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This dissertation examines effects of stress on brown algal biology from a 

macroscopic scale by examining whole aquaculture crops, to a microscopic level by 

examining the macroalgal microbiome across the vertical stress gradient of the intertidal 

zone and across their latitudinal biogeographic ranges. Thermal stress negatively affected 

seedstock gametophytes of the kelp Alaria esculenta isolated from northern and southern 

locations in Maine. However, prior thermal stress had a positive effect on growth of the 

next-generation sporophytes. Alaria esculenta has potential as a kelp crop in Maine’s sea 

vegetable aquaculture sector and implementing this protocol may allow the sea vegetable 

industry to increase crop yields. Studies found that stress gradients that influence 

distributions of brown macroalgae, specifically Fucus spp., can affect the microbial 



composition of the macroalgal microbiome. Various methods of describing macroalgal 

microbiomes were examined with a common garden approach using a lab-cultured strain 

of Porphyra umbilicalis. Methods examined included different preservation techniques, 

differences between algal tissue types, variability across the algal thallus, and type of 

analytical pipeline (e.g. mothur versus MED) used. Results were applied to in situ studies 

of the natural microbiome of Fucus spp.: each host species of the high, mid-, and low 

intertidal zones had a different microbiome. Manipulative transplants of mid-zone F. 

vesiculosus into the high zone assessed algal-associated bacterial tolerance to stress. 

Trans-Atlantic surveys of microbial diversity of F. vesiculosus found a biogeographic 

break in microbial community structure that correlated with sea surface temperatures and 

environmental stress across latitudes. These studies expand current knowledge of the 

direct and indirect effects of stress on phaeophytes across multiple scales. 



 ii 

ACKNOWLEDGEMENTS 

  

This degree would not have been possible without the help and support of a huge 

list of people. Firstly, I would like to thank my family for their constant love and 

encouragement during these years of my graduate education. Above all, I thank my 

husband, Bryan, for his role as field recorder, lab assistant, travel companion, and 

cheerleader. I thank my parents for believing in me and telling me to always believe in 

myself, and not to worry too much because even null data tell a story. I thank my 

grandparents-in-law for their positive outlook on life that helped keep me grounded.  

 

 

I thank my advisor, Susan Brawley, for all of the opportunities that she has given 

me. I have learned so much about so many subjects due to her vast knowledge of science 

and her advisement; I am especially grateful for her help in improving my scientific 

writing. I appreciate the financial support of my research and field work from her 

research grants. I thank my committee members, Drs. Nick Brown, Bill Halteman, Vicki 

Hertzberg, Benildo de los Reyes, and John Singer for their support and advice through 

coursework and conversation. Special thanks to Drs. Halteman and Hertzberg for help 

with statistical analyses and coding as well as Dr. de los Reyes for hosting me during a 

research trip to his lab at Texas Tech.  

 

 



 iii 

Without the significant contributions from my co-authors and collaborators, these 

projects would not be possible. Thanks to Dr. Hillary Morrison of the Marine Biological 

Laboratory (MBL) in Woods Hole, Massachusetts, for her major contributions to the 

analyses of microbial communities of macroalgae, and her design of peptide nucleic acid 

clamps that are of incredible value to the scientific community; her support and advice 

were crucial to my degree. Thanks to Emma White and Aleksey Morozov also of MBL. 

Thanks to Dr. Ladd Johnson of Laval University in Quebec, Canada, for advisement and 

assistance in field experimental design in transplant projects. Thanks to my collaborators 

and co-authors from along the east coast and in Europe: Drs. Galice Hoarau, Yaccine 

Badis, Juliet Brodie, Ester Serrão, Catarina Mota, Ricardo Bermejo, Wayne Littaker, 

Patricia Tester, Joseph Scudlark, Leigh Sterns, and Gordon Hamilton. Special thanks to 

Drs. Badis, Brodie, and Tester who went above and beyond to help me complete my field 

work, and support me while abroad. 

 

 

Thanks to all of the undergraduate members of the Brawley lab that I have had the 

pleasure of mentoring and working with: Inara Mendonça, Chad Flinkstrom, Ian Jones, 

Ashley Serra, Olivia Barberi, and Riley Cummings. Special thanks to Ellie McCarthy, 

Alie Pergerson, Kit Buda, and Maggie Aydlett who have significantly contributed to my 

work. Thanks to senior lab members that have collaborated with me on projects, offered 

advice, and supported me, both in and out of lab: Geneva York, M.S., Charlotte Royer, 

M.S., Dr. Rémy Luthringer, and Kyle Capistrant-Fossa (M.S. student). And thanks to my 



 iv 

SEANET graduate student cohort for their support, especially Emma Taccardi, Molly 

Miller, and Gretchen Grebe.  

 

 

Lastly, thanks to Steve Eddy and Luz Kogson Hurtado at the Center for 

Cooperative Aquaculture Research (CCAR) in Franklin, Maine, for assistance with 

aquaculture nursery facilities and to Sarah Redmond of Springtide Seaweed, LLC. for use 

of her sea farm and for assistance with grow-out experiments. Thanks to the sea 

vegetable farming community for supporting and working with the me and the scientific 

community to ensure aquaculture is a success in Maine.  



 v 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ............................................................................................... ii 

LIST OF TABLES ............................................................................................................. x 

LIST OF FIGURES ......................................................................................................... xii 

 

Chapter 

1. INTRODUCTION ................................................................................................. 1 

Phaeophyceae: Brown Macroalgae ............................................................ 1 

Local and Global Environmental Stressors ................................................ 3 

Brown Algae in Aquaculture ..................................................................... 5 

Goals and Specific Objectives: From Macro to Micro .............................. 7 

 

2. TEMPERATURE TOLERANCE OF MAINE STRAINS OF THE KELP  

ALARIA ESCULENTA AND ITS SUITABILITY FOR AQUACULTURE  

IN THE GULF OF MAINE ................................................................................... 9 

 Introduction ................................................................................................ 9 

 Methods .................................................................................................... 16 

  Study Organism ........................................................................... 16 

  Study Site ..................................................................................... 17 

  Reproductive Phenology .............................................................. 19 

  Gametophyte Thermal Acclimation ............................................. 20 

  Sporophyte Grow-Out .................................................................. 23 



 vi 

 Results ...................................................................................................... 25 

  Reproductive Phenology .............................................................. 25 

  Gametophyte Thermal Acclimation ............................................. 26 

  Sporophyte Grow-Out .................................................................. 26 

 Discussion ................................................................................................ 32 

  Reproductive Phenology .............................................................. 33 

  Gametophyte Thermal Acclimation ............................................. 35 

  Sporophyte Grow-Out .................................................................. 41 

   Conclusions for the Sea Vegetable Aquaculture Industry ........... 45 
 

   

3. A COMMON GARDEN EXPERIMENT WITH PORPHYRA UMBILICALIS 

(RHODOPHYTA) EVALUATES METHODS TO STUDY SPATIAL  

DIFFERENCES IN THE MACROALGAL MICROBIOME ............................. 47 

 Introduction .............................................................................................. 47 

 Methods .................................................................................................... 49 

  Common Garden Culture of Pum1 .............................................. 49 

  DNA Extraction, Amplification, and PNA Clamps ..................... 53 

  Sequencing and Demultiplexing .................................................. 54 

  Bioinformatic Processing: mothur and MED .............................. 55 

  Statistical Analysis ....................................................................... 58 

 Results ...................................................................................................... 60 

  PNA Clamp Efficiency ................................................................ 60 

   Core Community Comparisons .................................................... 62 



 vii 

   Microbial Communities between Blade Positions: A vs. C ......... 66 

Microbial Communities among Stabilization  

Techniques: B vs. C vs. D ................................................ 69 

Microbial Communities between Regions: A vs. E ..................... 72 

  Discussion ................................................................................................ 73 

   Importance of PNA Clamps ......................................................... 74 

ASVs versus OTUs ...................................................................... 74 

Macroalgal Microbiome Distribution and Preservation .............. 76 

Pum1 Microbiome Composition and Region-Specific  

Functional Predictions ..................................................... 78 

Conclusions .................................................................................. 82 

 

4. MICROBIAL CHARACTERIZATION OF INTERTIDAL MACROALGAL 

COMMUNITIES ACROSS A STRESS GRADIENT ........................................ 83 

Introduction .............................................................................................. 83 

Methods .................................................................................................... 87 

  Natural Survey and Manipulative Experiment ............................ 87 

Environmental Data Collection .................................................... 90 

DNA Extraction, Amplification, and Sequencing ....................... 91 

Bioinformatic Processing and Statistical Analysis ...................... 93 

  Results ...................................................................................................... 96 

   Environmental Intertidal Comparisons ........................................ 96 

Water Column versus Host Microbiomes .................................... 99 



 viii 

Natural Survey of Host Microbiomes of Fucus Congeners ....... 101 

Effect of Transplant on Microbial Biodiveristy ......................... 105 

Stress-Responsive Taxa ............................................................. 108 

  Discussion .............................................................................................. 115 

   Natural Surveys .......................................................................... 116 

Tissue Effect .............................................................................. 119 

Transplant Experiment ............................................................... 122 

Universal Taxa ........................................................................... 124 

Stress-Responsive Taxa ............................................................. 126 

Conclusions ................................................................................ 132 

 

5. LATITUDINAL EFFECTS ON TRANS-ATLANTIC MACROALGAL 

MICROBIOMES OF FUCUS AND PORPHYRA SPP. .................................... 134 

Introduction ............................................................................................ 134 

Methods .................................................................................................. 138 

Results .................................................................................................... 143 

Discussion .............................................................................................. 151 

Microbial composition of environmental communities, cell  

walls, tissues, and intertidal zones ............................................. 151 

Microbiome of Fucus vesiculosus across latitudinal  

gradients ......................................................................... 154 

Conclusions ................................................................................ 158 

 



 ix 

6. CONCLUDING REMARKS ............................................................................. 160 

REFERENCES ........................................................................................................ 166 

APPENDIX 3.1: CORE COMPOSITION OF THE COMMON  

GARDEN P. UMBILICALIS EXPERIMENT ................................................... 188 

APPENDIX 4.1: CORE COMPOSITION OF NATURAL SURVEYS AND  

 TRANSPLANT EXPERIMENT OF FUCUS SPP. .......................................... 199 

BIOGRAPHY OF THE AUTHOR .......................................................................... 245 

  



 x 

LIST OF TABLES 

 

Table 3.1  Efficacy of peptide nucleic acid clamp design for the genus  

Porphyra based on amplicons generated from Porphyra spp.  

field samples ............................................................................................ 61 

Table 3.2  Comparison of microbiomes of blade margin and holdfast regions  

of Porphyra umbilicalis (composite ASV analysis of core taxa, see  

Appendix 3.1) .........................................................................................  63 

Table 3.3  Results of nonparametric permutational multivariate analyses of  

variance .................................................................................................... 68 

Table 4.1  PNAs used to block amplification of host rRNA (designed by Dr.  

Hilary Morrison) ...................................................................................... 92 

Table 4.2  Statistical analyses using Jaccard distance matrix to determine  

differences in presence/absence among groups ....................................... 95 

Table 4.3  Descriptive statistics of temperatures recorded by iButtons during  

daytime exposure to the air from 6/25/16 - 7/15/16 (courtesy of Kyle  

Capistrant-Fossa) ..................................................................................... 97 

Table 4.4  Nonparametric permutational multivariate analyses of variance using  

the Morisita-Horn distance index to assess microbial community  

diversity, blocking for transects ............................................................. 100 

Table 4.5  Stress responsive taxa of interest that differed significantly between  

back-transplant controls and dry treatments (log2-fold change and  

adjusted p-value) with additional observations from natural surveys  



 xi 

(Fs = Fucus spiralis, Fv = F. vesiculosus, Fd = F. distichus) and  

transplant experiment (Sea-W = sea-watered treatment, Ctrl = back-

transplant control treatment), as well as noted functions of similar  

taxa found in macroalgal microbiome literature .................................... 113 

Table 5.1  Collection sites and coordinates; F = Fucus vesiculosus, P =  

Porphyra umbilicalis, and (P) = Porphyra spp. ..................................... 140 

  



 xii 

LIST OF FIGURES 

Figure 1.1  Phylogenetic tree of the families in the subclass Fucophycidae  

(adapted from Silberfeld et al. 2014) ......................................................... 2 

Figure 2.1  Median monthly sea surface temperature of satellite data of a  

roughly 30 km2 coastal area at Lubec (a) and Two Lights (b) from  

1984 to 2014; Courtesy of R. Weatherbee from the Oceanography  

Data Lab, University of Maine ................................................................ 12 

Figure 2.2  Map of study sites: triangles indicate reproductive phenology  

survey sites, circles indicate locations where sorus material was  

collected for gametophyte thermal acclimation experiments and 

subsequent sporophyte grow-out, and the square indicates the  

Springtide Seaweed, LLC. farm where sporophytes were grown  

and harvested ........................................................................................... 18 

Figure 2.3  Example of a (a) healthy character state from Two Lights, Day 1  

of thermal acclimation, and (b) an unhealthy character state where 

plasmolysis is evident in the same representative gametophytes on  

Day 10 of thermal acclimation ................................................................. 22 

Figure 2.4  Proportion of individuals of Alaria esculenta that were reproductive  

across time for much of the three sites spanning the Gulf of Maine:  

Lubec, Schoodic, and Pemaquid (2 subsites each) .................................. 26 

Figure 2.5  Proportions of gametophytes produced from zoospores at (a) Lubec 

(northern location) at control temperature and (b) gradually  

acclimated, or (c) Two Lights (southern location) at control  



 xiii 

temperature and (d) gradually acclimated that are healthy,  

unhealthy, or dead over a 10-day gradual thermal acclimation  

(and corresponding controls) ................................................................... 28 

Figure 2.6  Blade surface areas of (a) juvenile, (b) adult, and (c) mature  

sporophytes produced from gametophytes from two sources, Lubec  

and Two Lights, that were either thermally acclimated or maintained  

at control temperatures ............................................................................. 30 

Figure 3.1  Experimental preservation techniques applied to replicates (n=6,  

Pum1 blades) at positions ‘A’ – ‘E’: sections ‘A’ and ‘C’ – flash- 

frozen in liquid N2, stored at -80 °C, and ground with a mortar and  

pestle; sections ‘B’ – flash-frozen, lyophilized and powdered via 

Geno/Grinder; and sections ‘D’ – dried with silica gel and powdered  

via Geno/Grinder; ‘E’ holdfasts – flash frozen as for ‘A’ and ‘C’  

(n=4) ......................................................................................................... 52 

Figure 3.2  Relative abundance of taxa accounting for > 1% of sequences: (a) ‘A’  

and ‘C’ samples to examine positional effect of blade margin; (b) ‘A’ 

 and ‘E’ samples to examine regional effects of blade margin versus 

holdfast; and (c) ‘B,’ ‘C,’ and ‘D’ samples to examine preservation  

effects (n = 6 for all groups) .................................................................... 64 

Figure 3.3  Venn diagrams of the number of shared ASVs of Individuals 1 and 2  

in Chambers I and II (n=4) in (a) ‘A’ treatments on blade margins  

and in (b) ‘E’ treatments on holdfasts ...................................................... 66 

Figure 3.4  Venn diagrams of the number of shared ASVs of each treatment  



 xiv 

sample (‘A’ – ‘D’) on each individual: a) Individual 1 from Chamber 

I, b) Individual 2 from Chamber I, c) Individual 3 from Chamber I,  

d) Individual 1 from Chamber II, e) Individual 2 from Chamber II,  

and f) Individual 3 from Chamber II (excluding ‘A’ because it was  

not included in statistical analyses) .......................................................... 71 

Figure 4.1  Photographs of the three Fucus spp. a) inhabiting the three intertidal 

zones; b) schematic of experimental design of one representative  

transect (n =2), Fs = Fucus spiralis, Fv = F. vesiculosus, Fd =  

F. distichus, and shading of green denotes treatment of  

F. vesiculosus (dark = back-transplant control, medium =  

sea-watered treatment of transplant to high zone, light = dry  

treatment of transplants to high zone) ...................................................... 89 

Figure 4.2  Neighbor-joining tree generated from a Euclidean dissimilarity  

matrix using iButton records, with each branch representing a  

single record and giving approximately unbiased (AU) p-values  

(bold) and bootstrap probabilities (BP, in grey; courtesy of Kyle 

Capistrant-Fossa) ………………………………………………………98 

Figure 4.3  Class-level composition of (a) natural fucoid microbiomes plus water 

column samples, and (b) transplanted F. vesiculosus bacterial  

communities at the end of the 2 week experiment (H = holdfast,  

R = receptacle, B = blade tip) ................................................................ 101 

Figure 4.4  NMDS ordination plots of (a) natural Fucus species communities plus 

water column samples and (b) transplanted F. vesiculosus at the end  



 xv 

of the 2 week experiment ....................................................................... 103 

Figure 4.5  Differential abundance of ASVs of dry transplants, (a) receptacle,  

(b) holdfast, and (c) blade, in comparison the back-transplant  

controls after 2 weeks ............................................................................ 110 

Figure 5.1  Map of collection sites ........................................................................... 139 

Figure 5.2  Ordination of microbial communities of all macroalgal, water  

column, and substratum samples across sites over two summer  

collections (2015 .and 2016; n = 1223; NMDS, bray distance  

index) ..................................................................................................... 144 

Figure 5.3  Ordination of microbial communities of all tissues types of Porphyra  

spp. and Fucus vesiculosus from all sites except Greenland, Cádiz,  

and Beaufort, where Porphyra spp. are not found (NMDS, bray  

distance index) ....................................................................................... 146 

Figure 5.4  Ordination of microbial communities of vegetative blade samples of 

Fucus vesiculosus (NMDS, bray distance index) collected from all  

sites ........................................................................................................ 148 

Figure 5.5  Ordination of vegetative microbiomes of Fucus spiralis (high zone), 

Fucus vesiculosus (mid-zone), and Fucus distichus (low zone) from  

an intermediate site (Schoodic, ME) compared to the microbiome of 

vegetative Fucus vesiculosus from extreme site: a) Greenland and  

b) Bodø at extreme northern latitudes, and c) Beaufort and d) Cádiz  

from extreme southern latitudes, representing the species boundary  

of Fucus vesiculosus .............................................................................. 150 



 1 

 
CHAPTER 1 

INTRODUCTION 

 

Phaeophyceae: Brown Macroalgae 

 

 

The Phaeophyceae (Ochrophyta) contains a diverse group of taxa that vary from 

small filamentous species (e.g., Ectocarpales) to macroalgae such as kelps (e.g., 

Laminariales) with a heteromorphic life history comprised of microscopic, filamentous 

gametophytes but large (≥ 30 m), complex sporophytes (Graham et al. 2016). While still 

debated, the number of orders described ranges from 19 to 20 (Silberfeld et al. 2014, 

Guiry and Guiry 2015). These orders are split into four subclasses: 

Discosporangiophycidae, Ishigeophycidae, Dictyotophycidae, and Fucophycidae 

(Silberfeld et al. 2014). Most brown algal orders are thought to have diverged 130 to 100 

million years ago (Mya) in the lower Cretaceous (“brown algal crown radiation,” 

Silberfeld et al. 2010), but the oldest fossils of brown algae date to the Miocene Epoch 

(23 – 5.3 Mya; Parker and Dawson, 1965).  

 

 

The order Fucales (Bory, 1827) includes some of the most common littoral 

macroalgae worldwide; adults are diploid and produce gametes by meiosis (Graham et al. 

2016). The congeners Fucus spiralis, F. vesiculosus, and F. distichus subsp. edentatus 
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occupy the high, mid- and low levels of the rocky intertidal zone in the North Atlantic. 

The order Laminariales (Migula, 1909) consists of a monophyletic lineage of three 

families commonly referred to as kelps, which have a pronounced heteromorphic life 

history alternating between microscopic filamentous gametophytes and large sporophytes 

that often form beds or forests (Hurd et al. 2014). Of a total of ~12 Alaria species that 

inhabit the North Pacific, Alaria esculenta is the only species that migrated successfully 

from the North Pacific to the North Atlantic about ~3.5-5.4 Mya (early Pliocene; Adey et 

al. 2008, Bolton 2010, Vermeij 2012). 

 

 

Figure 1.1 Phylogenetic tree of the families in the subclass Fucophycidae (adapted from 

Silberfeld et al. 2014). Families of interest in this dissertation are bolded.  
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Marine brown algae are ecosystem engineers (Jones et al. 1997), acting as 

biological elements that directly affect the biota around them. Therefore they are key to 

the diversity of organisms in a community or ecosystem. These can be in the form of 

intertidal fucoid beds or subtidal kelp forests. Brown algae are important structural 

elements and primary producers of up to 50% of the total carbon fixed in global intertidal 

zones (Gattuso et al. 2006, Hurd et al 2014) and phaeophytes affect many other biotic and 

abiotic factors associated with these habitats (Jones et al. 1997). Intertidal communities 

are a complex web of interacting organisms, and foundational species that directly affect 

the lower trophic levels have a strong effect on the system's overall diversity (Baiser at al. 

2013). 

 

 

Local and Global Environmental Stressors 

 

 

Abiotic factors that affect intertidal macroalgae include irradiance, salinity, wave 

exposure, inorganic nutrient supply, and length of emersion which affect levels of stress 

from temperature and desiccation. Lower intertidal species are restricted from higher 

zone by their inability to handle the more severe levels of stress (e.g. Baker 1910, 

Schonbeck & Norton 1978, Harley & Helmuth, 2003, Williams & Dethier 2005). 

Warmer temperatures and associated desiccation subject intertidal organisms to stress 

(e.g. Brawley and Johnson 1991, 1993, Jueterbock et al. 2013). Biotic stressors such as 

competition and predation also affect intertidal species distributions. Grazers also 
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contribute to variations in abundance and zonation of taxa in the intertidal zone with 

strong variations due to biogeographic history across the North Atlantic related to 

whether grazers such as the limpet Patella vulgata are present (Hawkins et al. 1992). 

Stress-tolerant organisms are often excluded from an optimal lower intertidal zone by a 

stress-intolerant, but competitively superior organism; intertidal species that occupy 

higher areas of the intertidal zone grow as well or better in the lower intertidal or subtidal 

zone when competition is reduced (Connell 1961, Schonbeck and Norton 1980, 

Lubchenco 1980, Serrão et al. 1999). Biotic factors such as predation and competition 

can vary with different exposure levels (abiotic), and be further complicated by physical 

disturbance by organisms (e.g. macrophyte whiplash and herbivore movement; Menge 

1976). The relative effect of abiotic versus biotic factors influencing intertidal structure 

changes between zones (Menge 1976).  

 

 

Abioic factors often control upper boundaries of vertical distribution of intertidal 

organisms, whereas lower boundaries are controlled by biotic factors. These factors often 

interact and have additive effects (Jenkins et al. 2008, Williams et al. 2013). The resulting 

biological changes associated with increased stress include shifts in species’ ranges, 

phenological changes (e.g. times of reproduction, molting, etc.), species invasions, and 

overall reduction of biological diversity (Lima and Wethey 2012).  
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At a global level, sea temperatures are the most extensive and severe impacts of 

climate change on coastal ecosystems across the globe (Halpern et al. 2008), but 

changing air temperatures are especially important to determining shifts in the intertidal 

biota. Near-shore sea temperatures (1981- 2012) indicate that 71% of coastlines 

worldwide are warming significantly; however, the rates of warming, changes in 

temperature extremes, and changes in seasonal patterns differ spatially (Lima and Wethey 

2012). The Gulf of Maine Coastal Current contains two principal branches that cause 

subtle coastal differences in sea surface temperature (SST, Pettigrew et al. 2005), 

providing the need to explore effects of differing water temperatures on coastal 

environments at the local scale. The Gulf of Maine is also experiencing some of the 

fastest rates of coastal warming in the world (Lima and Wethey 2012, Pershing et al. 

2015, Thomas et al. 2017). Stress factors are complex and act at various scales, and are 

important to investigate in light of climate change.  

  

 

Brown Algae in Aquaculture 

 

 

Consumption of macroalgae by humans dates back thousands of years. The 

earliest verified date is from 14,000 years ago in the mountains of Chile, where 

archaeologists found the remains of 9 species of macroalgae, including brown algae, 

indicating that these people used seaweeds harvested from distant coastlines in their diets 

(Dillehay et al. 2008). Subsequent accounts of macroalgal consumption come from 
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around the world. In Japan in 701 AD the Law of Taiho established that certain edible 

seaweeds were of such high value that they could be used to pay taxes to the Emperor’s 

Court (Nisizawa et al. 1987). The First Peoples of the Northwest Coast of North America 

have been utilizing brown macroalgae for millennia (Turner 2001).  

 

 

Macroalgae are nutritional foods, with different species offering healthy levels of 

vitamins, minerals, proteins, and/or fiber (MacArtain et al. 2007, Tibbets et al. 2016, 

Wells, et al. 2017). Seaweed farming is practiced in over 50 countries world-wide, 

expanding by 8 % in the last decade (FAO 2016). As of 2014, 27 % of aquacultural 

production by volume was seaweeds (FAO 2016). The global industry is estimated to be 

worth more than USD$ 6 billion per annum, 85 % of which comprises food products; as 

of 2015, total seaweed production was 30.4 million tonnes (Ferdouse et al. 2018). The 

third most important farmed macroalgal species world-wide (2.3 million tonnes) is the 

brown alga Undaria pinnatifida (Japanese wakame; Ferdouse et al. 2018), a Pacific 

relative to the Pacific/Atlantic species Alaria esculenta. While kelps (Laminariales) are 

the major brown macrophytic contributors to aquaculture (e.g. Alaria esculenta, 

Laminaria digitata, Laminaria hyperborea, Saccharina latissima, Saccharina japonica, 

Sargassum fusiforme), Fucus species are also consumed as whole food products in 

Europe (pers. obs.) and in British Colombia by members of the First Nations (Turner 

2017). Sea vegetable farming is highly sustainable, requiring no fertilizers or irrigation, 

thus can be important to future food production.  
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Goals and Specific Objectives: From Macro to Micro 

 

 

This dissertation consists of two main lines of enquiry that examine the effects of 

stress on different aspects of brown algal biology from a macroscopic or whole 

organismal scale, to a microscopic level by examining microbial composition of selected 

intertidal macroalgae across the vertical stress gradient of the intertidal zone to 

comparisons over their latitudinal biogeographic ranges. The first examined the effects of 

thermal stress on the kelp Alaria esculenta to determine its potential as an aquaculture 

crop in Maine’s sea vegetable industry (Chapter 2). The specific objective was to predict 

the response to future warming temperatures in the Gulf of Maine by imposing stressful 

temperatures on gametophytes isolated from northern and southern locations on the 

Maine coast. Subsequent assessment of the next-generation sporophytes provided a 

protocol that may allow the sea vegetable industry to increase crop yields, and this work 

showed that the gametophyte stage is resilient to predicted climate change.  

 

 

Many brown macroalgae occupy intertidal habitats, which are defined by various 

stressors experienced at different levels based on intertidal position, including 

temperature. The second line of enquiry in this dissertation addressed how those stress 

gradients that influence distributions of brown macroalgae, specifically Fucus spp., affect 

the microbial composition of the macroalgal microbiome. The first objective was to 



 8 

determine the best methods to describe macroalgal microbiomes (Chapter 3) by utilizing 

a common garden approach with a lab-cultured red macrophyte, Porphyra umbilicalis. 

The effects on the microbiome of three stabilization techniques, differences between 

tissue types, and variability across the algal thallus were assessed by two analytical 

approaches, mothur and MED. These results were applied to in situ analyses of Fucus 

spp. across vertical and latitudinal scales (Chapters 4 and 5). Surveys of the natural 

microbiome of Fucus congeners occupying the high, mid-, and low intertidal zones, and 

manipulative transplants of mid-zone F. vesiculosus into the high zone determined 

whether stress tolerant (upper intertidal zone) or stress intolerant (lower intertidal zone) 

bacterial taxa exist (Chapter 4). Trans-Atlantic surveys at 11 sites over 2 summers 

examined correlations between microbial diversity of F. vesiculosus across latitudes and 

degree of environmental stress across latitudes (Chapter 5). This work extends current 

understanding of direct and indirect effects of stress on phaeophytes across multiple 

scales, and offers many new avenues for continued research.  
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CHAPTER 2 

TEMPERATURE TOLERANCE OF MAINE STRAINS OF THE KELP  

ALARIA ESCULENTA AND ITS SUITABILITY FOR  

AQUACULTURE IN THE GULF OF MAINE 

 

 

Introduction 

  

 

 The harvest and aquaculture of seaweeds is more than a $6 billion industry 

worldwide, and the United States imports an average of $63 million worth of edible 

seaweeds annually (Ferdouse et al. 2018). Market demand and interest in integrated 

aquaculture offer increased opportunities for sea vegetable crops that can fill the growing 

domestic market. The pristine coastline with existing waterfront industries and 

communities along the Gulf of Maine (GOM) offer an ideal location for expansion of 

aquaculture. The future of sea vegetable aquaculture, however, will depend on having 

diverse crops that are tolerant to coastal warming attributable to climate change.  

 

 

Seaweed production in the northwestern Atlantic and many other places provides 

a variety of services including wave attenuation and erosion prevention (Gaylord et al. 

2007, Zhu and Zou 2017), carbon sequestration and the reduction of ocean acidification 

(OA; Chung et al. 2013, Kim et al. 2015), anthropogenic bioremediation (Kim et al. 
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2015) and aquaculture biomitigation (i.e., integrated multitrophic aquaculture; Chopin et 

al. 2012, Reid et al. 2013, He et al. 2014), biofuels production (Wargacki et al. 2012), and 

whole food production (Kim et al. 2015, Kim et al. 2017, Royer et al. 2018). In New 

England, these areas of study almost exclusively examine one species: the sugar kelp 

Saccharina latissima. Increasing the diversity of macroalgae grown on sea farms may 

offer new insights into ecosystem services. The subarctic kelp Alaria esculenta can 

sequester almost twice the nutrients per wet weight as S. latissima (Reid et al. 2013), 

indicating its potentially greater value for bioremediation, and as a food. Alaria esculenta 

can produce blades under high sedimentation rates, whereas S. latissima cannot (Zacher 

et al. 2016). In Ireland, farmed Alaria esculenta was reported to grow an average of 5 cm 

per day at the peak of the season (Birkett et al. 1998). Faster-growing blades increase 

food production, as well as all other services. While kelps, in general, are high in 

nutrients, A. esculenta exceeds S. latissima in protein, vitamins A, B12, C and E, while it 

is lower in iodine (Schiener et al. 2015, Wells et al. 2017). Iodine content remains 

constant in A. esculenta, whereas levels in S. latissima can vary across locations (Roleda 

et al. 2018), leading to difficulty in determining healthy daily consumption of foods. Due 

to its low iodine content relative to other kelps, its high nutrient content, and mild flavor 

(Tibbets et al. 2016, Wells et al. 2017), A. esculenta has good potential in US markets 

and is an excellent candidate for diversifying Maine sea vegetable aquaculture. 

Furthermore, it is related to Undaria pinnatifida (“wakame”), a traditional Northwest 

Pacific food kelp that is commercially valuable and used in many value-added foods 

(FAO 2016, Wells et al. 2017, Ferdouse et al. 2018). 
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The aquaculture candidate Alaria esculenta L. Greville (Laminariales, 

Phaeophyceae) is the dominant subtidal kelp in the northwestern Atlantic and inhabits 

rocky shores that have seawater temperatures from -2 to 17 °C (Adey and Hayek, 2011). 

The light-brown, ruffled blade has a prominent midrib and can reach 3 – 4 m in length. 

While originally found in Long Island Sound and abundant in Massachusetts (Taylor 

1957), there is strong, but weakly documented evidence of range retraction since the mid-

1960s to Cape Ann (northern Massachusetts), where it is patchy at best (Adey and Hayek, 

2011, Mathieson and Dawes 2017, pers. obs.). It is found on rocky points with high wave 

energy throughout Maine and contributes to a significant proportion of biomass from 

subtidal surveys of the GOM (Adey and Hayak 2011). 

 

 

Aquaculture crops must demonstrate their capacity to handle variable 

environments. Average monthly sea surface temperatures are highest in August in the 

GOM, ranging from roughly 12 °C in the north to 18 °C in the south (Fig. 2.1). Long-

term coastal sea surface temperatures (SST) are warming in the GOM (1 ± 0.3 °C /100 y; 

Shearman and Lentz 2010, Lima and Wethey 2012). In fact, warming rates over the past 

33 years alone are at 0.4 °C/decade (~0.03 °C /year; Pershing et al. 2015, Thomas et al. 

2017), and summer seasonal duration is increasing by ~2 days/year (Thomas et al. 2017). 

This rate has increased by a factor of 7 within the past decade (2004-2013; Pershing et al. 

2015). Not only are GOM SSTs rising at a faster rate than 99 % of the rest of the global 

oceans (Pershing et al. 2015), they are predicted to continue to rise even faster with 

another 3 – 4 °C increase possible over the next century (Fernandez et al. 2015). Thus, it 
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is necessary to test whether the subarctic kelp Alaria esculenta (Adey & Hayak 2011) can 

tolerate temperature changes predicted for the GOM. 

 

 

Figure 2.1. Median monthly sea surface temperature of satellite data of a roughly 30 km2 

coastal area at Lubec (a) and Two Lights (b) from 1984 to 2014; Courtesy of R. 

Weatherbee from the Oceanography Data Lab, University of Maine. 

 

 

Kelps inhabit the coastlines of every continent except Antarctica, but an overall 

global trend or trajectory in global kelp abundance is lacking over the past 50 years. 
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Declines in kelp biomass in 38 % of ecoregions, increases in 27 %, and no change in 35 

%, while accounting for all members of the Laminariales, reflect regional differences and 

drivers of change in kelp abundances (Krumhansl et al. 2016). Localized anthropogenic 

development poses risks for otherwise stable kelp forests (Pfiester et al. 2018). Human-

induced loss of predatory megafauna such as finfish or sea otters can greatly influence 

their associated kelp ecosystems, including abrupt phase shifts to alternate stable states 

through trophic cascades; loss of apex predators increases herbivory on kelps by sea 

urchins, resulting in complete loss of kelp beds (Steneck et al. 2013, Estes et al. 2016). 

Climate-induced effects on kelps may not be limited to direct effects of thermal stress: 

“Tropicalization” occurs when temperate habitats gain tropical species that establish and 

then affect temperate ecosystem. For instance, a tropical herbivorous fish caused a 70 % 

decrease in abundance of Australian populations of the temperate kelp Ecklonia radiata 

(Zarco-Perello et al. 2017). While all of these direct and indirect factors might influence 

kelp abundances, kelp studies from the GOM have found a constantly negative rate of 

change of kelp abundance throughout the past 50 years (Krumhansl et al. 2016), 

correlating with increases in SST (Pershing et al. 2015, Krumhansl et al. 2016, Thomas et 

al. 2017). Rising SST might be the strongest influence on kelp abundance in coastal New 

England and may affect future distributions of A. esculenta.  

 

 

Genetic diversity is important to the ability of a species to adapt to environmental 

change. In the context of this study, Kraan and Guiry (2000a) found little genetic 

difference among European and Canadian populations of A. esculenta populations using 
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RUBISCO spacers. Various kelps, including populations of Alaria esculenta from New 

England and Nova Scotia also had low degrees of genetic polymorphism based on 

allozyme variation for 20 isozymes (Neefus et al. 1993). Although such findings are of 

great importance, the particular markers used have relatively low resolution and further 

studies of A. esculenta population genetics in the GOM are needed with better DNA-

based markers such as microsatellites. Fast-growing Alaria esculenta strains were 

produced by crossing bogeographically distinct Irish populations, but no genetic variation 

was found with internal transcribed spacers; morphological differences were considered 

unlikely to be due to genetic adaptation, but instead to be based on ecotypic variation 

caused by temperature tolerance (Kraan et al. 2000b). Examining temperature ecotypes of 

Alaria esculenta in the GOM should be of value to the aquaculture industry. 

 

 

Visible and UV radiation, salinity, sedimentation, and herbivory are known to 

affect Alaria esculenta, but temperature has the largest effect on macroalgal growth, 

reproduction, and survival (Lüning 1990, Fredersdorf et al. 2009, Hurd et al. 2014, 

Zacher et al. 2016, Park et al. 2017). Kelps have a complex life history, alternating 

between microscopic gametophytes and macroscopic sporophytes (Graham et al. 2016). 

Determining how temperature affects both stages in the life history of A. esculenta is 

necessary, because gametophytes act as seedstock for the sporophytic stage, which is the 

commercial crop. Macroalgal species with heteromorphic life stages often have different 

optimal temperatures for spore development, gametophyte growth, gametogenesis, and 

sporophyte growth, all of which can influence the biogeographic distribution of a species 
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(Wiencke and Dieck 1989, tom Dieck 1993, Izquierdo et al. 2002, Lind and Konar 2017, 

Hargrave et al. 2017). In Arctic populations of Alaria esculenta from Spitsbergen, 

Norway, spore germination had low optimal temperatures (2 – 12 °C; Müller et al. 2008, 

Fredersdorf et al. 2009), whereas gametophytic upper survival temperatures (19 – 21 °C; 

tom Dieck 1993), optimal gametophyte growth (15 °C; Park et al. 2017), and optimal 

temperatures for photosynthesis in sporophytes (13 – 17 °C; Fredersdorf et al. 2009) were 

higher, demonstrating a difference in optimal temperatures between life stages. Overall, 

kelps have high tolerance to increased temperatures, although levels of tolerance can vary 

within a species (i.e., thermal ecotypes; Kraan et al. 2000b, Müller et al. 2008). While 

there are species-specific temperature effects on kelp microscopic stages, gametophytes 

are hardier than spores and sporophytes for various members of the Laminariales (van 

den Hoek 1982, tom Dieck 1993, Wiencke et al. 2007, Müller et al. 2008, 2012, Zacher et 

al. 2016, Park et al. 2017). 

 

 

This study investigates the temperature tolerance of the edible kelp Alaria 

esculenta with the aim of evaluating its potential as a sea vegetable crop in the warming 

GOM. I surveyed the reproductive phenology of Alaria esculenta across most of the coast 

of Maine in order to understand the natural availability of reproductive material for 

aquaculture (seedstock sourcing). I then cultured zoospores from a northern ("Downeast") 

and a southern population to assess gametophyte (seedstock) response to gradual thermal 

acclimation and determine how tolerant gametophytes are to higher temperatures. 

Cultures isolated from both populations were exposed to elevated temperatures (or 
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maintained under control conditions). These acclimated strains (and control cultures) 

were then crossed to produce sporophytes that were grown up in a common garden to 

assess the effects of strain location and previous thermal acclimation on the growth of 

next-generation sporophytes (crop yield).  

 

 

Methods 

 

 

Study Organism 

 

 

Kelp life history stages alternate between microscopic gametophytes and 

macroscopic sporophytes. Mature plants bear sporophylls, which are specialized pairs of 

bladelets on the stipe below the blade. When sporophylls are ripe, they release zoospores 

that settle on rock (or other substrate) to develop into either male or female 

gametophytes. Mature gametophytes produce either sperm or eggs. Mature eggs produce 

a pheromone that causes release of sperm from antheridia on adjacent male 

gametophytes, and the sperm swim up the pheromone gradient to fertilize the egg. The 

zygote is retained on the female gametophyte and the juvenile sporophyte germinates 

from the zygote (Lüning and Müller 1978, Marner et al. 1984). Haploid gametophytes act 

as seedstock for the commercial crop, the diploid sporophytes; both life history stages in 

Alaria esculenta are important to the aquaculture industry. 
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Study Sites 

 

 

Site locations for reproductive phenological surveys spanned most of coastal 

Maine. Each location had two subsites 1 – 7 km apart. Lubec sites representing northern 

Maine were at Quoddy Head State Park (44.813306, -66.952102; permit #2014-28) and 

Carrying Place Cove Road (44.803451, -66.981868). Schoodic sites were on the 

Schoodic Peninsula in Acadia National Park (permit # ACAD-2016-SCI-0010) at 

Schoodic Point (44.333744, -68.058047) and Blueberry Hill (44.338621, -68.044180). 

Pemaquid sites representing lower, mid-coastal Maine were at Pemaquid Point 

Lighthouse Park (43.836364, -69.505763) and Chamberlain (43.884844, -69.473678; Fig. 

2.2). 
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 Figure 2.2. Map of study sites: triangles indicate reproductive phenology survey sites, 

circles indicate locations where sorus material was collected for gametophyte thermal 

acclimation experiments and subsequent sporophyte grow-out, and the square indicates 

the Springtide Seaweed, LLC. farm where sporophytes were grown and harvested. 

 

 

Sites where material was collected for thermal acclimation experiments span 

Maine’s range of coastal sea surface temperatures. Using monthly average SST satellite 

data from the last 30 years, I determined that Lubec waters were representative of colder 

water profiles in the Gulf of Maine (30-year SST summer average of 10.9°C), where 

macroalgal aquaculture is currently underway, and that Cape Elizabeth experienced 

warmer water temperatures that matched those of the retreating boundary of Alaria 
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esculenta in northern Massachusetts (30-year SST summer average of 15.4°C; courtesy 

of the Satellite Oceanography Data Lab, University of Maine, Fig. 2.1). Sporophylls to 

produce gametophyte seedstocks were collected from Lubec (Quoddy Head State Park, 

44.813306, -66.952102) and from Cape Elizabeth at Dyer Point (43.564946, -70.196510), 

just outside of Two Lights State Park. The location of the open water sea farm used for 

grow-out of the sporophytes produced from the thermal acclimation experiments was in 

Frenchman’s Bay near Sorrento, ME (Springtide Seaweed, LLC.; 44.459287, -

68.176394), a site located between Lubec and Two Lights (albeit closer to Lubec). 

 

 

Reproductive Phenology 

 

 

I sampled each of the six subsites every two months for two years (2014 – 2016). 

I used random numbers to identify 30 plants on a 60 m transect line placed parallel to the 

shore through the A. esculenta bed exposed at low spring tides. Plants were classified in 

the field as reproductively mature when having at least one ripe sporophyll with a deep 

brown area indicative of mature zoospores. I determined the reproductive proportion of 

plants for each of six transects every 2 mo with the exception of one January collection 

from Lubec, because winter ice scour had decimated the population. Representative 

samples are archived in the University of Maine Herbarium (MAINE-A-4551through 

4602, MAINE-A-5177 through 5275). Proportions were transformed using a logit 
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transformation. I used a univariate analysis of variance to examine the effects of location 

(Lubec, Schoodic, and Pemaquid), month, and year, blocking by subsite. 

 

 

Gametophyte Thermal Acclimation 

  

 

 A convenience sample of 4 reproductively mature sporophytes were collected 

from Two Lights (TL) in the north and 4 additional sporophytes from Lubec (Lu) in the 

south. Six ripe sporophylls were selected from each individual. Sporophylls were washed 

with sterile seawater, treated for two min in 1 L of 0.01% betadine solution to eliminate 

ciliates and other contaminants, rinsed again in sterile seawater, wiped dry, wrapped in 

moist paper towels, held at 4 °C in the dark overnight (20 – 24 h), and placed into 

circulating 12 °C sterile seawater (4 µmol photons m2/s, 12:12 L:D photoperiod) to 

obtain zoospores (South 1970, Gordon and Brawley 2004, Redmond et al. 2014). 

Zoospore strains (i.e., TL1, TL2, TL3, TL4, Lu5, Lu6, Lu7, Lu8) are defined as mixed 

sister genotypes from sorus tissue from one adult individual. Zoospores were plated into 

replicate Petri dishes and placed on orbital shakers (130 rpm; VWR Orbital Shaker, 

980001, Radnor, PA) to provide water motion in 12 °C environmental chambers 

(Percival Scientific, Perry, IA). Gametophyte cultures from each seedstock were 

maintained in constant light [4 µmol photons m2/s to promote vegetative growth (Gordon 

and Brawley 2004) while inhibiting gametogenesis; i.e., production of eggs and sperm, 

Lüning & Neushal 1978] with weekly sterile seawater changes with a modified nutrient 
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supplement (1/4-strength West-McBride modification of ES [Anderson, 2005] and using 

a 1-fold reduced Fe-EDTA solution) until gametophytes reached 10+ cells in length (~2 

mo).  

 

 

Replicate cultures (8 replicate Petri dishes per strain, 4 strains per site) were either 

maintained at 12 °C as controls (n = 32) or underwent a gradual thermal acclimation from 

12 to 22 °C, with an increase of 1 °C/12 h (n = 32) and were then maintained at the final 

temperature of 22 °C for 3 days to determine prolonged effects of temperature. Replicate 

cultures were assessed for gametophyte health. The same gametophyte filaments in each 

Petri dish were tracked throughout the experiment. Three character states were used in 

monitoring the condition of gametophytes during the experiment: healthy, unhealthy, and 

dead. Filaments classified as healthy maintained constant color and normal cell size (Fig. 

2.3a). Any sign of plasmolysis, organelle damage, loss of color or mottling, etc. indicated 

stress injury (Zhang et al. 2013), and led to the gametophyte being categorized as 

unhealthy (Fig. 2.3b). A gametophyte with complete loss of cytoplasmic contents was 

categorized as dead. Gametophytes (2428 individuals) were monitored and categorized 

daily at an inverted light microscope (253 – 519 gametophytes per replicate Petri dish). 

After logit-transforming the healthy proportion of gametophytes, I performed a repeated 

measures multivariate analysis of variance (MANOVA), applying a Greenhouse-Geisser 

correction for departure from sphericity to examine the effect of source location (Lubec 

versus Two Lights) and treatment (thermal acclimation versus control).  
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Figure 2.3. Example of a (a) healthy character state from Two Lights, Day 1 of thermal 

acclimation, and (b) an unhealthy character state where plasmolysis is evident in the same 

representative gametophytes on Day 10 of thermal acclimation. 

 

  

 Experimentally acclimated cultures were gradually returned to the control 

temperature of 12 °C (1 °C/12 h). Culture conditions were set for vegetative growth (see 

above) for 3 mo with monthly media changes. Control cultures from the same seedstocks 

were maintained under the same conditions. I mixed TL3 with TL4, both previously 

acclimated, into one culture (TL3/4_Accl.) to reduce potential inbreeding. I also mixed 

control cultures of TL3 and TL4 that had consistently been kept at 12 °C to produce 

culture TL3/4_Ctrl. I mixed Lu7 with Lu8 in the same manner to make Lu7/8_Accl. and 

Lu7/8_Ctrl. Strains TL1, TL2, Lu5, and Lu6 contained filamentous brown algal 

contaminants that could affect interpretation in further experiments and were not used. 
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Each mixed culture was seeded onto 2 kurlon lines (~10 m) using a spray-seeding 

technique (n = 8 lines). First, gametophytes were blended for 1 minute at medium speed 

with an immersion blender, checking the mixture with a microscope to produce 

fragments with 5 – 10 cells. Then, I gravity-fed a stream of blended gametophytes in 

seawater into a stream of filtered, compressed air to create a fine spray that was evenly 

applied to two spools of kurlon line dampened with seawater. Spools settled for ~8 min 

and then were carefully placed in a 10 gal (37.85 L) aquarium, with no bubbling or 

agitation for the first 24 h. The process was repeated for each mixed culture; seeded lines 

were maintained in separate 10 gal (37.85 L) aquaria for one week to ensure gametophyte 

attachment. Aquaria were then placed under conditions that promote gametogenesis (10 

°C, 40 µmol m2/s, 14:10 L:D photoperiod; Munda and Lüning 1977, Lüning 1990, 

Gordon and Brawley 2004).  

 

 

Sporophyte Grow-Out 

 

 

To compare next-generation sporophyte grow-out as a function of previous 

thermal acclimation, seeded lines were placed into a 1.25 m-high transparent Kallwall 

tank. Duplicate seeded spools were stacked in racks suspended in the tank using 

randomized numbers, and grown out for 3 mo at the Center for Cooperative Aquaculture 

Research (Franklin, ME), with biweekly UV-treated and filtered seawater changes with 

full-strength modified West-McBride enrichment under conditions that support 
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sporophyte growth (10 °C, 40 µmol m2/s, 14:10 L:D photoperiod; Munda and Lüning 

1977, Lüning 1990, Gordon and Brawley 2004). Juvenile (sporophyte) blades were 

selected at random (3 sections per line, ~2.5 cm in length) to measure blade surface area 

(MAINE Accession #005569-005576) using ImageJ imaging software (nih.gov). Seeded 

lines were transplanted to a sea farm in Frenchman’s Bay near Sorrento, ME, and 

randomly placed on long lines at the beginning of the sea vegetable season (12 Oct 2017). 

After 4 mo of grow-out (9 Feb 2017), adult (sporophyte) blades were sampled at three 

locations per line using randomized numbers (~5 cm section of line); I measured blade 

surface area using ImageJ software (MAINE Accession #005610-005649). A final 

collection was made on 10 Apr 2017 at the beginning of the harvest season after an 

additional 2 mo of grow-out time: Mature blades were again selected at random (3 

sections per line, each of ~5 cm length), imaged, and preserved as herbarium specimens 

(MAINE Accession #005650-005695). I used a nonparametric permutational multivariate 

analyses of variance (PERMANOVA) to examine the effects of site (Lubec versus Two 

Lights) and treatment (previous thermal acclimation versus control). 
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Results 

 

 

Reproductive Phenology 

 

 

I surveyed three locations along Maine’s coast every two months for two years to 

determine when A. esculenta was reproductive within each population. All populations 

across locations had a dip in reproductive maturity in summer (see spline interpolation 

line on Fig. 2.4). The average proportion of populations that were reproductive in May 

and July was 0.26, but with a lot of variability across transects, as well as inter-annual 

variability. A greater proportion (0.71) of blades had sporophylls in colder months (i.e., 

November and January). Sample time (month) was the only significant factor that 

affected reproductive phenology (ANOVA, Month: F(5, 41) = 12.68, p < 0.001). In 

contrast, site had no significant effect on the proportion of individuals that were 

reproductive (Site: F(2, 2) = 16.32, p = 0.058), although average reproductive proportions 

do decline from north to south: 0.69, 0.52, 0.40 at Lubec, Schoodic, and Pemaquid, 

respectively. There was also no difference between the two years of the survey (Year: 

F(1, 41) = 1.83, p = 0.18). These survey data signify seasonal differences in reproductive 

populations, but reproductive phenology does not differ statistically across the sites 

surveyed.  
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Figure 2.4. Proportion of individuals of Alaria esculenta that were reproductive across 

time for much of the three sites spanning the Gulf of Maine: Lubec, Schoodic, and 

Pemaquid (2 subsites each). Cubic spline interpolation was applied to distinguish 

patterns. 

 

 

Gametophyte Thermal Acclimation 

 

 

Replicate gametophyte seedstock aliquots from northern and southern populations 

(Lubec, ME and Two Lights, ME, respectively) were either maintained at a control 

temperature of 12 °C or gradually acclimated to 22 °C (current summer SST in parts of 

the GOM) to assess gametophyte health in response to high temperatures. Over 90% of 

the gametophytes in control treatments were categorized as healthy throughout the 
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experiment (Fig. 2.5a, c). Whether or not the gametophytes were maintained as controls 

or acclimated to 22 °C was the only factor that significantly affected gametophyte health 

throughout the experiment (Repeated Measures MANOVA with Greenhouse-Geisser 

correction (e = 0.39), Treatment:Day F(144, 24) = 6.31, p = 0.002). Heat-acclimation of 

both Lubec and Two Lights seedstocks caused a decrease in the proportion of healthy 

gametophytes throughout the experiment; at the end of the experiment, almost 75% of 

acclimated cultures from Lubec were healthy (Fig. 2.5b), whereas only about 25% of 

Two Lights’ acclimated cultures were healthy (Fig. 2.5d). Interestingly, whether the 

seedstock was isolated from sporophytes collected from the northern or southern Gulf of 

Maine did not contribute significantly to gametophyte health over time (Repeated 

Measures MANOVA with Greenhouse-Geisser corrections for departure from Sphericity 

(e = 0.39), Treatment:Day F(144, 24) = 0.91, p = 0.423). However, an analysis of 

variance of the proportion of gametophytes that were healthy on the final day of the 

experiment found some effect of location (ANOVA, F(1, 6) = 4.13, p = 0.08; i.e. 

marginal differences between Lubec and Two Lights). Because the proportions of 

gametophytes that were healthy between the different locations differed greatly (25 % 

versus 75 %), I consider the effect of location to have marginally biological significance.  
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Figure 2.5. Proportions of gametophytes produced from zoospores at (a) Lubec (northern 

location) at control temperature and (b) gradually acclimated, or (c) Two Lights (southern 

location) at control temperature and (d) gradually acclimated that are healthy, unhealthy, 

or dead over a 10-day gradual thermal acclimation (and corresponding controls).  
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In order to understand the lethal limit for Alaria esculenta gametophytes, I 

exposed aliquots of both heat-acclimated and control cultures from both source locations 

to an unnatural, extreme temperature of 34 °C (taken from 12 °C to 34 °C, 2 °C/day, 

while assessing character health state of individual gametophytes daily). Loss of some 

cultures due to contaminants, limits on culture chamber capacity (stopped at 34 °C to 

protect chamber), and extreme variability within cultures limited my ability to make 

quantitative comparisons or determine the LT50 for these northern and southern strains. 

One conclusion, however, is that the unnaturally high temperature of 34 °C does not kill 

all cultures. 

 

 

Sporophyte Grow-Out 

 

 

I promoted gametogenesis by changing culture conditions (see Methods) and 

crossed seedstock gametophyte cultures to generate sporophyte blades on spools of 

kurlon line and stacked all spools in one large transparent Kallwall tank, to measure how 

juvenile growth (i.e., blade surface area) is affected by thermal acclimation at the haploid 

stage. Both previous acclimation and source location affected the surface area of juvenile 

blades (PERMANOVA; Treatment: pseudo-F(1, 243) = 135.7, p < 0.001, Location: 

pseudo-F(1, 243) = 49.1, p = 0.010). There was a significant interaction between the main 

factors of treatment and location (pseudo-F(1, 243) = 49.6, p < 0.001). Juvenile 

sporophytes produced from previously acclimated gametophytes had larger blade surface 
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areas than corresponding controls (Fig. 2.6a). Thermally-acclimated seedstocks from 

Lubec produced the largest juvenile blades with a mean surface area of 2.88 cm2 (± 3.55 

cm2 SD) compared to Lubec controls averaging 0.50 cm2(± 0.54 cm2), Two Lights 

acclimated blades averaging 1.09 cm2(± 1.47 cm2), and Two Lights controls averaging 

0.51 cm2(± 0.63 cm2); there was a high level of variability (Fig. 2.6). These data indicate 

that previous thermal acclimation of gametophytes increases juvenile sporophyte growth, 

but the seedstock source location affects how effective previous acclimation increases 

growth: strains from northern populations produced larger juvenile blades compared to 

those from southern populations. 

 

 

Figure 2.6. Blade surface areas of (a) juvenile, (b) adult, and (c) mature sporophytes 

produced from gametophytes from two sources, Lubec and Two Lights, that were either 

thermally acclimated or maintained at control temperatures. 
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I transferred the spools of juvenile blades from the nursery-based common garden 

experiment to a sea farm in Frenchman’s Bay (Sorrento, ME) for grow-out on long lines, 

and measured the surface area of the blades at a midpoint during the growing season. 

Adult blades held to juvenile growth patterns: previous acclimation and source location 

affected blade surface area (Treatment: pseudo-F(1, 109) = 2055446, p < 0.001; 

Location: pseudo-F(1, 109) = 1692615, p < 0.001; Treatment:Location: pseudo-F(1, 109) 

= 570250, p = 0.023). As was true of juveniles, thermally acclimated seedstocks from 

Lubec had an average blade size of 570.1 cm2 (± 564.42 cm2 SD), roughly three times 

more than thermally acclimated blades produced from Two Lights seedstocks (182.4 cm2 

± 266.18 cm2 SD), and far more than either control seedstock (mean of 157.4 cm2 ± 

166.58 cm2 SD from Lubec and 54.4 cm2 ± 102.03 cm2 SD from Two Lights); again, 

there is a high degree of variability. Thermal acclimation can increase Alaria esculenta 

growth on a sea farm during the growing season, and seedstock source influences how 

effective this yield increase is at a midpoint in the growing season. 

 

 

I collected from long lines for a final analysis at the time of the commercial spring 

harvest.  Mature, harvest-ready blades were still affected by previous acclimation 

(pseudo-F(1, 42) = 67352766, p = 0.003), and by source location (pseudo-F(1, 42) = 

32033555, p < 0.001; no interaction between factors). A lot of growth occurred during 

the spring months of the growing season. Thermally acclimated blade surfaces areas from 

Lubec averaged 4601.38 cm2 (± 3232.10 cm2) and 2233.01 cm2 (± 1063.43 cm2) from 

Two Lights, whereas control blade surface areas from Lubec averaged 1464.39 cm2 (± 



 32 

2026.47 cm2) and 416.83 cm2 (± 370.07 cm2) from Two Lights. At the time of harvest, 

thermal acclimation of gametophytes influenced the crop yield of sporophytes, as did the 

site (Two Lights versus Lubec) from where gametophytes were collected.  

 

 

Discussion 

 

 

 Reproductive phenology surveys showed that seedstock availability did not differ 

among the three sites surveyed along the Maine coast. Although not significant, annual 

average reproductive proportions do decline from north to south. The proportion of 

reproductive individuals varied throughout the year, as would be expected; however, on 

average, over 25 % of all subpopulations over the two year survey were still reproductive 

even during summer. Thermal acclimation significantly decreased in the proportion of 

healthy gametophytes over the course of the experiment. Gametophytes from the 

southern location had reduced health at the final exposure to 22 °C compared to 

gametophytes sourced from the northern location. Across three time points throughout 

the Alaria esculenta farming season, sporophytes produced from gametophytes that were 

previously thermally acclimated were larger than controls, and those produced from 

gametophytes sourced from Lubec, the northern location, grew to be significantly larger 

than those sourced from the south. 
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Reproductive Phenology 

 

 

 To my knowledge, this study represents the first survey of the reproductive 

seasonality of Alaria esculenta in the Northwest Atlantic. While it is limited to the Gulf 

of Maine, it offers a comparative dataset to similar surveys from across the North 

Atlantic. Seasonal fertility of A. esculenta was explored in Arctic populations in 

Svalbard, Norway, and all sori were fully developed in June (same qualitative assessment 

used in this study), but the reproductive proportion fell to 20% by the end of July with 

almost all zoospores spent by late September. The drastic decline of sporophyll fertility at 

the beginning of September, along with zoospore release and germination rates monitored 

in the laboratory, showed that the reproductive season of A. esculenta in the Arctic ends 

in September, with peak fertility in June and July (Olischlager and Wiencke 2013). The 

reproductive season is reported to occur from November to March in A. esculenta 

populations in the United Kingdom; sporophylls are produced in late fall and early winter 

and persist on plants after sporulation as vegetative structures during the summer for an 

unknown duration (Birkett et al. 1998). Reproductive sorus tissue is present year-round in 

the GOM, even though it is lower in summer. In this study, differences in reproduction 

between summer and winter seasons (different photoperiod),without significant 

differences across locations that differ in SST (Fig. 2.1), support the hypothesis that 

photoperiod is key to zoospore production in Maine. As daylegth shortens in winter, 

photosynthesis will decline, lowering ATP levels and fixed carbon available for activities 

such as zoospore production.  
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Olischlager and Wiencke (2013) did not follow reproduction throughout the year; 

however, the polar day lasts from April to August, which corresponded to the reported 

reproductive season. The United Kingdom experiences intermediate daylengths, and also 

has an extended reproductive season. Maine, at lower latitudes, does not experience polar 

night and has relatively long days, even in winter (9:13 L:D photoperiod on shortest day), 

and I report year-round reproductive populations. Lüning (1990) reported that kelps in 

the Arctic stop growing during the summer and store photosynthates to use under the ice 

during the winter when there is limited light available; vegetative growth occurred, and 

zoospore production began in winter. My finding that zoospores are produced by A. 

esculenta in the GOM year-round is consistent with more photosynthetic capability due 

to longer winter days in Maine compared to more northern latitudes.  

 

 

 Zoospore viability was not measured in this study, and sorus presence does not 

necessarily correlate with zoospore release or germination (Olischlager and Wiencke 

2013). However, sporophylls that I classified as reproductive often released zoospores (as 

judged by brown secretions) during low tide in the field and also onto herbarium paper 

during pressing. Sorus tissue collected in summer for use in subsequent acclimation 

studies supplied zoospores that had high germination rates (pers. obs., data not shown).  
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Winter storm damage and ice scour will occasionally clear-cut a bed of A. 

esculenta, leaving only the stipes behind. While ice scour is no longer a common 

occurrence in lower intertidal zones in Maine, it is more common in northern locations 

(e.g. Lubec sites in this study, January 2015) than southern ones. Beds removed via ice 

scour can return within one year, sometimes within the same season (Keats et al. 1985). 

Vegetative gametophytes may be established already in A. esculenta understory in 

protected turfs and crevices, acting as a seed bank (Müller et al. 2012, Bringloe et al. 

2017); removal of the sporophyte canopy by ice scour may allow new sporophytes to 

develop, grow, and replace the previous A. esculenta bed (Keats et al. 1985).  

 

 

Gametophyte Thermal Acclimation 

 

 

Gametophytes were negatively affected by thermal exposures reaching 22 °C, and 

gametophytes from the southern population were affected to a greater extent.  The 

majority were able to maintain a healthy state until the prolonged 3-day exposure at 22 

°C, after which damage to cellular structure was visible at higher proportions in the 

filaments. Physiological stress such as from high temperature is often tied to oxidative 

stress, where inhibition of photosynthesis restricts electron flow through the electron 

transport chain causing reactive oxygen species (ROS) to form. Lipid, protein, and DNA 

damage can result (reviewed by Hurd et al. 2014). Higher temperatures may cause DNA 

damage but can also increase DNA repair (Müller et al. 2008). DNA repair rates increase 
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with rising temperature in algae (Pakker et al. 2000), up to a point. It may be that 22 °C is 

a critical temperature that beings to promote stress for A. esculenta in the GOM. 

 

 

Previous studies in the Arctic put the upper survival temperatures of A. esculenta 

gametophytes at 19 – 21 °C (tom Dieck 1993), far warmer than the waters they inhabit; 

thus, such gametophytes may not be threatened by climate change. Origins of the 

Laminariales are believed to be in the Northwest Pacific during the Miocene Epoch (23 – 

5.3 Mya), a time of warmer global climates than preceding or following epochs (Bolton 

2010, Vermeij 2012), when kelp-dominated communities first appear in the fossil record 

(Parker and Dawson 1965). Thus, kelps evolved in relatively warm waters. It is 

hypothesized that kelps colonized the Arctic and North Atlantic ~3.5-5.4 Mya when the 

Bering Strait opened (early Pliocene; Adey et al. 2008, Bolton 2010, Vermeij 2012). 

Very few species from very few genera survived the trip through the Bering Strait despite 

continuous availability of coastline (Lüning 1990). It is notable that Alaria esculenta is 

the only species of Alaria to inhabit the North Atlantic, whereas ~12 species inhabit the 

North Pacific (excluding lectotypes of Alaria esculenta and debated infraspecific species, 

based on morphological and/or genetic differences; Guiry and Guiry 2015, Lane et al. 

2006). Species that survived come from genera with high levels of morphological 

diversity (i.e., there are many diverse species in the Alaria genus, increasing the pool of 

genetic diversity), which may explain their ability to colonize colder waters that other 

kelps could not survive (Bolton 2010).  The higher-than-ambient temperature survival of 

A. esculenta may be due to the relatively recent range expansion and their ability to 
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survive broad ranges of ancient thermal exposure; rising sea surface temperatures are 

hypothesized not to affect Arctic populations (tom Dieck 1993, Park et al. 2017, reviewed 

by Hurd et al. 2014). Kelps expanding their range towards higher latitudes increased their 

cold tolerance by decreasing their survival, growth, and reproductive temperature from 

previous, warmer optimal temperatures (Wiencke et al. 1994). Kelps that have expanded 

ranges from the temperate North Pacific through the Arctic and down to the temperate 

North Atlantic demonstrate a robust ability to handle a broad range of temperatures; 

however, the southern edge of temperate expansions are now experiencing extreme 

warming in SST (Pershing et al. 2015, Thomas et al. 2017), possibly surpassing their 

ancient optimal temperatures, especially in the GOM. 

 

 

While only marginally significant, gametophytes from the southern population 

(Two Lights) had a more negative response to elevated temperature during the 

acclimation experiment than those from the northern population (Lubec). Temperate 

populations that are closer to the biogeographical boundary may not have as much ability 

to respond to stress. Physiological acclimation can be limited to the temperatures found in 

the biogeographical range where each species occurs (Dalhoff and Somero 1993). Sea 

surface temperatures of 22 °C are rare even at the southern limit of Alaria esculenta in 

New England (e.g. anomaly in 2013, spike in SST 3 °C above SST trends for GOM; 

Pershing et al. 2015).  
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Organisms on the edge of a distribution are often small and fragmented, and are 

more susceptible to genetic drift, which may reduce adaptive potential; two opposing 

instances occur at edge populations: local adaptation or maladaptation (Pearson et al. 

2009, Nicastro et al. 2013, Araujo et al. 2014, Jueterbock et al. 2014, Saada et al. 2016). 

Local adaptation occurs when populations are genetically diverse and have higher 

potential to adapt to environmental changes. Most species in which certain populations 

have had historical exposure to warmer waters would be expected to have local 

adaptations to handle these thermal stresses. Central and edge populations of Fucus 

vesiculosus contain two distinct genetic lineages (Nicastro et al. 2013, Assis et al. 2014). 

The southern lineage was more tolerant to experimental high temperatures than the 

northern lineage, demonstrating local adaptation (Saada et al. 2016); however, rapid 

range retraction caused extinction of most of the populations comprising the southern 

lineage (Nicastro et al. 2013) and populations are already adaptively limited. The 

consequences of chronic heat stress are evident: F. vesiculosus from the southern edge of 

the population has lost the ability to recover from heat shock (Mota et al. 2015). The 

other response seen in edge populations is maladaptation, where a species may be at its 

limits for stress response, and there is little adaptive potential left in regions of low 

genetic diversity.  Jueterbock et al. (2014) found population ecotypes of Fucus serratus 

that differed in thermal stress resistance. While populations at the southern distributional 

edge still maintained good levels of photosynthetic performance in response to heat 

stress, heat shock protein (HSP) patterns show limited responsiveness to further heat 

stress (Jueterbock et al. 2014). Edge populations of F. serratus had higher expression of 

HSPs than central populations when exposed to the same control temperature, and the 
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edge population was maladapted to desiccation and heat stress (Pearson et al. 2009). F. 

serratus has isolated, fragmented edge populations with small population sizes, low 

genetic diversity, and poor dispersal capacity (Pearson et al. 2009). This is limiting 

adaptation (genetic change) due to declining genetic diversity at the southern edge of the 

biogeographic range due to thermal die-offs. Jueterbock et al. (2018) expect southern 

populations to disappear by 2100 if genetic rescue from other populations does not occur. 

Southern Maine strains of Alaria esculenta do not handle thermal stress well, which 

might be evidence of maladaptation.  

 

 

Kelps have low dispersal capacity (Merzouk and Johnson 2001), which supports a 

more geographically structured genetic diversity, but evidence of maladaptation in edge 

communities has been demonstrated in kelps. For instance, in Australian kelp forests, 

populations of Ecklonia radiata from warmer latitudes had less genetic variation, less 

physiological response to loss of canopy, and less ability to recover from a heat wave, 

suggesting a lack of capacity to adapt to thermal stress (Wernberg et al. 2018). While 

speciation of A. esculenta is established (Neefus et al. 1993, Kraan and Guiry 2000a, 

Kraan et al. 2000b), the genetic diversity at population levels within the GOM is still 

unknown, and is hypothesized to be low, because it is low in other kelps (Wernberg et al. 

2018). Low genetic diversity may explain why, in the GOM, strains from the southern 

edge populations (Two Lights) show maladaptation to thermal exposure, compared to 

strains from the northern populations’ (Lubec) responses, which might be more typical of 

A. esculenta at higher latitudes. Preliminary results from gene expression analyses of 
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certain HSPs from gametophytes in my thermal acclimation experiment (not shown) 

show similar patterns to maladapted populations of F. serratus: while strains both 

populations respond to thermal exposure, the southern strains were less responsive to 

increasing temperatures, but maintained higher levels at control temperatures than those 

from the northern population (Quigley et al. in prep). Species’ resistance to temperature 

can often change in response to constant stress; this is especially true at the edges of a 

species distribution, where populations are already close to their temperature limits 

(reviewed in Hurd et al. 2014). While there was no statistical effect of location on 

gametophyte health over time in this study, there was a more drastic decrease in health in 

the southern strains toward the end of the heat stress acclimation experiment. This may 

be reflective of loss of stress responsiveness of populations at the southern boundary due 

to the constant level of stress that the population may be experiencing, and possibly due 

to limited genetic diversity of Alaria esculenta, limiting adaptive potential to select for 

temperature tolerance. If true, without genetic rescue from diverse populations 

(Jueterbock et al. 2018) or mutations that favor advantageous strategies such as asexual 

reproduction (Coleman and Wernberg 2018), fragmented edge populations of A. 

esculenta such as Two Lights might become at risk of extinction. 
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Sporophyte Grow-Out 

 

 

Sporophytes that were thermally acclimated had larger blade surface areas, and 

those from Lubec had blades up to double the size of their southern counterparts from 

Two Lights. These patterns held throughout the growing season. There is a high degree of 

variability in blade surface area (although, less in fully mature blades), but differences 

between treatments and locational effects are statistically supported. Some effect of 

thermal exposure transferred from the gametophytic life history stage to the sporophytic 

life history stage. Acclimation occurs when an individual shows phenotypic adjustments 

to a change in the environment, whereas adaptation is when certain individuals in a 

population survive a change due to genetic differences from other individuals, causing a 

genetic change at the population level (Davison and Pearson 1996). Almost all 

gametophytes regained health after a recovery period, and only ~10 % of all 

gametophytes died (data not shown), not lending much possibility for natural selection in 

one generation. I propose a hypothesis to explain this phenomenon: epigenetic heat stress 

memory affecting the timing of gametogenesis. 

 

 

Differences in sporophyte size may be accounted for by delays in gametogenesis. 

While not quantitatively measured, sporophytes were initially found on kurlon lines (both 

under the microscope and by eye) over the course of a few days after conditions were 

switched to promote gametogenesis (pers. obs.; thermally acclimated sporophytes from 
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Lubec were seen first). Mean surface areas of the smallest sporophytes in the final 

collection point (TL_Ctrl mean = 417 cm2) were comparable to mean surface areas of the 

largest sporophytes in the previous collection 2 mo prior (Lu_Accl mean = 570.1 cm2). In 

Laminaria digitata, sporophyte development was retarded at lower temperatures, leading 

to the hypothesis that lower temperatures could cause delays in gametogenesis (Zacher et 

al. 2016). Heat stress exposure might advance the timing of gametogenesis. This study 

aimed at determining crop yield in the traditional growing season for kelps in Maine 

(September – April); crop yield in this study is directly applicable to common practices in 

sea vegetable aquaculture. Continued collections of sporophytes from the sea farm into 

the summer months might have confirmed whether all cultures would eventually produce 

sporophytes of the same size. However, blades often disintegrate or break due to epiphyte 

load that increases with warming waters. Summer collections might not reflect true 

growth and would not have been applicable to the sea farming industry. While there is 

evidence that heat stress might speed up gametogenesis, in my study I promoted 

gametogenesis after recovery time at 12 °C. An explanation for these results may be 

epigenetic heat stress memory. 

 

 

 Epigenetic responses to stress are not yet well studied in macroalgal systems. To 

my knowledge there is only one study that examined changes in methylation of 

macroalgal genomes under environmental stress (Yu et al. 2018), but such responses are 

well studied in higher plants. Transposable elements, that are normally silenced by small 

interfering RNAs, have been indicated in heat stress memory. For example, ONSEN is a 
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transposable element that is reactivated in A. thaliana by prolonged heat stress when 

small interfering RNAs no longer silence them. New ONSEN copies arise through 

retrotransposition into mutants with deficient production of siRNAs and can be 

transmitted into the next generation (Ito et al. 2011). Retrotransposition increases genetic 

variation, which natural or artificial selection can act upon. These retrotranspositions 

mean that heat-inducibility can be conferred onto neighboring genes; ONSEN can 

“hijack” heat stress response, and the population may now adapt to stressful conditions 

over time (Stief et al. 2014b). Perhaps previous thermal exposure of A. esculenta 

gametophytes promoted heat stress memory via siRNAs; this might initiate a faster 

transition to gametogenesis when I altered light regimes, compared to gametophytes that 

did not have exposure to induce such a memory. If thermal exposure of Alaria esculenta 

gametophytes to 22 °C included transposition of heat stress memory to various genes and 

to the next generation, my thermal exposure protocol could be important for selective 

breeding in kelp aquaculture in Maine by increasing temperature tolerance in cultivated 

strains. 

 

 

There have been reports of transgenerational effects of stress exposure at both 

morphological and epigenetic levels, specifically, memory triggered by heat stress 

exposure in Arabidopsis thaliana (Suter and Widmer 2013, Migicovsky et al. 2014). Heat 

stress in previous generations expedited flowering (i.e., reproduction) in A. thaliana, but 

the effect was reversible after multiple generations of no heat stress (Suter and Widmer 

2013). Transgenerational epigenetic inheritance was offered as explanation (Suter and 
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Widmer 2013). Stress effect is heritable and may undergo adaptation. Migicovsky et al. 

(2014) found that heat exposure caused changes in genome methylation, and histone 

modification in differentially expressed genes that led to differences in progeny 

phenotype (including the tendency to bolt earlier, i.e., transitioning from vegetative to 

reproductive).  

 

 

There is evidence of epigenetic heat stress memory, even transgenerationally, in 

marine macrophytes. Shallow-water populations of the seagrass Posidonia oceanica have 

optimized phenotypic variation to deal with higher levels of light and heat compared to 

deeper populations through the exclusive upregulation of heat-responsive genes 

(chaperone and antioxidant genes) and epigenetic responses (e.g. methylation of DNA or 

histones; Marin-Guirao et al. 2017). In most cases, demethylation in response to stress 

usually coincides with expression of previously inactivated genes to respond to the stress. 

Global genomic methylation decreased with exposure to high temperature in the red 

macroalga Pyropia haitanensis; 29 methyl sites mapped to gene coding regions that were 

involved in various physiological and regulatory pathways, most notably photosynthesis 

and abiotic stress response (Yu et al. 2018). Transposons are also activated in response to 

high temperature stress, creating true genetic change, and increasing the potential for P. 

haitanensis to adapt to abiotic stresses associated with increased temperature (Yu et al. 

2018). Embryos of Fucus vesiculosus that had higher survival rates, and greater lengths 

when exposed to heat stress were cultured from parental material that had been 
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previously exposed to higher temperatures (Li and Brawley 2004), also a potential 

example of transgenerational heat stress memory in macroalgae.  

 

 

A more stressful environment may speed up stress adaptive processes via 

epigenetic mechanisms. This would mean southern populations, which were historically 

exposed to higher temperatures, would have a higher response to heat memory. 

Compared to Two Lights, Lubec might be considered a more typical population of the A. 

esculenta metapopulation of the North Atlantic, but it is still exposed to temperate waters 

at the end of the range in the Northwest Atlantic, thus adaptation via epigenetic 

mechanisms may be possible. As an edge population, A. esculenta from Two Lights may 

be genetically limited in its ability to respond to heat stress, even a heat stress memory. 

Population genetic and epigenetic studies of Alaria esculenta in the Gulf of Maine will be 

of great value to the sea vegetable aquaculture industry. 

 

 

Conclusions for the Sea Vegetable Aquaculture Industry 

 

 

This study provides a better understanding of the thermal tolerance of Alaria 

esculenta in the Gulf of Maine and offers protocols that may be implemented in kelp 

aquaculture, in general. Reproductive seedstock of Alaria esculenta may be available to 

sea farmers practically year-round, at least in low proportions, across source locations in 
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Maine. Bearing in mind winter storms and ice scour, I suggest collecting seedstocks in 

late fall rather than winter. While responsive to thermal stress, a large proportion of 

seedstock gametophytes remain healthy at temperatures not expected to be common in 

the Gulf of Maine for decades, although, northern seedstocks fare better and might be 

more useful for the industry. Aquaculturists should bear in mind differences in seedstock 

strains and how sourcing locations might affect production, especially if aquaculture 

endeavors coincide with range boundaries of crop species. An important component of 

sea vegetable aquaculture is crop yield. Sporophytes that were thermally acclimated had 

higher blade surface areas, and those seedstocks from the northern population had blades 

up to double the size of their southern counterparts. Predictions of warming for the Gulf 

of Maine, along with most coastal waters worldwide, include longer summers, which 

might shorten growing seasons in the future; having temperature-tolerant fast-growing 

crops will become more important. While I caution that other effects must be explored 

further (e.g. disease resistance, expression of stress traits) and only a few strains 

representing two populations with unknown genetic structure were examined, applying 

my thermal acclimation protocol in sea vegetable nurseries may be able to increase crop 

yields and speed up harvest time for farmers, and further development of protocols may 

aid kelp aquaculture in other locations around the globe. Alaria esculenta is an excellent 

candidate for expansion in Maine’s sea vegetable aquaculture sector, now and in the 

future. 
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CHAPTER 3 

A COMMON GARDEN EXPERIMENT WITH PORPHYRA UMBILICALIS 

(RHODOPHYTA) EVALUATES METHODS TO STUDY  

SPATIAL DIFFERENCES IN THE  

MACROALGAL MICROBIOME 

 

 

Introduction 

 

 

 Next generation sequencing has expanded understanding of host-specific and 

seasonal variation in macroalgal microbiomes (e.g., Brodie et al. 2016, Braus et al. 2017; 

references therein), while coupled biodiversity and metagenomic studies are testing 

assembly rules or functional aspects of host-microbe associations (e.g., Burke et al. 

2011a, b, Kim et al. 2016, Zozaya-Valdés et al. 2017). Understanding the co-evolutionary 

and ecological relationships between host macroalgae and their bacterial communities has 

become a feasible goal. Recent characterizations of macroalgal microbiomes via various 

hypervariable regions of the 16S rDNA have revealed many more operational taxonomic 

units (OTUs; bacterial “species”) than previously known from particular macroalgae (see 

reviews by Goecke et al. 2010, Egan et al. 2014). The extent to which OTU specialization 

occurs in different regions of a macroalga, however, is poorly known. Such 

specializations could be functionally important based upon numerous studies in humans 

(e.g., Human Microbiome Project 2012).  
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 Unfortunately, studies of microbial variability across an algal thallus are 

complicated when epiphytic eukaryotes with their own complicating microbiota are 

collected in the field or when thalli are recently grazed, opening the possibility of 

deposition of grazer-specific microbes onto the thallus. Here, I used a common garden 

approach in laboratory experiments to address the spatial variability of the microbiome in 

clonal material of the strain of Porphyra umbilicalis Kützing (Rhodophyta) that was used 

for the Porphyra umbilicalis genome project (strain Pum1, Brawley et al. 2017). I grew 

individuals in a common garden from neutral spores before subsampling blades to 

examine potential regional specialization of the microbiome with amplicons of the V6 

region of the 16S rDNA. Additionally, I tested whether several different stabilization and 

preparation techniques for the macroalgal microbiome are equally suitable. Techniques 

that phycologists have used in the past to prepare algal thalli for DNA extraction include 

freeze-drying followed by surfactant enzymatic washes (e.g., Burke et al. 2009), flash-

freezing (Miranda et al. 2013), and freezing at -20 °C (Bondoso et al. 2017). However, 

phycologists often need to collect samples in locations that are not near a laboratory, in 

which case silica gel desiccation would be ideal if it does not distort recovery of the 

microbial community. Finally, I compared microbial community structure as determined 

by the mothur pipeline for Illumina sequences (Kozich et al. 2013) to that of the 

minimum entropy decomposition pipeline (MED, Eren et al. 2015). MED uses Shannon 

entropy to group sequences into amplicon sequence variants (ASVs) that can indicate 

ecologically distinct associations of host bacteria not revealed by percent identity-based 

classification of OTUs (Eren et al. 2015). The three null hypotheses addressed are: (1) 

there is no significant difference between the microbiomes of non-adjacent samples of 
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blade margin, (2) there is no significant difference in recovery of the microbiome among 

several preparative techniques, and (3) there is no significant difference in microbial 

community structure between blade margins and holdfasts.  

 

 

Methods 

 

 

Common Garden Culture of Pum1  

 

 

I tested different techniques for stabilization and recovery of the microbiome of 

Porphyra umbilicalis (Rhodophyta) with a common garden design. The isolate used 

(Pum1) was obtained from a plant growing at Schoodic Point, Maine (44°20’1.68” N; 

68°3’29.14” W) on April 3, 2008, and clonal progeny belonging to the 15th generation 

were used for this common garden experiment. Pum1 had been treated with antibiotics 

(penicillin, streptomycin) prior to the 7th generation used by Miranda et al. (2013) for 

comparative studies of the microbiome of clonal lab plants and wild plants in a 454 

pyrosequencing study. The isolation and purification techniques used to prepare strain 

Pum1 for the recent P. umbilicalis genome project eliminated virtually all eukaryotic 

contaminants (Brawley et al. 2017), and the first antibiotic treatments with 

penicillin/streptomycin reduced the bacterial richness and relative abundance on Pum1 

compared to wild blades (e.g. a strong shift in the Bacteroidetes from Sphingobacteriia to 
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Flavobacteriia, Miranda et al. 2013). The reduced microbiome of Pum1 blades at the time 

of the present study still included several hundred OTUs, and made this technical 

comparative study more tractable. 

 

 

Individuals were grown by I. Mendonça by standard techniques (Royer et al. 

2018) from neutral spores to 5 cm in length in the same 5 L glass carboy (common 

garden design) with vigorous aeration at 12 °C, in 40 µmol m2 s-1 [T8 fluorescent tubes], 

at 12:12 (L:D), in 3.5 L of West-McBride enriched (Andersen, 2005), sterile seawater 

that was changed weekly. Plants were randomly assigned between two transparent 

cylinders (cylinder I, n=3 blades; cylinder II, n=3 blades), with each cylinder placed in a 

different culture chamber (I36LLVLC8, Percival, Perry, IA). Individuals were grown out 

while maintaining their normal polarity by anchoring one of the small (1 cm2) subtending 

blades that develop at the base of the holdfast and ~ 1 mm of the main holdfast edge with 

sterilized plastic aquarium clips (Seaweed Clips, Ocean Nutrition Americas, Newark, 

NJ). These anchored blades moved naturally in the culture medium from their tethered 

positions by creating water motion with bubbling from a filtered air supply, which 

simulated natural conditions (Royer et al. 2018). 

 

 

After 3 weeks of additional growth, the large blades were rinsed with sterile 

seawater, spread on a sterile surface, and adjacent pieces (1.5 cm2) of blade margin and 

subtending vegetative region were cut and processed using sterile techniques to produce 6 
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replicates of each preparative treatment (Fig. 3.1): sections ‘A’ and ‘C’ -- flash-frozen in 

liquid N2, stored at -80 °C, and ground in liquid N2 to a fine powder with a mortar and 

pestle; sections ‘B’ -- flash-frozen, lyophilized, and powdered (= Geno/Grinder 2000, 

SPEX SamplePrep, Metuchen, NJ; 2 min, 600 strokes/min, with zirconia beads); and 

sections ‘D’ -- dried with silica gel and powdered via the Geno/Grinder procedure. 

Additionally, the holdfast microbiome was assessed on 2 of the 3 plants/cylinder 

(sections ‘E’, n=4) by the same preparative treatment as sections ‘A.’ The remaining two 

holdfast samples were not included in the analysis due to low sequence coverage and 

their preparation by a different technique. Culture, excision of tissue, preservation, and 

DNA isolation were performed by I. Mendonça and S. Brawley. 
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Figure 3.1. Experimental preservation techniques applied to replicates (n=6, Pum1 

blades) at positions ‘A’ – ‘E’: sections ‘A’ and ‘C’ – flash-frozen in liquid N2, stored at -

80 °C, and ground with a mortar and pestle; sections ‘B’ – flash-frozen, lyophilized and 

powdered via Geno/Grinder; and sections ‘D’ – dried with silica gel and powdered via 

Geno/Grinder; ‘E’ holdfasts – flash frozen as for ‘A’ and ‘C’ (n=4). 
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DNA Extraction, Amplification, and PNA Clamps  

 

 

Microbial sequences of the V6 hypervariable region of the 16S rDNA were 

amplified following physical disruption of samples by grinding them in liquid nitrogen to 

powder with a mortar and pestle or by bead-beating dry sample (de Bruin & Birnboim 

2016). Following this physical disruption step, samples were extracted using the Qiagen 

DNeasy Plant MiniKit protocol (Germantown, MD). Two blanks (Qiagen columns and 

kit reagents) were processed through sequencing as controls. Based on the findings of 

Lundberg et al. (2013), I employed genus-specific peptide nucleic acid (PNA) clamps 

that were developed and tested by Dr. Hilary Morrison of the Marine Biological 

Laboratory where the sequencing for this work was conducted (Quigley et al. 2018). The 

PNA clamps avoided the complication of amplifying eukaryotic host plastid and 

mitochondrial 16S rDNA to recover only host-associated bacteria are the focus of my 

study. H. Morrison downloaded Porphyra spp. plastid and mitochondrial 16S genes from 

NCBI's GenBank reference database and aligned the 16S V6 primers to them. The 

EMBOSS command splitter (Rice et al. 2000) generated all possible 16-mer antisense 

sequences for the region between the primers. H. Morrison evaluated these sequences 

using the guidelines provided by PNA Bio (PNA Bio, Newbury Park, CT). Criteria for 

rejection were a purine stretch of 6 nt or longer, > 50 % purine content, > 35 % G 

content, and self-complementarity. PNA sequences were Porphyra mitochondrion, 5' 

CACTAAATGACATACA and Porphyra chloroplast, 5’ GTTCGCATTCCCTAAG 

(Quigley et al. 2018). 
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Sequencing and Demultiplexing  

 

 

Bacterial V6 amplicon libraries were generated at Marine Biological Labs 

(Woods Hole, MA) by H. Morrison in a two-step protocol as described in Eren et al. 

(2013), with the addition of the PNA clamps described above. The PNA clamps against 

both plastid and mitochondrial 16S rDNA were combined, preheated at 65˚C for 5 min, 

and included in the PCR reaction at 2 µM with 0.2 µM V6-specific primers. The reaction 

mix included 200 µM each dNTPs, 2 mM MgSO4, 0.66 units Platinum Hi-Fidelity Taq 

polymerase, and 1X Platinum Hi-Fidelity buffer (Quigley et al. 2018). The reactions were 

initially activated at 94˚C for 3 min followed by 25 cycles of 94˚C for 30 s, 78˚C for 10 s 

(PNA annealing step), 60˚C for 45 s, and 72˚C for 1 min, and given a final extension 

cycle at 72˚C for 1 min. Reactions were prepared in triplicate, plus a single no-template 

control. Triplicate reactions were pooled after cycling, the products visualized on the 

Caliper LabChip High Sensitivity assay (Perkin Elmer, Waltham MA), and purified with 

the Qiagen MinElute kit (Qiagen). Cleaned product (10-15 µL) was used in fusion primer 

PCR with the following components: 200 µM dNTPs, 2 mM MgSO4, 1.3 units Hi-Fi 

polymerase, 1X Hi-Fi buffer, and 0.25 µM of each fusion primer, containing the Illumina 

sequences necessary to bind the products to the sequencing flow cell and to bind the 

sequencing primers (Quigley et al. 2018). These second-round amplifications were 

activated at 94˚C for 3 min followed by 10 cycles of 94˚C for 30 s, 60˚C for 45 s, and 

72˚C for 1 min with a final extension at 72˚C for 2 min. The fusion products were 

visualized on a Bioanalyzer High Sensitivity DNA assay chip, purified with 1.8 volumes 
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of Agencourt AMPure XP beads (Beckman Coulter, Brea, CA), and quantified with a 

Picogreen assay (Invitrogen, Carlsbad, CA). Products were pooled products in equimolar 

concentration, quantified (KAPA Biosystems, Wilmington, MA), and sequenced using a 

paired-end 2 X 101 nt protocol on an Illumina HiSeq 1000 run at the Marine Biological 

Laboratory (Woods Hole, MA; Quigley et al. 2018). 

 

 

Individual amplicon libraries contained a unique combination of barcode 

(sequenced in read 1) and index (sequenced in a short indexing read). Datasets were 

demultiplexed by index using Illumina’s CASAVA program v. 1.8 (Hosseini et al. 2010), 

and by barcode using custom python scripts. These curated reads served as input to 

microbial community structure analyses. 

 

 

Bioinformatic Processing: mothur and MED  

 

 

The preprocessed V6 16S rDNA sequences were analyzed using two software 

packages: mothur (Kozich et al. 2013) and Minimum Entropy Decomposition (MED, 

Eren et al. 2015). The former is a reference-based alignment and clustering process to 

analyze community sequence data, while the latter does not require preliminary 

classification and clustering. 
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For the analysis by mothur, I used a series of commands that closely followed the 

standard operating procedure (SOP; https://www.mothur.org/). Paired-end reads were 

merged to make contigs (command make.contigs); contigs longer than 175 bp or with any 

ambiguous bases were removed (screen.seqs), and replicate sequences were removed 

(unique.seqs). The remaining unique sequences were aligned (align.seqs) to a SILVA 

alignment database v.123 (Pruesse et al. 2007; https://www.arb-silva.de) that was 

previously trimmed to the 16S V6 hypervariable region (alignment positions 31188 to 

33284). Sequences were removed (screen.seqs) if they did not align to the SILVA 

database, contained homopolymers longer than 8 bases, or were outside the V6 

alignment. All alignment gaps were removed (filter.seqs). The following applications of 

unique.seqs and pre.cluster commands grouped sequences with any redundancy created 

by trimming sequence ends, or that had only one base difference between sequences. The 

UCHIME algorithm (Edgar et al. 2011) (uchime.chimera) split the data by sample to find 

and remove chimeric sequences (remove.seqs). Sequences were classified (classify.seqs) 

using the SILVA reference taxonomy v.128 and the Wang method (Wang et al. 2007) at 

a bootstrap cutoff of 80. Any sequences classified as chloroplast, mitochondria, 

Eukaryota, or Archaea, as well as any unclassified sequences (unknown) were removed 

(remove.lineage). Sequences were clustered using the average neighbor clustering 

technique (cluster.split) which bins the sequences by taxonomic level, in this case to 

genus, and then assigns an operational taxonomic unit (OTU) for each cluster; a cutoff 

level of 0.03 clustered sequences at a 97% similarity level, and make.shared generated a 

counts table of the number of sequences of each OTU present in each sample. One blade 
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sample from plant 3 in chamber II was eliminated from further analysis, because only 

512 sequences remained due to low initial sequence depth. The two Qiagen controls were 

also eliminated from further analysis due to uneven sequencing coverage (Control-1 = 

712 remaining sequences; Control -2= 13,724 sequences) and small but detectable algal 

contamination in Control-2. Importantly, the OTUs determined in Control-1 were in very 

low abundance and were not found in any equal amount in the algal samples (i.e., 

contaminants were so rare that they failed to amplify and sequence at a detectable level in 

algal samples). The 2,396,770 sequences in the remaining 29 samples were used in 

further analysis. 

  

 

For the MED analysis, paired-end reads were pre-processed, merged, and 

trimmed of primer/adapter sequences using Illumina-utilities (Eren et al. 2013; 

https://github.com/meren/illumina-utils). Merged reads were retained only if there were 

no mismatches between the two reads, resulting in very high-quality datasets. The 

Minimum Entropy Decomposition algorithm generates operational taxonomic unit (OTU) 

equivalents termed "amplicon sequence variants" (ASVs; Callahan et al. 2017) using 

Shannon entropy to identify information-rich positions that serve to partition a dataset. 

MED's ASV identification (decomposition) process resembles a bifurcating tree, rather 

than sequence clustering. The method is based on oligotyping (Eren et al. 2013) and is 

described by Eren et al. (2015).  
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 The 29 samples analyzed by MED were identical to those I analyzed by mothur. 

Reads do not go through an alignment step. Rather, terminal gaps are added so that all 

reads have equal length (79 characters). Alignment is unnecessary, because Illumina 

reads are of a consistent length and post-trimming length variation is assumed to be 

biologically significant rather than a sequencing artifact. Sequence data were 

concatenated into a single fasta file. The second input file contained sample metadata. 

 

 

 The MED pipeline version 2.1 command "decompose" was run with default 

parameters except that the minimum substantive abundance (M) was set to 10. This is a 

filtering option that requires the frequency of the most abundant unique sequence in any 

ASV to be greater or equal to M (no such filtering is done by mothur). MED output 

includes an abundance matrix comparable to that generated by mothur. 

 

 

Statistical Analysis 

 

 

All downstream analyses for both the mothur and MED outputs were produced in 

R statistical software version 3.3.3 (The R Foundation for Statistical Computing, 2017). 

Distance matrices were produced with the vegdist function (vegan version 2.4-4, Oksanen 

et al. 2017) for both the Jaccard and Morisita-Horn indices. The Jaccard index is based on 
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the number of “taxa” present in each sample, where all species are weighted and counted 

equally. The Morisita-Horn index is based on the relative abundance of “taxa”; thus, it is 

less influenced by sample size and species richness. Both indices are invaluable in 

determining how different regions of the thallus and sample preservation techniques 

affect recovery of a microbial “taxon” or its relative abundance in the microbial 

community. Statistical comparisons were performed with the adonis function, a 

nonparametric permutational multivariate analysis of variance. I blocked samples (strata 

function) to account for potential differences between the two environmental chambers. 

The samples were analyzed in four MANOVAS: mothur output applied to the Jaccard 

index, and to the Morisita-Horn index, and MED output applied to the same two 

ecological community indices. A Holm p-value correction minimized false discovery 

rates to 5% (Holm, 1979) for all multiple comparisons (pairwise.adonis function; Arbizu 

2017). Mann-Whitney U tests (R v. 3.3.3) compared sequence percentages of specific 

taxa of interest between replicate samples of holdfast (‘E’) and blade margins (‘A’). 

  

 

 Core microbial communities were created using custom R scripts. Any OTU/ASV 

≥ 0.1 % of the total sequences found in a group of treatment replicates (i.e., for ‘A’, ‘B’, 

‘C’, ‘D’, and ‘E’; Appendix 3.1) was considered a core member of the mothur or MED 

community. Sequence comparison between ASVs and representative OTU sequences 

revealed matches within one bp. Only in one case did this difference of one base result in 

different taxonomic assignments (i.e., ASV0053 was classified as a Planctomycete, but 

the corresponding OTU0005 sequence, which differed by 1 bp, was classified as 
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"Unknown"). In some cases, despite exact sequence matches, the taxonomic assignments 

still differed between mothur’s OTU assignment using Silva v.128 and the VSEARCH 

(Rognes et al. 2016) MED ASV assignment using Silva v.128. Because these mothur 

analyses pertained to clustered sequences that could differ by 3%, I used the taxonomy 

assigned to ASVs for these analyses, because each ASV was based on a single sequence. 

Sequences will be permanently archived in the public archive VAMPS (MBL, Woods 

Hole) and submitted to the SRA at NCBI. 

 

 

Results 

 

 

PNA Clamp Efficiency  

 

 

Collaborator Hilary Morrison evaluated the efficiency of the PNA clamps for 

Porphyra spp. prior to this study by comparing the mitochondrial and plastid sequences 

in amplicon libraries produced from Porphrya spp. field samples (including epiphytes) 

generated with and without the PNA clamps (Quigley et al. 2018). No host mitochondrial 

amplification occurred, which is consistent with the imperfect match of the primers to V6 

regions of the mitochondrial 16S rDNA. Without PNA clamps, however, up to 97 % of 

the tag sequences were identified as “Chloroplast” of which up to 95 % of the sequences 

were an exact match to the reference P. umbilicalis plastid 16S gene (Quigley et al. 
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2018). When PNA clamps were included, exact matches dropped to a maximum of 7 % 

(Table 3.1). 

 

 

Table 3.1. Efficacy of peptide nucleic acid clamp design for the genus Porphyra based on 

amplicons generated from Porphyra spp. field samples. Amplicons were generated with 

and without PNA in the reaction mix (courtesy of Dr. Hilary Morrison). 

 

Dataset Total Tag 

Sequences 

Exact Match 

to Plastid 16S 

Identified as 

‘chloroplast’ 

Percent Host 

Plastid 

Percent Any 

Plastid 

P. linearis 558599 528770 534294 95% 96% 

P. linearis +PNA 482817 33803 55011 7% 11% 

P. umbilicalis 774292 353793 725683 46% 94% 

P. umbilicalis + PNA 948857 6162 409103 1% 43% 

 

 

The mothur analysis identified 662 OTUs that had ≥ 10 assigned reads over all 29 

samples in the common garden experiment; the MED analysis identified 988 ASVs using 

the same data and threshold. The number of OTUs identified per pooled, replicate 

treatment sections are: ‘A’ – 342, ‘B’ – 178, ‘C’ – 261, ‘D’ – 215, and ‘E – 272. The 

number of ASVs in ‘A-E’ are 608, 374, 556, 453, and 550, respectively.  

 

 

Core Community Comparisons  
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The core-defined taxa represented a small number of total OTUs or ASVs, but 

accounted for most of the sequences recovered across sample types, typically 30-39 taxa. 

The core OTUs represented 96.90% to 98.72% of the sequences by sample type (i.e., A-

E) in the final mothur analysis, and core ASVs represented 95.33% to 97.50% of the 

sequences per group in the final MED analysis (Appendix 3.1). The cores were 

dominated by Proteobacteria, especially by Alphaproteobacteria (e.g., Sulfitobacter sp. 

and other Rhodobacteraceae) and Gammaproteobacteria, but single representatives of 

Deltaproteobacteria and Betaproteobacteria were present (Fig. 3.2, Table 3.2). Several 

Bacteroidetes (e.g., Fabibacter sp. and Dokdonia sp.) were so abundant that this phylum 

accounted for almost one third of all sequences in any sample of the core (Table 3.2, 

Appendix 3.1). Actinobacteria and Planctomycetes were also present at lower levels in 

the core. All core members were present in each sample (e.g., a ‘C’ core member was 

present in every ‘C’ sample); differences between samples in the same group (i.e., ‘A’ – 

‘E’) lie outside of that group’s core community composition (< 0.1 % e.g., Fig. 3.3).  

 

 

 

 

 

Table 3.2 Comparison of microbiomes of blade margin and holdfast regions of Porphyra 

umbilicalis (composite ASV analysis of core taxa, see Appendix 3.1). 
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Comparison of Blade and Holdfast Regions 

Taxonomy Number of ASVs % Sequences Classified Genera of Interest 
for Group 

 Blade 
‘A’ 

Holdfast 
‘E’ 

Blade 
‘A’ 

Holdfast 
‘E’ 

 

Actinobacteria 3 1 4.2 2.5  
Bacteroidetes 4 4 33.1 32.3  

Cytophagia 1 1 22.8 14.3 Fabibacter 

Flavobacteriia 1 1 8.9 12.8 Dokdonia 
Sphingobacteriia 1 1 0.6 3.9 (Saprospiraceae ASV0028) 

Planctomycetes 2 3 0.9 3.2  
Planctomycetacia 1 1 0.3 1.2 Blastopirellula 

Phycisphaerae 0 1 0 0.4  

OM190 1 1 0.6 1.6  

Proteobacteria 22 20 56.7 57.9  

Alphaproteobacteria 10 11 29.4 43 Sulfitobacter, Sphingorhabdus, 
Hyphomonas 

Betaproteobacteria 1 1 8.7 2 Methylotenera 
Deltaproteobacteria 1 1 7.6 5.1  

Gammaproteobacteria 10 7 10.9 7.8 Pseudohongiella, Haliea 
Unknown 1 2 0.4 1.6  
Total (phylum level) 32 30 95.3% 97.5%  
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Figure 3.2. Relative abundance of taxa accounting for > 1% of sequences: (a) ‘A’ and ‘C’ 

samples to examine positional effect of blade margin; (b) ‘A’ and ‘E’ samples to examine 

regional effects of blade margin versus holdfast; and (c) ‘B,’ ‘C,’ and ‘D’ samples to 

examine preservation effects (n = 6 for all groups). The same pattern and order of taxa 

were found between relative abundance measures of MED and mothur analyses (< 1% 

difference), therefore only the mothur analysis is shown. Sequences differed by up to one 

bp, but most sequences matched exactly; thus, the taxonomy assigned by VSEARCH to 
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the MED output sequences using the Silva reference database (v128), was used: (1) 

ASV0040/OTU0879: Bacteroidetes; Cytophagia; Cytophagales; Flammeovirgaceae; 

Fabibacter, (2) ASV0012/OTU0508: Proteobacteria; Alphaproteobacteria; 

Rhodobacterales; Rhodobacteraceae, (3) ASV0037/OTU0648: Bacteroidetes; 

Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Dokdonia, (4) ASV0353/OTU0435: 

Proteobacteria; Betaproteobacteria; Methylophilales; Methylophilaceae; Methylotenera, 

(5) ASV0023/OTU0683: Proteobacteria; Alphaproteobacteria; Rhodobacterales; 

Rhodobacteraceae; Sulfitobacter, (6) ASV0007/OTU0689: Proteobacteria; 

Deltaproteobacteria; Myxococcales; Nannocystaceae, (7) ASV0491/OTU0981: 

Proteobacteria; Gammaproteobacteria; Oceanospirillales; Oceanospirillaceae; 

Pseudohongiella, (8) ASV0019/OTU0254: Actinobacteria; Acidimicrobiia; 

Acidimicrobiales; MarineGroupSva0996, (9) ASV0016/OTU0509: Proteobacteria; 

Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae, (10) ASV0024/OTI0978: 

Proteobacteria; Gammaproteobacteria, (11) ASV0010/OTU0777: Proteobacteria; 

Gammaproteobacteria, (12) ASV0206/OTU0324: Proteobacteria; Alphaproteobacteria, 

(13) ASV0356/OTU0326: Proteobacteria; Alphaproteobacteria; Rhodobacterales; 

Rhodobacteraceae, (14) ASV0053/OTU0005: Planctomycetes; OM190, (15) 

ASV0028/OTU0193: Bacteroidetes; Sphingobacteriia; Sphingobacteriales; 

Saprospiraceae, (16) ASV0492/OTU0119: Bacteroidetes; Bacteroidetes; Incertae Sedis; 

OrderIII; Unknown Family; Balneola, (17) ASV0203/OTU0217: Proteobacteria; 

Alphaproteobacteria, (18) ASV0003/OTU0137: Planctomycetes; Planctomycetacia; 

Planctomycetales; Planctomycetaceae; Blastopirellula, (19) ASV0771/OTU0980: 

Proteobacteria; Gammaproteobacteria; Clade KI89A. 
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Figure 3.3. Venn diagrams of the number of shared ASVs of Individuals 1 and 2 in 

Chambers I and II (n=4) in (a) ‘A’ treatments on blade margins and in (b) ‘E’ treatments 

on holdfasts. All ‘A’ core members reside in the 116 central ASVs; All ‘E’ core members 

reside in the 165 central ASVs. 

 

  

Microbial Communities between Blade Positions: A vs. C 

 

 

I investigated how uniform the microbiome was along the blade margin by 

comparisons of ‘A’ and ‘C,’ which were located 1.5 cm apart on the blade margin and 

otherwise prepared identically. Regardless of analytical method or distance measure, all 

permutational analyses determined that there was no significant difference (mothur, 

Jaccard: F(1,10) = 0.94, p = 0.357; MED, Jaccard: (F(1,10) = 0.94, p = 0.343, mothur, 

Morisita-Horn: (F(1,10)=1.72, p = 0.182; MED, Morisita-Horn: (F(1,10)=1.76, p = 0.171, 
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see Table 3.3) between samples excised from the different locations along the blade 

margins, leading to failure to reject the null hypothesis that they would be similar. The 

dominant taxon was classified as Fabibacter sp. (Cytophagales, Bacteroidetes; 

ASV0040/OTU0879), accounting for 22.84 % and 26.06 % of ASVs, and 23.65 % and 

26.99 % of the OTUs, for ‘A’ and ‘C,’ respectively (Fig. 3.2a); Dokdonia sp. 

(Flavobacteriales, Bacteroidetes; ASV0037/OTU0648) represented 8.87 % and 9.26 % of 

ASVs, and 9.18 % and 9.59 % of OTUs assigned to ‘A’ and ‘C’ sequences, respectively. 

The ‘A’ position samples accounted for twice the abundance of an unclassified 

Rhodobacteraceae (Rhodobacterales, Alphaproteobacteria; 13.35 % (ASV) and 13.40 % 

(OTUs); ASV0012/OTU0508) compared to the ‘C’ position (only 6.39 % ASVs and 6.40 

% OTUs, only 1.5 cm away); however, a planctomycete (ASV0053/OTU0005) was twice 

as abundant in ‘C’ compared to ‘A’ (1.13 % versus 0.61% in both ASVs and OTUs). 

Overall, 2-3 additional taxa were assigned to the ‘A’ core with a cut-off of 0.1% 

sequence abundance (see Appendix 3.1). These minor differences in taxa and similar 

relative abundances support my acceptance of the null hypothesis that position on the 

blade margin did not affect microbial composition within the sample size used (1.5 cm2). 
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Table 3.3 Results of nonparametric permutational multivariate analyses of variance. 
 

COMPARISON ANALYSIS 
METHOD 

DISTANCE 
MATRIX 

F STATISTIC P-VALUE ADJUSTED 
P-VALUE 

‘A’ and ‘C’ mothur Jaccard F(1,10)=0.94 0.357 - 

(Position) MED Jaccard (F(1,10)=0.94 0.343 - 

 mothur Morisita-Horn (F(1,10)=1.72 0.182 - 

 MED Morisita-Horn (F(1,10)=1.76 0.171 - 

‘B’, ‘C’, and ‘D’ mothur Jaccard F(2,17)=2.89 0.012** - 

(Preservation)   Pairwise: B vs. C - 0.012** 
   Pairwise: C vs. D - 0.012** 
   Pairwise: B vs. D - 0.196 

 MED Jaccard F(2,17)=2.87 0.015** - 

   Pairwise: B vs. C - 0.018** 
   Pairwise: C vs. D - 0.018** 
   Pairwise: B vs. D - 0.172 

 mothur Morisita-Horn F(2,17)=5.94 0.001** - 

   Pairwise: B vs. C - 0.006** 
   Pairwise: C vs. D - 0.044** 
   Pairwise: B vs. D - 0.325 

 MED Morisita-Horn F(2,17)=5.62 0.002** - 

   Pairwise: B vs. C - 0.003** 
   Pairwise: C vs. D - 0.034** 

   Pairwise: B vs. D - 0.331 

‘A’ and “E’ mothur Jaccard F(1,7)=8.08 0.056* - 

(Region) MED Jaccard F(1,7)=8.38 0.056* - 

 mothur Morisita-Horn F(1,7)=17.15 0.056* - 

 MED Morisita-Horn F(1,7)=17.59 0.056* - 
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Microbial Communities among Stabilization Techniques: B vs. C vs. D 

 

 

To understand the consequences of different preservation and processing 

techniques, I analyzed the effect of three stabilization techniques on recovery of the 

microbiome. The same statistical conclusions pertaining to type of preservation treatment 

were found with mothur and MED. The Jaccard distance measure detected significant 

differences among samples from the three preservation techniques (mothur: 

F(2,17)=2.89, p = 0.012; MED: F(2,17)=2.87, p = 0.015, Table 3.3), and Holm-corrected 

pairwise comparisons found that this stemmed from differences between hand-grinding 

flash-frozen samples under liquid nitrogen (= ‘C’ samples) compared to the other two 

methods (i.e., lyophilization and powdering with a Geno/Grinder after initial flash-

freezing = ‘B’ samples; silica gel desiccation followed by powdering with a 

Geno/Grinder = 'D’ samples). There was no significant difference between ‘B’ and D’ 

treatments (Table 3.3), but because hand-grinding in liquid nitrogen (‘C’) recovered a 

significantly different microbial community (i.e., had fewer ASVs/OTUs) compared to 

‘B’ and ‘D,’ the null hypothesis is rejected. The same statistical differences were found 

with the Morisita-Horn distance matrix (mothur: F(2,17)=5.94, p = 0.001; MED: 

F(2,17)=5.62, p = 0.002; see Table 3.3).  

 

 

 Despite ‘C’ communities being statistically different from ‘B’ and ‘D’ 

communities, no core members were uniquely recovered in 'C' (Fig. 3.2c). Many 
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differences in core assemblies were due to the relative abundance of individual taxa 

differentially recovered. The same two prominent Bacteroidetes taxa (Fabibacter sp.; 

ASV0040/OTU0879 and Dokdonia sp.; ASV0037/OTU0648) accounted for 35.32 % 

(ASVs) and 36.59 % (OTUs) of the core sequences from samples that were hand-ground 

in liquid nitrogen (‘C’), compared to 20.53 % ASVs and 21.14 % OTUs from ‘B’ 

samples and 27.58 % ASVs and 28.45 % OTUs from 'D' samples (Appendix 3.1). 

Differences in overall taxon membership were evident in comparison of regions ‘B’, 'C', 

and ‘D’ among individuals (Fig. 3.4), despite the similarity of the core taxa, which 

constitute ³ 96.31 % of ASVs and 97.60 % of OTUs. Taxa unique to ‘B’ cores included 

Propionibacterium sp. (Propionibacterales, Actinobacteria; ASV0054/OTU0387) and 

Haemophilus sp. (Pasteurellales, Proteobacteria; ASV1132/OTU0948). Nine taxa were 

unique to ‘D’ cores, versus ‘B’ and ‘C,’ many of which are Gammaproteobacteria 

(Enterobacteriales, Oceanospirillales, Alteromonadales, Pseudomonadales). Differences 

in relative abundance, and the fact that both ‘B’ and ‘D’ cores had unique taxa, while ‘C’ 

did not, supports my rejection of the null hypothesis that preservation techniques recover 

the same microbiome. 

 



 71 

 

 

Figure 3.4. Venn diagrams of the number of shared ASVs of each treatment sample (‘A’ 

– ‘D’) on each individual: a) Individual 1 from Chamber I, b) Individual 2 from Chamber 

I, c) Individual 3 from Chamber I, d) Individual 1 from Chamber II, e) Individual 2 from 

Chamber II, and f) Individual 3 from Chamber II (excluding ‘A’ because it was not 

included in statistical analyses). 
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Microbial Communities between Regions: A vs. E 

 

 

Because the Porphyra umbilicalis thallus contains functionally different regions, I 

analyzed the microbial communities associated with the blade margin versus the holdfast. 

All permutational analyses found a marginal statistical difference in the microbial 

community between algal blade margin (‘A’) and holdfast (‘E’) samples, irrespective of 

analysis pipeline or distance measure (mothur, Jaccard: F(1,7)=8.08, p = 0.056; MED, 

Jaccard: F(1,7)=8.38, p = 0.056; mothur, Morisita-Horn: F(1,7)=17.15, p = 0.056; MED, 

Morisita-Horn: F(1,7)=17.59, p = 0.056; see Table 3.3) This analysis used 575 

permutations (n=4 replicates for each of ‘A’ and ‘E’), as opposed to the default 999, 

because I restricted comparisons between ‘A’ and ‘E’ to the same 

preservation/stabilization technique (lower sample number). Some of the most abundant 

taxa in both ‘A’ and ‘E’ cores were still the Bacteroidetes Fabibacter 

(ASV0040/OTU0879) and Dokdonia spp. (ASV0037/OTU0648); Fabibacter sp. had 

about one third more total reads in blade margins than holdfasts, but replicates varied, 

thus the two regions did not have significantly different abundances of Fabibacter sp. 

(ASVs: Mann–Whitney U = 11, n1 = n2 = 4, p = 0.486, two-tailed). The 

alphaproteobacterium Sulfitobacter sp. (Rhodobacteraceae; ASV0023/OTU0683) was 

three times more abundant in holdfasts than blade margins (Fig. 3.2b; ASVs: Mann–

Whitney U = 0, n1 = n2 = 4, p = 0.029, two-tailed), making it the most abundant taxon in 

the holdfast. As a group, Rhodobacteraceae were more abundant in holdfasts (40.01 % 

ASVs and 40.16 % OTUs) compared to blade margins (25.99 % ASVs and 26.07 % 
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OTUs; Appendix 3.1). Planctomycetes had greater taxonomic diversity and abundance in 

holdfasts compared to blade margins (ASVs: Mann–Whitney U = 18, n1 = n2 = 12, p = 

0.002, two-tailed), while Gammaproteobacteria and Actinobacteria were more abundant 

and diverse in blades than holdfasts (Table 3.2). Lastly, the Alphaproteobacteria 

(Hyphomonadaceae) Hyphomonas sp. (ASV0237/OTU0092) and Algimonas sp. 

(ASV0359/OTU432) were present in blade margin core communities (> 0.1 % in ‘A’), 

but were present in far lower relative abundances in holdfast samples (<< 0.1 % in ‘E’; 

ASVs: Mann–Whitney U = 64, n1 = n2 = 8, p = 0.001, two-tailed). The overall relative 

abundance and number of ASVs/OTUs classified as either Bacteroidetes or 

Proteobacteria were nearly the same in holdfast versus blade margin, but at a subphylum 

level, there were important differences in distribution. These taxon comparisons and the 

marginal significant difference between overall 'A' versus 'E' microbial communities 

(Table 3.3), led us to reject the null hypothesis that microbiomes of blade margins and 

holdfasts are not different. 

 

 

Discussion 

 

 

 Here, I and my collaborators (Quigley et al. 2018) developed and evaluated 

techniques for preservation and analysis of the Porphyra umbilicalis microbiome, aided 

by use of a single genotype (Pum1) to minimize host effects and to eliminate extraneous 

microbial variability that would complicate such studies if wild thalli were used. 
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Enrichment of some members of the microbiome was observed in samples of holdfast 

versus blade margin, and below I consider how this might affect P. umbilicalis.  

 

 

Importance of PNA Clamps 

 

 

 The PNA clamps that were developed to block amplification of the host's plastid 

V6 16S rDNA were highly effective and can be applied to a variety of other microbial 

studies of Porphyra spp. sensu lato. Additionally, my techniques can be used to develop 

similar PNA clamps for other macroalgae. Surface treatments (enzymatic, mechanical) 

can remove the microbiome without disrupting the host thallus and avoid the organellar 

16S rDNA problem, but this may miss important members of the microbiome that lie 

within macroalgae. The bacterial V6 recovery would have been too low to permit 

statistically valid comparisons of the effect of different preparative and analytical 

techniques on the microbiome without these PNA clamps (Quigley et al. 2018). 

 

 

ASVs versus OTUs  

 

 

ASVs and OTUs recovered similar microbiomes both in terms of percent of total 

sequences, and order of relative abundance within each core community. MED identified 
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more distinct microbial taxa (988 ASVs versus 662 OTUs), but both analyses led to the 

same statistical conclusions for all three tested hypotheses, which is a robust result 

considering the differences in computational approaches. Mothur aligns sequences to a 

reference database (e.g., SILVA, Pruesse et al. 2007, used here), then pre-clusters all 

sequences that are within one nucleotide of each other, and clusters sequences that differ 

by less than a fixed sequence dissimilarity threshold (3% for this analysis and most 

others; Schloss et al. 2009, Westcott and Schloss, 2015). In contrast, MED does not align 

or pre-cluster sequences, but divides the sequences into groups of amplicon sequence 

variants based on the frequency of alternative bases at variable nucleotide positions, and 

continues to partition the ASVs further until all meaningful nucleotide variability is 

resolved (Eren et al. 2013, 2015). Taxonomy assigned through VSEARCH is more 

accurate, because it is based on a single MED sequence. Most comparisons between OTU 

and ASV construction in previous studies found that MED provides finer biological 

resolution. Often one OTU can be resolved into multiple ASVs, which better assesses 

ecological dynamics at a sequence variant level (Eren et al. 2013, Needham et al. 2017). 

In my analysis, core community members are equivalent, with sequences matching 

within one base pair. The average sequence length was 60 bp, meaning that sequences 

that differ by a single base would fall into the same mothur OTU, but not the same ASV. 
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Macroalgal Microbiome Distribution and Preservation 

 

 

 In evaluation of core microbiomes (≥ 0.1% of sequences within a sample group), I 

found that the core taxa were distributed evenly at the blade margin using subsamples of 

1.5 cm2. The type of powdering technique used during preparation of the samples for 

DNA analysis led to quantitative differences in taxon recovery, but silica gel desiccation 

was as effective as flash-freezing and lyophilization for microbiome recovery. 

 

 

 Examination of lab-grown Porphyra umbilicalis with scanning electron 

microscopy (Royer et al. 2018) showed that blade surfaces at a fine scale can be visually 

diverse (bacterial filaments, cocci, rods) and uneven. A certain level of patchiness is 

likely for any macroalgal surface, and it is important to evaluate what size of sample 

section recovers the community accurately in a cost-effective manner (e.g., Penton et al. 

2016). Here, I determined that a single 1.5 cm2 section adequately captured Pum1 

microbial biodiversity (equivalent core taxa) for the blade margin, because ‘A’ and ‘C’ 

replicates prepared identically, but excised 1.5 cm apart, did not have significantly 

different bacterial communities.  

 

 

This common garden study determined that the algal microbiome was recovered 

interchangeably by either flash-freezing/lyophilization/powdering (‘B’) or silica gel 
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desiccation/powdering (‘D’). The third technique, flash freezing in liquid nitrogen/hand-

grinding with a mortar and pestle (‘C’), recovers core taxa present in either 'B' or 'D' or in 

both 'B' and 'D' cores, and no taxa in the Qiagen column control were found in ‘C’ 

samples. Therefore, I rule out possible contamination for distinguishing ‘C,” yet I do not 

understand the basis for the difference in the two different powdering techniques. 

Previous studies have established that variation introduced by different preservation 

techniques, while detectable, usually does not outweigh differences found in the 

microbial communities of different species, or even individual samples (Hammer et al. 

2015, Lauber et al. 2010, Song et al. 2016). This also applies to differences in DNA 

extraction techniques (Rubin et al. 2014), or sequencing platform (Tremblay et al. 2015), 

whereas use of primers that recover different hypervariable regions has greater effects 

(e.g., Tremblay et al. 2015, Clooney et al. 2016). Nonetheless, as microbiologists move 

towards identification of minor changes in host-microbial interactions, use of artificial 

mock communities that simulate the taxa on the host of interest may be the only 

safeguard for fine-scale understanding of the consequences of different preservation 

techniques. Without determining how to consistently and effectively capture those minor 

differences, studies will need larger sample sizes and possibly deeper sequencing to 

account for preservation discrepancies, wasting valuable time and money. Here, however, 

I found that most core OTUs or ASVs from Pum1 were universally recovered, whichever 

stabilization and preparation technique was used. It is particularly valuable to know that 

silica gel was as effective as flash-freezing/lyophilization, because phycologists often 

work in remote locations without access to lyophilizers, dry ice, or liquid nitrogen. Silica 

gel and flash-freezing/lyophilization techniques offer diverse ways to recover large 
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quantities of the macroalgal microbiome in large-scale studies, with standardized and 

time-efficient processing techniques (i.e., mechanized bead-beating of dry material versus 

hand-grinding material under liquid N2 using mortars and pestles). Researchers may now 

decide which recovery method is best for their studies of macroalgal microbiomes. 

 

 

Pum1 Microbiome Composition and Region-Specific Functional Predictions  

 

 

  The relative rank positions in abundances of Bacteroidetes and Proteobacteria on 

Pum1 appear to have changed over 4 additional years in culture and passage through 8 

additional generations of the life history. Bacteroidetes dominated the recovered 

microbiome (~80% V8 sequence abundance, 42% OTU diversity) compared to 

Proteobacteria (14 % V8 sequence abundance, 32 % OTU diversity) when Pum1 was 

harvested for pyrosequencing in 2011 (see Miranda et al. 2013, Table S1), but 

Proteobacteria were more abundant than Bacteroidetes in the present study (see Figure 

3.2 and Table 3.2). Various technical and biological factors may affect these estimates. 

Technically, the present study used V6 tags and represents a deeper sequencing of the 

microbiome with Illumina HiSeq compared to the earlier pyrosequencing study that used 

V8 tags for quantitative comparisons. Biologically, as each new generation is established 

from parent neutral spores, some bacterial OTUs may be lost, causing rarer OTUs to 

become more prominent and detectable. Importantly, however, the Pum1 blade still 
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grows normally to maturity. This provides opportunity to consider what important roles 

some taxa may play. 

 

 

 Many species in the Bacteroidetes (especially Flavobacteriia), 

Alphaproteobacteria, Gammaproteobacteria and Planctomycetes are able to derive carbon 

from the breakdown of macroalgal cell wall polysaccharides (e.g., Goecke et al. 2010, 

Barbeyron et al. 2016, Thomas et al. 2012, Kim et al. 2016). Dokdonia (Flavobacteriia) 

and Blastopirellula (Planctomycetes), found across all sample cores of Pum1, use 

macroalgal carbon (Thomas et al. 2012, Kim et al. 2016), and Fabibacter (1st, 2nd, or 

3rd most abundant ASV/OTU in each of the 5 cores) might have such capabilities, 

because it is also found in coral mucus (Pereira de Castro et al. 2010). Methylotenera 

(Betaproteobacteria) is a methylotroph (Wang et al. 2014, Taubert et al. 2015) and 

consumes small organic molecules, while Pseudohongiella likely reduces nitrate (Xu et 

al. 2016); both are present across all cores. 

 

 

 Sulfitobacter (Rhodobacteraceae, Alphaproteobacteria) may be one of the most 

significant members of the microbiome of Pum1, and is in high relative abundance across 

cores (³ 8.26 %), including > 26 % relative abundance in the holdfast core. Some 

Sulfitobacter synthesize vitamin B12 (Dogs et al. 2017), which might be used by P. 

umbilicalis in its natural habitat (Brawley et al. 2017). Four strains of Sulfitobacter 

increase the cell division rate of the diatom Pseudo-nitzchia multiseries PC9, and 
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Sulfitobacter SA11 was demonstrated to synthesize the plant growth regulator IAA 

(Amin et al. 2015). Sulfitobacter sp. MS3 is one of the Alphaproteobacteria (i.e., in 

addition to Roseovarius sp. MS2 and Paracoccus sp. UL2, E34) that stimulate cell 

division in multiple species of the green macroalga Ulva (Spoerner et al. 2012, 

Grueneberg et al. 2016, Ghaderiardakani et al. 2017). It is possible that in addition to a 

Sulfitobacter, other Alphaproteobacteria such as Hyphomonas (found in ‘A,’ ‘B,’ and ‘C’ 

cores), might supply Pum1 with important morphogens. Fukui et al. (2014) reported that 

Hyphomonas supports normal development from protoplasts of a relative of Porphyra, 

Pyropia yezoensis (nori). In the Ulva system, bacteria such as Sulfitobacter, which 

stimulate cell division, act in combination with many strains of Maribacter 

(Bacteroidetes; e.g., Maribacter sp. MS6) or Microbacterium sp. EC19 (Actinobacteria) 

to support normal morphogenesis in multiple species of Ulva (Ghaderiardakani et al. 

2017, Weiss et al. 2017). Whether the few Bacteroidetes and Actinobacteria present in 

the Pum1 microbiome have symbiotic roles will be of interest. A lottery effect where 

different bacterial taxa can provide the same stimulatory or morphogenetic services to 

algae has been invoked to understand seasonal changes in the microbiome of wild 

populations that still maintain normal algal morphology (see Burke et al. 2011a, 

Ghaderiardakani et al. 2017). However, there is equally strong evidence that the 

associations between a bacterium and a macroalgal host can be acutely specific (see 

Amin et al. 2015, Weiss and Wichard 2017). Thus, potentially important morphogenetic 

bacteria in Porphyra umbilicalis (e.g., Pum1) must be isolated and tested. 
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Because morphogenetic bacteria cluster around the Ulva rhizoid (Spoerner et al. 

2012, Ghaderiardakani et al. 2017), the microbial differences I observed in Pum1 

between blade margin (‘A’) and holdfast (‘E’) are particularly relevant. Sulfitobacter sp. 

(ASV0023) was the most abundant bacterium recovered from the holdfast, where it was 

three times more abundant than at the blade margin. The association with the blade 

margin might lead to seeding of neutral spores with Sulfitobacter as they are released 

from parent blades. The relative abundance of Alphaproteobacteria taxa is about 50% 

higher in the holdfast cores compared to the blade margin cores; overall, 

Rhodobacteraceae were more abundant in the holdfast. Two Bacteroidetes 

(Sphingobacteriia, Saprospiraceae ASV0028/OTU0193; Flavobacteriia Dokdonia sp. 

ASV0037/OTU0648) are more abundant in the holdfast. The largest “drift” in particular 

taxa on Pum1 may be among the Planctomycetes, because Blastopirellula 

(ASV0003/OTU0137) was not recovered by Miranda et al. (2013), and Rhodopirellula 

and three planctomycetes that were newly recognized (see Kim et al. 2016 for their 

assembled genomes) were not recovered from Pum1 in the present study. I show here that 

Planctomycetes, even at very low relative abundances, are significantly more common in 

the holdfast compared to blade margins. The holdfast is a thick mass of extracellular 

polysaccharide that Planctomycetes can feed on (Kim et al. 2016). Knowing that the 

Planctomycetes have particular affinity for the holdfast may make it possible to isolate 

new taxa for the first time, and is an excellent example of how information on regional 

specificity of the microbiome may help to find needles in the haystack. 
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Conclusions 

 

 

My colleagues and I (Quigley et al. 2018) discovered that microbial composition 

is evenly distributed across the examined portions of the blade margin at a scale of 1.5 

cm2, and that certain sample preservation techniques are interchangeable, which is of 

value to phycologists who work in remote field sites. This study is one of the first to 

examine community differences among thallus regions, specifically between blade 

margin and holdfast, finding that potentially important symbionts have higher affinities 

for specific regions. Finally, this research is a robust demonstration of the strengths of 

Minimum Entropy Decomposition (MED) to assess microbial community assembly. 
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CHAPTER 4 

MICROBIAL CHARACTERIZATION OF INTERTIDAL  

MACROALGAL COMMUNITIES ACROSS  

A STRESS GRADIENT 

 

 

Introduction 

 

 

  The steep environmental gradients of the intertidal zone have long 

attracted attention of biologists interested in the effects of stress on species distributions 

(e.g. Baker 1909, 1910, Stephenson & Stephenson 1949, Connell 1961, Schonbeck & 

Norton 1978, Little & Kitching, 1996, Valdivia et al. 2011). Invertebrates and 

macroalgae are well-studied; lower intertidal species are restricted from higher zones by 

their inability to handle stressful levels of temperature, desiccation, and light, especially 

during long aerial exposures at spring tides each month (e.g. Baker 1910, Schonbeck & 

Norton 1978, Harley & Helmuth, 2003, Williams & Dethier 2005). In New England, the 

stress gradient plays a major role in defining rockweed vertical distributions with Fucus 

spiralis, F. vesiculosus, and F. distichus inhabiting the upper, mid-, and lower zones, 

respectively. Stress often involves interactions among environmental factors; for 

example, on a sunny low tide, the rocky substratum and benthic organisms will heat and 

desiccate faster than on a cloudy day. Despite the extensive attention given for over a 

century to analysis of stress in macroscopic organisms in the intertidal zone, to my 
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knowledge, whether marine intertidal bacteria follow the ecological paradigm developed 

to understand stress-related zonation of marine algae and invertebrates is unknown. The 

major objective of this research is to determine whether intertidal bacteria are different in 

the high, mid-, and low zones of the rocky intertidal zone. Here I examine this question in 

the context of macroalgal-associated bacteria to create a tractable subset of intertidal 

bacteria for my research by descriptive and experimental analysis of the microbiome of 

the three Fucus congeners F. spiralis, F. vesiculosus, and F. distichus subsp. edentatus. 

 

 

 Associated bacteria of intertidal algae, while poorly known, may be essential to 

their macroalgal hosts that provide important ecosystem services. Pioneering studies 

found that bacteria are required for normal development and morphogenesis (e.g. Fries 

1970, Provasoli and Pintner 1980, Tatewaki et al. 1983). Green (Ulva spp.), brown 

(Fucus spp.), and red (Pyropia spp.) algae were unable to maintain their multicellular 

morphologies when made axenic, but, when re-inoculated with seawater containing 

marine bacteria, some recovery occurred (Fries 1975, Fries 1977, Provasoli & Pintner 

1980, Yamazaki et al. 1998). Matsuo et al. (2005) discovered and described the structure 

of a signaling molecule from a member of the Bacteroidetes called “thallusin.” Thallusin 

appears to be solely responsible for the restoration of the natural foliaceous morphology 

of the green alga Monostroma oxyspermum, which becomes single-celled under axenic 

conditions. Many algal-associated bacteria have the metabolic pathways needed to 

degrade algal polysaccharides such as alginate, fucoidan, and cellulose (Armstrong et al. 

2001, Kazamia et al. 2012, Labourel et al. 2014, Kim et al. 2016; reviewed by Goecke et 
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al. 2010) and the carbon supply and niche supplied to bacteria may have led to 

mutualistic associations that led to the evolution of multicellularity (Miranda et al. 2013). 

Overall, algal survival and morphogenesis require a symbiosis between macroalgae and 

certain bacteria (Ghaderiardakani et al. 2017, Weiss et al. 2017), and these associations 

vary due to natural fluctuations such as salinity (Lachnit et al. 2009, Dogs et al. 2017) or 

seasonality (Michelou et al. 2013, Miranda et al. 2013). Given that some bacteria are 

required for morphological integrity and, therefore, the ecological function of the 

macroalgae, it is essential to understand how sensitive these associations may be to 

increased stress, and the intertidal zone offers an ideal location to examine this question.  

 

 

 Here, I used analyses of natural host microbiomes of differently zoned Fucus 

congeners and a transplant experiment to investigate the zonal distribution of bacterial 

ASVs (amplicon sequence variants). Restricting my analyses to these host microbiomes 

is a tractable approach to understand how tolerant or intolerant bacterial taxa are. 

Previous studies showed that closer-related macroalgal species inhabiting different 

geographic locations share more similar bacterial communities when compared to more 

distantly-related sympatric species (Lachnit et al. 2009, Barrot et al. 2011). Thus, the 

biochemical and cell wall compositions of an alga appear to affect the composition of its 

microbiome. The three Fucus species examined here can demonstrate how environmental 

stresses affect the composition of the associating microbial community across vertical 

scales, because differences in stress tolerance among intertidal Fucus species are well 

established (e.g. Baker 1909, 1910, Schonbeck and Norton 1978, 1980, Collén and 
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Davison 1999a,b), but the cell wall composition of all three congeners is alginate, fucans, 

and a small amount of cellulose (Kloareg and Quantrano 1988).  

 

 

 Bacterial communities might be expected to differ on a vertical scale, from high 

to low zones, because of the intrinsic degree of stress resistance of different taxa, and 

because relationships between the host and its microbiome may differ due to differential 

exposure to environmental stress. My goals were to survey the microbiome of three 

Fucus congeners to see if intertidal position affects bacterial community structure, as it 

does for macroalgae and invertebrates, and to test differences with a manipulative 

experiment where F. vesiculosus was transplanted from its native mid-zone to the high 

zone, under different treatments. These studies aimed to answer the following questions:  

(1) Do macroalgae have distinct microbiomes, that is, are bacterial communities 

of macroalgae different from those of the surrounding water column? (2) Do 

bacteria follow established stress-determined upper boundaries of distribution of 

macroalgae and invertebrates? (3) When exposed to increased stress, such as 

when Fucus vesiculosus is transplanted from mid- to high zone, do host-

associated bacteria change? and (4) Do microbiomes of transplanted F. 

vesiculosus become more similar to microbiomes of the high zone fucoid F. 

spiralis, and (5) which algal-associated bacteria respond to increased stress? 
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Methods 

  

 

Natural Survey and Manipulative Experiment 

  

 

I explored the effect of intertidal position on the microbiome of three Fucus 

congeners (Phaeophyceae) using both surveys and manipulative experiments at Acadia 

National Park (permit #ACAD-2017-SCI-0006), Schoodic Point, Maine, during the 

summer of 2016. Using random numbers to select sampling locations, I sampled three 

individuals each from two 20 m transects (A and B; located 60 m apart) of F. spiralis in 

the high zone, F. vesiculosus in the mid-zone, and F. distichus subsp. edentatus in the 

low zone. Two rounds of collections were taken two weeks apart (7/7/16 and 7/20/16). 

The holdfast, a reproductive receptacle, and a vegetative blade tip were harvested from 

each individual.  I collected a water sample directly above each transect before the tide 

receded from that area of the intertidal zone (n = 6, one per transect in each zone) during 

each collection to determine if macroalgal and water column microbiomes differ in 

composition. 

  

 

I conducted an experimental transplant of Fucus vesiculosus individuals 

simultaneously with my studies of the natural community. This allowed us to consider 

potential shifts in the microbiome in response to intertidal position within a vertical stress 
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gradient. For transect A, I selected at random 48 F. vesiculosus from the mid-zone, and 

randomly assigned them to one of three treatments. I back-transplanted 16 individuals 

within the native mid-zone in 4 clumps (n = 4 clumps/transect, control treatment; Fig. 

4.1). Each individual in the clump was attached with a zip-tie to a small stainless-steel 

eyebolt anchor set into a plastic socket in a hole drilled into the rock substratum. 

Holdfasts of transplants rested on the substratum. The remaining 32 individuals were 

transplanted into the high zone. Individuals were clustered in a clump to create a canopy 

effect as a central individual surrounded by three other transplanted F. vesiculosus, near 

patches of high zone F. spiralis, without allowing the transplants to come into direct 

contact with any F. spiralis. Half of the interspersed transplanted clumps (transplants) 

were undisturbed following transplant for the two-week period (n = 4 clusters/transect, 

dry treatment) to expose them to high intertidal stress, while the other interspersed half of 

the clumps were watered with seawater during daytime low tides when native mid-zone 

Fucus vesiculosus individuals were underwater (n = 4 clumps/transect, sea-watered 

treatment). The exact same design was employed with 48 additional randomly collected 

F. vesiculosus on Transect B. Several blade tips were collected at the start (7/7/16), a 

midpoint (7/11/16), and end (7/20/16) of this manipulative experiment (collected from a 

different individual per cluster at each time point to prevent wounding responses/stress); 

the holdfast and several receptacles were also harvested at the end point from the central 

individual from the cluster. Every algal sample was harvested, washed with sterile 

seawater, placed in a sterile Falcon tube, placed on ice for transport, flash-frozen in liquid 

nitrogen, and stored at -80 °C until DNA extraction. Water samples were collected in 1 L 

sterile polypropylene bottles, transported on ice, and immediately pre-filtered through a 
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5.0 µm sterile filter, followed by a 0.2 µm sterile filter that retained the bacterial 

community of the water column. Filters were also flash-frozen, and stored in a -80 °C 

freezer until DNA extraction. 

 

 

 

 Figure 4.1. Photographs of the three Fucus spp. a) inhabiting the three intertidal zones; 

b) schematic of experimental design of one representative transect (n =2), Fs = Fucus 

spiralis, Fv = F. vesiculosus, Fd = F. distichus, and shading of green denotes treatment of 

F. vesiculosus (dark = back-transplant control, medium = sea-watered treatment of 

transplant to high zone, light = dry treatment of transplants to high zone). Diagram drawn 

for clarity of treatment; no pseudoreplication in positioning was present. 
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Environmental Data Collection 

  

 

Thermal loggers (iButton, DS1921G-F5#, Maxim, San Jose, CA) were deployed 

from 6/24/16 - 7/15/16 with a sample rate of 15 min. Each iButton was wrapped in 

parafilm and encapsulated in a thin layer of Z-Spar (A-788 Splash Zone Epoxy, West 

Marine, Watsonville, CA) that attached each iButton to the rock substratum. In total, 8 

sensors were deployed in pairs to capture the span of microhabitat temperatures within a 

zone: one covered by algal canopy (covered; C) and one uncovered (exposed; E), in the 

mid-zone (n = 2 pairs/transect) and high zone (n = 2 pairs/transect). My team also 

measured irradiance during low tide from 7/10/16 to 7/18/16 using a LI-COR spherical 

quantum sensor (SPQA3718, Lincoln, NE) read by a LI-COR Light Meter (LI-250, 

Lincoln, NE). 

 

 

 Analysis was carried out by Mr. Kyle Capistrant-Fossa (M.S. student, Brawley 

lab) in R-Studio (R 3.5.1) in the following ways: (1) a hierarchical cluster analysis was 

performed by computing a Euclidean dissimilarity matrix (pairwise difference) of Z-

Score normalized iButton records, and then clustering records based on Ward’s Sum of 

Square Errors method (package pvclust, Suzuki and Shimodaria 2006; function ward.D2, 

Murtagh & Legendre 2014); (2) time series were filtered to only contain temperatures of 

daytime exposures and descriptive statistics were computed using custom scripts; and (3) 
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patterns of exposure were determined by linking iButton records relative to the NOAA 

buoy (#8413320, Bar Harbor, ME) tidal height using custom scripts.    

 

 

DNA Extraction, Amplification, and Sequencing 

 

  

Each sample was lyophilized, and pulverized using a Geno/Grinder 

(SPEXSamplePrep, Metuchen, NJ; 2 min, 600 strokes/min, with 2.4 mm zirconium 

beads). I extracted DNA using the Qiagen DNeasy Plant MiniKit protocol (Germantown, 

MD). The V4 hypervariable region of the 16S rDNA was amplified at the Josephine Bay 

Paul Center, Marine Biological Laboratory, Woods Hole, MA by collaborator Dr. Hilary 

Morrison using genus-specific peptide nucleic acids (PNA) designed to block 

amplification of the host 18S and plastid 16S genes (Table 4.1). The final 100 µl reaction 

mix contained 1X Platinum HiFi Taq polymerase, 2 units of HiFi Taq (Life 

Technologies, Carlsbad, CA), 2 mM MgSO4, 0.32 µM amplification primers, 0.2 mM 

dNTPs, and 1µM PNA mix. The amplification primers are Illumina fusion primers 

designed to bind directly to the MiSeq flow cell and universally amplify the bacterial V4 

region of the small subunit rRNA gene: 515F (5' GTGYCAGCMGCCGCGGTAA 3') and 

806RB (5' GGACTACNVGGGTWTCTAAT 3'). The PNA mixture was denatured for 5 

min at 65 oC before it was added to the PCR master mix. Amplification cycling began 

with a 3 min initial denaturation at 94 oC, 30 cycles of denaturation at 94 oC (30 s), PNA 
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annealing at 78 oC (10 s), fusion primer annealing at 50 oC (1 min), and elongation at 72 

oC (1.5 min), ending with a final 10 min extension step.  

 

 

Table 4.1. PNAs used to block amplification of host rRNA (designed by Dr. Hilary 

Morrison). 

PNA ID 5' - 3' sequence 
FucusCP1R CTACAAACGCTTTACGCC 

FucusCP1F TACTGGGCTATTACTGAC 

FucusCP2F AGCTCAACTTCAAACATG 

FucusCP2R CGGTGGTCCTTCCAATCT 

Fucus18sF ATTCTTGGATTTATGGAA 

Fucus18sR GCCACAAATCCAACTACG 

 

 

The amplification products were cleaned, quantified, and pooled as previously 

described prior to sequencing (Quigley et al., 2018). Each pool, containing up to 96 

amplicon libraries, was sequenced on an Illumina MiSeq using the version 3 sequencing 

kit and protocol. 
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Bioinformatic Processing and Statistical Analysis 

  

 

 Paired-end reads were demultiplexed by index using on-instrument software and 

by barcode using a custom pipeline (Quigley et al., 2018). Paired-end reads were merged, 

trimmed of primer sequences, and quality filtered (Eren et al., 2013). The final datasets 

served as input to Minimum Entropy Decomposition analysis (Eren et al., 2015).The 

average number of high quality, merged V4 reads was 80,582; the smallest dataset had 

2,849 reads and the largest > 700,000. The MED pipeline version 2.1 command 

"decompose" was run with default parameters except that the minimum substantive 

abundance (M) was set to 10 as described in Quigley et al. (2018). Dr. Morrison created a 

reference 16S V4 database from the SILVA reference taxonomy v.128 (Pruesse et al. 

2007; https://www.arb-silva.de). The MED analysis identified 8,221 ASVs (amplicon 

sequence variants) that had ≥ 10 assigned reads across the 231 samples. Taxonomy was 

assigned to these ASVs using VSEARCH (Rognes et al. 2016) and my and collaborators’ 

custom V4 database. Sequences will be deposited to the SRA at NCBI (GenBank).  

  

 

All statistical analyses were performed in R statistical software version 3.3.3 (The 

R Foundation for Statistical Computing, 2017). The Morisita-Horn distance index was 

used to examine species diversity using measures of “taxon” relative abundance (vegdist 

function, vegan version 2.4-4, Oksanen et al. 2017; additional analyses exploring species 

richness, using the Jaccard distance index, Table 4.2). Nonparametric permutational 
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multivariate analyses of variance (adonis function, vegan) were used to compare water 

column versus algal samples, species across intertidal zones (F. spiralis, F, vesiculosus, 

and F. distichus), tissue types (blades, receptacles, and holdfasts), and treatment effects in 

my transplant experiment (back-transplant control, sea-watered, or dry). I blocked 

samples to account for possible differences between transects A and B (strata function). I 

corrected for multiple comparisons (pairwise.adonis function, Arbizu 2017) using a 

Holm p-value correction, to minimize false discovery rates (Holm 1979). All figures were 

produced in ggplot2 (Wickham, 2010). To assess differential abundance of ASVs 

between two given factors, I applied a Wald significance test (alpha = 0.05) to data 

matrices using the DESeq function (DESeq2, Love et al. 2018); an ASV had to account 

for at least 0.1% of the total reads in an individual sample to be included in analyses. 

These studies compared a total of 24 groups (grouped by species, treatment, time point, 

and/or tissue) in which ASVs were analyzed. Core abundance communities (CACs) for 

these groups were created using custom R scripts and are defined as all ASVs that 

account for 0.1 % of the total sequences found in any single group of treatment replicates. 
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Table 4.2. Statistical analyses using Jaccard distance matrix to determine differences in 

presence/absence among groups. Nonparametric permutational multivariate analyses of 

variance, blocking for transects. 

COMPARISON DISTANCE 
MATRIX 

FACTOR F STATISTIC P-VALUE ADJUSTED 
P-VALUE 

Water Column 
vs. Fucus spp. 

Jaccard sample type F(1,104)=9.8224 0.001* - 

3 Fucus spp.  
x 3 Tissues 

Jaccard day F(1,88)=1.3420 0.118 - 

  species F(2,88)=9.9142 0.001*  
   Pairwise: Fs vs. Fv - 0.003* 
   Pairwise: Fv vs. Fd - 0.003* 
   Pairwise: Fs vs. Fd - 0.003* 

  tissue F(2,88)=13.4596 0.001*  
   Pairwise: H vs. R - 0.003* 
   Pairwise: H vs. B - 0.003* 
   Pairwise: R vs. B - 0.102 

  species:tissue F(4,88)=4.1310 0.001*  

Transplanted 
vegetative 

Jaccard day F(2,1)=26.6384 0.001* - 

F. vesiculosus  treatment F(2,1)=3.8693 0.038* - 
over time  trt effect: start F(2,23)=1.3773 0.078 - 

  trt effect: end F(2,23)=1.7131 0.027* - 
   Pairwise: C vs. D - 0.033* 
   Pairwise: C vs. W - 0.110 
   Pairwise: W vs. D - 0.659 

Up-planted F. 
vesiculosus (dry)  

Jaccard species F(1,33)=3.9736 0.001* - 

vs. F. spiralis  tissue F(2,33)=3.9779 0.001* - 
   Pairwise: H vs. R - 0.003* 
   Pairwise: H vs. B - 0.003* 
   Pairwise: R vs. B - 0.321 

  species:tissue F(2,33)=1.4710 0.040* - 

Reported p-values for all statistical comparisons: *significant, alpha value of 0.05. 
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Results 

 

  

Environmental Intertidal Comparisons 

 

 

 Exposed iButtons reached temperatures that were up to 10 ºC higher than canopy-

covered iButtons within both the mid-zone and the high zone (Table 4.3). Mid-zone 

maximum temperatures were 4 – 6 ºC lower than ibutton maximum temperatures in the 

high zone (i.e., comparing exposed to exposed and covered to covered). The length of 

exposure of iButton sites to air varied between the two high zone transects, because of 

topographic differences between transects A and B; however, mean daily exposure at low 

tide was 2 – 4 h longer in the high zone compared to the mid-zone (Table 4.3). Mean 

temperatures and ranges in temperature at iButton sites between the high and mid-zones 

offered less insight than total exposure periods and temperature maxima to explain any 

stress-related differences in microbiomes found associated with Fucus spp. The length of 

time that transplants were exposed to the air during daytime (sunrise to sunset) low tides 

was 9.3 ± 1.6 h at the beginning of the experiment (near the highest spring tide of the 

tidal cycle), but decreased to 6.7 ± 3.3 by the end of the temperature records. The timing 

of high tide shifted to cover the intertidal zone for a greater portion of each day, 

decreasing exposure time and, I hypothesize, stress towards the end of the 2 week 

experiment.  
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Table 4.3. Descriptive statistics of temperatures recorded by iButtons during daytime 

exposure to the air from 6/25/16 - 7/15/16 (courtesy of Kyle Capistrant-Fossa). 

iButton Daily Mean Temp 
(°C) (SD) 

Daily Mean Range 
(°C) (SD) 

Daily Mean 
Exposure (h) (SD) 

Min 
(°C) 

Max 
(°C) 

A.High.C 18.51 (3.04) 10.18 (5.03) 12.03 (0.90) 11 36.5 

B.High.C 15.09 (2.01) 5.20 (2.52) 8.84 (1.18) 10.5 32.5 

B.High.E 23.68 (7.21) 19.03 (9.12) 8.84 (1.18) 10 42.5 

A.Mid.C 17.66 (3.81) 8.55 (4.31) 6.34 (1.32) 11 30 

A.Mid.E 20.91 (6.76) 13.95 (7.59) 5.75 (1.31) 10 40 

B.Mid.C 14.82 (2.13) 4.10 (2.02) 6.33 (1.32) 10.5 28.5 

B.Mid.E 22.32 (6.84) 13.24 (6.92) 6.33 (1.32) 10.5 37.5 

 

 

 

 Hierarchical clustering analyses included all time points, at low tide and high tide, 

day and night. Records clustered by position in the intertidal zone, with 100 % 

approximately unbiased (AU) p-values and 100 % bootstrap probabilities (Fig. 4.2), 

showing that zone was the main factor accounting for differences in temperature records. 

Additionally, records clustered between exposed and covered iButtons (highly supported;  

≥ 98%, Fig. 4.2). 
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Figure 4.2. Neighbor-joining tree generated from a Euclidean dissimilarity matrix using 

iButton records, with each branch representing a single record and giving approximately 

unbiased (AU) p-values (bold) and bootstrap probabilities (BP, in grey; courtesy of Kyle 

Capistrant-Fossa). 

 

 

 Mean morning Li-Cor irradiance measurements were 1918 ± 811 µmol 

photos/m2/s (n = 34); midday means measured 2350 ± 585 µmol photos/m2/s (n = 32); 

and afternoon means were 1674 ± 678 µmol photos/m2/s (n = 30). As expected, 

irradiance was greatest during midday, and most days throughout the experiment were 

sunny. Algae and associated microbiomes experienced daytime irradiances between 142 

to 2815 µmol photos/m2/s. 
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 Water Column versus Host Microbiomes 

  

 

         To examine whether fucoid microbiomes were composed of bacteria that are 

unique from that of the surrounding water column, I compared all water column samples 

to that of all Fucus species collected. Permutational analyses found a significant 

difference between microbiomes of the water column versus those associated with the 

three Fucus congeners, regardless of intertidal level (sample type: p = 0.001, Table 4.4). 

Seawater microbiomes were composed predominantly of Proteobacteria, and 

Alphaproteobacteria and Gammaproteobacteria were most abundant. Significant numbers 

of  Epsilonproteobacteria and Betaproteobacteria were also recovered (Fig. 4.3a). The 

microbiome of Fucus species samples was also mainly composed of Proteobacteria, but 

class-level microbial composition on host algae differed: Gammaproteobacteria 

dominated most tissues with far fewer Alphaproteobacteria, and a low abundance of 

Betaproteobacteria and Deltaproteobacteria. The classes Acidimicrobiia and 

Flavobacteriia (Bacteroidetes) were more abundant in the water column, whereas 

Planctomycetacia (Planctomycetes) was more abundant in fucoid communities (Fig. 

4.3a). In response to my first question, macroalgae do have distinct microbiomes that 

differ from those of the surrounding water columns (Table 4.4). 
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Table 4.4. Nonparametric permutational multivariate analyses of variance using the 

Morisita-Horn distance index to assess microbial community diversity, blocking for 

transects. 

COMPARISON FACTOR F STATISTIC P-VALUE ADJUSTED 
P-VALUE 

Water Column 
vs. Fucus spp. 

sample type F(1,104)=17.2814 0.001*  

3 Fucus spp. 
x 3 Tissues 

day F(1,88)=0.559 0.712  

 species F(2,88)=27.830 0.001*  
  Pairwise: Fs vs. Fv - 0.012* 
  Pairwise: Fv vs. Fd - 0.003* 
  Pairwise: Fs vs. Fd 

 
- 0.003* 

 tissue F(2,88)=62.476 0.001*  
  Pairwise: H vs. R - 0.003* 
  Pairwise: H vs. B - 0.003* 
  Pairwise: R vs. B 

 
- 0.121 

 species:tissue F(4,88)=12.152 0.001* - 
Transplanted 

blade 
day F(2,1)=1149.05 0.016* - 

F. vesiculosus 
over time 

treatment F(2,1)=537.52 0.029* - 

 exp. start: trt F(2,23)=0.64569 0.6 - 
 exp. end: trt F(2,23)=2.3162 0.069** - 
 end Pairwise: C vs. D - 0.039* 
  Pairwise: C vs. W - 0.054** 
  Pairwise: W vs. D - 0.788 

Up-planted F. 
vesiculosus (dry) 

species F(1,33)=8.1328 0.001* - 

vs. F. spiralis tissue F(2,33)=10.9750 0.001* - 
  Pairwise: H vs. R - 0.003* 
  Pairwise: H vs. B - 0.003* 
  Pairwise: R vs. B - 0.255 

Reported p-values for all statistical comparisons: *significant, alpha value of 0.05, 
** marginally significant value of 0.10.  
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Figure 4.3. Class-level composition of (a) natural fucoid microbiomes plus water column 

samples, and (b) transplanted F. vesiculosus bacterial communities at the end of the 2 

week experiment (H = holdfast, R = receptacle, B = blade tip). Phyla notations for each 

class: A = Actinobacteria, B = Bacteroidetes, C = Cyanobacteria, M = Marinimocrobia, P 

= Proteobacteria, Pl = Planctomycetes, V = Verrucomicrobia. 

 
 

Natural Survey of Host Microbiomes of Fucus Congeners 

 

  

         The microbiomes of the three Fucus congeners were characterized to examine 

whether they were distinctive. Using permutational analyses, I determined that each 

Fucus species had a statistically distinct microbial community (p ≤ 0.012, Table 4.4, Fig. 

4.4a). Microbiomes also were significantly different between holdfast communities and 
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other tissue types (Table 4.4, Fig. 4.4a), suggesting functionally specific algal-bacterial 

relationships. A significant interaction was found between species and tissue, meaning 

that how the holdfast communities differed from those of other tissue types varied among 

fucoid species (p = 0.001, Table 4.4). While all three tissues types of all three Fucus 

species (9 groups, Fig. 4.3a) were dominated by Proteobacteria, the class composition 

within Proteobacteria varied. Gammaproteobacteria dominated receptacle and blade 

communities of all host species. Alphaproteobacteria were the most common component 

of holdfast communities of Fucus spiralis and F. vesiculosus, whereas the low-zone F. 

distichus holdfast was composed mostly of Gammaproteobacteria. Betaproteobacteria 

were more abundant in F. spiralis communities, whereas Verrucomicrobiae and 

Sphingobacteriia were more abundant in mid- and low zone fucoids (Fig. 4.3a).  
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a      b 

 

Figure 4.4. NMDS ordination plots of (a) natural Fucus species communities plus water 

column samples and (b) transplanted F. vesiculosus at the end of the 2 week experiment. 

Analyses include three tissue types (holdfast, receptacles, and blades).  

 

 

 Core abundance communities (CACs) are defined as all ASVs that account for ≥ 

0.1 % of the relative abundance of each group (see Appendix 4.1). In the natural survey, 

nine groups were analyzed: the three tissue types [holdfast (H), receptacle (R), blade tip 

(B)] of the three Fucus species. For example, the CAC of F. spiralis holdfast holds each 

ASV present in ≥ 0.1 % total abundance. Of the 8,221 ASVs identified in the overall 

analysis, 351 ASVs composed the nine CACs: in the high zone, F. spiralis H, R, and B 

communities had 61, 77, and 86 ASVs respectively; F. vesiculosus in the mid-zone had 
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97, 89, and 58 ASVs; and in the low zone, F. distichus communities had 91, 104, and 76 

ASVs. There are more ASVs in common between fucoids from adjacent intertidal zones 

(low-mid, mid-high) than from intertidal extremes (low-high). Only two ASVs were 

present in all nine natural CACs: a Burkholderia-Paraburkholderia (Betaproteobacteria; 

ASV02929) and a Granulosicoccus (Gammaproteobacteria; ASV03270). The former, 

ASV02929, was always more abundant in holdfast communities of the respective species, 

and was also more abundant in F. spiralis communities compared to communities lower 

down in the intertidal zone. The latter, ASV03270, was the most abundant ASV in all 

three species in receptacle communities (21.75 – 34.73 %), as well as in blade 

communities (23.32 – 38.15 %). However, it was much less abundant across holdfast 

communities (0.24 – 1.37 %). Octadecabacter ASV13813 (Alphaproteobacteria) was 

essentially universally present across natural CACs. Although it only accounted for 0.06 

% of the relative abundance of Fucus distichus vegetative communities, and thus would 

not be included in that core community (< 0.1%), this was the only ASV to behave in this 

manner (present in 8 out of 9 cores; in fact, it is present in 23 of the 24 cores analyzed for 

this study), thus I made an exception to include this ASV. This Octadecabacter was more 

abundant in holdfast communities (2.10 – 14.77 %) but < 1% in receptacle and blade 

communities. When considering each tissue individually, there were many ASVs that are 

unique to each species; only 17, 22, and 17 ASV were found in all three Fucus species in 

holdfast, receptacle, and blade tip communities, respectively. Interestingly, there were 

three representatives of the Rhodospirillaceae, assigned to the AEGEAN-169 marine 

group (Alphaproteobacteria) following the same patterns of abundance across the thallus 

in each species (ASV04184 in F. spiralis, ASV00914 in F. vesiculosus, and ASV00916 
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in F. distichus). Each was in low abundance in holdfast communities, yet is either the 

second or third most abundant ASV in their respective species’ receptacle and blade 

communities. These results address my second question: Bacteria do have distinctive 

compositions on closely-related congeners with similar cell wall composition, suggesting 

that there are zone-specific microbiomes that are responding to differential stress. 

Further, I found  that there are distinct communities across different tissues of the thallus.  

   

 

Effect of Transplant on Microbial Biodiversity 

  

 

I transplanted F. vesiculosus from its native mid-zone to the high zone to 

determine whether the microbial community changes in response to new stress levels. A 

repeated-measure permutational MANOVA assessed treatment effect on the microbial 

community of blades over three time points. I determined that the treatments (i.e., back-

transplanted controls, sea-watered transplants, and dry transplants) significantly affected 

the blade microbiomes over time (treatment: p = 0.029, Table 4.4). The bacterial diversity 

was the same across treatments on blades at the beginning of the experiment (treatment, p 

= 0.60, Table 4.4), as expected, because no time had elapsed. At the experiment’s 

conclusion, there was a marginally statistical effect of treatment (p = 0.069, Table 4.4, 

Fig. 4.4b). Adjusted pairwise comparisons determined that this effect was due to 

significant differences in relative abundances between back-transplanted control 

communities and dry communities (p = 0.039, Table 4.4), and control and sea-watered 
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communities (marginally significant p = 0.054, Table 4.4). Of note, back-transplanted 

control communities were statistically indistinguishable from Fucus vesiculosus 

microbiomes collected in the natural surveys (treatment: F(1,39) = 2.097, p = 0.120), 

supporting the biological basis for utilizing back-transplants as controls in the 

comparisons within the manipulative experimental treatments. At a class level, taxonomic 

composition differed among treatments by the end of the experiment. 

Alphaproteobacteria and Gammaproteobacteria were more abundant in higher stress 

treatments (controls < sea-watered < dry). Treatments with increased stress (dry and sea-

watered) had reduced taxonomic diversity overall. While Deltaproteobacteria were higher 

in abundance in controls, they were very low in both the sea-watered and dry treatments 

across tissue types. This pattern held for Verrucomicrobiae in receptacle and blade 

communities. There were also noteworthy negative changes in the composition of 

Flavobacteriia in treatments with increased stress across tissue types (Fig. 4.3b). 

 

 

CACs, all ASVs that account for ≥ 0.1 % of the relative abundance of a given 

group, of each Fucus vesiculosus tissue type (holdfast, receptacle, and blade) that 

underwent each treatment (back-transplant control, sea-watered, or dry; e.g. group = sea-

watered F. vesiculosus receptacle community), contained a range of 40 to 126 ASVs at 

the conclusion of the experiment (Appendix 4.1). Only four ASVs were present in all 

nine experimental CACs, three of which were universally present in natural CACs: the 

Burkholderia-Paraburkholderia (ASV02929), the Granulosicoccus (ASV03270), and the 

Octadecabacter (ASV13813). The former, ASV02929, was more abundant in blade 
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communities of the higher stress treatments (24.79 % and 18.13 % in the sea-watered and 

dry treatments, respectively; compared to controls, 6.94 %); it was the second most 

abundant ASV in blade communities across treatments (albeit at a far lower percentage in 

the control), whereas it was more abundant in holdfast communities in the natural 

collections. The Granulosicoccus (ASV03270) was the most abundant ASV in blade 

communities, regardless of treatment; however, in receptacle communities, relative 

abundance was lower in the dry, high stress treatments (3.50 %) compared to controls 

(29.91 %) and sea-watered (15.95 %) communities. The Octadecabacter (ASV13813), 

while present across treatments and tissues, was more prominent in holdfast 

communities. The fourth universal ASV, a member of the Rhodospirillaceae (AEGEAN-

169 marine group; ASV00914) was also present in all nine experimental core 

communities. While always in low abundance in holdfast communities, it was prominent 

in receptacle and blade communities, with increasing relative abundance with increasing 

stress: 5.62 – 5.92 % in controls, 8.57 – 9.52 % in sea-watered, and 9.04 – 15.58 % in dry 

communities. This ASV was unique to Fucus vesiculosus in the natural core 

communities, yet members of the AEGEAN marine group were present in similar 

patterns in the other fucoids (as discussed above).  

 

 

Certain ASVs that were unique to holdfast communities regardless of treatment, 

and that were in high abundance, belong to the genus Octadecabacter; both ASV00830 

and ASV02241 were in the top three most abundant ASVs in every treatment’s holdfast 

community. There were only three ASVs that were found across all three tissues, but only 
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found in the higher stress communities (i.e., sea-watered and dry transplant treatments, 

but not back-transplanted controls): Sulfitobacter (Alphaproteobacteria; ASV11740), 

Alteromonas (Gammaproteobacteria; ASV08051), and Psychromonas 

(Gammaproteobacteria; ASV07729), which were consistently more abundant in dry 

versus sea-watered communities. Both Alteromonas (ASV08051) and Psychromonas 

(ASV07729), along with a Pseudoalteromonas (Gammaproteobacteria; ASV07519) were 

the only three ASVs that significantly change in abundance in dry blade communities 

from the beginning to the end of the experiment (Wald Test: log2-fold change ≥ 8.02, 

adjusted p-value ≤ 0.002). I can confirm that host-associated bacteria do respond to 

increased stress, because there are significant differences among manipulative transplant 

treatments.  

 

 

Stress-Responsive Taxa 

 

 

In order to assess changes in relative abundance of bacteria due to differences in 

intertidal exposure period and zonal temperature maxima, I compared the microbiomes of 

natural Fucus spp. communities with Fucus vesiculosus transplant communities. Firstly, 

permutational analyses determined that microbial communities of native high zone Fucus 

spiralis remain statistically different microbial communities of Fucus vesiculosus 

transplanted into the high zones (dry treatment: p = 0.001; Table 4.5); microbiomes of 

transplanted F. vesiculosus did not change into those of natural F. spiralis in the high 
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zone. While the microbiomes of these two species as a whole remained statistically 

distinct (over the 2 week experiment), there were many ASVs that were statistically 

significant between Fucus vesiculosus controls and dry transplants at the end of two 

weeks (alpha = 0.05: 157 in holdfasts, 114 in receptacles, and 9 in blades), demonstrating 

differences in relative abundance that are likely due to differences in the stress levels 

between high and mid-zones, notably elevated temperature and associated desiccation 

over a longer period of time in the high zone compared to the mid-zone (Fig. 4.5). 
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c 

 
Figure 4.5. Differential abundance of ASVs of dry transplants, (a) receptacle, (b) 

holdfast, and (c) blade, in comparison the back-transplant controls after 2 weeks. The axis 

at zero denotes the back-transplant control and any ASV that is more or less abundant is 

plotted above or below the line, respectively, on a log2 fold change scale. 

 

 

Taxa of interest that might be stress responsive are listed in Table 4.5. Many 

ASVs became more abundant in Fucus microbiomes subjected to higher levels of stress, 

including members of the genera Cellulophaga, Loktanella, Maribacter, Octadecabacter, 
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Cobetia and Psychrobacter. As previously mentioned, Alteromonas (ASV08051), 

Psychromonas (ASV07729), and Pseudoalteromonas (ASV07519), were the only taxa to 

increase significantly in abundance over time in blade communities throughout the 

manipulative transplant experiment. However, they were not the only representatives of 

their genera to respond to temperature. Numerous additional members of these genera 

across tissues types were more abundant in dry versus control microbiomes (Table 4.5). 

 

 

 

 

 

 

 

 

 

Table 4.5. Stress responsive taxa of interest that differed significantly between back-

transplant controls and dry treatments (log2-fold change and adjusted p-value) with 

additional observations from natural surveys (Fs = Fucus spiralis, Fv = F. vesiculosus, Fd 

= F. distichus) and transplant experiment (Sea-W = sea-watered treatment, Ctrl = back-

transplant control treatment), as well as noted functions of similar taxa found in 

macroalgal microbiome literature.  
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Genus Class ASV Tissu
e 

Natural 
Survey 
Observ
ations 

Transpl
ant 

Observ
ations 

Log
2-

fold 
cha
nge 

Adju
sted 
p-

value 

Antibiot
ic/ 

Antimic
robial 

Disea
se/ 

Patho
gen 

Algal 
Polysacc
haride 

Digestion 

Morphog
enesis 
and 

Growth 

Nutri
ent 

Provi
der 

STRESS-TOLERANT            

Cellulophag
a sp. 

Flavobacterii
a 

ASV07
690 

holdfa
st 

in Fs 
only 

 = 
4.85 

= 
0.030 

X X X X  

Loktanella 
spp. 

Alphaproteob
acteria 

various
, n = 3 

holdfa
st 

 Dry > 
Sea-W > 

Ctrl 

≥ 
5.03 

≤ 
0.019 

  X  X 

  ASV11
673 

recept
acle 

 Dry > 
Sea-W > 

Ctrl 

= 
10.0 

< 
0.001 

 

     

Maribacter 
sp. 

Flavobacterii
a 

ASV06
794 

holdfa
st 

 Dry > 
Sea-W > 

Ctrl 

= 
3.88 

= 
0.024 

 

  X X  

Octadecaba
cter sp. 

Alphaproteob
acteria 

ASV07
405 

holdfa
st 

in Fs 
only 

 = 
4.44 

= 
0.007 

 

  X  X 

Alteromona
s spp. 

Gammaprote
obacteria 

ASV08
051 

various
, n = 6 

blade 
recept
acle 

 

 > over 
time in 

dry 

= 
9.21 
≥ 

5.86 

< 
0.001 
≤ 

0.015 
 

X  X   

Psychromon
as spp. 

Gammaprote
obacteria 

ASV07
729 

various
, n = 
10 

blade 
holdfa

st 

 > over 
time in 

dry 

= 
7.44 
≥ 

4.74 

= 
0.003 
≤ 

0.011 

     

  various
, n = 
19 

recept
acle 

  ≥ 
5.39 

≤ 
0.010 

 

     

Pseudoalter
omonas spp. 

Gammaprote
obacteria 

ASV07
519 

various
, n = 
12 

blade 
recept
acle 

 > over 
time in 

dry 

- 
≥ 

5.67 

- 
≤ 

0.046 

X X X X  

Cobetia sp. Gammaprote
obacteria 

ASV04
532 

holdfa
st 

 Dry > 
Sea-W > 

Ctrl 

= 
9.23 

< 
0.001 

  X   

   recept
acle 

 Dry > 
Sea-W > 

Ctrl 

= 
11.1

4 

< 
0.001 

 

     

Psychrobact
er sp. 

Gammaprote
obacteria 

ASV03
985 

holdfa
st 

  = 
5.52 

= 
0.024 

   X  

   recept
acle 

  = 
10.3

8 

< 
0.001 

     

VARIABLE STRESS-
RESPONSE 

           

Marinomon
as spp. 

Gammaprote
obacteria 

various
, n = 3 

holdfa
st 

  ≤ -
3.67 

≤ 
0.029 

  X X  

  various
, n = 3 

recept
acle 

  ≥ 
5.98 

≤ 
0.025 

 

     

Sulfitobacte
r spp. 

Alphaproteob
acteria 

ASV07
058, 

ASV07
185 

holdfa
st 

  ≤ -
3.36 

≤ 
0.023 

X  X X X 

  ASV11
665 

holdfa
st 

  = 
6.45 

= 
0.002 

     

   recept
acle 

  = 
5.96 

= 
0.034 

     

STRESS-INTOLERANT            

Roseobacter 
sp. 

Alphaproteob
acteria 

ASV11
717 

holdfa
st 

Fd > Fv 
> Fs 

 = -
2.95 

= 
0.008 

 

X X X   

Lewinella 
sp. 

Sphingobacte
riia 

various
, n = 3 

recept
acle 

Fd > Fv 
> Fs 

 ≤ -
4.91 

≤ 
0.019 

 X    

  ASV08
338 

blade Fd > Fv 
> Fs 

 = -
7.73 

= 
0.001 

 

     

Glaciecola 
spp. 

Gammaprote
obacteria 

various
, n = 4 

holdfa
st 

  ≤ -
3.28 

≤ 
0.022 

X  X   
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Certain genera had multiple ASVs that appeared to exhibit opposite responses to 

stress. An ASV assigned to Marinomonas declined in F. vesiculosus holdfasts that were 

moved as transplants to the high zone, yet increased in receptacles, showing a possible 

shift in bacterial taxa across the thallus in response to increased exposure. Another group 

of interest that appeared to vary in response to stress, even within a tissue type, was the 

genus Sulfitobacter. Certain ASVs were significantly less abundant in dry holdfast 

communities compared to controls, yet another Sulfitobacter was more abundant in 

holdfasts, and was also more abundant in receptacle communities compared to controls 

(Table 4.5). Examples of a negative response to exposure can be found in ASVs assigned 

to the following genera: Roseobacter, Lewinella, and Glaciecola (Table 4.5). These 

numerous examples based on relative abundance differences across high, mid-, and low 

zones and experimental treatments reveal algal-associated taxa that may be stress-tolerant 

or stress-intolerant to increases in absolute levels of stress or longer periods of exposure. 

 

 

Discussion 

 

 

 Three Fucus congeners that occupy distinct zones in the northeastern Atlantic’s 

rocky intertidal zone were found to have distinctive microbiomes. This suggests that 

intertidal marine bacteria may have different stress tolerances, as do their hosts. In further 

support of  the possibility of zone-specific bacteria, microbial composition changed when 

mid-zone Fucus vesiculosus was transplanted to the more physiologically stressful high-
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zone while microbiomes of back-transplanted controls were not significantly different 

from microbiomes of unmanipulated F. vesiculosus. Using V4 16S rDNA sequences, I 

described fucoid microbiomes to the level of each individual amplicon sequence variant 

(ASV). By comparing the relative abundance of certain ASVs under different stress 

levels, whether across unmanipulated fucoid congeners or in transplant experiments, I 

found some taxa that are potentially stress responsive. Such responses by these bacteria 

may have consequences for the algal host. Strong regional differences in microbial 

composition across the fucoid thallus were found, with holdfast communities being 

particularly divergent from those of blades and receptacles.  

 

 

Natural Surveys 

 

 

Bacterioplankton water-column communities taken from directly above the Fucus 

beds had a different community composition than that of the Fucus-associated bacteria; 

this differentiation in macroalgal microbiomes from the bacteria in the surrounding 

seawater is consistent with earlier studies (e.g. Lachnit et al. 2009, Michelou et al. 2013, 

Grueneberg et al. 2016). Each Fucus species had a significantly different bacterial 

community, despite the similar cell wall composition of these congeneric taxa, which 

supports my hypothesis that macroalgal microbiomes might fit the paradigm that applies 

to distinctive abundance across the vertical stress gradient of most eukaryotic intertidal 

species. The upper boundary for most intertidal organisms is driven by abiotic factors 
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(e.g. high and low temperatures, high irradiance, nutrient availability as a function of 

exposure periods), while lower limits are driven by biotic factors (e.g. herbivory, 

predation, competition; e.g. Connell 1961, Schonbeck and Norton, 1978, 1980, 

Lubchenco 1980, Jenkins et al. 2008). These factors can often interact and have additive 

effects (Williams et al. 2013, Jenkins et al. 2008). While factors that cause stress in the 

intertidal zone are numerous, sub-optimal temperature, desiccation, and exposure time 

are found to have strong effects on macroalgal health and growth (Madsen and Maberly 

1990, Williams and Dethier 2005, Migné et al. 2015). In Fucus gardneri, net 

photosynthesis increased with seawater temperature to a critical point (Colvard et al. 

2014); however, photosynthetic rates decreased in F. gardneri during prolonged exposure 

to the air, as desiccation increased (Williams and Dethier 2005). Upper shore species 

have the capability to have high rates of photosynthesis in air, using CO2 as an inorganic 

carbon source, during the short time before desiccation becomes photosynthetically 

limiting (Madsen and Maberly, 1990Surif and Raven 1990). However, carbon flux of an 

individual alga suggests that photosynthetic performance was always higher underwater 

(utilizing bicarbonate) for macroalgal species inhabiting all levels of the intertidal zone 

(Migné et al. 2015). Thus, major differences in net photosynthesis, growth, and survival 

are not attributed to temperature or thallus desiccation, so much as length of time the alga 

is exposed to air during the day (Wright et al. 2004, Williams and Dethier 2005, Dethier 

and Williams 2009). Intertidal zones in different locations differ in the length of exposure 

that intertidal organisms experience (Helmuth et al. 2002, Dethier and Williams 2009), 

including in this study, by as much as 2 – 4 h longer in the high zone compared to the 

mid-zone during the daytime low tide.  
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Bacterial homeostasis and membrane integrity are determined by solute 

concentration and the osmotic pressure of the surrounding environment (White 2000). It 

is possible that different bacteria have different osmotic tolerances, stratifying their 

distribution in an intertidal zone based on exposure time. Sodium translocation is used by 

some marine bacteria, sodium ion efflux can increase electrochemical gradients in certain 

bacteria (Dimroth 1990); this has been found in marine Flavobacteriia (Inoue et al. 2013). 

Additionally, chloride ion pumps, once thought to be exclusively found in haloarchaea, 

have recently been identified in marine bacteria; Nakajima et al. (2018) suggested that 

these bacteria acquired the necessary genes through horizontal gene transfer from 

haloarchaea. More immersion in lower areas of the intertidal zone may be important to 

certain ASVs.  

 

 

Various physiological stresses are often caused by oxidative stress, leading to the 

build-up of reactive oxygen species (ROS; Davison and Pearson 1996), which can result 

in damage to both the host and its microbiome. ROS formation follows the vertical scale 

of the intertidal zone, where lower intertidal Fucus species had the lowest ROS 

scavenging activity, and upper intertidal species had higher levels (Collén and Davison 

1999a), with each species in each zone having their own ROS-scavenging enzymes and 

protective mechanisms (Collén and Davison 1999b). It is possible that algae receive 

further protection from ROS damage through mutualisms with certain bacteria. Morris et 

al. (2012) found the marine blue-green alga Prochlorococcus required symbiotic 

heterotrophic bacteria to detoxify hydrogen peroxide produced under high light. While 
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macroalgae can use “oxidative bursts” of ROS to defend against bacterial pathogens, 

resident host-associated bacteria can express oxidases to degrade ROS, preventing or 

limiting damage to themselves, and possibly aiding their host (reviewed in Egan et al. 

2012). 

 

 

Tissue Effect 

 

 

 Most macroalgal microbiome studies sample from one unspecified tissue type or a 

subsample of the entire powdered individual. While such investigations are useful for 

determining broad differences in microbiomes, my study demonstrated strong regionality 

of the microbiome on the algal thallus. Across all three Fucus species, holdfast 

communities differed from both receptacle and blade communities. Tissues perform 

specific functions; therefore, associated bacterial communities likely consist of different 

functional partners. Whereas Fucus receptacles and vegetative blades differ in function, 

both contain an extracellular matrix rich in fucoidan and alginic acid (McCully 1966, 

1968; Kloareg and Quantrano 1988); histology suggests that holdfasts have a different 

polysaccharide composition from vegetative tissues (McCully 1966). Yet it is surprising 

that communities did not differ more, because large amounts of fucoidan are secreted 

from conceptacles as gametangia are expelled from receptacles (Speransky et al. 2001), 

providing a prolific carbon source for bacteria. However, fucoidan is only present after a 

certain point of maturation, and large releases from receptacles occur only at maturity 
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(McCully 1968). Vegetative thalli also continuously secrete alginic acid and fucoidan to 

the thallus surface to replenish the outer layer of polysaccharides that peel off (an anti-

epibiont response by hosts); these hydrophilic polysaccharides can prevent desiccation, 

and may also provide a buffer against sudden changes in osmotic stress by modifying the 

transport of ions (osmoregulation; McCully 1966). These microenvironments provide 

ample carbon sources and protection from desiccation and osmotic stress for any 

associated bacteria. Polyphenolics are present in all Fucus tissues, and are thought to 

have antifouling effects; distinct types of tannin-like polyphenols were identified in 

thallus and holdfast tissue (McCully 1966). Different tissues may have different 

defensive compounds that may contribute to differences in bacterial community structure.  

 

 

Bacterial densities are known to change across macroalgal thalli (Tujula et al. 

2006), notably increasing from the tips to the holdfast in some species (Royer et al. 

2018). Very few studies, however, have identified specific compositional differences in 

macroalgal microbiomes across tissue types within a thallus (but see: Staufenberger et al. 

2007, Quigley et al. 2018). Quigley et al. (2018) found richness and diversity differences 

between holdfast and blade margin in a cultured isolate of the red alga Porphyra 

umbilicalis. 

 

 

 Rhizoids are the uniseriate filaments that initially attach an alga to a substrate and 

develop into the holdfast structure. Certain taxonomic groups of symbiotic bacteria are 
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essential to rhizoid development by supplying required morphogens (Spoerner et al. 

2012, Grueneberg et al. 2016, Weiss et al. 2017). A working model for Ulva spp. 

proposed by Spoerner et al. (2012) hypothesized that rhizoid cells excrete some diffusible 

substance to attract the necessary bacteria, starting a cascade of bacterial activity that 

ensures cell division, rhizoid attachment, and normal morphological development; this 

may define holdfast communities as different from others.  

 

 

How holdfast communities differ from receptacle and blade communities varies 

among the three Fucus species (i.e. there is an interaction between species and tissue). 

Thallus surface areas increase from high to low zones, and increase in proportion to the 

holdfasts; these spatial differences might cause differences in bacterial competition and 

colonization on receptacle and blade surfaces. Holdfast communities also vary in canopy 

coverage: holdfasts of F. spiralis are often exposed to environmental stresses at low tide 

due to the low stature of thalli; whereas, F. vesiculosus holdfasts often are covered by 

their own fronds, and F. distichus holdfasts often are surrounded by other filamentous 

and foliaceous macroalgae. In this study, covered environments under canopy averaged 3 

– 8 °C cooler than exposed microenvironments, which could influence microbial 

community composition.  

 

 

While I cannot completely rule out the possibility that sampled holdfasts contain 

bacterial contaminants from the surrounding substrate or microorganismal epiphytes, care 
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was taken to remove non-fucoid material with aid of a microscope when necessary after 

collection. Holdfasts of F. spiralis were collected from otherwise bare/thin crust-covered 

substratum and lacked epiphytes or other visible biota, yet distinctions of microbiomes 

between holdfasts and other tissues (blades, receptacles) remained, lending support that 

regional differences in tissue that I report are real differences. 

 

 

Transplant Experiment 

 

 

 Fucus vesiculosus transplants in the high zone clearly experienced more stress 

than back-transplanted controls, because their emersion time at low tide was 2 – 4 h 

longer. Their associated bacterial communities became different. This likely reflects a 

major role of elevated environmental stress. Although direct and indirect biotic effects 

cannot be discounted without further experimental laboratory work, and I anticipate some 

will be found. Higher stress experienced by F. vesiculosus transplanted to the high zone 

might have changed their physiology in some fashion that leads to selective effects on the 

transplant microbiome. Both dry and sea-watered microbial communities differed from 

back-transplanted controls, dry ones more than sea-watered ones. Sea-watered 

communities received partial relief from thermal and desiccation stress, and, although 

they still experienced additional irradiance on sunny days, they have a statistically 

intermediate composition of bacteria between the two treatment extremes: dry and back- 

transplanted control. While increased exposure during diel low tides increased stress 
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(Williams and Dethier 2005), summer low tides in Maine occur in early morning or 

evening, lessening the potential of exposure stress. Irradiance measures during midday 

were much higher than either morning or afternoon measurements at my study sites. If 

longer exposure during low tides had occurred during these increases in irradiance, stress 

levels would have been higher. Additionally, mean daily exposure time decreased 

throughout this two week experiment. 

 

 

Due to the significant effect of tissue type, the treatment effect on taxa was 

explored on a tissue level. There are far fewer significant changes in relative abundance 

among treatments for blade samples, compared to other tissue types, making it most 

practical to compare significant changes over time; three ASVs changed significantly 

from the beginning to the end of the experiment. All are members of the 

Alteromonadales, and each had a minimum of an 8-fold increase in relative abundance: 

Psychromonas, Alteromonas, and Pseudoalteromonas. While less is known of the role of 

Psychromonas in macroalgal communities, Alteromonas and Pseudoalteromonas produce 

antibiotics (Rao et al. 2005, Wiese et al. 2009, Goecke et al. 2013), and can cause disease 

(Vairappan et al. 2001, Wiese et al. 2009, Grueneberg et al. 2016). Although other 

potential effects are known for these genera, it is likely that these ASVs are increasing in 

response to stress and may be negatively affecting the Fucus host. The meristem of kelps 

is found at the base of the blades. Kelp blade tips have epiphytized, old tissue at the end 

of the blade that experience higher drag and perhaps nutrient limitation and disease. 

Unsurprisingly, Staufenberger et al. (2007) found differences between the bacteria on 
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surfaces of the meristem and the blade tips. Host stress may cause mutualistic bacteria to 

change their relationships to negatively impact the host (pathogenic relationship), or 

allow for the invasion of new pathogenic bacteria, as may be the case in F. vesiculosus 

blade tissue, because two of the three significantly-increasing ASVs were not detected, 

even at low levels, in back-transplant control communities, and were not detected in 

native F. spiralis CAC microbiomes. In prolonged periods of transplant of F. vesiculosus 

to the upper intertidal zone, Schonbeck and Norton (1978) found deterioration of thalli. 

My experiments were kept to two weeks to avoid such effects, even though a longer 

period might allow more convergence to a F. spiralis microbiome. 

 

 

Universal Taxa 

 

 

All universally present taxa either maintained their abundance or positively 

responded to increase stress. Burkholderia-Paraburkholderia (ASV02929), 

Granulosicoccus (ASV03270), and Octadecabacter (ASV13813) were found universally 

throughout the three tissue types and three Fucus species. Paraburkholderia is the result 

of a recent split of Burkholderia (Sawana et al. 2014) and contains environmental species 

from very diverse ecological niches including metal-polluted soils, legume nodules, and 

arsenic-rich marine sediments (Dobritsa and Samadpour, 2016). This may be the first 

time a member of this genus has been identified in macroalgae or in intertidal 

environments. Granulosicoccus is a highly abundant ASV in receptacle and blade 
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microbiomes across Fucus species, and was found in Fucus spp. microbiomes previously 

by Lachnit et al. (2009) and Dogs et al. (2017). A strain closely related to 

Granulosicoccus antarcticus was isolated from Laminaria hyperborea and found to 

digest algal-derived mannitol; it was only detected in natural kelp populations during the 

growing season and was hypothesized to be an early colonizer of new tissue (Bengtsson 

et al. 2011). So, a commensal, if not mutual, relationship is already established between 

brown macroalgae and certain Grannulosicoccus. Most Octadecabacter ASVs, including 

ASV13813 are either in higher abundance in, or are exclusive to, holdfast communities, 

across Fucus species and transplant treatments. An unclassified Rhodobacteraceae 

closely related to Octadecabacter, while not inducing complete morphogenesis, produced 

a new Ulva morphotype with enlarged cells and vacuoles (Gruenenberg et al. 2016). 

Bacteria that produce auxin-like morphogens cause host cell growth and division through 

vacuole expansion, producing a rhizoid that attaches the alga to the substratum (Spoerner 

et al. 2012, Gruenenberg et al. 2016). Perhaps Octadecabacter produces a morphogen 

capable of partially stimulating macroalgal production of rhizoids, which might explain 

why it is associated with holdfast communities. Dogs et al. (2017) isolated an 

Octadecabacter strain from Fucus spiralis that can digest glucose, mannitol, and fucose, 

and also produced and released large amounts of vitamin B12, a vitamin that no eukaryote 

can produce (Kazamia et al. 2012, Helliwell et al. 2015). Another universally present 

group of interest is the AEGEAN-169 marine group in the Rhodospirillaceae: one ASV 

unique to each Fucus species is low in abundance in the holdfasts, yet high in receptacles 

and blades (ASV04184 in F. spiralis, ASV00914 in F. vesiculosus, and ASV00916 in F. 

distichus). ASVs can identify environmental dynamics, which would otherwise fail to be 
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detected with OTUs (Eren et al. 2013, Needham et al. 2017). In F. vesiculosus 

transplants, the ASV00914 maintained a pattern of low abundance in holdfasts, and high 

abundance in other tissues, which were slightly more abundant in higher stress 

treatments, but not to a great extent. Rhodospirillaceae OTUs were found to be more 

abundant in bleached Delisea pulchra, when directly compared to healthy tissue (Zozaya-

Valdes et al. 2015) and Rhodospirillaceae have only been found to act as a pathogen 

(Florez et al. 2015). But the patterns seen in this study do not follow that of a pathogen; 

perhaps they play an unrecognized role in fucoid microbiomes. All ASVs that are 

universally present in this study either increase in abundance in response to increased 

stress, or are unaffected and maintain their abundances across stress levels. These taxa 

may be important for maintaining the holobiont, and may continue this function in times 

of stress. It will be helpful to isolate these bacteria and perform reconstitution 

experiments, applying bacterial strains to axenic algal hosts, to determine their specific 

role(s). 

 

 

Stress-Responsive Taxa 

 

 

 I explored ASVs of interest that respond to stress across natural stress gradients 

across the low, mid-, and high intertidal zones or across stress treatments: back-transplant 

control, sea-watered, and dry. Representative strains of almost all of these taxa (Table 

4.5) have demonstrated the ability to digest algal polysaccharides. An isolate sister to 
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Loktanella and another sister to Roseobacter isolated from the kelp Laminaria 

hyperborea digest alginate, fucoidan, and mannitol (Bengtsson et al. 2011). Over 25 % of 

isolates from the fucoid Ascophyllum nodosum were able to digest alginate and other 

polysaccharides including isolates of Cobetia, Maribacter, Marinomonas, Cellulophaga 

and Pseudoalteromonas (Martin et al. 2015). Isolates of Glaciecola and Alteromonas also 

digest algal polysaccharides (reviewed in Goecke et al. 2010). Loktanella, 

Octadecabacter, and Sulfitobacter strains isolated from Fucus spiralis grew to varying 

degrees on glucose, mannitol, sucrose, and one strain of Sulfitobacter grew on fucoidan 

(Dogs et al. 2017). Pseudoalteromonas can degrade various large polysaccharides into 

mono- and disaccharides that other bacteria can then utilize (Ivanova et al. 2002). This 

could cause an additive, if not, synergistically negative effect, leading to algal 

decomposition. A hypothesis (Miranda et al. 2013). for the propensity of algal-associated 

bacteria to digest cell wall material is that macroalgal-bacterial coevolution led to 

multicellular algae as a consequence of selection on algal-associated bacteria to produce 

morphogens that increased the surface area of the bacterial niche and supplied carbon 

from larger amounts of cell wall polysaccharides. Polysaccharide consumption must be 

kept in balance for the success of the holobiont, but that may or may not be possible 

while a host is under stressful conditions.  

 

 Antibacterial and antimicrobial compounds produced by algal microbiomes may 

be responsible for, not only preventing fouling and pathogens, but possibly for 

maintaining a balance of mutual relationships among Fucus and its various bacteria. 

These relationships may get out of balance when symbionts are stressed. Bacteria with 
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antimicrobial activity are more prominent on macroalgae rather than on phytoplankton 

(Wiese et al. 2009), suggesting bacterial interspecific competition is necessary on sessile 

macroalgal surfaces. Certain bacteria will benefit from increases in stress levels, while 

others will be negatively affected. Both potential stress-tolerant and intolerant ASVs are 

assigned to taxa that are known for antimicrobial activity. Changes in competitive 

bacteria will affect algal hosts depending on the roles that these bacteria may play. ASVs 

from genera with isolates that have previously shown antimicrobial activity that 

demonstrated positive responses to stress include Cellulophaga, Alteromonas, and 

Pseudoalteromonas. Cellulophaga isolated from the kelp Saccharina latissima (formerly 

Laminaria saccharina) can inhibit yeast (Wiese et al. 2009) and Alteromonas isolates 

from Ulva lactuca showed low levels of inhibition against a variety of bacteria, including 

strong competitors like Pseudoalteromonas and Roseobacter isolates (Rao et al. 2005). 

These symbionts may increase their antibiotic abilities in times of stress, outcompeting 

other bacteria. The genus Pseudoalteromonas is of interest to many due to its connection 

with macroalgal diseases and algicidal abilities (Wang et al. 2008, Wiese et al. 2009, 

Grueneberg et al. 2016). Pseudoalteromonas strains can inhibit members of diverse 

genera, but also members of its own genus (Holmstrom et al. 2002, Rao et al. 2005, 

Wiese et al. 2009). Perhaps certain strains of Pseudoalteromonas are usually symbiotic or 

commensal, but become parasitic under stress and outcompete other symbionts. Future 

experiments can test this. 
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Certain ASVs from genera with isolates that have previously shown antimicrobial 

activity that demonstrated mixed and negative responses to stress include Glaciecola, 

Roseobacter, and Sulfitobacter. Glaciecola and Sulfitobacter isolated from the kelp 

Saccharina latissima can inhibit yeast (Wiese et al. 2009). Members of the genus 

Roseobacter are considered to be some of the best competitors in inhibition experiments 

(Rao et al. 2005, Dogs et al. 2017). Some Roseobacter are pathogenic (Case et al. 2011); 

Roseobacters and various members of the family Rhodobacteraceae can produce an 

antibiotic called tropodithietic acid (Brinkhoff et al. 2004) that inhibits many marine 

bacteria. Multiple Sulfitobacter strains showed inhibitory effects against a panel of 

marine bacteria (Dogs et al. 2017). Bacteria with weaker antimicrobial acitivities (e.g. 

Glaciecola) may be out-competed, and the algal host could lose symbionts in times of 

stress. Stronger competitors such as Roseobacters, which may be important in 

maintaining the proper balance of associated antimicrobial bacteria to fend off pathogens 

or fouling organisms (Holmstrom et al. 2002), may lose dominant positions, greatly 

affecting the community structure in times of increased stress. 

 

 

 Effects on macroalgal morphogenesis and growth, as well as nutrient supply may 

be more prominent in potential stress-tolerant taxa. Bacterial control over growth and 

morphogenesis was explored in great detail in green macroalgae (Provasoli & Pintner 

1980, Matsuo et al. 2003, 2005, Marshall et al. 2006, Singh et al. 2011, Spoerner et al. 

2012, Grueneberg et al. 2016, Weiss et al. 2017, Ghaderiardakani et al. 2017). Despite 

overall differences in bacterial community diversity among the green, red, and brown 
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macroalgal lineages (Lachnit et al. 2009, Barott et al. 2011), bacteria and bacterial 

morphogens isolated from one algal species are known to effect growth and development 

of other species in the same lineage (Matsuo et al. 2005, Marshall et al. 2006), and 

sometimes across lineages (Singh et al. 2011), but specificity is also observed. The 

microbiome of Porphyra umbilicalis contained Hyphomonas, which had been found to 

support normal development in a closely related red alga Pyropia yezoensis, and also 

contained abundant Sulfitobacter (Quigley et al. 2018), which stimulate cell division in 

diatoms and green macroalgae. It is, therefore, possible that bacterial groups known to 

induce green algal morphogenesis may be relevant to this study of fucoid brown algae; 

however, they are unlikely to be the same ASVs (strains; Weiss et al. 2017). Bacteria 

isolated from Ulva spp. from the genera Psychrobacter, Cellulophaga, 

Pseudoalteromonas, Cobetia, positively influenced growth and morphology of axenic 

Ulva linza (Marshall et al. 2006), and a strain of Marinomonas isolated from Ulva 

fasciata induced algal morphogenesis and growth (Singh et al. 2011). Studies by 

Spoerner et al. (2012) and many others that build from this work discovered a tripartite 

system between Ulva spp. and two required symbiotic groups of bacteria. The first group 

consists of bacteria that can produce an MS2 morphogen, which induces cell division and 

growth, similar to the plant hormone cytokinin. Strains assigned to Sulfitobacter 

(Spoerner et al. 2012), Pseudoalteromonas (Grueneberg et al. 2016), and Cellulophaga 

(Ghaderiardakani et al. 2017) have been found in this study of fucoid algae and increase 

in abundance in response to increased stress. The second group of bacteria important to 

algal morphogenesis produce MS6, which is required for normal cell wall formation and 

produce the algal rhizoid, similar to effects of the phytohormone auxin. While two 
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bacteria were previously identified to have this ability (Spoerner et al. 2012, Grueneberg 

et al. 2016, Weiss et al. 2017), only Maribacter is found in my study. Here, Maribacter 

ASV06794 and ASV06944 increased in abundance with increased stress. While 

morphogens may be functional at low concentrations, their activity can be lost over time 

without replenishment (Matsuo et al. 2005; i.e. the macroalga takes up the morphogen to 

maintain normal morphology). Under high-stress conditions, it may be that macroalgae 

require more morphogen to maintain homeostasis, and it appears that certain taxa known 

for producing such morphogens increase in abundance with stress and therefore may 

increase morphogen availability to their fucoid host when needed. 

 

 

 Algal-associated bacteria can provide required nutrients to their host, and 

examples of potentially stress-tolerant taxa that can produce such nutrients were found in 

this study. Dogs et al. (2017) found that certain Loktanella, Octadecabacter, and 

Sulfitobacter strains produced very high concentrations of vitamin B12 (cobalamin) in 

their culture media, which would make B12 available to their F. spiralis host. Because 

many algae require an exogenous source of vitamin B12 (Croft et al. 2005, Helliwell et al. 

2015), and B12 is required for fucoid growth (Fries et al. 1993), these genera may be 

important in maintaining algal growth in times of stress. 
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Conclusions 

 

 

 In summary, bacterial communities were found to be distinct across zones on 

algal hosts that are closely related (congeners) and biochemically similar, following well-

established patterns of distribution of macroalgal and invertebrate species across the 

vertical gradient of stress.  Further, I demonstrated the importance of examining 

eukaryote-associated microbiomes on a tissue-specific level, because holdfast microbial 

communities are different from those of blade and receptacles. While mid-zone bacterial 

communities on Fucus vesiculosus did not become a microbial community identical to 

the microbiome of high zone Fucus spiralis in the 2 week transplant experiment, 

differences in transplanted communities correlated with increases in environmental stress. 

Specific ASVs were identified as potentially stress-responsive due to shifts in abundance 

across vertical zonation in natural surveys of Fucus species, as well as changes in 

abundance due to stress treatments in transplant experiments. Algal polysaccharide 

digestion and antimicrobial abilities are known from taxa assigned to ASVs with variable 

stress response; however, taxa known for their involvement in algal morphogenesis and 

nutrient provision were assigned to ASVs that became more abundant in the host in 

environments with increased stress, and may be stress tolerant intertidal bacteria. This 

study provides a rich series of hypotheses about the roles and responses of bacterial taxa 

to intertidal stress, which can now be tested experimentally. Overall, my results suggest 

that Fucus species which are ecosystem engineers, may be able to maintain symbiotic 
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relationships with some bacteria in times of stress that are important to their role as 

structural ecosystem engineers.  
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CHAPTER 5 

LATITUDINAL EFFECTS ON TRANS-ATLANTIC  

MACROALGAL MICROBIOMES OF  

FUCUS AND PORPHYRA SPP. 

 

 

Introduction 

 

 

 Bacteria have important associations with various eukaryotes in 

ecosystems across the globe, and this holds true within marine algal communities as well. 

Some bacteria associated with macroalgae are essential to them. Bacteria are required for 

normal development and morphogenesis (Fries 1970, 1975, 1977, Provasoli and Pintner 

1980, Matsuo et al. 2003, 2005, Marshall et al. 2006, Spoerner et al. 2012, Grueneberg et 

al. 2016, Ghaderiardakani et al. 2017). Many algal-associating bacteria make enzymes 

that degrade algal polysaccharides (Armstrong et al. 2001, Kazamia et al. 2012, Labourel 

et al. 2014, reviewed by Goecke et al. 2010, Bengtsson et al. 2011, Martin et al. 2015, 

Dogs et al. 2017). Anti-microbial and antibiotic activities of algal-associated bacteria 

ward off foreign colonizing microbia (Rao et al. 2005, Wiese et al. 2008, Goecke et al. 

2013, reviewed by Wichard 2015, Dogs et al. 2017, Kim et al. 2017). Overall algal 

survival likely requires a symbiosis between macroalgae and certain bacteria, yet little is 

known of whether these association change across environments. 
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Few studies have explored microbiome-environmental interactions. Examples 

include changes in microbiomes of algae between regions with different salinities 

(Lachnit et al. 2009. Dogs et al. 2017), changes in microbial richness and diversity 

between seasons (Miranda et al. 2013, Goecke et al. 2013), and changes in bacterial 

composition between reproductive and vegetative states (Michelou et al. 2013, Quigley et 

al. in prep). Environmental drivers of these changes may have serious effects on 

macroalgal life cycles, growth, and survival. Intertidal macroalgae act as food sources, 

nurseries, and habitat refugia (at low tide). Given that some bacteria are required for 

morphological integrity and, therefore, the ecological function of the macroalgae, it is 

essential to understand how environmental factors affect these relationships, and how 

sensitive these associations may be to a warming climate.  

 

 

Environmental factors vary across latitudinal scales. Spatial patterns of abiotic 

stress and range retractions typically focus on large-scale trends such as latitudinal 

temperature gradients (LTG; Deutsch et al. 2008, Chen et al. 2011) or photoperiod. 

Overall, sea surface temperatures (SST) follow LTGs (Rind et al. 1998) from the tropics 

to the poles, however, temperatures are more variable at finer scales and do not strictly 

adhere to latitudinal gradients, whereas photoperiod does adhere to latitudinal gradients. 

Lüning (1990) concluded that SST tolerance of many seaweed species is at least partially 

responsible for geographic distributions of macroalgae, regardless of photoperiod. This is 

demonstrated by the influence of ocean currents on algal distributions, instead of light 
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and daylength, in which a stricter latitudinal distribution would be expected (Lüning 

1990). Further still, biotic mitigation of stress can dampen broad-scale thermal trends (i.e. 

cm-thick mussel and macroalgal beds eliminated temperature differences across sites at 

different latitudes; Jurgens and Gaylord 2018) and patterns of thermal stress based on 

organismal temperatures during daily exposure to the air do not follow latitudinal 

patterns, or those of SST, but rather the timing of low tides (Helmuth et al. 2002). By 

comparing microbiomes of macroalgae across the North Atlantic, I can assess forcing 

variables affecting microbiome composition, and can detect possible breaks in 

community structure and patterns of stress across latitudinal scales. Latitudinal replicates 

across the Atlantic allow photoperiod to be examined with spatial replication. 

 

 

I characterized microbial communities of sympatric species Fucus vesiculosus 

(Phaeophyceae) and Porphyra umbilicalis (Rhodophyta) that occupy the mid-intertidal 

zone across the North Atlantic. By working with both red and brown macroalgae, I can 

assess whether microbial diversity is affected by differences in cell wall composition 

(Kloareg and Quantrano 1988) across their biogeographical ranges. Eleven sites were 

selected for trans-Atlantic comparisons, not based solely on latitudes, but on comparable 

environmental factors such as SST and air temperature. Fucoids are perennials that make 

up a major structural component of the North Atlantic intertidal zone, acting as 

ecosystem engineers. The biogeographical distribution of the model species F. 

vesiculosus ranges from North Carolina to Greenland (Muhlin and Brawley 2009) and 

from the Faroe Islands to Spain, including the Canary Islands off the Moroccan coast 
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(Lüning 1990, Gallardo et al. 2016). While slightly more constrained, the distribution of 

P. umbilicalis extends to southern New England in the western North Atlantic and to 

Portugal in the eastern North Atlantic (Brodie et al. 2008, Guiry and Guiry 2015, pers. 

obs. S. H. Brawley). 

 

 

The questions this research aims to answer are: (1) Do microbiomes of algal 

samples differ from those of the surrounding water column and substratum? (2) Are there 

differences between microbial communities of sympatric hosts associated with 

differences in cell wall polysaccharides (i.e. Fucus vesiculosus versus Porphyra 

umbilicalis)? (3) Does stress level in the intertidal zone affect microbial composition on 

an identical host (P. umbilicalis from high and mid-zones)? (4) Are there correlations 

between microbial diversity of F. vesiculosus across latitudes and degree of 

environmental stress across latitudes? (5) Are mid-zone microbiomes of Fucus 

vesiculosus from northern sites similar to low-zone microbiomes of a site from an 

intermediate latitude (i.e. F. distichus from Schoodic, ME); are mid-zone microbiomes of 

Fucus vesiculosus from southern sites similar to high-zone microbiomes of a site from an 

intermediate latitude (i.e. F. spiralis from Schoodic, ME)?  
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Methods 

 

 

I explored latitudinal effects on the microbiomes of two sympatric mid-intertidal 

macroalgae with diverse evolutionary history: Fucus vesiculosus (Phaeophyceae) and 

Porphyra umbilicalis (Rhodophyta) were collected from 11 trans-Atlantic locations (Fig. 

5.1, Table 5.1) during the summers of 2015 and 2016. Using randomized numbers, I 

sampled three individuals from two 20 m transects (located ~40 – 100 m apart) at two 

collections per summer. Collections were made at least two days apart. The holdfast, a 

reproductive receptacle, and a vegetative blade tip were harvested from each individual 

of F. vesiculosus; the holdfast and a portion of the blade margin were collected from P. 

umbilicalis. In most cases, both species were collected from the same transect. However, 

certain sites did not have both F. vesiculosus and P. umbilicalis in the same local area 

(e.g. Portugal sites); in such cases transects sites were as close as possible (< 10 km 

apart). Two sites were moved between 2015 and 2016 due to availability of a collector at 

remote sites (i.e. Greenland) or to loss of a population due to unknown factors (i.e. 

Sidmouth moved to Minehead, England). The biogeographical range of F. vesiculosus 

extends further south than that of P. umbilicalis; thus, the latter was not collected at the 

southern-most collection sites. In some instances, other members of the genus Porphyra 

were collected for comparison [Table 1: (P)] when P. umbilicalis was not available; the 

similar cell wall structure and composition across Porphyra species still permits 

examination of differences in microbial composition between sympatric red algal and 

brown algal hosts. I also collected a water sample directly above each transect before the 
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tide receded during each collection, as well as a surface scraping of the substratum 

surrounding the algae on each transect. At Schoodic, ME, I also collected samples of 

Fucus congeners from high, mid-, and low intertidal zones (F. spiralis, F. vesiculosus, 

and F. distichus subsp. edantatus, respectively; Quigley et al. in prep).  

 

 

 

Figure 5.1. Map of collection sites.  
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Table 5.1. Collection sites and coordinates; F = Fucus vesiculosus, P = Porphyra 

umbilicalis, and (P) = Porphyra spp. 

 

  

Each algal sample was harvested with a sterile razor, washed with autoclaved, 

sterile-filtered seawater, placed in a sterile Falcon tube, and placed on ice for transport. 

Samples were wrapped in sterile foil sheets at the laboratory, and flash-frozen with liquid 

Site Species Latitude, Longitude Year 
Northwestern Atlantic 
 

   

Uummannaq, Greenland F 70.6737 ° N, -52.1202° W 2016 
Tasiilaq, Greenland 
 

F 65.6075° N, -37.5667° W 2015 

Halifax, NS, Canada 
 

F,(P) 44.6478° N, -63.5714° W 2015, 2016 

Schoodic, ME, USA 
 

F,P 44.3340° N, -68.0577° W 2015, 2016 

Woods Hole, MA, USA F 41.5248° N, -70.6742° W 2015 
Newport, RI, USA 
 

F,(P) 41.4513° N, -71.3572° W 2016 

Lewes, DE, USA 
 

F,(P) 38.7880° N, -75.1603° W 2015, 2016 

Beaufort, NC, USA 
 

F 34.7203° N, -76.6745° W 2015, 2016 

Northeastern Atlantic 
 

   

Bodø, Norway 
 

F,P 67.394898° N, 14.6328° E 2015, 2016 

Oban, Scotland, UK 
 

F,P 56.2962° N, -5.6539° W 2015, 2016 

Sidmouth, England, UK F,P 50.675123° N, -3.2462° W 2015 
Minehead, England, UK F,P 51.1832° N, -3.3854° W 2016 
    
Viana do Castelo, Portugal F 41.6958° N, -8.8512° W 2015, 2016 
Amorosa, Portugal 
 

P 41.6426° N, -8.8238° W 2015, 2016 

Cádiz, Spain F 36.4680° N, -6.2521° W 2015, 2016 
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nitrogen. Water samples were collected in 1 L sterile polypropylene bottles, transported 

on ice, and immediately pre-filtered through a 1.0, 5.0 or 7.0 µm sterile filter, followed by 

a 0.2 µm sterile filter that retained the bacterial community of the water column. Filters 

and scrapings from the substratum on each transect were also flash-frozen. Samples were 

either shipped to UMaine on dry ice, and stored at -80 °C, or lyophilized and shipped to 

UMaine with silica desiccant. 

 

 

Each sample was lyophilized, and pulverized using a Geno/Grinder 

(SPEXSamplePrep, Metuchen, NJ; 2 min, 600 strokes/min, with 2.4 mm zirconium 

beads). DNA was extracted using the Qiagen DNeasy Plant MiniKit protocol 

(Germantown, MD). I followed the protocol for amplifying the V4 hypervariable region 

of the 16S rDNA in Quigley et al. (in prep), using genus-specific peptide nucleic acid 

(PNA) clamps for Porphyra (Quigley et al. 2018) and Fucus (Quigley et al. in prep). PCR 

products were cleaned, quantified, and pooled (96 amplicon libraries per pool) as 

described in Quigley et al. (2018). Pools were sequenced on an Illumina MiSeq using the 

Illumina sequencing kit (v.3) and protocol. Paired-end reads were demultiplexed 

(Quigley et al. 2018), merged, trimmed of primer sequence, and quality-filtered (Eren et 

al. 2013). Datasets were analyzed using Minimum Entropy Decomposition (Eren et al. 

2015). 
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The average number of high quality, merged V4 reads was 85,662; the smallest 

dataset had 3,045 reads and the largest had 701,180 reads. The MED pipeline version 2.1 

command "decompose" was run with default parameters except that the minimum 

substantive abundance (M) was set to 100 as described in Quigley et al. (2018). The 

dataset was divided into 7 separate runs (5 runs of 200 samples, 1 run with 100, and 1 run 

with 123 samples) and then recombined to reflect the presence and abundance of each 

sequence. The MED analysis identified 14,791 ASVs (amplicon sequence variants) that 

had ≥ 100 assigned reads across the 1,223 samples. Sequences will be deposited to the 

SRA at NCBI (GenBank).  

  

 

Statistical analyses were performed in R statistical software version 3.3.3 (The R 

Foundation for Statistical Computing, 2017). Microbial diversity was examined with the 

Morisita-Horn distance index for differences in relative abundance of ASVs (vegdist 

function, vegan version 2.4-4, Oksanen et al. 2017). Nonparametric permutational 

multivariate analyses of variance (adonis function, vegan) were used to compare water 

column and substrate scrapings versus algal samples, species (F, vesiculosus, and P. 

umbilicalis), tissue types (blades, receptacles, and holdfasts), collection dates, and 

locations. I blocked samples to account for possible differences between transects (strata 

function). Multiple comparisons were corrected for (pairwise.adonis function; Arbizu 

2017) using a Holm p-value correction (Holm 1979). All figures were produced with 

ggplot2 (Wickham, 2010).  
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Results 

 

 

To examine whether macroalgal microbiomes were composed of bacteria that are 

unique from that of the surrounding environment, I compared water column, substratum 

scraping, and algal samples. I only used sites where both types of environmental samples 

were taken (n = 8 sites in 2015 (Table 1). Permutational analyses found macroalgae, the 

water column and the substratum have distinct microbiomes (sample type: F(3, 572) = 

11.75, p = 0.001, Fig. 5.2). Water column communities are distinct from those of 

macroalgae (sample type: F(1, 257) = 10.36, p = 0.001); Substratum scrapings also have 

a significantly different community than macroalgal communities (sample type: F(1, 254) 

= 5.16, p = 0.001). In response to my first question, these two macroalgae do have 

distinct microbiomes that differ from those of the surrounding environment.  
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Figure 5.2. Ordination of microbial communities of all macroalgal, water column, and 

substratum samples across sites over two summer collections (2015 and 2016; n = 1223; 

NMDS, bray distance index). 

 

 

 Because of differing abilities of certain bacteria to digest various macroalgal 

polysaccharides, I examined microbial communities of two sympatric hosts with different 

cell wall polysaccharide compositions and from eukaryotic supergroups (the brown alga 

Fucus vesiculosus, Phaeophyceae, Stramenopila, and the red alga Porphyra spp., 

Rhodophyta, Archaeplastida). I compared vegetative samples from sites where both 
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species were collected (i.e. excluding Greenland sites, Cádiz, and Beaufort) using a 

permutational analysis. There are significant differences between microbial communities 

of vegetative F. vesiculosus and Porphyra spp. (species: F(1, 447) = 110.53, p = 0.001 

Fig. 5.3). There is also a significant effect of tissue type (F(3,447) = 44.83, p = 0.001, 

Fig. 5.3). I can conclude that there are differences between microbial diversity of 

sympatric hosts with different compositions of polysaccharides in their cell walls. 
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Figure 5.3. Ordination of microbial communities of all tissues types of Porphyra spp. and 

Fucus vesiculosus from all sites except Greenland, Cádiz, and Beaufort, where Porphyra 

spp. are not found (NMDS, bray distance index).  

 

 

 In order to validate that the intertidal stress gradient affects microbial 

composition, not minor differences in congener species, I characterized the microbiome 

of P. umbilicalis from both the high and mid-zones at one site in Schoodic, ME. 



 147 

Permutational analyses found significant differences between high and mid-zone 

communities (F(1, 84) = 3.42, p = 0.004), as well as differences in microbial diversity 

between blade margins and holdfasts (tissue: F(1, 84) = 7.69, p = 0.001). However, there 

is a lot of variability across community composition collected on different days, years, 

and even transect. Zonation rather than host species defines microbial composition, but 

microbial communities of P. umbilicalis are diverse.  

 

 

 To examine latitudinal effects on microbial diversity, I compared vegetative 

microbiomes of F. vesiculosus from 11 sites across the North Atlantic. There is 

significant effect of site on the microbial composition (F(10, 230) = 22.76, p = 0.001); 

pairwise comparisons found that each site had a significantly different bacterial 

community, except for Bodø, Norway, Greenland (both sites), England (both sites), and 

Schoodic, ME (pairwise adjusted p-values ranged from 0.06 to 0.27). There are trends of 

differences in sites from northern to southern latitudes (Fig. 5.4).  
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Figure 5.4. Ordination of microbial communities of vegetative blade samples of Fucus 

vesiculosus (NMDS, bray distance index) collected from all sites. 

 

 

To examine whether stress levels are comparable from vertical to latitudinal 

scales, I compared microbial compositions of F. vesiculosus from sites at southern and 
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northern latitudinal limits of the biogeographic range to Fucus congeners from an 

intermediate latitude (Schoodic ME). For each analysis, the extreme site was “group 1” 

and was analyzed with F. vesiculosus = “group 2”, F. distichus = “group 3”, and F. 

spiralis = “group 4” from Schoodic, ME; I examined Bodø, Greenland, Cádiz, and 

Beaufort. There was a significant effect of group in each analysis (group: p = 0.001for 

all; Bodø F(3, 95) = 10.11, Greenland F(3, 89) = 10.87, Cádiz F(3, 94) = 20.03, Beaufort 

F(3, 95) = 28.77). Pairwise comparisons showed that the F. vesiculosus microbiome from 

Bodø, Norway significantly differed from that of F. spiralis from Schoodic, ME (p-adj. = 

0.006), but not from lower intertidal species (F. vesiculosus: p-adj. = 0.090, F. distichus: 

p-adj. = 0.090; Fig. 5.5b).  Although the same pattern holds true of populations from 

Greenland when compared to congener fucoids from Schoodic, ME (Fig. 5.5a), all groups 

are statistically distinct (alpha level of 0.05, p ≤ 0.030; of note, an alpha of 0.01 

distinguishes F. spiralis communities from those of F. vesiculosus from Greenland). 

Microbial composition of F. vesiculosus from Beaufort, NC significantly differs from 

that of all Fucus congeners from Schoodic, ME (p-adj = 0.006, Fig. 5.5c). Again, the 

same pattern held for populations from Cádiz, Spain (p-adj = 0.006, Fig. 5.5d), where F. 

vesiculosus microbial communities from southern latitudes are different from those of all 

Fucus species from intermediate latitudes. Mid-zone microbiomes of Fucus vesiculosus 

from northern sites are similar to mid- and low-zone microbiomes of a site from an 

intermediate latitude, however, mid-zone microbiomes of F. vesiculosus from southern 

sites are distinct from all Fucus congener microbiomes of a site from an intermediate 

latitude. 
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Figure 5.5 Ordination of vegetative microbiomes of Fucus spiralis (high zone), Fucus 

vesiculosus (mid-zone), and Fucus distichus (low zone) from an intermediate site 

(Schoodic, ME) compared to the microbiome of vegetative Fucus vesiculosus from 

extreme site: a) Greenland and b) Bodø at extreme northern latitudes, and c) Beaufort and 

d) Cádiz from extreme southern latitudes, representing the species boundary of Fucus 

vesiculosus. 
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Discussion 

 

 

Two sympatric macroalgae, Fucus vesiculosus and Porphyra spp., at 11 trans-

Atlantic sites have different microbiomes, most likely due to differences in the 

polysaccharide composition of cell walls and mucilages between brown and red algae, 

that may attract different bacteria. Vertical stress regimes that define distinct levels of the 

intertidal zone also define macroalgal microbial composition; microbiomes of P. 

umbilicalis from both the high and mid zones differed. There are latitudinal effects on 

(vegetative) blade microbiomes of Fucus vesiculosus, and unique assemblages for many 

sites; one group of northern sites does not differ among sites. Microbiomes of Fucus 

vesiculosus from high northern latitudes are similar to respective Fucus congeners that 

occupy the lower zones of the intertidal vertical stress gradient at the 45th degree in 

Maine; however, those from southern latitudes at the trailing edge differ from all Fucus 

congeners at an intermediate site, regardless of vertical zonation.  

 

 

Microbial composition of environmental communities, cell walls, tissues,  

and intertidal zones 

 

 

Environmental communities of bacteria from water-column samples taken from 

directly above the Fucus beds and from substratum scraping from each transect had 
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different community compositions than that of the Fucus-associated bacteria, although 

the substratum community appears more similar to those of macroalgae. While earlier 

work (e.g. Lachnit et al. 2009, Michelou et al. 2013, Grueneberg et al. 2016) found 

differences between macroalgae and bacterioplankton from water samples, this is the first 

comparison of the microbial compositions of the substratum surrounding the targeted 

macroalgae, to my knowledge. The closer clustering of substratum samples to macroalgal 

samples might indicate that the substratum acts as a recruitment community for 

establishing macroalgal microbiomes or that juvenile or embryonic stages of the targeted 

macroalgae lie in the substratal areas around sampled macroalgae. Significant differences 

between macroalgal and substratum communities rules out the possibility of significant 

interference of substratum in interpretation of macroalgal microbiomes, within this study. 

Taxonomic assignment and further experiments are needed to determine if the substratum 

acts as a recruitment pool for macroalgal microbiomes or whether the microbiomes are 

shared between the target hosts studied and other Rhodophyta (for P. umbilicalis) or 

Phaeophyceae (for F. vesiculosus) in the substratum samples.  

 

 

The microbiomes of two sympatric macroalgae, Fucus vesiculosus and Porphyra 

spp., are significantly different from each other. The biochemical composition of 

macroalgal cell walls is hypothesized to determine the composition of the associated 

microbiome (reviewed by Goecke et al. 2010). Fucus vesiculosus contains alginate, 

fucans, and a small amount of cellulose; the extracellular matrix is rich in fucoidan and 

alginic acid (McCully 1966, 1968; Kloareg and Quantrano 1988), which is secreted from 
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conceptacles in large quantities as mature oogonia or antheridia (gametangia) are 

expelled from receptacles (Speransky et al. 2001), providing an abundant carbon source 

for bacteria. Cell walls of Porphyra spp. contain mannans, and sulfated porphyran (in the 

agar family; Rees and Conway 1962, Percival 1979, Brawley et al. 2017). Previous 

studies found differences in bacterial community structure between different algal 

lineages (Lachnit et al. 2009, Barrot et al 2011, Goecke et al. 2013). Conspecific 

macroalgae from different locations are more similar in microbial composition than to 

sympatric macroalgae from different evolutionary lineages (Lachnit et al. 2009). A 

comparison of the culturable microbiome of Fucus vesiculosus to that of another 

sympatric red macroalga, Delesseria sanguinea, found great variation in epibiota between 

the two, although season affected the level of variation (Goecke et al. 2013).  

 

 

Microbiomes of both brown and red macroalgae differ among tissue types. Trends 

shows differences between P. umbilicalis blade margin and holdfast communities, as well 

as between F. vesiculosus receptacle and blade microbiomes compared to those of F. 

vesiculosus holdfasts (also see Quigley et al. in prep). Most macroalgal microbiome 

studies sample from one unspecified tissue type. To my knowledge, only three studies are 

the exception (Staufenberger et al. 2007, Quigley et al. 2018, Quigley et al. in prep). 

These studies demonstrate the importance of examining algal microbiomes across the 

thallus. Bacterial communities associated with different tissues likely consist of different 

functional partners, because host tissues perform different functions. Within one 

macroalga, the cell wall composition and defense compounds such as phenolics can differ 
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among tissues types (McCully 1966, 1968, Speransky et al. 2001); these may contribute 

to differences in bacterial community structure among tissue types. 

 

 

Porphyra umbilicalis that inhabited high versus mid-zones at the same intertidal 

site in Schoodic, ME had different microbiomes. Algal-associated bacteria follow the 

vertical stress regimes that define the distribution of various macroalgae and invertebrates 

in rocky intertidal zones (Baker 1909, 1910, Stephenson & Stephenson 1949, Connell 

1961, Schonbeck & Norton 1978, Little & Kitching, 1996, Valdivia et al. 2011). 

Compositional differences of intertidal bacteria on three Fucus congeners inhabiting 

distinct levels within the intertidal zone further support these findings (Quigley et al. in 

prep); but only the comparison of microbial composition of conspecifics between the two 

zones, performed in this study, fully distinguishes between species-associated and zone-

associated microbiome. 

 

 

Microbiome of Fucus vesiculosus across latitudinal gradients 

 

 

 The microbial composition of vegetative blade communities of Fucus vesiculosus 

was analyzed; many sites throughout the North Atlantic had significantly different 

microbiomes. Ordination analyses show latitudinal trends, where more southern sites are 

more distant along ordination axes (NMDS; Fig. 5.4). There is less separation among 
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more northern sites. In fact, the microbial diversity of Greenland, Bodø, England, and 

Schoodic, ME sites do not differ significantly. There appears to be a break in host 

microbial community structure between sites from northern and northwestern areas of the 

Atlantic, and all other sites. Both Halifax, NS and Oban, UK sit north of this 

biogeographic break. It is possible that other factors explain why the microbial diversity 

of these sites differs from this group of sites. For instance, samples of F. vesiculosus in 

Oban in the summer of 2015 were collected from a more sheltered site with a small 

amount of freshwater run-off (pers. obs.) and was not reflective of the water motion or 

exposure of all other sites. The site was moved 6.9 km north the following summer to an 

exposed, wave-washed site, as true of all other sites in this study. Similarly, there were 

extreme rainfall events both days before and during collections in the summer of 2015 at 

Halifax. Previous studies describe the effects of salinity on macroalgal microbiomes 

(Lachnit et al. 2009, Dogs et al. 2017). While not the predominant factor, Lachnit et al. 

(2009) found that the region from which a macroalga was collected, which differed in 

salinity and tidal range, contributed the dissimilarity among epibacterial communities. 

Microbial communities of Fucus spiralis differed between samples collected from a 

harbor site with freshwater input and an exposed site at full salinity (Dogs et al. 2017). 

While larger-scale variables (e.g. biogeographic history, see Muhlin and Brawley 2009) 

may be at play in causing this break among sites, distinct incidences of lower salinities 

may explain why some sites do not follow this break. 
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A large-scale forcing variable affecting composition of the microbiome may 

explain this break in community structure in northern and northwestern sites. Simple 

latitudinal gradients cannot explain this break, because F. vesiculosus blades from sites 

that differ by over 25° latitude (44.3340° N at Schoodic, ME to 70.6737° N at 

Uummannaq, Greenland) do not have distinct microbiomes, and other sites that are 

latitudinally closer to one another do have distinct microbiomes. Thus, photoperiod 

differs greatly among northern sites, and therefore does not explain microbial diversity of 

vegetative Fucus vesiculosus. Global air temperatures and sea surface temperatures 

loosely follow latitudinal temperature gradients, in that temperatures cool from equatorial 

regions to the poles, however, additional factors such as ocean currents and gyres, 

prevailing winds, and ocean depth influence temperature distributions. Intertidal zones 

are both marine and terrestrial environments throughout a tidal cycle, so it may be 

expected that both air and sea temperatures will affect the distribution of intertidal 

organisms, and their associated microbiomes. However, a transferable distribution model 

found that the most relevant predictor of the biogeographical range of Fucus vesiculosus 

was extreme SST, although extremes of summer air temperature and humidity were also 

important (Assis et al. 2014). This coincides with other studies that emphasize the 

importance of SST in macroalgal distributions (Lüning 1990, Adey and Steneck 2001). In 

fact, the classic coastal biogeographic regions align well with the biogeographic break in 

microbiomes identified in this study (Lüning 1990). Biogeographic region 2 is the cold 

temperate group that is recognized by zoologists (Briggs 1974, Vermeij 1978) and 

phycologists (van den Hoek 1975, Lüning 1990); it extends from the midcoast of the 

United States across to England and northward to the Arctic border, the summer 15 °C 
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isotherm occurs within this region from the southern Gulf of Maine across to England, 

and upwards along the Norwegian coast (Lüning 1990). This isotherm and biogeographic 

region coincides with the break in microbial diversity found in vegetative blade 

communities of Fucus vesiculosus. 

 

 

In order to examine the effect of stress on microbial composition, I compared the 

microbiomes of vegetative Fucus vesiculosus from latitudinal extremes to Fucus 

congeners that span vertical extremes within the intertidal zone. Microbiomes of F. 

vesiculosus from Bodø are significantly different from the high zone Fucus spiralis 

microbial community from Schoodic, ME mid-zone bacterial communities. However, 

this microbiome from a cooler site with less thermal stress is more similar to bacterial 

communities at slightly warmer sites that inhabit lower levels of thermal stress (mid- and 

low zone). Trends, although not significant, are similar in Greenland sites on the other 

side of the North Atlantic. Sites in Greenland differed between years due to collaborator 

availability; Uummannaq and Tasiilaq are on opposite coasts and may have divergent 

microbial communities. Further inter-annual investigation is needed. The microbial 

communities from the southern range boundaries of Fucus vesiculosus on both sides of 

the North Atlantic (Beaufort, NC and Cádiz) differed from all Fucus spp. microbiomes 

across the vertical intertidal gradient from Schoodic, ME. Edge populations of 

macroalgal distributions are often small and fragmented and can respond to the extreme 

thermal stress of these latitudes via either local adaptation or maladaptation (Pearson et 

al. 2009, Nicastro et al. 2013, Araujo et al. 2014, Jueterbock et al. 2014, Saada et al. 
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2016). The bacterial community may respond in a similar manner: either the community 

composition differs from those of more northern latitudes in that it contains bacteria that 

thrive with these high levels of stress and may be advantageous to its algal host, or, like 

the host, certain bacteria are unable to handle the stress and are eliminated from the 

microbiome. In the northeastern Atlantic, Fucus vesiculosus is undergoing a steady range 

retraction (Nicastro et al. 2013), and Cádiz, Spain, is a tiny, hold-out populational 

remnant of this retraction up the Portuguese coast (Mota et al. 2015). The same is 

occurring in the northwestern Atlantic. In fact, the population at Beaufort, NC was all but 

locally extinct by the end of this study (pers. obs.). Taxonomic assignment of the ASVs 

in this study will help to discern why southern extreme edge microbiomes differ so 

greatly, and further reconstitution experiments might determine if certain taxa are helping 

trailing edge populations of macroalgae, or whether bacteria are suffering from the same 

stress effects. 

 

 

Conclusions 

 

 

Sympatric macroalgae, Fucus vesiculosus and Porphyra umbilicalis, which have distinct 

cell wall composition, have different microbiomes across 11 trans-Atlantic sites; 

differences in carbon sources of an algal host may determine microbial composition. The 

vertical stress gradient defines microbial composition, not slight differences in host, 

because microbiomes of Porphyra umbilicalis from mid- and high zones are significantly 
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different. There is a break in microbial composition of vegetative communities of Fucus 

vesiculosus across latitudes that corresponds with sea surface temperatures and summer 

isotherms across the North Atlantic Ocean. Vegetative microbiomes of Fucus vesiculosus 

from northern latitudes are similar to Fucus congeners that occupy the lower zones of the 

intertidal vertical stress gradient (Fucus vesiculosus and F. distichus) from an 

intermediate latitude, however, those from southern latitudes with trailing edge 

populations differ from all Fucus congeners from an intermediate site, regardless of 

vertical zonation, which may be influenced by range retraction due to extreme thermal 

stress.  
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CHAPTER 6 

CONCLUDING REMARKS 

 

 

 These studies contribute to our understanding of various stressors on brown 

macroalgae, both as a crop and as a host of a microbial community. They also provide an 

array of protocols and tools to continue lines of inquiry relating to the thermal and 

microbial effects on brown macroalgae. These include thermal acclimation protocols to 

increase crop yield of the aquaculture candidate Alaria esculenta, peptide nucleic acid 

clamps for two model macroalgae, Porphyra spp. and Fucus spp., to increase sequencing 

depth of associated microbiomes, assessment of various algal preservations methods on 

microbiome recovery for phycologists who often work in remote areas with limited 

laboratory or equipment access, and analysis of various tissue microbiomes, 

demonstrating the need to account for microbial community differences across 

macroalgal structures. 

 

 

This dissertation consists of two main lines of inquiry, both of which examine 

effects of stress on brown algae. The first examined the effects of thermal stress on the 

kelp Alaria esculenta to determine its potential as a crop (Chapter 2). Sea vegetable 

aquaculture is a global industry that is growing rapidly, and its expansion to the 

northwestern Atlantic includes parts of the United States where one need is to diversify 

crop species and strains that can withstand warming waters. The kelp Alaria esculenta 
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has many favorable traits including high nutritional value and fast growth, but it is a sub-

Arctic species and shallow coastal waters are warming in areas such as the Gulf of 

Maine. This led us to examine the temperature tolerance of A. esculenta. I surveyed 

reproductive phenology of A. esculenta for two years at three locations and concluded 

that seedstock are available to sea farmers practically year-round from across the Maine 

coast. Gametophytes (seedstock) from a northern and a southern population were 

gradually acclimated to 22 °C to determine their tolerance to high temperatures. While 

responsive to thermal stress, a large proportion of seedstock gametophytes remained 

healthy; differences in northern versus southern responses were marginal, but southern 

gametophytes suffered more damage when exposed to 22 °C. To determine effects of 

strain location and previous thermal acclimation on crop yield, acclimated gametophyte 

strains and, separately, control cultures were then crossed to produce sporophytes that 

were grown up in a common garden. Sporophytes derived from gametophytes that were 

thermally acclimated had higher blade surface areas compared to controls, and seedstocks 

from the northern population produced larger blades their southern counterparts. These 

results suggest that the application of seedstock thermal acclimation protocols in sea 

vegetable nurseries might increase crop yields of Alaria esculenta in Maine, and possibly 

elsewhere, but more isolated strains with defined population genetics should be compared 

in an additional acclimation trial before broad implementation. 

 

 

The second line of inquiry I addressed was how stress gradients that influence 

distributions of brown macroalgae, specifically Fucus spp., affect the microbial 



 162 

composition of the macroalgal microbiome, across vertical and latitudinal spatial scales. 

While macroalgal microbiomes are the focus of many recent studies, there is little 

information about microbial spatial diversity across the thallus. Reliance on field material 

makes it difficult to discern whether recovered microbiomes belong to the host or its 

epiphytes, and technical comparisons of macroalgal samples for microbial studies are 

needed. In Chapter 3, a common garden approach, which avoided the problem of 

epiphytes and other natural biota (e.g. grazers), was used to examine the microbiome of 

Porphyra umbilicalis (lab culture strain Pum1).My collaborators and I used the V6 

hypervariable region of the 16S rDNA with Illumina HiSeq sequencing and developed 

PNA clamps to block recovery of organelle V6 sequences. The common garden approach 

allowed us to determine differences in the microbiome at the holdfast versus blade 

margin. I found a notable increase in the relative abundance of Planctomycetes and 

Alphaproteobacteria at the holdfast, particularly of the possible symbiont Sulfitobacter 

sp. Non-adjacent 1.5 cm2 samples of blade margin had microbiomes that were not 

statistically different. The most abundant phylum in the overall microbiome was 

Proteobacteria, followed by Bacteroidetes. Because phycologists often work in remote 

sites, I compared three stabilization and preparation techniques and found silica gel 

desiccation/bead-beating and flash-freezing/lyophilization/bead-beating to be 

interchangeable. Core taxa (≥ 0.1% of sequences) across treatments were similar and 

accounted for ≥ 95% of all sequences. Finally, statistical conclusions for all comparisons 

were the same, regardless of which microbial community analysis tool was used: mothur 

or minimum entropy decomposition (MED).  
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All results from this laboratory investigation of a model macrophyte were applied 

to some of the first ever in situ examinations of environmental stresses on macroalgal 

microbiomes (Chapters 4 and 5). Stress gradients frequently produce distinctive vertical 

distributions of macroalgae and invertebrates within the intertidal zone. Whether stress 

tolerant (upper intertidal zone) or stress intolerant (lower intertidal zone) bacterial taxa 

exist in the intertidal zone is unknown. To examine this question (Chapter 4), I studied 

host microbiomes of three congeneric brown algae with similar cell wall composition and 

morphology on a rocky shore in Acadia National Park (Maine). Analysis of both natural 

microbiomes of Fucus spiralis (high zone), F. vesiculosus (mid-zone), and F. distichus 

(low zone) and of an experimental transplant were carried out on three different tissue 

types (holdfast, receptacle, and blade tip) using V4 16S rDNA sequencing. I found that 

fucoid macroalgae from each zone have significantly different microbiomes, and 

microbial communities differ between tissue types. Further, transplanting native mid-

zone Fucus vesiculosus to the high zone found differences in microbial structure among 

F. vesiculosus transplants assigned to various stress-level treatments: microbiomes of dry 

treatments differed significantly from control (mid-zone) back-transplants, with 

transplants watered with seawater having an intermediate microbial community. I 

explored specific ASV (amplicon sequence variants) that were potentially stress-

responsive due to changes in abundance across vertical stress gradients in surveys of all 

three Fucus species, as well as changes in abundance due to stress treatments in 

transplant experiments. 
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These studies were expanded to understand latitudinal effects on microbial 

community composition on macroalgal hosts (Chapter 5). Macroalgae maintain important 

associations with bacteria involved in maintaining normal algal morphogenesis, warding 

off pathogens and epiphytes with the production of antibiotics, and acquiring nutrients for 

their macroalgal host. Despite of this symbiosis between macroalgae and certain bacteria, 

only a few studies have investigated microbiome-environmental interactions. Whether 

these associations change across environmental scales will be important to study in light 

of climate change. I characterized microbial communities of two sympatric macroalgae, 

Fucus vesiculosus (Phaeophyceae) and Porphyra umbilicalis (Rhodophyta), that occupy 

the mid-intertidal zone at 11 sites across the North Atlantic. The two algae have different 

microbiomes most likely due to differences in the polysaccharide composition of cell 

walls between brown and red algae. By comparing microbiomes of P. umbilicalis from 

the high and mid-zones at one location, I determined that vertical stress regimes that 

define distinct levels of the intertidal zone also define macroalgal microbial composition. 

Latitudinal comparisons of blade microbiomes of F. vesiculosus found one group of 

northern sites where there are no statistically significant differences among sites, defining 

a biogeographical break in microbial community structure that aligns with summer 

isotherms. Microbiomes of F. vesiculosus from cooler northern latitudes are similar to 

Fucus congeners that occupy the lower zones of the intertidal vertical stress gradient at a 

site at an intermediate latitude; however, those microbiomes of southern latitudes at the 

trailing edge of their distribution differ from all Fucus congeners at the intermediate site, 

regardless of the vertical stress gradient. There are microbiome-environmental 

interactions across environmental scales, and more studies should investigate how 
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symbiotic relationships between macroalgae, important members of coastal ecosystems, 

and bacteria may change in the future. 

 

 

Overall, these studies have made significant contributions to advancing the 

understanding of stress effects on brown macroalgae. The information and protocols 

provided by the studies related to Alaria esculenta aquaculture can be applied directly to 

the sea vegetable aquaculture in the Gulf of Maine and help the industry now and in the 

future. The studies concerning macroalgal microbiomes provide insight to researchers 

about microbial composition analysis programs as well as considerations for preservation 

techniques and tissue sampling. Most importantly, these studies provide some of the first 

examinations of environmental stress effects on macroalgal microbiomes at both 

intertidal vertical and latitudinal scales, which will prove important in light of increases 

in environmental stressors due to climate change.  
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APPENDIX 3.1: CORE COMPOSITION OF THE COMMON  

GARDEN P. UMBILICALIS EXPERIMENT  

 

Core composition (≥ 0.1 % relative abundance) by group; defines percentage of 

sequences assigned to each OTU or ASV per treatment group. Taxa above bold line 

constitute > 1% of sequences. These are composites across replicates for each 

comparison (i.e., A, B, C, D, E). 
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ASV_A %_A ASV_A_tax 

0040 22.8445697 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0012 13.3545587 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0037 8.8695489 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0353 8.7154939 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0023 8.2640458 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0007 7.6531842 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0491 5.2941334 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0019 3.8958052 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0016 3.4749449 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0024 2.1395783 Proteobacteria;Gammaproteobacteria 
0010 1.975253 Proteobacteria;Gammaproteobacteria 

0206 1.5771659 Proteobacteria;Alphaproteobacteria 

0356 0.9006636 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
0423 0.8948586 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0492 0.7859037 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0053 0.6088521 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0028 0.5965724 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0017 0.4829289 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0027 0.4414011 Unknown 
0359 0.4268886 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0003 0.3259714 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0771 0.2395667 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0237 0.2324221 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0977 0.1895546 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0205 0.1859823 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0599 0.1804006 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
1179 0.1625392 Actinobacteria;Actinobacteria;Micrococcales;Micrococcaceae;Micrococcus 
0774 0.1480268 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0338 0.1210113 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Erwinia 
0203 0.1203415 Proteobacteria;Alphaproteobacteria 
0730 0.1201182 Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter 
0692 0.1064989 Actinobacteria;Actinobacteria;Corynebacteriales;Dietziaceae;Dietzia 
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OTU_A %_A_OTU OTU_A_tax 

0879 23.6497888 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0508 13.4027821 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0648 9.1780431 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0435 8.7726895 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0683 8.2851939 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0689 7.6800654 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0981 5.3298631 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0254 4.0079999 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 

0509 3.4838975 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 

0978 2.1435076 Proteobacteria;Gammaproteobacteria 
0777 1.978777 Proteobacteria;Gammaproteobacteria 

0324 1.5805662 Proteobacteria;Alphaproteobacteria 

0326 0.9008848 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
0308 0.8959741 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0119 0.7861537 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0005 0.6082535 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0193 0.5912894 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0979 0.4834778 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0849 0.4406211 Unknown 
0432 0.4281212 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0137 0.3272292 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0980 0.2395068 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0092 0.235489 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0681 0.1921858 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0093 0.1866055 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0661 0.1803555 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
0501 0.1709806 Actinobacteria;Actinobacteria;Micrococcales;Micrococcaceae;Micrococcus 
0707 0.1479898 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0001 0.1247757 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
0674 0.1209811 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Erwinia 
0217 0.1203114 Proteobacteria;Alphaproteobacteria 
0026 0.1200882 Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter 
0257 0.1064723 Actinobacteria;Actinobacteria;Corynebacteriales;Dietziaceae;Dietzia 

 

 

 



 191 

 

ASV_B %_B ASV_B_tax 

0007 16.7691189 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0023 12.9623145 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0040 12.2775638 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0353 9.4528998 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0037 8.2514883 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0012 7.727285 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0019 7.2688091 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0016 4.1041942 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0491 2.9528864 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0356 2.2638257 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
0024 2.1959432 Proteobacteria;Gammaproteobacteria 
0053 1.9949896 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0010 1.9939121 Proteobacteria;Gammaproteobacteria 

0206 1.484255 Proteobacteria;Alphaproteobacteria 

0028 0.7240794 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0492 0.630337 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0423 0.4008297 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0017 0.3830509 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0003 0.3604235 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0237 0.2957735 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0205 0.2866148 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0027 0.2451311 Unknown 
0771 0.2133448 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0359 0.2133448 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0054 0.1750936 Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Propionibacterium 
0774 0.1643186 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0599 0.1605474 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
1132 0.1422299 Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus 
0977 0.1228349 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0236 0.1125987 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
0874 0.1034399 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
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OTU_B %_B_OTU OTU_B_tax 

0689 16.8275059 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0683 13.0093917 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0879 12.6343695 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0435 9.5102619 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0648 8.5064309 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0508 7.7563864 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0254 7.4648821 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0509 4.1090797 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0981 2.9667707 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0326 2.2711475 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
0978 2.1984062 Proteobacteria;Gammaproteobacteria 
0005 1.9995797 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0777 1.9963468 Proteobacteria;Gammaproteobacteria 

0324 1.4876959 Proteobacteria;Alphaproteobacteria 

0193 0.7198703 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0119 0.6304253 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0308 0.4008858 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0979 0.3831046 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0137 0.360474 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0092 0.2958149 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0093 0.2866549 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0849 0.2451654 Unknown 
0432 0.2133747 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0980 0.2133747 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0387 0.1751181 Actinobacteria;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Propionibacterium 
0707 0.1643416 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0661 0.1605699 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
0948 0.1422498 Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus 
0997 0.1239298 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
0681 0.1228521 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0445 0.1153086 Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus 
0057 0.1126144 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
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ASV_C %_C ASV_C_tax 

0040 26.0573069 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0037 9.2627049 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0023 9.1967916 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0353 8.3884108 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0007 7.8910976 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0012 6.385688 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0019 5.103342 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 

0491 5.0429963 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 

0016 4.0936292 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0010 2.7308223 Proteobacteria;Gammaproteobacteria 
0024 2.5402664 Proteobacteria;Gammaproteobacteria 
0206 1.4632035 Proteobacteria;Alphaproteobacteria 
0356 1.3333525 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

0053 1.1259142 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 

0492 0.9815155 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0423 0.885609 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0028 0.8604649 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0027 0.496056 Unknown 
0017 0.4863576 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0003 0.2868216 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0599 0.2859236 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
0359 0.2853848 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0771 0.27407 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0205 0.2004339 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0774 0.1869639 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0237 0.1858863 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0203 0.1819351 Proteobacteria;Alphaproteobacteria 
0977 0.157689 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0944 0.1266182 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
0002 0.1068622 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
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OTU_C %_C_OTU OTU_C_tax 

0879 26.9931049 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0648 9.5940171 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0683 9.230051 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0435 8.4451986 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0689 7.9158587 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0508 6.4021763 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0254 5.2643109 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0981 5.070028 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0509 4.1032823 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0777 2.7370179 Proteobacteria;Gammaproteobacteria 
0978 2.5463262 Proteobacteria;Gammaproteobacteria 
0324 1.4678949 Proteobacteria;Alphaproteobacteria 
0326 1.334303 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

0005 1.1278101 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 

0119 0.9820082 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0308 0.8854054 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0193 0.8602672 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0849 0.495942 Unknown 
0979 0.4862458 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0137 0.2862171 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0432 0.2862171 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0661 0.2858579 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
0980 0.274007 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0093 0.2003878 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0707 0.1869209 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0092 0.1858436 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hyphomonas 
0217 0.1818933 Proteobacteria;Alphaproteobacteria 
0681 0.1576528 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0001 0.1414925 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
0708 0.1068376 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
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ASV_D %_D ASV_D_tax 

0040 20.5789391 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0007 14.2359677 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0023 8.5013867 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0019 8.0990818 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0353 7.9262477 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0037 6.997402 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0012 6.8201832 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0016 4.191864 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0491 3.5845699 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0053 1.9512338 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0024 1.6859537 Proteobacteria;Gammaproteobacteria 

0356 1.6329707 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

0028 0.9946177 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0206 0.9767131 Proteobacteria;Alphaproteobacteria 
0492 0.9763477 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0010 0.8236107 Proteobacteria;Gammaproteobacteria 
1196 0.7088752 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae 
0944 0.6705082 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
0027 0.5601576 Unknown 
0423 0.4914624 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0017 0.4611343 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0559 0.4202095 Firmicutes;Bacilli;Bacillales;Family_XII;Exiguobacterium 
0003 0.3617456 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
1222 0.3398216 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Pantoea 
0771 0.2276439 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0203 0.2272785 Proteobacteria;Alphaproteobacteria 
0774 0.2214321 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0205 0.2049892 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0359 0.2009698 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0977 0.1936618 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0865 0.1775842 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
1188 0.1622374 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
0758 0.1403134 Proteobacteria;Gammaproteobacteria;Alteromonadales;Colwelliaceae;Colwellia 
0002 0.1216781 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
1131 0.1172933 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Neptuniibacter 
0599 0.1107161 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
1197 0.1088891 Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas 
1285 0.1045043 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
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OTU_D %_D_OTU OTU_D_tax 

0879 21.227657 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0689 14.2787241 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0683 8.542842 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0254 8.3438316 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0435 7.9706414 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0648 7.2184185 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0508 6.83756 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0509 4.2055102 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0981 3.6040971 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0005 1.9554144 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0978 1.6859287 Proteobacteria;Gammaproteobacteria 

0326 1.632981 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

0193 0.9899399 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0324 0.976064 Proteobacteria;Alphaproteobacteria 
0119 0.9727776 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0777 0.8267149 Proteobacteria;Gammaproteobacteria 
0679 0.717533 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae 
0001 0.7131511 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
0849 0.5597853 Unknown 
0308 0.4911358 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0979 0.4608278 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0575 0.4257728 Firmicutes;Bacilli;Bacillales;Family_XII;Exiguobacterium 
0137 0.3615052 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
0985 0.3428822 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Pantoea 
0217 0.2285881 Proteobacteria;Alphaproteobacteria 
0980 0.2274927 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
0707 0.221285 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0093 0.2048529 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0432 0.2022968 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Algimonas 
0681 0.1960892 Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Escherichia-Shigella 
0512 0.1807526 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0494 0.1643205 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
0028 0.1402202 Proteobacteria;Gammaproteobacteria;Alteromonadales;Colwelliaceae;Colwellia 
0009 0.1289003 Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae;Pseudomonas 
0754 0.12817 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Neptuniibacter 
0708 0.1215972 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
0010 0.1153895 Proteobacteria;Gammaproteobacteria;Cellvibrionales 
0661 0.1106425 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Alcanivoracaceae;Alcanivorax 
0987 0.1044348 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
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ASV_E %_E ASV_E_tax 

0023 26.5484804 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 

0040 14.2580269 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 

0037 12.7740698 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 

0016 11.1071577 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 

0007 5.1410162 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 

0028 3.8710801 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 

0019 2.4884901 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 

0024 1.9956293 Proteobacteria;Gammaproteobacteria 

0353 1.9955218 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 

0491 1.8785681 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 

0356 1.6999128 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 

0010 1.6933557 Proteobacteria;Gammaproteobacteria 

0053 1.6029531 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 

0492 1.4149458 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 

0203 1.2658514 Proteobacteria;Alphaproteobacteria 

0003 1.1590022 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 

0771 1.0342014 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 

0022 0.9906663 Unknown 

0205 0.7532117 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 

0027 0.5998175 Unknown 

0017 0.5225292 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 

0002 0.488561 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 

0005 0.4137451 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;SM1A02 

0012 0.3981584 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 

0421 0.3450563 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 

0062 0.2559436 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 

0206 0.2234804 Proteobacteria;Alphaproteobacteria 

0354 0.212731 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhodobiaceae;Anderseniella 

0774 0.2011216 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 

0423 0.1615637 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
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OTU_E %_E_OTU OTU_E_tax 

0683 26.6582662 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
0879 14.7705922 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
0648 13.290407 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
0509 11.1450569 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0689 5.1570689 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;uncultured 
0193 3.8149226 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
0254 2.5682755 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
0435 2.002692 Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae;Methylotenera 
0978 1.9997916 Proteobacteria;Gammaproteobacteria 
0981 1.8873194 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Pseudohongiella 
0326 1.7070632 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
0777 1.6983619 Proteobacteria;Gammaproteobacteria 
0005 1.6063002 Planctomycetes;OM190;OM190_or;OM190_fa;OM190_ge 
0119 1.4180946 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_III;Unknown_Family;Balneola 
0217 1.2594304 Proteobacteria;Alphaproteobacteria 
0137 1.1492141 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 

0980 1.0355603 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 

0883 0.9682059 Unknown 
0093 0.7561524 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
0849 0.5990996 Unknown 
0979 0.5225068 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0708 0.490065 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
0762 0.4137944 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;SM1A02 
0508 0.3985403 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0709 0.3448287 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
0507 0.2557748 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
0324 0.223333 Proteobacteria;Alphaproteobacteria 
0717 0.2125907 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhodobiaceae;Anderseniella 
0707 0.2009889 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Haliea 
0308 0.1617794 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Sphingorhabdus 
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APPENDIX 4.1: CORE COMPOSITION OF NATURAL SURVEYS  

AND TRANSPLANT EXPERIMENTS OF FUCUS SPP. 

 

Core composition (≥ 0.1 % relative abundance) by group; defines percentage of 

sequences assigned to ASV per group. Taxa above bold line constitute > 1% of 

sequences. These are composites across replicates for natural survey and transplant core 

communities. Cores are broken up by species, tissue, and/or transplant treatment. 
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Fs_H_ASV Fs_H_% Fs_H_tax 

830 16.8369178 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2929 16.0111806 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
9638 12.351496 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Profundibacterium 
9841 6.1515185 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
3422 5.3315819 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
7057 4.1108008 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
13813 3.5726759 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2241 1.8876064 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
315 1.5277286 Proteobacteria;Alphaproteobacteria;E6aD10;E6aD10_fa;E6aD10_ge 
7405 1.4667016 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3270 1.36785 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4822 0.832142 Actinobacteria;Actinobacteria;Micrococcales;Dermacoccaceae;Kytococcus 
4184 0.7674897 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
6923 0.7496045 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
4677 0.7041666 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
13082 0.6926863 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Marivita 
5177 0.6802392 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
7334 0.629605 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
4657 0.5689405 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
8596 0.5579436 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
8353 0.4902701 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
11779 0.4818109 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
2934 0.4596962 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
9696 0.4338353 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Pseudoruegeria 
3834 0.4332311 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
1638 0.4248927 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Tunicatimonas 
8729 0.4103913 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Novosphingobium 
3346 0.3908143 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3246 0.3270079 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
13026 0.3134732 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
1639 0.2957089 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Catalinimonas 
6251 0.2733525 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
7436 0.2615096 Proteobacteria;Gammaproteobacteria;E01-9C-26_marine_group 
12933 0.2276729 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7690 0.220543 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Cellulophaga 
4013 0.2200596 Proteobacteria;Gammaproteobacteria;Gammaproteobacteria_Incertae_Sedis;Unknown_Family;Marinicella 
11821 0.2155883 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Oceanicola 
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9842 0.2130506 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
9642 0.205679 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
3255 0.1863437 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3276 0.1830809 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
9171 0.1799389 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
9179 0.1798181 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
13128 0.1738967 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
11634 0.1711172 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
5450 0.168942 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
5451 0.1651958 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
5452 0.1512985 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
3340 0.1510569 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
12520 0.1490025 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
2214 0.1400599 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
9505 0.13293 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
9133 0.13293 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4134 0.1302714 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
6622 0.1296672 Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyphomicrobiaceae 
11369 0.1285796 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
13750 0.1231415 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
8879 0.1151657 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
7347 0.1104528 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
5751 0.1085192 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;Defluviicoccus 
9438 0.1006643 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
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Fs_R_ASV Fs_R_% Fs_R_tax 
3270 34.7280507 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4184 14.6797905 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
2929 5.4251572 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
10966 3.2498505 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
3514 2.888764 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3246 2.452046 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4657 2.1435414 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
5650 2.060995 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
5177 1.5217062 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
11568 1.2301287 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae 
10057 0.9934381 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
3112 0.9755026 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
3314 0.837349 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8267 0.7898092 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
13813 0.7769158 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
1099 0.7172029 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
3278 0.6276696 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11668 0.5964806 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5078 0.5583047 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
13026 0.5476443 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
3657 0.5472121 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
10075 0.5402972 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
7690 0.5402252 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Cellulophaga 
7405 0.52301 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5977 0.4697798 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3848 0.4609201 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Lacinutrix 
2962 0.4386628 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
6083 0.4161174 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
4711 0.4032961 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
8353 0.3772212 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
11637 0.3709546 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
8596 0.3516506 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
1803 0.3401258 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Rhodopirellula 
3847 0.3360921 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Lacinutrix 
3255 0.3351557 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
546 0.33105 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
4822 0.3295374 Actinobacteria;Actinobacteria;Micrococcales;Dermacoccaceae;Kytococcus 



 203 

8597 0.3116739 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
9243 0.309441 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
11740 0.2983484 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
8457 0.2724175 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio 
717 0.2405803 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2619 0.240004 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
3273 0.2392117 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
242 0.2391397 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
13728 0.2329451 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
3902 0.2325849 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
11677 0.2291275 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
13692 0.2245176 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
659 0.2155859 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
6571 0.2071583 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pibocella 
719 0.2010358 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
237 0.194409 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2934 0.1921761 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
8015 0.1902313 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
316 0.189655 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Pseudahrensia 
2516 0.1794988 Bacteroidetes;Flavobacteriia;Flavobacteriales;Schleiferiaceae;Schleiferia 
7541 0.1709993 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Tateyamaria 
7466 0.1688384 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5453 0.165453 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
542 0.1630039 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
9690 0.1590423 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Aminobacter 
549 0.1481658 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
9244 0.1429076 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
8917 0.1408907 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
7278 0.1305184 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
12357 0.1249001 Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9_marine_group;NS9_marine_group_ge 
9020 0.122307 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bacteriovoracaceae;Peredibacter 
9261 0.1219468 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
11720 0.1206503 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
1890 0.1117906 Bacteroidetes;Flavobacteriia;Flavobacteriales;Schleiferiaceae;Schleiferia 
7801 0.1068926 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
5253 0.1050198 Proteobacteria;Alphaproteobacteria;Alphaproteobacteria_Incertae_Sedis;Unknown_Family;uncultured 
6052 0.1042995 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
5402 0.1028589 Proteobacteria;Deltaproteobacteria;Myxococcales;Sandaracinaceae;uncultured 
5297 0.1011302 Proteobacteria;Alphaproteobacteria;Alphaproteobacteria_Incertae_Sedis;Unknown_Family;uncultured 
8294 0.1005539 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
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Fs_V_ASV Fs_V_% Fs_V_tax 

3270 37.3797917 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2929 7.7074526 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
4184 4.8089619 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
3514 3.9097156 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3246 3.0539116 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4657 2.5493335 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
5650 2.0049109 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
5177 1.7102589 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
3112 1.603407 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
3314 1.4745193 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
1099 1.4176755 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5977 1.0027702 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
11568 0.920113 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae 
10057 0.8876437 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
6083 0.7079383 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3657 0.7010128 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
2962 0.678617 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
7278 0.6236621 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
10075 0.6172762 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
3255 0.6105305 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3278 0.4863197 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
13813 0.4736378 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
8353 0.4450361 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
3848 0.4248889 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Lacinutrix 
717 0.4219208 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
659 0.4094188 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
1803 0.3955676 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Rhodopirellula 
11740 0.3739814 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
8597 0.3630084 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
549 0.3555432 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
719 0.347898 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
242 0.3405227 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5740 0.338544 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Candidatus_Endobugula 
3847 0.3373748 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Lacinutrix 
8015 0.3264018 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
546 0.3226242 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
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8457 0.3117411 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio 
8917 0.2990592 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
2934 0.2823299 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
5078 0.2802612 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
11677 0.2665 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
13026 0.2538181 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
13728 0.2477919 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
9244 0.2461729 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
1170 0.2317821 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hellea 
4822 0.2199996 Actinobacteria;Actinobacteria;Micrococcales;Dermacoccaceae;Kytococcus 
5253 0.2169416 Proteobacteria;Alphaproteobacteria;Alphaproteobacteria_Incertae_Sedis;Unknown_Family;uncultured 
8929 0.206958 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
5451 0.2051591 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
13692 0.2016513 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
1890 0.2010217 Bacteroidetes;Flavobacteriia;Flavobacteriales;Schleiferiaceae;Schleiferia 
9243 0.1988631 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
3422 0.1915778 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
237 0.1914878 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7466 0.1836628 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9020 0.1777266 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bacteriovoracaceae;Peredibacter 
8258 0.1773668 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
316 0.1761076 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Pseudahrensia 
12024 0.1756579 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Ahrensia 
3363 0.1751183 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3057 0.1738591 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
2516 0.1709809 Bacteroidetes;Flavobacteriia;Flavobacteriales;Schleiferiaceae;Schleiferia 
716 0.1689122 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
1315 0.1670234 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
5978 0.1650447 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8596 0.1588387 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
9690 0.1586588 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Aminobacter 
8294 0.1554208 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
6923 0.1453473 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
4970 0.1414797 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 
9261 0.14112 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
9118 0.1359932 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Mesorhizobium 
9195 0.1247504 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11720 0.1243906 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
8296 0.1221421 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
667 0.1205231 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
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3902 0.1198036 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
3212 0.1162059 Proteobacteria;Gammaproteobacteria;uncultured;uncultured_fa;uncultured_ge 
5546 0.115936 Bacteroidetes;Bacteroidetes_Incertae_Sedis;Order_II;Rhodothermaceae;Rubrivirga 
542 0.112878 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
4656 0.1103596 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
10076 0.1087406 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
11888 0.1086507 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
602 0.103434 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
3273 0.1021748 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
747 0.1009156 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
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Fv_H_ASV Fv_H_% Fv_H_tax 

3422 15.609564 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
13813 14.7744262 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9638 6.5194526 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Profundibacterium 
830 6.0203272 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2241 5.7585592 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2929 3.5279626 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
4677 2.9367066 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
9841 2.0043759 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
8596 1.2899416 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
13026 1.1812746 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
12266 0.9933011 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Simiduia 
11634 0.9254687 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
9947 0.8899213 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
7109 0.8512242 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11668 0.8445872 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5872 0.8213014 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
4657 0.8173642 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
5177 0.7088098 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
12933 0.6938484 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
914 0.6542513 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
3346 0.5639206 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3834 0.558296 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
11369 0.5305105 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
4014 0.524661 Proteobacteria;Gammaproteobacteria;Gammaproteobacteria_Incertae_Sedis;Unknown_Family;Marinicella 
8879 0.4497416 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5451 0.430393 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
12517 0.3986703 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
5450 0.3715599 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11480 0.3679601 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Tenacibaculum 
11975 0.3641354 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
315 0.3607607 Proteobacteria;Alphaproteobacteria;E6aD10;E6aD10_fa;E6aD10_ge 

7436 0.3561485 Proteobacteria;Gammaproteobacteria;E01-9C-26_marine_group;E01-9C-26_marine_group_fa;E01-9C-
26_marine_group_ge 

8355 0.3495115 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 
464 0.3455743 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
3423 0.3262257 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
4134 0.3192513 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
4485 0.3184638 Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulforhopalus 
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13621 0.3136267 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Tenacibaculum 
14151 0.2929282 Proteobacteria;Alphaproteobacteria;Rhodobacterales 
3424 0.2886535 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
13206 0.2859537 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
12520 0.2678426 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
12219 0.2595182 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
11717 0.2556935 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
11912 0.2547935 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
1604 0.2513063 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
10650 0.2472566 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
3270 0.2427569 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
10499 0.2298204 Proteobacteria;Deltaproteobacteria;Myxococcales;BIrii41;BIrii41_ge 
5452 0.2284705 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
397 0.2118217 Proteobacteria;Gammaproteobacteria;HOC36;HOC36_fa;HOC36_ge 
8354 0.2104718 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 
8729 0.2073221 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Novosphingobium 
5250 0.1935981 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
11637 0.1926982 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
4013 0.1866236 Proteobacteria;Gammaproteobacteria;Gammaproteobacteria_Incertae_Sedis;Unknown_Family;Marinicella 
9706 0.1799866 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
7427 0.1655877 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9521 0.1652502 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
9642 0.1601881 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
1102 0.1586132 Verrucomicrobia;Spartobacteria;Chthoniobacterales;Xiphinematobacteraceae;Candidatus_Xiphinematobacter 
3340 0.1581632 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
4575 0.1569258 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;Nannocystis 
4294 0.1567008 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
1606 0.1550135 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
8421 0.154676 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
12284 0.154001 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
3673 0.1533261 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
6888 0.1511888 Proteobacteria;Alphaproteobacteria;Rhizobiales;uncultured;uncultured_ge 
1638 0.1501763 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Tunicatimonas 
2186 0.1468016 Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;Mitochondria_ge 
4926 0.1444393 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Reichenbachiella 
11407 0.1434268 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
6622 0.1432018 Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyphomicrobiaceae 
3636 0.1339775 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Leptobacterium 
11806 0.133865 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Hoeflea 
8880 0.133865 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
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9696 0.1311652 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Pseudoruegeria 
7468 0.1303778 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
11852 0.1294779 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7958 0.1291404 Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9_marine_group;NS9_marine_group_ge 
9372 0.1275655 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
6559 0.1250907 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maritimimonas 
6621 0.1227284 Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyphomicrobiaceae 
12485 0.1225034 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
6923 0.1222784 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
11740 0.1218284 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
9444 0.1195786 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
3276 0.1189037 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5749 0.1178912 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
8223 0.1163163 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11831 0.114404 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
11898 0.1121542 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
6251 0.1117042 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
10498 0.1069795 Proteobacteria;Deltaproteobacteria;Myxococcales;BIrii41;BIrii41_ge 
11793 0.1059671 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11058 0.1016924 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
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Fv_R_ASV Fv_R_% Fv_R_tax 

3270 31.1207111 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
914 6.642708 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
718 3.5980434 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3514 3.3269301 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5977 2.075106 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
13859 2.0138116 Proteobacteria;Gammaproteobacteria;Alteromonadales 
8015 1.9216538 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4386 1.8691775 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
10966 1.7860107 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
4451 1.7508248 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
7732 1.7450325 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11632 1.6631625 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
2929 1.5754138 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
1099 1.5581234 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4150 1.5308046 Proteobacteria;Gammaproteobacteria 
3657 1.3921356 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7278 1.2464641 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
6083 1.2400667 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
7690 1.1321746 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Cellulophaga 
5650 0.9878864 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
11668 0.8796485 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
8596 0.8774872 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
7075 0.7906895 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
3246 0.769941 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2241 0.7513538 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
13813 0.737608 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
546 0.6804632 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3112 0.6677548 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
5978 0.6624812 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
10057 0.6508967 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
4409 0.6384476 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8597 0.5685944 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
8293 0.5268381 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3314 0.5127465 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8292 0.4111654 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
5923 0.4087448 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
2619 0.4053732 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
8917 0.3860944 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
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549 0.3473639 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
542 0.3233303 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7403 0.3147715 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
4657 0.3074231 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
6926 0.3068179 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
782 0.2546874 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7277 0.2427571 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
4331 0.2322964 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;uncultured;uncultured_ge 
3057 0.2272822 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11972 0.2214899 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5177 0.2179453 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
12084 0.2080034 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3306 0.2061879 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3363 0.2035079 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2305 0.2021246 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
12085 0.1998769 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
8918 0.1993582 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
4711 0.1946898 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
10075 0.1859581 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
7735 0.1754974 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3330 0.1723852 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
6732 0.1702239 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
8457 0.1651232 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio 
7405 0.1624432 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
8297 0.1606277 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
7155 0.160109 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
719 0.1566509 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
2806 0.1524148 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
11720 0.1522419 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11740 0.1471412 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
1315 0.1456715 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
9402 0.1402251 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
7729 0.1395334 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
747 0.1392741 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
6214 0.138496 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
10967 0.137545 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
2962 0.1365941 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
1716 0.1307153 Proteobacteria;Deltaproteobacteria;Bradymonadales;Bradymonadales_fa;Bradymonadales_ge 
9382 0.1279489 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Dokdonia 
6923 0.1215514 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
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13692 0.1143759 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
10160 0.1142895 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Robiginitomaculum 
6188 0.114203 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
11047 0.1110907 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
717 0.1098804 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8267 0.1078056 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
11718 0.1065952 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
8294 0.1060765 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
8338 0.1047798 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
4970 0.1031372 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 
3513 0.1026185 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 213 

 
Fv_V_ASV Fv_V_% Fv_V_tax 

3270 38.1471332 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 

914 7.6763271 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
3514 5.453625 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
4451 4.1092141 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
718 4.0554412 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5977 3.5518992 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
2929 3.4732945 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
4386 3.052729 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8015 2.190963 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4150 2.1711151 Proteobacteria;Gammaproteobacteria 
6083 2.078171 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3657 1.6979133 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7278 1.3505313 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
8293 1.0100569 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
1099 0.8734823 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5978 0.8657006 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
10057 0.8606293 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
546 0.8462898 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
13813 0.6892554 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3306 0.6425647 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5650 0.6242907 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
3112 0.5716544 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
8292 0.5465604 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
549 0.4639337 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7279 0.4163687 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
542 0.4067507 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3314 0.39416 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
10069 0.3150307 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
782 0.2710506 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8297 0.2644929 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
8918 0.2642306 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
6214 0.236426 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
3057 0.2217369 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8878 0.2178023 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
7277 0.212731 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
719 0.2043372 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
5253 0.1945444 Proteobacteria;Alphaproteobacteria;Alphaproteobacteria_Incertae_Sedis;Unknown_Family;uncultured 
3363 0.1863254 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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8338 0.1716362 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
747 0.1591329 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
8917 0.1565973 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
3513 0.1522255 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
8457 0.1519632 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio 
3246 0.1486406 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
6732 0.1467171 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
95 0.1376237 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8596 0.137274 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
10075 0.133252 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
4409 0.1330771 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
2934 0.1281807 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
4970 0.125033 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 
4331 0.1224974 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;uncultured;uncultured_ge 
3278 0.1194371 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7958 0.1117428 Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9_marine_group;NS9_marine_group_ge 
8376 0.1085951 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
6188 0.1068464 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
8294 0.1064966 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3273 0.1063218 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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Fd_H_ASV Fd_H_% Fd_H_tax 

5872 31.7144695 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
3422 3.667216 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
2929 3.6361626 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
12933 2.9777099 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11912 2.8172171 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2241 2.6488855 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
11637 2.4310092 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
13813 2.1036922 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
12517 1.4707656 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
916 1.4556911 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
7039 1.4038349 Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;Mitochondria_ge 
11668 1.175507 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
4134 1.1673668 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
8596 1.1322935 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
11717 1.1154101 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
3346 1.0162201 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3340 0.9963218 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
4677 0.8130163 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
11806 0.7555323 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Hoeflea 
11831 0.7412618 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
7109 0.7180472 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5874 0.7034752 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
5177 0.6910136 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
1604 0.6371475 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
10936 0.5904167 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
7958 0.5431833 Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9_marine_group;NS9_marine_group_ge 
13432 0.4995679 Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulforhopalus 
8353 0.452234 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
11407 0.4277129 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
10498 0.4208791 Proteobacteria;Deltaproteobacteria;Myxococcales;BIrii41;BIrii41_ge 
8355 0.4136434 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 
12469 0.3862079 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae 
11898 0.3629932 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
6486 0.3577674 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
2962 0.3567624 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
2305 0.3566619 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
13633 0.3498282 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Tenacibaculum 
12029 0.3463108 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
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4014 0.3306333 Proteobacteria;Gammaproteobacteria;Gammaproteobacteria_Incertae_Sedis;Unknown_Family;Marinicella 
3270 0.325106 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12515 0.324503 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae 
531 0.3003839 Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;uncultured 
7529 0.284204 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7377 0.2786767 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
3834 0.2765662 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
13026 0.2721444 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
13951 0.2664161 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
5749 0.2623962 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
1370 0.2597833 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
11740 0.2476233 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
3837 0.2423974 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
11818 0.2390811 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
6888 0.2369706 Proteobacteria;Alphaproteobacteria;Rhizobiales;uncultured;uncultured_ge 

7436 0.2270215 Proteobacteria;Gammaproteobacteria;E01-9C-26_marine_group;E01-9C-26_marine_group_fa;E01-9C-
26_marine_group_ge 

9145 0.2136555 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
6559 0.1826021 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maritimimonas 
9191 0.1816976 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5700 0.1778787 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Amphritea 
9706 0.1764718 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
12929 0.170643 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8372 0.1684321 Proteobacteria;Gammaproteobacteria;Thiotrichales;Piscirickettsiaceae;uncultured 
13449 0.1684321 Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;SEEP-SRB4 
5923 0.1645127 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
5899 0.1635077 Deinococcus-Thermus;Deinococci;Deinococcales;Trueperaceae;Truepera 
11480 0.1592869 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Tenacibaculum 
11759 0.1561715 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
1096 0.1543626 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4760 0.1531566 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
830 0.1518501 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3889 0.1512472 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
9292 0.1483328 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
11339 0.1445139 Verrucomicrobia;Opitutae;Puniceicoccales;Puniceicoccaceae;Lentimonas 
11852 0.1437099 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
13728 0.1436094 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
2252 0.142906 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3276 0.141298 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8633 0.1371777 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
10499 0.1360722 Proteobacteria;Deltaproteobacteria;Myxococcales;BIrii41;BIrii41_ge 
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7466 0.1321528 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5186 0.1278315 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
4713 0.127128 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
13958 0.1262235 Proteobacteria;Gammaproteobacteria;Arenicellales 
9511 0.1236106 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
9643 0.1226057 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
6467 0.1202943 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
12481 0.1173799 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
10948 0.112556 Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Acaryochloris 
11801 0.1094406 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
6444 0.1087372 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
13864 0.1060238 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
9375 0.1037123 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
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Fd_R_ASV Fd_R_% Fd_R_tax 

3270 21.7530649 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
916 6.5340776 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
4150 6.4025647 Proteobacteria;Gammaproteobacteria 
4409 5.5187784 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5249 3.2376976 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
3514 3.0651993 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
8015 2.750492 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
783 2.5037047 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5979 1.8982105 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
10093 1.5651254 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
3363 1.5306063 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12316 1.3594693 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
8292 1.2026748 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3657 1.1708783 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
718 1.1515768 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8338 1.145694 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
6214 1.1175439 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
2929 1.0454913 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
3057 1.0050408 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7865 0.9910873 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
10160 0.8644362 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Robiginitomaculum 
8083 0.8215547 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
4408 0.8028366 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
6083 0.7885914 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
1605 0.7340415 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
2806 0.7317564 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
5977 0.729131 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
546 0.6266919 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3328 0.6187671 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12430 0.5817685 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae 
8906 0.5305732 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
11233 0.4993116 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7277 0.4839481 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
8782 0.4808852 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
10058 0.4738841 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
10057 0.4731062 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
8917 0.4317805 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
4331 0.427259 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;uncultured;uncultured_ge 
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8223 0.3858847 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8779 0.3520463 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7849 0.3431491 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;uncultured;uncultured_ge 
5978 0.3214166 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
9857 0.3200067 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;DEV007;DEV007_ge 
11047 0.3147073 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3117 0.309262 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
2962 0.305956 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
13813 0.3044488 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
1315 0.3007052 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
11081 0.2890854 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
10043 0.285439 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
4453 0.2851959 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4733 0.2787296 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
12337 0.2755208 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
399 0.2755208 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;DEV007;DEV007_ge 
11048 0.2744512 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
11632 0.2707076 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
9511 0.2574347 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
542 0.2452315 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
12517 0.2395918 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
11720 0.2232073 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
9999 0.2230129 Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;FamilyI_ge 
8258 0.2181024 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5039 0.2155256 Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;FamilyI_ge 
782 0.2144074 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
9155 0.2110527 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4384 0.2005025 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
1498 0.1925291 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bacteriovoracaceae;Peredibacter 
4149 0.1808607 Proteobacteria;Gammaproteobacteria;uncultured;uncultured_fa;uncultured_ge 
8918 0.1774088 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
11352 0.1742486 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
3112 0.173811 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
1236 0.1711856 Proteobacteria;Deltaproteobacteria;Myxococcales;Haliangiaceae;Haliangium 
3551 0.1706994 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
549 0.1676364 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
10036 0.1619967 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
10017 0.1618995 Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;FamilyI_ge 
13585 0.1575724 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
6188 0.1554818 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
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1448 0.1550443 Proteobacteria;Deltaproteobacteria;Myxococcales;Blfdi19;Blfdi19_ge 
5038 0.1547039 Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;FamilyI_ge 
11831 0.1524675 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
1370 0.1524675 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
11417 0.1490642 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
10966 0.1463902 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
2805 0.1423062 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae 
8293 0.1397294 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
10056 0.1349162 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
8267 0.1337494 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
9127 0.1303947 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
3656 0.1288875 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5650 0.1287903 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
8907 0.1264566 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
10037 0.1212058 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
2795 0.1199904 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
5253 0.1161009 Proteobacteria;Alphaproteobacteria;Alphaproteobacteria_Incertae_Sedis;Unknown_Family;uncultured 
10075 0.1120655 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
1541 0.1100236 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
1099 0.109586 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5177 0.1064744 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
6732 0.104238 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
2812 0.1033142 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11232 0.1026822 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11870 0.1016126 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Pseudahrensia 
4970 0.1006402 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 
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Fd_V_ASV Fd_V_% Fd_V_tax 

3270 23.3185045 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4150 16.052995 Proteobacteria;Gammaproteobacteria 

916 8.3558773 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-
169_marine_group 

8015 3.6062434 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
783 3.5630062 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3514 2.686534 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
4409 2.6162996 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5979 2.3969907 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
2929 2.3924796 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
6083 1.8315069 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
718 1.476518 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3057 1.3874758 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
2806 1.1110494 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3363 1.0887021 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
10093 1.018676 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
8292 0.9473312 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
5977 0.9178355 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3657 0.8944472 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
11048 0.8718917 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
6214 0.823727 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8338 0.7703572 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
11233 0.5960899 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8782 0.5915094 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5249 0.553408 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
546 0.538556 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7849 0.5264802 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;uncultured;uncultured_ge 
4408 0.5123222 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
9155 0.4558988 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4733 0.4308448 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4149 0.4134944 Proteobacteria;Gammaproteobacteria;uncultured;uncultured_fa;uncultured_ge 
12316 0.4115512 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
5978 0.4006552 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
5980 0.3936456 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8376 0.3558217 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
9511 0.3433989 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
11081 0.3276447 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4331 0.3170957 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;uncultured;uncultured_ge 
542 0.3075183 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
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1605 0.305922 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
8223 0.2972468 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11047 0.2934298 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8293 0.2853098 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
9857 0.2769816 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;DEV007;DEV007_ge 
10057 0.2719153 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
8779 0.2510254 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8906 0.2482493 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
3328 0.225902 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
549 0.215353 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5879 0.2141732 Proteobacteria;Deltaproteobacteria;Myxococcales;Haliangiaceae;Haliangium 
1315 0.1884946 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
1236 0.1876618 Proteobacteria;Deltaproteobacteria;Myxococcales;Haliangiaceae;Haliangium 
8258 0.1735733 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7865 0.1724629 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
3356 0.1585825 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
10058 0.1571251 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
3656 0.1548349 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
8878 0.1449104 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
13585 0.1437306 Bacteroidetes;Sphingobacteriia;Sphingobacteriales 
8083 0.1358188 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
8918 0.1347084 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
3112 0.1336674 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
7277 0.132904 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
1498 0.1317935 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bacteriovoracaceae;Peredibacter 
3314 0.1315853 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3571 0.1262414 Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio 
11232 0.1247146 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
782 0.1204811 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8296 0.1136797 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
4453 0.1107649 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
10043 0.1061844 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
5225 0.1054904 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
10037 0.1040329 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
6188 0.1028531 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
8917 0.1027837 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
8016 0.1023673 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11352 0.1002852 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
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C_H_ASV C_H_% C_H_tax 

830 12.1395034 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3422 11.1063058 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
2241 10.1459472 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5872 4.9398146 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
13813 2.9636405 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
4677 2.7289827 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
9638 2.0740517 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Profundibacterium 
12987 1.7835231 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
7732 1.5548663 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11668 1.4365027 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
9841 1.2734425 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
5923 0.9346993 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
8596 0.8753107 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
9947 0.6468608 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
11065 0.6431361 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fabibacter 
7109 0.6323757 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
13866 0.6015433 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11717 0.5967839 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
8879 0.5926453 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
12284 0.5537426 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
12246 0.5504318 Proteobacteria;Gammaproteobacteria;Vibrionales;Vibrionaceae;Vibrio 
9505 0.5092528 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
10069 0.4904223 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
12266 0.4864906 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Simiduia 
1096 0.461866 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
9696 0.4554512 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Pseudoruegeria 
12933 0.4440701 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7468 0.4405523 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
4713 0.4372415 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
464 0.4033051 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
12295 0.4024774 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
11634 0.4008219 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
9503 0.3923378 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
5177 0.3821983 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
12517 0.3815775 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
12225 0.3813706 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae 
6416 0.3759904 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
6251 0.3679202 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
914 0.3617123 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
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4711 0.3612984 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
13026 0.3552975 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
4575 0.3524005 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;Nannocystis 
13864 0.3521936 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
9428 0.3513658 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
12147 0.3486758 Lentisphaerae;Oligosphaeria;P.palmC41;P.palmC41_fa;P.palmC41_ge 
10983 0.3213611 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
13908 0.3190849 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Spongiibacteraceae;BD1-7_clade 
8624 0.3190849 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
3834 0.3149463 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
3340 0.3103938 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae 
11637 0.3085315 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
3636 0.3027375 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Leptobacterium 
4451 0.2944603 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
6656 0.2934257 Verrucomicrobia;Opitutae;Puniceicoccales;Puniceicoccaceae;Lentimonas 
12980 0.2928049 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
7427 0.2872178 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
10967 0.2801822 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
8880 0.277906 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4926 0.2764575 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Reichenbachiella 
13048 0.2733535 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
10278 0.2721119 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Flexithrix 
9643 0.2706634 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7334 0.2702496 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
1637 0.2644556 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
8354 0.2636278 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 
3346 0.260317 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3720 0.2586615 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
403 0.2516259 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
10068 0.251419 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
12296 0.2507982 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
11369 0.2350716 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
13206 0.2265875 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
5452 0.2247251 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11831 0.222242 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
10966 0.2212073 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
11912 0.2195519 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
13855 0.2058946 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
4485 0.2044461 Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;Desulforhopalus 
4712 0.2027906 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
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8355 0.1998936 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 
4134 0.1938927 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
9402 0.1918234 Proteobacteria;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Arcobacter 
9521 0.1918234 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
3931 0.1876848 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Riemerella 
6888 0.1847878 Proteobacteria;Alphaproteobacteria;Rhizobiales;uncultured;uncultured_ge 
2929 0.1837532 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
11338 0.1765106 Lentisphaerae;Lentisphaeria;Lentisphaerales;Lentisphaeraceae;Lentisphaera 
2305 0.1734067 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
12170 0.1731998 Proteobacteria;Gammaproteobacteria;Vibrionales;Vibrionaceae;Vibrio 
3625 0.1655434 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;uncultured;uncultured_ge 
13021 0.1645087 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
9706 0.1576801 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
6559 0.1545761 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maritimimonas 
11113 0.1535415 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
9642 0.1525068 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
10242 0.1508514 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Reichenbachiella 
10650 0.1481613 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
11693 0.1477475 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
7057 0.1475405 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
10499 0.1475405 Proteobacteria;Deltaproteobacteria;Myxococcales;BIrii41;BIrii41_ge 
8599 0.1444366 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Spongiibacteraceae;BD1-7_clade 
9842 0.1421604 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11806 0.1413327 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Hoeflea 
1102 0.1407119 Verrucomicrobia;Spartobacteria;Chthoniobacterales;Xiphinematobacteraceae;Candidatus_Xiphinematobacter 
11337 0.1382287 Lentisphaerae;Lentisphaeria;Lentisphaerales;Lentisphaeraceae;Lentisphaera 
9444 0.1351248 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
11407 0.1328486 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
3270 0.1299516 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7058 0.1293308 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
1370 0.1289169 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
13869 0.12871 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
5451 0.1272615 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
9845 0.1225021 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11818 0.119812 Proteobacteria;Deltaproteobacteria;Myxococcales;Nannocystaceae;Nannocystis 
1266 0.119812 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7734 0.1185705 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11716 0.1183635 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
7280 0.1175358 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Salinihabitans 
13959 0.1165012 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Perspicuibacter 



 226 

7436 0.1162942 Proteobacteria;Gammaproteobacteria;E01-9C-26_marine_group;E01-9C-26_marine_group_fa;E01-9C-
26_marine_group_ge 

7491 0.1156734 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Psychrosphaera 
5362 0.1150527 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;DEV007;DEV007_ge 
13014 0.1121556 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
9816 0.1109141 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
7185 0.1109141 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
2813 0.1096725 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Simiduia 
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C_R_ASV C_R_% C_R_tax 

3270 29.9133804 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
914 5.624463 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169 
718 3.8589246 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5977 3.3089559 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3514 3.0207319 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7732 2.3703707 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
8596 1.9914695 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
8015 1.873932 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5872 1.7201999 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
4150 1.703817 Proteobacteria;Gammaproteobacteria 
6083 1.3586341 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
7735 1.3473946 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11632 1.3331073 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
7278 1.1828041 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
10966 1.1753747 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
8917 1.1111767 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
5978 1.0446928 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
5650 1.0081171 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
13870 0.9681125 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
2929 0.9540156 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
11668 0.913249 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
3657 0.7509444 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
546 0.7042723 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
8918 0.7029388 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
8293 0.7017958 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
2619 0.6576002 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
1315 0.6452178 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
3112 0.6427413 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
13813 0.623882 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
4409 0.5901638 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8730 0.5825439 Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae;Rhizobium 
2962 0.5808294 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
3363 0.5806389 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8338 0.5223464 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
3314 0.5008201 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
6214 0.4911047 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5177 0.4893902 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
549 0.4333837 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
782 0.4312882 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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10057 0.3922361 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
5923 0.3665188 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
7277 0.3251806 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
3057 0.3137507 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11093 0.3055593 Bacteroidetes;Flavobacteriia;Flavobacteriales;Cryomorphaceae;Crocinitomix 
3246 0.2867 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11047 0.2743176 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8292 0.2729841 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
6989 0.2722221 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Aureispira 
7279 0.2705076 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
7075 0.2520293 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5225 0.2394564 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
4331 0.2318365 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;uncultured;uncultured_ge 
11720 0.2287885 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
10160 0.2272645 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Robiginitomaculum 
5087 0.2194541 Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;uncultured 
7403 0.2124056 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2806 0.2076432 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
1605 0.2011662 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
8297 0.1994517 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
10967 0.1943083 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
542 0.1922128 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3117 0.1887838 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
10075 0.1842119 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
4711 0.1794494 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
11759 0.1784969 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
7406 0.165924 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
3556 0.165924 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
2305 0.1623046 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
8016 0.1588756 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
3328 0.1569706 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5788 0.1563991 Cyanobacteria;Cyanobacteria;SubsectionII;FamilyII;Pleurocapsa 
3330 0.1529702 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12337 0.1523987 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
7865 0.1520177 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
6747 0.1514462 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Rhodopirellula 
13585 0.1506842 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11831 0.1468742 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
8258 0.1449692 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8294 0.1388733 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
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8782 0.1386828 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
6188 0.1383018 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
11972 0.1348728 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
8296 0.1329678 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
7541 0.1312533 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Tateyamaria 
7849 0.1308723 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;uncultured;uncultured_ge 
6926 0.1280149 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
8376 0.1251574 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7405 0.1217284 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5793 0.1186805 Cyanobacteria;Cyanobacteria;SubsectionII;FamilyII;Pleurocapsa 
4384 0.118109 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8223 0.1179185 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
3513 0.116585 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
6732 0.1163945 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
13692 0.1156325 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
8298 0.114299 Proteobacteria;Gammaproteobacteria;uncultured;uncultured_fa;uncultured_ge 
3212 0.114299 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
11002 0.111251 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Simiduia 
8083 0.1106795 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
5979 0.1055361 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
600 0.1040121 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
6923 0.1038216 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
3278 0.1036311 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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C_V_ASV C_V_% C_V_tax 

3270 29.4167696 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2929 6.9355735 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 

914 5.9183248 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-
169_marine_group 

3514 4.6073865 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5977 4.1400147 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
718 4.0680572 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7278 3.070966 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
4150 2.4245209 Proteobacteria;Gammaproteobacteria 
8015 1.8005771 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
11632 1.5736884 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
6083 1.493293 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8293 1.2361681 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
546 1.1717111 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
13813 1.1435844 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5978 1.134912 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3657 1.1332713 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5650 1.0892061 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
4451 1.0617826 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8596 1.0301401 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
7279 0.8719275 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
3112 0.7598895 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
10057 0.6956668 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
3314 0.6009737 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
549 0.5951139 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
11759 0.5946451 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
4386 0.5819881 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
5087 0.5360479 Proteobacteria;Gammaproteobacteria;Cardiobacteriales;Cardiobacteriaceae;uncultured 
6926 0.5318289 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
11047 0.4612777 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
7277 0.421666 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
8917 0.3949456 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
8292 0.3853357 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3513 0.3623655 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3255 0.3506461 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
6214 0.3473646 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
8297 0.3412705 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
782 0.3340045 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8338 0.3286135 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
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8918 0.3248633 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
3057 0.3199411 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
3363 0.2939239 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
542 0.2864235 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
8298 0.2711882 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
10075 0.270485 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
8016 0.2657972 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4409 0.2498588 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4970 0.23978 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Fretibacter 
600 0.2161068 Proteobacteria;Gammaproteobacteria;KI89A_clade;KI89A_clade_fa;KI89A_clade_ge 
11888 0.214466 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
6747 0.1905583 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Rhodopirellula 
11720 0.1846986 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11255 0.1790733 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
8781 0.1767294 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
2962 0.175323 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
5788 0.1664163 Cyanobacteria;Cyanobacteria;SubsectionII;FamilyII;Pleurocapsa 
2806 0.1647755 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
1170 0.1643068 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Hellea 
3306 0.163838 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8294 0.1502434 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
6188 0.14579 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
2210 0.14579 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
719 0.1382896 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
6232 0.1368832 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae 
7541 0.1338362 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Tateyamaria 
5793 0.1296172 Cyanobacteria;Cyanobacteria;SubsectionII;FamilyII;Pleurocapsa 
7865 0.1261013 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
548 0.1253982 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3848 0.1235231 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Lacinutrix 
8083 0.1211792 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
5177 0.1193041 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
6732 0.1176633 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
5225 0.1167258 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
3345 0.115085 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8782 0.1143819 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
1315 0.1141475 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0996_marine_group;Sva0996_marine_group_ge 
3246 0.1111004 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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W_H_ASV W_H_% W_H_tax 

3422 13.08191 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
830 9.661449 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2241 8.820112 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2929 5.005387 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
9638 4.954496 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Profundibacterium 
13813 4.918392 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
10984 3.304854 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
10966 3.029849 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
5872 2.812842 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
4677 2.662473 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
11717 1.477764 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
914 1.43225 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
11668 1.022048 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
8051 1.013214 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
7057 1.010142 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
9503 0.908936 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
7729 0.864382 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
2305 0.859581 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
10977 0.792558 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
9841 0.761063 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
2606 0.724575 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
4532 0.649679 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Cobetia 
9505 0.574398 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
9642 0.555386 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11740 0.53695 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
10069 0.51909 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
4451 0.498734 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
10983 0.478953 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
12933 0.453988 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5177 0.45322 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
9816 0.434976 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
7427 0.409434 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5923 0.397911 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
11673 0.391382 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
11634 0.364112 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
3346 0.355662 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11831 0.344716 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Dinoroseobacter 
11912 0.335498 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
13026 0.315717 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
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3903 0.308036 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Salegentibacter 
12284 0.293633 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
9521 0.293056 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
11898 0.27462 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
4711 0.266747 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
4748 0.266747 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
9438 0.265594 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
1638 0.259449 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Tunicatimonas 
11407 0.258105 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
12295 0.255608 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
9446 0.25292 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
3270 0.250615 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7109 0.243317 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
9643 0.2389 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
464 0.233523 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
10967 0.227762 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
8596 0.225073 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
13908 0.219312 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
9704 0.216432 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
6251 0.215087 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
12517 0.212207 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
5451 0.208366 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
7734 0.207406 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
6794 0.207214 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
7468 0.203757 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9706 0.196267 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Jannaschia 
7801 0.194347 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
4713 0.192042 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
11793 0.188201 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
12296 0.187817 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
1604 0.173414 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
4717 0.17111 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
7377 0.167077 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
4134 0.159587 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
10279 0.15517 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Flexithrix 
10257 0.152289 Bacteroidetes;Cytophagia;Cytophagales;Flammeovirgaceae;Fulvivirga 
11716 0.151521 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
3834 0.14768 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;uncultured 
9947 0.14672 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
9444 0.146144 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
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10068 0.145376 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
8879 0.138462 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
6622 0.137118 Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyphomicrobiaceae 
13206 0.135582 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
12336 0.135006 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
8353 0.12886 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Cocleimonas 
403 0.12694 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
315 0.125788 Proteobacteria;Alphaproteobacteria;E6aD10;E6aD10_fa;E6aD10_ge 
2380 0.123099 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Aureispira 
12297 0.121179 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
9506 0.120026 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
11720 0.118682 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7732 0.115994 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
7058 0.115801 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
6888 0.114457 Proteobacteria;Alphaproteobacteria;Rhizobiales;uncultured;uncultured_ge 
5749 0.112345 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
11113 0.110808 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
658 0.11004 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Ulvibacter 
11806 0.107544 Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyllobacteriaceae;Hoeflea 
5450 0.103127 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11820 0.10159 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
4014 0.100246 Proteobacteria;Gammaproteobacteria;Gammaproteobacteria_Incertae_Sedis;Unknown_Family;Marinicella 
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W_R_ASV W_R_% W_R_tax 

10966 18.6851794 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
3270 15.9485988 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
914 9.523451 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169 
7729 9.0120562 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
2929 5.9653764 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
8051 3.8649473 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
5872 3.241881 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
12003 2.4237927 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
10984 1.5347221 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
7519 1.361927 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
3514 1.2916617 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7801 1.2857466 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
3255 1.0991493 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11718 1.0600732 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
718 0.9910627 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5977 0.9001839 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
8267 0.8605701 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
7735 0.7544552 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
13813 0.5752071 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
6232 0.5732354 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae 
3314 0.5707259 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5923 0.5148005 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
7732 0.4923945 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3657 0.4818189 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
11888 0.4757244 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
11255 0.4569034 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
3112 0.4491957 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
4711 0.4210538 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
6083 0.3629774 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
10968 0.355449 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
11673 0.3507885 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
3345 0.3425431 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
13859 0.3233636 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
11717 0.2645702 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
12138 0.2643909 Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Staphylococcus 
7155 0.2640324 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5994 0.2631362 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
546 0.2446736 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
13692 0.2389377 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
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11740 0.2210129 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
5650 0.2029088 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
3057 0.1948427 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5078 0.1928709 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
7278 0.1894652 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
7279 0.1830123 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
10057 0.1790688 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
9145 0.1776349 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3246 0.1731537 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12165 0.1464457 Proteobacteria;Gammaproteobacteria;Vibrionales;Vibrionaceae;Vibrio 
12160 0.1450117 Proteobacteria;Gammaproteobacteria;Vibrionales;Vibrionaceae;Vibrio 
10983 0.1425022 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
2305 0.1356908 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
5177 0.1349738 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
8015 0.1338983 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
542 0.1256529 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
10075 0.1217095 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
11720 0.1204547 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11632 0.1140018 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Tateyamaria 
7541 0.1140018 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
1500 0.1080866 Proteobacteria;Deltaproteobacteria;Oligoflexales;Oligoflexaceae;Oligoflexaceae_ge 
2210 0.1041431 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
11759 0.1019922 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
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W_V_ASV W_V_% W_V_tax 

3270 36.0211776 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2929 24.7890642 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
914 8.5699626 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169 
3514 2.8924717 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5977 1.9675066 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
718 1.8414168 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3657 1.7183182 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
3314 1.5821045 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
546 0.9314076 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
6083 0.8060081 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
4657 0.7530872 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Pricia 
3246 0.7344499 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5650 0.6760068 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
13813 0.5996167 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
7278 0.5733863 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
3112 0.5328903 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
7801 0.5312797 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
5078 0.5064299 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
542 0.4120927 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
11637 0.32949 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
8015 0.321667 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
7729 0.3143041 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
8051 0.2915251 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
10057 0.2889941 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
11568 0.2770293 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae 
8917 0.2756488 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
7279 0.2669053 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
5978 0.2287103 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
7405 0.2015596 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
11720 0.1891347 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
12336 0.182462 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
11759 0.1822319 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
13692 0.1787806 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
7277 0.1665858 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
3255 0.1606034 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
4150 0.1557715 Proteobacteria;Gammaproteobacteria 
7690 0.1527803 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Cellulophaga 
11740 0.1525502 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
7406 0.1502493 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
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719 0.1458776 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
549 0.136904 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
4822 0.1283907 Actinobacteria;Actinobacteria;Micrococcales;Dermacoccaceae;Kytococcus 
10075 0.1265499 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
11047 0.1201074 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
2934 0.1145852 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
5177 0.109063 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
7541 0.1042311 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Tateyamaria 
10966 0.104001 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
3306 0.1028506 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
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D_H_ASV D_H_% D_H_tax 

830 18.9767434 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
2241 8.4126635 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9638 8.0039808 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Profundibacterium 
7729 7.7887902 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3422 7.6276012 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
13813 4.2739561 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9841 3.9107913 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
4532 3.8585844 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Cobetia 
2606 2.4047835 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
9696 2.3670966 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Pseudoruegeria 
2929 2.2295638 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
8051 2.2080285 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
11673 1.8078294 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
4677 1.8058717 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Porticoccaceae;C1-B045 
11740 1.1695992 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
5872 1.1457798 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
2305 0.6101689 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
7405 0.5804762 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5451 0.5431156 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
11912 0.5312059 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
5453 0.5060813 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
10977 0.475736 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
3903 0.4750834 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Salegentibacter 
5450 0.4617054 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
464 0.426792 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
9503 0.4196135 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
6794 0.4166769 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
9842 0.4147191 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
6888 0.3767059 Proteobacteria;Alphaproteobacteria;Rhizobiales;uncultured;uncultured_ge 
5177 0.3641436 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
9816 0.3470132 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
3902 0.2975797 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Nonlabens 
13026 0.2811019 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae 
4451 0.2784915 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
315 0.2735971 Proteobacteria;Alphaproteobacteria;E6aD10;E6aD10_fa;E6aD10_ge 
10069 0.2732708 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
11637 0.2398258 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
914 0.2339525 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169_marine_group 
11634 0.2261214 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Aquimarina 
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3963 0.214538 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
9505 0.1835401 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
1604 0.1735882 Actinobacteria;Acidimicrobiia;Acidimicrobiales;uncultured;uncultured_ge 
13692 0.1714673 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
403 0.171141 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;uncultured 
12933 0.166736 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11898 0.1587418 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9446 0.1553157 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Algibacter 
9947 0.1510739 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
13206 0.1484636 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Persicirhabdus 
7468 0.1481373 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
9845 0.1476478 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Luteolibacter 
8596 0.1442217 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
9642 0.1427534 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
14451 0.1425903 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
11774 0.1407957 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Defluviimonas 
11769 0.1360644 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
3270 0.1316594 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
12336 0.1280702 Proteobacteria;Gammaproteobacteria;Thiotrichales;Thiotrichaceae;Leucothrix 
4134 0.124481 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
12517 0.1243178 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured 
5749 0.1243178 Proteobacteria;Gammaproteobacteria;Arenicellales;Arenicellaceae;Arenicella 
8729 0.1208918 Proteobacteria;Alphaproteobacteria;Sphingomonadales;Sphingomonadaceae;Novosphingobium 
11793 0.1186077 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
7801 0.1148553 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
11113 0.1119187 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
11717 0.1109398 Proteobacteria;Gammaproteobacteria;Cellvibrionales;Cellvibrionaceae;Simiduia 
2813 0.1109398 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Roseobacter 
11668 0.1097978 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
5078 0.1050665 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
5250 0.1027825 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Rubritaleaceae;Rubritalea 
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D_R_ASV D_R_% D_R_tax 

7729 23.1438612 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3270 16.6404359 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7519 10.4207877 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
914 9.0358588 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169 
7732 6.5384595 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
7735 6.0832844 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
8051 4.8352584 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
2929 3.497491 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
12003 2.4451176 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
10966 2.0632448 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
2606 1.6635855 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola 
3514 1.2345513 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7279 0.6066306 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
10977 0.570249 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
3112 0.5511149 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
5977 0.5225485 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
718 0.4899398 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5650 0.4322681 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
6083 0.371093 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
7278 0.3457606 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
13870 0.3376758 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3314 0.2983297 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8917 0.2972517 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Maribius 
8015 0.2576361 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
4532 0.2495513 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Cobetia 
7733 0.2460479 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3903 0.2441614 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Salegentibacter 
546 0.2403885 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
11740 0.2255663 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
3657 0.2129001 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
10075 0.2112832 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
6747 0.2040068 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Rhodopirellula 
549 0.1797524 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
2619 0.1708591 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Reinekea 
11673 0.153342 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Loktanella 
5923 0.1490301 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
10984 0.1452572 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Oceanospirillaceae;Marinomonas 
5978 0.1242367 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
542 0.1169603 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
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13813 0.1121094 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
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D_V_ASV D_V_% D_V_tax 

3270 38.4100416 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
2929 18.1270654 Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Burkholderia-Paraburkholderia 
914 15.5820365 Proteobacteria;Alphaproteobacteria;Rhodospirillales;Rhodospirillaceae;AEGEAN-169 
7729 2.2323909 Proteobacteria;Gammaproteobacteria;Alteromonadales;Psychromonadaceae;Psychromonas 
3255 1.5228833 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
8051 1.1079273 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas 
718 1.0973338 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
7279 1.0355813 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
6232 0.8268114 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae 
7278 0.725527 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
5977 0.7151919 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
3514 0.7123497 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
13813 0.636128 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
11255 0.6358697 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Portibacter 
11888 0.5495712 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
3345 0.5149485 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3657 0.4787755 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
5994 0.4059127 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;uncultured 
5650 0.382917 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
546 0.3803333 Planctomycetes;Planctomycetacia;Planctomycetales;Planctomycetaceae;Blastopirellula 
7405 0.3769743 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Octadecabacter 
3314 0.3250402 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5177 0.3121213 Actinobacteria;Acidimicrobiia;Acidimicrobiales;Acidimicrobiaceae;Ilumatobacter 
10057 0.2958435 Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales;Verrucomicrobiaceae;Roseibacillus 
13692 0.2880921 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
12003 0.2847332 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
7519 0.264838 Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas 
3112 0.2596705 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Rubidimonas 
11759 0.2495937 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 

6083 0.2459764 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 

7801 0.243651 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Glaciecola 
9145 0.2392586 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
3246 0.1955926 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11740 0.1769893 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Sulfitobacter 
7277 0.1744055 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
4749 0.1676877 Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavobacteriaceae;Maribacter 
4532 0.1555439 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Halomonadaceae;Cobetia 
95 0.127639 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
11720 0.1237633 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae 
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13827 0.123505 Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Defluviimonas 
8267 0.1232466 Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Aliiglaciecola 
7958 0.1222131 Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9_marine_group;NS9_marine_group_ge 
9187 0.1139449 Proteobacteria;Gammaproteobacteria;Chromatiales;Granulosicoccaceae;Granulosicoccus 
5978 0.1061936 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
2210 0.1051601 Proteobacteria;Alphaproteobacteria;Parvularculales;Parvularculaceae;Parvularculaceae_ge 
12831 0.1051601 Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Lewinella 
10633 0.1038682 Proteobacteria;Alphaproteobacteria;Caulobacterales;Hyphomonadaceae;Litorimonas 
5078 0.1023179 Proteobacteria;Gammaproteobacteria;Oceanospirillales;Hahellaceae;Hahella 
719 0.1012844 Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;Phycisphaera 
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