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Abstract 

Andromonoecy, the production of both hermaphrodite and female-sterile 

(staminate) flowers in the same plant, is a sexual system that has evolved 

independently numerous times and is found in 33 families and ~4000 species of 

flowering plants. Over the last three decades, andromonoecy has been used as a 

model to study resource allocation in plants, and to investigate the evolution of 

unisexual flowers. However, large gaps remain in our knowledge of the mechanisms 

that promote the production of staminate flowers. In this thesis, I investigated the 

expression and functional significance of andromonoecy in Solanum houstonii, a 

Mexican endemic perennial shrub, by 1) assessing sex determination of staminate 

flowers, 2) examining the functional role of staminate flowers and 3) evaluating the 

reproductive consequences of andromonoecy in natural populations. In this thesis, 

first, I characterised the andromonoecy of S. houstonii. I achieved this by determining 

the main morphological differences among flower types (hermaphrodite and 

staminate) and establishing how these differences arise through floral development 

(Chapter 2). Second, I assessed the lability in the production of hermaphrodite and 

staminate flowers within an individual in order to determine whether sex expression 

is a plastic response to environmental changes in resource availability (Chapter 3). 

Third, I investigated the functional role of staminate flowers on their efficiency at 

pollen donation, pollinator attraction and in siring seeds in a laboratory experiment 

using commercial bumblebees as pollinators (Chapter 4). Finally, I conducted field 

surveys in natural populations to evaluate the reproductive success of S. houstonii and 

the ecological factors that may maintain andromonoecy in this species (Chapter 5). 

Overall, my results demonstrated that in S. houstonii the suppression of female organs 

on staminate flowers occurs at early stages of development and is influenced by 

inflorescence architecture. Staminate flowers do not promote pollen donation or 

pollinator attraction in laboratory experiments more than hermaphrodite flowers. 

However, in natural populations, staminate flowers may increase pollen export and 

deposition as I found a relatively high incidence of pollinators and that fruit and seed 

set were not limited by pollen receipt. These findings provide new insights into the 

mechanisms involved in the production of staminate flowers, the functional 

significance of staminate flowers, and the reproductive success of an, 

andromonoecious species.  
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Chapter 1. General introduction 

Angiosperms have a striking variety of floral forms and remarkable variation in 

their reproductive strategies (Barrett, 2002a). The origin and maintenance of plant 

sexual structures have been a major focus of study to improve our understanding of 

the selective forces responsible for the evolution and functional significance of sexual 

reproduction in angiosperms (Barrett, 2002a, 2010). The study of plant reproductive 

systems (also known as breeding systems) encompasses all the aspects of sexual and 

asexual reproduction, from embryo development to pollination (Cardoso et al., 2018). 

Sexual systems, the arrangements of different sexual organs on different flowers 

and/or individuals (Cardoso et al., 2018), have received considerable attention over 

the past decades as they can clarify the origin and maintenance of angiosperm 

reproductive systems (Sakai & Weller, 1999; Webb, 1999; Barrett, 2002a; Miller & 

Venable, 2002; Mitchell & Diggle, 2005; Barrett & Hough, 2013). 

Most angiosperms produce exclusively bisexual or hermaphrodite flowers, which 

bear both female and male function in the same flower (Yampolsky & Yampolsky, 

1922; Barrett, 2002a; Cardoso et al., 2018). Hermaphroditism is widespread, occuring 

in approximately 72-90% of the species (Yampolsky & Yampolsky, 1922; Torices et 

al., 2011) and is the ancestral sexual system of angiosperms (Sauquet et al., 2017). 

However, a small proportion of species possess unisexual flowers either female 

(pistillate) or male (staminate) flowers, either in the same or in different individuals 

(Yampolsky & Yampolsky, 1922; Torices et al., 2011; Renner, 2014; Christenhusz & 

Byng, 2016). The systems with unisexual flowers within the same individual are 

classified as monoecious if they bear pistillate and staminate flowers, 

andromonoecious if they bear hermaphrodite and staminate flowers and 

gynomonoecious if they produced hermaphrodite and pistillate flowers. When 

unisexual flowers are produced by different individuals, the sexual system is 

dioecious if individuals produce either pistillate or staminate flowers, androdioecious 

if they produced hermaphrodite or staminate flowers and gynodioecious if 

individuals bear either hermaphrodite or pistillate flowers (Sakai & Weller, 1999; 

Cardoso et al., 2018). Unisexuality is rare; occurring in only approximately 6% of 

angiosperms species (Yampolsky & Yampolsky, 1922; Torices et al., 2011; Renner, 

2014). Although evidence suggests that bisexuality is the ancestral condition of 

angiosperms, it is still unclear whether all these sexual systems have evolved directly 

from this condition or if some have arisen via other non-bisexual systems. 
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Two main pathways have been proposed to explain the transition from bisexuality 

to unisexuality. In the first one, gynodioecy is an intermediate stage before full 

separation of sexes, while in the second monoecy is the intermediate. In the 

gynodioecy pathway, hermaphrodite populations that experience reduced 

outcrossing, inbreeding depression and reduced fitness experience a rapid spread of 

male-sterility mutations, causing populations to transition from hermaphrodite to 

gynodioecious. Selection then favours male function in hermaphrodites by the 

presence genetic modifiers on female fertility (Charlesworth, 1999, 2006; Barrett, 

2002a; Dufay et al., 2014). Alternatively, in the monoecy pathway, sexes are separated 

into different flowers due to developmental changes caused as a strategy to improve 

sex allocation (Charlesworth & Charlesworth, 1979; Bertin, 1982; de Jong et al., 

2008). Disruptive selection on variation in the proportion of pistillate and staminate 

flowers (sex expression) then increases the gender specialisation culminating in the 

origin of female and male plants. The evolution of dioecy on these two main pathways 

has received a lot of attention and support through research on some model species 

and families (Thomson & Barrett, 1981; Pannell, 1997, 2002; Sarkissian et al., 2001; 

Ashman, 2006; Dorken & Pannell, 2009; Torices et al., 2011; Dufay et al., 2014; 

Anderson et al., 2015). Less attention, however, has been paid to the relationships 

among other sexual systems that do not directly involve the evolution of dioecy, such 

as andromonoecy and gynomonoecy. Some of the studies investigating evolutionary 

transitions between sexual systems are focused on the species level (Webb, 1999; 

Huang, 2003; Vallejo-Marín & Rausher, 2007a; Boualem et al., 2008) or at subgenus, 

clade or family level (Bertin & Kerwin, 1998; Sakai & Weller, 1999; Miller & Diggle, 

2003; Martine et al., 2006, 2009; Torices et al., 2011). This research has provided 

valuable data on pathways towards the evolution of separate sexes. However, the 

evidence collected through the last three decades is still a small fraction in the broad 

research necessary to understand the evolution of sexual systems. 

 

Andromonoecy 

Andromonoecy is the sexual system of plants in which hermaphrodite and 

staminate flowers (female sterile) are produced in the same individual (Cardoso et 

al., 2018). This is a rare system occurring in approximately 4000 species, which is 

only 1.7% of flowering plants (Miller & Diggle, 2003; Torices et al., 2011). Despite this 

infrequent occurrence, an understanding of the fitness consequences of 
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andromonoecy is important as it can elucidate the transition pathways for the 

evolution of dioecy from hermaphroditism (Barrett, 2002a; Charlesworth, 2006; 

Torices et al., 2011; Dai & Galloway, 2012). Several studies have focused on 

understanding the evolution of this sexual system and at least four main hypothesis 

are commonly used to explain the production of staminate flowers (Primack & Lloyd, 

1980; Bertin, 1982; Charnov, 1982; Solomon, 1985; Diggle, 1991a, 1993; Elle & 

Meagher, 2000; Vallejo-Marín & Rausher, 2007b; Zhang & Tan, 2009). 

One major hypothesis proposed for the evolution of andromonoecy is the resource 

reallocation hypothesis. This hypothesis suggests andromonoecy evolves as a 

reproductive energy-saving strategy, as it assumes staminate flowers are less costly 

than hermaphrodite flowers, and resources saved by producing staminate flowers 

can be reallocated towards fitness-enhancing traits of both male and female function. 

For instance, resources could be allocated towards the male function by the 

production of more staminate flowers and/or floral adaptations that increase pollen 

export or towards the female function by production of bigger ovaries in 

hermaphrodite flowers and large fruits (Primack & Lloyd, 1980; Bertin, 1982; 

Charnov, 1982; Vallejo-Marín & Rausher, 2007b). This hypothesis makes two 

assumptions: 1) staminate flowers are cheaper to produce than hermaphrodite 

flowers, 2) the production of staminate flowers does not reduce female fitness (i.e. 

fruit set) but rather staminate flower production increases male fitness and 

compensates for the resources invested in their production (Bertin, 1982). Some 

studies that support this hypothesis have demonstrated staminate flowers are 

smaller or lighter than hermaphrodite flowers (Primack & Lloyd, 1980; Anderson & 

Symon, 1989; Diggle, 1991a; Elle & Meagher, 2000; Cuevas & Polito, 2004; Diggle & 

Miller, 2004; Zhang & Tan, 2009; Dai & Galloway, 2012). However, other studies have 

shown the opposite or shown staminate and hermaphrodite flowers do not differ in 

size (Huang, 2003; Narbona et al., 2008; Anderson et al., 2014), suggesting staminate 

flowers are not always cheaper to produce. Regardless of those results, 

andromonoecy provides a strategy to optimally allocate resources to male and female 

function, either as a plastic response or as a fixed mechanism, and because of this, it 

is predicted to occur in species where the cost of maturing fruits is substantial 

(Primack & Lloyd, 1980; Bertin, 1982; Diggle, 1993). For instance, in changing 

environments where resource availability for plant growth and fruit production is 

reduced, andromonoecious species exhibit variation in their sex expression (relative 



26 

 

production of staminate flowers) as a strategy to maximise resource reallocation 

towards fruit production (female fitness) (Solomon, 1985; Diggle, 1991b; 

Korpelainen, 1998). This variation in sex expression reveals that in some species, the 

production of staminate flowers can be phenotypically plastic (Solomon, 1985; 

Diggle, 1993; Miller & Diggle, 2003). Nevertheless, in other species sex expression is 

fixed regardless of differences in resource availability, as producing staminate 

flowers ensures there are enough resources for fruit production (Miller & Diggle, 

2003, 2007). How often variation in the sex expression of occurs among 

andromonoecious species, and which are the processes that determine whether a 

species is plastic or non-plastic phenotypes are important questions to understand 

the role of the resource allocation hypothesis in the evolution of andromonoecy. 

A second hypothesis suggests that staminate flowers are more efficient at pollen 

donation than hermaphrodite flowers (Bertin, 1982; Whalen & Costich, 1986; 

Podolsky, 1993). This is known as the pollen donation hypothesis and it could occur if 

one or more of the following occur: 1) staminate flowers are more attractive for 

pollinators; 2) staminate flowers are more successful at pollen export or 3) staminate 

flowers produce more or better quality pollen (Podolsky, 1992, 1993; Harder & 

Barrett, 1996; Elle & Meagher, 2000; Barrett, 2002b; Huang, 2003; Cuevas & Polito, 

2004; Vallejo-Marín & Rausher, 2007b). The few studies that have attempted to test 

this hypothesis have yielded mixed results. Some studies have found staminate 

flowers are not always better at siring seeds than hermaphrodite flowers (Cuevas & 

Polito, 2004; Sunnichan et al., 2004; Luo et al., 2009), while others have found that 

staminate flowers produce less or equal amounts of pollen as hermaphrodite flowers 

and sometimes that pollen is a lower quality (Solomon, 1985; Cuevas & Polito, 2004; 

Vallejo-Marín & Rausher, 2007b) or even that staminate flowers are less effective in 

dispersing pollen grains (Podolsky, 1993). 

A third hypothesis to explain the evolution of andromonoecy, known as the 

increased pollen receipt hypothesis, suggests that a relatively high production of 

staminate flowers causes an increased ratio of pollen to ovules per plant, promoting 

pollen accumulation on pollinators bodies, which as a result increases the probability 

of pollen deposition on stigmas (Bertin, 1982; Podolsky, 1993). It has been suggested 

this hypothesis might be experimentally tested by determining whether flowers 

produce high amounts of pollen or develop a morphology that enhances both pollen 

dispersion and pollinator efficiency at pollen extraction and deposition (Bertin, 1982; 
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Whalen & Costich, 1986; Podolsky, 1993). Finally, a fourth hypothesis to explain the 

evolution of andromonoecy is the sexual interference hypothesis, which suggests that 

segregating male and female function in different flowers reduces the interference 

between sexual organs during pollen removal and deposition (Solomon, 1986; Diggle 

& Miller, 2004; Quesada-Aguilar et al., 2008). Previous work has found that pollen 

removal and deposition on hermaphrodite flowers can be less efficient due to the 

presence of the pistil, which interferes with the placement of pollinators in the flower 

during pollen extraction (Quesada-Aguilar et al., 2008).  

These four hypotheses are not mutually exclusive as staminate flowers could 

enhance pollen donation more efficiently than perfect flowers, either by redirecting 

resources from pistil development to pollen production or by developing an 

enhanced morphology better suited for pollen dispersal (i.e. heteranthery) (Bertin, 

1982; Whalen & Costich, 1986; Podolsky, 1993). A specialised morphology not only 

would increase the probability of pollen reaching the stigma but also reduce 

interference during pollen extraction and deposition.  

 

Solanum: floral traits and sexual systems 

Solanum is a large genus of approximately 1400-1700 species that belongs to the 

Solanaceae family, one of the most diverse families in the Neotropics (Knapp, 2010; 

Echeverría-Londoño et al., 2018). Solanum includes crops such as tomato (S. 

lycopersicum), potato (S. tuberosum) and eggplant (S. melongena) that are of economic 

importance. Species in this genus show a remarkable morphological and ecological 

diversity and a wide distribution, including temperate and tropical climates accross 

all continents (Levin et al., 2006; Stern et al., 2011; Vorontsova & Stern, 2013; Knapp 

et al., 2017).  

Solanum is traditionally divided into two major groups, the spiny and non-spiny 

solanums. The spiny solanums, known as the Leptostemonum clade (or subgenus 

Leptostemonum Bitter), comprise approximately 420 species and can be identified by 

the presence of prickles, stellate trichomes, and long anthers with small poricidal 

pores (Levin et al., 2006; Martine et al., 2006; Vorontsova & Stern, 2013; Echeverría-

Londoño et al., 2018). Spiny solanums are most diverse in the Neotropics (ca. 150 

species), Australia (ca. 130), and Africa (ca. 79) and comprise a great variety of 

morphologies and breeding systems. This high diversity of spiny solanums out of the 
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Americas contrasts with the distribution of the diversity of the non-spiny solanums, 

which has more than 90% of its diversity distributed in the Neotropics (Echeverría-

Londoño et al., 2018). 

Subgenus Leptostemonum comprises a great diversity of floral morphologies and 

sexual systems (Levin et al., 2006). Flowers of Solanum are characterised for 

possessing five petals, a radially symmetric corolla and anthers that dehisce by 

terminal pores (Symon, 1979; Bohs et al., 2007). Anthers bear pollen that acts as the 

main reward for pollinators, but in order to released, anthers need to be vibrated by 

bees capable of producing high frequency vibrations (Symon, 1979; Buchmann, 

1983). However, some species also exhibit unusual floral traits such as four-merous 

and/or zygomorphic corollas, unequal stamens, and style deflection to one side of the 

flower in a left- or right-handed arrangement (i.e. enantiostyly) (Bohs et al., 2007). 

Solanum species are characterised for being hermaphrodite, andromonoecious or 

dioecious (Symon, 1979; Whalen, 1984). In the subgenus Leptostemonum, the 

majority of species are either hermaphrodite or andromonoecious, and less than 1% 

are dioecious (Whalen & Costich, 1986; Levin et al., 2006; Martine et al., 2006). More 

precisely only 18 species are dioecious and are concentrated in four subgenera of the 

thirteen that conform the genus (Anderson et al., 2015). 

Andromonoecious plants in Solanum produce both hermaphrodite and female 

sterile flowers (staminate flowers). Usually, staminate flowers are identified by their 

reduced, non-functional gynoecia, large poricidal anthers and their occurrence in 

distal positions in the inflorescences. Hermaphrodite flowers often are the first 

flowers to develop in the inflorescences, they have prickly calyxes and a style longer 

than the anthers (Symon, 1979; Whalen & Costich, 1986; Anderson & Symon, 1989). 

In many species of Solanum, the proportion of hermaphrodite and staminate flowers 

present in the inflorescences (sex expression) varies (Diggle, 1991a, 1993). This 

variation causes many species to differ in their strength of andromonoecy. For 

instance species with many hermaphrodite flowers are considered weakly 

andromonoecious, while species with one hermaphrodite flower at the base of the 

inflorescence are considered strongly andromonoecious (Diggle, 1993; Diggle & 

Miller, 2013). Evidence suggests differences among species in their sex expression 

can be caused by environmental changes that induce developmental phenotypic 

plasticity or by genetic variation in plasticity (Diggle, 1991a, 1993; Diggle & Miller, 

2013). 
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The dioecious species of Solanum are morphologically androdioecious but 

functionally dioecious (Anderson & Symon, 1989). In this system, plants bear either 

staminate flowers or morphological hermaphrodite flowers. Despite producing 

anthers and pollen, hermaphrodite flowers are pistillate and bear inaperturate, non-

germinable pollen (Anderson & Symon, 1989; Zavada & Anderson, 1997; Knapp et al., 

1998). This is known as cryptic dioecy and it is the only form of dioecy in Solanum 

(Anderson & Symon, 1989; Knapp et al., 1998; Martine et al., 2009). 

Solanum is an ideal group in which to study the evolutionary transitions from 

hermaphroditism to unisexuality, because of the presence of a considerable variation 

in breeding systems. Morphological and phylogenetic studies have hypothesised that 

andromonoecy is the ancestor of dioecy (Symon, 1981; Anderson & Stebbins, 1984; 

Anderson & Symon, 1989; Knapp et al., 1998; Martine et al., 2006, 2009). However, it 

is not clear yet how transitions from bisexuality to unisexuality occurred. One theory 

for the evolution of dioecy proposed by Knapp et al. (1998) suggests that in 

populations with inbreeding depression and reduced fitness, the appearance of a 

male sterility mutation is likely to spread rapidly. In an andromonoecious taxon, with 

a high variability in its sex expression, dioecy is more likely to develop. Moreover, 

selection for the retention of at least some pollen function or presence is favoured in 

Solanum, as pollen is the only reward for floral visitors. In order to assess the relative 

importance of these theories we need to investigate: 1) the level of female and male 

sterility, 2) the lability of sex expression of individuals and populations, 3) the 

developmental transitions among flowers of different sex, and 4) the success of 

natural pollination (Anderson & Symon, 1989; Knapp et al., 1998; Martine et al., 

2009). 

 

Study species 

Solanum houstonii Martyn is a perennial shrub native to Mexico, widespread in in 

South central Mexico on both coasts, from the Yucatán Peninsula and Veracruz to 

Sinaloa and Sonora (Nee, 1993; Knapp et al., 2017). Solanum houstonii plants 

naturally grow in a wide variety of dry and semi-deciduous forests, from thorn scrub 

in Sinaloa to humid semi-deciduous forest and coastal dunes in the Caribbean (Knapp 

et al., 2017). Solanum houstonii individuals flower all year, and especially during the 

rainy season between June and September (Nee, 1993; Herbario-CICY, 2010). 
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Solanum houstonii belongs to the subgenus Leptostemonum, and the section 

Elaeagnifolium (Knapp et al., 2017; Echeverría-Londoño et al., 2018). It is 

characterised as strongly andromonoecious, as plants possess one basal 

hermaphrodite flower and several staminate flowers in each inflorescence. As for 

other Solanum species, hermaphrodite flowers have five lilac or purple petals and five 

similarly sized, yellow or purple poricidal anthers that require sonication in order to 

release pollen. However, unlike other andromonoecious species, staminate flowers 

are markedly dimorphic: they are short styled and possess two morphologically and 

functionally distinct sets of anthers of the same colour, a condition known as 

heteranthery (Knapp et al., 2017). The first set are two short adaxial anthers that 

provide pollen for visiting insects and function as feeding anthers. The second set are 

three longer, curved abaxial anthers known as pollinating anthers, that presumably 

contribute to pollen transfer to the stigma of hermaphrodite flowers (Knapp et al., 

2017; Papaj et al., 2017). 

Pollinators of this species were unknown before the study carried out in this thesis, 

but were presumed to include bees capable of producing vibration similar in size to 

bumblebees such as Bombus impatiens (Papaj et al., 2017). Experiments using captive 

B. impatiens have shown that bees prefer to vibrate feeding anthers and while doing 

so they hold these anthers and position their body in such way that pollen from the 

feeding anther pores will release pollen directly onto the underside of the abdomen 

or thorax (Papaj et al., 2017). However, it remains to be investigated whether native 

bees from Mexico have a similar behaviour or whether the morphological adaptations 

in the anthers promote pollen transference among natural populations. 

Solanum houstonii provides a good opportunity to investigate the functional and 

evolutionary significance of andromonoecy, as this species produces a relatively high 

proportion of staminate flowers and possess morphological adaptations, such as 

heteranthery and herkogamy that presumably enhance pollen export and deposition. 

Moreover, this species is closely related to other species with different strengths of 

andromonoecy and dioecy, as the section Elaeagnifolium is the sister of the clade of 

the Old World solanums which includes the majority of dioecious species (Knapp et 

al., 2017; Echeverría-Londoño et al., 2018). 
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Aims and approaches 

In this thesis, I investigated the ecological and evolutionary consequences of 

andromonoecy in Solanum houstonii, a Mexican endemic perennial shrub, by 

assessing sex determination of staminate flowers, examining the functional role of 

staminate flowers and evaluating the reproductive consequences of andromonoecy 

in natural populations. Below I described the rationale and specific questions I set to 

address in each chapter. 

 

Chapter 2: Development and morphology 

Most angiosperms are hermaphrodite, and are characterised by producing 

bisexual flowers. However, unisexuality has evolved independently in many different 

plant families (Diggle et al., 2011), suggesting there are different developmental and 

genetic pathways for its determination (Kater et al., 2001; Boualem et al., 2008; Li & 

Liu, 2017). Elucidating the developmental mechanisms for sex determination can 

shed light on the evolutionary pathways from hermaphroditism to unisexuality. 

Model species that possess unisexual and bisexual flowers, such as melon, maize and 

cucumber, have been used to determine the developmental mechanisms involved in 

the transition of bisexuality to unisexuality. However, we still lack a comprehensive 

explanation of how sex determination is achieved; therefore, more research on non-

model species is needed. In species such as S. houstonii that produce hermaphrodite 

and staminate (male) flowers, it has been hypothesised that unisexuality is achieved 

due to organ arrest in later stages of development. Therefore, in Chapter 2, I 

characterised the morphological differences of hermaphrodite and staminate flowers 

at different stages of development, in order to determine when the unisexuality is 

achieved. To address that, I specifically asked the following questions:  

1) Does sex determination in staminate flowers occur by gynoecium arrest at later 

stages of development?  

2) When does the main differences in anther size between hermaphrodite and 

staminate flowers arise?  

3) What are the main morphological differences associated with hermaphrodite 

and staminate flowers? 
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Chapter 3: Patterns of sex expression 

Andromonoecy is often considered a strategy to maximise fitness by optimal 

allocation of reproductive resources to male and female functions. In Solanum many 

species exhibit patterns of sex expression that are plastic in response to changes in 

resource availability for plant growth. However, a reduced number of species possess 

phenotypes that are non-plastic and are constrained by architectural effects within 

the inflorescence. Very often, the species that possess a plastic phenotype vary in their 

production of hermaphrodite and staminate flowers, but non-plastic species 

phenotypes maintain a relatively high proportion of staminate flowers that does not 

vary. Solanum houstonii is characterised for possessing one hermaphrodite flower 

and several staminate flowers per inflorescence, which suggests it is non-plastic with 

respect to sex expression. In this chapter, I aimed to determine whether the 

production of hermaphrodite and staminate flowers is a plastic response to resource 

availability. To achieve this, first, I characterised sex expression in natural 

populations and in plants grown under controlled conditions and, second, I 

experimentally increased and decreased the resources available for plant growth. 

Specifically, I asked the following questions:  

1) How does sex expression vary in natural populations?  

2) Does flower position in the inflorescence have an effect on sex expression?  

3) Does increased and decreased resource availability affect sex expression at the 

inflorescence level?  

4) Does the removal of the basal flower, often characterised as hermaphrodite, 

affect sex expression in the inflorescence? 

 

Chapter 4: Functional significance of staminate flowers 

One of the principal hypotheses for the evolution of andromonoecy suggests 

staminate flowers promote pollen donation and pollinator attraction. However, the 

support for this hypothesis is very inconsistent, as some studies suggest different 

roles for staminate flowers in different environments. Therefore, in Chapter 4, I aimed 

to determine whether the main role of staminate flowers is to promote pollinator 

attraction and pollen donation. I specifically asked: 
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1) Is pollen from staminate flowers better at siring fruits than pollen from 

hermaphrodite flowers? 

2) Do pollinators prefer visiting staminate flowers over hermaphrodite flowers? 

3) Are staminate flowers more efficient at transferring pollen to the stigma than 

anthers of hermaphrodite flowers? 

 

Chapter 5: Reproductive success and pollination ecology 

Plants that are buzz-pollinated that rely on pollinators for reproduction or possess 

separate sexes, often experience high levels of pollen theft, which can potentially have 

negative effects on seed production (Ashman et al., 2004; Hargreaves et al., 2009; 

Koski et al., 2018a). Solanum houstonii is an andromonoecious, buzz-pollinated plant 

distributed across the tropical dry forest and disturbed areas of Mexico, which like 

other Mexican Solanum species, is expected to be exploited by bees due to its great 

pollen availability. However, little is known about the pollination ecology of this 

species and whether its reproductive success is limited by pollen or pollinators. In 

Chapter 5, I conducted experiments in natural populations in Yucatan to assess the 

extent to which reproduction in this species depends on pollinators and to determine 

the effect of pollen theft on the reproductive success of S. houstonii. To achieve this, I 

addressed the following questions:  

1) Does S. houstonii require pollinators to produce seed? 

2) Are natural populations of S. houstonii pollen limited?  

3) Which are the main floral visitors? What is their behaviour on flowers?  

4) Does the presence of pollen thieves negatively impact the reproductive success 

of S. houstonii?  
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Chapter 2. Development and morphology of hermaphrodite 

and staminate flowers of Solanum houstonii 

2.1 Abstract 

Andromonoecious plant species are characterised by the presence of 

hermaphrodite and female-sterile (staminate) flowers in the same individual. In 

Solanum (Solanaceae) andromonoecy is very common and has evolved repeatedly. 

Some Solanum species exhibit a plastic response to resource availability and vary in 

the proportion of hermaphrodite and staminate flowers they produced. Sex 

determination in these species is suggested to be labile and to occur in later stages of 

development, a few days before flower anthesis. Other species exhibit a more fixed 

expression of the proportion of hermaphrodite and staminate flowers, however, in 

these species it remains unknown whether sex determination occurs similarly in later 

stages of development or from inception. Here, I investigated the developmental 

patterns of sex determination in Solanum houstonii, a species that apparently possess 

a fixed pattern of expression. To determine the developmental origin of unisexuality, 

I measured a range of floral traits on floral buds at different stages of development. 

Additionally, I characterised the morphological traits in mature flowers to determine 

the main morphological differences associated with each flower sex. My results 

indicated that early arrest of gynoecium growth resulted in female-sterility on buds 

at distal positions of the inflorescence. Gynoecial arrest occurred when buds reached 

3-4 mm in length, indicating that buds became unisexual at this stage. At this length, 

anther dimorphism, also arose, but only in buds where gynoecium arrest occurred. In 

mature flowers, I found strong differences in size and shape between hermaphrodite 

and staminate flowers, such as long styles and short anthers in hermaphrodite 

flowers and anther dimorphism and zygomorphy in staminate flowers. These findings 

indicate that at inception all flowers of S. houstonii were bisexual, but after they 

reached a size of 3-4mm flowers from distal positions of the inflorescence became 

unisexual due to early arrest of gynoecium. These results contrast with those for 

other species of Solanum that exhibit phenotypic plasticity in sex expression, 

suggesting developmental patterns of sex determination may generally differ 

between species that exhibit plastic phenotypes and species that exhibit fixed sex 

expression. 
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2.2 Introduction 

There are approximately 369,000 species of flowering plants in the world (Willis, 

2017), and the majority are hermaphrodite, producing female and male organs within 

the same flower. However, a small percentage of plants have unisexual flowers, both 

male and female sexes present on the same plant (monoecy) or with flower sexes 

separated on different individuals (dioecy) (Torices et al., 2011; Renner, 2014; 

Christenhusz & Byng, 2016). Sex determination is a developmental process that 

occurs by the selective abortion or arrest of either male or female reproductive 

organs at any point during flower development, from initiation to maturation 

(Mitchell & Diggle, 2005; Diggle et al., 2011; Mao et al., 2017). In female and male 

flowers of the same species, sex determination tends to happen at similar stages, 

sometimes due to antagonistic role of hormones that control alternative male or 

female developmental process (Diggle et al., 2011; Pannell, 2017). Unisexual flowers 

have evolved independently in many different plant families (Diggle et al., 2011) and 

previous studies on model plant species, such as melon, maize and cucumber, 

suggests there are different developmental and genetic pathways for its 

determination (Kater et al., 2001; Boualem et al., 2008; Li & Liu, 2017). However, 

because of the multiple origins of unisexuality, we still lack of a comprehensive 

explanation of how sex determination is achieved; therefore, more research on non-

model species with atypical morphologies are need to clarify the possible pathways 

that have led to this impressive diversity. 

Andromonoecy is a sexual system where individual plants possess both 

hermaphrodite and female-sterile (hereafter, staminate) flowers. It has evolved 

independently several times and is found in approximately 4000 species of at least 33 

families (Miller & Diggle, 2003; Torices et al., 2011). In andromonoecious species, sex 

determination of staminate flowers often occurs by selective arrest of the female 

carpel (Diggle, 1991b; Kater et al., 2001). For instance, in some species of 

Cucurbitaceae, male sex determination of andromonoecious and monoecious plants 

occurs due to the loss an active enzyme (encoded by the ACS7 gene) that inhibits the 

development of male organs, while female and hermaphrodite sex determination is 

mediated by the activity of the same enzyme in the ethylene pathway (Boualem et al., 

2008; Rodriguez-Granados et al., 2017). 
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Andromonoecy is widespread among more than 1500 species of the large genus 

Solanum (Solanaceae), particularly in the subgenus Leptostemonum (the “spiny 

Solanum”), which besides andromonoecy includes hermaphrodite and dioecious 

species and a diverse floral morphology (Levin et al., 2006; Weese & Bohs, 2007). In 

many species of Solanum, andromonoecy sex expression can be labile, which means 

the proportion of hermaphrodite and staminate flowers varies among inflorescences, 

or sex expression can be fixed at certain position of the inflorescences, which means 

the relative proportion of hermaphrodite and staminate flowers is maintained (Diggle 

& Miller, 2004). Sex expression varies from weak andromonoecy, in which plants 

express a higher proportion of hermaphrodite flowers than staminate flowers per 

inflorescence, to strong andromonoecy, in which plants only possess one 

hermaphrodite flower per inflorescence (Whalen & Costich, 1986; Miller & Diggle, 

2003; Diggle & Miller, 2004). 

Flowers of andromonoecious species in Solanum commonly possess five poricidal 

anthers of approximately the same size and shape, arranged in a compact to loose 

cluster at the centre of a five-merous radially symmetric corolla (Bohs et al., 2007). 

Usually, staminate flowers have infertile pistilloids that are shorter than stamens, 

while hermaphrodite flowers usually possess long pistils that can vary in their size 

(Whalen & Costich, 1986; Knapp et al., 1998). The arrangement of hermaphrodite and 

staminate flowers in inflorescences varies depending on the degree of sex expression. 

For instance, in weakly andromonoecious species, hermaphrodite flowers are 

commonly distributed at different positions across the inflorescence, while in 

strongly andromonoecious plants, hermaphrodite flowers tend to be located at more 

basal positions (Miller & Diggle, 2003; Diggle & Miller, 2004). Although many species 

are characterised by this morphology, a small subset of species exhibit floral 

morphological adaptations (i.e. enantiostyly, heteranthery, zygomorphy) that 

promote pollen donation and enhance differentiation among sexes (Knapp, 2002; 

Bohs et al., 2007; Knapp et al., 2017). This subset provides a unique opportunity to 

clarify the conditions that generate variable sexual systems in plants. 

One of the unusual species in this group is Solanum houstonii, a strongly 

andromonoecious species that often possesses one hermaphrodite flower and several 

staminate flowers per inflorescence. Unlike other andromonoecious Solanum species, 

flowers of S. houstonii not only differ in the style length, but also in the anther length. 

Staminate flowers display two markedly distinct sets of anthers that differ in both 
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size and shape (heteranthery) while in hermaphrodite flowers this dimorphism 

between anthers does not exist (Knapp et al., 2017). It has been suggested that sex 

determination of staminate flowers in labile andromonoecious species in Solanum 

occurs by gynoecium arrest at later stages of development. For instance in S. hirtum, 

developmental analyses indicated that sex determination of unisexual flowers 

happens 6-7 days before anthesis to allow this species to adjust its sex expression in 

response to resource availability and fruit production (Diggle, 1991a,b, 1994). 

However, in species that produce only one hermaphrodite flower per inflorescence, 

like S. houstonii, it remains to be tested whether sex determination also occurs by 

abortion of gynoecium at later or earlier stages of development, determining these 

patterns could provide insights in the evolutionary pathway to achieve unisexuality 

in Solanum. 

In this study, I examined the developmental patterns among the flowers of 

Solanum houstonii with the aim to determine when unisexuality is achieved in 

staminate flowers. Moreover, because of the marked morphological differentiation in 

anther size between hermaphrodite and staminate flowers, I examined the main 

morphological differences among flowers and determined whether they were 

associated with sex determination. I specifically asked the following questions: 1) 

does sex determination in staminate flowers occur by gynoecium arrest at later stages 

of development? 2) When does the main differences in anther size between 

hermaphrodite and staminate flowers arise? 3) What are the main morphological 

differences between to hermaphrodite and staminate flowers? 
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2.3 Methods 

2.3.1 Study species 

Solanum houstonii Martyn is a perennial shrub endemic of Mexico (Knapp et al., 

2017). This species is characterised by strong andromonoecy for possessing in each 

inflorescence one basal hermaphrodite flower and up to 35 staminate (female sterile) 

flowers (Knapp et al., 2017). Inflorescences are scorpioid-cymes that bear up to five 

open flowers at a time that last two days in natural populations and up to five days 

under controlled conditions (AKZC personal observation). Flowers have five lilac or 

purple petals and five yellow or purple poricidal anthers, are heterandrous, 

nectarless and markedly dimorphic (Knapp et al., 2017). Hermaphrodite flowers are 

characterised for their five straight anthers of relatively similar size, a long style 

(three times larger than anthers) and their prickly calyx. Staminate flowers, on the 

contrary, are short styled, and characterised for possessing two morphologically and 

functionally distinct set of anthers (Knapp et al., 2017; Papaj et al., 2017) (Figure 2.1, 

2.2). Two short adaxial anthers provide pollen for visiting insects and function as 

feeding anthers and three longer, curved abaxial anthers (similar in size to the style 

of in hermaphrodite flowers, Knapp et al., 2017), known as pollinating anthers, 

presumably contribute to pollen reaching the stigmas of hermaphrodite flowers 

(Papaj et al., 2017). Solanum houstonii individuals bloom all year, especially during 

the rainy season between June and September (Nee, 1993; Herbario-CICY, 2010), and 

are distributed in dry and humid semi-deciduous forest and disturbed areas across 

Mexico (Knapp et al., 2017). 

To study flower development and morphology in S. houstonii I used plants grown 

under environmentally controlled conditions in the glasshouse at the University of 

Stirling, UK and plants from natural populations from Yucatan. Plants from the 

glasshouse were grown from seeds collected in Mexico between 2007 and 2015. 

Seeds were germinated during April-May in 2015. To induce germination, seeds were 

pre-treated for 24h with 2000ppm aqueous solution of gibberellic acid (GA3, Sigma-

Aldrich, Dorset, UK). I sowed seeds in plastic trays containing a mix of All Purpose 

Growing Medium (William Sinclair Horticulture PLC, Lincoln, UK) and Perlite 

Standard (Sinclair) in 3:1 proportion and kept them in a glasshouse at 16-20°C with 

a natural daylight cycle of 16h light and 8h dark. Daylight was supplemented using 

compact-fluorescent lamps. Plants from natural populations were surveyed during 

two fieldwork seasons in January 2016 and in September-October 2017 at different 
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locations in the tropical dry forest of Yucatan, Mexico (supplementary material, Table 

s2.1). 

 

2.3.2 Floral development 

To investigate the developmental patterns of sex determination and changes in 

floral morphology in S. houstonii, we collected floral buds at different stages of 

development from ten plants belonging to one population (Cerro-Colorado, see Table 

s2.1). Buds were fixed in formalin-acid acetic-alcohol (FAA) and kept in 70% ethanol 

until dissection. To determine when sex determination between hermaphrodite and 

staminate buds occurs and to describe changes in size of anthers and other organs 

during development, I randomly selected inflorescences of different stages of 

development that included both hermaphrodite and staminate floral buds. In each 

inflorescence, I sampled floral buds at different positions of the inflorescences, from 

the most basal bud, which is often described as hermaphrodite, to buds at distal 

positions that usually develop into staminate flowers (Knapp et al., 2017). 

To detect whether unisexuality occurred by organ abortion, in the inflorescences 

that were starting to develop (primordia), I observed the organography of floral buds. 

I dissected buds under a dissecting microscope (Wild MZ8), critical-point-dried with 

CO2 and sputter-coated with platinum, before performing observations with a 

scanning electron microscope (Cambridge Leo Supra) at the laboratories of the Royal 

Botanic Gardens of Edinburgh. During these observations, I was able to confirm all 

floral buds in S. houstonii were bisexual at inception and that unisexuality occurred 

later in the development. Additionally, I determined that the first bud to develop in 

each inflorescence was always hermaphrodite and later buds were unisexual 

(staminate buds). Therefore, to detect the differences among sexes I decided to divide 

buds into two categories: 1) basal buds that develop in the first position in the 

inflorescence and are seemingly hermaphrodite and 2) distal buds that develop from 

the second position onwards and often are characterised as staminate (female-

infertile). In these buds, I measured the following floral traits (Figure 2.1): bud 

length, from the calyx base to the corolla apex, corolla length from the insertion of 

the petals to their apices, calyx length, from the base of the receptacle to the tip of 

the sepal, anther height in two positions: anthers inserted in the adaxial (same 

position as feeding anthers in staminate flowers) and abaxial (same position as 
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pollinating anthers in staminate flowers) surfaces of the flower, style height, from 

the ovary to the tip of the stigma, and ovary width, from the base of the receptacle to 

the beginning of style.  

Herkogamy is the separation between anthers and stigma that occurs in 

hermaphrodite flowers, and heteranthery is the morphological and functional 

differentiation of anthers that occurs in staminate flowers of S. houstonii (Knapp et 

al., 2017; Cardoso et al., 2018). In addition to the measurements for each floral bud, I 

measured the distance between the adaxial an abaxial anthers and the distance 

between the adaxial and stigma between basal and distal buds (Figure 2.1), in order 

to determine when those morphological adaptations of the flowers arose. 

 
Figure 2.1. Hermaphrodite (A) and staminate (B) buds of S. houstonii. A1-adaxial 
anther height, A2- abaxial anther height, St-style height, OW-ovary width. Scale bars 
on top margins of 2 mm for reference.  

 

2.3.3 Floral morphology of mature flowers 

To characterise the morphological differences associated with each flower sex, I 

measured mature flowers of S. houstonii individuals from plants grown in the 

glasshouse and from natural populations. I randomly selected 55 hermaphrodite 

flowers from 33 individuals grown in the glasshouse (mean ± SE: 6±3 flowers per 

individual belonging to 9 populations) and 49 hermaphrodite flowers from 51 

individuals of 25 natural populations (1.3±0.1 flowers per individual). Additionally I 

selected 56 staminate flowers grown in the glasshouse (5±2 flowers per individual 

(n=27) belonging to 9 populations) and 70 staminate flowers belonging to 64 

individuals from 32 natural populations (1±0.1 flowers per individual). In each 

flower, I took the following measurements (Figure 2.2): corolla length and width, 
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calyx length, height of feeding and pollinating anthers of staminate flowers, height of 

feeding anthers of hermaphrodite flowers at two positions: abaxial and adaxial (see 

Figure 2.1 for reference), style height, distance between feeding and pollinating 

anthers and distance between feeding anthers and stigma. All measurements were 

performed using digital callipers to the nearest 0.01 mm (Absolute Digimatic Calliper, 

Mitutoyo Ltd., Hampshire, UK). 

 

2.3.4 Pollen quantity and size 

In plants with heteranthery, differentiation in pollen grains size and viability has 

been suggested to be a reflection of the division of labour hypothesis for pollination 

(Müller, 1981; Luo et al., 2009; Paulino et al., 2016). Thus in this study, as part of the 

morphological characterisation and to detect differences among pollen grains, I 

quantified the number of pollen grains per anther and per flower and measured the 

size of pollen grains of hermaphrodite and staminate flowers. Pollen counts and 

measurements were performed in the anthers of hermaphrodite flowers and in 

anthers of staminate flowers. In hermaphrodite flowers, I collected all the five anthers 

of one flower and stored in 1 ml of 70% ethanol, while in staminate flowers, I stored 

the two short anthers and the three long anthers in separate containers with 1 ml of 

70% ethanol in each. This decision was made based on the assumption that short 

anthers in S. houstonii are considered feeding anthers and long anthers as pollinating 

anthers (Papaj et al., 2017). I collected the anthers of 17 hermaphrodite and 24 

staminate flowers. I extracted pollen from poricidal anthers by vortexing them for ten 

seconds, three consecutive times, obtained four subsamples of 10µl and I quantified 

the total number pollen grains in each sample using a haemocytometer under a 

compound light microscope (Olympus CX31). In each subsample, I quantified the total 

number of pollen grains in five out of the nine cells. Then, I calculated the total number 

of pollen grains per subsample using the following formula: 

pollen grains per ml = (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑖𝑛𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐ℎ𝑎𝑚𝑏𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑑) × (𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑)
) (𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) 

The average of the four subsamples was used to calculate the total number of 

pollen grains per anther and flower. In addition, I measured the diameter of four 

grains per sample using an eyepiece micrometre and took the average to estimate 

pollen grain size. 
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Figure 2.2. Measurements taken from hermaphrodite (A) and staminate (B) flowers 
of S. houstonii. CL-corolla length, CW-corolla width, FA-feeding anther height 
(adaxial), PA-pollinating anther height (abaxial), St-style height, FA-PA-distance 
between feeding and pollinating anther, FA-ST-distance between feeding anther and 
stigma. Scale bar at bottom right of 10 mm for reference.   
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2.3.5 Statistical analyses 

To examine the growth pattern of each floral bud sex, I fitted the best model of 

growth rate for each floral organs measured and log transformed variables when 

needed. For this, I used linear mixed effect models (LMM) with Gaussian considering 

floral organ length/height as response variables. I used bud length, sex 

(hermaphrodite or staminate buds) and their interaction as fixed variables and plant 

ID as a random variable. Models were run with the lmer function of lme4 package 

(Bates et al., 2015) in R version 3.4.0 (R Development Core Team, 2013). Additionally, 

due to significant deviation in the intercepts of style height and ovary width, which 

could suggest sex determination arose in early stages of development, I took a 

subsample of the data for style height and ovary width that included young buds of 

0.1-3mm of length and ran LMMs. These models were similar as the Gaussian models 

described above and indicated that slopes and intercepts were not statistically 

different (supplementary material, Table s2.2). 

Additionally, to investigate the differences in overall floral morphology between 

hermaphrodite and staminate flowers I performed a linear discriminant analysis 

(LDA) using the lda function of the MASS package (Venables & Ripley, 2002). LDA is a 

multivariate technique that uses multiple traits to calculate a new set of variables that 

maximise the differentiation among predefined groups, in my case, different flower 

sex and plant collection. For the LDA I included the following variables: corolla length 

and width, calyx length, feeding and pollinating anthers, distance between feeding 

and pollinating anthers and style length, and used as grouping variables flower sex 

(hermaphrodite and staminate), and plant collection (glasshouse and natural 

populations). 

To understand further the relationship among floral organs’ growth, I performed 

allometric analyses in flowers from natural populations and grown in the glasshouse. 

Using a LMM, I fitted the same floral organs measured during development as a 

function of corolla width (used as a measured of overall flower size) of hermaphrodite 

and staminate flowers. I performed separate models with Gaussian distribution for 

each of the plant collections, using the lmer function. The length of each floral trait 

was used as response variable in the models, with corolla width, sex and plant 

collection as fixed variables, and plant ID as a random variable. 
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To evaluate differences in pollen size and quantity between feeding and pollinating 

anthers, I modelled either pollen grain size or quantity per anther or per flower as 

response variable, anther-type as fixed effect and plant ID as a random factor.  
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2.4 Results 

2.4.1 Organography and growth of floral organs in developing buds 

During initial flower development and early floral bud growth, buds from basal and 

distal positions on the inflorescence were indistinguishable. The two types of floral 

buds initiated organ development of calyx lobes in a spiral pattern, followed by 

corolla lobes, which also initiated in a spiral pattern but opposite to the sepals. Sepal 

lobes curved over the corolla lobes very early in the development but did not enclose 

the primordium. A similar pattern occurred with corolla lobes that curve over the 

developing stamens, but in this case covering them. As the floral buds continued 

developing, the tips of the corolla lobes were joined tightly by trichomes and curled 

around the tips of stamens. Stamens initiation occurred just after the corolla curved. 

In floral buds from all positions, stamens size was equal until floral buds reached 

1mm long; the distance between adaxial and abaxial anthers differentiated in buds 

from the most basal position of the inflorescence by ~0.05 mm and in buds from the 

distal positions by ~0.1mm. Gynoecium development and growth occurred similarly 

in all buds after they were 0.4-0.5 mm long. At this stage, the sizes of the other floral 

organs remained similar in the two type of floral buds (Figure 2.3). 

After development and early growth of floral organs, buds at the most basal and 

distal positions differed in their patterns of growth (Figure 2.4, Table 2.1). For 

instance, the corolla of distal buds had a more rapid linear growth pattern than buds 

at the most basal position (Figure 2.4A). This pattern was similar for adaxial and 

abaxial anthers in the two type of buds, whereas calyx and ovary length showed a 

rapid increase in growth until it stabilised when buds reached anthesis (Figure 2.4). 

In the case of style height and ovary width, growth in basal buds continued until 

anthesis, while in buds at distal positions, style and ovary growth stopped after buds 

reached approximately 3-4 mm of length (Figure 2.4C,F). These differences in growth 

indicated that buds at basal positions developed as hermaphrodite flowers and buds 

at distal positions as staminate flowers. 
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Figure 2.3. Comparable growth of hermaphrodite and staminate floral buds at 
different bud lengths. Pictures were taken under stereoscopic microscope light; two 
petals, one feeding and one pollinating anthers were removed. Scale bars on each 
picture are 1 mm for reference. FA-feeding anthers, FA1-feeding anthers at 
hermaphrodite buds in same position as pollinating anthers in staminate buds, PA-
pollinating anthers, St-style. 
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Figure 2.4. Floral organs (in mm) at different growth stages of basal (open symbols) and distal (closed symbols) buds. Each panel shows the 
length in mm of different floral organs and a fitted line (linear or exponential). Note1: buds at basal positions are developed as 
hermaphroditebuds  and buds at distal positions are developed as staminate buds. Note2: adaxial anthers correspond to feeding anthers in 
stamiante buds and abaxial anthers correspond to pollinating anthers in stamiante buds, while for hermaphrodite flowers both adaxial and 
abaxial are feeding anthers. Note 3: calyx length is show in logaritimic scale. Model coefficientes in Table 2.1. 
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Table 2.1. Models coefficients describing the growth of floral organs in relation to bud 
length of S. houstonii. LMM: Linear mixed effects models. 

Response 
variable 

Fixed and random 
variables 

Estimate/
Variance* 

SE/
SD* 

t P N 
Figures 
in text 

Corolla length Intercept -0.92 0.22 -4.2 0.009 

111 2.4A 
 Bud length 0.94 0.01 82.4 <0.001 
 Sex (Staminate) 0.40 0.16 2.5 0.014 
 Bud length:Sex(Staminate) 0.02 0.01 1.7 0.091 
 Plant ID (random) 0.13 0.36   4  
Calyx length# Intercept 0.58 0.09 6.2 <0.001 

114 2.4B 
 Bud length 0.89 0.03 29.9 <0.001 
 Sex (Staminate) -0.18 0.07 -2.4 0.018 
 Bud length:Sex(Staminate) -0.13 0.04 -3.7 <0.001 
 Plant ID (random) 0.02 0.14   4  
Style height Intercept -2.03 0.24 -8.4 <0.001 

103 2.4C 
 Bud length 0.08 0.02 41.9 <0.001 
 Sex (Staminate) 2.4 0.28 8.6 <0.001 
 Bud length:Sex(Staminate) -0.72 0.02 -30.8 <0.001 
 Plant ID (random) 0.06 0.24   4  
Adaxial anthers  Intercept -0.39 0.31 -1.2 0.252 

106 2.4D 
length Bud length 0.52 0.02 24.9 <0.001 
 Sex (Staminate) -0.28 0.31 -0.9 0.365 
 Bud length:Sex(Staminate) 0.05 0.03 1.9 0.050 
 Plant ID (random) 0.20 0.44   4  
Abaxial anthers  Intercept -0.14 0.16 -0.9 0.402 

106 2.4E 
length Bud length 0.58 0.02 39.8 <0.001 
 Sex (Staminate) -0.28 0.22 -1.3 0.208 
 Bud length:Sex(Staminate) 0.23 0.02 12.5 <0.001 
 Plant ID (random) <0.01 0.03   4  
Ovary width Intercept 0.46 0.07 6.4 0.001 

103 2.4F 
 Bud length 0.09 

<0.0
1 

19.8 <0.001 

 Sex (Staminate) -0.15 0.07 -2.3 0.026 
 Bud length:Sex(Staminate) -0.06 0.01 -11.3 <0.001 
 Plant ID (random) 0.01 0.11   4  
Distance 
adaxial- 

Intercept 0.21 0.24 0.9 0.406 

106 2.5A abaxial anthers Bud length 0.06 0.02 3.7 <0.001 
 Sex (Staminate) 0.04 0.23 0.2 0.857 
 Bud length:Sex(Staminate) 0.18 0.02 9.3 <0.001 
 Plant ID (random) 0.11 0.33   4  
Distance 
adaxial  

Intercept -1.69 0.39 -4.4 <0.001 

103 2.5B anthers- stigma Bud length 0.29 0.03 9.2 <0.001 
 Sex (Staminate) -2.78 0.46 6.1 <0.001 
 Bud length:Sex(Staminate) -0.77 0.04 -20.4 <0.001 
 Plant ID (random) 0.14 0.37   4  
*SE and estimate for fixed variables, SD and variance for random variables. 
#Calyx length is log transformed. 
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2.4.2 Development of heteranthery and style dimorphism 

Anther growth differed between basal buds (hereafter, hermaphrodite buds) and 

distal buds (hereafter staminate buds), specifically in abaxial anthers (Figure 2.3A, 

Table 2.1). Abaxial anthers in staminate buds grew more than adaxial anthers 

(feeding anthers) of both hermaphrodite and staminate buds. The distance between 

the two types of anthers in hermaphrodite buds barely increased with bud length, 

while the distance in staminate buds increased as bud reached anthesis (Figure 2.5A). 

This separation among anthers became different between hermaphrodite and 

staminate buds after they reached 3-4mm in length, indicating the development of 

heteranthery in staminate buds. The distance in staminate buds one day before 

anthesis was approximately three times higher than in hermaphrodite buds (Figure 

2.5A). 

The distance between anthers and stigma in hermaphrodite buds arose late in 

development when buds were 15mm in length and styles surpass the size of anthers 

(Figure 2.5B). For staminate buds, there was a strong difference in size after style 

growth stopped that continued with bud and anther growth (Figure 2.5B) 

 

 

 
Figure 2.5. Patterns of development of heteranthery (A) and style dimorphism (B) of 
hermaphrodite and staminate floral buds. Differences between adaxial and abaxial 
refers to heteranthery and difference between adaxial anthers and stigma (ST) refers 
to style dimorphism. Line at zero in B represents equal size of anthers and stigma. 
Adaxial anthers correspond to feeding anthers in staminate flowers, while abaxial 
anthers correspond to pollinating anthers in staminate flowers.  

B A 
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2.4.3 Floral morphology and allometric relationships in mature flowers 

The linear discriminant analysis showed that hermaphrodite and staminate 

flowers of S. houstonii differed in most of the floral traits measured (Figure 2.6). The 

first linear axis explained 97% of the trace and was able to differentiate flowers into 

hermaphrodite and staminate, while the second linear axis explained 1.8% and 

showed slight differences in plants from different collections (supplementary 

material, Table s2.3). Overall, staminate flowers tended to have larger corollas and 

anthers, while hermaphrodite flowers tended to have larger styles, ovaries and 

calyxes (Table 2.2). Hermaphrodite flowers were characterised by a large separation 

between anthers and stigma of 10 mm approximately (Table 2.2). This separation was 

also present in staminate flowers, but it was not of the same size as in hermaphrodite 

flowers and was mainly due to style growth arrest early during bud growth (see 

Figure 2.5B). I observed a separation between the two adaxial and the three abaxial 

anthers of both hermaphrodite and staminate flower; however, this separation was 

approximately three times larger in staminate flowers than in hermaphrodite flowers 

(Table 2.2). Separation of anthers (heteranthery), thus, was characteristic of 

staminate flowers.  

I found flowers grown in the glasshouse were larger than flowers from natural 

populations. Few traits such as style height of hermaphrodite flowers and pollinating 

anthers height were of the same size in plants from both glasshouse and natural 

population collections (Table 2.2) 

Allometric relationships between floral traits of mature flowers showed the 

differences among floral traits (Figure 2.7, Table 2.3). For both hermaphrodite and 

staminate flowers, corolla length, calyx length, style length, anther lengths and 

distance between anthers were significantly associated with corolla width and were 

significantly different among flower sexes (Table 2.3). Only ovary size and distance 

between anthers and style were not associated with corolla length, but their 

intercepts were significantly different between hermaphrodite and staminate flowers 

(Table 2.3). 
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Figure 2.6. The first two axes of the linear discriminant analysis of the floral traits in 
hermaphrodite (H) and staminate (S) flowers of S. houstonii grown under control 
conditions (G) and from natural populations (N). Circles denote hermaphrodite 
flowers and squares staminate flowers, open symbols represent plants grown under 
controlled conditions at the greenhouse and closed symbols represent flowers 
collected in natural populations in Yucatan (see coefficients in Table s2.3 
supplementary material). 
 

Table 2.2. Summary statistics of floral traits measured (in mm) in hermaphrodite (H) 
and staminate (S) flowers of S. houstonii individuals from natural populations in 
Yucatan and plants grown in the glasshouse. Mean and standard error are shown for 
each floral sex and each plant collection. 

Floral trait 
Glasshouse Natural populations 

H S H S 

Corolla length 41.3 ± 1.1 44.1 ± 1.3 34.6 ± 0.9 38.4 ± 0.8 

Corolla width 41.7 ± 1.2 44.6 ± 1.1 35.9 ± 1.0 39.6 ± 0.8 

Style height 18.1 ± 0.5 3.4 ± 0.4 18.2 ± 1.0 1.8 ± 0.1 

Feeding anthers height 8.4± 0.3 8.9 ± 0.3 6.6 ± 0.1 8.2 ± 0.1 

Pollinating anthers height 10.7 ± 0.3 14.7 + 0.4 8.5 ± 0.2 14.8 ± 0.2 

Distance feeding and pollinating anthers 2.3 ± 0.1 5.4± 0.3 1.9 ± 0.2 6.5 ± 0.2 

Distance feeding anthers and stigma 9.6 ± 0.3 -5.9 ± 0.5 11.3 ± 0.3 -6.5 ± 0.2 

Ovary width 2.5± 0.1 1.2± 0.1 1.7± 0.1 0.6± 0.02 

Calyx length 15.3 ± 0.7 11.1 ± 0.3 14.0 ± 0.4 10.9 ± 0.2 

 

 



 

 
 

5
6

 

 

Figure 2.7. Allometric relationships among floral organs and corolla size of hermaphrodite and staminate flowers of S. houstonii. Open symbols 
and full lines denote hermaphrodite flowers, closed symbols and doted lines denote staminate flowers. See Table 2.3 for model coefficients.

A B C D 

E F G H 
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Table 2.3. Allometric relationships of floral traits for hermaphrodite (H) and 
staminate (S) flowers. Coefficients are derived from linear mixed effect models for 
each floral organ. 

Response 
variable 

Fixed and random 
variables 

Estimate/
Variance* 

SE/
SD* 

t P N 
Graphs 
in text 

Corolla length Intercept 1.86 1.08 1.7 0.085 
225 

Fig. 2.7A 
 Corolla width 0.91 0.03 32.9 <0.001  
 Sex (Staminate) 0.38 0.38 1.0 0.318  
 Collection (Glasshouse) 0.96 0.48 2.0 0.045   
 Plant ID (random) 1.47 1.21   110  
Adaxial anthers Intercept 4.25 0.44 9.7 <0.001 

223 

Fig. 2.7B 
heigth Corolla width 0.07 0.01 6.2 <0.001  
 Sex (Staminate) 1.17 0.12 9.7 <0.001  
 Collection (Glasshouse) 1.24 0.25 4.9 <0.001  
 Plant ID (random) 1.11 1.06   109  
Abaxial anthers Intercept 4.08 0.72 5.7 <0.001 

222 

Fig. 2.7C 
height Corolla width 0.13 0.02 7.2 <0.001  
 Sex (Staminate) 4.97 0.24 20.5 <0.001  
 Collection (Glasshouse) 0.44 0.33 1.3 0.193  
 Plant ID (random) 1.04 1.02   109  
Calyx length Intercept 9.50 1.10 8.7 <0.001 

221 

Fig. 2.7D 
 Corolla width 0.14 0.03 4.8 <0.001  

 Sex (Staminate) -4.08 0.34 
-

11.9 
<0.001  

 Collection (Glasshouse) -0.42 0.54 -0.8 0.436  
 Plant ID (random) 3.71 1.93   107  
Style height Intercept 13.32 0.80 16.6 <0.001 

215 

Fig. 2.7E 
 Corolla width 0.11 0.02 5.4 <0.001  

 Sex (Staminate) -15.65 0.31 
-

50.1 
<0.001  

 Collection (Glasshouse) 0.30 0.34 0.8 0.384  
 Plant ID (random) 0.16 0.40   106  
Ovary width Intercept 1.50 0.17 8.9 <0.001 

107 

Fig. 2.7F 

 Corolla width 0.01 
<0.0

1 
1.8 0.071  

 Sex (Staminate) -1.23 0.06 
-

20.1 
<0.001  

 Collection (Glasshouse) 0.54 0.08 6.8 <0.001  
 Plant ID (random) 0.01 0.10   43  
Distance Intercept 0.74 0.55 1.4 0.179 215 Fig. 2.7G 
adaxial-abaxial Corolla width 0.04 0.01 2.8 0.006   
anthers Sex (Staminate) 3.87 0.20 19.3 <0.001   
 Collection (Glasshouse) -0.58 0.24 -2.4 0.019   
 Plant ID (random) 0.29 0.53   106  
Distance Intercept 10.37 0.88 11.7 <0.001 215 Fig. 2.7H 
adaxial anthers- Corolla width 0.007 0.02 0.3 0.770   

stigma Sex (Staminate) -16.71 0.33 
-

50.2 
<0.001   

 Collection (Glasshouse) -0.48 0.38 -1.3 0.209   
 Plant ID (random) 0.46 0.68   106  
*SE and estimate for fixed variables, SD and variance for random variables. 
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2.4.4 Pollen quantity and size 

Pollen quantity differed significantly among the anthers of hermaphrodite and 

staminate flowers (Table 2.4, 2.5). Each feeding anther of both hermaphrodite and 

staminate flowers bore the least amount of pollen, while each pollinating anther of 

staminate flowers bore twice as much as an individual feeding anthers (Figure 2.8, 

Table 2.4). Overall, staminate flowers bore 831,601±72,757 pollen grains, which 

approximately 1.5 times more pollen than hermaphrodite flowers 

(529,534±30,926 pollen grains). The number of pollen grains in one 

hermaphrodite flower was not statistically different from the pollen borne on 

three pollinating anthers of a staminate flower (Table 2.5). Pollen size was 

statistically similar among anthers of both floral sexes and pollen from both 

feeding and pollinating anthers had an average diameter of 24 mm approximately 

(Table 2.5). 

 

 
Figure 2.8. Pollen measurements of hermaphrodite and staminate anthers of S. 
houstonii. Black bars in plot indicate mean, boxes the 95% confidence interval on 
the mean, shaded areas represent density and each individual point is an 
observation from a single anther type. HFA-feeding anthers of hermaphrodite 
flowers, SFA-feeding anthers of staminate flowers, SPA-pollinating anthers of 
staminate flowers. Different letters on figures denote significant differences among 
the anthers (see Table 2.4 for coefficients). 
  

a 

a 
b 

a 
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Table 2.4. Summary statistics of pollen measurements of hermaphrodite and 
staminate anthers. Mean and standard error are shown for each anther type. Feeding 
anthers in staminate correspond to anthers in the adaxial position and pollinating 
anthers in the abaxial position in the flower. Note that hermaphrodite flowers have 
five feeding anthers and staminate flowers two feeding anthers and three pollinating 
anthers. 

 
Anthers of 

hermaphrodite flowers 
Anthers of staminate flowers 

 Feeding Feeding Pollinating 

Pollen grains per anther 105,907 ± 6,185 124,451 ± 10,756 194,233 ± 17,082 

Pollen grains per flower 529,534 ± 30,926 248,903 ± 21,511 582,698 ± 51,246 

Pollen grains size 24.3 ± 0.3 23.5 ± 0.5 23.5 ± 0.5 

 

Table 2.5. Coefficients of statistical models describing the relationships of pollen 
quantity per anther and per flowers and pollen diameter with anthers type of S. 
houstonii. 

Response 
variable 

Fixed and random 
variables 

Estimate/
Variance* 

SE/ SD* t P N 
Graphs 
in text 

Pollen per  Intercept 100053.3 14109.6 7.1 <0.001 

65 

Fig. 2.8A 
anther Anther (Staminate feeding 

anthers) 
25245.3 17196.6 1.5 0.147  

 
Anther (Staminate 
pollinating anthers) 

95026.5 17196.6 5.5 <0.001  

 Plant ID (random) 207300e4 45532   37  
Total  Intercept 514159.3 41744.6 12.3 <0.001 

65 
Fig. 2.8B 

pollen per Anther (Staminate FA) -266576.8 51543.4 -5.2 <0.001  
flower Anther (Staminate PA) 67218.2 51543.4 1.3 0.195  
 Plant ID (random) 157400e5 125450   37  
Pollen Intercept 24.53 0.52 47.4 <0.001 

65 
Fig. 2.8C 

diameter Anther (Staminate FA) -1.07 0.64 -1.7 0.099  
 Anther (Staminate PA) -1.01 0.64 -1.6 0.120  
 Plant ID (random) 2.27 1.51   37  

*SE and estimate for fixed variables, SD and variance for random variables. 
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2.5 Discussion 

2.5.1 Determination of unisexuality 

Floral organ initiation in S. houstonii primordia was similar to what has been 

described for other Solanum species (Sekhar & Sawhney, 1984; Diggle, 1991b; Ronse 

De Craene, 2010). Buds from basal and distal positions were bisexual at initiation, 

until they reached 3-4 mm of length and differences in floral organs growth arose. At 

this bud length, ovaries and styles of buds at distal positions of the inflorescence 

ceased growing, while gynoecia of buds at the most basal positions continued growing 

in a similar pattern as the other floral organs. These findings indicate that buds at 

basal positions maintained their bisexuality while buds at distal positions became 

unisexual, staminate, at this stage of development. 

For other Solanum species, it has been demonstrated that after gynoecial arrest, 

sex determination is achieved due to ovule abortion (Diggle, 1991a,b, 1993). For 

instance, histological studies on hermaphrodite and staminate buds of Solanum 

hirtum showed that after ovary growth ceased at 5 mm length, the ovule development 

continued normally. But when staminate buds reach 9-10mm in length, the 

integument and embryo sac of ovules collapsed causing necrotic ovules (Diggle, 

1991a,b). Although, in this study, I did not focused in determining when ovule 

development occurred in each sex, the early arrest of gynoecium suggests ovules 

could have had an abnormal development like in Solanum hirtum. In support of this 

conjecture, staminate flowers have a reduced number of ovules that are smaller in 

size than ovules of hermaphrodite flowers (41±10 on staminate flower vs ~250±28 

on hermaphrodite flowers). In any case, staminate flowers at distal positions of the 

inflorescences bear unfertile gynoeciums, which suggest ovule abortion occurs at 

some point during sex determination. 

The results presented here indicate that only the first bud to develop in the 

inflorescence maintained bisexuality. These findings suggest floral sex determination 

of S. houstonii could be fixed at certain positions in the inflorescence, starting from 

the second position and continuing through the end of the inflorescence. In 

andromonoecious species, this pattern of expression in known as strong 

andromonoecy and in some species is often maintained despite fluctuations in 

resource availability (Whalen & Costich, 1986; Diggle & Miller, 2004, 2013). For 

instance, in Solanum quitoense and S. palinacanthum, both species with strong 

andromonoecy, Diggle and Miller (2013) found only S. palinacathum is capable to 
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adjust its sex expression (the proportion of staminate flowers produced) under 

treatments that reduce resource availability for fruit production. Whether S. houstonii 

is able to produce more hermaphrodite flowers remains unknown; however, the early 

arrest of the gynoecium and the expression of hermaphrodite and staminate flowers 

in certain positions of the inflorescence suggest that sex expression in S. houstonii is 

fixed. Further studies investigating the patterns of sex expression under different 

resource levels will be able to confirm the potential of flowers from distal positions 

to become hermaphrodite (see Chapter 3). 

 

2.5.2 Patterns of development of anther dimorphism: heteranthery 

Heteranthery is the occurrence of two or more types of stamens in the same flower 

(Barrett, 2002a). It has evolved within Solanum several times by convergent 

evolution; however, the patterns of development and genetic basis within this genus 

are still unknown (Lester et al., 1999; Bohs et al., 2007; Vallejo-Marín et al., 2010). In 

species that present separation of sexes and heteranthery, investigating the how 

heteranthery arise is critical to further understand how labile the development of the 

system is. In S. houstonii, heteranthery occurred in distal buds only, by the 

enlongation of two abaxial anthers after buds reached 2-4mm of length. At this point, 

abaxial anthers of distal buds enlarged faster than the adaxial anthers, but followed a 

similar pattern of growth as the style of basal buds. Such patterns of development 

have been documented for other species with heteranthery, such as Senna and 

Chamaecrista, in which stamen differentiation occurs at early stages of development 

(Tucker, 1996; Jesson et al., 2003; Marazzi & Endress, 2008; Nogueira et al., 2018). 

In S. houstonii, anther dimorphism developed in buds from distal positions that had 

their gynoecia arrested and became unisexual, suggesting heteranthery is fixed to 

certain positions in the inflorescences in a similar way to unisexuality. This pattern is 

not very common in Solanum as heteranthery is often expressed in all flowers from a 

given species. For instance, in S. vespertilio and S. lidii both hermaphrodite and 

staminate flowers are heterantherous (Dupont & Olesen, 2006; Anderson et al., 

2014). As the genetic pathway for the development of heteranthery and unisexuality 

in Solanum is unknown, it remains unclear whether the expression of these two traits 

is associated or if they are developmentally constrained. In S. houstonii, it seems likely 

that heteranthery and unisexuality are developmentally constrained.  
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2.5.3 Morphological differentiation on hermaphrodite and staminate flowers 

From the quantitative analyses of hermaphrodite and staminate flowers, I found 

flowers of S. houstonii were morphologically different, not only in anther, style and 

ovary size but also in traits such as corolla and calyx length. Hermaphrodite flowers 

presented radially symmetric corollas with large styles, calyxes and ovaries, while 

staminate flowers possessed large bilaterally symmetrical (zygomorphic) corollas 

and two sets of anthers, two short adaxial anthers that function as feeding anthers 

and three long abaxial anthers that function as pollinating anthers (Papaj et al., 2017). 

This combination of characters of hermaphrodite and staminate flowers is not 

frequently observed in Solanum, especially radial symmetry and zygomorphy of the 

corolla within the same plant. Usually, in Solanum, radial symmetry is the rule, but 

zygomorphy has arisen several times (Lester et al., 1999; Knapp, 2002; Bohs et al., 

2007). For instance, in species from the Canary Islands and some of the section 

Androceras (both subgenus Leptostemonum), zygomorphy is very common and has 

been associated with the presence of anther dimorphism and characters that promote 

pollinator attraction (Lester et al., 1999; Dupont & Olesen, 2006; Levin et al., 2006; 

Bohs et al., 2007). In sister species of S. houstonii, from the section Elaeagnifolium, 

zygomorphy is rare (Knapp et al., 2017). The developmental analyses suggest that 

zygomorphy of staminate flowers in S. houstonii occurs due to the enlargement of 

pollinating (abaxial) anthers. 

In many andromonoecious species that possess a labile sex expression in response 

to changes in resource availability, investing resources towards the production of 

large hermaphrodite flowers and small staminate flowers is a major advantage as it 

ensures the production of fruits of higher quality (Anderson & Symon, 1989; Vallejo-

Marín & Rausher, 2007b; Anderson et al., 2014). However, in few andromonoecious 

species allocating resources towards the female function than to the male function is 

not always a major advantage (Bertin, 1982; Podolsky, 1993; Barrett, 2002a,b; 

Vallejo-Marín & Rausher, 2007b). Here, I found S. houstonii possesses staminate 

flowers that were not only larger than hermaphrodite flowers that but also had 

greater amounts of pollen and hermaphrodite flowers with a smaller corolla than 

staminate flowers but larger styles and ovaries. These results suggest that in S. 

houstonii species rather than re-allocating resource from the male function towards 

the production to larger hermaphrodite flowers, there might be a trade-off between 

the size of hermaphrodite flowers and the pollen production of staminate flowers. In 
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some andromonoecious species and other Solanum species, investing in large male 

function is explained often by the hypotheses that staminate flowers increase 

pollinator attraction and that greater amounts of pollen increases the chances of 

pollen reaching the stigma (Bertin, 1982; Whalen & Costich, 1986; Podolsky, 1993; 

Barrett, 2002a; Vallejo-Marín & Rausher, 2007b; Anderson et al., 2014). These are 

two of the main hypotheses used to understand the maintenance and evolution of 

staminate flowers and have been supported by studies that show staminate flowers 

are preferred by pollinators and/or donate more pollen that reaches the stigma than 

hermaphrodite flowers (Bertin, 1982; Whalen & Costich, 1986; Huang, 2003; 

Quesada-Aguilar et al., 2008; Luo et al., 2012).  

The results shown here are the first characterisation of andromonoecy in S. 

houstonii, which not only provide relevant data of sex determination and 

development of floral adaptations common in andromonoecious species in Solanum, 

but provides a framework of the functional role of staminate flowers at pollen 

donation. Further investigations on the functional role of staminate flowers that 

examine pollinators preference to staminate flowers and that measure pollen 

contribution for seed production could be helpful to investigate the mechanisms that 

maintain the production of staminate flowers and the evolution of andromonoecy in 

Solanum. 

 

 

2.6 Conclusions 

The developmental pattern of sex determination in S. houstonii is characterised by 

the early arrest of gynoecia. Here, I showed that all floral buds are bisexual at 

initiation and achieve unisexuality due to gynoecium arrest when buds are 3-4 mm of 

length. I demonstrated bisexuality is maintained in buds that developed in the first 

position of the inflorescence, while the remaining buds of the inflorescence developed 

unisexuality. In addition, buds that were unisexual also presented anther dimorphism 

that in mature flowers is known as heteranthery. The fact that heteranthery was only 

developed in buds at distal positions of the inflorescence that were also unisexual, is 

consistent with unisexuality and heteranthery being developmentally constrained to 

certain positions of the inflorescence. Furthermore, the changes of floral organ 

growth observed during bud development were translated to mature flowers in 
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which I found a strong morphological differentiation. Hermaphrodite flowers 

possessed larger calyxes, ovaries, styles and herkogamy, traits that are associated 

with fruit production and pollen reception. In contrast, staminate flowers possessed 

larger corollas, heteranthery and a larger amount of pollen, traits that are often 

associated with pollinator attraction and pollen donation. The results of this study 

provide the first data on sex determination in S. houstonii, and valuable information 

on developmental mechanisms of sex determination in species that exhibit a fixed 

proportion of hermaphrodite and staminate flowers. 
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Chapter 3 
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Chapter 3. Fixed sex expression of andromonoecy in 

Solanum houstonii 

3.1 Abstract 

Andromonoecy, the presence of hermaphrodite and staminate (female-infertile) 

flowers in the same individual, can be phenotypically plastic due to changes in 

resource availability, or fixed at certain positions in the inflorescence due to 

architectural constraints. These types of expression are well characterised in the 

genus Solanum, in which many species present weak andromonoecy that often is 

phenotypically plastic or strong andromonoecy that is often constrained at certain 

positions of the inflorescence. However, fixed phenotypes in this genus are rare, as 

andromonoecy is sometimes considered a way to maximise fitness by optimal 

allocation of reproductive resources to male and female functions. Solanum houstonii 

is an andromonoecious species that produces a relatively low proportion of 

hermaphrodite flowers in an apparently fixed pattern of sex expression. 

Nevertheless, little is known about this species’ reproductive system, and whether it 

is capable of adjusting its floral expression in response to changes in resource 

availability. In this chapter, I investigated whether S. houstonii possesses a plastic 

phenotype with respect to sex expression. To achieve this, I characterised the sex 

expression of individuals from natural populations and plants grown under 

controlled conditions. I tested the effect of floral position in the inflorescence and the 

effect of increased and decreased resource availability. My results indicated the ratio 

of production of hermaphrodite and staminate flowers in natural populations was of 

two hermaphrodite flowers per eight staminate flowers and that at the inflorescence 

level, hermaphrodite flowers have the highest probability to be produced in the first 

position of the inflorescence, while staminate flowers are expected at subsequent 

positions. In addition, individuals under treatments of increased and decreased 

resources demonstrated similar patterns of sex expression. Altogether, these results 

are consistent with that flower sex being constrained by architectural effects in the 

design of the inflorescence, suggesting S. houstonii has lost its plasticity to produce 

hermaphrodite flowers in subsequent positions. I discuss that this pattern of 

expression may be a strategy to maximise resources available for the production of 

large fruits. 
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3.2 Introduction 

Andromonoecy, the breeding system in which plants possess hermaphrodite and 

staminate (female-sterile) flowers, occurs in approximately 4000 species, which are 

~2% of all flowering plants (Yampolsky & Yampolsky, 1922; Miller & Diggle, 2003). 

The study of andromonoecy has focused on understanding its adaptive significance, 

evolution and diversification (Bertin, 1982; Whalen & Costich, 1986; Diggle, 1993; 

Miller & Diggle, 2003; Diggle & Miller, 2004; Vallejo-Marín & Rausher, 2007a,b; Dai & 

Galloway, 2012; Granado-Yela et al., 2017). One of the main hypotheses proposed for 

the evolution of andromonoecy suggests this sexual system evolves as a reproductive 

energy-saving strategy, as it assumes staminate flowers are less costly than 

hermaphrodite flowers, and resources saved by producing them can be reallocated 

towards fitness-enhancing traits of both male and female function (Primack & Lloyd, 

1980; Bertin, 1982; Solomon, 1985; Vallejo-Marín & Rausher, 2007b). As a result of 

this strategy, in environments where resources for plant growth are reduced, some 

andromonoecious species exhibit variation in their sex expression (relative 

production of staminate flowers) as a strategy to maximise resource reallocation 

towards fruit production (female fitness)(Diggle, 1993; Korpelainen, 1998; Miller & 

Diggle, 2003). Because of the latter, andromonoecy is frequently considered a form of 

adaptive phenotypic plasticity (Miller & Diggle, 2003). 

Regardless of the particular advantages of a plastic phenotype, many 

andromonoecious species exhibit a fixed proportion of hermaphrodite and staminate 

flowers (non-plastic sex expression) that is not attributed by resource reallocation 

(Miller & Diggle, 2003; Diggle & Miller, 2004). In these species, sex determination may 

be due to developmental constraints imposed by inflorescence architecture (Diggle, 

1995, 1997), leading to inherent features of the inflorescence that have predictable 

patterns of variation associated with position (Diggle, 1995). In species with 

unisexual flowers, causes of these effects on flower sex can help to determine the 

developmental pathways of sex determination and therefore provide a better 

understanding of the evolutionary dynamics to achieve unisexuality. However, little 

attention has been paid to these positional effects in inflorescences of species with 

unisexual flowers, such as in taxa with andromonoecy, gynomonoecy or monoecy 

(Miller & Diggle, 2003; Reuther & Claßen-Bockhoff, 2013; Granado-Yela et al., 2017). 

In the large genus Solanum (Solanaceae), andromonoecy is well documented, 

especially in the subgenus Leptostemonum (Whalen & Costich, 1986; Levin et al., 
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2006; Stern et al., 2011; Diggle & Miller, 2013). Andromonoecious species in Solanum 

are characterised for being weakly andromonoecious, if plants produce relatively few 

staminate flowers or as strongly andromonoecious, if they produce a relatively high 

number of staminate flowers (Whalen & Costich, 1986). Experimental analyses have 

demonstrated that species that are weakly andromonoecious decrease their 

production of hermaphrodite flowers but increase their production of staminate 

flowers when resources for plant growth are scarce, suggesting the production of 

staminate flowers is phenotypically plastic for increasing resource demands 

(Solomon, 1985; Diggle, 1991a, 1993; Miller & Diggle, 2003; Diggle & Miller, 2013). In 

this species, staminate flowers are smaller than hermaphrodite ones, and when 

produced as a plastic response occur at distal positions of the inflorescence (Diggle, 

1993; Miller & Diggle, 2003; Diggle & Miller, 2004). For instance, in Solanum hirtum, 

it has been shown fruit set developing treatments represent a significant drain of 

resources for further plant growth and reproduction, which reduces the relative 

proportion of hermaphrodite flowers produce per inflorescence and increase the 

proportion of staminate flowers at distal positions of the inflorescence (Diggle, 1993, 

1994; Miller & Diggle, 2003). On the contrary, species with strong andromonoecy 

have a non-plastic phenotype and possess flowers that do not differ in size (Miller & 

Diggle, 2003; Diggle & Miller, 2004). However, evidence supporting this difference is 

scarce, as this has only been documented for few species of the Lasiocarpa and 

Acanthophora sections (subgenus Leptostemonum) (Miller & Diggle, 2003; Diggle & 

Miller, 2004, 2013). 

Solanum houstonii Martyn is a perennial shrub endemic to Mexico of the subgenus 

Leptostemonum, section Eleaegnifolium, characterised for being andromonoecious. 

Previous studies showed each inflorescence is able to produce one hermaphrodite 

and several staminate flowers and that these flowers differed in their morphology, 

with staminate flowers having a larger corolla and anthers than hermaphrodite 

flowers (Knapp et al., 2017; see results Chapter 2). The biased production of 

staminate flowers indicates this species is strongly andromonoecious, however, 

whether the flower dimorphism is the result of resource allocation rather than a fixed 

expression of sexual dimorphism remains to be tested. 

Here, I investigated the patterns of sex expression of S. houstonii, in order to 

determine the ability of this species to adjust its staminate flower production in 

response to changes in plant resource availability. I measured sex expression in 
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natural populations, in plants grown under controlled conditions and in plants with 

experimentally increased or decreased resource availability for plant growth. These 

manipulations should increase (treatment with fertiliser addition) or decrease 

(treatment with fruit developing) the probability of finding hermaphrodite flowers 

within inflorescences compared with the control treatment. Additionally, I performed 

another resource manipulation to determine whether the removal of the first flower, 

which is often hermaphrodite (see Chapter 2; Knapp et al., 2017), had an effect on the 

probability to produce hermaphrodite flowers in basal positions of the inflorescence. 

Specifically, I asked the following questions: 1) how does sex expression vary in 

natural populations? 2) Does flower position in the inflorescence have an effect on 

sex expression? 3) Does increased or decreased resource availability affect sex 

expression at the inflorescence level? 4) Does the removal of the basal flower, often 

characterised as hermaphrodite, affect the sex expression in the inflorescence?  
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3.3 Methods 

3.3.1 Study species and plant material 

The shrub Solanum houstonii Martyn is a perennial species that occurs in the arid 

habitats of Mexico (Knapp et al., 2017). This species is characterised by strong 

andromonoecy for possessing in each inflorescence one basal hermaphrodite flower 

and up to 35 staminate (female sterile) flowers. Inflorescences are scorpioid-cymes 

that bear up to five open flowers at a time, each lasting two days in natural 

populations and up to five days under controlled conditions. Flowers have five lilac 

or purple petals and five yellow or purple poricidal anthers, and are heterostylous, 

heterandrous, nectarless and markedly dimorphic (Knapp et al., 2017). 

Hermaphrodite flowers are characterised for their five straight anthers of similar size, 

long style (three times bigger than anthers) and their prickly calyx. Staminate flowers, 

on the contrary, are short styled, and possess two morphologically and functionally 

distinct set of anthers (Knapp et al., 2017; Papaj et al., 2017). Two short adaxial 

anthers provide pollen for visiting insects and function as feeding anthers and three 

longer, curved abaxial anthers (similar in size to the style of in hermaphrodite 

flowers, Knapp et al., 2017), known as pollinating anthers, presumably contribute to 

pollen reaching the stigmas of hermaphrodite flowers (Papaj et al., 2017). Solanum 

houstonii individuals flower all year, especially during the rainy season between June 

and September, and are distributed in dry and humid semi-deciduous forest and 

disturbed areas across Mexico (Nee, 1993; Knapp et al., 2017). 

 

3.3.2 Sex expression measured in natural populations 

To characterise the sex expression of individuals from natural populations, in 

January 2016 and September 2017, I sampled 65 populations across Yucatan, Mexico 

(supplementary material, Table s2.1). These populations were located along the 

highways of Yucatan state and separated by at least 1 Km. In each population, I 

selected one to 23 individuals (mean ± SE=2±0.5 individuals per population) and 

quantified the number of hermaphrodite and staminate flowers displayed in each, 

plant height and the two maximum diameter lengths. I calculated plant size using the 

ellipsoid volume formula (𝑣 =
4

3
ℎ ∙ 𝑑1 ∙ 𝑑2, where h is height, d1 is diameter 1 and d2 

is diameter 2) that fit each plant height and maximum diameter lengths (Thorne et 

al., 2002). 
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3.3.3 Sex expression measured in individuals grown under control conditions 

In the spring of 2017, I conducted an experiment in the pollinator-free glasshouse 

at the University of Stirling to examine sex expression of S. houstonii plants under 

controlled conditions at the inflorescence level of plants. I used ten individuals 

belonging to four accessions (seed families) of the same population (Table s3.1) and 

characterised sex and position on the inflorescence of flowers produced. I selected 

four branches per individual and on each branch ten sequential inflorescences, in 

which I characterised the sex of the first ten flowers to develop and reach anthesis. 

The plants used for this experiment were grown from seed on October 2016. All 

seeds were pre-treated with 2000ppm of gibberellic acid (GA3, Sigma-Aldrich, Dorset, 

UK) overnight. Seeds were sown in a mix of All Purpose Growing Medium (William 

Sinclair Horticulture PLC, Lincoln, UK) and Perlite Standard (Sinclair). Plants were 

kept in a pollinator free glasshouse at the University of Stirling at 16-22°C with a 

natural daylight cycle of 16h light and 8h dark, supplemented with compact-

fluorescent lamps. 

 

3.3.4 Sex expression measured in individuals grown under treatments with 

differences in resource availability 

To determine whether the sex expression shown at inflorescence level changes in 

response to resource availability, I experimentally manipulated resources available 

for plant growth. The treatments consisted of the following: 1) plus fertiliser, in order 

to give enough resources to the plant for growth and flower production and increase 

the probability of producing hermaphrodite flowers, 2) plus fruit, to reduce resources 

available to plant growth and reduce the probability of producing hermaphrodite 

flowers, and 3) no-manipulation (control). For the fertilisation treatment I prepared 

Tomorite plant feed (NPK: 4-3-8; Levington, UK) according to manufacturer 

instructions and applied it to the plants every week until soil reached its saturation 

point. In the plus fruit treatment, I hand-pollinated hermaphrodite flowers of each 

plant in the treatment using a mix of cross pollen and allowed them to set fruit. I 

performed an additional resource manipulation to determine whether the removal of 

the first flower, which is often hermaphrodite (Knapp et al., 2017; personal 

observation), had an effect on the sex expression per inflorescence by increasing the 
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probability to produce hermaphrodite flowers in basal positions of the inflorescence. 

The removing treatment (4) consisted of removing floral buds at the first position 

(the most basal) of the inflorescence when buds reached 2mm of length. This size was 

chose to ensure that buds from the other positions in the inflorescence were at a stage 

at which unisexuality had not yet been determined (see chapter 2). 

Plants for this experiment were grown from seed on May 2018 as explained in 

section 3.3.3 of this chapter. Approximately 80 individuals from 26 accessions 

(hereafter seed families) and ten populations (Table s3.1) were grown in the 

pollinator free glasshouses at the University of Stirling and allocated to each 

treatment (20 individuals per treatment). All treatments were initiated when plants 

reached 20cm of height and started producing inflorescences (approximately at ten 

to twelve weeks old). After six weeks of applying treatments, I started characterising 

the sex and the position in the inflorescence of flowers produced in at least 2 

inflorescences per plant. However, due to the low flower production during this 

experiment, I subsequently adjusted my target to characterise sex expression in at 

least 20 inflorescence per treatment (mean±SD=2.4±1.6 inflorescences measured per 

individual). 

 

5.3.5 Statistical analyses 

To investigate the variation in floral sex expression of S. houstonii, I performed 

generalised linear mixed effect models (GLMM, in recognition of the hierarchical 

nature of our data Pinheiro & Bates, 2000; Granado-Yela et al., 2017), specifying a 

binomial error distribution and logit-link error. First, to determine the influence of 

plant size on variation in the sex of the flowers (sex expression) produced in 

individuals from natural populations over two years of surveys and the influence of 

plant size in the sex expression, I built a model that included flower sex as a binary 

response variable (hermaphrodite=0, staminate=1). Fixed variables were year and 

plant size and random variables were population and plant ID. Then, to determine the 

effect of the position on the inflorescence on the flower sex of plants grown under 

controlled conditions, I fitted a model that included sex as a binary response variable, 

the positions in the inflorescence as a fixed variable and the random variables 

inflorescence, branch and plant IDs. Position in the inflorescence was a categorical 
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predictor with two levels: first position or non-first position, which best captured the 

clear effect of sex on the first position, which I noted during sampling. 

To determine how increasing or decreasing the resources available for plant 

growth affects sex expression, I fitted a model that included sex as the binary 

response, fixed variables treatment and inflorescence position and random variables 

inflorescence and seed family IDs. Similar to the model for testing the effect of 

position on the sex of flowers, I used a two-level categorical predictor (first and non-

first) for position. Additionally, to assess whether removing a basal flower influenced 

sex expression in the remaining positions of the inflorescence, I fitted a model with 

sex as the binary response, two separate categorical fixed effects, one for resource 

manipulation treatment and one for basal flower removal treatment, and the random 

effect seed family IDs. Resource treatment was a two-level factor that specified 

whether plants received a treatment of increased or decreased resources, and basal 

flower removal treatment was a two-level factor that specified whether the basal 

flower was removed or not. Because I was interested in the effect of flower removal 

on the phenotypes of the remaining flowers in the inflorescence, for this model, I 

disregarded the phenotypes of the first position in the treatments without flower 

removal. 

All models were fitted using the function glmer from the lme4 package (Bates et al., 

2015) using R software v 3.4.0 (R Development Core Team, 2013). Additionally, to 

estimate the intraclass correlation coefficient for the random variables of each model, 

I used the icc function of the sjstats package for R (Ludecke, 2019). Models were 

validated by visually assessing diagnostic plots to confirm normality of residuals. 
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3.4 Results 

3.4.1 Sex expression in individuals from natural populations 

The number of flowers observed in each individual in natural populations ranged 

from 1 to 96 (mean±SD: 9.8±13.7). Approximately 78% (CI95%: 70, 86%) of flowers 

were staminate in each individual and 22% were hermaphrodite (CI95%: 14, 29%; 

Figure 3.1). My model to determine the effect of year and size on the number of 

hermaphrodite and staminate flowers revealed that predictors were non-significant 

(Table 3.1, Figure 3.1). 

 

 
Figure 3.1. Proportion of staminate flowers of individuals from natural populations of 
Yucatan in two different years of sampling (A) and its relationship with plant size (B). 
In A, black bars in plot indicate mean, boxes the 95% confidence interval on the mean, 
shaded areas are density and each individual point is an observation from a single 
population. 

 
Table 3.1. Coefficients of the model to test the effect of plant size and year on flower 
sex (hermaphrodite or staminate) of individuals from natural populations. Results 
show the fixed and random effects of generalised mixed effect model with binomial 
error distribution. 

Fixed effects Estimate S.E. z p 
Intercept -1.749 0.209 -8.363 <0.001 
Year (2017) -0.557 0.443 -1.259 0.208 
Plant size 0.037 0.079 0.462 0.644 
Random effects Variance S.D. ICC  
Individual 0.020 0.140 0.006  
Population 0.278 0.527 0.079  

 

B A 
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3.4.2 Sex expression in plants grown in under control conditions: variation per 

individual and inflorescence position 

Flower position had a strong effect on floral sex (Table 3.2). The probability of 

developing staminate flowers in the first position was 0.0 (CI95%: 0.0, 0.02), while 

developing staminate in later positions was 0.96 (CI95%: 0.95, 0.97). Although my 

model suggested no differences in sex among inflorescence positions past the first, I 

found two individuals that produce hermaphrodite flowers in some later positions. 

These individuals belonged to the same seed family (07s211B, Figure 3.2). The 

hermaphrodite flowers produced were morphologically different to the 

hermaphrodite flowers in the first positions of the inflorescence, because of the 

presence of pollinating anthers that were similar in size to the stigma (Figure 3.3). 

 

 
Figure 3.2. Hermaphrodite and staminate flowers grown in the first and the other 
position in the inflorescences of ten individuals of S. houstonii grown under control 
conditions. 
 
 
Table 3.2. Effect of inflorescence position on the number of hermaphrodite and 
staminate flowers produced per inflorescence in individuals of S. houstonii grown 
under controlled conditions. Fixed and random factors are derived from the 
generalised fixed effect model with binomial distribution. 

Fixed effects Estimate S.E.  z p 
Intercept 2165.0 170.7 12.69 <0.001 
Position (Non-first) -2179.8 170.7 -12.77 <0.001 
Random effects Variance S.D. ICC  
Branch 1.5 1.2 0.01  
Inflorescence 1.5 1.2 0.01  
Plant ID (random) 148.6 12.2 0.96  
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Figure 3.3. Hermaphrodite flowers 
produced in different positions of the 
inflorescence of individual 07s211B-1 
grown under controlled conditions at 
the glasshouse at the University Of 
Stirling. Note that the hermaphrodite in 
the most basal position (towards the 
right) bears feeding anthers (FA) and 
has a strong separation between stigma 
anthers, while the flower in the second 
position (to the left) possesses 
pollinating anthers (PA) and a short 
separation between anthers and stigma. 

 

 

3.4.3 Sex expression under resource limitation treatments 

Flower position had a strong effect on the sex of each flower produced in all 

treatments (Table 3.3). The probability of the first flower to be staminate in all 

treatments was 0.00 (CI95%: 0.00, 0.13), while the probability of the flowers in 

subsequent positions to be staminate was 0.97 (CI95%: 0.93, 0.99) for the control 

treatment, 0.96 (CI95%: 0.94, 0.98) for the fertiliser treatment and 0.98 (CI95%: 0.94, 

0.99) for the fruit treatment. The resource availability treatments did not differ 

significantly from the control in sex expression (Table 3.3). There were individuals 

capable of producing hermaphrodite flowers at different positions of the 

inflorescence among the treatments (Figure 3.4A and supplementary information 

Figure s3.1), but overall the probability of these flowers to be produced in secondary 

positions of the inflorescence was 0.03 (CI95%:0.02, 0.05). 

Compared to the treatments with increased and decreased resource availability, 

the removal of the most basal flowers did not significantly increase the production of 

hermaphrodite flowers in the subsequent positions in the inflorescence, which was 

contrary to was expected (Table 3.3, Figure 3.4B). Overall, the probability of 

producing staminate flowers in the basal flower removal treatment was 0.99 (CI95%: 

0.97, 1.00) flowers, while with the probability of producing staminate flowers in the 

treatments without basal flower removal was 0.97 (CI95%: 0.95, 0.98). 

 

FA 

PA 
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Figure 3.4. Hermaphrodite and staminate flowers produced in the first and 
subsequent positions in the inflorescences of individuals under treatments with 
increased (+Fertiliser) and decreased (+Fruit) resources availability and control (A). 
Hermaphrodite and staminate flowers produced in treatments with the basal flower 
removed (Removed) and treatments without the basal flower removed (Non-
removed) (B). 
 
Table 3.3. Coefficients of models 1) to test the effect on the sex of flower of treatments: 
plus fertiliser, +fruit and control and of flower position in the inflorescence. And 2) to 
test the effect on the sex of flower of removing the basal flower on the inflorescence 
Fixed and random effects shown are the result of generalised fixed effect model with 
binomial distribution. 

 Fixed effects Estimate S.E. z p 

1) Treatments Intercept -259.60 112.07 -2.316 0.021 
 Fertiliser 0.87 0.88 0.988 0.323 
 Fruit + 0.53 2.97 0.179 0.858 
 Position (Non-first) 268.76 112.07 2.398 0.017 
 Random effects Variance S.D. ICC  
 Seed family  42.47 6.52 0.917  
 Inflorescence  0.57 0.75 0.012  
2) Basal flower Intercept 40.49 147.81 0.274 0.784 
     removed Basal f. removed (No) -31.73 147.81 -0.215 0.830 
 Resource manipulation (Yes) 0.83 0.08 0.979 0.328 
 Random effects Variance S.D. ICC  
 Seed family (random) 37.91 6.157 0.920  

  

A 

B 

+ + 
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3.5 Discussion 

The production of staminate flowers is often considered a form of phenotypic 

plasticity to ensure enough resources are available for plant growth and reproduction 

(Primack & Lloyd, 1980; Bertin, 1982; Diggle, 1993). In Solanum, this has been widely 

documented (Solomon, 1985; Diggle, 1993; Miller & Diggle, 2003; Diggle & Miller, 

2004, 2013). However, species like Solanum houstonii do not respond to changes in 

resource availability and are considered non-plastic. The results found in this study 

demonstrated S. houstonii has a male-biased sex expression in natural populations 

that does not depend on the overall plant size. Considering plant size might reflect the 

resources available for plant reproduction, these findings indicate sex expression of 

S. houstonii in natural populations is maintained irrespective of resource availability. 

Furthermore, my results from plants grown under controlled conditions and under 

treatments with decreased and increased resource availability showed there are 

strong positional effects at inflorescence level that determine the sex of flowers 

produced and that are maintained regardless of the resources available for plant 

growth and reproduction. These findings suggest that S. houstonii possesses a fixed 

pattern of sex expression that is maintained by the production of one hermaphrodite 

flower at the most basal (first) position of the inflorescence and staminate flowers in 

subsequent positions. Diggle (1995, 1997) suggested that predictable variation 

patterns are attributed to positional effects inherent to the architecture of each 

inflorescence. These architectural effects are mediated by developmental constrains 

that are taxon and organ specific and that determine both the sex and size of flowers, 

such as the amount of vascular tissue supplying the organs or the presence of identity 

genes that determine organ abortion (Diggle, 1995, 1997; Boualem et al., 2008; Diggle 

et al., 2011). 

My results also indicated that few individuals were capable of producing 

hermaphrodite flowers in secondary positions of the inflorescence regardless of the 

treatment to which they were allocated. I found a single seed family with individuals 

capable of producing more than one hermaphrodite flower in the inflorescences. 

However, the morphology of these hermaphrodite flowers was very different from 

the hermaphrodite flowers from the most basal positions, as they possessed long 

pollinating anthers like staminate flowers (see Figure 3.2). Because these 

hermaphrodite flowers with pollinating anthers were only present in very few 

individuals from reduced resource availability treatment and control, is possible 
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there is a genetic component to plasticity that makes only some genotypes plastic, 

and therefore, my models were unable to detect whether their presence was a plastic 

response due to differences in resource availability. In any case, the presence of some 

individuals capable of producing more than one hermaphrodite flower per 

inflorescence raises few hypothesis regarding the origin and maintenance of S. 

houstonii fixed expression. 

One hypothesis that could explain the individuals that produce hermaphrodite 

flowers at secondary positions of the inflorescence is that a plastic phenotype is 

ancestral in S. houstonii. This notion is supported by previous studies in Solanum 

demonstrating species with fixed sex expression evolved from plastic species as a 

mechanism to ensure enough resources are allocated to the female function (Miller & 

Diggle, 2003; Diggle & Miller, 2004, 2013). Diggle and Miller (2013) found that fixed 

sex expression of species of section Lasiocarpa (subgenus Leptostemonum) is derived 

from an ancestor that possessed a plastic phenotype. This fixed expression in section 

Lasiocarpa is hypothesised to occur by the initial fixation of staminate flower in 

earlier (basal) positions of the inflorescence. In S. houstonii, a similar scenario could 

have occurred, and the presence of plastic individuals could mean that these 

individuals are in an early stage of fixating the production of staminate flowers. In 

these individuals, there is a slow response in hermaphrodite flower production due 

to changes in resource availability. This could be verified if individuals with 

phenotypes producing hermaphrodite flowers in secondary positions were exposed 

to treatments with decreased resources for long periods of time, and showed no 

variation or a slow decrease the proportion of hermaphrodite flowers produced. 

Whether the ancestor of S. houstonii was plastic or not concerning sex expression 

phenotype remains unknown. Nevertheless, phylogenetic ancestral character 

reconstructions of sex expression have indicated that within a clade of four species 

(Lasicarpa), two of which possess plastic phenotypes and two fixed phenotypes, the 

ancestor was phenotypically plastic for the production of staminate flowers (Diggle 

& Miller, 2013). Solanum houstonii belongs to section Elaeagnifolium¸ in which three 

species (S. houstonii, S. mortonii and S. homalospremum) have an extreme phenotype 

that produces one hermaphrodite flower per inflorescence and that is hypothesised 

to possess a fixed expression (Diggle & Miller, 2013) and two (S. hindisianum and S. 

elaeagnifolium) possess phenotypes able to produce several hermaphrodite flowers, 

that is suggested to be more plastic (Knapp et al., 2017). Moreover, basal sections of 
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Elaeagnifolium include several weakly andromonoecious species, while more derived 

sections, such as the Old World solanums include various weakly, strongly 

andromonoecious, and dioecious species (Wahlert et al., 2014; see Solanaceae Source, 

http://solanaceaesource.org). Plasticity in the other species of the Elaeagnifolium 

section and other sister clades has not been investigated, but if the hypothesis for 

phenotypic evolution of sexual expression suggested by Diggle and Miller is 

consistent among the clades of the whole subgenus Leptostemonum, then S. houstonii 

fixed expression is probably derived from a plastic phenotype.  

A second hypothesis for the production of hermaphrodite flowers with pollinating 

anthers could be that these flowers are a strategy to ensure reproduction in the 

absence of pollinators. During the experiments in the pollinator free glasshouses, I 

observed that hermaphrodite flowers with pollinating anthers were able to self-

fertilise and produce fruits. Because the distance between the style and pollinating 

anthers was small, self-fertilisation is likely to occur. In species with specialised 

pollination systems, in which pollinator service becomes unreliable, self-fertilisation 

is a mechanism of reproductive assurance (Fenster & Martén‐Rodríguez, 2007; 

Barrett, 2013). Solanum houstonii is a highly specialised species, as it requires bees 

capable of vibrating its poricidal anthers in order to release pollen. Moreover, the 

hermaphrodite flowers from basal positions that characterise this species have 

herkogamy, a morphological adaptation that reduces self-fertilisation (Barrett, 

2002b) but requires bees of a certain size to ensure pollen transfer the stigma. In 

environments in which pollinators are reduced, S. houstonii have very low chances to 

set fruits. Under these circumstances, possessing hermaphrodite flowers capable of 

self-fertilisation could be advantageous. 

 

 

3.6 Conclusions 

The evolutionary dynamics of plasticity and resource allocation in 

andromonoecious species vary widely. Some species are able to change their sex 

expression in response to changes in resource availability while others possess a non-

plastic phenotype in which the production of hermaphrodite and staminate flowers 

is fixed. In this study, I demonstrated S. houstonii has a fixed pattern of sex expression, 

in which each inflorescence produces one hermaphrodite flower at the most basal 
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(first) position and several (up to 35) in the subsequent positions. This fixed pattern 

of expression may be determined by developmental constraints in the inflorescence 

architecture. I showed sex expression of S. houstonii does not change in response to 

resource availability. However, the presence of a few individuals capable of producing 

hermaphrodite flowers at secondary positions in the inflorescences could suggest 

some individuals maintained a plastic phenotype to ensure the production of fruits in 

environments that lack pollinators or represent a previous phenotype capable of 

responding to resource availability. 
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Chapter 4. The role of staminate flowers on pollen donation 

and pollinator attraction 

4.1 Abstract 

The majority of flowering plants have hermaphrodite flowers, each of which has 

the potential to develop into a fruit. However, in approximately 4,000 species, 

individual plants produce both hermaphrodite and female-sterile flowers, i.e., they 

are andromonoecious. One of the main hypotheses for the evolution and maintenance 

of female-sterile (staminate) flowers in andromonoecious plants suggests these 

flowers enhance fitness by increasing pollen donation and pollinator attraction. Many 

studies that support this hypothesis have demonstrated staminate flowers bear more 

pollen of better quality, are preferred by pollinators and transfer pollen to the stigma 

more efficiently than hermaphrodite flowers. Nevertheless, other studies have found 

contrasting results, and show difference across flowers in pollen production, siring 

success or pollinator attraction. Solanum houstonii (Solanaceae) is a buzz-pollinated, 

plant that relies on pollinator visitation to maximise seed set. This species possesses 

morphological adaptations in its staminate flowers such as heteranthery and 

increased pollen amount that are presumed to enhance pollen donation and 

pollinator attraction. In this study, I examined the functional significance of staminate 

flowers in andromonoecious S. houstonii, in order to determine whether staminate 

flowers main role is to promote pollinator attraction, pollen donation and ensure 

siring success. To achieve this, I examined pollen viability and the potential to sire 

seeds for both hermaphrodite and staminate flowers. Additionally, I tested whether 

staminate flowers acted as better pollen donors than hermaphrodite flowers using 

experimental arrays of flowers and captive bumblebees as pollinators. My results 

indicated that both staminate and hermaphrodite flowers are capable of producing 

viable pollen and siring seeds. Although I found hermaphrodite flowers have a greater 

probability of having viable pollen, there is no difference among flowers sexes in the 

probability of germination and siring seeds, indicating both kind of flowers have a 

similar siring success. In addition, I found pollinators did not show a preference for 

staminate flowers and that staminate flowers were not better pollen donors than 

hermaphrodite flowers. These results provide little support for the hypothesis that 

staminate flowers disproportionately promote pollen donation and pollinator 

attraction.  
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4.2 Introduction 

The majority of flowering plants have hermaphrodite flowers, each of which has 

the potential to develop into a fruit (Barrett, 2002a). However, about 10% of plants 

possess unisexual flowers that are female-sterile and are unable to sire fruits 

(Yampolsky & Yampolsky, 1922; Torices et al., 2011). These unisexual plants rely on 

morphological adaptations to disperse pollen and ensure reproduction (Podolsky, 

1993; Harder & Wilson, 1994; Barrett, 2002a; Renner, 2014). Several studies have 

shown how floral morphology plays an important role in plant reproduction as it can 

affect the way a flower contributes to pollinator attraction, pollen dispersal and 

pollen transference to the stigma (Harder & Wilson, 1994; Fetscher, 2001; Barrett, 

2002b; Vallejo-Marín et al., 2009; De Luca & Vallejo-Marín, 2013; Solís-Montero & 

Vallejo-Marín, 2017; Koski et al., 2018b,a; Leibman et al., 2018; Nogueira et al., 2018). 

In species that bear female-sterile flowers (hereafter, staminate flowers), 

morphological adaptations that promote pollen donation and pollinator attraction 

(i.e. heteranthery, enantiostyly, zygomorphy) are presumed to be enhanced 

(Podolsky, 1993; Bohs et al., 2007). In fact, the main hypotheses for the evolution and 

maintenance of systems with staminate flowers suggests these flowers provide a 

mechanism to maximise pollinator attraction and pollen dispersal or receipt 

(Primack & Lloyd, 1980; Coleman & Coleman, 1982; Podolsky, 1992). 

Andromonoecy is a sexual system spread in 33 families, approximately 2% of 

flowering plants, in which individual plants produce both staminate and 

hermaphrodite flowers (Torices et al., 2011; Cardoso et al., 2018). This system is 

present approximately 4000 species and has evolved independently in several plant 

lineages (Miller & Diggle, 2003). It has been hypothesised that the evolution of 

andromonoecy is selectively advantageous because the production of staminate 

flowers is less costly than hermaphrodite flowers, and resources saved by producing 

staminate flowers can be reallocated to produce more fruits or to other fitness-

enhancing characters (Primack & Lloyd, 1980; Bertin, 1982; Solomon, 1985; Emms, 

1993). This hypothesis is known as the resource allocation hypothesis and has been 

supported in a few species by the observation that staminate flowers are smaller than 

hermaphrodite flowers (Dulberger et al., 1981; Anderson & Symon, 1989; Diggle & 

Miller, 2004; Vallejo-Marín & Rausher, 2007b; Liao & Zhang, 2008). However, some 

studies have shown that staminate flowers are not always cheaper to produce, and 

staminate flowers can be of similar size to or larger than hermaphrodites (Huang, 
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2003; Narbona et al., 2008; Dai & Galloway, 2012). A second mechanism proposed to 

understand the production of staminate flowers is by the pollen donation hypothesis. 

This hypothesis postulates that staminate flowers are more efficient at pollen 

donation than hermaphrodite flowers. This advantages could arise for several 

reasons: staminate flowers may increase pollinator attraction, staminate flowers may 

increase the probability of ovules fertilisation (i.e. producing more pollen), or 

staminate flowers may produce higher amounts of pollen of better quality (Podolsky, 

1992, 1993; Harder & Barrett, 1996; Elle & Meagher, 2000; Barrett, 2002b; Huang, 

2003; Quesada-Aguilar et al., 2008; Dai & Galloway, 2012). Evidence to support this 

hypothesis is equivocal, as some studies have found staminate flowers are not always 

better at siring seeds (Cuevas & Polito, 2004; Sunnichan et al., 2004; Luo et al., 2009), 

produce less or equal amounts of pollen as hermaphrodite flowers and sometimes of 

lower quality (Solomon, 1985; Cuevas & Polito, 2004; Vallejo-Marín & Rausher, 

2007b) or flowers are less effective in dispersing pollen grains (Podolsky, 1993). 

These two hypotheses are not mutually exclusive as staminate flowers could disperse 

pollen more efficiently than perfect flowers, either by redirecting resources from 

pistil development to pollen production or by developing an enhance morphology 

better suited for pollen dispersal (i.e. heteranthery) (Bertin, 1982; Whalen & Costich, 

1986; Podolsky, 1993). 

Solanum houstonii Martyn (Solanaceae) a perennial shrub with a natural 

distribution in the tropical dry forest and disturbed areas of Mexico (Knapp et al., 

2017). It flowers throughout the year and is visited by a variety of bees capable of 

buzz-pollinating (see results Chapter 5). Solanum houstonii is an andromonoecious 

species in which individual plants bear one hermaphrodite flower and several 

staminate flowers per inflorescence. Hermaphrodite flowers are the only ones able to 

produce fruit, and although they have anthers, their large separation between anthers 

and stigma (herkogamy) does not allow autonomous self-fertilisation to happen (see 

results Chapter 5). Staminate flowers, on the other hand, possess two 

morphologically and functionally distinct set of anthers (heteranthery) that produce 

greater amounts of pollen than hermaphrodite flowers (see results Chapter 2) and 

presumably contribute to pollen reaching the stigmas of hermaphrodite flowers 

(Knapp et al., 2017; Papaj et al., 2017). Because of these morphological adaptations, 

in hermaphrodite and staminate flowers, S. houstonii provides a good opportunity to 
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investigate the pollen donation hypothesis and to test whether a enhance male 

function promotes siring success and better pollen transfer to the stigma. 

Here I compared the ability of hermaphrodite and staminate flowers to sire fruits 

and to transfer pollen to the stigma, with the aim of determining the functional 

significance of staminate flowers in pollen donation and pollination attraction in S. 

houstonii. I asked specifically: 1) is pollen from staminate flowers better at siring 

fruits than pollen of hermaphrodite flowers? 2) Do pollinators prefer visiting 

staminate flowers over hermaphrodite flowers? And 3) Are staminate flowers more 

efficient at transferring pollen to the stigma than anthers of hermaphrodite flowers? 

I addressed the first question by performing pollen viability, in vitro germination 

analyses and hand-pollination crosses to measure fruit and seed set. To determine 

whether staminate flowers are better at pollinator attraction and pollen deposition, I 

performed controlled visitations using captive bumblebees (Bombus terrestris audax) 

in experimental arrays of hermaphrodite and staminate flowers, recording their 

preference and the number of pollen grains deposited on the stigma. 
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4.3 Methods 

4.3.1 Plant material 

To investigate the role of staminate flowers of S. houstonii on pollen donation and 

pollinator attraction, I grew plants in a pollinator-free glasshouses at the University 

of Stirling in October 2016. Seeds were collected by MVM and AKZC in Mexico 

between 2007 and 2016 (Table s4.1, supplementary material). I pre-treated the seeds 

with 2000ppm of gibberellic acid (GA3, Sigma-Aldrich, Dorset, UK) overnight and 

sowed them in a mix of All Purpose Growing Medium (William Sinclair Horticulture 

PLC, Lincoln, UK) and Perlite Standard (Sinclair). Plants were kept in a glasshouse at 

16-22°C with natural daylight cycle of 16h light and 8h dark, supplemented with 

compact-fluorescent lamps. 

 

4.3.2 Pollen germination and viability 

Pollen viability of hermaphrodite and staminate flowers was tested using two 

methods: 1) in vitro pollen germination in Brewbaker-Kwack medium and 2) aniline 

blue-lactophenol stain. I used these two methods as pollen staining can sometimes be 

subjective (because some unviable pollen grains absorb stain) and in vitro 

germination is sometimes sensitive to environmental factors (Kearns & Inouye, 

1993). For each method I followed the protocol of Kearns and Inouye (1993). Counts 

of viable/germinated and non-viable/non-germinated pollen were taken after 

observing 200 grains. I performed each of the viability methods on the anthers of 40 

flowers belonging to 18 accessions and 8 populations (Table s4.1). Each method was 

applied to pollen from feeding anthers of hermaphrodite flowers and to feeding and 

pollinating anthers of staminate flowers. I decided to test the viability of the two set 

of anthers of staminate flowers, as it has been suggested that flowers with 

heteranthery sometimes possess pollen of different viability as a reflection of the 

division of labour in their anthers (Müller, 1981; Luo et al., 2009; Paulino et al., 2016).  

 

4.3.3 Siring success (fruit and seed set) 

I measured siring success as the number of fruits and seeds produced by pollen of 

the different anther-types of S. houstonii flowers. I performed hand-pollinations using 

pollen from feeding or pollinating anthers of hermaphrodite and staminate flowers. 

All hand pollinations were performed on hermaphrodite flowers, since a preliminary 
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experiment showed staminate flowers bear unfertile gynoecia (from 20 crosses all 

failed to set fruit). To test the siring potential of each anther type, I performed three 

different pollination treatments: 1) hand pollinations using pollen from feeding 

anthers of hermaphrodite flowers, 2) hand pollinations using pollen from feeding 

anthers of staminate flowers and 3) hand pollinations using pollen from pollinating 

anthers of staminate flowers. Each treatment was performed in 30 flowers in up to 

16 individuals belonging to two populations (Table s4.1). Pollen was extracted from 

anthers of one flower different to the pollen recipient using an electric toothbrush 

and then applied to the stigma of hermaphrodite flowers using a toothpick. Fruit set 

was quantified after two weeks of pollination and seed set after three months, when 

fruits were mature. 

 

4.3.4 Pollen transfer efficiency 

To assess whether staminate flowers are preferred by pollinators and transfer 

pollen more efficiently to the stigma, I used a series of experimental arrays with 

hermaphrodite and staminate flowers and exposed them to captive bumblebees 

(Bombus terrestris audax). B. terrestris audax is distributed in the British Isles and 

thus does not co-occur with natural populations of S. houstonii; however, commercial 

colonies of B. terrestris audax are available and are used for pollination of crops that 

need to be buzz-pollinated such as tomato (Solanum lycopersicum). Moreover, 

individuals of B. terrestris audax show considerable size variation (thorax width 2.3-

8.8 mm; Goulson, 2010) that overlaps with the size of the main pollinators of S. 

houstonii (see results in Chapter 5). My experimental design consisted of two types of 

experiments to test 1) the preference of bees between hermaphrodite and staminate 

flowers and 2) the efficiency of pollen transfer from staminate flowers or 

hermaphrodites to the stigma. All experiments were performed on a foraging arena 

of 100 cm x 60 cm x 35 cm (L x W x H) made of wood with a Perspex. For both 

experiments, I used two commercial Bombus terrestris audax colonies obtained from 

Biobest (Belgium) via Agralan Ltd (Swindon, UK). 

To test the preference of pollinators among flowers, I performed a choice 

experiment using two hermaphrodite and two staminate flower of S. houstonii. Fresh 

flowers of S. houstonii were attached to wooden sticks with Blu Tack (Bostik Blu Tack) 

and offered to a single bee for a period of 5 minutes (n=68 bees). During this time, I 
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collected data on the number of floral visits (bee touching any part of flower) on each 

hermaphrodite or staminate flower and sex of first flower visited.  

To test for the efficiency of pollen transfer from staminate flowers or 

hermaphrodite to the stigma, I performed two type of experiments, one using 

hermaphrodite flowers as pollen donors and hermaphrodite flowers as pollen 

recipients (n=15 trials) and the other using staminate flowers as pollen donors and 

hermaphrodite flowers as pollen recipients (n=14 trials). For each trial, I used an 

array of ten fresh flowers, five acting as pollen donors and five as pollen recipients. 

Pollen recipients for both trials consisted in hermaphrodite flowers with anthers 

blocked with super glue (Gorilla Super Glue, Gorilla Glue Inc.) to stop pollen release. 

Glue was applied on the pores of the anthers and dried for 5 minutes. To avoid odour 

effects on bee behaviour, I also applied drops of glue on the side of anthers from 

pollen-donor flowers without blocking the anther pores. During each trial, I randomly 

arranged the five pollen donors and the five pollen recipients on five wooden sticks 

inside the foraging arena. I allowed six bees to visit the flowers for a period of five 

minutes and observed the number of visits performed to each flower. After visitation, 

bees were removed from the arena and kept separated from the colony until the day 

of observation was finished. After each trial, I collected the pistils of pollen recipient 

flowers (n=75 pistils for trials with hermaphrodite flowers as pollen donors and n=70 

pistils for trials with staminate flowers as pollen donors), fixed them in 

formaldehyde-acetic acid (FAA) for two days and placed them on a slide with 

fuchsine-stained glycerol jelly (Kearns & Inouye 1993), for later analysis. To 

determine the pollen transfer efficiency, I quantified the total number of pollen grains 

on the stigma using a light microscope. 

 

4.3.5 Statistical analyses 

To test for differences in pollen viability of the anthers of hermaphrodite and 

staminate flowers, I fitted a generalised mixed effect model (GLMM) with a binomial 

distribution and logit-link error with either the pollen grains viable or pollen grains 

germinated as the response variable. Pollen grains viable or pollen grains germinated 

were two-vector response variables with the total number of pollen grains 

germinated/viable or non-germinated/non-viable. The type of anthers from which 

pollen was extracted (i.e. hermaphrodite feeding anthers, staminate feeding anthers 
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or staminate pollinating anthers) was fitted as a fixed effect and Plant ID as a random 

effect. Additionally, to control for overdispersion I included an observation-level 

random effect (OLRE) where each data point receives a unique level of a random 

effect (Hinde, 1982). Post hoc Tukey comparisons were used to test statistically 

significant differences among anther-types. 

To determine the effect of anther-type on fruit set and seed set of S. houstonii, I 

used GLMM with binomial distribution for fruit set and with Poisson distribution for 

seed set. Fruit set was binary response variable (fruit set= 1 and failed fruit=0) and 

seed set a continuous response variable. In both models, I fitted as fixed effect the 

type of anther used (i.e. hermaphrodite feeding anthers, staminate feeding anthers or 

staminate pollinating anthers) and as random effects plant ID of the pollen donor, 

plant ID of the pollen recipient and an OLRE (to account for overdispersion). Post hoc 

Tukey comparisons were used to test statistically significant differences among 

anther-types. 

To test the effect of flower sex on the number of visits by bees, I fitted a GLMM with 

Poisson distribution. I fitted the number of visits performed by bees as a response 

variable, flower sex as fixed effect and plant ID, bee colony and OLRE as random 

effects. Post hoc Tukey comparisons were used to test statistically significant 

differences between hermaphrodite and staminate flowers. Additionally, to test for 

bee preference of staminate flowers on their first visit, I used a binomial test and 

specified the total number of times hermaphrodite and staminate flowers were 

visited for the first time, a probability of 0.5 and a two sided hypothesis test. For this 

test, I used the binom.test function of R.  

I fitted a linear mixed effect model with Gaussian distribution to study predictors 

of the number of pollen grains on the stigma (response variable), with sex as a two 

level fixed factor and the total number of visits performed to each flower sex were 

fitted as fixed effects and plant ID and trial number as random effects. In addition, to 

test for the effect of the treatment of closed and open anthers on the total number of 

visits, I performed a GLMM with Poisson distribution for the two experiments in 

which I used hermaphrodite or staminate flowers as pollen donors. In each model, 

the total number of visits was the response, with the type of treatment used (open or 

closed anthers) as fixed effect and plant ID, trial and OLRE as random effects. Post hoc 

Tukey comparisons were used to test statistically significant differences between 

among treatments. 
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All statistical analyses were conducted in R software v 3.4.0 (R Development Core 

Team, 2013). All generalised mixed effect models (GLMM) were performed with the 

function glmer from the lme4 package (Bates et al., 2015) and post hoc Tukey 

comparisons were fitted using the multcomp package for R (Hothorn et al., 2008). 

Additionally, to estimate the intraclass correlation coefficient (ICC) for the random 

variables of each model, I used the icc function of the sjstats package for R (Ludecke, 

2019). Models were validated by visually assessing diagnostic plots to confirm 

normality of residuals. 
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4.4 Results 

4.4.1 Pollen germination and viability 

Pollen viability differed between the all the anther types of hermaphrodite and 

staminate flowers, however, the two anther types in staminate flowers had pollen 

with statistically indistinguishable viability (Table 4.1). On average, pollen from 

hermaphrodite flowers had a 0.86 (CI95%=0.82, 0.90) probability of being viable, 

which was higher than pollen from staminate flowers. Feeding anthers of staminate 

flowers had a probability of 0.78 (CI95%=0.73, 0.82) and pollen from pollinating 

anthers of 0.77 (CI95%=0.72, 0.82) (Figure 4.1A). On the contrary, pollen germination 

was statistically the same among all anthers of hermaphrodite and staminate flowers 

(Table 4.1). On average, pollen from hermaphrodite flowers had a 0.81 (CI95%=0.73, 

0.88) probability to germinate, while pollen of feeding anthers of staminate flowers 

had probability to germinate of 0.88 (CI95%=0.82,0.94) and pollen of pollinating 

anthers a probability of 0.85 (CI95%=0.80,0.91) (Figure 4.1B). 

 

 
Figure 4.1. Proportion of viable (A) and germinated pollen grains (B) of feeding and 
pollinating anthers of S. houstonii flowers. Similar letters denote no statistical 
differences between pollen grains germinated/viable from the different anther types. 
Multiple comparisons derived from Tukey test. Black bars in plot indicate mean, 
boxes the 95% confidence interval on the mean, shaded areas are density and each 
individual point is an observation from a single population. FA-feeding anthers, PA-
anthers. 

 
 

A B 

a b b a a a 



 

98 
 

4.4.2 Pollen siring success (fruit and seed set)  

Fruit and seed set showed no statistical differences among the anther types of 

hermaphrodite and staminate flowers used for hand pollination (Figure 4.2, Table 

4.1). The fruit siring probability of anthers from hermaphrodite flowers was 0.75 

(CI95%=0.55,0.87), while the probability of feeding and pollinating anthers from 

staminate flowers was 0.73 (CI95%=0.55,0.86). The mean (±SE) number of seeds sired 

by hermaphrodite anthers was 156±13, by feeding anthers of staminate flowers 

143±13 and by pollinating anthers of staminate flowers 120±19 (Figure 4.2B). 

 

 
Figure 4.2. Fruit set percentage (A) and seed set (B) sired from pollen of feeding and 
pollinating anthers of hermaphrodite and staminate flowers. Similar letters denote 
no statistical differences between seed set sired from the different anther types. 
Multiple comparisons derived from Tukey test. In B, black bars in plot indicate mean, 
boxes the 95% confidence interval on the mean, shaded areas are density and each 
individual point is an observation from a single population. FA-feeding anthers, PA-
flowers pollinating anthers. 
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Table 4.1. Coefficients of models to test the effect of anther-type on pollen viability, 
germination, fruit and seed set. Results show the fixed and random effects of 
generalised mixed effect models with binomial or Poisson distribution. FA-feeding 
anthers, PA-pollinating anthers. 

 Fixed effects Estimate S.E. z p 
Pollen viability Intercept -2.19 0.17 -12.83 <0.001 
(Binomial) Anther-type 

(Staminate-FA) 
0.56 0.20 2.75 0.006 

 Anther-type 
(Staminate-PA) 

0.66 0.20 3.30 <0.001 

 Random effects Variance S.D. ICC  
 Plant ID 0.13 0.36 0.03  
 OLRE 0.72 0.85 0.18  
 Fixed effects Estimate S.E. z p 
Pollen Intercept -1.47 0.29 -5.01 <0.001 
germination 
(Binomial) 

Anther-type 
(Staminate-FA) 

-0.46 0.25 -1.84 0.066 

 Anther-type 
(Staminate-PA) 

-0.30 0.26 -1.17 0.249 

 Random effects Variance S.D. ICC  
 Plant ID 0.28 0.52 0.06  
 OLRE 0.72 0.85 0.17  
 Fixed effects Estimate S.E. z p 
Fruit set Intercept -1.04 0.52 -2.02 0.044 
(Binomial) Anther-type 

(Staminate-FA) 
0.18 0.67 0.26 0.792 

 Anther-type 
(Staminate-PA) 

0.10 0.67 0.14 0.886 

 Random effects Variance S.D. ICC  
 Donor ID <0.01 <0.01 <0.01  
 Recipient ID 0.59 0.77 0.15  
 OLRE <0.01 <0.01 <0.01  
 Fixed effects Estimate S.E. z p 
Seed set Intercept 4.95 0.14 34.93 <0.001 
(Poisson) Anther-type 

(Staminate-FA) 
-0.10 0.18 -0.57 0.567 

 Anther-type 
(Staminate-PA) 

-0.13 0.23 -0.55 0.580 

 Random effects Variance S.D. ICC  
 Donor ID 0.04 0.21 0.12  
 Recipient ID 0.02 0.14 0.06  
 OLRE 0.29 0.54 0.81  
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4.4.3 Pollinator preference and pollen transference efficiency 

Pollinators had a probability to land first on staminate flowers of 0.62 

(CI95%=0.49,0.74), which denotes a strong trend towards a preference for staminate 

flowers. However, the results of the binomial test showed no significant differences 

their first choice (p=0.077; n=63 bees). Additionally, I did not find an effect of sex on 

the total number of visits performed by pollinators (Table 4.2, Figure 4.3A). 

The experiment to test the pollen transfer efficiency of pollinators when 

hermaphrodite or staminate flowers acted as pollen donors showed that flower sex 

did not have a statistically discernible effect on the total number of pollen grains 

deposited on the stigma (Figure 4.3B, Table 4.2). On average (±SE), when 

hermaphrodite flowers acted as pollen donors, pollinators deposited 32±4 pollen 

grains on the stigma and when staminate flowers acted as pollen donors, pollinators 

deposited 49±6 pollen grains on the stigma. Moreover, there was a tendency that with 

more floral visits to pollen donors, higher numbers of pollen grains were deposited 

on the stigma; however, the model to test the effect of this was non-significant (Figure 

4.3B; Table 4.2). 

In trials with hermaphrodite flowers as pollen donors, the mean (±SE) number of 

visits performed to pollen donors was 12±0.4 and to pollen recipients was 9±0.4. In 

trials with staminate flowers as pollen donors, the mean number of visits performed 

to pollen donors was 13±0.5 and to pollen recipients was 8±0.4 (Figure 4.4). Overall 

the number of visits to pollen donors and pollen recipients in both trials were 

statistically different (Table 2.3). 
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Figure 4.3. Total number of floral visits performed by captive bees Bombus terrestris 
audax on hermaphrodite and staminate flowers of S. houstonii (A) and the effect of 
total visits performed on hermaphrodite and staminate flowers on the number of 
pollen grains deposited on the stigma (B). Similar letters in A denote no statistical 
differences of the visits between hermaphrodite and staminate flowers. Multiple 
comparisons derived from Tukey test. In A, black bars in plot indicate mean, boxes 
the 95% confidence interval on the mean, shaded areas are density and each 
individual point is an observation from a single visit. H-hermaphrodite flowers and S-
staminate flowers. 
 

 

Table 4.2. Coefficients of models to test the effect of sex on the total visits and to test 
the effect of visits to hermaphrodite and staminate flowers and sex of flowers visited 
on the total number of pollen grains. Results show the fixed and random effects of 
generalised mixed effect models with Poisson and Gaussian distribution.  

 Fixed effects Estimate S.E. z p 
Total visits Intercept 1.92 0.19 10.13 <0.001 
(Poisson) Donor sex (Staminate) 0.08 0.10 0.74 0.461 
 Random effects Variance S.D. ICC  
 Plant ID 0.09 0.30 0.18  
 Bee colony 0.05 0.22 0.10  
 OLRE 0.22 0.47 0.45  
 Fixed effects Estimate S.E. t p 
Pollen grains Intercept 22.99 11.7 1.97 0.052 
(Gaussian) Donor sex (Staminate) 9.57 10.9 0.88 0.387 
 Total visits 1.45 1.0 1.41 0.162 
 Random effects Variance S.D.   
 Plant ID <0.01 <0.01   
 Trial 63.4 25.2   
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Figure 4.4. Total number of floral visits performed on flowers with closed and open 
anthers of S. houstonii for experiments using hermaphrodite (A) and staminate (B) 
flowers as pollen donors. Similar letters denote no statistical differences of the visits 
between hermaphrodite and staminate flowers. Multiple comparisons derived from 
Tukey test. Black bars in plot indicate mean, boxes the 95% confidence interval on 
the mean, shaded areas are density and each individual point is an observation from 
a single bee visiting. H-hermaphrodite flowers and S-staminate flowers. 
 
 
Table 4.3. Models coefficients to test of the treatment of closed and open anthers on 
the total number of visits of the experiments using hermaphrodite or staminate 
flowers as pollen donors. Results show the fixed and random effects of generalised 
mixed effect model with Poisson distribution.  
 Fixed effects Estimate S.E. z p 
Hermaphrodite Intercept 2.14 0.06 39.11 <0.001 
flowers as 
pollen donors 

Donor treatment 
(Open) 

0.30 0.06 0519 <0.001 

 Random effects Variance S.D. ICC  
 Plant ID 0.005 0.07 0.04  
 Trial 0.013 0.11 0.10  
 OLRE 0.005 0.07 0.04  
 Fixed effects Estimate S.E. z p 
Staminate Intercept 2.11 0.04 48.17 <0.001 
flowers as 
pollen donors 

Donor treatment 
(Open) 

0.48 0.06 8.59 <0.001 

 Random effects Variance S.D. ICC  
 Plant ID <0.01 <0.01 <0.01  
 Trial <0.01 <0.01 <0.01  
 OLRE 0.01 0.09 0.09  
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4.5 Discussion 

4.5.1 Pollen viability and siring success 

The results from this study to investigate the siring success of staminate flowers 

showed that both hermaphrodite and staminate flowers possess viable pollen, 

capable of germinating and siring seeds in similar amounts. The results of the viability 

analyses using pollen staining showed that pollen of hermaphrodite flowers have a 

greater viability than pollen of staminate flowers, while the results of the in vitro 

germinations showed germination, although non-statistically significant, was greater 

in pollen from staminate anthers. Pollen viability is an indirect test used to determine 

the quality of pollen grains by distinguishing between fresh and dead (non-viable) 

pollen grains, while in vitro pollen germination directly test the potential of each 

pollen grain to germinate in a period of time (Kearns & Inouye, 1993). Both 

germination and viability tests provide a measurement of pollen quality and often can 

provide contrasting results due to differences in the method accuracy as these 

methods are sometimes sensitive to environmental factors (Kearns & Inouye, 1993). 

In this study, I found opposite trends on pollen viability and germination, suggesting 

differences in pollen quality depending on the anther type they belong to; however, 

my results also showed pollen from all types of anthers had a high probability to 

germinate (~80%) and potentially sire seeds. In fact, the results of the hand-

pollination experiments showed pollen from anthers of hermaphrodite and staminate 

flowers did not differ significantly in their potential to sire seeds. Similar results have 

been found in other andromonoecious species, in which neither in vitro pollen 

germination, pollen viability, nor the number of seeds sired of staminate flowers 

differed from hermaphrodite flowers (Cuevas & Polito, 2004; Sunnichan et al., 2004; 

Zhang & Tan, 2009). Likewise, pollen germination and viability did not differ in other 

species of Solanum (Dulberger et al., 1981; Anderson & Symon, 1989; Mione & 

Anderson, 1992; Knapp et al., 1998; Anderson et al., 2014). Although an enhanced 

pollen viability and siring success have been proposed and demonstrated as 

characteristics that promote pollen donation (Bertin, 1982; Emms, 1993; Podolsky, 

1993; Huang, 2003; Dai & Galloway, 2012), evidence to support this is inconsistent, 

and suggest pollen viability and siring success should not be considered on their own 

to determine whether andromonoecy has evolved to increase pollen donation. For 

instance in Solanum and many buzz-pollinated plants, maintaining high amounts of 

pollen of high quality is important to ensure pollinators’ visitation, as pollen is the 
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only reward in these species. (Buchmann, 1983; Whalen & Costich, 1986; Knapp et 

al., 1998; De Luca & Vallejo-Marín, 2013). Some studies have demonstrated pollen 

viability is associated with higher protein concentration (Yeamans et al., 2014; Carr 

et al., 2015; Ndem, 2018), and that this quality co-varies with higher visitation rates 

(Hanley et al., 2008; Yeamans et al., 2014; Carr et al., 2015). The fact that S. houstonii 

bears viable pollen in both hermaphrodite and staminate flowers could suggest 

pollen in both flowers function is necessary to maximise pollinator visitation. 

Moreover, the lack of difference of siring success may indicate S. houstonii maintains 

pollen of high quality in hermaphrodite and staminate flowers in case this is 

transferred to the stigma. 

 

4.5.2 The role of staminate flowers in pollen donation and pollinator attraction 

One of the main hypotheses for the production of staminate flowers in 

andromonoecious species suggests these flowers are more successful at pollen 

donation and pollination attraction than hermaphrodite flowers (Bertin, 1982; 

Podolsky, 1993). Solanum houstonii is an andromonoecious species that produces a 

high number of staminate flowers and that possesses floral adaptations that 

presumably improve pollen dispersion and deposition on the stigma. Because of these 

characteristics, this species provides a good opportunity to test whether an enhanced 

male function promotes pollinator attraction and better pollen transfer to the stigma. 

The results from this study, using captive bumblebees as pollinators showed 

pollinators do not prefer visiting staminate flowers, in neither their first visit nor 

overall visitation, and the number of pollen grains transferred to the stigma did not 

depend on the sex of the flower used as pollen donor or the total number of visits 

performed by pollinators. These results provide little support to the hypothesis that 

staminate flowers in S. houstonii promote pollinator attraction and/or pollen 

donation. However, ruling out the potential of these flowers to act as better pollen 

donors may be premature, as results can be context dependant. 

In andromonoecious Solanum carolinense, Quesada-Aguilar et al. (2008) found 

staminate flowers function primarily as pollen donors and hermaphrodite flowers as 

pollen recipients. Their study showed that pollinators extracted pollen more 

efficiently from staminate flowers, not only due to the pollinator morphology and 

behaviour but also due to the fact that the morphology of staminate flowers reduces 
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sexual-interference (due to the absence of pistil), increasing the probability pollen 

reaching the stigma. Likewise, Elle and Meagher (2000) evidence in the same species 

that staminate flowers have a better siring success after visitation by natural 

pollinators. In contrast, another study of S. carolinense did not provide support for the 

pollen donation hypothesis as arrays of hermaphrodite flowers sired just as many 

seeds as staminate flowers after visitation of natural pollinators (Vallejo-Marín & 

Rausher, 2007b). These contrasting results indicate studies may be context 

dependent (i.e. differ in environmental conditions, such as pollinator availability), 

and pollinator composition could play an important role in determining the potential 

of one species to act as more efficient pollen donors. In this study, I used non-native 

pollinators to S. houstonii and performed the experiments under control conditions 

using the same amount of hermaphrodite and staminate flowers. However, in natural 

populations, pollinators tend to be of various sizes and morphologies, and S. houstonii 

presents a floral display with many staminate flowers. Under these circumstances, 

pollinator attraction could be bias towards one sex over the other and pollen export 

could be more successful from staminate flowers than hermaphrodite flowers. 

One limitation of my study is that I used commercial Bombus terrestris audax as 

pollinators, a species that does not overlap with the range of distribution of S. 

houstonii. I adopted this approach as other studies have shown this species and other 

commercial bumblebees are efficient at extracting pollen of poricidal anthers and 

pollinating other species of Solanum (Messinger et al., 2016; Papaj et al., 2017; Solís-

Montero & Vallejo-Marín, 2017; Arroyo-Correa et al., 2018). However, it is possible B. 

terrestris was not an efficient pollinator of S. houstonii and, therefore, the results 

concerning pollen transfer to the stigma are not representative of what happens for 

other pollinator species. Bees able to buzz-pollinate differ in their behaviour during 

pollen extraction depending on plant species (Corbet & Huang, 2014; Switzer & 

Combes, 2017; Arroyo-Correa et al., 2018). In fact, one study using the wild bee 

Bombus impatiens demonstrated one bee species changes its vibration behaviour 

depending on the plant species visited (Switzer & Combes, 2017). Others have shown 

morphological fit between pollinator and floral sexual organs influences the efficiency 

in pollen extraction and deposition on the stigma (Quesada-Aguilar et al., 2008; 

Anderson, 2010; Corbet & Huang, 2014; Solís-Montero & Vallejo-Marín, 2017). These 

findings suggest flower morphology plays an important role in the behaviour of bees 
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during buzz-pollination, and we should expect differences in pollinators behaviour 

when flowers possess different morphology.  

The morphology of S. houstonii flowers depend on sex, as hermaphrodite flowers 

have short anthers and long pistils and staminate flowers two set of anthers of 

different lengths. The fact that I did not find staminate flowers were more attractive 

or better at depositing pollen grains on the stigma was not expected for two reasons. 

First, species with heteranthery are known to promote pollen transfer to the stigma 

(Barrett, 2002a; Luo et al., 2008, 2012; Solís-Montero et al., 2015). Studies have 

shown that the division labour of anthers into feeding and pollinating anthers can 

promote a placement of pollen on pollinator body, which improves pollen deposition 

on the stigma (Solís-Montero et al., 2015; Mesquita-Neto et al., 2017). Second, because 

pollinators tend to prefer flowers with more pollen, larger size and bilateral 

symmetry (Neal et al., 1998; Fenster et al., 2004; Fenster & Martén‐Rodríguez, 2007; 

Gómez et al., 2008; Mesquita-Neto et al., 2017), I would expect staminate flowers of 

S. houstonii were more attractive to pollinators. Nevertheless, further studies must 

investigate the behaviour of different pollinators, native or non-native, on the flowers 

of S. houstonii before we can be confident about whether staminate flowers main role 

is pollen donation or pollinator attraction.  

Other hypotheses that could explain the role of staminate flowers in 

andromonoecious species propose staminate flowers increase pollen receipt or 

reduce sexual interference. The first is known as the increased pollen receipt 

hypothesis, and propose that staminate flowers produce high amounts of pollen, and 

develop a morphology that enhances pollen dispersal and deposition on the stigma 

(Bertin, 1982; Whalen & Costich, 1986; Podolsky, 1993). Evidence supporting this 

hypothesis has been provided by Vallejo-Marin and Rausher (2007a) who used a 

multivariate selection analyses to show that the production of staminate flowers 

provides a selective advantage in the production of seeds. The second hypothesis is 

known as the sexual interference hypothesis and suggests staminate flowers help to 

reduce the problems in pollen removal and deposition. The separation of the male 

function in staminate flowers and female function in hermaphrodite flowers 

enhances the chances of pollinators visiting staminate flowers for pollen extraction 

and hermaphrodite flowers for pollen deposition. This reduces the chances of self-

fertilisation to occur, although is highly dependent on the behaviour of the pollinator 

(Elle & Meagher, 2000; Barrett, 2002b; Quesada-Aguilar et al., 2008). In Solanum 
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carolinense, Quesada-Aguilar et al. (2008) found evidence of these two hypotheses. 

They supported the pollen receipt hypothesis by demonstrating staminate flowers 

deposited more pollen on the bodies of pollinators, specifically in body parts that 

touched the stigma, which increased the probability of pollen reaching the stigma. In 

addition, they showed the length of the pistil of hermaphrodite flowers interferes 

with pollen removal in hermaphrodite flowers, and because these flowers function as 

pollen recipients, which reduces the chances of self-fertilisation and supports the 

sexual interference hypothesis. The morphological characteristics of S. houstonii 

flowers, such as heteranthery and increased amount of pollen in staminate flowers 

and the large separation between anthers and stigma in hermaphrodite flowers, 

suggest that staminate flowers do more than merely donate pollen. Determining the 

reproductive success in natural populations and detailed analyses on the pollinator 

behaviour on both hermaphrodite and staminate flowers could help to propose 

alternative hypotheses for the origin, functional role and maintenance of staminate 

flowers in S. houstonii. 

This study is the first to determine the relative siring ability of staminate flowers 

in S. houstonii. Although my results did not fully support the pollen donation 

hypothesis, ruling out the potential of S. houstonii staminate flowers to act as better 

pollen donors and increase pollinator attraction may be premature, as S. houstonii 

possess floral traits that have been shown to promote pollen dispersion and transfer 

to the stigma. However, I suggest that the role of staminate flowers could lie in other 

functions, such as those proposed by increased pollen receipt and the sexual 

interference hypothesis. 

 

 

4.6 Conclusions 

This study is the first investigation that test the relative capacity of staminate 

flowers of S. houstonii for pollen donation and pollinator attraction. Here, I did not 

find support for the hypotheses that staminate flowers sire more seeds, are more 

attractive to pollinators and promote better pollen deposition on the stigma. 

However, these results should remain tentative, as studies in other species (Solanum 

carolinense) have shown mixed support for the pollen donation and pollinator 

attraction hypotheses. Future work should also consider other hypotheses, such as 
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increase pollen receipt and reduction of sexual interference. Solanum houstonii 

possesses morphological characteristics in staminate flowers (i.e. heteranthery, 

increased pollen amount) that suggest this species possesses a specialisation for 

pollen donation. Further studies analysing pollen deposition and removal using 

natural pollinators, as well as evidence that pollinators enhance reproductive success 

in natural populations, are key to evaluate comprehensively the pollen donation 

hypothesis. 

  



 

109 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 
Reproductive success and 
pollination ecology 



 

110 
 

  



 

111 
 

Chapter 5. Reproductive success and pollination biology of 

an andromonoecious shrub, Solanum houstonii, in southern 

Mexico 

5.1 Abstract 

The pollen transfer between flowers by animal pollinators is a critical event in the 

reproduction of most flowering plant species, affecting both the number and quality 

of seeds produced. Plants that use pollen as the main reward to attract floral visitors, 

often experience high levels of pollen theft, which can potentially have negative 

effects in seed production. In this study, I assessed the reproductive success of the 

buzz-pollinated, andromonoecious Solanum houstonii, a species that produces pollen 

as its only reward, in order to assess the extent to which the reproductive success 

depends on pollen and pollinator availability and to determine whether the incidence 

of pollen theft has a negative impact on its seed production. Firstly, I characterised 

the breeding system to determine the dependence of S. houstonii on pollinators to set 

fruits. Then, I quantified the incidence of pollen theft and pollinator visitation by 

performing 76 hours of floral observations in two natural populations. My results 

suggest S. houstonii is a self-compatible species highly dependent on pollinators to 

produce fruits. In natural populations, the incidence of pollen theft does not have a 

negative impact in seed production. However, the number of pollinator species is 

reduced. While pollen thieves were bees unable to buzz-pollinate, pollinators were 

bees able to produce high frequency vibrations and with a body size similar to the 

distance between stigma and anthers of hermaphrodite flowers. The incidence of 

pollen thieves in natural populations did not have a negative impact on the 

reproduction of S. houstonii, as pollinators were efficient in transferring pollen to the 

stigma for the production of seeds. In S. houstonii the separation of male and female 

sexual functions due to strong andromonoecy, coupled with a high production of 

pollen per flower, may allow floral visitors to steal pollen without reducing the plant’s 

reproductive success much. The large number of staminate flowers, large amounts of 

pollen and floral traits that enhance pollen export and deposition (i.e. heteranthery 

and herkogamy) may also promote seed production in this species by improving 

pollinator attraction and pollen transference on pollinators’ body, which increased 

the probability of reaching the stigma. 
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5.2 Introduction 

Insect pollinators are essential for the reproduction of many flowering plants. 

More than 80% of wild plant species rely on insects, particularly bees, for fruit and 

seed production (Potts et al., 2010; Ollerton et al., 2018). However, pollinators may 

vary in their morphology, behaviour, frequency of floral visitation and efficiency 

during pollination (Wilson & Thomson, 1991; Hargreaves et al., 2009). Many insects 

that visit flowers consume or collect pollen while providing little or no pollination 

service are known as pollen thieves (Inouye, 1980). In populations where pollen 

thieves are very abundant, plant reproductive success can be at risk (Hargreaves et 

al., 2009; Harder & Aizen, 2010), especially in those populations in where plants 

depend completely on pollinators to ensure seed production (Hargreaves et al., 

2012).  

The presence of pollen thieves in natural populations frequently cause plants 

experience a limitation on their seed production (Vaughton, 1996; Gross & MacKay, 

1998; do Carmo et al., 2004; Hargreaves et al., 2010; Koski et al., 2018a). Pollen 

limitation, the insufficient receipt of pollen, is often cause by pollinators that disperse 

too few pollen grains (Ashman et al., 2004; Aizen & Harder, 2007). Pollen thieves can 

drastically reduce the amount of pollen available for fertilisation, pollen loads 

available for pollinators (do Carmo et al., 2004) and the amount of pollen exported to 

stigmas (Gross & MacKay, 1998; Hargreaves et al., 2010; Solís-Montero et al., 2015; 

Koski et al., 2018a). Furthermore, by stealing pollen, pollen thieves can alter the 

behaviour of legitimate pollinators, reducing their attractiveness to flowers or their 

visitation time (Gross & MacKay, 1998; Hargreaves et al., 2009).  

Pollen theft, thus, reduces the number of male gametes available for fertilisation, 

which can negatively affect siring opportunities and plant fitness (Hargreaves et al., 

2009). Some species often evolve anti-theft mechanisms. These mechanisms are often 

associated with the male function, because theft reduces siring success in particular. 

For example, some species increase their pollen production to compensate for losses, 

possess spatial or temporal separation of their sexes (i.e. monoecy, dichogamy), or 

possess floral adaptations that separates pollen function into feeding and pollinating, 

such as heteranthery (Jesson & Barrett, 2003; Hargreaves et al., 2009). However, in 

some species that are pollen-rewarding only, such as buzz-pollinated plants, the 

presence of pollen thieves often leads to pollen limitation and negative impacts on 

fitness (Gross & MacKay, 1998; Hargreaves et al., 2009). For instance, in Melastoma 



 

114 
 

affine, a shrub that requires bees capable of buzzing to produce seeds, Gross and 

MacKay (1998) showed that the presence of bees unable to buzz caused a reduction 

in plant seed production. Similarly, in Solanum rostratum, a hermaphrodite species 

with heteranthery, Solis-Montero et al., (2015) found evidence of pollen limitation on 

natural populations and high incidence of pollen thieves. In Campanula americana, a 

species that separates female and male-function temporally (dichogamy), the 

presence of pollen thieves reduce the number of pollen grains on the stigma and the 

overall grains available for reproduction of a given population (Lau & Galloway, 2004; 

Koski et al., 2018a). Further research is required to determine variation in these 

effects and to determine whether morphological adaptations for pollen production 

can reduce negative effects on plant reproductive success  

In this study, I investigate the reproductive consequences of pollen theft on the 

buzz-pollinated Solanum houstonii, a species that produces pollen as its only reward 

and that possess separation of sexes into hermaphrodite and staminate flowers. 

Solanum houstonii is a perennial shrub widely distributed across Mexico 

characterised for possessing hermaphrodite and staminate (male) flowers within the 

same individual. Staminate flowers tend to bear high amounts of pollen (see Chapter 

2) and the division of labour of anthers into feeding and pollinating (Papaj et al., 

2017), while hermaphrodite flowers have a strong separation between anther and 

stigma (herkogamy) that presumably reduces sexual interference and promotes 

pollen deposition on the stigma (see Chapter 4). Solanum houstonii represents a good 

opportunity to investigate the reproductive consequences of pollen theft, as this 

species possesses traits that may promote pollinator attraction and increase siring 

success. Here I assess to which extent the reproduction in this species depends on 

pollinators, characterised the floral visits in populations from Yucatan, Mexico and 

determine whether the incidence of pollen theft reduces the reproductive success of 

S. houstonii. For this, I addressed the following questions: 1) does S. houstonii require 

pollinators to produce seed? 2) Are natural populations of S. houstonii pollen limited? 

3) Which are main floral visitors? And what is their behaviour on flowers? 4) Does 

the presence of pollen thieves impact negatively the reproductive success of S. 

houstonii?  
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5.3 Methods 

5.3.1 Study system 

Solanum houstonii Martyn is a perennial shrub distributed in dry and humid semi-

deciduous forest and disturbed across Mexico (Nee, 1993; Knapp et al., 2017). This 

species is strongly andromonoecious, possessing in each inflorescence one basal 

hermaphrodite flower and up to 35 staminate (female-sterile) flowers. Flowers have 

five lilac or purple petals and five yellow or purple poricidal anthers, and are 

heterostylous, heterandrous, nectarless and markedly dimorphic (Knapp et al., 2017). 

Hermaphrodite flowers have five straight anthers of similar size, a long style (three 

times longer than the anthers) and a prickly calyx. Staminate flowers are slightly 

larger, short styled, and are heterantherous, i.e. possess two morphologically and 

functionally distinct sets of anthers (Figure 1, Knapp et al., 2017; Papaj et al., 2017). 

Two short adaxial anthers provide pollen for visiting insects and function as feeding 

anthers and three longer, curved abaxial anthers (similar in size to the style of in 

hermaphrodite flowers, Knapp et al., 2017), known as pollinating anthers, that 

presumably contribute to pollen transfer to the stigma of hermaphrodite flowers 

(Figure 1, Papaj et al., 2017). Solanum houstonii individuals flower all year, and 

especially during the rainy season between June and September. Little is known about 

the reproductive system and pollination biology of this species.  

This study was conducted during September and October 2017 in two natural 

populations located in the Northwest and Centre of Yucatán, Mexico. Sierra Papacal 

was a population of 30 individuals found within a patch of secondary vegetation 

inside the facilities of the research campus Parque Científico de Yucatán 

(21°08'07.0"N, 89°47'04.3"W). San Isidro was a population of 35 individuals located 

1Km from the locality San Isidro Ochil, in Homún, Yucatán. In this population, I found 

plants growing along the roadside of the highway from San Isidro Ochil to Tekit 

(20°37'45.9"N, 89°20'40.9"W). 

 



 

116 
 

 
Figure 5.1. Floral morphology of hermaphrodite (A) and staminate (B) flowers of S. 
houstonii. FA-feeding anthers, PA-pollinating anthers, ST-stigma. 

 

 

5.3.2 Breeding system 

To determine the dependence of S. houstonii on pollinators I conducted open and 

hand-pollination treatments. I conducted two self-pollination treatments to 

determine self-compatibility: 1) self-pollination (SP) of hermaphrodite flowers using 

pollen from the same flower to hand-pollinate, and 2) geitonogamy with staminate 

flowers (GS), which consisted in hand-pollinations using pollen from a staminate 

flower within the same plant. Additionally, I conducted two cross-pollination 

treatments to determine the siring success of pollen of each flower (hermaphrodite 

and staminate): 3) cross-pollination with hermaphrodite flowers (CH), in which 

hermaphrodite flowers were hand-pollinated with pollen from hermaphrodite 

flowers from different individuals, and 4) cross-pollination with staminate flowers 

(CS), in which hermaphrodite flowers were hand-pollinated with pollen from 

staminate flowers from different individuals. I performed two additional treatments 

to assess the dependence of flowers on pollinators: 5) autonomous self-pollination 

(AP), which involved bagging flowers to exclude pollinators but to promote self-

pollination, and 6) control or open pollination (C), free pollination to determine the 
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contribution of pollinators to seed production. A final treatment to test for fruit 

production without fertilisation (apomixis) was conducted in a subset of 

hermaphrodite flowers. The apomixis test consisted in removing all anthers from a 

hermaphrodite flowers (emasculation) and keeping them bagged to determine 

whether they produce fruits spontaneously. I performed this treatment in five flowers 

per population and did not record the production of fruits in any case. In all 

treatments that required hand-pollination, pollen from all anthers of the flower sex 

mentioned was used; in treatments that required cross-pollination, pollen from all 

the anthers of at least five flowers belonging to different individuals on the population 

was collected and used. 

All treatments were performed in San Isidro and Sierra Papacal in Yucatan, Mexico. 

Due to the reduced number of hermaphrodite flowers available per plant (see Chapter 

3), I aimed to conduct each treatment in at least 30 flowers per population, in up to 

25 different individuals. Fruit set was recorded two weeks after applying the 

treatments by determining whether fruit was formed (successful fertilisation) or a 

flower was dropped (unsuccessful fertilisation). Immature fruits were collected at the 

end of surveys and dried to count seed number. 

 

5.3.3. Pollen limitation 

In order to determine whether the populations were limited by pollen, I calculated 

the pollen limitation index (L) proposed by Larson & Barrett (2000): L=1−(Po/Ps), 

where Po is the fruit/seed set in the open pollination (control) treatment and Ps is the 

fruit/seed set in the cross pollination treatment. Values of L≤0 indicate no pollen 

limitation. I calculated L for the average fruit set and seed set per population. To 

calculate Po for fruit and seed set I pooled the results of both cross-pollination 

treatments (cross-pollination with hermaphrodite and staminate flowers) because 

cross-pollination could occurred from both hermaphrodite and staminate flowers. In 

addition, I calculated 95% confidence intervals by bootstrapping with 1000 

permutations in order to validate the pollen limitation index (L) using the boot 

package (Canty & Ripley, 2017). 
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5.3.4 Floral visitors, legitimacy and visitation rates  

To describe the composition of floral visitors and their behaviour on flowers of S. 

houstonii, I conducted a total of 76 hours of observations in the two populations. In 

each population, five focal plants were marked and observed from 0830 to 1300h, in 

periods of 20 min. These observation intervals were established by conducting 

preliminary observations to determine the period of activity of floral visitors in S. 

houstonii. During each observation period I recorded the number of floral visits 

performed to each flower sex (hermaphrodite or staminate) by each individual 

visitor, the total number of flowers displayed by plants (floral display), the identity of 

the visitor, whether they buzzed or touched the sexual organs (FA-feeding anthers, 

PA-pollinating anthers, ST-stigma) and the body part they used to touch them (dorsal 

abdomen, ventral abdomen and thorax). Unidentified floral visitors were collected 

and identified in the laboratory by Humberto Moo-Valle, bee taxonomist at 

Universidad Autónoma de Yucatán. 

To determine whether a floral visitor acted as a legitimate pollinator or a pollen 

thief (illegitimate visitor), I calculated legitimacy of each floral visitor based on each 

species behaviour on hermaphrodite flowers. I defined legitimate pollinators as those 

visitors capable of touching both female and male reproductive organs within flowers 

(stigma and anthers, respectively) during a single visit per individual. To determine a 

legitimate visit I used each species’ average proportion of legitimate visits over the 

total number of visits (>50 % legitimate visits) or pollen thieves (<50% legitimate 

visits). I used 50% of legitimate visits as a threshold because more than 50% of all 

our visitors performed legitimate visits on hermaphrodite flowers. I excluded from 

the analysis visitors that did not perform visits to hermaphrodite flowers or contacted 

hermaphrodite flowers less than 10 times (see Table 5.3). 

Additionally, I estimated visitation rates for both legitimate pollinators and pollen 

thieves to determine whether pollen thieves performed more visits than pollinators 

which could possibly had negative effects on S. houstonii seed production. Visitation 

rates were calculated as the total number of visits per plant per hour. 

 

5.3.5 Statistical analyses 

To determine the effect of treatments of each population on fruit and seed 

production of S. houstonii, I used a generalised mixed-effect model (GLMM), 
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specifying a binomial distribution for fruit set, and a Poisson (or negative binomial) 

distribution for seed set. In each model, I used as a response variable either a binary 

variable of the fruit production or the number of seeds produced, treatment as fixed 

effect and Plant ID as a random effect. Treatment was a categorical variable with five 

levels: C treatment (control or open pollination), CH treatment (cross-pollination 

with hermaphrodite flowers), CS treatment (cross-pollination with staminate 

flowers), SP treatment (self-pollination) and GS treatment (geitonogamy using 

staminate flowers from the same individual). For each model, I used a data set that 

excluded autonomous self-pollination treatment (AP) because this treatment always 

failed to produce fruits. Additionally, to deal with overdispersion in the Poisson 

models I included an observation-level random effect (OLRE) where each data point 

receives a unique level of a random effect (Hinde, 1982). Post hoc Tukey comparisons 

were used to test statistically significant differences among treatments. 

To determine the effect of floral display, type of visitor and population on the 

visitation rate I built GLMM. In cases when there was substantial overdispersion, I 

fitted alternative distributions such as negative binomial; when this still failed I used 

a negative binomial distribution with zero inflation and individual level random 

effects, using the function glmmadmb from the package glmmADMB (Skaug et al., 

2010). I determine the effect on visitation rate (my response variable) using a GLMM 

with negative binomial distribution and zero inflation, with fixed effects floral visitor 

type (pollinator or pollen thieve), population, floral display (total numbers of 

hermaphrodite and staminate flowers displayed per plant) and the interaction 

between floral display and type of visitor, and as random effects I included plant ID 

and date of observation. 

To explore the visits performed by pollinators and pollen thieves in hermaphrodite 

and staminate flowers, I fitted two GLMM model with Poisson distribution for the 

visitation rate to each flower (my response variable). I used visitor type as a two level 

factor variable that included pollinators and pollen thieves, and population as fixed 

effects and the random effects plant ID and date of observation. Additionally, to 

control for overdispersion I included an observation-level random effect (OLRE) 

where each data point receives a unique level of a random effect (Hinde, 1982).  

All statistical analyses were conducted using R software v 3.4.0 (R Development 

Core Team, 2013). Generalised mixed effect models (GLMM) with binomial or Poisson 

distribution were performed with the function glmer from the lme4 package (Bates et 
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al., 2015) and models with negative binomial with the function glmer.nb from lme4. 

Post hoc Tukey comparisons were fitted using the multcomp package for R. 

Additionally, to estimate the intraclass correlation coefficient (ICC) for the random 

variables of each model, I used the icc function of the sjstats package for R (Ludecke, 

2019). Models were validated by visually assessing diagnostic plots to confirm 

normality of residuals. 
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5.4 Results 

5.4.1 Breeding system and pollen limitation 

Solanum houstonii strongly depends on pollinators to produce fruits, as all flowers 

in both populations failed to produce fruits in the autonomous pollination treatment 

(Figure 5.2). Flowers from both self- and cross-pollination treatments successfully set 

fruits, suggesting S. houstonii is a self-compatible species. In San Isidro and Sierra 

Papacal, fruit set did not differ statistically among treatments (Table 5.1); however, 

the percentage of fruit set in San Isidro was higher than in Sierra Papacal (Figure 5.2). 

The number of seeds produced per fruit differed among treatments in each 

population. In San Isidro, fruits in the control treatment produce more seeds than the 

cross-pollination with hermaphrodite flowers (CH) and the geitonogamy (GS) 

treatments, but no more than the cross-pollination with staminate flowers (CS) and 

the self-pollination (SP) treatments, as I did not find significant differences (Table 

5.1). Similarly, in Sierra Papacal, the fruits from the control treatment produced more 

fruits than all the remaining treatments except for the cross-pollination with 

staminate flowers treatment (CS) (Figure 5.2, Table 5.1) Furthermore, I did not find 

evidence of pollen limitation in fruit production or seed set in populations of S. 

houstonii surveyed (Table 5.2). 
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Figure 5.2. Percentages of fruit set and number of seed set per hand-pollination 
treatment among populations of S. houstonii. Different letters above treatments’ name 
denote statistically significant pairwise differences (p<0.05). Note that black bars in 
each plot indicate mean, boxes the 95% confidence interval on the mean, shaded 
areas are density and each individual point is an individual fruit or seed. OP-open 
pollination, AP-autonomous self-pollination, SP-self-pollination of hermaphrodite 
flowers, GS-geitonogamous-pollination using pollen of staminate flowers, CS-cross-
pollination using pollen of staminate flowers, CH-cross-pollination using pollen of 
hermaphrodite flowers. 
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Table 5.1. Model coefficients of the effects of treatment on fruit and seed production 
in two populations, San Isidro and Sierra Papacal, of S. houstonii in Yucatan. Results 
show the fixed effects from generalised mixed effect model with the distribution 
indicated. 

Fruit set Fixed effects Estimate SE z p 
San Isidro Intercept -0.11 0.23 -0.46 0.647 
(Binomial) Treatment (CH) -0.15 0.34 -0.45 0.654 
 Treatment (CS) -0.18 0.36 -0.51 0.607 
 Treatment (GS) -0.18 0.34 -0.53 0.595 
 Treatment (SP) -0.05 0.34 -0.16 0.875 
 Random effects Variance SD ICC  

 Plant ID <0.01 <0.01 <0.01  
Sierra Papacal Intercept -0.18 0.25 -0.74 0.461 
(Binomial) Treatment (CH) -0.07 0.37 -0.20 0.841 
 Treatment (CS) -0.31 0.38 -0.80 0.421 
 Treatment (GS) -0.11 0.37 -0.29 0.774 
 Treatment (SP) -0.31 0.38 -0.80 0.421 
 Random effects Variance SD ICC  
 Plant ID <0.01 <0.01 <0.01  
Seed set Fixed effects Estimate SE z p 
San Isidro Intercept 4.72 0.12 39.96 <0.001 
(Negative Treatment (CH) -0.76 0.21 -3.61 <0.001 
binomial) Treatment (CS) -0.35 0.20 -1.79 0.074 
 Treatment (GS) -0.76 0.19 -3.98 <0.001 
 Treatment (SP) -0.36 0.19 -1.87 0.062 
 Random effects Variance SD ICC  
 Plant ID <0.01 <0.01 <0.01  
Sierra Papacal Intercept 4.83 0.15 33.27 <0.001 
(Poisson) Treatment (CH) -0.75 0.22 -3.39 <0.001 
 Treatment (CS) -0.57 0.22 -2.52 0.012 
 Treatment (GS) -1.01 0.22 -4.70 <0.001 
 Treatment (SP) -0.86 0.23 -3.68 <0.001 
 Random effects Variance SD ICC  
 Plant ID 0.08 0.28 0.13  
 OLRE 0.49 0.70 0.85  

 
Table 5.2. Fruit set (percentage of flowers maturing into fruits), seed set (mean 
number of seeds) and pollen limitation index (PL) from two populations of S. 
houstonii in Yucatan, Mexico. 

  San Isidro Sierra Papacal 

  Fruit set Seed set Fruit set Seed set 

Pollen 
supplementation 

Ps 81.67 73.7(±9.8) 69.35 84.4(±13.9) 

Open pollination Po 90.40 111.9(±7.2) 81.50 130.9(±6.50) 

Pollen limitation 
index 

L -0.14(0.003) -0.63(0.008) -0.24(0.005) -0.62(0.007) 

Flowers were exposed to natural pollination conditions either with (pollen supplementation 
treatment (Ps), using hermaphrodites (CH) or staminates (CS) as pollen donors, both values 
were pooled) or without (Po, open pollination) addition of supplemental outcross-pollen. The 
mean value of the pollen limitation index (L) was calculated for each population for fruit set 
and seed set using the formulas provided by Larson & Barrett (2000); the means and 
standard errors (generated by bootstrapping analysis with 1000 permutations) are reported.  
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5.4.2 Floral visitors 

I recorded on average 52.5±7.4 and 57.4±6.8 visits per plant per hour in San Isidro 

and Sierra Papacal, respectively. Hymenopterans were the group with the highest 

number of species and percentage of visitation. (98% of visitation), but species 

composition varied among San Isidro and Sierra Papacal populations (Figure 5.3). I 

observed insects from other orders, such as Diptera, Coleoptera, Lepidoptera and 

Orthoptera, but with very low visitation percentage. Dipterans were observed on the 

anthers pores occasionally collecting pollen, but we never observed them contacting 

the stigma. Orders such Coleoptera and Orthoptera were observed eating some parts 

of the flower, and Lepidotera, was always observed landing on the corolla and 

elongating their proboscides for nectar probing. I focused on bees as the main floral 

visitors, as they were the most abundant and the only ones able to extract pollen and 

contact the reproductive organs during visits on S. houstonii flowers. 

Species composition of bees differed between San Isidro and Sierra Papacal 

populations. In San Isidro, I observed eight species of bees, five of which were bees 

able to vibrate S. houstonii anthers (see Table 5.4). The most abundant species visiting 

S. houstonii flowers was Centris analis and the rarest Trigona fulviventris. Although I 

observed only one individual of T. fulviventris during my study, this species was very 

abundant on the site and was observed performing visits to other individuals of S. 

houstonii. In Sierra Papacal, I also observed eight species of bees, but only four were 

bees able to buzz (Table 5.4). The most abundant visitor in Sierra Papacal was 

Augochloropsis metallica and the rarest Trigonisca maya. In both populations, I 

observed two additional species of bees vibrating S. houstonii anthers. However, they 

were outside of my observation periods, and therefore, they were not included in our 

analysis or counts. These species were Eulaema polycroma and Xylocopa muscaria for 

Sierra Papacal and only the latter for San Isidro. 
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Figure 5.3. Relative composition of floral visitor families (A) and percentage of floral 
visits performed by each type of visitor family (B) in two populations surveyed in 
Yucatan, Mexico. 
  

B A 
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5.4.3 Pollinators and pollen thieves 

From the twelve bees identified in this study, only Xylocopa mexicanorum, Centris 

analis and Euglossa viridissima were considered legitimate pollinators because more 

than 50% of the individuals were able to contact stigmas and anthers of S. houstonii 

hermaphrodite flowers (Table 5.4). Another set of bees that did not touch the stigma 

but performed more than ten floral visits to hermaphrodite and staminate flowers 

were considered pollen thieves (Figure 5.4). Pollen thieves included one anther-

buzzing bee, Augochloropsis metallica and two non-buzzing bees, Nannotrigona 

perilampoides and Trigona nigra (Table 5.3). The remaining visitors were considered 

as occasional visitors to S. houstonii flowers (Figure 5.4). These bees performed none 

or less than ten visits to hermaphrodite flowers and varied in their behaviour. Two 

were bees capable of buzzing the whole flower, Eulaema polychroma (observed 

during non-observation periods only), or single anthers, Melissodes baileyi, and the 

remaining non-buzzing Apis mellifera, Plebeia frontalis, Trigona fulviventris and 

Trigonisca maya (Table 5.4). 

 

 
Figure 5.4. Visitation rate of the different types of floral visitors of S. houstonii in two 
natural populations in Yucatan. Visitation rate is expressed as the number of floral 
visits performed per plant per hour. Black bars in plot indicate mean, boxes the 95% 
confidence interval on the mean, shaded areas are density and each individual point 
is an observation from a single plant. 
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Table 5.3. Identity and characteristics of floral visitors of Solanum houstonii in two 
populations of Mexico. B-buzzing, H-hovering, He-herbivore, NP-nectar probing, OV-
occasional visitor, PF-pollen forager, SP-scrabbling pollen. 

Visitor 
Number of 
individuals 

% 
Buzzing 

Floral 
visits 

% 
Floral 
visits 

% Visits 
with 
buzz 

Thorax 
width 
(mm) 

Behaviour 
observed 

on flowers 
San Isidro        
Aranae        
Thomisidae 1 1  1 0.06 0  OV 
Coleoptera        
Leptinotarsa 
sp. 

3  3 0.17 0  
He 

Diptera        
Ornidia obesa 7  7 0.39 0 4.35 H/PF  
Hymenoptera        
Apis mellifera 3 0 4 0.23 0  PF  
Augochloropsis 
metallica 

23 95.65 201 11.32 87.56 2.75 
B/PF  

Centris analis 98 97.96 982 55.29 96.13 3.99 B/PF 
Euglossa 
viridissima 

10 90.00 55 3.10 87.27 3.59 
B/PF 

Melissodes 
baileyi 

30 80.00 131 7.38 87.79 3.79 
SP/PF  

Plebeia 
frontalis 

64 0 316 17.79 0 1.35 
SP/PF 

Trigona 
fulviventris 

1 0 2 0.11 0 1.91 
SP/PF 

Vespidae 3  3 0.17 0  OV 
Xylocopa 
mexicanorum 

2 100 17 0.96 100 8.55 
B/PF  

Lepidoptera        
Lepidoptera 1 3  4 0.23 0  NP  
Lepidoptera 2 3  3 0.17 0  NP 
Lepidoptera 3 7  11 0.62 0  NP 
Lepidoptera 4 2  3 0.17 0  NP 
Lepidoptera 5 11  13 0.73 0  NP 
Lepidoptera 6 9  10 0.56 0  NP 
Lepidoptera 7 2  2 0.11 0  NP 
Lepidoptera 8 3  4 0.23 0  NP 
Orthoptera        
Orthoptera 1 3  3 0.17 0  He 
Orthoptera 3 1  1 0.06 0  He 
Total 289  1776     
Sierra Papacal        
Aranae        
Thomisidae 2 1  1 0.05 0  OV 
Coleoptera        
Curculionidae 
1 

5  5 0.24 0  
He 

Curculionidae 
2 

2  2 0.10 0  
He 

Leptinotarsa 
sp. 

2  2 0.10 0  
He 

Diptera        
Ornidia obesa 4  4 0.20 0 4.35 H/PF  
Syrphidae 5  7 0.34 0 4.09 H/PF 
Hymenoptera        
Augochloropsis 
metallica 

94 97.87 578 28.22 93.43 2.75 
B/PF  

Crematogaster 
sp. 

2  2 0.10 0  
NP 
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Euglossa 
viridissima 

76 94.74 579 28.27 91.88 3.59 
B/PF  

Eulaema 
polycroma 

1 0 1 0.05 0 7.41 
PF 

Melissodes 
baileyi 

1 100 2 0.10 100 3.79 
B/PF  

Nannotrigona 
perilampoides 

46 0 294 14.36 0 1.46 
SP/PF 

Polybia sp. 1  1 0.05 0   
Trigona nigra 39 0 426 20.80 0 1.83 SP/PF 
Trigonisca 
maya 

2 0 5 0.24 0 0.94 
SP/PF 

Xylocopa 
mexicanorum 

28 100 135 6.59 98.52 8.55 
B/PF  

Lepidoptera        
Lepidoptera 3 1  2 0.10 0  NP 
Orthoptera        
Orthoptera 2 2  2 0.10 0  HE 
Total 312  2048  0   
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Table 5.4. Classification of the pollinators and pollen thieves in S. houstonii natural populations. Legitimate pollinators were determined based 
on visits performed on hermaphrodite flowers only. If a visitor contacted both stigma and feeding anthers (FA, ST) more than 50% of the total 
number of visits, it was considered pollinator. Pollen thieves were visitors that touched the stigma and feeding anthers less than 50% of the 
visits. Occasional visitors were bees that performed less than 10 floral visits during our observation periods that could not be classified as 
pollinators or pollen thieves. 

Visitor ID 

Individuals contacting hermaphrodite flowers Individuals contacting staminate flowers 
% Bees 
buzzing 

Total 
bees 

Body 
length FA 

FA,
ST 

Only 
petals 

Total bees 
contacting 

Total 
floral 
visits 

% Bees 
contacting 

ST 
FA PA 

FA,
PA 

Only 
petals 

Total bees 
contacting 

Total 
floral 
visits 

Pollinators                

Xylocopa 
mexicanorum 

  0 10 1 11 13 90.91   0   0   26   2   28   139 100   30 19.80.1 

Centris analis   9 23 0 32 42 71.88   4   3   57 27   91   940   97.96   98 10.90.1 

Euglossa 
viridissima 

  7 10 0 17 34 58.82 11   0   55 18   84   600   94.19   86 12.40.2 

Total 16 43 1 50 89  15   3 138 47 203 1679  214  

Pollen thieves 
               

Augochloropsis 
metallica 

12 5 0 17 19 29.41 10 15   74 13 112   760   97.44 117 8.60.3 

Nannotrigona 
perilampoides 

  8 2 0 10 28 20   5   3   25 12   45   266      0   46 5.20.1 

Trigona nigra 11 1 2 14 40   7.14   3   5   14 19   39   386      0   39 6.10.1 

Total 31 8 2 41 87  18 23 113 44 196 1412  202  

Occasional 
visitors 

               

Apis mellifera   - - -   0   0 -   0   0   0   3      3      4      0      3 10.00.10 
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Table 5.4. Continued. 

Visitor ID 

Individuals contacting hermaphrodite flowers Individuals contacting staminate flowers 

% Bees 
buzzing 

Total 
bees 

Body 
length FA 

FA,
ST 

Only 
petals 

Total bees 
contacting 

Total 
floral 
visits 

% Bees 
contacting 

ST 

FA PA 
FA,
PA 

Only 
petals 

Total bees 
contacting 

Total 
floral 
visits 

Eulaema 
polycroma* 

  - - -   0   0 -   0   0   0   1      1      1      0      1 19.90.26 

Melissodes baileyi   1 1 0   2   3 -   4   7 18   1   30   130   90.32   31 10.20.27 

Plebeia frontalis   1 4 1   6   8 -   7   9 41   3   60     30      0   64 4.30.19 

Trigona 
fulviventris 

  - - -   0   0 -   0   1   0   0      1      2      0      1 7.70.15 

Trigonisca maya   - - -   0   0 -   0   0   2   0      2      4      0      2 2.00.06 

Total   2 5 3   8 11  11 17 61   8   97   171  102  

*Observed buzzing flowers of S. houstonii, but never during visiting period 
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5.4.4 Behaviour and morphology of bees 

Morphology and behaviour of pollinators and pollen thieves varied. Body size of 

bees observed in this study varied from 2 to 19.9 mm (Figure 5.5, Table 5.4). I found 

that bee morphology was an important characteristic to categorise bees in pollen 

thieves or pollinators, as bees able to buzz and that were larger than the distance 

between the anthers and stigma of hermaphrodite flowers contacted more times both 

anthers and stigma (Figure 5.5). Additionally, I observed pollinators exclusively 

buzzed feeding anthers of both hermaphrodite and staminate flowers and contacted 

both pollinating anthers and stigma with the same body part. For instance, during 

buzzing of staminate and hermaphrodite flowers Centris analis and Euglossa 

viridissima were able to contact pollinating anthers and stigma with the dorsal side of 

the abdomen, and during each floral visit Xylocopa mexicanorum positioned its body 

over both feeding and pollinating anthers of staminate flowers or over anthers and 

stigma in hermaphrodite flowers (Figure 5.6a-c). 

Pollen thieves had a body size shorter than the distance between anthers and 

stigma. They were never observed contacting anthers and stigma at the same time. In 

the case of A. metallica, the only buzzing species observed among pollen thieves, bees 

that contacted the stigma did it by mistake, because they were observed buzzing the 

stigma in a similar form they buzzed pollinating anthers of staminate flowers (Figure 

5.6d). The rest of pollen thieves never buzzed but collected pollen from open anther 

pores (Figure 5.6e-f).  

In the case of Eulaema polychroma, one of the occasional visitors, I did not record 

buzzing during my observation periods, but I was able to observe individuals buzzing 

other flowers of S. houstonii and contacting both pollinating anthers and stigma with 

its ventral side of abdomen and thorax (Figure 5.6k). Melissodes baileyi and Plebeia 

frontalis, which sometimes contacted stigmas (Figure 5.6g-h), were very infrequent 

visitors of hermaphrodite flowers but frequent visitors of staminate flowers. During 

visitation, M. baileyi had a similar behaviour to A. metallica, while P. frontalis had 

similar behaviour to the other non-buzzing pollen thieves. The remaining visitors, 

Apis mellifera, Trigona fulviventris and Trigonisca maya, were not observed visiting 

hermaphrodite flowers. However, they were frequent visitors of staminate flowers 

and were collecting pollen from anthers in a similar way to the other pollen thieves, 

with the exception of T. fulviventris, which was observed piercing S. houstonii anthers 

to extract pollen (Figure 5.6i-j). 
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Figure 5.5. Body size of all bees observed visiting S. houstonii in natural populations. 
Line delimits mean and standard error of distance between feeding anthers and 
stigma of hermaphrodite flowers. Dot size corresponds to body size of each floral 
visitor (see Table 5.4 for detailed sizes). AM-Apis mellifera, AuM-Augochloropsis 
metallica, CA-Centris analis, EP-Eulaema polychroma, EV-Euglossa viridissima, MB-
Melissodes baileyi, NP-Nannotrigona perilampoides, TF-Trigona fulviventris, TM-
Trigonisca maya, TN-Trigona nigra, PF-Plebeia frontalis, XM-Xylocopa mexicanorum.  
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Figure 5.6. Floral visitors in S. houstonii flowers. a) Centris analis, b) Xylocopa 
mexicanorum, c) Euglossa viridissima were classified as legitimate pollinators. d) 
Augochloropsis metallica, e) Trigona nigra and d) Nannotrigona perilampoides were 
classified as pollen thieves. g) Melissodes baileyi, h) Plebeia frontalis, i) Trigona 
fulviventris, j) Trigonisca maya and k) Eulaema polychroma were classified as 
occasional visitors. Pictures taken by AKZC and Jorge Ramirez-Pech.  
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5.4.5 Visitation rates of pollinators and pollen thieves  

Overall legitimate pollinators performed 54% of the total floral visits observed in 

this study and pollen thieves performed 46%. The mean number of visits per hour 

per plant by pollinators was 47 (CI95%=35,56) and by pollen thieves 45 (CI95%=35,55). 

Visitation rate did not differ significantly between pollinators and pollen thieves, 

however, visitation rate differed among populations (Table 5.5). In Sierra Papacal, I 

recorded more floral visits accounting for 61% of the total visits observed in this 

study. In this population, pollen thieves performed slightly more visits (65%), and 

only X. mexicanorum and Euglossa viridissima were legitimate pollinators (Figure 5.7). 

In contrast, in San Isidro, the three main pollinators for S. houstonii, C. analis, E. 

viridisima and X. mexicanarum, performed the majority of floral visits for the 

population (84%) (Figure 5.7).  

Pollinators and pollen thieves did not differ in their visitation rate on 

hermaphrodites or staminate flowers (Figure 5.8, Table 5.5). For both populations, 

the mean (±SE) number of visits per plant per hour performed by pollinators was 

2±0.3 and by pollen thieves was 2±0.4. The mean number of visits performed per 

plant per hour on staminate flowers was 40±4 for pollinators and 30 ±2 for pollen 

thieves (Figure 5.8).  

The mean number of flowers displayed per plant was 30±1, of which 2±0.1 were 

hermaphrodite and 28±1 were staminate flowers. Floral display had a positive effect 

on the overall visitation rate (Figure 5.9, Table 5.5). 
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Figure 5.7 Visitation rate of pollinators and pollen thieves of S. houstonii in 
populations of Yucatan. Figures show visits per plant per hour performed in 
populations: San Isidro and Sierra Papacal. Au- Augochloropsis metallica, CA- Centris 
analis, EV- Euglossa viridissima, NP- Nannotrigona perilampoides, TN- Trigona nigra, 
XM- Xylocopa mexicanorum. 
 

 
Figure 5.8. Visitation rate on hermaphrodite (A) and staminate (B) flowers performed 
by legitimate pollinators and pollen thieves in populations San Isidro and Sierra 
Papacal, Yucatan, Mexico. 
 

A B 
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Figure 5.9. Effect of floral display on the visits per plant per hour (visitation rate) of 
pollen thieves and pollinators of populations in Yucatan. Predicted lines derive from 
the negative binomial model (Table 5.5). 

 

Table 5.5. Model coefficients for the effect of floral display, type of floral visitor 
(pollinator or pollen thieve) and population (San Isidro and Sierra Papacal) on the 
visits performed per plant per hour (visitation rate) on hermaphrodite and staminate 
flowers. Results show the fixed effects from generalised mixed effect model with the 
distribution indicated. 
 Fixed effects Estimate SE z p 
Visitation Intercept 2.02 0.46 4.42 <0.001 
rate Type of visitor (pollinator) -0.34 0.20 -1.69 0.092 
(Negative  Population (Sierra Papacal) 1.04 0.44 2.39 0.017 
binomial) Floral display 0.03 0.01 3.35 <0.001 
 Type of visitor 

(pollinator)*Floral display 
0.02 0.01 3.06 0.002 

 Random effects Variance SD   

 Plant ID 0.18 0.45   
 Date 0.04 0.20   
 Fixed effects Estimate SE z p 
Visits on Intercept -3.86 0.93 -4.16 <0.001 
hermaphrodite Type of visitor (pollinators) 1.07 0.57 1.86 0.063 
flowers Population (Sierra Papacal) 0.09 0.64 1.14 0.998 
(Poisson) Random effects Variance SD ICC  
 Plant ID <0.01 <0.01 0.00  
 Date <0.01 <0.01 0.00  
 OLRE 0.16 3.98 0.81  
 Fixed effects Estimate SE z p 
Visits on Intercept 2.89 0.34 8.56 <0.001 
staminate Type of visitor (pollinators) 0.08 0.14 0.60 0.551 
flowers Population (Sierra Papacal) -0.19 0.43 -0.44 0.662 
(Poisson) Random effects Variance SD ICC  
 Plant ID 0.32 0.57 0.24  
 Date 0.08 0.29 0.06  
 OLRE 0.88 0.94 0.66  
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5.5 Discussion 

5.5.1 Behaviour and morphology of pollinators and pollen thieves on Solanum 

houstonii flowers 

In this study, I classified floral visitors of S. houstonii into legitimate pollinators or 

pollen thieves depending whether they touched the reproductive organs of 

hermaphrodite flowers. My results suggest that bee body size and bee ability to 

produce high frequency vibrations were characteristics that separated pollinators 

from pollen thieves. For instance, I found pollinators were large body bees capable of 

buzzing feeding anthers and contacting the stigma of hermaphrodite flowers or 

contacting pollinating anthers of staminate flowers with the same body part. In 

contrast, I found pollen thieves had a smaller body size and varied in their ability to 

buzz. These differences in body size are likely to affect their ability to contact sexual 

organs during visitation. A bee with a larger body size is likely to contact female and 

male organs and to transfer pollen more efficiently. In species with a strong spatial 

separation of female and male organs (herkogamy), the presence of pollinators of a 

similar or larger size as this separation is important to ensure pollen transference. 

For example, some studies have demonstrated that an optimal match between floral 

visitors and flowers maximizes plant fitness and improve pollination accuracy during 

pollen deposition on the stigma (Kuriya et al., 2015; Solís-Montero & Vallejo-Marín, 

2017). Although in this study I did not measure pollinators’ efficiency for pollen 

transfer, I registered a high fruit and seed production in the open pollination 

treatment in both populations (80-90%). Suggesting, pollinators are likely to perform 

efficient pollination services. Other studies in Solanum have found that similar species 

of pollinators to those found here are capable of producing high frequency vibrations 

to release large amounts of pollen while contacting the stigma and to trigger fruit 

production (Liu & Pemberton, 2009; Solís-Montero et al., 2015; Solís-Montero & 

Vallejo-Marín, 2017).  

In natural populations of S. houstonii, pollen thieves performed a little less than 

half of the floral visits. I registered three species of bees acting as pollen thieves; 

however, one was capable of buzzing single anthers of hermaphrodite and staminate 

flowers and performing more than half of the total visits on staminate flowers. 

Although these bees contacted the stigmas, their body size did not match with S. 

houstonii’s floral morphology. I also found a subset of bees were occasional visitors of 

S. houstonii flowers, specifically to staminate flowers. These bees, however, were 
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possibly also pollen thieves as they had a small body size and were observed 

collecting pollen from staminate flowers. 

 

5.5.2 Consequences of pollen theft 

In plants that require buzz-pollination, pollen theft is very common and can be 

reproductively costly (Gross & MacKay, 1998; Solís-Montero et al., 2015; Caro et al., 

2017; Staines et al., 2017; Rego et al., 2018), because pollen thieves reduce the 

number of grains available for reproduction (i.e. removing them from stigmas) or 

because the presence of pollen thieves reduces the visitation rate of legitimate 

pollinators (Gross & MacKay, 1998; Hargreaves et al., 2009). In this study with the 

andromonoecious S. houstonii, I did not find differences in the visitation rate between 

pollinators and pollen thieves, but I found a high number of floral visits performed by 

bees acting as pollen thieves. In fact, in one of the populations, visits by pollen thieves 

outnumbered those of legitimate pollinators. Despite this incidence of pollen theft, S. 

houstonii, I did not detect pollen limitation. The presence of efficient pollinators can 

sometimes outbalance the incidence of pollen thieves. In Campanula americana, for 

example, plant fitness, measured as seed set, was only affected when pollinators’ 

visits were reduced. However, when pollen thieves and pollinators were abundant, 

plant fitness was unaffected (Lau & Galloway, 2004).  

Some studies have found that pollen theft can also have negative impacts on male 

fitness (i.e. pollen siring success), especially for plants that exhibit temporal and 

spatial separation of sexes (Lau & Galloway, 2004; Case & Ashman, 2009; Hargreaves 

et al., 2012; Koski et al., 2018a). For instance, in species with temporal separation of 

sexes in female or male-phases, pollen thieves prefer visiting the male-phase and 

remove greater amounts of pollen than when they visit flowers in the female-phase 

(Lau & Galloway, 2004; Koski et al., 2018a). In some cases, overall plant reproductive 

success is not affected as the production of pollen overpasses the number of ovules 

available to fertilise, however, in other cases, exploitation is so high that both male 

and female fitness are affected (Hargreaves et al., 2009). Solanum houstonii is a 

species with separation of sexes into staminate and hermaphrodite flowers. In my 

results, high visitation rate of pollen thieves did not impose a negative effect in the 

female reproductive success; however, the effect on male-fitness was not very clear. 

I should note that in my study, I did not measure the effect of pollen theft on the male 



 

139 
 

reproductive success directly, such as the relative number of pollen grains removed 

by pollen thieves from anthers or stigma. Instead, I measured the visitation rate 

performed to hermaphrodite and staminate flowers and found pollen thieves visits 

were not significantly rarer than visits by legitimate pollinators. However, there were 

other visitors, which were not included in the analysis due to the low proportion of 

visits, that were also observed collecting pollen and could negatively impact siring 

success. In any case, S. houstonii produces a high proportion of staminate flowers that 

probably has evolved as a strategy to produce high amounts of pollen to ensure pollen 

reaches the stigma. 

In buzz-pollinated species that rely on pollen as reward, developing anti-theft 

mechanisms for the male function is essential to ensure siring success. High 

production of pollen, physical concealment of pollen and floral traits that promote a 

better transference of pollen to the stigma are anti-theft mechanisms that have 

evolved to compensate for pollen losses (Hargreaves et al., 2009). Solanum houstonii 

possesses a relatively high proportion of staminate flowers (see Chapter 2) and 

anther dimorphism in staminate flowers, both floral traits that possibly ensures fruit 

and seed production even in the presence of pollen thieves. For instance, the presence 

of heteranthery in staminate flowers may enhance pollen exportation towards the 

stigma, by improving pollen deposition on the pollinators’ bodies. The division of 

labour hypothesis that explains the evolutionary significance of anther dimorphism 

suggests that the presence of two distinct sets of anthers reduces the conflict of the 

double function of pollen, as pollinators food and as gametes for fertilisation (Müller, 

1882; Vallejo-Marín et al., 2010; Mesquita-Neto et al., 2017). In S. houstonii, the 

presence of large amounts of pollen and division of labour among anthers seems to 

be designed to ensure pollination and maintain reproductive success. 

 

5.5.3 Relevance andromonoecy and floral morphology on reproductive success 

In this study, I found fruit and seed set are highly dependent on pollinator 

availability, and in the two populations surveyed, female reproductive success is not 

limited by pollinators availability or pollen receipt. These results suggest this species 

strategy is highly effective to ensure seed production. Solanum houstonii is a species 

characterised by a relatively high proportion of staminate flowers (strongly 

andromonoecious) and for bearing flowers that are morphologically different in style 
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and anther length (see Chapter 2 and 3). In other species, similar floral traits are 

considered strategies to promote pollinator attraction, pollen export, increase pollen 

receipt and/or reduce sexual interference between male and female function (Webb 

& Lloyd, 1986; Barrett, 2002b; Armbruster et al., 2014; Mesquita-Neto et al., 2017; 

Solís-Montero & Vallejo-Marín, 2017). 

In this study, where I found many floral visitors collecting/stealing pollen, the 

female reproductive success was not impacted negatively, perhaps due to the great 

production of pollen and the efficient behaviour of pollinators. In some 

andromonoecious species, pollinators tend to prefer visiting staminate flowers 

because they possess large amounts of pollen (reward) (Whalen & Costich, 1986; 

Quesada-Aguilar et al., 2008; Calviño et al., 2014). For instance, some studies have 

shown a positive association between the relative high proportion of staminate 

flowers (maleness) and the frequency of pollinator visitation (Elle & Meagher, 2000; 

Calviño et al., 2014). Pollinator visitation in staminate flowers may enhance female 

fitness as it increases the chances of pollen built up in pollinators’ bodies and thus 

pollen be deposited in the stigma (Whalen & Costich, 1986; Quesada-Aguilar et al., 

2008). In the surveyed populations of S. houstonii, pollinators were very abundant 

and my results suggest they pollinate efficiently as fruit and seed set is relative high. 

Pollinators of S. houstonii usually are bees of large size, able to buzz the poricidal 

anthers of the flowers, and to touch the pollinating anthers and the stigma with the 

same body part. The efficiency during pollination, by these bees, may be achieve due 

to few factors: 1) a great floral display increases the chances of visitation, 2) the 

presence of sufficient pollen to ensure pollen export and deposition in the stigma, and 

3) behaviour and bee morphology in both hermaphrodite and staminate flowers is 

similar. Whether native pollinators differ in their efficiency in transferring pollen to 

the stigma remains to be tested; however, the results from this study suggest the bee 

species observed in these populations play an important role in the female 

reproductive success of S. houstonii. 

Other possible factors preventing decreased female reproductive success in the 

presence of pollen thieves are the morphological adaptations of hermaphrodite and 

staminate flowers. Staminate flowers are characterised for possessing heteranthery, 

the functional and morphological separation of anthers into feeding and pollinating 

(Cardoso et al., 2018). Heteranthery is widely spread among angiosperms and is 

presumably a morphological adaptation that promotes the division of labour of 
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anthers (into feeding and pollinating types) and enhances pollen export (Müller, 

1882; Vallejo-Marín et al., 2009; Mesquita-Neto et al., 2017). Experimental work on 

heterantherous species has demonstrated that pollen exported from pollinating 

anthers is more likely to be transferred to stigmas, if a correspondence between 

pollen placement on pollinators body and stigma contact exist (Jesson & Barrett, 

2003; Luo et al., 2009; Vallejo-Marín et al., 2010; Solís-Montero & Vallejo-Marín, 

2017). For instance, in Senna reniformis and Melastoma malabathricum, there is a 

greater probability that pollen from pollinating anthers than from feeding anthers 

reaches the stigma mediated by the placement of pollen in pollinators body (Luo et 

al., 2008; Mesquita-Neto et al., 2017). In S. houstonii, heteranthery plays an important 

role on pollen export, as I found pollinators touched pollinating anthers and stigmas 

with the same body parts. During pollen extraction in staminate flowers, pollinators 

hold feeding anthers and started making vibrations to extract pollen, causing pollen 

from feeding anthers to be deposited on their ventral abdomen while pollen from 

pollinating anthers is deposited on their back. During visitation of hermaphrodite 

flowers, pollinators take a similar position to extract pollen and touch the stigma with 

their back. These behavioural observations suggest heteranthery in S. houstonii 

promotes pollen dispersion and deposition on the stigma. Moreover, the morphology 

of hermaphrodite flowers also plays an important role in the way pollen is deposited 

in the stigmas, as it seems to improve the pollinators’ body placement on the flower 

during pollen extraction. Hermaphrodite flowers possess herkogamy, which is the 

separation of anthers and stigma, increases pollination accuracy and reduces 

interference between the male and female function (Webb & Lloyd, 1986; Barrett, 

2002b; Armbruster et al., 2014). For example, Armbruster et al. (2014) demonstrated 

spatial correspondence between anthers and stigma among flowers increases the 

accuracy and precision of pollinators pollen removal and deposition. In their study, 

they used Parnassia epunctulata, a species that besides herkogamy possess 

dichogamy, the temporal separation of female and male function, two floral 

characteristics that could limit plants reproductive success in the absence of accurate 

pollinators. The fact Armbruster et al. (2014) found high levels of pollinator accuracy 

demonstrated that systems with separate female and male function and herkogamy 

could benefit from efficient pollinators. In any case, herkogamy and heteranthery in 

S. houstonii could be a strategy to reduce interference between pollen removal and 
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pollen receipt, floral traits that can enhance reproductive success in the presence of 

efficient pollinators. 

 

 

5.6 Conclusions 

In this study, I characterised the reproductive system and identified the main floral 

visitors of S. houstonii for the first time. I demonstrated that S. houstonii depends on 

pollinators to produce fruits, highlighting the role of pollinators in buzz-pollinated 

systems. In addition, I identified three species of bees acting as pollinators and three 

species of bees acting as pollen thieves. Overall, pollen thieves and pollinators did not 

differ in their visitation rate, but in one of the populations, pollen thieves had a higher 

visitation rate. Despite the incidence of pollen thieves, plant fitness was not negatively 

affected in any of the populations, as I did not find evidence of pollen limitation. The 

species I identified as pollen thieves were bees of small size unable to contact anthers 

and stigma at the same time. I found that bee body size and bee ability to produce high 

frequency vibrations were important characteristics to determine the legitimacy of 

pollinators in S. houstonii. These results highlight the role of andromonoecy and the 

floral adaptations exhibited by this species. The relatively high proportion of 

staminate flowers may function as a strategy to increase the pollen availability in 

natural populations which 1) reduces the effect of pollen theft and 2) maximises 

pollen deposition on the stigmas. Moreover, the separation between anthers and 

stigma in hermaphrodite flowers seems to function to reduce self-pollination and 

enhance pollen deposition from staminate flowers. Heteranthery in staminate 

flowers improves pollen export by depositing pollen on pollinator body, which 

maximises the chances of pollen reaching the stigma. Overall, the reproductive 

system of S. houstonii may reduce sexual interference and increase the probability of 

pollen of reaching the stigma. 
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Chapter 6. General discussion 

The sex expression of andromonoecy in Solanum houstonii 

The study of andromonoecy in Solanum houstonii suggests that the production of 

hermaphrodite and staminate flowers of this sexual system is fixed at certain 

positions of the inflorescence. This was confirmed, first, by the results of Chapter 2 

where I found bisexuality is maintained only in buds from the most basal position of 

the inflorescence and, secondly, in Chapter 3 where I found no variation in the relative 

proportion of hermaphrodite flowers by characterisation of sex expression of 

individuals from natural populations and inflorescences. 

In Chapter 2, I examined morphological differences between hermaphrodite and 

staminate flowers in order to determine when during development unisexuality is 

achieved. My results showed 1) all flowers are bisexual at initiation but only flowers 

at the most basal position maintain both male and female function, 2) unisexuality 

arise at early stages of development due to gynoecium abortion and 3) flowers have 

morphological adaptations intrinsic to their sex. In Solanum, sex determination plays 

an important role in the overall sex expression of species, as some studies have shown 

flowers that are bisexual at initiation have the potential to become hermaphrodite at 

some point during their development (Diggle, 1991a, 1993; Diggle & Miller, 2013). In 

S. houstonii, this scenario of labile expression seems unlikely as my results from 

Chapter 3 demonstrated the pattern of sex expression is biased towards the 

production of staminate flowers at several organisational levels. I found each 

inflorescence produces one hermaphrodite flower in the most basal position and 

several staminate flowers in distal positions (a maximum of ~35 staminate flowers 

per inflorescence), and among populations the ratio of hermaphrodite to staminate 

flowers was 1:4. 

In general, this study shows that S. houstonii is a species with strong 

andromonoecy in which sex determination occurs early in development determining 

the pattern of sex expression. Sex expression is controlled by architectural effects in 

each inflorescence that regulate the developmental pathway of sex determination in 

each flower. As in other species of Solanum (Miller & Diggle, 2003; Diggle & Miller, 

2013; Knapp et al., 2017), S. houstonii possesses a strong andromonoecy with a fixed 

proportion of hermaphrodite flowers produced per inflorescence that is maintained 

among individuals and populations. The results presented in Chapter 3 further 
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confirmed that sex expression did not to depend on resource availability, as I found 

that in natural populations and in treatments with decreased and increased resource 

availability, sex expression at the inflorescence level does not to change. 

Previous studies in Solanum, have suggested that phenotypes with extreme sex 

expression may have evolved from genotypes with plasticity in their sex expression 

(Price et al., 2003; Auld et al., 2010; Diggle & Miller, 2013). These studies have 

suggested evolution may have occurred as a mechanism to maximise resource 

allocation towards the production of one hermaphrodite flower that produces larger 

fruits (which are putatively more expensive). Diggle and Miller (2013) demonstrated 

with phylogenetically-based ancestral state reconstructions that plasticity has been 

lost independently in some species from the sections Acanthophora and Lasiocarpa 

(Solanum). They explained the means to achieve a fixed phenotype is through genetic 

assimilation, a process by which a phenotype originally produced in response to an 

environmental condition later becomes genetically fixed through natural selection. In 

addition, their analyses demonstrated the common ancestor for the fixed phenotypes 

in the sections Acanthophora and Lasiocarpa was plastic. Diggle and Miller (2013) 

hypothesised a fixed genotype could have evolved by the initial fixation of staminate 

flower in earlier (basal) positions of the inflorescence, which became fixed as a 

strategy to maximise resource allocation to the female function. They concluded this 

hypothesis might be accurate, as species with fixed sex expression often possess large 

flowers with large ovaries and fruits that presumably are more expensive. Recently 

this hypothesis has been supported in a study performed by Torices et al. (2018), who 

found a correlation between highly specialised systems (with fixed sex expression, 

such as monoecy) and the investment of more resources in flowers that are produced 

early in the inflorescence. In the case of S. houstonii, it is possible that the fixed sex 

expression with only one hermaphrodite flower per inflorescence has evolved as a 

mechanism to ensure enough resources are allocated towards the female function for 

the production of high quality fruits. Solanum houstonii possesses fruits of 

approximately 2.5 cm of diameter, which is a large size for species within the same 

section (Knapp et al., 2017). Moreover, the presence of large displays staminate 

flowers that possess heteranthery and large corollas suggest staminate flowers could 

be as expensive to produce as hermaphrodite flowers. Therefore, possessing a fixed 

phenotype to ensure enough resources are allocated to the production of high quality 
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fruits regardless the resources available in the environment may be an advantageous 

solution for this species. 

It remains unknown whether the strong andromonoecy in S. houstonii is 

evolutionarily derived from plastic phenotypes. However, in Chapter 3, I found 

evidence that a few individuals have the capacity to produce hermaphrodite flowers 

in secondary positions where staminate flowers usually develop. The question is how 

do these genotypes exist? One possible explanation is that these genotypes maintain 

some level of lability that is not expressed in others. In Chapter 3, I found a small 

proportion of individuals with a phenotype that produce flowers in secondary 

positions, but due to the small number of individuals, I was unable to detect whether 

the production of more hermaphrodite flowers was a plastic response to an increase 

of resource availability. Whether these individuals are plastic remains unknown, but 

the fact that I found them suggest fixed expression in S. houstonii could have been 

derived from plasticity and some individuals still maintain it, possibly as a strategy to 

ensure reproduction in changing environments. Reproductive assurance could be a 

mechanism that maintains plastic phenotypes in S. houstonii. In individuals that 

produced hermaphrodite flowers in secondary positions, the distance between 

anthers and stigma was equal and that these hermaphrodite flowers were likely to 

set fruit. In fact, in the pollinator-free glasshouse, this type of flowers produced fruit. 

In environments were pollinators are scarce, a mechanism leading to self-fertilisation 

could ensure reproduction. This has actually been shown for species with specialised 

pollination systems (Fenster & Martén‐Rodríguez, 2007; Barrett, 2013). Solanum 

houstonii is a highly specialised species, as it requires bees capable of vibrating its 

poricidal anthers in order to release pollen. Moreover, the hermaphrodite flowers 

from basal positions that characterise this species have herkogamy, a morphological 

adaptation that reduce self-fertilisation (Barrett, 2002b) but requires bees of a 

certain size to ensure pollen transfer the stigma. In environments in which pollinators 

are reduced, S. houstonii have a very low chance to set fruits. Under these 

circumstances, possessing hermaphrodite flowers able to self-fertilise could be 

advantageous. 
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The role of staminate flowers 

The hypothesis of staminate flowers as better pollen donors than hermaphrodite 

flowers is one of the main hypotheses used to explain the evolution and maintenance 

of andromonoecy (Bertin, 1982; Podolsky, 1993; Vallejo-Marín & Rausher, 2007b; 

Quesada-Aguilar et al., 2008). Some studies that have supported this hypothesis 

demonstrate the greater production, viability and siring success of staminate flowers 

(Elle & Meagher, 2000; Huang, 2003; Dai & Galloway, 2012), as well as their greater 

attractiveness to pollinators and their potential to reduce sexual interference (Elle & 

Meagher, 2000; Quesada-Aguilar et al., 2008). My results suggest that one of the roles 

of staminate flowers of S. houstonii is to promote pollen donation, increase pollen 

receipt and reduce interference of the male and female function. The results of 

Chapter 2 demonstrate that staminate flowers bear higher amounts of pollen, are 

larger than hermaphrodite flowers and possess morphological adaptations (i.e. 

heteranthery) than enhance pollen dispersion and transference to the stigma. In 

addition, in Chapter 4, I found that siring success of the anthers of staminate flowers 

is as good as pollen of hermaphrodite flowers and that in the presence of pollinators 

that match the morphology of S. houstonii flowers, pollen transfer to the stigma is 

efficient from staminate and hermaphrodite flowers. Although, these results did not 

conclusively demonstrate that staminate flowers were better pollen donors than 

hermaphrodite flowers. These results, nevertheless, suggested other potential roles 

of staminate flowers, such as that staminate flower may increase pollen receipt and 

pollen build up on pollinators’ bodies. Finally, the results of Chapter 5 showed S. 

houstonii is highly dependent on pollinators to produce fruits and that in natural 

populations there are pollen thieves and herbivores that could potentially reduce 

pollen availability. In spite of that, reproduction of S. houstonii was not limited by the 

amount of pollen or pollinators in two population of Yucatan. These findings suggest 

that the relatively high production of staminate flowers may be an effective strategy 

to ensure reproduction because these flowers provide enough pollen to feed all types 

of floral visitors, increase pollen export and pollen built up on pollinators’ body. 

Moreover, the particular morphology of staminate flowers could play an important 

role in pollen deposition on pollinators’ body. 

Staminate flowers are characterised by possessing heteranthery, the functional 

and morphological separation of anthers into feeding and pollinating (Cardoso et al., 

2018). Heteranthery is widely spread among angiosperms and experimental work on 
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heterantherous species has demonstrated that pollen exported from pollinating 

anthers is more likely to be transfer to stigmas, if a correspondence between pollen 

placement on pollinators body and stigma contact exists (Jesson & Barrett, 2003; Luo 

et al., 2009; Vallejo-Marín et al., 2010; Solís-Montero & Vallejo-Marín, 2017). In S. 

houstonii, heteranthery plays an important role on pollen export; in Chapter 5, I found 

pollinators touched pollinating anthers and stigma with similar body parts. During 

pollen extraction in staminate flowers, as pollinators held feeding anthers and started 

making vibrations to extract pollen, pollen from feeding anthers was deposited on 

their ventral abdomen while pollen from pollinating anthers was deposited on their 

back. During visitations of hermaphrodite flowers, pollinators acquired a similar 

position to extract pollen and touched the stigma with their back. This behaviour was 

observed in pollinators from natural populations in Yucatan and in bumblebees used 

during the experiments of Chapter 4, and suggest heteranthery of staminate flowers 

facilitates pollen deposition on pollinators’ bodies, which promotes pollen export and 

deposition in the stigma. Furthermore, in Chapter 2, where I characterised the 

morphology of hermaphrodite and staminate flowers, I showed the length of 

pollinating anthers in staminate flowers is similar length styles of hermaphrodite 

flowers. The similarity in morphology between hermaphrodite and staminate flowers 

thus suggests pollinators with a matching morphology should be more efficient 

extracting and depositing pollen. For instance, in other species hermaphrodite 

flowers having a strong separation between anthers and stigma also experience more 

efficient pollen transfer to the stigma. In the andromonoecious Solanum carolinense, 

natural pollinators were more efficient at depositing pollen grains on the stigma than 

removing pollen from them when flowers had a large styles (Quesada-Aguilar et al., 

2008). These results not only highlight the importance of floral morphology in pollen 

deposition but also show that the separation between anthers and stigma reduces the 

chances of self-pollination. 

Overall, my findings demonstrated that the functional significance of staminate 

flowers in S. houstonii is to promote pollen export, pollination attraction and increase 

the chances that pollen reaches the stigma. Moreover, the presence of pollinators 

matching the morphology of on both hermaphrodite and staminate flowers enhances 

the chances of pollen being transferred. 

 



 

150 
 

Evolutionary consequences of andromonoecy 

The main hypotheses for the evolution of andromonoecy focus on the adaptive 

advantages of having staminate flowers to increase overall plant fitness. These 

hypotheses include 1) the resource allocation hypothesis, 2) the pollen donation 

hypothesis, 3) the increased pollen receipt hypothesis, and 4) the male-female 

interference hypothesis (Bertin, 1982; Whalen & Costich, 1986; Podolsky, 1993; 

Vallejo-Marín & Rausher, 2007a; Quesada-Aguilar et al., 2008). The resource 

allocation hypothesis posits the production of energetically cheaper staminate 

flowers save resources that can be allocated to the female function or other fitness 

enhancing traits (Bertin, 1982, 2007; Solomon, 1986). The pollen donation and the 

increased pollen receipt hypotheses are not mutually exclusive as both suggest by 

producing large amount of pollen and big displays of staminate flowers, pollinator 

attraction is enhanced and so is pollen export and deposition on stigmas (Whalen & 

Costich, 1986; Podolsky, 1993; Elle & Meagher, 2000; Huang, 2003). However, the 

pollen donation hypothesis proposes that male fitness is also enhanced as a result of 

increased pollen removal, while the increased pollen receipt hypothesis suggests 

female fitness is enhanced through more efficient pollen deposition (Podolsky, 1993; 

Vallejo-Marín & Rausher, 2007a). The male-female interference hypothesis posits 

staminate flowers reduce interference during pollen removal and deposition, which 

also reduces the probability of self-fertilisation (Whalen & Costich, 1986; Diggle & 

Miller, 2004; Quesada-Aguilar et al., 2008). 

In this thesis, I investigated the functional significance of andromonoecy by 

assessing the lability of sex determination, examining the functional role of staminate 

flowers and evaluating the reproductive consequences of andromonoecy in natural 

populations of the Mexican endemic shrub S. houstonii. My thesis proposes several 

hypotheses for the evolution and maintenance of andromonoecy in this species. First, 

andromonoecy in S. houstonii is a mechanism to ensure the production of one large 

fruit per inflorescence regardless of the resources available for plant growth and 

reproduction. This was supported by the fact that I found sex determination of S. 

houstonii is fixed within the inflorescences and does not vary in response to resource 

availability (Chapters 2 and 3). This fixed pattern of expression has been 

hypothesised as a strategy to produce larger fruits of better quality (Miller & Diggle, 

2007; Diggle & Miller, 2013; Torices et al., 2018). Second, the production of a large 

display of staminate flowers increases pollinator attraction, which also increases 
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pollen export and the probability of pollen reaching the stigmas. I found support for 

this hypothesis during my observations in natural populations, where I found: 1) 

plants display a relatively large proportion of staminate flowers that follows a ratio 

of 4:1 of staminate to hermaphrodite flowers (Chapter 3), 2) a positive relationship 

between floral display and pollinator attraction and 3) a relatively large proportion 

of pollinators visiting both hermaphrodite and staminate flowers (Chapter 5). In 

other andromonoecious species, such as Besleria trifolia and Capparis spinosa large 

displays of flowers likewise increase pollinator visitation, which also increase overall 

fruit set (Podolsky, 1992; Zhang & Tan, 2009). Third, staminate flowers and their 

relatively large proportion in each individual provide enough pollen to cope with 

pollen thieves and to increase pollen receipt and female fitness. This hypothesis can 

be supported by my results from Chapter 5, in which natural populations of S. 

houstonii have a relatively high reproductive success that was not limited by pollen 

availability or pollinators abundance. In natural populations, many floral visitors 

acted as pollen thieves, as they collected pollen without providing any pollination 

service to S. houstonii. Other species that experience pollen theft often have a negative 

impact in fruit and seed production (Hargreaves et al., 2009, 2012; Koski et al., 

2018a). However, S. houstonii did not experience a reduced seed set due to the high 

production of pollen not only in each individual staminate flower but also in the 

overall staminate flowers display, and due to the presence of pollinators that were 

efficient at pollen removal and deposition. Lastly, staminate flowers and their 

characteristic floral morphology (anther dimorphism, also known as heteranthery) 

reduce interference during pollen removal and deposition. In natural populations and 

in the experiments using bumblebees as pollinators, I observed pollinators have 

behavioural patterns during pollen removal in both hermaphrodite and staminate 

flowers. During pollen removal in staminate and hermaphrodite flowers, pollinators 

hold the short-feeding anthers and produce high frequency vibrations to release 

pollen. Due to this position, pollen is deposited on the ventral thorax and abdomen of 

pollinators. When pollinators visit staminate flowers and performed the described 

behaviour pollen from the large-pollinating anthers is deposited on the upper side of 

pollinator abdomen, and when they visit hermaphrodite flowers they contact the 

stigma with the same body part. These behavioural patterns, together with the fact 

that stigma and pollinating anthers are of a similar size (Chapter 2), suggest pollen 

removal and deposition is efficient if pollinators possess a body size larger than the 
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separation between anthers and stigma (and the separation between feeding and 

pollinating anthers in staminate flowers). In fact, pollinators that are efficient at 

pollen extraction also produce fewer visits but deposit a greater amount of pollen 

grains (Solís-Montero et al., 2015; Solís-Montero & Vallejo-Marín, 2017). 

In conclusion, my results suggest that: 1) the relatively large proportion of 

staminate flowers may increase pollen export and pollinator attraction, 2) staminate 

flowers may improve pollen receipt by producing high amounts of pollen exploited 

by florivores, pollinators and pollen thieves that in occur natural populations and 3) 

floral morphology of both hermaphrodite and staminate flowers may reduce sexual 

interference. My thesis provides the first detailed investigation of the reproductive 

system and pollination ecology of Solanum houstonii, as well as the first evidence of 

the evolutionary consequences of andromonoecy in this species. 
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Concluding remarks and future directions 

Through the chapters of this thesis, I provided evidence of non-plastic sex 

expression of S. houstonii, as well as the role of staminate flowers in pollen export, 

pollinator attraction and in reducing sexual interference to ensure reproductive 

success. However, a few questions regarding the reproductive system of S. houstonii 

and its evolutionary implications remain unresolved. 

I investigated the reproductive and pollination ecology of S. houstonii in two 

populations in Yucatan, Mexico, but this species has a wide distribution in Mexico. 

Mexico is biodiverse country, with a high diversity of bee species and ecosystems 

(Vergara & Ayala Barajas, 2002; Toledo, 2010). Solanum houstonii grows across a 

wide variety of habitats and elevations; it occurs in most of the arid habitats of Mexico 

from the Sonoran Desert zones in western Mexico, across the volcanic belt up to 2000 

m to the limestone pans of the Caribbean coast (Knapp et al., 2017). Thus, one of the 

main aspects that needs to be addressed to support the role of staminate flowers in 

maximising reproductive success is the characterisation of the reproductive system, 

pollination biology and reproductive success of S. houstonii in different environments 

and populations across Mexico. Solanum houstonii is a species that requires buzz-

pollination and pollinators of a certain size to ensure reproduction. Moreover, in 

natural populations this species is visited by a great variety of pollen thieves and 

herbivores, which can have a negative impact in their reproductive success. By 

characterising the reproductive system and pollination ecology in different 

populations and identifying the pollen thieves or agents that reduce reproductive 

success, it would become clearer, whether the production of high amounts of 

staminate flowers is an efficient strategy to ensure reproduction. 

Another aspect that would be useful to investigate in order to understand further 

the evolutionary consequences of andromonoecy is the genetic diversity and 

outcrossing rates of S. houstonii. Andromonoecy, heteranthery and herkogamy are 

some of the mechanisms proposed to avoid physical interference between the sexual 

functions and promote cross-fertilisation among individuals (Fetscher, 2001; Barrett, 

2002b). Because S. houstonii is highly specialised in these traits, it is expected that 

outcrossing rates of individuals from natural populations is relatively high in the 

presence of pollinators. However, in the absence of pollinators, it is expected that 

populations are pollen limited and experience high levels of inbreeding, and in this 
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case maybe the factors maintaining andromonoecy are different. Therefore, I highly 

recommend population genetics analyses across different regions of Mexico to test 

whether the highly specialised sexual system of S. houstonii maintains high 

outcrossing rates across populations and has evolved as a strategy to promote 

outcrossing. 

Furthermore, studies on the genetic basis of sex determination can help to 

elucidate the transition pathways from hermaphroditism to unisexuality in Solanum. 

Solanum houstonii has proven to be a good model to study the patterns of sex 

expression of andromonoecy, as the majority of individuals possess a fixed phenotype 

characterised by the production of one hermaphrodite flower at the base position of 

each inflorescence, but others still maintain a plastic phenotype characterised by the 

production of hermaphrodite flowers in secondary positions of the inflorescence. 

Hence, transcriptomic analyses in each of the flowers of this species (i.e. 

hermaphrodite flowers of individuals with fixed sex expression, hermaphrodite of 

individuals with plastic phenotypes and staminate flowers) can determine the genes 

involved in the expression of each flower phenotype, which would provide a 

framework for clarifying the mechanistic pathways for the origin of unisexuality in 

Solanum. Moreover, S. houstonii is closely related to the dioecious species that occur 

in the Old World section (Echeverría-Londoño et al., 2018) and can provide a good 

insight in the genetics of sex determination and in the evolution of the transition from 

bisexuality to unisexuality in Solanum. 

Finally, a question that concerned me during my research, involves whether a fixed 

expression of andromonoecy is necessary intermediate step preceding the complete 

separation of sexes in different individuals (dioecy) in Solanum. This assumption is 

based on the hypothesis that in Solanum andromonoecy is the common ancestor of 

dioecy (Martine et al., 2006, 2009) and on the resource allocation hypothesis. The 

latter hypothesis helps to understand the origin of fixed sex expression in 

andromonoecious species and has been also proposed as a mechanism for the origin 

of unisexual flowers in other plant species (Charlesworth & Charlesworth, 1978; 

Huang, 2003; de Jong et al., 2008). For instance, it has been hypothesised that the 

origin of female and male flowers within individuals (monoecy) may be due to 

developmental changes that are induced as an strategy to maximise resource 

allocation to male and female function (de Jong et al., 2008). Likewise, it has been 

suggested that monoecy is a transition pathway prior the evolution of dioecy 
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(reviewed in Barrett, 2002a). The monoecy pathway for the evolution of dioecy is a 

hypothesis that posits unisexuality is achieved from a monoecious ancestor as a 

strategy to optimise resource allocation towards the production of female or male 

flowers. According to this theory, in changing environments where resource 

availability is scarce, the production of only female or staminate flower could be 

favoured by disruptive selection. For dioecy to occur in Solanum in a similar form, it 

would first require an initial separation of female and male functions in different 

flowers, which means the appearance of a monoecious phenotype. However, there 

are not yet any known species with monoecy within this genus. Therefore, I suggest 

andromonoecious species with a fixed sex expression phenotype precede an 

androdioecious phenotype, characterised by the presence of individuals with 

hermaphrodite or staminate flowers only. If an androdioecious phenotype precedes 

dioecy then I would expect the hermaphrodite function of some individuals to be lost 

to ensure enough resources are allocated to the female function only. In any case, in 

order to investigate whether the transition pathway to dioecy in Solanum has as an 

intermediate stage individuals with fixed sex expression, it is necessary to 

characterise the sex expression of andromonoecious species closely related to 

dioecious taxa. Additionally, performing an ancestral character reconstruction 

analyses could help to determine whether the common andromonoecious ancestor 

had a fixed phenotype. 

This thesis provides the first evidence on the reproductive system of Solanum 

houstonii. Here I demonstrated: 1) in this species, the production of staminate flowers 

occurs at early stages of development and is influenced by inflorescence architecture; 

2) laboratory experiments did not support a role for staminate flowers in pollen 

donation or pollination attraction, but highlighted the importance of performing 

experiments under different scenarios and using native and non-native species of 

pollinators. 3) In natural populations, S. houstonii reproductive success is not limited 

by pollen receipt, perhaps because andromonoecy reduces the negative effects of 

pollen theft by promoting pollinator attraction, pollen export, pollen deposition on 

pollinators body and increasing pollen transfer to the stigma of hermaphrodite 

flowers. My research provides evidence of the mechanisms involved in the production 

of staminate flowers and the reproductive success of a buzz-pollinated, 

andromonoecious species.  
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Supplementary material 

Table s2.1. Populations of S. houstonii surveyed and grown under control conditions. 

Population Latitude Longitude State 

Greenhouse grown       
Cerro Colorado 18.47127 -97.35825 Puebla 
Coxcatlan 18.174353 -97.119277 Puebla 
El molino 18.4675 -97.3624 Puebla 
Tehuacan-2015 18.315766 -97.360509 Puebla 

Highway 15, Km81 25.339701 -107.951082 Sonora 
Los Alamos intersection 26.9985 -108.930027 Sonora 
Cuzama 20.72041 -89.38328 Yucatan 
Carr-Abala-3 20.63676 -89.65543 Yucatan 
Santa Clara-3 21.3702 -89.03168 Yucatan 
Natural populations      
Champoton 19.328889 -90.740278 Campeche 
Carr-Playa del Carmen 20.791639 -86.946667 Quintana Roo 
Carr-Abala-1 20.64314 -89.67459 Yucatan 
Carr-Abala-3 20.63676 -89.65543 Yucatan 
Carr-Abala-7 20.62341 -89.60959 Yucatan 
Carr-Cuzama 20.71674 -89.3227 Yucatan 
Carr-Hunucma-1 21.05353 -89.92932 Yucatan 
Carr-Hunucma-2 21.05937 -89.9369 Yucatan 
Carr-Hunucma-3 21.06915 -89.94686 Yucatan 
Carr-Hunucma-5 21.07825 -89.95623 Yucatan 
Carr-Hunucma-6 21.08782 -89.96619 Yucatan 
Carr-Hunucma-7 21.0982 -89.97684 Yucatan 
Carr-Izamal-1 20.94527 -89.07614 Yucatan 

Carr-Izamal-2 20.7084 -88.75525 Yucatan 
Carr-Kimbila 20.927056 -89.134922 Yucatan 
Carr-Motul-1 21.31635 -89.26222 Yucatan 
Carr-Motul-2 21.30716 -89.26365 Yucatan 
Carr-Motul-3 21.2597 -89.26741 Yucatan 
Carr-Motul-4 21.12428 -89.28041 Yucatan 
Carr-Mucuyche-1 20.61729 -89.6009 Yucatan 
Carr-Mucuyche-2 20.60101 -89.59928 Yucatan 
Chelenku cenote 20.713225 -89.328488 Yucatan 
Chuburna 21.25359 -89.812 Yucatan 
Cuzama 20.72041 -89.38328 Yucatan 
Dzilam 21.39046 -88.90358 Yucatan 

Homun 20.7139 -89.33287 Yucatan 
Parque cientifico de Yucatan 21.1352652 -89.785224 Yucatan 
San Isidro Ochil 20.629425 -89.344696 Yucatan 
Santa Clara-2 21.37211 -89.02174 Yucatan 
Santa Clara-3 21.3702 -89.03168 Yucatan 
Seduma 21.32819 -89.2606 Yucatan 
Tecnohotel 21.32338 -89.42334 Yucatan 
Xaman-ik 21.32633 -89.4107 Yucatan 
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Table s2.2. Coefficients of models describing the growth of style and ovary in relation 
to bud length of S. houstonii. These models were ran with a linera mixed effect model 
with Gaussian distribution in a subsampled of buds of 0.1mm to 3 mm of length. 

*SE and estimate for fixed variables, SD and variance for random variables. 
 

 

Table s2.3. Coefficients of the first three linear discriminants. 

Floral traits 
LD1 

(97.84%) 
LD2 

(1.81%) 
LD3 

(0.35%) 

Corolla length 0.013 0.122 -0.031 

Corolla width -0.039 -0.043 -0.076 

Feeding anthers -0.095 0.450 0.339 

Pollinating anthers -0.094 0.025 0.216 

Style length 0.424 0.006 0.107 

Distance between feeding and pollinating anthers -0.126 -0.344 0.184 

Calyx length 0.016 -0.138 0.112 

 
 
Table s3.1. Accessions and populations of S. houstonii surveyed in natural populations 
and grown under control conditions. 

Accessions Population Latitude Longitude State collected 

Natural populations    

16s61 Carr-Abala-1 20.64314 -89.6746 Yucatan 

16s62 Carr-Abala-1 20.64314 -89.6746 Yucatan 

16s64 Carr-Abala-3 20.63676 -89.6554 Yucatan 

16s65 Carr-Abala-3 20.63676 -89.6554 Yucatan 

16s67 Carr-Abala-5 20.62654 -89.6291 Yucatan 

16s69 Carr-Abala-7 20.62341 -89.6096 Yucatan 

16s40 Carr-Cuzama 20.71674 -89.3227 Yucatan 

16s41 Carr-Cuzama 20.71674 -89.3227 Yucatan 

16s42 Carr-Cuzama 20.71674 -89.3227 Yucatan 

16s50 Carr-Hunucma-1 21.05353 -89.9293 Yucatan 

16s51 Carr-Hunucma-1 21.05353 -89.9293 Yucatan 

16s52 Carr-Hunucma-1 21.05353 -89.9293 Yucatan 

16s53 Carr-Hunucma-2 21.05937 -89.9369 Yucatan 

16s54 Carr-Hunucma-2 21.05937 -89.9369 Yucatan 

16s55 Carr-Hunucma-3 21.06915 -89.9469 Yucatan 

Response 
variable 

Fixed and random 
variables 

Estimate/
Variance* 

SE/SD* t P N 

Style height Intercept <0.01 0.08 0.1 0.954 28 
 Bud length 0.25 0.04 6.8 <0.001  
 Sex (Staminate) -0.02 0.08 -0.2 0.836  
 Bud length:Sex(Staminate) -0.07 0.05 -1.5 0.161  
 Plant ID (random) 0.002 0.04   4 
Ovary width Intercept -0.69 0.06 2.7 0.015 28 
 Bud length 0.16 0.03 5.1 <0.001  
 Sex (Staminate) 0.13 0.06 -1.7 0.099  
 Bud length:Sex(Staminate) 0.01 0.04 0.4 0.697  
 Plant ID (random) 0.002 0.05   4 
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16s58 Carr-Hunucma-5 21.07825 -89.9562 Yucatan 

16s59 Carr-Hunucma-6 21.08782 -89.9662 Yucatan 

16s60 Carr-Hunucma-7 21.0982 -89.9768 Yucatan 

16s74 Carr-Izamal-1 20.94527 -89.0761 Yucatan 

16s75 Carr-Izamal-1 20.94527 -89.0761 Yucatan 

16s76 Carr-Izamal-2 20.7084 -88.7553 Yucatan 

16s73 Carr-Kimbila 20.92706 -89.1349 Yucatan 

16s12 Carr-Motul-1 21.31635 -89.2622 Yucatan 

16s14 Carr-Motul-1 21.31635 -89.2622 Yucatan 

16s15 Carr-Motul-1 21.31635 -89.2622 Yucatan 

16s16 Carr-Motul-1 21.31635 -89.2622 Yucatan 

16s17 Carr-Motul-1 21.31635 -89.2622 Yucatan 

16s18 Carr-Motul-2 21.30716 -89.2637 Yucatan 

16s19 Carr-Motul-2 21.30716 -89.2637 Yucatan 

16s20 Carr-Motul-2 21.30716 -89.2637 Yucatan 

16s21 Carr-Motul-2 21.30716 -89.2637 Yucatan 

16s22 Carr-Motul-2 21.30716 -89.2637 Yucatan 

16s23 Carr-Motul-3 21.2597 -89.2674 Yucatan 

16s24 Carr-Motul-4 21.12428 -89.2804 Yucatan 

16s70 Carr-Mucuyche-1 20.61729 -89.6009 Yucatan 

16s71 Carr-Mucuyche-2 20.60101 -89.5993 Yucatan 

16s80 Carr-Playa del Carmen 20.79164 -86.9467 Quintana Roo 

16s81 Carr-Playa del Carmen 20.79164 -86.9467 Quintana Roo 

16s29 Carr-Santa Clara 21.37787 -88.9785 Yucatan 

16s46 Cenote Chelenku 20.72005 -89.347 Yucatan 

16s01 Chuburna 21.25359 -89.812 Yucatan 

16s02 Chuburna 21.25359 -89.812 Yucatan 

16s03 Chuburna 21.25359 -89.812 Yucatan 

16s25 Dzilam 21.39046 -88.9036 Yucatan 

16s26 Dzilam 21.39046 -88.9036 Yucatan 

16s27 Dzilam 21.39046 -88.9036 Yucatan 

16s28 Dzilam 21.39046 -88.9036 Yucatan 

16s44 Homun 20.7139 -89.3329 Yucatan 

16s45 Homun 20.7139 -89.3329 Yucatan 

16s08 Never 21.32871 -89.3922 Yucatan 

16s09 Never 21.32871 -89.3922 Yucatan 

16s34 Santa Clara-2 21.37211 -89.0217 Yucatan 

16s35 Santa Clara-3 21.3702 -89.0317 Yucatan 

16s36 Santa Clara-3 21.3702 -89.0317 Yucatan 

16s38 Santa Clara-3 21.3702 -89.0317 Yucatan 

16s39 Santa Clara-3 21.3702 -89.0317 Yucatan 

16s10 Seduma 21.32819 -89.2606 Yucatan 

16s11 Seduma 21.32819 -89.2606 Yucatan 

16s04 Tecnohotel 21.32338 -89.4233 Yucatan 

16s05 Tecnohotel 21.32338 -89.4233 Yucatan 

16s06 Tecnohotel 21.32338 -89.4233 Yucatan 

16s07 Xaman-ik 21.32633 -89.4107 Yucatan 

17pc1-17pc16 Sierra Papacal 21.13527 -89.7845 Yucatan 



 

170 
 

17s01-17s21 San Isidro Ochil 20.62943 -89.3447 Yucatan 

17ch03-17s21 Chunkanan 20.62398 -89.6096 Yucatan 

Greenhouse 2017    
07s38 Los Alamos intersection 26.9985 -108.93 Sonora  

07s211a Los Alamos intersection 26.9985 -108.93 Sonora  

07s211b Los Alamos intersection 26.9985 -108.93 Sonora  

07s62 Los Alamos intersection 26.9985 -108.93 Sonora  

07s66 Los Alamos intersection 26.9985 -108.93 Sonora  

Greenhouse experiments 2018    
07s19 Los Alamos intersection 26.9985 -108.93 Sonora  

07s211a Los Alamos intersection 26.9985 -108.93 Sonora  

07s211b Los Alamos intersection 26.9985 -108.93 Sonora  

07s211b1 Los Alamos intersection 26.9985 -108.93 Sonora  

07s266 Los Alamos intersection 26.9985 -108.93 Sonora  

07s32 Los Alamos intersection 26.9985 -108.93 Sonora  

07s38 Los Alamos intersection 26.9985 -108.93 Sonora  

07s62 Los Alamos intersection 26.9985 -108.93 Sonora  

07s64 Los Alamos intersection 26.9985 -108.93 Sonora  

07s66 Los Alamos intersection 26.9985 -108.93 Sonora  

07s67 Los Alamos intersection 26.9985 -108.93 Sonora  

16s32 Carr-Santa Clara 21.37787 -88.9785 Yucatan 

16s57 Carr-Hunucma-4 21.07579 -89.9535 Yucatan 

16s63 Carr-Abala-2 20.63844 -89.6588 Yucatan 

16s66 Carr-Abala-4 20.62756 -89.6398 Yucatan 

16s67 Carr-Abala-5 20.62654 -89.6291 Yucatan 

16s68 Carr-Abala-6 20.62557 -89.6186 Yucatan 

16s70 Carr-Mucuyche-1 20.61729 -89.6009 Yucatan 

16s72 Carr-Mucuyche-2 20.60101 -89.5993 Yucatan 

16s72a Carr-Mucuyche-2 20.60101 -89.5993 Yucatan 

17s4 San Isidro Ochil 20.62943 -89.3447 Yucatan 
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Figure s3.1. Hermaphrodite and staminate flowers produced in the first ten positions 
of the inflorescence of individuals belonging to seed families capable of producing 
hermaphrodite flowers in several positions of the inflorescence. Seed family 07s211b 
included two individuals capable of producing hermaphrodite flowers at different 
positions of the inflorescence (07s211b2 and 07s211b3). In seed family 07s66, both 
individuals were capable of producing hermaphrodite flowers at different positions 
of the inflorescence. In family c1, only one individual produced more than one 
hermaphrodite flower (c15). 
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Table s4.1. Populations of the seed families of S. houstonii used in the experiments of 
this study. 

Population Latitude Longitude State 

Crosses       

Highway 15, Km81 25.339701 -107.951082 Sonora 
Los Alamos intersection 26.9985 -108.930027 Sonora 

Pollen germination and viability   
Carr-Abala-3 20.63676 -89.65543 Yucatan 
Carr-Abala-5 20.62654 -89.6291 Yucatan 
Carr-Cuzama 20.71674 -89.3227 Yucatan 
Carr-Hunucma-2 21.05937 -89.9369 Yucatan 
Santa Clara-3 21.3702 -89.03168 Yucatan 
Carr-Cuzama 20.71674 -89.3227 Yucatan 
Highway 15, Km81 25.339701 -107.951082 Sonora 
Los Alamos intersection 26.9985 -108.930027 Sonora 

Bee behaviour experiments   
Carr-Abala-3 20.63676 -89.65543 Yucatan 
Carr-Abala-5 20.62654 -89.6291 Yucatan 
Carr-Cuzama 20.71674 -89.3227 Yucatan 
Carr-Hunucma-1 21.05353 -89.92932 Yucatan 
Carr-Hunucma-2 21.05937 -89.9369 Yucatan 
Carr-Hunucma-3 21.06915 -89.94686 Yucatan 
Carr-Mucuyche-1 20.61729 -89.6009 Yucatan 
Chelenku cenote 20.713225 -89.328488 Yucatan 
Santa Clara-3 21.3702 -89.03168 Yucatan 
Highway 15, Km81 25.339701 -107.951082 Sonora 
Los Alamos intersection 26.9985 -108.930027 Sonora 
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