Identification of Fungal H+-ATPase Inhibitors by Microfractionation and HPLC-HRMS-**SPE-NMR**

Wubshet, Sileshi Gizachew; Johansen, Kenneth; Johannesen, Ane; Nyberg, Nils; Jäger, Anna; Kjellerup, Lasse; Vinther, Anne-Marie; Stærk, Dan

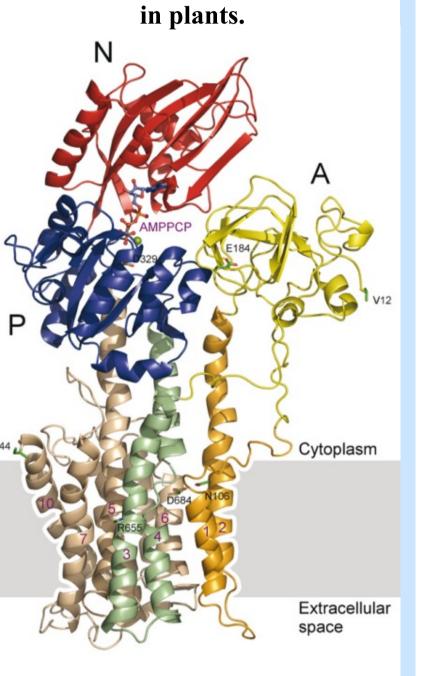
Publication date: 2014

Citation for published version (APA): Wubshet, S. G., Johansen, K., Johannesen, A., Nyberg, N., Jäger, A., Kjellerup, L., ... Stærk, D. (2014). Identification of Fungal H^T-ATPase Inhibitors by Microfractionation and HPLC-HRMS-SPE-NMR. Poster session præsenteret ved 35th Danish NMR Meeting, Kobæk Strand, Danmark.

FACULTY OF HEALTH AND MEDICAL SCIENCES UNIVERSITY OF COPENHAGEN

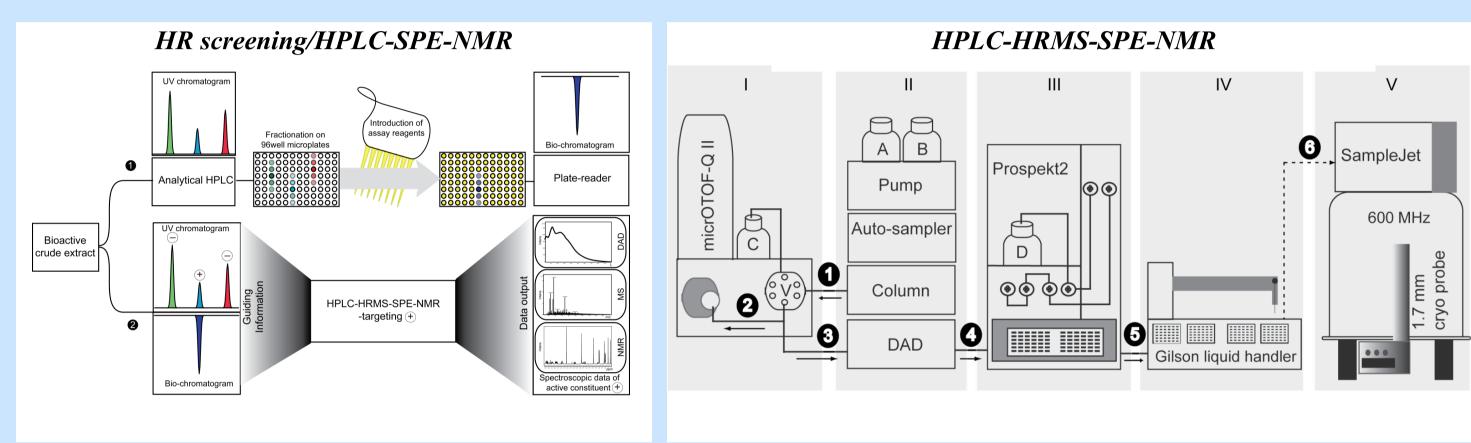
Identification of Fungal H⁺-ATPase Inhibitors by **Microfraction and HPLC-HRMS-SPE-NMR**

Sileshi Wubshet^{1*}, Kenneth Kongstad¹, Ane Johannesen¹, Nils Nyberg¹, Anna K. Jäger¹, Lasse Kjellerup², Anne-Marie Winther², Dan Stærk¹


¹Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark ²PCOVERY, Thorvaldsensvej 57, DK-1871 Frederiksberg C, Denmark *E-mail: sgw@sund.ku.dk

Background - Fungal Fight

Crystal structure of the H⁺-ATPase


A large number of fungal proteins have been proposed as potential targets for novel antifungal agents,¹ however, current available antifungal agents are primarily targeting the intracellular membrane biosynthesis¹ and thus need to enter the fungus to act. In our search for novel and more efficient antifungal compounds, we are focusing on the plasma membrane (PM) H⁺-ATPase enzyme as target.

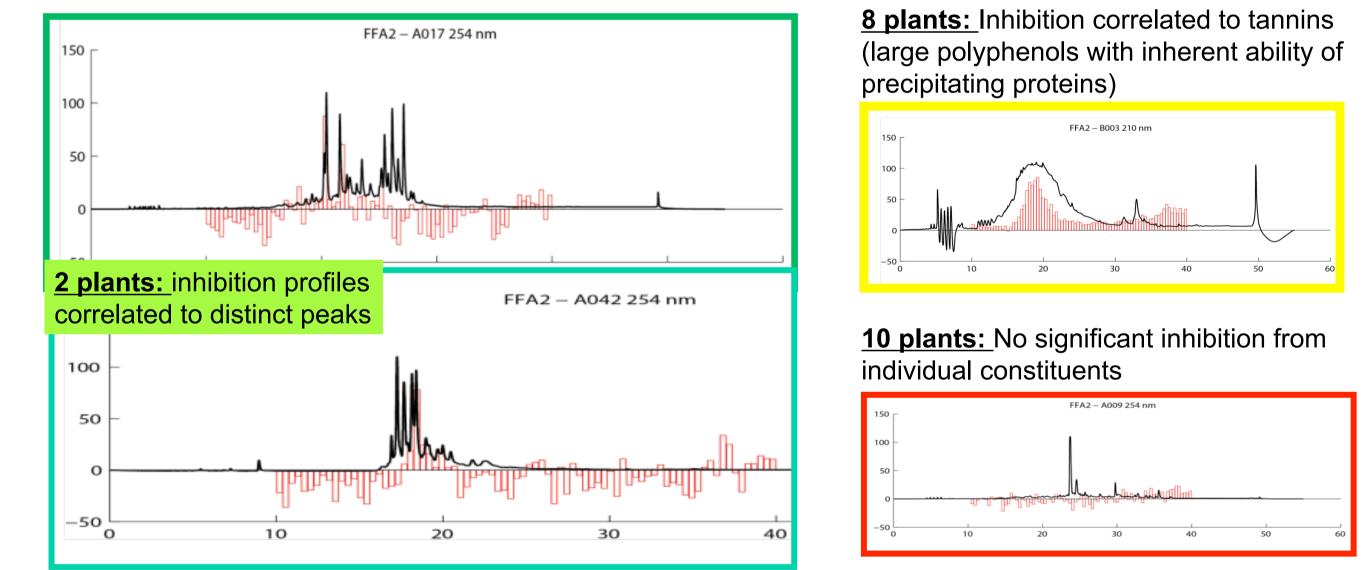
Plants are exposed to a wide array of phytopathogenic fungi in their natural habitat, and have been forced to develop antifungal metabolites in order to survive.^{2,3} Hence, as previously suggested by Monk and coworkers,⁴ it is reasonable to assume that some plants have the PM H⁺-APTase enzyme as target for the antifungal metabolites. However, plant extracts are very complex mixtures, and the traditional bioassay-guided fractionation used for identification of individual bioactive components are very time-consuming and suffers from inherently low resolution during the fractionation process. To circumvent this, we have developed a bioanalytical platform that combines high-resolution microplate bioassays⁵ with HPLC-SPE-NMR.⁶ In the present work, we report crude extract screening of 48 plant-extracts for fungal PM H⁺-ATPase inhibitors - followed by high-resolution bioassay and HPLC-SPE-NMR analysis for identification of individual active constituents.

The setup - HR screening/HPLC-SPE-NMR

Empowered by the separation capabilities of analytical HPLC, high-resolution bioassay-guided HPLC-SPE-NMR has been shown to provide a platform that can substitute the traditional bio-guided fractionation with considerable reduction of workload and improved efficiency.⁷ In this approach, chromatographically separated fractions will be subjected to a given bio-activity test to afford the so-called biochromatogram. The resulting biochromatogram will then be used as a tool for targeted analysis of active constituents. Such biochromatogram can be acquired through micro-fractionation followed by offline assay.

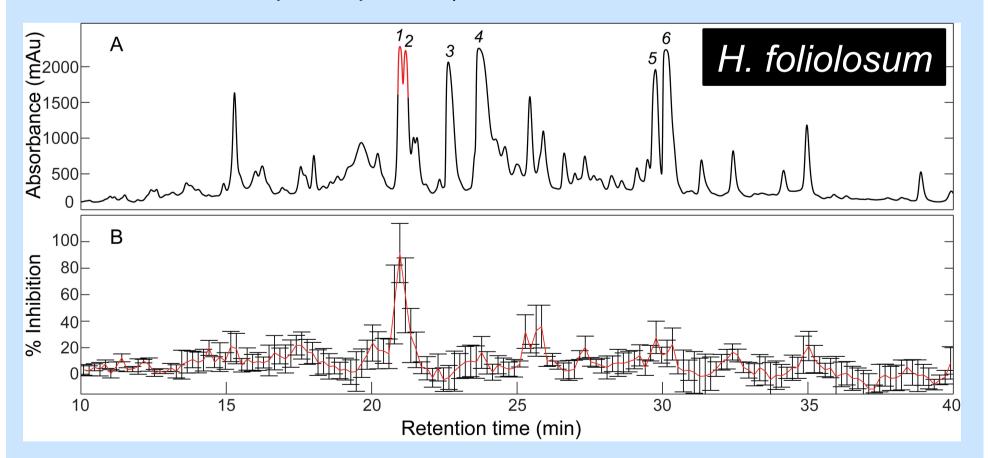
Results - Crude extract screening

From 48 plants to 20 plants


Extracts were tested in three different concentrations and those showing inhibition higher than 95% for all concentrations or a concentration-dependent activity profile were selected for semi-high-resolution screening.

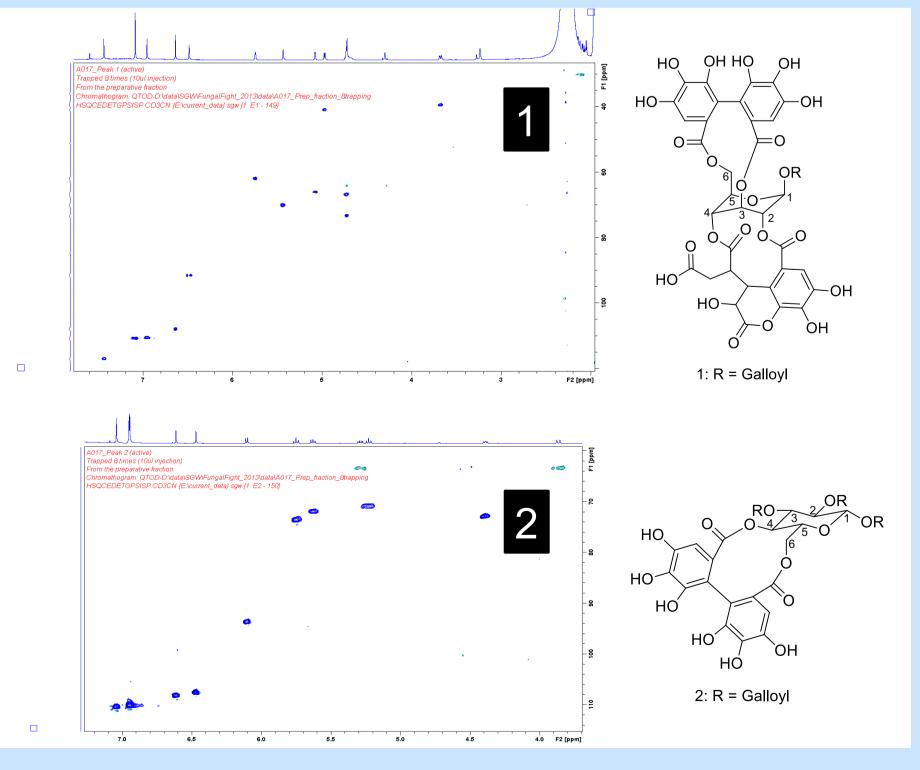
No 1	Species Alafia barteri	Family Apocynaceae	Plant part Leaves + twigs	Percent inhibition					
				7.5 mg/mL		15 mg/mL		30 mg/mL	
				27	11	33	19	33	27
2	Alchornea cordifolia	Euphorbiaceae		99	98	98	98	97	97
6	Baissea leonensis	Apocynaceae	Leaves + twigs	99	99	99	99	99	100
7	Baissea leonensis	Apocynaceae	Fruit	98	98	98	98	97	97
11	Caloncoba gilgiana	Achariaceae	Leaves	99	99	98	97	99	97
12	Croton longiracemosus	Euphorbiaceae	Branches	-8	-13	3	9	19	7
13	Croton longiracemosus	Euphorbiaceae	Root bark	20	12	27	19	34	18
14	Croton membranaceus	Euphorbiaceae	Leaves + twigs	40	18	40	28	53	41
15	Dovyalis macrocalyx	Salicaceae	Stem	-4	-13	21	1	35	18
16	Euadenia eminens	Capparaceae	Aerial parts	33	15	43	25	49	32
17	Euadenia eminens	Capparaceae	Root	2	-47	4	-36	13	-7
18	Gymnema sylvestre	Apocynaceae	Aerial parts	34	19	38	26	59	46
19	Haplocoelum foliolosum	Sapindaceae	Aerial parts	99	99	100	99	100	100
20	Hubertia ambavilla	Asteraceae	Leaves + twigs	27	29	56	58	84	86
21	Hubertia tomentosum	Asteraceae	Leaves	36	19	50	31	75	71
22	Hypericum scabrum	Hypericaceae	Whole plant	59	51	96	75	97	96
23	Lophira alata	Achnaceae	Leaves	41	38	60	56	96	90
24	Momordica charantia	Curcurbitaceae	Aerial parts	31	27	33	35	42	39
25	Mussaenda tristigmatica	Rubiaceae	Leaves + twigs	99	98	99	98	99	98
47	Sphenocentrum jollyanum	Menispermaceae	Leaves + twigs	39	24	55	36	76	68
48	Sauvagesia erecta	Ochnaceae	Whole plant	98	98	99	98	97	98

Results – Semi-HR-screening

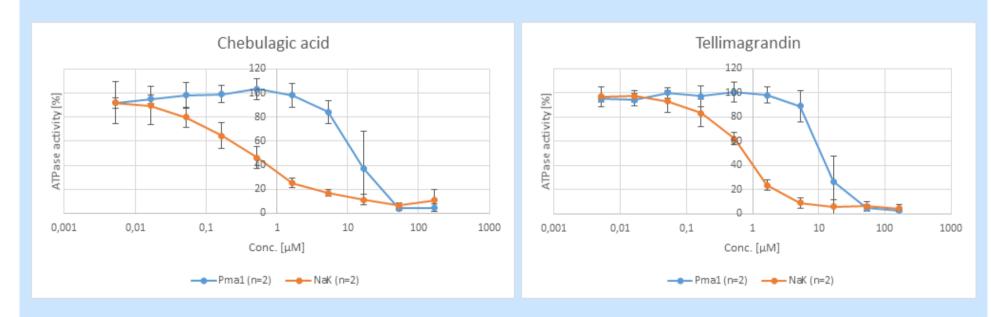

From 20 plants to 2 plants

The 20 samples selected for semi-high-resolution screening (assay resolution: 2.66 data points per min) were assayed for their ability to inhibit the PM H⁺-ATPase.

Results - *HR*-screening From 2 pants to 2 compounds


The two plants (Haplocoelum foliolosum and Sauvagesia erecta) showing distinct chromatographic peaks correlated with PM H⁺-ATPase inhibition in semi-HR screening were subjected to high-resolution screening (assay resolution: 5.33 data points per min).

From *H. foliosum* two peaks (peak 1 and 2) were correlated with > 80%inhibition of the PM H⁺-ATPase. However, despite the noticeable inhibition in both crude extract screening and semi-high resolution assay, S. erecta did not show any peak correlated to a defined inhibition profile in high-resolution assay. This can be attributed to the possible loss of aggregate activities of multiple constituents due to lower residual complexity of the tested compounds in the HR screening compared to both semi-HR and crude extract screening.


Results - HPLC-HRMS-SPE-NMR

Detailed analysis of HRMS and NMR data acquired via HPLC-HRMS-SPE-NMR, led to identification of the two active metabolites as Chebulagic acid (1) and Tellimagrandin II (2).

Results - IC_{50} and MIC

The two HITs (Chebulagic acid (1) and Tellimagrandin II (2)) were purified by preparative scale HPLC and subjected to IC₅₀ determination in PM H⁺-ATPase as well as Na⁺,K⁺-ATPase inhibition assay.

	IC50 [µM]		
Compound	Pma1	NaK	
Chebulagic acid	12	0,5	
Tellimagrandin II	10	0,8	

Moreover, minimum inhibitory concentrations of the two compounds were assessed against growth of two fungal strains (Candida albicans and Saccharomyces cerevisiae).

Fungal strain	Chebulagic acid	Tellimagrandin
S. cerevisiae (041)	2.3 μg/mL	2.3 μg/mL
C. albicans SC5314	>72 μg/mL	>70 μg/mL

Concluding remarks

- Thorough investigation of 48 plant extracts for fungal PM H⁺-ATPase inhibitors led to identification of two active metabolites. *i.e.*, Chebulagic acid (1) and Tellimagrandin II (2).
- Systematic combination of crude extract screening, high-resolution screening and HPLC-HRMS-SPE-NMR analysis allowed optimized workflow.
- High-resolution PM H⁺ ATPase inhibition assay allows subsequent HPLC-SPE-NMR analysis to be targeted bioactive constituents only
- Cryogenic probe detection (1.7 mm) allowed characterization of metabolites (with high PM H⁺-ATPase inhibition) direct from analytical-scale HPLC of crude extract

Acknowledgment

The project FF is granted by the Danish Research Council for Strategic research – Food and Health. HPLC equipment used for high-resolution bioassay profiles was obtained via a grant from The Carlsberg Foundation. The 600 MHz HPLC-HRMS-SPE-NMR system used in this work was acquired through a grant from "Apotekerfonden af 1991", The Carlsberg Foundation, and the Danish Agency for Science, Technology and Innovation via the National Research Infrastructure funds.

References

1. Odds, F. C.; Brown, A. J. P.; Gow, N. A. R. Trends Microbiol. 2003, 11, 272-279. 2. Bell, A. A. Ann. Rev. Plant Physiol. 1981, 32, 21-81. 3. Maor, R.; Shirasu, K. Curr. Opin. Microbiol. 2005, 8, 399-404. 4. Monk, B. C.; Perlin, D. S. Crit. Rev. Microbiol. 1994, 20, 209-223. 5. Shi, S.-Y.; Zhou, H.-H.; Zhang, Y.-P.; Jiang, X.-Y.; Chen, X.-Q.; Huang, K.-L. TRAC – Trend. Anal. Chem. 2009, 28, 865-877. 6. Stærk, D.; Lambert, M.; Jaroszewski, J.W. HPLC-NMR techniques for plant extract analysis. In *Medicinal Plant Biotechnology. From Basic Research to* Applications. Kayser, O.; Quax, W., Eds.; Viley-VCH, Weinheim, Germany, 2006, pp. 29-48. 7. Wubshet, S.G.; Nyberg, N.T.; Tejesvi, M.V.; Pirttilä, A.M.; Kajula, M.; Mattila, S.; Staerk, D. J. Chromatogr., A 2013, 1302, 34-39.