

Internal to the ornamentation pattern, a second compact layer of parallel-fibred bone is 

situated. The transition between ornamentation pattern and this second layer of parallel-fibred 

bone that extends horizontally is rather distinct (Fig. 10c). The parallel-fibred bone of the 

internal layer does not reach into the ridges or pustules of the ornamentation pattern. The 

ornamentation pattern is mainly vascularised by isolated and anastomosing primary vascular 

canals that mainly extend perpendicular into the ornamentation pattern of the external cortex. 

The internal, horizontal layer of parallel-fibred bone does exhibit large erosion cavities and 

scattered secondary osteons. 

Cancellous bone—The cancellous bone consists of strongly vascularised primary ISF. The 

resulting bone trabeculae are slender and gracile. The trabeculae that extend internal-

externally are short, while the horizontally arranged trabeculae that extend towards the 

margins of the bone are elongated. Accordingly, the vascular spaces between the bone 

trabeculae are flattened and elongated. Growth marks are visible in the tissue of the 

cancellous bone as less vascularised sheets of bone between thicker zones of well 

vascularised tissue (Fig. 10d). The bone trabeculae have a lining of secondary lamellar bone. 

Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 10e). The 

majority of the parallel-fibred bone is well vascularised with scattered primary osteons, 

secondary osteons and larger erosion cavities. Interstratified layers of bone, which are less 

vascular or avascular, appear also within the internal cortex. While the orientation of the 

primary osteons and secondary osteons follows the organisation of the bone, the erosion 

cavities also cross the boundaries of the layers in the parallel-fibred bone and fuse to form 
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larger vascular spaces. The degree of vascularisation is higher than in the vascularisation of 

the external cortex. 

Figure 10: Bone histology of dermal bone of Gerrothorax pustuloglomeratus. Specimen 

SMNS 91012 sectioned (a) perpendicular and (b) parallel to the long axis of the element in 

normal light. (c) Close-up of the parallel-fibred bone and growth marks of the external cortex 

and ornamentation of SMNS 91012 (parallel section) in polarised light. (d) Detail of interior 

cancellous bone and growth mark of the same specimen (perpendicular section) in normal 

light. (e) Close-up of the highly vascular internal cortex of the same specimen (parallel 

section) in polarised light. 
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5.2 Outgroup 2: Mammalia 

5.2.1 Folivora (Xenarthra) 

The osteoderm bone histology of xenarthrans (Mammalia) was recently studied by Wolf 

(2006, unpubl. MSc-thesis). According to his work, xenarthran osteoderms are diverse not 

only in gross morphology but also in their bone histology. The following paragraphs comprise 

only a small excerpt of the studied taxa and a synopsis of their respective bone 

microstructures. For a detailed comparative description please refer to the original work. 

 

5.2.1.1 Osteoderms of Paramylodon harlani (Owen, 1840) (†) 

The bones generally consist of primary compact bone, well vascularised by primary canals 

and primary osteons. Vascular canals often extend radially and emerge as foramina on the 

bone surface. Bone remodelling (e.g., erosion cavities and secondary osteons) can occur in the 

centre of the osteoderm and occasionally, a small area of interior cancellous bone is 

developed. The compact bone is dominated by long, coarse interwoven fibre bundles, and 

sometimes growth marks are observable. The overall organisation of the fibre bundles is 

random, although in some cases, the fibre bundles extend radially or perpendicular to the 

osteoderm surface. In some samples, the centre is not remodelled or cancellous but consists 

also of fibre bundles. The fibre bundles are usually shorter and more densely arranged here. 

 

5.2.2 Cingulata (Xenarthra) 

With few exceptions, the glyptodont osteoderms can be assigned to either one of two types. 

Type I is here represented by Propalaehoplophorus sp. and type II by Glyptodon clavipes. 

Osteoderms of type II generally show a higher degree of secondary remodelling, thus most 

parts of the bone tissue is cancellous. 
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5.2.2.1 Osteoderm type I - Propalaehoplophorus sp. (†) 

External cortex—The external cortex consists of parallel-fibred bone (pers. obs.) or lamellar 

bone tissue. Additionally, fibre bundles that extend perpendicular to the external surface of 

the bone, are incorporated into the bone tissue. Growth marks and Sharpey’s fibres are 

observable. The transition between external cortex and interior cancellous bone is gradual. 

Patches of Haversian bone can be developed and towards internal, the compact bone is 

increasingly remodelled. 

Cancellous bone—The interior part of the cancellous bone is well developed and largely 

secondarily remodelled. It consists of long and slender trabeculae and large vascular spaces. 

The bone trabeculae generally consist of secondary lamellar bone. The cavities in the 

cancellous bone are of circular to irregular shape where the vascular spaces interconnect with 

each other.  

Internal cortex—Although variable in thickness, the internal cortex consists of distinctive 

ISF. The arrangement of the fibre bundles is usually sub-parallel to the internal surface of the 

bone or slightly radial towards the osteoderm margins. Vascularisation is moderate with 

scattered round to irregularly anastomosing primary vascular canals, usually ending in 

foramina in the internal bone surface. At the transition to the interior cancellous bone, 

scattered secondary osteons are present. 

Sutures—In contrast to type II osteoderms, the bone tissue observed at the sutured margins 

of the osteoderms is largely similar to the tissue of the internal cortex. However, towards 

internal, the primary bone of the marginal regions is often completely remodelled into 

secondary cancellous bone. 

 

5.2.2.2 Osteoderm type II - Glyptodon clavipes Owen, 1839 (†) 

External cortex—Internal to an almost compact external bone layer, the external cortex is 

heavily vascularised. The external cortex thus hardly exhibits structural differences to the 

interior cancellous bone. Anastomosing secondary vascular canals form an extensive 

meshwork throughout the external cortex. The more compact external bone layer consists of 
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parallel-fibred (pers. obs.) to lamellar bone tissue that is often remodelled into secondary 

osteons. Growth marks, fibre bundles that extend perpendicular to the external surface of the 

bone and short Sharpey’s fibres are observed in the external cortex. 

Cancellous bone—At the transitional zones to the cortical bone layers, the cancellous bone 

is mainly comprised of secondary osteons and larger erosion cavities, secondarily filled by 

lamellar bone. Towards the interior part of the cancellous bone consists of long and slender 

trabeculae and circular to irregularly formed vascular cavities. The trabeculae are largely 

remodelled and consist of secondary lamellar bone. 

Internal cortex—The internal cortex is rather thin or even absent. Where present, the 

internal cortex consists of thick, coarse and irregularly arranged ISF. The bone tissue is well 

vascularised with primary vascular canals and primary osteons. Towards external, the cortical 

tissue is largely replaced by secondary osteons. 

Sutures—The sutures are well developed. Towards the margins, primary bone tissue is 

sometimes observed that largely shares microstructural details with the bone tissue of the 

external cortical bone. 

 

5.3 Outgroup 3: Reptilia 

5.3.1 Parareptilia (Pareiasauria) 

5.3.1.1 Pareiasaur osteoderms: Bradysaurus seeleyi Haughton and Boonstra, 1929 (†), 

Bradysaurus sp. (†), Pareiasaurus serridens Owen, 1876 (†), Pareiasaurus sp. (†) and 

Anthodon serrarius Owen, 1876 (†) 

While outer shapes differ strongly in pareiasaur osteoderms (Fig. 11a-d), their bone 

histology is surprisingly homogeneous. The bone microstructure will be presented 

exemplarily for A. serrarius in the following paragraph, and differences to the other taxa will 

be explicitly stated in the text. 
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Sampled pareiasaur osteoderms, e.g., of A. serrarius, lack well sutured margins and have a 

flat ventral base and a dorsally convex surface sculptured with radial ridges. A boss is present 

in osteoderms of Pareiasaurus spp. and A. serrarius (Fig. 11b-d). External ornamental radial 

ridges are also known from these taxa. External and internal cortices may be of similar 

thickness in A. serrarius (up to 5 mm or more at margins), although thicknesses of the 

external cortices can be greatly reduced by extensive vascularisation that can reach up to the 

external osteoderm surface. The internal cortices are thicker than the external cortices in 

samples of Pareiasaurus spp. and Bradysaurus spp. Vascular striation on external bone 

surfaces is unordered in Pareiasaurus spp., ordered and radial in A. serrarius. Bone cell 

lacunae are well developed both in the external cortex and the internal cortex. The external 

cortex consists of parallel-fibred bone with additional fibre bundles, i.e., presumably 

Sharpey’s fibres, trending perpendicular or at high angles to the dorsal surface (Fig. 11e-g). 

The marginal compact bone tissue of the osteoderm is indistinct from the external cortex. 

External cortex vascularisation is quite extensive with small primary osteons, erosion cavities 

and radially directed primary vascular canals that reach up to the surface of the bone, creating 

a roughened texture on the bone surface. Towards the interior of the osteoderm, primary 

vascular canals anastomose frequently, while in the external layers of the external cortex, 

primary vascular canals are generally single, radial tubes. Few scattered secondary osteons 

appear towards the cancellous bone. They are absent in the external-most and internal-most 

layers of the external and internal cortices, respectively. The interior cancellous bone is 

mostly remodelled (Fig. 11h). Trabeculae are thicker in diameter in flat osteoderms and 

increase in length and gracility with additional osteoderm height. The internal cortex consists 

of layers of parallel-fibred bone, but perpendicular extending fibre bundles are absent. Growth 

marks are usually well developed. In sampled osteoderm SAM-PK-10074, a minimum 

number of 17 prominent cyclical growth marks are present (see also Fig. 11i, twelve growth 

marks visible). Coarse Sharpey’s fibres insert at moderate to high angles into the compact 

bone (Fig. 11j). Few scattered primary osteons, primary vascular canals and single larger 

foramina pervade the internal cortex. 
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Figure 11: Bone histology of pareiasaur osteoderms. (a) Thick osteoderm fragment SAM-PK-

12140 of Bradysaurus sp., (b) small flat osteoderm SAM-PK-1058 of Pareisasaurus sp. and 

(c) massive osteoderm and (d) flat osteoderm (both SAM-PK-10074) of Anthodon serrarius 

in normal light. (e) Close-up of the external cortical bone and radial vascularisation pattern of 

SAM-PK-10074 (massive osteoderm) in normal light. (f) Detail of external cortex and 

ornamentation of SAM-PK-10074 (flat osteoderm) in polarised light. (g) Detail of the 

parallel-fibred bone and growth marks of the external cortex of SAM-PK-1058 (small flat 

osteoderm) in polarised light. (h) Detail of the cancellous bone of UMZC R 381 T702 of 

Pareiasaurus sp. (i) Detail of the internal cortex of SAM-PK-10074 (massive osteoderm) in 

normal light. Note regular growth marks. (j) Detail of the parallel-fibred bone and Sharpey’s 

fibres of the internal cortex of the thick massive osteoderm SAM-PK10036 of Pareiasaurus 

serridens in polarised light. 

 

5.3.2 Eureptilia (Placodontia) 

5.3.2.1 Placodontoid armour 

5.3.2.1.1 Placodus gigas Agassiz, 1833 (†) 

The thin-section of the plate shows a differentiation into a compact bone layer surrounding 

a weakly vascularised interior bone core (Fig. 12a). A true spongy cancellous bone is not 

developed, thus the core still appears compact. The external areas, including the sharp keel of 

the plate, consist of well developed external cortical bone. The bone tissues of the interior 

core and the weakly developed internal cortex of the base of the plate appear superficially 

similar. 

Primary parallel-fibred bone tissue that locally grades into lamellar bone builds up the 

external cortical bone that covers both sides of the external keel (Fig. 12b). Cyclical growth 

marks that appear throughout the external cortex extend parallel to the external bone surfaces. 

The growth marks are mostly diffuse and are thus not as conspicuous as well defined lines of 

arrested growth. Numerous thin collagenous fibre bundles extend perpendicular to the 

parallel-fibred bone and lamellar bone of the external cortex. The wavy character of the 

external bone surfaces in thin-section results from foramina that insert perpendicular into the 
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external cortex. The foramina continue as vascular canals in the bone tissue of the external 

cortex. Besides these few vascular canals that seldom anastomose, the primary bone tissue of 

the external cortex is avascular. 

The interior core of the plate is lightly vascularised by scattered primary vascular canals and 

primary osteons. In general, the primary vascular canals are radially arranged. Because of the 

absence of larger primary cavities or secondary remodelling (i.e., larger erosion cavities), the 

interior of the bone has a compact appearance. The interior core is distinct from the similarly 

compact external and internal cortices in that it lacks parallel-fibred bone and lamellar bone. 

Instead, it contains a meshwork of randomly arranged structural fibre bundles (Fig. 12c, d). 

Only a few prominent fibre bundles extend from the margins of the interior bone core in the 

direction of the apex of the external keel. 

 

Figure 12: Bone histology of dermal plate of Placodus gigas. (a) Specimen SMNS 91006 

sectioned perpendicular to the keel of the element in normal light. The dorsal tip of the keel is 
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broken off. (b) Close-up of the cortical bone and the interior bone tissue of the flank of the 

ridge in polarised light. Note Sharpey’s fibres inserting into the cortical bone. Close-up of the 

parallel-fibred bone and growth marks of the cortex and the fibre bundles of the core in (c) 

normal and (d) polarised light. 

 

The thin internal cortex at the base and the margins of the plate consists of parallel-fibred 

bone with growth marks extending subparallel to the internal surface of the bone (Fig. 12d). 

However, compared to the external cortex, the layers of the parallel-fibred bone are less 

distinct in the internal cortex, because coarse and thick fibre bundles, i.e., Sharpey’s fibres, 

extend into the parallel-fibred bone. The Sharpey’s fibres are responsible for the superficial 

congruence (an interwoven pattern of fibre bundles) of the interior core and the internal 

cortex, further obscuring the transition of the two neighbouring bone tissues. The arrangement 

of the Sharpey’s fibres depends on their exact location within the plate. Laterally, on both 

sides of the external keel, the Sharpey’s fibres insert at steep to moderate angles into the 

internal cortex and generally point towards the medial bone core. The vascularisation of the 

internal cortex is low, with only a few scattered primary vascular canals that emerge as the 

foramina seen on the internal bone surface. 

 

5.3.2.2 Cyamodontoid armour 

5.3.2.2.1 Psephosaurus suevicus (SMNS 91007) (†) 

The thin-section of SMNS 91007 reveals a rather homogeneous type of bone tissue 

throughout the recumbent spike, with only the blunt apex being set off from the rest of the 

bone (Fig. 13a-c). A distinction into external / internal cortical bone and interior cancellous 

bone is not recognised. Furthermore, there is almost no secondary remodelling of the primary 

bone tissue. With the exception of the apex of the plate, the whole bone down to the internal 

surface of the bone shows parallel growth marks (Fig. 13d). The growth marks are best 

observed at the margins while they get more diffuse towards the interior centre of the bone. 

Thirteen cyclical growth marks extend parallel through the spiked plate from the apex to 

internal surface of the bone. Further sub-cycles are present within some of the thirteen well 
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developed growth marks, but they are not sufficiently clear to be counted properly. A single 

large vascular canal extends centrally from the internal bone surface towards the medial area 

of the apex (not visible in gross morphology because of the sedimentary cover attached to the 

bone). 

The tissue at the very top of the apex does not show any cyclical growth marks but consists 

of a loose meshwork of a few coarse subparallel bony struts that seldom branch. The almost 

vertically arranged struts extend from the external surface of the bone towards the first growth 

mark (Fig. 13b, c). The struts consist of mostly acellular parallel-fibred bone, although few 

flattened and elongated bone cell lacunae are present. The apical tissue is poorly vascularised 

by a few primary vascular canals that are associated with and follow the bony struts. A 

calcified cartilaginous tissue with a distinct fibrous texture completely fills in the spaces 

between the bony struts. In this tissue, large cells are arranged in diffuse rows. Many of the 

large cells are completely dark in normal transmitted and polarised light while others appear 

more translucent. In the majority of the translucent cells, small round black spherical 

structures are recognised. The calcified cartilaginous tissue in the apex occupies more space 

than the bony struts. 

From the onset of the first growth marks towards the internal bone surface, the bony struts 

are less coarse and become reduced in thickness and length compared to the apical struts (Fig. 

13e, f). Furthermore a differentiation in the arrangement of the struts between the interior 

bone tissue and the marginal bone tissue becomes obvious. The interior area of the spiked 

plate is composed of two sets of shorter bony struts being arranged in steep angles to each 

other and pointing towards the internal bone surface. In the marginal areas, however, the 

tissue is dominated by somewhat longer, fine bone struts that extend subparallel to the 

external bone surface. Similarly, the arrangement of the interstitial calcified cartilaginous 

matrix is less ordered in the medial areas and gets more ordered towards the margins of the 

plate. Medially, the fibrous calcified cartilaginous tissue forms an almost amorphous mass 

because of the shifting orientation between the two sets of bony struts. Towards the margins, 

the cartilage is arranged in rows or stringers parallel to the dominant direction of the bony 

struts and thus also subparallel to the marginal surface of the bone. The cells in the calcified 

cartilaginous tissue are of the same type already observed in the apical tissue. Using a lambda 

compensator in polarised light, fine delineations that are differently coloured due to changes 

in fibrous arrangement become apparent around the individual cartilage cells. Each of the two 
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opposite delineations of the cells has similar colourations, thus creating a distinct colour grid 

within the cartilage tissue. The amount of primary vascular canals and scattered primary 

osteons increases slightly from the apex towards the internal bone surface, resulting in an 

overall radial vascularisation pattern that has its focus in the apex of the spiked plate. 

Figure 13: Bone histology of small recumbent spike SMNS 91007 of Psephosaurus suevicus. 

(a) Complete thin-section of the specimen in normal light. (b) Close-up of the coarse apical 

calcified cartilaginous bone tissue and the more internal fine calcified cartilaginous bone 



Comparative bone histology of the turtle shell   
 

132 

tissue of the core of the plate. Note the growth mark separating both tissues. (c) Detail of the 

apical tissue showing the calcified cartilaginous matrix and the vertically arranged bone 

spiculae in polarised light. (d) Margin and interior part of recumbent spike showing several 

growth marks in polarised light (with lambda compensator). Detail of the fine calcified 

cartilaginous bone tissue of the core and the margins showing layers of fibrocartilage 

interspersed with thin bone spiculae in (d) normal and (e) in polarised light. 

 

5.3.2.2.2 Psephosaurus sp. (SMNS 91009) (†) 

The thin-section of the rhomboidal plastral plate (SMNS 91009) exhibits three areas of 

different tissue types: a) parallel-fibred bone with radial vascularisation, b) ordered calcified 

fibrocartilaginous tissue with spatially ordered bony struts and vascularisation and c) loose 

calcified fibrocartilaginous tissue with irregular short bony struts (Fig. 14a). 

The first tissue type comprises the margins as well as one flank and the apex of the off-

centred ridge of the plate, thus representing the majority of the external cortex that rests on 

the interior core of the plate (Fig. 14b). This tissue is characterised by parallel-fibred bone and 

cyclical growth marks that parallel the external bone surface. Fibre bundles that extend 

perpendicular to the external bone surface cross the parallel-fibred bone. Vascularisation of 

the parallel-fibred bone is achieved by anastomosing, radially arranged primary vascular 

canals and scattered primary osteons. The radial primary vascular canals extend roughly 

parallel to the perpendicular fibre bundles. The bone lamellae that directly surround the 

primary vascular canals often consist of lamellar bone that exhibits a slightly deviating fibre 

orientation from the interstitial parallel-fibred bone. Areas of secondary bone resorption and 

secondary osteons are not observed in the tissue. 

The second tissue type is found as a broad wedge in between the surrounding first tissue 

type described above (Fig. 14c). This tissue exhibits a calcified fibrocartilaginous matrix and 

a distinct radial orientation of bony struts and vascularisation, respectively. The fibrous 

cartilage cells show a slightly increased spatial organisation in being aligned parallel to the 

radially arranged primary vascular canals and the associated bony struts. While the struts are 

shorter and randomly arranged at the transition to the calcified cartilaginous tissue of the core 
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of the plate, their arrangement in the external cortex increasingly resembles the arrangement 

described for the first tissue type. 

The third tissue type is found in the interior center of the plate, and it extends to the internal 

surface of the plate, thus forming a low domed core (Fig. 14d). Few isolated large vascular 

cavities, all surrounded by lamellar bone, occur throughout the plate. The interior domed 

structure consists of calcified fibrocartilaginous matrix similar to the one described above for 

the specimen of P. suevicus. However, the cartilage cells are arranged to form a loose tissue 

without a dominant spatial arrangement. Within the calcified cartilaginous matrix, short thin 

bony struts are randomly arranged. The struts usually do not connect with each other and do 

not form a trabecular meshwork. Only in the more lateral areas of the core tissue, a few of the 

struts are more radially aligned. The bony struts are associated with short primary vascular 

canals and scattered primary osteons. Longer primary vascular canals are not observed in the 

tissue. 

Figure 14: Bone histology of the rhomboidal plastral armour plate SMNS 91009 of 
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Psephosaurus sp. (a) Complete thin-section of the specimen in normal light. (b) Close-up of 

the parallel-fibred bone and radial vascularisation pattern in region A of the external cortex in 

polarised light. (c) Transition between the parallel-fibred bone of region A and the ordered 

calcified fibrocartilaginous tissue and bone spiculae of region B in polarised light. (d) Detail 

of the calcified fibrocartilaginous tissue and loosely arranged bone spiculae of region C of the 

core of the plate in polarised light. 

 

5.3.2.2.3 Cf. Placochelys sp. (SMNS 91010) (†) 

The spiked plate consists of two areas with different tissue types (Fig. 15a). The first is a 

triangular area that extends from the apex to about one third of the external surface and about 

half of the length of the internal surface and consists of parallel-fibred bone with three major 

cyclical growth marks (Fig. 15b). The transition to the second area, that encompasses the rest 

of the plate to the oval excavated marginal side opposite of the apex, is slightly concave in the 

thin-section. The growth marks resemble thick, mainly avascular bone layers pervading the 

parallel-fibred bone. The vascularisation of the parallel-fibred bone, consisting of fine 

reticular anastomosing primary vascular canals, is thus restricted to the interstitial bone layers. 

The primary vascular canals that are arranged subparallel to the growth marks dominate the 

reticular pattern. The growth marks in the parallel-fibred bone parallel the internal surface of 

the spike in the apical part but deviate slightly towards internal in the median part of the 

spike, thus extending almost parallel to the transition line to the second tissue type. 

The second area, which comprises the rest of the spike, consists of a tissue type that is a 

mixture of calcified fibrous cartilage and bone. The tissue has a random matrix of large 

cartilage cells and isolated thin bony struts or trabeculae (Fig. 15c, d). The calcified 

cartilaginous matrix dominates in volume towards the apex, while the cartilage to bony struts 

ratio becomes somewhat more even towards the excavated surface opposite the apex. 

Apically, the struts gain a little in spatial orientation by increasingly extending subparallel to 

the external and internal bone surface. Towards the excavated surface opposite of the apex, 

the struts appear in a more random arrangement. The bony struts are associated again with 

primary vascular canals. Some of the primary vascular canals are still incompletely 

surrounded by lamellar bone, thus direct transitions between the cartilage matrix and primary 

vascular canals can occur (Fig. 15 d). The reticular vascularisation pattern of fine 
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anastomosing primary vascular canals observed in the area of bone tissue near the apex is not 

encountered in the cartilage tissue. However, the primary vascular canals anastomose and 

branch more frequently towards the excavated surface opposite of the apical region. 

Figure 15: Bone histology of the isolated procumbent spiked plate SMNS 91010 of cf. 

Placochelys sp. (a) Complete thin-section of the specimen in normal light. (b) Close-up of the 

parallel-fibred bone and growth marks of the region A in polarised light. Detail of the 

calcified fibrocartilaginous tissue of region B (near the base of the specimen) in (c) normal 

and (d) in polarised light. Note that bone spiculae and the primary vascular canals do not 

show only a minimum of spatial arrangement here.  
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5.3.2.2.4 Hexagonal/polygonal armour plates—Psephoderma sp. (NRM-PZ R.1759a) (†), 

Psephosaurus suevicus (MHI 1426/1-3) (†) and Psephosaurus sp. (SMNS 91008) (†) 

The plates of Psephoderma sp. (NRM-PZ R.1759a), Psephosaurus suevicus (MHI 1426/1-

3) and Psephosaurus sp. (SMNS 91008) all share bone histological characteristics (Fig. 16a-

d), thus they are described in one paragraph. Variation among the taxa is pointed out where 

appropriate. Although it differs slightly in its outer shape, the procumbent spiked plate of P. 

suevicus (MHI 1426/1) is included here too, because it still retains a roughly hexagonal 

internal bone surface (Fig. 16d). The hexagonal/polygonal plates consist of external cortical 

bone, distinct marginal areas, and an internal bone tissue including the central core of the 

plate and the bone towards the internal surface of the plate. A clear distinction into interior 

bone and a separate internal cortex is not possible. A well defined cancellous bone, extensive 

secondary remodelling and calcified fibrous cartilaginous tissue were not encountered in the 

bony plates. 

External cortex and lateral margins—The bone tissue of the external cortical bone and the 

lateral margins consists of intergradations of parallel-fibred bone and lamellar bone with some 

weakly developed growth marks (Fig. 16e, f). Where the external surface of the bony plates 

meets the plate margins, the growth marks of the external cortex deviate towards the internal 

bone surface and continue parallel to the sutures into the margins of the plate. Shortly after 

the deviation, however, it becomes increasingly difficult to follow the trend of the growth 

marks. Thin fibre bundles that are arranged perpendicular or at steep angles to the external 

bone surface cross the external cortical bone. Towards the margins, the fibre bundles insert 

more diagonally into the bone tissue and curve slightly towards the interior core of the plate. 

The vascularisation consists mainly of primary vascular canals and, to a limited extend, 

scattered primary osteons and small erosion cavities. 

Interior core and internal cortex—From the more strongly vascularised core, numerous 

primary vascular canals radiate outwards towards the surfaces of the bone (Fig. 16a, c, g, h). 

Those radiating canals that extend towards the external and internal cortical bone dominate 

the vascularisation pattern. The vascularisation pattern appears as an hour-glass structure of 

two vascularised conical areas surrounded by less vascularised areas that extend towards the 

plate margins. The less vascularised marginal areas thus resemble a “ring” around the more 

vascularised conical areas. The interior core and the internal part of the bony plate consist of a 
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tissue of randomly arranged fibre bundles. However, fibre bundles that extend from slightly 

external of the centre of the armour plate (see vascularisation pattern above) towards the 

external and internal corners of the plate dominate the hourglass-shaped areas that show the 

strong radial vascularisation. The coarse fibre bundles of the interior core thus generally 

mirror the arrangement of the primary vascular canals. These coarser fibre bundles normally 

do not extend into the external cortex and the cortical bone of the margins. Cross-sections 

through the fibre bundles reveal that the fibre bundles are about 0.35-0.4 mm in diameter and 

that they are composed of single collagen fibre strands (0.02-0.025 mm in diameter). 

Centres of growth—The centre of the radiating vascularisation pattern is not always in the 

very centre of the plate. Instead, the focus of the radiating pattern is slightly shifted towards 

the external cortical bone in NRM-PZ R.1759a of Psephoderma sp. (Fig. 16a), while it is 

shifted towards internal in SMNS 91008 of Psephosaurus sp. (Fig. 16b). In MHI 1426/1 of P. 

suevicus, the focus is shifted laterally towards the margin internal to the off-center apex of the 

plate (Fig. 16d). These configurations result in disparate distributions of vascular spaces, in 

that the conical areas extending towards the external and internal bone surface vary in size. 

The vascularisation pattern does not change from the interior core towards the internal bone 

surface, apart from a minor overall reduction in the amount of primary vascular canals. 

Sutures—The sutured plate margins comprise numerous sockets and bone pegs of various 

lengths into which the fibre bundles protrude. The sutural relief is generally low, although 

occasionally bony pegs interdigitate more strongly with adjacent armour plates (Fig. 16a-d). 

Fibre bundles are found that extend perpendicular into the sutural bone tissue. 
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Figure 16: Bone histology of hexagonal/polygonal armour plates of cyamodontoid 

placodonts. (a) Section of sutured polygonal plate NRM-PZ R.1759a of Psephoderma sp., (b) 

isolated hexagonal flat plate SMNS 91008 of Psephosaurus sp., (c) isolated small hexagonal 

plate MHI 1426/3 and (d) procument spiked plate MHI 1426/1 of Psephosaurus suevicus in 

normal light. Close-up of the parallel-fibred bone of the external cortex and Sharpey’s fibres 

of NRM-PZ R.1759a in (e) normal and (f) polarised light. Detail of fibre bundles and radially 

arranged primary vascular canals of the interior core of the same specimen in (g) normal and 

(h) polarised light. 
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5.3.3 Eureptilia (Lepidosauria) 

5.3.3.1 Literature data on osteoderm bone histology of Anguis fragilis and Tarentola 

mauritanica 

Description of bone histological data of lepidosaur osteoderms is yet quite rare (e.g., 

Moss, 1969; Moss, 1972; Zylberberg and Castanet, 1985; Levrat-Calviac and Zylberberg, 

1986). The osteoderms are mostly diminutive dermal structures, thus size effects alone can 

introduce uncertainties in histological comparison (e.g., absence of cancellous bone). Anguis 

fragilis and Tarentola mauritanica trunk osteoderms are divided into an internal layer and an 

partially sculptured external layer (Zylberberg and Castanet, 1985; Levrat-Calviac and 

Zylberberg, 1986). As preformed soft connective tissue is metaplastically ossified, the basal 

dense layer denser retains the structure of the deep dermis, while the external layer constitutes 

the structure of loose superficial dermis (Maderson, 1964; Zylberberg and Castanet, 1985). 

Both layers retain a lamellar structure in the bone. 

 

5.3.4 Eureptilia (Archosauromorpha) 

Only the osteoderm bone histology of the basal archosaur cf. Mystriosuchus sp. 

(Parasuchia), the thalattosuchian Steneosaurus sp. and the derived eucrocodilian 

Diplocynodon sp. is described and discussed below. For a detailed morphological and bone 

histological description of osteoderms of other archosaur taxa, please refer to Scheyer and 

Sander (2004). 

 

5.3.4.1 Osteoderms of Mystriosuchus sp. (†), Diplocynodon sp. (†) and Steneosaurus sp. 

(†) 

The osteoderms of cf. Mystriosuchus sp., Diplocynodon sp. and Steneosaurus sp. consist of 

well developed cortices and a small vascular interior core reminiscent of a flat diploe structure 

(Fig. 17 a-c) see also Hua and Buffrénil, 1996). The unbroken margins of the sampled 
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osteoderms are smoothly rounded and not sutured. The bone microstructures seen in 

Steneosaurus sp. (Fig. 17b) generally validate the results of Hua and Buffrénil (1996). 

External cortex—The external cortex consists of parallel-fibred bone that can locally grade 

into lamellar bone (Fig. 17d). Towards the cancellous bone, a transition to ISF is observable 

(Fig. 17d, e). The cortices completely surround an area of interior metaplastic cancellous 

bone. Growth marks are well visible throughout the cortex. The external bone surface is 

convex and strongly sculptured. In Steneosaurus sp. and Diplocynodon sp., the external 

surface sculpture consists of circular to ovoid pits. In Steneosaurus sp., the pits are arranged 

in a lightly radiating pattern. Bone erosion occurs at the lateral margins of the pits while new 

bone is laid down at the medial margins (see also Buffrénil, 1982; Scheyer and Sander, 2004). 

In cf. Mystriosuchus sp., the external surface sculpture consists of mediolateral low ridges that 

are elevated structures because of increased bone deposition compared to the adjacent bone 

tissue. Vascular striation on the external bone surface is faint in Diplocynodon sp., and clearer 

but unordered in cf. Mystriosuchus sp. Sharpey’s fibres occur all over the cortical bone but 

they are most frequent in the internal cortex. Sharpey’s fibres appear less ordered in 

parasuchians compared to those in the crocodilian osteoderms. 

Cancellous bone—The cancellous bone is composed of few unordered, primary short and 

stout trabeculae and scattered secondary osteons (Fig. 17a-d). The osteoderms appear massive 

with medium interior vascularisation. In Steneosaurus sp., interior vascularisation is low, 

consisting of small vascular spaces, while larger trabeculae are absent. The vascularisation in 

cf. Mystriosuchus sp. is dominated by reticular primary vascular canals that anastomose 

frequently and extend sub-perpendicular and sub-parallel to the bone surface. In 

Diplocynodon sp., the arrangement of primary vascular canals is more scattered. 

Internal cortex—The internal cortex is mostly a flat to convex layer of parallel-fibred bone 

(Fig. 17f, g). In the parasuchian and in Diplocynodon sp., the internal cortex is well developed 

and numerous Sharpey’s fibres insert into the internal cortical bone in oblique angles. In 

Steneosaurus sp., the cortical bone is even thicker, spanning about half of the osteoderm 

thickness. However, Sharpey’s fibres are not as obvious in this taxon (Fig. 17f). 

Vascularisation of the internal cortex is achieved by primary vascular canals and few scattered 

primary osteons. Growth marks are clearly visible throughout the cortex (Fig. 17g). 
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Variation—The osteoderm of Steneosaurus sp. has the least amount of interior bone 

vascularisation and the thickest cortical bone of the three taxa. The osteoderm sampled for the 

current study is even more compact (due to the very thick internal cortex) than the osteoderm 

sampled by Hua and Buffrénil (1996), which measured an overall bone volume of 61% for 

their osteoderm. 

Figure 17: Bone histology of archosaur osteoderms (cf. Mystriosuchus sp., Diplocynodon sp. 
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and Steneosaurus sp.) (a) Keeled osteoderm fragment SMNS 91013 of cf. Mystriosuchus sp. 

and (b) flat pitted osteoderm NMS 7152 of Steneosaurus sp. (c) Close-up of the lateral part of 

SMNS 91013, with weakly vascularised cortices framing a more strongly vascularised 

intertior bone tissue in polarised light (with lambda compensator). (d) Detail of external 

cortex and interior cancellous bone parasagittal to the keel of the former specimen in 

polarised light. Note transition between more external parallel-fibred bone and the more 

internal ISF. (e) Detail of the ISF of the interior part of the external cortex of the former 

specimen in polarised light. (f) Detail of the internal cortex of NMS 7152. Note insertion of 

Sharpey’s fibres. (g) Detail of the internal cortex of SMNS 91013 showing parallel-fibred 

bone and primary vascular canals. 
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6. Bone histological results of Testudinata 

To quickly assess the nature of the sampled bones, fossil turtle taxa are marked by a cross in 

parentheses (†) behind the names in the respective headings. Descriptions of the abbreviations 

used in the text and figures are compiled in Appendix 2. 

 

6.1 Basal Testudinata 

6.1.1 Proganochelyidae 

6.1.1.1 Proganochelys quenstedti Baur, 1887 (†) 

All sampled shell bones of P. quenstedti show similar bone histologies. However, because 

the material of Halberstadt presented the best bone preservation, the histological data strongly 

relied on observations from the Halberstadt material instead of the Trossingen material. All 

elements have a diploe structure, where external cortices and internal cortices frame interior 

cancellous bone (Fig. 18a). The shell bones appear quite robust with external and internal 

cortices having similar thicknesses. 

External cortex—The external cortex consists of ISF, the metaplastically ossified parts of 

the integument, which are strongly dominated by fibre bundles that extend perpendicular or in 

high angles to the surface of the bone (Fig. 18b, c). The bone tissue is vascularised with few 

scattered primary osteons and primary vascular canals. Sharpey’s fibres inserting into the 

external cortex are present and, due to higher mineralisation, separable from the surrounding 

fibre bundles of the ISF. Cyclical growth marks are present but too poorly developed in the 

external cortex to be countable. Few secondary osteons appear at the transition between 

external cortex and cancellous bone. 

Cancellous bone—The cancellous bone is characterised by short secondarily remodelled 

trabeculae and moderate vascularisation with small marrow cavities (Fig. 18d). Primary 

interstitial bone is still present within the trabeculae. The secondary lining of the trabeculae 

consists of lamellar bone. The bone cell lacunae are plumper and of circular shape in the 

interstitial bone, while they are flattened and elongated in the lamellar bone of the trabeculae. 
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The flattening and elongation of the bone cell lacunae is usually attributed to slower bone 

deposition rates, i.e., in lamellar bone. 

Figure 18: Shell bone histology of Upper Triassic basal turtle Proganochelys quenstedti. (a) 

Section of costal MB.R. 3449.2 showing the compact diploe structure of the bone in normal 

light. Close-up of external cortex of in (b) normal transmitted and in (c) polarised light. Note 

differences between Sharpey’s fibres and interwoven structural fibre bundles. (d) 

Magnification of the interior cancellous bone of former specimen. Close-up of transition of 
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interior cancellous bone to compact internal cortex of the former specimen in (e) normal and 

(f) polarised light. Note the avascular parallel-fibred bone of the internal cortex. 

 

Internal cortex—The internal cortex comprises parallel-fibred bone (Fig. 18e, f) that locally 

grades into lamellar bone. Fibre bundles are rather fine and of similar length and thickness. 

Coarser fibre bundles that may represent Sharpey’s fibres are only found directly adjacent to 

the incorporated rib of the costal plate. The bone tissue is mainly avascular. 

Sutures—Sutures were not preserved in the samples from Halberstadt and Trossingen. In 

the following chapters, sutures will only be described if they are suitably preserved in the 

specimens. 

 

6.1.2 Proterochersidae 

6.1.2.1 Proterochersis robusta Fraas, 1913 (†) 

A well developed diploe is present in both samples of P. robusta. The external and internal 

cortices that frame the interior cancellous bone are of similar thickness. Because of the 

fragmentary nature of the samples, the plate margins and sutures could not be studied. 

External cortex—The external surfaces of the shell elements are slightly rugose. The 

external cortex consists of metaplastic ISF. Directions of the fibre bundles within the ISF are 

either perpendicular and sub-parallel to the external surface of the bone or diagonally angled. 

None of the differently spatially arranged fibre bundles is dominant within the ISF, thus the 

bone matrix of the external cortex is rather homogeneously built. Vascularisation occurs 

through scattered primary osteons and irregularly extending primary vascular canals. In the 

plastral fragment, the primary vascular canals that are angled towards the external surface of 

the bone dominate the vascularisation. The primary vascular canals can reach the external 

bone surface in a pore-like foramen. Few scattered large secondary osteons appear in the 

transition to the interior cancellous bone. Sharpey’s fibres are found only in the internal part 

of the external surface of the peripheral where the straight proximal shaft starts to thicken into 



Comparative bone histology of the turtle shell   
 

146 

the distal bulge. Here the homogeneous pattern of the ISF is overlain by sub-parallel coarse 

fibre bundles, i.e., the Sharpey’s fibres that insert into the external cortex at high angles. Bone 

cell lacunae appear mostly irregularly arranged or clustered within the ISF. 

Cancellous bone—The interior cancellous bone consists of irregular bone trabeculae and 

vascular spaces with generally uniform size. Occasionally, adjacent vascular spaces fuse to 

form larger, oblong spaces. The trabeculae are rather short if slender. Primary interstitial bone 

is still present in many trabecular branching areas. The trabeculae themselves usually 

constitute lamellar bone and occasionally parallel-fibred bone. Bone cell lacunae are more 

scattered and of circular shape in the primary bone, while they are more elongated and 

flattened in the lamellar bone of the trabeculae. 

Figure 19: Shell bone histology of Upper Triassic basal turtle Proterochersis robusta. (a) 

Magnification of the external cortex of sampled peripheral (SMNS 16442) in normal light. (b) 

Close-up of the interwoven structural fibre bundles of the external cortex of the former 

specimen in polarised light. The bone tissue is vascularised by scattered primary osteons and 

primary vascular canals. (c) Close-up of the interior cancellous bone in polarised light (with 
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lambda compensator). Bone trabeculae are primary but lined with secondary lamellar bone. 

(d) Magnification of the internal cortex of the plastron fragment (SMNS 16442; ?hyo- or 

hypoplastron) in polarised light. Note the thin reticular vascularisation pattern with an opaque 

mineral infill (pyrite). 

 

Internal cortex—The thick internal cortex of the plastral fragment consists of parallel-fibred 

bone. The bone tissue is vascularised by a reticular primary vascular canal pattern. This 

pattern is well observable because the primary vascular canals have an opaque mineral infill, 

i.e., pyrite. Primary and secondary osteons are absent. Flattened and elongated bone cell 

lacunae are found throughout the internal cortex. Communicating canaliculi between the cell 

lacunae are often found. The internal cortex was not observable in the peripheral fragment. 

 

6.1.3 Kayentachelyidae 

6.1.3.1 Kayentachelys sp. (†) 

All shell elements of Kayentachelys sp. show a diploe structure with external and internal 

cortices framing interior cancellous bone (Fig. 20a). Both cortices are of similar thickness. 

The proximal costal fragment (UCMP V85010/150228) is strongly altered by diagenesis and 

histological details are almost completely obscured in the thin-section. The description of the 

following histology is thus based largely on the remainder of the sample. 

External cortex—The external cortex consists of metaplastic ISF (Fig. 20b). Fibre bundles 

that extend perpendicular and sub-parallel to the external surface of the bone dominate the 

ISF, however fibre bundles that are diagonally angled are also present. Vascularisation of the 

tissue is achieved by few primary vascular canals and scattered primary osteons. The latter are 

arranged predominantly perpendicular towards the external surface of the bones. Many of the 

primary vascular canals open up to the bone surface as small foramina, thus further enhancing 

the rugose texture of the shell bones. The primary vascular canals seldom branch. Bone cell 

lacunae are either round or oblong, but little flattened in the ISF. 
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Cancellous bone—The bone trabeculae of the cancellous bone are primary, although 

successive remodelling occurs. The arrangement of the bone trabeculae and vascular spaces is 

irregular. The trabeculae are mostly short and thick; the vascular spaces rather small. Only in 

the centre of the cancellous bone, larger vascular spaces are developed through trabecular 

remodelling (Fig. 20c). Interstitial trabecular branching areas and, sometimes, part of the 

trabeculae themselves still exhibit primary interwoven bone tissue, i.e., ISF. Most of the 

trabeculae however, have a wall of secondary lamellar bone. 

Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 20d). The bone 

tissue is less vascularised than the external cortex. Locally, few scattered primary vascular 

canals are present in the otherwise avascular tissue. Bone cell lacunae can be, as observed in 

the plastral fragment (UCMP V85013/150229), extremely flat and elongated where they 

occur sheet-like within the parallel-fibred bone. In the neural (TMM 43669-4.2), directly 

lateral to the incorporated neural spine, the internal cortex thickens to a semicircular patch of 

parallel-fibred bone. Here, Sharpey’s fibres insert at high angles into the bone tissue. 

Figure 20: Shell bone histology of Lower Jurassic basal turtle Kayentachelys sp. (a) Thin-



Bone histological results of Testudinata 
 

 149

section of plastron fragment UCMP V85013/150229 in polarised light. (b) Close-up of the 

interwoven structural fibre bundles of the external cortex of the former specimen in polarised 

light. (c) Close-up of the more slender trabeculae of the centre of the interior cancellous bone 

of peripheral UCMP V82319/130079 in normal transmitted light. (d) Magnification of the 

weakly vascularised parallel-fibred bone of the internal cortex of plastron fragment UCMP 

V85013/150229 in polarised light. 

 

6.1.4 Meiolaniidae 

6.1.4.1 Meiolania sp. (†) 

The shell element shows a diploe structure with well developed cortical bone layers framing 

interior cancellous bone. Based on the histological congruence of the cortical bone layers, the 

shell element is identified as a peripheral fragment. Only the external cortex and the 

cancellous bone can be described from the specimen, whereas the internal cortex was not 

preserved in the specimen. 

External cortex—The external cortex consists of metaplastic ISF (Fig. 21a, b). The fibre 

bundles that extend perpendicular, sub-parallel and angled to the bone surfaces are of equal 

length and diameter, giving the ISF a homogeneous constitution. Orientation of the 

collagenous fibres within the fibre bundles, and thus the bone apatite crystallites, is parallel. 

Growth marks are found throughout both (dorsal and ventral) external cortical layers. At least 

ten major growth cycles are counted and several of these major ones also show fainter 

subdivisions. Vascularisation is low to moderate with primary osteons and primary vascular 

canals. Most of the primary osteons and primary vascular canals occur sheet-like within 

growth cycles (they appear as if they were strung on a chain in cross-section), while some of 

the primary vascular canals do extend across growth marks. Sharpey’s fibres were not 

observed within the interwoven bone tissue of the external cortex. 

Cancellous bone—Trabeculae are short and thick at the transition to the external cortex. 

They become longer and more gracile towards the centre of the cancellous bone. The 

arrangement of the trabeculae is irregular (Fig. 21c, d). Vascular spaces are small and circular 

shaped and increase in size towards the centre of the cancellous bone. Here the form and 
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shape of the vascular spaces also becomes increasingly irregular. The trabeculae are 

composed of lamellar bone. Only in branching areas, primary ISF is still present. 

Figure 21: Shell bone histology of Meiolania sp. Close-up of the external cortex of peripheral 

fragment MB.R. 2426.1 in (a) normal and (b) in polarised light. Note the growth marks of the 

interwoven bone tissue. Close-up of the bone trabeculae of the interior cancellous bone in (c) 

normal transmitted light and (d) in polarised light. 
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6.2 Pleurodira 

6.2.1 Platychelyidae 

The sampled material represents two morphotypes. The smaller morph is represented by the 

material of aff. Platychelys sp. from Portugal (histomorph A). The larger one includes the 

material of P. oberndorferi from Switzerland (histomorph B). Besides the differences in shell 

element size and bone thickness, major distinctions between the two morphs are found in the 

vascularisation of the bone tissues and in the expression of different bone tissues in the 

external cortex. 

 

6.2.1.1 Histomorph A: aff. Platychelys sp. (†) 

The fragments generally show thicker external cortices and thinner internal cortices framing 

an interior cancellous bone. 

External cortex—The external cortex of all elements ranges between 0.6-1.0 mm and the 

internal cortex of the costals ranges between 0.2-0.3 mm. The external cortex consists of a 

more external and a more interior zone. The external zone constitutes a finely fibred bone 

matrix where vertical fibre bundles that stand perpendicular to the bone surface predominate 

(Fig. 22a, b). Superficially, the matrix itself resembles typical parallel-fibred bone. On closer 

inspection, however, it is identified as a metaplastic tissue of ISF. The fibre bundles extend 

not only sub-parallel and perpendicular but also at high angles to the external bone surface, 

thus creating a interwoven meshwork of fibre bundles. Bone cell lacunae are small and of 

circular to oval shape here. Growth marks usually occur in this more external zone (Fig. 22b) 

and at the sutured margins of the shell elements. The more interior zone of the external cortex 

exhibits coarser and thicker fibre bundles while the perpendicular fibre bundles that 

dominated the more external zone are not recognised anymore. The coarser fibre bundles 

trend diagonally, as well as perpendicular and parallel to the external bone surface (Fig. 22b). 

However, the whole arrangement of fibre bundles is not as ordered as in the more external, 

fine fibred zone. The bone cell lacunae are thicker and of ovoid to circular shape in the 

interior zone. The vascularisation is dominated by primary vascular canals that are orientated 
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dorsoventrally and seldom branch. Primary osteons are scattered between these primary 

vascular canals. Towards the lateral sutures of the bones, the horizontal growth marks of the 

external cortex deviate and continue in vertical orientation, subparallel to the bone suture. The 

bone tissue of fine fibre bundles is similar to the external zone in the external cortex, but no 

fibre bundles that trend perpendicular to the bone surface are present. Sharpey’s fibres are 

also absent. 

Cancellous bone—The primary cancellous bone, framed by the thicker external cortex and 

the thinner internal cortex, is locally completely remodelled. However, primary bone tissue, 

sometimes vascularised by primary osteons, is still visible in interstitial areas of many 

trabeculae (Fig. 22c). The bone trabeculae appear slender and are lined with lamellar bone. 

Elongated and flattened bone cell lacunae follow the direction of these lining bone lamellae, 

while the cell lacunae are plump and of circular shape in the interstitial areas. Patches of ISF 

can be present at the transition to the internal cortex. 

Internal cortex—The internal cortex of the costal fragments consists of parallel-fibred bone, 

where areas of coarse fibre bundles, i.e., ISF, interdigitate with areas of finer fibre bundles 

(Fig. 22d). The direction of the fibre bundles is subparallel or moderately angled to the 

interior bone surface. Bone cell lacunae are sparsely distributed, flattened, elongated and 

devoid of canaliculi. 
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Figure 22: Shell bone histology of aff. Platychelys sp. Section of the external cortex of 

peripheral fragment GUI-CHE-52 in (a) normal transmitted and (b) in polarised light. Note 

the clear distinction between the more external zone with growth marks and the more internal 

coarse-fibred zone. (c) Close-up of the irregular primary bone trabeculae of the cancellous 

bone of GUI-CHE-52 in polarised light where primary trabeculae are lined with secondary 

lamellar bone. (d) Section of the internal cortex of costal fragment GUI-CHE-51 seen in 

polarised light. Note interwoven structural fibre bundles interdigitating with layers of parallel-

fibred bone. 

 

 

6.2.1.2 Histomorph B: Platychelys oberndorferi Wagner, 1853 (†) 

The carapacial fragments generally show thicker external cortices and thinner internal 

cortices framing an interior part of cancellous bone. In the sampled hypoplastron however the 
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external cortex and the internal cortex are of similar thickness. Typical for the shell of 

Platychelys are the humps and ridges that are also very clearly recognised in the thin-sections. 

External cortex—Histomorph B lacks the distinction of the external cortex in a more 

external and a more internal zone. Instead, the more external zone of histomorph A is missing 

completely. The external cortex thus resembles only the more internal zone of histomorph A, 

but the fibre bundles are more evenly distributed and not as coarse (Fig. 23a, b). 

Vascularisation of the external cortex with scattered primary osteons and primary vascular 

canals is higher than in histomorph A. Especially the primary osteons can occur as orderly 

aligned rows through the successive layers of the external cortex. 

Cancellous bone—The cancellous bone is almost completely remodelled with only few 

areas where primary bone tissue is still preserved. The cancellous bone thus superficially 

resembles that of histomorph A. However, the trabeculae in histomorph B can be more evenly 

distributed to form regular, similar sized cavities (Fig. 23c). Towards the internal zone of the 

external cortex, the cancellous bone grades into scattered secondary osteons. 

Internal cortex—The internal cortex ofhistomorph B consists of parallel-fibred bone (Fig. 

23d). Similar to histomorph A, coarser fibre bundles interdigitate with areas of finer fibre 

bundles, and the direction of the fibre bundles is largely subparallel to the interior bone 

surface. 

Variation—In this morphotype, light variation in the bone microstructure is present but 

restricted to the external cortex. The thickness of the external cortex varies in thickness. In the 

costals and peripherals, the thickness of the external cortex is influenced by the occurrence of 

the characteristic humps of the shell bones. The interior cancellous bone can also be locally 

thickened in the region of the humps. 
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Figure 23: Shell bone histology of Upper Jurassic Platychelys oberndorferi. Section of the 

well vascularised external cortex of the costal NMS 20076 in (a) normal transmitted and (b) 

in polarised light. (c) Section of the former specimen showing the transition from the external 

cortex to the interior cancellous bone in normal light. Note the ordered arrangement of bone 

trabeculae and vascular cavities of the cancellous bone. (d) Close-up of transition from 

cancellous bone to internal cortical bone in polarised light. 

 

6.2.2 Pelomedusidae 

6.2.2.1 Pelomedusa subrufa (Bonnaterre, 1789) 

The samples of P. subrufa have a diploe build with well-developed cortices and interior 

cancellous bone (Fig. 24a, b). Below thin layers of keratin that compose the shield cover and 

a very thin layer of unossified tissue, the surface of the underlying bone is slightly pitted. 

Cyclic growth is also present in the keratinous shield. Instead of following the pitted course of 

the bone, the unossified tissue expands into the pits and fills them. 
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External cortex—The external cortex expresses a few weakly developed growth marks. It is 

composed of interwoven collagenous fibre bundles regularly interspersed with primary 

osteons (Fig. 24c). Scattered secondary osteons are seldom found. Fibre bundles 

perpendicular to the bone surface can be found throughout the external cortex. They are most 

clearly visible right below the border where bone meets connective tissue. The orientation of 

the fibre bundles is predominantly subparallel or diagonal to the external surface of the bone. 

Bone cell lacunae are mostly round to slightly elongated and they usually do not bear any 

canaliculi. 

Cancellous bone—The interior cancellous bone consists of bone trabeculae and patches of 

interstitial primary bone that are still quite large. The trabeculae are lined with thin secondary 

lamellar bone (Fig. 24b). Bone cell lacunae are plump and round in shape in the interstitial 

areas and slightly elongated within the bone lamellae. 

Figure 24: Shell bone histology of Pelomedusa subrufa. Thin-section of a sampled costal 

(MVZ 230517, drilled core) and associated keratinous shield in (a) normal light and (b) in 

polarised light. The diploe build of the shell is apparent below the keratinous shield. Note thin 

layer of connective tissue in between the shield tissue and the bone tissue. The plane of 
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sectioning lies perpendicular to the incorporated rib in the costal. The former rib is only seen 

as a dorsoventrally thickened amount of cancellous bone and the slight curvature of the 

internal cortex. (c) Detail of the external cortex of the costal in polarised light where the 

interwoven fibre bundles are interspersed with primary osteons. Bone cell lacunae that appear 

within the whole of the cortical bone have round shapes. (d) Detail of the parallel-fibred bone 

of the internal cortex of the same specimen. Below the surface of the bone, a thin layer of 

fibrous connective tissue is still present. 

 

Internal cortex—The internal surface of the bone is covered with a thin layer of soft 

connective tissue. The internal compact bone itself is mostly avascular and constitutes 

parallel-fibred bone tissue (Fig. 24d). Bone cell lacunae in the interior cortical bone are rather 

flat and elongated and mostly follow the layering of the bone. 

 

6.2.3 Bothremydidae 

6.2.3.1 Bothremys barberi (Schmidt, 1940) (†), Taphrosphys sulcatus (Leidy, 1856a) (†) 

and of “Foxemys cf. F. mechinorum” Tong et al., 1998 = Polysternon mechinorum (Tong 

et al., 1998) fide Lapparent de Broin (2001) (†) 

The bone histology of these three taxa is rather similar which is why they are described 

together. In all samples of B. barberi, T. sulcatus and “Foxemys cf. F. mechinorum”, the 

internal cortices are significantly thinner than the external cortices (Fig. 25a, b). A 

symmetrical diploe build of the bony shells in which the cortices have rather similar 

thicknesses, is not developed. 

External cortex—The massive external cortex of all sampled elements is composed of ISF 

(Fig. 25c, d). Cyclical growth marks are best preserved in the neurals. In the neural of T. 

sulcatus, about 20 growth marks were counted (Fig. 25c). The neural of B. barberi has a 

minimum number of nine growth marks (Fig. 25d) and the neural of “Foxemys” has six 

growth marks. Several shell elements of T. sulcatus further show a peculiar bone tissue within 

the external cortices where, locally, the growth marks of the primary bone tissue of the 
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cortices were substituted by secondary bone tissue. Here, the secondary bone appears in an 

inverted triangular-shaped or hemispherical area with a reticular vascularisation pattern. The 

bone surface directly above the peculiar bone tissue often has a pitted or rugose texture. The 

fibrous tissue of the external cortices is dominated by diagonally arranged collagen fibre 

bundles. Irregularly arranged primary osteons are commonly found throughout the external 

cortex. Additionally, collagenous fibre bundles that trend perpendicular to the bone surface 

are incorporated in all layers of the external cortices. Scattered secondary osteons are also 

present, but they are restricted to the interior-most layer of the external cortex. No secondary 

osteon clusters were found. Primary canals comprise either single or branching tubules that 

often point towards the external surface of the bone. Bone cell lacunae are slightly elongated 

in the external-most layers of the external cortex and more round towards the cancellous 

bone. 

Figure 25: Shell bone histology of bothremydid taxa. (a) Complete section of the neural YPM 

40288 of Taphrosphys sulcatus in normal transmitted light. (b) Part of thin-section of the 

plastron fragment (?hyo- or hypoplastron; IPB R559a) of “Foxemys cf. F. mechinorum” in 
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normal transmitted light. In both cases, the internal cortex is reduced compared to the external 

cortex. (c) Close-up of the external cortex and the more external part of the cancellous bone of 

the neural YPM 40288 in normal light. Note the clear growth marks of the cortical bone 

tissue. (d) Close-up of the interwoven structural fibres of the external cortex of the costal FM 

P 27406 of Bothremys barberi in polarised light. (e) Close-up of the parallel-fibred bone of 

the internal cortex of neural YPM 40288. Note Sharpey’s fibres inserting into the parallel-

fibred bone. 

 

Cancellous bone—The trabeculae of the interior cancellous bone are composed of 

secondary lamellar bone with remnants of primary fibrous tissue restricted to interstitial areas 

of the trabeculae (Fig. 25c, e). Bone cell lacunae are common in the interstitial areas and 

rather sparsely distributed in the secondary lamellar bone of the trabeculae. 

Internal cortex—The internal cortices are usually composed of a thin zone of parallel-fibred 

bone (Fig. 25e). Secondary osteon clusters are not developed in the internal cortices. 

Sharpey’s fibres extend obliquely towards the surface of the bone in the internal cortices of 

both neurals and costals of T. sulcatus and B. barberi. 

 

6.2.4 Podocnemidae 

6.2.4.1 cf. Bairdemys sp. (†) 

The mineral crust covering the bone of the single studied specimen of cf. Bairdemys sp. has 

also strongly affected the bone histology. The thin-section reveals that the bone is well 

preserved only in the interior part of the shell bone element. The external and internal surfaces 

of the shell element consist almost exclusively of gypsum and, to a small degree, iron oxide 

minerals. A diploe is not observed, because a clear internal cortical bone is not preserved due 

to weathering and erosion. 

External cortex—The external cortex is only locally unaltered internal to the mineral crust 

(Fig. 26a). Parts of the original cortical bone were delaminated by the gypsum minerals and 
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now seem to “float” in the mineral crust. The external surface of the bone appears thus 

scalloped. However, where the preservation of bone tissue is better, the cortex constitutes ISF. 

The arrangement of the fibre bundles in the ISF is homogeneous, with fibre bundles being of 

similar diameter and length. The fibre bundles extend perpendicular, parallel and oblique to 

the external surface of the bone. The bone tissue is vascularised by few scattered primary 

osteons and short primary vascular canals. Few larger erosion cavities open up into the 

cortical bone, again indicating that part of the external bone cortex is missing (bone fragments 

that now “float” in the mineral crust). Bone cell lacunae are irregularly spaced in the bone 

tissue. Their shape ranges from circular to ellipsoid and slightly flattened. 

Cancellous bone—The interior cancellous bone consists of irregularly arranged bone 

trabeculae and vascular cavities (Fig. 26b). The trabeculae are short and primary interstitial 

bone, i.e., ISF, is present in trabecular branching areas. The trabeculae themselves consist of 

lamellar bone. The cavities are mostly homogeneous in shape. Most are of round to elongate 

ellipsoidal shape. A small increasing gradient in size of the cavities is observed from external 

to internal. At the internal surface of the bone, the trabecular structure is partly fractured and 

collapsed. However, the gross part of the trabeculae is not collapsed and thus shows the 

original irregular orientation within the bone. True compact bone is not preserved internal to 

the interior cancellous bone. 

Figure 26: Shell bone histology of cf. Bairdemys sp. (a) Close-up of the strongly encrusted 

and eroded external cortex of shell fragment (?costal; UNEFM uncat.) in normal light. Note 

the clear growth marks of the cortical bone tissue. (b) Close-up of the irregularly arranged 

bone trabeculae of the cancellous bone of the former specimen. 
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6.2.4.2 Podocnemis erythrocephala (Spix, 1824) 

All sampled shell elements of P. erythrocephala have a clear diploe with internal and 

external compact bone layers of similar thickness enclosing a cancellous interior (Fig. 27a). 

External cortex—The external cortices of the elements are composed of ISF with numerous 

growth marks (Fig. 27b). Primary and scattered secondary osteons range throughout the 

whole of the external cortex, but the overall amount of both osteon types decreases towards 

the external surface of the bone. The arrangement of the fibre bundles within the external-

most part of the external cortex is not well structured. The fibre bundles trend in an irregular 

fashion, with the majority being orientated diagonally towards the surface of the bone. 

Throughout the whole of the external cortex, extensive fibre bundles that extend 

perpendicular to the bone surface can be observed. The external part of the cortex is 

avascular. Bone cell lacunae are elongated and flattened and most have long canaliculi. The 

external cortex of the sampled costal further exhibits an inverted semicircular patch of 

secondary remodelled bone (Fig. 27b, c, d). Here, no growth marks within the external 

cortical bone are observed and the surface of the bone is indented and rugose. 

Cancellous bone—The cancellous bone is dominated by short secondary trabeculae, lined 

with centripetally deposited lamellar bone (Fig. 27a). Elongated and flattened bone cell 

lacunae that lack canaliculi are abundant within the trabecular bone lamellae. The cancellous 

bone is replaced by scattered secondary osteons. 

Internal cortex—The internal cortex of the shell elements of P. erythrocephala consist of 

lamellar bone with growth marks that, under polarised light, show a very distinct light and 

dark layering (Fig. 27e, f). Towards the interior cancellous bone, the light and dark layers 

increase in thickness, and the layering coincides with the growth marks. The congruence 

between layers and growth marks is not that clear in the internal-most part of the internal 

cortex. Here, bone lamellae that have predominantly small round-shaped bone cell lacunae 

alternate with bone lamellae, in which the bone cell lacunae are flat and elongated, thus 

indicating that the lamellar bone tissue has an orthogonal plywood structure. Canaliculi are 

seldom found. Sharpey’s fibres are present throughout the whole of the internal cortex in the 

thin-section of the sampled hypoplastron. In the costals, Sharpey’s fibres are restricted to 
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areas next to the incorporated ribs. Sharpey’s fibres were not found in the thin-sections of the 

sampled peripheral and the neural. 

Figure 27: Shell bone histology of Podocnemis erythrocephala. (a) Thin-section of sampled 

costal YPM 11853 in polarised light. The diploe structure of the shell is clearly visible. 

Cortices are of similar size and show growth marks. The interior cancellous bone is largely 

remodelled by secondary osteons. (b) Detail of external cortex in polarised light showing a 

succession of growth marks in the interwoven fibrous bone tissue disturbed by a semicircular 
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area of secondary bone remodelling. Close-up of the margin of remodelled area in (c) normal 

transmitted light and (d) in polarised light. Note the scalloped line and adjacent bone cell 

lacunae between the primary tissue with growth marks and the secondary bone. The 

remodelled area of bone also constitutes interwoven structural fibres, but growth marks are 

not present. Detail of internal cortex in (d) normal and in (e) polarised light. Note the growth 

marks in the lamellar bone tissue and the clearly distinguished light and dark layering of the 

cortical bone. Light and dark layers in the internal part of the cortex do not always coincide 

with the growth marks, but constitute lamellae of the lamellar bone tissue. 

 

6.2.4.3 Stupendemys geographicus Wood, 1976 (†) 

Both costal fragments and the neural fragment have a diploe structure, typical for turtle shell 

bones, in which well developed internal and external compact bone layers frame an area of 

cancellous bone. In all three specimens, some of the compact bone layers together with 

scattered secondary osteons observed in the external and internal cortices are partly eroded. 

External cortex—The external cortex of the costals and the neural is a compact bone layer 

with moderate vascularisation. Right at the bone surfaces, the cortex is mainly composed of 

fibrous bone tissue interspersed with few primary osteons and large scattered secondary 

osteons (Fig. 28a, b). Secondary osteon clusters are not developed in the external cortex. The 

loosely packed interwoven collagen fibre bundles in the cortical bone extend predominantly 

diagonally through the bone matrix towards the surface of the bone (Fig. 28b). Fibre bundles 

that extend perpendicular to the external surface of the bone are also present in the interwoven 

matrix of structural fibre bundles. Cyclical incremental growth marks within the fibrous bone 

tissue, distinct from lines of arrested growth of periosteal lamellar-zonal bone endoskeletal 

bones, can be recognised in most areas of the cortex of the neural, while the few growth 

marks in the costal fragments are mostly discontinuous and not as easily discerned. Towards 

the midline of the neural, growth marks are also difficult to follow, because the mid-region of 

the cortex of the neural is slightly crushed. A gradual increase in the amount and in size of the 

secondary osteons is recognised towards the internal cancellous parts of the bony plates. In 

the costals, vascular spaces have flattened shapes with long-axes subparallel to the external 

surface of the bone. In the neural though, Haversian canals of the secondary osteons are 

mostly round in shape with secondary osteons trending anteroposteriorly through the neural. 
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Bone cell lacunae within the cortex are mostly of a flattened and elongated shape. In general, 

the cortical bone cell lacunae bear longer canaliculi than the bone cell lacunae found in the 

interior cancellous bone tissue. In the neural, Sharpey’s fibres insert into the ISF of the bone 

tissue at moderate angles. They point towards medial on both sides of the midline. The fibre 

orientation could not be reconstructed in the regions right at the midline of the neural where 

the bone is slightly crushed. Due to the poor preservation of the bone, it cannot be stated with 

certainty whether Sharpey’s fibres are also present within the external cortices of the costal 

fragments. 

Cancellous bone—The cancellous bone of the costals is composed of thick trabeculae of 

rather uniform appearance (Fig. 28c). Overall, the bone trabeculae and vascular spaces are 

evenly distributed in the cancellous bone. Only in a few cases do the spaces between the 

trabeculae coalesce to form larger vascular cavities. The trabeculae themselves are composed 

of centripetally deposited secondary bone lamellae. Towards the external and internal 

cortices, the vascular spaces are dorsoventrally flattened. They are rounder towards the 

interior of the bone. Flattened and elongated bone cell lacunae and ISF are restricted to 

interstitial areas of the trabeculae where remnants of primary fibrous bone tissue are 

preserved. The cancellous interior of the neural fragment is similarly composed of short and 

rather thick bone trabeculae. This gives the neural a massive and moderately vascularised 

appearance in cross-section. The trabeculae become thinner and more fragile towards the 

internal surface of the bone. In the lower part of the neural, along the midline, the trabecular 

system has collapsed. The largest vascular spaces within the whole of the neural fragment are 

found in the centre of the cancellous bone. 

Internal cortex—Similar to the external cortex, the internal cortex of all fragments is 

composed of two zones of different bone tissue. Towards the interior of the shell, the compact 

layer of bone is composed of scattered secondary osteons or secondary osteon clusters (Fig. 

28c, d). Towards the internal surface of the bone elements, the cortical bone constitutes 

fibrous bone tissue. The transition between the two zones is rather sharply defined. Small 

pockets of primary fibrous bone tissue are also seen in spaces in between the secondary 

osteons (Fig. 28d). The fibrous bone tissue of the internal cortex is characterised by loosely 

packed structural collagenous fibre bundles that are orientated either subparallel or obliquely 

to the internal surface of the bone fragment. Few collagenous structural fibre bundles, which 

insert perpendicular to the internal surface of the bone, cross the fibrous tissue thus creating 
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an interwoven appearance. Due to erosion of the cortices of the costal fragments, the 

thickness of this internal tissue type varies strongly. Besides few scattered primary osteons 

and erosion cavities, the fibrous bone is mainly avascular.  

Figure 28: Shell bone histology of Stupendemys geographicus. (a) Close-up of external cortex 

of the sampled neural fragment (UNEFM−101) in normal transmitted light. The cortical bone 

is vascularised by primary and secondary osteons. Growth marks occur throughout the 

external cortex. (b) Another section of the external cortex of the former specimen in polarised 

light. The external cortex consists of a bone matrix of interwoven structural fibre bundles with 

scattered primary and secondary osteons. (c) Internal cortex and part of the interior cancellous 

bone of costal fragment A (UNEFM−CIAPP−2002−01) in normal light. Note areas of strong 

remodelling in the internal cortex where the cortical bone is dominated by secondary osteon 

clusters. (d) Another section of the internal cortex of the former specimen in polarised light. 

Note that interstitial areas of primary bone tissue in between the osteon clusters are also 

composed of interwoven structural fibre bundles. 
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It could not be discerned if Sharpey’s fibres sensu stricto are present within the interwoven 

fibrous tissue of the internal cortex of the costals. In the neural fragment, the internal cortex is 

composed of scattered secondary osteons that become dense towards the midline of the 

fragment. The cortex appears quite massive in the areas in which they are vascularised by 

Haversian canals. Medially in the neural fragment, remnants of the incorporated neural arch 

can be observed. The bone of the incorporated neural arch is composed of tightly clustered 

secondary osteons. Here, the cell lacunae have a flattened and elongated shape. The roof of 

the vertebral canal is not seen in the thin-section because the bone is damaged and eroded in 

this area. Sharpey’s fibres crossing the structural collagenous fibres seem to be present in the 

areas around the incorporated neural arch, but their presence is not as conspicuous as in the 

external cortex. Remnants of compact bone layers slightly internal to the internal cortex are 

still traceable through the whole width of the neural fragment. These horizontally trending 

bone layers remain visible even though they have been extensively interrupted by newly 

formed bone trabeculae and large scattered secondary osteons. 

 

6.2.5 Chelidae 

6.2.5.1 Emydura subglobosa (=Emydura albertisii) (Krefft, 1876) and Emydura sp. (†) 

The sampled shell bones show all the same diploe structure with external cortical bone and 

internal cortical bone framing an interior area of cancellous bone. The internal cortical bone 

may be reduced in thickness compared to the external cortical bone. While the surface of the 

internal cortical bone is smooth, the surface of the external cortical bone has small humps and 

shallow grooves related to the ornamentation pattern described above in the ‘Material and 

Methods’ section. 

External cortex—The external cortical bone comprises a compact bone tissue of interwoven 

structural ISF (Fig. 29a, b). Vascularisation is realised by a mixture of primary and secondary 

osteons and primary vascular canals. The primary vascular canals are reticular and 

anastomosing with no apparent dominant orientation (Fig. 29c). The primary vascular canals 

also extend to the surface of the bone. Only the external-most part of the external cortex 

shows cyclical incremental growth marks and fibre bundles that trend perpendicular to the 
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bone surface. In the interior-most parts of the external cortex, perpendicular fibres are 

unobtrusive within the ISF. Bone cell lacunae are abundant in the external cortex. They are 

mostly round and plump in shape without canaliculi, but they get more compressed and 

elongated towards the external-most layer showing the growth marks. The cell lacunae are 

usually following the orientation of the fibre bundles. 

Cancellous bone—The cancellous bone is mostly remodelled with remnants of interstitial 

primary bone tissue (Fig. 29d). The trabeculae are lined with lamellar bone towards the bone 

cavities. Slightly flattened and elongated bone cell lacunae follow the centripetally deposited 

lamellar bone linings, but rounder bone cell lacunae are clustered in the interstitial areas of 

primary bone. As the cancellous bone area increases in thicker shell elements, the size and 

length of the bone trabeculae remain thick and short and cavities are rather homogeneous. 

Only in the thicker elements of Emydura sp., the ventral part of the cancellous bone and the 

interior parts of the sampled peripheral show larger cavities through fusion of smaller 

vascular spaces. Here, the trabeculae may be longer and are thinner in diameter. A remnant of 

the progression of the former rib was not found in thin-section. Changes in the thicknesses of 

the trabeculae were encountered in the peripheral. While the trabeculae were thinner in the 

proximal part, they increased in thickness towards the distal tip. 

Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 29e, f) that 

interdigitates with lamellar bone tissue. Erosion cavities lined with lamellar bone sometimes 

reach well into the internal cortex, otherwise the bone tissue is vascularised with scattered 

primary vascular canals. In E. subglobosa, the internal cortex can additionally be vascularised 

by regularly scattered primary osteons. Elongated and flattened bone cell lacunae occur sheet-

like following the fibrous orientation of the bone. The internal cortical bone was devoid of 

Sharpey’s fibres. 

Variation—Variation from the bone microstructure described above is seen in the 

axillary/inguinal buttress part of the plastron fragment (bridge region of the ?hyo- or 

hypoplastron). Due to a shift in growth direction, the pillar-like bridge region develops above 

the level of the rest of the plastral level. Compared to other regions of the cancellous bone, the 

cavities are larger towards the internal cortex here. Furthermore, remnants of former internal 

cortex indicate earlier growth stages of this shell element. While the current stage of the 

internal cortex exhibits only a few scattered primary osteons, the interior earlier stages of the 



Comparative bone histology of the turtle shell   
 

168 

internal cortex are now heavily remodelled by single scattered secondary osteons and the 

development of trabecular bone. 

Figure 29: Shell bone histology of Emydura spp. Detail of the external cortex of costal UCMP 

V5762/57055 (x-section) of Emydura sp. in (a) normal light and (b) in polarised light. The 

bone tissue is vascularised by primary and secondary osteons and primary vascular canals. (c) 

Close-up of the external cortex of the sub-sampled costal ZFMK58215 (drilled core) of 

Emydura subglobosa in normal transmitted light. Note reticular vascularisation of the bone 
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tissue. (d) Close-up of the strongly remodelled cancellous bone of costal UCMP 

V5762/57055 (L-section) of Emydura sp. in polarised light. Detail of internal cortex in (e) 

normal and in (f) polarised light. 

 

6.2.5.2 Chelodina longicollis (Shaw, 1794) 

The bone core samples show a diploe built of the shell in C. longicollis. The internal cortex 

is thinner than the external cortex. In the carapacial core, the sutured margins of the costal to 

the adjacent costals are visible. The costals are thinnest at the sutures and gain in thickness 

towards the centre of the plate, where the progression of the rib is seen as an internal bulge of 

the internal cortex. The thin epidermal keratin shield follows the general sculpture of the 

external bone surfaces. A thin layer of unossified connective tissue fills the space between the 

shield and the underlying bone, and smaller rugosities of the bone surface are thus also 

compensated. 

External cortex—The external cortex constitutes a bone tissue consisting of ISF (Fig. 30a, 

b). Vascularisation is moderate with primary osteons and reticular primary vascular canals. 

Fibre bundles that insert perpendicular into the external cortex are not observed. Only at the 

sutured margins of the plates, long parallel fibre bundles, inserting perpendicular to the 

sutures, are incorporated into the bone tissue.  

Cancellous bone—The trabeculae in the cancellous bone are irregular. They are mostly 

short and thick in diameter (Fig. 30c, d). The walls of the trabeculae consist of lamellar bone. 

The largest vascular spaces occur towards the internal cortex, while the more externally 

situated spaces are of smaller size. Roughly in the centres of the vascular spaces, clumped and 

dried yellow-brown adipose tissue is present. 

Internal cortex—The internal cortex comprises parallel-fibred bone (Fig. 30c, d). The tissue 

is mainly avascular. Flattened and elongated bone cell lacunae follow the bone layers, thus 

they appear in a sheet-like arrangement in the parallel-fibred bone. 
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Figure 30: Shell bone histology of Chelodina longicollis. Detail of the external cortex of left 

?costal2 (ZMB 27258, drilled core) and associated kerationous shield in (a) normal light and 

(b) in polarised light. Note reticular vascularisation pattern (c) Close-up of the internal cortex 

and adjacent cancellous bone of the sub-sampled right hyoplastron (ZMB 27258, drilled core) 

in (c) normal and in (d) polarised light. The internal cortex consists of parallel-fibred bone, 

while the predominantly remodelled bone trabeculae consist of lamellar bone. 

 

6.2.5.3 Platemys platycephala (Schneider, 1791) 

In the case of the core intersecting the costals and the vertebral centrum, the part of the right 

costal2 is strongly curved due to the coring site being located on one of the two prominent 

carapacial ridges. The core from the hypoplastron is located in the proximal flat part of the 

shell element and does not include the inguinal buttress of the bridge region. The cored bone 

shows a sandwich-like build with similarly thick external cortex (0.3-0.45 mm) and internal 

cortex (0.25-0.35 mm) framing an interior area of cancellous bone. Generally, the bone cell 

lacunae density is very low throughout the whole of the sampled bones. 
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External cortex—The bone surface of the external cortex is covered with small raised 

humps (<0.1mm in height). The bone tissue consists of ISF. The fibre bundles of the ISF are 

of similar length and size. The fibre bundles in the ISF trend diagonally and perpendicular to 

the dorsal bone surface. Vascularisation is achieved mainly by primary osteons. Especially the 

diagonally arranged fibre bundles of the ISF seem to surround and frame the primary osteons. 

Cancellous bone—The cancellous bone consists of primary trabeculae that are secondarily 

remodelled. The vascular spaces are lined with secondary lamellar bone. In areas of increased 

shell bone thickness, the trabeculae with dorsoventral orientation slightly dominate the 

cancellous bone, thus leading to dorsoventrally elongated vascular cavities. The bone cell 

lacunae seem to be restricted to the primary bone tissue of interstitial areas within the bone 

trabeculae. 

Internal cortex—The internal cortex constitutes parallel-fibred bone. Fibre bundles are 

arranged diagonally to the surface of the bone in a few areas. Few primary vascular canals 

pervade the bone tissue horizontally, subparallel to the internal surface of the bones. 

Transition between costals and vertebral centrum—Variation in the histology is observed in 

the transition between the costals and the associated vertebral centrum. Here the bone tissue is 

substituted by a very fibrous non-ossified connective tissue between the internal cortex of the 

costal and the remaining bone of the transverse process of the vertebra. The bone of the 

vertebral centrum itself is reduced to a thin bony rim. Two horizontally arranged kidney-

shaped cavities open up between the transverse processes of the vertebral arch, the free rib 

head of the costal plates and the internal cortex of the costal plates. A thin layer of non-

ossified connective tissue trends dorsally from one kidney-shaped cavity to the other, thus 

dividing the internal cortex of the costals from the vertebral arch. The suture between the right 

and left costal2 lies sagittal above the vertebral column. Its sutural space is filled with 

connective tissue and numerous ovoid cell-like structures with circular central depressions, 

presumably blood cells. Due to the reduction of the centrum to a thin bony rim, the vertebral 

canal increases significantly in diameter, thus comprising a third large cavity of oval to 

circular shape (tube-like in lateral view) dorsal and sagittal to the reduced centrum. 
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Figure 31: Shell bone histology of Platemys platycephala. (a) Section of the sampled neural2 

(including the vertebral centrum) and proximal part of left costal2 (SMNS 10035) in normal 

light. Note that the costals meet in the midline over the centrum. A neural is absent. Close-up 

of the suture zone between the costals and the associated neural arch.in (b) normal and in (c) 

polarised light. (d) Detail of the parallel-fibred bone of the internal cortex of the costal of the 

former specimen. 

 

6.2.5.4 Phrynops geoffroanus (Schweigger, 1812) 

The external and internal cortices of the sampled shell elements of P. geoffroanus were of 

similar thickness and they are framing interior cancellous bone. A slight decrease in thickness 

of the cortices is observed from the proximal to the distal part of the costal. In cross-section 

(anteroposterior orientation), the internal cortex of the costal is thickest in the mid-part of the 

section (former progression of the rib) and gets reduced towards the lateral sutures. 
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External cortex—The bone surface of the external cortex is rough, resulting from primary 

vascular canals that open up to the surface of the bone as small foramina. The primary 

vascular canals have reticular and anastomosing patterns throughout the whole cortical tissue, 

with horizontally arranged primary vascular canals being more abundant compared to 

vertically arranged canals (Fig. 32a). The bone tissue is composed of ISF. The matrix of fibre 

bundles in the ISF is pervaded by primary osteons. Perpendicular fibres are present but 

inconspicuous among the ISF. Clusters of round and plump bone cell lacunae interdigitate 

with sheets of poorly elongated cell lacunae. Canaliculi are absent in both round and 

elongated cell lacunae. 

Cancellous bone—The bone trabeculae are predominantly secondary in nature, but 

interstitial areas within the trabeculae are still composed of primary bone (Fig. 32b, c). Bone 

cell lacunae are plump and round in shape in the primary bone. Vascular cavities are lined 

with centripetally deposited secondary lamellar bone, in which flattened cell lacunae follow 

the direction of the bone lamellae. Vascular spaces and bone trabeculae are proximodistally 

elongated in the longitudinal section of the costal. 

Internal cortex—The internal cortex consists of a mixture of parallel-fibred and lamellar 

fibred bone (Fig. 32d). The growth marks present are not as distinct as lines of arrested 

growth. While the internal-most layer of the internal cortex is almost free of bone cell 

lacunae, they get more frequent towards the interior parts of the internal cortex. Bone cell 

lacunae that occur in sheets in the bone tissue of the costal are elongated and strongly 

flattened in anteroposterior section and of slightly flattened to circular shape in proximodistal 

section. 

Sutural areas—The sutural areas of all elements are composed of a bone tissue similar to 

that found in the external cortex (Fig. 32b, c). However, the bone tissue is dominated by fairly 

long, horizontal fibre bundles. These fibre bundles form in the external-most and internal-

most zones of the cancellous bone and run horizontally into the sutures, thus trending 

perpendicular to the lateral bone surface of the shell elements. Horizontally arranged compact 

bone tables also reach from the interior of the bone into the sutural regions. The stacks of 

these compact bone tables are often vascularised by secondary osteons. 
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Neural—The bone histology of the neural of strongly influenced by the outer shape of the 

bone. While the lateral part of the neural (the flat plate part) consists of external cortex, 

cancellous bone, internal cortex and the sutural areas described above, the medial parts of the 

internal cortex deviate towards ventral to the lateral surfaces of the incorporated neural arch. 

A large central cavity opens up right between the cortical bone layers of the shaft of the neural 

arch. Dorsal and ventral to the cavity lies cancellous bone. A thickened, domed pad of 

compact bone, pervaded by dorsoventrally trending fibre bundles, below the ventral area of 

cancellous bone forms the roof of the vertebral canal. Secondary remodelling is spreading 

within the compact bone layer, with vascularisation following the trend of the compact bone 

layers. The ventral-most part of the neural consists of the lateral bases of the neural arch. A 

thin layer of cartilage still caps these bases, thus the neural arch was not fused to the centrum. 

Figure 32: Shell bone histology of Phrynops geoffroanus. (a) Section of the interwoven 

structural fibre bundles of the external cortex of the sampled peripheral3 (YPM 12611) in 

polarised light. (b) Close-up of the interior cancellous part and the suture zone of the neural 

(YPM 12611) in normal and in (c) polarised light. (d) Detail of the internal cortex of the 
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costal (YPM 12611, L-section) in polarised light. Note parallel-fibred bone interdigitating 

with lamellar bone. 

 

6.2.5.5 Hydromedusa tectifera Cope, 1870a 

The core samples of H. tectifera show the diploe structure with external and internal 

cortices having similar thicknesses. Below the thin epidermal keratin shields, the external 

sculpturing of the sub-sampled costal has a low relief. 

External cortex—The external cortex consists of ISF (Fig. 33a, b). Diagonally arranged 

fibre bundles dominate the ISF. Small to moderate amounts of fibre bundles that extend 

perpendicular or in high angles towards the external bone surface are present. The bone tissue 

is vascularised by scattered primary osteons and primary vascular canals. The primary 

vascular canals can anastomose and locally, a reticular pattern can be developed. Growth 

marks occur, but they are mostly too obscure to be counted (partly because of the high 

collagen content of these recent samples). 

Cancellous bone—The cancellous bone is not well developed in the samples. Irregularly 

arranged trabeculae are short and thick, dividing small vascular spaces (Fig. 33c). Slightly 

larger vascular spaces are found towards the internal cortex. Most of the vascular spaces show 

remnants of clumped dried brown adipose tissue. The walls of the trabeculae consist of 

lamellar bone. Interstitial primary bone tissue is found in larger branching areas of the 

trabeculae. Bone cell lacunae in the lamellar bone are flattened and elongated, while they are 

more plump and of circular shape in the interstitial bone.  

Internal cortex—In the sub-sampled costal, the internal cortex is thickest in the region of 

the rib bulge and decreases slightly in thickness towards the lateral sutures of the costal plate. 

The internal cortex constitutes parallel-fibred bone (Fig. 33d). In both areas lateral to the 

progression of the rib, Sharpey’s fibres insert in the avascular cortical bone tissue at moderate 

to high angles. 
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Variation—The only variation between the samples is the decrease of the thickness of the 

internal cortex in the costal. However, this seems closely tied to the outer morphology (i.e., 

incorporated rib) of the shell element. 

Figure 33: Shell bone histology of Hydromedusa tectifera. Close-up of the external cortex and 

the external part of the cancellous bone of the sub-sampled left ?costal2 (ZFMK-51656, L-

section) in (a) normal and in (b) polarised light. The keratinous shield is still attached to the 

costal bone. The bone tissue is mainly vascularised by primary vascular canals. (c) Close-up 

of the interior cancellous bone of the former specimen in normal light. (d) Detail of the 

internal part of the cancellous bone and the parallel-fibred matrix of the internal cortical bone 

of the former specimen in polarised light.  

 

6.2.5.6 Chelus fimbriatus (Schneider, 1783) 

C. fimbriatus shows among the strongest histological variation between the carapacial and 

plastral samples of all turtles studied (Fig. 34a, b, e, f). But, again, this variation is strongly 
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connected to the outer morphology of the elements. No bone sutures were sampled by the 

drilling process. While the dorsal, external bone surface of the peripheral is covered with a 

very rough and irregular and often flaky keratin shield, the ventral external surface of the 

bone is covered with a rather smooth and regular keratin shield instead. The ventral compact 

bone of the peripheral has the same surface texture as the dorsal compact bone. The internal 

(towards visceral) cortex of the peripheral was not sampled by the core-drilling. In both the 

costal and the peripheral, the interface between the keratinous shields and the underlying bone 

is quite strong, whereas the keratinous shield covering the hyoplastron was easily removable 

from the bone core. The layer of connective tissue between the keratin shield and the bone of 

hyoplastron is remarkably thin. 

External cortex—The dorsal external bone surfaces of the costal and the peripheral shows a 

strong topology with humps and ridges (Fig. 34a, b). The connective tissue between bone and 

keratinous shield either fills in topological differences or it amplifies existing undulations in 

the topology leading to small humps in the shield cover. The larger humps/ridges of the costal 

and peripheral are based on variations in thickness of the external cortex. The rough texture of 

the bone of the hyoplastron is based on the presence of primary vascular canals opening up to 

the surface of the bone. These primary vascular canals are not as frequent in the costal and the 

peripheral. The bone tissue itself of all elements is composed of ISF. Within the ISF, the fibre 

bundles are of similar length and thickness, leading to a uniform spatial arrangement that is 

vascularised by large amounts of primary osteons and primary vascular canals. The fibre 

bundles equally trend perpendicular, subparallel and diagonal to the surface of the bone. The 

anastomosing and branching primary vascular canals form a kind of reticular vascularisation 

pattern. Sharpey’s fibres are present only in some of the humps and ridges of the external 

cortex. The arrangement of bone cell lacunae that lack canaliculi is irregular with a mixture of 

clusters and sheets that strongly depend on the fibre bundles arrangement in the external 

cortex. 

Cancellous bone—The transition between the external and internal cortical layer and the 

interior cancellous bone is rather distinct instead of having interlaced intermediate zones. The 

trabecular bone is still largely primary with little secondary reconstruction. The larger cavities 

between the trabeculae are secondarily lined with lamellar bone (Fig. 34b), and secondary 

osteons are found in more compact areas. Bone cell lacunae are usually restricted to the 

internal areas of the bone trabeculae and areas of anastomosing trabeculae. Many cavities of 
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the cancellous bone show remnants of adipose tissue that is now shrunken due to preparative 

processes. 

Figure 34: Shell bone histology of Chelus fimbriatus. Section of the diploe structure of the 

sub-sampled costal (FMNH 269459, drilled core) in (a) normal and in (b) polarised light. The 

epidermal keratinous shield is still attached to the bone. Note strong fluctuation in external 

cortical bone thickness and the strongly reduced internal cortex. Close-up of the interwoven 

structural fibre bundles of the external cortex in (c) normal and in (d) polarised light. Section 
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of the sub-sampled right hyoplastron (FMNH 269459, drilled core) in (e) normal and in (f) 

polarised light. Note differences in cortical thickness compared to the costal sections of (a) 

and (b). 

 

Internal cortex—The surface of the internal cortex of the costal and the hyoplastron is 

smooth. The internal cortical bone of the costal is composed of parallel-fibred bone. The 

internal cortex of the hyoplastron has parallel-fibred bone interlaced with areas similar to ISF 

found in the external cortex. However, the fibre bundle arrangement is dominated by fibre 

bundles that trend obliquely to the internal bone surface towards the axillary buttress of the 

hyoplastron, whereas horizontally arranged fibre bundles and fibre bundles that trend 

perpendicular to the surface of the bone are rare. The vascularisation in the internal cortex is 

high. In the costal, the bone tissue is mainly vascularised by primary canals and few primary 

osteons. In the hyoplastron, primary osteons are much more common (Fig. 34e, f). The 

primary osteons are of similar diameter and stringer-like. They are evenly spaced throughout 

the successive parallel-fibred layers of the internal bone tissue. Secondary osteons are not 

found within the bone tissue of both costal and hyoplastron. Bone cell lacunae are more 

evenly distributed in the internal cortex compared to the external cortex, and they are aligned 

subparallel to the surface of the bone. The bone cell lacunae are flattened and elongated and 

lack canaliculi. 

 

6.3 Cryptodira 

6.3.1 Cryptodira incertae sedis (Kirtlington turtle sample, Solemydidae) 

6.3.1.1 Cryptodira incertae sedis (Kirtlington turtle sample) (†) 

Two histomorphs are present in the sample of the Kirtlington turtles. Histomorph I is 

represented by six specimens (IPB R583-588), while histomorph II is represented only by a 

single specimen (IPB R589). Histomorph I has essentially the same bone histology as that 

described for pleurosternid turtles (see chapter 6.3.3 below), therefore I refrain from giving a 

repetition at this point. Histomorph II, on the other hand, shows fundamental differences to 
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the pleurosternid taxa and thus will be described in this section. The external and internal 

cortex in the diploe structure of histomorph II are well developed and of equal thickness (Fig. 

35a). 

Histomorph II: External cortex—The external cortex is composed of ISF (Fig. 35b). The 

ISF has a homogeneous distribution of fibre bundles that extend perpendicular, sub-parallel 

and oblique to the external surface of the bone. The bone tissue is mainly vascularised by 

primary osteons and primary vascular canals. Many of the canals open up to the external 

surface of the bone. Growth marks are weakly developed and difficult to follow in the bone 

tissue. The transition to the cancellous bone is not clearly defined because of the amount of 

scattered secondary osteons and erosion cavities. 

Histomorph II: Cancellous bone—The interior cancellous bone consists of short but overall 

slender bone trabeculae and cavities of small to moderate size (Fig. 35c). The vascular 

cavities are round to irregular shaped. Many of the trabeculae still retain primary bone tissue, 

i.e., ISF, but they are mostly lined with secondary lamellar bone. 



Bone histological results of Testudinata 
 

 181

Figure 35: Shell bone histology of Kirtlington turtle sample histomorph II. (a) Section of a 

plastron fragment (IPB R589; ?hyo- or hypoplastron) in normal light. Note well developed 

diploe structure. (b) Close-up of the external cortex of the bone showing interwoven structural 

fibre bundles in polarised light. (c) Close-up of the interior cancellous bone of the former 

specimen in polarised light. Note the short but overall slender bone trabeculae. (d) Detail of 

the parallel-fibred matrix and Sharpey’s fibres of the internal cortical bone in polarised light. 

 

Histomorph II: Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 

35d). Fibre bundles that extend at oblique angles into the parallel-fibred bone, i.e., Sharpey’s 

fibres, are observed. The bone tissue is weakly vascularised by scattered primary osteons and 

few primary vascular canals. The most internal layers of the cortical bone are avascular. 

 

6.3.1.2 Solemydidae gen. et sp. indet. (aff. Naomichelys sp.) (†) 

Several shell elements could be sampled; however, the material was generally fragmentary 

and in various preservational states. Sutures were not preserved in any of the samples. Only 

the two isolated osteoderms still had original margins. A diploe with external and internal 

cortices framing interior cancellous bone is developed. The distinct ornamentation on the 

external bone surfaces is not only the most characteristic osteological feature of the shell 

elements, but it also has unique bone histology (Fig. 36a, b). 

External cortex—The external cortex constitutes two zones (Fig. 36b). Thickness varies for 

both zones. In most cases, the external zone and the internal zone seem equally strongly 

developed. However, in badly weathered shell fragments, the external zone can be highly 

reduced in thickness. In other cases, i.e., the distal apical region of the peripheral, the interior 

zone appears only as a thin remnant, while in adjacent parts of the bone the thickness of the 

interior zone again increases. The more internal zone is composed of thick coarse metaplastic 

ISF. The ISF matrix is vascularised with scattered short primary vascular canals and primary 

osteons. The more external, second zone is highly distinctive in comprising a thick layer of 

parallel-fibred bone matrix and the characteristic external tubercular/columnar ornamentation, 

also of parallel-fibred bone. Fibre bundles that insert perpendicular to the bone surface are 
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present in both the parallel-fibred bone matrix and the columns. These fibre bundles are most 

prominent in the columns and in the areas right next to them, while they are more 

inconspicuous farther away from the columns. Besides scattered primary vascular canals that 

mostly extend towards the external surface of the bone, the parallel-fibred bone of the external 

zone is avascular (Fig. 36a, b). The transition between the two zones is mostly well defined 

with little transgression. At this transition zone, the ornamental columns originate. Starting as 

small pillow-like and pustule-like protrusions, they have at first a concentric external growth. 

Adjacent and in between the columns the first layers of parallel-fibred bone are deposited. 

With continuing growth of the shell plates, the interstitial areas of parallel-fibred bone and the 

columns grow in external direction until a maximum diameter of the columns is reached. At 

the margins of the columns, a tight flexure zone develops where the parallel-fibred bone 

tissue of the columns and the tissue of the adjacent areas meet. The layers of the latter appear 

to be dragged towards external though the columnar growth. The growth of the external zone 

of the external cortex is generally well observable due to cyclical growth marks that are 

present within the parallel-fibred bone of both the columns and the interstitial areas. While the 

growth marks are widely spaced at first, the space decreases with continued growth. In the 

samples of presumably old individuals, the growth marks are tightly spaced adjacent to the 

external surface of the bone. After the external-most layers of interstitial parallel-fibred bone 

are deposited, the columns can grow further still, until they protrude from the external bone 

surface for several millimetres. The growth marks and other histological details are best 

visible where the plane of sectioning cuts medially through an ornamental column. Bone cell 

lacunae are generally round in the parallel-fibred bone of the columns, while they are slightly 

flattened in the parallel-fibred bone of the adjacent areas. 

Cancellous bone—The cancellous bone consists of an irregular meshwork of short thick and 

longer, more slender trabeculae (Fig. 36c). The largest vascular spaces are found in the centre 

of the interior cancellous bone, while the volume of the vascular spaces is reduced externally 

and internally. Larger secondary osteons are also developed in the more external and more 

internal regions of the cancellous bone. The trabecular meshwork is primary, however many 

trabeculae have been secondarily remodelled. The gross of the bone trabeculae constitutes 

lamellar bone with generally few flattened and elongated bone cell lacunae. 
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Figure 36: Shell bone histology of Solemydidae gen. et sp. indet. (aff. Naomichelys sp.). (a) 

Section of the external cortex of shell fragment TMP 90.60.07 in normal transmitted light, 

focussing on the peculiar ornamentation pattern. (b) Section of external cortex in polarised 

light, showing both the more internal and the more external zone. (c) Close-up of the irregular 

meshwork of bone trabeculae of the cancellous bone in polarised light. (d) Section of the 

internal cortex in polarised light, showing weakly vascularised parallel-fibred bone tissue. 

 

Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 36d) that may 

locally grade into lamellar bone. Distinct growth marks are not observed. Bone cell lacunae 

are slightly flattened and elongated. Sharpey’s fibres are present in some fragments, and they 

appear extensively adjacent to the rib bulge in the internal cortex of the costal fragment (TMP 

90.60.07). Vascularisation is generally low, with an occasional scattered secondary osteon or 

a primary vascular canal. 

Osteoderms—The osteoderms differ from the general structure of the bony shell elements in 

that they lack the thick external ‘ornamental zone’. The external cortex thus is a single bone 
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tissue unit consisting of ISF. The internal cortex is quite thin in the spiked osteoderm, but 

better developed in the flat osteoderm. 

 

6.3.2 Baenidae 

6.3.2.1 Neurankylus sp. (†), Plesiobaena sp. (†), Boremys sp. (†) and Chisternon sp. (†) 

The bone histology of the sampled baenid turtles is rather similar. Therefore the bone 

histology will be described together for all four taxa and variations will be noted where 

appropriate. All sampled shell bones have a diploe structure, with internal and external 

compact bone layers framing interior cancellous bone. In thin-section, the shell bones of 

Neurankylus sp. and Plesiobaena sp. have a compact appearance. The shell bones of Boremys 

sp. and Chisternon sp., on the other hand, are less compact, with a well developed cancellous 

interior. Similarly, the external and internal compact bone layers are thick and well developed 

in Neurankylus sp. and Plesiobaena sp. and thinner and less developed in Boremys sp. and 

Chisternon sp. 

External cortex—The external cortex consists of ISF (Fig. 37a, b). The fibre bundles in the 

more internal region of the ISF are quite homogeneous in length, diameter and spatial 

distribution. Here, the fibre bundles extend perpendicular, sub-parallel and diagonally to the 

external surface of the bone. Sharpey’s fibres are also present, but difficult to discern from the 

fibre bundles of the ISF matrix. In some cases, the Sharpey’s fibres appear in normal 

transmitted light as coarser, more strongly mineralised fibre bundles. In all sampled neurals, 

the ISF of the external cortex can be divided into a thin, external and a thick internal region. 

In the more internal region the structure of the ISF is as described above. In the thin, more 

external region, however, fibre bundles that extend perpendicular and sub-parallel to the 

external bone surface dominate the ISF. Here, the structure of the bone tissue resembles 

parallel-fibred bone (the sub-parallel extending component) that is crossed by an abundance 

of parallel fibre bundles, i.e., Sharpey’s fibres (the perpendicular extending component). 

Growth marks are very distinctive in the more external region. In Plesiobaena sp. and 

Neurankylus sp., vascularisation of the external cortex is low with only few scattered primary 

osteons and primary vascular canals (Fig. 37a). In Boremys sp. and Chisternon sp., 
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vascularisation is higher with abundant scattered primary osteons and primary vascular canals 

(Fig. 37b). In all samples, the vascularisation increases at a transition zone to the interior 

cancellous bone. Here, the amount of primary osteons and primary vascular canals increases 

and small scattered secondary osteons appear in the bone tissue. 

Cancellous bone—In Neurankylus sp. and Plesiobaena sp., the cancellous bone consists of 

short and thick irregular bone trabeculae and small vascular spaces (Fig. 37c). In the sampled 

costals and neurals, the cancellous bone appears thus mostly compact, while the peripheral 

and plastron elements have slightly larger vascular spaces in the interior-most zone of the 

cancellous bone. Especially in the sampled neural of Plesiobaena sp., the amount of primary 

compact bone and bone trabeculae are almost not developed at all. Instead, vascularisation of 

the cancellous bone occurs through large secondary osteons and erosion cavities. The vascular 

cavities increase in size in the interior-most and internal parts of the cancellous bone. The 

walls of the trabeculae constitute lamellar bone. In the lamellar bone, bone cell lacunae are 

flattened and elongated and follow the arrangement of the bone lamellae respectively. 

However, in the centres of the trabeculae and in branching areas, primary bone tissue is still 

largely present. The primary bone tissue consists of ISF. Here, the cell lacunae are more 

circular in shape and arranged in clusters. In contrast, the cancellous bone of Boremys sp. and 

Chisternon sp. generally has larger marrow cavities. The bone trabeculae are slender and 

more gracile, although most are still rather short (Fig. 37d). Primary interstitial bone is less 

abundant, or in case of Chisternon sp., almost completely absent. In Neurankylus sp., a 

gradual transition between the interior primary ISF and the bone tissue of the internal cortex 

is observable. 

Internal cortex—The internal cortex consists of parallel-fibred bone. The bone tissue 

texture ranges between fine fibred and coarse fibred (Fig. 37 e, f). Occasionally, fibre bundles 

can change in direction so that they appear in cross-section instead of longitudinal section. In 

the costals, the fibrous orientation of the bone tissue at the rib bulge differs from that of the 

adjacent parts of the internal cortex of the costal plates. In the rib bulge, the fibrous 

arrangement extends in proximodistal fashion, following the progression of the incorporated 

rib in the costal plate. In the lateral parts, the fibrous orientation is perpendicular 

(anteroposterior) to that of the rib bulge, although the transition between the two parts is 

gradual and interdigitating. In the thickened parts of the sampled hyoplastra of Neurankylus 

sp. and Boremys sp., a similar strong shift in fibre orientation is observed. The lateral parts 
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and the internal most layers of the internal cortex have an anteroposterior orientation, while 

the central and more external part has a proximodistal orientation. In Plesiobaena sp., the 

shift is not as pronounced as in the former two samples. Vascularisation of the internal cortex 

is generally low to moderate in all sampled baenids. Locally, the vascularisation further 

increases however, due to strongly vascularised layers constituting small scattered primary 

osteons or primary vascular canals (Fig. 37g). These layers intercalate with the less 

vascularised layers of the internal cortex. This feature is more strongly developed in the 

proximal fragment of the costal of Boremys sp. and in the shell elements of Chisternon sp. 

(Fig. 37h). Sharpey’s fibres in the internal cortex were found lateral to the rib bulge in the 

sampled costals of Neurankylus sp., Plesiobaena sp. and Boremys sp. and in the fragmentary 

hyoplastra of Neurankylus sp. and Boremys sp. 

Sutures—Sutures consisting of bony protrusions and sockets are generally well developed. 

In the sample of Chisternon sp., the carapace elements are not sutured but fused together. The 

sutural zone between the neural and the costal for example is no longer visible in thin-section. 

In the other samples, the growth marks in the external cortex, especially those of the neurals, 

deviate parallel to the sutures, thus revealing that the initial sutural relief was low and became 

more pronounced during ontogeny. Fibre bundles, i.e., Sharpey’s fibres that insert 

perpendicular to the plate margins are prominent throughout all sutures. 
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Figure 37: Shell bone histology of baenid turtle taxa. (a) Close-up of the external cortex of 

neural TMP 93.108.03 of Boremys sp. in normal light. (b) Close-up of the external cortex of 

peripheral fragment of carapace UCMP V94076/150189 of Chisternon sp. in polarised light. 

(c) Close-up of the interior cancellous bone of hyoplastron TMP 94.666.35 of Neurankylus 

sp.in polarised light. Note the short and thick bone trabeculae. (d) Close-up of the interior 

cancellous bone of fused neural and costal UCMP V94071/150182 of Chisternon sp. in 

normal transmitted light. Bone trabeculae are long and slender. Detail of the transition zone 

between internal cortex and adjacent cancellous bone of hyoplastron TMP 94.666.35 of 

Neurankylus sp. in (e) normal and in (f) polarised light. (g) Close-up of the internal rib bulge 

of costal TMP 93.108.07 (L-section) of Plesiobaena sp in polarised light. Note layered 

vascular pattern of the parallel-fibred bone tissue. (h) Close-up of the highly vascularised and 

remodelled internal cortex of fused neural and costal UCMP V94071/150182 of Chisternon 

sp. in normal transmitted light. 

 

Variation—Slight variations are present in the external cortices of the sampled peripherals. 

Here, the fibre bundles of the ISF can vary in diameter, such that coarser fibre bundles seem 

to be woven into the more homogeneous ISF matrix. Furthermore, due to their morphology, 

the peripherals trend to have smaller vascular spaces in the distal parts of the cancellous bone, 

while the larger vascular spaces are usually found in the more proximal parts near the internal 

cortex if preserved. Although, the carapace bones of Boremys sp. were strongly humped, their 

bone histology was not significantly influenced apart from local variations in bone tissue 

thicknesses internal and adjacent to these humps. 

 

6.3.3 Pleurosternidae 

6.3.3.1 Glyptops plicatulus (Cope, 1877) (†), Compsemys sp. (†), Pleurosternidae gen. et 

sp. indet. (†) 

The bone histology of the pleurosternid taxa (including Kirtlington histomorph I, see 

chapter 6.3.1) is very similar and it is described in the same section. Variations among the 
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taxa will be noted where appropriate. All pleurosternid taxa share a diploe makeup of the 

shell, with well developed external and internal cortices framing interior cancellous bone. 

External cortex—The external cortex of the shell elements of all taxa is a thick layer of 

compact bone. The cortical bone has a regular wavy external surface due to the section of the 

regular external ornamentation pattern of the bones (Fig. 38a, b). Few foramina insert into the 

bone tissue at the interstitial areas adjacent to the vermiculate low ridges and tubercles. The 

bone tissue consists of ISF. Furthermore, the tissue can be divided into two zones (Fig. 38a-

e). The more external zone is less vascularised and it is dominated by fine fibred ISF. The 

second, more internal zone, has higher levels of vascularisation and is characterised by coarse, 

irregularly interwoven fibre bundles. These fibre bundles can differ significantly in length and 

in diameter. The thickness ratio of the more external zone to the more internal zone varies 

among the taxa, and it is strongly dependent on surface damage by, for example, diagenesis 

and weathering. Growth marks are present throughout the external cortex; however, they get 

increasingly more diffuse and difficult to follow in the more internal zone. Growth marks are 

seen as highly birefringent lines in polarised light in Compsemys sp. but as dark lines in the 

material of G. plicatulus and Pleurosternidae gen. et sp. indet. Besides the aforementioned 

foramina, the more external zone of the external cortex is mainly avascular while the more 

internal zone is characterised by few scattered primary osteons and short and round primary 

vascular canals. Additionally, reticular primary vascular canal patterns can be developed. 

Cancellous bone—The cancellous bone constitutes short and thick bone trabeculae and 

mostly vascular spaces of small to medium size (Fig. 38f). Towards the sutured margins of 

the plates, vascular spaces are often slightly externointernally flattened and elongated. Larger 

vascular spaces of circular or irregular shape where found in the proximal parts of the 

sampled peripherals and in the costal fragment (YPM 57161) of G. plicatulus. While few 

erosion cavities lack secondary lamellar bone, the gross of the walls of the bone trabeculae 

consist of lamellar bone. Primary interstitial bone is preserved in most trabecular branching 

spots, besides the very thin trabeculae of the sampled peripheral of G. plicatulus. 

Internal cortex—The internal cortex is well developed but generally thinner than the 

external cortex (Fig. 38g, h). In G. plicatulus and Compsemys sp. (Fig. 37h), the internal 

cortex is avascular. However, small scattered primary vascular canals can be present in the rib 

bulge of the costal elements. In the sample of Pleurosternidae gen. et sp. indet., the internal 
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cortex can be weakly vascularised with primary vascular canals. In G. plicatulus, the internal 

cortex consists of homogeneous and ordered layers of parallel-fibred bone. In Compsemys sp., 

Pleurosternidae gen. et sp. indet. and the Kirtlington histomorph I (Fig. 37g), the fibre bundles 

of the parallel-fibred bone are coarser and deviate in extension and orientation, thus the bone 

tissue appears less ordered. 

Sutures—Sutures are generally well developed in the sampled pleurosternid turtles. Growth 

marks, which are deflected from the external cortex, can be followed in the bone tissue of the 

sutures, thus showing an increasing sutural relief during ontogeny. Fibre bundles that extend 

perpendicular to the sutural margin of the plate are common. 

Variation—A unique form of bone tissue erosion and bone deposition was observed in the 

plastron fragment of G. plicatulus. First, within the larger erosion cavities, centripetally 

deposited lamellar bone was deposited. Second, small circular or semi-circular spaces occur 

in the lamellae of the lamellar bone. Third, at the margins of the larger cavities new bone 

deposition seems to occur around the small circular or semi-circular spaces. This phenomenon 

of bone erosion and deposition, which so far has not been found in any other of the sampled 

turtles needs further study before any interpretation can be attempted. In the plastron fragment 

of Pleurosternidae gen. et sp. indet., the orientation of the bone cell lacunae locally does not 

follow the general trend of the parallel-fibred bone. Instead the bone cell lacunae are angled 

towards the bone surface in the thickened part of the bone fragment. A similar observation 

can be made, for example, in the costal rib bulge of the baenid turtle Boremys sp. Here, the 

cell lacunae stand almost perpendicular to the surface of the internal cortex. However, this 

may be an artefact caused by a peculiar spot of the plane of sectioning, because it seems to 

occur where morphological structures like plastral buttresses and costal rib bulges and rib 

heads protrude from the planar parts of the shell elements. 
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Figure 38: Shell bone histology of pleurosternid turtle taxa. Close-up of the external cortex of 

the peripheral (YPM 57163) of Glyptops plicatulus in (a) normal and in (b) polarised light. 

The more external zone of the external cortex is fine-fibred and growth marks are clearly 

visible, while the more internal zone consists is coarse-fibred and almost completely lacks 

growth marks. (c) Close-up of the two external cortical zones of peripheral IPFUB P-Barkas 

21 of Pleurosternidae gen. et sp. indet. in polarised light. Close-up of the external cortex of 

the carapace fragment IPB R586 (Kirtlington histomorph I) in (d) normal and in (e) polarised 

light. (f) Close-up of the interior cancellous bone of the plastron fragment (YPM 57164) of G. 

plicatulus in polarised light. (g) Detail of the transition from interwoven structural fibre 

bundles to parallel-fibred bone in the internal cortex of shell fragment IPB R583 (Kirtlington 

histomorph I) in polarised light. (h) Detail of the internal cortex of costal UCMP 

V90077/150195 of Compsemys sp. in polarised light. Note Sharpey’s fibres inserting into the 

parallel-fibred bone. 

 

6.3.4 Eurysternidae 

6.3.4.1 Eurysternid turtles: Eurysternum sp. (†) and ?Eurysternum sp. (†) 

All shell bones have a diploe structure with external and internal cortices framing interior 

cancellous bone. The internal cortices are generally slightly reduced in thickness compared to 

the external cortices (Fig. 39a). An exception is the thin-section of the left hyoplastron (NMS 

20981) where the cortical bone is greatly thickened in the region of the axillary buttress. 

External cortex—The well developed external cortex consists of ISF. The overall 

distribution of fibre bundles is homogeneous or slightly dominated by fibre bundles that 

extend either sub-parallel or obliquely towards the external surface of the bones. 

Vascularisation of the bone tissue is high because of high amounts of primary vascular canals 

and primary osteons (Fig. 39a, b). The vascular canals are round to elongated tubes that 

anastomose frequently. Growth marks are present throughout the cortex. However, the course 

of the growth marks is often irregular and obscured by secondary remodelling of the bone. 

Towards internal, a zone rich in scattered secondary osteons marks the transition to the 

interior cancellous bone. 
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Cancellous bone—The cancellous bone generally consists of short and thick trabeculae 

interspersed with round to ovoid vascular cavities. Primary fibrous bone tissue, i.e., ISF, is 

present within the thicker trabeculae and their branching areas. In the larger branching areas, 

small primary osteons or vascular canals may be present. The trabecular walls are usually 

lined with lamellar bone. 

Internal cortex—The internal cortex consists of fine parallel-fibred bone layers. The 

vascularisation of the bone tissue is extensive (Fig. 39c). Circular and short tubular primary 

vascular canals and primary osteons are aligned in stringers or layers of the bone tissue that 

interlace with less vascular or even avascular layers. Growth marks, similar to the ones found 

in the external cortex, pervade the whole internal cortical bone. The growth marks are 

recognised as dark lines that extend sub-parallel to the internal surface of the bone in 

polarised light. 

Figure 39: Shell bone histology of Eurysternum spp. (a) Section of the diploe structure of 

costal NMS 21908 of Eurysternum sp. in polarised light. Note the strong vascularisation of 
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the external cortical bone and the reduced thickness of the internal cortex. (b) Close-up of the 

interwoven structural fibre bundles and reticular vascular canals of the external cortex of the 

former specimen in polarised light. (c) Close-up of the highly vascular internal cortex of left 

hyoplastron NMS 20981 in polarised light. (d) Close-up of the cruciform pattern of the bone 

microstrcutre of plastral fragment NMS 21922 of Eurysternum sp. 

 

Sutures—Sutures are moderately developed. Fibre bundles that extend perpendicular to the 

margin of the bone are found in the sutural bony protrusions and sockets. 

Variation—A special bone microstructure is observed in the thin-section of the plastral 

fragment NMS 21922. The microstructure shows patterns that are closely related to the 

osteogenesis of the fragment. The plate part of the fragment shows planar successive growth 

marks of the internal cortex and distal margin (towards the buttress). At the buttress of the 

plate, directed growth towards external forms a cruciform pattern (Fig. 39d) of the 

microstructure as the buttress develops. The cruciform pattern originates due to successive 

growth of layers with high vascularisation intercalated with layers that are poorly vascularised 

or even avascular. 

 

6.3.5 Plesiochelyidae and Thalassemydidae 

6.3.5.1 Plesiochelys sp. (†), Thalassemys cf T. hugii Rütimeyer, 1873 (†), Thalassemys sp. 

(†) and Tropidemys sp. (†) 

The turtle taxa of these groups cannot be distinguished by their bone histology. Variations 

are subtle and in some cases may be artefacts of diagenetic alteration or of preparing the thin-

sections. The external cortices in the diploe structure of the shell bones are thick and well 

developed. The internal cortex is reduced in thickness compared to the external cortex. 

External cortex—The external cortex comprises fine-fibred ISF (Fig. 40a, b). In the ISF, the 

fibre bundles are of similar size and length. The bone tissue is dominated by fibre bundles that 

extend perpendicular to the external surface of the bone. The record of growth marks is 
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extensive. The growth marks are clearly visible throughout the cortical bone, and they appear 

as dark lines, both in normal transmitted and polarised light. The external cortex is compact, 

however, an intricate reticular network of primary vascular canals is observed (Fig. 40b). The 

reticular network is dominated by canals that extend externointernal from the interior 

cancellous bone to the external bone surface and many of the canals end in small foramina. In 

Tropidemys sp., the reticular pattern appears not as dominant. Instead, the cortical bone is 

vascularised also by numerous scattered primary osteons in this taxon (Fig. 40c). 

Cancellous bone—In all three taxa the cancellous bone is mainly composed of a mixture of 

short, thick trabeculae (Fig. 40d) and more slender and gracile ones. Larger and smaller 

vascular cavities are not restricted to certain areas in the cancellous bone. The trabecular 

system is still largely primary, although bone remodelling, especially in the interior-most 

parts of the bone is locally extensive. Interstitial primary bone is present in many trabeculae 

and branching areas. Others are completely composed of secondary lamellar bone. 

Internal cortex—The internal cortex comprises layers of parallel-fibred bone. Some of these 

layers are strongly vascularised by string-like arrangements of primary vascular canals and 

scattered primary osteons (Fig. 40e, f). The vascularised layers often intercalate with 

avascular layers. Growth marks are also found in the internal cortex; however, they are not as 

conspicuous as in the external cortex. The amount of vascularisation was found to be highest 

in the samples of the Thalassemys spp. In the samples of Tropidemys sp., vascularisation was 

lower and the parallel-fibred bone tissue appears to have a slightly more coarse-fibred texture. 

Sutures—In the sutures, the growth marks seen in the external cortex are still visible and 

they extend sub-parallel to the marginal surface of the bone. Former growth stages of the shell 

bone are thus still visible in the bone tissue, where secondary bone remodelling has not been 

too extensive. The sutures have a shallow relief with short pegs and sockets. The reticular 

pattern of primary vascular canals is present in the sutures of the samples of Plesiochelys sp. 

(Fig. 40g, h) and Thalassemys spp., but it was not as conspicuous in Tropidemys sp. 
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Figure 40: Shell bone histology of plesiochelyid and thalassemydid turtles. Close-up of the 

external cortex of neural3 (NMS 8730) of Plesiochelys sp. in (a) normal light and in (b) 

polarised light. Note extensive reticular vasculsarisation of the cortical bone tissue. (c) Close-

up of the less vascular external cortex of peripheral NMS 8991 of Tropidemys sp. (d) Close-

up of the interior cancellous bone of the proximal part of costal5 (NMS 8859) of Thalassemys 

cf. T. hugii in normal transmitted light. Note mixture of short and thick and more slender bone 

trabeculae. Detail of the well vascularised internal cortex of fragmentary hypoplastron 

SMNS55831 of Plesiochelys sp. in (e) normal light and in (f) polarised light. Note layered 

vascular pattern of the parallel-fibred bone tissue. Close-up of the sutural zone of neural3 

(NMS 8730) of Plesiochelys sp. in (g) normal and in (h) polarised light. Similar to the 

external cortex, the bone tissue consists also of interwoven structural fibre bundles, and a 

reticular vascularisation pattern is developed. 

 

6.3.6 Xinjiangchelyidae 

6.3.6.1 Xinjiangchelys chowi Matzke et al., 2005 (†) and Xinjiangchelys sp. (†) 

All shell bones have a diploe structure with well developed external and internal cortices 

and interior cancellous bone. The cortices are generally of similar thickness. 

External cortex—The external cortex comprises ISF of finer and predominantly coarser 

fibre bundles (Fig. 41a, b). The fibre bundles vary in length and diameter, giving the ISF a 

heterogeneous appearance. Incorporation of fibre bundles that extend perpendicular to the 

external surface of the bone is extensive. Growth marks are usually seen as bright lines in 

normal transmitted light and as dark lines in polarised light. Vascularisation of the bone tissue 

is low with few scattered primary osteons and primary vascular canals. 

Cancellous bone—The cancellous bone contains both longer, slender trabeculae and 

shorter, ticker trabeculae (Fig. 41c). Vascular spaces are of circular to irregular shape. In the 

peripherals, the larger vascular spaces are situated in the more proximal part of the bone. The 

trabecular system is largely primary, but towards the interior-most part of the cancellous 

bone, it is more strongly remodelled. Trabeculae often consist only of lamellar bone here. In 
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the buttress parts of the plastral bone, the trabeculae and associated vascular cavities are 

locally elongated and flattened and extend obliquely towards the internal surface of the bone. 

Internal cortex—The internal cortex comprises parallel-fibred bone (Fig. 41d). The 

vascularisation is low to moderate. Primary vascular canals and few primary osteons are 

found, often occurring in string-like arrangement. The vascularised layers are interlaced with 

avascular layers of the cortex. The bone cell lacunae have numerous canaliculi. Both, the cell 

lacunae and the canaliculi appear enlarged, probably through diagenetic processes. 

Figure 41: Shell bone histology of xinjiangchelyid turtles. Close-up of the external cortex of 

peripheral SGP 2002/4b of Xinjiangchelys sp. in (a) normal and in (b) polarised light. Note 

the predominantly coarse interwoven structural fibre bundles. (c) Close-up of the irregular 

interior cancellous bone of shell fragment SGP 2001/34c of Xinjiangchelys chowi in normal 

transmitted light. (d) Detail of the parallel-fibred bone of the internal cortex of plastron 

fragment SGP 2002/4d of Xinjiangchelys sp. in polarised light. Note cell lacunae and network 

of fine canaliculi. 
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6.3.7 “Sinemydidae” and “Macrobaenidae” 

6.3.7.1 Wuguia efremovi (Khosatzky 1996) (=Dracochelys wimani) (†) 

All shell bones have a diploe structure with well developed external and internal cortices 

and interior cancellous bone. The cortices are generally of similar thickness. The bones are 

among the thinnest that were encountered in this study. 

External cortex—The external cortex comprises ISF, well vascularised by scattered primary 

vascular canals. Bone cell lacunae are round and not flattened. The ISF consists of 

homogeneously distributed fine-fibred fibre bundles (Fig. 42a, b). Growth marks are visible 

throughout the cortex, but mostly too obscure to be counted. 

Cancellous bone—The cancellous bone comprises both short and long, slender trabeculae 

(Fig. 42c). The trabeculae are still mostly primary with secondary linings of lamellar bone. In 

the transverse sections of the flat bones, i.e., the costals and plastral bone, the cancellous bone 

is dominated by trabeculae and vascular spaces that are aligned sub-parallel to the bone 

surfaces. The cross-sections of the neurals show more circular or irregular vascular cavities. 

In the peripherals, the largest vascular spaces are not situated in the proximal part of the bones 

but in a more central and distal position. Instead, the proximal-most area of the peripherals is 

dominated by small, elongated vascular spaces that often aligned dorsoventrally with their 

long axes. The transition of the cancellous bone to cortical bone is gradual with a diminishing 

size of erosion cavities and an overall decrease of vascular spaces. 

Internal cortex—The internal cortex constitutes parallel-fibred bone with growth marks 

(Fig. 42d). Vascularisation of the cortex is medium to high, because of the high amount of 

scattered primary vascular canals and primary osteons. Elongated and flattened bone cell 

lacunae follow the successive layering of the bone tissue. Sharpey’s fibres were only observed 

in the neurals lateral to the incorporated neural arch. 

Sutures—Sutural zones are well developed with few but elongated bony peg and socket 

structures. Additionally, fibre bundles insert perpendicular into the sutural bone tissue. 
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Figure 42: Shell bone histology of Wuguia efremovi. Close-up of the external cortex of 

plastron fragment SGP 2001/35h in (a) normal and in (b) polarised light. Note homogeneous 

distribution of the interwoven structural fibre bundles. (c) Close-up of the thin gracile bone 

trabeculae of the cancellous bone of former specimen in normal transmitted light. (d) Close-

up of the well vascularised parallel-fibred bone of the internal cortex of the former specimen 

in polarised light. 

 

6.3.7.2 Eucryptodira incertae sedis (cf. “Macrobaenidae”) (†) 

All shell bones have a well developed diploe structure with external and internal cortices 

framing interior cancellous bone. While the external cortex is always a thick layer of compact 

bone, the thickness of the internal cortex varies between the carapace bones and the bone of 

the plastron. In the former, the internal cortex is generally reduced in thickness compared to 

the external cortex. In the latter, the internal cortex ranges from a thin band of bone to a thick 

layer that equals the thickness of the external bone. 
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External cortex—The external cortex is a layer of well vascularised fine-fibred ISF. Fibre 

bundles that extend perpendicular to the external surface of the bone are most common in the 

ISF (Fig. 43a, b). The bone tissue is vascularised by numerous, often branching primary 

vascular canals and few primary osteons. Many of the vascular canals extend perpendicular to 

the bone surface to open up into small foramina. At the transition to the cancellous bone, 

secondary erosion cavities and scattered secondary osteons are present  

Cancellous bone—The cancellous bone is composed of slender trabeculae (Fig. 43c, d). 

Depending on the plane of sectioning, the trabecular structure is either dominated by short 

trabeculae and circular to ovoid vascular cavities (e.g., cross-section of the neurals, section 

perpendicular to the rib in costals) or dominated by long trabeculae and elongate 

externointernally flattened vascular spaces (e.g., transverse sections of plastral element, 

sections parallel to the rib in costals). The trabeculae are largely primary. Many erosion 

cavities still lack secondary lamellar bone. 

Figure 43: Shell bone histology of Eucryptodira incertae sedis (cf. “Macrobaenidae”). Close-
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up of the interwoven structural fibre bundles of the external cortex of neural (YPM 1585) in 

(a) normal and in (b) polarised light. Close-up of the cancellous bone and the internal cortex 

of left hyoplastron (YPM 1585) in (c) normal and in (d) polarised light. Note primary 

structure of bone trabeculae and the reduced thickness of the internal cortex. 

 

Internal cortex—The internal cortex is a composed of parallel-fibred bone (Fig. 43d). The 

bone tissue is vascularised by primary osteons and erosion cavities. The internal-most layer of 

the cortex is mostly avascular. 

Sutures—The sutural zones have a shallow relief, with short protrusions and sockets. In the 

elements where sutures are observable, i.e., the neural and the costal, the interior cancellous 

bone reaches far into the sutural zone so that only a very thin sutural compact bone layer is 

present. 

 

6.3.8 Cheloniidae “sensu lato” 

The shell bones of these three taxa have in common that a true diploe structure (in which 

internal and external cortices frame interior cancellous bone) is not developed. Instead, the 

cortical bone shows various degrees of reduction. In R. breitkreutzi and A. hofmanni, the 

internal cortex is only a thin sliver of bone. In cf. C. stenoporus, the external and the internal 

cortices may be reduced in thickness, resulting in an overall fragile shell bone structure. 

However, the bone microstructures and vascularisation patterns of the shell of these three 

turtle taxa are distinct enough that they have to be described separately. 

 

6.3.8.1 Rupelchelys breitkreutzi Karl and Tichy, 1999 (†) 

External cortex—The external cortex is well developed (Fig. 44a, b). The bone matrix 

comprises ISF. The fibre bundles are coarse and of various lengths and diameters, giving the 

ISF a heterogeneous appearance (Fig. 44c, d). Furthermore, the fibre bundles trend in two sets 
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of different spatial directions (one predominantly oblique and one predominantly parallel and 

perpendicular to the external surface of the bone). Where fibre bundles are observed in cross-

sections, the internal structuring of the bundles is visible in polarised light, with black fibre 

strands delineated by birefringent lines. Locally, the bone tissue is extensively remodelled by 

successive generations of secondary osteons forming Haversian bone. 

Figure 44: Shell bone histology of Rupelchelys breitkreutzi. Close-up of the external cortex 

and the external part of the cancellous bone of costal fragment (SMNS 87218) in (a) normal 
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and in (b) polarised light. (c) Close-up of longitudinal and transverse sections of the coarse 

interwoven fibre bundles of the external cortex of shell fragment (SMNS 87218, ?costal 

fragment) in polarised light. Note set of structural fibre bundles running obliquely to the 

external bone surface. (d) Same section as in (c) rotated about 45°. Note second set of 

structural fibre bundles extending mainly parallel and perpendicular to the external surface of 

the bone. (e) Detail of the cancellous bone of the former specimen in polarised light. Note the 

interstitial primary bone in the trabeculae. (f) Detail of the thin internal cortex of the former 

specimen in polarised light. The parallel-fibred bone is strongly remodelled by secondary 

osteons and erosion cavities. 

 

Cancellous bone—Mostly thick and short bone trabeculae that still retain primary bone 

tissue, i.e., ISF, are found in the cancellous bone (Fig. 44e, f). The trabecular walls constitute 

lamellar bone. Towards the interior-most part of the cancellous bone, the trabeculae are more 

heavily remodelled. The vascular cavities are mostly of ovoid to irregular shapes. 

Internal cortex—The internal cortex is a thin layer of bone, that is also heavily vascularised 

and remodelled by erosion cavities and secondary osteons (Fig. 44g, h). The bone tissue 

consists of parallel-fibred bone. Sharpey’s fibres are observed to insert at high and moderate 

angles into the internal bone tissue. 

Sutures—In the costal plates, the only elements where sutural zones are preserved, the 

sutures are generally weakly developed. Bone protrusions and sockets are short and 

interdigitate poorly. The sutural bone tissue differs from the coarse ISF of the external cortex. 

Instead, the bone tissue comprises finely fibred ISF. 

 

6.3.8.2 Ctenochelys cf. C. stenoporus (Hay, 1905) (=Ctenochelys cf. C. acris Zangerl, 1953) 

(†) 

External cortex—The external cortex is generally thin. Locally, the thickness decreases 

until the cortex is comparable to the trabeculae of the cancellous bone. In the sampled neural, 

the cortex appears as being an external part of the cancellous bone. The external cortex is a 
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bone layer of ISF, heavily vascularised by primary osteons and primary vascular canals that 

often occur arranged in sheets within the cortex (Fig. 45a, b). Growth marks are still visible in 

the bone tissue. Towards the cancellous bone, bone remodelling is extensive. 

Cancellous bone—The structures of the cancellous bone are mostly secondary. The long 

and slender trabeculae are completely remodelled and consist of secondary lamellar bone 

(Fig. 45c). The fragile nature of the bone is underscored by extensive collapse structures of 

the cancellous trabecular system. 

Internal cortex—Generally, the internal cortex is a thin layer of parallel-fibred bone with 

growth marks (Fig. 45d), but in the rib bulge of the costal and the medial regions of the 

neural, the internal cortex is somewhat thicker still. In both specimens, the bone tissue is also 

less vascularised with fewer scattered primary vascular canals and primary osteons than in 

other cortical areas. In the rib bulge, the internal-most layers are even mainly avascular. 

Sharpey’s fibres were observed in the neural parasagittal to the keel and in the costal adjacent 

to the rib bulge. 



Comparative bone histology of the turtle shell   
 

206 

Figure 45: Shell bone histology of Ctenochelys cf. C. stenoporus. Close-up of the 

homogeneous interwoven structural fibre bundles of the external cortex of sampled costal 

(FM PR 442) in (a) normal and in (b) polarised light. (c) Close-up of the remodelled slender 

trabeculae of the cancellous bone of sampled neural (FM PR 442) in normal transmitted light. 

(d) Close-up of the internal cortex of former specimen in polarised light. Note the remodelling 

of the thin cortical bone. 

 

6.3.8.3 Allopleuron hofmanni (Gray, 1831a) (†) 

External cortex—The external cortex is thick and well developed. The bone surface appears 

smooth and unsculptured in thin-section and only occasionally a foramen inserts into the 

compact bone tissue. The bone tissue comprises ISF. While the matrix is mainly composed of 

fibre bundles of homogeneous length and thickness, prominent scattered thick fibrous strands 

extend through the whole cortex from the interior cancellous bone towards the external 

surface of the bone. The progression of the parallel fibrous strands (Fig. 46a, b), purportedly 

Sharpey’s fibres, varies between extending almost perpendicular to the external surface of the 

bone and inserting at oblique angles (lower than 45°). The bone tissue is vascularised by a 

few scattered large vascular canals and an intricate and extensive reticular network of smaller 

primary vascular canals (Fig. 46c). The transition from cortical bone to the cancellous interior 

is distinct. Only a few scattered large secondary osteons and erosion cavities are present in the 

external cortex. 

Cancellous bone—Externally, the cancellous bone constitutes short and thick trabeculae and 

small vascular cavities of round shapes. Towards internal, the cancellous bone has a more 

open character with longer and more slender trabeculae and larger vascular spaces (Fig. 46d). 

The largest cavities are found in the more internal half of the cancellous bone (e.g., Fig. 46e). 

Here, bone remodelling resulted in fusion of smaller vascular spaces to larger cavities. Bone 

trabeculae consist of lamellar bone, however primary bone, i.e., ISF, is still present in larger 

areas of anastomosing trabeculae. 

Internal cortex—The internal cortex is represented by a thin layer of compact bone (Fig. 

46e). Due to poor preservation, many of the sampled bones lack the internal cortex and the 
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internal-most parts of the cancellous bone. Where it is still preserved (e.g., in the larger costal 

fragment), it is observable as a thin layer of parallel-fibred bone. 

Figure 46: Shell bone histology of Allopleuron hofmanni. Close-up of the interwoven 

structural fibre bundles and the reticular primary canals of the external cortex of costal 

fragment 2 (NHMM uncat.) in (a) normal and in (b) polarised light. Sharpey’s fibres insert 

obliquely into the cortical bone tissue. (c) Close-up of the external cortex of former specimen 

in normal transmitted light with focus on the reticular primary canals and the darkly 
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mineralised Sharpey’s fibres. (d) Detail of the thin and slender bone trabeculae of the 

cancellous bone of former specimen in polarised light. Close-up of very thin internal cortices 

of (e) costal fragment 1 (NHMM uncat.) in normal light and of (f) plastral fragment (NHMM 

uncat.) in polarised light. 

 

Plastral rod—Most of the external and interior part of the rod has not been preserved. 

However, the bone tissues described for the internal and external cortices are still present. 

While the rod itself comprises cortical ISF externally, interior cancellous bone and parallel-

fibred bone internally (Fig. 46f), the flange-like protrusion of the rod is mainly composed of 

compact parallel-fibred bone surrounding a cancellous interior. 

 

6.3.9 Cheloniidae “sensu stricto” 

All three taxa have shell bones with a diploe structure, where compact bone layers frame 

interior cancellous bone. In C. mydas, the internal and external cortices are similar in 

thickness and less vascularised (please note that the description is based on a single shell 

element). In C. caretta and E. imbricata, the thickness of the internal cortices is reduced 

compared to the external cortices. The two taxa share similar bone microstructures and will 

thus be described in the same section. The amount and ratio of compact bone layers and their 

respective vascularisation patterns differ to such an extend from C. mydas that it is 

appropriate to describe this taxon in a separate section. 

 

6.3.9.1 Caretta caretta (Linnaeus, 1758) and Eretmochelys imbricata (Linnaeus, 1766) 

External cortex—The external cortex of the bone comprises metaplastic ISF and the 

external bone surfaces are rough and porous. Within the ISF, the fibre bundles are of similar 

length and thickness, leading to an even spatial arrangement where fibre bundles equally trend 

perpendicular, subparallel and diagonal to the surface of the bone. The most obvious 

characteristic of the cortex is its vascularisation pattern (Fig .47a-c). The bone starts loosing 
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its compact character due to the very high amount of primary osteons and primary vascular 

canals, often occurring in successive layers. Towards external, the bone surface is covered by 

a layer of connective tissue, again followed by a thick epidermal keratinous shield. In C. 

caretta, the keratin layers of the shield have uneven undulating growth marks (Fig. 47b). In E. 

imbricata, the shield has very clear growth marks of the keratin layers, which extend parallel 

to the shield surface throughout the shield. The layer of intermediate connective tissue 

comprises loosely arranged fibre bundles that extend sub-parallel to the surface of the bone. 

Cancellous bone—The bone trabeculae of the cancellous bone are still largely primary, 

however, secondary remodelling is extensive in the interior part. ISF is observed in areas 

where primary bone is still present. The trabeculae are short and homogeneous in C. caretta 

(Fig. 47d), but somewhat thinner and gracile in E. imbricata (Fig. 47a). The walls of the 

trabeculae comprise lamellar bone. Furthermore, the largest vascular cavities are found in this 

interior-most region of the shell bone. The transition between the cancellous bone and the 

cortical layers is gradual instead of clearly distinct. The vascular cavities, mostly circular to 

ovoid in shape, are decreasing in size towards internal and external. In the core sample of the 

plastron of C. caretta, many of the vascular spaces are externointernally flattened. In the core 

sample of the peripheral of E. imbricata, a peculiar erosion pattern is observed in the 

cancellous bone, where irregularly formed ‘islands’ of primary bone tissue are completely 

separated from the surrounding bone tissue by erosion canals (please note that the islands are 

not completely separated three-dimensionally). The other sections of the shell bone of E. 

imbricata lack this peculiar pattern. 

Internal cortex—The internal cortex comprises parallel-fibred bone (Fig. 47d-f). The bone 

tissue of the core samples is strongly vascularised. Similar to the external cortex, the compact 

nature of the bone is loosened up by primary vascular canals and numerous primary osteons. 

Many of the primary osteons are arranged string-like in the successive layers of the cortical 

bone. In the samples of E. imbricata, a layer of connective tissue where fibre bundles extend 

sub-parallel to the internal bone surface is still in contact with the shell bone. 
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Figure 47: Shell bone histology of Caretta caretta and Eretmochelys imbricata. (a) Section of 

sub-sampled right peripheral1 (SMNS 12604; drilled core) of Eretmochelys imbricata 

showing the highly vascular diploe structure of the bone in polarised light. (b) Close-up of the 

external cortex and the thick keratinous shield of sub-sampled left costal2 (FMNH 98963; 

drilled core) of Caretta caretta in normal transmitted light. (c) Another section of the external 

cortex of the former specimen in polarised light. Note the loss of the compact nature of the 

cortical bone tissue based on the high amount of primary and secondary osteons. (d) Detail of 

the cancellous bone and the internal cortex of left costal2 (FMNH 98963; drilled core) of 
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Caretta caretta in normal transmitted light. Note beginning homogenisation of the cortical 

and cancellous bone. Close-up of the internal cortex of right costal2 (SMNS 12604) of 

Eretmochelys imbricata in (e) normal transmitted and in (f) polarised light. 

 

6.3.9.2 Chelonia mydas (Linnaeus, 1758) 

External cortex—The bone tissue comprises ISF (Fig. 48a, b) similar to that described for 

C. caretta. However, the high amounts of primary osteons found in the cortex of C. caretta 

are not observed in C. mydas. The moderate vascularisation is achieved only by anastomosing 

primary vascular canals. Locally, reticular vascularisation patterns are developed (Fig. 48b). 

The external surface of the bone is slightly wavy to rugose with shallow irregular troughs and 

ridges. 

Figure 48: Shell bone histology of Chelonia mydas. Close-up of the external cortex of costal 

MB.R. 2857 in (a) normal transmitted and in (b) polarised light. Note scalloped surface of the 
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bone. A reticular vascularisation pattern is moderately developed. (c) Detail of the more 

internally situated bone trabeculae of the interior cancellous bone of former specimen in 

polarised light. Note that trabeculae are long and slender in this section. (d) Close-up of the 

well vascularised internal cortex of former specimen in polarised light. The fibres of the 

parallel-fibred bone tissue deviate around the primary vascular canals. 

 

Cancellous bone—The interior cancellous bone is comprised of short and uniform primary 

trabeculae and vascular spaces of circular to ovoid shape. The largest spaces are found in the 

internal (lower) third of the cancellous bone (Fig. 48c). A prevalent arrangement of the bone 

trabeculae is not recognised. Towards external and internal, the transition to the cortical layers 

shows scattered larger secondary osteons and irregular erosion cavities. 

Internal cortex—The internal cortex shows parallel-fibred bone with moderate to high 

amounts of scattered primary osteons and primary vascular canals. Locally, the parallel-fibred 

nature of the bone tissue is not easily discernable because of the amount vascular canals (Fig. 

48d) and because of Sharpey’s fibres inserting at high angles into the parallel-fibred bone. 

Sutures—The sutures are well developed with long bony protrusions and sockets. Fibre 

bundles that insert perpendicular into the sutural bone tissue are short and unobtrusive.  

 

6.3.10 Protostegidae 

6.3.10.1 Archelon ischyros Wieland, 1896 (†) 

The sampled shell bones of A. ischyros range among the thickest that were included into the 

study (Fig. 49a, b). The three specimens show a uniform picture of the bone microstructure. 

The interior bone structure in the peg-like element has largely collapsed. Therefore, the 

description is mainly based on the other two shell bones. The rough, spongy surface texture of 

the bones is connected with numerous primary and secondary osteons opening up to the bone 

surface. However, this effect may be greatly influenced by the individual preservation of the 

external-most layers of the bones. A clear histological division between compact bone layers 
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and interior cancellous bone is not observed (Fig. 49a, b). Instead, the boundaries between 

cortex and cancellous bone are lost in favor of a single, more homogeneous bone tissue of 

cancellous appearance. The cortices of the bone are thus not compact but comprise primary 

cancellous bone tissue with cyclical growth marks (Fig. 49c, d). In the bone tissue directly 

adjacent to the external and internal surfaces of the shell bones, a general reduction in size is 

observed in the primary and secondary osteons. The growth marks are recognised as areas of 

condensed shorter homogeneous trabeculae and small circular vascular spaces arranged 

roughly sub-parallel to the surface of the bones. Many of the bone trabeculae comprise 

primary bone within that is walled by secondary lamellar bone. Vascular spaces are smallest 

in the internal-most and external-most layers of the bones. The spaces are of circular shape 

here.  

Figure 49: Shell bone histology of Archelon ischyros. Complete thin-section of sampled shell 

fragment (YPM 1783) in (a) normal and in (b) polarised light. The whole bone tissue is 

mostly primary and uniformly spongy in appearance. No discrete division into cancellous 
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bone and cortical bone can be observed. Note primary growth marks thoughout the complete 

bone tissue. Section of the external part of the shell element in (c) normal and in (d) polarised 

light. Towards the external surface of the bone, a general trend in size reduction is seen in the 

primary and secondary osteons. 

 

Secondary remodelling processes further enlarge the vascular spaces within the cortices and 

the cancellous bone, but no secondary osteon clusters or Haversian bone was found in A. 

ischyros. Towards the cancellous interior of the bones, the vascular spaces are of ovoid to 

elongated shape. Many of these vascular spaces are aligned in an externointernal fashion with 

their respective long-axes. Locally, the arrangement of the trabeculae is reminiscent of the 

arrangement of trabecular bone aligned along force trajectories in long bones. 

 

6.3.11 Dermochelyidae 

6.3.11.1 Dermochelys coriacea (Vandellius, 1761) 

Three ontogenetic stages in shell bone formation were studied. 

Hatchling specimen—The thin-sections of the hatchling (QMJ 58751a, b) show mostly 

unossified integumentary tissue. In the thin-section comprising a longitudinal cut through the 

integument (not associated with a rib), mostly unossified integumentary tissue is present (Fig. 

50a, b). In the thin-section that shows a transverse cut through the lateral body wall of the 

hatchling associated with developing rib and vertebra. Beneath the external-most layer, the 

cuticle follows a layer of fibrous, fatty tissue, with fibre bundles extending mostly sub-

parallel to the external surface of the integument. In the longitudinal sections, a thick zone 

comprising layers of large thick translucent cells intercalated with thin fibrous strands is 

present, internal to the lipid-rich fibrous tissue (Fig. 50b). This internal zone is hypothesised 

to belong to the subcutis where adipose tissue (large thick translucent cells) is separated into 

compartments by connective tissue strands (thin fibrous strands). In the transverse section, 

thin bony struts (probably belonging to the developing rib) are seen, however, their 

connection to the surrounding soft-tissue is difficult to interpret. The thin-section is 
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dominated by the ovoid structure of the vertebra that shows internal cartilage cells surrounded 

by a thin layer of periosteal bone. Laterally, the ovoid structure has two small protrusions that 

may comprise parts of the neural arch prior to the incorporation into the flat plate part of the 

neural. True ossification of epithecal elements, i.e., the mosaic platelets are not observed in 

the hatchling sections. 

Sub-adult specimen—At the sub-adult stage (QMJ 581592), a layer of ossified tissue has 

developed between the external cuticle and a layer of lipid-rich fibrous tissue, where the fibre 

bundles trend again sub-parallel to the external surface of the integument (Fig. 50c). In the 

section, this layer of horizontally arranged fibre bundles is followed internally by a thick, 

adipose-rich layer of integumentary tissue where fibre bundles are more loosely arranged. The 

fibre bundles extend in several spatial directions, with a slight dominance of fibre bundles that 

extend roughly diagonally towards the external surface of the integument. The bony platelet 

comprises an external cortical bone layer and an internal layer of cancellous bone (Fig. 50c). 

An internal cortex is not developed. The external cortex constitutes ISF (Fig. 50d, e). The 

bone tissue is highly vascularised with a reticular network of the primary vascular canals and 

primary osteons. The external surface of the bone is rough and scalloped with deep foramina 

inserting into the cortical bone. The internal cancellous bone comprises trabeculae and 

scattered secondary osteons. The trabeculae are identified as being primary because interstitial 

primary bone is still present within the lamellar bone walls of many trabecular struts and 

trabecular branching areas. Other trabeculae are in the process of remodelling. The 

remodelling results in secondary trabeculae composed solely of lamellar bone. Bone cell 

lacunae in the lamellar bone are flattened and elongated, while they are more round in 

interstitial areas. 

Adult specimen—The platelet of the adult specimen (QMJ 73979; UQVPI) derives from one 

of the keels of the carapace therefore the bone is roof-shaped in cross-section (Fig. 50f). The 

bone was prepared out of the surrounding integumentary tissue which precludes a detailed 

soft-tissue analysis of the integument here. The mosaic platelet is similar in its bone 

microstructures to the platelet of the sub-adult specimen. It is marginally thicker than the 

platelet of the sub-adult stage. The platelet is composed of two layers, a more compact 

external layer and a more vascular internal layer. The external cortex comprises ISF that are 

highly vascularised by reticular vascular canals (Fig. 50g). 
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Figure 50: Shell bone histology of Dermochelys coriacea. (a) Section of the sampled 

integument of juvenile specimen (QMJ 58751) in normal transmitted light. The integumentary 

tissue still lacks ossified secondary armour. (b) Detail of the fibrous and lipid-rich layers of 

the integument. (c) Section of the sampled integument of sub-adult specimen (QMJ 581592). 

The external cortex and the interior cancellous bone of a bony armour platelet are visible, 

followed internally by a lipid-rich loose meshwork of soft integumentary fibres (of the 

corium). Close-up of the external cortical bone of the former specimen in (d) normal 

transmitted light and in (e) polarised light. The highly vascularised cortical bone tissue 

consists of interwoven sturctural fibre bundles. (f) Section of the roof-shaped platelet of an 

adult specimen (QMJ 73979; UQVPI). Note that the bone is covered externally by a thick 

cuticle. (g) Close-up of the highly vascularised external cortex of the former specimen in 

normal light. Note the scalloped surface of the bone, the primary canals opening in foramina 

and the Sharpey’s fibres. (h) Close-up of the internal-most part of the platelet where a thin 

‘internal cortex’ seems to be present. Note that this purported cortical bone is no thicker than 

the slender trabeculae of the interior part of the platelet. 

 

The surface of the bone is scalloped with deep insertions of foramina, partly filled with the 

tissue that constitutes the external cuticle. Sharpey’s fibres are found as thick and dark fibrous 

strands inserting at high angles into the external-most layers of the cortex. Towards the keel 

of the platelet, the cortical bone itself resembles only a spongy meshwork of trabecular struts. 

The large vascular cavities are filled with brown adipose tissue. Towards internal, the 

trabeculae are longer and more slender, forming an intricate spongy meshwork of bone. Most 

of the trabeculae comprise only lamellar bone. However, remnants of primary bone are still 

visible throughout the internal bone layer (i.e., in larger branching areas). The cavities are also 

filled with brown adipose tissue here. Where the adipose tissue desiccated, small empty 

vascular spaces are present. Locally, it appears that a very thin internal cortex (no thicker than 

a gracile trabecular strut) is developed (Fig. 50h). However, this might be an artefact of the 

plane of sectioning crossing more horizontally aligned trabeculae, because other areas are 

clearly free of internal cortical bone. On one lateral side of the internal cortex, connective 

tissue is still attached to the bone. The fibre bundles arrangement in this tissue seems to be 

sub-parallel to the internal surface of the platelet. 
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6.3.11.2 Psephophorus sp. (†) 

Although the outer morphology and size of the polygonal platelet of Psephophorus sp. (MB. 

R. 2532.1) differs from the platelets of D. coriacea, the bone microstructure is largely the 

same. The platelet comprises an external compact layer and an internal zone of cancellous 

bone. An internal cortex is not developed. 

External cortex—In contrast to the platelets of D. coriacea, the external surface of the bone 

is even with a slightly rough texture. The cortex itself is composed of ISF (Fig. 51a, b). The 

fibre bundles in the ISF are homogeneous in size and diameter with a slight dominance of 

fibre bundles that extend at high angles to the external bone surface. The bone tissue is 

moderately to highly vascularised by primary osteons, primary vascular canals and scattered 

secondary osteons. Few of the vascular canals open up as small foramina to the external bone 

surface. The amount of secondary osteons increases towards the internal cancellous bone. 

Bone cell lacunae are round or slightly flattened and elongated and appear irregularly or in 

clusters. In the lamellar bone of the secondary osteons, the cell lacunae are flattened and 

elongated and generally align along the secondary bone lamellae. 

Cancellous bone—The cancellous bone consists mostly of thick and short trabeculae and 

large amounts of secondary osteons (Fig. 51c). Locally, the secondary osteons are clustered 

but no extensive Haversian bone is formed. Most of the interstitial bone is primary, showing 

ISF. Vascular cavities are irregular and small to medium in size. The internal surface of the 

bone is strongly scalloped due to extensive remodelling of the cancellous bone trabeculae. 

Sutures—The sutural zone is narrow with short bony protrusions and sockets (Fig. 51d). 

The bone tissue is similar to the ISF described for the external cortex, but more strongly 

remodelled. The sutural bone tissue is dominated by fibre bundles that extend perpendicular 

to the margin of the platelet. 
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Figure 51: Shell bone histology of Psephophorus sp. Close-up of the external cortex of 

secondary armour platelet MB.R. 25.321 in (a) normal transmitted and in (b) polarised light. 

Note the homogeneous texture of the interwoven bone tissue and the branching primary 

vascular canals. (c) Detail of the more internally situated bone trabeculae of the interior 

cancellous bone in normal transmitted light. Note that trabeculae are predominantly thick and 

short. (d) Close-up of the sutural zone of the specimen in polarised light. The bone tissue of 

the sutural zone is similar to the bone tissue of the external cortex. However, the sutural bone 

tissue is more strongly remodelled. 

 

6.3.12 Chelydridae 

6.3.12.1 Chelydra serpentina (Linnaeus, 1758), Chelydropsis murchisoni (Bell, 1832) (†) 

and Chelydropsis sp. (†) 

The bone histology of the three taxa is similar, so it will be described in a single section. 

Variations among the sampled taxa are being pointed out where appropriate. All samples have 
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a diploe structure where external and internal cortices frame interior cancellous bone. 

Furthermore, the internal cortex is reduced in thickness compared to the external cortex. 

External cortex—The bone tissue of the external cortex constitutes ISF. The external bone 

surfaces are rough and porous (Fig. 52a). This rough surface texture is linked to vascular 

canals opening up to the surface of the bone. Within the ISF, the fibre bundles are often of 

similar length and thickness, leading to an even spatial arrangement where fibre bundles 

equally trend perpendicular, subparallel and diagonal to the surface of the bone. However, the 

arrangement of the ISF can be locally dominated by fibre bundles that extend predominantly 

diagonally from the external bone surface towards the interior cancellous bone (Fig. 52b). 

This peculiar arrangement of fibre bundles is visible in most samples of C. serpentina and C. 

murchisoni, but not in the two specimens of Chelydropsis sp. Vascularisation of the bone 

tissue is high due to the amount of primary vascular canals and primary osteons. However, the 

bone tissue retains its compact appearance. The primary vascular canals often anastomose and 

branch, thus forming reticular vascularisation patterns. 

Cancellous bone—The bone trabeculae of the cancellous bone are still largely primary, 

although, especially in the interior-most part of the cancellous bone, secondary remodelling 

into long and slender secondary trabeculae proceeds (Fig. 52c, d). The larger cavities between 

the trabeculae show a lining with secondary lamellar bone. The transition between the 

external and internal cortical layers and the interior cancellous bone in between is 

characterised by an increasing amount and size of secondary erosion cavities and scattered 

secondary osteons. Because of the strong progressive remodelling of both specimens of 

Chelydropsis sp., the transition zone is not present between cancellous bone and compact 

bone. 
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Figure 52: Shell bone histology of chelydrid turtle taxa. (a) Close-up of the scalloped external 

cortex of neural3 (YPM 10857) of Chelydra serpentina in polarised light. The bone tissue is 

highly vascularised by primary vascular canals. Many primary vascular canals end in small 

foramina on the external bone surface. (b) Close-up of the external cortex of sampled costal 

SMNS 88994 of Chelydropsis murchisoni in polarised light. Note predominantly oblique 

arrangement of interwoven structural fibre bundles. Close-up of the cancellous bone of 

neural3 (YPM 10857) of Chelydra serpentina in (c) normal and in (d) polarised light. Detail 

of the parallel-fibred bone tissue of the internal cortex of the former specimen in (e) normal 
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and in (f) polarised light. 

 

Internal cortex—The internal cortex constitutes parallel-fibred bone (Fig. 52e, f). The 

arrangement of the fibres is roughly sub-parallel to the internal bone surface. However, 

towards and within the costal bulge of the costal of C. serpentina, the layers of the bone tissue 

seem to deviate until they extend perpendicular to the internal bone surface. Here, the bone 

cell lacunae are of lentil or oval shape and are aligned in an externointernal fashion. However, 

this peculiar orientation in the bone tissue and its respective bone cell lacunae is an artefact of 

sectioning the plate right at the location where the rib head (capitulum) protrudes from the 

costal plate. Instead of extending sub-parallel to the surface of the plate proper, the cell 

lacunae are aligned sub-parallel to the bone surface of the protruding capitulum. In contrast, 

the bone cell lacunae in the cortex next to the rib bulge in the costal plate are generally 

flattened and elongated and extend sub-parallel to the internal bone surface. In the costal of C. 

murchisoni, the plane of sectioning lies distal to the protruding capitulum, thus the 

arrangement of the bone layers reflects the ‘normal’ condition found also next to the rib 

bulge. However, the internal-most tip of the rib bulge has been eroded in the costal of C. 

murchisoni, thus a comparison of this region is not possible. Vascularisation is moderate to 

high in all bone elements, mainly achieved by scattered primary vascular canals and scattered 

primary osteons. The primary osteons are of similar diameter and evenly spaced throughout 

the successive parallel-fibred layers of the internal cortex. Sharpey’s fibres were encountered 

in the sampled plastral elements and adjacent to the rib bulge in the costals. 

Sutures—Where preserved, sutures of the shell bones were well developed with long bony 

protrusions and adjacent sockets. In C. serpentina, the bony protrusions and socket structures 

are elongated, thus reaching far into the bone proper towards its cancellous bone interior. Due 

to incomplete preservation of the fossil material, fibre bundles that extend perpendicular to 

the suture into the bone tissue were only found in the recent C. serpentina. 
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6.3.13 Testudinoidea indet. 

Because of its divergent shell bone microstructure, as well as the remaining uncertainty of 

its phylogenetic position, Platysternon megacephalum is described separately from the other 

testudinoid clades. 

 

6.3.13.1 Platysternon megacephalum Gray, 1831b 

The sampled shell bones show a diploe with well developed cortices framing interior 

cancellous bone. Neither cortex is reduced in thickness (Fig. 53a, b). 

External bone—The external cortex consists of ISF. The arrangement of the fibre bundles in 

the ISF is mostly obscured by the high amounts of collagenous matter in the samples. 

Predominantly diagonal directions are discernable in polarised light (Fig. 53c). The bone 

tissue is well vascularised with primary osteons and primary vascular canals, often extending 

diagonally and ultimately opening up to the external surfaces of the bones (thus causing the 

slightly rough external bone surface texture). In the core samples, the bone is overlain 

externally by a thin layer of connective tissue and the keratinous shield. The shield often has a 

wavy or scalloped external surface, and the growth marks of the successive keratin layers are 

also wavy or anastomosing. 

Cancellous bone—The cancellous bone comprises thin and long bone trabeculae of 

secondary lamellar bone (Fig. 53b). Primary bone is found only in interstitial branching areas. 

The vascular spaces increase in size from external towards internal, and the largest cavities 

are found in the internal third of the cancellous bone. In the thin shell bones, many of the 

trabeculae extend externointernally or diagonally towards the cortices. This is often 

accompanied with a externointernal flattening of the vascular spaces. 

Internal cortex—The internal cortex is a thick layer of predominantly avascular parallel-

fibred bone (Fig. 53a, d). Only a few scattered primary vascular canals are present. Internal to 

the bone surface a layer of connective tissue is still present in the core samples. 
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Sutures—Even though the shell bones are quite thin in the macerated specimen (YPM 

12615), the sutures are well developed with elongated bony protrusions and according sockets 

(Fig. 53d). 

Figure 53: Shell bone histology of Platysternon megacephalum. Section of sub-sampled 

costal and associated keratinous shield (SMNS 3757; drilled core) in (a) normal and in (b) 

polarised light. Note the rib bulge of the internal cortex and the cancellous bone. Sharpey’s 

fibres insert into the internal cortex lateral to the rib bulge. (c) Close-up of the external cortex 

of sub-sampled left hypoplastron and associated keratinous shield (SMNS 3757, drilled core) 

in polarised light. The fibre bundles of the interwoven tissue extend predominantly obliquely 

towards the external surface of the bone. (d) Complete thin-section of neural3 (YPM 12615; 

juvenile) in normal transmitted light. Note how the internal cortical bone (parallel-fibred 

bone) deviates towards interal from the flat plate part of the neural to the neural arch. The roof 

of the vertebral canal consists also of parallel-fibred bone. Chondrocyte lacunae are present at 

the internal ends of the branches of the neural arch. The sutural zone is well developed with 

few but long pegs and sockets. 



Bone histological results of Testudinata 
 

 225

6.3.14 Emydidae, Geoemydidae/Bataguridae and Testudinidae 

Variation of the shell bone microstructures among these testudinoid clades is low. Only 

three histotypes (type I-III) are recognised. While the bone tissue types (e.g., ISF of the 

external cortex; parallel-fibred bone of the internal cortex) are generally similar for all 

testudinoid turtles, the histotypes mainly reflect independent levels and patterns of 

vascularisation of the primary cortical bone tissue as well as the general structure of the 

cancellous bone. 

 

6.3.14.1 Testudinoid histotype I 

Included taxa: Emydid turtles: Terrapene carolina triunguis (Agassiz, 1857); 

geoemydid/batagurid turtles: Pangshura (=Kachuga) tentoria (Gray, 1834); testudinid turtles: 

Manouria emys (Schlegel and Müller, 1844), , Geochelone pardalis (Bell, 1828), Geochelone 

elegans (Schoepff, 1795); [intermediates between histotypes I and II]: Geoemydid/batagurid 

turtles: Cuora picturata Lehr et al. 1998, Mauremys cf. M. mutica (Cantor, 1842); testudinid 

turtles: Hesperotestudo (Caudochelys) crassiscutata (Leidy, 1889) (†) 

The bone histology of all included taxa is characterised by the typical diploe build. Internal 

and external compact bone layers delineate an interior area of cancellous bone. Although 

overall shell bone thickness differs among the taxa, the cortices are generally well developed. 

All samples had a micro-rough texture of the external bone surfaces. The internal surfaces of 

the bones were generally smooth. Growth marks occur in both cortices, but they are often 

convoluted or discontinuous. 

External cortex—The external cortex comprises metaplastic ISF, where the fibre bundles of 

similar length and diameter are orientated perpendicular, parallel and diagonal to the external 

bone surface. Depending on the exact plane of sectioning, the fibre bundles seem to resemble 

a well-ordered close-knit fabric. The vascularisation of the bone tissue is generally low with 

primary vascular canals and few scattered primary osteons. Many of the primary canals open 

up towards the surface of the bone, causing the rough texture of the external cortex (see 

above). Growth marks that extend sub-parallel to the external bone surface are present in the 
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external cortices of all taxa. The transition to the cancellous bone is usually clearly defined 

instead of representing a gradual shift. Scattered secondary osteons are generally found at the 

transition between external cortical and cancellous bone. They increase in size and number in 

the compact bone layers situated immediately next to the interior cancellous bone, as those 

cortical layers are first remodelled and vascularised with growth and increasing age of the 

turtle. 

Cancellous bone—The cancellous bone consists of mostly short and thick bone trabeculae 

and small to medium sized vascular spaces. However, in thicker shell bones, the bone 

trabeculae can also be longer and more slender, as seen for example in the peripheral of C. 

picturata and in the very thick bones of H. crassiscutata. The bone trabeculae are usually 

lined with secondary lamellar bone towards the vascular spaces, resulting in a well-

vascularised meshwork. Some vascular spaces of irregular shape in the trabecular meshwork 

do not yet have a lining with secondary lamellar bone. Primary bone tissue, i.e., ISF is usually 

preserved in the interstitial areas of the bone trabeculae. Bone cells and their lacunae are 

round and numerous in the primary interstitial bone. In the secondary lamellar bone, bone 

cells and lacunae are flattened and elongated in shape and more sparsely distributed. 

Internal cortex—The internal cortex constitutes parallel-fibred bone with local transitions 

into lamellar bone. The bone tissue is generally weakly vascularised with few scattered 

primary vascular canals or it is even avascular. Only occasionally, a scattered primary osteon 

is found in the cortical bone. Lateral to the rib bulge of costals, the incorporated neural arch in 

neurals and the buttress regions of the hyo- and hypoplastra, many fibre bundles insert 

obliquely into the internal cortex of the bone, indicating the presence of Sharpey’s fibres. In 

polarised light, the Sharpey’s fibres are birefringent. Bone cell lacunae are elongated and 

irregular in shape in the bone tissue. Similar to the external cortical bone, the transitional zone 

of the internal cortex to the cancellous bone is clearly marked by scattered secondary osteons. 

Sutures—The sutural zones are well developed with moderate to high relief of interdigitating 

bony pegs and sockets. 
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Figure 54: Testudinoid histotype I. (a) Complete thin-section of right hyoplastron (YPM 

13877) of Cuora picturata. The diploe-structure of the shell bone is well developed. Note 

typical cross-polarisation of secondary osteons at transition of external cortex and interior 

cancellous bone. (b) Close-up of weakly vascularised interwoven structural fibre bundles of 

external cortex of right hypoplastron (SMNS 12605) of Geochelone pardalis. (c) Close-up of 

interwoven structural fibre bundles of external cortex of costal (FMNH 211806) of Terrapene 

carolina triunguis. The bone is weakly vascularised with few thin primary vascular canals. 

Note the keratinous shield covering the roughly textured surface of the bone. (d) Close-up of 

interwoven structural fibre bundles of external cortex of left hyoplastron (FMNH 260395) of 

Manouria emys in polarised light. The bone tissue is vascularised by few primary osteons. (e) 

Complete thin-section of neural and costal of T. c. triunguis (FMNH 211806) in normal 

transmitted light. Vascular cavities of the cancellous bone are small, giving the whole bone a 

compact appearance. (f) Complete thin-section of xiphiplastron of Hesperotestudo 

crassiscutata (ROM 55400). The trabeculae in this very thick bone are longer and more 

slender, building a kind of light-weight interior compared to the cancellous bone seen in T. c. 

triunguis. (g) Close-up of external cortex of sampled costal (ROM 55400) of Hesperotestudo 

crassiscutata observed in polarised light. Vascularisation of the cortical bone is observed in 

form of primary osteons and straight or branching primary canals. Larger scattered secondary 

osteons are only developed in the direct vicinity of the interior cancellous bone. Interwoven 

structural fibre bundles appear like a close-knit fabric. Note how some primary osteons trend 

almost perpendicular to the surface of the bone. (h) Internal cortex of former specimen in 

polarised light. Note that the layers next to the surface of the bone are sparsely vascularised. 

Large areas of primary interstitial bone of interwoven fibre bundles (again resembling a close-

knit fabric), interspersed with primary and secondary osteons, occur in the interior regions of 

the cortex. (i) Close-up of the mainly avascular parallel-fibred bone of the internal cortex of 

hyoplastron (FMNH 211806) of T. c. triunguis in polarised light. 

 

Variation—The vascularisation of the internal cortex is very low in T. c. triunguis, P. tentoria 

and H. crassiscutata. In these taxa, the bone layers are mostly avascular. In comparison, C. 

picturata and Mauremys cf. M. mutica have a slightly increased vascularisation of the internal 

cortical bone and are thus regarded as being somewhat intermediate between histotypes I and 

II. 
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6.3.14.2 Testudinoid histotype II 

Included taxa: Emydid turtles: Pseudemys peninsularis Carr, 1938, Emydidae indet. 

(?Platysternoid “C”) (†); geoemydid/batagurid turtles: Mauremys (= ‘Ocadia’) sophiae 

(Ammon, 1911) (†), Mauremys (=‘Ocadia’) sp. (†), Cyclemys dentata (Gray, 1831a), 

Rhinoclemmys pulcherrima (Gray, 1855), testudinid turtles: Geochelone carbonaria (Spix, 

1824), Kinixys homeana Bell, 1827; [Intermediates between histotypes II and III]: emydid 

turtle: Emys orbicularis (Linnaeus, 1758); geoemydid/batagurid turtle: Ptychogaster sp. (†); 

testudinid turtles: Hadrianus majusculus Hay, 1904 (†), Hadrianus corsoni (Leidy, 1871a) (†) 

All shell bones have a diploe structure, where internal and external cortical bone layers 

frame interior cancellous bone. Both cortices are well developed, and the whole bone retains a 

generally compact appearance. 

External cortex—The external cortical bone consists of fine-fibred ISF. The fibre bundles in 

the ISF are mostly similar in length and thickness. Most taxa, e.g., Pseudemys floridana, have 

a homogeneous arrangement of fibre bundles that extend perpendicular, parallel and oblique 

to the external surface of the bone (Fig. 55a, b). In E. orbicularis (fig. 55c) and K. homeana, 

the fibre bundles are somewhat thicker, and the ISF is dominated by surface-parallel and 

oblique fibre bundles. The vascularisation of the cortical bone is moderate, often with 

reticular or branching patterns of primary vascular canals. Many of the primary vascular 

canals reach the surface of the bone as small foramina. Primary osteons appear seldom. 

Internally, there is a thin transition zone to the interior cancellous bone consisting mostly of 

scattered small secondary osteons and erosion cavities. Growth marks in the bone tissue are 

clearly visible. However, they do not always appear as highly birefringent lines in polarised 

light. In Hadrianus spp., the vascularisation of the external bone tissue is moderate to high, 

because of large amounts of primary osteons (Fig. 55d). 

Cancellous bone—The cancellous bone generally consists of short and thick primary bone 

trabeculae and small vascular spaces. In few cases, e.g., in P. peninsularis, the interior of the 

shell bone is dominated by large secondary osteons and irregular erosion cavities in the 

primary bone tissue, i.e., ISF. Longer and more slender trabeculae are either absent here, or 

they are restricted to the most internal parts of the interior cancellous bone. The bone 

trabeculae are usually lined with a thin sheath of secondary lamellar bone (Fig. 55e). In G. 
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carbonaria, the thickness of the cancellous bone layer is either rather constant (plastron) or 

highly variable (carapace). This variation is directly connected with the thickness of the 

cancellous bone in the elements of the carapace (Fig. 55f). While the bone below the centre of 

a keratinous scute has a well developed cancellous interior, the areas directly internal to the 

scute sulci appear to consist only of a single fused layer of external and internal compact 

bone. Still, on close inspection, this fused bone layer is not completely compact and 

avascular, but small erosion cavities are found. 

Internal cortex—The internal cortex consists of parallel-fibred bone (Fig. 55g). The 

vascularisation is generally low. In most taxa, avascular layers intercalate with layers that are 

weakly vascularised by primary vascular canals. Depending on the plane of sectioning, the 

vascular canals appear round to ovoid in shape (e.g., in the cross-section of the costal of C. 

dentata), or they are elongated single or branching tubes (e.g., in transverse section of the 

costal of C. dentata). However, transitions between these two ‘terminal’ stages are observed. 

In Hadrianus spp. (Fig. 55h), E. orbicularis and Ptychogaster sp., the vascularisation of the 

internal bone tissue is raised, due to large amounts of primary osteons and primary vascular 

canals. Growth marks are present in the internal cortices. Often, the layers of parallel-fibred 

bone between the growth marks are slightly rotated to each other. In those cases, the internal 

cortex does not appear as a single zone where fibres all have a similar orientation, but rather 

as a succession of light and dark bands characteristic of lamellar bone. 

Sutures—The sutural zones consist of interdigitating bony pegs and sockets, creating a low 

to moderate relief. The sutural bone tissue has a similar histology to the external cortical 

bone. Fibre bundles that insert perpendicular into the marginal bone often dominate the bone 

tissue here. Because of the unusual presence of a carapacial hinge system, the bone histology 

of K. homeana is somewhat divergent. The hinge sutures show a reduced amount or a 

complete loss of interdigitating structures. A reduced stage is encountered in the hinge neurals 

and in the hinge costals. Here, only a few irregular short pegs and sockets are found. The 

hinge peripherals, on the other hand, lack any interdigitating sutures. Instead, the compact 

bone of the margins is round and slightly scalloped. 

Variation—Because E. orbicularis, Ptychogaster sp. and Hadrianus spp. show a tendency 

for increased overall vascularisation and a more open cancellous bone structure, they are 

therefore regarded as intermediate between histotypes II and III. 
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Figure 55: Testudinoid histotype II. Close-up of the external cortex of left hypoplastron of 

Pseudemys peninsularis (YPM 13878) in (a) normal and in (b) polarised light. The fine-fibred 

bone tissue is moderately vascularised by branching or reticular primary vascular canals. (c) 

Close-up of the external cortex of sampled costal6 (SMNS 6880) of Emys orbicularis in 

polarised light. Fibre bundles are coarser and extend predominantly parallel or obliquely to 

the external surface of the bone. (d) Close-up of external cortex of the costal UCMP 

V74024/150213 of Hadrianus majusculus in normal transmitted light. The bone tissue is 

moderately to highly vascularised based on the large amount of primary osteons. Note 

strongly scalloped external bone surface. (e) Detail of the cancellous bone of left hypoplastron 

(YPM 13878) of Pseudemys peninsularis in polarised light. The bone trabeculae are generally 

thick and short and lined with a thin layer of lamellar bone. (f) Section of the sub-sampled 

proximal part of costal (IPB R560a) of Geochelone carbonaria in polarised light. Note the 

strong variation in bone thickness.The external surface of the bone is covered by a thin layer 

of connective tissue and a thick scalloped keratinous shield. The keratin layers extend 

irregularly and often anastomose. The external surface of the shield is highly scalloped. (g) 

Close-up of the internal cortex and internal part of cancellous bone of right hyoplastron (MVZ 

230924) of Rhinoclemmys pulcherrima in polarised light. The cortical parallel-fibred bone is 

generally weakly vascularised. (h) Close-up of the internal cortex of plastron fragment UCMP 

V74024/150215 of Hadrianus majusculus in normal transmitted light. The cortical bone 

shows raised vascularisation based on the large amounts of primary osteons and primary 

vascular canals. 

 

6.3.14.3 Testudinoid histotype III 

Included taxa: Emydid turtles: Trachemys scripta (Schoepff, 1792) (†); 

geoemydid/batagurid turtles: Clemmydopsis turnauensis (Meyer, 1847b) (†), Echmatemys 

wyomingensis (Leidy, 1869) (†) 

All taxa have a diploe structure with external and internal cortices and interior cancellous 

bone. The thicknesses of the cortical bone layers may vary. Often, the internal cortex is 

thinner compared to the external cortex. 
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External cortex—The external cortex comprises ISF with growth marks. The growth marks 

are more clearly visible and less affected by remodelling in the more external regions of the 

cortex. Fibre bundles of the ISF are usually homogeneous in distribution, length and diameter. 

There is also a slight dominance of fibre bundles that extend perpendicular to the external 

surface of the bone. The grade of vascularisation is medium to high, because of extensive 

reticular patterns of primary vascular canals, few scattered primary osteons and small 

secondary osteons. The secondary osteons increase in diameter at the transition to the interior 

cancellous bone. 

Cancellous bone—The cancellous bone is usually well developed. It consists of smaller and 

larger vascular spaces, with the latter ones occurring mostly in the more internal part of the 

cancellous bone. Many trabeculae are still primary. Where remodelling processes affected the 

bone tissue, the trabeculae consist only of lamellar bone. In thicker shell bones, the trabeculae 

are longer and more gracile. Additionally, larger erosion cavities are observable that still lack 

a secondary lining of lamellar bone. 

Internal cortex—The internal cortex consists of parallel-fibred bone. In T. scripta and C. 

turnauensis, the grade of vascularisation is low to medium due to scattered primary vascular 

canals and secondary osteons. In E. wyomingensis, the more external parts of the internal 

cortex is more extensively remodelled, thus the vascularisation appears generally higher. The 

transitional zone between the cortical bone layers and the cancellous bone is diffuse instead of 

a clear boundary. 

Sutures—The sutures are moderately developed with short to medium sized interdigitating 

bony pegs and sockets. Fibre bundles that extend perpendicular to the bone margins are 

observed. There is almost no compact bone left in the sutural zone, because the interior 

cancellous bone reaches far laterally towards the bone margin. 
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Figure 56: Testudinoid histotype III. (a) Complete thin-section of the neural ROM 34287 of 

Trachemys scripta in normal transmitted light. The extensive interior cancellous bone reaches 

far towards the external and internal surfaces and the lateral margins of the bone. (b) Section 

of the sampled costal SMNS 88998 of Clemmydopsis turnauensis in normal transmitted light. 

Note the reduced internal cortex and the large irregular vascular spaces in the cancellous bone 

of the diploe-structure. Detail of the extneral cortex of Echmatemys wyomingensis in (c) 

normal and in (d) polarised light. The bone tissue is strongly vascularised. Close-up of the 

internal part of the cancellous bone and the internal cortex of costal SMNS 88998 of 
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Clemmydopsis turnauensis in (e) normal and in (f) polarised light. The bone trabeculae are 

mostly remodelled and consist of secondary lamellar bone. The thin internal cortex consists of 

moderately vascularised parallel-fibred bone. (g) Close-up of the sutural zone of the sampled 

proximal part of costal8 UCMP V81110/150183 of Echmatemys wyomingensis in normal 

transmitted light. The sutural relief is generally low with short to medium sized pegs and 

sockets. The cancellous bone reaches far towards the lateral bone margins. Sharpey’s fibres 

that insert perpendicular into the marginal bone tissue are common. 

 

6.3.15 Eucryptodira incertae sedis (aff. ?Trionychoidea) 

6.3.15.1 Planetochelys sp. (†) 

In Planetochelys sp., the shell elements have a diploe structure. The external cortex is 

slightly thicker than the internal cortex. The interior cancellous bone has an overall compact 

appearance. All bones are strongly affected by diagenetic alteration, thus most of the 

microstructural details are obscured. 

External cortex—The cortex consists of fine-fibred ISF, with the fibre bundles having 

similar lengths and diameters (Fig. 57a). The fibre bundles extend perpendicular, parallel and 

obliquely towards the external surface of the bone. The bone tissue is vascularised by few 

scattered primary osteons and short primary vascular canals. There is a narrow transition zone 

between the external cortex and the interior cancellous bone. This zone is characterised by 

small scattered secondary osteons and irregularly shaped erosion cavities. 

Cancellous bone—The cancellous bone consists of a short and thick primary trabeculae and 

small to medium sized vascular spaces (Fig. 57b). The shape of the vascular spaces ranges 

from circular to ovoid or to irregular (Fig. 57b, c). The trabeculae are lined with secondary 

lamellar bone. 

Internal cortex—The internal cortex comprises mainly avascular parallel-fibred bone (Fig. 

57d). Only occasionally, scattered primary vascular canals are observed. Remodelling of the 

compact bone layers is restricted to the more external part of the internal cortex. 
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Sutures—The sutures generally have a low relief with short bony pegs and sockets. In the 

two fragments of the plastron that show a hinge margin, however, no interdigitating suture is 

developed. Instead, the margins of the plastral elements (?hyo- or hypoplastra) are smooth 

with only a slight transverse groove. The observed bone tissue in the suture zone is similar to 

the bone tissue of the external cortex. 

Figure 57: Shell bone histology of Planetochelys sp. (a) Close-up of the interwoven structural 

fibre bundles of the external cortex of plastron fragment (UCMP V81071/159356) in 

polarised light. (b) Close-up of the cancellous bone of the proximal part of costal (UCMP 

V81071/159356, L-section) in polarised light. The primary bone trabeculae are lined with 

secondary lamellar bone. (c) Close-up of the cancellous bone of plastron fragment (UCMP 

V81071/159356) in normal transmitted light. Note how the bone tissue is diagenetically 

altered and the histological details are lost. (d) Close-up of the internal cortical bone (parallel-

fibred bone) of costal (UCMP V81071/159356; X-section) in polarised light. The bone tissue 

shows little to no vascularisation. 
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6.3.16 Dermatemydidae 

6.3.16.1 Baptemys garmanii (Cope, 1872b) (†) and Dermatemys mawii Gray, 1847 

Both taxa share a highly similar bone microstructure and are thus described in one section. 

All shell bones have a weakly developed diploe structure with highly vascularised cortices 

and well developed interior cancellous bone.  

External cortex—The external cortex consists of ISF. The fibre bundles of the ISF extend 

parallel, perpendicular and oblique to the external surface of the bone (Fig. 58a). The bone 

tissue is dominated by surface-parallel fibre bundles. The vascularisation is moderate to high, 

because of an extensive reticular patterns of primary vascular canals (fig. 58a, b). Towards 

internal, there is a broad transition zone between the cortical and cancellous bone with 

scattered secondary osteons and erosion cavities of different sizes. 

Cancellous bone—The cancellous bone is composed of regularly spaced and similarly sized 

trabeculae and vascular cavities. Most of the trabeculae are remodelled and consist of 

secondary lamellar bone. Primary bone is restricted to a few interstitial trabecular branching 

areas. Locally, the trabecular structure is highly ordered into struts that extend perpendicular 

to each other, thus resulting in rectangular and quadrangular shapes and patterns (Fig. 58c, d) 

for the vascular spaces (e.g., plastral fragment of B. garmanii, UCMP V74024/150221). 

Internal cortex—The cortices consist of parallel-fibred bone (Fig. 58e, f). Vascularisation of 

the tissue is high. In the more external parts, remodelling is extensive and many scattered 

secondary osteons and erosion cavities are found. Towards internal, the cortical bone is 

vascularised by numerous primary vascular canals and primary osteons that often appear 

sheet-like and even spaced in layers. These highly vascularised layers intercalate with layers 

that are less vascularised or even avascular. Thus a regular pattern of vascular spaces within 

the cortical bone is developed. 
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Figure 58: Shell bone histology of dermatemydid turtle taxa. (a) Close-up of the external 

cortex of peripheral UCMP V74024/150222 of Baptemys garmanii in polarised light. The 

bone tissue consists of fine interwoven structural fibre bundles. Note the moderate to high 

vascularisation based on high amount of reticular primary vascualar canals and primary 

osteons. (b) Close-up of the external cortex of sub-sampled left costal2 (ZMB 9558) of 

Dermatemys mawii in polarised light. Note the very thin keratinous shield covering the bone. 

Similar to B. garmanii, vascularisation of the external cortex is moderate to high. (c) Close-up 

of the highly ordered structure of the cancellous bone of plastron fragment UCMP 

V74024/150221 of B. garmanii in normal transmitted light. Locally, the vascular cavities are 

almost rectangular in thin-section. (d) Close-up of similarly ordered structure of the 

cancellous bone of sub-sampled right hyoplastron (ZMB 9558) of D. mawii in polarised light. 

Note that many of the thin trabeculae consist only of secondary lamellar bone. (e) Close-up of 

internal part of the cancellous bone and the internal cortex of former specimen in normal 

transmitted light. The internal cortex is greatly reduced in thickness, and the cancellos bone 

reaches almost up to the surface of the bone. (f) Close-up of internal part of the cancellous 

bone and the internal cortex of neural UCMP V74024/150224 of B. garmanii. The internal 

cortex appears as a more compact layer of parallel-fibred bone. (g) and (h) Different sections 

of the sutural zone between sub-sampled costal2 and margin of adjacent costal3 (ZMB 9558, 

drilled core) of D. mawii, both in polarised light. The soft connective tissue between the bones 

is preserved. Connective fibre bundles, i.e., Sharpey’s fibres, are observable that span the 

suture zone (indicated by white arrows) to insert into the marginal tissue of each bone 

respectively. Due to the sutural relief, the fibre bundles overlap each other in the apical 

regions of the bony pegs, while they insert more parallel to each other in the socket regions. 

 

Sutures—The sutures have a high relief with thin elongated bony pegs and sockets. Fibre 

bundles, i.e., Sharpey’s fibres that insert perpendicular to the bone margins are common. 

Based on the good preservation of the core samples of the recent D. mawii, the progression of 

the fibre bundles is also visible in the soft tissue space between the adjacent bones (Fig. 58g, 

h). Due to the relief in the suture, the soft fibre bundles overlap in the apical regions of the 

bony pegs, while they insert parallel to each other in the socket regions. 
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6.3.17 Kinosternia 

6.3.17.1 Hoplochelys sp. (†) 

The bones of Hoplochelys sp. show a barely-developed diploe with compact bone layers 

framing cancellous bone (Fig. 59a). Due to the reduction of the thickness of cortical bone and 

heavy vascularisation, the cancellous interior dominates the bone structure. 

External cortex—The external cortex consists of ISF. The fibre bundles are homogeneous in 

size and diameter. The fibre bundles extend perpendicular, parallel and oblique to the external 

bone surface. The vascularisation of the bone tissue is generally high based on reticular 

patterns of primary vascular canals and large numbers of primary osteons (Fig. 59b). The 

reticular patterns are often dominated by vascular canals that extend perpendicular to the 

external surface of the bone, often opening up to the surface as small foramina. Undulating 

growth marks are encountered throughout the cortical bone. 

Cancellous bone—The interior cancellous bone is composed of homogeneously arranged 

thick and rather short trabeculae as well as small and closely spaced vascular cavities. The 

trabeculae are mostly primary bone tissue, i.e., ISF, sheathed in secondary lamellar bone. In 

the more remodelled central areas of the thicker bones, e.g., the peripherals (Fig. 59c), thin 

and elongated bone trabeculae are observed that consist mainly of lamellar bone. 

Internal cortex—The internal cortex can be separated into two zones. The more external 

zone shows still the structure of the ISF seen in the external cortex and the interstitial areas of 

the cancellous bone (Fig. 59d, e). The more internal zone comprises parallel-fibred bone. The 

whole of the internal cortex is strongly affected by remodelling processes. Overall, the cortex 

looses its compact nature due to the high amounts of secondary osteons, erosion cavities and 

primary vascular canals. 

Sutures—The sutures have a narrow relief with short and stocky bony pegs and 

corresponding sockets (Fig. 59f). Generally, the sutural bone tissue appears similar to the ISF 

that was observed in the rest of the bone. The interior cancellous bone reaches far into the 

sutural zone, but few layers appear less affected by remodelling processes than the 
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surrounding tissue. Fibre bundles that extend perpendicular into the marginal bone tissue are 

not a prominent feature. 

Figure 59: Shell bone histology of Hoplochelys sp. (a) Section of costal UCMP 

V2811/150203 in polarised light. Note that the cortical bone is heavily vascularised. (b) 

Close-up of the external cortex of left peripheral8 (UCMP V2811/150206) in normal 

transmitted light. Based on the high vascularisation, the external cortex looses its compact 

nature. (c) Close-up of the more slender and longer trabeculae of the cancellous bone of the 
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former specimen in normal transmitted light. Close-up of the internal cortex of costal UCMP 

V2811/150203 in (d) normal and in (e) polarised light. The cortex is strongly remodelled. 

Internally, the parallel-fibred bone grades into fine interwoven structural fibre bundles. (f) 

Close-up of the suture zone of neural V2811/150210 in normal transmitted light. The sutural 

zone has a narrow relief with short and blunt pegs and sockets. 

 

6.3.18 Kinosternidae 

6.3.18.1 Baltemys sp. (†), Sternotherus minor (Agassiz, 1857), Kinosternon subrubrum 

(Bonnaterre, 1789) and Kinosternon sp. 

The four kinosternid taxa show a diploe structures in their shell bones, with well developed 

cortices framing interior cancellous bone. Both cortices are of similar thickness. Only two 

shell elements (the peripheral and the plastron fragment) of Baltemys sp. are sufficiently 

unaltered diagenetically that bone histological details are visible. The remainder is so strongly 

influenced by diagenesis that the bone histology is barely discernable. Two plastral hinge 

systems were studied in the core samples of Kinosternon sp. 

External cortex—The bone tissue consists of fine fibred ISF. Fibre bundles in the ISF 

extend sub-parallel, perpendicular and oblique to the external bone surface. The 

vascularisation of the tissue is moderate due to anastomosing primary vascular canals and 

locally, reticular patterns can be developed (Fig. 60a, b). Many of the canals reach the slightly 

scalloped external bone surface in small foramina (Fig. 60c). 

Cancellous bone—The interior cancellous bone is mainly composed of short and thick bone 

trabeculae (Fig. 60d)and circular to irregularly shaped vascular cavities. The trabeculae are 

longer and more slender in the interior parts of thicker shell elements, e.g., the peripherals. 

The trabeculae consist of secondary lamellar bone, but primary bone tissue is still present in 

interstitial branching areas. 
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Figure 60: Shell bone histology of kinosternid turtle taxa. Section of sub-sampled costal and 

associated keratinous shield (SMNS 7440; drilled core) of Kinosternon sp. in (a) normal and 

in (b) polarised light. Note moderate to high vascularisation of the tissue of interwoven 

structural fibre bundles. The surface and the growth marks of the keratinous shield appear 

wavy and irregular. (c) Close-up of the external cortex of the peripheral UCMP 

V78106/122545 of Baltemys sp. in polarised light. (d) Detail of the short and thick trabeculae 

of the cancellous bone of former specimen in polarised light. (e) Close-up of the internal 

cortex and internal part of cancellous bone of sub-sampled costal (SMNS 7440; drilled core) 

of Kinosternon sp. in polarised light. Locally, the parallel-fibred bone grades into lamellar 

bone. (f) Close-up of the internal cortex of the sampled plastron fragment (UCMP 

V78106/122545) of Baltemys sp. Growth marks appear as birefringent lines, and Sharpey’s 

fibres insert into the bone tissue. (g) Close-up of the posterior hinge system of Kinsternon sp. 

(SMNS 7440). The hinge is situated between hypoplastron and xiphiplastron. A reduced, 

loose sutural contact is present only between the internal parts of the bones, while a transverse 

groove is developed between the external parts. (h) Close-up of the anterior hinge system of 

Kinsternon sp. (SMNS 7440). The hinge is situated between epiplastron and hyoplastron. The 

internal half of the hyoplastron and the external half of the epiplastron overlap each other, 

thus enabling a rotational movement of the epiplastron against the hyoplastron. 

 

Internal cortex—In K. subrubrum and Kinosternon sp. (Fig. 60e), the parallel-fibred bone 

tissue grades into and interdigitates locally with lamellar bone. The bone tissue then shows 

the typical alternation of thin dark and light bone lamellae.In Baltemys sp. (Fig. 60f) and S. 

minor, the internal cortex appears as a more homogeneous single zone of parallel-fibred bone. 

The vascularisation of the bone tissue is low with only few primary vascular canals. Bone cell 

lacunae are flattened and elongated and follow the layering of the tissue. Growth marks are 

not observed in the internal cortical bone. 

Sutures—Sutural zones are moderately developed. The bony pegs and sockets are not 

elongated. Fibre bundles that insert perpendicular to the marginal bone surface are strongly 

present. The interior cancellous bone does not reach far into the marginal compact bone 

tissue. In both the anterior and posterior hinge systems of Kinosternon sp. (SMNS 7440), the 

sutural contact of the external half of the bone is completely reduced and a transverse groove 

is developed (Fig. 60g, h). The bone tissue is similar to the bone tissue described for the 
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external cortex, and the marginal tissue has a flat or slightly scalloped external surface. The 

external layer of connective tissue and the external shield cover follows the relief of the bone 

surface into the groove. In the posterior hinge system, a sutural contact of the internal half of 

the bone still exists, however, the interdigitating elements are reduced in length and in number 

(Fig. 60g). Both, the hypoplastron and the xiphiplastron are bulging adjacent to the hinge 

zone. In the anterior hinge system, the internal part of the hyoplastron ends in a single thick 

marginal bone protrusion that slightly curves towards external. The external half of the 

epiplastron overlaps the protrusion of the hyoplastron and curves slightly towards internal, 

thus allowing the epiplastron to rotate against the hyoplastron around the hinge (Fig. 60h). 

The soft tissue zone between the bones is filled with connective tissue rich in the fibres that 

insert perpendicular to the margins of the bones. 

 

6.3.19 Adocidae 

6.3.19.1 Adocus sp. (†) 

External and internal cortices that frame the interior cancellous bone are well developed and 

generally of equal thickness. 

External cortex—The external cortex is divided into a more external, surficial zone and a 

more internal zone bordering the cancellous bone (Fig. 61a, b). The more internal zone is 

build of ISF, where fine fibre bundles extend equally diagonally, perpendicular and sub-

parallel to the external bone surface. In the more external zone, the fibre bundles that extend 

perpendicular to the external bone surface become increasingly dominant in the ISF. 

Furthermore, growth marks that are highly birefringent in polarised light are present here. The 

growth marks have a wavy character throughout the more external zone, thus following the 

trend of the regular external surface sculpturing of the bones. Vascularisation is low to 

medium with few primary osteons and primary vascular canals and occasional scattered 

secondary osteons. The primary vascular canals are predominantly extending towards the 

external surface of the bone where they insert as small foramina. Based on the variable stages 

of preservation of the shell elements, the thickness of the more external zone of the cortex 
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varies greatly. Scattered secondary osteons and secondary osteon cluster are observeable at 

the transition to the cancellous bone. 

Cancellous bone—The cancellous bone is dominated by short and thick trabeculae 

delimiting mostly circular vascular spaces (Fig. 61c). Primary ISF bone tissue is present in 

most trabeculae, as well as in trabecular branching areas. In the thick peripheral bone, the 

bone trabeculae were more slender and longer, but primary bone tissue is still largely retained. 

The walls of the trabeculae comprise mostly lamellar bone. However, there are also erosion 

cavities in the trabecular meshwork that still lack the secondary bone deposition. 

Internal cortex—The internal cortical bone layers constitute parallel-fibred bone. Adjacent 

to the cancellous interior, the layer are weakly vascularised with few scattered primary 

vascular canals and primary osteons (Fig. 61d). Locally, the primary osteons or the primary 

vascular canals are arranged like strings in single layers of the internal cortex. Towards 

internal, the bone layers are mostly avascular. Sharpey’s fibres were found in the internal 

cortex of the plastral fragment and the proximal part of the costal fragment, adjacent to the 

asymmetrical rib bulge. Towards the steep flank of the rib bulge, the cortical bone is thicker, 

while the cortex thins out on the gently sloping flank. Sharpey’s fibres insert obliquely into 

the cortex on the gently sloping flank of the incorporated rib and they insert at higher angles 

at the steeper flank. 

Sutures—The sutured margins are generally well developed. Long fibre bundles, i.e., 

Sharpey’s fibres that extend perpendicular to the margins of the bone plates are found 

throughout the bone tissue that constitutes the margins. The bone tissue itself resembles the 

one described for the more external zone of the external cortex. Indeed, the growth marks 

often deviate from the external cortex towards the sutured margins, thus extending sub-

parallel to the outer bone surface. 
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Figure 61: Shell bone histology of Adocus sp. Close-up of the external cortex of peripheral 

UCMP V87101/150201 in (a) normal and in (b) polarised light. Note the growth marks and 

perpendicular fibre bundles in the more external zone of the cortex. Towards internal, a zone 

of fine-fibred homogeneous interwoven structural fibre bundles is seen. (c) Close-up of the 

interior cancellous bone of costal UCMP V87101/150200 (L-section) in polarised light. Short 

and thick trabeculae dominate the cancellous bone. (d) Close-up of internal cortical bone 

(parallel-fibred bone) of costal UCMP V87101/150200 (X-section) in polarised light. The 

bone tissue is weakly vascularised, and the internal-most layers are mostly avascular. 

 

6.3.20 Nanhsiungchelyidae 

6.3.20.1 Basilemys sp. (†) 

The shell bones of Basilemys sp. have a diploe structure with well developed cortices 

framing interior cancellous bone. In the two sampled osteoderms, the cortices are of similar 

thickness. The costal and neural fragment were found to be misassigned to Basilemys sp., thus 
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the only internal cortical bone found in the shell bones derives from the sampled peripheral 

elements, i.e., the peripheral (YPM 9703) and the fragment from periphery of shell (FM 

P27371). Here, the internal cortex is somewhat thinner compared to the well developed 

external cortex. 

External cortex—The external cortex can be subdivided in two zones. The thinner, more 

internal zone comprises ISF with rather homogeneous fibre bundles lengths and diameters. 

Primary osteons and primary vascular canals are frequently found but growth marks are not 

visible in this zone. The thicker, more external zone still comprises ISF, however, the bone 

tissue is characterised by the appearance of growth marks and a slight dominance of structural 

fibre bundles that extend perpendicular to the external bone surface. The most obvious feature 

in the more external zone, however, is the orientation of the growth marks (Fig. 62a, b). The 

growth marks extend sub-parallel at the transition from the more internal to the more external 

zone. Towards external, the growth marks start with a wavy progression that becomes more 

pronounced towards the external surface. The wavy character of the growth marks depicts the 

typical ‘pock-mark’ surface sculpturing in cross-section and is thus tied to the development of 

the elaborate ornamentation pattern. Additionally to the successive layering of the bone tissue, 

there occurs a lateral shift between the layers clearly visible through the growth marks. The 

wavy ‘trough and ridge’ arrangement is often phase-delayed, in that the next trough follows 

external to a ridge and vice versa. The result is often a spindle-like structuring of the more 

external zone of the external cortex. Vascularisation is decreasing from the more internal zone 

towards the external surface of the bone. In the more external zone, only scattered primary 

osteons and primary canals are present. The primary canals locally form a reticular 

vascularisation pattern. Both zones within the external cortex can vary significantly in 

thickness. A significant variation from this overall cortical patterning is observed in the neural 

fragment and the costal fragment. Instead of showing the characteristics described above 

(which are consistent for all clearly identified shell bone material of Basilemys sp.), the two 

specimens show a highly characteristic plywood-like pattern and ornamentation structures 

that are synapomorphic for trionychid turtles (see chapter 6.3.22; Fig. 65). The neural and 

costal fragments are interpreted as having been misidentified as Basilemys sp. here. 

Cancellous bone—The external and internal parts of the cancellous bone generally consist 

of short and slender bone trabeculae. In the interior parts of the bones, the trabecular length 

increases, thus leading to a more open-spaced trabecular meshwork with larger vascular 
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cavities (Fig. 62c). In the shorter trabeculae and their respective branching areas, large 

amounts of primary interstitial bone tissue, i.e., ISF, is present and only the trabecular walls 

consist of lamellar bone. In the more slender trabeculae, the bone tissue is mostly completely 

remodelled and the trabeculae thus consist of lamellar bone. 

Internal cortex—The internal cortical bone is a simple layer of parallel-fibred bone (Fig. 

62d, e). The bone tissue is weakly vascularised with scattered primary vascular canals and 

few primary osteons. The parallel-fibred bone consists mainly of coarse fibres that can deflect 

to some degrees in their overall orientation. Sharpey’s fibres are also inserting into the 

cortical bone. 

Sutures—The shell elements are generally well sutured, however, a strong incorporation of 

long fibre bundles, i.e., Sharpey’s fibres that extend perpendicular to the margins are not 

observed (Fig. 63f). The fibre bundles in the sutural bone are usually short and unobtrusive 

and seem to insert into the sutural bone tissue at low angles. 

Osteoderms—The osteoderms have the same, sometimes even more pronounced and 

pointed, elaborate sculpturing pattern as the other sampled bones. Thus, the bone histology of 

the external cortex is generally similar to that of the shell bones. However, while being 

present, the spindle-shaped structure (Fig. 62g) of the more external zone is not always as 

conspicuous as in the shell bones. The cancellous bone is consistent with the one described 

for the other shell bones. The internal cortex, which is equal in thickness to the external 

cortex, is not composed of a zone of simple parallel-fibred bone. Instead, the internal cortex 

constitutes coarsely fibred ISF (Fig. 62h). Especially in the smaller osteoderm, the fibre 

bundles strands are highly ordered in a lattice (responsible for striations seen in outer 

morphology). The fibre strands seen in longitudinal section branch and anastomose around 

fibre strands that are visible in cross-section. Within these cross-sections the 

compartimentalisation of the fibre bundle strands into single fibre bundles is observable. The 

fibre bundles are separable from each other in polarised light by thin birefringent lines. Three 

major orientations of the fibre bundles strands are present, two extending obliquely and at 

high angles within the cortex (longitudinal sections) and one that extends sub-parallel to the 

internal surface of the osteoderm (cross-sections). 



Comparative bone histology of the turtle shell   
 

250 



Bone histological results of Testudinata 
 

 251

Figure 62: Shell bone histology of Basilemys sp. Section of the external cortex of peripheral 

YPM 9703 in (a) normal and in (b) polarised light. Note the wavy character of the growth 

marks and the ‘pock-mark’ sculpturing pattern of the bone surface. The wavy growth marks 

seem to shift laterally between the layers of the cortical bone. The resulting ‘trough and ridge’ 

arrangement is often phase-delayed. (c) Close-up of the open-spaced trabecular meshwork of 

the interior cancellous bone of former specimen in polarised light. Close-up of the internal 

cortex of peripheral shell fragment (FM P27371) in (d) normal and in (e) polarised light. 

Towards external, the weakly vascularised parallel-fibred bone is followed by interwoven 

structural fibre bundles. (f) Close-up of the sutural zone between adjacent peripherals (FM 

P27371). Long fibre bundles that extend perpendicular to the bone margins are not 

observable. (g) Close-up of the apical external cortex of isolated spiked osteoderm TMP 

80.08.296 in polarised light. The characteristic surficial ‘pock-mark’ sculpturing pattern and 

the ‘trough and ridge’ arrangement of the growth marks are present. (h) Close-up of internal 

cortex of the base of former specimen in polarised light. Note regular arrangement of 

transversely and longitudinally sectioned interwoven structural fibre bundles. 

 

6.3.21 Carettochelyidae 

6.3.21.1 Anosteira sp. (†), Pseudanosteira pulchra Clark, 1932 (†), Allaeochelys cf. A. 

crassesculpta (Harrassowitz, 1922) (†) and Carettochelys insculpta Ramsay, 1887 

All four taxa share similar bone microstructures and thus are described together and 

characteristic variations will be pointed out in the following text. All sampled shell bones 

have a diploe structure with internal and external cortices and interior cancellous bone. 

However, the thicknesses of the cortices can vary. In Anosteira sp. and P. pulchra, the 

cortices are of equal thickness. In Allaeochelys cf. A. crassesculpta and C. insculpta, the 

internal cortices are reduced in thickness compared to the thickness of the external cortical 

bone. In the thin and slender neural of C. insculpta, no real internal cortex is developed. 

Instead, the internal part of the plate comprises short bony protrusions that belong to the 

internal neural arch of the respective vertebra. The incorporated rib is seen as an asymmetrical 

bulge of the internal cortex of the costal of C. insculpta. 
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External cortex—The external cortex of the shell bones consists of ISF (Fig. 63a-c). 

Locally, as in the peripheral of Pseudanosteira sp., distinctive wavy growth marks are visible 

(Fig. 63c). Each successive layer of ISF bone shows a pronouncement of the wavy growth 

marks, thus building up the low ridges and tubercles of the ornamentation. In some shell 

bones, the ISF is not as pronounced, thus the external cortex superficially resembling the 

more parallel-fibred tssue of the internal cortex. In such cases, e.g., shell bone is the plastron 

fragment of P. pulchra, the wavy growth marks in the external cortex are one characteristic to 

correctly orientate the thin-sections. Vascularisation of the bone tissue is generally low with 

few primary osteons and scattered primary vascular canals that extend perpendicular towards 

the external bone surface. The canals do seldom branch or anastomose. In Anosteira sp. and 

C. insculpta (Fig. 63a, b), the vascularisation is increased with anastomosing primary vascular 

canals and larger amounts of primary osteons that can show string-like arrangements 

subparallel to the bone surface. Growth marks are present in the cortical bone, but they are 

visible as dark lines instead of highly birefringent lines in polarised light. ISF is present at the 

internal-most part of the cortex adjacent to the cancellous bone. In the neural of C. insculpta, 

the thickness of the external cortex differs significantly mediolaterally. Laterally, the cortical 

bone is well developed. Towards medial the cortex thins out into a slim sliver of cortical 

bone, as can be observed by the converging growth marks in the compact bone tissue. In A. 

crassesculpta, the poor preservation of the bone tissue does not allow for a clear comparison 

with the other taxa. 

Cancellous bone—The cancellous bone constitutes short and thick trabeculae and small to 

medium sized cavities (Fig. 63d, e). In Allaeochelys cf. A. crassesculpta, the bone trabeculae 

appear more slender throughout the bone. The larger vascular cavities are generally found in 

the internal (lower) third of the shell bones. Only in the thicker shell elements, i.e., 

peripherals, the cavities increase proximally in size. Most of the trabeculae are still primary in 

nature, with primary bone, ISF, being found within the trabeculae and their branching areas 

(Fig. 63e). The walls of the trabeculae constitute secondary lamellar bone. In the flat shell 

bone elements, i.e., the costals of Anosteira sp. and P. pulchra, the vascular spaces show 

some externointernal flattening. 
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Figure 63: Shell bone histology of carettochelyid turtle taxa. Close-up of the external cortex 

of left hyoplastron (MAGNT R12640) of Carettochelys insculpta in (a) normal and in (b) 

polarised light. Note moderate vascularisation of the tissue of interwoven structural fibre 

bundles. (c) Detail of the external cortex and the ornamentation pattern of peripheral (UCMP 

V78031/131731) of Pseudanosteira pulchra in polarised light. Growth marks are clearly 

visible in the more external part of the cortical bone. (d) Close-up of the cancellous bone of 

sampled costal (FM PR 819) of Anosteira sp. The primary trabeculae are thick and short and 

usually lined with secondary lamellar bone. (e) Close-up of the cancellous bone of sampled 

plastron fragment (UCMP V78031/131731) of Pseudanosteira pulchra in polarised light. 

Note that primary interstitial bone is present in all trabeculae. (f) Close-up of the internal 

cortex of costal (UCMP V78031/131731) of Pseudanosteira pulchra in polarised light. The 

parallel-fibred bone locally grades into lamellar bone. Close-up of the internal cortex of the 

left hyoplastron (MAGNT R12640) of Carettochelys insculpta in (g) normal and in (h) 

polarised light. The parallel-fibred bone is followed externally by interwoven structural fibre 

bundles. 

 

Internal cortex—In Anosteira sp., P. pulchra (Fig. 63f) and cf. A. crassesculpta, the internal 

cortex consists of intergrading lamellar bone and parallel-fibred bone. Areas with lamellar 

bone are visible as a succession of parallel dark and light bands, although the bands do not 

always extend parallel to each other. In C. insculpta (Fig. 63g, h), the internal cortex 

comprises mainly less ordered parallel-fibred bone. In all sampled bones, the cortex is weakly 

vascularised adjacent to the cancellous bone, with the more internal parts being avascular. 

Growth marks are present as birefringent lines in polarised light. Sharpey’s fibres were 

detected in the internal cortex of the hypoplastron of Anosteira sp. 

Sutures—The sutural zones are thin with rather short bony protrusions and sockets. In thin-

section, a strong incorporation of parallel fibre bundles, i.e., Sharpey’s fibres that insert 

perpendicular to the sutures becomes apparent. The long fibre bundles are traceable towards 

medial well into the cortical bone and towards the margins of the cancellous bone. 
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6.3.22 Trionychidae 

6.3.22.1 Plastomenus sp. (†) and Helopanoplia sp. (†) (Plastomeninae); Lissemys punctata 

(Bonnaterre, 1789) and Cyclanorbis senegalensis (Duméril and Bibron, 1835) 

(Cyclanorbinae); Aspideretoides foveatus (Leidy, 1856c) (†), Aspideretoides splendidus 

(Hay, 1908) (†), cf. Aspideretoides sp. (†), Apalone ferox (Schneider, 1783), Trionyx 

triunguis (Forskål, 1775) and Trionyx sp. (†) (Trionychinae) 

Although morphologically and osteologically different, plastomenine, cyclanorbine and 

trionychine turtles are described together as they share virtually the same bone histological 

details. Please note that the following paragraph is based on the fossil specimen of cf. 

Aspideretoides sp. (IPB R533a) and other fossil specimens, mainly because of the reasons 

discussed in the Methods section (i.e., thin-sections of fossil bones are of higher quality and 

naturally stained). The given values of the angles in the plywood-like pattern described below 

may well vary among trionychid turtle taxa. However, due to the still small sampling size, a 

statistical approach of angle variations was not attempted. 

Figure 64: Macroscopic evidence of the plywood-like structure within elements of the 
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trionychid turtle shell. (a) Detail of distal part of costal of fossil Aspideretoides splendidus 

(TMP 85.36.760). The focus lies on the margin of specimen where decussating plies of fibre 

bundle quadrangles seem to be etched out of the bone matrix. The decussating plies can still 

be seen in spaces between the ornamentation. (b) Incomplete left ?hyoplastron of 

indeterminate fossil trionychid turtle (TMP 92.94.01) seen in ventrolateral view. The collagen 

fibre plies are seen as light and dark banding at margin. (c) Detail of the carapace of dried 

specimen of a juvenile Trionyx triunguis (IPB R260). Decussating fibre plies (arrows) 

continue undisturbed from carapacial dermis into the bony margin of the carapace. The 

ornamentation pattern covers the structural plies and fibre bundle quadrangles of bony shell 

elements. (d) Detail of plastron of former specimen. Dermal tissue showing decussating 

structural fibre plies (arrows) overlying a plastral bone. In later ontogenetic stages, the fibre 

plies will be metaplastically incorporated into the bone tissue as the shell parts continue to 

ossify. D, dermis; FBQ, decussating collagen fibre bundles; OP, ornamentation pattern; PB, 

plastral bone 

 

The well-ordered arrangement of structural fibres preserved through the mineral phase of 

the bone is even visible macroscopically at the edge of shell elements as light and dark bands 

and decussating striations respectively (Fig. 64a, b). In dried specimens (Fig. 64c, d), it 

becomes apparent that the plywood-like pattern originates through the fibres of the corium 

being incorporated into the bone matter by metaplastic ossification (Haines and Mohuiddin, 

1968). 

A diploe-like structure (Fig. 65a), where compact bone layers frame internal cancellous 

bone, is recognised in all thin-sections of the sampled shell elements. There is also some 

variation of the sculpturing patterns, especially when plastomenine turtles are compared to 

cyclanorbine/trionychine turtles. 

External cortex—The external compact bone layer can be subdivided into two zones (Fig. 

65b-f). The ornamentation pattern of the carapacial elements of the plastomenine, 

cyclanorbine and trionychine shell represents the outer, more external zone. The more internal 

zone (external to the inner cancellous bone) comprises the plywood-like structure described 

below. The ornamentation pattern of the outer zone encompasses reticular raised ridges and 

knobs. The ornamentation pattern consists of lamellar bone intergrading with parallel-fibred 
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bone. Sharpey's fibres are observed to insert perpendicular to the surface of the bone into the 

ridges and knobs, resulting in a fan-shaped pattern. 

In the interior zone of the external cortex of cf. Aspideretoides sp. (IPB R533a), up to ten 

distinct plywood-like layers (Humphrey and Delange, 2004) were discernable, with each ply 

being alternately rotated relative to those above and below (Fig. 65b, c). In this element, the 

angles in the ply-stack range about 45-50° relatively to those above and below. However, it 

can be more variable in other trionychid genera. In contrast, the studied shell of Trionyx 

triunguis (IPB R260) showed generally wider angles that range between 70° and almost 90° 

(see Fig. 64c, d). The plies of the second inner zone below the ornamentation pattern of the 

carapacial elements are composed of fibre bundle quadrangles (FBQ) that macroscopically 

appear in the skin as single fibre strands. At the top and bottom of each ply, some FBQ 

expand slightly to anchor the neighbouring bone layers. In polarised light views of the 

fossilised bone, the plies are seen as dark and light bands and the FBQ as dark and light 

patches respectively. The long-axes of the fibre bundles in each quadrangle are perpendicular 

to those in neighbouring quadrangles. Those FBQ, in which the fibre bundles trend 

horizontally, usually contain up to three rows of fibre bundles, while the vertically pointing 

FBQ consist of two parallel fibre bundle rows. The fibre bundles can reach diameters of 10 to 

20 µm and are composed of numerous single nano-scale collagen fibres. The layers of FBQ 

cross each other at approximately 45-55°, e.g., symmetrically to the long axes of costal plates 

and their incorporated ribs. The FBQ continue without interruption into the unossified part of 

the lower dermis (Fig. 64c). 

Especially in the plastomenine costals (Fig. 65d, e), there is no direct transition between the 

plywood-like structure and the interior cancellous bone. Instead, a single thick layer of the 

fibre bundles is present that extend parallel to the rib and sub-parallel to the surface of the 

bone. Interspersed through the layer, single long fibre bundles extend interoexternally from 

the external regions of the cancellous bone into the lower layers of the plywood-like pattern 

of the external cortex. 

Cancellous bone—The cancellous bone of the trionychid shell elements is composed of a 

spongy meshwork of bone trabeculae (Fig. 65a, d). While the interstitial parts of the 

trabeculae retain some primary bone tissue, i.e., ISF, the rest of the trabeculae mainly show 

centripetally deposited lamellar bone tissue. Towards the internal and external cortical bone 
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layers, the vascular cavities of the cancellous bone decreases in amount and size. Towards the 

external cortex, the fibrous arrangement of the bone tissue changes into the distinct plywood-

like pattern described above. Towards the internal cortex, the primary ISF still present in the 

cancellous bone where it changes into parallel-fibred bone. 

Internal cortex—In contrast to the complexity of the external cortex, the internal cortex is a 

single layer of parallel-fibred bone locally grading into lamellar bone (Fig. 65a, g). Within 

this zone, the bone lamellae can slightly change angles but it is not distinguishable if they 

follow a predominant direction in connection to the orientation of the shell element. While the 

more interior parts of the internal cortex are still weakly vascularised by a few primary 

vascular canals, the more internal parts are mainly avascular. Throughout the cortex, bone cell 

lacunae are flattened and elongated and aligned sub-parallel to the internal surface of the 

bone. 

Sutures—Sutures in the carapace of trionychine and cyclanorbine turtles are generally well 

developed. Still, the sutures between the shell bones themselves and the contacts between the 

bony elements of the shell and the leathery skin represent potential zones of weakness. 

However, because the FBQ continue from the bony elements into the dermis, the bones of the 

carapace and plastron are surrounded by a ring of toughened dermal tissue. Similarly, a bony 

bridge that would firmly connect the carapace with the plastron is absent in trionychid turtles. 

Instead the two halves of the shell are held together by the fibre-reinforced skin, resulting in a 

flexible though tough bridge region. 

Variation—Although the surficial sculpturing patterns of the shell bones of plastomenine 

turtles (e.g., Fig. 65e) are distinct from cyclanorbine and trionychine turtles, the bone 

histology is not strongly affected. Differences occur in thicknesses of the more external bone 

tissue, as well as the spatial arrangement of the troughs and ridges that build up the 

ornamentation. However, the bone tissue types remain unaffected. 
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Figure 65: Shell bone histology of trionychid turtle taxa. All pictures are viewed in polarised 
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light. In (c), an additional lambda compensator was used. (a) Section of costal (IPB R533a) of 

cf. Aspideretoides sp. A diploe structure is well developed but part of the interior cancellous 

bone is collapsed. Note the plywood-structure of the external cortex. (b) Close-up of the 

ornamentation pattern and the plywood-structure of the external cortex of former specimen. 

Note the rotated set of plies composed of dark and light fibre bundle quadrangles. Sharpey’s 

fibres insert into the ornamental ridge. (c) Thin-section the former specimen (IPB R 533b). 

The plane of sectioning crosses tangentially through the external cortex at a low angle. Two 

sets of rotated plies are seen in external view. The primary orientation of both plies is marked 

by white arrows. (d) Thin-section of distal part of costal (UCMP V81110/150231) of 

Plastomenus sp. The progression of the rib is clearly visible. (e) Close-up of the external 

cortex of distal part of costal UCMP V87051/150193 of Helopanoplia sp. Coarse fibre 

bundles are seen internal to the plywood-structure. (f) Close-up of the external cortex of costal 

fragment FM P27371, formerly assigned to Basilemys sp. Based on the plywood-structure 

found in the fragment, the material is proposed herein to be reassigned to Trionychidae indet. 

(g) Detail of the mostly avascular internal cortex of right xiphiplastron (YPM 13874) of 

Apalone ferox. (h) Section of an isolated peripheral bone (YPM 11645) of Lissemys punctata. 

Similar to other trionychid shell bones, the free peripheral bones of the species also show not 

only a diploe-structure but also the highly distinctive plywood-structure in the external cortex. 

Note that the internal cortex of the element, on the other hand, consists rather of interwoven 

structural fibre bundles instead of parallel-fibred bone. 

 

Isolated posterior peripheral bones—The sampled isolated peripheral bone of Lissemys 

punctata (Fig. 65f) shares very similar bone histological details with that of the sutured shell 

bones described above. A diploe is developed with internal and external cortical bone framing 

a cancellous interior. The external cortex of the peripheral bones consists of the external 

ornamentation pattern and the more internal ply-system described above (Fig. 65f). The 

internal cortex, however, is composed of ISF instead of a single zone of parallel-fibred bone. 
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7. Discussion 

7.1 Bone histology 

It is assumed that the bone histology of basal Testudinata, especially of Proganochelys 

quenstedti and Proterochersis robusta, reflect the plesiomorphic microstructure of the turtle 

shell bones. However, in contrast to Zangerl (1969:313), this study shows that the cortical 

bone layers of the shell diploe cannot be described simply as “zones of lamellar bone, 

containing moderately numerous radial vascular canals”, but that the cortices are clearly 

distinct from each other (the external cortical layer is not comprised of lamellar bone). The 

diploe structure, the ISF of the external cortex, the presence of Sharpey’s fibres, the primary 

cancellous interior that becomes increasingly remodelled into secondary bone trabeculae and 

the parallel-fibred bone (that can grade into lamellar bone) of the internal cortex are 

plesiomorphic for all turtle shell bones. 

The sampling and comparison of isolated postcranial osteoderms (e.g., limb osteoderms) of 

different turtle taxa (aff. Naomichelys sp., Basilemys sp. and Hesperotestudo crassiscutata) 

with the corresponding shell bones revealed generally the same bone microstructures. Thus, it 

is plausible to assume that the same mechanisms of ossification, i.e., metaplastic ossification 

of integumentary structures, must have been active in the formation of both hard tissue 

structures. 

Furthermore, the sampled peripheral bone of Lissemys punctata shares not only the diploe 

structure with other sampled trionychid shell bones, but also highly distinctive histological 

details like the external plywood-system. The situation is thus similar to other turtles where 

peripheral bone microstructures are generally the same as in the other shell elements 

respectively. The bone histological analysis therefore does not falsify the morphology-based 

argument of Meylan (1987) and others that the isolated peripheral bones of Lissemys spp. are 

truly homologous to peripherals of other turtles. The presence of interwoven structural fibres 

instead of parallel-fibred bone in the internal cortex of the peripheral bone of Lissemys is 

interpreted as a means of anchorage through metaplasia of the isolated element in the pliable 

skin flap instead of a rigid sutural anchoring to other shell bones. 
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The following sections of the discussion try to answer the questions that were raised in the 

introductory chapter (Aims of the study 1.2). What are the results of the general aspects of the 

shell bone histology? Which functional and systematic characteristics are expressed in the 

turtle clades, and which aspects of functional morphology influence the microstructures of the 

shell bone? A chapter on the discussion of the origin of turtles and the quantification of the 

ecology/paleoecology in light of the newly acquired data is concluding the study. Can the 

comparison of histological features of turtle and outgroup taxa provide evidence for common 

ancestors? 

 

7.1.1 Shell bone growth rates, bone remodelling and variation 

Growth rates—While true woven-fibred bone (e.g., in long bones of mammals) with its 

irregular and loosely packed collagen fibre arrangement and general isotropy in polarised 

light is typically associated with rapid osteogenesis (Francillon-Vieillot et al., 1990), the same 

cannot be assumed for the metaplastic tissue of interwoven structural fibre bundles recognised 

in the external cortex of the turtle shell (well ordered fibre bundle arrangement, no general 

isotropy). For the ISF, detailed bone formation rates are not yet available. The internal cortex 

on the other hand, usually shows parallel-fibred bone connected with intermediate rates of 

osteogenesis. In the cases, where the parallel-fibred bone grades into lamellar bone (e.g., 

internal cortex of podocnemid turtle P. erythrocephala: dark and light layering coincides 

exactly with growth marks), low osteogenetic rates have to be assumed for the cortical bone 

formation. 

Remodelling—Bone remodelling processes were discovered to be present in all turtle shell 

elements. It is a much more common feature in turtle shell bones than previously 

hypothesised by Francillon-Vieillot et al. (1990) and Castanet et al. (1993). Bone remodelling 

is mostly restricted to the interior cancellous bone and directly adjacent to internal and 

external compact bone areas. The primary trabecular meshwork of the cancellous bone is 

increasingly remodelled through secondary erosion cavities and secondary osteons. The 

amount of interstitial primary bone within the bone trabeculae and their branching areas 

becomes consequently reduced and can, in some cases, be completely remodelled. Growth 

marks are best observed in primary cortical bone of the neurals and, to some lesser degree, in 
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costals. Secondary osteon cluster appear seldom in turtles (i.e., in Stupendemys geographicus 

Psephophorus sp., and Adocus sp.) and the localised development of Haversian bone is even 

rarer (i.e., in Rupelchelys breitkreutzi). Suzuki (1963) describes the remodelling of interior 

bone trabeculae into sutural compact bone tissue in hatchling turtles. It might be hypothesised 

in this respect that the turtle shell bones are used as a mineral reservoir by gravid turtles. 

However, Suzuki’s histological work on Pseudemys scripta elegans showed that the shell 

bone microstructure, in contrast to that of long bones, is not influenced by gravidity and 

oviposition. 

In a few cases (e.g., in P. erythrocephala and in T. sulcatus), the secondary bone 

remodelling deviates from what is usually found in the external cortical bone tissue of turtle 

shells. As observed in a modern turtle taxon (P. erythrocephala), a possible reason for such 

unusual secondary bone deposition could be a reaction to incipient osteomyelitis or ‘shell rot’ 

(e.g., Frye, 1991, Sinn, 2004). Often following trauma, microbes enter spaces between the 

keratinous shields and the underlying bone becomes infected. Similar pathologies, i.e., pitting 

and other lesions of the turtle shell bone, have already been described in fossil turtles from the 

Eocene of Wyoming, North America (Hutchison and Frye, 2001). As inferred from modern 

turtles that are highly aquatic, phenomena like ‘shell rot’ in fossil turtles can also be related to 

poor water quality (see also discussion in Hutchison and Frye, 2001). 

Although quite variable, secondary bone remodelling is present in all outgroup taxa besides 

the Placodontia. In the latter group, secondary bone remodelling processes and secondary 

osteons were not encountered. Extensive Haversian bone, as the extreme opposite, was found 

for example in Mastodonsaurus giganteus and locally in Propalaehoplophorus sp. 

Variation—Variation in the bone microstructure among the shell bone elements of the same 

species was uniformly connected to the differences of the outer shapes of the respective 

elements in that species. Chelus fimbriatus and Geochelone carbonaria were the taxa with the 

strongest histological variation between the carapacial and plastral samples of all turtles 

studied. The strong variation is linked to the extremely humped shell morphology in both taxa 

(chapter 4.2.5.7; chapter 4.3.16.7). In many other taxa, the bone microstructure of the hyo- 

and the hypoplastra is further influenced by directed growth because of the change in growth 

direction for the plastral buttresses (e.g., see 6.3.4.1). Intraspecific variation in bone histology 

(i.e., ontogenetic variation) and differences due to sexual dimorphism were not encountered, 
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partly due to the small sample size of each taxon. On the other hand, such variation is not 

expected either, because major differences in the bone histology of the turtle shell seem to be 

expressed only on generic or higher taxonomic levels (see chapter 7.2). 

 

7.1.2 Character polarisation of turtle shell microstructures 

Although no postcranial osteoderms of the amphibian outgroups were available, it is 

inferred that the dermal bone samples of M. giganteus, Trimerorhachis sp. and G. 

pustuloglomeratus are still adequate to polarise the turtle shell bone microstructures. As 

already indicated in Zylberberg and Castanet (1985), amphibian osteoderms are known to 

develop through metaplastic ossification. It is here proposed that not only the osteoderms of 

modern anurans but also the dermal elements of the cranium and the shoulder girdle from 

fossil temnospondyls originate through metaplastic processes. It remains to be tested, if 

osteoderms of temnospondyls follow the same osteogenetic processes. The presence of ISF 

for example in turtles, archosauromorphs and lepidosaurs is presumably plesiomorphic for all 

tetrapods. Similarly, the development of a diploe structure with equally well developed 

cortical bone layers is already found in temnospondyls. However, the extensive external 

surface sculpturing with ridges, grooves and pits and tubercles of temnospondyl dermal bones 

is not present in the most basal turtles. 

The samples of the Xenarthra (Mammalia) are the sister group to all remaining amniotes 

(Reptilia) in this study. Although Xenarthra themselves are highly derived taxon within the 

Mammalia, they are the only available taxon that carries extensive bony armour. The small 

knob-like bones of P. harlani are difficult to compare to turtle shells. However, they are also 

formed through metaplastic ossification. The sectioned carapace bones of the Cingulata 

superficially resemble the diploe structures found in turtle shell bones, but a closer look 

reveals striking differences in the respective microstructures. For example, the cortical bone 

tissues found in turtle shell bones have a completely reversed arrangement in the cingulate 

armour plates, so that the external cortical bone tissue in turtles resembles that of the internal 

cortex in cinculates and vice versa. 
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7.2 Implications for turtle systematics 

In several taxa (listed below), bone histology supports previously hypothesised systematic 

relationships. In other taxa, however, the data of the current study and other studies clearly 

diverge. New relationships are thus proposed based on the bone histology. A synopsis of the 

results is shown in Figure 66. In the rest of the taxa, the bone histology is either not 

informative enough or functional aspects override existing phylogenetic signals. 

 

7.2.1 Systematic value of shell bone microstructures 

Basal Testudinata—The phylogenetic position of Meiolaniidae is still largely under 

discussion. The sample of the taxon consistently falls into ecological category I (chapter 

7.6.2). Based on the bone histology, it thus fits well into the group of purportedly terrestrial 

basal turtles.  

Solemydidae (aff. Naomichelys sp.)—Additional to a similarly terrestrial palaeoecology, the 

material of Solemydidae gen. et sp. indet. (aff. Naomichelys sp.) shows also highly derived 

autapomorphic shell bone microstructures (i.e., ornamentation pattern). Future sampling of 

closely related taxa (i.e., Solemys, Helochelydra and Tretosternon) might indicate these 

microstructures to be valuable synapomorphies for the more inclusive taxon. 

Platychelyidae—The variation in size and bone thickness among the two morphs of 

Platychelys may appear to be attributable to different ontogenetic stages. However, the 

differences in vascularisation pattern, the trabecular arrangement in the cancellous bone and 

the complex expression of the bone tissue in the external cortex are so strong that they 

indicate rather different systematic positions of histomorph A and B instead of ontogenetic 

stages. The bone histology thus underscores the ambiguity of the sampled fragmentary 

material from Guimarota. Based on the bone histological results, the assignments of the 

material to ‘aff. Platychelys sp.’ by Lapparent de Broin (2001:168) is to be treated with 

caution. Furthermore, histomorph A shares bone histological features with pleurosternid 

turtles. Based on the bone microstructure, the reassignment of the material of ‘aff. Platychelys 

sp.’ to ‘Pleurosternidae gen. et. sp. indet.’ is proposed. 
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Pleurodira—Among the sampled Pleurodira, the reduction of the internal cortex is 

synapomorphic for Bothremydidae. Among Testudinata however, the reduction of cortical 

bone, especially of the internal cortex, appears in several groups and is linked to an 

increasingly aquatic ecology. The distinct cyclical growth marks in the lamellar bone of the 

internal cortex of P. erythrocephala, perceived as a black and white layering, is not 

encountered in the other sampled pleurodire turtles and is thus treated as a potential 

autapomorphy for this taxon. 

Pleurosternidae—A separation of the external cortical bone in two distinct zones is 

common in turtles, e.g., in Pleurosternidae, Trionychidae, aff. Naomichelys sp. and Basilemys 

sp. However, the distinct variation in a more external fine-fibred zone and a more internal 

zone that is composed of irregularly coarse fibre bundles is characteristic only for 

Pleurosternidae. The other taxa (Trionychidae, aff. Naomichelys sp. and Basilemys sp.) show 

unique characteristics of their own in the external cortex that they cannot be mistaken for 

Pleurosternidae. 

Marine turtles from Solothurn—In Plesiochelys sp. and the Thalassemys spp., the reticular 

pattern of primary vascular canals observed in the external cortex is also quite dominant in the 

tissue of the sutured margins of the bones. Such an extensive vascular patterning was not 

observed in the marginal bone tissue of other turtles, although it is weakly developed in 

Tropidemys sp. The bone histology of Eurysternum spp. is divergent from that of the other 

Solothurn taxa. 

Middle Jurassic turtles from Kirtlington—Based on bone histology, there are two different 

turtles present in the sample from Kirtlington. Histomorph I (IPB R583-588; all dark coloured 

shell fragments) has a characteristic internal zone of thick, coarse irregular fibre bundles and a 

more external fine-fibred zone incorporated in the external cortex of the bones. Such an 

external cortex structure was only found in the material that was assinged to aff. Platychelys 

sp. (herein treated now as Pleurosternidae gen. et. sp. indet.) and in pleurosternid taxa 

(Glyptops plicatulus, Compsemys sp. and Pleurosternidae gen. et sp. indet. of Guimarota). 

Rupelchelys breitkreutzi and the Xinjianchelys spp., the only other turtles in which coarse 

fibres dominate the external cortex, lack a more external fine-fibred zone. It is thus plausible 

that the Kirtlington histomorph I belongs to Pleurosternidae (proposed assignment to 
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Pleurosternidae gen. et sp. indet.). As such, the fossil record of the group is extended from the 

Upper Jurassic back into the Middle Jurassic. 

Histomorph II (IPB R589; light coloured shell fragment), with its homogeneous 

arrangement of short and equally fine fibre bundles, resembles bone microstructures found in 

many taxa of different groups and thus reflects mainly plesiomorphic characters. An 

assignment beyond ‘Cryptodira incertae sedis’ is not possible. 

P. megacephalum and Emydidae indet. (Platysternoid “C”)—The bone histology of P. 

megacephalum resembles that of chelydrid turtles in certain aspects, like the dominance of 

diagonally arranged fibre bundles in the ISF of the external cortex and the overall 

vascularisation pattern. The bone microstructure of Emydidae indet. (Platysternoid “C”) 

shows several differences to Platysternon megacephalum, while it is not greatly 

distinguishable from the typical testudinoid histotype II. A tentative assingment based on the 

histological data would indicate a relationship between P. megacephalum and Chelydridae on 

the one hand and Emydidae indet. (Platysternoid “C”) and testudinoid turtles on the other. 

The former relationship would thus follow the morphological hypotheses presented, for 

example, in Brinkman and Wu (1999) and Danilov and Parham (2005). The latter relationship 

is already indicated by the formal assignment of the material to Emydidae indet. 

Planetochelys sp.—In the case of Planetochelys sp., the bone tissue is not distinguishable 

from turtles that fall into the testudinoid histotype I. Otherwise, the bone histology of 

Planetochelys sp.is rather unconspicous and not suited to justify a proposal of reassignment. 

Dermatemydidae—The shell bones of both dermatemydid taxa (D. mawii and B. garmanii) 

show extreme levels of vascularisation but without the overall homogenisation of the bone 

tissue seen in Hoplochelys sp. and A. ischyros. However, the trabecular arrangement in the 

cancellous bone appears highly organised, reminiscent of the high structural order of thin-

sectioned wood or the complex wing venation of insects. This level of organisation was not 

encountered among other turtles and is autapomorphic for this clade. 
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Figure 66: Revised phylogenetic hypothesis of the sampled turtles of the current study. Taxa 

and lines in red indicate newly proposed positions, while blue colours indicate strong support 

of existing phylogenetic hypotheses respectively. For source of data see text. 

 

Basilemys sp. and Adocus sp.—Two shell elements (i.e. the neural and the costal) that were 

previously assigned to Basilemys sp. were identified to belong to a large trionychid turtle, 

based on the bone microstructures. A reassignment of the two specimens to “Trionychidae 

indet.” is proposed. Comparing Basilemys sp. and Adocus sp., there is some indication (i.e., 

structure and development of external ornamentation) that the Nanhsiungchelyidae and the 

Adocidae might be closely related, thus supporting the newly introduced taxon Adocusia of 

Danilov and Parham (2006). 

Carettochelyidae—Bone histology is consistent among carettochelyid turtles, while it is 

separable from that of Trionychidae, their proposed direct sister taxon, as well as from the 

more basal Nanhsiungchelyidae and Adocidae. 

Trionychidae—The plywood-like structures in the external cortical bone of Trionychidae is 

a true synapomorphy for the group, even though functional purposes might be involved at the 

same time (see discussion in chapter 7.3) (Scheyer et al., 2007). 

 

7.2.2 Functional adaptation 

In those cases, where the microstructures in the shell bones are not very conspicuous, but 

plesiomorphic for Testudinata, the supple variations can often by attributed to functional 

adaptations (see chapter 7.6). Such groups are, for example, Chelidae and Testudinoidea. Due 

to the overall moderate vascularisation of the shell bones, both the South American and the 

Australasian taxa of Chelidae fitted in an overall pattern of semi-aquatic to mainly aquatic 

turtles (ecological category II). However, the adaptation to the aquatic environment overrides 

potential systematic signals. Neither the morphological nor the molecular/serological 

hypotheses of chelid intrarelationships could be supported by bone histology (see chapter 
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4.2.5). In Testudinoidea, the shell bone histology is also mainly characterised by the level of 

adaptation to the aquatic environment (testudinoid histotypes I-III, see chapter 6.3.14). 

In taxa like Archelon ischyros and Hoplochelys sp., the functional aspects, namely the 

extreme adaptation to the aquatic environment is completely overriding any phylogenetic 

signals that might have been present. The shell bone tissue is comparable to highly porous 

endoskeletal bone structures recognised in some tetrapod groups (e.g., ichthyosaurs, dolphins 

and also the leatherback turtle) secondarily associated with an open marine lifestyle (Buffrénil 

et al., 1987; Buffrénil and Schoevaert, 1988; Ricqlès, 1989; Buffrénil and Mazin, 1990; 

Ricqlès and Buffrénil, 2001). For A. ischyros, the osteoporoitic trend in the shell is 

hypothesised to lead to a weight-reduced shell skeleton with lower mass and density (compare 

to Taylor, 2000), a characteristic further enhanced by the enormous morphological reduction 

of the shell elements and the presence of large fontanelles (Wieland, 1898). 

 

7.3 Implications for functional morphology of the turtle shell 

The diploe structure of the shells, the non-overlapping structure of keratin shields and bone 

sutures, plywood-patterns of the bone tissue, the sutural connection of the bone and hinge 

systems are taken into account to survey the functional morphology of the shell. Because the 

plywood patterns of Trionychidae is one of the most outstanding structures that were 

encountered in the shell bones, they will be discussed in a separate section. 

 

7.3.1 Microstructural adaptations to strengthen the shell 

Diploe structure of the shell bones—Whereas a simple compact domed shell would suffice 

for a turtle to give its shell enough form stability, especially for larger and ultimately for 

giant-sized turtles it becomes increasingly important to minimise shell weight during growth 

due to scaling effects. As seen in the giant H. crassiscutata and S. geographicus, the diploe 

structure itself presents such a way of lightweight construction. Form stability and the 

moment of inertia (in this case, the capacity of the turtle shell to resist bending stresses) of the 
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domed shell is maintained, because the compact bone layers serve as tension-resistant layers 

around the meshwork of interior cancellous bone. 

Sutural structures—The suture between two adjacent shell bones is usually well developed 

with long interdigitating bony pegs and equivalent sockets. However, in some taxa the sutural 

zone has a shallow relief with short and blunt pegs and sockets. Even though the sutures of 

these bones seem rather weak, this presumed weakness might be compensated through a soft-

tissue connection strongly reinforced by Sharpey’s fibres. As could be shown by the core-

sampling of recent and not yet macerated taxa like D. mawii (chapter 6.3.16) and Kinosternon 

sp. (chapter 6.3.18), soft tissue fibres cross the space between the sutures to insert into both 

shell bones. Due to the relief of the peg and socket structure, the Shapey’s fibres overlap each 

other extensively in the pegs. Similarly, the collagenous fibre bundles that insert 

perpendicular to the external bone surfaces are interpreted as a means of physically 

strengthening the interface of the keratinous shield cover and the underlying shell bone, with 

only a very thin layer of fibrous connective tissue being present in between. 

One group with relatively weak bone sutures is the Carettochelyidae. The high domed shells 

of, e.g., Allaeochelys cf. A. crassesculpta from the Eocene Messel pit, are mostly flattened 

and the carapacial bones (and to a lesser degree the bones of the plastron) are rotated out of 

articulation (pers. obs.). This type of preseration might be explained by the decay of the soft-

tissue connection, i.e. the Sharpey’s fibres, between the bones, followed by a subsequent 

loosening of the sutural contact and outward rotation of the elements due to burial compaction 

of the sediments. 

Sharpey’s fibres—Sharpey’s fibres are not only found in the sutural zones. In the external 

and internal cortices of the bones, Sharpey’s fibres also insert into the ISF or the parallel-

fibred bone/lamellar bone respectively. The Sharpey’s fibres in the external cortices seem to 

be uniformly connected with the anchoring of the overlying layers of connective tissue and 

keratinous shields. Sharpey’s fibres that insert into the internal cortices are hypothesised to be 

associated with carapacial and plastral attachment zones of respiratory, locomotory and 

kinetic hinge musculature (see below). 

Shell kinesis—Hinge systems in the turtle shell were sampled in the fossil Planetochelys sp. 

(whole elements; UCMP 81071/159356), in the recent Kinosternon sp. (core-samples; SMNS 
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7440) and in the recent Kinixys homeana (whole elements; YPM 13876). Compared to normal 

bone sutures, the interdigitating elements (pegs and sockets) of hinge bones are greatly 

reduced in numbers resulting in only a single bony protrusion and a respective groove serving 

as a bony connection between adjacent elements. Instead of interdigitating elements, smooth 

bone margins are formed and the soft tissue connection between the bones remains during 

shell osteogenesis. 

In some cases, the musculature involved into the shell closing mechanisms has been studied. 

For example, as indicated by the works of Bramble (1974) and Bramble et al. (1984), a 

diversity of muscles is involved (i.e. musculus testoscapularis or musculus atrahens capitis 

collique in anoterior lobe closure; musculus testoiliacus or musculus attrahens pelvim in 

posterior lobe closure) in the closing system of emydid and kinosternid turtles. In the 

pelomedusid genus Pelusios, the musculus levator plastralis, a derivative of respiratory 

musculus diaphragmaticus, ought to be involved in closing the anterior plastral lobe (Bramble 

and Hutchison, 1981). 

 

7.3.2 Plywood-like structure in Trionychidae 

Although the cancellous bone and the internal cortex of the flat bones of the trionychid shell 

are rather similar to those recognised in other hard-shelled turtles, the plywood-like 

arrangement in the external cortex of the bone is unique for the Trionychidae (Scheyer et al., 

2007). Figure 67 summarises the trionychid rotated ply-system based on observations of the 

external cortex of cf. Aspideretoides sp. (IPB R533). Because this dermal structure of the 

shell bone and shell skin is found in all crown group trionychid turtles, it is considered a 

synapomorphy of this clade. However, based on the uncertain intraspecific variation which 

correlates with the statistically small amount of studied trionychid individuals, it remains yet 

unclear if the measured angles between the ply-stacks in the trionychid shell are somehow 

characteristic on generic- or even species-level. Schmidt (1921) pointed out that the fibre 

bundles of the so called ‘Bündelschicht’ (plywood-like pattern) are arranged diagonally 

towards the overall long-axis of the turtle shell. He attributed this arrangement to a 

biomechanical retention of the shell curvature or as resistance to the flattening of the shell. 

Structurally, the presence of Sharpey’s fibres in the outer zone, the ornamentation pattern, of 
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the external cortex of the trionychid shell bones implies a strengthened anchoring of the 

integument onto the bone. The internal cortex and the inner cancellous bone of the bony shell 

elements are rather similar to those found in other hard-shelled turtles and are thus considered 

plesiomorphic. 

 

Figure 67: Sketch of bone microstructure of the external cortex based on cf. Aspideretoides 

sp. (IPB R533), illustrating the rotated ply-system. Please note that the actual microstructure 

(e.g., Fig. 64c, d; dried specimen) is much more variable than the sketch is implying. Each ply 

consists of numerous fibre bundle quadrangles (FBQ) that again consist of tubular fibre 

bundles (FB). The magnification of the plywood-like structure highlights the orientation of 

the FBQ to each other, with neighbouring quadrangles being rotated in 90° angles to each 

other. Each FB (10-15 μm) in the FBQ consists of multiple single collagen fibre strands (20-

50 nm). Vertically trending FBQ that trend from the ornamentation pattern towards the 

cancellous bone are usually two FB rows thick, while the horizontal ones are usually three FB 

rows thick (30-50 μm). 
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At this point, a short comparison to Schmidt’s work (1921) seems to be in order to elucidate 

similarities and discrepancies between his “soft-tissue” analysis and the “hard-tissue” analysis 

of the current study. All in all, both works complement each other and lead to a clearer 

understanding of the trionychid turtle shell. Structures similar to those presented herein (see 

Scheyer et al., 2007) were described in Schmidt’s interpretations and drawings of the soft-

tissue part. It is hypothesised that the tripartite organisation of the corium into an external 

‘Bündelschicht’, an interior ‘Filzschicht’ and an internal ‘Grenzschicht’ as presented by 

Schmidt (1921:195) corresponds to the metaplastically ossified bone of the trionychid shell 

with its ply-system in the external cortex, the interior cancellous bone and the internal cortex. 

Even if, as Kälin (1945) pointed out, the initial ossification of the dermal bone begins below 

the “tiefes Stratum compactum” (Kälin, 1945:160: fig. 11), which is synonymous to 

Schmidt’s ‘Grenzschicht’, the subsequent dermal ossification is strongly associated with the 

“tiefes Stratum compactum” justifying the hypothesis of the equivalency of the tissues. 

On the other hand, no deviating or anastomosing FBQ, as described by Schmidt, were 

recognised in the bone of the shell, thus the FBQ appear to be less variable in the bony 

carapacial disk compared to the peripheral soft tissue part of the shell. Furthermore, 

Schmidt’s assertion that the vertical fibre bundles extend continuously through the whole ply-

system could not be corroborated by the bone histology. While occasionally some vertical 

FBQ do seem to cross the horizontal plies, the majority of them appear to be discontinuous. 

The vertical FBQ reach into the overlying and underlying plies and expand there to further 

anchor the ply system, but they do not continue on through the neighbouring plies. 

Twisted and orthogonal plywood structures have been decribed in the basal plates of 

coelacanths and teleosts and the adaptive values of such a highly organised structure in bone 

has been discussed for example by Giraud et al. (1978), Meunier and Castanet (1982) and 

Meunier (1988). In Trionychid turtles, several specific adaptive advantages can be 

hypothesised, including the flattening of the carapace, reduced ossification of the shell and the 

loss of the keratinous shields (see also Scheyer et al., 2007). First, trionychid turtles have 

selective advantages in building and maintaining less hard tissues, as the peripheral plates, 

distal parts of the costal plates and much of the plastral bones are reduced (e.g., Rathke, 1848; 

Hoffman, 1878; Zangerl, 1969; Meylan, 1987). The decreased demand for minerals and 

nutrients clearly represents a physiological advantage. Second, the reduced amount of hard 

tissues leads to an overall lower body mass, a point mentioned already by Schmidt (1921). 
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The lower body mass facilitates at least fast short-term swimming and higher 

manoeuvrability, as is seen in many other secondarily aquatic tetrapods (Webb and Buffrénil, 

1990). The powerful swimming bursts (Pritchard, 1984; Pace et al., 2001) that can be either 

used to quickly burrow into soft sediments for hiding (Pritchard, 1984; Bramble, pers. comm. 

in Meylan, 1987) or to escape from predators, are enabled through the flattened carapace with 

its movable soft-tissue peripheral flap together with their propelling front feet. Third, since 

trionychids are ambush predators that hide at the bottom of lakes and rivers, the flattened, 

easily buried carapace together with the snorkel-like nose increases their hiding abilities and 

their own success in hunting. Fourth, a flattened shell that is covered with extremely slick and 

slippery skin is an effective protection against predators both in water and on land because 

any predator will have difficulties grasping any flat object that tightly hugs the ground. In this 

instance, a long and agile neck and sharp beak is not only well suited for catching prey like 

fishes (Pritchard, 1984; see also discussion in Meylan, 1987), but also a dangerous weapon 

that the trionychid turtle can use to effectively defend itself (pers. obs.). Fifth, based on the 

striking parallels to man-made fibre-reinforced composite materials, the plywood-like 

structure may have some kind of biomechanical advantage, be it a heightened resistance 

against crushing or crack prevention or simply an increase of stability of the flattened 

carapacial disk. Similar points were already listed by Schmidt (1921) for the soft-tissue part 

of the shell. These aspects of the plywood-like structure of trionychid shells require further 

biomechanical studies. Last but not least, the loss of keratinous shields allows for increased 

cutaneous breathing (Ultsch et al., 1984). Trionychid turtles are presumably unique in their 

soft carapacial and plastral epidermis acting as an efficient cutaneous breathing organ, 

allowing a bimodal gas-exchange with ambient water (Girgis, 1961; Bagatto and Henry, 

1999). This additional method of respiration, together with buccopharyngeal breathing, allows 

soft-shelled turtles to remain submerged for a vastly increased period of time compared to 

turtles lacking this adaptation (Girgis, 1961; Seymour, 1982; Bagatto and Henry, 1999; 

Gordos et al., 2004). They seldom have to leave their hiding place or extend their long neck 

and snorkel-like nose to the surface to breathe, which again works in favour of camouflage. 

However, the reduction of the bony shell poses also a disadvantage by reducing potential 

storage and buffering of lactic acid, lowering anoxic water tolerance (Jackson et al., 2000). 

Trionychid turtles prefer normoxic water habitats in which they can fully take advantage of 

their ability to breathe through their expanded skin surface. Those normoxic habitats are also 

of great importance for hibernation of trionychids, because they are not able to tolerate raised 

levels of anoxia for a longer time period (Reese et al., 2003). 



Comparative bone histology of the turtle shell   
 

276 

Measuring the evolutionary success of a group of organisms is difficult and may often seem 

speculative. Yet, trionychid turtles experienced certain evolutionary success because the 

group originated more than 120 million years ago during the Early Cretaceous in Asia and 

eventually came to be one of the most cosmopolitan and long-lived turtle radiations by 

spreading to North America, Europe, Africa and Meganesia (e.g., Ernst and Barbour 1989; 

Iverson 1992; Scheyer et al., 2007). Since their first appearance in the fossil record, though, 

almost no variation occurred in their overall trionychid shell morphology, and fragments of 

their shells are among the most obvious and numerous fossil specimens in many Mesozoic or 

Cenozoic fossil lagerstätten. The current distribution of extant species appears to be limited 

only by access to suitable river habitat and temperature regions. It is hypothesised that the 

trionychid shell with its unique composite structure evolved as an alternative lightweight 

solution to the plesiomorphic domed protection of other turtles, an adaptation that offers 

additional physiological and biomechanical advantages. However, it is uncertain if the highly 

unique morphology of trionychids originated and became fixed rapidly, because the record of 

pre-Early Cretaceous fossil turtles still remains poorly documented and understood. 

 

7.3.3 Functional size/age related differences 

A group, where extreme size variation can be observed, is Pelomedusoides (see also 

Scheyer and Sánchez-Villagra, 2007). The diploe build of the shell, the presence of growth 

marks and bone tissue that consists of interwoven structural collagenous fibre bundles, found 

in all taxa from small Pelomedusa subrufa to giant Stupendemys geographicus, are 

hypothesised to be plesiomorphic characters. Based on the lack of data available on stress-

induced variation of the bone microstructures of different aquatic and terrestrial turtle taxa of 

varying ontogenetic stages and size classes, it cannot be verified if any of those structures are 

truly size related. The comparison of the pelomedusoides turtles leads to the conclusion that 

the truly giant size of S. geographicus was not based upon a novel way of shell bone 

formation that greatly differs to that of other turtles in general (Scheyer and Sánchez-Villagra, 

2007). 

Heavy remodelling of the bone usually leads to the formation and accumulation of 

successive generations of secondary osteons, i.e., Haversian bone, with progressive age (e.g., 
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Francillon-Vieillot et al., 1990). The higher level of vascularisation linked to the secondary 

osteon clusters in the compact bone layers in S. geographicus, however, appears to be directly 

influenced not only by the large size but also by the advanced (old) age of the specimens. 

According to Rhodin (1985) who studied chondro-osseous growth in endoskeletal bones of 

fossil and recent turtles, A. ischyros showed significant histological similarities (e.g., 

vascularised cartilage) with the rapidly growing D. coriacea. The specimens of S. 

geographicus on the other hand lacked comparable features, instead showing a microstructure 

similar to recent turtles with a ‘normal’, slow mode of growth (Rhodin, 1985). In this respect, 

both the long bone histology (sensu Rhodin, 1985) and the shell bone histology (studied 

herein) show the same pattern for A. ischyros and S. geographicus (see also Scheyer and 

Sánchez-Villagra, 2007). 

When applying overall growth rates of D. coriacea to the presumably slow-growing S. 

geographicus, it would have taken the giant pleurodire turtle a minimum of 30 years to reach 

a SCL of 3.3 metres. If slower, possibly more realistic, mean growth rates of 3.0-5.3 cm/yr 

“for most age and size classes” of the cheloniid turtle C. mydas are applied (Zug and Glor, 

1998:1497), the age estimates would increase to 60 to 110 years. Similar estimates would be 

obtained using growth rates of the cheloniid C. caretta (e.g., Klinger and Musick, 1995: ~5.3 

cm/yr to ~2.9 cm/yr for 400-1000 mm SCL). The difference between the visible, measurable 

histological growth record and real age becomes even more pronounced, considering that all 

turtles further decrease growth towards maturity and old age (e.g., Peters, 1983; Klinger and 

Musick, 1995; Zug et al., 2001). None of these given estimates can be constrained further, 

because the growth record of S.geographicus is still insufficiently known. 

 

7.3.4 Primary and secondary turtle armour 

Secondary (epithecal) armour was sampled only in the two specimens of Dermochelyidae, 

the extant Dermochelys coriacea and the fossil Psephophorus sp. The secondary armour 

platelets of D. coriacea seem to have formed in a connective tissue layer between the cuticle 

and the lipid-rich fibrous layer where fibre bundles mostly extend horizontally. Initial growth 

seems to involve metaplastic ossification (see ISF of external cortex and primary trabeculae 
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structure) while final increase in thickness may be purely attributed to remodelling of the 

more internal cancellous regions of the platelets. Although morphologically different, the 

secondary armour platelets of D. coriacea and Psephophorus sp. share histological structures. 

Besides the missing connection of the platelets to the endoskeleton (e.g., ribs and vertebral 

column), there is no indication that the platelets of Dermochelyidae form in any other way 

different from the dermal parts of the shell of other turtles. Even the locus of osteogenesis 

seems to be similar in dermochelyid turtles (internal to epidermal cuticle) and other turtles 

(internal to epidermal keratin shields; except soft-shelled turtles). It is hypothesised that the 

relative position of bone formation has not changed, but that the external (superficial) position 

of the secondary platelets is directly linked to the thickening of the integument in 

dermochelyid turtles. 

 

7.4 Implications for turtle origins 

If turtles were to be nested deeply within Pareiasauria (Lee, 1997), strong histological 

similarities would be expected between turtle shells and derived dwarf pareiasaurs, i.e. A. 

serrarius (chapter 5.3.1). Instead, both bone histologies were consistent throughout each 

group, thus arguing against the homology of the dermal bone structures. Basal turtle shell 

bones do not show ornamental bosses, radial ridges and radial vascularisation patterns, while 

pareiasaur osteoderms lacked diploe structures, scute sulci and a clear distinctiveness of the 

internal and external cortex (all presumably synapomorphic for turtle shell bones). The 

strongest argument against this hypothesis, however, is the absence of metaplastic dermal 

tissue in pareiasaur osteoderms. Because of this lack of metaplastic dermal structures, 

fundamental differences in osteogenesis are proposed for the turtle shell and for the 

pareiasaurs osteoderms. The latter bones are hypothesised to represent novel armour 

structures that displace integumentary tissue instead of incorporating it. Similarly, a partially 

novel origin was discussed for ossicles of an ankylosaur from Anarctica (Antarctopelta 

oliveroi Salgado and Gasparini, 2006) based on bone histology (Ricqlès et al., 2001). 

However, as was argued by Scheyer and Sander (2004) and Main et al. (2005), thyreophoran 

(including ankylosaur) osteoderms truly develop through metaplastic ossification. Because a 

novel origin is assumed for pareiasaur osteoderms, these osteoderms are not suitable for 
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reconstructing fossil integumentary structures as was possible in thyreophoran dinosaurs 

(Scheyer and Sander, 2004) and now is possible in turtles. 

Placodontia are the most basal group within Sauropterygia (Rieppel and Reisz, 1999). 

Furthermore, they are the only sauropterygians with body armour that allow histological 

comparison to turtle shell bones, although placodonts are not proposed as the potential 

sistergroup to turtles herein. 

Placodont armour is not only morphologically homoplastic to the turtle shell (e.g., Gregory, 

1946; Rieppel, 2002); their bone histologies are also very divergent. Placodont dermal armour 

plates express strong radial growth similar to pareiasaur osteoderms and the plates are 

compact. Large vascular spaces and extensive secondary bone remodelling are completely 

absent. However, placodonts are unique among armour-bearing vertebrates in their highly 

unusual inclusion of calcified fibrocartilaginous tissue, here termed postcranial chondroid 

bone, in the bone of the dermoskeleton. The cartilage matrix with interspersed bony struts 

differs from hyaline cartilage of , e.g., the growth plates of long bones in having a distinctive 

fibrous nature similar to fibrous cartilage, e.g., of the inter-vertebral disks. The presence of 

calcified cartilaginous tissue separates these bones from true postcranial ‘osteoderms’, 

because intramembraneous bones/osteoderms strictly form without cartilage precursors 

(Francillon-Vieillot et al. 1990). Due to the lack of modern homologous structures, the 

mechanisms to incorporate cartilage in the placodont armour remain yet speculative. 

Even though a large number of different dermal bone structures with specific bone 

histologies developed among archosaurs (e.g., Francillon-Vieillot et al., 1990; Scheyer and 

Sander, 2004; Main et al., 2005; Hill and Lucas, 2006; present study), the turtle-archosaur 

sistergroup relationship proposed by molecular studies (Hedges and Poling, 1999; Kumazawa 

and Nishida, 1999; Janke et al., 2001; Rest et al., 2003; Iwabe et al., 2004) is in accordance 

with the presented data. Metaplastic ossification as well as diploe-like structures are known 

from archosaur osteoderms. Indeed, metaplastic ossification of at least parts of the osteoderms 

is hypothesised as being plesiomorphic for all archosaur groups as well as for the 

Lepidosauria. Because metaplastic bone formation is also found in anurans, (e.g., Zylberberg 

and Castanet, 1985), the metaplastic process in dermal osteogenesis might be an even more 

plesiomorphic, inherited feature in reptiles. In the case of Lepidosauria, osteoderms are not 

regarded as a synapomorphy for Lepidosauria, as for example, basal lineages lack 
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osteoderms. They appear only in certain lepidosaur lineages, mostly as diminutive bone 

structures (see also Hill, 2005). 

Evolutionary developmental studies that propose the turtle shell as an evolutionary 

neomorphic structure are also in accordance with, but not testable by, bone histological data, 

because the studies obviate armoured ancestors from evolutionary scenarios. The aim of 

future studies will be a more exact histological classification of the amniote integument and 

its mineralisations and ossifications, which will result in mappable characters, which can then 

be plotted on phylogenetic scenarios. This will potentially allow studies of the characters in 

amniote relationships using parimony and other statistical methods. 

 

7.5 Evolutionary model of osteogenesis of placodont armour 

Due to the highly unique nature of the placodont armour, a brief aside on placodont armour 

development is included in this chapter. Contrary to Westphal’s (1975) assessment of growth 

patterns in placodont plates that were based solely on hexagonal plate forms, quite a few 

differences in the locations of the centres of growth were found among the studied sample. An 

evolutionary model of growth together with the correlations of tissues is presented below (see 

Fig. 68). 

Even though placodont dermal plates span a wide variety of gross morphological shapes, a 

generalised model of histogenesis can be proposed based on the sampled thin-sections. The 

simplified model of osteogenesis proposed by Westphal (1975) is expanded by including a 

wider variety of placodont taxa, morphological shapes and bone histological characteristics. 

The location of the centre of growth, the radial growth pattern including the vascularisation 

and growth marks and the occurrences of the different histological tissues within the bones 

are thus taken into account for this study’s model. In keeping with its phylogenetic position, 

the ridged plate (SMNS 91006) of the placodontoid P. gigas is hypothesised to represent the 

plesiomorphic state, while the cyamodontoid plates represent derived states. Reduction in 

height and subsequent externointernal flattening of specimen SMNS 91006 leads over to the 

polygonal (?hexagonal) plates of Psephoderma sp. (NRM-PZ R.1759a). Through reduction in 

externointernal thickness, subsequent flattening and suppression of the development internal 
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to the growth centre, the hexagonal plates of Psephoderma sp. (SMNS 91008) and the 

rhomboidal/hexagonal plates of the Psephosaurus suevicus (MHI 1426/2 & 3) and 

Psephosaurus sp. (SMNS 91009) can be derived. A stonger lateral shift leads over to the 

recumbent spiked plate of Psephosaurus suevicus (MHI1426/1). Lateral compression and a 

rotational component of about 45° around the centre of specimen SMNS 91006 enables a 

transformation to the procumbent spike of cf. Placochelys sp. (SMNS 91009). The spiked 

specimen of P. suevicus (SMNS 91010) can be derived by slight lateral and externointernal 

compression, as well as a suppression of development lateral and external to the growth 

centre. 

 

Figure 68: Generalised model of osteogenesis of placodont armour plates. The sectioned 

armour plates are all scaled to similar size. The cyamodontoid plate forms can be deduced 

from the basal plate morphology and histology of Placodus gigas (SMNS 91006). Please 

note that in case I, one of the plates of NRM PZ R.1759a was chosen representatively for the 

hexagonal/polygonal plates. I: Psephoderma sp. (NRM PZ R.1759a) Psephosaurus suevicus 

(MHI 1426/2 & 3); II: Psephosaurus sp.(SMNS 91008); III: Psephosaurus suevicus (MHI 

1426/1); IV: Psephosaurus sp. (SMNS 91009); V: cf. Placochelys sp. (SMNS 91010); VI: 
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Psephosaurus suevicus (SMNS 91007). Areas where a calcified fibrocartilaginous tissue and 

bone spiculae, i.e., posterior chondroid bone, was found are marked with an asterisk. 

 

Two different developmental hypotheses can be proposed about placodont armour 

formation, explaining the presence of cartilage in the plates: 1.) Placodont armour develops as 

part of the endoskeleton and not as part of the dermal skeleton proper. 2.) The placodont 

armour is preformed in cartilage that does not belong to the endoskeleton and the formation of 

the cartilage in the dermis is treated as an evolutionary novelty. 

The first case, the retention of cartilage in endoskeletal bone, is widely distributed in 

endoskeletal elements, e.g., limb bones, ribs and vertebrae, of fossil and recent vertebrate 

groups that are secondarily adapted to a marine life-style (e.g., Ricqlès, 1989; Ricqlès and 

Buffrénil, 2001). Morphological data, however, does not provide evidence for a relationship 

of the placodont armour to the endoskeleton instead of belonging to the dermoskeleton. The 

second case is not known to occur in the postcranial armour plates of any fossil or recent 

vertebrate group. This implies that the formation of cartilage in the postcranial dermis of 

placodonts must have involved some novel developmental mechanisms (e.g., Webster and 

Zelditch, 2005; Fang and Hall, 1997). On the other hand, as shown for the vertebrate skull, 

the occurrence of cartilage (e.g., secondary cartilage, chondroid bone and cartilage formation 

in fracture healing) can be associated with typical dermal or membrane bones that also lack 

cartilage precursors (Fang and Hall, 1997). Especially chondroid bone, an intermediate tissue 

that contains both bone and cartilage does show similarities with the tissue recognised in the 

placodont armour. Chondroid bone is argued to be connected with rapid bone growth during 

intramembraneous ossification (Lengelé et al., 1990, 1996). It disappears during ontogeny 

(Fang and Hall, 1997; Hall, 2005). It remains unclear, however, why such a rapid 

development would occur in placodont armour. The presence of a calcified cartilaginous 

matrix in part of the placodont samples to the complete absence of cartilage in others, in 

accordance with cranial chondroid bone, could represent the result of different ontogenetic 

states of the samples. If the developing chondroid bone of the placodont dermal armour 

displays a highly reduced potential to fossilise compared to completely ossified tissue, this 

could explain why the few finds of juvenile placodonts apparently lack postcranial dermal 

armour plates (see Rieppel, 2002). 
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The compact nature of the bone associated with the lack of interior cancellous bone in all 

placodont samples indicates some form of osteosclerosis of the armour plates (compare to 

Ricqlès and Buffrénil, 2001), a fact that matches well the previously described pachyostotic 

trends recognised in placodont and other vertebrate long bone histology (e.g., Buffrénil and 

Mazin, 1992; Hua and Buffrénil, 1996; Ricqlès and Buffrénil, 2001). It is proposed that 

additional to the pachyostosis found in limb bones, the osteosclerosis of the armour plates in 

at least the more derived cyamodontoids attributed to some extend to buoyancy control while 

swimming and browsing for food. Swimming speed, on the other hand, most likely was 

reduced in the heavily armoured cyamodontoids (compare to Massare, 1988, 1994). 

 

7.6 Implications for the ecology of turtles 

Ecology and life-style are hypothesised to have great impact on turtle shell bone 

microstructures. As a general trend, terrestrial turtles retain a compact diploe with well 

developed cortical bone layers. With increasing adaptation to an aquatic habitat, the more 

vascularised the bones become. The most extreme forms of adaptation are found in highly 

aquatic turtles of the Kinosternia, the Dermatemydidae and the Chelonioidea. In a first step 

(chapter 7.6.1), the palaeoecology of basal turtles is inferred by comparison to modern turtles, 

and in a second step (chapter 7.6.2), four categories are introduced and defined to quantify the 

ecological/palaeoecological signal of all sampled fossil and recent turtles based on their 

respective bone histologies. 

 

7.6.1 Palaeoecology of basal turtles 

The palaeoecology of basal turtles was classically viewed as being semi-aquatic. In the 

monographic compendium on the osteology of Proganochelys quenstedti, Gaffney (1990:25) 

noted that this basal turtle was probably roughly similar to the American snapper 

Macrochelys temminckii in “size, possible habitat, and some morphologic features”, and his 

resulting reconstruction of the environment (Gaffney, 1990:fig.1) included a swimming P. 

quenstedti, thus underscoring a purportedly semi-aquatic habitat preference. Lately, this view 
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was questioned based on limb bone proportions, indicating a terrestrial palaeoecology for the 

turtle stem (Joyce and Gauthier, 2004). In contrast to the study of limb bone proportions by 

Joyce and Gauthier (2004), the present study is independent to the preservation of axial 

skeletal elements in fossil turtles, enabling the palaeoecological study of much broader range 

of incompletely known turtle taxa in the fossil record. 

Independent shell bone microstructural evidence for basal Testudinata, especially of the 

oldest and basal-most turtles Proterochersis robusta and Proganochelys quenstedti, clearly 

indicates a terrestrial origin of turtles. Similarity can be observed between the basal turtles 

and modern turtles with a terrestrial ecology. Shell bones of both groups have a well 

developed diploe structure with thick external and internal cortices, weak vascularisation of 

the compact bone layers and a dense nature of the interior cancellous bone with overall short 

trabeculae. Although Kayentachelys aprix was characterised as an aquatic turtle based on 

various morphological traits, the taxon seems to retain the compact bone histology indicative 

of terrestrial habits. 

On the other hand, modern turtles with aquatic ecologies tend to reduce cortical bone layers, 

while concurrently increasing overall vascularisation of the bone tissue. This can ultimately 

lead to an overall homogenisation of cancellous and cortical bone (e.g., in Archelon ischyros). 

Due to the congruence of basal and modern ‘terrestrial’ turtles, it is inferred that overall 

composition of the integument and specific locus of bone development in the integument are 

comparable in those turtle groups. The strong terrestrial signal in the shells of basal turtles 

again argues against a proposed marine origin of turtles (see Rieppel and Reisz, 1999). 

 

7.6.2 Quantifying the ecological adaptation in turtles 

All turtles are assigned to one of four categories (category I-IV) according to the degree of 

aquatic adaptation. The categories are mainly based on literature and internet data on the 

ecology of recent turtles (e.g., Pritchard, 1979; Ernst and Barbour, 1989; Baillie et al., 2004; 

Ernst et al., 2006) to which bone histological characteristics are then assigned. Comparison 

with the recent taxa then allows the assignment of fossil taxa to the respective categories. A 
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definition of the categories follows below, and the complete list of assignment to the 

categories is compiled in Appendix 3 for each taxon. Note that especially in category II, bone 

composition and overall vascularisation are subject to gradual changes, often making a clear 

classification difficult for a taxon (indicated by the tendency to a higher or lower category). 

 

7.6.2.1 Category I (terrestrial) 

Two groups of turtles are combined in this category. The first group is composed of the 

basal Testudinata, the primary terrestrial turtles (see chapter 7.6.1). The second group consists 

of turtles (e.g., tortoises) that secondarily have returned to a terrestrial ecology. The turtles of 

this category barely ever enter water bodies and show no adaptations to an aquatic lifestyle. 

The shell bones appear quite massive in thin-section. The diploe structure of the bone is well 

developed with thick, weakly vascularised cortices. The cancellous bone is dominated by 

primary short, thick bone trabeculae and small vascular spaces. 

 

7.6.2.2 Category II (semiaquatic to mainly aquatic) 

Turtles that spend much of their live in water fall into category II. However, they more or 

less often go on land to migrate, forage for food or to bask. Turtles of category II share the 

following bone microstructural features: all shell bones have a diploe structure, where internal 

and external cortical bone layers frame interior cancellous bone. Both cortices are well 

developed, and the whole bone retains a generally compact appearance. However, the 

vascularisation of the cortical bone is increased compared to category I due to increased 

amounts of primary vascular canals and secondary osteons. The transition between the 

cortices and the interior cancellous bone is still conspicuous. In quite a few taxa in category 

II, a trend to reduce the thickness of cortical bone while increasing overall bone 

vascularisation is apparent. 

 

7.6.2.3 Category III (fully aquatic) 
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Turtles of category III rarely leave the aquatic environment to bask or to lay eggs. The shell 

bones show a reduction of compact bone layers. Especially the internal cortex is strongly 

reduced in thickness compared to the external cortex. The external cortex itself is strongly 

vascularised, but seldomly reduced in thickness. Furthermore, in those taxa in which the 

internal cortex is almost completely reduced, the external cortex is especially well developed 

(e.g., Dermochelyidae; Allopleuron; Plesiochelyidae). The degree of organisation of 

trabeculae in the cancellous bone is high. It is hypothesised that by retaining a well developed 

external cortex, the structural stability of these bones is still guaranteed. 

 

7.6.2.4 Category IV (extreme adaptation to aquatic/marine environments) 

Similarly to category III, the turtles included in category IV they rarely leave the water. 

Morphological adaptations to the buoyant medium are apparent (e.g., modification of limbs 

into flippers; large shell fontanelles retained through adulthood and body shape steamlined, 

i.e., teardrop-shaped). Taxa of category IV show an extreme stage of adaption to the aquatic 

environment and, as expected, most of the sea turtles fall into this category. The turtle shell 

bones show reduction in thickness of the cortices combined with strong vascularisation of the 

compact bone layers. The cortices loose their compact nature, and the whole bone develops a 

homogeneous spongy appearance. A clear distinction of the bone tissue in cortical bone and 

cancellous bone is not possible anymore. 

 

7.6.2.5 Synopsis 

Many groups in which more than one turtle taxon was sampled show a consistent picture of 

aquatic adaptation (e.g., basal Testudinata, Podocnemidae, Pleurosternidae, Carettochelyidae, 

Cheloniidae “sensu lato”, Kinosternidae and Trionychidae). In several other groups, however, 

not all of the genera fall in the same category. These groups are Bothremydidae, Chelidae, 

Baenidae, Cheloniidae “sensu stricto” and Testudinoidea. 

In Bothremydidae, the freshwater turtle Foxemys cf. F. mechinorum shows less adaptation 

than the two sampled marine taxa (Bothremys barberi, Taphrosphys sulcatus). In Baenidae, 
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the early basal taxa (Plesiobaena sp. and Neurankylus sp.) fall into category II with 

tendencies to category I, while the derived taxa (Boremys sp. and Chisternon sp.) show an 

increasing vascularity of the bone, thus maybe indicating a trend of increasing aquatic 

adaptation through time for this group. In Cheloniidae “sensu stricto”, Chelonia mydas falls 

into category III, while the other two species, Caretta caretta and Eretmochelys imbricata, are 

grouped in category IV. Overall, marine turtles (i.e. B. barberi, T. sulcatus, Eurysternidae, 

Thalassemydidae, Plesiochelyidae and Chelonioidea) range from category III to IV, with the 

least adaptations found in the Upper Jurassic marine taxa from Solothurn limestone and the 

highest adaptations in Chelonioidea. The dermochelyid taxa (fossil Psephophorus sp. and 

recent Dermochelys coriacea) both fall into category III. It remains speculative at this point to 

attribute their less adaptational contition to the reduction of the primary (thecal) shell and the 

formation of secondary (epithecal) armour. 

Trionychid taxa show several shell adaptations (e.g., persisting plastral fontanelles in some 

taxa, loss of peripherals and free rib ends covered in soft skin flap) that may be attributed to a 

neoten stage of development compared to other turtles. These adaptations can also be 

interpreted as advanced adaptations to the aquatic habitats. Trionychid shell bones, on the 

other hand, are surprisingly compact with well developed and generally weakly vascularised 

internal and external cortices. They are thus categorised as belonging into category II, with 

tendencies to category I. I here propose that because of structural reasons of shell stability, the 

highly unusual trionychid shell bone with its unique plywood-arrangement of the external 

cortex counteracts or inhibits processes that would otherwise lead to increased vascularisation 

and further remodelling of the bone. In this case, one functional aspect (maintaining structural 

stability of the shell) would counteract another (the ecological adaptation to the aquatic 

medium). 

It appears that the turtles of Solothurn, although marine, generally did not reach the level of 

adaptation as marine turtles from the Cretaceous and latter time periods. On the other hand, 

there are few non-marine species (Dermatemydidae, Hoplochelys sp.) that range among the 

highest levels of adaptation present in the turtle shells, almost equaling the microstructures of 

Archelon ischyros. A taxon that was expected to show high levels of adaptations similar to 

marine turtles is Carettochelys insculpta. Even though its limbs are modified into flippers like 

in marine turtles, the bone histology showed comparatively less adaptation. 
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In the Testudinoidea, there was quite a bit of adaptational variability among the taxa. The 

purported most basal testudinid genus Hadrianus falls within category II (see also chapter 

6.3.14). It is hypothesised that the taxon still retains the plesiomorphic bone histology of its 

direct aquatic ancestors. Strikingly, there are a few other taxa among the tortoises that have 

raised levels of vascularisation (i.e., in recent Geochelone carbonaria and Kinixys homeana 

and in fossil Hesperotestudo crassiscutata). In G. carbonaria and K. homeana, the raised 

levels of vascularisation are not easily explained. Wether the microstrucures in both taxa are 

linked to their unique shell morphologis (strongest non-pathological humped carapace in G. 

carbonaria, peculiar carapacial hinge system in K. homeana) remains speculative. In the latter 

taxon, H. crassiscutata, a trend to extreme light-weight construction of the shell might play a 

role (see chapter 7.3.3). 

Following Ricqlès and Buffrènil (2001), the strict adherence to the categories of adaptation 

has to be treated with caution as simplifications might be expressed by the categorisation of 

the turtles based on microstructural evidence of the shells alone. However, the current study 

enables and advances comparative works between the shell bone histology (and amniote 

armour in general) and bone histology of the endoskeleton. 
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Appendix 2: Glossary and general abbreviations 

Terms and abbreviations associated with the bony turtle shell (after Zangerl, 1969) 

br: bridge – lateral transition between carapace and plastron 

carap: carapace – dorsal dome of the shell consisting usually of about fifty bones 

co: costal – bony plate associated with ribs 

ento: entoplastron – single element framed by epiplastra and hyoplastra often with dorsal 

bony spur pointing towards posterior 

ep: epithecal platelets – small bone plates of the secondary (epithecal) armour of turtles 

epi: epiplastron – paired anterior-most elements of the plastron 

hyo: hyoplastron – paired elements between anterior epiplastra/entoplastron and posterior 

hypoplastra; lateral anterior part of bridge in plastron 

hypo: hypoplastron – paired elements between anterior hyoplastra and posterior xiphiplastra; 

lateral posterior part of bridge in plastron 

meso: mesoplastron – additional paired elements between hyo- and hypoplastra; two pairs of 

mesoplastra present only in basal-most genera (e.g., Proganochelys, Proterochersis); 

one pair of mesoplastra present only in Mesozoic and early Cenozoic forms (e.g., 

Paracryptodira); lost in modern forms  

n: neural – bony plate associated with neural arches of the vertebrae 

nu: nuchal – medial anterior-most plate of the carapace; broad, laterally flaring element in 

trionychid turtles 

p: peripheral – wedge-shaped plates at the lateral margin of the carapace; the ‘bridge 

peripherals’ constitute the carapacial part of the bridge 

pl: plastron – flattened ventral part of the shell usually consisting of nine bones 

pyg: pygal – medial posterior-most plate of the carapace 

r: rib – ribs can be more or less incorporated in the costal plates of the shell; peripherals often 

carry a groove to accommodate the free rib end of the respective costal  

spyg: suprapygal – 1 or 2 plates anterior to the pygal; posterior to the neurals  

xiphi: xiphiplastron – posterior-most paired elements of plastron 
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Measurements of the turtle shell (after Wyneken, 2001) 

BD: body depth – measures the maximum body height with callipers from ventral-most point 

of plastron to dorsal-most point of carapace 

C: cuticule – thick leathery epidermal layer external to the dermis 

CCL: curved carapace length; measures the length over the curvature of the carapace between 

midpoint of nuchal to posterior-most point of carapace  

CCW: curved carapace width – widest span of carapace measured over the curvature of the 

shell 

CL: carapace length – measured either as CCL (with flexible measure tape) or SCL (with 

callipers); CCL is slightly larger than SCL 

CPL: curved plastron length – measures the length over the curvature from anterior-most end 

to posterior-most end 

CW: carapace width - measured either as CCW (with flexible measure tape) or SCW (with 

callipers); CCW is slightly larger than SCW 

PL: plastron length –measured either as CPL (with flexible measure tape) or SPL (with 

callipers); CPL is slightly larger than SPL  

SCL: straightline carapace length – measures the straight length of the carapace between 

midpoint of nuchal to posterior-most point of carapace 

SCW: straightline carapace width – widest span of carapace measured in a straight line 

between the lateral-most peripherals of the shell 

SPL: straightline plastron length – measured straight from anterior-most end to posterior-

most end 

TCL: total caudal length – series of caudal vertebrae; ideally measures the length from the 

first caudal vertebra to the tip of tail; TCL can only be measured if complete set of 

caudals is present, otherwise length measurements are given just for the caudals present 

TTL: total tail length – in live turtles: length between the posterior-most tip of plastron to tip 

of tail  
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Histological terms and abbreviations used in text and figures (after Francillon-Vieillot et 

al., 1990 and works herein; Scheyer and Sander, 2004; Scheyer et al., 2007) 

BS: bone spiculae – small sheet or rod-like protrusions of bone tissue 

CB: cancellous bone – area build by meshwork of bone trabeculae between external and 

internal layers of compact bone 

CHL: chondrocyte lacunae – small areas that are occupied by chondrocytes in the living bone 

CL: bone cell lacunae – small areas that are occupied by osteocytes in the living bone; can 

either be empty or filled with minerals in fossil bone 

CO: cortical bone – layer of compact bone; usually avascular or with low vascularisation 

CT: connective tissue – major tissue in the body used for connection, support, binding or 

separation of other tissues or organs; in the integument, the CT has high amounts of 

collagen and elastic fibres 

D: dermis (= corium) – layer of the integument between the epidermis and the subcutis  

EC: erosion cavities – sometimes vermicular, secondary tube-like erosional spaces within the 

bone 

ECO: external cortex – external layer of compact bone outwardly framing cancellous bone  

FB: collagenous fibre bundles – organisation of numerous collagen fibres into tubular 

bundles; major structural elements of the connective tissue 

lsFB: longitudinally sectioned fibre bundle 

trFB: longitudinally sectioned fibre bundle 

FBQ: collagenous fibre bundle quadrangles – special arrangement of FB into elongated 

rectangles within the plywood-like structure of the corium of Trionychidae 

FCa: calcified fibrocartilaginous tissue, calcified fibrous cartilage 

GM: growth marks – all kinds of variation in growth rates recorded in hard tissues, e.g., lines 

of arrested growth in bone 

HC: Haversian canal – canal in the centre of a secondary osteon 

ICO: internal cortex – internal layer of compact bone; inwardly framing cancellous bone  
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ISF: interwoven structural collagenous fibre bundles – texture of metaplastically ossified 

connective tissue where SF trend in different spatial (horizontal, diagonal and 

perpendicular) directions 

KS: keratinous shield –usually consisting of several layers of keratin; develops by the 

uppermost layer of the integument, the epidermis, in turtles and other reptiles 

LB: lamellar bone – bone matrix with high spatial organisation; thin alternate lamellae with 

orthogonal plywood or as twisted plywood pattern; usually occur as thin light and dark 

layering in polarised light; typically found in the centripetally concentric seams of 

secondary osteons or secondary trabecular bone; usually attributed to slow osteogenesis 

OP: ornamentation pattern – all kinds of raised or caved in ornamentation or embossment 

compared to a general level of outer compact bone 

PATH: pathology – area with abnormal bone growth; areas are usually affected by diseases 

(e.g., bacterial or fungal infection) or malformed through inadequate nutrition 

PC: primary vascular canal – vascular canal without surrounding bone lamellae 

PFB: Parallel-fibred bone – bone matrix with moderate spatial organisation; FB arranged 

primarily parallel to each other; usually attributed with moderate osteogenetic rates 

intermediate between those of lamellar bone and woven bone. 

PO: primary osteon – vascular canal surrounded by concentric bone lamellae; no line of 

resorption 

SF: structural collagenous fibre bundles – collagenous fibre bundles responsible for the 

texture of a respective connective tissue 

ShF: Sharpey’s fibres – soft connective tissue attachments (e.g., muscle, tendons, ligaments, 

dermis) within mineralised skeletal tissue 

SO: secondary osteon – synonymous to Haversian system; erosional lacunae secondarily 

filled with centripetally deposited concentric bone lamellae; always delimited by line of 

resorption; vascular canal in the centre of the SO is called Haversian canal  

SOC: secondary osteon cluster – small area of bone remodelling with few subsequent 

generations of secondary osteons; initial stage of Haversian bone formation  

SR: synthetic resin – chemical substance used to glue, saturate and stabilise bone for 

histological thin-sections; i.e. Araldite 2020® 
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St. c.: stratum compactum – lower layer of the corium of the reptile integument 

St. l.: stratum laxum – upper layer of the corium of the reptile integument 

TR: bone trabeculae – spongy meshwork of bony pillars and struts 

VCR: roof of vertebral canal– internal cortical bone layer of the neural arch that dorsally and 

laterally encloses the spinal cord 

 

Terms associated with keratinous shields covering the bony shell (after Zangerl, 1969) 

abdominal – paired shield anterior to the femorals and posterior to the pectorals; covers most 

of the hypoplastron (and mesoplastron if present) 

anal – posterior-most pair of shields; covers mostly part of xiphiplastron 

axillary – paired shield at the anterior part of bridge region; covers part of the axillary 

buttress of the hyoplastron 

cervical – single medial anterior-most shield, anterior to the vertebrals; covers part of the 

nuchal 

femoral – pair of shields between the posterior anal shields and anterior abdominal shields; 

covers mostly the posterior part of the hypoplastron and the anterior part of the 

xiphiplastron  

gular – anterior-most pair of shields if intergular shields are not present; covers mostly the 

epiplastra and the entoplastron 

humeral – paired shield posterolateral to the gular shields and anterior to the pectorals; 

covers most of the anterior part of the hyoplastron 

inframarginal – additional row of shields between the axial and inguinal shields 

inguinal – paired shield at the posterior part of bridge region; covers part of the inguinal 

buttress of the hyoplastron 

intergular – additional pair of shields that may occur anterior to the gular shields 

marginal – lateral rows of usually twelve shields mostly covering the peripherals and the 

nuchal 
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pectoral – pair of shields between the posterior abdominals and anterior humerals; mostly 

covers posterior part of the hyoplastron 

pleural – paired row of usually four shields between the vertebrals and the 

marginal/supramarginals; covering most part of costals 

sulcus – impression of the rim of the keratinous shield into the surface of the underlying bone 

supramarginal – additional paired rows of lateral shields between marginals and vertebrals; 

occur only in some taxa (e.g., Baenidae; Pleurosternidae) 

vertebral – single median row of usually five shields covering the neurals and proximal part 

of costals 

 

General terms associated with the reptile integument (after Lange, 1931) 

corium (= dermis, = Lederhaut) – intermediate layer of the integument between the epidermal 

layers and the subcutis; can generally be subdivided into an upper stratum laxum and a 

lower stratum compactum 

epidermis – uppermost keratinous layers of the integument, topping the corium 

stratum compactum – lower layer of the corium usually built of horizontally trending, 

interwoven collagenous fibre bundles; the fibre bundles can either be arranged quite 

regularly or felt-like 

stratum laxum – upper layer of the corium of more loosely interwoven collagenous fibre 

bundles, with many fibre bundles trending diagonal or perpendicular to the skin surface; 

elastic fibres may be present 

subcutis – lowest layer of the integument separating the corium from the underlying 

musculature 
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Appendix 3: Ecological characterisation of turtles 
 

Category I (terrestrial) 

Proganochelys quenstedti Baur, 1887 (†); Proterochersis robusta, Fraas, 1913 (†); 

Kayentachelys sp. (†); Meiolania sp. (†); Solemydidae gen. et sp. indet. (aff. Naomichelys sp.) 

(†); Terrapene carolina triunguis (Agassiz, 1857); Pangshura (=Kachuga) tentoria (Gray, 

1834); Manouria emys (Schlegel and Müller, 1844), Geochelone pardalis (Bell, 1828), 

Geochelone elegans (Schoepff, 1795); Basilemys sp. (†); tendencies to category II: Cuora 

picturata Lehr et al., 1998, Mauremys cf. M. mutica (Cantor, 1842); Hesperotestudo 

(Caudochelys) crassiscutata (Leidy, 1889) (†); Planetochelys sp. (†) 

 

 

Category II (semiaquatic to mainly aquatic) 

Tendencies to category I: Pelomedusa subrufa (Bonnaterre, 1789); cf. Bairdemys sp. (†); 

Podocnemis erythrocephala(Spix, 1824); Stupendemys geographicusWood, 1976 (†); 

Chelodina longicollis (Shaw, 1794); Platemys platycephala (Schneider, 1791); Phrynops 

geoffroanus (Schweigger, 1812); Hydromedusa tectifera Cope, 1870a; Glyptops plicatulus 

(Cope, 1877) (†);Compsemys sp. (†); Pleurosternidae gen. et sp. indet. (†); Pleurosternidae 

gen. et sp. indet. (‘Platychelyid histomorph A’) (†); Pleurosternidae gen. et sp. indet. 

(‘Kirtlington histomorph I’) (†);Cryptodira incertae sedis (‘Kirtlington histomorph II’) (†); 

Neurankylus sp. (†); Plesiobaena sp. (†); Pseudemys peninsularis Carr, 1938; Emydidae 

indet. (?Platysternoid “C”) (†); Mauremys (= ‘Ocadia’) sophiae (Ammon, 1911) (†); 

Mauremys (=‘Ocadia’) sp. (†); Cyclemys dentata (Gray, 1831a); Rhinoclemmys pulcherrima 

(Gray, 1855); Geochelone carbonaria (Spix, 1824); Kinixys homeana Bell, 1827; Adocus sp. 

(†);Plastomenus sp. (†); Helopanoplia sp. (†); Lissemys punctata (Bonnaterre, 1789); 

Cyclanorbis senegalensis (Duméril and Bibron, 1835); Aspideretoides foveatus (Leidy, 

1856c) (†); Aspideretoides splendidus (Hay, 1908) (†); cf. Aspideretoides sp. (†); Apalone 

ferox (Schneider, 1783); Trionyx triunguis (Forskål, 1775); Trionyx sp. (†) main bulk of 

category II: Platychelys oberndorferi Wagner, 1853 (†); Foxemys cf. F. mechinorum' Tong et 

al., 1998 (†); Emydura subglobosa (=Emydura albertisii) (Krefft, 1876); Emydura sp. (†); 

Chelus fimbriatus (Schneider, 1783); Boremys sp. (†); Chisternon sp. (†);Tropidemys sp. (†); 

Xinjiangchelys chowi Matzke et al., 2005 (†); Xinjiangchelys sp. (†); Wuguia efremovi 
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Khosatzky, 1996 (†); Eucryptodira incertae sedis (cf. "Macrobaenidae") (†); Chelydra 

serpentina (Linnaeus, 1758); Chelydropsis murchisoni (Bell, 1832) (†); Chelydropsis sp. (†); 

Platysternon megacephalum Gray, 1831b; Emys orbicularis (Linnaeus, 1758); Ptychogaster 

sp. (†); Hadrianus majusculus Hay, 1904 (†); Hadrianus corsoni (Leidy, 1871a) 

(†);Trachemys scripta (Schoepff, 1792) (†); Clemmydopsis turnauensis (Meyer, 1847b) (†), 

Echmatemys wyomingensis (Leidy, 1869) (†); Baltemys sp. (†); Sternotherus minor (Agassiz, 

1857); Kinosternon subrubrum (Bonnaterre, 1789); Kinosternon sp.; Anosteira sp. (†); 

Pseudanosteira pulchra Clark, 1932 (†);Allaeochelys cf. A. crassesculpta (Harrassowitz, 

1922) (†); Carettochelys insculpta Ramsay, 1887; tendencies to category III: Eurysternum 

sp. (†); ?Eurysternum sp. (†); Plesiochelys sp. (†); ?Plesiochelys sp. (†); Plesiochelyidae 

indet. (†); Thalassemys cf. T. hugii Rütimeyer, 1873 (†); Thalassemys sp. (†) 

 

 

Category III (fully aquatic) 

Bothremys barberi (Schmidt, 1940) (†); Taphrosphys sulcatus (Leid, 1856a) (†); 

Rupelchelys breitkreutzi Karl and Tichy, 1999 (†); Ctenochelys cf. C. stenoporus (Hay, 1905) 

(†); Allopleuron hofmanni (Gray, 1831a) (†); Chelonia mydas (Linnaeus, 1758); 

Psephophorus sp. (†); Dermochelys coriacea (Vandellius, 1761) 

 

 

Category IV (extreme adaptation to aquatic/marine environments) 

Caretta caretta (Linnaeus, 1758); Eretmochelys imbricata (Linnaeus, 1766); Archelon 

ischyros Wieland, 1896 (†); Baptemys garmanii (Cope, 1872b) (†); Dermatemys mawii Gray, 

1847; Hoplochelys sp. (†)




