
The Intelligible Contract

Luca Cervone
University of Bologna
luca.cervone@unibo.it

Monica Palmirani
University of Bologna

monica.palmirani@unibo.it

Fabio Vitali
University of Bologna
fabio.vitali@unibo.it

Abstract

This paper introduces a novel model of legal digital
contracts automatically executable on Blockchain
technologies. Legally enforceable and automatically
executable digital contracts are receiving a renewed
interest, mostly due to the increasing attention
towards Blockchain technologies. However, current
implementations of digital contracts are still far
from being intelligible to humans, because of their
differences with traditional written contracts. The main
purpose of this paper is to provide a contribution in
bridging the gap between traditional contracts and
digital contracts towards the goal of making them
intelligible and legal valid. Firstly, after highlighting
the shortcomings in current technologies when used
for legal digital contracts, the paper introduces a new
generic specification for legal digital contracts, namely
the Intelligible Contract. Secondly, we describe our
implementation of Intelligible Contracts and, as a proof
of feasibility, we model a simple scenario by means of
our implementation. The paper concludes with some
ideas for future research on Intelligible Contracts.

1. Introduction

In the last decade, emerging technologies such as
Blockchains and Smart Contracts have created new
paradigms for implementing and delivering digital
applications. In their very first implementations,
Blockchains were thought as software infrastructure to
enable peer-to-peer transactions of digital currency in
decentralized ways, and so without the need of any
central verifying authority [1].

Nowadays, after three generations [2], Blockchains
are able to serve “decentralized applications”, or
DApps, software that rely on atomic transactions
performed by means of Blockchains [3], or to handle
“Decentralized Autonomous Organizations”, or DAOs
[4], that use Blockchains to hard-code internal rules
to make their decision-making processes automatic and

more traceable and accountable, or to deliver new
businesses [5].

Smart Contracts are small software procedures that
can run on Blockchains to ensure the correct execution
of these new kinds of applications and organizations
[6], or to translate certain legal contractual terms and
conditions of services they offer into safe-to-execute
code. In this latter situation, a Smart Contract is
considered a specific interpretation and translation (a
codification) of its corresponding legal prose, which
is the written expression of a mutual assent about the
contractual terms (e.g. the considerations of a contract)
[7]. However, legal contracts need to be compliant with
a complex hierarchy of laws and regulations at the local,
national and international level [8], and there is a vast
range of civil and penal issues that DApps and DAOs
need to take into consideration within every execution
context.

As such, we argue that both the intelligibility of
the legal prose of contracts and the intelligibility of the
whole contractual process must be guaranteed as much
as possible, in order to support the enforceability of
digital contracts, and to allow legal experts to back-trace
what caused an eventual legal dispute. Indeed,
the intelligibility of a legal contract is a mandatory
requirement1 in order to have a full awareness of the
content and a valid mutual assent, and so, for instance, in
order to asses the enforceability of obligations contained
in contracts. Thus, if unintelligible to humans due to the
use of computer code, a legal contract is prone to be a
void or a voidable contract (e.g. a contract mistake in
contract law).

Ricardian Contracts [9] bridge the gap between
legal prose and operational code by exposing an
open specification for creating “digitally-signed legal
contracts” that contain both the legal prose and the

1For instance, in EU the Intelligibility is a requirement in European
eCommerce Law that guarantees transparency and fairness to the
consumers, see the Directive 93/13/EEC, Article 5: “In the case
of contracts where all or certain terms offered to the consumer are
in writing, these terms must always be drafted in plain, intelligible
language. Where there is doubt about the meaning of a term, the
interpretation most favourable to the consumer shall prevail.”

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1780
URI: https://hdl.handle.net/10125/63959
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


executable code and other information bits that ensure
human as well as computer readability. Ricardian
Contracts establish therefore a first necessary step
forward to intelligible and legally enforceable Smart
Contracts, but they still lack in representational power
for the complex technicalities that traditional written
contracts may contain in their legal prose [10]. Among
the many re-interpretations and extensions of Ricardian
Contracts, the Smart Contracts Templates specification,
and its implementation, introduce essential requirements
and design options to better address the serialization
of the legal prose of contracts and their link to
operational code [11]. Unfortunately, Smart Legal
Templates still lack in important aspects with regards
to intelligibleness of contracts to humans and their
readability by machines. Hence, the first research
question that we try to address in this paper is the
following:

RQ1: Is it possible to define a model for
legal digital contracts that are intelligible to
humans and readable by machines?

Our proposal is another type of Ricardian Contract
that we purposefully call “Intelligible Contract”2. In our
model, not simply the specific clauses of the contract,
but the whole legal context of the contract is considered
and mapped to the operational code. In addition, an
explicit specification of the execution environment of
the operational code itself is specified. After having
exposed our model we tried to address our second
research question, namely:

RQ2: Is it possible to use standard
technologies to implement intelligible
legal, digital and automatically executable
contracts?

To address our second research question we
identified standard technologies already used in legal
domain, such as the Akoma Ntoso standard [12] and
the LegalRuleML standard [13], and we used them in
an implementation of our proposal that is suitable to
model a real-world scenario. Eventually, we discussed
our implementation and we highlighted possible future
researches on Intelligible Contracts.

The paper is structured as follows: in the next
section, we expose the methodology this paper is based
on. In section 3, we provide an in-depth background of
Smart Contracts, Ricardian Contracts and Smart Legal
Templates. Section 4 provides definitions, requirements

2As specified, any legal contract must be intelligible to both parties
in order to allow them to fully comprehend their obligations and their
rights

and implementation of our proposal, the Intelligible
Contract. In section 5 we model a sample use case, as a
proof of concept for Intelligible Contracts, and in section
6 we discuss our solution and we draw some conclusions
and future research directions.

2. Methodology

Our research is the result of a long activity
of theoretical studies on the application of modern
technological concepts in legal domains, and here on
reducing gaps between digital contracts and traditional
legal contracts. In order to address our research
questions we have: (1) reviewed the existing literature
so as to identify technologies and models that have
already tried to link legal prose to its operational
and legal context, in particular Ricardian Contracts
and Smart Contracts Templates; (2) highlighted the
pros and cons of these approaches in light of issues
we have exposed about the intelligibility and legal
validity of contracts; (3) proposed a new model called
”Intelligible Contract” that is suitable to fill the gaps we
identified; (4) given a formal definition of our model
in line with previous existing proposal; (5) verified
the feasibility of our model by proposing possible
implementations based on standardized and widely-used
technologies; (6) discussed the implications of our
model and our implementation, and (7) identified
desirable developments for the future.

3. Background and Motivations

In this section we describe concepts and
technologies that impact on the issues, and motivations
behind their adoption in our research for modelling
Intelligible Contracts.

3.1. From Blockchains to Smart contracts

Blockchains (hereinafter BCs) are special kinds of
digital databases that brought disruptive innovations by
means of few concepts.

Firstly, BCs are immutable databases, for they are
append-only databases. Each new block of data carries
a hash of the previous one so that the integrity of existing
data can be verified every time a new block is added [1].
Thus, this mechanism creates a “chain” of “blocks” of
data.

Secondly, BCs are “distributed” to the extent that
data contained in a BC is potentially hosted on any of the
nodes that belong to the network of the BC. Whenever
an authority is needed to grant the access to the network
then the BC is a ”permissioned“ one. If the access and
the interaction with the BC is open and public, so that

Page 1781



participants can be anonymous or pseudo-anonymous,
then the BC is named “permissionless”. [14].

Thirdly and lastly, BCs are “decentralized” (or
at least “partially-decentralized”), meaning that
participants can reach an agreement on the correct
status of the BC without trusting each other [15].

By mixing the above concepts in many different
ways, in the last decade BCs have evolved over at least
three separate generations [2]. In their first generation,
the Digital Currency generation, BCs such as BitCoins
[1] were able to create digital currency and to handle
transactions between users. In their second generation,
the Contracts generation, BCs features were extended
to more complex financial services, such as digital
assets exchanges, loans, mortgages, and so on. In the
third generation, the Digital Society generation, BCs are
used to handle many every-day and real-life situations,
introducing new paradigms to create applications or
organizations, such as Decentralized Applications and
Decentralized Autonomous Organizations, that can be
applied in both private and institutional contexts [16].

In order to handle the complex applications they
are intended to serve, BCs belonging to the second
and the third generation, such as the permissionless
Ethereum BC [3] and, with some simplifications, the
permissioned Hyperledger BC [17], allow developers to
publish Smart Contracts that can be executed in a safe
and tamper-proof way.

3.2. Smart Contracts

Smart Contracts (hereinafter SCs) are small software
procedures run on BCs to ensure their correct execution
[6]. SCs are often used to handle the business logic of
DAPPs, sometimes introducing novel models of markets
and economies [2]. For instance, the CryptoKitties
dApp uses SCs for trading non-fungible digital assets,
or unique digital items represented as images of cute
kittens, whose data and metadata are hashed and stored
on BCs [5].

In simple contexts, SCs can execute automatically
certain terms of legal contracts between parties,
and they can enforce clauses of contracts without
lawyers or central authorities [18] but, the term
“contract” has a precise meaning in the legal world3,
while here a SC is basically a software procedure
that is automatically executed whenever specific

3A legal contract is the meeting of two or many minds (mutual
agreement between parties) concerning an offer that is identically
accepted under considerations. For instance, a contract in Italy is
valid only if some pre-conditions are respected following art. 1325 of
the Italian Civil Code. One of them are the identification of parties,
the expressed willingness to agree, the clearness of the scope, the
definition of the object, the understandability of the conditions and,
as said before, the intelligibility of the clauses and the format.

pre-programmed and pre-agreed conditions are met [8].
However, even considering the limited scope of the
definition of “contract” in the BC domain, SCs must
be considered as translations of fragments of the legal
prose of a contract into an executable piece of code [7].
For this reason, given also the current hype on BCs, we
argue, several countries are regulating SCs in order to
give them a clear legal status4, and in order to legally
enforce the probative value of their executions (the
evidential value) or of their life-cycle (e.g. the rescission
from the contract, the termination of the contract, and so
on).

Therefore, currently, SCs and more generically
digital contracts, can be already used with world-wide
enforceable value when they are built under some
conditions, defined at international level by the
UNICITRAL texts [19], following the principles of
“non-discrimination” and “technological neutrality”.
Additionally, if the digital contract is digitally signed,
for example by using technologies compliant to the
eIDAS Regulation technical specifications applicable
in the European jurisdiction [20], the principle
of “functional equivalence” to the traditional paper
contracts is maintained. In USA the Uniform Electronic
Transactions Act (UETA) and Global and National
Commerce Act (E-SIGN) are the legal bases for
the state-by-state application of rules concerning the
enforceability of the execution of SCs [21].

However, we agree with UNICITRAL experts of the
eCommerce working group [22], so we argue that the
real crucial issue is the liability in case of torts, given
that, so far, SCs fail to supply the features connected
to the complex hierarchy of laws and regulations of
real contracts, referenced implicitly or explicitly in the
legal prose they use. For instance, at the state of the
art, it is not possible to assess the unequivocal and free
willingness of the parties to accept the terms of contracts
executed by a SCs, and this may lead to several penal
and civil implications.

So, given the current implementations of SCs, many
aspects are on a shaky legal ground, [23]. For these
reasons, there is the need to identify technologies that
allow to serialize contracts in a way that they are
more intelligible and readable both by machines and
by humans. We found an initial answer in Ricardian
Contracts and Smart Contracts Templates, described in
the next section.

4For instance, the Italian Government has enacted Decree Law n.
135 at 14 December 2018, also known as “Decreto Semplificazioni”
(the simplification act) that defines smart contracts as computable
programs using distributed ledger technology, whose execution
produces legal effects between identified parties.

Page 1782



3.3. Ricardian Contracts and Smart Contract
Templates

In order to try to fill the gap between traditional
text-based legal contracts and software for the automatic
execution of their clauses, companies building BC
technologies, like OpenBazaar [24], allow contracts
to be described and placed directly on the chain
by means of implementations of Ricardian Contracts
(hereinafter RCs) [9]. The idea behind RCs is that a full
automated and legally enforceable contract, including
their execution, should be composed of “parameters,
code, and prose” [25], linked together and signed by
means of some secure cryptographic algorithm. In
a nutshell, RCs are tamper-proof and digitally signed
〈P,C,M〉 triples, where: (P) describes the denotational
semantics (the legal prose) of the contract; (C) is the
operational semantics, and therefore the code that must
be automatically executed to enforce the prose of the
contract; and (M) is the mapping, in the form of
key-value parameters, of operations expressed in C and
the prose expressed in P [10]. Studies have already
made on implementation or extensions of RCs.

Smart Contract Templates (hereinafter SCTs) are
implementations of RCs whose operational code is
standardized and whose behavior is controlled by
parameters contained in an electronic representation
of the document that also contains the legal prose of
the contract [26]. The main purpose of SCTs is to
facilitate the management of the whole life-cycle of
digital contracts, and examples of implementations have
been proposed, mostly in financial contexts [27]. Four
key aspects are particularly relevant for the management
of SCTs in their life-cycle [11]: (1) tools must be
supplied to allow people with legal skills to write
contracts in legal prose, facilitating users to link legal
prose to operational code even without programming
skills; (2) the serialization of contracts must be done
by means of standard vocabularies, flexible enough to
allow the serialization of complex legal documents;
(3) contracts must be serialized by means of standard
mark-up that allows linking items in the legal prose
to standard ontologies, and so allowing analysis and
reasoning, and (4) features must be supplied to link
the legal prose to operational code, to pass parameters
contained in legal prose to the operational code, and to
uniquely identify operational code that executes SLTs.

Although we agree that the four requirements
highlighted by STCs are essential requirements for legal
digital contracts, they do not take into consideration
other important aspects for the intelligibility of
contracts. More specifically, we argue that a model for
intelligible digital contracts must also supply features to

describe: (1) other legal and non legal resources linked
to contracts (for instance, recitals often refer to Acts that
regulate the concepts involved in the contract); (2) the
legal context of contracts (for instance, contracts may
be challenged differently in a US country or in a EU
country); (3) the operational context of contracts (i.e.
on which BC an digital contract was executed); and (4)
the information related to any automatic execution of
contracts or any of their clauses. To fulfill these gaps,
we introduce our “Intelligible Contracts” exposed in the
next section.

4. Intelligible Contracts

Intelligible Contracts are legal contracts written
in natural language that can be mapped, entirely or
partially, to operational code living on BCs. Like
RCs and SCTs, Intelligible Contracts supply an open
specification for marking-up the legal prose of contracts
by ensuring its readability also to machines, and
creating and defining the bridge between partitions
of legal prose and the corresponding operational
code. Intelligible Contracts extend RCs and SCTs by
supplying specifications for the intelligibility of digital
contracts, in particular by: (4) linking all resources
that compose contracts or define their legal contexts;
(5) linking agents that are involved in the life-cycle of
contracts; (6) linking the digital resources that describe
how to execute the operational code; (7) linking the
digital resources that report what happens during the
executions of contracts.

The denotational definition of Intelligible Contracts
is as follows5:
Intelligible Contract::=

UID and
Document+ and,
Context+ and,
Execution Report+

UID::= URI => HASH

Context::=
UID and
Legal Context+ and
Operational Context+ and

Legal Context::=
(Legal Document Ref or
Legal Document)+

Operational Context::=
Operational Environment Ref+ and
Operational Agent Ref+ and
Operational Code Ref+

Operational Environment::= URI

5For the sake of consistency we use an Extended BNF-like form
similar to the one in [11] The notation can be summarized as follows:
(::=) means “is defined as”; (*) means “zero or more occurrences”;
(+) means “one or more occurrences”; if neither (*) or (+), then there
must be “exactly one occurrence”; (x and y) means “both x and y”;
(x or y) means “x or y or both”. Additionally, we use: (〈x,y, M〉) to
denote a “triple where M is a mapping among elements belonging to
x and element belonging to y”, and (A ⇒ B) to denote that “A and B
are both mandatory and B is in function of the content of A”.

Page 1783



Operational Agent::=
UID
Document+

Operational Code::=
UID
Bit+

Document::=
UID and
(Generic Document or
Generic Document Ref)+ or
(Legal Document or
Legal Document Ref)+

Generic Document::= Bit+

Legal Document::=
Legal Prose+ and
Metadata+

Legal Prose::= Human Natural Language Statement+

Metadata::=
(Legal Metadata or
Operational Metadata)+

Legal Metadata::=
<Legal Prose,
Legal Context,
Description>

Operational Metadata::=
<Legal Prose,
Operational Context,
Description>

Description::=
Human Description+ or
Automatic Description+

Execution Report::=
UID,
Document+,

Informally, an Intelligible Contract is a unique
collection of linked machine-readable resources
describing a legal contract, its legal prose, its legal
context, and information on which parts of it can be
automatically processed and how to do it.

Intelligible Contracts are primarily aimed to describe
automatically executable legal digital contracts, but
their definition is open to other uses. Implementations
must satisfy a set of mandatory components: (1)
an identification and referencing component (2) a
document component; (3) a context component; and, (4)
a process component.

Unique identifiers, or UID, are pairs composed of a
Uniform Resource Identifier and a hash value generated
by a hashing function on the content of the resource
the URI points to. It is worth noting that, since
hashes are computed on the content of resources, UIDs
expect resources to be immutable. Thus, it is important
that URIs reference resource as available at a specific
moment in time.

Intelligible Contracts supports both generic and legal
documents, as actual resources or references to external
locations. Legal documents are documents whose
content is needed for the intelligibility and the life-cycle
of Intelligible Contracts. Legal documents must be
serialized so as to make Intelligible Contracts compliant

to RCs and SCTs specifications: human and machine
readable, structured so as to preserve the text and the
logical and semantic structure of the prose, serialized
by means of standard technologies and linkable to other
resources. Metadata must be specified for each legal
document belonging to Intelligible Contracts. Legal
metadata may include: issue date, enforcement date,
signature date, amendments to document, info on its
versions, etc. Operational metadata describe the prose
in function of its operational context. For instance,
if an Intelligible Contract is processed to assess its
enforcement, then operational metadata must include
relevant data about enforcement. These descriptions
must be readable by both humans and machines.

Context in Intelligible Contracts is divided into legal
context and operational context. The legal context is the
legal environment under which the Intelligible Contract
is described or executed. It contains or references
legal documents, such as acts cited in the introductory
text (the recitals), or other related contracts. It
would be appropriate that all included or referenced
documents are serialized using the same data format
as the contract. The operational context of Intelligible
Contracts is composed by references to operational parts
for the execution of the contract. It contains execution
parameters, references to operational environment (i.e.,
the platform that will store and execute the code),
operational agents and operational code. Operational
agents are references to the entities passively or actively
involved in an execution.

Execution Reports are sets of documents identified
by a UID summarizing events happened during the
execution of the contract, such as a judgment, the logs
created by the operational environment during a specific
execution, or legal documents related to a subpoena
against a failure in an execution. Report documents
should be serialized by means of the same markup
language of the other documents.

All the requirements described in this section
and in the previous ones must be followed by any
implementation of Intelligible Contracts.

5. An implementation of Intelligible
Contracts

In this sections we expose an implementation
of Intelligible Contracts by describing a stack of
technologies that, used together, fulfill the list of
requirements of Intelligible Contracts discussed in the
previous section.

Page 1784



5.1. Akoma Ntoso

Akoma Ntoso (developed by the LegalDocML
Technical Committee of OASIS) is an XML OASIS
standard for modelling legal resources [12]. Akoma
Ntoso (hereinafter AKN) has proved to be effective
in several diverse legal and non-legal contexts,
such as modelling laws [28] [29], modelling legal
changes over time [30], modelling legal documents
by inter-governmental institutions [31], modelling legal
documents facilities management [32], and modelling
interactions among citizens in deliberative systems [33].
The AKN standard is composed of two specifications:
(1) an XML vocabulary for structuring legal documents
[34], and (2) a FRBR-based naming convention for
identification of legal resources [35]. In addition,
AKN supplies an informal ontology to describe relevant
entities and to connect them to specific parts of the
legal text [36]. Akoma Ntoso can fulfill most of the
requirements of Intelligible Contracts, and several tools
for handling AKN documents already exist (i.e. the
LIME editor http://lime.cirsfid.unibo.it
and the akomando framework http://akomando.
bitnomos.eu).

5.2. The InterPlanetary Linked Data

The InterPlanetary Linked Data (hereinafter IPLD)
defines a set of standards and technologies that can be
used to create universally addressable data structures
(https://github.com/ipld/specs). In a
nutshell, IPLD allows to link resources identified by
hashes that can refer to diverse resources, like SCs on
Ethereum or content on the InterPlanetary File System
(hereinafter IPFS). The IPFS is a distributed file system
on which it is possible to put versioned content and
other data and software that base their functioning on
tamper-proof hashing systems (https://ipfs.io).

5.3. LegalRuleML

The LegalRuleML (hereinafter LRML) OASIS
standard [37] is a interchange language for rules in the
legal domain that is both human readable and machine
readable [38]. By supplying a rich XML vocabulary, the
LRML standard allows Legal Knowledge Engineers to
re-express the legal prose contained in legal document,
highlighting business rules and connecting them to
automatic legal reasoners enriched by Linked Open
Data information [13]. Several studies exist that show
how to execute automatic legal reasoning by means of
LRML [39]. Additionally, engines for automatic legal
reasoning using LRML files have been proposed (i.e
SPINdle), as well as editors to facilitate the creation and

editing of LRML files side-by-side with AKN files [40].

5.4. An example scenario: Data Processing
Agreements

In this subsection, we show fragment of code
(and concepts) related to a Data Processing Agreement
(hereinafter DPA) compliant to the General Data
Protection Regulation (GDPR) of the EU regulation6.
There are several motivations to choose this scenario:
first, the academical interest in GDPR-compliant BCs
applications [41] and, we believe, an intelligible
representation of GDPR-compliant legal contracts may
help to address the issue. Secondly, DPAs are
complex contracts involving several legal and non-legal
resources, such as scheduling and privacy policies
of services, and several entities and concepts, such
as users, processors and so on. Moreover, DPA
may be affected by many jurisdictions, because it
is often related to world-wide services. Thirdly,
a template of the legal prose of GDPR-compliant
DPA is publicly available at: https://gdpr.eu/
data-processing-agreement/.

The next section shows how the naming convention
of AKN may be used for an Intelligible Contracts that
serializes a DPA template.

5.4.1. Identification and References The AKN
naming convention allows to specify human readable
URI that are useful to represent the UIDs of contracts
and their documents, to specify hierarchical relations
between documents, to allow versioning of Intelligible
Contracts, to express references to legal documents
belonging to the legal context, and to express references
within the operational context. The AKN naming
convention organizes resources hierarchically in four
concepts, the work, the expression, the manifestation,
and the item [35] according to the FRBR conceptual
model [42]. The work is the most abstract concept of
the legal resource. The expression is used to identify
specific temporal and linguistic versions of the legal
document. The manifestation is a serialization of a
version in a specific data format. The item is a physical
file where a manifestation is stored.

In our scenario, the AKN identifiers of an Intelligible
Contract representing a DPA could be:

Work:

6The Regulation (EU) 2016/679 (General Data Protection
Regulation) entered into operation at 28 May 2018 with enforcebility
in all the EU countries and also to those controllers that operate with
European Personal Data.

Page 1785

http://lime.cirsfid.unibo.it
http://akomando.bitnomos.eu
http://akomando.bitnomos.eu
https://github.com/ipld/specs
https://ipfs.io
https://gdpr.eu/data-processing-agreement/
https://gdpr.eu/data-processing-agreement/


1. /akn/it/documentCollection/dpa/
company/2019-07-12/1

Expressions:

1. /akn/it/documentCollection/dpa/
company/2019-07-12/1/ita@2019-09-12

2. /akn/it/documentCollection/dpa/
company/2019-07-12/1/eng@2019-11-12/
!main

3. /akn/it/documentCollection/dpa/
company/2019-07-12/1/eng@2019-11-12/
!schedule_1

Manifestations:

1. /akn/it/documentCollection/contract/
company/2019-07-12/1/ita@2019-09-12/
!main.akn

2. /akn/it/documentCollection/contract/
company/2019-07-12/1/eng@2019-11-12/
!main.akn

3. /akn/it/documentCollection/contract/
company/2019-07-12/1/eng@2019-11-12/
!schedule_1.akn

The syntax of the Naming convention allows us to
conclude, for instance, that manifestation 3 embodies
expression 3 which realizes work 1, etc.

The AKN naming convention can be used to
describe the whole tree of resources of an Intelligible
Contract, including documents belonging to the legal
domain and to the operational domain. The DPA
of our scenario explicitly refers to the GDPR in its
recitals7, and the Intelligible Contract can reference
to its Work as /akn/eu/act/regulation/eu/
2016-04-05/2016-679/!main using the AKN
Naming Convention.

Entities and concepts belonging to the operational
context can also be mentioned in the same way by means
of the informal ontology supplied with AKN [36]. For
instance, the “company” that acts as the processor
(in our specification this is an operational agent) can
be identified with a URI such as /akn/ontology/
organizations/eu/companyXY, and the legal
concept of “being a minor” as used in a privacy policy
can be identified by a URI such as /akn/ontology/
concept/eu/PrOnto/minor [43].

7 WHEREAS omissis (C) The Parties ...omissis... in relation
to data processing and with the Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 ...omissis...
Directive 95/46/EC (General Data Protection Regulation). omissis”

5.4.2. Using the InterPlanetary Linked Data
Intelligible Contracts need that hashes are calculated
on the content of resources, so it is not feasible to
put the tamper-proof hash representing itself inside an
Intelligible Contract. We must find a way to compute
hash of concepts represented by AKN-style URIs that,
if needed, can resolve to the hash of the actual content
of documents identified by URI.

IPLD and IPFS can be used together to ensure that
a logical object always map to the same physical digital
object. For instance, when adding to the IPFS a nested
folder structure that describes an expression of the DPA,
then there a logical object will be created on the IPFS
with its own hash. Anyone uploading the same directory
structure will obtain the same hash. But if a change
happens to the folder, e.g., if the AKN file representing
the DPA is inserted with the name dpa.akn, and the
folder is uploaded again to the IPFS, we have an hash
for the AKN file but the hash of the folder will show
the change. Thus we have an immutable addressing
system composed of the hash of the content and the URI
pointing to the content.

5.4.3. Using the Akoma Ntoso XML Vocabulary
All documents or resources referenced in an Intelligible
Contract must always use a double reference, both a
readable URI and a hash of its content. As such,
the markup language must support both. The AKN
XML vocabulary, aimed to associate XML markup to
legal and parliamentary resources, is highly extensible
and customizable [34]. Although it does not supply
a document type for contracts, it does supply many
elements that are typical of legal documents that can
be used to mark up the partitions of the legal prose
of a contract. According to their definition in section
3, Intelligible Contracts are “document collections”,
which are explicitly supported in AKN with its own
specific document type. Fragments in legal prose can
be connected to legal contexts and operational contexts
of Intelligible Contracts by linking texts and concepts to
pairs of URIs and hashes, which together compose the
UIDs in the Intelligible Contract terminology.

The following XML code contains a fragment of the
recitals of DPA:
<recital>
<num>(C)</num>
<p>
The Parties ...omissis... in relation to data processing
and with the

<ref refersTo="#gdpr-expression"
href="/akn/eu/act/regulation/eu/2016-04-05/679@2018-05-25">

Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016

</ref>
...omissis...
of the Directive 95/46/EC (General Data Protection

Page 1786

/akn/it/documentCollection/dpa/company/2019-07-12/1
/akn/it/documentCollection/dpa/company/2019-07-12/1
/akn/it/documentCollection/dpa/company/2019-07-12/1/ita@2019-09-12
/akn/it/documentCollection/dpa/company/2019-07-12/1/ita@2019-09-12
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!main
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!main
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!main
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!schedule_1
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!schedule_1
/akn/it/documentCollection/dpa/company/2019-07-12/1/eng@2019-11-12/!schedule_1
/akn/it/documentCollection/contract/company/2019-07-12/1/ita@2019-09-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/ita@2019-09-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/ita@2019-09-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!main.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!schedule_1.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!schedule_1.akn
/akn/it/documentCollection/contract/company/2019-07-12/1/eng@2019-11-12/!schedule_1.akn
/akn/eu/act/regulation/eu/2016-04-05/2016-679/!main
/akn/eu/act/regulation/eu/2016-04-05/2016-679/!main
/akn/ontology/organizations/eu/companyXY
/akn/ontology/organizations/eu/companyXY
/akn/ontology/concept/eu/PrOnto/minor
/akn/ontology/concept/eu/PrOnto/minor


Regulation).
</p>

</recital>

The ref elements that wraps the GDPR regulation
points to the work URI of the GDPR as well as to
an internal id (in its refersTo attribute). The refersTo
attribute points to another fragment of XML that
contains the hash of the document expressed as yet
another URI:
<references source="#editor">
<TLCReference

GUID="gdpr-expression"
name="GDPR"
showAs="General Data Protection Rule"
href="/akn/references/expression/eu/gdpr/ipfs/QmU...A3Nn">

</TLCReference>
</references>

The reference to the GDPR is thus bound to both
a human readable URI and to a tamper-prof hash, in
accordance with the Intelligible Contracts requirements.

5.4.4. Using LegalRuleML We now explain how
to link the legal prose and other metadata to actual
operational code, such as smart contracts residing on
the block chain, using LRML, that is our last brick for
bridging the legal prose to operational code.

For a very basic example, we consider a clause of
the terms and conditions of a service of the information
company that collects personal data from the data
subject:

“Users of the Service - This Service is
provided exclusively to individuals who are
not minors and live in a EU country or in
the US.”

This clause involves non-trivial legal concepts that
may be difficult to resolve. Firstly the concept of
“minor”, secondly, the concept of “living in a country”,
and thirdly, the concept of minor must be evaluated with
regard to the country in which the person is living. For
instance, if the person is a US citizen, the definition of
minor is provided by the “Children’s Online Privacy
Protection Rule” (COPPA), whereas, if the user is an
EU citizen, the concept of minor will be regulated by
the GDPR itself.
...omissis...
<meta>
...omissis...
<references source="#editor">
<TLCReference eId="gdpr-expression" name="GDPR"

showAs="General Data Protection Rule"
href="/akn/ontology/references/expressions/eu/gdpr/ipfs/
QmU...A3Nn" />
<TLCLocation eId="europe" showAs="European Union"

href="/akn/ontology/locations/eu" />
<TLCLocation eId="us" showAs="United States of America"

href="/akn/ontology/locations/us" />
<TLCConcept eId="livingInACountry" showAs="lives in"

href="/akn/ontology/concept/livingInACountry" />
<TLCConcept eId="minor" showAs="minor"

href="/akn/ontology/concept/minor" />

</references>
...omissis...
<meta>
...omissis...
<clause eId="cls_6">
<heading>
Users of the Service
</heading>
<content>
<p>
This Service is provided exclusively to individuals who
are not <concept referstTo="#minor">minors</concept> and
<concept refersTo="#livingInACountry">live in
</concept> a <location refersTo="#eu">
EU country </location> or in the
<location refersTo="#us"> US </location>.
</p>

</content>
</clause>
...omissis...

...omissis...
<lrml:Comment> GDPR - minor consent </lrml:Comment>
<lrml:LegalReferences
refType="http://example.org/lrml#LegalSource">
<lrml:LegalReference
refersTo="ref1"
refID="/akn/eu/act/regulation/2016-04-27/2016-679/eng@2018-
05-25/!main#art_8__para_1"
refIDSystemName="AkomaNtoso3.0-2017-06" />
</lrml:LegalReferences>
... omissis ...
<lrml:Statements >
<lrml:PrescriptiveStatement key="ps1">
<ruleml:Rule
key=":ruletemplate2"
closure="universal">
...omissis...
<ruleml:if>
<ruleml:And key=":and1">
<ruleml:Atom key=":atom1">
<ruleml:Rel iri=":child" />
<ruleml:Var >X</ruleml:Var>

</ruleml:Atom>
<ruleml:Atom key=":atom2">
<ruleml:Rel iri=":atLeast16years" />
<ruleml:Var >X</ruleml:Var>

</ruleml:Atom>
<ruleml:Atom key=":atom4">
<ruleml:Rel iri=":informationSocietyService" />
<ruleml:Var >D</ruleml:Var>
<ruleml:Var >S</ruleml:Var>

</ruleml:Atom>
<ruleml:Atom key=":atom5">
<ruleml:Rel iri=":Controller" />
<ruleml:Var >Y</ruleml:Var>
<ruleml:Var >S</ruleml:Var>

</ruleml:Atom>
</ruleml:And>

</ruleml:if>
<ruleml:then>
<lrml:Obligation iri=":obligation">
<ruleml:Atom key=":atom6">
<ruleml:Rel iri=":ObtainConsent" />
<ruleml:Var >X</ruleml:Var>
<ruleml:Var >Y</ruleml:Var>
<ruleml:Var >S</ruleml:Var>

</ruleml:Atom>
</lrml:Obligation>

</ruleml:then>
</ruleml:Rule>
</lrml:PrescriptiveStatement>

</lrml:Statements>
...omissis...

The above listings show, respectively, how to mark
up in AKN the clauses of the terms and conditions
for minors, and the mapping from the condition to
concepts expressed in the GDPR marked up by means
of the LRML. The second fragment can be seen as ”an
interpretation of the article 8 of the GDPR in function
of the terms and conditions of the Intelligible Contract”.
This demonstrate how the LRML standard supplies the
last necessary technology to Intelligible Contracts to

Page 1787



be at the same time human and machine readable. In
the next section we discuss implications of introducing
implementations of Intelligible Contracts in BCs.

6. Discussions and Conclusions

In this paper we have exposed the “Intelligible
Contract”, a novel approach to serialize automatically
executable legal digital contracts that can be understood
both by humans and by machines.

We argue that our model and definition of Intelligible
Contracts, exposed in section 4, replies to our first
research question (RQ1). Firstly, indeed, Intelligible
Contracts are intelligible to humans because they can
be written in legal prose without omitting important
fragments of the legal text (i.e. recitals, citations and so
on). Secondly, Intelligible Contracts are understandable
by machines because their legal prose and legal context
must be serialized in machine-readable formats.

In section 5 we answered to our second research
question (RQ2) by identifying standard technologies
to implement Intelligible Contracts. Indeed, with our
implementation we shown that: (1) AKN can be used to
serialize the legal prose of contracts and to serialize and
link other legal and non legal documents; (2) the AKN
naming convention and IPLD technologies can be used
together to uniquely identify contracts and their related
resources; (3) LRML can be used to map the legal prose
of contracts to its legal and operational contexts.

It is worth noting that our implementation is
environment agnostic, meaning that it does not supply
any specification on how to store and handle LRML
and AKN documents. As a sample, the architecture
depicted in Figure 1 is suitable to handle a simplification
of the scenario described in section 5. Figure 1, is
also intended to supply a more clear sight on how
components of Intelligible Contracts can be pieced
together in a (partially) distributed and (partially)
decentralized system.

Figure 1. A sample architecture for handling

Intelligible Contracts.

In the architecture depicted in Figure 1, the legal
contract and its related resources are marked-up in AKN
and stored in a private database. The legal contract
is then referenced, by means of its hash and its URIs,
in a centralized BC (based on Hyperledger), that also
contains info of involved parties. An external online
service uses a reasoner (such as SPINdle) and a LRML
document to verify if the party two is a minor. Rules for
this check are retrieved from the legal contract and from
regulations and laws that can be stored on a distributed
database (i.e. IPFS). Eventually, the service calls a
SC that creates a immutable “eligibility token” on the
BC whose ownership means that the party is eligible to
sign that contract in that legal and operational context.
The eligibility SC is a simple and standardizable piece
of code, and because the proof of eligibility must be
publicly available (as a requirement of this fictitious
scenario), the SC can be stored on a public BC (i.e
Ethereum).

We argue that Intelligible Contracts could be a first
brick to fill several technical and legal gaps related to
using digital contracts in BCs. For instance, Intelligible
Contracts, and our implementation of them, can help to
analyze lack o willness of parties, to analyze liability in
case of torts, and to overcame current limitation derived
by the immutability of BCs (by supplying a versioning
system inherited by the adoption of AKN and its naming
convention).

Our work is yet to be completed. In the future
we plan: (1) to model and implement full real-world
scenario in order analyze pros and contra of using
Intelligible Contracts; (2) to investigate benefits or
limitations of Intelligible Contracts in relation to
specific BCs environments (i.e. permissioned vs.
permissionles); (3) to further customize AKN for better
modelling the concept of contracts according to private
law theory, and (4) to address the standardization of
operational code that executes Intelligible Contracts on
BCs.

References

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic
cash system,” 2008.

[2] M. Swan, Blockchain: Blueprint for a new economy. ”
O’Reilly Media, Inc.”, 2015.

[3] V. Buterin et al., “Ethereum white paper: a next
generation smart contract & decentralized application
platform,” First version, 2014.

[4] S. Voshmgir, “Tokenized networks: What is a dao?,”
2019.

[5] K. Turner, “The cryptokitties genome project,”
December 2017.

[6] M. Bartoletti and L. Pompianu, “An empirical analysis
of smart contracts: platforms, applications, and design

Page 1788



patterns,” in International Conference on Financial
Cryptography and Data Security, pp. 494–509, Springer,
2017.

[7] S. Murphy and C. Cooper, “Can smart contracts be
legally binding contracts?,” white paper, R3cev and
Norton Rose Fulbright, 2016.

[8] M. Raskin, “The law and legality of smart contracts,”
2016.

[9] I. Grigg, “The ricardian contract,” in Proceedings. First
IEEE International Workshop on Electronic Contracting,
2004., pp. 25–31, IEEE, 2004.

[10] F. Al Khalil, T. Butler, L. O’Brien, and M. Ceci,
“Trust in smart contracts is a process, as well,” in
International Conference on Financial Cryptography
and Data Security, pp. 510–519, Springer, 2017.

[11] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract
templates: essential requirements and design options,”
arXiv preprint arXiv:1612.04496, 2016.

[12] M. Palmirani and F. Vitali, “Akoma-ntoso for legal
documents,” in Legislative XML for the semantic Web,
pp. 75–100, Springer, 2011.

[13] M. Palmirani, G. Governatori, A. Rotolo, S. Tabet,
H. Boley, and A. Paschke, “Legalruleml: Xml-based
rules and norms,” in International Workshop on Rules
and Rule Markup Languages for the Semantic Web,
pp. 298–312, Springer, 2011.

[14] M. Vukolić, “Rethinking permissioned blockchains,”
in Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts, pp. 3–7, ACM, 2017.

[15] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch,
L. Bass, C. Pautasso, and P. Rimba, “A taxonomy
of blockchain-based systems for architecture design,”
in 2017 IEEE International Conference on Software
Architecture (ICSA), pp. 243–252, IEEE, 2017.

[16] D. Efanov and P. Roschin, “The all-pervasiveness of
the blockchain technology,” Procedia Computer Science,
vol. 123, pp. 116–121, 2018.

[17] C. Cachin, “Architecture of the hyperledger blockchain
fabric,” in Workshop on distributed cryptocurrencies and
consensus ledgers, vol. 310, 2016.

[18] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman,
et al., “Blockchain technology: Beyond bitcoin,” Applied
Innovation, vol. 2, no. 6-10, p. 71, 2016.

[19] U. N. C. on International Trade Law, United Nations
Convention on the Use of Electronic Communications
in International Contracts. United Nations Publications,
2007.

[20] “Regulation (eu) no 910/2014 of the european
parliament and of the council of 23 july 2014 on
electronic identification and trust services for electronic
transactions in the internal market and repealing
directive 1999/93/ec,” July 2014.

[21] J. A. Beckham, M. Sendra, and T. Greenberg, “Smart
contracts lead the way to blockchain implementation,”
THOMSON REUTERS, 2019.

[22] A. Mukherjee, “Smart contracts – another feather in
uncitral’s cap,” February 2018.

[23] R. O’Shields, “Smart contracts: Legal agreements for the
blockchain.,” NC Banking Inst., p. 177, 2017.

[24] H. Subramanian, “Decentralized blockchain-based
electronic marketplaces.,” Commun. ACM, vol. 61, no. 1,
pp. 78–84, 2018.

[25] J. Hazard and H. Haapio, “Wise contracts: smart
contracts that work for people and machines,” 2017.

[26] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract
templates: foundations, design landscape and research
directions,” arXiv preprint arXiv:1608.00771, 2016.

[27] L. Braine, “Barclays,” Smart Contract Templates’,
Barclays London Accelerator, available at:
https://vimeo. com/168844103/and www. ibtimes.
co. uk/barclays-smart-contract-templates-
heralds-first-everpublic-demo-r3s-
corda-platform-1555329/, 2016.

[28] K. Gen, N. Akira, M. Makoto, O. Yasuhiro, O. Tomohiro,
and T. Katsuhiko, “Applying the akoma ntoso xml
schema to japanese legislation,” JL Inf. & Sci., vol. 24,
p. 49, 2015.

[29] M. Palmirani, F. Vitali, A. Bernasconi, and L. Gambazzi,
“Swiss federal publication workflow with akoma ntoso.,”
in JURIX, pp. 179–184, 2014.

[30] M. Palmirani, “Legislative change management with
akoma-ntoso,” in Legislative XML for the semantic Web,
pp. 101–130, Springer, 2011.

[31] S. Peroni, M. Palmirani, and F. Vitali, “Undo: the united
nations system document ontology,” in International
Semantic Web Conference, pp. 175–183, Springer, 2017.

[32] J. Dimyadi, G. Governatori, and R. Amor, “Evaluating
legaldocml and legalruleml as a standard for sharing
normative information in the aec/fm domain,” in
Proceedings of the Lean and Computing in Construction
Congress (LC3)(to appear, 2017), 2017.

[33] L. Cervone, Digital Technologies for Deliberative
Democracies: Models and Applications for Continuous
Civic Engagement. PhD thesis, alma, 2017.

[34] M. Palmirani, R. Sperberg, G. Vergottini, and F. Vitali,
“Akoma ntoso version 1.0 part 1: Xml vocabulary,”
OASIS standard, August 2018.

[35] F. Vitali, M. Palmirani, and V. Parisse, “Akoma
ntoso naming convention version 1.0,” OASIS standard,
February 2019.

[36] F. Vitali, M. Palmirani, R. Sperberg, and V. Parisse,
“Akoma ntoso version 1.0. part 2: Specifications,”
OASIS standard, August 2018.

[37] M. Palmirani, G. Governatori, T. Athan, H. Boley,
A. Paschke, and A. Wyner, “Legalruleml core
specification version 1.0.,” OASIS standard, May
2017.

[38] T. Athan, H. Boley, G. Governatori, M. Palmirani,
A. Paschke, and A. Z. Wyner, “Oasis legalruleml.,” in
ICAIL, vol. 13, pp. 3–12, 2013.

[39] T. Athan, G. Governatori, M. Palmirani, A. Paschke,
A. Z. Wyner, et al., “Legal interpretations in
legalruleml.,” in SW4LAW+ DC@ JURIX, 2014.

[40] M. Palmirani, L. Cervone, O. Bujor, and M. Chiappetta,
“Rawe: An editor for rule markup of legal texts.,” in
RuleML (2), 2013.

[41] M. Finck, Blockchain regulation and governance in
Europe. Cambridge University Press, 2018.

[42] B. Tillett, “What is frbr? a conceptual model for the
bibliographic universe,” The Australian Library Journal,
vol. 54, no. 1, pp. 24–30, 2005.

[43] M. Palmirani, M. Martoni, A. Rossi, C. Bartolini,
and L. Robaldo, “Legal ontology for modelling gdpr
concepts and norms.,” in JURIX, pp. 91–100, 2018.

Page 1789


	Introduction
	Methodology
	Background and Motivations
	From Blockchains to Smart contracts
	Smart Contracts
	Ricardian Contracts and Smart Contract Templates

	Intelligible Contracts
	An implementation of Intelligible Contracts
	Akoma Ntoso
	The InterPlanetary Linked Data
	LegalRuleML
	An example scenario: Data Processing Agreements
	Identification and References
	Using the InterPlanetary Linked Data
	Using the Akoma Ntoso XML Vocabulary
	Using LegalRuleML


	Discussions and Conclusions

