STUDIES ON SOME APPLE VIRUS DISEASES IN NEW HAMPSHIRE

JOSEPH G. BARRAT

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

BARRAT, JOSEPH G., "STUDIES ON SOME APPLE VIRUS DISEASES IN NEW HAMPSHIRE" (1958). Doctoral Dissertations. 752.
https://scholars.unh.edu/dissertation/752

Dapple apple symptoms on the fruits of the variety Starking.

STUDIES ON SOME APPLE VIRUS

 DISEASES IN NEW HAMPSHIRE$$
\begin{gathered}
\text { Joseph } \begin{array}{c}
\text { By } \\
\text { B. Barrat } \\
\text { M. S., Rhode Island State College, } \\
\text { M. Siversity of Rhode Island, } \\
1951
\end{array}
\end{gathered}
$$

A DISSERTATION
Submitted to the University of New Hampshire
In Partial Fulfillment of
The Requirements for the Degree of
Doctor of Phi.losophy

Graduate School
Department of Botany

This dissertation has been examined and approved.

ACKNOWLEDGMENTS

The writer wishes to express his deep appreciation to Dr. Avery E. Rich for his assistance and permission to develop the study along those lines which seemed most opportune. The writer is indebted to Dr. Albion R. Hodgdon for his taxonomic assistance, Dr. Stuart Dunn for permission to use the available space in the light room, Dr. R. A. Kllpatrick for help with the photographs and Dr. W. W. Smith for his willing permission to use the orchard as the writer wished.

TABLE OF CONTENTS
Page
LIST OF TABLES iii
LIST OF ILLUSTRATIONS iv
I. INTRODUCTION 1
II. REVIUW OF LITERATURE 4
III. MATERIALS AND METHODS 42

1. Experimental Basis of Orchard 42
A. Orchard Occurrence of Nalus Stem Pitting 48
B. Orchard Occurrence of Dapple Apple 49
C. Orchard Occurrence of Other Diseases Noted. 52
2. Orchard Transmission Studies. 55
A. Mature Trees. 55
B. Immature Trees. 58
3. Greenhouse Studies 65
A. Non-Rosaceous Plants 65
B. Rosaceous Plants 72
a. Non-Malus Group 72
b. Malus Group 78
IV. RESULTS 85
4. Orchard studies 85
5. Greenhouse Studies. 88
V. DISCUSSION AND CONCLUSIONS 116
VI. SUMMARY 127
BIBLIOGRAPHY 128
APPENDIX A 137
APPENDIX B 139
APPENDIX C 142

LIST OF TABLES

Page

Table 1. Nursery Stock Planting at Gilford, New
Hampshire, 1957. 61
Table 2. Nursery Stock Planting at Durham, New Hampshire, 1957. 63

Table 3. $\frac{\text { Malus floribunda. Greenhouse. Symptom }}{\text { development on inoculated seedings. . . } 102}$
Table 4. Malus floribunda. Artificial Light. Symptom development on inoculated seedings. . . . 103

Table 5. Kalus sieboldii arborescens. Greenhouse. \quad Symptom development on inoculated seedlings 104
Table 6. $\frac{\text { Malus }}{\text { Light }} \frac{\text { sieboldii }}{\text { Symptom }} \frac{\text { arborescens. }}{\text { development }}$ on inoculated
Table 7. Malus brevipes. Greenhouse. Symptom development on inoculated seedlings. . . . 106
Table 8. Malus brevipes. Artificial Light. Symptom \quad development on inoculated seedings • • • 107
Table 9. Malus sikkimensis. Greenhouse. Symptom \quad development on inoculated seedings . . . 108
Table 10. $\frac{\text { Galus }}{\text { Symptom development on inoculated seedlings. } 109}$
Table l1. Malus prunifolia rinki. Greenhouse. Symptom development on inoculated seediing. . . 110

Table 12. Malus prunifolia rinki. Artificial Light. Symptom development on inoculated seedings. 1.11
Table 13. Malus ropusta. Greenhouse. Symptom development on inoculated seedings.. . . . 112
Table 14. Malus robusta. Artificial Iight. Symptom development on inoculated seedlings.
Table 15. Malus toringoides. Greenhouse. Symptom $\frac{\text { development on inoculated seedings. . . . } 114}{}$
Table 16. Malus toringoides. Artificial Light. Symptom development on inoculated seedlings . . 115

LIST OF ILIUSTRATIONS

Page
Frontis- Dapple apple symptoms on the fruits of piece variety Starking.
Figure 1. Rootstock, interpiece and varietal plan of experimental portion of orchard 47
Figure 2. Experimental orchard indicating variety, bodystock or rootstock and occurrence and distribution of virus-like disorders, 1956 and 1957. 50
Figure 3. Leaves from a seedling of M. toringoides showing distortion symptoms. Jormal leaf on right. Plant grown under incan- descent light. Inoculum: J-5 Cortland buds. 143
Figure 4. A seedling of N . toringoides showing dis- torted leaves. Plant grom under incan- descent light. Inoculum: D-19 Virginia Crab buds. 143
Figure 5. Leaves from a seedling of M. floribunda showing distortion symptoms. Normal leaves are on the left. Plant grown under incandescent light. Inoculum: D-19 Virginia Crab buds 144
Figure 6. A seedling of 4 . floribunda showing epinasty of the leaves. Mant rrow in the greenhouse. Inoculum: $J-5$ Cortland buds. 144
Figuré 7. Leaves from a seeding of M. brevipes showing distortion a nd mottling symp- toms. Normal leaf on the right. Plant grown under incandescent light. Inoculum: Gravenstein 1 buds 145
Figure 8. A seedling of M. brevipes showing dis- tortion of the leaves. Plant grown under incandescent light. Inoculum: J-5 Cortland buds. 145
Figure 9. Leaves from a seedling of M. sikki- mensis showing distortion and mottling symptoms. Normal leaves on the right. plant grown under incandescent light. Inoculum: J-5 Cortland buds. 146
Figure 10. Leaves from a seedling of M. sargenti
rosea showing distortion sympoms.
Normal leaf on the right. Plant grown
under incandescent light. Inoculum:
J-5 Cortland buds. 146

Figure 11. A seedling of M. floribunda showing an
elongated type of distortion. Plant
grown under incandescent light.
Inoculum: J-30 Virginia Crab buds. . . 147
Figure 12. A seedling of 4 . brevines showing greater distortion on the longer adven- titious shoot. Plant grow under incan- descent light. Inoculum: J-30 Virginia Crab buds. 147
Figure 13. Abnormal swelling above the buds on Virginia Crab which had been inocula- ted with a bud from an apple flat limb virus infected Gravenstein tree. . . 148

SECTION I

INTRODUCTION

Apples (Malus pumila ${ }^{\text {l }}$) are grown as a basic fruit commodity throughout the temperate world. Their culture varies from country to country depending on the environmental conitions wich are present. ill of these apples are subject to iisoase anc ingect losts wich also vary, some beine common to all aroas mine others are rostrictod to certoin locales.
aples are the nost important fruit crop in the United States. The avorage annual production of marketed aprles is approxinately $713,800,000$ bushels (10). The State of New Hampshire produces one million bushels of these marketed apples. Of course, there are many thousands of bushels oif apples which do not reach the market for various reasons, including disease losses. It is estimated that in the United States that aproximately $8,263,000$ bushels annually do not reach whe motret becanso of the arme scab disease alone (io).

Losses from aptle aiseases are generally attributed to funci and bactoria. The virus diseases besetting them are considered more or less oddities which do not apmreciably affect the quantity and quality of apples produced. The

1. All plant names are in accordance with Rehder's Manual of Cultivated Trees and Shrubs (108) or Gray's Manual of Botany (39).
writer believes that arples are almost in the same position as potatoes; namely, most apnles are infected with virus entities, but they differ from potatoes in that this fact is not yet recognized. The purpose of any investigation of apple virus disorders is to further our recognition of these unapparent disorders and to correct them.

A preliminary review of the literature indicated that no indexing host was available which would detect viruses within the apple tree which do not express themselves by the prosonce of symytoms. This rresence of a virus within a host Which does not show symptoms is referred to as a latent virus. Its detection within a plant is demonstrated by the transfer of the virus to another host and the development of symptoms by the second host. This is generally called indexing and is by far the most widely accepted method of determining the presence of latent viruses within a plant. One of the general purposes of this work is to develop an indexing technique Which will demonstrate within a particular host the presence or absence of a viral entity in ampes. Without this technique, very little procress can be made in the study of apple virus disenses.

The particular purpose of this study of virus disorders of apple trees had its origin in the severe winter of 1933-34 (118, 119). The extremely low temperatures over an extended period of time caused many apple trees to die from freezing injury and caused extensive injury among many of those trees Which survived the winter. Most of the injury was located on the trunks of the trees near the soil line and in the
crotches of the larger branches near the main trunk. Since the injury was rather restricted it was thought that these areas which lacked low temperature hardiness or exhibited susceptibility to winter injury could be replaced by grafting which would substitute a hardier trunk and scaffold limbs. Using this as a basis for an experiment, Dr. W. W. Smith, Horticulturist at the New Hampshire Agricultural Experiment Station planted apnle trees at his farm in Gilford, liow Hampshire. In place of the usual varjetal tree trunk the selections Vircinia Crab and Plorence Crab vero used. The aprle varieties in whict these trunks were grafted were licIntosh, Cortiand, Red Spy and Horthern Sny. This work was initiated in 1940, and by 1948, disorders which were of unknown cause and which did not permit the proper development of the trees appeared in the substituted trunks (more commonly referred to as bodystocks or interpieces). In addition, symptoms appeared on the fruits of the Cortland variety of a noticeable discoloration which reduced their market value. The disorier occurring in the Virginia Crab bodystock has been called "wood pitting", "stem pitting" or "tristeza" (118, 119). The symptoms on the Cortland fruit have been described and called "danple apple" (120).

The purpose of these investigations has been to determine the nature of the dapple apple disorder and $\ddagger 0$ increase our knowledge of this and other apple virus diseases.

SECTION II

REVIEN OF LITERATURE

The start of our knowledge of plant virus diseases is usually attributed to Iwanowski, who in 1892 could not remove the infective entity of tobacco mosaic with fine bacterial filters. Beijerinct, a fev years later, conceived the possibility that another agent smaller than bacterja could exist and cause the tobacco disordor. Beijerinck in 1806 called the infective san "contasium vivum fluidum" and, thus, gave official recognition to viruses (17).

The word "virus" is of Latin origin from "virulentus", Which exactly translated means poison or toxin. At one time the word was associated with bacteria, and bacterial and viral phrases were synonymous. With the introduction of filters fine enough to exclude bacteria, it became more common to refor to those aronts an filtornble viruses. These ontities, ffer all clse is removed, are now called viruses (17). A virus has been defined as "a submicroscopie entity, probarly nucleo-protein in nature, carable of reproducing litself only in vivo, and usually producing certain symptoms in the host" (109). A virus is also defined as an exceedingly minute obligate parasite which grows and multiplies within, and at the cxpense of, living hosts and is too small to be seen with the ordinary light microscope (110). Although 1892 is the starting point of virus know-
ledge some pertinent work in fruit trees had been done before that tirne. E. F. Smith (55) in 1888 transmitted the peach yellows by grafting, thus demonstrating that it was an infective agent not caused by bacteria or fungi. Beach yellows had caused considerable attention and was first recognized in 1791 in this country (55). Apple mosaic is also a disease of long standing, having been noted first about 1827 in France (97).

Amic virus diseases have not received as much attention as other fruit tree virus diseases until recently. Folnes (62), in his 1930 classification, lists Gamor hali (apple mosaio virus) as the only virus causinf a disease of apples. Smith (1)D, in his 1957 book, briefly describes 8 virus diseases of apples and lists 2 as synonymous. Anderson (1) in 1956 described 4 apple virus disorders and makes reference to 3 more. The Review of Applied lycology (9) in 1957 recorded 12 viruses on apples. Many strains have also been listed; some of which are in error.

The brief sumaries presented by Anderson (1) and Swith (17), althouk recont are inadequate for the seraration of virus djeases and cstantishins the occurrence of a now one. An extensive review of the litorature nas necessary to establish daprle aprle as new virus disorder and to present a disscussion of apple virus diseases.

This review of the literature will attempt to record those apple virus diseases which have been described rrevious to 1958 and to relate to each other only those which are obvious. It is hoped that this review will aid in understanding the symptoms of apple virus infection and clearly present a needed summary of apple virus disorders.

Virus Symptoms Expressed in Foliage and Stems

Name: Apple Nosaic Virus Khristov 1934. (Apple Infectious Variegation Virus Bradford and Joley 1933; Fyrus virus 2 Smith 1937; Narmor mali Holmes 1939)

Disease Name: Apple Mosaic, Infectious Variegation. Symptoms: Apple mosaic is a disorder of the leaves in which whitish or cream-colored areas are present. These areas may be either of polygonal shanes which are more or less restricted by the veins, or somemat of a blotehy condition covering the lamina of the loaf which tends to follow the veins. The amount of ajocoloration may be as little as a fleck on a single leaf or it may cover the entire leaf. Intermediate forms are present. lecrotic areas appear on the more severely affected leaves, and defoliation of these leaves is common. Strains, based on the severity of symptoms have been described. Reddish-brown streaks on the bark of young shoots and cream-colored patches on the fruit may occur in very sensitive varieties. The virus entity causing anple mosaic has been trinsmitted $(25,31,32,97,200)^{2}$.

Discussion: Considerable work has been done with the apple mosaic virus. Ferhaps the most important is the subdivision of aryle mosaic symptoms into 3 strains--severe mosaic, mild vein-banding, and mild mosaic (100).

Severe mosaic is the most intense form causing extensive vein-banding and large chlorotic areas which become necrotic in late summer, followed by much defoliation. Severe

[^0]mosaic, probahly on the very suscentible varieties Cox's Orange Pippin and Lord Lambourne, is expressed by creamcolored blotches on the fruit and by reddish-brown streaks on the bark of young shoots.

Mild vein-banding mosaic may cause the full range of symptoms but is predominantly expressed by a mosaic banding of the primary and secondary veins and by a mosaic network in the tertiary veinlets.

Mild mosaic lacks the more intense chlorotic areas as well as any extensive banding of the veins. It is expressed by streaks or flecks which are usually small and obscure and, therefore, may be overlooked entirely.

Nore recently, three minor strains have been described (100): a vein clearing type, a line nattern type and a ring spot type. The last named is somewhat remiriscent of Cochran's findings in 1950 (35).

Apple mosaic has been known since 1825-7 in France (97), malcinc this disorder one of the oldest recorded virus diseases. It was first noted in the united states in liow York in 1910 (19), Connecticut, 1914 (59), Maine, 1916 (89), Massachusetts, 1924 (49), and Michjegan, 1933 (25). In 1923 Blodgett (19) successfully transmitted "infectious variegation" by experimentation. In 1934 Christoff (31) in Bulgaria named the disorder "apple mosaic" and furthered its transmission to quince and pear. In 1937 Thomas (123) expanded the host range of apple mosaic to include the following genera and species: Cotoneaster, Eriobotrya japonica, Fhotinia, Rosa and Sorbus
pallescens. Work in New Zealand added Crataegus to the list (3). Kirkpatrick (69) successfully transmitted the disorder to peach, and Gilmer (47) associated the plum line pattern virus disease with apple mosaic by inoculating apple seedings with a plum line pattern virus from Shiro plum and by inoculating Shiro plum with apple mosaic from apple. Typical symptoms of plum line pattern were produced from the virus in the apple mosaic buds in Shiro plum and vice versa. Posnette and illenverger (102), using some strains of aprile mosaic virus and plum line pattern virus, were also able to induce symptoms typical of plum line pattorn and apple mosaic by cross inoculation. This work indicates that the plum line pattern disease of plums and also of peaches is the same virus entity responsible for the symptoms of apple mosaic in apples.

Methods of transmission other than by budding or grafting have been reported. Yarwood (132) mechanically transmitted the symptoms of apple mosaic by means of carborundum abrasion from infected ampe leaves to tobacco and other plants and was able to retmern the virus to aprle by means of dodder (Cuscuta subinclusa and C. campestris). Yarwood noted that the symptoms of apple mosaic in tobacco were similar to tobacco streak virus. Fulton (44) found differences in the reactions between tobacco streak virus and Yarwood's strain of apple mosaic and concluded that apple mosaic was not a strain of the tobacco streak virus because of the lack of cross protection between the two entities in tobacco. Virus entities of apparently related composition, but yet
offering some dissimilarity in symptom expression, are known as strains. When one strain is present in a plant it will to some extent protect the plant from infection by another strain even though the latter is more severe. This type of defense is known as cross-protection.

Posnette and Cropley (100) were unable to transmit apple mosaic mechanically and believed, therefore, that Yarwood had a different virus which caused aprie mosajc symptoms in aprle. They were also ahle to show cross-rrotection between mild mosaic, milu vein banding and severe mosaic symptoms in apule. The milder strains of arnle mosaic offer cross-protection to the severe strain (17, 97).

Cochran (35) inoculated aprle seedlinss with material. from peach trees infected with peach rine spot virus and noted rings and mottle patterns similar to apple mosaic in the apple seedlings. Upon returnine this selection to peach, ring spot symptoms develoned. Other selections of apple mosaic produced no symitoms on reach.

Trom the above it is oviant that there are at least two virus entitios which may cnuse symtoms of arple mosaic in aprle. The true aprle mosaic consists of at least three strains and is not mechanically transmissible. Another entity causing similar symptoms in apple is associated with peach ring spot. Yarwood's strain may or may not be the same.

Apple mosaic is generally considered to be systemic within the tree. It has been noted many times, however, that buds from jnfected trees when used as inoculum may fail to
transmit the disease (30, 74, 95, 100). Posnette (100), by using buds from vigorously growing shoots, with and without symptoms on the leaves, found that symptomless shoots did not transmit the apple mosaic virus as readily as buds from a shoot with leaf symptoms, thus indicating that there are areas within a plant which are free of the virus, and that the apple mosaic virus does not penetrate all portions of the plant at the same rate. Also, leaves produced in the sumner show less infection than leaves produced in the srinc.

The spread of aple nosaic throughout the world can be attributed directly to man and his grafting techniques. One hundred per cent infections of apple varieties are lnow, in which the result of infection can be directly traced to the use of infected scionwood (60, 24). Woolly aphid resistant rootstocks such as that of the Northern Spy in which the apple mosaic virus is symptomless (100,122) have also been important means of spreading the virus in Australia.

Although no insect vector has yet beon claimed for any of the ambe mosaic virus aiseases, there have been reports of the spread of apple hosaic in orchards (2, 20, 122). Blodett found that spreacing took place in older trees and dow rows where the possibility of natural root grafts was hichest. je noticed an increase from 31 to 138 infected trees out of a total of 914 over a 10 year period. Several workers have pointed out that infection by the apple mosaic virus is potentially and actually detrimental to crop production (6, 37, 77, 100). Wallach (77) contends that over a 5 year period
increase in tree growth was 40 per cent leas, yield was 55 per cent less, and that in young trees girth was decreased 46 per cent. Dyer (37), comparing yields of infected and non-infected trees in South Africa, reports a yield of 294 pounds of fruit from healthy trees and 195 pounds from mosaic infected trees. Posnette and Cropley (100) indicated in their studies that infection with the severe strain supnresses tree growth 30 per cent, and reduces yield as much as 30 to 40 per cent in some varieties. Tarvey (54. considers rresent tree infections to bo of importance. lie cites the loss of reen nhotosynthetic area as reducine the tree's efficiency. Also, the pre-harvest leaf fall exposes the fruits to direct sunlight resulting in sun scald injury.

Fosnette and Cropley noted in some trees of several varieties a peculiar condition in which a strain of the apple mosaic virus is latent. This condition was discovered when trees were indexed with Cox's Orange Pipnin. These varieties are: Cravley Beauty, Bduard VIII, Beremont Russet, Ellison's Orange, Laxton's Fortune, Grenadier, Tonathan, Jaxton's Supberb, Miller's Seedling and Orleans Reinette. Heat inactivation of the severe strain of apple mosaic has been reported by Posnette and Crorley (100). A treatment of $37^{\circ} \mathrm{C}$. for 27 days in an incubation chamber seemed to be most satisfactory. A comprehensive coverage of the apple mosaic disease may be found by referring to the papers by Bradford and Joley, 1933; Posnette and Cropley 1956, and Posnette and Ellenberger 1957. Geographical Distribution: Argentina (40), Australia
(13), Belgium (112), Bulgaria (31), Canada (60), England (74), France (112), Germany (77), Holland (66), Italy (33), Kenya (4), New Zealand (30), Norway (104), Nova Scotia (60), Switzerland (21), Tasmania, Union of South Africa (4), Union of Soviet Socialist Republic (7), United States (25) and Yugoslavia (64), and is probably present in every apple growing district of the world.

Varieties: Many, including Jonathan, Golden Delicious, Starking Delicious, NcIntosh, Baldwin, Northern Spy, Cortland, Cox's Orange Ifprin, Bough Sweet, Lady Sudeley, Duchess of Oldenburg, Gravenstein, Lord Lambourne, Allington Fipnin, Lane's Prince Albert, Bramley's Seedling, Beauty of Boskoop, Golden Pearmain, Ballarat, Astrachan.

> Name: Apple Rosette Virus van Katwijk 1953 (Pyrus virus 6 (Smith) van Katwijk)
> Disease Name: Apple rosette.

Symptoms: Apple trees infected with the apple rosette virus bear little if any fruit. This disorder may affect a single limb or the whole tree. The virus entity in this disorder affects the leaves of the tree so that they are misshapen, smaller than normal, and a cluster of them gives a rosette appearance. The base of an affected leaf is somewhat wedgeshaped, while the serrations along the margin of the blade are longer and sharper than normal. The lower half of the leaf blade is often less serrated than the upper half. Some leaves appear to be less misshapen, but the blade is somewhat curled. The virus entity causing the disorder has been transmitted (65).

Discussion: The disorder caused by the apple rosette virus occurs in Holland in 2 areas. Single trees of the variety Beauty of Boskoop were found to be unfruitful and to have an upright appearance. From the photographs it appears that only the terminal buds produce leaves which accounts for the impression that the disorder looks like a strong upright rattle (term used by van Katwifk). It is readily detected as being of virus-like nature rather than of some other type of disease-causing agent. The average size of affected leaves measured 6 x 4 cm as comnared to normal leaves of $10 \mathrm{x} 8 \frac{1}{2} \mathrm{~cm}$. The Jonathan variety showed some distortion of the leaves after inoculation but not so clearly as Beauty of Boskoop. Little mention was made of the fruit; apparently it is not formed.

Geographical Distribution: Holland $(65,128)$.
Varieties: Beauty of Boskoop, Jonathan, Golden Pipnin, Glory of Holland.

> Hame: Apple Proliferation Virus Mulder 1949 (Pyrus virus 5 (Smith)) Apple Witch's Broom Virus Rui 1950

Disease Names: Apple Proliferation Apple Witch's Broom, Wildness, Wild Apple, Scopazzi del melo.

Symptoms: At first an apple infected with true proliferation virus gives the impression that many witches' brooms are growing in the tree. The virus mainly affects the rapidly growing water shoots. After a limited amount of growth the water shoots and some terminal shoots start to die back while the axillary buds send forth new shoots which are smaller
than normal, giving a proliferated or witch's broom appearance to the branch. Apparently a cluster of shoots is thus located on the branch and, therefore, resembles a faggot brooin. The side shoots arise from buds which should be fruit buds and thus are instrumental in reducing the yield of the tree. The stipules on the leaves of both shoots of the proliferated tree are abnormally large and somewhat distorted. From the photograph, the true leaf blade is more rounded than normal and sliehtly distorted. The leaves on affected trees are pale. The apple proliferation virus has been transmitted (90).

Discussion: There is some confusion concerning the proper name of this disorder--whether it should be called apple proliferation or witch's broom. This disease, although known for many years in Italian nurseries, was first recognized and reported as a virus disease by Nulder in 1949 in Holland (90). In 1950 Rui (113) in Italy published on the disorder, calling it "witch's broom". Also in Italy Fogliani in 1952 (4.3) gavo some evidence of its virus nature, but Refatti and Ciferri (107) in 1954 claimed not to have conclusive proof of it. Ciferri in 1956 (33) reported transmission of this virus entity to pear as well as apple. Smith (117) in his textbook uses the term "Apple Witch's Broom Virus" and refers to "Apple Proliferation Virus" as a synonym. However, both terms are used in present literature, and it is still a matter of choice. The disease in Italy assumes somewhat the same general symptoms in mature trees and has been reported to affect as much as 10 per cent of the Jonathan variety in the nursery (107).

In Italy an early development of dormant axillary buds was observed on l-year old anple nursery stock. The vigor of affected plants is reduced with 7 to 30 secondary branches being formed. The leaves are mostly small, narrow and rather pale green, but the stipules show the same characteristic enlargement. Apple witch's broom has been noticed to spread from tree to tree in some orchards, apparently by natural root grafts. Evidence that it may be spread by pruning operations is offered by Pogliani (43).

While visitine Europe Dr. I. C. Cochran and G. Strout observed apple witch's broom on nursery seedlings and suggested it belongs to the "yellows" rather than the "mosaic" group (34).

The apple proliferation virus causes symptoms distinct from those of apple rcsette virus.

Geographical Distribution: Austria (42), Germany (42), Holland (90), Iraq (129), Italy (43), Switzerland (42). Varieties: Golden Delicious, Jonathan, Canada Fipuin, Chamagne liprin, Vorgenduft, Beauty of Doskoon, Narlepsch, Golden Pearmain, Annurca, Abbondanza, Landsberger Rienette, Laxton's Superb, Signe Millisch, Cox's Crange Pippin, Elenheim, Golden Tippin.

Name: Apple Rubbery Yood Virus Prertice 1950
(Pyrus virus 3 (van Katwijk 1.953))
Disease Name: Rubbery wood
Symptoms: The rubbery wood virus affects only the branches and stems of the apple tree. The virus is expressed
by the excessive flexibility of these parts which bend readily under the pressure of their own weight and the weight of the fruit upon them. When hand pressure is applied to the branches they bend easily, and to some extent the degree of infection may be determined by the ease with which the bending occurs. Mature trees, under the weight of the branches and fruit, assume a "weeping" habit, the whole tree or a single branch being affected. The fruit produced by infected trees is apparently normal. When compared to non-infected trees, affected trees are stunted. The virus agent causine rubkery wood has been transmitted (66, 77, 103)。

Discussion: Symptoms of rubbery wood virus infection are usually expressed by the typical "rubbery" feel of branches in older trees. However, in budded stock it is not uncommon to find a vigorously growing side branch originating from a point a few inches above the ground exceeding the growth of the main leader. In a few varieties the weight of the branches even in nursery stock is adequate to cause the trees to lose their normal upright habit and lie prostrate. During pruning operations the softness of the wood is noticeable and has been described as being of rather "cheesy" texture. Rubbery wood infected trees rroduce normal fruits, but the yield is less than normal (103).

The cause of the rubbery condition has been attributed to incomplete lignification of certain cells (18). Microscopic examination shows that the valls of the xylem vessels and tracheids are not lignified in the normal manner but are thick-
ened instead with cellulose. These cells in sectioned and stained portions of the stem appear as 1slands of unlignified tissue surroundea by normal cells. In some branches lignification may be almost lacking. Although not all cells are without lignin there is apparently enough of this structural material lacking to prevent normal rigidity in the limbs. The occurrence of rubbery wood is not considered to be as important and as wide-spread as apple mosaic; however, its know geographic distribution is being continually expanded. It was first reportod in Ingland as an unusual disorder in 1934, and worl: was furthered again in 1945 (18) and 1949 (103). Posnette and Cropley in 1952 (98), noting increased occurrence of the disorder on the lialline series of rootstocks used in the orchards, undertook an examination of various rootstock stool propagation beds in England. They found that propagation stools of M.I and M.IX rootstocks at the East NaIling Research Station were infected with the rubbery wood virus. In further worls it was found that some of the commercial stool beds of additional selections of the lalling series were infected. Rubbery wood virus infected clones have been found in most of the old stools of the Malling series except M.II and M.XII. The Malling series of rootstocks have been sent throughout the world as superior understock material. No infections of the rubbery wood virus have been found in the newer Malling-Merton

1. The series of clonally propagated apple rootstocks from the East Malling Research Station are designated as M. for Malling. The Roman numeral indicates the clone.
series (51, 74). The virus was first found to be present in some of the propagation wood of the Lord Lambourne variety. This variety has become quite popular during relatively recent time throughout England and other European apple growing areas. Consequently many trees have been worked over to Lord Lambourne. By this means the rubbery wood virus disease has occurred in many places due to the use of infected propagation material. The rubbery wood virus disease has been reported recently as occurring on Golden Delicious and Stayman apple varieties in the State of lissouri (96). The writer has seen experimental plantings of English apole varieties in Oregon which are typically infected with the rubbery wood disorder. No doubt, in the future we can expect rubbery wood to appear wherever the falling series of rootstocks has been used.

Detection of the virus is based upon the rubbery "feel" of the limbs. The symptoms of the disease have been separated into three classifications based upon the amount of bending which an infected limb will do under hand pressure. Since this is a qualitative measurement, some experience with known infections would be necessary to determine new infections.

Posnette and Cropley (99) developed an indexing
method for the detection of the rubbery wood virus by using the very sensitive variety Lord Lambourne. Usually the clonal rootstock M.II has been used because it is free of the rubbery wood virus. A bud of the tree to be indexed is placed on a l-year-old clonally propagated tree of M.II by the usual budding methods. A healthy bud of the Lord

Lambourne variety is inserted a few inches above this bud. When the remaining M.II aerial portion is cut off the inserted buds grow. If the rubbery wood virus is present in the lower bud it will be transmitted to the upper sensitive Lord Lambourne shoot which expresses the symptoms readily. One caution has been emphasized in this procedure. The buds must be vertically aligned so that a portion of the upper bud is directly over the lower bud.

Peach seedlings inoculated with buds from rubbery wood infected nlants resulter in foliace symntoms in the form of purple rings and patterns (95). This method of testing apparently has not been expanded. A later note by Farris (52) mentions a latent virus present in Lord Lambourne on M.IX which caused a "green mottle" on peach and has been shown not to be the rubbery wood virus.

The occurrence of rubbery wood at the East Malling Research Station in England has brought to prominence the occurrence of virus diseases in annles. The distribution of these clones througiout the world as dwarfing stock and understocks for apple varieties has considerably increased the concern over virus diseases in aprle varieties. The Malling series of rootstocks has been introduced into the United States and has been used widely in promoting the dwarf and semi-dwarf type of tree. Again, through man's manipulations a virus disease has been spread throughout the world. No insect vector is know.

Geographical Distribution: Australia (122), Canada,

England (36), Germany (77), Holland (66), Italy (33), Norway (104), Switzerland (22), United States (96).

Varieties: Golden Delicious, Stayman, Lord Lambourne, Miller's Seedling, James Grieve, Dartmouth Crab, Laxton's Superb, Worcester Pearmain, and more varieties yet to be determined.

Name: Apple Flat Limb Virus Hockey 1943
Disease Name: Aprle Flat Limb, Gravenstein Twist, Gravenstein Gnarl, Spindle Wood, Crinkle Wood, llastomania

Symptoms: In general, contortions, twisting, ribbed trunk, deformed branches, and flattening are terms used to describe the eccentric, sinewy growth of apple flat limb virus infected branches. A cross section of a branch through an affected area shows that the flat areas because they lack xylem and phloem development are accentuated because of the normal development of wood in other portions of the axis. On each side of the flattened areas are longituidinal cracks, the centers of which do not extend to the wood but are covered with bark. Beneath the bark of the flattened areas a fitting condition of the wood apnears which is similar to that found in Virginia Crab. The symptoms are variable and may be latent or hardly noticeable in some varieties, more distorted in others, and in extreme cases may be open wounds where the bark has died away exposing the distorted, pitted wood of the xylem. Some workers have reported a reduction in yield of fruit, while others maintain not. There are no foliage symptoms. The apple flat limb virus has been transmitted (59, 61, 70).

Discussion: The distortions of the limb do not usually become discernible until the second or third year in young trees, but it has been observed on the present year's growth. The symptoms start as a slight fiattening or depression along one side of the limb from one to several inches in length and may extend half way around the branch. As the age of the tree increases the flattening also increases. Affected limbs become brittle and break under the weight of a crop (12).

Apple flat limb is one of the older and better known diseases of apples, particularly on the variety Gravenstein. It was first noted in Australia (70) in 1905, and was reported in 1907 in Connecticut (59). In 1938 Foster (59), in British Columbia, transmitted the disorder from infected to non-infected Gravenstein trees. Thomas (123) in 1942, grafted diseased material into Pyracantha sp . and obtained severe rough bark symptoms. Hockey in 1943, accumulated the known data on apple flat limb and reported transmission of the virus entity, but since he obtained only 40 ner cent transmission in his trials he suggested that the disorder was more involved with the type of rootstock used than with a virus. In Australia (27) certain cultural practices are still recommended to reduce the effects and occurrence of this disorder. Rootstocks which permit rapid growth of the Gravenstein variety have a greater tendency to show severe symptoms than rootstocks which restrict growth. In some varieties the virus is latent.

Kristensen (1956) and Hockey (1943) are good references. Geographical Distribution: Australia (27, 28),

British Columbia (59), Canada (59), Denmark (70), England (73), Germany (115), Holland, Italy (48), New Zealand (82), Norway (104), Nova Scotia (59), Sweden (70), Switzerland (23), United States (15, 124).

Varieties: Gravenstein, Wagener, James Grieve, Filippa, Signe Tillishec, Ontario, Penthalaz, Lord Lambourne;

Latent Varieties: Crimson Beauty, Dudley, Hove Reinet, Ingrid Marie, Golden Russett.

Hame: Walus Stem ritting Virus
Disease hame: Stem itting and Necrosis (Smith 1954), Wood IItting, Tristeza or Quick Decline, Peach lit.

Symptoms: The Malus stem pitting virus causes a disorder which is most noticeable in the area of the inner phloem and outer xylem in the bodystocks of Virginia Crab, Florence Crab and Red River Crab. The appearance of the outer bark of infected trees offers some indication of the presence of the abnormality. The bark generally has a rouehened, scaly appearance and may be ritco, furowod or cracked devending on the severity of infection. A spiral pattern of scales and rides ascending in a clociovise direction is imparted to the bark as these demarcations ascend the tree. The thickness of the bark of infected trees is 2 to 3 times that of non-infected trees.

When the outer bark is stripned away, a series of fine lines and small fissures make a wavy, spirally ascending design. In older and in more seriously affected trees peg-like protrusions of the inner bark fit into the deeper pits and fissures in the wood cylinder. The pitting is limited to the
bodystock and stops abruptly at the union of bodystock and apple variety. Severely affected trees are considerably dwarfed when compared to trees with unaffected bodystocks. Generally, symptoms are not expressed on the varietal portion of a tree when the bodystock shows evidence of Malus stem pitting virus infection. However, the McIntosh variety has broad longitudinal cracks in the bark, the centers of which do not extend to the wood but are covered with bark. This bark symptom resembles one of the symptoms of the disorder caused by the aple flat limb virus (15). Ino extensive sinewy growth has been observed. The Halus stem pitting virus has been transmittec (15, 57, 88, 118, 119)。

Discussion: Considerable work has been done with the rootstock selection Virginia Crab. It has been used extensively as a rootstock and bodystock because it possesses the qualities of cold-hardiness, vigorous growth, wooly aphis resistance etc. Early success with the Virginia Crab bodystock caused it to receive much praise and wide dissemination, particularly in the Midwest (78, 79).

Uncongeniality between Virginia Crab and the Blaxtaman apple variety was first reported in 1937 by McClintock (81) although Lantz in 1933 (71) had mentioned this possibility. Since then many varieties have shown uncongeniality which is characterized by lack of graft or bud "take" and poor growth of young trees.

Smith, in 1954 (118) described a stem pitting disorder which befell mature trees on Virginia Crab as well as those on

Florence $\mathrm{Cr} a \mathrm{~b}$, and suggested the possibility of a virus disorder. Tukey, later in 1954 (127), and Miller, in 1954 (85), offered additional evidence of the disorder in Virginia Crab and also suggested that it was of virus nature. In 1954 Millikan and Guengerich (87) reported the disorder as a possible virus disease calling attention to the bark splitting aspects. In 1956 (88) they reported transmission to Amelanchier of an agent taken from affected Virginia Crab, and later in the year published experjmental evidence indicating the virus-like nature of the stem pitting factor in apple (50).

Hilborn and Hyland, in 1957 (57), reported the following anatomical changes occurring in the cambial area:

> Some cambial initials become multinucleate, and the nuclei become distorted. Some cambial derivatives become abnormal, resulting in disorientation of xylem elements and phloem rays, large parenchyma islands in the xylem, wide xylem rays, degeneration of sieve tubes, and absence of sieve areas and companion cells.

The disorder occurring on Virginia Crab has been referred to as stem pitting, wood pitting and tristeza. Smith used the phrase "stem pitting" in his description and borrowed i.t directly from the citrus disease Citrus quick decline or tristeza, which causes the same type of disorder with the same pitting symptoms on certain sweet orange and sour orange rootstock combinations (117). The "stem pitting" is adequately descriptive for both types of plants, but since 2 virus entities are probably involved it would be appropriate to give each its own name. In addition there is a stem pitting
disorder of arabica coffee trees (111) in Tanganyika, whose symptoms are also like those above. Since the term "stem pitting" is commonly used to best:describe the disorder it is suggested that the generic name be used to distinguish between these and future disorders of a similar nature. Thus the disease treated here would be Malus stem pitting and the one on coffee Coffea stem pitting.

The disorder caused by the Malus stem nitting virus resembles no other known apple virus disease except that caused by the aprle flat limb virus. Remarks in the literature tend to indicate that there are possible strains of the apple flat limb virus varyine in severity much the same as with the apple mosaic virus. Since pitting occurs in both disorders and varietial bark symptoms similar to those on Gravenstein infected with the flat limb virus have been noted in one infected variety, the Malus stem pitting virus may be a strain of the apple flat limb virus.

Geographical Distribution: Canada (130), United States (1J8).

Varieties: Virginia Crab, FIorence Crab, Red River Crab.

Name: USDA 227 Virus

Disease Name: Lethal Eiffect, Incompatibility,
Symptoms: The symptoms of plants which are incompatible on the rootstock selection USDA 227, a Northern Spy seediling, are fair growth during the season after budding,
followed in the early fall by premature coloring of the leaves and early defoliation. An inspection of the roots reveals that terminal rootlets have died and that no new root tips have been formed. By the following spring the entire root system may be dead or dying. The aerial portions of these plants leaf out in the spring but soon wither and die or are retarded and die in subsequent years. In some trees, severe stunting results. Somewhat the same symptoms are present in the USDA 227 when it is inoculated with buds from some of these lethal varieties (45, 1.16, 1.26).

In the foliage of propagated plants of the clonal selection USDA 227, one may discern a speckled srotting similar to the common ring spot markings found in cherry (Prunus avium).

Discussion: Several workers have reported the presence of incompatibility between some selections of apple varieties and the clonally propagated USDA 227 ($45,116,126,133$). Some effort has been made to explain the incompatibility by a genetic variation letween armle varicties and thoir sclected sports. However, two different selections of the same variety showed compatibility and incompatibility without any appreciable difference in varietal variation. The experiments performed by Gardner, Marth and Magness (45) indicate that the USDA 227 rootstock is susceptible to lethal entities carried in scionwood of apple varieties. In several instances a single bud inserted into the USDA 227 rcotstock caused the death of the plant. Gardner, Marth and Magness proposed
that the lethal entity is a virus and that it is present in the buds which are placed into the USDA 227 rootstock. They further postulated that the lethal entity (virus) may be present in some trees selected for scionwood sources and not in others. The observation that of the many USDA. selections tested, only USDA 227 and some clones of its progeny show this incompatibility, suggested that a "second factor, perhaps a netabolite developed by certain varieties and not by others, is necossary for the lethal astivity of the virus" (45).

Recent vorle at tho Thiversity of New Hamshire (16)
has show that this "second factor" is a virus perpetually present in the USDA 227 rootstock clone, and it expresses itself in the leaf hy specicled, translucent spots. This entity has been transmitted to McIntosh seedlings by bud inoculation which later resulted in leaf symptoms. It also caused a reaction on the leaves of the indexing hosts M. floribunda and M. brevines when buds from propagated trees of USDA 227 were jnoculated into them.

From the oviaence resented in revious rapors it would seor that the virus present in USDA 227 has been with it since it was first selected in 1923 (4 5) . It may also explain the incompatibility of some of its progeny, the virus having been seed transmitted to them.

Geographical Distribution: United States (45).
Variety: USDA 227.
Varieties of Some Clonal Selections Containing The Cartner Virus Which is Lethal to USDA 227: Rome Beauty, Blackjon, Yellow Transparent, Jonathan, Golden Delicious, Winesap, Delicious, McIntosh, Northern Spy, Baldwin.

Virus Symptoms Bxpressed in Fruit

Name: Apple False Sting Virus Hockey 1943
Disease Name: Apple False Sting (See Green Crinkle Virus).

Symptoms: The apple false sting virus causes the fruit of infected trees to be stunted, considerably misshapen and distorted. No foliage or bark symptoms have been recorded. The depressed areas or furrows are formed on the fruit surface and seem to radiate from either the stem or calyz end. These furrows may tiansverse the arple from stem to calyx, may unite with other furrows or discontinue half way over the fruit. On the more pointed varietics the calyx end becomes quite knurled and misshapen. In the early stages of fruit development the disorder resembles stings caused by insects. Russetting may accompany this disorder in meager proportions, sometimes occurring on the surface of the fruit but more often associated with a pit or furrow. Corky areas develop internally beneath the pits or furrows. The causal agent of false sting has been transmitted (59, 61).

Discussion: Apple false sting was first descriked by Hockey in 1941 and in 1943 he reported the transmission of the virus entity. The disorder has since been observed in other parts of the world.

The disease first appears two or three weeks after full bloom as small depressed areas which resemble the injury which follows some insect punctures. As the fruit matures these depressed areas turn into sharp fissures on the more
severely affected varieties and may develop cracks or russet within the furrows. There is no indication of insect transmission, and the spread which does occur is by natural root graft or by grafting techniques. In the latter case a relatively high percentage of transmission occurs.

Hockey has noted that
a microscopic examination of diseased apples reveals that the normal vascular pattern is disturbed. Main vascular bundles from the core area extend outward to the hypodermal cells adjacent to a depressed area and return to continue their normal path in the tissue. This abnormal vascular nattern is accompanied by a racial clongation of cells in the cortical recion below the depressed tissue and adjacent to the distorted vascular bundles.

Apple false sting resembles the apple crinkle virus disease of lew Zealand but differs from it in that apple crinkle has 2 fruit symptoms rather than 1 . No doubt, these 2 disorders are related possibly with some additional entity present in the apple green crinkle. The disorder has been observed in New Fampshire on the Baldwin variety.

The reviews by Hockey are well illustrated.
Geographical Distribution: Canada (59), Denmark (70), England (73), Folland (70), Norway (70), Hova Scotia (59), Tinited States (15).

Varieties: Gravenstein, Baldwin, Northern Spy, McIntosh, Ben Davis, Golden Delicious, Fuhr, Blenheim Orange Pippin, King of Tompkins, Tolman Sweet, Guldborg.

Name: Apple Green Crinkle Virus Atkinson and Robbins 1.951. (Pyrus virus 4 (Smith) van Katwijk)

Disease Name: Apple Green Crinkle (See Apple False Sting)

Symptoms: The symptoms caused by the green crinkle virus are very much like those of apple false sting. Deep fissures or furrows ramify over the surface of the apples causing them to be considerably misshapen and distorted. The disorder may involve fruits on one limb or the whole tree. As with the apple false sting virus disease which shows similar fruit symptoms the apples are stunted and commercially useless. Additional symptoms of the green crinkle disorder include wart-like swellines on the surface of the fruit which are often covered with a rough russet. These swellings may occur on the same tree as the false sting symptoms in the same or different fruits. Also, the 2 types of symptoms may alternate from year to year in the same tree. These wart-like swellines appear with less regularity than the other symptom and do not appreciably reduce the size of the fruit. No foliage or bark symptoms have been noted. Apple green crinkle virus has been transmitted (11, 12).

Discussion: In 1932 Thomas and Raphacl (125) reported the occurrence of this disorder under the supposition that it was a physiological disease and associated it with "Internal cork and malformed wood growths". The malformed wood growths apparently were of some other nature since Atkinson in 1956 (12) indicated there were no bark or leaf symptoms. McAlpin regarded apple green crinkle as a "confluent form of bitter pit", the latter considered to be a physiological disorder. Atkinson as late as 1947 still considered it to be physiological in origin. However, in 1951 Atkinson and Robbins reported experimental transmission of the virus entity.

Apple green crinkle occurs principally in New Zealand on the variety Granny Smith. Little if any natural spread occurs. No insect vectors are known.

Geographical Distribution: Australia (125), New Zealand (II).

Varieties: Sturmer Fippin, Granny Smith, Winesap, Rome Beauty

Wame: Aprle Chat Frust Virus Luckwill and Crovdy 1050 Disease Hame: Chat Fruit
Symptoms: Chat fruit affected trees are characterized by the upright growth of the tree in contrast to the normal spreading habit of healthy trees. All the fruits on infected trees are dwarfed, being about $1 / 4$ the size of normal apples. The fruits remain small and green at maturity and the exposed side is dull brownish-red. The pedicels of the fruit are somewhat elongated, permitting the fruit to swing. The fruit falls off prematurely. The virus entity has been transmitted (75).

Discussion: Apple chat fruit is a disorder most often found in the Lord Lambourne variety and occurs rather often in trees which are also affected with rubbery wood. Apple chat fruit apparently resembles no other virus disorder previously described except that of apple dwarf fruit and decline described by Cation (29). It has recently been said to occur on the Turley variety in Missouri (96). Transmission experiments have shown the virus entity to affect trees of the Lord Lambourne and Jonathan varieties. The Lord Lambourne variety
has been used as an indicator host for the presence of the chat fruit virus. In the clonal rootstock beds at Long Ashton, England the M.IV clone was found to be 22 per cent infected, the M.XVI and M.XII clones showed 6 and 4 per cent infection respectively, while the M.I, M.II, M.VII and M.IX clones were free of the disorder (74).

Geographical Distribution: England (75), Switzerland (8), United States (96).

Varieties: Lord Lambourne, Fobert Grieve, Jonathan, Turley, Golden Delicious.

Name: Apple Dwarf Fruit and Decline Virus Cation and Gibson 1952

Disease Name: Dwarf Fruit and Decline
Symptoms: Infected fruits of the Jonathan varisty retain their normal shape but are reduced in size. The fruit of the Hysiop Crab is dwarfed and deeply lobed or prominently five ribbed longitudinally. The calyx end is characteristically oblate with a very shallow basin. The tree declines (i.e. nrobably a slow wiltine with dieback) until it becomes dead or worthless at the end of 5 or 6 years (29).

Discussion: The expression of this disorder originated when the apple variety Jonathan was grafted on to Hyslop Crab where this latter plant was apparently being used as an interpiece. It is suggested that the virus was located in the Jonathan scions and when transmitted to the Hyslop Crab by grafting caused the decline.

The reduction in Jonathan fruit size may be explained
by the interference in movement of the nutrient supply to the variety by the decine effects of the virus in the Hyslop Crab through which the nutrients must come. Another possible explanation is the presence of an unknown latent virus in the Hyslop Crab interacting with the virus in the Jonathan and causing size reduction in both varieties.

The decline symptom on Hyslop Crab is not so severe When the inoculum is from an infected lyslop Crab as when it is from the infocted Jonathan although the fruit symptoms aro tho same.

Geographical Distribution: Michigan (29).
Varieties: Jonathan, Hyslop Crab.

Name: Apple Scar Skin Virus Millikan and Martin 1.955 Disease Name: Scar skin (probably synonymous with rough skin of van Katwijk)

Symptoms: Apple scar skin causes a corly scarring on the fruit skin in linear patterns or patches extending from the stem to the anex. Patches may be small and irregular, coalesced or affecting the whole of one silie. Star-shaped radial scarring generally spreads from the apex but occasionally from the stem end. Fruit size is reduced, and ripening is considerably retarded. Apparently no foliage symptoms are present. Transmission of the causal agent of this disorder has not been reported (84, 86).

Discussion: Further study of the developmental sequence of apple scar skin showed that the disorder starts in fruits $1 / 2$ inch in diameter with light, water-soaked blemIshes radiating from the calyx end. Scar tissue begins to
develop on these water-soaked areas when the fruit is $3 / 4$ inch in diameter, and irregular patches of scar tissue become present on the fruit when it is 1 inch or over. By harvest time the scar tissue may cover 50 per cent of the fruit surface. This disease resembles apple rough skin, described by van Katwijk (67), and the apple ring spot, described by Atkinson, Chamberlain and Hunter (14). There is little if any difference to be noted between the descriptions for the disorders caused by aprle scar skin virus and aprle rouch skin virus. The same type of aisorder occurs in apple rine spot with the exception that circular radiating concentric patterns of corky tissue occur on the skin of fruit affected with apple ring spot. These concentric patterns occur in a rather low percentage of affected fruits. Except for them the descriptions of the disorders would be practically the same.

It has been surgested that there is a similarity between the disorder caused by the apole star cracking virus and scar skin and rouph skin symptoms. However, there seems to be a lack of association between these 2 types of disorders. The star-shaped markinfs of scar skin are composed of corky periderm which radiates from either the stem end or the calyx end. Scar skin apparently does not form actual cracks in the fruit. The star cracking disorder is typified by actual starshaped cracks extending into the flesh of the apple, and depth of penetration apparently is determined by the size of the crack. Also, in the description of star cracking there is no russetting mentioned. No russetting is discernible in the
photographs. This tencis to indicate that these two types of disorders are caused by somewhat separate entities.

This disorder occurs in the Delicious apple variety when a Virginia Crab interpiece is used, thus further associating the Virginia Crab with virus disorders of apple trees.

Geographical Distribution: Missouri (84).
Varieties: Delicious with an interpiece of Virginia Crab.

> Hame: Anple Rouph Skin Virus van Katwijk 1955 (Pyrus virus 8 (Smith) van Katwijk)
> Discase Name: Rough Skin (Probably identical with Scar Skin of Millikan and Martin)

Symptoms: Apple rough skin virus causes rough, corky brow patches to develop on both the green and colored parts of the apple fruit skin. The smaller patches have a circular shape or may appear in the form of rings or elongated stripes. Band-shaped corky areas may extend from the calyx to the point of pedicel attachment and may be accompanied by rings and lines or hy isolated cory srots. Severely offected fruits may have a large part of the fruit surface covered with russetting. In some cases the rough brown patches are cracked, and the fruits may show a slight deformation due to local growth retardation. The rough skin symptoms can be found soon after the first development of the fruit. The cork is formed on the surface after the death of the epidermal cells. A local veinclearing has been observed on the terminal leaves of the shoots of some varieties. Fruit size is reduced. Transmission of the virus entity was not mentioned ($41,67,72,92$).

Discussion: The disorder caused by the apple rough skin virus causes considerable losses in the Netherlands (67, 92). Because of the markings and the reduction in the size of the fruit all affected apples are either discarded or are sold in the lowest commercial grade.

The resemblance between apple scar skin, apple rough skin, and apple ring spot has been mentioned under the discussion of apple scar skin virus. Apple rough skin does not resemble the disorder caused by the green crinkle virus.

Geogranhical Distribution: Denmark (70), France (68), Gormany (24), Holland (92), Switzerland (41), Union of South Africa (72), United States (96).

Varieties: Beauty of Boskoop, Glory of Holland, Gravenstein, Golden Delicious, Jonathan, Laxton's Superb, Notaris, Reinette de Champagne, Ontario, Glockenapfel, Baldwin, Canada Pipnin, Clocke, Henimuri.

Name: Apple Ring Spot Virus Atkinson, Chamberlain and Ifunter 1954

Disease liame: Apple Ring Snot, Henderson Srot, Thumbmark

Symptoms: In mature fruits the symptoms appear as patches of russetted tissue edged with a smooth dark brown band, and occasionally as partial or complete concentric dark brown rings. The patches may be large or small, individual or coalesced. The rough russetted areas may extend from the point of stem attachment to the calyx. The concentric rings are much like a target, its size dependent on the number of rings. They may abut one another but apparently do not over-
lap. Apple ring spot symptoms may vary in intensity from year to year. The apple ring spot virus has been transmitted (5, 14).

Discussion: The first signs of the disease appear in the early part of the season when the apple is about 3 cm or 1 1/4 inches in diameter. Faint, light brown areas show through the downy covering in these small fruits. These marisings develop into irrecular shaped natches of varying shades of brow, with a rough russetted surface and a scaly margin. Shortly before harvest a narrow sand of smooth, dark brown tissue forms around the margin of many spots, and these markings are considered to be a diagnostic feature. Some development of these marginal tissues has been noted after harvest. The disorder has been transmitted only in the Granny Smith variety. Similar spots on other varieties have been noted.

The disorder caused by the apple ring spot virus resembles very closely the other disorders of routh skin, and scar skin (see Apple Scar Skin Virus). 611 of these disorders are typified by a russetting of the epidermis in which a corky periderm is formed.

Geographical Distribution: New Zealand (5, 14). Varieties: Granny Smith, Cox's Orange Pippin, Delicious, Sturmer.

Name: Apple Star Cracking Virus Jenkins and Storey 1955

Disease Name: Star Cracking of Apples

Symptoms: The mature fruits show very characteristic star-shaped cracks which tend to be concentrated at the calyx end of the fruit. Star cracks which occur on the sides of the fruits are considerably larger and deeper than those which occur near the calyx end. The star cracks may be small or large, individual or coalesced. More severely affected fruits are distorted. Dieback of terminal shoots during the winter is another symptom which appears. Cankers form along the dead portion of the shoot, sirdling and killing the terminal portion. Associated with this dicback is the production of buds which apparently arise adventitiously. The shoots which develop give an unusual proliferate type of growth. Lesions are present on l-year-old stems and may persist for several years (14, 63). Discussion: The star cracks which appear on the surface of the fruits are apparently not associated with any type of russetting or corkiness. It has been explained that the lesions rn the young stems start as blister-like formations and develop around the huds and nodes. These affected aress are sharply delinested, and the blistened bart dissampars in time. The ornamental plant, Jechtel's Plowering Crab, has a bark and canker symptom very similar to that described for aprle star cracking. To the witer's mowledge, this disorder has not been described or reported in the literature on this variety.

The lack of extensive russetting, the presence of dieback on the vigorous terminal shoots, and the lesions on the stems distinguish this disorder from scar skin, rough bark and apple ring spot. An attempt to associate this disorder with
the 3 fruit-russetting types of disorders has been made through the occurrence of the cracks, but the star-crackings are distincitively shaped whereas those wi.th the cther disorders have no regular shape.

It is thought that there might be some association between the star cracking and witch's broom disorders since there is a proliferation of branches in both diseases. However, the dieback which occurs in the witch's broom type of disorder takes place so that the terminal portion of the shoot dies by the end of the summer. In star cracking the cankers are formed and death of the shoot talres nlace during the winter. Also, no fruit symrtoms were considered to be worthy of note In the witch's broom disease. The lack of enlarged stipules in star cracking also separates these two disorders. There seem to be too many disnutable points for a very close relationship between star cracking and witch's broom.

Geographical Distribution: England (63), Norway (105).
Varieties: Cox's Crance rimin, Early Victoria, Charles Ross, iaxton's Fortune, Aonarch, Uramley.

Name: Dapple Rple Virus Smith, Earrat and Rich 1956 Disease Lame: Dapple Apple

Symptoms: The symptoms of dapple apple are restricted to the fruit. At maturity more or less circular patches of the skin remain greenish and interrupt the natural coloration of the fruit. These patches may appear at any place on the surface but tend to concentrate near the calyx end. They may occur individually, but often coalesce to form a larger dis-
colored area. The surface area involved by these patches is slightly flattened, eiving the mature fruit a slightly pebbled appearance. The bloom over these areas is reduced. Fruit size is normal. The virus entity causing the disorder has been transmitted to the varieties Cortland, McIntosh, Starking Delicious and Golden Delicious (120).

Discussion: The dapple apple virus causes symptoms to anpear on the fruits of affected trees every year, but not always with the same intensity. Some years the discolored spots are quite evident several weeks before harvest, whil.e in other years they are less pronounced and, at times, may be lacking. Generally all the fruit on a tree is affected. The first sirn of the disorder is in mid-July when small circular spots are distinguishable from the yellowishgreen color of the skin. These spots enlarge as the fruit matures and do not develop a normal amount of red pigmentation. The spots become more intense the longer the apples are left on the tree. This is due to the rreater development and darkening of the red color in normal areas. The greenish color of the dappled areas fades to yellow in storage (15, 120).

The disorder is manifested when the Cortland variety is topworked to Virginia Crab interpieces. In several instances the wood pitting disorder of the Virginia Crab occurs on the same trees as dapple apple but there is evidence that these two disorders occur independently of each other. Additional information concerning the dapple apple disorder will be treated under Materials and Methods.

Geographical Distribution: New Hampshire (120),

 Massachusetts (109), Missouri (?) (96).Varieties: Cortland, McIntosh, Starking Delicious, Golden Delicious, Turley (?), Virginia Crab.

Name: Apple Green Wottle Virus Palmiter and Parker 1955
Disease Name: Green Mottle
Symptoms: Discolored rings cover the surface of affected fruits, apparently causing a green mottlinc type of pattern. Ho further descrintion or hotographs are available in the literature (93).

Discussion: This disease is of relatively minor importance in New lorl. It has been transmitted to the Duchess variety. It is apparently rather slow moving in the tree and into the fruits. This disorder may be similar to dapple apple. Geographical Distribution: New York (03).

Varieties: Duchess of Oldenlurg.

SECTION III

NATERIALS AND METHODS

1. Experimental Basis of Orchard

In an efifort to counteract injury and death to apple trees due to winter injury, a study was undertaken by Dr. \%. W. Smith, Norticulurist, iem Vomshire Aericultural Experiment Station, at Gilford, lev Lamshire, to determine the desirability of usine wodystociss in areas of the framework of the trecs which are nost susceptible to winter injury (1:8). The severe winter of 1933-34 indicated that the areas of the trees most susceptible to injury were the trunks and crotches of the major branches. KcIntosh, in particular, although considered to be rather hardy, showed considerable injury to the trunks, while many Baldwin trees were killed.

Other investigators (106,124) showed that the greater part of the injury was caused by killing a portion of the cambium or injuring it in such a manner that it failed to differentiate. This type of injury, known as "frost rings", prevents the tree from developing properly in the injured areas. Other symptoms of freezing injury are bark splitting and peeling which result in exposing the wood of the tree at the cambial area. These areas dry out, and the cambium is killed. If left unattended the affected areas remain exposed throughout the life of the tree offering avenues for fungal and bacterial agents of disease. Injury of this nature to the tree causes considerable
retardation in growth, wealnesses at the site of injury and misshapen form.

The purpose of incorporating a bodystock between the roots and the varietal limbs is to reduce the prospect of winter injury to a minimum. Of the several hardy stocks available the most commonly used is the selection Virginia Crab. Another variety selected for comparison was the Florence Crab which had proven its winter hardiness in llorth Dakota. The Virginia Crab has been used extensively in the widwest as an understock as vell as an interriece. In addition, seedling roots and lalling IV rootstock were used for comparison. The varieties used vere McIntosh (Rogers strain, J-2 and B. F. 224, U.N.H. selections), Northern Spy (B. F. 52, a U.N.H. selection), Red Spy (Farley strain) and Cortland.

The source of these varieties warrants some consideration. The Rogers strain of NeInotsh and the Farley strain of Red Spy were purchased from nurseries and were on seedling roots. The varicties MoIntosh, Northern Syy and Cortland were pronagated on M.IV and seedines on the farm near the orchard. Two trees, J-2 and B. F. ${ }^{24} 4$, at the Tniversity of New Hampshire orchard, werc used as scionwood sources for the MeIntosh varicty. One tree, B. F. 52, was used as the scionwood source for the Morthern Spy, and one tree, also in the University orchard was used as a scionwood source for the variety Cortland. At the time of planting, those varieties on seedline roots and $\mathrm{H} . \mathrm{IV}$ had either been purchased from a nursery or had been propagated at the farm.

The Virginia Crab and Florence Crab trees were pur-
chased as 2-year-old stock and planted in the orchard. These plants, once established, were whip-frafted on the scaffold limbs to the varieties McIntosh (J-2 and B. F. 224), Northern Spy (B. F. 52) and Cortland (from 1 tree). Since the disorders under discussion in this study are concerned with the variety Cortland, an important point is that the scionwood for this variety came from 1 tree.

The seneral method for the propagation of fruit trees should be mentioned. Aprle fruit trees are started from the seeds of the apple, which unor plantin gorminate and devolon into seedlines. Towara the end of the rowing year, but while each seedlinc is still actively growing, a bud from a selected variety, such as Cortland, is cut out of the stem from a branch of the present year's growth. A T-slit is made in the bark of the seeding and the bud inserted into this slit so that the 2 cambial areas are flush against each other. The slit is usually made near the soil line or near the crown on the aerial portion of the seedlint. This bud is tied or wrapped securely to the seoning, and in tine, usually a moter of a veeks or so, callus tissue forms from the inserted bud and from the scedling. These unite and form a firm attachment between the bud and the seediline. In the sprine of the following year the aerial portion of the seedling above the bud is cut off, and and this forces the bud to grow. The whole root system which previously fed the aerial portion of the seedling now feeds only the bud; because of this large food supply the shoot from the bud grows rapidly. At the end of this season the varietal
shoot on the scedling root has crown several feet, and the tree is ready for transplanting into an orchard.

In some instances the seeding may have some select qualities such as wooly aphis resistance, good root system, straight crovth, cold hardiness, or vigorous growth. It may be desired to continue this particular plant so that an orchard of trees would be more miform and have the select qualities in the root which it has domonstratod. In such cases the seedline is then clonaly rolacater, usually by layoring, rootine of outtins (76) or in tio mamer hescrima above. Both Virginia Crab and Plorenco Crab are propagatod by the buding method, and rooting of the bodystock is promoted by deep rlanting.

Budding and arafting have been mentioned, and it should be nointed out that they differ in a fev respects. Budding is usually limited to periocis when the plant is in a stage of active growth so that the bud may be easily slipped into the T-slit in the bari: ; praftine is usually dono wen the nlant is dormant. It is asiblo, horove, to do cithor ano at ary tine by proper manipulation. Daddine involves the use of I bud plus a short fiece of the stom as it is cut out of the branch. is graft is a soction of the manch which may contain 2, 3 or more bucis ner piece and contains considerably more plant tissue than a bud.

When considering viruses this is important. It is mown that in indexine for stone-fruit viruses the use of 3 or 4 buds is much more reliable than the use of 1 bud. This is due to the distribution of the virus within the plant from

Which the buds are taken. Virus distribution is not alvays uniform throughout its host, and the amount of plant tissue involved in a bud is small. A buci piece may not contain any of a virus erratically distributed in a plant. However, the chances of missing a virus portion in a bud are not great. A graft, on the other hand, involves a piece of branch which may be several inches lon and stands a much greater chance of having the virus present in the portion of the plant tissue used. In virus tiansmisston or iroragating rafts are more reliable than hus, me hus are considered more reliatio, per unit, than any othor mothod lnown. The standard for virus transmission, hovever, is with buds.

Whe experimental rart of the orchard, see Figure 1 , was designed to inclucie 10 rows with 30 trees in each row. Each of the ${ }^{4}$ groups of understocks vas replicated 15 times within the 10 rows. There were 6 plots of 5 trees each per row. Nine of the 10 rows were designed so that 2 rows of each variety were adiacent to onch other, and the sincle rows
 Red Spy and iorthorn Spy were included in the aome rovs. The first row consisted of 10 trees of Corthand folloved by 10 trees of licIntosh and 10 trees of ind Spy. The rootstocks of this row wore rlanned with the regular series across the orchard.

During the years some of the trees died and were replaced with other varieties and rootstocks not in sequence with the original plan. By 1957, 71 of the 300 original trees had been replaced.

Figure 1. Rootstock, Interpiece and Varietal Plan of Experimental Portion of Orchard.
A. Orchard occurrence of Malus Stem itting. Despite the fact that trees infected with the falus stom pitting virus have a roughened bark surface, this symptom alone is not sufficient to determine the presence of the disorder. It is necessary to cut through the bark and to inspect the wood at the surface of the xylem in order to be certain whether or not the pittins symptom is present.

This was done by selectins a portion of the trunk stock: eithor at the union of the vifiety and borstock or at a rough aren on the trank. With the aid of a shary mife an inverted V-shanedcut was made. The sides of tho V were cut about ? to 4 jnches lons and the bark pried avay from the wood at the apex. By bending the flap back one was able to see the vertical surface of the xylem at the cambial area as vell as the inner phloem. Fitting was readily seen when present. After inspection the apex of the bark was fitted back into the crevice and the flap railed to the tree.

In the oxnerimental block all Virginia Crab and Florence Grab bodystocls were caminod in the orin" of 1057 as described ahove, to determine the presence of ritting. Trunks displaying a rough bark condition plus many othor trees of all stocks were examined to detormine the presence of pitting. ITo pitting was ever seen in H.IV or seedling roots.

In addition all Virginia and Florence Crab trees outside of the exnerimental block at the head of the rows were examined. These trunk portions as well as those in the experimental block showed pitting. A few trees of Virginia Crab which had not been topworked were also present in the orchard.

These were inspected but showed no symptoms of pitting. There were 71 trees in the experimental block in the spring of 1956 with Virginia Crab bodystocks. Forty-three trees or 60.5 per cent were infected with the Nalus stem pitting virus and expressed symptoms. Forty trees remained of the original 75 trees with Florence Crab as an interpiece, and 8 of these had symptoms of stem pitting. Of the 5 Red River Crabs present in the cxnerimental block 4 showed stem ritting symntoms. In fact, all the ton-worled Rod River Crabs in the orchard showed infection and ? (:-28) showed symptoms similar to apple flat limb. See Figure 2 for the occurrence and distribution of the stem nitting disorder.
B. Orchard Occurrence of Dapple Apple. Daprle apple was first noted about 1.951 when a few boxes of fruit showing the symptoms were observed in the packing shed. During the following years some tree records were kept as the fruit was picked, and several affected trees were located. In 1954 a ceneral survey was mde. It this time 11 affocted trees were located in the experimental block and a few trees outside of the block were also noted. All trees except 2 were on Virginia Crab bodystocks, and these ? were replacement trees on Robusta V bodystock. The scionwood for these trees is suspected to have come from an infected tree. In addition all trees affected were the Cortland variety except 3 McIntosh trees outside of the experimental block. Again, it is suspected that these trees may have had some Cortland budwood grafted into them or that they were originally Cortland trees grafted over to McIntosh.

$\begin{gathered} \text { Tree } \\ \text { umber } \end{gathered}$	D	E	F	G	H	${ }^{\text {I }}$	J	K	I	1
7	CRA ${ }^{1}$	CV	Y4	MVP	14	Cl_{4}	CVA	Y4	YV	M
8	C 4	CVP	Y7	MS	$1{ }^{1}$	$C 4$	CV	YV	$Y V$	M 4
9	CR	CV	Y4	MVPA	$1{ }^{1}$	$C 4$	CVA	Y7	YV	M 4
10	CR	CVP	Y7	MVP	114	C7	CV	Y4	YVP	M 4
11	CR	CVA	Y4	MVP	M 4	C4	CVA	Y4	YVP	M 4
12	CDA	CF	YS	MF	MSA	CS	CF	YS	YF	MS
13	CS	CFPA	YS	M7	M $\mathrm{SSA}^{\text {A }}$	CS	CF	YS	YFP	MS
14	C7	CFP	YS	P/	MS	CS	CF	YS	Y7	MS
15	CS	CF	YS	1 R	MS	CS	CF	YS	YF	MS
16	C7	CR	YS	MR	MS	CS	CF	YS	YF	MS
17	INT	Cl_{4}	VV	17	MVP	CVPA	C4	YVP	YR	MPP
18	17	Cl	YV	14	NVI	CVPA	C4	YVF	Y7	IVF
19	NVI	CRA	YVP	4	TVP	CV	Cl_{4}	YVI	$\underset{+}{ }$	We
20	17	Cl	YVE	14	TVI	CVA	87	YVE	Y 4	NT
21	12\%	Cl_{4}	YV	+	VF	CV1	C4	YV	$\underset{\sim}{1}$	VI
22	is:	CS	T	10	1.7	CTIA	CS	Y	YS	DI
$? 3$	砍	CS	YT	15	R	CPFA	CS	TPI	YS	Mr
24	1 R	CS	$Y 7$	ID1	1 R	CF	CS	VR	YS	1F
25	MS	CS	YF	15	IN	C7	CS	YK	YS	M7
26	INP	CS	YF	MS	SK	CF	CS	YR	YS	NDP
27	YVP	CV	Y7	ITV	14	Cl_{4}	CVI	$Y 7$	YVP	14
28	YV	CR	V4	IV	17	Cl_{4}	CV1	$Y 7$	YV	1 DP
29	YV	CVIA	Y4	IN	110	Cl_{+}	CVP	Y4	YV	177
30	YVP	CVPA	Y7	IV	$1 / R$	C4	CVPA	Y4	YVP	1.4
31	YVP	CRA	Y4	IN	N_{4}	Cl_{4}	CVFA	Y4	Y7	14
32	YR	CF	YS	M	MS	CS	CR	YS	YF	MS
33	YFP	CF	YS	MS	lis	CS	CR	YS	YF	MS
34	YR	CF	YS	NFP	MS	CS	CR	YS	YF	MS
35	YS	CF	YS	1 R	I'S	CS	CR	YS	YF	1,
36	YS	CS	YS	$\cdots \mathrm{F}$	I'S	CS	CF	YS	YF	IIS
A- bomote inme Iegend T- (anos) Dobirsta V										
A- Darote ninteC-Contiond						S- Socdina.				
C- Cortlond ${ }^{\text {D- Red River Crab }}$						Y- Iorthern or Red Sny				
F- Florence Crab										
r- Malus sikkimensis						$r_{1}-\mathrm{Z}$. IV				
\cdots - \%oIntosh						7- 1i.VII				
T- Tinus stem pitting										

Figure 2. Experimental Orchard Indicating Variety, Bodystock or Rootstock and Occurrence and Distribution of Virus-Like Disorders, 1956 and 1957.

In 1956 an additional survey was made, and more trees were located. In 1957 symptoms were not fully developed at harvest, and the detection of infections even on previously recorded Cortland trees was difficult. Optimum growth conditions for symptom expression were apparently lacking during 1957. Several records of new occurrences were made, but these should be verified in succeeding years.

The presence of dapnle apole virus infection is detectable only on the fruit of the tree. Inspections are best carried out at the time wen fruits are mature for maximum symptom expression.

During the course of the year Cortland trees which were known to have expressed symntoms during previous years were watched carefully for early symptoms. The first indication of dapple apple symptoms was noted about the middle of July on the immature Cortland.fruits. At the same time other trees were inspected for similar symntoms. It was found that early symptoms were quite variable from tree to tree.

In 1956 12 trees had symptoms of dapnle aprle in the experimental block. In addition to these, 10 trees had symptoms in such meager proportions that they were to be checked for symptom expression the following year. In 1957, a poor year for disease expression, 14 trees showed definite symptoms. Two of these were new infections. None of the 10 questionable infections in 1956 was, roted as infected in 1957. In the area outside of the experimental block previously mentioned, 5 trees were infected in 1956 and 1957. See Figure 2 for the occurrence and distribution of dapple apple infected trees.
C. Orchard Occurrence of Other Diseases Noted. During the course of taking notes on the Molus stem nitting and dapple apple disorders, 3 other abnormalities were noted in the orchard which were virus-like in nature.

Two trees (K-41, L-42) which had been blown over in the fall of 1956 were inspected, and the rootstock shoots exhibited leaves with apple mosaic symptoms. Uron inspecting the aerial portion which was of the llorthern Spy variety, very mild and scarce symoms of anylo mosaic conld io found in the foaves of the rint. The rootstocies expressen the sumptoms of arrle mosaic more clearly than the liorthern spy top. It is believed that the presence of the virus in the rootstock veakened it, and, thus, the trees were more susceptible to separation at the union of rootstock and variety.

Further occurrence of apple mosaic was seen in 1 or 2 trees ($\mathrm{F}-12, \mathrm{~F}-14$) where the d sorder was limited to a few leaves in the center of the tree. The variety in which this occurred was ayain Morthorn Spy. The symptoms were extremely mila, but the matines vore distinctly those of orle mosaice. In this some row mother seedling ($F-27$) was observed wich shoved anrle mosaic symntoms, but since the varietal portion had been blow over and removed it was not available for inspection.

These occurrences of apple mosaic in 2 widely separated areas of the orchard indicate that the variety Northern Spy, whose scionwood source was from 1 tree (B. F. 52), may be infected with the mild strain of apple mosaic and that the symptoms of this particular form are obscure. Following the observation
of the disense in I tree, several trees were inspected, but no further symptoms of apple mosaic could be seen. There is the question of chance occurrence of seed transmission of the apple mosaic virus, but there is no evidence that this virus is seed transmitted. Its ability to be seed transmitted has been questioned by Posnette (12). It is not uncommon, however, to overlook the mild strain of apole mosaic in infected trees because of the scarcity of its symptoms. Due to time limitations no furthor investiration of arme mosaic ras mode. another risorder which mar be a senetic variation was the anpearance of lobed fruit on 2 NoIntosh trees (H-11, $H-23$). This disorder occurs on 1. branch on $\mathrm{H}-23$ on the east side of the tree. In tree $\mathbb{1 - 1 I}$ it occurs also on the east side of the tree but is not linited to 1 branch. The apples on the other parts of the tree are more or less normal and do not exhibit the accentuated 5 lobes that appear on the abnormal fruit. Apple dwarf fruit and decline, descrived by Cation (29), is the only disorder reviowed in tho literature which resenbles this abnormatit. Since the ? ioIntosh trees were aprarently in good vigor in all other respects, and the frujt was not noticeably dwarfed this rrobably was the result of some nonetic variation rathor than a virus.

Virginia Crab apples on the tree J-30 show dapple apple symptoms. In addition to these symptoms, there is a severe cracking on some of the fruits which follows the pattern of running from the stem end to the calyx end. The cracks may be restricted to the sides of the fruit. These cracks are lined with a black, corky periderm and offer a sharp contrast to the
reddish-yellow skin. Russetting also occurs on numerous Virginia Crab fruits on the same trec. The russetted areas are usually limited to the basin at the stem end and around the calyx. It may appear in conjunction with the cracks, the cracks occurring within the borders of the russet. These symptoms are somewhat similar to the borders around the rough russet spots of apple rjng spot, and the cracking is similar to that of apple rough skin and apple scar shin.
a tree ($1-2 \ddot{3}$) vith a sic Intosin varicty topworled on to
a Rea Rivor Crab bodystock shoved alus stem pitting symrtoms. In addition, symptons very similar to those of apple flat limb Were also present on the Red River Crab bodystock.

No mention has beon made of the presence of the rubbery wood virus disease of apples in the experimental orchard because of the lack of faniliarity with this disorder and the dependence of symptom recognition on the qualitative measure of bending. The writer has seen trees with the weeping habit and extreme floxibility in the oranches, Hovevor, Erabations of these symptoms occur in differont varictios and only exnerionce with. known infections can aid in determining the resence of the disorder in other areas. It is suspected, however, that rubbery wood may be present in the experimental orchard in some of the trees with rootstocks of the lalling series and possibly on other combinations. The forms of some trees in the oxperimental orchard closely resemble photographs of trees infected with the rubbery wood virus. No particular tests were made concerning this disorder.

2. Orchard Transmission Studies

A. Lature Trees. It has been nentioned that dapple apple symptoms occur on trees of the Cortland variety on Virginia Crab bodystocks. In some cases the Virginia Crab bodystocks showed stem pitting, and others did not. At the time of inoculation in the spring of 1956, it was thought with the meager information available, that it would be better to include the falus otem itting virus in the inoculation series rathor than to duplicate inoculations with othor materina and, thas, to use aditional troes in the transmission studics. Tho tree J-30 was seloctod because it showed severe symptoms of the : $\mathfrak{i l u}$ lus stem pittin: virus on the Virginia Crab bodystock as well as clear cut symptoms of the dapple apple virus on the Cortland variety. Later it was observed that the Virginia Crab apples also showed symptoms of dapple apple. lione of the trees inoculated had ever shown symptoms of dapple apple. Some trees with Virginia Crab bodystocks which had not shom symrtons of the walus stom rittin virus vere inoculatea.

Furthermore, at tho time the symbons of dapple apple were first obscrved, there was some discussion as to the effect of the rootstock and its ability to carry and transmit the disorder to the variety. J-30, because of its stunted growth and restricted stempiece, had sent forth many root suckers from which buds could be taken to be used as inoculum. The Virginia Crab bodystock in J-30 had been rermitted to grow, and several limbs were available from which to take inoculating material.

The varietal portion of the tree, Cortland, had several limbs from which incculatine natorial was available. Thus, the source of inoculating buds was the tree $\tau-30$ with buds taken from the Cortland variety, Virginia Crab bodystock and seeding shoots. Secause of the restricted occurrence of dapple apple in the orchard on the variety Cortland and because licIntosh had show symptoms of damle aple these two varieties were chosen for the oxperiment. In addition, the four rootstoces Virsinia Crab, Plorence Crbl, .IV ame seedin-s vore chosen to soe if they Amprtan monification to tho virus ontity wich coul be detected ly symy tom cxpress on. The cifect of the stem pittins virus on these rootstocks and bodystocks was also to be observed. The methor of inoculation was by buddine, the most common method of inoculating trees. Two limbs, one on the south side and one on the north side of the tree, were chosen for inoculatine-bur placement, and 3 or 4 buds vere placed on each limb. Each tree was inoculated with buds from only l source of T-30 rootstoct, Vireinia Crab bodystoot or Cortland variety. The inftial inoculation was done in tho amine or lns. Since symptoms did not develon on any of the trees inoculated and since some of the buds on each of the trees had died, all trees vere reinoculated by huds in the fall from the same source and in the same manner. To insure that the virus would be introduced into the trees, 2 grafts of at least 3 or 4 buds were placed in close proximity to each of the 2 limbs used for budding. This erafting was done in the sprine of 1957. No further inoculations of these trees were made. A total of 20 trees, all.
approximately 15 years old, were used for this exneriment. The plan of inoculation was as follows:

Inoculum Source	Tree Number	Type of Tree Variety Bodystock	Root
```J-30 Cortland variety```	$\mathrm{E}-7$	Cortland on Virginia Crab on root	seedling
Same	E-9	Same	
Same	13-1]	Same	
Same	E-1?	Cort?and on Plorence Crab on root	seedling
Samo	1-22	Cortland on scoditins root	
Some	$\mathrm{E}-17$	Cortiond on SI.IV rootstock	
Same	$\mathrm{G}-7$	HeIntosh on Virginia Crab on root	seedling
Same	IT-12	McIntosh on seedlins root	
J-30 Virginia Crab Bodystock	J-9	Cortland on Virginia Crab on root	seedling
Same	E-13	Cortland on FIorence Crab on root	seediling
Same	$\mathrm{B}-24$	Cortland on seedlins root	
Somo	E-16	Corthand on F . IV rootstock	
Same	$\mathrm{C}-\mathrm{O}$	VeIntosh on Virginia Crab on root	seediling
Same	$\underline{-1}]$	leIntosh on seedinine root	
```J-30 seedling Shoot```	J-27	Cortland on Virginia Crab on root	seedling
Same	E-14	Cortland on Florence Crab on root	seedling
Same	E-26	Cortland on seedling root	
Same	E-20	Cortland on M.IV rootstock	

Inoculum Source	$\begin{aligned} & \text { Tree } \\ & \text { number } \end{aligned}$	Variety	Type of Tree Bodystock	Root
Same	$\mathrm{G}-11$	McIntosh on root	ginia Crab on	seed.
Same	H-16	McIntosh on	e dling root.	
In addition to the above trees, the following trees were inoculated with 10 buds from the J-30 Cortland variety in the spring of 1956. These buds werc scattered over the tree at shoulder				
heicht rather than concentrated on any narticular branches. Ho				
buls vero placed on these trees in the fall. of 1956. In the amper of 10573 grafts from the same source were placed in				
these troes on random branches.				
Inoculum Source	Tree Tumber	Variety	Type of Tree Dodystock	Root
$\begin{aligned} & \text { J-30 Cortland } \\ & \text { Variety } \end{aligned}$	$\mathrm{R}-15$	McIntosh on	VIJ. rootstock	
Same	S-15	Nacoun on M.	rootstock	
Same	T-15	Starkjng De?	lous on M.I rool	tstock
Same	U-15	Golden Delic	is on l . IV root	stock
Same	$\mathrm{F}-24$	Ealdwin on F	rootstock.	

B. Immature Trees. This portion of the field studies is of lonr duration because fruit symntoms are required. iNormally an ampe tree bears no fruit before it is 4 or 5 years old. This period may be shortened by firdling the trunks of the young trees, by inverting a strip of bark on the trunk or even by tying knots in the stems of young shoots (114). In order to encourage fruiting as early as possible the trees used in this experiment were girdled. This was accomplished by making a circumferential cut in the trunk of the trees with the
edge of a dull knife in June, 1957, the recommended time for such girdling.

Fruit symptoms are required for the determination of dapple apple virus infection. It is believed by the writer that the cause of dapple apple is not the action of 1 virus but the action of 2 virus entities which are individually latent within the host when by themselves. When they occur together in the same host dapple apple symptoms are expressed. One component oí the virus complex is believed to be present in the Cortland variety while the other component is believed to be present in the Virginia Crab bodystock. The explanation for this theory will be found in the Discussion and Conclusions. In order to find out if the virus entity is composed of the action of more than l virus the following experiment was under~ taken.

The Cortland tree I-12 was chosen as the varietal carrier of the component suspected of being present in the Cortland variety. This tree was chosen because it was on a seedling root, produced fruit without dapple apple symptoms and had thrifty growth.

The other component is suspected of being in the Virginia Crab. It is known only in trees with dapple apple symptoms. There is no known way to separate it from the Cortland component. Therefore, a search had to be made in other Virginia Crab trees which were not topworked to Cortland. The other available varieties were Northern Spy and NeIntosh both of which were grafted to Virginia Crab. Several trees were
chosen which contained Virginia Crab interpieces and were selected with the intention of avoidine the lalus stem pitting virus, although j.t probably was not avoided in all cases.

The experiment was designed to include representatives of the 3 elements of J-30: J-5 which shows dapple apple without the stem pitting virus; D-19 whicl shows the symptoms of the lalus stem nittine virus but no darnle aprle; I-I? which has the Cortland commenent but none of the others. Check trees were also included.

One hunirod and wente trees on seedinine roots, 60 Cortland and 60 :cintosh, were purchnsed from the Kelley Erothers liursery. In the spring of 105730 trees of each variety vere planted in available orchard space in Gilford, r.H., and 30 trees of each variety were planted at the lower end of the Plant Pathology orchard at the University of New Hampshire in Durham.

These trees vere grafted in the spring of 1957. No fruit was noserved in the fall of 1957 on any of the crafted treos. Outines of the lantins showing tree number, variety and source of inoculum are on the following races.

Table 1. Nursery Stock Mlantine at Gilford, New Hampshire, 1957.

Tree Inumber	$\begin{aligned} & \text { Row } I \\ & \text { Variety } \end{aligned}$	Inoculum
1	Cortiand	$\mathrm{I}-12$ and $\mathrm{G}-31$
2	Cortiand	$\mathrm{I}-12$ and $\mathrm{G}-30$
3	Cortland	$\mathrm{I}-12$ and $\mathrm{G}-29$
5	Sort?and	$\mathrm{I}-12$ and $\mathrm{G}-28$
5	Cortlano	I-1.2 and $\mathrm{G}-27$
6	Cortinnd	I-1? and ! -1.7
7	Cortiand	I-12 anc -17
\bigcirc	Cortinnd	$\mathrm{I}-12$ and Im
$?$	Cortland	I-12
10	Cortiand	I-I2
11	Cortland	$\mathrm{I}-12$
12	Cortland	check
13	Cortiand	check
14	Cortland	check
15	Cortland	check
16	Cortland	check
17	Cortland	J-5 Dapple Apple
18	Cortlard	J-5 Dapple Apple
19	Cortland	J-5 Dapple Arrle
20	Cortland	J-5 Dapple Apnle
21	Cortland	J-30 seedling
22	Cortland	J-30 seedling
23	Cortland	J-30 Virginja Crab
21	Cortion?	, -30 viratnia Grab
25	Cortiand	T-30 Vircinia Crab
26	Cortland	J-30 Cortland var.
27	Cortland	J-30 Cortland var.
28	Corthand	T-30 Cortland var.

(Table I. continued)

Tree Number	Varlety $^{\text {Row } 2}$	Inoculum
1	McIntosh	I-12 and G-31
2	McIntosh	I-12 and G-30
3	McIntosh	I-12 and G-29
4	leIntosh	$\mathrm{I}-12$ and $\mathrm{G}-28$
5	licIntosh	I-12 and G-27
6	Ifintosh	I-12 and $11-17$
7	licIntosh	$\mathrm{T}-12$ and $\mathrm{I}-17$
8	:icIntosh	$\mathrm{I}-12$ and $\mathrm{I}-4$
9	$\because \mathrm{OIntosh}$	$\mathrm{I}-12$
10	"cIntosh	$\mathrm{I}-12$
11	OcIntosh	I-12
12	NeIntosh	check
13	MeIntosh	check
14	MeIntosh	check
15	IcIntosh	check
16	McIntosh	check
17	licIntosh	J-5 Dapple Apple
18	MeIntosh	J-5 Dapple Apple
19	MeIntosh	J-5 Dapple Apple
20	MeIntosh	J-30 Seedling
21	McIntosh	J-30 Seedling
22	McIntosh	J-30 Seedling
23	McIntosh	J-30 Virginia Crab
24	MeIntosh	J-30 Virginia Crab
25	McIntosh	J-30 Virginia Crab
26	McIntosh	J-30 Cortland var.
27	YoIntosh	J-30 Cortland var.
28	CoIntosh	J-30 Cortiand var.
20	MeIntosi	J-30 Cortlane var.
30	McIntosh	J-30 Cortland var.
31	Cortland	J-30 Cortland var.
32	Cortland	J-30 Cortland var.

Table 2. Wursery Stock Plantine at Durham, low Iamphire, 1957.

Tree Number	Variety ${ }^{\text {Row } 1}$	Inoculum
1	McIntosh	J-30
2	McIntosh	J-30
3	McIntosh	D-19 Va. C.
4	MoIntosh	$\mathrm{D}-19 \mathrm{Va} . \mathrm{C}$.
5	VicIntosh	J-5
6	cintosh	J-5
7	inIntosh	$\mathrm{I}-17$ and $\mathrm{I}-28$
8	YoIntosh	I-7? and I-6
0	YeIntosh	I-1? and $\mathrm{L}-10$
1.	:cIntosh	I-12 and L-?
17	こicIntosh	I-12 and $\because-6$
12	yeIntos?	I-1? and I-3
13	IfIntosh	$\mathrm{I}-12$ and $\mathrm{F}-21$
1%	McIntosh	$\mathrm{I}-12$ and $\mathrm{r}-21$
75	licIntosh	$\mathrm{I}-12$ and $\mathrm{I}-7$
16	MeIntosh	$\mathrm{I}-12$ and X
17	MeIntosh	I-12 and $\mathrm{K}-21$
13	ncIntosh	$\mathrm{I}-12$ and $\mathrm{L}-4$
19	McIntosh	I-12 and L-5
Row 2		
1	Cortland	
2	Cortland	J-30 Cortiand
3	Cortland	J-30 Cortland
4	Cortaras	$\mathrm{D}-19 \mathrm{Va} . \mathrm{C}$ 。
\%	Cortiand	D-7? Vo.
6	Corthan	T-5
7	Cortland	J-5
8	Cortland	cheek
$?$	Cortland	chect:
10	Cortland	check
11	Cortiond	check
12	Cortland	check
13	MeIntosh	check
14	McIntosh	check
15	McIntosh	check
16	HeIntosh	check
17	McIntosh	check
18	McIntosh	I-12
19	McIntosh	$\mathrm{I}-12$ and $\mathrm{H}-5$
20	McIntosh	I-1? and L-1.l

(Table 2. continued)

Tree ITumber	Variety	Row 3	Inoculum
1	Cortland		I-12 and L-28
2	Cortland		I-1? and L-6
3	Cortland		I-12 and L-10
4	Cortland		I-1? and I-2?
5	Cortiand		I-7? and 1.6
6	Cortiond		I-7? anci $\mathrm{I}-3$
$?$	Cortiand		T-7 72 and $\mathbb{T - 2 7}$
	Cortland		I-12 and -21
10	Corthand		I-I? and $\mathrm{I}-7$
11	Cortiand		I-12 and
12	Cortiand		I-I? and $\mathrm{L}-4$
23	Cortland		I-1? and L-5
14	Cortland		I-12 and L-12
15	Cortland		I-12 and $\mathrm{X}-5$
16	Cortiand		I-1.?
17	Cortland		----
18	Cortland		----

3. Treenhouse Studies
A. Mon-Iosaceous Lants. Mawlen states "No virus that infects rosaceous plants has yet been transmitted by sapinoculation" (17). Essentially this is true. The exception so far has been made by Yarwood who transmitted a virus which causes anple mosaic symptoms in apple; this virus is considered to be ifforent from the true aprle mosaic virus which has not vet been transmitted mechanically (see literature review, arple mosajc virus). ilborm rororted trat he was able to ontain a lecol Jesion towe of renetion to chowner and bean fron the Whus stom rittins virus. Towever, he was not able to durlicate these reactions with other sources (56, 58). In an effort to obtain an indexine host for apnle viruses several hosts were tried for mechanical inoculations via the Yarwood method (131). Little if any information is available in the literature other than the above concernins mechanical transmission of apple virus disenses.

Promation of Elant Mterial. Sceds wore usually startod in s woten flat filloc with sont. Tho seeds were scattered over the moistened sand and then covered with another thin layer of sond. A niece of naper wos then rlaced over the sand to rrevent disturbing when watering and to prevent drying out. Small holes were punctured in the paper with a pencil point to let the water through. The flat was then placed in the greenhouse and watered daily. After the seeds had germinated and had grow to an inch or so in heidht they were transplanted to 2-3- or 4- inch clay flowerpots depending on the
size of the scedings and rermitted to crow until ready for inoculation. In some instances the seed was planted directly in flowerpots and the plants permitted to develop.

In some instances only the cotyledons or only the leaves were used, particularly on older plants. The cotyledons or leaves were then lightly dusted with a fine (600 mesh) grade of crrborundun by using a Devilbiss atomizer with the nozzle tin removed. Whe riant was then rency for inoculation.

The followin tochnime sescrimen by yorwoon was used with slifht motification:

Leaf Tissue. is leaf from an ante or other riant beins used as an inoculum was folded 3 or 4 times and placed in a pair of forcens so that one side of the leaf projected from the basc of the forceps. The folds of the leaf vere cut off with a sharp razor, exposint several layers of cut surface. The upper surface of the leaf blade was rubbed immediately with the cut surface of the inoculum. Sometimes the lear tissue was

Truit Tissue. Prit tissuo wos meparen by outting a wedge-shayed riece of flesh from the fruit, with a sharp razor and by rubbin the lenf surface with the exposed flesh.

Stem Tissue. Inoculum from stems was prepared by shaving the bark away from the stem and exposing the tissues at the cambial area. The stem portion was then rubbed on the leaf surface.

In all sources of inocuium the tissue was repcatedly cut during inoculating procedure to expose fresh tissue to the surface of the leaf being inoculated.

The plants were maintained in the reenhouse after inoculation.

Most rilants were prepared in the above manner. In one instance the plants vere heated in a 1.0 per cent solution of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ at $45^{\circ} \mathrm{C}$ for 60 seconds immediately before inoculation. This was accomlished by heating the solution to the desired temperature in a partinlly filled 1000 ml beaker. The not containine tho ronta was invorted and the mants immerser in the wamed anzution. Tron removil the were dusted
 the innenlum.

Gucuris sativa (Cucumber). Intiona? Iictine Cucumber seed was obtained fron Associated Seed Crowers, ITew Haven, Connecticut. The plants were raisod in the manner described above. In this particular variety of cucumber a flecking of the cotyledons and of the leaves as well as some derormation of these parts was resent. The selection was not considered to bu the mot nosirnio from tivis otontanint, mat sinco it has ben wjuly use? for this urrose it ins moty elnored.

Serios 1 . Wounc locvos or fruit from rronamated trees from the experinontal orchayd wero oftoinod and used in the lear inoculation mocedure gescribed alove. Gencrally, 5 pots of 4 nlants each were used. Four check plants for each inoculum vere also maintained. The inoculum came from the following sources: J-30 Cortlanail leaves, J-30 Virginia Crab fruit, E-31 Cortlan leaves, $\mathrm{P}-6$ Virginia Crab leaves, L-4 Virénia Crab

[^1]leaves, G-3l Vircinia Crab fruit, UGDA 227 leaves, Prunus tomentosa/J-30 leaves, P. tomentosa/J-31 leaves, P. tomen-tosa/E-31 leaves, and checks which were rubbed with a pot label. The local lesion readings were made 4 and 10 days after inoculation. The systemic reaction readings were made 30 days after inoculation. These rlants were maintained for 8 weeks after inoculation.

Sories ? 2 The above exnerinont was renonted. These rlonts nere immersed in not motor immodintoly revinus to
 The rlants were maintained ror 20 days.

Sories 3. Since some reactions to inoculations vere obtained in Serjes 2, cotyledons of those nlants vere used as sources of inoculum 7 doys after inoculation. Five rots of 4 plants each were used per inoculum and 5 check pots were maintained. Iocal lesion reacins vere taken after 4 and 6 days. Ithe rlants vere majntaincd for le deys. Leaves of

Cuoumbrr/ \cdot tomatosa/t-30 Cortzan, loavos
Cucumber $/$ tomentosa/J-31 Cortlon, leaves
Cucumber $\sqrt{\text { C }}$. tomentosa $/ \mathrm{E}-31$ leaves
Cucumber/TignA 227, Ieaves
Cucamber/J-30 Virginia Crab, fruit
Cucumber/G-31 Virginia Crar, fruit
Checks.
Raphanus raphanistrum (Wild Radish). Wild radish plants werc collected from a cultivated field and placed in 2 inch pots. They were permitted to become established for a fov days and then inoculated by the modifiod Yarwood method with leaf tissue, after which at 4 and 8 day intervals they werc read for a local
lesion reaction. Systemic reaction readines were taken 12 days after inoculation. These plants were maintained in the oreenhouse for 30 days. About 10 plants were used per source of inoculum. Leaves from the following plants were sources of inoculum: J-30 Virginia Crably I-l2 Cortland, D-19 Virginia Crab, G-31 Virginia Crab, J-5 Cortland, and checks which were rubbed with a pot label.

Datura stramonium (Jimson Veed). These plants vero raiged from seets in the pommousc. The hents voro inoculatos in wo ugn? manor. Lowl logion reaincs vore taten on the 4 th and 8 th dar and gestonic reaction readings on the $20 t h$ day.

It is opparent that a isorder causinc virus-like, ring-spot type symptoms is visible in the leavos of this host and is sced transaissible, but bccause there was some confusion in determinine true inoculation symptoms, its occurrence is not officially recorded. Seven plants were used per inoculum. Pive chocl: ronts wero maintanod. Ineaves from the folloring
 Cortland, D-10 Vireinia Crab, G-3I Vircinia Grab, J-5 Corthand, and checks which vere mbbed with a not label.

Chrysanthemun leucanthemum (!hite Daisy). Seedlines from a weed belonging to the Compositae family crowine in the vicinity of the greenhouse were found to germinate readily in some flats which had been outside. These plants were trans-

1. See Appendix B for tree varicty, bodystock, rootstock and disorder.
rerrod to mots and inoculotod in the usual manner. pive rlants were used for each source of inoculur. Tocal lesion readings Were taken on the 4 th, 8 th, and 25 th days. Systemic reaction readines were taken 30 days after inoculation. Leaves from the following trees were used as sources of inoculum: J-30 Virginia Crab, I-12 Cortland, D-19 Virginia Crab, G-31 Virginia Crab, J-5 Corthand, and checks wich were rubbed with a not raner.

Gombrena alobosa (anobe anmonti). E. alobosa is used
 vilus. Seads voro availa ?n at tho rreenhouse innts vere reared, transferrod to rots and incoulatod by the Yarwood method. Ten rlants ver inoculum vere used. Ton chocks were also maintained in the ercenhouse. Readines vere taken on the loth day after inoculation, The rlants vere hela in the greenhouse for 30 dars after inoculation.

Series 1. The 1 Iants were inoculated with Ieaves from tho Pollowine troos: T-30 Vireinia Crab, I-7? Oorthan, $1-19$
 Which were mubed witt: not tabel.

Scries 2. The nlants vere vronared in the usunt maner. Sten nieces vere used instead of leaves. Two or 3 nlants were used ner inoculum. Leaves were inoculated instead of cotyledons since these plants were about a month old at the time of inoculation. Stem pieces with l exception werc used as sources of inoculum from the following trees: J-30 seeding shoot, J-30 Virginia Crab, J-30 Virginia Crab, leaves, J-30 Cortland,

D-19 Virginia Crab, G-3I Vircinia Crab, and checks wich were rubbed with a pot label.

Series 3. It was thought that some reaction may have been expressed in previous experiments with G. globosa using leaves and stem pieces. In this experiment fruit tissue was used as inoculum. The plants were prepared in the usual manner. Three blants vore used fer inoonlum. Local readins vere taken on the 7th ond 12th doy ferter inoculation. Gystemic reactions faglod to dovalon after two noth day. Frutit tissme was used

 IcIntosh, ont cheos wich wore rubber with a not label.

Citrus aurantifolia (Ce Lime). Descrintive names which have been used for the lalus stom niting, disorder are "Tristeza" by Smith and "dujel decline" by Hilborn. Tristeza or quick decine is a virus disense of Gitrus which has symtoms of stem pitting. It has been sucgested that the virus entity causing tho sten rittine in each aforder is mo me the sme thine.
 indeain liost for the Tristeza disorder. The response to inoculation with Tristeza infocter buds is the develorment of interveinal flecks and clearins in the leaves 4 to 6 weeks after inoculation.

Key lime seedlines were obtained from Dr. F. O. Holmes, Rockefeller Institute for Medical Research, New York. These seedlines were planted in 10 inch nots in the areenhouse, and at the end of 4 weeles they were established and actively growing.

Pour blants were budder to anch of the following sources of inoculum: D-19 Vircinia Crab and Gravenstein I. All buds remained alive in the rubber wraps for a neriod of at least 2 weeks. The plants were closely watched for 10 weeks. Hiscellaneous Hosts. In addition to the above the follouine nlants were also tried as yossible hosts for nechanical tranomissinn of ampe viruses. they vere raised and prenarod in tho asunt monor. In conern the usunt inoontating

 J-30 Virctinia Crat, lonvos: I-l. Corthone fruit anci fonves; D-19 Virsinia Crab, leaves; T-5 Cortland fruit and leaves; and checks wich were rubbed with a not label. The hosts verc: Stinc nettle (Urtica sn.), ligweed (Amaranthus retroflexus), Leaf lustard (Brassica juncea), Lamb's Quarters (Chenonodium album), Onion, voricty Utah Volencia; Penpor, viioty Nerrimack Toncier: Colnw, varioty Corson nocol; Fonts, vaniot: Dotroit

 varicty untnom.
V. Rosaceous Lants.
a. Non-Dintus Group. The plants used in this grour
were the alpine strawberry (rragaria vcsca), black raspberry seedlin ${ }^{\text {s (Rubus ocicientalis), Forean cherry (Prunus tomentosa), }}$ ninebark (hysocarbus orulifolius), Cotoneaster multiflora, red chokeberry (Aronia arbutifolia), and peach seedlings (Prunus persica).

Prararia vosca lants wero available bocouse they are used extensively as an indexine host for strawberry virus diseases at the University of New Hamphire.

It is know that some viruses introduced into \mathbb{E}. vesca exhibit symptoms more readily and vigorously if the receptor plants are infected with the strawberry latent virus A. The P. Vesca (hereafter callea vesca) plants available for use vere insocton with tho strambory latent virus \therefore.

Tho mothon of focoustion sas ntemes for that
 by Minchurst and Voth (26). Ioncevity or the cucisen lens from the donor liant was incrensed by lenethenin: tho center netiole cut of the recentor and rlacine the excised lenf nearer the base of the notiole. The leaf aren of the vesca host and the oprle leaf vas roduced by cutting off about $2 / 3$ of each leaf blade.

Aple leaves verc obtained from the troes in the experi-

 follows: indivicunt lonves were sompated from the nylo stem, with care boine toron to leavo as moh or the rotiole ottached to the leaf as yossible. about $2 / 3$ of the leaf blate was then cut with a sharp razor. The cut was mace on 1 side of the netiole by starting about $3 / 4$ of the way to the blade and drawins the razor in a slantwise direction toward the petiole base. The anclo on cut wes such that it penetrater only to the center of the petiole. A similar cut was made on the other side of
the netinlo, the forming $=$ hons, tropine rede.
A different type of cut was made on the vesica leaf. The center leaflet of the three leaflets was removed, and the other 2. leaves were reduced in area by cutting off about $2 / 3$ of each leaf. The petiole was split down the center with a sharp razor blade starting at a point between the 2 remaining leaflets. This cut catenced from the leaflets to about $3 / 4$ of the wa dom the ? otiose.

Tho etinle-venen of the zero lone was onrofuly fitted into tho split verse ntinte. wo sides of the vesca petiole were fitted alone the ample petiole and wrong with Stericrepo (a crepe rubber adhering only to itself). The wan started at tho base of the vesica petiole cut and continued up the petiole, including the apple petiole, and leaving the apple leaf exposed. Two leaves were grafted for each plant. The apple leaves remained green on the vesca petiole for more than 2 months.

Wan : Tanta verso than waco in a mastic sermon ace and orrittes to crow for 6 months. The rants were water od daily and fertilized about every 3 to t_{r} weeks. Four or 5 plants were used wen inoontum source. Leaves from the following plants verse used as sources of graft inoculum: J-30 Virginia Crab, I-l? Cortland, J-5 Cortland, D-19 Virginia Crab, G-31 Virginia Crab, USDA 227, propagated plant, leaf graft, Baldwin 2, aprite mosaic, from a branch brought in by a representative of a chemical company.

Rubus occidentalis (Black Raspberry). Because black
raspberry is suscentible to many virus disorders in cultivation, such a plant should offer some possibilitics as an indexing host for virus disorders within the Rosaceae.

Black raspberry seeds were obtained from Mr. E. M. Neader, Associate Horticulturist, New Hamphire Agricultural Experiment Station. They were grow in the manner described. Then the canes were larce enourh to bud, each of 5 or 6 plants was inoculated with 1 or 2 buds from cach of the sources of innculum. These mants vere maintained in the reenhouse for a norion of ${ }^{2}$ nonths. Durine this time they were cut back to normit new grovth and the develonment of nossible evidence of virus reaction. Readings were taken 8 weeks after inoculation.

The bud-inoculum was taken from the following trees: J-30 Virginia Crab, I-12 Cortland, J-5 Cortland, D-19 Virginia Crab.

Prunus tomentosa (Korean Cherry).
Series 1. $\underbrace{}_{\text {- tomentosa, the Korean Cherry, has been }}$ used as an indexine host for stone fruit virus diseases (110). Since sone informatirn concernin the use of this plont as an indexine host is available in the literature, it seemed to be a good starting point in the search for an indexing host for apple virus discases. I. tomentosa seeds were obtained from F. W. Schumacher, Sandwich, Massachusetts, and a few seeds were obtained from local plants in Durham.

These seeds were placed in a can containing moist sand and stored for 90 days in a refrigerator at a temperature range of $32^{\circ}-38^{\circ} \mathrm{F}$. The sand was moistened periodically. After
stratification the seeds were placed in a sand flat, as previousily described, and placed in the greenhouse for germination. As the seed germinated the plants were transferred to $4-$ inch pots.

Originally 1./4 pound of seed was nurchased which contained several hundred seeds. Germination was extremely low, and only enowh seedlines vere aveilable for preliminary indexine trinls. Because of the lack of plants, inoculations were mado as the secdin"s became lamo onourh to bud. All inoculations vore be luss. Thece on 6 plonts wore used for each. The followine trees rove sources of inocnlatine buis: J-30 Cortinnd , - 30 Virginia Crat, J-31 Cortland, E-31. Cortland, L-4 Virginia Crab, F-6 Virginia Crab, and USDA 227. These plants were maintained in the groenhouse for a neriod of 2 years. The initial reading was taken 4 months after inoculation. Series 2 . Seedlines of E . tomentosa were obtained from a local nurseryman, piantec in 4 inch pots and erow in the ereenhouse. The sourcon of inomtin woro fron the sho trees used in the onchar trasmirsion straios on inmatme treos. Some of tho stmand sourcos of inochun were also used. Two inoculntin" buds vere usen for each nlont. In most cases only 1 plant was used for each source of inoculum. lost of the trees had a Virginia Crab bodystock. One E. tomentosa seedling, unless othorwise indicated, was inoculated with buds from the following trees: J-30 Scedling root, J-30 Cortland, J-5 Cortland 3 plants, I-12 Cortland 3 plants, I- 4 McIntosh, K-41 M.IV rootstock 3 plants, E-31 Cortland, G-27 McIntosh, G-23 McIntosh, G-29 McIntosh, G-30 McIntosh, G-31 Virginia Crab,

F-2l Virginia Crab, L-5 McIntosh, L-6 Forthern Spy, L-ll Red Spy, L-28 Iorthern Spy, I-29 Forthern Spy, M-4 Virginia Crab, M-5 McIntosh, and M-17 McIntosh.

Physocarrus opulifolius (Ninebark). Seeds of an ornamental \underline{P}. opulifolius were collected in Durham, cleaned and stratified for 90 days in the refrfgerator. The seeds were cerminated in sand flats and transforred to ${ }^{1}$ t-inch pots. When these seedines had attained suffcient size they were inoculaton. Sumthronines wer toten ? months oftor inoculation.
 follovine sources of inoculurn: J-30 Virginia Crab, I-12 CortIand, T-5 Cortlam, D-Io Vironia Crab, Gravenstein 12 rlants, Taldvin 12 plants, and chect plants.

Cotoneaster multiflora. Scedlines of Cotoneaster multiflora were obtained from Vr. Robert Kennedy, Associate Frofessor of Jorticulture, Thomrson School. of Aariculture, and worc erom in the greenhouse in 4 -inch pots. Four seedlings
 worn then in woos arton inoculation. The solnomin troes woro the sompos of inoculatine bucs: T-30 Virejinia Crab, I-12 Cortiand, T-5 Corthand, D-Iの Vircinia Crab, a-3I Vircinia Crab, Gravenstein l, Daldwin l, and check plants.

Aronia arbutifolia (Red Chokeberry). Seeds of A.
arbutifolia were collected locally, stratified, germinated and transferred to 4 -inch pots and grown in the greenhouse. Three seedlings were inoculated with each source of inoculu. Readings were taken 7 weeks after inoculation. The following trees
were the sources of inoculating buds: T-30 Virginia Crab, D-19 Virginia Crab, G-31 Virginia Crab, I-12 Cortland, J-5 Cortland, Gravenstein 1 , and checir plants.

These plants were kept in the greenhouse for 2 weeks after inoculation and were then transferred to available space under artificial light. The temperature in this room was around $60^{\circ} \mathrm{F}$ which was too low for adecuate growth of the rlants. The lirht intensity vas 20 foot cancies at not hejrht and at 1 foot nenrer the limt $w n 60$ poot omanos. Rondines of symptom exuresston wor tiven 5 wee's fter ilecoment uncer incandescent lisht.
prunus rersica (each). Twenty-four neach seedlings growing under an abandoned peach tree were transferred to $4-$ inch pots and maintained in the "reenhouse. Nalf of these plants were used in the initial trial while the remaining seedlincs vere saved for later wee. One or 2 seedlinss were inoculated for each source of buds. Symptom readines were taken aftry 7 ly weens. tho foltorim trees vero thr onuces of inoculatine buns: J-30 Cortiond, T-5 Corthan, I-I? Cortiant, a-3I Virsinia Crab, K-4 Scedine root and cheol plants.
b. Nalus Group. Since viruses co not alvavs froduce visible symptoms it may be necessary to demonstrate their presence in a plant by transmission to another plant. A plant which will accept a virus from another host and respond to the infection by disnlaying symptoms may be called an indexing host. These reactions may be in the form of leaf spots, mottling, distortion, necrotic areas, wilting, and stem necrosis, dieback,
dwarfing or even death of the rlant. One of the objectives of this study was to try to find an indexing host for apple virus detection. It was thought that the development of an indexing host closely related to the cultivated apple would stand a greater chance of being susceptible to more or even all of the viruses present in the cultivated arrle rather than one distantly related. There is some evidence that certain plants will ronct to aphe vimaes. Yipitan and reuncorich (89) havo used an Amenohior at When rencted the the bus stem rittine virns hy lman mot?in. Ohoma (124) user a lyrncentha Sn. to demonstrato a hart enner reaction to the ample flat limb virus. Theso reactions innicste that the rrosnect for findine an arple virus indexine host is rossible. To date, there is no indexine host of this nature develoned for apple viruses.

The rresent mothots of incexing are designed for specific reactions to rubber: wood, apale mosaic and chat fruit. The Inttor isonier rooures ${ }^{2}$ th 6 vears for fritit leveloment and s.". ton omencsion. The indexine wetho fon rubbery won and ap: Ie mosnic hos beon rescrined in the literature review. These methods have beon adowted $b y$ worters in Bneland (53) and Eolland (83) for their indexinc procedures. In general they are for specific reactions and would not detect other entities which are latent.

Malus Seed Collections. Clonajly mroparated indexing material is desirable because it is miform and when inoculated with like virus entities gives uniform reactions. However, in
stone fruits it has heen show that some of the indexine plants of Shirofugen and Kwanzan after havinc been videly dispersed contained a sorious virus entity. At the outset, then, in order to avoid any similar occurrence the writer decided that seedlings should be used in preference to clonal material.

The host rance study was reatly aided by the location of many species of the comus wius at the Arnold Arboretum, Tomicallatn, "nscachuctts. Soveral snocies of 'raus were

 confoctor and user: Glus brevipes ${ }^{7}(1850-2-i)^{2}$, Mas floribunda (21)07-i), , wius halima srontanea (10706-3), Lalus prunifolia rink, ialus robusta (2553-]-), , alus sargenti rosea (11045), Malus sieboldii arborescens (10004), Mius siblimensis (50-36-A), Malus toringoides (180-52-A). These Malus tazons were selected because they ossessed the guality of anomixis in some degree. In older trees ther tenc to breed true and are
 nore subtitution for clonalyy roparator lontse

Culture. The sceds fron these lants wore cleaned by hand. Later collections were cleaned in a Wains Blendor with a leather baffle substituted for the metal barfle. The seeds were stratified in sand in the refrigerator and at the end of 90 days were placed in the greenhouse to germinate. Seed germination was poor for the amount of seed collected. This

1. See Appendix A for scientific name.
2. Arnold Arboretum identification number.

Iimited the extent of experimontation to tho number of plants available in each taxon. Turthermore, genctic or virus abnormalities occurred in some of the seedings, thus Imiting again the number of seedlincs available for use. Only plants which were free from visual symptoms of disorder were used.

The plants were kept in the greenhouse, watcred daily and fertilized every 2 or 3 weels. yo licht rostrictions wexe ntaced uron thom, no the tomoroture was varinge. After i anion of troo rovines rene taron an the bants

 60 watt inomaosoont Ifret mos wore inacea mont $21 / 2$ feet above the bench in aluminnm roflectors. The whus seedinges Wero in lr-inch rots, ame the lient intonsity it rot lovel was adjusted to 20 foot candles. At the hejrht of $1 ?$ inches which was also the hejoht af most of the ?lants tho lint intersity Wes 60 foot comblos. The lants vore oxoser to the licht for
 the finht fintonaity inoposmon ot; tho torwint Jonves. The
 rum 20 font condies to ninut 750 ront conoles.

The lonts were budded with a standard serfes of buds Which renresented the various combinations of viruses occurrine in the experimental orchard. riant rrowth is modified under low artifical limht intensitios. The shoots bocome ctiolated, the leaves become more succulent, and growth is reduced. Some virus disorders
are more pronounced under these conditions (17, 121).
The plants under licht were fortilized every 2 or 3 weeks. The lic̣uid fertilizer solution was prenared by adding 1 tbsp of ammonium nitrate (33 ner cent nitrocen) rellets and 1 tbsp of 16-32-16 starter fortilizer to a 12 quart pail of wator. Frequent fertilization was necessary to maintain aneçuate erowth.
After tho lonte he wen row in tho roonhouso and

 to the 7 inht room whont witin for creonouse symtons to covelor. In the reenhouse adventitious shoots tended to show symbtoms of distortion. Phorefore, the mints wero induced to fromote new crovth by cuttine back mad lonvin a few buds above the point of inoculation.

Mlus floribunda. The soeds eerminated readily and in quantity. Seedline worth in t-inch nots wa ood. The rIants

 wrowth wen inoculnted with buds from the following source trees: J-30 Virginia Crab, I-I? Cortland, T-5 Cortland, -3I Virginia Crab, D-IO Virginia Crab and Gravenstein 1. Check Plants were maintained, and observations vere made at daily intervals to note sympom development. Greenhouse and artificial light readincs were made over a 3 month period.

Kalus sieboldii arborescens. The seeds germinated readily but in less quantity than M. floribunda. The plants
were not uniform an the laves vero cither entire or 3- or 5-lobed. The plants were in a state of virorons growth at the time of inoculation with buds from the following source trees: J-30 Virginia Crab, D-19 Virginia Crab, I-12 Cortland, J-5 Cortland, G-31 Virginja Crab, Gravenstein 1 and Baldwin 1. Malf of the plants in this and other series were left in the greenhouse wile the other half was rlaced under artificial 7ifht. An symtoms oocurred within n ? month roriod in the reenhouse ond within : months in the licht room.

Lus brevincs. mhose scontines row firly well.
The loaves were oition 2-, 3- or 5-1obed. The rants were in a state of mocerate frowth when inoculated with bus from the followine source trees: J-30 Virginia Crab and Cravenstein 1. Reading were recorded durinc 02 month period.

Malus sikimensis. These seedlings were uniform in growth with leaves mostly entire or 3-lobed. The seedings are consinered to be aromictic. Seed sermination was only fair. These prots vers innonlotal vith buds from the followine source treos: T-30 Virania Crob, I-Ia Corthon, D-IOVirinia Crab, J-5 Cortland, G-3l Virsinia Grab and Gravenstein l. Readines vere taten over a perlod of $17 / ?$ months.

Malus prunifolia rinki. The leaves were fairly uniform beine either entire or 2- or 3-lobed, and the plant is sajd to be apomictic. Seed germination was roor, and various disorders occurred in the leaves thus reducing the number of nlants available. The seedlings were inoculated with buds from the following tree sources: J-30 Virginia Crab, I-I2 Cortland,

T-5 Cortland, D-19 Virginia Crab, G-37 Virginia Crab and Gravenstein l. Readines were taren over a period of 2 months.

Malus robusta. Very few seeds germinated. The leaves

 of this taxon were uniform, being either entire or slightly 3Iobed. The serrations may be fine or coarse. These plants vere actively growing when inoculated. The seedings were inoculated with buds from the followins tree sources: J-30 Virginia Crab, I-1? Cortland, D-10 Virginia Crah, T-5 Cortland and G-31 Vircinia Crab. Roaches woro taton avor a reriod of $21 / 2$ months.Qlus torincoides. These seeduins were the most miform of all tho 'alus taxons inoculated. The leaves vere very uniform, hoine 5-, 7-, or more lobed. The seedlincs werc inoculated with burs from the rollowine tree sources: J-30 Virginia Crab, I-12 Cortland, J-5 Cortland, D-19 Virginia Crab, G-31 Virginia Crab and Gravenstein l. Readings were taken over a period of 2 months.

The seeds of 1 . halliana spontanea and H . sargenti rosea din not erminnte vell, an vor fou seedines were nvailable for inoculation. Whe: we mover to the lirlt rom? weels after inoculation. Their erowth was roor, and readincs are not recorced.

SECTION IV

RESULTS

1. Orchard Transmission Studies
A. Mature Trees. These apnle trees were inoculated in the sprine of 1956 with tree number $T-30$. The inoculum source Whe from oach of the 3 comonento of tho tree: Cortind voriety, Virrinia Crob horstock an coolline ront chonts. The trees :ore inonected in tro that of 7056 at harvest tino. io symptoms of the ingute ampe virus bisorier vere prosent on any of the treos. The treos vere reinoculated in the fall of 1956 in the same manner, and ernits were paced on them in the srring of 1957. The trees were insrected once on July 17; no sumptoms werc discernible at that time. The trees were watched closely, and at harvest time dapnle anve srmetoms were evident on 5 trees.

Inoculun Source J-30 Cortland Variety

$\begin{gathered} \text { Tree } \\ \text { :unher } \end{gathered}$	Soretoms	Troo of Tree
E-7	Ione	Cortland on Virginia Crab on seedline root
$3-0$	7ore	Same
E-II	Danple Apple	Same
E-I2	lione	Cortland on Plorence Crab on seedling root
E-22	None	Cortland on seedling root
E-17	None	Cortland on M.IV rootstock
$\mathrm{G}-7$	Hone	McIntosh on Virginia Crab on seedling root

Tree

$\begin{gathered} \text { Tree } \\ \text { rumber } \end{gathered}$	Symptoms	Trre of Tree
$\mathrm{I}-21$	Daprle Arnle	McIntosh on seeding root
	Inoculum Sourc	J-30 Vjrginia Crab Bodystock
J-9	Dapnle Anple	Cortland on Virginia Crab on seediing root
E-13	Dapnle ipnle	Cortland on Florence Crab on seedling root
$23-24$	Yone	Cortinn on secrline root
$\mathrm{E}-7$?	Onno	cortrand on *.IV rootstock
$0-9$	Damplo \therefore ? 0	\because Ontosk on サiroinia Crab n seodina root
-74	Inono.	OcIntosh on seedion ront
	Inoculum Source	T-30 scodlin: shoot
J-27	I:ono	Cortland on Vircinia Creb on seedlinc root
P-14	Sone	Cortland on Plorence Crab on seeding root
E-26	iione	Corttand on Seodline root
1-20	Iono	Corthone or EI.IV rootstock
- -7.7	8 n	? Thtoci on viroinia gro on senstime root
$17-16$		siv on seentim.

In ardition to theso troos, tho follorine trees which weme inoculated on randon branches in the smine of 2956 and with 3 crafts in the sprine of 1057 were watched closely for symptoms of dapple apple.

During the summer of 1057 symptoms of the dapnle apple virus were observed on 7 arple of the Golden Delicious variety. A word of oxplanation is in order about the Golden Delicious.

Host mature red colored apmes start out as immature groen fruits which turn yellowish green during the summer and then assume the red color. Golden Delicious, however, is not red at maturity but a yellowish green. It may have a slight blush on 1 cheek. During its developmental period, however, there is a stage during the summer when the cheek of the Golden Delicious has a pronounced blush to its surface. It was on this surface that the first tronsmitted sumboms of the darnle apple virus reve oiservod. This tush frabed ovay lator in the season, as is customary, and so dia the symtoms of campo ampe.

The Starkine Delicious at harvest tine save good symptoms.

Inoculum Source J-30 Cortland Variety
Tree Number

R-15 None NeIntosh on M.VII rootstock S-15 IIone Iacoun on Ni.IV rootstock T-15 Daprle Inple Starkine Delicious on \because I. I rootstock
 r-14 :ione Baldwin on $\because . I$ rootstock.
D. Imnature Trees. No fruit anncared on any of the trees durine 1957. It is expected that some fruit may appear in 1958 as a result of the girdling technique. The following trees died in 1957 in Gilford: Row 2, tree 19 and row 2, tree 30. No trees in this experiment died in Durham. It is expected that these experiments will be continued until all trees produce fruit.
2. Greenhouse Studies
A. Non-Rosaceous Flants

Cucumber Inoculations, Series 1. The nlants were maintained for 8 weeks after inoculation. The local lesion readings were made 4 and 10 days after inoculation. The systemic readines were mede 30 days after inoculation.

Source of Inocutum	Wo. Iants	Reac	tions
	Inocirated	Tnent Tesions	Sustemic
I-2n cortiome	20	none	none
T-E Virsinio Crab	20	none	none
E-3I Cortland	20	none	none
USDA. 227	19	none	none
L-lt Virsinia Crab	18	none	none
$\begin{aligned} & \text { J-30 Virginia Crab } \\ & \text { fruit } \end{aligned}$	20	none	$\begin{aligned} & \text { l constricted } \\ & \text { leaf tip } \end{aligned}$
$I \cdot \frac{\text { tomentosa }}{\text { Cortland }} / J-30$	20	none	none
$\mathrm{E} \cdot \frac{\text { tomentosa }}{\text { Corthand }} / J-3 I$	16	none	none
$=\frac{\text { tomentose }}{\text { Cortland }}-21$	20	none	none
E. tomentosa/UsDh 227	720	none	$\begin{aligned} & 2 \text { constricted } \\ & \text { leaf tips } \end{aligned}$
G-31 Virginia Crab	20	none	none
Chect	18	none	$\begin{aligned} & \text { l constricted } \\ & \text { leaf tip } \end{aligned}$

Series 2. These plants were heat treated rion to inoculations. They were inmersed in a solution of 1.0 per cent $\mathrm{T}_{2} \mathrm{HPO}_{4}$ at $45^{\circ} \mathrm{C}$ for 60 seconds.

Source of Inoculum

No. Plants
Inoculated J-30 Cortland leaves 18

T-30 Virginia Crab fruit

E-31 Corthong lonves 74

F-6 Virginia Grab leaves

L-4 Virginia Crab $\quad 20$
G-31 Virginia Crab 20 fruit

USDA 227 leaves

- $\frac{\text { tonentoge }}{\text { leaves }}-30$
E. tomentosa $/$ leaves $31 \quad 18$
E. tomentosa/E-31 20

Checks
20

Reaction
Local Lesion
Fine stippling on cotyledons, 7/18 plants with symntoms.
Pino stimpline on cotyledons, mearor. Blotch area at site of innculotion, 5 with symptoms.
Finc stirbline on coty? edons, morer. \quad notch orea ot site of inoculation, smell. 6 with symutoms.
Fino stimline on cotyledons. Blotch area at site of inoculation, 3 with symptoms.
Pine stimline on cotyledons, meager, 7 vith symptoms.

Elotch area at site of rubbing, 5 with symatoms.
Fine stirmine on cotyledons, ? with symptoms.

Pine stimpine on cot-redins. lotch areas at site of inoculation, 10 with symptoms.

Fine stipnling on cotyledons. Blotch arens at site of inoculation, 4 vith symtoms.

Fine stippling on cotyledons. Blotch areas at site of inoculation, 13 with symptoms.

Stippling, blotches, or scratches on 17 plants, none severe.
Series 2. Cotyledons from some plants in Series 2
vere used to see if any of the disorders could be transmitted.
Readings were taken 4 and 6 days after inoculation.
Source of Inoculum No. Plants Reaction Inoculated
Cucumber/P. tomentosa/J-30 Cortland20
none
Cucumber/E. tomentosa/J-31 Cortland 20
none
Cucumber/L- tomentosa/E-31 12Cucumber/TTSDA $22 ?$20
20Cucumber/J-30 Virminis Cran fruit
20
Cucumber/f-3? Virainia Crab fruit none12
Checksnone
Raphanus raphanistrum (Vild Radish)
J-30 Virginia Crab 10
none
I-12 Cortland 10
D-19 Virginia Crab 10
G-31 Virginia Crab 13 none
J-5 Cortlanc 12nonenone
Checks 4 nonenone
Datura stranonium (Jimson Weed). A peculiar veinclearing occurred in some of these leaves, but the presenceof other disorders previously mentioned reduces the possibil-ity of considering it related to the inoculum.Source of Inoculum No. Plants ReactionInoculated Local Lesions SystemicJ-30 Virginia Crab 7 scratches none
I-12 Cortland7nonenone

Source of Inoculum	No. Plants		Reaction	
	Inoculated	Local Lesions	Systemic	
D-19 Virginia Crab	7	none	none	
G-31 Virginia Crab	7	none	none	
J-5 Cortiand	7	scratches	none	
Checks	7	scratches	none	

Gomphrena globosa (Globe amaranth). Necrotic areas were resent at the site of inoculation and did not vary with the scratches and infur: on the checks.

Serios 1:

Source of Inoculum	Io. Mants	Reaction	
Inoculated	Local Lesions	Systemic	
J-30 Vircinia Crab	10	8 injured	none
I-12 Cortland	9	4 injured	none
D-19 Virginia Crab	10	9 injured	none
G-31 Virginia Crab	10	2 injured	none
J-5 Cortland	10	4 injured	none
Checirs	10	10 injured	none

Series 2 . The fact that theno lants were older Led to sone iffficulty Uninoculated lants of G. Elobosa at a certain age revelop red circular snots on the leaves similar to those mich annear after inoculatine with rotato X virus.

Since older plants were used in this series it is probable
that the symptoms which appeared were the results of this matur-
ing factor. Injury due to inoculation was also present.
Source of Inoculum Fo. Plants Reaction Inoculated Local Lesions Systemic

J-30 seeding shoot 2
J-30 Virginia Crab 2
2 injured none
2 injured none

Source of Inoculum	Ho. Plants Inoculated	Rea Local Lesions	Systenic
J-30 Cortland	2	2 injured	none
D-19 Virginia Crab	2	2 injured	none
G-31 Virginia Crab leaves	3	2 injured	none
$\begin{aligned} & \text { J-30 Virginia Crab } \\ & \text { leaves } \end{aligned}$	3	none	none
Chectrs	2	none	none
Series 2.			
J-30 Cortinna	3	none	none
J-5 Cortland	3	none	none
I-12 Cortland	4	none	none
H-11 McIntosh	3	none	none
H-18 MeIntosh	3	none	none
G-14 McIntosh	3	none	none
Checks	3	none	none

Chrysanthemum leucanthemum (Wite Daisy).

J-3n Vircinia Crab	5	none	none
I-12 CortIand	5	nne	none
D-19 Virginia Crab	5	none	none
G-3I Virginia Crab	5	none	none
J-5 Cortland	5	none	none
Checks	5	none	none

Citrus aurantifolia (Key Lime). The 8 inoculated Key Lime plants were watched closely for a period of 10 weeks. Readings were taken at the end of 8 weeks. No symptoms appeared which could be related to the usual virus reactions
of Key Lime seedlines when innculated with Tristeza infected buds.

Source of Inoculum
D-19 Virginia Crab
Gravenstein

Check Plants

Leaf Symptoms
none
1 leaf with a single fleck 1 leaf with tip constriction
none

Miscellonepus Losts. The sorins of lants listed below :ere tnocurated in the usval Yormon metrod with slicht monification. Lo local lesjons on systomic reactions vere ever observed in these plants. Stins nettle (Urtica sp.); iifveed (Amaranthus retroflexus); Leaf mustard (Drassica juncea) ; Onion, varicty Utah Valencia; Peprer, variety lerrimack :onder; Colery, varicty Emerson Tascal; Reets, variety Detroit Dark Red; Tomato, varicty Ponny Best; Tomato, varicty Tindow Dox; Tobacco, Wite hurley variety Tudy Fride; Aster, varicty Uurpeana Barly: Carrot, variety unknown.

```
    - bogacogur 1.ants
    O 品-ialus groun.
```



```
    a, ion-ialus groun.
```

obse
Prasaria vesca (Alpine Strawberry). Wese lants were weekobserved frecuentiy. Symem readincs vore taken after 3 reactions occurred, an no other symptoms were observed. Eowever, some plants were set aside for further observation. The leaves of thesc plants exhibited no definite or mild symptoms, but they did not impress the writer as being quite normal. No further symptom development was observed in these
plants for another 4 wocks. Junc yellows appeared in a runner mant rrom a parent plant wheh haci beon inoon?atod with a loaf showind apmle mosaic symrtoms. June yellows is a genetical variation which occurs spontaneously. Leaves from this plant were crarted onto other vesca plants, but the disorder dia not appear acain.

Irocnly Sourco	$\begin{aligned} & \text { Gumber of } \\ & \text { Tants rafted } \end{aligned}$	Reaction	$\begin{aligned} & \text { Io. Mants } \\ & \text { Saved } \end{aligned}$
$=-30 \text { urcinia mab }$	5	none	$?$
$\begin{gathered} \text { I-In gorthas } \\ \text { 1002 rant } \end{gathered}$:	nore	0
$\begin{aligned} & \text { J-5 corthand } \\ & \text { leaf rraft } \end{aligned}$	5	none	1
$\begin{gathered} \text { D-19 Virginin Crab } \\ \text { lear graft } \end{gathered}$	5	none	2
$\begin{gathered} \text { G-31 Virginia Grak } \\ \text { leaf craft } \end{gathered}$	2	none	0
USDA 2?7, leaf grast	3	none	0
Baldwin 2, lear rraft	3	$\begin{aligned} & \text { Junc } \\ & \text { Yellows } \end{aligned}$	1
veribtion :...s mater won the seoding wants of tie black rashory. The leaf sharc vari d from lant to flat; slight			
distortions :rwo amaront in difforent loavos of the same			
Jlant. There were siight color varlations ascomranyine the			
distortions, and it was nocessary to discard many of the plants.			
By far the most discouraging thing about the black raspberry			
plant is its susceptibility to mite infestation. Despite			
having received much care, these lants develoned mite popu-			
lations that interferect groatly with their use. Heavier			

aprifations of a miticide caused injury to the leaves of the plant. The variation in leaf shape, coloration, spray injury and distortions made readinss of the black raspberry plant difficult, and further testing was discontinued.

Mo. of Tlants
Source of Inoculum Grafted Reactions
Fo. Plants Reacting J-30 Virginia Crab $6 \quad 2$ on older leaves, slicht necrotic
yellorin\% of older 4
loaves,
basal shoots foreod 2
I-I? Oorthand

J-5 Cortland

D-19 Virginia Crab
6 yellowins of lower 3 leaves,
reddeninr of Joaves, 3 purnlish snots
:rurus tonestosa.
Serice $:=$ Whe to tho inconsistency in seed germination and mrowt: those lanta vero inoouloted in a series of 3 over a roriod of 2 months, and readines were taicen ${ }_{4}$ months after the first innculations. Consequently the checks were among the last plants to be selected although they were with a late group of inoculations.
ro.
Source of Inoculum Ilants
J-30 Cortland Fine necrotic spots, mottline, color variation; 1 with no symptoms

Source of Inoculum	110. Pants	Symptoms
J-30 Virginia Crab	3	iecrotic spots ($1 / 4$ to $3 / 8$ inch diameter) interveinal, color variation
J-31. Cortland	3	Fine mottling, fine necrotis spots
E-31 Cortland	3	Fine mottling, necrotic spots, shot holes
E-31 Robusta V	3	1 fine nottlins, 2 no symptoms
T-6 Virginia Crab	3	Color variation, no mottline, tertiary vejns netted, ? no symytoms
In-t Vixanio Srab	3	Color vanintion, no mottifir, few fine necrotic siotis, 1 no symbons
USDA 227	3	Pine mottling, color variation, 1 no symptoms
Choc!ss	3	Pine mottling, few fine necrotic spots, 1 no symintoms

The plants in Serios 1 vere maintained for an additional 2 months. The mottinf and necrotic spots became more prevelent on all rlants includins the check plants. The lants were cut back, and in most cases new shoots apneared which remane sumptombes untin tominal anoth coasoc. at this point nearotic spots apoored on the ?over lonvos and later on the uner leaves. Hottlins also aneared in the leaves. Alı glants apooned to show the some sympoms even though inocuIated with seemingly different virus material. Somewhat later, seedlings were obtained from a local nurseryman, planted in 4 -inch nots and permitted to grow. They were maintained in the greenhouse under condjtions similar to those in series 1 . Mottline and necrotic spottine develoned in the usual manner. It had been suspected that spray materials apriled to these
plants for the control of mites and aphids had some effect upon the symptons which appeared. Therefore, half-strength and fullstrength concentrations of the miticide Aramite were applied to the plants. The full-strength applications caused the usual symptoms to develop, whereas the half-strength applications reduced the intensity of the necrotic spots. The motting on the lower leaves was a result of shading, and the subsequent color changes were due to the onset of abscission.

Series 2. Seedlings of \mathcal{E}. tomentosa were obtained from a local nurseryman and grown in the greenhouse. Three weeks after inoculation these plants were cut wack and new shoots soon appeared. These plants were sprayed with the miticide at haif-strength concentration to reduce spray injury. Symptom readings were taken 15 weeks after inoculation. Source of Inoculum

Symptoms

J-30 Seedling Root
J-30 Cortland
J-5 Cortland

I-12 Cortland

D-19 Virginia Crab
I-4 McIntosh
K-41 M.IV rootstock

E-31 Cortland
G-27 MeIntosh
G-28 McIntosh
G-29 McIntosh

None
None
Necrotic spots and color variation, 1 no symptoms

Marginal chlorosis, necrotic spots, 1 no symptoms, 1 with ring spot symptoms

Necrotic spots, mottle
None
2 necrotic spots, 1 terminal dieback, next lower leaves distorted

Necrotic spots
None
Necrotic spots
Necrotic spots

Source of Inoculum
G-30 McIntosh
G-31 Virginia Crab
F-21 Virginia Crab
I-5 McIntosh
L-6 Northern Spy
L-11 Red Spy
L-28 Northern Spy
L-29 Northern Spy
M-4 Virginia Crab
M-5 McIntosh
M-17 McIntosh
Checks

Symptoms
Necrotic spots
Necrotic spots
Necrotic spots
Necrotic spots, mottling
None
None
None
Necrotic spots
Hecrotic spots
Necrotic spots
None
None and necrotic spots

Plants of Series 2 showed little appreciable difference from the responses that occurred in Series 1. Consequently, no further trials with P . tomentosa were made.

Physocarpus opulifolius (Ninebark). Distinct virus symptoms were not observed on the E. opulifolius. The plants were maintained for an extended period. During this time they were cut back and permitted to grow. Three months after the initiat inoculation plants failed to show any variation from the initial reading.

Source of Inoculum
J-30 Virginia Crab
I-12 Cortland
J-5 Cortland
D-19 Virginia Crab

Symptoms
Terminal leaves slightly flattened
None
None
Leaves slightly rugose

Source of Inoculum
Gravenstein 1
Baldwin 1
Check plants

Symptoms
Leaves slightly distorted
None
None

These plants were cut back and new growth appeared. No symptoms were observed on this new growth. Although these plants were cut back a second time no symptoms were observed on the new growth.

Cotoneaster multiflora. During the course of the experiment some of the inoculating buds died. These plants were rebudded. In addition all plants were rebudded 6 weeks after the inftial inoculation to insure exposure to virus inoculum. Condition of Buds Source of Inoculum J-30 Virginia Crab 4 dead 1 dead Veinal and interveinal mottling

I-12 Cortland 4 alive 4 alive Mild mottling and spots J-5 Cortland $\quad 4$ alive 4 alive Leaves apparently normal

D-19 Virginia Crab 4 alive 4 alive Leaves mostly normal, some slight mottling and spots

G-3l Virginia Crab	4 alive	2 dead
Gravenstein 1	4 alive	Leaves mottled on some
Baldwin 1	1 alive	Russetting on lower leaf surface, some motting and veinal necrosis
Check plants	Terminal leaves with flecks	
	Normal leaves, few with slight mottle.	

Aronia arbutifolia (Red Chokeberry). Leaf symptoms were noted on only 1 group of plants inoculated. The inoculation
site was the area of host reaction.
Source of Inoculum
Condition of Bud
J-30 Virginia Crab
D-19 Virginia Crab

G-31 Virginia Crab
I-12 Cortland

J-5 Cortland
Gravenstein 1

Check plants
3 living
2 living; 1 dead with girdilng canker at inoculation site; stem above canker dead

3 living
2 living; 1 dead with girdling canker at inoculation site; stem above canker dead

3 living
2 dead; on 1 a girdiing canker at inoculation site; stem above canker dead; small orange spots on midrib of some leaves; necrctic wilting of terminal leaf

2 normal; 1 defoliated.
The low light intensity and cool temperature apparently caused the lower leaves to absciss on most of the plants. No leaf distortion was observed.

Prunus persica (Peach).
Source of Inoculum
Symptom Reaction
J-30 Cortland None
J-5 Cortland None
I-12 Cortland None
G-31 Virginia Crab Marginal yellowing and interveinal spots on lower leaves

K-41 seeding root None
Check plants
Marginal yellowing.
After the initial reading the plants were set aside, and excessive growth was cut off when necessary. The only change noted was in the peach seedling inoculated with buds of J-30

Cortland. This plant had not put forth new growth, and cutting back was not necessary. Approximately 6 months after the initial reading an excessive enlargement of the bud base or node was noted. No further leaf symptoms occurred on any of the plants.

Table 3. Malus floribunda. Greenhouse. Symptom development on inoculated seedlings.

Table 4. Malus floribunda. Artificial light. Symptom development on inoculated seedlings.

Source of Inoculum

Replications	$\begin{gathered} J-30 \\ 1234 \end{gathered}$	$I-12$ 1234	$D-19$ 1234	$J-5$ 124	$\begin{aligned} & G-31 \\ & 1234 \end{aligned}$	$\begin{aligned} & \text { Grav.1 } \\ & 1234 \end{aligned}$	$\begin{gathered} \text { Check } \\ 1234 \end{gathered}$
Bud dead	x x		x				
Leaves normal	x	X	x x	x	$\mathrm{X} \quad \mathrm{x}$	X	$\mathrm{x} \times \mathrm{x}$
distorted	$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times$	$\mathrm{x} \times \mathrm{x}$	x x	$\mathrm{x} \times \mathrm{x}$	
spotted mottled colored			x			x	
rounded	x						
epinasty	x	x x	x				x
necrosis	${ }^{x}$	X	$\mathrm{x} \times$			x	
wilt	x	x	x			x	

Lobes distorted
Serrations
distorted

Table 5. Malus sieboldii arborescens. Greenhouse. Symptom
development on inoculated seedlings.

a/ Faint spot depressions appeared 2 days after inoculation
b/ Bright orange spots appeared 6 days after inoculation

Table 6. Malus sieboldii arborescens. Artificial Light. Symptom development on inoculated seedings.

```
    Source of Inoculum
J-30 I-12 D-19 J-5 Grav.l Bld.1 G-31 Check
```



```
Bưd Dead
Leaves
normal x x x
    distorted x
        spotted
    mottled
    colored
    rounded
    epinasty
    necrosis
    wilt
Lobes
        distorted
Serrations
```

 distorted
 a/ Canker girdiing stem at site of Ist bud. Necrosis at site of 2nd bud.
b/ Lower surface of older leaves with brown veinal and interveinal necrosis.

Table 7. Malus brevipes. Greenhouse. Symptom development on inoculated seedlings.

Table 8. Malus brevipes. Artificial Light. Symptom development in inoculated seedlings.

Table 9．Malus sikkimensis．Greenhouse．Symptom development on inoculated seedlings．
Replications
Main Stem
Bud Dead

		Sour	of	Inoculum		
J－30	I－12	D－19	J－5	G－31	Grav 1	Check
123	123	123	12	3123	133	123
				xb／		NONE

Leaves
normal distorted spotted mottled colored necrosis

X		X X	X x	X X	X		x X
x	x	X	X	X		x	x c
X X							
		x		x	x	X	x
			X		x		

Lobes
distorted
Serrations distorted
Adventitious
shoots
Leaves
normal
distorted x x x
spotted
$x \quad x \quad \frac{x}{x}$ mottled X colored necrosis
X
Lobes
distorted x
Serrations
distorted \mathbf{x} X
a．Stem had sinewy appearance
b．Very small plant
c／Tumors on leaf petiole．

Table 10．Malus sikkimensis．Artificial Light．Symptom development on inoculated seedlings．

	$\mathrm{J}-30$ 123	I－12 1	Source D－19 123	$\begin{aligned} & \text { of Inod } \\ & \mathrm{J}-5 \\ & 123 \end{aligned}$	culum $G-3 I$ 123	$\begin{aligned} & \text { Gravd Geck } \\ & 12123 \end{aligned}$
Replications Bud Dead	123	123	123	123	123	$12 \underset{N O N E}{2} 23$
Leaves normal	X	x	a／		a／	x / b
distorted	X X	\mathbf{x}	X	$\mathrm{x} \times \mathrm{x}$	x	
spotted mottled						
colored						
rounded					x	
epinasty						
necrosis		X	x X	x		x
wilt		x	x x	x		
Lobes distorted Serrations						
distorted x x						
a／No leaves						
b／Galls for	d on	drib	d leaf	petiol	．	

Table 1l. Malus prunifolia rinki. Greenhouse.

Symptom development on inoculated seedlings.

```
                        Source of Inoculum
```



```
Main Stem
Bud Dead
    x
Leaves
    normal 
    distorted
    spotted
    mottled
    colored
    necrosis
Lobes
    distorted x
Serrations
    distorted x x x
Adventitious
    shoots
Leaves
    normal
    distorted x
    spotted
    mottled
    colored
    necrosis
Lobes
    distorted
Serrations
    distorted
    x
a/ Lower leaves cupped downward.
```

Table 12. Malus prunifolia rinki. Artificial Light. Symptom development on inoculated seedings.

Table 13．Malus robusta．Greenhouse．Symptom development on inoculated seedlings．

	J－30	I－1			ur	1		culum	Graval	Check
Replications	12		2	1	2	1	2	12	12	12
Main Stem 112112										
Bud Dead	x x									
Leaves										
normal distorted	X X	X	x	X	X	X	x	x		X
spotted			x			x				
mottled										
colored			x	x		x	x	x		X
necrosis			x	x						x
Lobes										distorted
Serrations distorted										
Adventitious										
Leaves										
normal										
distorted										
spotted										
mottled										
colored										
Lobes										
distorted										
Serrations										
distorted										

Table 14. Malus robusta. Artificial Light. Symptom development on inoculated seedlings.

	J-		I-		So		J		G-	Grav.l	Check
Replications Bud dead	1	2		2	1	2	1	2	1	12	12
Leaves											
distorted	x	x	X	x	x	\boldsymbol{r}	x	x	x	x	\mathbf{x}
spotted											
mottled											
colored											
rounded											
epinasty											
necrosis x x											
wilt				x					x		
Lobes											
distorted	x	x								x	
Serrations											
distorted										X	

Table 15．Malus toringoides．Greenhouse．Symptom
development on inoculated seedlings．

Replications	$\begin{array}{r} J-30 \\ I \quad 2 \end{array}$	$\begin{array}{r} I-12 \\ 1 \end{array}$	D	19		In	$\begin{aligned} & \text { culum } \\ & \text { G-3I } \\ & I \end{aligned}$	Grav． 1	Check None
Replications									
Bud dead									
Leaves									
normal distorted spotted mottled colored necrosis	x x	X X	x	x	X	X	x	X	
Lobes distorted									
Adventitious shoots									
Leaves									
distorted spotted mottled necrosis colored									
Lobes distorted									
Serrations distorted									

Table 16. Malus toringoides. Artificial Light. Symptom development on inoculated seedlings.

DISCUSSION AND CONCLUSION

The experimental portion of the orchard was designed for a bodystock study. The virus disorders which appeared in the trees were incidental to the main purpose of the experiment, but proved to be most interesting. There were several features of tree structure in the orchard wich made this study possible and promoted a reasonable theory for the cause of disease occurrence.

The foremost feature is that all grafting wood used for each of the varieties came from l tree of that variety. If this had not been so the disorder dapple apple could only have been described as a disease, and proof of its virus-like nature demonstrated by transmission. The opportunity for tracing and understanding the means of infection would have been missed. This would have greatly reduced the possibility of demonstrating that dapple apple is a complex of viruses rather than a single virus entity. Also the single tree source of scionwood eliminates the contention that the Malus stem pitting virus is carried in its entirety in all the varieties as has been suggested, because if this were true all topworked Virginia Crabs in the orchard would have shown the disorder, since it occurred on some trees of each variety. The virus, then, must be located in the Virginia Crab or in the seedling root as the perpetuating agent. Florence Crab on seedling
rootstock is also susceptible to the Malus stem pitting virus but few trees are affected when compared with Virginia Crab on seedling rootstock. By this deduction the Virginia Crab remains as the main agent of dissemination of the Malus stem pitting virus. How and when the initial infection occurred is not known, but a knowledge of nursery practices indicates that it occurred unintentionally and by any of several various methods. An excellent article by Fosnette (94) considers some of the methods involved.

Virginia Crab scionwood when propagated in large quantities on seedlings must come from several trees. The occurrence of infection in some bodystocks and not in others indicates that some of the Virginia Crab scionwood source trees are infected while others are not. The virus (or viruses) is perpetuated with the scions as the plant is propagated. The Malus stem pitting virus is latent within the Virginia Crab and is not expressed in the bodystock until a variety is top-worked to it. The disorder has not been reported in the literature nor seen by the writer on trees which have not been top-worked. Why symptoms appear in the Virginia Crab only when top-worked with a variety has not been investigated.

The bodystock varieties Virginia Crab, Florence Crab and Red River Crab are susceptible to infection by the Malus stem pitting virus. Symptoms occur only on trees which have been top-worked with a variety. Mature 15-year-old trees were inoculated with the Malus stem pitting virus. Symptom readings will be taken in subsequent years.

Much the same reasoning can be proposed for the occurrence of dapple apple; however, it is more complicated. The theory is proposed that the disorder dapple apple is a complex disease consisting of 2 virus entities which, when coming together in 1 apple tree, cause the symptoms of dapple apple. Either factor alone within a single plant is latent. Dapple apple first occurred on the Cortland variety trees which had Virginia Crab as their bodystocks. Also it has not occurred spontaneously on any other variety unless suspected of having been grafted wi.th infected material. The fact that it occurred originally on the Cortland variety and only with the bodystock Virginia Crab indicates an interaction of some entities between these 2 units. However, it does not occur on all Cortland/ Virginia Crab combinations. Neither does it always occur with the Malus stem pitting virus; therefore, it must be considered a separate virus entity. Since we know that the Cortland scionwood was grafted from 1 tree we can say with some assurance that any virus composition in the Cortland is the same throughout the orchard. This, then, leaves the Virginia Crab as the variable factor. Some of the scionwood source trees used to propagate the Virginia Crab may contain 1 component while the Cortland contains the other component. When they are brought together in 1 tree dapple apple is expressed. The orchard experiment on immature trees is designed to substantiate or to defeat this theory. Seedlings can be ellminated as the perpetuating agent because the disorder does not occur on other Cortland trees where seedlings have been used.

The virus entities which cause the symptoms of dapple apple have been transmitted to varieties other than Cortland. In the inoculation series inoculating buds were placed on limbs on the opposite sides of each tree and in other trees they were placed on random limbs. The occurrence of symptoms more widely spread on the random limb inoculations indicated that several points of inoculation cause more rapid symptom spread within the tree than more intensive localized inoculations.

Apples in the vicinity of the inoculating buds in either direction along the limb remained symptomless. However, those fruits growing on the first or second side branches centripetally to the buds developed symptoms, indicating an unusual pattern of virus movement through the tree.

The conclusion offered is that the Malus stem pitting virus is perpetuated in the Virginia Crab bodystocks by the use of scionwood material from infected Virginia Crab trees. It is also concluded that the most reasonable explanation for the occurrence of the dapple apple disorder is the presence of l component in the Cortland variety and that the other component is in some of the Virginia Crab bodystocks. The Nalus stem pitting and dapple apple disorders occur independently of each other.

The relationship between the Nalus stem pitting and apple flat limb symptoms has been mentioned. Preliminary inoculations have been made; G-3l Virginia Crab scions were inoculated with flat limb infected Gravenstein l. At the end of 18 months sinewy growth and longitudinal fissures in the
wood as well as tumerous swellings above the bud node appeared in the Virginia Crab. The reverse inoculation with Malus stem pitting infected Virginia Crab to symptomless Gravenstein has not been made.

The leaf inoculation technique proposed by Yarwood works with many plant virus diseases and is more or less a standard method of inoculating many herbaceous hosts. In the attempt to develop an indexing host this method was thought to be the most desirable for transfer of viruses to herbaceous plants. Nany plants were tried in which the Yarwood method was used as the method of inoculation. In all cases no symptoms resulted from inoculation which could be classified as a reaction to virus inoculation. Mechanical transmission of viruses in the Rosaceous group does not take place readily, if at all (17).

The Rosaceous plants which were tried, including the Malus group, did not respond in any consistent fashion to the aprle virus inoculations. E. vesca was a disappointment in that the leaf grafting technique could be readily adapted to this plant put the responses were lacking or very meager. On those plants which were saved vague leaf distortions were noted. However, these were single leaves which could not be definitely associated with the inoculation. It is thought that more extensive testing of E. vesca may lead to further knowleage of apple viruses.

Prunus tomentosa was difficult to grow in the greenhouse for the purposes intended. In the beginning considerable time
was spent in obtaining and germinating seed. The initial responses obtained were the result of spray injury and resembled very closely the necrotic ring spot type of injury associated with the Prunus group. In some cases a mottling of the ring spot type was noted from some sources of apple inoculation, but the lack of seedlings prevented further study. The possibility exists that the purchased seedlings which had spent a year in the field may have been exposed to natural virus infection, which resulted in expression of symptoms in the greenhouse.

Physocarpus opulifolius was not found to be a responsive plant to apple virus inoculation. It is not considered to be satisfactory for use as an indexing host.

Cotoneaster multiflora showed symptoms of virus reaction only after the plants had been held for an extensive time. Some veinal and interveinal mottling occurred in the leaves. As the nature leaves aged the mottling became more pronounced. Although this plant responded to Gravenstein 1 flat limb inoculation it is thought that better plants are available for indexing work.

Aronia arbutifolia plants were in a room at relatively cool temperatures for plant growth due to lack of space in the warmer light room. The plants did respond to inoculation by developing necrosis and cankers at the site of bud-inoculation with Gravenstein flat limb. For this particular virus it is probably a better plant than \underline{C}. multiflora.

Prunus persica did not respond readily to any of the inoculations made. Only after considerable time did the enlarged bud condition become manifest. The limited trials with peach
seedlings are inconclusive, but they indicate that this host is not adaptable to apple virus indexing.

It was thought that the plants in the Malus group because of their close relation to the cultivated apple should offer greater potential for expressing virus reactions than any of the species previously mentioned. The initial series of greenhouse inoculations showed considerable variation in symptom response but these responses were not uniform. In an effort to standardize the reactions, low light intensities for short periods of time were tried and found to be conducive to leaf distortion as a direct result of virus inoculation.

The leaves under the lirht intensities of the greenhouse did not express any deformation on the main shoots. The leaves on lower adventitious shoots, however, being somewhat shaded, did show distortion and gave responses which indicated virus reaction. Also there is a time element involved after inoculation. The more vigorously the plant was growing the more rapidly the leaf spotting and necrosis apneared in the terminal leaves. When these plants were placed under artificial light the terminals would keep growing but distorted leaf growth did not appear readily. When these plants were cut back, the new growth, either adventitious or from buds formed after inoculation readily showed distortion symptoms in the new leaves, but shoots from buds formed prior to inoculation grew normally for a while and then showed leaf distortion. The virus entity apparently enters the bud more readily when it is being formed rather than after it has been formed.

It is thought that the leaf distortions are the result of simultaneous growth of the leaf meristems and virus multiplication. Apparently the leaf meristems of apple plants grow faster than the virus multiplication under high light but under low light the leaf meristems are retarded enough to permit virus multiplication within the area of leaf meristems and thus influence their behavior. The modifications resulting from the virus activity in these meristems is enough to cause distortion and create a symptom. In some instances the meristems were inhibited and growth of this particular area ceased. This reaction is most noticeable in M. toringoides where leaf lobes are inhibited and distortion occurs.

Seedlings of H. floribunda offered major responses to 2 sources of inoculum. The J-30 Virginia Crab and Gravenstein 1 inoculating buds responded in death of the bud and necrosis at the site of inoculation. This would seem to further substantiate a former assumption that the apple flat limb and Malus stem pitting viruses are related. However, D-19 which is the tree selected to represent the Nalus stem pitting disorder did not respond with bud death, although in 3 out of 4 plants the leaves were distorted. Various leaf colorations, spottings, and mottlings in several of the plants resulted from the different sources of inoculum. These reactions are adequate for indexing reactions. Generally leaf spotting reactions appear within 2 weeks. The most rapid appearance of symptoms in this group was 6 days after inoculation. Under artificial light leaf distortion of the new shoots was the most prominent reaction. It occurred in plants from all sources of
inoculum. The reactions were general and the symptoms could not be placed in categories which would aid in separating the virus entities. It is concluded that M. floribunda may be used as an indexing host for general screening of apple virus detection. It is suggested that at least 5 replicates be used for each source of inoculum.
M. sieboldii arborescens gave the impression of being slightly more sensitive to virus inoculations than . floribunda by responding with more leaf coloration and spotting symptoms. The bright orange spots appeared readily in some seedings, and, as with M. floribunda orange spots were present after 6 days. The most rapid reaction of the whole series was with K . sieboldii arborescens in which fine spot depressions were apparent 2 days after inoculation. These spots appeared in the terminal leaves 9 inches away from the site of inoculation. Under artificial light distortion of the leaves occurred in some seedlings from all sources of inoculum. An attempt has been made to propagate the Number 1 seedling inoculated with J-30 Virginia Crab buds. It is realized that this probably contains a virus in it since it was inoculated, but later developments may offer some way to eliminate the virus from this clone. This particular plant would be very useful for necrotic stem reactions similar to Shirofugen in stone fruit indexing.

It is concluded that seedlings of M. sieboldii
arborescens would make a good general indexing host for apple viruses. It is also suggested that at least 5 seedlings be used for each source of inoculum.

The apparent lack of vigorous growth in seedlings of

Malus brevipes at the time of inoculation probably prevented these seedlings from expressing better symptom reaction under greenhouse conditions. Under artificial light those plants which grev well showed good symptoms. Again, distortion in the leaves of these seedlings occurred in some plants from all sources of inoculum. Further work with M. brevipes is encouraged.

Seedlings of H r robusta were moved to the light room 2 weeks after they were inoculated. They did show some leaf coloration symptoms. Under lights the leaves of the plants showed distortion, but the symptons were not very pronounced. Seedings of M. prunifolia rinki were not vigorously growing when bud-inoculated. The plants grew slowly and symptoms were meager. It is thought that the maintenance conditions for these seedlings were not the best. Once the plants had lost their vigorous growth they never regained it. Very little growth occurred under artificial lights. The check plants in this sroun showed leaf distortion and enlarged serrations.

Seedlings of M . sikkimensis showed distortion in the greenhouse on at least one plant from each of the groups inoculated. Other symptoms were also expressed which indicated that these seedings could be used in the greenhouse as indexing hosts. An unusual symptom occurred on the leaf petioles of 1 plant in this group. Galls were formed on the leaf petioles of the number 1 plant inoculated with apple flat limb. The seedling later showed leaf distortion symptoms under the lights.

Under artificial light those plants which grew displayed
distinct symptoms of leaf distortion. The greenhouse and artificial light responses of the few plants used of this taxon indicate that M, sikkimensis would be a good indexing host for apple virus diseases. One definite drawback is the lack of adequate seed source of this species.

The leaves of M. toringoides on separate plants were strikingly uniform. Despite the fact that very few plants were available, the writer considers M. toringoides to offer the st possibilities of the plants tested for use with the artificial light indexing technique. The reactions are probably the most distinct of any of the species tested. The lack of greenhouse symptoms is due to the fact that they were moved to the light rnom after 2 weeks.

It is concluded that M, toringoides offers considerable possibility as an indexing host and would be highly recommended for further trial in any indexing investigations of apple viruses under artificial light.

See Appendix C for photographs of some symptoms expressed.

SECTION VI

SUMAARY

Trees in an apple orchard experiment, in which the main consideration was a hardy bodystock study, developed virus-like disorders in the bodystocks (Malus stem pitting) and the fruits (dapple apple) of some varieties. These virus disorders were studied to determine their occurrence and distribution, and one new virus disease (dapple apple) was demonstrated by transmission. Field inoculations were made in mature and imnature trees in an attempt to determine the complex of viruses involved.

Greenhouse studies were undertaken to determine the transmissibility of viruses causing several types of symptoms. No transmissions were obtained with the leaf rub method of inoculation on any of the plants tried outside of the Rosaceae. Grafting inoculations within the family Rosaceae offered some promise for developing an indexing host for apple virus diseases. Within the genus Malus seedlings of several hosts were bud-inoculated and grow under greenhouse and low intensity artificial light conditions. Seedlings or the species Halus floribunda, M. sieboldil arborescens and M. toringoides are considered to be promising as indexing hosts for apple virus detection.

BIELIOGRAPHY

1. Anderson, H. W. 1956. Diseases of fruit orops. MoGrawHill, New York.
2. Anonymous. 1948. Report of the Science Service, Dominion Department of Agrioulture, for the year ending March 31, 1948.
3. Anonymous. 1949. Twenty-third annual report of the Depart. ment of Soientific and Industrial Research. New Zealend.
4. Anonymous. 1951. Department of Agriculture, Kenya, annual report 1949. II. Record of Investigations.
5. Anonymous. 1951. New diseases attack fruit: Spread of "Henderson Spot". Fruit and Prod. 5: 7-8.
6. Anonymous. 1956. Current research, investigations, experi. ments. Orchard. N. Z. 29:13.
7. Anonymous. 1956. Second symposium on virus diseases of fruit trees in Europe, Aug. 23-27, 1955, Wageningen, Netherlands. Tijdschr. Plantenziekten 62: 33-88.
8. Anonymous. 1956. Stations federales d'essais agricoles, Lausanne. Rapport d'activite 1955. Annu. Agr. Suisse, N. S. 5: 399-513.
9. Anonymous. 195\%. Common names of plant virus diseases used in the review of applied mycology. Rev. Appl. Mycol 35: Sup. 1-78.
10. Anonymous. 1957. Crop Production. United States Crop Summary as of Ootober 1, 1957. Crop Rept. Board, Agr. Markt. Ser., U. S. Dept. Agr., Washington, D. C.: 48.
11. Atkinson, J. D. 1947. A note on Crinkle in Now Zealand apples. N. Z. J. Sci. Tech. A 28: 332-334.
12. Atkinson, J. D. 1956. Unusual features of some Now Zoalan fruit tree viruses. Tijdschr. Plantenziekten 62: 39-42.
13. Atkinson, J. D. and E. F. Chamberlain. 1948. Apple mosaio in New Zealand. N. Z. J: Soi. Tech. 30: 1-4. Atkinson, J. D., F. E. Chamberlain and J. A. Hunter. 1954. Apple ring spot. N. Z. J. Sci. Tech. 35: 478-482.
14. Barrat, J. G. Unpublished data.
15. Barrat, J. G., A. E. Rich and W. W. Smith. Unpublished data.
16. Bawden, F. C. 1950. Plant viruses and virus diseases. Third Ed. Chronica Botanica, Waltham, Mass.
17. Beakbane, A. B. and F. C. Thompson. 1945. Abnormal 11gnification in the wood of some apple trees. Nature 156: 145.
18. Blodgett, F. M. 1923. A new host of mosaic. Plant Disease Reptr. 7: 11.
19. Blodgett, F. M. 1938. The spread of apple mosaic. Phytopathology 28: 937-938.
20. Blumer, S. 1951. Line pattern in Zwetschen. Schweiz. Z. Obst-u. Weinb. 60: 451-454.
21. Blumer, S. 1955. Viruskrankheiten an Obstbaumen. Schweiz. Z. Obst-u. Weinb. 63: 516-519.
22. Blumer, S. 1956. Uber die Ilachastigkeit (rillenkrankheit) bei apfelbaumen. Sohweiz. Z. Obst-u. Weinb. 65: 148-153.
23. Bomeke, J. H. 1954. In 29 Prlanzenschutz-Tagung der Biologisohen Bundesanstalt Braunschwoig in Hoidelberg 5-9 October, 1953. Mitt. biol. ZentAnst. Berl. 80.
24. Bradford, F. C. and L. Joley. 1933. Infectious varigation in the apple. J.Agr. Res. 46: 901-908.
25. Bringhurst, R. S. and V. Voth. 1956. Strawberry virus transmission by grafting exoised leaves. Plant Disease Roptr. 40: 596-600.
26. Broadfoot, H. and E. C. Connor. 1956. Control of "twist" in the Gravenstein apple. Agr. Gaz. N. South Wales. 67: 180-188.
27. Brough, C. R. 1958. Work with Gravenstein gnarl. Fruit World and Market Grower. 59: 21.
28. Cation, D. and R. E. Gibson. 1952. Dwarf fruit and decline of apple, a virus disease. Abstr. Phytopathology 42: 4.
29. Chamberlain, E. E., J. D. Atkinson and J. A. Hunter. 1953. Note on the systemic nature of apple mosaic virus in apple trees. N. Z. J. Soi. Tech. A 34: 551-552.
30. Christoff, A. 1934. Mosaikkrankheit oder virus chlorose bei appeln. Eine neue viruskrankheit. Phytopath. Z. 7: 521-536.
31. Christoff, A. 1935. Mosaiefleokigheit, chlorose und steppenfleckigkeit bei apflen, bernen und quitten. Phytopath. Z. 8: 285-296.
32. Ciferri, R. 1956. Recent progress in fruit tree research in Italy. Tijdschr. Plantenziekten. 62: 69-72.
33. Ciferri, R., D. Rui and G. Scaramuzzi. 1954. Reloziano sommoria su alcune malattie da virus e da corenza di alberi fruttiferi nell italia sellentrionale. Riv. Ortoflorofruttic, Itel. 38: 7-8.
34. Coohran, L. C. 1950. Infection of apple and rose with ringspot virus. Abstr. Phytopathology 40: 964.
35. Crane, M. B. 1944. The mystery of Lord Lambourne. The Grower. 22: 10-12.
36. Dyex, R. A. 1949. Botanical surveys and control of plant diseases. Fmg. S. Afr. 24: 119-12l.
37. Esau, K. 1953. Plant anatomy. John Wiley, New York.
38. Fernald, M. L. 1950. Gray's manuel of Botany. Eighth wd. American Book, New York.
39. Fernandez Valiela, M. V., M. Bakaroic and A. Turica. 1954. Manual de enfermed ades y plagas de los frutales y forestales en el Delta del Parana. Publ. misc. Minist. Agr., B. Aires. 400.
40. Fisher, H. 1955. Ungewohnliche Berostungen und Rissebildungen bei Boskoop Glockenapfel und anderen apfelsorten eine Viruskrankhoit ? Sohweiz. Z. Obst-u. Weinb. 84: 125-131.
41. Fisher, H. 1957. Die virose Triebsucht der apfelbaume. Pflanzenarzt 10: 1-2.
42. Fogliani, G. 1952. Segnalazione della virosi a scopazzi del melo. Notiz. Malatt. Piante 2l: 10-11.
43. Fulton, R. W. 1956. Non Identity of apple mosaic and tobacco streak viruses. Phytopathology 46: 694.
44. Gardner, F. E., P. C. Marth and J. R. Magness. 1946. Lethal effects of certain apple scions on Spy 227 stock. Proo. Amer. Soc. Hort. Sci. 48:195-199.
45. Gaumann, E. 1950. Principles of plant infection. Hafner, New York.
46. Gilmer, R. M. 1956. Probable coidentity of Shiro line pattern virus and apple mosaic virus. Phytopathology 46: 127-128.
47. Goidanieh, G. and E. C. Branzanti. 1954. Le virosi delle piante da frutto in Emilia e Romagna. Ital. Agr. 91: 603-606.
48. Guba, F. F. 1924. New diseases. Plant Disease Reptr. 33: 82.
49. Guengerich, H. W. and D. F. Millikan. 1956. Transmission of the stem pitting in apple. Plant Disease Reptr. 40: 934-938.
50. Harris, R. V. 1954. Plant pathology. Rep. E. Malling Res. Sta. for 1953: 34.
51. Harris, R. V. 1957. Plant pathology. Rep. F. Malling Res. Sta. for 1956: 27.
52. Harris, R. V. and A. F. Posnette. 1956. The production and distribution of virus-free fruit trees at East Malling. Rep. E. Malling Res. Sta. for 1955: 115-119.
53. Harvey, H. L. 1957. Apple mosaic. The Fruit and Market Grower 58: 21.
54. Heald, F. D. 1933. Manual of plant diseases. Second Ed. MoGraw-Hill, New York.
55. Hilborn, M. T. Personal communication.
56. Hilborn, M. T. and F. Hyland. 1957. Anatomical changes assooiated with wood pitting, a suspeoted virus disease of Virginia Crab apple. Abstr. Phytopathology 47: 16.
57. Hilborn, M. T. and R. Bonde. 1956. Datura sp. as indicator plants for apple and blueberry virus diseases. Abstr. Phytopathology 46: 241.
58. Hockey, J. F. 1943. Mosaic, false sting, and flat limb of apple. Sci. Agr. 23: 633-646.
59. Hockey, J. F. 1955. 35th Annual report of the Canadian plant disease survey 1955. Science Service, Canada Dept. Agr.
60. Hookey, J. F. 1257. Further observations of flat limb of Gravenstein. Canadian J. Pl. Sci. 37: 259-261.
61. Holmes, F. O. 1948. Order virales the filterable viruses. In Bergey's Manual of Determinative Beoteriology. Sixth Ed. Williams and Wilkins, Baltimore: 1125-1296.
62. Jenkins, J. F. and I. F. Storey. 1955. Star oracking of apples in East Anglia. Pl. Path. 4: 50-52.
63. Jossiforic, M. 1937. Plum mosaic a virus disease of plum. Arch. Ministarstva poljoprivred. 7: 131-143.
64. Katwijk, W. van. 1953. Rozet, ein nieuwe virusziekte bij appels. Tijdsohr. Plantenziekten. 59:233-236.
65. Katwijk, W. van. 1953. Virusziekte in do vruchtboomwekerij. Versl. PlZiekt. Dienst Wageningen 119.
66. Katwijk, w. van. 1955. Ruwsohillegheit bif appels, ein viruss-ziekte. Tijdschr. Plantenziekten 61: 4-6.
67. Katwijk, W. van. 1956. Rough skin of apples. Tijdschr. Plantenziekten 62: 46-49.
68. Klikpatrick, H. C. 1955. Infection of peach with apple ripsaic virus. Phytopathology 45: 292-293.
69. Fristensen, H. R. 1956. Flat limb of apple trees. Tijdschr. Plantenziekten 62: 42-46.
70. Lantz, H. L. 1933. Hardy stocks for fruit trees. Trans. Iowa Hort. Soc.
71. Louw, A. J. 1948. Investigations on the cracking of Ohenimuri apples. Fmg. S. Afr. 270: 596-602.
72. Luokwill, L. C. 1950, Some virus diseases of fruit trees in Engiand. Fruit Yearbook 4: 84-88.
73. Luckwill, L. C. 1954. Virus diseases of fruit trees: IV. Further observations on rubbery wood, chat fruit and mosaic in apples. Rep. Agr. Hort. Res. Sta. Bristol 1953: 40-46.
74. Luokwill, L. C. and cS. H. Crowdy. 1950. Virus diseases of Iruit trees. II. Observations on rubbery wood, chat fruit, and mosaic in apples. Progress report. Rep. Agrie. Hort. Res. Sta. Bristol 1949: 69-79.
75. Mahlstede, J. P. and F. S. Haber. 1957. Plant propagation. John Wiley, New York.
76. Mallack, N. 1956. Die wirtschaftliohe Bedeutung des apfelmosaiks. Frakt. Bl. PfiBau. 51: 225-229.
77. Maney, T. J. 1925. The propagation of own rooted apple stocks. Proc. Amer. Soc. Hort. Sci. 22: 211-217.
78. Maney, T. J. and H. H. Plagge. 1934. Three apple stocks especially well adapted to the practioe of double working. Proc. Amer. Soe. Hort. So1. 32: 330-333.
79. MoCallan, S. E. A. 1946. Outstanding diseases of agricultural crops and uses of fungicides in the United States. Contrib. Boyce Thompson Inst. 14: 105-116.
80. MoClintook, J. A. 1938. The affinity of varieties other than Grimes on Virginia Crab stocks. Proo. Amer. Soc. Hort. Sci. 36: 131-132.
81. MeKenzie, D. W. 1953. The problem of "gmarling" or "flat limb" in Gravenstein apples. Orchardist. New Zealand 26: 2-3.
82. Meifneke, C. A. R. 1956. An indexing soheme in the Netherlands. Tijdsohr. Plantenziekten 62: 83-85.
83. Miller, P. R. 1956. Plant disease situation in the United States. F.A. O. P1. Prot. Bull. 4: 136-139.
84. Miller, V. J. 1954. A trunk disorder of Virginia Crab interstocks. Proe. Amer. Soe. Hort. So1. 64: 159-164.
85. Millikan, D. F. 1957. Symptoms of soar skin in apple. Abstr. Phytopathology 47: 25.
86. Milikan, D. F. and H. W. Guengerich. 1954. Bark splitting, a possible virus disease in apple. Abstr. Phytopathology 44: 498.
87. Millikan, D. F. and H. W. Guengerich. 1956. Transmission to Amelanchier of an agent causing a disorder on apple. Phytopathology 46: 130.
88. Morse, R. 1916. Maine Agr. Exp. Sta. Bul. 252.
89. Mulder, D. 1953. De proliferatieziekte van appel, een virusziekte. Tifdsohr. Plantenziekten 59: 72-76.
90. Wulder, D. 1955. Het eerste symposium over virusziekten van vruchtbomen en Europa te Wadenswil (Zwitserland). Meded. Div. Tuinb. 18: 446-448.
91. Mulder, D. 1955. Ruwschillige vruchten in een bladsymptoom bij appel. Tifdschr. Plantenziekten 61: ll-14.
92. Palmiter, D. H. and K. G. Parker. 1955. Transmission of the causal agent of apple green mottle. Abstr. Phytopathology 45: 186.
93. Posnette, A. F. 1953. Virus diseases and the propagation of fruit trees. Rep. E. Malling Res. Sta. for 1952: 131135.
94. Posnette, A. F. 1953. Virus transmissions between Prunus and Malus speoies. Rep. E. Malling Res. Sta. for 1952. 131-135.
95. Posnette, A. F. and D. F. Millikan. 1958. Some virus-like disorders of pome fruit trees in Missouri. Plant Disease Reptr. 42: 200-201.
96. Posnette, A. F. and R. Croploy. 1952. A preliminary report on strains of the apple mosaic virus. Rep. E. Malling "es. Sta. for 1951: 128-130.
97. Posnette, A. F. and R. Cropley. 1952. The rubbery wood virus and apale propagation. Rep. E. Maling Res. Sta. for 1951: 131-132.
98. Posnette, A. F. and R. Cropley. 1954. Distribution of rubbery wood virus in apple varieties and rootstocks. Rep. F. Malling Res. Sta. for 1953: 150-153.
99. Posnette, A. F. and R. Cropley. 1956. Apple mosaic viruses. Host reaction and strain interforence. J. Hort. Se1. 31: 119-133.
100. Posnette, A. F., R. Cropley and C. F. Ellenberger. 1953. Progress in the heat treatment for strawberry virus diseases. Rep. E. Malling Res. Sta. for 1952: 128-130.
101. Posnette, A. F. and C. F. Ellenborger. 1957. The line pattern virus disease of plums. Ann. Appl. Biol. 45: 74-80.
102. Prentice, I. W. 1949. Experiments on rubbery wood disease of apple trees. A progress report. Rep. E. Malling Res. Sta. for 1948: 122-125.
103. Ramsijell, T. 1950. Virusjukdommer pa eple. Gartneryrket 20: 7.
104. Ramsfjell, T. 1952. Virusjukdommer opa hagebruksplanter. Frukt of Baer 5:44-53.
105. Rawlings, C. O. and G. F. Potter. 1936. Unusual severe winter injury to the trunks of MoIntosh apple trees in New Hampshire. Proo. Amer. Soc. Hort. Sci. 34: 57-66.
106. Refatti, E. and R. Ciferri. 1954. La virosa del tipo "soopazzi" in vivai di melo. Ann. Sper. Agr. N. S. 8: 1543-1556.
107. Rehder, A. 1940. Manual of oultivated trees and shrubs. Second Ed. MacMillan, New York.
108. Rich, A. E. Personnal oommunication.
109. Riohards, B. L. and L. C. Cochran. 1956. Virus and viruslike diseases of stone fruits in Utah. Utah State Agr. Exp. Sta. and U. S. Dept. Agr. Hand book.
110. Riley, F. A. 1957. Stem pitting of coffee. Commonw. Phytopath. News 3:29-30.
111. Roland, G. 1954. Le problems des viroses des arbers fruitiers. Fruit Belge: 151.
112. Rui, D. 1950, Una malattia inedita: La virosi a scopazzi del melo. Humus 6: 7-10.
113. Sax, K. 1957. The control of vegetative growth and the Induction of early fruiting of apple trees. Proc. Amer. Soc. Hort. Se1. 68: 68-74.
114. Sohlums, W. and G. Baumann. 1956. Die "flachastigkeit" des apfels in Mitteldeutsohland. NachrBl. dtsch. PflSchDienst. Berl., N. F. 10: 56.
115. Shaw, J. K. and L. Southwick. 1943. Certain stock-scion incompatibilities and uncongenialities in the apple. Proc. Amer. Soo. Hort. So1. 44: 239-246.
116. Smith, K. M. 1957. A textbook of plant virus diseasos. Little, Brown, Boston.
117. Smith, W. W. 1954. Oocurrence of "stem pitting" and necrosis in some body stocks for apple trees. Proc. Amer. Soc. Hort. Sci. 63: 101-113.
118. Smith, W. W. 1955. Tresteza, a virus disease infecting some body stocks of apple trees. J. N. H. Hort. Soc. 18: 11-14.
119. Smith, W. W., J. G. Barrat and A. E. Rich. 1956. Dapple apple, an unusual fruit symptom of apples in New Hampshire. Plant Disease Reptr. 40: 765-766.
120. Stakman, E. C. and J. G. Harrar. 1957. Principles of plant pathology. Ronald Press, New York.
121. Stubbs, L. L. 1957. Virus diseases of apples and pears and the production of healthy stooks. The Fruit World and Market Grower 58: ©41.
122. Thomas, H. F. 1937. Apple Mosaic. Hilgardia. 10: 58i-588.
123. Thomas, H. E. 1942. Transmissible rough-bark diseases of fruit-trees. Phytopathology 32: 435-436.
124. Thomas, P. H. and T. D. Raphael. 1932. Internal cork in apples associated with malformed wood growths. Tasmanian J. Aer. N. S. 2: 69-73.
125. Tukey, H. B. and K. D. Brase. 1944. Differences in oongeniality of two sources of McIntosh apple budwood propagated on rootstock USDA 227. Proc. Amer. Soc. Hort. Sai. 45: 190-194.
126. Tukey, F_{o} B., R. L. Klackie and J. A. MeClintock. 1954. Observations on the uncongeniality between some soion varieties and Virginia Crab stooks. Proc. Amer. Soc. Hort. Sei. 84: 151-155.
127. Vlasveld, W. P. N. 1952. Wat is er met die apples aan de hand. De Fruitteelt 42: 642-643.
128. Watson, R. D. and A. R. Al-Adham1. 1957. Notes on diseases of fruit trees in Iraq. F. A. O. Pl. Prot. Bull. 5: 104-107.
129. Welsh, M. F. and F. W. L. Keane. 1955. 35th Annual report of the Canadian plant disease survey 1955. Science Service, Canada Dept. Agr.
130. Yarwood, C. E. 1953. Quiak virus inoculation by rubbing with fresh leaf disos. Plant Disease Reptr. 37: 501-502.
131. Yarwood, C. E. 1955. Mechanioal transmission of an apple mosaic virus. Hilgardia 23: 613-628.
132. Yorkes, G. E. and W.W. Aldrich. 1946. Behavior of apple varióties on certain olonal stooks. Proc. Amer. Soc. Hort. Sci. 48: 227-235.

APPENDIX A

The names of the following plants are in accord with Gray's Manual of Botany (39) or Manual of Cultivated Trees and Shrubs (108).

Amaranthus retroflexus L. Pigweed
Aronia arbutifolia Elliott. Red Chokeberry
Brassica iuncea (L.) Coss. Leaf Mustard
Chenopodium album L. Lamb's Quarters
Chrysanthemum Leucanthemum L. var. Pinnatifidum LeCoq and Lamotte. White Daisy

Citrus aurantifolia Swingle. Key Lime
Cotoneaster multiflora Ege.
Cucumis sativa L. Cucumber
Datura stramonium L. Jimson Weed
Eriobotrya japonica Lindl. Loquat
Fragaria vesca L. Alpine strawberry
Gomphrena globosa L. Globe Amaranth
Malus brevipes Rehd.
Malus floribunda Sieb.
Malus halliana Koehne. var. Spontanea Rehd.
Malus prunifolia Eorkh. var. rinki Rehd.
Malus pumila Mill. Common Apple
Malus robusta Rehd.
Malus sargenti Rehd. var. rosea Rehd.
Malus sieboldil Rehd. var. arborescens Rehd.
Malus sikkimensis Koehne.

Malus toringoides Hughes.
Physocarpus opulifolius Maxim. Ninebark
Prunus avium L. Sweet Cherry
Prunus persica Batsch. Peach
Prunus tomentosa Thunb.
Raphanus raphanistrum L. Wild Radish
Rubus occidentalis L. Black Raspberry
Sorbus pallescens Rehd.

APPENDIX B

A list of trees used as sources of inoculum giving tree components and disorders.

Experimental Orchard Trees

Tree Number	Variety	Bodystock	Rootstock	Disorder
K-41	Northern Spy		M.IV	Apple mosalc
L-4	Cortlands McIntosh	Virginia Crab	seedling	none
L-5	McIntosh	Virginia Crab	seedling	Malus stem pitting
L-6	Northern Spy	Virginia Crab	seedling	none
L-11	Red Spy	Virginia Crab	seedling	Malus stem pitting
L-28	Northern Spy	Virginia Crab	seedling	none
L-29	Northern Spy	Virginia Crab	seedling	none
M-4	McIntosh	Virginia Crab	seedling	Malus stem pitting
M-5	McIntosh	Virginia Crab	seedling	none
M-17	McIntosh	Virginia Crab	seedling	Malus stem pitting
Miscellaneous Sources				
From D. McCloud Orchard Wilton, liew Hampshire				
Branch and leaf samples brought in by a representative of a chemical company.				
From George Parker Orchard Wilton, New Hampshire				
USDA 2 Pro Uni	27 pagated tr versity of	, scionwood ob Massachusetts.	seedling from	USDA 227 virus (latent)
P. tom	entosa/J-	A. P. tomen buds from leaves.	seedling necrotic	been inoculated sions on older
P. tom	entosa/J-3	A P. tomen	seedling	been inoculated

with buds from J-3I, necrotic lesions on older leaves.
P. tomentosa/E-31

A P. tomentosa seedling had been inoculated with buds from E-3l, necrotic lesions on older leaves.

APPENDIX C

Photographs of symptom expression.

Figure 3. Leaves from a seeding of M. toringoides showing distortion symptoms. Normal leaf on $\bar{r} i g \bar{t}$. Plant grown under incandescent light. Inoculum: J-5 Cortland buds.

Figure 4. A seedling of M. toringoides showing distorted leaves. Plant grown under incandescont 11ght. Inoculum: D-19 Virginia Crab, buds.

Figure 5. Leaves from a seedilng of M. floribunda showing distortion symptoms. Normal leaves are on the lert. Plant grown under incandescent light. Inoculum: D-19 Virginia Crab buds.

Figure 6. A seedling of M. Iloribunda showing opinasty of the leaves. Plant grown in the greenhouse. Inoculum: J-5 Cortland buds.

Figure 7. Leaves from a seedling of M. brevipes showing distortion and mottiling symptoms. Normal leaf on the right. Plant grown under incandescont light. Inoculum: Gravenstein 1 buds.

Pigure 8. A seediling of M. brevipes showing distortion of the leares. Plant grown under incandescent light. Inoculum: J-5 Cortland buds.

Figure 9. Leaves from a seedling of M. sikkimensis showing distortion and motting symptoms. Normal leaves on the right. Plant grown under incandescent light. Inooulum: J-5 Cortland buds.

Figure 10. Leaves from a seedling of M. sargenti rosea showing distortion symptoms. Normal leaf on the right. plant grown under incandescent light. Inoculum: J-5 Cortland buds.

Figure ll. A seedling of M. floribunda showing an olongated type of distortion. Plant grown under incandescent iight. Inoculum: J-30 Virginia Crab buds.

Figure 12. A soedling of M. brevipes showing greater aistortion on the longer adventitious shoot. Plant grown under incandescent light. Inoculum: J-30 Virginia Crab buds.

Figure 13. Abnormal swellings above the buds on Virginia Crab which had been inoculated with a bud from an apple flat limb virus infocted Gravenstein tree.

[^0]: 1. References refer to the entire symptom description.
[^1]: 1. See Appendix B for tree variety, bodystock, rootstock and disorder.
