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ABSTRACT 

 

Orchid bees (tribe Euglossini) are conspicuous members of the corbiculate 

bees owing to their metallic coloration, long labiomaxillary complex, and the 

fragrance-collecting behavior of the males, more prominently (but not restricted) 

from orchid flowers (hence the name of the group).  They are the only corbiculate 

tribe that is exclusively Neotropical and without eusocial members.  Of the five 

genera in the tribe, Euglossa Latreille is the most diverse with around 120 

species.  Taxonomic work on this genus has been linked historically to the 

noteworthy secondary sexual characters of the males, which combined with the 

other notable external features, served as a basis for the subgeneric 

classification commonly employed.  The six subgenera Dasystilbe Dressler, 

Euglossa sensu stricto, Euglossella Moure, Glossura Cockerell, Glossurella 

Dressler and Glossuropoda Moure, although functional for the most part, showed 

some intergradations (especially the last three), and no phylogenetic evaluation 

of their validity has been produced.  A general paucity in the use of male genitalic 

morphology has also been characteristic for the lineage.  Here a comparative 

study of the male genitalic morphology for Euglossa is presented, and in turn, 

along with other external morphological features, used as a source of characters 

included in a phylogenetic analysis.  A total of 41 Euglossa species representing 

the taxonomic diversity within the genus (all subgenera and species groups) plus 

five taxa as outgroups, and 79 characters are included in a comprehensive 

cladistic treatment.  The resulting 64 shortest trees combined in a strict 
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consensus tree recover as natural groups the subgenera Dasystilbe (monotypic), 

Euglossa s. str., and Euglossella (sister to all other Euglossa s. lat.).  Glossura 

appears as paraphyletic in a derived clade that also includes Glossuropoda 

(sensu Moure) and some Glossurella; Glossura is proposed to be expanded to 

include all the species groups in this derived clade.  Most Glossurella form a 

heterogeneous paraphyletic assemblage, and the subgenus is proposed to be 

narrowed to include the monophyletic group formed by E. bursigera Dressler and 

allies.  A morphologically distinctive group in the Glossurella grade is also 

proposed as a new subgenus with E. oleolucens Dressler as type species, while 

the remaining species in the grade are classified as Euglossa incertae sedis.  

Recent molecular phylogenetic work largely agrees with the results here 

presented.  The presence of two adventives orchid bee species in the USA is 

analyzed using occurrence data across their natural ranges to produce Species 

Distribution Models, so that the recently discovered naturalized populations of 

Euglossa viridissima Friese in southeastern Florida are projected not to expand 

beyond the Florida Peninsula, and the isolated records of Eulaema polychroma 

(Mocsáry) in the southwestern USA are most likely due to individual dispersion 

events or human introduction. 
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CHAPTER 1 

 

 

 

 

 

 

A Briefing on Orchid Bees with emphasis on the genus Euglossa Latreille 

(Hymenoptera: Apidae) 
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The bee genus Euglossa Latreille, is one of five genera in the tribe Euglossini 

of the subfamily Apinae. Two of the other four genera are cleptoparasitic – Aglae 

Lepeletier and Serville and Exaerete Hoffmannsegg – while the other two – 

Eulaema Lepeletier and Eufriesea Cockerell – are pollen-collecting lineages as is 

Euglossa (Dressler, 1982a; Michener, 2007).  Collectively these genera are 

known as orchid bees, owing to the collection of fragrant compounds by males of 

euglossine species.  As a result, euglossines are the most significant and in 

many instances sole pollinators of various Neotropical Orchidaceae (van der Pijl 

and Dodson, 1966; Ackerman, 1983a). The tribe is confined to the Neotropical 

region, while Euglossa itself ranges from northern Mexico to Paraguay and has 

the only extant euglossine species that occur in the West Indies (e.g., Michener, 

1979, 2007; Dressler, 1982a).  Euglossa embraces a little over 100 described 

species (Michener, 2007; Ramírez et al., 2002; Roubik and Hanson, 2004; 

Nemésio and Silveira, 2007), but new taxa are regularly discovered (e.g., Roubik 

2004, Ramírez, 2005, 2006), and the total number of valid species might rise as 

high as 120 (Roubik and Hanson, 2004).   

Euglossini, is one of four tribes of the corbiculate Apinae; i.e., those apine 

bees with a corbicula on the hind tibia and associated structures (e.g., Schultz et 

al., 1999; Michener, 2009).  While the corbiculates are widely supported as 

monophyletic (e.g., Roig-Alsina and Michener, 1993; Schultz et al., 1999, 2001; 

Engel, 2001a, b; Michener, 2007), relationships among the tribes – Euglossini, 

Bombini (bumble bees), Meliponini (stingless bees), and Apini (honey bees) – 

are quite controversial. Euglossini are strongly placed as basal among the 
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corbiculates by morphological (Roig-Alsina and Michener, 1993; Schultz et al., 

1999, 2001; Engel, 2001a, b), paleontological (Engel, 2001a, b), and behavioral 

data (Noll, 2002), as well as simultaneous analyses of all of these along with 

DNA sequence data (e.g., Schultz et al., 1999, 2001).  Alternatively a set of DNA 

sequences has suggested that Euglossini are sister to Apini (Cameron and 

Mardulyn, 2001). Monophyly of the five genera is well supported (e.g., Kimsey, 

1987; Oliveira, 2006; Ramírez et al., 2010), although again relationships have 

been contentious. Six different phylogenetic hypotheses have been proposed, 

four based exclusively on morphology (Kimsey, 1982, 1987; Michener, 1990; 

Engel, 1999), one supported by morphological data (Oliveira, 2006) and DNA 

sequences (Michel-Salzat et al., 2004), and a recent one supported by molecular 

data (Ramírez et al., 2010).  From the five topologies proposed prior to 2010, 

Euglossa appears three times as sister to Exaerete (Kimsey, 1982, 1987; Engel, 

1999), once as sister to Eufriesea + Eulaema (Oliveira, 2006; Michel-Salzat et al., 

2004), and in one falls into a basal trichotomy (Michener, 1990).  The recent 

molecular analysis of Ramírez et al. (2010) adds yet another possible scenario 

for the putative sister group of Euglossa; their combined, four-loci analysis 

supported a Euglossa + Aglae clade.  In the same study, Ramírez et al. (2010) 

present a robust phylogenetic hypothesis for Euglossa at the infrageneric level.  

A small section of the subgenus Euglossa (i.e., Euglossa s.str.), has also been 

recently analyzed phylogenetically using morphological data (Bembé, 2007).  For 

the other genera in the tribe, there is a species-level phylogeny for Eulaema 
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(Oliveira, 2006), and a preliminary one has been produced for Exaerete (Engel, 

1999). 

Euglossa species are noticeable by their striking metallic coloration and their 

conspicuously elongate mouthparts (Euglossa meaning “true tongue”) (Fig. 1.1), 

features also displayed by the other euglossine genera, as well as the comb of 

bristles in place of the jugal lobe in the hind wing, and the secondary sexual 

modifications of the males involved in the collection and manipulation of the 

aromatic compounds (Michener, 2007; Dressler, 1978b).  The characters that 

differentiate Euglossa from the other orchid bees include the presence of two 

dark oval spots on the labrum, males with a tibial slit not reaching the apical 

margin of the hind tibia, generally with two small felty patches on the basal end of 

the large middle tibial patch, as well as females usually with a median, black 

scutellar tuft (Michener, 2007).  A significant body of taxonomic work has been 

done for Euglossa, particularly in the last four decades after the discovery of the 

chemical compounds to which males are attracted, and their use as collecting 

baits (Dodson et al., 1969), numerous new species (more than 50% of the total, 

as can be seen in Ramírez et al., 2002), as well as previously unknown males, 

have been described. It is remarkable that among the available descriptions of 

species in the genus, the genital structures of both sexes have received almost 

no attention, being considered only in a few classic works (e.g., Dressler, 1978a), 

but mainly in recent descriptions (i.e., Ramírez, 2005, 2006; Parra-H et al., 2006; 

Rasmussen and Skov, 2006; Hinojosa-Díaz and Engel, 2007).  Most of the 

taxonomic work focusses on the striking secondary sexual features of the males 
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(i.e., Roubik, 2004).  The taxonomic work of Cockerell (1917), Moure (1967, 

1989), and Dressler (1978b, 1982b, c, d) produced the subgeneric classification 

so far in use for Euglossa, consisting of six subgenera (Dasystilbe, Glossura, 

Glossurella, Glossuropoda, Euglossa s. str., and Euglossella). Moreover, 

Dressler (1978b, 1982c), recognized 17 species groups. The six subgenera have 

been in common use in new descriptions (e.g., Rebêlo and Moure, 1995; Roubik, 

2004; Ramírez, 2005, 2006; Parra-H et al., 2006; Nemésio, 2007; Hinojosa- Díaz 

and Engel, 2007), as well as in synoptic and local lists (Moure, 1967; Kimsey and 

Dressler, 1986; Bonilla-Gómez and Nates-Parra, 1992; Ramírez et al., 2002; 

Faria and Melo, 2007; Moure et al., 2008). However, Michener (2007) 

synonymized all the subgenera based on the seeming intergradation among 

them, situation that was somewhat addressed by Dressler (1978b) while 

delimiting subgenera and species groups. 

The biology of several individual species of Euglossa, and euglossine bees in 

general, has been studied in different aspects, among others, bee-orchid 

association (e.g., Janzen, 1981; Ackerman, 1983a), nesting behavior (e.g., 

Garófalo, 1992; Ramírez-Arriaga et al., 1996), and seasonality (e. g., Janzen et 

al., 1982; Ackerman, 1983b, 1989). In a general approach, euglossine biology 

was first discussed by Zucchi et al. (1969) and Dressler (1982a), and has been 

recently summarized and updated by Ramírez et al. (2002), Cameron (2004), 

and Roubik and Hanson (2004). All of these authors allude to the fragrance 

collecting behavior of the males from orchid flowers as the most distinctive 

biological feature of these bees.  About 10% of the Neotropical orchids are 
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exclusively pollinated by male euglossines (Ackerman, 1983; Ramírez et al., 

2002), but in their quest for fragrances, they also visit other plant families, 

noticeably Araceae (Dressler, 1982a; Ramírez et al., 2002), as well as non floral 

sources such as plant sap (Dressler, 1979), fungi growing on rotting wood 

(Whitten et al.,1993), terrestrial mushrooms (Capellari and Harter-Marques, 

2010) and even insecticides (Roberts et al., 1982) and cadavers of other 

euglossine males (Roubik, 1998). The role that the fragrances play in the biology 

of the euglossine bees, although not completely understood, seems to have 

some function in mating (Eltz et al., 1999; Eltz et al., 2005). The pollinating 

activities of the females, not restricted to visit orchids, are perhaps more 

important than those of the males, as they seem to promote outcrossing among 

tropical plant species with low population density (Janzen, 1971). Both, male and 

female pollination activities are enhanced as they are powerful flyers, have 

longer lifespans than usual for bees, and perform trap lining in their flower visits 

(Ackerman, 1982, 1985). Some other biological features of the euglossines make 

them of special interest with respect to the other corbiculate bees, especially their 

lack of eusocial behavior (some Euglossa species are communal or semisocial 

(Garófalo, 1985)), which in a phylogenetic context will enlighten the evolution of 

social behavior in the clade.  

Orchid bees in general are highly appreciated among those interested in bees, 

as noticed by their briefly described notorious external morphological features, 

and for the appealing orchid-pollinator relationship.  In the last decade a new 

generation of researchers has increased the knowledge of local faunas, 
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described new species, particularly from areas poorly explored in previous years 

(e.g. Colombia), provided new insights on the role of the fragrances collected by 

the males and in general created a broader basis to understand aspects of the 

biology and systematics of this group.  A robust phylogenetic approach was 

lacking until the recent publication of the study by Ramírez et al. (2010), in which 

the authors produced a phylogenetic hypothesis not only for the tribe, but for 

each genus.  That molecular analysis was produced almost in parallel to the 

present study, such that this work was produced in the absence of any prior 

cladistic analyses and thereby no preconceived notions of cladistic affinity.  

Nonetheless the remarkable coincidences in the phylogenetic hypothesis of 

Ramírez et al. (2010), and the hypothesis presented in Chapter 3, only confirm 

that the systematic knowledge of the group (and particularly of Euglossa) is 

reaching some maturity.  So, as a major contribution, here a morphological 

comparative work on the genitalia of the genus Euglossa is presented in the 

following chapter, in order to apply those characters in an infrageneric 

phylogenetic analysis (Chapter 3).  In addition, as Euglossa has adventitiously 

reached the United States, an ecological model of the potential distribution of 

Euglossa viridissima (the recent adeventive) along with Eulaema polychroma, 

another orchid bee with scarce distributional records in the USA, is presented in 

the last chapter. 
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Fig. 1.1.  Euglossa asarophora male, lateral habitus. 
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INTRODUCTION 

The tribe Euglossini encompasses one of the most remarkable groups of 

bees, outstanding for their biology, their morphological peculiarities, and their 

phylogenetic position.  The striking metallic integumental coloration of most 

species, particularly of those in the genus Euglossa Latreille, makes them hard to 

pass by. Their common name “orchid bees” derives from the association 

between male euglossines and orchids, in which males visit orchid flowers in 

their quest for volatile chemicals offered by the plant as reward in exchange for 

the pollination services provided (Dressler, 1982a).  This peculiar behavior is 

accompanied by a suite of interesting external morphological features, most of 

them linked to the gathering, handling, and storing of the chemicals. Species of 

the genus Euglossa exhibit, besides the aforementioned male secondary sexual 

characteristics, variation in other external features in both sexes, notably, 

besides the metallic coloration, the length of the labiomaxillary complex from 

which the genus derives its name (Euglossa; Gr. eu = true, glossa = tongue).  

Not surprisingly, taxonomic work on this genus has relied heavily on these 

noteworthy external characteristics, giving almost no attention to the genital 

structures.  With few exceptions (Dressler, 1978a; Parra-H et al., 2006; Ramírez, 

2006; Rasmussen and Skov, 2006; Hinojosa-Díaz and Engel, 2007), the vast 

majority of the little more than 100 species of Euglossa (Ramírez et al., 2002; 

Roubik and Hanson, 2004, Nemésio and Silveira, 2007) have been described 

without written or graphic reference to the male genital capsule or its associated 

hidden sterna, in spite of the known importance of these structures in studies of 
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related groups of bees.  Likewise, Cockerell (1917), Moure (1967, 1989), and 

Dressler (1978b, 1982b, c) established the current subgeneric classification 

based solely on external morphology.  In a recent attempt to draw attention to 

male genital characters for Euglossa, Ospina-Torres et al. (2006) presented a 

short review of the variation of gonostylar morphology within the genus. The 

systematic and phylogenetic value of characters from the male genital capsule 

and hidden sterna in the tribe Euglossini has been demonstrated when applied to 

the whole tribe (Kimsey, 1987; Engel, 1999), as well as in studies of Eufriesea 

Cockerell (Kimsey, 1982), Eulaema Lepeletier de Saint Fargaeu (Oliveira, 2006) 

and Exaerete Hoffmannsegg (Kimsey, 1979; Anjos-Silva et al., 2007).  In 

Euglossa, a recent revision of a section of Euglossa sensu stricto (Bembé, 2007), 

has also demonstrated the utility of this kind of information.  The present work 

presents a detailed review of the male genitalic morphology of the genus 

Euglossa with standardized terminology that will be applied in a phylogenetic 

study of the genus (Chapter 3) and that could serve as a basis for other studies 

as well as descriptions of new species. 

 

MATERIALS AND METHODS 

Male genital capsules and hidden sterna of several specimens of Euglossa 

imperialis Cockerell were examined by dissecting them from specimens 

deposited in the Division of Entomology, Natural History Museum and 

Biodiversity Research Center, University of Kansas.  The dissections were 

performed by severing the metasomal tip consisting of terga 7 to 8, sterna 6 to 8 
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and the genital capsule.  The severed sections were cleared in a solution of 

potassium hydroxide (KOH) at room temperature for periods of 18 to 36 hours 

depending on the condition of each specimen, and then transferred to water and 

alcohol to be finally kept in glycerin. Electronic drawings were generated, using a 

drawing tablet, for the dissected metasomal hidden sterna (7 and 8) and the 

genital capsule, as observed on an Olympus SZ60 microscope.  For comparative 

purposes dissections were made of representatives of several other species of 

Euglossa and all other euglossine genera, as well as specimens of Bombus 

Latreille, Centris Fabricius, Epicharis Klug and Anthophora Latreille (Appendix 1).  

In addition, available literature on the genital structures for the aforementioned 

groups, as well as Meliponini, was studied (Appendix 1).  No comparative 

statement is made with Apis Linnaeus since the male genitalia of this genus is 

highly derived. 

 

 

COMPARATIVE MORPHOLOGY 

Euglossa imperialis Cockerell, 1922 

The morphology of the male genitalia and hidden sterna of Euglossa is based 

on that of E. imperialis, as this species exhibits one of the widest distributional 

ranges of all species within the genus, occurring from southern Mexico to Atlantic 

Southeast Brazil (Ramírez et al., 2002; Roubik, 2004; Roubik and Hanson, 2004; 

Rebêlo, 2001).  Moreover it is typically abundant and commonly collected, well 
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represented in collections, thus ideal as a source of specimens for dissection and 

as a comparative basis for other species. 

Terminology applied to the major sclerotic components of bee male genitalia 

has been rather stable with some variation in terms according to different authors 

and taxa, especially if compared to the numerous, sometimes confusing, sets of 

terms for male genitalic structures throughout Hymenoptera as a whole and 

insects in general.  A sample of different terminologies applied to the different 

parts of bee and Hymenoptera male genitalia is presented in Table 1.   

 

 

Table 2.1. Diferent sets of terminology applied to some relevant parts of male genitalia of bees 
and Hymenoptera.  Terms in the same row are equivalent.  The specific group of organisms to 
which every study refers is shown below the author. 
Michener (1944) 
Bees 
(applied in present work) 

Ito (1985) 
Bombus 

Schulmeister (2001) 
Lower Hymenoptera 

Michener (2007) 
Bees 

Gonobase Gonobase Cupula Gonobase 
Gonocoxite Gonocoxite Gonostipes Gonocoxite 

Gonostylus 
Squama 

Harpe 
Gonostylus 

Gonostylus Volsella* 

Penis valve Penis valve Penisvalva Penis valve 
 
* The term volsella was applied by Michener (2007) to different structures in different groups of 
bees, here is shown in the context for Bombini and Euglossini. 

 

 

The terminology of Michener (1944a) is here preferred, as it is the most 

commonly used in bee morphology and taxonomy.  The terminology used for the 

hidden sterna associated with the male genitalia has varied depending on the 

treatment of them as parts of either the abdomen (eighth and ninth abdominal 

sterna) or the metasoma (seventh and eighth metasomal sterna); the abdominal 
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numbering was initially used as an attempt to present a regular treatment of 

these segments for comparison with other Hymenoptera (Michener, 1944a, 

1956) and other lineages of insects (Michener 1944b), but the metasomal 

terminology is by far dominant (e.g., Eickwort, 1969; Brooks, 1988; Michener, 

2007; Engel, 2007) and will be followed here. 

A description of the male hidden metasomal sterna and the different 

components of the genital capsule of E. imperialis is presented here with 

comments on variation seen in other Euglossa as well as other euglossine 

genera and related apine bees.  Comparative statements of subgeneric 

assemblages within Euglossa in this work refer to the names as they are 

currently used in most new species descriptions and synoptic lists; the monotypic 

Dasystilbe Dressler offers no interpretational problem and will be referred to by 

mentioning its only member E. villosa Moure.  Euglossa s. str. and Euglossella 

Moure are treated as Dressler stated in his original subgeneric division (1978b).  

Glossura Cockerell and Glossurella Dressler are as subsequently diagnosed by 

Dressler (1982c), while Glossuropoda Moure is taken in its original sense.  All 

comparative statements in the following description containing references to “all 

species” belonging to subgeneric assemblages refer to those species reviewed 

(Appendix 1).   As a general practice, when necessary, each structure will be 

subdivided into major recognizable “sections” referred to in accordance with their 

general anatomical position.  The structures will be presented in the following 

sequence: seventh metasomal sternum, eighth metasomal sternum, genitalia, 

gonobase, gonocoxite, gonostylus, aedeagus, penis valve, and penis. 
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Seventh metasomal sternum.— This is the first of the pair of hidden metasomal 

sterna associated with the male genitalia (often referred to as S7) and is 

invaginated into the metasoma together with the eighth metasomal sternum and 

the genital capsule (hence the name hidden sterna). In E. imperialis the seventh 

metasomal sternum agrees basically with the general description for Anthophora 

given by Michener (1944a).  The whole sternum is curved upwards such that the 

dorsal (inner) surface is concave and the ventral (outer) surface is convex.  It has 

a rather trapezoidal disc continued laterally by the long anterolateral arms (Fig. 

2.1 A).  The anterior edge is strongly concave.  The posterior edge of the disc is 

divided by an acute triangular incision whose depth (length) equals its width and 

forms an interior angle of around 70°.  The lobes of the disc, formed by the 

incision, are slightly wider than long and are oriented posterolaterally. The lateral 

edges, defined between the posterior discal edge and the posterolateral apices 

of the slender arms, run evenly concave.  The whole sternum is a well sclerotized 

structure reinforced along its entire anterior edge by the conspicuous antecostal 

ridge, which projects dorsally on the ventral surface and defines the very brief 

acrosternite, noticeable mesally.  The anterolateral apices of the sternal arms 

bear the sternal apodemes (Fig. 2.1 A).  The lines of insertion of the conjunctiva 

that connects with the eight metasomal sternum are located on the ventral 

surface of the disc.  
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Fig. 2.1.  Euglossa imperialis, male hidden metasomal sterna.  A. Seventh metasomal sternum, 
ventral view.  B. Eighth metasomal sternum, dorsal view.  C. Eighth metasomal sternum, lateral 
view. 
 

This kind of seventh metasomal sternum, with a bulky trapezoidal disc and 

devoid of setae (see below), is typical of the subgenera Glossura, Glossuropoda, 

and some species of Glossurella. 

There is significant taxonomic and systematic value in the features of the 

seventh metasomal sternum.  The basic construction of the sternum in the 

species of Euglossa as well as in the rest of euglossine genera follows the 

scheme described for E. imperialis; however there are variations that give great 

value to the study of this sclerite.  The most significantly variable features of this 
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sternum involve the disc, particularly its posterior edge, which in the majority of 

the species bears an incision (as described above), with depth and shape in 

most cases being species specific, although exceptions can be found in groups 

like E. decorata and allied species, which show a range of intraspecific variation 

(Hinojosa-Díaz, in prep.).  The posterior edge is entire in some species, 

especially of Eufriesea (e.g., Kimsey, 1982), as well as in Exaerete, in which it 

sometimes has a mesal acute projection instead of an incision (Kimsey, 1979; 

Anjos-Silva et al., 2007).  The discal lobes resulting when the edge is notched 

are also variable in shape and orientation.  A feature of most euglossine species, 

absent in E. imperialis, is the presence of setae on the posterior edge of the 

seventh metasomal sternum, sometimes restricted to the disc (notched or not) 

but often sparsely extended to areas on the lateral edges proximal to the disc.  

The lateral edges of the sternum can be slightly concave, as in E. imperialis, or 

slightly convex, this affected by the length and shape of the disc.  Some species 

of Euglossa (e.g., Hinojosa-Díaz and Engel, 2007) as well as of Eufriesea (e.g., 

Kimsey, 1982) and Eulaema (e.g., Oliveira, 2006) have either protuberances or 

notches along this lateral edge.  The seventh metasomal sternum of Bombus 

lacks long arms so the lateral edges are defined mainly by the lateral edges of 

the disc.  Otherwise the posterior edge presents features similar to those of 

Euglossini (Ito, 1985). In Meliponini the sternum is reduced to a small plate 

(Michener, 2007).  Centridini and Anthophorini have seventh metasomal sterna in 

which the arms are clearly differentiated but never as long as in Euglossini and 

with an entire posterior edge (e.g., Brooks, 1988; Ayala, 1998). 
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Eighth metasomal sternum.—The eighth metasomal sternum (usually referred 

to as S8), rests between the seventh metasomal sternum and the genital 

capsule, all invaginated in the metasomal apex, as mentioned before.  As is the 

norm for bees and other Hymenoptera (Michener, 1944a, 1956), the eighth 

metasomal sternum is substantially different from the rest of the metasomal 

sterna.  In E. imperialis in particular, and Euglossini in general, these differences 

are marked. Instead of being a depressed sclerotic plate as are the rest of the 

sterna, this sternum is strongly three-dimensional.  In a simplified view it is 

formed by two main sections plus the short lateral arms (Fig. 2.1 B).  The anterior 

section, with a depressed globular shape, provides most of the surface and 

volume of the sternum; in dorsal and ventral views, it looks roughly ovoid, wider 

posteriorly, with two convex posterolateral sclerotic thickenings projected 

outwards flanking the posterior section of the sternum.  The dorsal surface of the 

posterior section is completely open, bearing the posteriorly-projected spiculum.  

The posterior section of the sternum projects from the ovoid anterior section and 

is hollow and roughly triangular with two lateral basal lobes (Fig 2.1 B).  In lateral 

view the posterior section is projected ventrally, forming an angle of about 140° 

degrees with the longitudinal axis of the anterior section (Fig. 2.1 C).  The arms 

come from the mesoposterior portions of the anterior section of the sternum and 

project laterodorsally, bearing the small apodemes at their anterior corners (Fig. 

2.1 B). 
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The extreme morphology of the eighth metasomal sternum can be explained 

by looking at it in terms of a modified flat sternum.  The globular posterior section 

is the product of the inflection dorsally of the anterior edge that curves 

posteriorly, and the basalmost section of the disc projects anteriorly forming the 

rounded anterior apex of the ovoid shape.  The antecostal ridge, as a result, is 

projected ventrally towards the inner cavity of the sternum, while there is no clear 

evidence of the acrosternite. The mesally-located spiculum is also, as a 

consequence of the inflection of the anterior edge, directed posteriorly on the 

now anterodorsal edge; the spiculum is unque to the eighth metasomal sternum 

and in most bees projects anteriorly rather than posteriorly (Michener, 2007); the 

posteriorly projected spiculum was called “notospiculum” by Hinojosa-Díaz and 

Engel (2007).  The relatively complex structure of the posterior section of the 

eighth metasomal sternum likewise involves inflection of edges and projection of 

the discal surface; however it is not easily explained, since there are no clear 

clues.  Nonetheless, the structure of the posterior section deserves extra 

consideration.  Its dorsally basal (anterior) edge is strongly sclerotic with a series 

of folds (continuing from the posterolateral sclerotic projections of the anterior 

section of the sternum), and two projections directed anteriorly.  The dorsal 

surface is elevated posterior to the two projections.  Each elevated sector ends in 

a carina that flanks the basal and lateral sides of the basal lobes, which in turn 

are a product of the invagination of the lateral edges of the triangular shape.  The 

two elevated sectors define a smooth, depressed mesal area (Fig. 2.1 B).  The 

remainder of the anterior section, beyond the basal lobes, is basically the one 
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deviating from the longitudinal axis of the sternum, as seen in lateral view (Fig. 

2.1 C). This area is covered with scattered, short, simple setae on its dorsal and 

lateral surfaces and bears, dorsally, a mesal ridge that rises evenly, ending 

midway towards the posterior apex.  This ridge seems to be a variable feature 

within the species, since in some specimens it is just briefly insinuated.  The 

apex of the sternum narrows abruptly in lateral view at around the last third of its 

length, and bears a ventral subapical notch (Fig. 2.1 C). 

The systematic and taxonomic value of the traits seen in the eighth metasomal 

sternum are relevant within Euglossa and Euglossini.  The shape of the anterior 

globular section varies little among Euglossa species, for the most part being as 

described above.  In the other euglossines, Eufriesea and Exaerete have an 

eighth metasomal sternum similar to that of Euglossa, longer in Eulaema and 

Aglae.  The spiculum is extremely reduced in Aglae.  The shape and length of 

the lateral arms present some variation among Euglossa species, as well as in 

the other genera.  The posterolateral projections of the anterior section seem to 

be present in all euglossine species, except in Aglae; their shape, evenly roundly 

convex in Euglossa, is otherwise acutely projected in Eufriesea, Eulaema, and 

Exaerete.  Of considerable value is the variation observed in the posterior section 

of the sternum.  The basal lobes and associated invaginations of the lateral 

integument of the triangular apex, seem to be important in defining infrageneric 

assemblages, as they are presently understood in Euglossa.  The species 

generally classified under Euglossa sensu stricto show just slightly projected 

basal lobes, having an almost perfectly triangular posterior section of the eighth 
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metasomal sternum.  Very well developed lobes as seen in E. imperialis, are 

found in all species of Euglossella, Glossura, Glossuropoda, and most of 

Glossurella.  Of the remainder of euglossine genera, Eufriesea and Eulaema are 

the only ones with evident basal lobes in the posterior section, but theirs are 

acute projections (e.g,. Kimsey, 1982; Oliveira, 2006), while in Euglossa, when 

present, these are rounded convexities, for the most part.  The very apex of the 

posterior section is also variable among groups in Euglossa.  It is narrower, in 

dorsal, ventral, or lateral views in almost all species with well-developed basal 

lobes.  The shape of the posterior section in Eufriesea is also triangular and 

narrow, although with different conformation than in Euglossa (e.g., Kimsey, 

1982).  The same can be said for Eulaema, but here the apex after the basal 

lobes may take oval shapes (e.g., Oliveira, 2006).  In Exaerete the apex of the 

posterior section is broadly rounded or truncate (Kimsey, 1979), while in Aglae it 

appears like an unmodified rectangular projection with rounded sides.  The 

subapical ventral notch, present in most species of Euglossa, is absent in E. 

villosa.  The notch is also present in species of Eufriesea (although larger 

[Kimsey, 1982]) and Eulaema, and absent in Exaerete and Aglae.   The setae on 

the posterior section are also good characters to distinguish species and perhaps 

species groupings in Euglossa.  Most species have pilosity as described for E. 

imperialis, but relatively long plumose setae on the ventral surface are 

characteristic of most species of Euglossella (e.g., Hinojosa-Díaz and Engel, 

2007).  In Bombus, the eighth metasomal sternum is rather flattened; the 

spiculum is where most of the variation occurs, and the posterior section is 



 36

morphologically simpler than in Euglossini (Ito, 1985).   In Meliponini the eighth 

metasomal sternum is reduced or absent (Michener, 2007).  In Centridini this 

sternum is flat, but seemingly not as flat as in Bombus; both groups of bees have 

the spiculum directed anteriorwards, the anterior edge not curved posteriorly (or 

just slightly), and a posterior section of varied shape (e.g., Ayala, 1998).  Some 

subgenera of Anthophora have a posteriorly inflected anterior edge and a 

spiculum directed dorsally or posteriorly (Brooks, 1988), but the sternal disc is 

never anteriorly evaginated as in the globular-shaped sternum of Euglossini. 

 

Genitalia.—The male genitalia, or genital capsule, of E. imperialis is a heavily 

sclerotic structure consisting of individual units that articulate or link to form the 

copulating apparatus.  It is hidden at the posterior apex of the metasoma, 

overlying the hidden sterna.  The distinct recognizable parts composing it are: 

gonobase, gonocoxites, gonostyli, and aedeagus (Figs. 2.2-2.3). 

 

Gonobase.—The most anterior component of the male genitalia in E. imperialis, 

the gonobase, is a sclerotic plate about three times as wide as long, inflected in 

such a way that its convex surface arches forming an extended bowl-shaped 

structure, running mainly dorsolaterally, and attached to the gonocoxites via its 

postelolateral edges (Fig. 2.4).   The ventral  edge is  bentposteriorly  and firmly  
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Fig. 2.2.  Euglossa imperialis, male genital capsule.  A. Ventral view.  B. Dorsal view.  The setae 
on gonostylus are here depicted at a lower density than they are on real organisms. 
 

sclerotic.  A soft mesal line divides the gonobase into lateral symmetrical halves, 

while defining a small dorsomesal projection.  Dorsally the convex blade 

weakens as it runs posteriorly to meet the gonocoxites, making it hard to find the 

limit between the sclerite and the continuing membrane that closes the dorsal 

section between gonobase and gonocoxites.  In lateral view the anteriormost 

section of the ventral edge projects ventrally (Fig. 2.4 B). 
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Fig. 2.3.  Euglossa imperialis, male genital capsule, lateral view.  The setae on gonostylus are 
here depicted at a lower density than they are on real organisms. 
 

The variation observed in the gonobase of all euglossine species involves 

basically its length and width.  An important species-specific character seems to 

be the way the ventral edge projects on its anterior section, or if it does not 

project at all (e.g. Hinojosa-Díaz and Engel, 2007). 

In Bombus the gonobase is a complete sclerotized ring enclosing the genital 

foramen, although the ventral section is considerably narrower than the dorsum, 
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sometimes appearing as fused to the gonocoxites (Ito, 1985).  In Meliponini this 

structure is reduced as a whole, present as a very narrow dorsal belt (Camargo 

et al., 1967; Michener, 2007).  The ventral part of the ring is obviously absent in 

Euglossini (i.e., membranous), and is generally very narrow in Centridini and 

Anthophorini, looking almost absent in some species of Centris (e.g., Ayala, 

1998). 

 

Gonocoxite.—The pair of gonocoxites constitutes the bulkiest part of the 

genitalia.  Viewing the insect male genitalia as homologous to walking 

appendages, the gonocoxites plus the gonobase would correspond to the basal 

segments of the outer section of the embryonic claspers (Michener, 1944a, 

1956); this is important in terms of the name of the structure.  In E. imperialis 

each gonocoxite is a strongly-sclerotic unit with a well defined basal (anterior) 

section, and the main body of the gonocoxite as a laterally convex structure open 

towards the inner area where the aedeagus is located (Figs. 2.4 A-B).  The basal 

section corresponds to the anterior surface of the gonocoxite, forming  a 

posterolateral wall to each side of the genital foramen.  In a comparative study of 

the male genitalia of Andrenidae, a likely homologous structure to the basal 

section is referred to as the gonocoxal apodeme (Rozen, 1951).  The basal 

section is divided by a deep diagonal incision through which musculature and the 

ejaculatory ducts pass.  The triangular, anteromesal subsection defined by the 

incision, connects on its inner mesal edge (reinforced by a dorsal inflection), with 

the corresponding subsection of the opposite gonocoxite (Fig. 2.4 A).  This 
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longitudinal membranous connection articulates both gonocoxites in a hinge 

fashion, giving them a forceps like movement.  The posterolateral subsection is 

narrow, broadened on its posteromesal extreme with an acute projection directed 

anteriorly, and with a strong carina on its apex.  The apical projection of the 

carina forms the second point of articulation with the opposite gonocoxite.  Both 

subsections, are differentially oriented forming an acute separation angle, at the 

anterior extreme of the incision, that increases or decreases as the gonocoxites 

move acting as forceps. 

The main body of the gonocoxite is strongly concave continuing from the basal 

section, and with distinctive processes on its dorsal and ventral surfaces.  The 

dorsal surface of the body of the gonocoxite rises convexly from the anterodorsal 

edge of the basal section.  It is dominated by two processes, a dorsal process 

projected posteromesally, and a larger apical (posterior) process.  The dorsal 

process is a thumblike projection of the dorsomesal edge, slightly longer than 

wide and evenly rounded apically; the apex of the dorsal process is reinforced by 

an infold (Fig. 2.4 C).  The dorsal process separates two major incisions, one 

basal and another subapical.  The basal incision is evenly concave, while the 

subapical incision forms an acute angle with the dorsal process.  The subapical 

incision precedes the large apical process, which is a projection of the whole 

dorsal surface of the gonocoxite.  The apical process is a hollow flattened 

structure with sharp, carinate edges, and a short perpendicular  
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Fig. 2.4.  Euglossa imperialis, male gonocoxites.  A. Ventral view.  B. Lateral view.  C. Dorsal 
view. 
 

thickening at the concave edge of the subapical incision (Fig. 2.4).  The inner 

edge of the apical process, immediately after the subapical incision, is convex, 

making the process wider near its apex.  The posterior edge is truncate with a 

minor emargination proximal to the posteromesal corner.  The straight outer edge 

of the apical process meets basally with the gonostylar process of the ventral 

surface of the gonocoxite (see below). 

The ventral surface of the gonocoxite continues from the posterior edge of the 

basal section after a sharp bend.  It is rather flat ventrally (Fig. 2.4 A), becoming 

convex laterally (Fig. 2.4 B) to converge with the dorsal surface.  The inner edge 

is posteromesally convex and is hardened by infolds and thickenings; two strong 

prong-like projections, directed towards the lumen of the genital capsule, are 

located at the posteromesal angle.  The ventral surface bears apically its main 

feature, the gonostylar process, which is a ventrolateral projection with a basket-
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like shape where the gonostylus rests (Figs. 2.2-2.3).  The gonostylar process 

extends laterally beyond the outer edge of the gonocoxite and is reinforced by 

infolds (Fig. 2.4).  The whole lateral section of this process is fused to the thin 

sclerotic blade of the ventral section of the gonostylus (Figs. 2.2-2.3); however 

the border between both structures can be recognized on the basis of change of 

thickness of the sclerotic blade. 

The inner concavity created by the gonocoxites is occupied by soft tissue and 

by the apodemes of the penis valves (Figs. 2.2-2.3).  The open areas between 

the inner edges of the dorsal and ventral surfaces are protected by membranes. 

The morphology of the gonocoxite is a good source of characters of definite 

taxonomic and systematic value.  Perhaps the most noticeable feature of the 

gonocoxite of E. imperialis is the large apical process.  The variation of this 

structure within Euglossa involves the alignment of its posterior edge.  As seen in 

E. imperialis this edge is perpendicular to the sagittal plane of the genital capsule 

(Fig. 2.2 B), a condition found in all species of Glossura and seemingly all 

Euglossa sensu  stricto, as well as in some Glossurella (e.g., Parra-H et al., 

2006; Rasmussen and Skov, 2006).  In the subgenus Euglossella (and some 

Glossurella) this edge is oblique, having the posterolateral corner displaced 

anteriorly, making the apical process look acute in dorsal view (e.g., Hinojosa-

Díaz and Engel, 2007), while in Glossuropoda the opposite oblique situation is 

observed.  The carina of the posterior edge is in some species slightly projected 

especially the corners, making it shallowly concave.  In the other euglossine 

genera the edge is rather oblique the way it is in Glossuropoda (the opposite to 
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that of Euglossella), although in some of them it is hard to evaluate this situation, 

especially in Eufriesea in which the edge is deeply concave (e.g., Kimsey, 1982), 

being just slightly concave in Eulaema and Aglae, and slightly convex in 

Exaerete (e.g., Anjos-Silva and Rebêlo, 2006).  The apical process is larger in 

Euglossa than in the rest of the Euglossini.  This process seems to be present in 

Bombus as a posterior enlargement; however, it is not a free apical projection 

since it bears on its apex the structure homologized with a gonostylus by 

Michener (2007), and called the squama by Ito (1985).  In Meliponini the apical 

process seems to be present in some groups, but reduced and with varied 

shape.  The apical process is absent in Centridini and Anthophorini.  The dorsal 

process is also subject to variation, in Euglossa varying in shape and orientation, 

which in turn alters the shape of the basal and subapical incisions, particularly 

the latter.  The variation in shape of the dorsal process and adjacent incisions 

seems to be species specific, varying among species of the same subgenus.  

This process is present in the other euglossine genera except Aglae.  The basal 

incision is noticeably concave throughout all Euglossa species, while in 

Eufriesea, Eulaema, and Exaerete it can hardly be considered an incision since 

the inner edges of the dorsal surface of both gonocoxites run parallel to each 

other, basal to the dorsal process.  Bombus has a dorsal process located in a 

more basal position than in Euglossini; therefore the basal incision is shorter and 

the subapical incision enlarged (e.g., Ito, 1985).  No dorsal process is seen in 

Meliponini.  Several groups of Centridini have a dorsal process, with various 

shapes as well as a basal incision also varied.  In Anthophorini there is no 
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obvious dorsal process although the convexity of the basal inner edge of the 

dorsum of the gonocoxite could be mistaken for it.  In Euglossa the gonostylar 

process also shows substantial variation, which is correlated with the variation of 

the gonostylus (see below). 

In general the larger gonostylar processes, with well differentiated basket 

surfaces, are found in Glossura, Glossuropoda, and some Glossurella, while in 

the rest of the species the process is rather small. Only in the aforementioned 

groups (not in all species of Glossurella) is the gonostylar process fused to the 

gonostylar blade.  In the rest of the species of Euglossa the lateral edge of the 

gonostylar process barely exceeds the lateral margin of the gonocoxite, and 

besides not being fused to the gonostylar sclerotic lamina, it can have acute, 

truncate, rounded or prong-like shapes.  The inner delimitation of the gonostylar 

process also varies in its separation from the posteromesal prongs of the inner 

ventral edge, being almost contiguous in most Glossura, and some Glossurella, 

and of varied nature in other groups.  The gonostylar process of the other 

euglossine genera is, despite the different opinion of Kimsey (1987), not as 

developed as the one described here, being more similar to the one seen in 

species of Euglossa sensu stricto; however, in both Eufriesea and Eulaema, the 

lateral projection of the process is rather slender and setose on its apex.  In the 

other corbiculate and non-corbiculate apine bees, used here for comparison, 

there is no strong modification of the ventral surface of the gonocoxite to support 

the gonostylus. 
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Gonostylus.—The gonostylus of E. imperialis is a very noticeable structure 

arising from the gonostylar process of the gonocoxite.  It is mainly membranous, 

setose, and composed of two main parts, a ventral section and a lateral section 

(Fig. 2.5).  The ventral section has been treated differently, as can be seen in 

Table 1, sometimes as part of the gonostylus (Michener, 1944a), as the sole 

gonostylus (in Bombus [Ito, 1985]), as a different structure called the volsella 

(Kimsey, 1987; Michener, 2007), or ignored as a gonostylar component (Ospina-

Torres et al., 2006).  Here this section is discussed as part of the gonostylus 

since it is structurally connected to the lateral section. The term volsella as used 

by Kimsey (1987) and Michener (2007) in Euglossini (also in Bombini by the 

second author) is particularly misleading.  This gonostylar section is not 

homologous to the pinching structures found in the genital capsule of other 

Hymenoptera, including other groups of bees, and as such the term volsella 

should be avoided in this context.  The bulky membranous ventral section of the 

gonostylus is continuous on its posterolateral area with the lateral section of the 

gonostylus (Fig. 2.3); it is roughly rod-shaped, running dorso-ventrally, with its 

ventral half resting entirely on the basket of the gonostylar process of the 

gonocoxite.  The oval, flat ventral surface of the ventral section, exceeds the 

gonocoxite basket edge.  The dorsum of the ventral section is embedded in the 

lumen of the genital capsule (Fig. 2.3).  The overhanging ventral surface, as well 

as the posterior and lateral surfaces, are covered with a continuous cuticular 

layer (Fig. 2.5 A).  This lamina is connected laterally to the lateral projection of 

the gonostylar process of the gonocoxite, and is continuous with the inner 
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surface of the lateral section of the gonostylus.  As mentioned before, gonostylus 

and gonocoxite are fused on the lateral projection of the gonostylar process, but 

the limit of both structures can be traced by the changes in thickness of the 

sclerotized continuous cuticle.  The ventral overhanging surface is flat and 

centrally covered with sparse, minute, simple setae. 

 

 

Fig. 2.5. Euglossa imperialis, right male gonostylus.  A. Ventral view.  B. Lateral view.  C. Dorsal 
view.  The setae on gonostylus are here depicted at a lower density than they are on real 
organisms 
 

The conspicuous lateral section of the gonostylus, also membranous, rests 

posterolaterally to the ventral section, as a free projection.  It is somewhat 

compressed, diagonally oriented, and scoop-shaped if seen from the middle axis 
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of the genital capsule (Fig. 2.5).  In lateral view, the posterior edge of the 

gonostylar lateral section is convex on its dorsal main sector (Fig. 2.5 B), while 

ventrally it bears a slender membranous lobe that appears rectangular in ventral 

or dorsal views (Fig. 2.5 A-C).  The whole inner surface, including the lobe, is 

covered by the cuticular lamina that joins it with the posterior surface of the 

ventral section of the gonostylus, from which it can be differentiated by a shallow 

channel and by the presence of dense, long, simple setae covering the entire 

inner surface, including the lobe.  The outer (ventral) surface of the lobe is 

covered by sparse, short, simple setae (Fig. 2.5).  

The gonostylus is perhaps the most diversified structure of the genital capsule 

of Euglossa, and is as such of substantial taxonomic and systematic value in 

terms of infrageneric assemblages.  The ventral section is generally overhanging, 

but this is definitely much more noticeable in species of Glossura, Glossuropoda, 

and some Glossurella.  The rest of the species have a ventral section not as 

large, just surpassing the basket edge, and the ventral surface is convexly 

projected, while in the aforementioned groups it is rather flat, truncate (as 

described for E. imperialis).  A feature that covaries with the overhanging ventral 

section is the presence of the continuous cuticular lamina connecting the ventral 

section with the lateral section, as well as with the gonocoxite on its gonostylar 

process.  In those species in which the ventral section is neither bulky, nor 

strongly overhanging, the gonostylar process of the gonocoxite, the lamina of the 

posterior surface of the ventral section, and the inner surface of the lateral 

section, is only connected on its dorsalmost extreme, while there is no continuity 
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between the ventral lamina and the lateral part of the gonostylar process of the 

gonocoxite, which according to Kimsey (1987), is considered the derived 

condition in Euglossini.  The minute setae on the ventral section are usually on 

the ventral overhanging surface, but in some species they are also on the inner 

or posterior surfaces. 

The variation of the lateral section of the gonostylus deserves special 

attention.  Ospina-Torres et al. (2006), in their brief comparative study of this 

structure in Euglossa, proposed five different arrangements, mainly based on its 

division into two lobes.  Their “ventral lobe” is the slender lobe here described for 

E. imperialis, and their “dorsal lobe” would be equivalent to the dorsal sector of 

the lateral edge, which is noticeably convex.  Although in a lateral view this latter 

feature can certainly be considered a lobe, it is more accurate to look at the 

structure over its whole shape, not just laterally.  In doing so, it seems more 

reliable to consider this just as a strongly convex edge of the setose dorsal 

sclerotic blade of the gonostylus.  Ospina-Torres et al. (2006), examined the 

gonostylar lateral sections by mounting them on flat slides, not considering the 

whole tridimensional arrangement of it as it is situated on the gonocoxite.  This 

arrangement is important, having two alternatives: the dorso-posterior blade (i.e., 

the cuticular blade bearing the long setae) oriented diagonally (as in E. 

imperialis), in all species of Euglossa sensu stricto (e.g., Bembé, 2007), Glossura 

and Glossuropoda, and some Glossurella, or the dorso-posterior blade almost 

totally compressed and oriented straight posteriorly, as in most Glossurella, and 

all Euglossella species.  Nonetheless, the nature of the posterior edge (rather 
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lateral in the diagonally-oriented blades) is also valuable in a taxonomic and 

systematic context.  Clearly convex in several groups (as in E. imperialis), it 

appears flat, or even concave in some species; in some cases the basal sector is 

either enlarged with a minute ventral lobe, or reduced with a dominant ventral 

lobe.  The location, density, and nature of the setae on the lateral section of the 

gonostylus also vary considerably.  The longer setae are always on the dorsal 

blade, sometimes being plumose as in Euglossella species (Hinojosa-Díaz and 

Engel, 2007), while the ventral, or lateral surfaces of the ventral lobe bear 

sparse, simple, minute setae.  Some species have the gonostylus almost devoid 

of setae, noticeably E. nigrosignata and E. oleolucens. 

It is important to mention that beyond the usefulness of the gonostylar 

morphology to define infrageneric assemblages in Euglossa, there are differential 

cases of their application to determine species boundaries.  Most of the species 

in the genus have a particular morphology with little variation as is the case of E. 

imperialis, but there are cases like E. decorata and allied species in which there 

seems to be a great deal of intraspecific variation in gonostylar morphology 

(Hinojosa-Díaz, in prep.) although all of it within the overall morphology that 

characterizes Euglossella. 

The gonostylar variation in other euglossines occurs mainly in the lateral 

section (i.e., the one treated as gonostylus).  In Eufriesea it is laterally 

compressed, not diagonal, appearing more sclerotized than in Euglossa, but 

most importantly, strongly bilobate.  The large dorsal lobe is probably 

homologous to the dorsal sector of the lateral section of the gonostylus of 
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Euglossa judging by the disposition of the setae.  In Eulaema and Aglae the also 

sclerotic laterally-compresed lateral section of the gonostylus consists of a simple 

lobe, with just a small dorsal bump seemingly homologous to the dorsal sector.  

In Exaerete the membranous lateral section of the gonostylus has a ventral rod-

shaped lobe, and a flat and small dorsal sector (Kimsey, 1979).  In Bombus the 

ventral section (treated in other studies as volsella [Kimsey, 1987; Michener, 

1990, 2007], or as the exclusive gonostylus [Ito, 1985]) is considerably 

sclerotized and larger than in Euglossini, lying apically on the unmodified ventral 

area of the gonocoxite, and with apical modifications (Ito, 1985).  The lateral 

section (treated in other studies as the squama [Ito, 1985]), also sclerotic, is 

rather subapical on the dorsal surface of the gonocoxite.  In Meliponini the 

gonostylus is represented by a single slender lobe coming from the base of the 

gonocoxite.  In Centridini and Anthophorini, all the features of the gonostylus 

observed in Euglossini are found, with a range of variation entirely their own. 

 

Aedeagus.—This is the structure between the gonocoxites, composed of the 

strongly sclerotic penis valves articulated at each side of the penis (Fig. 2.6).  

The aedeagus is joined to the genital capsule by the insertion of the apodemal 

projection of each penis valve into the lumen of the gonocoxites (Figs. 2.2-2.3). 
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Fig.  2.6. Euglossa imperialis, aedeagus.  A. Ventral view.  B. Lateral view.  C. Dorsal view. 

 

Penis valve.—Following the idea that the insect male genitalia is homologous to 

walking appendages, the penis valves would correspond to the inner section of 

the embryonic claspers (Michener, 1944a, 1956).  Each penis valve is a sclerotic 

structure with membranous areas connecting three distinguishable sections:  

apodeme-base, dorsal section, and ventral blades (Figs. 2.7).  The apodeme-

base is the most anterior section.  It is a somewhat compressed, cone-like 

structure, that takes about half of the total length of the valve, and is the one by 

which each valve is united to the rest of the genital capsule. The attaching acute 

apodeme is embedded in the inner matrix of the capsule, at the base of the 

gonocoxite, is curved ventrolaterally towards the lateral wall of the gonocoxite.  

Outside the lumen of the gonocoxite this section widens dorsoventrally and an 

acute prong is projected laterally (Fig. 2.7 A).  The dorsal side of the apodeme-
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base bears a lamella extending in two directions; the anterior part is directed 

mesally while the posterior part extends posteriorly following the orientation of 

the whole penis valve.  The fold that delimits the two lamellar sections 

strengthens the anterodorsal edge of the apodeme-base and projects dorsally in 

an acute angle.   

 

 

Fig.  2.7. Euglossa imperialis, penis valve.  A. Ventral view.  B. Lateral view.  C. Dorsal view. 

 

The anterior part of this lamella articulates with the bridge of the penis valves 

and the posterior part does the same with the dorsal section of the penis valve 

(Fig. 2.6 B-C). The ventral side of the apodeme-base takes up most of the 

posterior widening of the conic shape.  The posterior surface takes a scoop-like 
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shape with a carinate edge, and leans slightly towards the gonocoxite.  This 

posterior widened area of the apodeme-base lies close to the pair of strong, 

prong-like projections of the ventral surface of the gonocoxite (Fig. 2.2 A).  The 

scoop-like posterior surface is articulated to the ventral blades of the penis valve 

by a sinuate, slightly-sclerotic membranous fold. 

The dorsal section of the penis valve consists of a sclerotic unit with a 

compressed trapezoidal shape, running anteroposteriorly, the posterior part 

broadened and divided laterally in two prong-like projections, one on each side, 

forming a posterior concave surface (Figs. 2.7 B-C).  The inner prong is larger.  

The whole dorsal section, as mentioned above, articulates anteriorly with the 

apodeme-base and ventrally, via weakly sclerotic and membranous segments, 

with the ventral blades. 

The ventral blades section of the penis valve comprises three compressed 

blade-like structures appressed one against another and oriented dorsoventrally.  

The outer blade has a sublanceolate shape, with all edges folding towards the 

meson (Fig. 2.7 C).  It articulates with the dorsal section of the penis valve via a 

membrane attached to its strong, rather truncate dorsal edge, and with the 

scoop-like posterior surface of the apodeme-base via a sinuate slightly sclerotic 

membranous fold.  The entire outer surface of the outer blade is covered with 

sparse, minute setae.  The middle blade is strongly sclerotic on its dorsal and 

posterior margins, being attached to the mixture of sclerotic and membranous 

junctures that come from the dorsoposterior area of the apodeme-base.  The rest 

of the middle blade is rather membranous and united to the outer blade all along 
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its anterior edge, both blades together forming a sort of compressed sheath.  The 

inner blade is the most sclerotized and runs along the anterior edge of the other 

two blades.  It is joined to the rest of the penis valve on the same sclerotic-

membranous juncture coming from the dorsoposterior area of the apodeme-

base.  This inner blade has a knife-like shape, with a very acute ventral apex and 

a series of thickenings and convolutions on its posterior edge (Fig. 2.7).  Each 

penis valve serves as a support for the penis as it forms a movable articulation 

with the bridge of the penis valves through the dorsal lamellae that run mesaly 

from the dorsum of the apodeme-base on each penis valve (Fig. 2.6). 

The morphology of the penis valves is conserved in Euglossa.  There is some 

slight variation in size and projection of the ventral blades.  Moreover, some 

variation can be found in the shape of the posterior edge of the outer blade, 

which is more noticeably convex in groups like Euglossella and some 

Glossurella.  The same edge on its dorsal extreme is conspicuously notched in 

Euglossella (e.g., Hinojosa-Díaz and Engel, 2007). 

Eufriesea and Eulaema have penis valves composed of the same sections 

described for Euglossa although the whole structure seems to be more 

sclerotized, with less membranous interconnections.  In both genera, the 

posterior edge of the outer blade is notched, as mentioned for Euglossella, but to 

a greater extent in some cases.  The scoop-like modification of the posterior 

surface of the apodeme-base is exclusive to Euglossa, while in Eufriesea and 

Eulaema it is truncate, and convex in Exaerete.  In Eulaema, in particular, the 

ventral blades are smaller and the dorsal section (although distinguishable) is 
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fused to them.  In Exaerete there is no definite dorsal section and the inner blade 

is rather small.  Aglae has a completely different situation: both penis valves and 

the bridge of the penis valves are fused in a continuous, non-articulated structure 

with bulgy penis valves covered by dense, moderately-long setae on their outer 

surfaces (Kimsey, 1987).  In Bombus the penis valves are less elaborate than in 

Euglossini, with smaller ventral projections, although with interesting 

modifications on their own (Ito, 1985).  In Meliponini the penis valves are simple, 

hook-like projections.  In Centridini there are several species groups in which the 

conformation of the penis valves is very similar to the one described for Aglae, 

although the bulgy ventral projections show different arrangements depending on 

the group, and in several of them also take sheath-like shapes.  Similar situations 

are found in Anthophorini. 

 

Penis.—The penis in E. imperialis is a saclike structure occupying a 

mesoposterior location in the genital capsule, between the penis valves by which 

it is supported.  The base of the penis is formed by the bridge of the penis valves 

(Fig. 2.8).  The bridge of the penis valves is a strong plate articulated to the penis 

valves through their dorsal lamellar projections.  The structure of the bridge is 

built along three main sclerotic ridges, two of them expanding laterally to form the 

acute arms and a mesal one that continues dorsally as the main axis of the 

spatha (Figs. 2.8 B-C).  Ventrally this bridge has two small acute projections that 

form a semicircular invagination.  The whole dorsal edge of the bridge bends 

dorsally to form the convex spatha, which is a weaker sclerotic lamina narrowing 
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apically, with a central axis (continuing from the mesal sclerotic ridge), slightly 

invaginated all along (Figs. 2.8 B-C).  The lateral sections are strengthened by 

minor ridges perpendicular to the main axis.  The apex of the spata is bilobed.   

 

 

Fig.  2.8. Euglossa imperialis, penis.  A. Ventral view.  B. Lateral view.  C. Dorsal view. 

 

Together the bridge of the penis valves and the spatha serve as the anterior 

and dorsal sclerotic supports of the membranous ventral surface of the penis.  

This ventral membrane is attached anteriorly to the membranes that close the 

inner open sections of the gonocoxites and to the posteromesal extremes of the 

basal section of the gonocoxite.  Most of the membrane surface is covered with 

short setae.  The phallotreme is located subapically between the bilobed apex of 

the spatha.  (Fig. 2.8).  According to Roig-Alsina (1993) the genus Euglossa has 

a simple, bag-like eversible endophallus with conspicuous spiculation, evidence 

of which can be seen in dissected genital capsules through the external 

membranous wall of the penis. 
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The penis variation in Euglossa, in taxonomic and systematic terms, can be 

seen in the relative length and width of the spatha, as well as in the extent of the 

central axis of the spatha.  The spatha is evidently longer than its basal width in 

most species of Euglossa sensu strict, all Glossura, most Glossuropoda, and 

some Glossurella, while the rest of the species have a spatha about as long as 

its basal width.  Euglossa sensu stricto, Glossura, Glossuropoda, and some 

Glossurella have a complete central axis, slightly invaginated, as described for E. 

imperialis.  Most other species have a non-invaginated central axis running only 

mid-distance to the apex of the penis.  In Euglossella it is restricted to the very 

anterior extreme of the spatha (e.g. Hinojosa-Díaz and Engel, 2007).  The axis is 

absent in E. villosa.  In Euglossella the spatha is reinforced by small longitudinal 

wrinkles instead of the transverse ones present in most of the species. 

In the other Euglossini, the bridge of the penis valves (either differentiated or 

fused) is oriented dorsally in the same plane as the spatha; this causes the two 

ventrally-oriented projections seen in Euglossa to be oriented anteriorly.  The 

spatha is rather short, although wide in Eufriesea and Eulaema, short and narrow 

in Aglae, and practically absent in Exaerete.  In none of these genera is there a 

noticeable central axis to the spatha.  Kimsey (1987) mentioned the setose penis 

as a derived characer in Euglossa and in the other euglossine genera appearing 

asetose. However, on a closer examination, there seems to be setose areas in 

all Euglossini, very noticeable in Aglae and restricted to small ventral areas in the 

other genera.  Setose penes are also easily identifiable in at least Centridini. 
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In Bombus, the bridge of the penis valves is rather different in shape from the 

one in Euglossini, while the spatha is narrow (in most species) and long (Ito, 

1985).  In Meliponini the spatha is wide.  In Centridini, several groups have a 

very weak bridge of the penis valves, and the spatha is generally configured as in 

Eufriesea and Eulaema.  In Anthophorini the bridge is well sclerotized and the 

spatha, likewise, similar to the aforementioned euglossines. 

 

DISCUSSION 

The immediately captivating external morphology of euglossine bees 

combined with the interesting suite of external secondary sexual characteristics 

of the males have served as the foundation for the taxonomy of the tribe.  This 

situation is particularly evident for Euglossa, the largest genus of the tribe, in 

which the dominance of these characters has relegated to obscurity the use of 

other important sets of morphological features, notably the male genitalia and 

hidden metasomal sterna.  As mentioned before, few species of Euglossa were 

described with references to the male genital structures; those original 

descriptions that include these features are mainly of new species described in 

the last two years (Parra-H et al., 2006; Ramírez, 2006; Rasmussen and Skov, 

2006; Hinojosa-Díaz and Engel, 2007).  The traditionally used external 

characters are obviously useful, but there is no reason to ignore the important 

information contained in the genital capsule and the hidden metasomal sterna. 

As detailed in the present work, the diversity of the different components of the 

genitalia and the hidden sterna in the genus Euglossa provides a considerable 
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source of characters important in terms of recognition of species or species 

groups, but perhaps more significantly, as valuable added information to be 

applied in systematic and phylogenetic studies.  A good example of this usage is 

the recently published phylogenetic study and revision of an assemblage within 

Euglossa sensu stricto (Bembé, 2007).  The infrageneric categories in use for 

Euglossa (Cockerell, 1917; Moure, 1967, 1989; Dressler,1978b, 1982b, c, d), 

based exclusively on external morphology, are applicable without much trouble to 

a good number of species.  However, there are instances in which the sole 

presence or absence of particular characters of the male make it hard to be 

certain of appropriate subgeneric assignment.  The subgenus Glossurella is a 

clear example of a difficult assemblage of species that do not seem to be 

necessarily closer to one another than to other groups within the genus.  For 

instance, the group of species allied to E. allosticta, all included in Glossurella 

(Dressler, 1982b), are externally very similar to bees in the subgenus Glossura, 

from which they differ by the lack of some structures (mesotibial tufts, sternal 

cowls) that are used for defining this subgenus.  Upon reviewing the genital 

characters, it becomes clear that this assemblage belongs in Glossura.  This can 

be seen in the depiction of the genital structures of E. asarophora and E. rufipes 

(Rasmussen and Skov, 2006), which are similar to those described here for E. 

imperialis, a member of Glossura.  This situation is repeated for other groups 

within Glossurella, only varying the characters involved.  Another good example 

of troubled taxonomic status, with the exclusive use of non-genital external 

morphology, is that of E. nigrosignata, originally described in Glossura by Moure 
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(1969), then moved to Glossurella by Dressler (1982b), and recently transferred 

to Glossuropoda by Roubik (2004).  The male genitalia of E. nigrosignata reveal 

few similarities to those of Glossura or Glossuropoda since it poses a unique 

gonostylar morphology more similar to that of some species in Glossurella.  

There are more examples like these, which reveal the necessity of a revision of 

the present subgeneric classification of Euglossa (see Chapter 3).  

Notwithstanding, the external characters used in the subgeneric classification 

define some well demarcated groupings inside Euglossa, such as Euglossella 

whose genital characters only reinforce the distinctivenes of this subgenus.  With 

the current situation, it would be preferred to take a more conservative position, 

such as the one of Michener (2007) who prefers to place all the subgeneric 

names as synonyms under the name Euglossa. The outstanding secondary 

sexual characters of the males that heavily influence this classification are useful 

characters; however, their usefulness is limited if ignoring other sources of 

information that can help to solve the controversies created when such 

characters are unable to clearly resolve taxonomic status, and it is in this context 

where the characters from the genital structures enter to play their best role. 

It is clear that a phylogenetic framework is needed to produce a more stable 

and reliable infrageneric partition of Euglossa and the main purpose of this 

chapter is to present a basis of the male genital morphology, in order to be 

included in an infrageneric phylogenetic analysis based on morphology (Chapter 

3), but also to provide a basis of comparative morphology of the structures here 

described, and to encourage their use. 
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(Hymenoptera: Apidae) 

 
 
  



 66

INTRODUCTION 

Among the five euglossine genera, Euglossa is the one that exhibits the 

highest diversity, both in number of species, as well as in morphological 

differentiation. As such, the just under 120 nominal species known for the genus 

(Ramírez et al., 2002, Nemésio and Silveira, 2007) have been assigned to six 

subgenera in an attempt to reflect the morphological diversification inside the 

group.  The current subgeneric classification is a summary of the significant 

taxonomic work invested in the genus.  Cockerell (1917) produced the first 

subdivision of the genus while erecting Glossura to initially include two species 

[E. piliventris (type species) and E. ignita] with considerably elongated 

mouthparts and “bigibbous scutellum”, consequently leaving the rest of the 

species in Euglossa s. str.  Moure (1967) added a third subgenus, Euglossella 

(E. viridis as type species), aiming to regroup those species with males with 

tridentate mandibles formerly in Euglossa s. str.  Dressler (1978b) made an 

integral approach to the infrageneric classification of the genus, whilst proposing 

several species groups (see below); he reinterpreted Glossura and Euglossella 

and created a fourth subgenus (Dasystilbe) by bringing into consideration 

additional morphological features, mainly from secondary sexual characters of 

the males.  Most of his attention in the redefinition of the subgenera was focused 

on characters found on the meso and metatibiae of the males.  He created 

Dasystilbe as a monotypic subgenus to include E. villosa, which in his view 

shared features of both Glossura and Euglossella, and as such the erection of 

Dasystilbe would bring stability to the classification (Dressler, 1978b).  Dressler 
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(1982c) furthermore segregated one of the species groups that he had originally 

(Dressler, 1978b) seen as part of Glossura, and created Glossurella (E. 

bursigera as type species) as an assemblage of those Glossura-like species with 

characteristic “pockets” on the second metasomal sternum.  Moure (1989) added 

the last of the six subgenera in use, Glossuropoda, to include E. intersecta (type 

species; originally in Glossura) and allied species (two more described by Moure 

at the time), with an enlarged and posteriorly sinuate mesobasitarsus. 

The seeming usefulness of the secondary sexual features of the Euglossa 

males have for the most part modeled the delimitation of the subgenera, specially 

as rearranged by Dressler (1978b, 1982b, c, d), who also provided an outline of 

the species groups, based on the same set of external features, plus characters 

of the mouthparts (length), punctuation and the dorsolateral angle of the 

pronotum.  In his original infrageneric treatment, Dressler (1978b) proposed 12 

species groups (all of them identified by roman numerals and, in most cases, a 

representative species name) along with the four subgenera there outlined: 

Glossura and Euglossa s. str., each with five species groups, and Dasystilbe and 

Euglossella each with one species group.  As mentioned above, one of his 

original Glossura species groups was later granted subgeneric status on its own 

(Dressler, 1982c) as Glossurella, and subdivided into six more or less informal 

species groups (see Table 3.1).  Moure’s Glossuropoda (Moure, 1989), as stated 

originally, corresponds to Dressler’s (1978b) Glossura species group one (I), and 

was expanded and redefined by adding E. nigrosignata (originally in Glossura) to 

it (Roubik, 2004).  Dressler’s species groups I and II (i.e. Glossuropoda) are 
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better seen as a single group, since synonymies have been proposed back and 

forth between E. rugilabris (group II) and species described by Moure (1989) as 

being allied to E. intersecta as part of Glossuropoda (therefore belonging to 

group I) (see Roubik, 2004; Nemésio, 2009).  Additional changes of status 

(replacement in either subgenus or species group) for some species have 

resulted from some studies of assemblages within the genus, such as relocation 

of some Euglossa s. str. to different species groups within the subgenus (Bembé, 

2007), transferences from Glossurella to Glossuropoda (Roubik, 2004), or from 

Glossura to Glossurella (Faria and Melo, 2007).  A current account of the status 

of species composition for the six subgenera and 15 species groups as proposed 

by the discussed authors is presented in table 3.1. 

 

Table 3.1. Species composition for the subgenera and species groups of Euglossa as presently 
understood. Species assignation and species group nomenclature is based on Dressler (1978b, 
1982b, c, d); species described after Dressler’s proposals (i.e. after 1982) are positioned 
according to the affiliation directly stated by the species’ authors or by the authors indirect 
indication of association with other species. 
 
Dasystilbe Dressler, 1978 
One species group [species group VI (Dressler, 1978b)], one species. 
 

Euglossa villosa Moure, 1968 
 
Euglossa s. str. Latreille, 1802 
Five species groups [species groups VIII—XII (Dressler, 1978b, 1982b, d)], 54 species. 
 

VIII. analis species group 
E. analis Westwood, 1840 
E. bidentata Dressler, 1982 
E. cognata Moure, 1970 
E. iopyrrha Dressler, 1982 
E. mixta Friese, 1899 
E. retroviridis Dressler, 1982 
E. villosiventris Moure, 1968 

IX. viridissima species group 
E. viridissima Friese, 1899 

X. cybelia species group 
E. aureiventris Friese, 1899 
E. championi Cheesman, 1929 
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E. cybelia Moure, 1968 
E. dressleri Moure, 1968 
E. ioprosopa Dressler, 1982 
E. laurensi Bembé, 2008 
E. maculilabris Moure, 1968 
E. nigropilosa Moure, 1965 
E. tridentata Moure, 1970 

XI. purpurea species group 
E. alleni Moure, 1968 
E. amazonica Dressler, 1982 
E. anodorhynchi Nemésio, 2006 
E. atroveneta Dressler, 1978 
E. crininota Dressler, 1978 
E. dissimula Dressler, 1978 
E. gibbosa Dressler, 1982 
E. hansoni Moure, 1965 
E. heterosticta Moure, 1968 
E. igniventris Friese, 1925 
E. magnipes Dressler, 1982 
E. micans Dressler, 1978 
E. mourei Dressler, 1982 
E. pleosticta Dressler, 1982 
E. purpurea Friese, 1899 
E. sovietica Nemésio, 2007 
E. townsendi Cockerell, 1904 
E. truncata Rebêlo & Moure, 1995  

XII. cordata species group 
E. chlorina Dressler, 1982 
E. cordata (Linnaeus, 1758) 
E. cyanaspis Moure, 1968 
E. deceptrix Moure, 1968 
E. despecta Moure, 1968 
E. erythrochlora Moure, 1968 
E. fimbriata Rebêlo & Moure, 1995  
E. hemichlora Cockerell, 1917 
E. jamaicensis Moure, 1968 
E. leucotricha Rebêlo & Moure, 1995  
E. liopoda Dressler, 1982 
E. melanotricha Moure, 1967 
E. milenae Bembé, 2007 
E. modestior Dressler, 1982 
E. platymera Dressler, 1982 
E. securigera Dressler, 1982 
E. variabilis Friese, 1899 

Euglossa s. str. Incerta sedis 
†E. cotylisca Hinojosa-Díaz & Engel, 2007  (belongs to either group XI or XII) 
E. pictipennis Moure, 1943 

 
Euglossella Moure, 1967 
One species group [species group VII (Dressler, 1978b)], 15 species. 

E. bigibba Dressler, 1982 
E. cosmodora Hinojosa-Díaz & Engel, 2007  
E. cyanea Friese, 1899 
E. cyanura Cockerell, 1917 
E. decorata F. Smith, 1874 
E. granti Cheesman, 1929 
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E. jacquelinae Nemésio, 2007 
E. mandibularis Friese, 1899 
E. perfulgens Moure, 1967 
E. perpulchra Moure & Schlindwein, 2002  
E. perviridis Dressler, 1985 
E. polita Ducke, 1902 
E. singularis Mocsáry, 1899 
E. urarina Hinojosa-Díaz & Engel, 2007  
E. viridis (Perty, 1833) 

 
Glossura Cockerell, 1917 
Two species groups [species groups III and IV (Dressler, 1978b, 1982b)], 12 species. 

III. piliventris species group 
E. chalybeata Friese, 1925 
E. flammea Moure, 1969 
E. ignita F. Smith, 1874 
E. imperialis Cockerell, 1922 
E. lugubris Roubik, 2004 
E. occidentalis Roubik, 2004 
E. orellana Roubik, 2004 
E. piliventris Guérin, 1845 
E. tiputini Roubik, 2004 

IV. stellfeldi species group 
E. annectans Dressler, 1982 
E. solangeae Nemésio, 2007 
E. stellfeldi Moure, 1947 

 
Glossurella Dressler, 1982 
Dressler (1982c) gave subgeneric status to its original bursigera species group [species group V 
(Dressler, 1978b)] and designated six assemblages within it (species groups here treated as Va, 
Vb, Vc, etc.). Currently 25 species. 

Va. crassipunctata species group 
E. crassipunctata Moure, 1968 
E. parvula Dressler, 1982 
E. sapphirina Moure, 1968 

Vb. gorgonensis species group 
E. fuscifrons Dressler, 1982 
E. gorgonensis Cheesman, 1929 
E. hyacinthina Dressler, 1982 
E. oleolucens Dressler, 1978 
E. paisa Ramírez, 2005 
E. samperi Ramírez, 2006 
E. stilbonota Dressler, 1982 
E. trinotata Dressler, 1982 

Vc. unnamed species group 
E. dodsoni Moure, 1965 
E. obtusa Dressler, 1978 

Vd. unnamed species group 
E. augaspis Dressler, 1982 
E. bursigera Moure, 1970 
E. prasina Dressler, 1982 

Ve. unnamed species group 
E. carinilabris Dressler, 1982 
E. laevicincta Dressler, 1982 
E. macrorhyncha Dressler, 1982 
E. turbinifex Dressler, 1978 
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Vf. unnamed species group 
E. allosticta Moure, 1969 
E. asarophora Moure, 1969 
E. natesi Parra-H, Ospina & Ramírez, 2006 
E. rufipes Rasmussen & Skov, 2006  
E. viridifrons Dressler, 1982 

 
Glossuropoda Moure, 1989 
One species group [species group I, (Dressler, 1978b)], six species. 

E. cyanochlora Moure, 1995 
E. inflata Roubik, 2004 
E. intersecta Latreille, 1824 
E. juremae Moure, 1989 
E. nigrosignata Moure, 1969 
E. rugilabris Moure, 1967 

 
 
Incertae sedis 
Three species 

E. auriventris Friese, 1925 
E. lazulina Friese, 1923 
†E. moronei Engel, 1999 

 
 

The use of external morphology, almost exclusively secondary sexual 

characters of the males, has provided this basic and seemingly coherent 

arrangement of infrageneric assemblages within the genus; however Dressler 

(1978b) when initially proposing his subdivision of the genus, and asserting that it 

was based entirely on these external features, gave room for future modifications 

of the scheme, specially by adding the then poorly known and scarcely used 

features of the male genitalia. 

The monophyletic nature of Euglossa is supported by the presence of 

numerous exclusive morphological features; however until very recently, no 

phylogenetic approach existed to prove the monophyletic nature of the otherwise 

seemingly coherent morphologically based subgenera and species groups 

described above.  It is not a necessary assumption of the original authors of 

either the subgenera or the species groups that they represent natural 
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phylogenetic entities (i.e. monophyletic groups), but under a phylogenetic 

approach, assertions of relatedness (in the form of inclusion in a group of taxa) 

must be tested in terms of their possible monophyly.  Since no phylogenetic 

study existed until the very recent publication of a molecular phylogeny for the 

tribe Euglossini (Ramírez et al., 2010) which included 80 species of Euglossa s. 

lat., uncertainty had always existed about the monophyly of the subgeneric 

groups in use.  The only prior phylogenetic study in Euglossa s. lat. based on 

morphology, corresponded to a species level study of the cordata species group 

[group XII of Dressler (1978b)] in Euglossa s. str. (Bembé, 2007).  In the 

mentioned study, the inclusion of male genitalic characters showed to be of 

particular help. 

The previously cited relocation of species involving Glossura, Glossurella, and 

Glossuropoda (Roubik, 2004; Faria and Melo, 2007) is an example of taxonomic 

problems after the evaluation of the groups based on the external characters as 

originally defined, raising concerns about monophyly of the subgenera.  The 

absence of monophyletic confidence for the subgenera or the species groups 

made it hard to evaluate the possible phylogenetic relationships among the 

same, however Dressler (1978b) with cautious diffidence made some assertion 

on this respect.  Among other things he mentioned the possibility of E. intersecta 

being a link between Euglossa s. lat. and Eufriesea, making Glossura (including 

Glossurella and Glossuropoda as he originally envisioned it) “primitive” (basal) in 

the genus; he erected Dasystilbe to maintain the stability of both Glossura and 
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Euglossella as he saw it as intermediate between them, and finally he raised 

some concern on the naturalness (monophyly) of Euglossa s. str. 

Despite the seeming problematic position of some species (particularly E. 

nigrosignata) and the perceived intergradation of Glossura and Glossurella, as 

well as the already cited dubious monophyly of Euglossa s. str., all the recently 

described species of the genus have been assigned to the existing subgenera 

and, in most cases, to one of the described species groups, nonetheless 

Michener (2007) prefered to avoid the use of any subgeneric taxa, regarding all 

the subgenera as synonyms. 

Here a systematic approach is taken to provide a phylogenetic framework to 

analyze and re-evaluate the existing subgeneric classification for Euglossa, along 

with the proposed species groups, using external morphology of the males, plus 

features from the male genital structures.  A comparison is provided with the 

molecular phylogenetic hypothesis of Ramírez et al. (2010), which was published 

while the present study was in its final stages. 

 

METHODS 

In order to assess the naturalness of the currently in use subgeneric division of 

Euglossa, a phylogenetic analysis was here undertaken.  A selection of at least 

two species belonging to each species group as presented in table 3.1 was 

made.  The type species for the six subgenera were selected to be part of the 

analysis. Other criteria taken into account to select the species to be included in 

the analysis, were: 1) availability of specimens in the collection of the Division of 
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Entomology, Natural History Museum and Biodiversity Research Center, 

University of Kansas, 2) when possible, non overlapping geographical distribution 

for the different representative species per species group, and 3) species with a 

controversial position in the current classification.  Species of the other three 

euglossine genera to which Euglossa has appeared as sister in those 

phylogenetic analyses available as of 2009 (Kimsey, 1982, 1987; Michener, 

1990; Engel, 1999; Michel-Salzat et al., 2004; Oliveira, 2006) were selected as 

outgroups.  Two species of Eufriesea and Eulaema each were selected to 

represent basal and derived groups within these genera (see Kimsey, 1982; 

Oliveira, 2006). 

A list of the species included in the analysis is presented in Table 3.2 

 

Table 3.2.  Species selected for the phylogenetic analysis.  Five species are included as 
outgroups and 41 species of Euglossa representing the subgenera and species groups. 
 
Outgroups 

Eufriesea auripes  
Eufriesea caerulescens  
Eulaema polychroma  
Eulaema speciosa  
Exaerete smaragdina  

 
Subgenus Dasystilbe 

species group VI E. villosa 
 
Subgenus Euglossa 

species group VIII E. cognata 
E. iopyrrha 
E. mixta 

 
species group IX E. viridissima 

 
species group X  E. cybelia 

E. nigropilosa 
 

species group XI E. hansoni 
E. townsendi 
 

species group XII E. cordata 
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E. deceptrix 
E. tridentata 
 

Subgenus Euglossella 
species group VII E. bigibba 

E. cyanura 
E. decorata 
E. jacquelinae 
E. viridis 

 
Subgenus Glossura 

species group III E. imperialis 
E. piliventris 
 

species group IV E. annectans 
E. stellfeldi 

 
Subgenus Glossurella 

species group Va E. parvula 
E. sapphirina 

 
species group Vb E. gorgonensis 

E. hyacinthina 
E. oleolucens 
E. stilbonota 
E. trinotata 

 
species group Vc E. dodsoni 

E. obtusa 
 

species group Vd E. augaspis 
E. bursigera 

 
species group Ve E. laevicincta 

E. macrorhyncha 
E. turbinifex 

 
species group Vf E. allosticta 

E. asarophora 
E. viridifrons 

 
Subgenus Glossuropoda 

species group I  E. intersecta 
E. nigrosignata 
E. rugilabris 

 

 

The phylogenetic analysis was based exclusively on external morphology of 

the male bees, since the vast majority of the taxonomic distinctions among the 

species groups and subgenera are based in those characters.  Although for a 
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good number of species both sexes are known, there is regularly uncertainty on 

the pairing of both sexes as members of the same species, since the external 

morphology of the females tends to be conservative.  There must certainly be 

external morphological characters of the females that can provide phylogenetic 

information.  However due to the uncertainty on the association of sexes and the 

almost universal use of male characters as diagnostics of the different species, 

the analysis was based on these last.  Most of the characters discussed by 

Dressler (1978b) as of particular taxonomic value (i.e. secondary sexual 

features) were taken into account to build the matrix.  An additional and important 

source of characters came from the analysis of the male genitalic structures 

(hidden sterna and genital capsule), which were obtained from observations of 

dissected specimens of all the species (except E. stellfeldi).  Nomenclature for 

the external characters was mainly based on Michener (2007) and Dressler 

(1978b), while for the genitalic structures the nomenclature provided in the 

previous chapter (Hinojosa-Díaz, 2008) was applied.  The taxonomic identity of 

every specimen was verified previous to its use as a source of characters.  When 

gathering character information for the external features (other than genitalic 

structures), several specimens of every species were observed under a 

dissecting microscope, to record possible polymorphisms, except for species for 

which only one specimen was available (i.e. E. stellfeldi).  The genitalic 

characters were based for the most part in one dissected specimen, although 

revision of exposed genital capsules in mounted specimens was used to look for 

possible variation or polymorphism.  The dissecting technique applied 
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corresponds to the one described in the previous chapter (Hinojosa-Díaz, 2008).  

Some of the characters recorded corresponded to synapomorphies for the 

ingroup (Euglossa s. lat.), but the majority of them represented the variation 

among the species groups and subgenera as stated above.  The different 

character states per character were assigned codes starting with “0” (zero), and 

following an incremental sequence with no particular order (except for number of 

mandibular teeth which was coded directly as the respective number of teeth per 

species).  Characters and taxa for which no information could be gathered (i.e. 

genitalic characters for E. stellfeldi) were coded as question mark while for non 

applicable characters a dash sign was used.  A total of 79 characters were 

selected for the analysis.  A list of the characters and character states is provided 

in Appendix 2.  Illustrations of some of the characters are shown in Appendix 3. 

A matrix was created using the program WinClada (Nixon, 1999) (see 

Appendix 4).  The phylogenetic analysis was performed with the program Nona 

(Goloboff, 1999), through its interface with WinClada (Nixon, 1999).  The taxa in 

the matrix were arranged with the outgroups at the beginning, as required by the 

program.  The final version of the matrix had Eulaema speciosa as the first 

outgroup; varying the position of the species functioning as outgroup had no 

impact on the results of the analysis.  All the characters were set as non-additive 

and all equally weighted.  The analysis was run multiple times using the Ratchet 

(Island Hopper) module in the Analyze menu of the WinClada/Nona interface 

with the parameters as shown in Fig. 3.29.  The analysis was run at least five 

times under 10,000 iteration/rep, and a few other times under 20,000 and 30,000 
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iteration/rep to ensure that results were stable.  All the equally optimal trees were 

combined in a strict consensus tree. 

Two measures of tree support values for the strict consensus tree were 

calculated, Jackknife through WinClada/Nona, and Bremer support through TNT 

(Goloboff et al., 2000).  The Jackknife values were obtained by running the 

Jackknife module of the Analyze menu in WinClada/Nona with 1000 replications 

(Fig. 3.30).  Bremer support values were produced by running the Traditional 

search module of the Analyze menu in TNT (1000 replications) retaining 

suboptimal trees up to ten steps longer, and mapping the Bremer support values 

on the strict consensus tree previously produced in the phylogenetic analysis 

(Fig. 3.31). 

To test the phylogenetic significance of the characters that have been heavily 

used in the taxonomic arrangement of the genus (i.e. secondary sexual 

characters), special attention was devoted to their changes of character states 

when mapped on the strict consensus tree.  The same procedure was applied to 

those characters that showed particular phylogenetic significance as a result of 

the analysis proper. 

The existing classification of the genus (as described above) was evaluated in 

terms of the phylogenetic hypothesis here produced and possible changes to the 

infrageneric arrangement were proposed. 

Based on information from the known distribution of the species used in the 

analysis, either from available literature or observed specimens, the consensus 

tree was used to make some inferences on the historical biogeography of the 
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genus.  For this the species were assigned to four regions based on the main 

biogeographic components previously identified for the Neotropical region 

(Amorim and Pires, 1996; Camargo, 1996; Camargo and Pedro, 2003), plus the 

northern Andes as a different region.  A similar assessment of the orchid 

relationship of the different species and the phylogenetic result was carried out 

by tracing the known orchid visiting records by orchid subtribe (according to 

Cameron et al., 1999) per bee species. 

 

RESULTS 

A total of 64 equally optimal trees were produced every time ratchet analysis 

was performed, one of these trees is shown in Fig. 3.32.  The statistics for these 

trees were: 

Length = 335 

 Ci = 39 

 Ri = 72 

The strict consensus tree was produced by collapsing seven nodes of the 

combined 64 optimal trees (Figs. 3.33, 3.34). 

The tree support values (Jackknife and Bremer values) for the strict 

consensus tree are shown in Fig. 3.35. 

Of the five non-monotypic subgeneric groups, Euglossa s. str. and Euglossella 

appear separately as monophyletic species assemblages in the consensus tree 

(Fig. 3.36).  Glossura is recovered as a paraphyletic group with some Glossurella 

species, and Glossuropoda (except E. nigrosignata) nested within.  The 
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monotypic Dasystilbe shows up as sister to this “Glossura-some Glossurella-

most Glossuropoda” group, while most of the Glossurella species [with E. 

(Glossuropoda) nigrosignata inserted there] appear as a grade (Fig. 3.36). 

The known distribution for each species in the analysis, as mapped in the 

consensus tree, is shown in Fig. 3.37.  The available information for male bee 

visitation of orchid plants and pollination records of the same is shown in the 

phylogenetic hypothesis in Fig. 3.38. 

 
 

DISCUSSION 

When describing the genus Euglossa (and all euglossines as then 

understood), Latreille (1802) emphasized the morphology of the mouthparts, 

noticeably the length of the labiomaxillary complex (as long or longer than the 

body), not surprisingly the generic name chosen reflects that feature.  The first 

infrageneric splitting of Euglossa s. lat. came from the appreciation of the very 

same feature, as Cockerell (1917), continuing on the mouthpart-naming fashion, 

proposed Glossura to group those species with mouth-parts extending far 

beyond the apex of the metasoma.  After Euglossella was initially defined by 

Moure (1967) in terms of tridentate male mandibles (leaving Euglossa s. str. as 

the remaining bidentate male group), the attention for the creation of subgeneric 

divisions went to the secondary sexual features of the males, heavily expressed 

in the structure of the meso and meta legs, and the second metasomal sternum.  

With this approach, Dressler (1978b, 1982c) rearranged Euglossella and 

Euglossa s. str., and erected Glossurella and Dasystilbe, this last based on its 
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“distinctiveness”.  Moure (1989) followed, using features from the legs to erect 

Glossuropoda.  All of these taxonomic works based on very distinctive features 

rendered a concise arrangement that is seemingly coherent in terms of species 

assignation.  Nonetheless problems have arisen in terms of the interpretation of 

some of the characters or combinations of them when considering some species, 

as is the case of E. nigrosignata and E. stellfeldi, which have recently been 

subgenerically relocated (Roubik, 2004, Faria and Melo, 2007) based on the 

observation of the character combinations.  Accordingly, just by the consideration 

of these two cases, concern should arise in the delimitation of the three 

subgenera involved in these two cases (Glossurella, Glossura and 

Glossuropoda).  It seems of course necessary to interpret this under a 

phylogenetic approach which could possibly give a natural arrangement of the 

infrageneric groups and a set of features to identify them.  Since the 

reinterpretation of some of the secondary sexual features of the males have 

driven to uncertainty the subgeneric affiliation of some species, the addition of 

the genital characters to the analysis gives extra information to elucidate the 

nature of the subgeneric groups and their respective supportive characters. 

 
General phylogenetic results .— The results produced by the phylogenetic 

analysis as presented in Figs. 3.33-3.36, show that besides the monotypic 

Dasystilbe, only Euglossella and Euglossa s. str. are supported as natural 

(monophyletic) groups.  The other three subgenera (Glossura, Glossurella, and 

Glossuropoda – although look below for Glossuropoda), as in use to date, are 

not supported as natural assemblages.  There is enough confidence that the 
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taxon sampling in this study is a robust representation of the diversity within the 

whole genus, and that likewise, the set of external morphological characters 

conveys a good picture of the variation across the species in the genus.  This is 

not to say that addition of species or additional sets of characters (or even a 

reinterpretation of the set of characters here used) would not produce different 

hypotheses, but as it is presented here, the resulting phylogenetic hypothesis 

provides a good picture of the evolutionary history of the group. 

The status of Glossura, Glossurella, and Glossuropoda in the resulting 

philogenetic hypothesis, is non-coincidentally consistent with the unstable 

classification of E. nigrosignata and E. stellfeldi (as described above).  These 

species are a good example of the problems faced by different authors when 

interpreting the sets of characters that delimit each of those subgenera.  Faria 

and Melo (2007) when dealing with E. stellfeldi, realized the similarities of this 

species with what had been characterized by Dressler (1982c) as the subgenus 

Glossurella, and specifically with E. laevicincta [species group Ve of Dressler 

(1982c) according to the terminology used here], and the noteworthy absence of 

some of the features more commonly found in Glossura (labiomaxillary complex 

longer extending well beyond apex of metasoma, and second metasomal 

sternum bearing cowled slits: sensu Roubik, 2004) .  The classification of the 

species in question in either one of the involved subgenera was a matter of 

judgement based on the sets of characters used before the present work.  

Similar observations regarding intergradation of characters between Glossura 

and Glossurella were noticed by Parra-H et al. (2006) when describing E. natesi, 
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a species closely associated with the Vf species group of Glossurella, 

assemblage composed of species with an external morphology that combines 

characters from both Glossura and Glossurella, and genitalic features definitely 

closer to Glossura, as was addressed in the previous chapter (Hinojosa-Díaz, 

2008).  All the authors of the referred works stated that the subgeneric 

assignation of the respective species and the validity of either Glossura or 

Glossurella would only become clear under a phylogenetic perspective. 

Glossuropoda as treated here, following Roubik (2004), includes E. 

nigrosignata, this sole species addition to the Glossuropoda assemblage makes 

a huge impact on the naturalness of it.  Dressler (1982c) originally assigned E. 

nigrosignata to the Vb group of Glossurella prior to the erection of Glossuropoda 

by Moure (1989) this last defined by a set of characters, for the most part absent 

in E. nigrosignata.  The presence of characters other than those used by Moure 

(1989), in all species of group I (as here understoodd) and in E. nigrosignata 

persuaded Roubik (2004) to expand the definition of Glossuropoda to 

accommodate this last species, these characters will be discussed later.  The 

inclusion or exclusion of E. nigrosignata in Glossuropoda, although important to 

determine the monophyletic nature of the assemblage either as proposed by 

Moure (1989) or as redefined by Roubik (2004), is ultimately moot given their 

position in the phylogenetic hypothesis here presented.  As taken from the 

consensus tree, besides Dasystilbe (natural on its own) and Euglossella plus 

Euglossa s. str. recovered as monophyletic, the “Glossura-some Glossurella-

most Glossuropoda [Glossuropoda as viewed by Moure (1989)]” derived clade is 
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here referred as a natural group that should be regarded as Glossura with a new 

definition, as is discussed later. 

 

Previous phylogenetic statements.—The original approach that Dressler 

(1978b) took to subdivide Euglossa s. lat. was in his own view intended to serve 

as a starting point to develop a classification system that would be re-evaluated 

by adding characters not in use or available at the time of his proposal.  The 

monophyly of the groups as he proposed them and re-modeled them in his 

subsequent  work necessarily implied his understanding of them as natural 

(monophyletic) groups, even with his cautious assertions on future re-

evaluations.  The nature of these groups in respect to the phylogenetic 

hypothesis in the present study has already been discussed in the previous 

paragraphs.  The only phylogenetic assertions of Dressler involving relationships 

between the subgenera as he originally proposed them, involved the positions of 

Glossura (at that moment including Glossurella and Glossuropoda) and 

Dasystilbe (Dressler, 1978b).  Later he also made reference to a link between 

Euglossa s. str. and Glossura (Dressler, 1982b).  It was of his opinion (Dressler, 

1978b) that Glossura might be relatively “primitive” in relation to all other 

Euglossa s. lat., this based on the seeming similarity of E. intersecta to some 

species of Eufriesea, especially in coloration as well as in some meso and meta-

tibial features.  He advanced the possibility of E. intersecta as the representative 

of a distinct subgenus [as indeed was later brought up by Moure (1989)], but 

hesitated to split it as E. rugilabris, sharing a number of features with E. 
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intersecta, had also close resemblance to species of his species group III 

(Glossura in its strictest sense, i.e. minus Glossurella and Glossuropoda).  E. 

intersecta does bear some coloration resemblance to some Eufriesea, 

particularly to Eufriesea pulchra with which it appears to form a mimetic complex 

that includes two other Euglossa s. lat. species, E. cyanochlora and E. tiputini 

(Roubik, 2004).  The leg features cited by Dressler (1978b) as links between E. 

intersecta and Eufriesea are difficult to appreciate; the “eyelash-like” fringe of 

mesotibial michrotrichia is indeed present in some species of Eufriesea, but not 

in all, and the shape of the metatibia is not necessarily comparable.  Eufriesea 

species in general show a metatibia with ovoid or prolate spheroid shape, while 

E. intersecta (and all other Glossuropoda) have a triangular metatibia (Figs. 3.22, 

3.23).  The characterization of Glossuropoda by Moure (1989) includes very 

particular characters in the mesotarsal segments, which were not noted by 

Dressler (1978b) as features of the species group I to which he assigned E. 

intersecta (type species of Glossuropoda).  Instead, he noted features that are 

found only in E. intersecta and E. cyanochlora, which besides the coloration and 

the “eyelash” setae of the mesotibia included the noticeably lamellar projection of 

the malar area.  There are some other unusual morphological features of E. 

intersecta and E. cyanochlora that indeed make them look somewhat “aberrant” 

[using words of Dressler (1978b)], all of which added to the numerous distinctive 

characters of Glossuropoda (sensu Moure) make them rather distinctive.  

However, contrary to what Dressler (1978b) suggested in terms of Glossura, and 

particularly of Glossuropoda as a subgroup of his original view of the former, they 
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appear as a derived clade as can be seen in the consensus tree of the 

phylogenetic hypothesis here presented (Figs. 3.33, 3.4, 3.36).  Dasystilbe was 

formulated by Dressler (1978b) as a very distinctive monotypic subgenus, with E. 

villosa bearing a mixture of Glossura and Euglossella characters, so in order to 

preserve the integrity of these two groupings, the only solution was to erect a 

new subgenus.  Indeed the external morphology of E. villosa is a mosaic of 

Glossura and Euglossella, having as stated by Dressler (1978b) the facial and 

prothoracic distinctive features of the latter, while at the same time having the 

distinctive sternal cowled slits of the species of Dressler’s group III (Glossura in 

its strict sense, i.e. minus Glossurella and Glossuropoda).  The morphology of 

the male genitalia of E. villosa reveals also a mosaic of characters.  While 

features of the gonostylus link it clearly to Glossura, most features of the hidden 

sterna are not Glossura like.  In the phylogenetic hypothesis here presented 

Dasystilbe appears as sister to the “Glossura-some Glossurella-most 

Glossuropoda” derived clade, although in earlier versions of the analysis, with 

different combinations of characters, it appeared as basal to all Euglossa s. lat., 

and in the phylogenetic hypothesis based on molecular data of Ramírez et. al 

(2010), it appears as sister to all Euglossella (see further comments on this later).  

As it appears, Dressler had a good appreciation of the intermediacy of E. villosa, 

as is corroborated by its phylogenetic position in the present study and in the 

hypothesis of Ramírez et al. (2010).  When describing E. annectans, Dressler 

(1982b) associated it with E. stellfeldi, and commented on the combinations of 

features of these two species in such a way that they must represent a link 
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between Euglossa s. str. and Glossura.  Morphologically both species certainly 

have some resemblance to some species in Euglossa s. lat., particularly in 

characters of the metafemur; however, those characters rather support the major 

clade in the consensus tree that contains Euglossa s. str., some Glossurella, 

Glossura, Dasystilbe and Glossuropoda. 

 

“Old” subgenera in the phylogeny.—The classificatory subdivision of Euglossa 

s. lat. should reflect the natural arrangement of the infrageneric assemblages, as 

such, following the results here produced, of the six subgenera in use to date, 

only three of them as defined by their authors comply with the phylogeny as 

natural groups, Dasystilbe, Euglossa s. str., and Euglossella and they should be 

kept as valid subgeneric names.  Regardless of its phylogenetic position 

Dasystilbe, as a monotypic entity, will always come out as a natural taxon.  If it 

appears as nested into a seemingly natural broader subgenus, its validity as a 

subgeneric category would be challenged.  However that is not the case in terms 

of the phyoglenetic hypothesis here presented. 

Dasystilbe appears as sister to the “Glossura-some Glossurella-most 

Glossuropoda” clade (Fig. 3.36).  Besides the characters cited by Dressler 

(1978b), of which most of them are rather ambiguous or non exclusive, 

characters used in this study that are unique for Dasystilbe include the 

emargination of the posterior margin of the second mesotarsomere (Fig. 3.16), 

the strongly concave ventral margin of the inner surface of the metafemur (Fig. 

3.19), and the rounded shape of the lateral area of the gonostylar process of the 
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gonocoxite (Fig. 3.27).  As mentioned before, the gonostylus of Dasystilbe 

strongly resembles that of species of Glossura, while some of the facial and 

prothoracic features are more like those of Euglossella species.  The presence of 

the notorious cowled slits on the second metasomal sternum is a convergent 

character as is discussed later. 

Euglossa s. str. should be kept as a valid subgeneric category since it appears 

as a natural group in the phylogeny (Fig. 3.36).  Of the various features cited by 

Dressler (1978b), the most relevant are the shape of the anterior mesotibial tuft 

and the shape of the metatibia.  He referred the first as notched, comma-like or 

bilobed, and the second as subtriangular and obtuse (in reference to the 

posterior ventral apex), or usually rhomboid.  Here only the second character is 

recovered as a unique feature of this subgenus, although instead of using the 

overall shape of the metatibia as a character, this was subdivided into different 

characters according to the variation in shape and/or length of the different 

margins that make up the metatibial shape (Characters # 50, 51).  This avoids 

the ambiguous characterization of the shapes described by Dressler.  The 

character as used here defines species of Euglossa s. str. as having a noticeable 

furrow on the posterodorsal margin of the metatibia.  This is better appreciated if 

the metatibia is viewed from its inner surface (Figs. 3.3, 3.20. 3.22).  This 

“furrow”, in the same position as the basal section of the metatibial organ slit, 

marks a division of the posterodorsal margin, producing the shape referred to as 

rhomboid by Dressler.  This is the only exclusive character of Euglossa s. str., 

although its combination with a few others gives support to the monophyly of the 
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subgenus.  Two of the other characters that appear in the consensus tree as 

supporting Euglossa s. str. were also mentioned by Dressler (1978b) in his 

outline of the subgenera.  These are, short labiomaxillary complex, never 

surpassing the fourth metasomal sternum when in repose, and absence of 

integumental modifications on the second metasomal sternum (only setal 

patches present).  Additionally, the presence of an additional fold on the dorsal 

sector of the lateral section of the gonostylus appears at the base of the 

Euglossa s. str. clade; this is shared with the species of Glossura as in use 

previous to this study.  The shape of the anterior mesotibial tuft (notched, 

comma-like, or bilobed in words of Dressler, with a cleft in the anterior margin as 

defined here) according to this analysis (Fig. 3.14) is a feature of Euglossa s. str. 

minus E. viridissima, which in the consensus tree appears as sister to all other 

Euglossa s. str. 

Euglossella as defined by Dressler (1978b), is perhaps the most stable and 

distinctive subgenus of Euglossa s. lat., and it stays as a natural assemblage, 

highly supported by a good number of characters, in the consensus tree (Fig. 

3.33).  Besides the rather ambiguous particularities of coloration, habitus, and 

punctuation cited by Dressler as features of Euglossella, and the references to 

the metatibial shape and the lack of features present in other groups (most of 

these plesiomorphic features), he emphasized the tridentate mandibles, the 

acute pronotal dorsolateral angles and the long and narrow midbasitarsus, for the 

males.  While all of these characters cited by Dressler are certainly as a group 

features that can be used to recognize Euglossella as a distinctive group, none of 
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them is exclusive (synapomorphic).  Certainly the habitus and metatibial shape 

can be appreciated, but in terms of assignation of characters it is not very 

straightforward to assign these to particular character states.  The seemingly 

distinctive long and narrow mesobasitarsus also falls in a rather ambiguous 

character group.  In the present study, the characters that appear as exclusive to 

Euglossella are, presence of a blunt bumpy projection on the ventral margin of 

the inner metatibial surface adjacent to the spur (Fig. 3.21); the remaining 

characters are present in the genital structures, being, truncate lateral area of 

gonostylar process of conocoxite (Fig. 3.27), presence of long and complete 

striae on surface of the spatha, convex shape of the setose dorsal sector of the 

latreral section of the gonostylus, distinctive plumose setae on this area, and 

thumb-like membranous ventral lobe of the gonostylus (Fig. 3.28).  It can be seen 

that although distinctive, the external (non-genital) morphology of Euglossella 

species is in general a set of plesiomorphic features for Euglossa s.lat., while the 

genital structures bear more distinctive features that define the subgenus.  

Euglossella appears, according to this study, as sister to all other Euglossa s. 

lat., a position that (as discussed above) Dressler (1978b) thought would 

correspond to Glossura.  However the unique genital features of Euglossella 

together with the absence of modifications in the mesotarsi (which is a feature of 

all other Euglossa s. lat.) (Fig. 3.16), contribute to the phylogenetic position of 

Euglossella as separate from all other species in the genus. 

A variety of conditions, as evidenced in the phylogenetic analysis, affect the 

validity of the remaining three subgenera (Glossura, Glossurella, and 



 91

Glossuropoda) as natural assemblages.  As mentioned before, Glossuropoda 

corresponds to the original species groups I and II (here fused in group I) as 

outlined by Dressler (1978b), then given subgeneric status by Moure (1989), and 

broadened by Roubik (2004) with the addition of E. nigrosignata.  This last 

definition of Glossuropoda [i.e. sensu Roubik (2004)] is the one used here for the 

subgeneric assignation of E. nigrosignata.  Moure’s (1989) conception of 

Glossuropoda was based on the very distinctive morphology of the mesotarsi, 

especially the basitarsus, and the absence of a mesotibial spur.  Of these 

characters, E. nigrosignata only shares the absence of mesotibial spur.  Roubik 

(2004) brought up a different set of characters for his deffinition of the subgenus 

(i.e. to include E. nigrosignata in it), besides the lack of the mesotibial spur these 

included long probasitarsal setae, triangular and acute metatibia with a deep 

short furrow, wide paraocular lines, inflated mesotibia, and only 11 jugal comb 

blades.  He also mentioned the slender hidden seventh metasomal sternum as a 

possible feature of all Glossuropoda, although he also referred to the absence of 

information on genital structures for most Euglossa s. lat.  Glossuropoda in terms 

of Moure is monophyletic, strongly supported by 24 characters, five of these 

synapomorphic (Fig. 3.33), while Glossuropoda as redefined by Roubik (2004) is 

a polyphyletic group since E. nigrosignata appears associated with E. 

gorgonensis, E. oleolucens, and E. trinotata in a clade sister to all other Euglossa 

s. lat. beyond the exclusion of Euglossella.  Of all the characters cited by Roubik 

as “synapomorphies” for Glossuropoda, only the length of the probasitarsal 

setae, and the inflated mesotibia are unique to Glossuropoda if E. nigrosignata is 
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included.  Glossuropoda as conceived by Moure is indeed a natural group, and 

would be a perfectly valid subgenus if not for its position in the consensus tree.  

The status of Glossura has to be discussed in order to clarify the situation of 

Glossuropoda. 

Glossura was the very first subgenus erected within Euglossa s. lat. 

(Cockerell, 1917), but as used until the present study, it was what remained after 

Glossurella and Glossuropoda were subtracted from it (Dressler, 1982c, Moure 

1989).  Glossura remained composed by Dressler’s species groups III and IV, 

and instead of being defined by the exceedingly long labiomaxillary complex 

(beyond the metasomal apex) and the biconvex scutellum (Cockerell 1917), it 

would be defined by the common features of the two remaining groups, which in 

terms of Dressler are united by the presence of a keel on the inner surface of the 

mesobasitarsus.  The position of all species of Glossura in the consensus tree 

make the subgenus a paraphyletic group, rendered as such by the position of 

Glossuropoda (sensu Moure) plus some species of Glossurella, all of them 

belonging to the species group Vf (Fig. 3.36).  The inclusion of Glossuropoda 

(sensu Moure) as part of the Glossura clade is completely congruent with the 

original subgeneric proposal of Dressler (1978b).  When creating Glossurella by 

taking species group V away from Glossura, Dressler realized the affinities 

between E. asarophora, E. allosticta, and E. viridifrons (species group Vf).  In the 

description of E. natesi, Parra-H et al. (2006) alluded to the morphological 

similarities of this species group to Glossura, and the genitalic characters of were 

already mentioned in the previous chapter of this work (Hinojosa-Diaz, 2008).  
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The monophyletic nature of this clade including Glossura, Glossurella species 

group Vf and Glossuropoda sensu Moure, is supported only by the characteristic 

convexity of the ventral margin of the inner metafemoral surface (only 

synapomorphic character unique to this clade), the presence of a biconvex 

mesoscutum produced by a well developed furrow short of the scutellar margin), 

a characteristic triangular metatibia about 1.5 times as long as its maximum 

width, the absence of setae on the eighth metasomal sternum, and the presence 

of an additional fold on the dorsal sector of the lateral section of the gonostylus.  

It is here proposed that this clade should be regarded as the subgenus Glossura, 

having nomenclatural priority over Glossuropoda (with E. intersecta as type 

species), and the type species of Glossurella (E. bursigera) not belonging to the 

species group Vf. 

Glossurella as it appears in the consensus tree is mainly a paraphyletic 

assemblage if the species group Vf is included in Glossura.  The heterogeinity of 

this non natural group is reflected by the original mention of the six informal 

species assemblages by Dressler (1982c).  As can be appreciated in the 

consensus tree, only two of these species groups are recovered as monophyletic 

(Vc and Vd).  The main character that Dressler referred to when creating 

Glossurella was the presence of semicircular depressions on the second 

metasomal sternum.  However this feature is absent in several of the species in 

the Glossurella grade.  The genitalic structures of all of these species reveal a 

variety of morphological conditions, notably E. laevicincta shares gonostylar 

features with the new Glossura clade.  E. bursigera (type species of Glossurella) 
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along with E. augaspis seem to have intermediate morphological (genitalic and 

non-genitalic) features between all other Glossurella species and the more 

derived Euglossa s. str. and Glossura.  If Glossurella as a subgeneric name is to 

remain in use, it should only be applied to those species closely allied to E. 

bursigera, such as E. augaspis and E. prasina (the latter not included in this 

analysis), or otherwise considered a synonym of Euglossa s.lat.  Alternatively 

additional subgeneric names can be created for every monophyletic group 

present in the Glossurella grade.  The first approach is favored here, i.e. 

preserve Glossurela as exclusive for E. bursigera and allies.  Only one of the 

monophyletic assemblages within the Glossurella grade, species group Vb plus 

E. nigrosignata, is here proposed to be considered as a new subgenus described 

below. The remaining species in the grade, should remain as incertae sedis in 

terms of subgeneric assignation. 

 

New subgenus.— Among the six informal species groups into which Dressler 

(1982c) subdivided Glossurella, the species group Vb originally included E. 

fuscifrons, E. gorgonensis, E. hyacinthina, E. nigrosignata, E. stilbonota, and E. 

trinotata.  Additionally, E. oleolucens although omitted in the species group 

assignation, was described originally (Dressler, 1978a) as closely allied to E. 

gorgonensis.  Finally, E. paisa (Ramírez, 2005) and E. samperi (Ramírez, 2006) 

were added to this group by morphological association.  Besides the coloration 

and punctuation features, Dressler mentioned the narrow metatibia as a feature 

of this group.  The problematic taxonomic position of E. nigrosignata without a 
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phylogenetic hypothesis, has already been discussed above, but despite its 

relocation to Glossuropoda by Roubik (2004), the number of external 

morphological features that it shares with the species group Vb make for a better 

case of taxonomic association even without a phylogenetic framework.  The 

addition of genitalic characters greatly reinforces this, and finally the results of 

the present study give phylogenetic validation to this.  This group (with the 

inclusion of E. nigrosignata) is recovered as a monophyletic clade except for the 

position of E. stilbonota (Fig. 3.36).  The clade is sister to all other Euglossa s. 

lat., except Euglossella which is the basalmost clade.  The structure of the lateral 

section of the gonostylus constitutes a charactersistic feature of this clade, it is 

projected in a compressed blade-like shape (Fig. 3.28), much as it appears in 

Eufriesea and Eulaema (outgroups) standing on a more or less sagittal 

orientation in respect to the body plane.  This orientation of the lateral section of 

the gonostylus is shared by the outgroups and Euglossella, and it seems to have 

a degree of transitional variation in most other species of the Glossurella grade, 

towards the diagonal orientation of this structure in Euglossa s. str., Glossura (as 

the new definition here proposed) and Dasystilbe.  There are some other external 

characters that, although not restricted to this clade, in combination support its 

monophyletic nature.  Some species have a small third mesotibial patch 

contiguous with the posterior patch (Fig. 3.15) (e.g. E. trinotata, E. oleolucens).  

E. nigrosignata on the other hand has no patches at all.  The dorsolateral angle 

of the pronotum in most species of Euglossa s. lat. has an obliquely truncate 

shape, while in this clade (and a few other species) it is rather obtuse and with no 
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projections.  All species in the clade have a very distinctive knob on the inner 

surface of the metafemur near the trochanter joint (Fig. 3.19).  This last character 

is perhaps the easiest way to recognize the species of this clade, although it is 

also shared by E. stilbonota.  This situation brings back to the original inclusion 

by Dressler of E. stilbonota in the species group Vb.  Indeed E. stilbonota, could 

well be part of this clade, since besides the peculiar metafemoral morphology it 

has three mesotibial patches, as several species in the clade including most of 

the species of the Vb species group.  The general habitus of E. stilbonota also 

bears resemblance to the species of this clade, however the gonostylar 

morphology seems closer to that of E. bursigera, as well as the metatibial shape.  

Dressler alluded to the “narrowness” of the metatibia as a feature of the Vb 

species group, and although is not clear what body plane he referred to in 

defining the narrowness, the metatibial morphology is indeed characteristic, as it 

is triangular and with an anterior margin about 1.5 times the length of the ventral 

margin.  This is very similar to some Glossura species, and especially to those in 

Glossuropoda.  E. stilbonota has a metatibia more like that of E. bursigera, in 

which the anterior margin is shorter than 1.5 times the length of the ventral one. It 

must be stated that the position of E. stilbonota is in no way conclusive, and it 

might certainly be part of this clade as has been supported by the recent 

molecular phylogenetic study of Ramírez et al. (2010).  Another species originally 

designated by Dressler as part of the Vb species group, E. hyacinthina, has 

definitely features that separate it from that clade.  Regradless of the inclusion of 

this species, the monophyletic clade including most of the species of the Vb 
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species group is here regarded as a new subgenus within Euglossa s. lat., based 

on the distinctive gonostylar, prothoracic and metafemoral morphology of the 

males.  As proposed here the new subgenus includes the following species: E. 

fuscifrons, E. gorgonensis,  E. oleolucens, E. paisa, E. samperi, E. stilbonota, E. 

trinotata, with E. oleolucens as type species (Fig. 3.46).  Additionally there are 

two undescribed species that belong to this proposed new subgenus (author’s 

personal observation).  Most species in this clade have distributions restricted to 

southern Central America, northwestern South America (Choco and northern 

Andes), and the western Amazon basin near the Andean eastern slope. 

 
Character evolution.— The characters used to segregate and distinguish the 

subgenera as known before this study, are mainly those already mentioned as 

the secondary sexual characters of the males, expressed for the most part in the 

morphology of the legs. Most species descriptions have also used combinations 

of those characters.  Dressler (1978b) outlined his subgeneric classification 

mainly based on the presence/absence and variation of shape and size of the 

mesotibial setose tufts, presence/absence and structure of the integumental 

modifications on the second metasomal sternum, shape of the metatiba, length 

of the labiomaxillary complex in respect to the body, structure of the dorsolateral 

angle of the prothorax, number of mandibular teeth, and punctuation.  He even 

addressed the possibility of a functional correlation between the absence of 

modifications in the second metasomal sternum and the absence of posterior tuft 

on the metatibia of several species of his original species group V (later elevated 

to subgeneric status as Glossurella).  Glossuropoda was segregated by Moure 
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(1989) by emphasizing the mesotarsal particularities of E. intersecta and allies, 

although again Roubik brought up a different combination of characters in order 

to make place for E nigrosignata in it.  These included the lack of the mesotibial 

spur, long probasitarsal setae, shape of the metatibia, presence of wide 

paraocular lines, inflated mesotibia, and hind wing with only 11 jugal comb 

blades.  Faria and Melo (2007) observed the presence of a circular depression 

on the inner surface of the metatibia of both E. stellfeldi (Glossura) and E. 

laevicincta (Glossurella), which added to the overall morphological resemblance 

between these two species.  This led them to propose that Glossura would be 

more homogeneous if E. stellfeldi was removed.  Most of these characters used 

by different authors to infer either the subgenera or species-group membership, 

were included in this study; the only feature not examined in terms of a 

phylogenetic character was punctation.  The philogenetic relevance of the 

characters necessarily varies, and although some of them indeed appear as 

synapomorphic for clades coincident with the subgenera as used before this 

study, they are more relevant in the general configuration of the phylogenetic 

pattern. 

The elongated labiomaxillary complex has left its mark in the naming of the 

genus and the subgenera.  It was the very first feature used to segregate a 

subgenus (Cockerell, 1917).  Other euglossines have a labiomaxillary complex 

that only reaches midway in the metasoma.  In Euglossa s. lat., the length seem 

to have initially evolved to be as long as the whole body when folded in repose, 

then followed two pathways, reversion to be as short as in the outgroups (notably 
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in Euglossa s. lat.), or becoming even more elongated as in most Glossura, 

specially long in Glossuropoda and some species of the new subgenus here 

proposed (Chararcter # 12, Fig. 3.39). 

The shape of the metatibia, much used by Dressler (1978b, 1982c) in his 

subgeneric delineation, is relevant in terms of the phylogeny.  However, it was 

found difficult to use a straightforward character, since there are intergradations 

between the triangular and rhomboidal shapes (Fig. 3.22, 3.23) cited by Dressler.  

The posterior angle of the metatibia, where the ventral and posterodorsal 

margins meet, was used also by Dressler.  However this is a hard feature to 

categorize, since in several species, especially in Euglossa s. str. although not 

restricted to them, the posterodorsal margin is curved on its posterior half, such 

that it meets the ventral margin on a different angle than the one it would have if 

the posterodorsal margin kept its original orientation.  A way to account for the 

metatibial shape as referred to by Dressler was to express it as a messure of the 

the ratio “metatibial anterior margin length/metatibial ventral margin length” 

(Char. # 51), and also as the presence or absence of a deep furrow in the 

posterodorsal margin (Char. # 37).  The metatibia of all other euglossine genera, 

although expanded, does not have a ventral margin as elongated (posteriorly) in 

respect to the anterior margin as in Euglossa s. lat., thus causing the rather 

triangular shape of the metatibia.  The basal clades of Euglossa s. lat., including 

Euglossella, the new subgenus here proposed and the clade including E. 

dodsoni and E. obtusa, all have a metatibia with an anterior margin at least 1.4 

times the length of the ventral margin.  In the remaining species of the 



 100

Glossurella grade, and most of the species of Euglossa s. lat., as well as in 

Dasystilbe, the metatibial ventral margin expands, so the ratio anterio 

margin/ventral margin is less than 1.4.  This characters reverts to a ratio of 1.4 or 

more in Glossura (as of the new definition here proposed), with E. imperialis as 

an exception.  The deep furrow in the posterodorsal margin is a synapomorphy of 

Euglossa s. lat. 

The structure of the mesotibial tufts is of great relevance for the taxonomy of 

Euglossa s. lat.  It is useful in species identification, and especially to segregate 

species assemblages.  The velvety surface of the mesotibia of the other 

euglossine genera has a single tuft.  The presence of a second tuft (the posterior 

one) is a synapomorphy of Euglossa s. lat. (Char. # 22, Fig. 3.40).  The posterior 

tuft sits on a concavity at the posterobasal extreme of the velvety area.  In few 

species within the genus the posterior tuft is secondarily lost, either completely 

(e.g. E. asarophora), or as a non-setose cavity (i.e. E. nigrosignata).  The 

posterior tuft is smaller than the anterior one in most major clades, while it 

becomes relatively larger (although never larger than the anterior one) in most 

Glossura species, and definitely larger than the anterior tuft in E. viridissima 

(Char. # 24, Fig. 3.41).  The shape of the anterior tuft (Char. # 27) is quite 

variable (Fig. 3.14).  However the most notable feature is the presence of a cleft 

on its anterior margin, causing it to look either rheniform, bilobed or even divided.   

These feature appears only once in Euglossa s. lat., as a synapomorphy for 

Euglossa s. str. (Fig. 3.42). 
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The integumental modifications on the second metasomal sternum (Char. # 

54), along with the setose patches on the sternal margin (Char. # 55), are not 

present in other euglossines.  Those species that have no integumental 

modifications at all, have no setose patches either (e.g. E. gorgonensis, E. 

nigrosignata, E. dodsoni, E. obtusa, E. parvula, E. allosticta, E. viridifrons, E. 

asarophora).  A good number of the species included in the analysis have setose 

patches with no identifiable integumental modifications [all Euglossella (except E. 

bigibba), all Euglossa s. str. (except E. viridissima)] , but all species with 

modifications, also have setae.  It is possible that the setae appeared first on the 

sternal margin, and the integument followed to be modified as shallow “omega-

like” depressions, as bumpy areas where the patches grew (false cowled slits), or 

the tipical cowled slits present in E. piliventris and allies (Fig. 3.43).  The cowled 

slits are present also in one species of Euglossella, E. polita (not included in the 

analysis) and in E. villosa (Dasystilbe), giving evidence of a tendency to develop 

this structure even in groups phylogenetically distant. 

The shape of the dorsolateral angle of the prothorax (Char. # 13), and the 

presence/absence of projections on it (Char. # 14) (Fig. 3.8), were already 

mentioned when discussing the characters of the new subgenus.  In the three 

subgenera used as outgroups, the dorsolateral angle is cut in an oblique truncate 

fashion, as in the majority of Euglossa s. str. (except species group VIII), 

Glossura, and most of the Glossurella grade except the new subgenus here 

proposed.  In this last group, in Dasystilbe, the species group VIII within 

Euglossa s. str., E. bigibba (Euglossella), and E. hyacinthina (Glossurella grade), 
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the contour of the prothoracic margin is a rather obtuse rounded angle toward the 

lateral area.  The projections of this angle appeared at least thrice in the 

evolution of the genus, but is a notorious feature of Euglossella, in which most of 

the species have a lamellar projection coming off the dorsolateral angle.  This 

feature seems to have appeared independently in E. cognata (Euglossa s. str.) 

and Dasystilbe. 

The mandible of male euglossines (Char. # 1, Fig. 3.4) seems to be 

plesiomorphycally two toothed.  Three toothed mandibles have evolved several 

times, and are characteristic of Euglossella, while also present in E. bursigera 

and allies, and in some Euglossa s. str., notably species belonging to group VIII 

(E. analis and allies) and E. tridentata. 

The set of morphological particularities of the mesotarsi used by Moure (1989) 

to erect Glossuropoda are characters that appeared only in this highly derived 

group nested in Glossura.  The most notable of these is, the notch or dramatic 

emargination of the posterior margin of the mesobasitarsus (Char. # 30, Fig. 

3.16).  The second, third and forth mesotarsal segments also have a particular 

morphology in these group of bees (Chars. # 32, 35).  This peculiar tarsal 

morphology is part of the expression of an evolutionary trend involving 

morphological changes in the male euglossine legs (especially meso and meta), 

all of them related to the recollection, handling, storage and spraying of aromatic 

compounds (Kimsey, 1984; Eltz et al., 2005).   The least modified mesotarsi are 

found in the outgroups, in which all segments beyond the basitarsus are similarly 

shaped as in the other legs.  In Euglossa s. lat. a deep invagination on the distal 
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inner margin of the mesobasitarsus appears (Char. # 31), making the 

mesobasitarsus-second mesotarsomere joint much more movable inwards.  A 

good number of Euglossa s. lat. male museum specimens have the mesotarsi 

coiled inwards in both legs (author’s personal observation), perhaps adopting the 

position in which these are held while transferring the collected chemicals 

(Kimsey, 1984).  While all species in Euglossella have unmodified second 

mesotarsomeres (as in the outgroups), a further modification appears in all other 

Euglossa s. lat. in which the anterior margin is emarginate proximally (Char. # 

33).  This modification is obviously lost or obscured in Glossuropoda due to the 

compression of the second mesotarsomere.  In Dasystilbe the posterior margin 

of the second tarsomere is also emarginate proximally (Char. # 34).  It is possible 

that the observed evolutionary tendency to acquire extra mobility in the 

mesotarsal segments, as well as adopting a morphology possibly more suitable 

for the successful handling of the collected chemicals, have contributed to make 

Euglossa s. lat. the most diverse genus in the tribe. 

Back to the characters that support Glossuropoda, the suite of characters cited 

by Roubik (2004) in his redefinition of the group, appear for the most part several 

times in different groups in the genus.  A notable example is the width of the 

paraocular lines (Char. # 2, Fig. 3.5).  Only the length of the probasitarsal setae, 

and the inflated mesotibia appear both in the original Glossuropoda of Moure and 

in E. nigrosignata, but yet again, the genitalia and the mesotarsi of the latter have 

no resemblance to Glossuropoda. 
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The character mentioned by Faria and Melo (2007) to challenge the 

subgeneric position of E. stellfeldi, i.e. presence of a circular depression in the 

inner surface of the metatibia (Char. # 44), is only present in a few species in the 

genus, and besides its support of the species group of E. bursigera and allies, it 

is mot useful for the subgeneric assignation of E. stellfeldi (Fig. 3.44). 

Some other characters used in this study provide valuable phylogenetic 

information.  Most species in the genus have almost the same upper and lower 

interocular separation (Char. # 9, Fig. 3.6).  The most notable change in this 

character occurs in the derived Glossura clade (beyond E. annectans), in which 

the lower paraocular distance is slightly, but noticeably longer than the upper 

one, just as is observed in the outgroups.  This reversal towards a widening of 

the lower facial area occurred perhaps to accommodate the mouth parts 

associated with a particularly long labiomaxillary complex.  Although the 

characters here analyzed pertain exclusively to males, measurements of female 

specimens confidently identified as belonging to Glossura and other Euglossa s. 

lat. groups, show the same upper and lower interorbital distances as the males.  

This is relevant in terms of determining the possible taxonomic affiliation of the 

oldest fossil Euglossa, E. moronei (Engel, 1999), which is a female specimen.  

Measurements of the interocular distances of pictures of the specimen show the 

same character state as species of Glossura.  Although more evidence would be 

necessary to accurately assign this fossil specimen to any subgenus, it is quite 

possible that it belongs to Glossura.  It must be mentioned that the only extant 

orchid bee in the West Indies, E. jamaicensis, is a species of Glossura. 
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Among the genitalic characters, the seventh metasomal sternum, in most 

species in the genus, as well as in the outgroups, bears setae on the discal edge 

(Char. # 57), but this condition changes to a totally bare sternum four times in the 

tree, most notably in the Glossura clade. 

The morphology of the eighth metasomal sternum (Fig. 3.28), is very 

informative.  The lateral edges of the posterior section of this sternum are 

strongly projected both in the outhgroups, Euglossella and in the new subgenus 

here proposed.  The shape of this changes in all the remaining groups of the 

Glossurella grade (except E. stilbonota) as well as in all Euglossa s. str., in these 

the posterior section has a rather triangular shape with lobes not so projected.  A 

revertion to the deeply invaginated lobes occurs in the Glossura clade (Fig. 3.45). 

 The gonostylar morphology seems to have evolved from a lateral section 

on the gonocoxite oriented sagittaly as it is in Eufriesea and Eulaema.  This is the 

way it is in Euglossella, and in the new subgenus, even when in Euglossella it is 

broadly membranous and in the new subgenus it is quite compressed and 

laminar (Char. # 70, Fig. 3.28).  As mentioned above in the section discussing 

the new subgenus, most other species of the Glossurella grade, Euglossa s. str., 

Glossura (as the new definition here proposed) and Dasystilbe have a lateral 

gonostylar section oriented diagonally on the gonocoxite.  The main evolutionary 

pathway of the gonostylus, as seen in this study, would then be from a condition 

in which the orientation of the lateral section is initially sagittal, membranous but 

not thickened.  Then it took two evolutionary pathways, one in Euglossella in 

which it the lateral section conserved the sagittal orientation, but became broadly 
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membranous with various degrees of dorsal convexity densely covered with 

plumose setae. a second pathway showing a gradual change towards a broadly 

membranous lateral section that creates an inwards oriented and concave 

surface bearing the seta.  In species of Euglossa s. str., Dasystilbe the Glossura 

clade, and notably in E. laevicincta (Glossurella grade), the second pathway 

produces an extended, diagonal, membranous lateral gonostylar section that in 

combination with the ventral lobe produces the “bilobed” appearance  referred to 

by Ospina-Torres et al. (2006).  The vast majority of the species in the genus 

could be described as having a bilobed gonostilar lateral section, because one 

only has to vary the visual plane to appreciate this structure. 

 
Recent molecular phylogeny of Euglossini.— Ramírez et al. (2010) recently 

published a comprehensive molecular phylogeny of the tribe Euglossini, based 

on four loci (cytochrome oxidase, elongation factor 1-α, arginine kinase and RNA 

polymerase II).  They included 80 species of Euglossa s. lat. (including 33 of the 

ones used in the present study), with all the subgenera and species groups 

represented.  Their analysis produced a highly resolved phylogenetic tree based 

on parsimony and Bayesian (single and multiple models of sequence evolution 

for each loci) implementations, both yielding congruent phylogenetic hypotheses.  

Euglossa like all the other euglossine genera, was highly supported as 

monophyletic, with Euglossa appearing in a terminal node as sister to Eulaema.  

The internal structure of their consensus tree for Euglossa is highly resolved, and 

in many instances congruent with the phylogenetic hypothesis here presented as 

can be seen by comparison of the trees in Fig. 3.46.  Both studies recover 
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Euglossella and Euglossa s. str. as monophyletic, besides the monotypic 

Dasystilbe.  The molecular analysis also shows Glossura and Glossurela as 

paraphyletic, and in the case of Glossura even the same clades (i.e. 

Glossuropoda and Glossura Vf species group) are nested within it, rendering it 

paraphyletic.  Their tree, however, shows Dasystilbe as sister to Euglossella in a 

clade sister to the rest of the genus, although they state that this position comes 

when using a locus-specific model of evolution, while when a single model of 

evolution is used for all loci, Dasystilbe is recovered as sister to all other 

Euglossa s. lat.  Either position in the basal section of the tree is at odds with the 

position of Dasystilbe in the present morphology-based analysis.  Interestingly 

this conflict supports the original opinion of Dressler (1978b) who referred to E. 

villosa as intermediate between Euglossella and Glossura, a finding that made 

him erect a different subgenus for this species.  Pure morphological characters 

show also a mosaic of features in Dasystilbe, although the genital structures, 

especially the gonostylus, are much more like the derived situation found in 

Euglossa s. str. and the Glossura clade.  Only more information or combined 

analysis of both morphological and molecular data could possibly give a more 

conclusive solution to the phylogenetic position of Dasystilbe.  Glossuropoda is 

stated to be monophyletic by Ramírez et al. (2010), but missing E. nigrosignata 

as part of the analysis, leaves Glossuropoda in the sense of Roubik (2004) non 

comparable with the results of the present study where that definition of 

Glossuropoda is not recovered as monophyletic.  So the monophyletic 

Glossuropoda recovered in the molecular study corresponds only to the definition 
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of Moure (1989).  The heterogeinity of Glossurella is evident also in the 

molecular tree.  In their analysis, no distinction is made for the different informal 

species groups mentioned by Dressler (1982c) when erecting Glossurella. 

The new subgenus here proposed is not completely congruent with the 

molecular phylogenetic hypothesis of Ramírez et al. (2010).  From the Vb 

species group of Dressler (1982c), they included E. fuscifrons, E. gorgonensis, E. 

oleolucens, E. paisa, E. samperi and E. stilbonota, only three of them coincident 

with the sampling in the present study.  As can be seen in Fig. 3.46, the clade 

that would be equivalent to the new subgenus in the molecular tree includes E. 

stilbonota, and excludes E. gorgonensis.  The position of E. stilbonota as sister to 

all other species of this clade in the molecular tree can be defended from a 

morphological perspective as features of the mesotibial patches, and the 

morphology of the metafemur are shared by all of these species.  The exclusion 

of E. gorgonensis from this clade seen from a morphological point of view is 

more controversial, since this species bears not only external morphological 

features shared by all species in the clade as recovered in the morphology tree, 

but also genitalic features not found elsewhere in the tree.  The new subgenus as 

proposed above is obviously based on morphological features, and although 

susceptible to change by subsequent analyses, it is here argued that it must 

include E. gorgonensis, for the reasons just mentioned. 

The molecular phylogenetic hypothesis of Ramírez et al. (2010), was also 

used by the authors to infer lineage diversification using fossil-calibrated 

molecular clocks, for which they used Euglossa moronei, a fossil from Dominican 
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amber (Engel, 1999) to determine the minimum age constraint for Euglossa s. 

lat.  Although there is no absolute certainty of the subgeneric association for this 

fossil, as was discussed above, it is quite possible that it belongs to Glossura, 

making it part of a rather derived group within the genus, thus clearly having an 

impact on the consideration of minimum age. 

It should not be overlooked that besides the mentioned conflicts in 

phylogenetic positions of some groups, notably Dasystilbe, the molecular 

phylogenetic hypothesis of Ramírez et al. (2010) is remarkably coincident with 

the one presented in this morphological study.  A combination of both sources of 

information would likely reinforce the phylogenetic hypothesis that both 

separately support, and would give a more conclusive outcome. 

 

Phylogeny and distribution.— The distribution of every species used in the 

analysis was associated with their positions in the consensus tree in order to 

determine possible associations of particular clades with any of the previously 

detected biogeographical components of the Neotropical region.  Species not 

included do not contradict the distributional information as shown.   As can be 

seen in Fig. 3.37, the two non monotypic subgenera previously established, and 

supported in this study as monophyletic, Euglossella and Euglossa s. str., plus 

Glossura as proposed in this study, include species found in all the areas, either 

as exclusive or widespread.  On the other hand, the new subgenus here 

proposed consists of species mainly distributed in Central America and the 

Choco (northwesten southmerica on the Pacific shore).  Additionally, E. paisa is 
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found only in the Colombian Andes, while E. fuscifrons is distributed in the 

western Amazonian region.  The Andean species could perhaps be considered 

as part of the Central America-Choco region, but E. fuscifrons would constitute 

the only Amazonian member of this clade.  If E. stilbonota is included in this new 

subgenus, as suggested by some morphological features and by the molecular 

tree of Ramírez et al. (2010), a northern Amazonian element would also be 

added to this group.  Interestingly the remaining species of the Glossurella grade 

are also distributed only in the Central America-Choco area and the Northern 

Amazon.  Ramírez et al. (2010) by using model-based likelihood inferences over 

their molecular phylogeny, somehow suggest an Amazonian origin for most 

groups with repeated dispersion towards the other regions.  Phylogenetic 

comprehensive analysis of each monophyletic assemblage would be necessary 

in order to propose more accurately the area or areas where each clade 

originated. 

 

Phylogeny and orchids.— Perhaps the most remarkable biological feature of 

euglossine bees is the collecting behavior of the males, in which they visit floral 

and non-floral sources gathering perfumes that are later exposed during mating 

behavior (Dressler, 1982a; Eltz et al., 2005).  Orchid flowers seem to be the main 

source of aromatic compounds for the male bees, hence the common name 

“orchid bees”.  The pollinator services of the bees are necessary for the 

reproduction of the orchids, but the bees are not limited to these plants as 

sources of the chemical compounds (Ackerman, 1983; Whitten et al., 1993; 
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Pemberton and Wheeler, 2006; Cappellari et al., 2009).  The perfumes are also 

known to be gathered from non-floral sources such as rotting plant tissue, fruits, 

seeds, leaf litter, bark wounds, insecticides, fragrant leaves and terrestrial 

mushrooms (Roberts et al., 1982; Ackerman, 1983; Whitten et al., 1989, 1993; 

Pemberton and Wheeler, 2006; Capellari and Harter-Marques, 2010).  The floral 

records for orchids visited by the species included in the phylogenetic study show 

that most species for which records exist (Fig. 3.38), visit a varied taxonomic 

array of orchid plants, which only strengthens the idea of non-dependence on a 

single source by the bees. 

 
Conclusion.— The external morphological set of characters used in this study, a 

combination of the broadly used, noteworthy secondary sexual features, and the, 

for the first time assessed, internal genitalic characters of the males of Euglossa 

s. lat., provide a significant source of information that produced a comprehensive, 

highly resolved phylogenetic hypothesis for the genus.  The major impact of this 

study is in respect to the naturalness of the six subgeneric taxa previously 

created.  Of these, besides the monotypic Dasystilbe, only two (Euglossella and 

Euglossa s. str.) are supported as natural groups, keeping their definitions as 

before this study.  Glossura, which is recovered as paraphyletic, is here 

redefined to include Glossuropoda (sensu Moure) and a species group of 

Glossurella, which together compose a monophyletic assemblage.  Glossurella is 

recovereded as a heterogeneus paraphyletic group, and this subgeneric name 

should only be applied to the species group encompassing E. bursigera and 

allies, which form a monophyletic assemblage.  A new subgenus is here 
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proposed for the basal monophyletic clade of the Glossurella grade, based on 

the distinctive morphology of the gonostylus and the metafemur.  The remainder 

of the species of the paraphyletic array, previously regarded as part of 

Glossurella, remain as Euglossa incertae sedis, until a more conprehensive 

phylogenetic study, including all the relevant known species, is undertaken.  The 

phylogenetic hypothesis here presented also allows elucidation of the evolution 

of characters previously outweghted in the creation of subgeneric groups.  A 

series of changes in the morphology of the legs, notoriously including shape of 

the felty patches, shape of the mesotarsal segments, and shape of the metatibia 

are reveal by the phylogenetic hypothesys here produced.  Also noteworthy is 

the sequence of evolutionary changes in the morphology of the eighth 

metasomal sternum and the lateral section of the gonostylus.  Most of the 

phylogenetic information provided by this morphological analysis is corroborated 

by the recent molecular phylogenetic study by Ramírez et al. (2010). 
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Potential distribution of orchid bees outside their native range: The cases 

of Eulaema polychroma (Mocsáry) and Euglossa viridissima Friese in the 

United States (Hymenoptera: Apidae) 
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INTRODUCTION 

An appealing bright metallic coloration is a trademark of the orchid bees 

(Euglossini), notwithstanding the fact that they owe their name to the remarkable 

behaviour of males, which visit flowers of Orchidaceae to gather fragrances 

offered by the plants in exchange for pollination services.  Aside from their 

aesthetic and catchy floral preferences, the phylogenetic position and 

concomitant biogeographical implications of the group are deserving of attention.  

According to morphological, behavioural, and palaeontological evidence, as well 

as combined analyses with DNA sequences, euglossines are the modern (crown 

group) representatives of the basal lineage of the corbiculate clade (e.g., Schultz 

et al., 1999, 2001; Engel, 2001a, 2001b; Noll, 2002; Cardinal and Packer, 2007).  

They are also the only strictly neotropical corbiculate tribe (Michener, 1979, 

2007).  The just over 200 currently recognized species (Ramírez et al., 2002; 

Roubik and Hanson, 2004; Nemésio and Silveira, 2007) are encompassed in five 

genera, of which the monotypic and cleptoparasitic Aglae is restricted to South 

America (with an uncertain report from eastern Panama), while the remainder 

(Eufriesea, Euglossa, Eulaema, and the cleptoparasitic Exaerete) range from the 

tropical areas of Mexico to northern Argentina and subtropical southeastern 

Brazil (Michener, 2007; Rebêlo, 2001; Roubik and Hanson, 2004).  The modern 

bee fauna of the Caribbean Islands is practically devoid of orchid bees except for 

the presence in Jamaica of the endemic Euglossa jamaicensis Moure (Engel, 

1999; Rebêlo 2001). 
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As in any diverse group of organisms, some species exhibit widespread 

distributional ranges, while others are restricted to varying degrees to certain 

areas.  A good example of a euglossine with a widespread distribution is 

Eulaema polychroma (Mocsáry), which can be found from northern Mexico to the 

Amazon Basin (e.g. Roubik and Hanson, 2004), on the other hand Euglossa 

viridissima Friese, distributed from northern Mexico to Costa Rica, while not 

dramatically restricted is nonetheless notably absent from South America.  These 

two species of orchid bees have in recent years attracted attention in regard to 

their distribution since specimens of both have been collected outside of their 

natural areas of occurrence although each species under different 

circumstances.  The northern limit for viable populations of both species has 

been reported at around 27° N in the Mexican states of Sonora and Chihuahua at 

the base of the Sierra Madre Occidental where tropical deciduous forest, among 

other types of vegetation, can be found in the lowlands (Búrquez, 1996).  In April 

of 1994 a sole male of E. polychroma was captured in Silverbell, Arizona at 32° 

N, far into the Sonoran Desert, over 550 km North of the supposed natural limit of 

the species (Minckley and Reyes, 1996).  Euglossa viridissima appears to have 

been accidentally introduced to southeastern Florida where some males were 

first collected in Fort Lauderdale during the summer of 2003 and seemingly have 

become established (Skov and Wiley, 2005; Pemberton and Wheeler, 2006).  

Aside from an old record of E. polychroma in southernmost Texas (Minckley and 

Reyes, 1996; Michener, 2007), both cases represent the only records of 

euglossines in the United States.  While there have not been other collections of 
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E. polychroma in Arizona besides the male mentioned above, and the presence 

of E. viridissima in Florida clearly corresponds most likely to an accidental 

introduction, both represent the occurrence of the respective species outside of 

their natural ranges.  The reported tight association between euglossine males 

and specific orchid species in their native range has been addressed as a 

constraint for the successful colonization of new areas by orchid bees (or their 

orchid counterpart), and as such the nearly absolute absence of euglossines in 

the Caribbean Islands has been explained in this context (e.g. Janzen, 1975; 

Rebêlo, 2001).  However, the established population of E. viridissima in Florida, 

where the orchids to which this species is associated in its native range do not 

occur, challenges this point of view (Pemberton and Wheeler, 2006).  There are 

a large variety of ecological and historical factors that affect the distribution of an 

organism, and as such hypotheses on the impact of any given observed factor 

can be ventured (in this case the supposed euglossine-orchid interdependence) 

at risk of disregarding other variables or the interaction of all of them (Soberón 

and Peterson, 2005).  However, comprehensive approaches that unite the 

diversity of biotic, abiotic, as well as historical factors shaping the distribution of a 

species, such as species distribution modelling (SDM), assuredly give a more 

accurate account of those parameters determining the presence/absence of the 

habitat of an organism in different geographic regions.  SDM has already been 

applied to predict the potential distribution of Megachile sculpturalis Smith, 

another adventive bee species in the United States (Hinojosa-Díaz et al., 2005).  

Here SDM is applied to predict the potential distribution of E. polychroma and E. 
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viridissima in the United States, the first as a possible extension of the 

northernmost natural range of the species, and the second as an already 

established adventive species. 

 

METHODS 

Distributional data.― A database of 88 locality records for E. viridissima and 

104 for E. polychroma was compiled based on historical specimens from different 

collections and existing literature.  Locality data of the natural range for both 

species were taken from specimens deposited in the following collections: Snow 

Entomological Collection, Division of Entomology, University of Kansas Natural 

History Museum, Lawrence, KS, USA; Colección Himenopterológica, Museo de 

Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de 

Ciencias, UNAM, México D.F., México.  Published records were taken from 

Búrquez (1996), and Oliveira (2000).  Prior to modelling, in order to avoid the use 

of imprecise taxonomic or distributional information, all specimens were 

taxonomically reviewed and all historical records without geographical 

coordinates were georeferenced via consultation of online resources 

(http://www.fallingrain.com/world/, and http://www.tageo.com/index.htm) and 

Google Earth (http://earth.google.com/). 

The data occurrence for E. viridissima in Florida were taken from Skov and 

Wiley (2005) while the locality information for the only record of E. polychroma in 

Arizona was taken from the specimen deposited at the Snow Entomological 

Collection, Division of Entomology, University of Kansas Natural History 
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Museum.  The locality data of the old record from Brownsville, Texas for E. 

polychroma was taken from Minckley and Reyes (1996).  None of these records 

were included in the set of data used to produce the model. 

 

Potential distribution.― Using occurrence data and environmental variables, 

Species Distribution Models (SDM) can be used to model the potential 

distribution of species by characterizing the environment where the species can 

potentially occur in geographic space (Araújo and Guisan, 2006; Kearney, 2006). 

This is based on the assumption that the known distribution of a species (i.e., 

recorded presence and/or absence) provides sufficient information to 

characterize its environmental requirements. A great variety of methods for 

modelling species’ potential distributions exist (Guisan and Zimmerman, 2000; 

Elith et al., 2006). Here Maxent is used (Phillips et al., 2004; 2006) to estimate 

the potential geographic distributions for our target species, since recent studies 

have shown that Maxent performs better at discriminating between suitable and 

unsuitable areas than do other SDM methods (Elith et al., 2006; Phillips et al., 

2006; Hernandez et al., 2006). While Peterson et al. (2007) suggest that Maxent 

may overfit the data, Phillips (2008) noted that while they show overfitting in one 

circumstance this does not mean that the same will be true for different sets of 

data. Presently, there are at least 16 different methods for predicting species 

distributions (SDM).  The data were also run using GARP and showed no 

significant difference from the results produced  with Maxent, so the general 

results are discussed based on this.   
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Maxent makes predictions using only species presences (Phillips et al., 2004; 

2006). Maxent models a probability distribution (potential distribution) of habitat 

suitability over the study area. The modelled potential distribution must agree 

with  

 

 

 

Fig. 4.1.  Training data to obtain the potential distribution of Eulaema polychroma 
(Mocsáry).  A. Prediction based on subset 1 (squares), tested with subset 2 
(triangles).  B. Prediction based on subset 2 (triangles), tested with subset 1 
(squares).  The dotted circles represent the two localities in the United States, 
presumably out of the natural range for the species (similarity scale as in Fig. 
4.2). 

 

everything that is known about the environment and the known distributional data 

of the species, thereby avoiding placement of any unfound constraints. The best 

potential distribution of the species is the one that is closest to uniform (i.e., 

nearest to having equal probabilities of occurrence across the entire study area) 

subject to the constraint that the expectation for each environmental variable 

included in the modelled distribution must match its empirical average over the 

A B
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known distributional data. Thus, the probability calculated in Maxent is not one of 

occurrence, but rather a value representing the relative suitability of the 

environmental conditions for the target species in each pixel in the study area as 

a function of the environment in all of the known distributional units. Maxent 

assigns a probability of habitat suitability per each grid cell in the study area, 

ranging from 0 to 1. The cell with a value of 1 is the most suitable, while cells 

close to 0 are the least suitable within the study area. (See Phillips et al. (2006) 

for a detailed mathematical formulation of Maxent). 

The estimation of the potential distribution of E. viridissima and E. polychroma 

was produced using Maxent version 3.0  ----------------------------------------------------- 

(http://www.cs.princeton.edu/~schapire/maxent/), with the default modelling 

parameters (convergence threshold = 105, maximum iterations = 500, 

regularization value β = auto) following Phillips et al. (2006). 19 Bioclimatic 

variables were used as predictors. The bioclimatic variables result from global 

land area interpolation of climate point data (years 1950–2000) at a spatial 

resolution of 2.5 arc-min (Hijmans et al., 2005; available at 

http://www.worldclim.org). All variables were clipped to include North, Central, 

and South America, along with the Antilles at a resolution of approximately 1x1 

km2 grid cells. All the probability thresholds of the potential distributions were 

considered in order to analyze the habitat suitability of the areas in the USA 

where the species have been recorded. Model results were processed and 

visualized using the GIS software ArcView 3.2 (ESRI, 1999) and ArcGIS 9.1 

(ESRI, 2005). 
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Model predictivity was evaluated by splitting available occurrence data for the 

species in their native ranges. Following Peterson et al. (2008) a random sample 

of 50% of the known occurrences was set aside in order to evaluate (testing 

data) the first predictive map that was modelled with the remaining 50% of known 

data. This analysis was run twice for each species, the first with subset 1 

predicting subset 2 and vice versa (Fig. 4.1). Model predictions were evaluated 

by overlaying the random 50% of known occurrence points that had been set 

aside (testing data) prior to using Maxent. We calculated the Area Under the 

Curve (AUC) in Receiver Operating Characteristics plots (ROC) (Fielding and 

Bell, 1997) to evaluate the models. ROC is a threshold–independent measure 

that evaluates the sensitivity (probability that the model produces a positive result 

in a positive locality) versus the specificity (probability that the model produces a 

negative result in a negative locality) of a model when presented with new data. 

A ROC plot is obtained by plotting all sensitivity values on the y–axis against their 

equivalent (1–specificity) values for all available decision thresholds on the x–

axis. The theoretically perfect result is AUC = 1, whereas a test performing no 

better than random yields AUC = 0.5. AUC and ROC plots were calculated in 

SPSS 12.0. Since AUC calculations require absences, we created “pseudo-

absences” using the random point generator extension in ArcView 3.2 (ESRI, 

1999). Pseudo-absences (used in model evaluation only) were defined in areas 

where the species has not been recorded. The number of pseudo-absences was 

equal to the number of known occurrence data that was used to run the models. 
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Furthermore, AUC scores obtained by splitting the data to run the models is 

another way to demonstrate that a powerful SDM is being used. 

GARP is a machine–learning procedure based on a genetic algorithm (Genetic 

Algorithm for Rule set Production; Stockwell and Noble, 1992), which divides 

distributional data into training and test data sets and works in an iterative 

process to develop a set of rules through evaluation, testing, and incorporation or 

rejection. Rules that come from one or more types (atomic rules, logistic 

regression, and BIOCLIM  rules) are chosen, applied to the training data; rules 

develop or evolve through random processes until the best possible model is 

found or a set of iterations are performed. For each of these runs, GARP 

randomly selected 70% of the training dataset presences to generate the models 

that were validated with the remaining 30%. Because each run results in a 

different prediction due to the genetic–based algorithm, a final map product was 

based on the best results from 100 runs for each species. Following Anderson et 

al. (2002) the 20 best models were selected from the 100 runs. The best–subset 

models included runs which had no more than 5% omission error (false negative) 

using validation data held back by GARP. These runs were sorted with less than 

5% omission error by their commission index (false positives) and selected 10 

models on each side of the median commission index. These 20 best–subset 

models were exported as ArcGIS grids, where they were summed to obtain a 

unique map per species with cell values from 0 to 20 (20 indicates that all 20 

models scored the species as present in that cell). The GARP predictions were 

produced with DesktopGARP (http://www.lifemapper.org/desktopgarp/). 
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RESULTS 

Maxent.—The potential distribution maps obtained based on the two random 

subsets of available occurrence data for both E. polychroma and E. viridissima 

were similar in their general predictions (e.g., Fig. 4.1).  Model evaluation showed 

high scores of performance (AUCs > 0.9). Thus, we considered the global 

geographic implications, that is, the species probability of habitat suitability, and 

therefore potential distribution in non-native ranges in the United States. 

The probability distributions for both species after running Maxent are shown 

in figures 2–4.  For E. polychroma, of the two localities in the United States, 

Silverbell, Arizona shows zero probability of habitat suitability between known 

and potential habitats (a complete absence of suitable environmental conditions 

for the species – note that in figure 3 the lightest shading covers the range from 

0–0.09 but for the Arizona locality the actual value is zero), while Brownsville in 

the southernmost tip of Texas presents a probability of habitat suitability in terms 

of known and potential habitats of 0.1 (probability of habitat suitability slightly 

higher west towards the coast), a value outside the range of probabilities of other 

known occurrences. Besides the two tested localities, the analysis shows 

suitable conditions for the species in southern Florida (Fig. 4.2). According to our 

model, there are areas potentially suitable for E. polychroma to inhabit as far 

north as around 29° N following the pacific slope of the Sierra Madre Occidental 

in Mexico (Fig. 4.3). The descriptive statistics based on Maxent probability of 

habitat suitability for E. polychroma were: mean = 0.6531; standard deviation = 



 132

0.176; minimum value = 1.3 (Costa Rica, Torrialba Olivera), maximum value = 

0.93 (Mexico, Hidalgo, 1 km Tlanchinol-Apantlazol). 

The potentiality of E. viridissima to be distributed in southern Florida, 

according to probability of habitat suitability as predicted by Maxent, corresponds 

to a maximum of around 0.3 in the southwestern section of the peninsula with 

lower similarity both eastward and northward.  Nowhere else in the continental 

United States does the model predict suitable habitat for this species (Fig. 4.4). 

The descriptive statistics based on Maxent probability of habitat suitability for E. 

viridissima were: mean = 0.6679; standard deviation = 0.2084; minimum value = 

1.9 (Mexico, Hidalgo, Actopan), maximum value = 0.93 (Mexico, Guerrero, 

Chilpancingo de los Bravo Omiltemi). 

Garp.—The potential distributions for both species as predicted by Garp are 

mainly coincident with the results produced with Maxent.  For Eulaema 

polychroma eight of the 20 best models predicted similarity between the known 

and predicted habitats for Brownsville.  No similarity was found for Silverbell, 

Arizona (Fig. 4.5). 

For Euglossa viridissima 16 of the 20 best models predicted the presence of 

this species in Florida (Fig. 4.6). 
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Fig. 4.2.  Final potential distribution of Eulaema polychroma (Mocsáry) according 
to Maxent based on all of the data and accordingly used for interpretative 
purposes (a test of this model is depicted in Fig. 4.1). The squares and triangles 
correspond to the totality of the locality data entry used to generate the model.  
The dotted circles represent the two localities in the United States, presumably 
out of the natural range for the species.  The gray scale indicates the similarity 
between known and predicted habitats, darkest grey represents areas with the 
highest probability of habitat suitability and lighter grey shows lower probabilities 
of habitat suitability. 
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Fig. 4.3.  Northernmost section of the potential distribution of Eulaema 
polychroma (Mocsáry) according to Maxent (a magnification of Fig. 4.2 focusing 
on the specific target area using a different gradient scale to emphasize the 
exceedingly low probability of habitat suitability within the United States, the 
actual values for Arizona are zero).  The squares and triangles correspond to a 
subset of the locality data entry used to generate the model across all the natural 
range of the species.  The dotted circles represent the two localities in the United 
States, presumably out of the natural range for the species. 
 

 

Fig. 4.4.  Final potential distribution of Euglossa viridissima Friese according to 
Maxent based on all the data (an identical test as described for E. polychroma, 
Fig. 4.1, was undertaken for E. viridissima but not illustrated).  The squares and 
triangles correspond to the totality of the locality data entry used to generate the 
model.  The dotted circles represent the records for the adventive population of 
the species in Florida. 
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Fig. 4.5.  Final potential distribution of Eulaema polychroma (Mocsáry) according 
to Garp based on all of the data.  The dotted circles correspond to the totality of 
the locality data entry used to generate the model.  The dotted squares represent 
the two localities in the United States, presumably out of the natural range for the 
species. 
 

 

Fig.4. 6.  Final potential distribution of Euglossa viridissima Friese according to 
Garp based on all of the data.  The dotted circles correspond to the totality of the 
locality data entry used to generate the model.  The dotted squares represent the 
adventive population of the species in Florida.. 
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DISCUSSION 

Euglossine bees stand out visually as a component of local bee faunas 

because of the metallic bright coloration of most of the species and the robust 

bodies of several of them; as such they would not be overlooked if they appear in 

areas where they are not normally found.  The cases of E. polychroma and E. 

viridissima are relevant in these terms as both exemplify cases of records well 

beyond their known natural boundaries.  The presence of both species in the 

continental United States (with peculiarities corresponding to each species) has 

interesting implications not only in terms of the current distribution of the 

organisms, but also in respect to their biogeographical history and biology. 

In regard to E. polychroma, the male collected at Silverbell, Arizona 

corresponds, according to our analysis, to an anomalous isolated case since 

there is null similarity between the known and the predicted habitat, meaning 

there is a complete absence of suitable environment for stable populations of the 

species to persist in the zone.  This is in agreement with the earlier interpretation 

of Minckley and Reyes (1996).  This anomalous record has to be attributed to the 

highly vagile nature of euglossine bees (Janzen, 1971; Dressler, 1982), as the 

specimen must have undergone a long distance solitary dispersal from some of 

the northern areas of subtropical vegetation of the Sierra Madre Occidental in 

Mexico, a situation supported by the heavily worn wings of this particular bee 

specimen (Minckley and Reyes, 1996).  It is also noticeable that no other records 

of E. polychroma have been reported from southern Arizona despite the annual 

bee surveys as part of the “Bee Course” offered at the Southwestern Research 
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Station, near Portal, Arizona, or the continuous bee (and other pollinator) 

monitoring activities at the University of Arizona, Tucson.  All of this corroborates 

the ideas that persistent populations of this bee species in southern Arizona are 

entirely absent.  It seems plausible that the specimen captured in Silverbell, 

Arizona came from the northernmost sections of the natural range of the species 

or was accidentally introduced from elsewhere.  The old record from Brownsville, 

Texas, on the other hand, could well belong to a persistent population since, 

according to our model, there are environmental conditions for the species to 

subsist there.  However, the known versus predicted probability of habitat 

suitability is rather low in that region and is shown as an isolated spot separated 

from the remainder of the potential distribution area; interestingly the male of E. 

polychroma from Brownsville was collected 100 years ago (Minckley and Reyes, 

1996), and no other record from the area (either in the United States or in 

Mexico) is known.  As such it would not be surprising that this male could have 

also just flown away from some of the areas south of the Brownsville region 

along the Mexican coast or on the eastern face of the Sierra Madre Oriental as 

our model predicts higher probability of habitat suitability in those regions (Fig. 

4.3).  It will be interesting to sample the Brownsville area using baits known to 

attract males of E. polychroma (e.g., Ramírez et al., 2002), as well as sample 

flower patches to look for the presence of females to corroborate if there are 

populations of the species there.  The same should be done in the areas of the 

Pacific slope of the Sierra Madre Occidental at around 29° N to assert if that 

region would be the absolute northernmost range of E. polychroma and 
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concomitantly of any euglossine bee.  Interestingly enough the southern part of 

the peninsula of Baja California has, according to our model, suitable conditions 

for this species, especially the southernmost tip (Fig. 4.3).  However, this species 

has never been reported from there and, although in terms of linear distance, this 

area is somewhat similarly distant from known natural areas of occurrence of the 

species as is Silverbell, Arizona, the Gulf of California certainly represents a 

fundamentally different form of barrier.  Nonetheless, it would be revealing to 

sample the southern tip of the peninsula to clarify the absence or presence of E. 

polychroma. 

Euglossa viridissima was introduced to southeastern Florida most likely 

accidentally (Skov and Wiley, 2005) and it has become naturalized there 

(Pemberton and Wheeler, 2006).  Skov and Wiley (2005), predicted a spread of 

the species from this localized area, stating that there seem to be all the required 

environmental conditions for the species to subsist, although they did not venture 

to give more details on their prediction or the area encompassed.  Our model of 

potential distribution of the species projected over Florida and nearby areas in 

the southeastern United States shows suitable conditions for E. viridissima in 

roughly half of the Florida peninsula (Fig. 4.4).  Interestingly, the area where the 

species was initially established with success is not the one with the highest 

probability of habitat suitability (the southwest of the peninsula shows the 

highest, as mentioned above).  According to this, E. viridissima will potentially 

spread to occupy the whole tip of the Florida Peninsula, south of a roughly 

diagonal boundary line between nearby 27° N on the eastern side and around 



 139

28°45’ N on the western side.  These predictions are initially a base from which 

the actual future distribution of the species could vary.  Our results do not show 

any possibility for the species to spread out of Florida.  Naturally, it will be 

interesting to test this prediction with careful monitoring of the species as it 

continues to reach new areas within Florida. 

The distributional patterns of orchid bees in general are deserving of attention.  

Regarding their phylogenetic position, as sister to all other corbiculate apines 

[according to several analyses (e.g., Schultz et al., 1999, 2001; Engel, 2001a, 

2001b; Noll, 2002; Cardinal and Packer, 2007)], their restriction to the neotropics 

is interesting as the other tribes are either Pantropical, Palaearctic, Ethiopian, 

and/or Oriental.  No biogeographical studies of euglossines under a phylogenetic 

umbrella exist; however, there are some noticeable differences in faunistic 

composition of different neotropical areas.  At the generic level the most obvious 

is the restriction of Aglae to the Amazon basin, while based on a quantitative 

approach Nemésio and Silveira (2007) have shown the differential composition of 

the euglossine fauna in different areas of the neotropics.  One interesting point is 

the virtual absence of orchid bees in the Caribbean Islands, as Jamaica harbours 

the only extant euglossine among those islands.  Some dubious records of two 

other species have been reported also from Jamaica, but they most likely 

correspond to misidentifications or mislabelling of specimens.  Beyond the 

dispersal capacities of euglossines, which obviously play a central role in their 

ability to colonize new areas, some authors have invoked the seemingly tight 

euglossine-orchid association as a handicap for the bees to establish in the 
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Antilles, as they would not succeed unless their orchid counterparts existed on 

the target island or colonize it nearly simultaneously (e.g. Janzen, 1975; Rebêlo, 

2001).  The presence and naturalization of E. viridissima in Florida attests to the 

non-binding dependence on orchids as perfume sources for the bees, since 

perfume orchids do not occur naturally in that region and it has been shown that 

the male bees gather chemicals from other plant sources, not necessarily 

flowers, to acquire an assemblage of chemicals similar to what they amass in 

their natural range (Pemberton and Wheeler, 2006).  Other evidence exists of 

euglossines gathering chemicals from sources other than orchid flowers 

(Dressler, 1979; Whitten et al., 1993; Roubik, 1998), but as Pemberton and 

Wheeler (2006) assert, the persistence of E. viridissima in Florida shows for the 

first time the ability of the bees to live in an environment without perfume orchids.  

In terms of the Caribbean Islands, this demonstrates that euglossines could have 

persisted there beyond the presence or absence of perfume orchids and the 

current low euglossine diversity should be explained more accurately by 

historical events.  The potential distribution models produced here for our two 

orchid bee species subjects show indeed the presence of suitable habitat for 

both in most of the Caribbean Islands (Figs. 2, 4).  Despite the current absence 

of orchid bees on the island of Hispaniola, the fossil record reveals the presence 

of two species (one Euglossa, one Eufriesea) as late as the Early Miocene 

(Engel, 1999), but the different geological components of the modern island were 

subject to major tectonic events that might have resulted or played a significant 

component in the extinction of these species from the region. 
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The cases of the adventive presence of both E. polychroma and E. viridissima 

show how historical and ecological variables act to influence the distribution of 

this lineage of bees.  The presence of suitable environment for E. viridissima in 

Florida as predicted by our model coincides entirely with the “naturalization” of 

the species there and aids our understanding of the ecological requirements of 

the species (no strict dependence on perfume orchids).  In turn, the absence of 

suitable habitat for E. polychroma in Arizona as our model predicts, matches the 

lack of further records for the species beyond the isolated case here described.  

In any case, the persistence and future spread of E. viridissima in Florida, as well 

as the continuous monitoring of the bee fauna in southern Arizona and 

southernmost Texas will be the ultimate arbiter of our models.  It is also hoped 

that these methodological tools may be employed to analyze other recent 

records of euglossines collected outside of their previously understood 

distributions (e.g., Nemésio and Silveira, 2004; Anjos-Silva, 2008). 
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Appendix 1. List of species studied in the comparative genital morphology 
section (Chapter 2). 
 
 
Species studied by direct examination of dissected specimens. 

 
E. (Dasystilbe) villosa Moure 
 
E. (Euglossella) bigibba Dressler 
E. (Euglossella) cosmodora Hinojosa-Díaz & Engel 
E. (Euglossella) cyanea Friese 
E. (Euglossella) cyanura Cockerell 
E. (Euglossella) decorata F. Smith 
E. (Euglossella) granti Cheesman 
E. (Euglossella) mandibularis Friese 
E. (Euglossella) perpulchra Moure & Schlindwein 
E. (Euglossella) perviridis Dressler 
E. (Euglossella) polita Ducke 
E. (Euglossella) viridis (Perty) 
 
E. (Glossurella) allosticta Moure 
E. (Glossurella) asarophora Moure 
E. (Glossurella) augaspis Dressler 
E. (Glossurella) bursigera Moure 
E. (Glossurella) dodsoni Moure 
E. (Glossurella) gorgonensis Cheesman 
E. (Glossurella) hyacinthina Dressler 
E. (Glossurella) laevicincta Dressler 
E. (Glossurella) macrorhyncha Dressler 
E. (Glossurella) nigrosignata Moure 
E. (Glossurella) obtusa Dressler 
E. (Glossurella) oleolucens Dressler 
E. (Glossurella) parvula Dressler 
E. (Glossurella) sapphirina Moure 
E. (Glossurella) stilbonota Dressler 
E. (Glossurella) turbinifex Dressler 
E. (Glossurella) viridifrons Dressler 
 
E. (Glossura) annectans Dressler 
E. (Glossura) imperialis Cockerell 
E. (Glossura) piliventris Guérin 
E. (Glossura) stellfeldi Moure 
 
E. (Glossuropoda) intersecta Latreille 
E. (Glossuropoda) rugilabris Moure 
 
E. (Euglossa) cognata Moure 
E. (Euglossa) cordata (Linnaeus) 
E. (Euglossa) cybelia Moure 
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E. (Euglossa) deceptrix Moure 
E. (Euglossa) hansoni Moure 
E. (Euglossa) iopyrrha Dressler 
E. (Euglossa) mixta Friese 
E. (Euglossa) nigropilosa Moure 
E. (Euglossa) townsendi Cockerell 
E. (Euglossa) tridentata Moure 
E. (Euglossa) viridissima Friese 
 
Aglae caerulea Lepeletier de Saint Fargeau & Audinet-Serville 
Eufriesea caerulescens (Lepeletier de Saint Fargeau) 
Eufriesea auripes Gribodo 
Eulaema polychroma (Mocsáry) 
Eulaema speciosa (Mocsáry) 
Exaerete smaragdina (Guérin-Méneville) 
Exaerete frontalis (Guérin-Méneville) 
 
Bombus sp. 
Anthophora dufourii Lepeletier de Saint Fargeau 
Centris birkmanii Friese 
Centris poecila Lepeletier de Saint Fargeau 
Centris labrosa Friese 
Epicharis metatarsalis Friese 
 
 
Groups consulted in the Literature (for each work cited, all species depicted were used 
for comparative statements in this study) 
 
Eufriesea spp. (Kimsey, 1982) 
Eulaema spp. (Oliveira, 2006) 
Exaerete spp. (Kimsey, 1979) 
Bombus spp. (Ito, 1985; Michener, 1990, 2007) 
Anthophora spp. (Brooks, 1988) 
Centridini spp. (Ayala, 1998) 
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Appendix 2.  List of male external morphological characters included in the 
phylogenetic analysis of the genus Euglossa.  Characters are arranged following 
their location on the body from head to genitalic structures and numbered as they 
appear in the matrix created for the analysis (see Appendix 4).  Character 
numbers appear (in bold face) and  character state codes appear before 
description of either. 
 
Head 
 
1.- Number of mandibular teeth 

2 Two teeth 
3 Three teeth 

 
2.- Presence/absence and structure of paraocular lines 

0 Absent or barely seen as thin marks 
1 Present, incomplete (not reaching horizontal section of epistomal sulcus) 
2 Present, complete (reaching horizontal section of epistomal sulcus), if wider 

apically (proximal to horizontal section of epistomal sulcus) no more than twice 
basal width (near antennal socket) 

3 Present, wider apically, more than twice as base, but not reaching vertical 
section of epistomal sulcus 

4 Present, covering all the area between compound eye and horizontal and vertical 
section of epistomal sulcus 

 
3.- Presence/absence of translucent spots on labrum (labral windows) 

0 Absent 
1 Present 

 
4.- Ratio labrum width/labrum length 

0 0.9<Ratio<1.1 (labrum almost square) 
1 Ratio>=1.1 (labrum wider than long) 
2 Ratio<=0.9 (labrum longer than wide) 

 
5.- Presence/absence and structure of medial ridge of labrum 

0 Present, complete 
1 Present, incomplete (terminating at midpoint) 
2 Absent 

 
6.- Presence/absence of dark integumental spot on labrum (labral macula) 

0 Absent 
1 Present 

 
7.- Ratio width of malar area/diameter of third flagellomere 

0 Ratio<=0.9 (malar area narrower than third flagellomere) 
1 0.9<Ratio<1.1(malar area around as wide as third flagellomere) 
2 Ratio>=1.1 (malar area wider than third flagellomere) 

 
8.- Color of malar area 

0 White (with some dark-brown areas on acetabulum and condyle) 
1 Dark-brown 

 
9.- Ratio upper interocular distance/lower interocular distance 

0 0.9<Ratio<1.1 (upper and lower interocular distances equal) 
1 Ratio>=1.1 (upper interocular distance wider) 
2 Ratio<=0.9 (lower interocular distance wider) 
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10.- Ratio length of first flagellomere/combined length of second and third flagellomeres 

0 Ratio<1.4 (first flagellomere about as long as second and third flagellomeres 
combined) 

1 Ratio>=1.4 (first flagellomere considerably longer than second and third 
flagellomeres combined) 

 
11.- Color of lateral parts of clypeus 

0 White 
1 Same as facial integument color (blue, green, red, etc.) 

 
12.- Length of labiomaxillary complex relative to body 

0 Noticeably shorter than body, at most reaching fourth sternum 
1 About as long as body, sometimes slightly shorter (tip reaching at least posterior 

margin of fifth sternum) 
2 Noticeably longer than body (exceeding apex of metasoma) 

 
 
Mesoma 
 
13.- Shape of dorsolateral angle of pronotum 

0 Obliquely truncate 
1 Not obliquely truncate   

 
14.- Presence/absence and structure of projections on dorsolateral angle of pronotum 

0 Not projected, usually orthogonal, or obtuse (when obliquely truncate) 
1 Projected as an acute prong 
2 Projected as a lamella 

 
15.- Mesoscutellar shape 

0 Lateral margins relatively parallel, arching distally to posterior mesoscutellar 
margin 

1 Lateral margins tapering, arching basally converging to shortened posterior 
scutellar margin 

 
16.- Presence/absence and structure of mesoscutellar furrow 

0 Absent or poorly developed (at most seen as a very weak channel) 
1 Well developed, shallow 
2 Well developed as a deep median channel, not reaching anterior scutellar margin 
3 Well developed as a deep median channel, reaching anterior scutellar margin 

 
 
Legs 
 
17.- Length of setae on posterior surface of probasitarsus 

0 No longer than combined length of second to fifth probasitarsomer 
1 Several setae longer than combined length of second to fifth probasitarsomer 

 
18.- Presence/absence of mesotibial spur 

0 Present 
1 Vestigial, only seen with microscope 
2 Absent, only socket present 

 
19.- Shape of mesotibial border on area where spur is generally found 

0 Unmodified, no projections present 
1 Projected in a spine or lamella-like structure noticeably emarginated 
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20.- Relative width of depressed-tuberculate surface (posterior) of mesotibia respect to 
velvety surface (outer-lateral surface covered with microtrichia) of mesotibia 

0 Depressed-tuberculate surface noticeably narrower than velvety surface 
1 Both surfaces about the same width 
2 Depressed-tuberculate surface noticeably wider than velvety face 

 
21.- Mesotibial build 

0 Not conspicuously inflated, with a noticeable deep depressed-tuberculate area 
adjacent to posterior carina of velvety area 

1 Inflated, tuberculate area adjacent to posterior carina of velvety area not 
deepened but leveled with adjacent integumental surfaces 

 
22.- Presence/absence of posterior tuft of mesotibia 

0 Absent, velvety area (dense microtrichia) occupying the surface where the 
posterior tuft would appear in those species that have it 

1 Absent, anterior and unique tuft extended over the surface where the posterior 
tuft would appear in those species that have it 

2 Present as a structure composed of dense setae sitting in a cavity 
3 Present as a structure composed solely of a cavity 
4 Absent, integument unmodified and bare over the surface where the posterior tuft 

would appear in those species that have it 
 
23.- Depth of cavity of posterior tuft of mesotibia 

0 Tuft cavity shallow, its integument is just slightly lower than the surrounding 
integument 

1 Tuft cavity deep, excavated 
 
24.- Relative size of posterior tuft (or cavity) respect to anterior tuft in mesotibia 

0 Posterior tuft at most half the length (measured as following longitudinal axis of 
mesotibia) of anterior tuft 

1 Posterior tuft more than half as long or as long (but no longer) than anterior tuft 
2 Posterior tuft longer than anterior tuft 

 
25.- Shape of posterior tuft of mesotibia 

0 Roughly circular 
1 Roughly oval, longer axis following longitudinal axis of mesotibia 
2 Polygonal, longer axis following longitudinal axis of mesotibia 
3 Roughly oval, longer axis perpendicular to longitudinal axis of mesotibia 

 
26.- Presence/absence of knob on anterior margin of posterior tuft of mesotibia 

0 Absent 
1 Present 

 
27.- Shape of anterior tuft of mesotibia 

0 Variable shape but never presenting a cleft in anterior margin 
1 Variable shape but always with a cleft in anterior margin, sometimes producing 

two lobes 
 
28.- Third mesotibial tuft between anterior and posterior tufts of mesotibia 

0 Absent 
1 Present 

 
29.- Presence/absence of keel, ridge, carina or elevation on inner surface of 

mesobasitarsus 
0 Absent 
1 Present 
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30.- Shape of posterior margin of mesobasitarsus 

0 Slightly convex, gradually curving distad (looking straight in some species) 
1 Notched, forming a conspicuous emargination in distal half 

 
31.- Shape of distal inner margin of mesobasitarsus at joint with second mesotarsomere 

0 Shallow or no invagination on distal inner margin of basitarsus 
1 Very deep invagination on distal inner margin of basitarsus 

 
32.- Structure of second mesotarsomere 

0 Not compressed 
1 Compressed (widened in such a way that looks somewhat laminar) 

 
33.- Shape of anterior margin of second mesotarsomere 

0 Unmodified, straight or slightly curved 
1 Emarginate proximally 

 
34.- Shape of posterior margin of second mesotarsomere 

0 Unmodified, straight or slightly curved 
1 Emarginate proximally 

 
35.- Presence/absence of lamellae on margins of third and fourth mesotarsomers 

0 Absent 
1 Present 

 
36.- Structure of metatibial organ slit (differentiation or not into proximal and distal 

sections) 
0 Longitudinally uniform, not differentiated proximally 
1 Proximal oval section differentiated by deviating (towards the posterodorsal 

margin of the tibia) from the remaining section 
 
37.- Presence/absence of furrow (noticeable deepening) on posterodorsal margin of 

metatibia 
0 Absent 
1 Present 

 
38.- Width of connection of basal and distal sections of metatibial organ slit 

0 As wide as contiguous basal section 
1 Narrower than contiguous basal section 

 
39.- Shape of metabasitarsus 

0 Roughly triangular, anterior and posterior margins not parallel, or if parallel only 
on distal third of metabasitarsus 

1 Roughly rectangular, anterior and posterior margins parallel, at least on most of 
its length 

2 Trapezoidal, posterior margin concave 
 
40.- Shape and alignment of ventral margin of metabasitarsus 

0 Oblique, posteriorly projected in a sharp acute angle 
1 Oblique, posteriorly projected as an even convexity 
2 Roughly straight respect sagittal body plane, appearing truncate and without 

noticeable projections of posterior margin 
 
41.- Shape of ventral margin of inner surface of metafemur 

0 Straight 
1 Slightly concave 



 153

2 Strongly concave 
3 Slightly evenly convex 
4 Convex, specially mid-proximally (bulging) 
5 Evenly convex 

 
42.- Presence/absence of knob on inner surface of metafemur proximal to trochanter joint 

0 Absent 
1 Present 

 
43.- Shape of dorsal margin of inner surface of metafemur 

0 Rather straight 
1 Evenly convex (convexity slightly pronounced proximally) 
2 Convex, specially mid-proximally, (bulging) 

 
44.- Structure of inner surface of metatibia (presence/absence of depressed areas) 

0 All surface even, no noticeable depressions present 
1 Presence of circular depression near basitarsal joint 
2 Presence of triangular depression near basitarsal joint 

 
45.- Structure of pilosity on inner face of metatibia 

0 All surface evenly setose 
1 Setae absent (or less dense) only along mesal area of anterior margin 
2 Setae absent (or less dense) only along anterior margin and ventro-mesally on a 

semicircle (of varying size) 
3 As previous state plus completely bare at circular area near basitarsal joint 

 
46.- Presence/absence of projection on ventral margin of inner surface of metatibia, 

immediately posterior to spur 
0 Absent or inconspicuous 
1 Present, strongly projected as a compressed plate (sometimes slightly obtuse) 
2 Present, strongly projected as a plate but also bulging as a bump 
3 Present as a blunt bump (either rounded or obtuse) 

 
47.- Shape of anterior margin of distal section of metatibial organ slit 

0 Evenly convex 
1 Spur shaped 
2 Straight, following posterodorsal margin of metatibia 

 
48.- Shape of basal section of metatibial organ slit 

0 Oval shaped 
1 Basally oval but with an acute anterior projection 

 
49.- Extension of metatibial organ slit (distal section) respect ventral margin of metatibia 

0 Reaching ventral margin 
1 Separated from ventral margin by less than length of distal section of organ slit 
2 Separated from ventral margin by at least the length of distal section of organ slit 

 
50.- Shape-alignment of metatibial ventral margin respect body axis 

0 Rather straight 
1 Convex 
2 Concave 

 
51.- Ratio metatibial anterior margin length/metatibial ventral margin length 

0 >=1.4 (equal or more than 1.4) 
1 < 1.4 (less than 1.4) 
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Wings 
52.- Average number of jugal comb blades on forewing 

0 More than ten 
1 Ten or less 

 
 
Hidden Sterna 
 
53.- Shape of posterior margin of second metasomal sternum 

0 Straight 
1 Sinuate, forming two mid-lateral emarginations 

 
54.- Presence/absence and structure of Integumental modifications of second metasomal 

sternum 
0 Absent 
1 Present as two contiguous cowled slits with openings towards posterior margin of 

sternum 
2 Present as two contiguous elevations with no openings (false cowled slits)  
3 Present as two integumental depressions with a variation of an omega-like shape 

 
55.- Presence/absence of setal patches on second metasomal sternum 

0 Absent 
1 Present 

 
56.- Presence/absence of incision (noticeable emargination) on posterior margin of disc of 

seventh metasomal sternum 
0 Absent 
1 Present 

 
57.- Presence/absence of setae on posterior margin of disc of seventh metasomal sternum 

0 Present 
1 Absent 

 
58.- Shape of lateral edges of posterior section of eighth metasomal sternum 

0 Not or shallowly invaginated, lobes not strongly projected 
1 Deeply invaginated, lobes strongly projected 

 
59.- Lateral width of posterior section (midway between lobes and apex) of eighth 

metasomal sternum 
0 Almost as wide (often as wide or wider) as lateral width of anterior section (mid-

anterior) 
1 Noticeably narrower than lateral width of anterior section (mid-anterior) 

 
60.- Distribution of setae on posterior section of eighth metasomal sternum 

0 Not covering basal lobes 
1 Covering basal lobes 

 
61.- Length of setae on posterior section of eighth metasomal sternum 

0 None of them as long or longer than apex of the posterior section 
1 At least some as long or longer than the apex of the posterior section 

 
62.- Structure of setae on posterior section of eighth metasomal sternum 

0 All simple 
1 At least some of them plumose 
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Genital Capsule 
 
63.- Alignment of posterior margin of apical process of gonocoxite 

0 Perpendicular to sagittal plane 
1 Oblique (inner-posterior corner posterior to outer-posterior corner) 
2 Oblique (outer-posterior corner posterior to inner-posterior corner) 

 
64.- Shape of Lateral area of gonostylar process of gonocoxite 

0 Prongued 
1 Acute 
2 Fused to gonostylus (indistinguishable) 
3 Truncate 
4 Rounded 

 
65.- Presence/absence of elevation (bump) on inner area of gonostylar process 

0 Absent 
1 Present, in frontal view well separated from posteromesal prongs 
2 Present, in frontal view contiguous (or almost) to posteromesal prongs 

 
66.- Presence/absence of proximal notch (emargination) on posterior margin of outer 

blade of penis valve 
0 Absent 
1 Present, shallow 
2 Present, strong 

 
67.- Structure of spatha 

0 Present as just a brief narrow band on border of bridge of the PV's 
1 Present, wider than short (width measured on bridge of the PV's 
2 Present, roughly as long as wide 
3 Present, evidently longer than wide 

 
68.- Presence/absence and length of central axis of the spatha 

0 Absent 
1 Present, running only mid-distance or less on spatha 
2 Present, running complete 
3 Present, complete and wide invagination near the apex 

 
69.- Ornamentation of the spatha 

0 Mainly smooth, no evident pattern of wrinkles 
1 Smooth along mid section, some transversal or diagonal wrinkles 
2 Strong longitudinal wrinkles running along most of the surface 

 
70.- Structure of lateral section of gonostylus 

0 Compressed, appearing flattened on ventral or dorsal views (blade-like) 
1 Thickened, or not so compressed, such that there is a broadened area usually 

where setae develop 
 
71.- Structure of cuticular lamina connecting ventral and lateral sections of gonostylus 

0 Present only in a narrow dorsal area 
1 Present on most of the posterior face of ventral section 

 
72.- Arrangement of setose area on dorsal sector of lateral section of gonostylus 

0 Absent 
1 Present covering flat inner face 
2 Projected as a convexity on a dome-like shape 
3 Present as a concave area on inner face 
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73.- Differentiation between ventral lobe and dorsal sector of lateral section of gonostylus 

0 Both well differentiated 
1 Fused for the most part, so only the tip of the ventral lobe is free 

 
74.- Shape/orientation of ventral lobe of gonostylus 

0 Conical 
1 Compressed (along with dorsal sector) 
2 Thick membranous, thumb-like 
3 Thick membranous, tube-like, semiflattened ventro-laterally 
4 Thick membranous proximally but compressed on most of its length, flattened 

area facing ventrally 
 
75.- Presence/absence of additional dorsal-most fold on dorsal sector of lateral section of 

gonostylus 
0 Absent 
1 Present 

 
76.- Structure of main setae of lateral section of gonostylus 

0 Simple (not branched) 
1 Plumose 

 
77.- Length of main setae of lateral section of gonostylus 

0 Short, not passing the distal end of the apical process of gonocoxite 
1 Long, passing apical process of gonocoxite but barely or not reaching ventral 

blades of penis valves 
2 Longer, reaching ventral blades of penis valve, sometimes passing them 

 
78.- Presence/absence of setae on inner face of ventral lobe 

0 Absent 
1 Present 

 
79.- Ratio width/length of ventral surface of ventral sector of gonostylus 

0 Less than half as wide as long 
1 Width more than half of length 
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Appendix 3.  Figures associated with the phylogenetic analysis of the genus 
Euglossa.  Figures appear grouped in three sections as follows: 
  

Figs. 3.1–3.28.  Illustrations of the general morphology of males of Euglossa s. lat., plus 
illustrations of some characters used in the phylogenetic analysis. Generic names other 
than Euglossa are never abbreviated, all generic abbreviations refer to Euglossa s. lat. 

  
Figs. 3.29–3.31.  Screenshots of the programs and settings used to run the phylogenetic 
analysis. 

  
Figs. 3.32–3.47.  Illustrations of the results of the phylogenetic analysis, and information 
derived from it. 
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Fig. 3.1.  Lateral habitus of males of the type species of the six subgenera of Euglossa 
as used before this work.  A. Euglossa (Euglossa) cordata.  B. E. (Glossura) piliventris.  
C. E. (Euglossella) viridis (continues in next page). 
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Fig. 3.1.  (continues from previous page)  D. Euglossa (Dasystilbe) villosa.  E. E. 
(Glossurella) bursigera.  F. E. (Glossuropoda) intersecta. 
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Fig. 3.2.  Nomenclature of the principal external morphological features of Euglossa s. 
lat.  Above, schematic dorsal habitus based on views of E. townsendi and E. hansoni.  
Below, facial features of E. piliventris.  Vestiture and sculpturing omitted in both views. 
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Fig. 3.3.  Nomenclature of some of the principal features of the mesotibia and metatibia 
of Euglossa s. lat.  Above, mesotibia of E. rugilabris.  Below, metatibia of E. cotylisca 
[modified from Hinojosa-Díaz and Engel (2007)].  Vestiture and sculpturing omitted. 
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Fig. 3.4.  Mandibles of Euglossa imperialis (A), and E. cyanura (B), showing bidentate 
and tridentate conditions. 
 

 
Fig. 3.5.  Faces of Eufriesea auripes (A), Euglossa oleolucens (B), E. gorgonensis (C), 
E. viridissima (D), E. piliventris (E), and E. intersecta (F), showing the structure of the 
paraocular lines (or their absence) as indicated by the arrows.  
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Fig. 3.6.  Faces of Euglossa viridissima (A), E. intersecta (B), and E. gorgonensis (C), 
showing upper and lower interocular distances.  In E. viridissima both are rather the 
same, in E. intersecta the lower is slightly wider, in E. gorgonensis the upper is slightly 
wider. 
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Fig. 3.7.  Schematic representation of the length of the labiomaxillary complex relative to 
the body in Eulaema (A), and Euglossa s. lat. (B, C, D).  A and B represent a 
labiomaxillary complex noticeably shorter than the body, C a labiomaxillary complex as 
long as the body, and D a labiomaxillary complex noticeably longer than the body. 
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Fig. 3.8.  Schematic representation of the dorsolateral angle of the pronotum, as 
indicated by the arrows.  A. Euglossa maculilabris with an obliquely truncate angle.  B. 
E. gorgonensis with an obtuse angle.  C. E. villosa with an acute prong.  D. E. decorata 
with a lamellar projection. 
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Fig. 3.9.  Dorsal view of mesoscutellum.  A. Euglossa cognata.  B. E. townsendi.  C. E. 
gorgonensis. 
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Fig. 3.10.  Outer and posterior surfaces of metatibia.  A-B, Euglossa villosa.  C-D, E. 
rugilabris.  The arrows show the presence of mesotibial spur (A), or integumental 
projection and absence of spur (C). 
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Fig. 3.11.  Schematic representation of the structure of the posterior tuft of the mesotibia 
(or the absence of it), as shown by the arrows.  A. Eulaema polychroma with no 
posterior tuft, velvety area extended basally.  B. Exaerete smaragdina with no posterior 
tuft, unique tuft (homologous to the anterior tuft) extended basally.  C.  Euglossa 
cyanura, posterior tuft present.  D. E. allosticta, cavity representative of posterior tuft 
present.  E. E. asarophora, posterior tuft absent, setae absent from basal area. 
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Fig. 3.12.  Schematic representation of the relative size of the posterior tuft respect the 
anterior tuft of the mesotibia.  A. Euglossa cyanura.  B. E. macrorhyncha.  C. E. 
imperialis.  D. E. viridissima.  A with posterior tuft at most ½ the length of anterior tuft, B 
and C with posterior tuft more than ½ the length of the anterior, but never longer.  D with 
posterior tuft longer than anterior. 
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Fig. 3.13.  Schematic representation of the variation of shape in the posterior tuft of the 
mesotibia.  A. Euglossa cyanura.  B. E. decorata.  C. E. gorgonensis.  D. E. imperialis.  
E. E. hyacinthina.  F. E. villosa.  A and B roughly circular, C longitudinally oval  
longitudinal, D and E polygonal, F perpendicularly oval. 
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Fig. 3.14.  Schematic representation of the variation of shape in the anterior tuft of the 
mesotibia.  A. Euglossa cyanura.  B. E. allosticta.  C. E. viridissima.  D. E. cordata.  E. E. 
iopyrrha.  F. E. hansoni.  D, E and F with anterior cleft. 
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Fig. 3.15.  Schematic representation of the variation of shape in the anterior tuft of the 
mesotibia, and third tuft .  A. Euglossa macrorhyncha.  B. E. hyacinthina.  C. E. 
turbinifex.  D. E. trinotata.  E. E. stilbonota.   A, B and C with a knob on posterior tuft,  D 
and E with a third tuft. 
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Fig. 3.16.  Schematic representation of the mesobasitarsus and second mesotarsomere.  
A. Mesobasitarsus of  Euglossa stilbonota.  B. Mesobasitarsus of E. viridis.  C. 
Mesobasitarsus of E. intersecta.  D. Second mesotarsomere of E. decorata.  E. Second 
mesotarsomere of E. tridentata.  F. Second mesotarsomere of E. villosa.  G. Second 
mesotarsomere of E. rugilabris.  Arrow in C showing  conspicuous mesobasitarsal 
emargination.  Solid arrows in E and F showing anterior emargination of second 
mesotarsomere.  Dashed arrow in F showing posterior emargination of second 
mesotarsomere. 
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Fig. 3.17.  Dorsal view of metatibial organ slit.  A. Eulaema polychroma.  B. Euglossa 
asarophora.  C. E. tridentata.  D. E. decorata. 
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Fig. 3.18.  Schematic representation of the metabasitarsus.  A. Euglossa oleolucens.  B. 
E. intersecta.  C. E. bigibba.  D. E. piliventris.  Arrows showing projected posterior angle, 
A evenly convex, D acute. 
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Fig. 3.19  Schematic representation of the variation of shape of the metafemur.  A. 
Euglossa cyanura.  B. E. hansoni.  C. E. villosa.  D. E. imperialis.  E. E. piliventris.  F. E. 
intersecta.  G. E. trinotata. 
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Fig. 3.20.  Metatibial inner surface.  A. Euglossa decorata.  B. E. imperialis.  C. E. 
trinotata.  D. E. mixta.  C and D with conspicuous depressions.  Vestiture and sculpturing 
omitted. 
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Fig. 3.21.  Projections on ventral margin of inner surface of metatibia.  A. Euglossa 
mixta.  B. E. imperialis.  C. E. decorata.  Arrows pointing to the projections posterior to 
the inner spur. 
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Fig. 3.22.  Schematic representation of the variation of shape of the distal section of the 
metatibial organ slit.  A. Eufriesea caerulescens.  B. Euglossa decorata.  C. E. trinotata.  
D. E. townsendi.  E. E. macrorhyncha.  F. Eulaema polychroma.  G. Exaerete 
smaragdina. 
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Fig. 3.23.  Schematic representation of the variation in extension of the distal section of 
the metatibial organ slit.  A. Eufriesea caerulescens.  B. Euglossa imperialis.  C. E. 
villosa.  D. E. cordata.  E. E. tridentata.  F. E. dodsoni. 
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Fig. 3.24.  Structure of Integumental modifications of second metasomal sternum.  A. 
Euglossa gorgonensis.  B. E. imperialis.  C. E. intersecta.  D. E. oleolucens.  E. E. 
bursigera.  Arrows showing the absence of integumental modifications (A), presence of 
cowled slits (B), false cowled slits (C), or omega-like depressions (D and E).  Vestiture 
and ornamentation omitted. 
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Fig. 3.25.  Structure of eighth metasomal sternum.  A-B. Euglossa obtusa.  C-D. E. 
imperialis [modified from Hinojosa-Díaz (2008)].  Solid arrows showing the presence (A) 
or absence (C) of invaginations and lobes.  Dotted arrows showing the relative width of 
posterior and anterior sections (posterior located above). 
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Fig. 3.26.  Schematic representation of the alignment of the posterior margin of apical 
process of gonocoxite.  A. Euglossa imperialis [modified from Hinojosa-Díaz (2008)].  B. 
E. urarina [modified from Hinojosa-Díaz and Engel (2007)] (species not included in the 
analysis).  C. E. rugilabris.  
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Fig. 3.27.  Schematic representation of lateral view of the gonocoxite.  A. Euglossa 
bursigera.  B. E. cosmodora [modified from Hinojosa-Díaz and Engel (2007)].  C. E. 
azurea.  D. E. villosa.  Arrows pointing to the different modifications of the lateral area of 
the gonostylar process. 
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Fig. 3.28.  Schematic representation of lateral section of gonostylus.  A. Euglossa 
oleolucens, ventral view.  B. E. cosmodora, lateral view.  C-D. E. imperialis, lateral and 
dorsal views [modified from Hinojosa-Díaz (2008)].  E. E. stilbonota, lateral view.  F. E. 
dodsoni, lateral view. 
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Fig. 3.29.  Screen view of WinClada (Nixon 1999), showing the parameters in the 
Ratchet module as used in the phylogenetic analysis. 

 
 

 
 

Fig. 3.30.  Screen view of WinClada (Nixon 1999), showing the parameters in the 
Bootstrap/Jackknife module as used to calculate Jacknife support values for the strict 
consensus tree. 
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Fig. 3.31.  Screen view of TNT (Goloboff et al. 2000), showing the options used to 
calculate Bremer support values. 
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Fig. 3.34.  Strict consensus of the 64 most parsimonious trees produced by the 
phylogenetic analysis.  Eulaema speciosa, Eulaema polychroma, Exaerete smaragdina, 
Eufriesea caerulescens and Eufriesea auripes are the outgroups.  Names of the species 
of the ingroup (Euglossa s. lat) bear the subgeneric name along with the specific epithet.  
Parentheses after the ingroup taxa names refer to the species groups as listed in Table 
3.2. 
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Fig. 3.35.  Support values for the strict consensus tree produced by the phylogenetic 
analysis.  Jacknife values shown above the internodes (values below 50 ommited), 
Bremer support values below (only values higher than one shown).  Eulaema speciosa, 
Eulaema polychroma, Exaerete smaragdina, Eufriesea caerulescens and Eufriesea 
auripes are the outgroups.  Names of the species of the ingroup (Euglossa s. lat) bear 
the subgeneric name along with the specific epithet.  Parentheses after the ingroup taxa 
names refer to the species groups as listed in Table 3.2. 
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Fig. 3.36.  Subgeneric association of the species of Euglossa s. lat. in the strict 
consensus tree, showing the nature of the different subgenera as in use before the 
present study.  Only the groups recovered as monophyletic (Euglossella and Euglossa s. 
str.) are enclosed in a single rectangle, others are either monotypic (Dasystilbe) or not 
recovered as monophyletic (Glossurella, Glossura and Glossuropoda).  Names of the 
species of the ingroup (Euglossa s. lat) bear the subgeneric name along with the specific 
epithet.  Parentheses after the ingroup taxa names refer to the species groups as listed 
in Table 3.2.  The arrows indicate type species status. 
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Fig. 3.37.  Distributional association of the species of Euglossa s. lat. in the strict 
consensus tree.  Color boxes after the species names indicate their association with the 
four major areas (plus the Andes) as illustrated in the map. 
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Fig. 3.38.  Association with orchids pollinated and species of Euglossa s. lat. included in 
the phylogenetic analysis, as they appear in the strict consensus tree.  Symbols after the 
species names indicate pollination records for the corresponding orchid subfamily as 
they appear in the legend.  Numbers inside the symbol represent records of bees 
carrying orchid pollinium of the orchid subfamily (1), or both, records of direct 
observation of pollination event plus records of bees carrying orchid pollinium of the 
orchid subfamily (2). 
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Fig. 3.39.  Evolution of the Length of labiomaxillary complex relative to body (Char. # 
12), as traced on the strict consensus tree under fast optimization. 
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Fig. 3.40.  Evolution of the basal area of the outer face of the mesotibia, emphasizing the 
presence/absence of the posterior tuft (Char. # 22), as traced on the strict consensus 
tree under fast optimization. 
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Fig. 3.41.  Evolution of the relative size of the posterior and anterior tufts of the mesotibia 
(Char. # 24), as traced on the strict consensus tree under fast optimization. 
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Fig. 3.42.  Evolution of the shape of the anterior tuft of the mesotibia (Char. # 27), as 
traced on the strict consensus tree under fast optimization. 
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Fig. 3.43.  Evolution of the integumental modifications of the second metasomal sternum 
(Chra. # 54), as traced on the strict consensus tree under fast optimization. 
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Fig. 3.44.  Evolution of the inner surface of the metastibia, emphasizing the 
presence/absence of depressed areas (Char. # 54), as traced on the strict consensus 
tree under fast optimization. 
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Fig. 3.45.  Evolution of the morphology of the eighth metasomal sternum, emphasizing 
the shape of the posterior section (Char. # 58), as traced on the strict consensus tree 
under fast optimization. 
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Fig. 3.46.  (See previous page) Comparison of the strict consensus trees produced by 
phylognetic analyses based on external morphology (this study; left tree), and DNA 
(Ramírez et al., 2010; right tree) for the genus Euglossa.  The color boxes represent the 
subgeneric groups as recovered by both analyses.  With the exception of Glossurella, 
the subgenera according to their definitions before the present study are enclosed by 
solid line boxes.  New status for already existing subgeneric names, and new subgeneric 
proposals are enclosed by dotted line boxes.  The species in bold face in the molecular 
tree correspond to species also included in the present study.  The molecular tree as 
presented here is modified from Ramírez et al. (2010) by rotating some nodes to 
facilitate comparison. 
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Fig. 3.47.  Lateral habitus of male of E. oleolucens, type species of the new subgenus 
here proposed. 
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Appendix 4.  Matrix of 79 external morphological characters for 41 species of Euglossa 
(abbreviated as E. in most species names) and five species as outgroups. The matrix is 
presented in three sections for ease of reading, species appear in rows in no particular order 
(outgroups first) and characters in colums (two numbers in the cell = polymorphism, “?” = missing 
value, “-“ = character non-applicable). 

          1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

Eulaema speciosa 2 0 0 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 - - - 0 1 

Eulaema polychroma 2 0 0 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 - - - 0 0 

Eufriesea caerulescens 2 0 0 1 1 0 0 1 2 0 1 0 0 0 1 1 0 0 0 2 0 1 - - - 0 1 

Eufriesea auripes 2 0 0 1 1 0 0 1 2 0 1 0 0 0 0 3 0 0 0 0 0 1 - - - 0 1 

Exaerete smaragdina 2 0 0 1 2 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 1 - - - 0 0 

Euglossa villosa 2 2 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 2 1 0 3 0 0 

E. cognate 3 2 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 2 0 2 1 0 0 0 1 

E. iopyrrha 3 2 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 2 
3 1 0 0 0 1 

E. mixta 3 2 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 2 1 0 0 0 1 

E. viridissima 2 
3 2 1 0 

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 2 1 2 1 0 0 

E. cybelia 2 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 

E. nigropilosa 2 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 

E. hansoni 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 2 1 0 2 0 1 

E. townsendi 2 2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 2 1 0 1 0 1 

E. cordata 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 2 1 0 1 0 1 

E. tridentata 3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 2 1 0 0 0 1 

E. cyanura 3 3 1 1 0 0 0 0 0 1 0 0 0 2 1 1 0 0 0 1 0 2 1 0 0 0 0 

E. jacquelinae 3 3 1 1 0 0 0 0 0 1 0 0 0 2 1 1 0 0 0 1 0 2 1 0 1 0 0 

E. rugilabris 2 3 1 0 1 0 2 0 2 0 0 2 0 0 1 1 1 2 1 2 1 2 1 1 2 0 0 

E. imperialis 2 2 
3 1 0 0 0 0 0 2 0 0 2 0 0 1 2 0 0 0 1 0 2 1 1 2 0 0 

E. piliventris 2 3 1 2 0 1 2 0 2 0 0 2 0 0 1 2 0 1 0 1 0 2 1 1 1 0 0 

E. annectans 2 2 1 1 0 0 0 0 0 0 0 1 0 0 1 1 
2 0 0 0 1 0 2 1 0 0 0 0 

E. stellfeldi 2 2 1 0 0 0 0 0 2 0 0 1 0 0 1 2 0 0 0 1 0 2 1 1 1 0 0 

E. parvula 2 2 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 0 

E. sapphirina 2 2 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 0 

E. gorgonensis 2 0 
1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 2 1 0 1 0 0 

E. hyacinthina 2 2 1 0 0 0 1 0 0 0 0 1 1 0 1 3 0 0 0 1 0 2 1 1 2 1 0 

E. nigrosignata 2 3 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 2 1 3 0 1 1 0 0 

E. stilbonota 2 2 
3 1 0 0 0 0 0 1 0 0 1 0 0 1 1 

2 0 0 0 1 0 2 1 0 0 0 0 

E. dodsoni 2 2 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 0 0 3 0 0 

E. obtusa 2 2 1 0 0 0 0 0 0 0 0 ? 0 0 1 1 0 0 0 1 0 2 0 0 3 0 0 

E. augaspis 3 2 1 0 0 0 0 0 0 0 0 1 0 0 1 ? 0 0 0 1 0 2 1 0 1 0 0 

E. bursigera 3 2 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 1 0 1 0 0 

E. laevicincta 2 2 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 1 1 2 0 0 

E. macrorhyncha 2 3 1 0 0 0 2 0 0 0 0 1 0 0 1 3 0 0 0 1 0 2 1 1 2 1 0 

E. turbinifex 2 2 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 2 1 1 2 1 0 

E. allosticta 2 2 1 0 0 0 1 0 2 0 0 2 0 0 1 2 0 2 0 2 0 3 0 1 1 0 0 

E. asarophora 2 3 1 2 0 0 1 0 2 0 0 2 0 0 1 2 0 0 0 1 0 4 - - - 0 0 

E. viridifrons 2 0 1 0 0 0 1 0 2 0 0 2 0 0 1 2 0 0 0 2 0 3 0 1 1 0 0 

E. oleolucens 2 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 2 1 1 2 0 0 

E. intersecta 2 4 1 2 1 0 2 0 2 0 0 2 0 0 1 2 1 2 1 2 1 2 1 0 2 0 0 

E. bigibba 3 3 1 1 0 0 2 0 2 0 0 1 1 1 1 2 0 0 0 1 0 2 1 0 3 0 0 

E. decorata 3 3 1 1 0 0 0 0 0 
1 0 0 1 0 2 1 0 0 0 0 1 0 2 1 0 0 0 0 

E. deceptrix 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 2 1 0 0 0 1 

E. viridis 3 3 1 1 0 0 0 0 0 1 0 0 0 2 1 1 0 0 0 1 0 2 1 0 0 0 0 

E. trinotata 2 2 1 0 0 0 0 0 0 0 0 2 1 0 1 1 0 0 0 1 0 2 1 0 0 0 0 
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 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 

 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 

Eulaema speciosa - 0 0 0 0 0 0 0 0 0 - 2 0 1 0 2 0 0 1 2 0 0 0 0 0 0 

Eulaema polychroma - 0 0 0 0 0 0 0 0 0 - 2 0 1 0 2 0 0 1 2 0 0 0 0 0 0 

Eufriesea caerulescens - 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

Eufriesea auripes - 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Exaerete smaragdina - 0 0 0 0 0 0 0 1 0 0 1 2 5 0 2 0 0 0 2 0 0 0 0 0 0 

Euglossa villosa 0 1 0 1 0 0 1 0 1 0 0 0 1 2 0 1 0 1 1 1 0 1 0 1 0 1 

E. cognata 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 2 1 1 1 0 2 0 1 0 1 

E. iopyrrha 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 2 1 1 1 1 1 0 1 0 1 

E. mixta 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 2 1 1 1 0 2 0 1 0 1 

E. viridissima 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 1 0 1 0 1 

E. cybelia 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 1 0 1 0 1 

E. nigropilosa 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 1 0 0 0 1 

E. hansoni 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 2 0 1 0 1 

E. townsendi 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 2 0 1 0 1 

E. cordata 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 2 0 1 0 1 

E. tridentata 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 2 0 1 0 1 

E. cyanura 0 0 0 1 0 0 0 0 1 0 1 1 2 1 0 1 0 1 3 0 0 1 1 0 0 1 

E. jacquelinae 0 0 0 1 0 0 0 0 1 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 0 1 

E. rugilabris 0 1 1 1 1 0 0 1 1 0 0 1 1 5 0 1 0 1 1 0 0 1 2 0 1 1 

E. imperialis 0 1 0 1 0 1 0 0 1 0 0 0 0 3 0 2 0 1 2 1 0 1 0 1 0 1 

E. piliventris 0 0 0 1 0 1 0 0 1 0 0 0 0 4 0 2 0 2 2 1 0 1 0 0 0 1 

E. annectans 0 1 0 1 0 1 0 0 1 0 0 0 1 3 0 2 0 1 1 1 0 1 0 0 0 1 

E. stellfeldi 0 1 0 1 0 1 0 0 1 0 0 0 0 3 0 2 1 1 2 1 0 1 0 0 0 1 

E. parvula 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 2 0 2 1 1 0 1 0 1 0 1 

E. sapphirina 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 2 0 2 1 1 0 1 1 1 0 1 

E. gorgonensis 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 

E. hyacinthina 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 2 0 2 1 1 0 1 0 1 0 1 

E. nigrosignata 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 

E. stilbonota 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 2 1 3 1 1 0 1 1 1 0 1 

E. dodsoni 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 2 0 1 0 2 0 0 0 1 

E. obtusa 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 2 0 0 0 1 

E. augaspis 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 2 1 3 1 1 1 1 0 1 0 1 

E. bursigera 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 2 1 3 1 1 1 1 0 1 0 1 

E. laevicincta 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 2 1 1 1 1 0 1 0 1 0 1 

E. macrorhyncha 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 3 1 1 0 1 0 1 0 1 

E. turbinifex 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 2 1 1 0 1 0 1 0 1 

E. allosticta 0 1 0 1 0 1 0 0 1 0 0 0 1 3 0 2 0 1 0 1 0 1 0 0 0 1 

E. asarophora 0 1 0 1 0 1 0 0 1 0 0 0 0 4 0 2 0 1 0 1 0 1 0 0 0 1 

E. viridifrons 0 1 0 1 0 1 0 0 1 0 0 0 0 4 0 2 0 1 0 1 0 1 0 0 0 1 

E. oleolucens 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 3 1 1 0 1 2 0 0 1 

E. intersecta 0 1 1 1 1 0 0 1 1 0 0 1 2 5 0 1 0 1 1 0 0 1 2 0 1 1 

E. bigibba 0 0 0 1 0 0 0 0 1 0 0 1 2 0 0 1 0 1 3 0 0 1 2 0 0 1 

E. decorata 0 0 0 1 0 0 0 0 1 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 0 1 

E. deceptrix 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 2 0 1 1 1 1 2 0 1 0 1 

E. viridis 0 0 0 1 0 0 0 0 1 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 0 1 

E. trinotata 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 3 1 1 0 1 2 0 0 1 
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 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 
 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

Eulaema speciosa 0 0 1 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 - 0 0 0 0 

Eulaema polychroma 0 0 0 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 - 0 0 0 0 

Eufriesea caerulescens 0 0 1 0 1 1 0 0 0 2 0 1 1 1 0 0 0 0 1 0 1 - 0 0 0 1 

Eufriesea auripes 0 0 1 0 0 0 0 0 0 2 0 1 0 1 0 0 0 0 1 0 1 - 0 0 0 1 

Exaerete smaragdina 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - 0 - 0 0 0 0 

Euglossa villosa 1 1 0 0 1 0 0 0 0 1 4 2 1 2 0 1 1 1 3 0 4 0 0 2 0 1 

E. cognata 0 1 1 0 0 0 0 0 0 0 0 1 0 2 2 1 1 0 3 0 4 1 0 1 1 0 

E. iopyrrha 0 1 1 0 0 0 0 0 0 0 0 1 0 2 2 1 1 0 3 0 4 1 0 1 1 0 

E. mixta 0 1 1 0 0 0 0 0 0 0 0 1 0 2 2 1 1 0 3 0 4 1 0 1 1 0 

E. viridissima 2 1 1 0 0 0 0 0 0 0 0 1 0 3 2 1 1 0 3 0 4 1 0 1 1 0 

E. cybelia 0 1 1 0 0 0 0 0 0 0 0 2 0 3 2 1 1 0 3 0 4 1 0 2 1 0 

E. nigropilosa 0 1 1 0 0 0 0 0 0 0 0 2 0 3 2 1 1 0 3 0 4 1 0 2 1 0 

E. hansoni 0 1 1 0 0 0 0 0 0 0 0 1 0 3 2 1 1 0 3 0 4 1 0 2 1 0 

E. townsendi 0 1 1 0 0 0 0 0 0 0 0 1 0 2 2 1 1 0 3 0 4 1 0 1 1 0 

E. cordata 0 1 1 0 0 0 0 0 0 0 0 1 0 3 2 1 1 0 3 0 4 1 0 1 1 0 

E. tridentata 0 1 1 0 0 0 0 0 0 0 0 2 0 3 2 1 1 0 3 0 4 1 0 2 1 0 

E. cyanura 0 1 1 0 1 1 1 1 1 1 3 0 2 2 1 2 1 0 2 0 2 - 1 2 0 0 

E. jacquelinae 0 1 1 0 1 1 1 1 1 1 3 0 2 2 1 2 1 0 2 0 2 - 1 2 0 0 

E. rugilabris 2 1 1 1 1 1 0 0 0 2 2 0 0 3 3 1 1 1 3 0 4 1 0 2 1 0 

E. imperialis 1 1 1 1 1 1 0 0 0 0 2 2 0 3 2 1 1 1 3 0 4 1 0 2 1 1 

E. piliventris 1 1 1 1 1 1 0 0 0 0 2 2 0 3 2 1 1 1 3 0 4 1 0 2 1 1 

E. annectans 0 1 1 1 1 0 0 0 0 0 2 1 0 3 2 1 1 1 3 0 4 1 0 2 1 1 

E. stellfeldi 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

E. parvula 0 0 1 0 0 0 0 0 0 0 0 2 0 2 1 1 1 0 3 0 3 0 0 1 0 0 

E. sapphirina 3 1 1 0 0 0 0 0 0 0 0 1 0 3 2 1 1 0 3 0 3 0 0 1 1 0 

E. gorgonensis 0 0 1 0 1 1 0 0 0 0 0 1 2 2 2 1 0 0 3 0 1 0 0 1 0 0 

E. hyacinthina 3 1 1 1 0 0 0 0 0 0 0 1 0 2 1 1 1 0 3 0 3 0 0 1 0 0 

E. nigrosignata 0 0 1 0 1 1 0 0 0 1 0 1 2 2 1 1 0 0 3 1 1 0 - - 0 0 

E. stilbonota 3 1 1 1 1 1 0 0 0 1 0 1 0 2 1 1 1 0 3 0 3 0 0 1 0 0 

E. dodsoni 0 0 1 0 0 0 0 0 0 0 0 1 1 2 1 1 1 0 3 1 3 0 0 1 1 0 

E. obtusa 0 0 1 0 0 0 0 0 0 0 0 1 1 2 1 1 1 0 3 1 3 0 0 1 1 0 

E. augaspis 3 1 1 0 0 0 0 0 0 1 0 1 1 3 2 1 1 0 3 1 3 0 0 1 1 0 

E. bursigera 3 1 1 0 0 0 0 0 0 1 0 1 1 3 2 1 1 0 3 1 3 0 0 1 1 0 

E. laevicincta 3 1 1 0 0 0 0 0 0 0 2 2 0 3 2 1 1 1 3 0 4 0 0 2 1 1 

E. macrorhyncha 3 1 1 0 0 0 0 0 0 0 0 1 1 2 1 1 1 0 3 0 3 0 0 1 0 0 

E. turbinifex 3 1 1 1 0 0 0 0 0 1 0 1 0 2 1 1 1 0 3 0 3 0 0 1 1 0 

E. allosticta 0 0 1 1 1 1 0 0 0 2 1 1 1 3 2 1 1 1 3 0 4 0 0 2 1 1 

E. asarophora 0 0 1 1 1 1 0 0 0 0 2 2 0 3 2 1 1 1 3 0 4 1 0 2 1 1 

E. viridifrons 0 0 1 1 1 1 1 0 0 0 1 1 0 3 2 1 1 1 3 0 4 0 0 2 1 0 

E. oleolucens 3 1 1 1 1 0 0 0 0 0 0 1 2 2 2 1 0 0 3 0 1 0 - - 0 0 

E. intersecta 2 1 1 1 1 1 0 0 0 2 2 0 0 2 2 1 1 0 3 0 4 0 0 2 1 0 

E. bigibba 2 1 1 0 1 0 0 0 0 1 3 1 2 2 1 2 1 0 2 0 2 - 1 2 0 0 

E. decorata 0 1 0 
1 0 1 0 1 1 1 1 1 0 2 2 1 2 1 0 2 0 2 - 1 2 0 0 

E. deceptrix 0 1 1 1 0 0 0 0 0 0 0 1 0 3 2 1 1 0 3 0 4 1 0 2 1 0 

E. viridis 0 1 1 0 1 1 1 1 1 1 3 0 2 2 1 2 1 0 2 0 2 - 1 2 0 0 

E. trinotata 3 1 1 0 1 0 0 0 0 0 0 1 2 3 1 1 1 0 1 0 1 3 0 1 0 0 
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