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ABSTRACT 

Environmental fluctuations in the eastern Pacific Ocean are reflected in the tissues 

of some of its most vulnerable apex predators, the Peruvian fur seal (PFS) Arctocephalus 

australis ssp. and the South American sea lion (SASL) Otaria byronia. These large 

pinnipeds live in sympatry along the Pacific coastline of South America and forage 

within the neritic waters over the continental shelf. The coastal waters off Peru are a 

region of great environmental fluctuations due to periodic, oscillating El Niño- La Niña- 

Southern Oscillation (ENSO) events, which result in ecosystem-wide food web changes. 

Pinniped vibrissae (whiskers) are continuously growing keratinous tissues and reflect the 

incorporation of prey from the region. Fine resolution sampling along their length 

provided trophic information on a weekly to monthly time scale over several years. 

Vibrissae were obtained from 2010-2016 from female (n=47), male (n=17) and newborn 

pup (n=6) fur seals and male (n=6) sea lions collected during pinniped rookery health 

assessments. Stable isotope ratios (δ13C and δ15N) in vibrissae infer temporal primary 

production and dietary variations in individuals. ENSO conditions were dictated by the 

sea surface temperature anomaly (SSTA) recordings from the Niño 1+2 Index region 

over 12 years. Fluctuations in vibrissae δ15N were correlated to varying SSTA readings 

(p<0.001) in both species, indicating that ENSO conditions may alter the foraging of 

these apex predators over time. Anomalous warm phase temperatures corresponded to 

depleted δ15N (p<0.001); whereas, cold phase anomalous conditions corresponded to the 

most enriched δ15N signatures (p<0.001). Although both male and female PFS vibrissae 

δ13C revealed minor fluctuations ranging from -18.13 to -13.17‰ over the 12-year 

period, δ13C did reveal a significant depletion and enrichment oscillation during specific 

points in time, such as the 2014-2016 El Niño event, which ranged from -15.09 to -

13.83‰ (p=0.040). Stable isotope signatures varied between genders, but not by species. 

Female fur seal stable isotope signatures were significantly more depleted in both δ13C 

and δ15N than males (p<0.001, p<0.001, respectively). Male SASL and PFS showed no 

significant difference between mean stable isotope signatures. In PFS, both δ13C and δ15N 

were inversely correlated to each other from 2014 to 2016; this was during the strongest 

El Nino-Southern Oscillation event on record (p=0.002). As δ13C signatures became more 

enriched, δ15N signatures depleted from 2014 until 2016. This suggests that when ENSO 

warm phase conditions occur, the environments resources change in historic foraging 

grounds, possibly forcing pinnipeds to travel farther distances offshore to forage or 

altering what they feed on throughout these stressful conditions. This study serves to help 

understand of the impact of oceanographic influences on these pinnipeds. ENSO 

conditions influence the trophic dynamics and resultant survival adaptations in both of 

these vulnerable Peruvian marine mammals.  

 

Key words: South American sea lion · Peruvian fur seal · Stable isotope ratios · Peru · 

ENSO · δ13C · δ15N 
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INTRODUCTION 

Preface 

Large-scale climatic anomalies associated with periodic, alternating El Niño-

Southern Oscillation (ENSO) conditions, are recorded globally through a combination of 

atmospheric and oceanic teleconnections, resulting in significant, ecosystem-wide 

impacts (Ropelewski & Halpert 1987, Trenberth et al. 1998, McPhaden et al. 2006, Sulca 

et al. 2017). The Humboldt Current Upwelling Ecosystem, a cold, nutrient-rich coastal 

current that supports ecologically and economically important species, is dramatically 

impacted by strong ENSO events (Barber & Chavez 1983, Niquen & Bouchon 2004). In 

Peru pinnipeds such as the Peruvian fur seal and the South American sea lion forage 

along and within the Humboldt Current and feed predominantly on anchoveta (Vásquez 

1995, Zavalaga et al. 1998, Arias-Schreiber 2000, 2003). Peruvian anchoveta comprise 

the largest single-species fishery in the world, although it experienced severe stock 

collapses during the 1982/83, 1997/98 and the recent 2015/16 ENSO events (Alheit & 

Niquen 2004, Niquen & Bouchon 2004, Espinoza-Morriberon et al. 2017). South 

American pinniped mortality events and anchoveta abundance declines coincided with 

these ENSO periods, though no definitive cause for these mortality events have been 

determined (Arias-Shreiber & Rivas 1998, Cardenas-Alayza 2012).  

Both Peruvian pinniped species are vulnerable during these strong magnitude 

ENSO episodes. The feeding ecology and movements of these pinnipeds are of 

substantial interest as ENSO events continue to intensify in both frequency and 

magnitude (Sepúlveda et al. 2014). Through a combined analysis of stable isotope 

profiles and abiotic recordings from Niño indices, the feeding ecologies of two sympatric 

species of otariid were investigated in Punta San Juan, Peru (Figure 1) over a time series 

of various ENSO conditions. Stable isotopes were used to depict the trophic fluctuations 

of both seal and sea lion individuals and their populations. Abiotic recordings from the 

Niño 1+2 index (Figure 1) are reflective of environmental changes due to alternating 

ENSO conditions along the coast of Peru. By using continuously growing, inert vibrissae 

(whiskers) from Peruvian pinnipeds (i.e., apex predators), it is possible to obtain valuable 

multi-year dietary information from their foraging environment across fluctuating 

environmental conditions (i.e., overlapping multiple ENSO events).
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Figure 1. Map of the Punta San Juan Reserve and its beaches, relative to its location in Peru and South America. Red square shows the 

region of coastal waters of El Niño index 1+2 region. (Map adapted from Cárdenas-Alayza 2012). 
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Peruvian Marine Ecosystem 

The coastal marine ecosystem along the arid margin of western South America is 

supported by the Humboldt Current System (HCS), one of the world’s four major eastern 

boundary upwelling systems (EBUS) and the largest meridional extent of all EBUSs, 

ranging from 4 to 42° S (Berger 1988, Strub et al. 1998, Daneri et al. 2000, Vargas et al. 

2007). Eastern boundary currents form highly productive regions due to strong air-sea-

land physical interactions (Berger 1988, Strub et al. 1998). The productive waters along 

this coast are the result of longshore winds, which bring cold, nutrient-rich waters from 

the Equatorial Subsurface waters (ESSW) into the euphotic zone where they are available 

for primary producers (Sverdrup 1938, Wooster 1963, Huyer et al. 1987, Berger 1988, 

Strub et al. 1998, Vargas et al. 2007, Bakun et al. 2015). 

The coastal margin off western South America is symmetrically sinuous though 

the width of the continental shelf is variable - narrow off Ecuador, wider off Peru, and 

then narrow again off northern Chile - which affects how upwellings occur along the 

coastline. Additionally, due to their low-latitude proximity, the coast of Peru experiences 

a weakened Coriolis Effect, which allows for persistent, equatorward winds that drive 

larger Ekman transport and upwelling than other regions found at higher latitudes with 

similar wind patterns (Strub et al. 1998). The near-coast, northward flowing HCS 

comprises the surface and subsurface flows of the EBCS along the Peruvian coast. The 

HCS hosts several major currents, among them are two equatorward-flowing and two 

poleward-flowing currents, each having a surface and subsurface flow, respectively. The 

offshore, equatorward flow is the Humboldt Current and the nearshore equatorward flow 

comprises the Peru-Chile Coastal Current. The poleward surface-flowing current is the 

Peru-Chile Countercurrent while the poleward subsurface-flowing current is the Peru-

Chile Undercurrent (Karstensen & Ulloa 2009). The linkage of the coastal and equatorial 

upwelling regions extends to the poleward undercurrent and the offshore Peru-Chile 

Countercurrent, both of which receive input from the Equatorial Undercurrent and extend 

from the tropics to the mid-latitudes of Chile (Figure 2) (Bakun et al. 2015).  

Powered by the southeast trade winds, which blow equatorward and parallel to the 

coast at a speed of 3-10 m/s, coastal upwelling in the HCS is continuous with little 

variability in normal (i.e., average) climatic states (Huyer et al. 1987, Tarazona & Arntz  
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Figure 2. Coastal region current circulation (Checkley et al. 2009).  The study site, Punta 

San Juan, Peru was located at 15°22’ S, 75°11’ W.  
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2001, Pennington et al. 2006, Espinoza-Morriberon et al. 2017). Resultant phytoplankton 

blooms from these nutrient-rich waters nourish productive zooplankton communities that 

feed small pelagic fish populations, such as anchovy and sardine, that are vital to the 

world’s fisheries (Chavez et al. 2003, Weise et al. 2006, Barth et al. 2007, Bakun et al. 

2015). A substantial portion of animal biomass in the HCS is comprised of these small, 

pelagic planktivorous fish species, making coastal Peru a vital fishery ecosystem, which 

supports approximately 20% of the world’s fish catches (Chavez et al. 2003, Bakun et al. 

2015). Historical evidence of pelagic fish and apex predator abundances, such as during 

the 1982/83 ENSO event, illustrate how these fish populations control the trophic 

dynamics of marine mammals and sea birds (Schwartzlose et al. 1999, Bakun et al. 

2015).  

Approximately every 2-7 years, the Humboldt Current Upwelling Ecosystem is 

impacted by El Niño phases, which experience increased sea surface temperatures and 

reduced primary productivity due to stratified waters. This stratification of waters is 

believed to directly influence the depth distribution and abundance of the Peruvian 

anchovy (Barber & Chavez 1983, Huyer et al. 1987, Luna-Jorquera & Culik 2000). 

Ecosystem productivity in coastal ocean upwelling systems is threatened due to increased 

frequency and intensity of ENSO events. Apex predators, such as marine mammals and 

sea birds that cluster at key rookery sites and nesting grounds, experience difficulties in 

prey acquisition in response to intensifying climatic anomalies (Bakun et al. 2015). 

 
 El Niño- La Niña- Southern Oscillations 

The eastern Pacific Ocean is subject to strong environmental fluctuations in the 

form of alternating El Niño-Southern Oscillation (ENSO) events. El Niño-Southern 

Oscillations are alternating cycles of warm and cold sea surface temperature (SST) in the 

tropical central and eastern Pacific Ocean which can last upwards of 18 months with re-

occurrence approximately every 2-7 years (Gutierrez et al. 2007, Taylor et al. 2008, 

Grandi et al. 2012). ENSO events are classified by magnitude and are quantified using 

sea surface temperature anomalies (SSTA) in degrees Celsius (i.e., temperatures that are 

not within average conditions) (Oliveira 2011). Sea surface temperatures off the coast of 

Peru have seasonal dependent averages, acknowledged as “normal conditions” for that 

time of year. Anomalies are deviations from the average conditions for that period and 
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are anything greater than +/-1° C (Waluda et al. 2006, Grandi et al. 2012). Magnitudes of 

ENSO range from Weak (+/-1 to 1.5°C) to Extreme (+/-2.5 to 3.0° C) (Waluda et al. 

2006, Grandi et al. 2012). Regional average SST anomaly data are collected within Niño 

indices that are compiled from buoy recordings from specific regions (Trenberth & 

Stepaniak 2001). Currently, five indices are monitored in the tropical Pacific Ocean; 

these include the Niño 1+2 (10° S-0°, 80-90° W) (Figure 1), Niño 3 (5° S5° N, 90-150° 

W), Niño 3.4, also known as the Oceanic Nino Index (ONI) (5° S-5° N, 120-170° W), 

Niño 4 (5° S-5° N, 150° W-160° E) and Trans- Niño Index (TNI) which is the difference 

in normalized SST anomalies between the Niño 1+2 and Niño 4 regions (Trenberth & 

Stepaniak 2001, Yu & Lau 2007, Kao & Yu 2009, Kug & Jin 2009, Trenberth 2016). The 

Niño 3.4 Index (ONI) is the most commonly used index to define ENSO events; 

however, the Niño region along the South American coastline is the Niño-1+2 region. 

The Niño 1+2 region is the smallest and eastern-most of the indices, and it tends to have 

the largest variance of all the Niño SST indices (Trenberth & Stepaniak 2001). 

The warm SST phase of ENSO is referred to as El Niño and the cooler SST phase 

is known as the La Niña. The precursor to ocean temperature changes begins when the 

southeast trade winds weaken over the equatorial Pacific Ocean, which allows for the 

eastward displacement of the warm pool, thereby decreasing the upwelling strength of 

cold, nutrient-rich water (Barber & Kogelschatz 1990, Picaut et al. 1996). Under such 

decreased upwelling, the surface waters along the coasts of Peru, Ecuador, and Chile are 

instead warmer and relatively nutrient-poor (Taylor & Wolff 2007, Oliveira 2011). El 

Niño events can increase SST in the central and eastern Pacific Ocean by up to 9º C, 

resulting in depleted surface chlorophyll (Chavez et al. 2003, Arntz et al. 2006, Graco et 

al. 2007, 2017). Eventually, a renewal in the southeast trade winds pushes the warmer 

surface waters towards the central Pacific basin, thus resuming the upwelling of coastal 

waters along the coast of South America (Barber & Kogelschatz 1990). 

In contrast with El Niño, La Niña events are evidenced by shallow thermoclines, 

cooler than average sea surface temperatures, and increased marine productivity 

(Ordinola 2002a, 2002b). Physical indications of La Niña events include unusually cold 

temperatures in the central and eastern equatorial Pacific Ocean, stronger than normal 

easterlies (i.e., westward blowing trade winds), stronger upwelling, and conditions that 
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are generally more arid. La Niña impacts on HCS ecosystems are still unclear; however, 

higher commercial landings and greater fishery exports occur during these events 

(Ordinola 2002a, 2002b). 

Pronounced bottom-up mechanisms, which decrease primary production, occur 

off the coast of Peru during El Niño events (Tam et al. 2008, Espinoza-Morriberon et al. 

2017). Among these mechanisms are downwelling equatorial Kelvin waves (deepening 

nearshore thermocline and nutricline), changes in equatorial circulation, and high 

intensity mesoscale eddies (increasing offshore transport and subduction of nutrients) 

(Barber and Chavez 1983, Kessler and McPhaden 1995, Chaigneau et al. 2008, 

Lathuiliere et al. 2010, Gruber et al. 2011, Calienes 2014, Echevin et al. 2014). However, 

throughout La Niña events, the coastal ecosystem encounters intensified upwelling 

favorable winds, cooler SST, shallow thermo- and nutriclines, and increased primary 

production (Bouchon and Pena 2008, Calienes 2014). 

Chlorophyll concentrations (Chla), which are a proxy for phytoplankton biomass, 

were recorded at historic lows during strong/extreme El Niño events (i.e., the 1997/1998 

event) (Calienes 2014, Gutierrez et al. 2016, Espinoza-Morriberon et al. 2017). During 

these events of SST and sea level rise, the thermocline and nutricline deepen 

significantly. In conjunction, the passing of coastal-trapped waves cause the nutrient 

concentration in coastal waters to decrease. Impact on nutrient concentrations and 

upwelling strength is dependent on the magnitude of the ENSO events (Espinoza-

Morriberon et al. 2017). 

Eight El Niño-Southern Oscillation events had been recorded from 1950-2003 

(Wang & Feidler 2006) with the 1982/83 and the 1997/98 events considered to be the 

most severe (Gutierrez et al. 2007, Taylor et al. 2008). NOAA (2015) speculated 2015/16 

would be a strong magnitude El Niño event, which proved to be correct. In fact, the 

2015/16 ENSO event is by some measures (i.e., SSTA); one of the strongest magnitude 

events on record, and it has triggered widespread ecosystem changes, such as strong 

decreases in phytoplankton productivity within the coastal Pacific Ocean (Jacox et al. 

2016, Espinoza-Morriberon et al. 2017). Climate change models are predicting stronger 

and more frequent ENSO events in the future (NCDC-NOOA 2004, Oliveira 2011). 
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Inter-annual environmental fluctuations are frequently observed in the highly 

unpredictable marine environments off the coasts of South America; these cyclical 

fluctuations in turn affect all types of marine organisms throughout the ecosystem, often 

changing the trophic dynamics of large areas of the ocean. Shifts in available food, 

beginning with primary producers, have long-ranging implications both for commercial 

fisheries and for apex predators like Peruvian fur seals and South American sea lions. 

The higher the trophic level at which the animal feeds, the more production becomes 

necessary to sustain it. During periods of lower productivity, environments become 

resource limited, which can have damaging effects on reproduction and species viability 

(Benson & Trites 2002, Hanson et al. 2009, Coyle et al. 2011). 

 
Peruvian Pinnipeds 

South America was once a source of significant trade for pinniped blubber and fur 

throughout the 18th century. Targeted hunting and trade decimated South American 

otariid species’ (sea lions and fur seals) historical population sizes by nearly 80% by the 

late 20th century (Bonavia 1982, Reeves et al. 1992, Riedman 1990, Webber et al. 2004). 

By the mid-1940s, South American fur seal distribution range in Peru had been reduced 

to a few isolated sites (Kostrisky 1963, Piazza 1969, Majluf & Trillmich 1981, Muck and 

Fuentes 1987, Cardenas-Alayza 2012). Much like fur seals, South American sea lions 

suffered heavy direct exploitation during the early 20th century throughout their range due 

to the commercial uses of pinnipeds for fur, oil and food (Rodriguez & Bastida 1998, 

Oliveira 2011, Dassis et al. 2012, Saporiti et al. 2014, Zenteno et al. 2015). With a 

recognized risk of pinniped extinction in Peru, legislation in 1959 banned all sealing in 

Peruvian waters in an effort to save these pinniped species, although some illegal 

poaching continues (Majluf 1984, Oliveira 2011, Cardenas-Alayza 2012). However, 

despite protection Peruvian populations have struggled to recover to previous population 

sizes due to ecological and anthropogenic stressors (Majluf & Apaza 1998, Majluf 

1998, Oliveira 2011).  

Home to the largest colonies of Peruvian fur seal and South American sea lion, 

Punta San Juan is a 133-acre peninsula located in southern Peru, 15° S of the equator 

Cárdenas-Alayza & Cardeña-Mormontoy 2012). This reserve is part of a marine 

protected network of reserves known as the National Reserve System of Guano Islands, 
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Islets and Points (RNSIIPG). The RNSIIPG, managed by the National Service of 

Protected Natural Areas of Peru (SERNANP), serves as a protection to all marine wildlife 

with a focus on the protection of guano producing sea birds (Cárdenas-Alayza & 

Cardeña-Mormontoy 2012). Among the 21,000 individuals along their entire distribution 

range, over 70% of the total PFS population is found in Peru clustered into the RNSIIPG 

system, with the majority found in Punta San Juan, Peru (Cárdenas-Alayza & Oliveira 

2016). 

 
Peruvian Fur Seals 

Peruvian fur seals (Arctocephalus australis unnamed ssp.) (PFS), a subspecies of 

the South American fur seal (SAFS), are found along the eastern Pacific coastline of 

South America (Berta & Churchill 2012, Oliveira & Brownell 2014, Cárdenas-Alayza 

& Oliveira 2016). Distributed between breeding colonies and haul-out areas, fur seals 

can be found year-round at coastal sites due to their strong site-fidelity (Majluf 1987a, 

Oliveira 2011, Cardenas-Alayza 2012). Females will travel distances of 70 to 150 km in 

order to forage, whereas males will travel an average of 200 km (Cardenas-Alayza & 

Oliveira 2016). Fur seal colonies are ordinarily found along rocky coastlines, on ledges, 

in caves, and around beaches covered in large boulders so that they can utilize the ocean 

access, tidal pools, shade and protection these environments provide (Stevens & Boness 

2003). Geographical isolation between breeding colonies has led to the genetic variation 

between the South American fur seal and the Peruvian fur seal (Berta & Churchill 2012, 

Nyakatura & Bininda-Emonds 2012, Oliveira & Brownell 2014). Additionally, the 

1997/98 ENSO caused such a severe decline in effective population size that it might 

have compromised the evolutionary potential of the Peruvian fur seal to respond to 

environmental changes (Oliveira et al. 2006). Distribution of these genetically isolated 

subspecies ranges from Peru southward into northern Chile, with approximately 21,000 

individuals along this distribution (Torres 1985, Guerra & Torres 1987, Oliveira et 

al. 2012, IMARPE 2014). The majority of the breeding population resides in Peru 

between 15-17° S; over 50% of the entire Peruvian fur seal population is only found 

among five sites in Peru (Cárdenas-Alayza & Oliveira 2016). Population declines and 

fewer breeding colonies have led to classification of the Peruvian fur seal as 
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“Vulnerable” species in the International Union for Conservation of Nature red list 

(IUCNRL) (Oliveira & Brownell 2014, CSA-UPCH 2016, 2017, 2018). 

Both fur seal subspecies are sexually dimorphic (Cárdenas-Alayza & Oliveira 

2016, Oliveira et al. 2005, 2008). Adult Peruvian fur seal males reach lengths of 1.7 m 

and can weigh between 90–140 kg, while females are approximately 1.3 m in length and 

weigh between 30-90 kg. Newborn pups are 50-65 cm in length and weigh 3.5-7.5 kg 

(Cárdenas-Alayza & Oliveira 2016). Peruvian subspecies males are smaller in body size 

than that of SAFS males while conversely, PFS females are larger in body size than 

SAFS females (Cárdenas-Alayza & Oliveira 2016, Oliveira et al. 2005, 2008). 

The life history of PFS varies between genders, where adult bull males become 

sexually mature at approximately 8 years old, in contrast to females who become sexually 

mature as early as 4 years old (Lima & Páez 1995, 1997, Vales et al. 2015). Adult bulls 

are polygynous and territorial; in fact only a few large, strong bulls out of the total 

population mate each season (Cardenas-Alayza et al. 2016). In Punta San Juan, bulls will 

occupy territories for an average of 23 days and mate with 6-20 females within their 

territory (Majluf 1987a, Cappozzo 1995, Cárdenas-Alayza & Oliveira 2016). Breeding 

season for Peruvian fur seals takes place during austral summer between the months of 

October and December (Majluf 1987a). The gestation duration is normally 11 months, 

with a 3 to 4-month embryonic diapause (Vaz Ferreira et al. 1982a, Katz et al. 

2013). Pupping peaks during mid- to late November (Majluf 1992, Cardenas-Alayza 

2012). Pregnant females normally come ashore roughly 1-4 days before the birth of the 

pup and then stay with the newborn pup for a perinatal period lasting around 

11 days (Franco-Trecu 2010). After this period, fur seal dams enter a brief estrus, 

copulate, and then depart to sea to forage (Majluf 1987b, Cardenas-Alayza 2012).  

Following mating, females alternate between foraging trips at sea between 1-8 

days and then suckling pups in the rookery for 1-3 days, food source availability 

depending (Majluf 1987b, Cardenas-Alayza 2012). Throughout the initial three months of 

maternal care, female foraging trip durations are highly variable, which can affect the 

survivability of offspring (Franco-Trecu et al. 2010). The seals tend to have flexible and 

adaptive pup rearing strategies, such as flexible weaning duration, to accommodate for 

environmental stressors (i.e., ENSO events), (Trillmich & Ono 1991). Prolonged, 
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simultaneous maternal care of multiple offspring at various life stages has enhanced 

survival of Peruvian fur seals during mild ENSO events, and can explain extraordinary 

growth rates of fur seals when food sources are in abundance (Trillmich et al. 1986, 

Cárdenas-Alayza 2012). Dams wean offspring anywhere between 6 months to 3 years of 

age and can nurse multiple-aged offspring simultaneously. Female fur seals have been 

observed nursing both a newborn pup and a yearling, and on rare occasion, nursing a pup, 

yearling, and a 2 to 3 years old juvenile (Majluf 1987a). This cumulative maternal 

contribution generates enormous metabolic needs and can lead to competition for milk 

among suckling young, with a risk of starvation for all as well spontaneous abortion of a 

fetus (Trillmich 1990, Cardenas-Alayza 2012).  

In 1987, the Punta San Juan, Peru rookery experienced its highest recorded early 

pup mortality percentages (31-49%); other rookeries experienced anywhere from 3 to 

28% early pup mortality (Majluf 1987b, 1989, Harcourt 1992). This early pup mortality 

in Peru does not appear to be related to food availability, except for during ENSO 

conditions when mortality increases dramatically (Limberger et al. 1983, Trillmich et al. 

1986, Majluf 1989, Harcourt 1992). El Niño years have a negative impact on these seals, 

causing females to spend extended durations foraging at sea, upwards of 20 days, which 

affects offspring growth and survival (Trillmich et al. 1986, Majluf 1987b). Adult 

females reveal patterns of site fidelity for pupping and are known to give birth within 20 

m of a previous birth site (Gentry & Holt 1986, Majluf 1987b, Lunn & Boyd 1991, 

Harcourt 1992). This strong site fidelity makes both pups and adult females more 

vulnerable to environmental changes and anthropogenic influences that occur at rookery 

sites (Gentry & Holt 1986, Majluf 1987b, Lunn & Boyd 1991, Harcourt 1992).  

Fur seal nourishment varies with prey source abundance and location; their diet is 

comprised of fish, crustaceans and mollusks. Peruvian fur seals are specialized foragers; 

their main prey sources include anchoveta (Engraulis ringens), red squat lobster 

(Galathea squamifera), and cephalopods (Vasquez 1995, Zavalaga et al. 1998, Arias-

Schreiber 2000, 2003). However, other pelagic and demersal fish species like sardines 

(Sardinops sagax), mote sculpin (Normanichthys crockeri), chub mackerel (Scomber 

japonicus), Pacific jack mackerel (Trachurus symmertricus) and lanternfish species 

(Myctophidae) are consumed in smaller proportions (Arias-Schreiber 2003). 
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Additionally, a study by Vales et al. (2015) revealed that demersal and benthic prey are 

rarely in male fur seal diets. 

Fishermen frequently complain that fur seals damage their nets and reduce their 

catches, especially in gillnet fisheries (Arias-Schreiber 1993, 2003), although studies by 

observers of artisanal fisheries in northern Chile never registered interaction with this 

species (Sepulveda et al. 2007, Bartheld et al. 2008). Fishermen have been known to 

occasionally kill fur seals with shotguns, harpoons, dynamite, and poison (Arias-

Schreiber 1993). Arias-Schreiber (1993) reported that it is common for some fishermen 

to kill and use pinnipeds as bait to catch saltwater snails or winkles in Peru. Bycatch 

mortality is present from fishing nets also entangle and kill fur seals that are transiting 

between land and their feeding grounds (Majluf et al. 2002). Mortalities are also recorded 

in the Punta San Juan area due to hooks used by longline fisheries during the 2015-2016 

ENSO (Colchao-Claux 2016). The overall impact of intentional and incidental fur seal 

mortality related to fishery activities is unknown. Additionally, industrial fishing fleets 

along the coast of Peru threaten the pelagic resources on which fur seals depend. These 

fisheries started in the 1950s and contributed to several declines in biomass of anchoveta 

upon which the fur seals depend on as their primary prey source (Pauly & Tsukayama 

1987, Pauly & Palomares 1989). 

 
South American Sea Lions 

South American sea lions (Otaria byronia) reside along the South American  

coastlines from Brazil to Peru, including coastal islands like the Falkland and Galapagos 

islands (Vaz-Ferreira 1982b, Alonso et al. 2000, Dans et al. 2004, Perrin et al. 2009, 

Dassis et al. 2012). These sea lions are considered a non-migratory species, although 

individuals make seasonal movements away from rookeries abandoned over winter 

months (Pinedo 1990, Rosas et al. 1994). South American sea lions have two significant 

genetic differentiations between the Pacific and Atlantic coast populations due to 

prolonged geographical isolation (Gehara 2009, Committee on Taxonomy 2015). The 

species is monitored along its entire range around South America and its population 

status is of Least Concern (Túnez et al. 2007, Gehara 2009, Oliveira & Brownell 2014, 

Cardenas-Alayza et al. 2016), although, after the 1997/98 100% pup mortality event, sea 

lions along Peru were classified as “Vulnerable” by the Peruvian government, 
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contradictory to the IUCN red list “Least Concern” classification (Oliveira 2011). The 

total population of South American sea lions is estimated at 445,000 individuals along its 

entire distribution, with the Peruvian population estimated at approximately 105,000 

(IMARPE 2013, Cardenas-Alayza et al. 2016).  

South American sea lions are sexually dimorphic with females reaching lengths of 

2 m and weighing up to 170 kg, while males can reach 3 m and weigh upwards of 350 kg 

(Vaz-Ferreira 1982b, Rosas et al. 1993, Cappozzo & Perrin 2009, Perrin et al. 2009, 

Grandi et al. 2012, Riet-Sapriza et al. 2013). Sexual maturity is reached at approximately 

4-5 years for females and 4-7 years for males (Vaz-Ferreira 1982b, Perrin et al. 2009, 

Grandi et al. 2012). Congregations of sea lions on rookeries occurs in early December for 

breeding and pupping, with breeding seasons lasting into late February (Sepúlveda et al. 

2007, Perrin et al. 2009). The gestation period for this species lasts for approximately one 

year; pups are born in January and nursed for 8-12 months (Vaz-Ferreira 1982b, Perrin et 

al. 2009). Newborn pups weigh between 11-15 kg and are 75-85 cm long. (Vaz-Ferreira 

1975). Following the birth of the pup, female sea lions generally breed within one week 

(Soto et al. 2004). Therefore, mature females can be in a perpetual state of pregnancy and 

nursing, both metabolically taxing processes. Successful foraging on energetically rich 

prey is key to the survivability of this species; extreme environmental fluctuations such 

as strong inter-annual ENSO events can place these sea lions in jeopardy. 

South American sea lions are considered a neritic species and are commonly 

found foraging in the shallower water over the continental shelf and slope (Vaz-Ferreira 

1982b, Campagna et al. 2001, Crespo et al 2007, Hückstädt et al. 2014). Females with 

nursing pups spend 53% of their time foraging at sea and the rest at rookeries or haul out 

sites (Perrin et al. 2009). However, diet and maternal care patterns suggest inter-annual 

fluctuations in food availability. In the variable Peruvian upwelling ecosystem, females 

adjust their diets and maternal attendance patterns in response to changes in the 

abundance and distribution of prey (Soto et al. 2006). During ENSO events when prey 

are less abundant near the rookeries, female sea lions are observed spending less time 

onshore nursing and more time foraging at sea. As a result, the fasting ability of pups was 

exceeded, causing higher mortality rates due to starvation (Soto et al. 2004, 2006). 
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Female sea lions primarily feed in shallow, coastal waters on benthic species, 

whereas males tend to feed predominantly on demersal-pelagic species (Crespo et al. 

1997, Koen Alonso et al. 2000, Campagna et al. 2001, Drago et al. 2009). Female dives 

are typically shallow (19-60 m), and their dive profiles are flat-bottomed, indicating 

extended foraging at specific depths (Campagna et al. 2001). This dive profile pattern 

may be due to the shallow thermocline (< 50 m) found in the waters off the coastline of 

Peru during the normal state of upwelling (Morales et al. 1999). Male sea lions spend 

more time at sea than females, approximately 4-9 days versus 1-4 days, and travel greater 

distances, up to 300 km for males compared to 200 km for females. Considering the 

maximum width of the continental shelf along northern Peru is 130 km, it could be 

assumed that some sea lions may be foraging in pelagic waters off the continental shelf as 

well further north and south along the shelf (Vaz-Ferreira 1982b, Alonso et al. 2000, 

Campagna et al. 2001). Distinctions between foraging habits of male and female sea lions 

are not constant over time and are exemplified during pre-breeding periods (Drago et al. 

2009, 2015). During this time, both males and females increase their consumption of 

pelagic prey versus benthic prey, although prey preference between males and females 

does not overlap This indicates that during the pre-breeding season, when areas around 

the rookeries are crowded and resource availability declines, sexual foraging segregation 

still takes place but normal foraging behavior is altered (Drago et al. 2015). 

South American sea lions are considered generalist foragers that feed on a variety 

of prey which varies with geographical location. Prey types include benthic and pelagic 

fish, squid, crustaceans, birds, and, on rare occasions, marine mammals (Vaz-Ferreira 

1982b, Harcourt 1993, Alonso et al. 2000, Soto et al. 2006, Perrin et al. 2009). A small 

percentage of subadult and adult male South American sea lions regularly attack, kill and 

eat South American fur seal pups, juveniles and sometimes, although rare, adult females 

in Peru (Harcourt 1992, 1993).  

Little is known about the specific foraging habits of the sea lions along the 

Peruvian coast, and although they are known to feed on Peruvian anchoveta when the 

waters are rich in nutrients and highly productive, they are known to be generalist 

foragers. Besides targeted anchoveta prey consumption, Peruvian sea lions prey upon 

mote sculpin, lumptail sea robin, Peruvian hake, red squat lobster, and cephalopods 
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(Paredas & Arias-Schreiber 1999). During an ENSO event when anchoveta and squat 

lobster were not in high abundance, a larger diversity of prey species, particularly 

demersal fishes, were consumed. This indicates that when target prey are less available, 

sea lions respond to variation in prey abundance and accessibility by modifying their diet 

(Muñoz et al. 2011, Sepúlveda et al. 2015). Conversely, even though this species has 

been observed modifying forage habits, this seems to have little effect on their survival 

during strong enough ENSO events. With little known about the region’s trophic 

structure during the productivity-challenging phases of El Niño, this leaves this species 

vulnerable to increased frequency and strengthened ENSO events in the future (Soto et al. 

2004, 2006, Hückstädt et al. 2007). 

Sea lions along the Peruvian coastline suffer frequent population declines due to 

prey loss during inter-annual ENSO events (Grandi et al. 2012).  The Peruvian sea lions 

suffered massive losses during the 1997/98 El Niño event with the population declining 

approximately 81% from 144,000 individuals in 1996 to 28,000 in 1998 (Arias-Schreiber 

& Rivas 1998, Arias-Schreiber 1998, Grandi et al. 2012, Oliveira 2011). This decline was 

most likely due to a combined effect of both mortality and dispersal from historically 

surveyed breeding and haul out sites. This strong magnitude ENSO (1997/98) also caused 

100% pup mortality during the pupping season (Soto et al. 2004). Increases in foraging 

time have been linked to lower prey availability (Womble et al. 2014). Consistent with 

decreased prey availability, female Peruvian sea lions’ forage trips lasted 10 to 20 days 

during an El Niño versus the usual 1 to 4 days, which presumably contributed to 

starvation of nursing pups (Oliveira 2011).  

 
Stable Isotope Ratios 

Stable isotopes are forms of the same elements that have an increased atomic 

mass due to the addition of one or two extra neutrons in the nucleus. Dissimilarities in the 

relative abundance of the light isotope (fewer neutrons) and heavy isotope (more 

neutrons) can be measured and expressed as a ratio, which is reported as parts per 

thousand (‰) (Fry 2006The stable carbon (13C/12C) and nitrogen (15N/14N) isotope ratios 

in an organism’s tissue can be used to investigate their trophic ecology (DeNiro & 

Epstein 1978, 1981, Kelly 2000, Bearhop et al. 2002). Stable isotope studies are a 

valuable implement for examining the life history, diet, and habitat use in marine 
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mammals (Peterson & Fry 1987, Kelly 2000). In fact, Hobson et al. (1997), Hirons 

(2001), Kurle and Worthy (2001), and Hückstädt et al. (2007) have all demonstrated that 

phocid and otariid tissues reflected trophic dynamics in their respective waters 

utilizing δ13C and δ15N. Pinniped tissues can be used as biological recorders for 

temperature, salinity, and pH as well as being indicators of feeding history, trophic level, 

and metabolic rate (Peterson & Fry 2016).  

Marine environments contain stable isotope ratios of carbon (13C/12C or δ13C), 

which result from fractionation differences originating at the base of the food web. Stable 

carbon experiences a small fractionation generally less than 1‰ during assimilation; and 

therefore, carbon signatures can be used to trace the importance of different carbon pools 

to a consumer or determine the source of carbon at the base of the food web (O’Leary 

1981, France 1995, Gannes et al. 1998, Kelly 2000). Variations in δ13C values are 

indicative of plants (i.e., phytoplankton, algae) utilizing either the C3, C4, or crassulacean 

acid metabolism (CAM) photosynthetic pathways (DeNiro & Epstein 1978). An animal’s 

diet and the primary production at the base of the food web, as well as geographic 

variability, can be detected in δ13C (DeNiro & Epstein 1978, Hirons et al. 2001, Dehn et 

al. 2007, Newsome et al. 2007). 

Marine environments contain naturally occurring stable nitrogen isotope ratios 

(15N/14N or δ15N), which provide information on potential food sources as well as trophic 

position. Throughout assimilation of proteins, 14N is preferentially used due to its lighter 

nature, which increases the ratio of 15N to 14N in the tissues of the consumer relative to its 

food source (Gannes et al. 1998), creating a step-wise enrichment of 3-5‰ per trophic 

level (DeNiro & Epstein 1981, Fry 1988, Hobson et al. 1997). The comparison of 

consumer tissue δ13C and δ15N with those of their potential prey items provide 

information regarding food web linkages and ocean productivity (France & Peters 1997, 

Hirons 2001, Kurle & Worthy 2001). Pinnipeds are apex predators; this requires them to 

eat more prey items to sustain themselves, thus making them susceptible to changes in 

food web production. Periods when production is very high or very low alters the length 

of the food webs and may change the trophic level of the marine mammals’ prey. The 

comparison of pinniped δ13C and δ15N with their potential prey items provides 

information regarding food web linkages and ocean productivity as well as geographic 
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location (Polovina et al. 1995, France & Peters 1997, Hirons 2001, Kurle & Worthy 

2001). 

Vibrissae (whiskers) are continuously growing, inert tissue composed of 

proteinaceous keratin (Rubenstein and Hobson 2004, Hall-Aspland et al. 2005). 

Metabolically inert tissues preserve information from the moment they develop, thereby 

allowing the study of dietary change (Darimont et al. 2002, Bearhop et al. 2004, Hall-

Aspland et al. 2005, Rosas-Hernandez 2018). The most recent growth of a whisker is 

located at the base, and a single whisker can provide one or more years of information, 

making this tissue suitable for various types of foraging studies (Rubenstein and Hobson 

2004, Lewis et al. 2006, Hirons 2001, Hirons et al. 2001, Ginter et al. 2012, Rosas-

Hernandez 2018). While there are currently no published data on the growth rates of 

South American fur seal and South American sea lion vibrissae, otariids show great 

variability in their whisker growth rates, ranging from 0.02 to 0.16 mm/day in adults. 

This highlighting the importance of assessing growth rates on a species to species basis 

(Mote-Herrera 2011, Kernaleguen 2012, Kernaleguen 2015, McHuron et al. 2016, Rosas-

Hernandez 2018). Some Otariidae species evaluated for whisker growth rates include 

Antarctic fur seal (Arctocephalus gazella), Steller sea lion (Eumetopias jubatus), 

California sea lion (Zalophus californianus) and the northern fur seal (Callorhinus 

ursinus) (Hirons et al. 2001, Cherel et al. 2009, Rea et al. 2015, Kelleher 2016, McHuron 

et al. 2016).  

Stable nitrogen and carbon isotope ratios (δ15N and δ13C) were used to evaluate 

the impact the environment has on the seals’ diet on a time scale represented along the 

vibrissae. The δ13C indicated the changes in primary production, likely due to changes in 

upwelling strength, in foraging locations within that individual’s environment (Fry 1988, 

Hobson et al. 1997), while the δ15N revealed changes in the length of the marine food 

web (Minigawa & Wada 1984, Hobson et al. 1997, Hirons 2001). The δ15N can detect 

shifts in the trophic levels of marine organisms, which, in tandem with δ13C, is an 

indication of periods of very low or high production (Fry & Sherr 1984, Hobson & Welch 

1992, Hirons 2001). Since δ15N and δ13C can define differences in foraging locations and 

trophic levels, we can relate inter-annual variability of the ecosystem, such as an ENSO 

event, to the respective time-periods along the whisker (Lowther & Goldsworthy 2011). 
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METHODS 

Permits 

All samples were collected following methods approved under research permits 

Resolución Jefatural No. 009-2010-, No.023-2011-, No. 022-2012-, No. 008-2015-, and 

019-2016-SERNANP-RNSIIPG issued by the Peruvian National Service of Natural 

Protected Areas (Spanish acronym SERNANP) and the Peruvian Ministry of the 

Environment  (Spanish acronym MINAM). SERNANP. Personnel of the Punta San Juan 

Program and the Chicago Zoological Society collected all tissue samples.  

 
Sample Collection 

Vibrissae were collected annually between the years 2010 and 2016 as part of 

population health monitoring program at the Punta San Juan guano reserve (PSJ) in the 

province of Ica in southern Peru (15°22’ S, 75°11’ W) (Figure 1). This reserve is one of 

the largest Peruvian fur seal and sea lion rookeries in Peru, serving as an ideal location to 

assess both of these pinniped populations. Animals were anesthetized for sample 

collection under the supervision and direction of Dr. Michael Adkesson of the Chicago 

Zoological Society.  

Veterinarians removed Peruvian fur seal whiskers from live animals every 

November/December during 2010, 2011, 2012, 2014, 2015, and 2016 (Table 1). 

Vibrissae from twenty-nine adult female fur seals were collected and analyzed in 2010. 

Six adult male and six adult female fur seal vibrissae (n=12) were analyzed in 2011, and 

in 2012 five male and six adult female fur seal vibrissae (n=11) were analyzed for stable 

carbon and nitrogen isotope ratios. Vibrissae from six mother (dam)-pup pairs (n=12) 

were analyzed in 2015 and in 2016 vibrissae from six adult males were analyzed. 

Vibrissae from six subadult male South American sea lions, a sympatric species to the 

Peruvian fur seal within this rookery, were collected in February/March 2011. 
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Table 1. Total number of pinniped vibrissae analyzed in this study, including year sampled, mean vibrissae length, and associated 

gender and species. Aa = Arctocephalus australis unnamed ssp., Ob = Otaria byronia. 

 

SPECIES SAMPLE YEAR TOTAL N LENGTH x ± SD; cm FEMALE N MALE N PUP N 

Aa 2010 29 11.73 ± 2.69 29 - - 

2011 12 15.21 ± 4.24 6 6 - 

2012 11 12.79 ± 2.61 6 5 - 

2015 12 8.21 ± 2.75 6 - 6 

2016 6 10.33 ± 1.92 - 6 - 

Ob 2011 6 17.33 ± 4.60 - 6 - 
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Laboratory Analyses 

Pinniped vibrissae (whiskers) were scrubbed using a scrubbing pad and rinsed 

with deionized water to remove any surface contaminants. Once thoroughly dried at 60° 

C for at least 24 hours, whiskers were cut into 2.5 mm sections from base to tip, each 

section representing 0.6-0.8 mg, and placed in individual tin capsules. Approximately 20 

samples were analyzed per vibrissae, using alternating segments as pseudo-replicates in 

case of loss during mass spectrometer analysis. All vibrissae techniques followed the 

methods of Hirons (2001). Samples were combusted and analyzed for δ13C and δ15N at 

the Smithsonian Institution’s Museum Conservation Institute (Suitland, MD) using a 

Thermo Delta V Advantage mass spectrometer in continuous flow mode coupled to a 

Costech 4010 Elemental Analyzer (EA) via a Thermo Conflo IV (CF-IRMS). A set of 

standards were run for every 10-12 samples. The standards included USGS40 and 

USGS41 (L-glutamic acid) as well as Costech acetanilide. All samples and standards 

were run with the same parameters; this included an expected reproducibility of the 

standards < 0.2‰ (1σ) for both δ13C and δ15N. Stable isotope values were expressed in 

terms of δ and were reported relative to the standard reference material, Vienna Pee Dee 

Belemnite (VPDB) standard for δ13C and atmospheric air (N2) for δ15N. 

 

Stable isotope values were reported with the standard parts per thousand notation (‰):  

δ = [Rsample / Rstandard – 1] * 1000 

 

Environmental data such as sea surface temperature (SST) and sea surface 

temperature anomaly (SSTA) were obtained from the National Oceanographic and 

Atmospheric Administration’s (NOAA) Teleconnections ENSO website 

(http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices). NOAA_ERSST_V5 data were 

obtained from NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

(https://www.esrl.noaa.gov/psd/). Sea surface temperature anomaly (SSTA) (º C) was 

used as our proxy for ENSO conditions. Data were collected from Extended 

Reconstructed Sea Surface Temperature (ERSST.v5) dataset which is a global, monthly 

SST analysis derived from the International Comprehensive Ocean-Atmosphere Dataset 

(ICOADS). The ERSST.v5 dataset includes information from modern buoy observation, 

Argos-profiling CTD floats, global drift buoys like ICOADS R3.0 (from R2.5), and 
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Hadley Centre Ice-SST version 2 (HadISST2) sea ice concentration (Huang et al. 2014, 

Liu et al. 2014, Huang et al. 2015, Huang et al. 2017). 

 
Statistical Analysis 

Statistical evaluations were done on the Peruvian fur seal population, which 

included both males and females, a gender differential evaluation of the PFS, PFS mom-

pup pairing evaluation, and a species differential evaluation between male Peruvian fur 

seal and male South American sea lion. Descriptive statistics for vibrissae data, including 

range, mean and standard deviation for stable isotope values, were calculated using 

Microsoft Excel (v. 14.7.2; Microsoft Corporation). Using the statistical package R, both 

covariance and correlation were calculated between δ13C and δ15N, δ13C and SSTA for 

1+2 region, and δ15N and SSTA for 1+2 region for both species and gender. Pearson’s 

correlations were used when the parametric assumptions were met; however, some non-

parametric correlations, for sample sizes greater than 30, (Kendall’s tau correlation) were 

used when datasets were unable to be transformed to meet the parametric assumptions. 

Covariances were assessed to detect how changes in SSTA were associated with changes 

in vibrissae δ13C and δ15N. Correlations tested the strength of relationships between the 

stable isotope ratio of the vibrissae and ENSO conditions, SSTA. An independent two-

sample t-test tested the overall difference in stable isotope signatures between adult male 

and female PFS. A paired two-sample t-test compared the dam-pup pairings’ δ13C and 

δ15N. In JMP (v. 12.1.0; SAS Institute Inc.) An analysis of variance (ANOVA) for each 

stable isotope assessed species and gender effect while a multivariate analysis of variance 

(MANOVA) was used to assess the effect of SSTA on the δ13C and δ15N in vibrissae for 

both species and genders. PRIMER (v. 7.0.13; PRIMER-e, Quest Research Limited) 

software was used to conduct all additional analyses including a non-parametric one-way 

analysis of similarity (ANOSIM) test was used to evaluate the differences between both 

stable isotope values (2004-2016) with varying SSTA using Euclidean dissimilarity. The 

significance level for all tests was established at α = 0.05.
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RESULTS 

ENSO Conditions 

The Niño 1+2 region is the smallest and eastern-most of the Niño regions (0-

10°S, 90°W–80°W), developed to understand the effects of ENSO on the coast of Peru 

(Figure 1). The 1+2 index shows the largest variance of all the Niño indices. Figure 3 

chronicles the ENSO cycle for the 1+2 Nino Index from 2000-2017. Sea surface 

temperature anomalies (SSTA) are the departure from average SST conditions from the 

top 0.01 mm of ocean surface. SSTA readings between -0.5 to 0.5 C are a classified 

ENSO Norm, average SST conditions. SSTA readings classified beyond ENSO Norm are 

as follows: ±0.5-1C (weak), ±1-1.5C (moderate), ±1.5-2C (strong), ±2-2.5C (very 

strong), ± >2.5C (extreme). Positive anomaly readings reflect the warm phase El Niño 

periods while the negative anomalies reflect the cool phase La Niña periods. These 

oscillations reveal frequent, variable ENSO conditions over the past 17 years, with more 

pronounced cool phase conditions from 2000 until 2014 and warm phase conditions 

dominated through 2017 (Figure 3). The overall trend of SSTA has increased over 1C 

from 2000 through 2017 in correspondence to more frequent and increasingly stronger 

ENSO events.
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Figure 3. Sea surface temperature anomaly (SSTA) time series for Nino index 1+2 from 2000-2017 (NOAA_ERSST_V5 data 

provided by the NOAA/OAR/ESRL PSD). Positive anomalies represent warm periods (El Niño) and negative anomalies represent 

cold periods (La Niña). 
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Vibrissae 

Seventy-six individual pinniped vibrissae were sampled, 70 Peruvian fur seals 

Arctocephalus australis unnamed ssp. and 6 South American sea lions Otaria byronia. 

Adult female fur seals had the highest number of collected individuals (N=47), followed 

by adult male PFS (N=17), PFS pups (N=6), and subadult SASL (N=6). The sample 

years included 2010 (N=29), 2011 (N=18), 2012 (N=11), 2015 (N=12), and 2016 (N=6) 

(Table 1).  

Hobson et al. (1997), Hirons (2001), Kurle and Worthy (2001), and Hückstädt et 

al. (2007) have all demonstrated that otariid tissues can reflect trophic dynamics and 

production in their respective waters utilizing δ13C and δ15N. Stable nitrogen isotope 

ratios (δ15N) detect shifts in trophic levels while stable carbon isotope ratios (δ13C) 

indicate low or high production due to carbon source in foraging location (Fry & Sherr 

1984, Hobson & Welch 1992, Hirons 2001). Since δ13C and δ15N represent specific time 

periods related to vibrissae growth, these values and their meaning can be related to inter-

annual SSTA in the ecosystem.  

The most recent vibrissa growth is located at the base of the whisker, and an 

individual whisker can represent several years’ growth (Hirons 2001, Hirons et al. 2001, 

Ginter et al. 2012). The vibrissae growth rate used for both pinniped species in this study 

was based on Kelleher’s (2016) northern fur seal growth rate of 0.09 mm/day. Each 2.5 

mm segment in an analyzed vibrissa represented approximately 28 days. With an average 

of 12.31 ± 3.28 cm in length for adult PFS whiskers, individual whiskers represented 45.6 

± 12 months (3.8 ± 1 years) on average. By analyzing monthly means of individual seals’ 

isotopic signatures, a mean for both 13C and 15N can be acquired on a monthly scale for 

the overall population. Across all the sampled vibrissae, a total of 12 years’ stable isotope 

data were recorded. 

Vibrissae are metabolically inert tissues that preserve dietary information from the 

moment they develop. Segmented vibrissae can, therefore, provide a series of isotopic 

signatures that can be correlated to time of growth. This allows for the evaluation of 

changes in assimilated prey nutrients over time (Darimont et al. 2002, Bearhop et al. 

2004, Hall-Aspland et al. 2005, Rosas-Hernandez 2018). The period represented by the 

vibrissa from base (the most recent growth) to tip (the oldest growth) was then nested 
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with monthly sea surface temperature anomaly averages. The nesting of SSTA monthly 

averages with associated dates along a vibrissa allowed for the evaluation of abiotic 

conditions with vibrissae stable isotope values. 

 
Peruvian Fur Seal Population 

Of the 70 Peruvian fur seals sampled, 67% were reproductively mature, adult 

females, 24% were adult males, and 9% were pups with unidentified genders. The 

vibrissae stable isotope data from individuals are summarized in Table 4 and individual 

vibrissa figures are located in Appendix B. All fur seal vibrissae had δ13C values that 

ranged from -18.13 to -13.17 ‰ with a mean of -14.31 ± 0.31‰ and δ15N that ranged 

from 15.83 to 22.31‰ with a mean of 19.08 ± 0.83‰.  

Similar oscillating patterns were observed in both isotope ratios across all 

vibrissae lengths; however, male fur seals had consistently more enriched δ13C and δ15N 

than females. The δ13C and δ15N monthly means from 47 adult female and 17 adult male 

PFS vibrissae, representing 2004-2016, showed covarying oscillations until 2015 (Figure 

4). Both δ13C and δ15N exhibited an average decline (0.6‰ and 2.2‰, respectively) from 

2004-2009 but in the course of one year (mid-2010 to mid-2011), δ15N returned to the 

enriched values of ca. 2006 while δ13C continued to become 0.3‰ more depleted until 

late spring of 2011. PFS signatures from 2011 to late 2014 showed a nearly identical, 

δ15N decline to those values exhibited by seals from 2004-2009. However, from 2015 

through 2016, an inverse stable isotope pattern arose throughout the portion of the 

population sampled. In the span of 11 months (mid-2015 to mid-2016), δ13C increased 

0.9‰ and then declined 0.7‰ while δ15N declined 1.3‰ and then increased 2.1‰. Both 

male and female fur seal vibrissae exhibited nearly identical mean stable isotope patterns, 

but male fur seals exhibited more enriched values than females in both stable isotopes by 

up to 0.5‰ (δ13C) and 1.5‰ (δ15N) (Figure 5). Both periods (2010-2011, 2015-2016) 

corresponded to a moderately strong, persistent La Niña phases (ca. 3+ years) followed 

by an abnormally extended warm period, each approximately 3-4 years in duration 

(Figure 3).  

Peruvian fur seal δ13C (Figure 4) exhibited minor fluctuations from 2004 to 2009 

(-14.08 to -13.59‰ (∆ 0.49‰)); however, δ13C was highly variable from 2010 through 

2016 (-15.09 to -13.80‰) (∆ 1.29‰). Additionally, from late 2015 through 2016, δ13C 
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resembled those previously recorded in 2004-2009, where δ13C ranged -14.46 to -13.80‰ 

(∆ 0.66‰). The δ13C values from 2010-2014 were the most depleted (-14.42 ‰) and had 

the largest range, -15.09 to -13.91‰ (∆ 1.18‰) across all years of the study.    

In contrast to the PFS δ13C, δ15N had much larger fluctuations (Figure 4). From 

late 2004, the earliest stable isotope data recorded, through 2009, δ15N decreased 2.41‰. 

The δ15N ranged from 18.40 to 20.81‰. Following this nearly six-year gradual depletion 

in δ15N, a rapid, approximately 2‰ enrichment, occurred between 2010 and 2011, after 

which the δ15N returned to levels recorded in previous years (ca. 2004/2005). Figure 4 

shows a gradual decline of 4.35‰ in δ15N starting from 20.84‰ and decreasing to 

16.49‰ which took place from the beginning of 2012 until 2016. Data from the 

remainder of 2016 showed a steep enrichment from 17.00 to 18.56‰ (∆ 1.56‰). 

A Kendall’s tau correlation assessed the relationship between ever-changing 

SSTA and PFS stable isotope signatures across all 12 years from November 2004 through 

2016.  PFS mean δ13C did not correlate with SSTA over the 12-year period (p=0.301). 

However, δ13C signatures did significantly correlate with SSTA over a shorter period of 

7-years, 2009 through 2016 (p=0.040). A one-way ANOVA revealed that population 

δ13C did not significantly change with fluctuating SSTA (p=0.140). An ANOVA also 

showed no relationship between population δ13C and δ15N (r= 0.266 and p=0.301). A 

significant inverse correlation existed between the mean δ15N and SSTA (r= -0.254 and 

p<0.001). Warmer temperature anomalies correlated to more depleted δ15N signatures. 

PFS whisker δ13C and δ15N did not correlate over the entire 12-year period (p=0.081). 

Pearson’s correlation coefficient showed δ13C and δ15N were significantly inversely 

correlated during the 2014-2016 ENSO event (p=0.002).
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 Figure 4. Peruvian fur seal population δ13C (blue) and δ15N (red) in parts per thousand (‰), 2004-2016. 
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Figure 5. Peruvian fur seal male δ13C (blue), δ15N (red) and female δ13C (purple), δ15N (pink) in parts per thousand (‰), 2004-2016. 
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Principal component analysis (PCA) of PFS male and female (population) δ13C 

and δ15N and SSTA factored by year revealed a grouping of years 2014, 2015 and 2016 

(Strong to Extreme ENSO condition years) compared to all other years evaluated (Figure 

6). According to the angle of the vectors, δ13C and δ15N, as well as δ13C and SSTA are 

not strongly correlated variables (~90); however, δ15N and SSTA are negatively 

correlated variables (>180). The circle is used for the vector lengths demonstrating 

whether variables were represented enough in the data in order for properly infer 

relationships between variables; all variables in this PCA were equally represented. The 

vectors of this PCA indicated a strong correlation between stable isotope signatures with 

increasing SSTA during 2015 and 2016.  

Analysis of variance (ANOVA) revealed a significant correlation between 

increasing SSTA and depleted δ15N (P<0.001). A one-way ANOVA revealed a 

significant correlation (p<0.001) between δ15N and ENSO phase (i.e. cold, norm, warm 

SST); greater variation in SSTA and most depleted δ15N occurred during warm phases 

while cold phases had consistently enriched δ15N. Increasing magnitude of ENSO 

conditions (i.e. weak, moderate, strong, very strong, extreme) revealed significant 

correlation to depleted δ15N, where strong, very strong and extreme magnitude conditions 

were all below PFS population mean δ15N of 19‰, whereas norm, weak and moderate 

magnitudes of ENSO conditions all varied at or slightly above the mean PFS population 

δ15N (p=0.009).  

A one-way analysis of similarity (ANOSIM), testing differences in mean 

vibrissae δ13C and δ15N with SSTA factored by year revealed a significant difference 

between years (p=0.001; r=0.467), indicating stable isotopes did vary with SSTA among 

years. A year-to-year comparison revealed that 2015 and 2016 were significantly distinct 

from 2005 through 2014 (p=0.001 to 0.006, r=0.566 to 0.981). 
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Figure 6. Principal component analysis of mean Peruvian fur seal population vibrissae δ13C, δ15N and sea surface temperature anomaly 

factored by year (2004-2016). 
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Peruvian Fur Seal Males 

Vibrissae stable isotopes from adult male fur seals spanned a total of 12-years 

(2004-2016); vibrissae were collected in 2011, 2012, and 2016. A Kendall’s tau 

correlation revealed that male δ15N were significantly inversely correlated to SSTA (r= -

0.292 and p<0.001), while δ13C was not (r= -0.107 and p=0.084). However, a Kendall’s 

tau correlation between δ13C and δ15N revealed a significant correlation between the two 

stable isotopes (r=0.227 and p=0.002); as δ13C became enriched, δ15N became more 

enriched. Male δ13C ranged (Figure 7) between -14.16 and -13.44‰ from November 

2004 until mid-2011; at that time a single δ13C decrease of 0.67‰ occurred during a 4-

month period. Proceeding this unusual drop, δ13C rebounded back to -14.00‰ in one 

month followed by a depletion of 0.84‰ over a 20-month period. Vibrissae δ13C from 

mid-2013 until early 2016 showed a steady enrichment of 1‰, until the latter part of 

2016; δ13C had not rebounded to values seen in earlier years (ca. 2004-2011), indicating 

that the environment was more depleted in δ13C than seen in previous years. 

Adult male δ13C ranged ~2‰ from -15.16 to -13.17‰ with a mean -14.01 ± 

0.26‰. Male δ15N ranged ~6‰ from 16.18 to 22.31‰ with a mean 19.66 ± 0.89‰. Male 

PFS δ15N were their most enriched in mid- 2006 (21.72‰) and most depleted in early 

2016 (16.49‰), a total decline of 5.23‰ over ten years. Patterns of ~2‰ enrichment 

followed by a ~2‰ depletion seemed to be the natural trend of δ15N for eight years 

(Figure 8). From late 2004 to mid-2006, a 2.04‰ enrichment occurred followed by a 

depletion of 2.82‰, which lasted until mid-2009; followed by an enrichment of 2.17‰ 

until early 2012. Following these oscillations, a steady decline of 4.58‰ occurred until 

early 2016 when a drastic increase of 2.07‰ in δ15N occurred through 2016. However, 

even after this drastic enrichment, δ15N was still 1.56‰ below the mean male vibrissae of 

20.12‰. 
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Figure 7. Male Peruvian fur seal δ13C (blue) in comparison to sea surface temperature anomaly (orange), 2004-2016.
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Figure 8. Male Peruvian fur seal δ15N (red) in comparison to sea surface temperature anomaly (orange), 2004-2016.
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Principal component analysis of PFS male mean δ13C and δ15N and SSTA 

factored by year (2004-2016) showed 2015 and 2016 were distinct from all other years 

(Figure 9). Similarly to the population PCA analysis, the angle of the vectors, δ13C and 

δ15N, as well as δ13C and SSTA are not strongly correlated variables (~90); however, 

δ15N and SSTA are negatively correlated variables (>180), and all variables were 

equally represented. The vectors of this PCA indicated distinct depletion in δ15N with 

increasing SSTA and little variation in δ13C, with exception to the years 2015 and 2016. 

An ANOVA showed a significant correlation between increasing SSTA and 

decreasing δ15N, and δ15N enrichment with negative SSTA conditions (p<0.001). A one-

way ANOVA of δ15N by ENSO phase (i.e. cold, norm, warm) revealed a significant 

correlation (p<0.013). During warm phases, δ15N was more depleted while δ15N was 

consistently enriched during cold phases. The magnitude of ENSO event (SSTA) did not 

correlate to either δ13C or δ15N (p=0.573). Although δ13C did not show a significant 

change with fluctuating SSTA, δ13C and δ15N were significantly correlated; as δ13C 

became more enriched, δ15N also became more enriched (p=0.008). An ANOSIM 

revealed a significant difference in δ13C and δ15N to relative to SSTA between years 

(p=0.001; r=0.507). Additionally, the years 2013, 2014, 2015 and 2016 were different 

from 2004 through 2012 (p=0.001 to 0.006, r=0.566 to 0.981). Furthermore, 2013 and 

2014 were significant different from 2015 and 2016 (p=0.001 to 0.003; r=0.595 to 0.953). 

No significant difference occurred between 2015 and 2016 (p=0.297).
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Figure 9. Principal component analysis of mean subadult and bull male Peruvian fur seal δ13C, δ15N and sea surface temperature 

anomaly factored by year (2004-2016). 
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Peruvian Fur Seal Females 

Approximately 11 years (2005-2015) of δ13C and δ15N data were collected from 

47 adult female vibrissae. Adult female δ13C ranged from -18.13 to -13.19 ‰ with a 

mean -14.35 ± 0.33 ‰ while the δ15N ranged from 15.83 to 21.55 ‰ with a mean 18.93 ± 

0.85 ‰. A Kendall’s tau correlation revealed a significant inverse correlation between 

δ15N and SSTA readings (p=0.007 and r= -0.183), while δ13C was not correlated to SSTA 

(p=0.272 and r=0.074). Unlike the male fur seals, adult females’ stable carbon and 

nitrogen isotope values were not significantly correlated over the 11-year period (p=0.206 

and r= -0.086).  

Female δ13C was most enriched in mid-2006 (-13.70‰) and the most depleted in 

late 2014 (-15.39‰), a change of 1.69‰ (Figure 10). During the span of one year, mid-

2005 to mid-2006, δ13C ranged 0.78‰. Smaller oscillations, less than 0.5‰, occurred 

from mid-2006 until mid-2010.A decline of 1.39‰ in mean δ13C occurred from 2010 

through 2014 followed by a nearly 1‰ enrichment (mid-2015) and was depleted by 

0.70‰ the following month. Overall, female δ13C decreased more than 1‰ between 2005 

and 2015. 

Female mean δ15N values (Figure 11) revealed a five-year pattern that entailed a 

period of enrichment, followed by a period of depletion. This pattern repeated twice in all 

PFS vibrissae from 2005 to 2015. The most enriched mean δ15N values occurred in May 

2012 (20.68‰) followed by a gradual depletion to the most depleted values in October 

2015 (17.37‰). The 5-year pattern was more pronounced from 2010 until 2015, δ15N 

increasing 2.48‰ over two years and decreasing 3.31‰ in 3 years. This suggests that 

PFS females foraged within two or more trophic levels over several years. 
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Figure 10. Mean female Peruvian fur seal (n=47) δ13C (blue) in comparison to sea surface temperature anomaly (orange) (°C), 2005-

2015.
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Figure 11. Mean female Peruvian fur seal (n=47) δ15N (red) in comparison to sea surface temperature anomaly (orange) (°C), 2005-

2015. 
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  Principal component analysis of PFS female mean δ13C and δ15N and SSTA 

factored by year (2004-2016) revealed data from 2015 were different from the remaining 

years (Figure 12). Similarly to the population PCA analysis, the angle of the vectors, δ13C 

and δ15N, as well as δ13C and SSTA are not strongly correlated variables (~90); 

however, δ15N and SSTA are negatively correlated variables (>180), and all variables 

were well represented. The vectors of this PCA indicated distinct depletion in δ15N with 

increasing SSTA, especially in the years 2014 and 2014, with little variation in δ13C. 

An ANOVA revealed a significant correlation between increasing SSTA and 

declining δ15N, and δ15N enrichment with below average SSTA conditions (P=0.003). 

The magnitude of ENSO events did not correlate significantly to PFS adult female stable 

isotope values (p=0.056); an ANOVA detected no significance between δ13C and SSTA 

(p=0.512); additionally, δ13C and δ15N were not significantly in correlation (p=0.802). An 

ANOSIM testing for differences between years in recorded female whisker δ13C and δ15N 

in relation to SSTA, revealed a significant difference (p=0.001; r=0.431). A pairwise 

comparison of δ13C and δ15N showed 2015 differed significantly from all other years 

(2004-2014) (p=0.001 to 0.036, r=0.484 to 0.947).  
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Figure 12. Principal component analysis of mean female Peruvian fur seal vibrissae δ13C, δ15N and sea surface temperature anomaly 

factored by year (2005-2015). 
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Peruvian Fur Seal Male/Female 

Principal component analysis between male and female PFS detected a separation 

between female and male isotope signatures (Figure 15). According to the angle of the 

vectors, δ13C and δ15N, as well as δ13C and SSTA were positively correlated variables 

(<90); however, δ15N and SSTA are negatively correlated variables (>180); all 

variables were equally represented. Males and females subjected to increasing SSTA, 

revealed more depleted δ15N and more enriched δ13C. Additionally, males revealed the 

most enriched signatures in comparison to females. 

An independent two-sample t-test detected a significant difference in δ13C and 

δ15N values of subadult male and adult female fur seal vibrissae for 2011 and 2012 

(p<0.001 for both). Female fur seal δ13C and δ15N were significantly more depleted than 

male fur seals in both years (p<0.001 for both). A MANOVA for the combined effect of 

δ13C and δ15N revealed a significant difference between genders (p=0.001, r=0.114); the 

mean male vibrissae δ13C was -13.83‰ while the mean female vibrissae was -14.34‰ 

(Figure 13). The mean male vibrissae δ15N (20.22‰) was 1.36‰ more enriched than the 

mean female vibrissae (18.86‰) (Figure 14).  
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Figure 13. Mean δ13C for 17 male (blue) and 47 female (purple) Peruvian fur seal vibrissae and sea surface temperature anomaly (°C), 

2004-2016. 
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Figure 14. Male versus female Peruvian fur seal mean δ15N 17 male (red), 47 female (purple) and sea surface temperature anomaly 

(°C), 2004-2016.
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Figure 15. Principal component analysis of male (blue=M) and female (red=F) Peruvian fur seal vibrissae δ13C and δ15N from 2011 

and 2012 vibrissae samples, representing 2004-2011.
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Peruvian Fur Seal Dam-Pup Pairs 

A vibrissa from each individual of six dam-pup pairs in 2015 were analyzed for 

δ13C and δ15N. The mean length of dam whiskers was 10.29 ± 2.2 cm and one-week-old 

pup whisker mean length was 6.13 ± 1.1 cm. A paired two-sample t-test revealed no 

significant difference between the 6 dam-pup pairings’ δ13C and δ15N (p=0.490, p=0.573, 

respectively), indicating pup whiskers represented growth in utero and reflected the 

maternal stable isotope values. An estimated one-week old PFS pup had a calculated 

whisker growth rate of 0.29 ± 0.05 mm/day. This growth rate was calculated by taking 

the length of each newborn whisker and dividing it by the active gestation period in 

which vibrissae are growing (~7 months). Gestation periods in PFS last 11 months 

(Hewer et al. 1968); PFS experience a 2-3 month diapause, followed by active gestation 

K. Colegrove & M. Adkesson, personal communication, 2018. Fetus whiskers begin to 

develop 2 months after early embryo gestation, followed by 6-7 months of active whisker 

growth in utero (Lerner et al. 2018, K. Colegrove & M. Adkesson, personal 

communication, 2018). The stable isotope data for the 7-month period matched for each 

dam-pup pair. The dam-pup pair’s whiskers averaged -14.79 ± 0.28‰ and -14.82 ± 

0.29‰, respectively, for δ13C, and 18.69 ± 0.17‰ and 18.59 ± 0.11‰ for δ15N, 

respectively. 

 
South American Sea Lion Male 

Male SASL vibrissae had δ13C values ranging from -14.38 to -13.43‰ with a 

mean of -13.43 ± 0.16‰ and δ15N ranging from 15.95 to 22.82‰ with a mean of 20.06 ± 

0.48‰. A principal component analysis of mean δ13C, δ15N and SSTA factored by year 

(2004-2011) showed no distinction among years analyzed (Figure 16). Similar to that of 

the PFS, the angle of the vectors, δ13C and δ15N, as well as δ13C and SSTA are not 

strongly correlated variables (~90); however, δ15N and SSTA are negatively correlated 

variables (>180). This PCA indicated depleted δ13C and a range of δ15N over the same 

year, with no differences among years, besides one outlier in 2011with enriched δ13C. 

An ANOVA evaluating the effect of δ15N with changing SSTA revealed a 

significant correlation between increasing SSTA and depletion of δ15N, and enrichment 

with below average SSTA conditions (p=0.002). A one-way ANOVA analysis evaluating 

δ15N by ENSO phase (i.e. cold, norm, warm) revealed a significant correlation (p=0.003). 
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Whisker plots indicate depleted δ15N with warmer phases and more enriched with colder 

phases. Magnitude of ENSO event did not correlate significantly to SASL male 

signatures (p=0.401). SASL δ13C signatures did not reveal a significant change with 

fluctuating SSTA. A one-way ANOVA showed no correlation between δ13C and δ15N. A 

one-way ANOSIM testing differences between years revealed δ13C and δ15N varied 

relative to SSTA (p=0.001; r=0.304). The year 2009 was consistently the most diverse 

from all other years analyzed (2004 through 2011) (p<0.001; r=0.516 to 0.757. 
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Figure 16. Principal component analysis of South American sea lion male vibrissae mean δ13C, δ15N and sea surface temperature 

anomaly (°C) factored by year (2004-2011).
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Sympatric Species 

A PCA of SASL and PFS sub-adult males both sampled in 2011 evaluating mean 

δ13C, δ15N factored by year revealed differences between years 2005 to 2011 (Figure 17).  

According to the angle of the vectors, δ13C and δ15N were not strongly correlated 

variables (~90); both variables were equally represented. This PCA revealed a trajectory 

of years from 2005 until 2011 in PFS (red) and SASL (blue), which went in different 

directions over the same years indicating slight variation between these species isotope 

signatures by year. 

No significant difference was found between SASL and PFS male δ13C and SSTA 

(p=0.889). A MANOVA of δ15N for PFS and SASL versus SSTA revealed that SASL 

δ15N signatures were more correlated to ENSO phase (p=0.013) than in PFS (p=0.003). 

Warm phase ENSO conditions had the most depleted δ15N, and cold phases had the most 

enriched δ15N in both species. ENSO condition magnitude; however, did not significantly 

correlate with SASL and PFS male signatures (p=0.401 and p=0.542; respectively). 
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Figure 17. Principal component analysis with trajectory of mean male δ13C, δ15N and sea surface temperature anomaly factored by 

year (2005-2011) from Peruvian fur seal and South American sea lion vibrissae. 
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Table 2. Vibrissae mean, standard deviation, and range δ13C and δ15N) sampled from 2010 to 2016. Aa= Arctocephalus australis 

unnamed ssp., Ob=Otaria byronia 

 

Species Age Class Gender N δ15N Vibrissae Data δ13C Vibrissae Data 

± SD (‰) Range (‰) ± SD (‰) Range (‰) 

Aa Pup Unknown 6 18.59 ± 0.47 17.74 to 19.44 -14.11 ± 0.24 -15.72 to -14.11 

 

Adult 

Male 17 19.66 ± 0.89 16.18 to 22.31 -14.01 ± 0.26 -15.16 to -13.17 

Female 47 18.93 ± 0.85 15.83 to 21.55 -14.35 ± 0.33 -18.13 to -13.19 

Ob Subadult  Male 6 20.06 ± 0.48 15.95 to 22.82 -13.43 ± 0.16 -14.38 to -13.43 
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DISCUSSION 

 South American pinnipeds, resident apex predators of coastal Peru, occupy food 

webs by predating on economically important fishes. These marine mammals, which are 

known to forage within the upwelling ecosystem, serve as sentinel species, indicating the 

ecological health of their environments throughout fluctuating ENSO conditions (Fossi & 

Panti 2017). The Peruvian coastline, home to various marine macro-fauna such as the 

vulnerable Peruvian fur seal, is modulated by ENSO conditions and associated physical 

oceanographic properties that alter the biological oceanic conditions in these habitats. 

Well known for its continual upwelling-driven ecosystems, Peruvian coastal habitats are 

extremely dynamic where conditions can be either favorable for marine mammals and 

associated prey, or potentially catastrophic with risk of total population collapses and 

mass mortality events. The effect of ENSO conditions on the feeding ecology, trophic 

interactions, and movements of Peruvian pinnipeds are of significant interest because of 

their ecological importance in coastal ecosystems. This is the first study of its kind to 

capture potential ecosystem changes recorded by apex predators and related to ENSO 

conditions.  

 
Sea Surface Temperature Anomaly 

The proxy for ENSO conditions, monthly SSTA readings, in this study were 

collected from the closest Niño index, Niño 1+2, which is located more than 800 km 

from the Punta San Juan rookeries. Although this is a substantial distance, previously 

documented ENSO years have shown to have impacts on the coastal Peruvian ecosystem, 

including the 1997/98 anchoveta fishery collapse and PFS mass mortality event (Arias-

Shreiber & Rivas 1998, Cardenas-Alayza 2012). An analysis of stable carbon and 

nitrogen isotope ratios (δ13C and δ15N) from whiskers of these two pinniped species 

provided a timeline of trophic and production changes in this dynamic system, one where 

ENSO conditions fluctuate and organisms must adapt in order to survive potentially 

stressful conditions. According to the SSTA from the Niño 1+2 region (Figure 3), ENSO 

cold phase conditions persisted during the years 2004, 2005, 2007, 2010, 2011, 2013 and 

ENSO warm phase conditions occurred in 2006, 2008, 2009, 2012, 2014-2016 (Table 3); 

though duration and magnitude differed among years. The strongest ENSO on record 
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occurred during this study, 2014 to 2016 (Figure 3); the biotic results of the events were 

captured in 2015 and 2016 whiskers. 

 
Peruvian Fur Seal (δ13C) 

Mean vibrissae δ13C signatures represented the carbon source in the seals diet, 

carbon undergoes a small fractionation off less than 1‰ during assimilation and can 

therefore trace primary production changes within the seals environment (DeNiro & 

Epstein 1978, Lajtha & Michener 1994, France 1995, Gannes et al. 1998). The 

comparison of consumer tissue δ13C values over time provides information regarding 

ocean productivity in foraging grounds throughout fluctuating ENSO conditions (France 

& Peters 1997, Hirons 2001, Kurle & Worthy 2001). Among recorded patterns, the PSJ 

population δ13C signatures from 2004-2009 varied within 0.49‰ and 2015-2016 within 

0.66‰, which revealed foraging within approximately one to two trophic levels; 

however, from 2010-2014, δ13C revealed a change of 1.18‰, indicating foraging in two 

or more trophic levels over this time period. Additionally, observations from 2010 to 

2016 represented the largest variance of δ13C (∆ 1.29‰). This could indicate that the 

population was foraging in an environment with fluctuating primary production due to 

fluxing ENSO conditions or geographical variability in their foraging as an adaptation to 

foraging stressors in correspondence to ENSO conditions. 

Both male and female fur seals exhibited nearly identical δ13C patterns though 

males were more enriched by no more than 0.5‰ (Figure 5). This could be indicating a 

potential dissimilarity in foraging location between male and female PFS. Male whisker 

δ13C signatures had depleted from 2010 until 2013, where it began a steady enrichment; 

however, δ13C did not return to values seen in earlier years (ca. 2004-2011) for the 

remainder of studied data. Carbon source absorbed within the PFS diet exposes a change 

between the later years (ca. 2004-2011) and present-day isotope recordings. Throughout 

the overall time series the whiskers covered (2004-2016), both male and female δ13C did 

not reveal a significant change with fluctuating SSTA; however, males revealed a 

significant correlation between δ13C and δ15N (p=0.0076), while females did not in 2011 
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Figure 18. Peruvian fur seal mean δ13C (blue) relative to sea surface temperature anomaly (°C), 2004-2016.



 

54 

 

and 2012 whisker samples. Inclusive of the population over a shorter timeframe of 7 

years (e.g. 2009-2016), δ13C signatures significantly correlated with SSTA. Additionally, 

δ15N and δ13C signatures were significantly inversely correlated during the extreme El 

Nino event in 2014-2016 (p=0.001663).  

Related studies with sampling efforts in the Humboldt Current, such as Espinoza-

Morriberón  et al. (2017), revealed findings of more depleted δ13C values farther offshore 

(Sydeman et al. 1997, Hill et al. 2006, Miller et al. 2008). Sampling distance from shore 

corresponded to more depleted δ13C in animals, which is common in upwelling 

ecosystems (Sydeman et al. 1997, Miller et al. 2008, Espinoza-Morriberón et al. 2017). 

Carbon isotope signatures (δ13C) decrease sequentially between coastal, neritic, and 

oceanic species due to decreasing productivity offshore (France and Peters 1997, Hill et 

al. 2006, Espinoza-Morriberón et al. 2017). ENSO conditions could also contribute 

fluctuating patterns in primary production during warm and cold phases, which fluctuates 

resource availability within an environment. 

 
Peruvian Fur Seal (δ15N)  

Nitrogen enrichment per trophic level is 3-5‰ relative to the diet it is consuming, 

initiated through the bioaccumulation of the nitrogen isotopes necessary to build proteins 

(Deniro & Epstein 1981). The comparison of consumer tissues’ δ15N without their prey 

source provides baseline information regarding potential food web linkages, such as how 

many trophic levels these organisms are feeding within and if it varies over a time series 

(France & Peters 1997, Hirons 2001, Kurle & Worthy 2001). According to the PSJ 

population’s δ15N recordings, a large-scale pattern occurred in PFS foraging where a 

long-term gradual depletion followed by a quick enrichment cycled. Whether this pattern 

corresponds to ENSO conditions is uncertain; however, as ENSO conditions strengthened 

and lasted longer, increased depletion occurred. An oscillation occurred with a depletion 

from 2004-2009 (∆ -2.41‰) until 2010-2011, which had a period of enrichment of (∆ 

+2.17‰). Following these conditions, the similar pattern that persisted from 2012 

through the end of 2016 revealed an oscillation of a five-year depletion (∆ -4.35‰) 

followed by a nine-month (∆ +1.56‰) enrichment; however, this may have persisted but 

was beyond our recordings. 
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Above normal sea surface temperatures correlated to more depleted δ15N 

signatures in PFS whiskers (p<0.001). When evaluating ENSO conditions by phases (i.e. 

cold, norm, warm), a significant correlation between warmer phases and more depleted 

δ15N as well as colder phases and more enriched δ15N were identified (p<0.001). During 

warmer phases, more widespread variation and the most depleted δ15N is seen, whereas 

the most narrowly spread and consistently enriched δ15N signatures was seen during cold 

phases. Increasing magnitude of ENSO conditions revealed significant correlation to 

depleted δ15N, where strong, very strong, and extreme were all below average δ15N 

signatures, whereas norm, weak, and moderate magnitudes all varied at or slightly above 

the mean PFS population δ15N (p=0.009).  

Males that experienced above average SSTA were strongly correlated to depletion 

in δ15N (p<0.001), with a significant correlation to warm phase conditions (p=0.013). 

Warm phase ENSO conditions revealed a widely variable δ15N and also the most 

depleted. Females that experienced above average SSTA, like males, were significantly 

correlated with depleted δ15N (p=0.003). ENSO phase correlated significantly to δ15N 

signatures (p=0.013), where warm phases were wide spread and more depleted and cold 

phases were narrow spread and enriched in δ15N. However, the magnitude of these ENSO 

events did not seem to have a significant effect on male and female δ15N signatures. 
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Figure 19. Peruvian fur seal mean δ15N (red) relative to sea surface temperature anomaly (°C), 2004-2016.



 

57 

 

Peruvian Fur Seal Dam-Pup Pairs 

Evaluation of the 2015 PFS dam-pup pairings concluded that pups δ13C and δ15N 

whisker readings were indicative of the dam, making pup whiskers a proxy for maternal 

diet during the gestation period. While this method has yet to be done before in Peruvian 

fur seals, pup tissues have been used to examine adult female diets in other phocid and 

otariid seal species using stable isotope analyses such as Steller sea lions, Bearded seals, 

and Gray seals (Hewer et al. 1968, Newsome et al. 2010, Hindell et al. 2012, Scherer et 

al. 2015, Lerner et al. 2018). Post birth, pups reflect a trophic level higher than dam due 

to feeding from her milk (Cherel et al. 2015). A paired two-sampled t-test confirmed that 

pup whiskers represented growth in-utero and were indicative of the dam (δ13C p=0.490,  

δ15N p=0.573, ).  

Adult female PFS at Punta San Juan have been observed nursing a newborn, pup, 

and yearling simultaneously; the more stressful the environments, the more likely young 

still need to be nursing on adult female milk to meet metabolic needs for survival. With 

the increasing occurrence of ENSO conditions noted in Figure 3, dam’s may experience a 

higher metabolic demand resulting in extended time at sea foraging, which subsequently 

may leave to pup starvation. Isotope signatures from milk would aid in understanding the 

dam-pup nutritional relationship that followed the gestation period resembled from pup 

whiskers. This information would provide further insight on potential malnutrition 

occurring during ENSO years when birth rates are lower (CSA-UPCH 2016, Cherel et al. 

2015, CSA-UPCH 2017, 2018). 

It is possible that this malnutrition has already been exemplified in the Punta San 

Juan reserve’s population during the 2014-2016 ENSO. Population growth in the PSJ 

rookery had revealed a relatively steady increase from the years 2000 until approximately 

2014 when the population plateaued, followed by a drastic decrease from 2015 

continuing through 2017 by nearly 50% (CSA-UPCH 2016, 2017, 2018). In addition to 

this observed population decrease, data from the main breeding beach of PSJ revealed 

poor breeding seasons in 2012, 2014, 2015, and 2017, with 2014 and 2017 among the 

lowest fecundity observed (>300 individuals) (CSA-UPCH 2017, 2018).  
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Peruvian Fur Seal Males and Females 

In both male and female Peruvian fur seals sampled from 2011 and 2012, δ15N 

and δ13C values were significantly different ((2011) p<0.001, (2012) p<0.001), foraging 

differences between adult males and females can be inferred. Females δ15N and δ13C 

were significantly more depleted than males (p<0.001, p<0.001, respectively) and no 

difference existed between the years analyzed (sample years 2011 and 2012). The male’s 

average δ13C was 0.51‰ higher than the females and the δ15N was slightly enriched 

(1.36‰) relative to the female seals. These variances between male and female PFS 

detect potential differences in forging habits such as foraging within different trophic 

levels. Whether this is due to physical ability, metabolic capability, foraging location or 

depth, or simply different or larger prey preference cannot be inferred without potential 

prey source isotope signatures or tracking data. 

 
South American Sea Lions  

South American sea lion δ15N signatures revealed a significant correlation with 

changing SSTA (p=0.002) and with ENSO phase (p=0.003), where anomalous warm 

phases corresponded with depleted δ15N and cold phases corresponded with more 

enriched δ15N. Although, magnitude of ENSO event did not correlate significantly to 

SASL male signatures, this could be because these individuals were sampled in 2011. 

During the stretch of time these whiskers represented (prior to Nov. 2011), ENSO 

conditions were for the majority neutral (norm) to moderate cold phases with sporadic 

weak warm phases. Most of these anomalous ENSO conditions were short lived if 

beyond weak magnitudes. This leaves question to whether longevity of conditions holds 

more effect to trophic dynamics in these ecosystems rather than magnitude of these 

conditions. SASL δ13C signatures did not reveal a significant change with fluctuating 

SSTA, which again, could be in relation to the longevity of these conditions rather than 

the magnitude or phase associated to the varying SSTA. 

 
Sympatric Species 

 These sympatric marine mammal species did not reveal a significant difference in 

isotope signatures. However, the isotope signatures revealed large changes in PFS 

between years, while the SASL signatures revealed smaller variation between most years 
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with some large-scale changes between select years (Figure 17); this could be a 

distinction between species response times to various ENSO conditions. ENSO phase 

correlated to SASL δ15N more than PFS, while magnitude of ENSO phase effected SASL 

and PFS equally. SASL and PFS δ13C signatures were similar and did not reveal a 

significant change with fluctuating SSTA. Although these species revealed similar 

isotope values, a PCA with trajectory involving δ15N and δ13C in combination revealed 

that both the PFS and SASL behaved differently throughout the time series. It could be 

assumed that PFS and SASL adapt differently in order to take advantage of productive 

conditions or survive resource-limited conditions. 

This information could be indicative of different foraging behaviors throughout 

various ENSO events. Further evaluation of both prey items and biologging data would 

aid in determining the survival strategy these sympatric species must encounter in order 

to adapt to this apparent trophic niche overlap. 

 
Conclusions 

The Punta San Juan rookery is home to two sympatric species of Otariids, where 

ENSO conditions fluctuate frequently, producing ecological ramifications. This study 

provides an understanding of the impact of certain oceanographic influences on these 

pinnipeds. Vibrissae demonstrated multi-year timelines, which allowed evaluation of 

long term foraging in apex predators within this dynamic ecosystem. Stable isotope ratios 

from Peruvian pinnipeds reveal temporal dietary variations; gender- and species-related 

resource and habitat use were seen by providing a proxy of foraging habitat (δ13C) and 

trophic level (δ15N) inside and outside anomalous ENSO conditions. 

All individual pinnipeds resembled that of others within the population; however, 

isotope signatures varied between gender and species. Assessment of PFS pup vibrissae 

grown in-utero in conjunction with dam whiskers, revealed that pup vibrissae are 

interchangeable with dam vibrissae as a proxy of maternal diet throughout the gestation 

period, similar to studies done with bearded seals and gray seals (Hindell et al. 2012, 

Lerner et al. 2018). Pups revealed identical signatures to that of the dam within the 

gestation period, revealing that signatures evaluated in females resemble dietary 

conditions pups were also influenced by throughout developmental stages. 
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Females revealed significantly more depleted δ13C and δ15N than males; males fed 

within more enriched environments and potentially at a higher trophic level. However, 

SASL and PFS males did not reveal a significant difference between isotope signatures. It 

can be presumed that males of both species adapt to ENSO conditions differently than 

females do, but similarly to that of one another. This is most likely due to demands 

associated with maternal pup attendance, unlike males who after mating can forage and 

move as necessary. Males are also not metabolically taxed by feeding young. These 

sympatric species revealed differences between years that could resemble successful 

survival adaptations to resource limitation. 

Varying SSTA readings were correlated to fluctuations in δ15N isotope signatures 

revealing evidentiary support that ENSO conditions alter the foraging of these apex 

predators over time. Anomalous warm phase temperatures had a strong influence on 

δ15N, which revealed the most depleted signatures, whereas cold phase anomalous 

conditions revealed the most enriched δ15N signatures. Although δ13C revealed minor 

fluctuations over the 12-year timeframe, δ13C did reveal trophic significant enrichment 

and depletion during specific points in time. Additionally, both δ13C and δ15N were 

inversely correlated from 2014 to 2016 during the strongest El Nino-Southern Oscillation 

event on record. As δ15N became depleted, δ13C became more enriched; this could 

indicate that as SSTA became more positive (e.g. ENSO warm phase conditions), prey 

availability in their foraging grounds changed, possibly forcing pinnipeds to forage 

farther off shore or scavenging within foraging grounds, potentially spending more time 

at sea to do so. This observation resembles Majluf’s (1987) observations where females 

were absent for long periods of time, upwards of 20 days, during El Nino events causing 

major ramifications on offspring growth and survival (Gentry & Kooyman 1986, Majluf 

1987b). The PFS δ13C and δ15N signatures recorded reflect a shift in available prey, as 

environmental conditions become unfavorable for anchoveta and favorable for sardines, 

vice versa (Benson and Trites 2002, Alheit and Niquen 2004). 

The approximate growth rate of 0.09 mm/day revealed an average of 3.5 years 

represented in individual PFS whiskers and 5.3 years within individual male SASL 

whiskers. Although behavioral adaptations could not be evaluated based solely on these 

pinniped isotope ratios, fluctuations in both stable isotopes across years revealed that the 
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seals were still feeding within these stressful conditions and managed to adapt in order to 

survive. Considering that the 2014-2016 ENSO event was the strongest on record, it 

leaves question to whether these adaptations could be executed for such a strong 

magnitude (e.g., Extreme) and long duration of time (e.g., ~3 years). With the mean trend 

of SSTA in the 1+2 Nino region continuously increasing over 1C over the past decade 

(Figure 3), both increased duration and magnitude threaten these vulnerable species. 

These anomalous climatic conditions elicit changes in primary production, which may 

force alternative foraging strategies for the survival of these locally endangered marine 

mammals. 

 
Future Research 

Comparing apex predator δ13C and δ15N to those values found in common prey 

species helps to detect food web changes (DeNiro & Epstein 1981). By comparing 

vibrissae stable isotope data as done in this baseline study, with those of potential prey, 

these data would provide information regarding food web linkages and ocean 

productivity along the coast of Peru and other associated ecosystems (France & Peters 

1997, Hirons 2001, Kurle & Worthy 2001). This information would serve fisheries with 

valuable information on prey available during various ENSO conditions, as PFS are 

selective foragers by nature and primarily forage on anchovy when available. If PFS do 

not target this prey during select periods, this could be in relation to fish species 

abundances and would allow for a better overall understanding of ENSO-induced 

ecosystem shifts.
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Appendix A: Sea Surface Temperature Plots and Tables 

Table 3. Monthly Sea Surface Temperature Averages from Nino Index 1+2 Region (Years 2000 to 2016). Blue=cold phase ENSO, 

Red=warm phase ENSO (NOAA_ERSST_V5 data provided by the NOAA/OAR/ESRL PSD). 
 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC 

2000 -0.74 -0.54 -0.40 0.03 -0.24 -0.27 -0.25 -0.58 -0.24 -0.31 -1.23 -1.03 

2001 -0.61 -0.40 0.24 0.25 -0.55 -0.73 -0.55 -0.85 -1.14 -1.17 -0.93 -1.09 

2002 -0.76 0.01 0.84 0.89 0.78 0.50 -0.20 -0.27 0.19 0.34 0.93 1.03 

2003 0.15 -0.04 0.00 -0.49 -1.49 -1.24 -0.98 0.00 -0.46 0.20 0.24 0.15 

2004 -0.19 0.02 -0.67 -0.50 -1.44 -0.96 -0.75 -0.75 -0.28 0.11 0.67 0.29 

2005 0.00 -0.86 -1.39 -0.35 -0.23 -0.66 -0.32 -0.41 -0.75 -1.30 -1.47 -1.00 

2006 -0.35 0.30 -0.22 -1.43 -0.40 -0.10 0.23 0.69 0.96 1.02 0.75 0.64 

2007 0.68 0.19 -0.57 -1.16 -1.63 -1.49 -0.95 -1.21 -0.98 -1.55 -1.77 -1.73 

2008 -0.46 -0.30 0.46 0.48 0.69 0.67 1.02 1.39 1.01 0.32 -0.32 -0.53 

2009 -0.15 -0.60 -0.74 0.48 0.50 0.77 0.78 0.83 0.50 0.29 0.29 0.53 

2010 0.30 0.20 0.14 -0.04 0.39 0.13 -1.00 -1.32 -1.23 -1.32 -1.35 -0.98 

2011 -0.46 -0.07 -0.81 -0.13 0.27 0.41 0.13 -0.22 -0.75 -0.81 -0.61 -0.75 

2012 -0.16 0.44 0.23 0.97 1.03 1.13 0.43 0.06 0.05 -0.40 -0.45 -0.92 

2013 -0.66 -0.65 -0.60 -1.16 -1.43 -1.79 -1.57 -1.17 -0.78 -0.78 -0.60 -0.51 

2014 0.02 -0.53 -0.24 0.04 1.22 1.66 1.01 0.88 0.79 0.66 0.76 0.34 

2015 -0.13 -0.45 0.16 1.07 1.70 2.31 2.57 1.64 2.27 2.09 2.23 2.14 

2016 1.81 1.38 1.42 0.52 0.64 0.76 0.28 0.23 0.56 0.31 0.08 0.35 
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Figure A-1. Sea surface temperature versus sea surface temperature anomaly (°C) from 1+2 Nino index, 2004-2016 

(NOAA_ERSST_V5 data provided by the NOAA/OAR/ESRL PSD). 
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Appendix B: Vibrissae Plots (Peruvian Fur Seal) 

 
Figure  B-1. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1002), 2010. 
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Figure B-2. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1003), 2010.
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Figure B-3. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1006), 2010. 
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Figure B-4. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1008), 2010.
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Figure B-5. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1010), 2010.
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Figure B-6. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1012), 2010. 
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Figure B-7. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1014), 2010
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 Figure B-8. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1016), 2010. 
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Figure B-9 Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1018), 2010. 
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Figure B-10. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1020), 2010. 



 

95 

 

 
Figure B-11. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1022), 2010. 



 

96 

 

 
Figure B-12 Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1024), 2010. 
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Figure B-13. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1026), 2010. 
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Figure B-14. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1028), 2010.
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Figure B-15. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1030), 2010. 
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Figure B-16. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1032), 2010.  
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Figure B-17. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1034), 2010. 
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Figure B-18. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1036), 2010. 
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Figure B-19. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1038), 2010. 
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Figure B-20. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1040), 2010. 
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Figure B-21. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1042), 2010. 
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Figure B-22. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1044), 2010. 
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Figure B-23. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1046), 2010.
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Figure B-24. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1048), 2010.
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Figure B-25. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1050), 2010.
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Figure B-26. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1052), 2010.
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Figure B-27. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1054), 2010.
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Figure B-28. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA1056), 2010. 
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Figure B-29. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-01), 2011.
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Figure B-30. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-03), 2011.
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Figure B-31. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-05), 2011.
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Figure B-32. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-07), 2011.
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Figure B-33. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-08), 2011.
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Figure B-34. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA11-09), 2011.
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Figure B-35. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-19), 2011.
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Figure B-36. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-22), 2011.
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Figure B-37. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-23), 2011.
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Figure B-38. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-30), 2011.
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Figure B-39. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-31), 2011.
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Figure B-40. Adult female Peruvian fur seal vibrissae δ13C and δ15N (AA11-34), 2011.
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Figure B-41. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA1201), 2012.
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Figure B-42. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA1202), 2012.
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Figure B-43. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA1203), 2012.
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Figure B-44. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA1204), 2012.
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Figure B-45. Subadult male Peruvian fur seal vibrissae δ13C and δ15N (AA1205), 2012.
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Figure B-46. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1206), 2012.
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Figure B-47. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1220), 2012.
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Figure B-48. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1230), 2012.
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Figure B-49. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1232), 2012.
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Figure B-50. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1236), 2012.
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Figure B-51. Adult Female Peruvian fur seal vibrissae δ13C and δ15N (AA1240), 2012.
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Figure B-52. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA15-12), 2015.
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Figure B-53. Pup of (Dam AA15-12) Peruvian fur seal vibrissae δ13C and δ15N (AA15-12P), 2015.
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Figure B-54. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA1513), 2015.
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Figure B-55. Pup of (Dam AA1513) Peruvian fur seal vibrissae δ13C and δ15N (AA1513P), 2015
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Figure B-56. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA1515), 2015.
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Figure B-57. Pup of (Dam AA1515) Peruvian fur seal vibrissae δ13C and δ15N (AA1515P), 2015
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Figure B-58. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA1516), 2015.
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Figure B-59. Pup of Dam 1516 sampled in 2015. Pup of (Dam AA1516) Peruvian fur seal vibrissae δ13C and δ15N (AA1516P), 2015
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Figure C-60. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA1517), 2015.
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Figure B-61. Pup of (Dam AA1517) Peruvian fur seal vibrissae δ13C and δ15N (AA1517P), 2015
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Figure B-62. Adult Female (Dam) Peruvian fur seal vibrissae δ13C and δ15N (AA1518), 2015
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Figure B-63. Pup of (Dam AA1518) Peruvian fur seal vibrissae δ13C and δ15N (AA1518P), 2015



 

148 

 

 
Figure B-64. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-01), 2016.
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Figure B-65. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-02), 2016.
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Figure B-66. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-03), 2016.
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Figure B-67. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-04), 2016.
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Figure B-68. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-05), 2016.
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Figure B-69. Adult Bull male Peruvian fur seal vibrissae δ13C and δ15N (AA16-06), 2016.
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Appendix C: Vibrissae Plots (South American Sea Lion) 

 
Figure C-1.Subadult South American sea lion vibrissae δ13C and δ15N (OF11-02), 2011.
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Figure C-2. Subadult South American sea lion vibrissae δ13C and δ15N (OF11-03), 2011.
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Figure C-3 Subadult South American sea lion vibrissae δ13C and δ15N (OF11-04), 2011.
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Figure C-4. Subadult South American sea lion vibrissae δ13C and δ15N (OF11-05), 2011.
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Figure C-5. Subadult South American sea lion vibrissae δ13C and δ15N (OF11-07), 2011.
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Figure C-6. Subadult South American sea lion vibrissae δ13C and δ15N (OF11-10), 2011. 
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Appendix D: Vibrissae Tables 
Table 4. Minimum, maximum, range, and mean δ13C and δ15N (‰) in Peruvian fur seal (Arctocephalus australis unnamed ssp.) 

vibrissae, Punta San Juan, Peru, 2010-2016. Gender (Male=M, Female=F, Unknown =UNK) and Age (Adult=AD, Pup=PUP). 

 

Individual Year Gender Age Min δ13C Max δ13C Range δ13C x δ13C  Min δ15N Max δ15N Range δ15N x δ15N 

AA 1002 2010 F AD -14.97 -14.02 0.95 -14.44 15.83 19.95 4.12 18.87 

AA 1003 2010 F AD -14.84 -13.61 1.23 -14.23 17.09 19.87 2.78 18.49 

AA 1006 2010 F AD -15.35 -13.77 1.58 -14.38 17.58 20.85 3.27 19.29 

AA 1008 2010 F AD -14.87 -13.71 1.16 -14.16 17.26 20.13 2.87 18.70 

AA 1010 2010 F AD -15.50 -13.67 1.83 -14.19 17.81 20.49 2.68 19.11 

AA 1012 2010 F AD -15.12 -13.96 1.16 -14.65 17.76 21.55 3.79 19.74 

AA 1014 2010 F AD -15.28 -13.80 1.48 -14.25 17.15 19.98 2.83 18.61 

AA 1016 2010 F AD -15.22 -14.03 1.19 -14.48 17.42 19.61 2.19 18.68 

AA 1018 2010 F AD -14.12 -13.76 0.36 -14.12 18.50 20.43 1.93 19.36 

AA 1020 2010 F AD -15.02 -14.09 0.93 -14.54 17.26 19.65 2.39 18.91 

AA 1022 2010 F AD -15.07 -13.66 1.41 -14.19 17.47 19.68 2.21 18.84 

AA 1024 2010 F AD -15.47 -14.03 1.44 -14.44 17.26 19.95 2.69 18.79 

AA 1026 2010 F AD -14.74 -13.78 0.96 -14.28 17.47 19.75 2.28 18.81 

AA 1028 2010 F AD -14.69 -13.91 0.78 -14.35 17.41 20.03 2.62 19.08 

AA 1030 2010 F AD -15.51 -14.02 1.49 -14.60 17.44 20.78 3.34 19.04 

AA 1032 2010 F AD -14.53 -13.77 0.76 -14.19 17.58 19.96 2.38 18.87 

AA 1034 2010 F AD -14.22 -13.73 0.49 -13.97 16.17 18.12 1.95 17.40 

AA 1036 2010 F AD -14.58 -13.87 0.71 -14.19 18.48 20.30 1.82 19.38 

AA 1038 2010 F AD -15.11 -14.01 1.10 -14.43 17.31 19.91 2.60 18.45 

AA 1040 2010 F AD -15.52 -13.80 1.72 -14.37 17.35 19.74 2.39 18.55 

AA 1042 2010 F AD -14.86 -14.06 0.80 -14.46 17.91 20.19 2.28 19.31 

AA 1044 2010 F AD -16.00 -13.74 2.26 -14.36 17.43 20.26 2.83 18.97 

AA 1046 2010 F AD -16.54 -14.06 2.48 -14.74 18.02 20.48 2.46 19.39 
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Table 4. Continued. 

Individual Year Gender Age Min δ13C Max δ13C Range δ13C x δ13C Min δ15N Max δ15N Range δ15N X δ15N 

AA 1048 2010 F AD -14.91 -13.83 1.08 -14.35  17.54 20.12 2.58 18.97 

AA 1050 2010 F AD -14.48 -13.59 0.89 -14.09 17.60 19.97 2.37 19.01 

AA 1052 2010 F AD -15.10 -13.24 1.86 -13.78 17.94 20.07 2.13 19.22 

AA 1054 2010 F AD -14.78 -13.30 1.48 -13.96 17.65 20.40 2.75 19.07 

AA 1056 2010 F AD -14.69 -13.42 1.27 -13.83 16.86 19.45 2.59 18.16 

AA 1058 2010 F AD -14.23 -13.19 1.04 -13.64 17.72 20.92 3.20 18.87 

AA1101 2011 M AD -14.37 -13.29 1.08 -13.73 19.10 21.13 2.03 20.30 

AA1103 2011 M AD -14.75 -13.68 1.07 -14.04 18.73 20.90 2.17 19.88 

AA1105 2011 M AD -14.58 -13.17 1.41 -13.57 18.96 20.99 2.03 20.15 

AA1107 2011 M AD -14.01 -13.57 0.44 -14.01 19.72 21.69 1.97 20.64 

AA1108 2011 M AD -14.82 -13.30 1.52 -13.73 18.28 21.75 3.47 20.49 

AA1109 2011 M AD -14.80 -13.48 1.32 -13.90 18.08 20.99 2.91 19.84 

AA1119 2011 F AD -15.64 -13.92 1.72 -14.36 17.93 20.80 2.87 19.23 

AA1122 2011 F AD -15.72 -14.53 1.19 -14.53 17.74 20.42 2.68 19.07 

AA1123 2011 F AD -15.14 -13.21 1.93 -14.02 16.42 20.61 4.19 18.70 

AA1130 2011 F AD -15.22 -13.88 1.34 -14.39 17.49 20.52 3.03 19.09 

AA1131 2011 F AD -14.86 -13.97 0.89 -14.41 16.89 19.84 2.95 18.54 

AA1134 2011 F AD -15.53 -13.82 1.71 -14.25 16.48 20.17 3.69 18.54 

AA1201 2012 M AD -15.77 -13.70 2.07 -14.11 18.16 21.85 3.69 20.03 

AA1202 2012 M AD -14.58 -13.46 1.12 -13.93 18.91 22.27 3.36 20.76 

AA1203 2012 M AD -15.18 -13.61 1.57 -14.04 17.90 21.16 3.26 19.76 

AA1204 2012 M AD -14.47 -13.23 1.24 -13.78 18.65 21.80 3.15 20.55 

AA1205 2012 M AD -14.02 -13.34 0.68 -13.68 17.65 22.31 4.66 20.22 

AA1206 2012 F AD -14.07 -13.63 0.44 -14.07 16.88 20.82 3.94 19.33 

AA1220 2012 F AD -15.45 -14.03 1.42 -14.60 17.65 21.37 3.72 19.70 

AA1230 2012 F AD -15.17 -13.80 1.37 -14.35 17.11 20.67 3.56 19.09 
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Table 4. Continued. 

Individual Year Gender Age Min δ13C Max δ13C Range δ13C x δ13C Min δ15N Max δ15N Range δ15N x δ15N 

AA1232 2012 F AD -14.92 -13.92 1.00 -14.44 17.71 21.25 3.54 19.48 

AA1236 2012 F AD -14.79 -13.88 0.91 -14.41 17.38 20.52 3.14 19.24 

AA1240 2012 F AD -15.02 -13.77 1.25 -14.35 18.11 21.09 2.98 19.63 

AA1512 2015 F AD -15.46 -14.24 1.22 -14.78 17.40 20.40 3.00 19.02 

AA1512 2015 UNK PUP -15.10 -14.53 0.57 -14.79 18.00 19.44 1.44 18.64 

AA1513 2015 F AD -14.97 -13.97 1.00 -14.49 17.22 19.75 2.53 18.61 

AA1513 2015 UNK PUP -14.65 -14.11 0.54 -14.45 17.74 19.28 1.54 18.65 

AA1515 2015 F AD -15.63 -14.28 1.35 -14.84 16.69 19.88 3.19 18.69 

AA1515 2015 UNK PUP -15.72 -14.55 1.17 -14.97 18.03 19.27 1.24 18.62 

AA1516 2015 F AD -15.42 -14.13 1.29 -14.63 16.71 19.74 3.03 18.53 

AA1516 2015 UNK PUP -15.21 -14.60 0.61 -14.97 18.66 19.33 0.67 18.66 

AA1517 2015 F AD -18.13 -14.53 3.60 -15.31 16.98 19.81 2.83 18.67 

AA1517 2015 UNK PUP -15.21 -15.05 0.16 -15.21 17.90 18.87 0.97 18.37 

AA1518 2015 F AD -15.16 -14.23 0.93 -14.67 17.03 20.51 3.48 18.63 

AA1518 2015 UNK PUP -15.05 -14.18 0.87 -14.52 17.88 19.26 1.38 18.59 

AA1601 2016 M AD -14.75 -13.28 1.47 -14.15 16.20 20.62 4.42 18.83 

AA1602 2016 M AD -14.68 -13.60 1.08 -14.10 16.87 20.13 3.26 18.25 

AA1603 2016 M AD -14.20 -13.52 0.68 -14.20 16.18 19.72 3.54 17.83 

AA1604 2016 M AD -15.16 -13.88 1.28 -14.38 16.85 20.68 3.83 19.07 

AA1605 2016 M AD -14.98 -13.96 1.02 -14.44 16.49 20.45 3.96 18.81 

AA1606 2016 M AD -14.36 -13.84 0.52 -14.36 16.94 20.60 3.66 18.83 
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Table 5. Minimum, maximum, range, and mean of δ13C and δ15N (‰) in South American sea lion (Otaria byronia) vibrissae, Punta 

San Juan, Peru, 2011. Gender: Male=M, Age: SA=Subadult 

 

Individual Year Gender Age Min δ13C Max δ13C Range δ13C x δ13C Min δ15N Max δ15N Range δ15N x δ15N 

OF11-02 2011 M SA -14.35 -12.89 1.46 -13.50 16.66 22.82 6.16 20.15 

OF11-03 2011 M SA -14.21 -13.07 1.14 -13.46 18.49 22.28 3.79 20.09 

OF11-04 2011 M SA -13.85 -12.86 0.99 -13.29 18.98 21.70 2.72 20.58 

OF11-05 2011 M SA -13.76 -12.77 0.99 -13.19 18.20 21.01 2.81 20.23 

OF11-07 2011 M SA -14.09 -13.22 0.87 -13.64 17.92 21.76 3.84 20.15 

OF11-10 2011 M SA -14.38 -12.81 1.57 -13.49 15.95 21.30 5.35 19.15 
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