
Fishery Management Plan for

CMFRI Marine Fisheries Policy Series No.15

Palk Bay Blue Swimming Crab

Palk Bay Blue Swimming Crab

Fishery Management Plan for Palk Bay Blue Swimming Crab

Published by Dr. A. Gopalakrishnan Director, ICAR - Central Marine Fisheries Research Institute Post Box No. 1603, Ernakulam North P.O. Kochi – 682 018, Kerala, India

www.cmfri.org.in

Email: director@cmfri.org.in Tel. No.: +91-0484-2394867 Fax No.: +91-0484-2394909

Design: Blackboard, Kochi

Printed at: PrintExPress, Kaloor, Kochi

Publication, Production & Co-ordination Library & Documentation Centre, CMFRI

CMFRI Marine Fisheries Policy Series No.15 ISSN: 2394-8019

© 2019 ICAR - Central Marine Fisheries Research Institute, Kochi All rights reserved. Material contained in this publication may not be reproduced in any form without the permission of the publisher.

Citation: Jose Josileen., G. Maheswarudu, Shelton Padua, Geetha Sasikumar, Eldho Varghese and K. S. Mohamed. 2019. Fishery Management Plan for Palk Bay Blue Swimming Crab. ICAR-CMFRI Mar. Fish. Policy Series No.15. ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India, 100pp.

Foreword

Crabs are widely distributed in Indian seas and form minor fishery at various regions along the east and west coasts. Crabs contribute a share of 11.1 % in total crustacean landings, with an approximate production of 53476 tonnes in 2017. Three portunid crabs, *Portunus pelagicus, Portunus sanguinolentus* and *Charybdis feriatus* form the majority of the regular crab landings in India.

The demand for *Portunus pelagicus*, commonly known as Blue Swimming Crab (BSC) is consistently increasing ever since its export started in the beginning of the century. The State of Tamil Nadu is leading in marine crab landings particularly for the blue swimming crab production in India. The major landing centres for BSC are located in the Palk Bay (PB) and Gulf of Mannar (GoM) areas of Ramanathapuram, Pudukkottai and Thanjavur districts of the state. BSC products form the most important internationally traded commodity from the region and contribute significantly to the livelihood of crab merchants and crab fishers of the area. The Central Marine Fisheries Research Institute has been monitoring the BSC fishery and studying the biology the species along with other marine resources. During the last decade of the 20th century more focused and in-depth studies have been conducted on *Portunus pelagicus* and established the fact that apart from its fisheries importance, BSC is also a suitable candidate species for farming.

This document gives insights on BSC fishing zones, major fishing craft and gears, area wise and centre wise production details, trade, processing industry and export markets. Furthermore, it elucidates the complete life cycle of the species including its growth and reproductive biology as these form essential and integral inputs while formulating the management decisions. As BSC is a highly valuable commodity it necessitates urgent attention to its responsible exploitation and action plan for the judicious management of the resource to accomplish BSC as a sustained fishery. Conclusions have drawn based on the facts and evidences, acquired from exhaustive field and laboratory studies and guidance on a Fishery Management Plan for Palk Bay BSC fishery are presented.

Contents

Foreword	5
Executive Summary	8
Acronyms	10
1. Introduction	13
2. Material and methods	15
Results	21
3.1. General description	21
3.2. Different sea bottom ecosystems on the Indian side of Palk Bay.	21
3.3. Area, districts and Zone-wise landing centres of Palk Bay	24
3.4. Fisher-folk Population and Fishing Crafts of Palk Bay	26
3.5. Crab Landing Centres & Total BSC Landings	29
3.6. BSC Catch and Catch trends	32
3.6a. Trawl	32
3.6b. Gill net	37
3.7. Historic-data in Trawl and Gillnets	46
3.8. By- catch	48
3.9. Annexure for Tables	53
4. BSC Price Structure	63
4.1. Value Chain	63
4.2. Export	65
4.3. Crab Processing Companies	65
5. BSC Biology & Life History	67
5.1. Life cycle	67
5.2. Larval Phase	69
5.3. Size Composition and Sex Ratio	69

5.4. Size at Maturity	70
5.5. Breeding cycle and composition of berried crabs	70
5.6. Spawning	72
5.7. Fecundity	73
5.8. Carapace width and Total weight relationship	73
5.9. Food & feeding	76
5.10. Growth in the laboratory	76
5. 11. Growth in Wild crabs	80
6. Earlier Stock Assessment	81
6.1. Probability of capture	81
6.2. Mortality parameters	82
6.3. Yield-per-recruit (Y/R).	82
7. Current Estimation of Maximum Sustainable Yield (MSY) – Palk Bay BSC \dots	84
8. Projection on advantages of not fishing berried females	87
9. Harvest Control Rules for BSC Fishery of Palk Bay	90
10. Strengths and Weakness	92
11. BSC Management Plan (BSCMP)	94
12. References	96
Acknowledgements	98

Executive Summary

Portunus pelagicus, commonly known as Blue Swimming Crab (BSC) is a highly valuable marine crab in India and bulk of the BSC products are exported to US. The state of Tamil Nadu is the major contributor for the BSC, recording an annual average landing of 8900 tonnes, during 2007-2017. BSC resource is fished continuously from Palk Bay (PB), which is a shallow, confined sea falling between Tamil Nadu and Sri Lanka with a total spread area estimated to be 13,892 sq. km which is equally divided into 6,991 sq.km each between India and Sri Lanka. Crabs are mainly caught as by-catch in bottom trawls and as a target in indigenous bottom-set gillnets known as Nanduvalai. Gillnets contribute 70% of the total BSC landings from Palk Bay and rest by the trawl nets. Landed BSC is directly sold to the processing companies under CMPA (Crab Meat Processors Association) and from various centres, freshly steam cooked whole crabs are taken to processing units for final product development for export.

Male and female BSC can be easily differentiated from their colour patterns and the larval phase includes four zoeal stages and a megalopa, which metamorphoses into the crab stage. Males attain sexual maturity by their 12^{th} Moult (crab instar-12) at a mean size of 82.25 ± 1.17 mm CW and females by their 14^{th} moult (crab instar-14), at a mean size of 120.43 ± 2.23 mm CW. BSC is a continuous breeder, capable of multiple spawnings and spawning usually takes place during night hours. Newly spawned eggs are attached to the pleopods of the mother till hatching and the total days of incubation varied between 8-10 days and fecundity ranged between 60000 and 1976398.

The carapace width-weight relationship in males and females show that there is marked variation from the isometric pattern of growth and which also indicate that in juveniles and pre-adult crabs, weight gain is almost uniform; females are slightly heavier than males until they attain 120-125 mm carapace width. Thereafter males are heavier than females at any given length. Investigations on food habits of BSC in the Palk Bay area revealed that despite the diversity in crab diets and feeding habits, they are opportunistic omnivores with a clear preference for crustaceans in this region. From the growth studies it is assumed that life span of BSC is around three years, although majority of the crabs fished are in the O- year class. A MLS of 90 mm CW is recommended to prevent growth overfishing.

Results of the Bayesian Schaefer Model (BSM) using 2007-2017 catch and catch rate data indicated that the MSY is 7360 tonnes. Assessment of the fishery clearly

reveals catches are on the declining trend and stock has been overfished. It is also alarming that the berried females indiscriminately exploited without any restriction. It is recommended that to sustain the Blue Swimmer Crab fishery strict management of the fishery is essential and the best possible immediate action is a total ban on landing and sale of berried females. It is estimated that if berried females are not landed in Trawls/gillnets for a month, after a period of five months, an equal quantity of one month's production can be obtained from a trawl centre and 32% of a month's catch can be obtained from a gillnet centre. For the BSC fishery the harvest strategy would be to maintain yields close to the estimated MSY (7360 tonnes) using a catch and effort based harvest control measure (Y/MSY and F/ F_{msy}) as reference points.

Based on the facts and evidences gathered and proved over by many years systematic studies on BSC, rules and regulations are recommended for the implementation in the Palk Bay region. Initial phase the proposed plan can be implemented in the Palk Bay and later it can be implemented to other main BSC fishing regions also, and these actions would eventually helpful for sustaining the BSC fishery a longstanding.

Acronyms

'a' y-intercept or the initial growth coefficient

AL Abdomen Length
ANOVA Analysis of variance
AW Abdomen Width

'b' the slope or growth coefficient.

B Biomass

Bode British Oceanographic Data Centre

BSC Blue Swimming Crab

BSCFGC BSC fisheries Governance Council

BSM Bayesian Schaefer Model

C-1 Crab instar-1
CL Carapace Length

CMFRI Central Marine Fisheries Research Institute

CMPA Crab Meat Processors Association

CPD Chelar Propodus Depth

CPH Catch Per Hour

CPL Chelar Propodus Length
CPUE Catch Per Unit Effort
CW Carapace Width
E Exploitation rate

ETP Endangered Threatened and Protected

F Total instantaneous fishing mortality coefficient
FIMSUL Fisheries Management for Sustainable Livelihoods
Fmsy Rate of fishing mortality compatible with MSY
FRAD Fisheries Resources Assessment Division of CMFRI

g gram

GEBCO General Bathymetric Chart of the Oceans

Gol Government of India GoM Gulf of Mannar

GPS Global Positioning System
HCRs Harvest Control Rules

HP Horse Power
IB In-Board

IBBSGN Inboard Bottom Set Gillnet

ICPA Indian Crab Processors Association

IMBL International Maritime Boundary Line

K Growth rate coefficient

k Parameter of the Schaefer model indicating unexploited stock size

Kg Kilogram

L∞ Asymptotic average length
LRP Limit Reference Point
MDTN Multiday Trawl Net
MLS Minimum Legal Size

mm Millimetre

MSY Maximum Sustainable Yield MTN Mechanised Trawl Net

N Total instantaneous natural mortality coefficient

NMBSGN Non-Mechanised Bottom Set Gillnet

NMFDC National Marine Fishery Resources Data Centre

NMTN Non Mechanised Trawl net

OAL Over All Length
OB Out-Board

OBBSGN Outboard Bottom Set Gillnet

OBGN Outboard Gillnet

OMCAR Organization for Marine Conservation, Awareness and Research

PB Palk Bay

q Catchability coefficient r Correlation coefficient

Rs Indian Rupees

SDMRI Sugandhi Devadason Marine Research Institute

Sp Singular species
Spp Plural species
t Tonnes
TN Tamil Nadu

TRP Target Reference Point

TW Total Weight

USA United States of America

VBGF von Bertalanffy Growth Function

W expected weight Y/R Yield-per-recruit

Z Total instantaneous mortality coefficient

Z-1 Zoea 1 \$ US Dollar

1. Introduction

Blue swimming crab, known in Tamil Nadu as olakkal nandu was used for consumption since many years and for the last two decades it is a very popular choice of seafood lovers. Portunus pelagicus (Linnaeus, 1758) commonly known as the Blue Swimming Crab (BSC) represents a valuable component of crustacean fishery in many parts of the world. In India, it forms a small scale fishery at different regions along the east and west coasts. Along the west coast, the fishery is seasonal except in Gujarat where BSC is landed in almost 8 months. Along east coast, species is landed throughout the year at Palk Bay and Gulf of Mannar and contribute to a major part of the Tamil Nadu BSC catch. A good landing is also recorded from Kakinada Bay, Andhra Pradesh for 3-4 months of the year. Total crab landings in India during 1975-2017 is presented in Figure 1. The landing was around 19,893 tonnes in the 1975, increased over the years and reached 53,476 tonnes in 2017 registering 63% increase in the production. Among the maritime states, Tamil Nadu ranks first in crab landings for the past several years (Fig. 2) and crabs were in the 7th position among the top ten demersal and pelagic fishery resource (12,496 t) obtained from the annual average production in three different sectors (mechanised, motorised & non-motorised) in Tamil Nadu during 2001-2010.

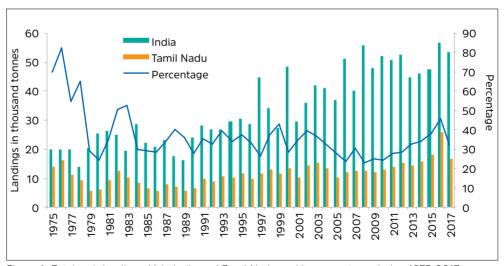


Figure 1- Total crab landings (t) in India and Tamil Nadu and its percentage during 1975-2017

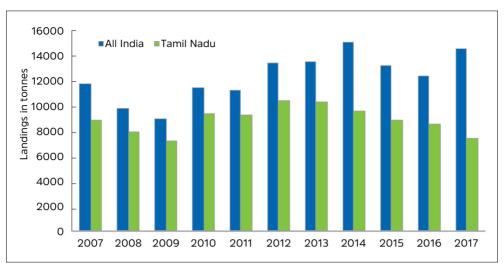


Figure 2- Total Portunus pelagicus (BSC) landings (t) in India and Tamil Nadu during 2007-2017

Portunus pelagicus is widely distributed throughout the Indo-West Pacific region and there have been indications that it may be a species complex. The systematics of the *Portunus pelagicus* (Linnaeus, 1758) has been recently revised by Lai *et al.*, (2010) and four distinct species, *P. pelagicus* (Linnaeus, 1758), *P. segnis* (Forskål, 1775), *P. reticulatus* (Herbst, 1799) and *P. armatus* (A. Milne-Edwards, 1861), are recognised based on morphological and DNA characters as well as biogeographical considerations. Morphological examinations of *P. pelagicus* from different locations of India show that several distinct colour morphs exist. Josileen *et al.* (2014) studied the taxonomic characters of *Portunus pelagicus* species complex in Palk Bay and Gulf of Mannar region using morphological and mitochondrial DNA markers, which suggest the existence of two species i.e., *Portunus reticulatus* and *P. pelagicus*. However, in this document *Portunus pelagicus* (BSC) is used, as it is widely identified by that name.

History of BSC Fishery

Blue swimming crab fishing with traditional craft and gears may have started very long back and exact details of its genesis are not available. Perhaps, the first report on its fishery and fishing methods exclusively from the area was published in 1952 by Prasad and Tampi, and later in 1978 by Ameer Hamsa. However, the earlier report does not include estimates on total production or catch per unit effort for this commercially important crab. The latter publication, gave an account of its fishery from Palk Bay and Gulf of Mannar, the catch per unit effort at the three landing places Devipattanam, Vedalai and Mandapam for the period 1972-74. Later, Josileen (2001) and Josileen & Menon (2007) were also elaborated on the fishery and species growth parameters.

2. Material and methods

Estimation of Marine fish landings in India

The catch and effort data in the present work were obtained from the National Marine Fishery Resources Data Centre (NMFDC) of CMFRI. The data was collected through an observer based stratified multi-stage random sampling technique which estimates species-wise/Zone-wise/centre-wise landings. In this, the stratification is over space and time. Over space, each maritime state is divided into suitable, non-overlapping zones on the basis of fishing intensity and geographical considerations. The number of centres may vary from zone to zone. These zones have been further stratified into substrata, on the basis of intensity of fishing. There are some major fisheries harbours/centres which are classified as single centre zones for which there is an exclusive and extensive coverage. The stratification over time is a calendar month. One zone and a calendar month is a space-time stratum and primary stage sampling units are landing centre days (Fig.3).

For example, if in a zone, there are 20 landing centres, there will be $20 \times 30 = 600$ landing centre days in that zone for that month (of 30 days). For observation purpose, a month is divided into 3 groups, each of 10 days. From the first five days of a month, a day is selected at random, and the next 5 consecutive days are automatically selected. From this three clusters of two consecutive days are formed. For example, for a given zone, in a given month, from the five days if the date (day) selected at random is 4, then these clusters are formed, namely, (4, 5); (6, 7) and (8, 9) in the first ten-day group. In the remaining ten day groups, the clusters are systematically selected with an interval of 10 days. For example, in the above case, the cluster of observation days in the remaining groups are (14, 15), (16, 17), (18, 19) (24, 25), (26, 27) and (28, 29). Normally, in a month there will be 9 clusters of two days each. From among the total number of landing centres in the given zone, 9 centres are selected with replacement and allotted to the 9 cluster days as described earlier. Thus in a month 9 landing centre days are observed. The observation is made from 1200 hrs to 1800 hrs on the first day and from 0600 hrs to 1200 hrs on the second day, in a centre. For the intervening period of these two days, the data are collected by enquiry from 1800 hrs of the first day of observation to 0600 hrs of the 2nd day of observation of a landing centre-day, which is termed as 'night landing'. The 'night landing' obtained by enquiry on the second day covering the period of 1800 hrs of the first day to 0600 hrs of the next day are added to the day landings so as to arrive at the landings for one (landing centre day) day (24 hours). From the boats, the catches are normally removed in baskets of standard volume. The weight of resource contained in these baskets being

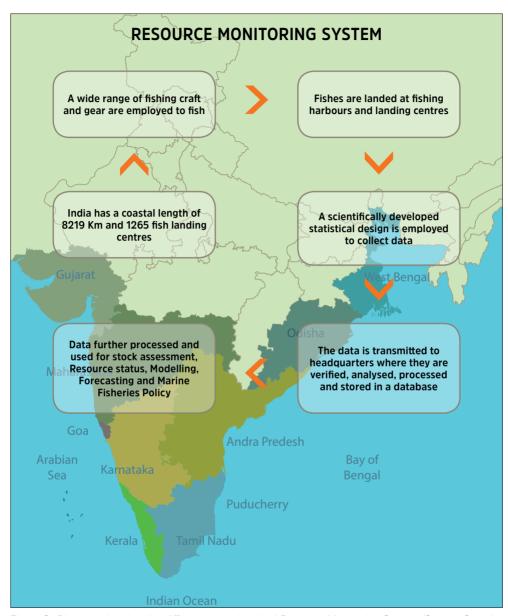


Figure 3- Diagram showing the different steps involved Resource Monitoring System (Source: Srinath et al., 2005)

known, the weight of resources in each boat under observation is obtained. The weight is recorded rounded to the nearest kilograms against the sampled boat. From each centre, the landing for all the units are added and observation day's catch is estimated and accordingly monthly zonal landing are estimated and from these, total landings from districts, state and all India are estimated (Srinath *et al.*,2005).

Maps

Location maps and fishing operation area maps were prepared using ArcGIS 10.0 and QGIS 2.18.14 software. The extent of sea bottom ecosystems of the Indian side of Palk Bay was extracted from Kasim (2015). The contour lines were derived from 30 arc second bathymetric data obtained from GEBCO database (General Bathymetric Chart of the Oceans) hosted by the British Oceanographic Data Centre (BODC). The landing locations and other details were obtained from CMFRI database. Major trawl and gillnet centres, depth contour and details of ecosystems in Palk Bay etc. are presented as separate maps under respective sections. The total area under gillnet operation in the study region is 2457 km² and that under trawl operation is 4915 km².

Estimation of growth parameters in laboratory grown BSC

Growth of BSC from the first instar to stage 16 was studied by rearing the crabs in the laboratory. For this purpose, the juvenile blue swimmer crabs were produced in the hatchery. Forty five healthy crabs (instar I) within a size range of 2.0-2.5 mm carapace width (CW) were used for the experiments (a total of 3 trials, with 15 crabs each). The details are given in Josileen & Menon (2005).

The data of the laboratory rearing experiments on the growth of male and female crabs were entered as a growth increment data file in the computer program FiSAT. Further analysis of growth increment for fitting a growth curve was carried out using Gulland & Holt (1959), Fabens (1965) and Munro's (1982) methods. The estimates of L_{∞} and K thus obtained were analysed using the inverse von Bertalanffy growth equation, to arrive at corresponding length at age. The optimum parameters (L_{∞} and K) were fixed, based on the data obtained during the laboratory growth studies.

Maximum Sustainable Yield (MSY)

Biomass and Yield

Portunus pelagicus in the region are caught in motorized, mechanized and non-motorised gears as directed fishery or as incidental catches. Bottom set gillnets and trawls contribute to a sizeable proportion of the landings. The commercial directed fishery for the resource is mainly by bottom set gillnets and trawls. Trawl fleets have been categorized by a combination of gear and horsepower (MTN, NMTN, MDTN) and the corresponding Catch Per Hour (CPH). CPH in this case was estimated by taking the average weight (kg) per one hour of trawling. The fishing efforts in gillnets were similarly estimated as the actual fishing hour (soak time) of the gear. Due to the importance of CPUE in many stock assessments and the

assumption that CPUE is proportional to abundance, it is important that in a multigear situation the CPUE is standardized for arriving at the stock abundance. The method used for standardising CPUE is described in Eldho et al., (in press).

The time series catch-effort data for the period 2007 to 2017 was used for estimation of reference points using Catch-MSY method of Froese et al. (2017). Probable ranges for r (intrinsic rate of growth) and k (carrying capacity) are filtered with a Monte Carlo approach to detect 'viable' r-k pairs. The ranges for starting and final depletion levels were assumed to be one of possible three biomass ranges: low, medium, and high, using a set of rules based on the trend of the catch series. The search for viable r-k pairs is terminated once more than 1000 pairs are found. MSY are obtained as geometric mean of the MSY values calculated for each of the r-k pairs where r is larger than the median. Viable biomass trajectories were restricted to those associated with a r-k pair that fell within the confidence limits of the C-MSY estimates of r and k.

Biology

Estimation of carapace width-weight relationship

To study the carapace width/length-weight relationship, measurements were taken for carapace width, carapace length, and total weight, separate for each sex. Carapace width (CW) was taken as the distance between the tips of the posterior most lateral carapace spines. Carapace length (CL) was measured dorsally along the midline, between the frontal notch and the posterior margin of the carapace (Fig.4). Vernier callipers with an accuracy of 0.5 mm were used for length measurements, and the total weight (TW) of the crab was determined to the nearest gram using a digital balance (1 g).

The carapace width-weight relationship was estimated using the log form of the allometric growth equation W = aL^b (Rickter, 1973), where W = expected weight, L = total carapace width, 'a' = y-intercept or the initial growth coefficient, and 'b' = the slope or growth coefficient. The values of constants of 'a' and 'b' were calculated by the least squares method. The differences in the carapace width-weight relationship between sexes were tested by ANOVA (MS Excel). A total of 468 males and 720 females were used for the study.

Fecundity

Fecundity of the crab was calculated by counting the number of eggs deposited on the pleopods of the ovigerous females. Forty-one crabs from different size groups were used for fecundity studies. Egg masses from each crab were carefully

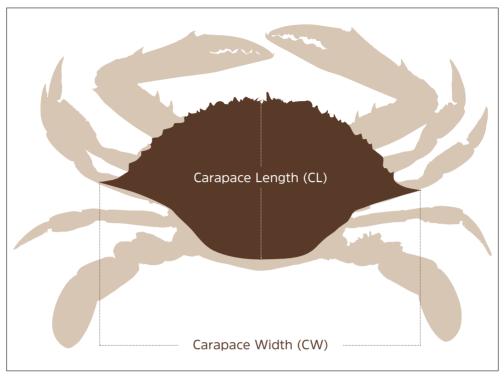


Figure 4- Diagram showing the measurements used carapace width and length in BSC

removed from the pleopods and weighed accurately using electronic balance. A 0.1 g sample was taken from each egg mass, smeared and dispersed in seawater and were counted through binocular compound microscope. The total number of eggs counted in the sample was then computed. Ocular micrometer (ERMA, Japan) calibrated with stage micrometer was used to take micro metric measurements of eggs in different stages of development. Correlation coefficient (r) was used to determine the fecundity relationship (Snedecor and Cochran, 1967). The relationship between carapace width (CW) and egg mass weight/fecundity; crab weight and egg mass weight/fecundity; egg mass weight and fecundity were determined by regression analysis. Egg mass index was determined using the formula: Egg mass index = Mean egg mass weight x 100/ Mean crab weight.

Food and feeding studies

For food and feeding studies, specimens of *Portunus pelagicus* were collected from the commercial catches of shrimp trawlers in the Mandapam area ($9^{\circ}20$ -25' N $79^{\circ}5$ -10' E). Samples were collected once a month for a period of one year

continuously (1997). Studies on food and feeding were carried out following a method adapted from Sukumaran (1995); after recording the carapace width and length and the total weight of the crab, the dorsal side of the body was cut open. and the foregut was removed carefully. The fullness of the stomach was visually examined and assessed as 0, 25, 50, 75 or 100%. The foreguts were preserved in 10% formalin for a week, prior to being cut open and their contents transferred into Petri dishes with distilled water. The food components of the gut contents were separated and identified under a compound microscope. As is characteristic of brachvurans, most of the food items were found to be unidentifiable as a result of having been highly crushed and hence only the hard structures that could be identified were relied upon for determining food composition and further evaluation. Gut contents were broadly classified into five categories, as follows:

- 1. Crustacean remains penaeid shrimp appendages; body parts of crabs and crab eggs; isopod and stomatopod parts.
- 2. Fish remains —fins, scales, bones, and vertebrae.
- 3. Molluscan remains—parts of bivalve and gastropod shells.
- 4. Miscellaneous—algal filaments, nematodes, polychaetes, and unidentified items.
- 5. Debris— sand and mud.

Neither the quantity of food nor the food components were significantly different in males and females, and hence the food data for both sexes were combined. Only stomachs that contained food were considered for analysis and calculation. For each specimen, the whole stomach content was segregated according to food-groups, and each group's contribution was determined visually. Dominance of food groups was evaluated by ranking them by their percentage frequency of occurrence and so-called percentage points. The percentage frequency of occurrence was estimated as: No. of stomachs with particular food group × 100/ Total no. of stomachs with food.

To estimate the volume of the food by food-group, points were assigned to each group as suggested by Stehlik (1993): to quote one example, a food group that formed 50% of the total food content of a stomach that was 50% full, was assigned 25 points (50 points × 0.50). Percentage points were thus estimated as: Point of the particular food group × 100/ Total points of all food groups.

3. Results

3.1. General description of Palk Bay

Palk Bay is a shallow, confined, comparatively calm sea falling between Tamil Nadu in India on the western side and North western Province of Sri Lanka on the east, with three openings, one into the Bay of Bengal on the northeast, another a shipping channel into the Gulf of Mannar on the south and the third one a shallow opening into the Gulf of Mannar on the east littered with a series of sandy islets called Adam's Bridge. It was being used historically and peacefully by the coastal fishers of both the countries since time immemorial till the time when the International Maritime Boundary Line (IMBL) was introduced dividing the Bay into the Indian side (west) and Sri Lankan side (east) by an agreement in 1974 followed by another in 1976. The IMBL is only 6.9 km away from Dhanushkodi, 11.5 km away from Rameswaram, 15.9 km away from Point Calimere, 23 km away from Vedaranyam and 24.5 km away from Thondi (Kumaraguru et al, 2008).

3.2. Different sea bottom ecosystems on the Indian side of Palk Bay

The productivity of the near shore water depends mainly on the nature of sea bottom ecosystem. As described by the expert fishers of the respective regions, underwater diving survey carried out by the artificial reef deployment team of CMFRI and the underwater sea grass and sea weed survey team of CMFRI, the sea bottom ecosystem of Tamil Nadu near shore waters of Palk Bay consisted of muddy (13%), sandy(6%), sea grass bed (20%) and rocky (2%) and the so called deeper area of the Indian side of Palk Bay up to all along the International Maritime Boundary Line is reported to be almost sandy/silty (58%), an excellent trawling ground for mechanized trawlers (table 1).

Table 1. Different sea bottom ecosystems of Palk Bay

Ecosystem	Area (Sq.km)	Area (%)	
Sandy silty sea bottom	4069	58	
Seagrass ecosystem	1430	20	
Mudflat ecosystem	933	13	
Sandy ecosystem	392	6	
Rocky ecosystem	167	2	
Total	6991	100	

The northern most near shore sea bottom is muddy and it extends up to Sethubayachathram in the south, where the sea grass starts appearing as the sea bottom changes from muddy to sandy and mixture of both. Further down south up to Morepanai in Ramanathapuram district the sea bottom along coastal area is full of sea grasses of different varieties indicating that the sea bottom is sandy and sparsely muddy. The sandy ecosystem mixed sparsely with rocky terrain is witnessed further down south from Morepanai to Mudiveeranpattinam near Aathangarai and then the sea bottom was noticed to be completely rocky from Mudiveeranpattinam to Pamban bridge followed by sandy sea bottom till the end of Tamil Nadu side of Palk Bay up to Arichal Munai near Adam's bridge. Map of the Palk Bay showing different depth contours and different ecosystems are shown in Figure 5.

The entire coast of Pudukkottai and northern Ramanathapuram districts are very rich in seagrasses and seaweeds. Extensive surveys and research on seagrasses and seaweeds were carried out by different research organisations such as, CMFRI, Sugandhi Devadason Marine Research Institute (SDMRI) and OMCAR Foundation. SDMRI (2013) has reported all the 14 species of seagrasses found all over the world to occur and Thalassia hemprichii, Syringodium isoetifolium and Cymodocea serrulata are the dominant species. The luxuriant growth was reported in Puthupattinam, Mullumunai and Thondi zones. The distribution from shore towards the sea ranged between 3.5 km and 8.56 km. While the zones of Iranianvalasai, R. Puthur, Kottaipattinam and Athiramapattinam had seagrass cover to a distance of 7 km from shore and minimal cover was observed in other zones up to 3.5 km from shore.

The treasure of seagrass in Palk Bay, however, faces threat from human activities and environmental degradation as nearly 20 per cent of healthy seagrass beds were already degraded in the stretch owing to the use of bottom trawling by the mechnaised boats, shore seine and push nets by the traditional fishermen (Mathews et al., 2010). The average macro faunal density on seagrass beds in Palk Bay are given in Table-2 and Table-3 lists the crustacean species/groups in seagrass areas of Palk Bay.

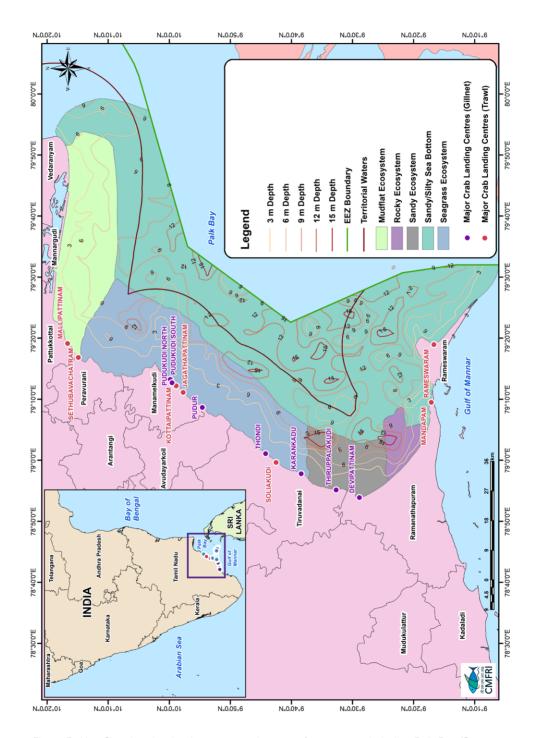


Figure 5- Map Showing the depth contour and nature of ecosystems in Indian Palk Bay (Source: Kasim,2015)

Table 2. Average macro faunal density (no./ 5 m²) in seagrass beds in Palk Bay

Fauna	Nearshore Zone	Middle Zone	Offshore Zone
Crustaceans	0.99	1.24	0.65
Bivalves	2.34	2.85	1.23
Gastropods	3.26	4.25	1.56
Polychaetes	1.34	1.45	0.56
Echinoderms	1.75	1.35	0.53
Ascidians	0.63	0.56	0.32
Sea Anemones	1.11	1.56	0.86
Sponges	0.62	0.78	0.34
Source: Mathews et al.,2010			

Table 3. List of Common Crustaceans/groups in the Seagrass Area

Crustaceans	Gulf of Mannar	Palk Bay
Portunus pelagicus	✓	✓
Calappa sp.	✓	✓
Charybdis natator	✓	✓
Amphipods	✓	✓
Isopod	✓	✓
Source: Mathews <i>et al.</i> ,2010		

3.3. Area, districts and Zone-wise landing centres of **Palk Bav**

The total spread area of Palk Bay is estimated to be 13.892 sq. km which is equally divided into 6,991 sq.km each between India and Sri Lanka. The width of Palk Bay between Tamil Nadu and Sri Lanka varies between 64 and 137 km. The maximum depth recorded is 15 m with an average of 9 m. This critical shallowness is considered to be the backbone of its productivity which in turn supports a wide diversity of marine living resources and also related diversified livelihoods (Kasim, 2015).

Palk Bay covers a coast line of around 296 kilometers (Stephen et al., 2013) along Tamil Nadu, stretching from Kodiakarai (Point Calimere) in Nagapattinam district to Dhanushkodi in Ramanathapuram district, encompassing 5 revenue districts in Tamil Nadu. The split up of the coastline indicate that Nagapattinam district has 58 km, Thiruvarur 19 km, Thanjavur 29 km, Pudukkottai 49 Km and Ramanathapuram 141 Km. Out of the five coastal districts which border the Palk Bay only 3 districts are actively involved in fishing and Ramanathapuram (CMFRI fishing zone -11-Palk

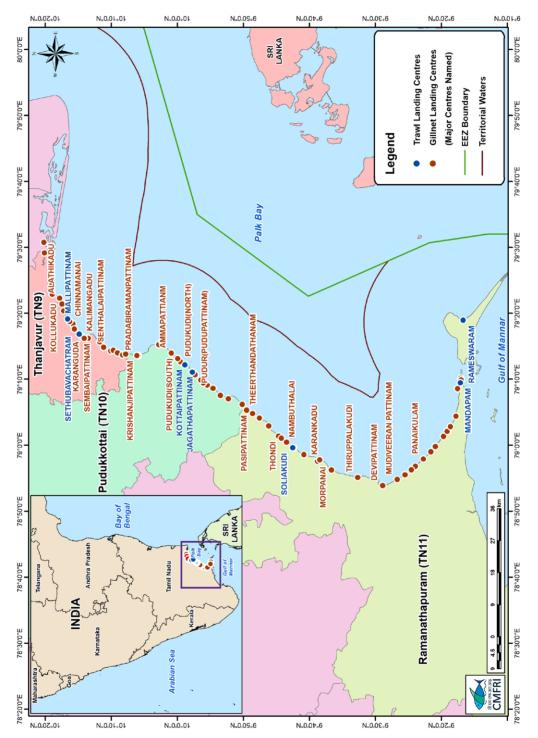


Figure 6- Map of fish landing centres in three coastal districts of Palk Bay showing important BSC centres

Bay) is the major district comprising about 54 major and minor landing centres and also harbours 33 major and minor landing centres along the Gulf of Mannar side. Pudukkottai (CMFRI fishing zone -10) and Thaniayur (CMFRI fishing zone -9) districts have 19 and 25 major and minor landing centres respectively. Details of crab landing centres of the Palk Bay Zones, Ramanathapuram (TN-11), Pudukkottai (TN-10) and Thanjavur (TN-9) are presented in the Figure 6.

3.4. Fisher-folk Population and Fishing Crafts of Palk Bay

Tamil Nadu state has 13 coastal districts and among them Ramanathapuram is the major district with maximum share of landing centres (20.6%), fishing villages (31%) and fishermen population (23.7%). General summary of the coastal districts Ramanathapuram, Pudukkottai and Thanjavur bordering the Palk Bay is given in the Table 4.

According to 2016 marine fisheries census conducted by CMFRI, the details of mechanised, motorised (inboard & outboard) and non-motorised fishing crafts at important landing centres of Thaniavur (TN-9). Pudukkottai (TN-10) and Ramanathapuram (TN-11) are presented in Table 5. A total of 1211 mechanised. 6486 motorised and 4854 non-motorised fishing crafts were there used from these landing centres. Ownership (100% /< 100%) of different category of crafts by fisher-folk of Thanjavur, Pudukkottai and Ramanathapuram coastal districts of Palk Bay is presented in Table 6.

As per the 2016 CMFRI census, the fisher population of Ramanathapuram. district was 188915, followed by Thanjavur district 30797 and Pudukkottai 28485. The details of fishermen families at important landing centres are given in Table 7.

Table 4. General summary of Coastal districts of Palk Bay

District	Landing centres No.& (% in Total coastal districts)	Fishing villages No.& (% in Total coastal districts)	Fishermen families No.& (% in Total coastal districts)	Traditional fishermen families No.& (% in Total coastal districts)	BPL families No.& (% in Total coastal districts coastal districts)	Fisher folk population No.& (% in Total coastal districts)		
Thanjavur	23 (6.59)	31 (5.39)	7070 (3.5)	7062 (3.59)	7066 (3.85)	30797 (3.87)		
Pudukkottai	21 (6.02)	34 (5.91)	6645 (3.29)	6514 (3.31)	6456 (3.51)	28485 (3.58)		
Ramanathapuram	72 (20.63)	178 (30.96)	42672 (21.14)	39612 (20.13)	36605 (19.93)	188915 (23.74)		
Total (13 Districts)	349	575	201855	196784	183683	795708		
Source: CMFRI, TN Censu	Source: CMFRI, TN Census report (draft), 2016.							

Table 5. Details of different fishing crafts used in the major Crab landing centres of Palk Bay

Name of the village	Mechanized	Inboard	Outboard	Non-motorized
Sethubavachatram	25	2	20	3
Mallipattinam	84	0	57	0
THANJAVUR TOTAL	203	5	1175	94
Percentage in Total TN	7.72	0.20	6.21	0.63
Pudukudi	0	0	237	2
Jagathapattinam	0	0	18	1
Kottaipattinam	6	69	37	7
PUDUKKOTTAI TOTAL	199	102	1363	693
Percentage in Total TN	7.57	4.08	7.20	4.66
Mandapam	59	31	0	48
Rameswaram	31	2	0	10
Soliakudi	33	0	7	16
Devipattinam (North)	0	2	131	0
Devipattinam (South)	1	0	182	0
Thiruppalakudi (North)	0	0	156	622
Thiruppalakudi (South)	1	3	73	255
Thondi	0	0	128	56
Karangadu	0	0	28	1
RAMANATHAPURAM TOTAL	809	1283	2558	4067
Percentage in Total TN	30.76	51.28	13.51	27.36
TAMILNADU TOTAL	2630	2502	18930	14864
Source: CMFRI, TN Census report (dra	aft), 2016.			

Table 6. Craft Owned by Fisherfolk along the coastal districts of Palk Bay

Type	Thanjavur	Pudukkottai	Ramanathapuram	Thanjavur	Pudukkottai	Ramanathapuram
	100% Ownership			<100% Ownership		
Mechanized						
Trawler	202	189	778	1	3	113
Gilnetter	0	0	13	0	0	5
Ringseiner	1	10	7	0	0	0
Liner	0	0	0	0	0	0
Others	0	0	11	0	0	1
Inboard						
Wooden Built	2	41	884	0	0	106
Iron Built	0	0	17	0	0	2
Wood Fiber	3	53	366	0	0	46
Others	0	8	16	0	0	0
Outboard						
Catamaran	5	7	13	0	2	1
Dugout canoe	1	6	10	0	0	0
Plank built boat	2	12	204	0	0	5
Plywood boat	0	1	118	0	0	4
Fiber glass boat	1142	1240	2034	8	120	226
Ferro cement boat	0	6	1	0	1	0
Терра	0	2	23	0	0	0
Others	25	89	155	0	2	11
Dugout canoe	1	8	59			
Catamaran	4	171	745			
Plank built boat	89	472	1493			
Ferro cement boat	0	1	0	-		
Thermocol	0	5	1690			
Outrigger canoe	0	1	1			
Musula boat	0	17	21			
Others	0	18	58			
Source: CMFRI, TN C	ensus report	(draft), 2016.				

Table- 7. Details of Fishermen at the important landing centres for BSC

Name of the Village	Fishermen Traditional Fishermen families families		BPL Families	Fisher-folk Population
Sethubavachatram	450	450	450	1926
Mallipattinam	465	465	463	1893
THANJAVUR TOTAL	7070	7062	7066	30797
Pudukudi	491	491	491	2130
Jagathapattinam	92	92	92	412
Kottaipattinam	1063	1062	1033	4786
PUDUKKOTTAI TOTAL	6645	6514	6456	28485
Mandapam	1481	1333	758	6565
Rameswaram	3192	3122	3168	13762
Soliakudi	135	135	131	610
Devipattinam (North)	390	376	390	1719
Devipattinam (South)	585	584	585	2436
Thiruppalakudi (North)	735	735	735	3447
Thiruppalakudi (South)	405	405	405	2686
Thondi	390	390	388	1771
Karangadu	375	367	345	1687
RAMANATHAPURAM TOTAL	42672	39612	36605	188915

3.5. Crab Landing Centres & Total BSC Landings

Crabs are mainly caught as by-catch in bottom trawls (main target is shrimps and fishes), and as a target in indigenous bottom-set gillnets. Gillnets with minor modifications, locally known as *Nanduvalai* are employed along Palk Bay and Gulf of Mannar areas.

Total Palk Bay area (Indian side) is 6991 sq.km (Lat 9° 5' 38" -10° 18' 28" N and Log 78° 54' 0" - 79° 59' 31" E) and the total fishing ground available is 5032 sq.km. Out of the available fishing area, trawl and gillnet operated areas are 4915 sq.km and 2457 sq.km respectively, with an overlapping area of 2340 sq.km, where both trawl and gillnets are operated. Trawl alone operated area is 2575 sq.km whereas, gillnets alone operated area is 117 sq.km. The details of fishing areas of BSC is presented in Figure 7.

Total BSC landings in Palk Bay for the last eleven years (2007-2017) was 75843 tonnes and major share was contributed by gillnets (74%) and rest by trawls. In

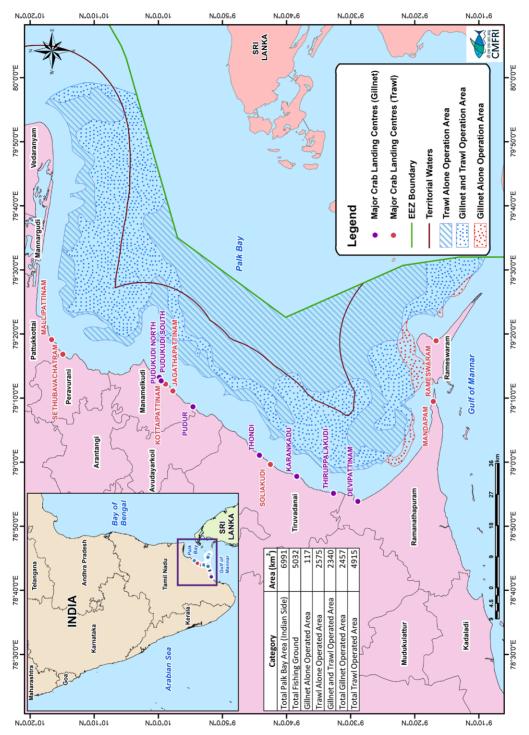


Figure 7. Map showing major crab landing centres and crab fishing areas of the Palk Bay

30

gillnets maximum landing was recorded in 2010 (6576 tonnes) whereas in trawls maximum was recorded in 2008 (2472 tonnes). During last four years (2014-'17) landings both in gillnet and trawls showed a declining trend. Among the districts, maximum landing (22888 tonnes) was contributed by Pudukkottai (TN-10) followed by Thanjavur (TN-9) and Ramanathapuram (TN-11), 20721 tonnes and 12988 tonnes respectively. Year-wise details are presented in Figures 8 & 9.

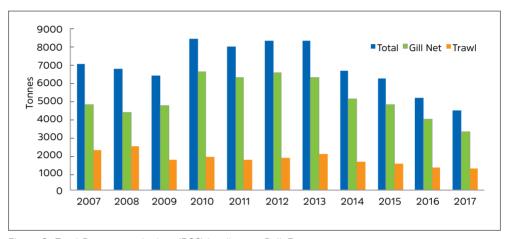


Figure 8- Total Portunus pelagicus (BSC) landings at Palk Bay

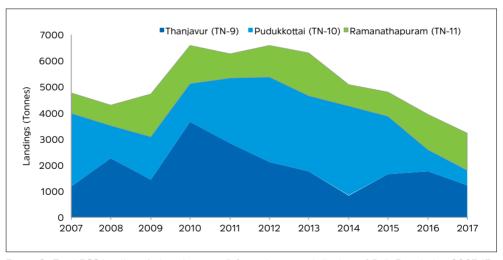


Figure 9- Total BSC landings (other than trawl) from the coastal districts of Palk Bay during 2007-17

3.6. BSC Catch and Catch trends

3.6a. Trawl

At Mandapam, one of the major BSC landing centre, bottom trawlers land *P. pelagicus* catch along with other resources. This fishing is an year round process (except during ban period of April-May) along Palk Bay while at Gulf of Mannar fishing activities are restricted for the season, October-March. The trawlers either operate both during day-night or night only and the fishing area is upto a maximum of 50 m in the Gulf of Mannar side, with normal fishing in grounds less than 25 m of depth. However, in Palk Bay maximum depth is 15 m and main fishing operation happens in less than 10 m depth (Fig.10).

Among the trawlers, overall length of the boat range is 15-20 m and horsepower varies between 110-400 HP. At Mandapam trawlers engine power ranged between 110-200 HP and at Rameswaram and Pamban boats are bigger with 400 HP engines. The strength of the crew is between 3-4 at Mandapam and 5-6 persons per boat at Rameswaram. Other major trawl landing centres of Palk Bay are Soliakudi, Jagathapattinam, Kottaipattinam, Sethubavachathram and Mallipattinam and their locations are shown in the Figure 11.

Figure 10. Mandapam trawl landing centre at Palk Bay

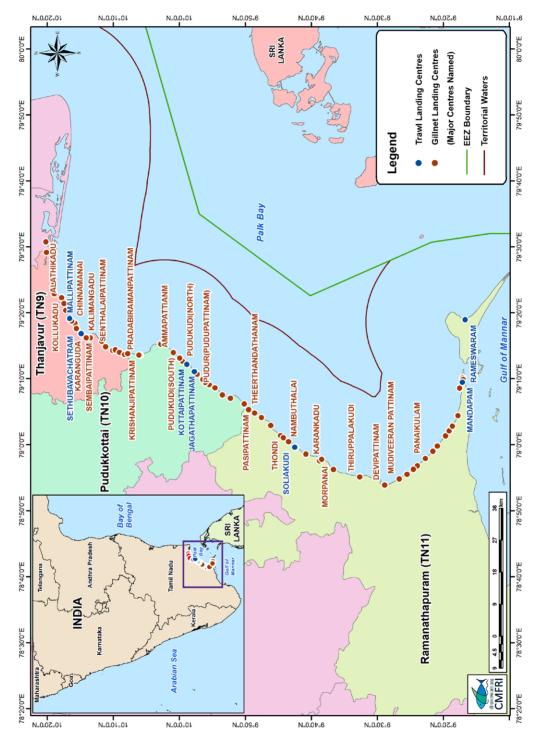


Figure 11. Map showing major trawl landing centres of the Palk Bay

Palk Bay total BSC trawl landings during 2007-2017 was 19320 tonnes with an average landing of 1756 tonnes, catch per unit effort 9.5 kg and catch rate (catch per hour) 0.57 kg. The highest landing was recorded in 2008 (2472 tonnes) and lowest in 2017 (1218 tonnes). Overall, the landings were fluctuating during 2007-2013 period and thereafter showed a declining trend. Maximum share was contributed by Rameswaram (5488 tonnes), followed by Mandapam (4150 tonnes) and Kottaipattinam (2846 tonnes) landing centres. Total BSC landings in trawls and centre-wise landings for the 2007-2017 period are presented in the Figures 12-21.

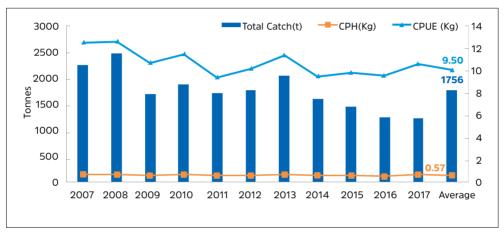


Figure 12- Total BSC landings from trawl at Palk Bay during 2007-2017

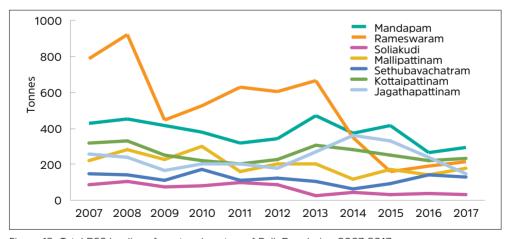


Figure 13- Total BSC landings from trawl centres of Palk Bay during 2007-2017

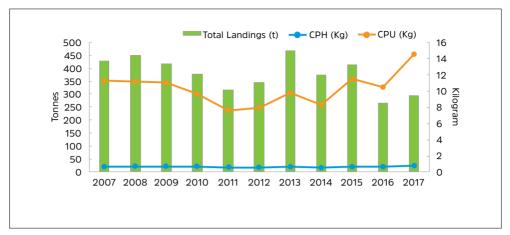


Figure 14- Total BSC landings from Mandapam (PB) during 2007-2017

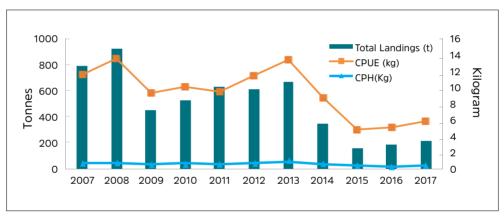


Figure 15- Total BSC landings from Rameswaram (PB) during 2007-2017

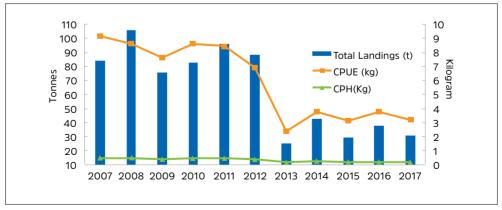


Figure 16- Total BSC landings from Soliakudi (PB) during 2007-2017

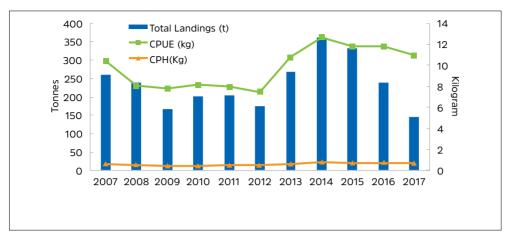


Figure 17- Total BSC landings from Jagathapattinam (PB) during 2007-2017

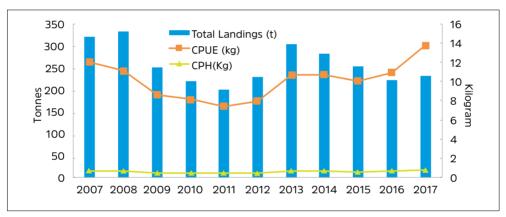


Figure 18- Total BSC landings from Kottaipattinam (PB) during 2007-2017

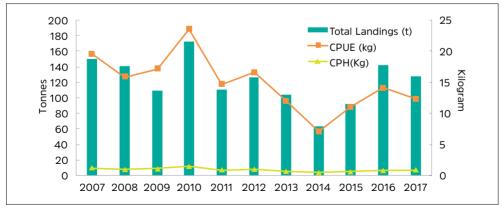


Figure 19- Total BSC landings from Sethubavachatram (PB) during 2007-2017

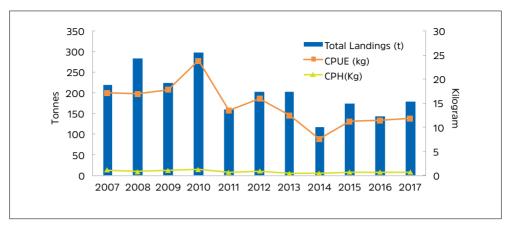


Figure 20- Total BSC landings from Mallipattinam (PB) during 2007-2017

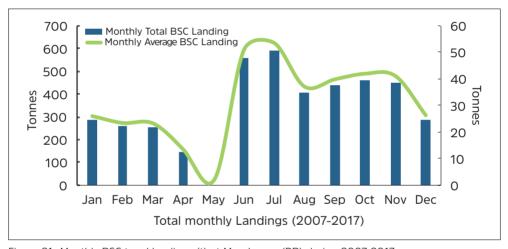


Figure 21- Monthly BSC trawl landings (t) at Mandapam (PB) during 2007-2017

3.6b. Gillnet

At many centres in Palk Bay such as Thondi, Karankadu, Devipattinam etc., crab fishery is exclusively by a traditional set gillnet known as *nanduvalai*, which is in use for several decades in the area. Earlier days fishermen used dug-out canoes with overall length varying between 3-7 m with 2-3 crew members which is locally known as *Vathai*. Later they started using similar type of bigger crafts in a size range of 7-12 m, commonly known as *Vallam* and accommodates 3-4 fishermen. These traditional crafts usually carry 15-20 nets depending on the number of crew.

However, in recent years 95% of these wooden crafts been replaced with fibre glass boats and their overall length range between 7.5-10 m. A single craft carries 30-35

nets; boat owner carries 15 numbers and other crew 10 each. Each net is 60-100 m in length and 90-120 cm in height, many of these joints are tied together to make up the length of each nanduvalai to 1000-1200 m. The netting is made of high-density nylon mono-filament with a stretched mesh of 80-110 mm. The head rope is a nylon with a 1.5 cm in thickness and small floats are attached at intervals of about one and a half feet or marked by flag and the foot rope is with small sinkers. Each sinker weighs about 20g and in one complete stretch of net a total of 350 numbers of sinkers are used weighing about 7kg in total weight. These help the bottom of the net to rest firmly on the sea bed or little above, and the net form a loose upright wall making the crabs entangle in it. Both sides of the nets also attached to an anchor and flags will be attached as a warning to other fishing crafts passing through the area. Some fishers use GPS to mark the position of the set nets. Each nanduvalai weighs about 35-40 Kg, comprising the weight of the nets, sinkers and floats. Total cost of the unit of nanduvalai is approximately Rs.7000/-.

The above is a general description about the *nanduvalai*; however, few variations have been noticed in size of the net and other aspects of crab nets used in different localities. Diagrammatic sketch of crab net used in 1950's is shown in Fig. 22 and major gillnet landing centres of Palk Bay are presented in the Figure 23.

The nets are used in fleets; several nets are tied end to end forming a long chain. Nets are spread parallel to the coastal line to a maximum length of 1 to 1.2 km in a single stretch in same direction and then to the opposite direction for the same length so that finally these nets form few rows, covering a considerable area in the sea. A decade back, majority of the boats were non-motorised and fishermen set sail for fishing during evening hours, carrying the fleet of these nets. One person rudders the Vathai or Vallam, while others lay the net at a depth of 4-5 metres

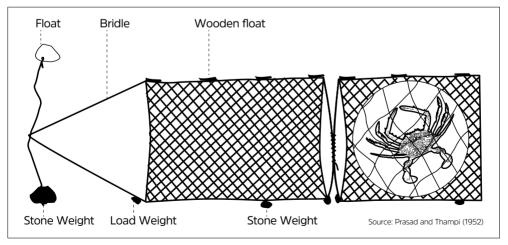


Figure 22- Diagram showing model of a crab net used in 1950's.

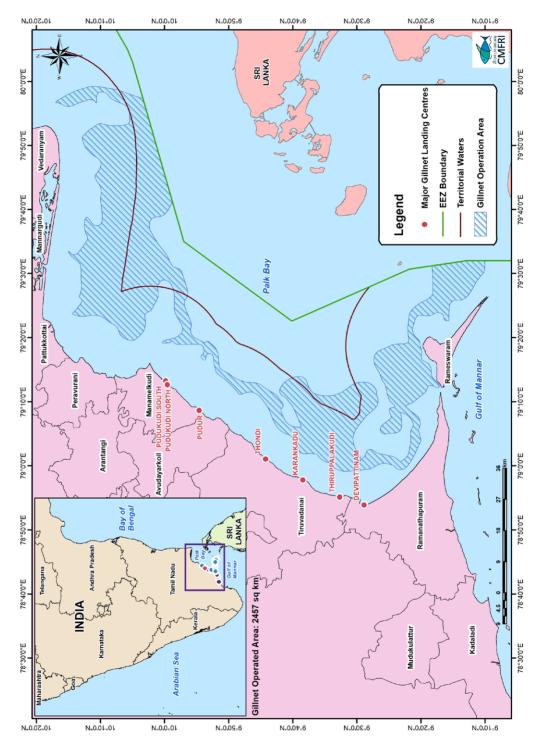


Figure 23- Major Gillnet landing centres in Palk Bay

and about 1.0 to 3 km from the shore. During those days the actual fishing period was three hours only i.e. in the first hour they spread the net, next one hour they will wait for entangling crabs and third hour will be spent for hauling the nets with entangled crabs. The crabs which try to cross the long chain of net get themselves further entangled in the meshes and cling to the nets. The entangled crabs are removed from the nets with much care and skill without breaking its appendages. These crabs are either sold in the local market or to the wholesale merchants.

However, this situation is changed, at present majority of the boats are motorised and fishermen go for fishing at afternoon hours and come back early morning hours around 5 am. Some fishermen come back to shore after laying the nets and then go back at the early morning to take out the gears and reach the shore around 7-8 am. They fish from deeper areas of 8-10 meters at a maximum distance of 10-12 Km. The nets are hauled manually, however the fishermen use inboard (IB) or outboard (OB) engines to reach the fishing ground. When gillnets carrying vessels are fitted with IB it is classified as IBBSGN (Inboard Bottom-set Gillnet) and if it

Figure 24- Crab fishing boat with an Outboard (OB) engine

Figure 25- A traditional craft Vathai with sail used for crab fishing in Palk Bay

Figure 26- BSC landing centre at Karankad, Palk Bay

is OB, it known as OBBSGN (Outboard Bottom-set Gillnet; Fig. 24). In some areas few crafts are still without any motorisation, working solely with sail and wind, those non-mechanised/ non-motorised are known as NMBSGN (Non-mechanised Bottom-set Gillnet; fig.25). In OBBSGN, an outboard motor is the propulsion system for boats, consisting of a self-contained unit that includes engine, gearbox and propeller or jet drive, designed to be affixed to the outside of the transom. They are the most common motorized method of propelling small crafts. In IBBSGN an inboard motor is a marine propulsion system for boats which is enclosed within the hull of the boat, usually connected to a propulsion screw by a drive-shaft. Motorised units use 9-10 HP engines (Kirloskar, Kangaroo, Texmo etc.) and total cost of the craft including engine ranges between Rupees 2-2.5 lakhs.

Figure 27- A Crab fisherman with nanduvalai

Figure 28- Crab fishers cleaning their nets after landing the day's catch – A view from Damodirapattinam, Palk Bay

Figure 29- Devipattinam Crab landing centre at dawn with crab boats

Figure 30- Crab landing centre at Thondi

Major crab landing centres have collection centres of crab processing companies and crab catch is directly sold to the companies. The present whole sale price of BSC is between Rs.250-300/Kg. These centres also have the steam cooking facility and crabs landed are steam cooked in fresh condition. After cooling, the cooked crabs are packed in polythene bags (approximately 8 kg/bag) and transported to the processing units. Details of total BSC landings and catch details (other than trawl) from Palk Bay is presented in the Figure 31.

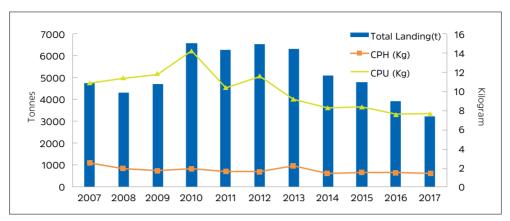


Figure 31- Total BSC landings from Palk Bay (Other than trawl) during 2007-2017

The year-wise total BSC landings in gillnets and catch rate (CPUE & CPH) in Zones TN-11, TN-10 & TN-9 are given in Figures 32 to 36. Crabs are the major species (>95%) landed in this gear. By-catch of other species is very meagre. Species composition of crabs shows that in TN-11 (Ramanathapuram) 98.24% of the landing comprised of BSC, 1.5% by *P. sanguinolentus* and 0.2% by *Charybdis natator* during 2007-2017; In TN-10 (Pudukkottai), 98.65% by BSC and rest by *P. sanguinolentus* and TN- 9 (Thanjavur) 99.53% was by BSC only.

BSC gillnet landings at Ramanathapuram during 2007-2017 mainly contributed by four type of gillnets i.e., OBBSGN (7306 tonnes), NMBSGN (1943 tonnes), IBBSGN (739 tonnes) and OBGN (547 tonnes). Among these, OBBSGN's share was consistently good and during the period contributed 70% of the BSC landings in the zone. From 2013 onwards, NMBSGN and IBBSGN landings were very poor and OBGN showed an increasing trend. Year-wise details are given in Figure 32.

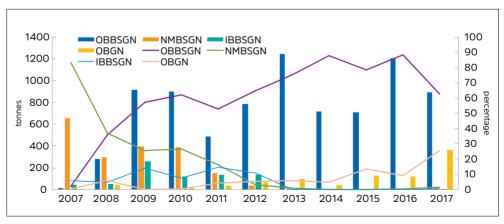


Figure 32- BSC landings in gillnets and their percentage at TN-11 (Ramanathapuram) during 2007-2017

Catch rate of these four gillnets is presented in Figure 33. Catch rate in IBBSGN recorded a sudden increase in 2012 though the catches almost uniform during 2011 & 2012. It was due to drastic reduction in effort (54%) than 2011 and in the following year (2013) number of units further reduced by 93% and contribution by the IBBSGN was only1.68 tonnes, recording reduction in both catch per unit effort (CPUE) and catch per hour (CPH).

At Pudukkottai (TN-10) during 2007-2017, BSC gillnets landings were mainly contributed by OBBSGN. On an average, 89% of the landing was contributed by them and in some years (2009,2011, 2013 & 2014) almost 99 % of the entire catch was landed by OBBSGN. Non- mechanised gillnets (NMBSGN) not been operating since 2013 and OBGN contributed a small share during 2011-2012 & 2015-2017 (<1 to <5%). The OBBSGN landings during the period is presented in the Figure 34.

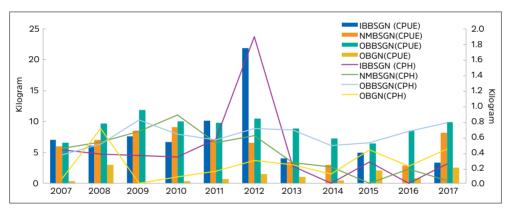


Figure 33- Catch rate of BSC in gillnets at TN-11 (Ramanathapuram) during 2007-2017

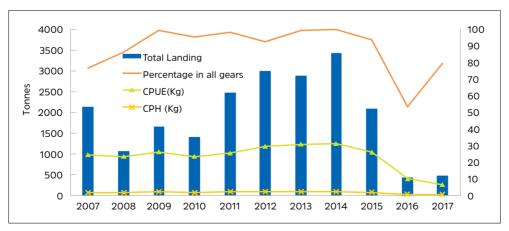


Figure 34- BSC landings in major gillnet at TN-10 (Pudukkottai) during 2007-2017

At Thanjavur, during 2007-2017, major portion of the gillnet landing was contributed by OBBSGN (84%) and other main contribution was by OBGN (10%). In OBBSGN maximum landing was recorded during 2010 (3296 tonnes) and in OBGN during 2012 (384 tonnes). In OBBSGN catch per unit effort (CPUE) ranged between 34.2 kg (2007) & 8.21 kg (2014) whereas, in OBGN it was between 0.5 kg (2009) & 5.65 kg (2010). Catch per hour (CPH) in OBBSGN ranged between 0.51 kg (2014) & 2.2 kg (2007) and in OBGN between 0.1 kg (2007) & 0.45 (2010). Details are presented in the Figures 35-36.

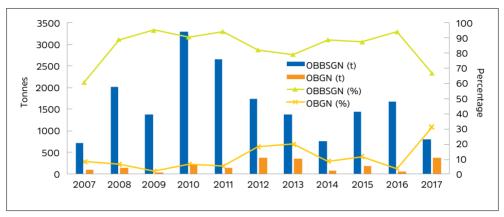


Figure 35- BSC landings in major gillnets at TN-9 (Thanjavur) during 2007-2017

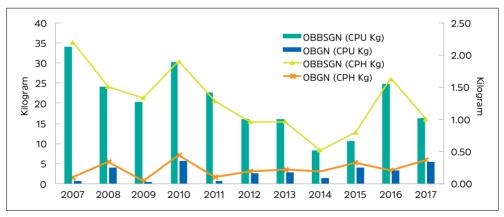


Figure 36- Catch rate of BSC in gillnets at TN-9 (Thanjavur) during 2007-2017

3.7. Historic-data in Trawl and Gillnets

Historical information is available on the BSC fishery from the Palk Bay (Ameer Hamsa, 1978; Josileen, 2001; Josileen & Menon, 2007; Rajamani and Palanichmay, 2010) included in present study as these would be beneficial to get a better understanding the successive growth of the fishery and to compare the trends.

BSC trawl and gillnet landings in Palk Bay & Gulf of Mannar during 1972-74 was 510 tonnes and 227 tonnes respectively. Year-wise details are presented in the Table 8. During 1995-'98, the total estimated catch of *P. pelagicus* at Mandapam (Palk Bay) was 502.4 tonnes with an average CPUE (catch per unit effort) and CPH (catch per hour) of 4.2 kg and 0.3 kg respectively and details are presented in Table 9. In all the years, the maximum catch was recorded during June at Mandapam (PB) and the size (CW) composition in fishery was contributed by size ranging from 70-195 mm. The major portion of the catch was contributed by 105-170 mm group in both the sexes. The Maximum recorded size was 195 mm for male and 193 mm for female.

Table- 8. Estimated monthly catches of Portunus pelagicus (tonnes) at Palk Bay & Gulf of Mannar durina 1972-1974.

Year	1972		1973		1974	
Gear	Gillnet	Trawl Net	Gillnet	Trawl Net	Gillnet	Trawl Net
Jan	20.37	3.74	17.08	11.11	9.87	19.18
Feb	22.50	2.92	14.56	8.38	11.35	7.64
Mar	12.90	2.89	19.36	5.18	14.90	8.34
Apr	12.62	3.25	19.02	6.77	18.73	12.10
May	11.79	2.25	19.18	3.64	15.75	7.82
Jun	13.76	2.69	14.18	3.27	15.58	9.43
Jul	13.01	3.31	14.73	4.24	9.69	6.96
Aug	15.58	2.68	13.06	7.62	13.81	3.86
Sep	12.45	2.87	17.34	8.25	11.68	5.47
Oct	11.34	2.22	14.37	10.66	11.39	9.55
Nov	11.21	2.97	11.66	4.74	12.19	12.07
Dec	10.05	2.84	12.47	6.49	10.14	9.97
Total	167.58	34.63	187.01	80.34	155.07	112.39

Table- 9. Total Trawl BSC Landings (tonnes) at Mandapam (PB) during 1995-98

Year	Total Units	Total Fishing Hours	Total Catch (t)	CPH (kg)	CPUE (kg)	% of Crab in Total Landings
1995-96	41110	535290	197.243	0.39	4.8	3.3
1996-97	41582	540697	181.755	0.33	4.4	3.5
1997-98	36344	475730	123.386	0.26	3.4	2.6
Total	119036	1551717	502.384	0.32	4.2	3.2
Source: Iosil	oon (2001)					

At Thirupalakudi the total BSC landings in 2007 & 2008 were 98 t with a CPUE of 5.5 Kg and 57 t with a CPUE of 4.9 kg respectively. The details of BSC landings from Thirupalakudi is given in Table 10. At Devipattinam, the estimated catch for the three years was 108.2 t with a CPUE of 13.3 kg and CPH of 4.4 kg during 1995-'98 (Table 11). The maximum catch was during September in the first year, March in the second year and June in the last year. The fishery was contributed by size range of 81-182 mm. The maximum recorded sizes for male and female were 182 and 176 mm respectively.

Table- 10. Total BSC Landings and catch details at Thirupalakudi (PB) during 2007-08

		2007			2008	
Months	No. of Units	Estimated Catch (kg)	Catch rate (CPU)	No. of units	Estimated Catch (kg)	Catch Rate (CPU)
Jan	1625	12253	7.5	1032	1649	1.6
Feb	1944	14061	7.2	1012	5674	5.6
Mar	1688	13631	8.1	1020	5352	5.2
Apr	1938	12385	6.4	1075	4475	4.2
May	1553	10008	6.4	588	2530	4.3
Jun	336	915	2.7	1038	5001	4.8
Jul	1610	10259	6.4	850	4928	5.8
Aug	1339	6238	4.7	1274	4043	3.2
Sep	1534	6281	4.1	1063	5869	5.5
Oct	1840	4962	2.7	840	5370	6.4
Nov	1274	4479	3.5	805	5877	7.3
Dec	1050	2672	2.5	880	5896	6.7
Total	17731	98144	5.5	11477	56664	4.9

Table- 11. Total BSC Landings and catch details at Devipattinam (PB) during 1995-98

Year	Total Units Total	al Fishing Hours	Total Catch (t)	CPH (kg)	CPUE (kg)
1995-96	3937 118	311	30.33	2.6	7.7
1996-97	2686 80	56	42.615	5.3	15.9
1997-98	1508 45	24	35.222	7.8	23.4
Total	8131 24	391	108.167	4.4	13.3
Source: Josileen		391	108.167	4.4	13.3

3.8. By-catch

Crab Gillnets

Crab gillnet, commonly known as nanduvalai mainly target Portunus pelagicus (BSC) and bulk of the landings from the different centres of Thaniavur (TN-9). Kottaipattinam (TN-10) and Ramanathapuram (TN-11) are composed of BSC. Other species included were other crabs and fishes. None of the ETP species protected by GoI were reported in the gillnet landings. The details are provided below and catch composition of other species in three districts are presented in Tables 12-17 (Annexure).

Thanjavur (TN-9)

During 2007-2017, bulk of the BSC landings (84.2%) was contributed by bottom-set gillnet (OBBSGN) and other crabs included were Portunus sanguinolentus (2011 & 2017) and Scylla serrata (2007) and their percentage of contribution was < 1%. Year wise details are presented in the Figure 37 and details of other species are presented in Table 12. Other species contributed 16% and among them, the Waigieu seaperch Psammoperca waigiensis was dominant with 29.9% followed by the stingray Himantura spp. (23.5%), the flower shrimp Penaeus semisulcatus (12%), the Slender bambooshark Chiloscyllium indicum (7.4%), the rabbitfish Siganus spp. (4%), the emperor Lethrinus spp. (3.6%) and the threadfin Polynemus spp. (1.3%).

Pudukkottai (TN-10)

During 2007-2017, more than 50% of the total landings was contributed by bottomset gillnet (OBBSGN) and it was the dominating gear throughout period, the except for 2016 and 2017 (Fig. 38) and 88.5% of the total BSC catch also recorded from the same gear. Among the crabs landed, 98.7% was BSC, 1.3 % Portunus sanguinolentus and 0.009% Scylla serrata, which was recorded only in 2017 and

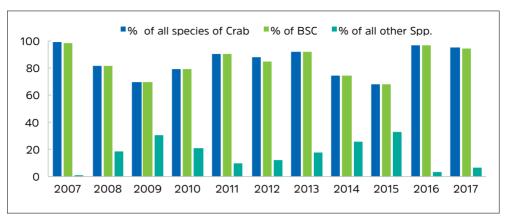


Figure 37- Catch Composition (%) in OBBSGN at Thanjavur (TN-9) during 2007-2017

Figure 38- Percentage of gear composition in total Landings (TN-10) during 2007-2017

the details from all the gillnets are presented in the Figure 39. Among the other species *Sardinella* spp. was dominating with 21.2% followed by *Chiloscyllium indicum* (4.87%), *Penaeus semisulcatus* (4.72%), *Arius* spp. (2.71%), *Chiloscyllium* spp. (2.61%), *Himantura* spp. (2.15%) and *Siganus* spp. (1.75%). More than fifty percent (54.5%) of the catch was comprised by miscellaneous group. The details are given in the Table 13.

Ramanathapuram (TN-11)

During 2007-2017, more than 60% of the BSC catch in the zone was contributed by bottom set gillnet OBBSGN followed by NMBSGN (17.6%) and the details are presented in the Figure 40. Among the crabs landed, 98.3% was BSC, 1.5 % *Portunus sanguinolentus* and 0.2% *Charybdis natator*, which was recorded only

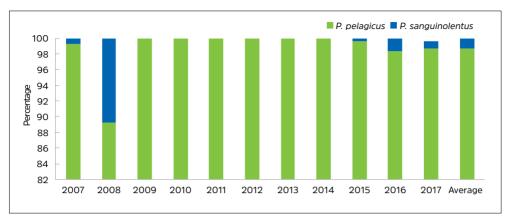


Figure 39- Catch Composition (%) of crabs in gillnets at Pudukkottai (TN-10) during 2007-2017

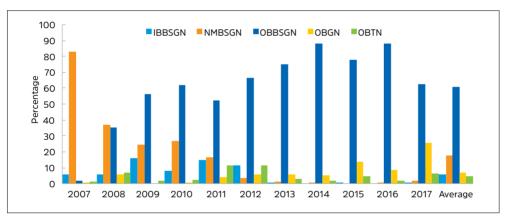


Figure 40- Percentage composition of BSC in different gears at TN-11 during 2007-2017.

in four years in negligible quantities. The details of the species composition are presented in the Figure 41.

Percentage of by catch is less in NMBSGN (8.6%) and IBBSGN (19%) whereas in major contributing gear OBBSGN nearly 40% comprised of other species. The details are presented in Figure 42 and Tables-14-17 (Annexure).

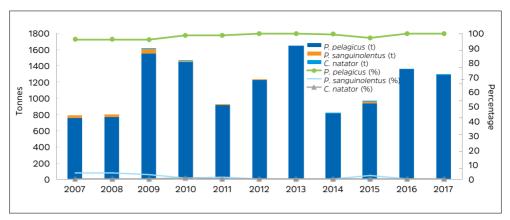


Figure 41- Species composition of crabs in gillnets at TN-11 during 2007-2017

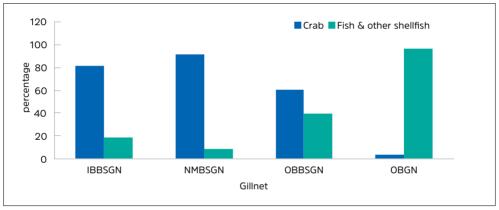


Figure 42- Percentage of resources in gillnets at TN-11 (Ramanathapuram) during 2007-2017

Trawl

Crabs are landed as bycatch in trawls which targets for fishes and shrimps. The crabs (BSC) are kept live and individually tied and brought the shore for selling to the merchants in live condition. Among the crabs landed at Mandapam during this period, 89% were BSC and the for the last 4 years their percentage was 99-100%. Other species were *Calappa* spp. (8%), *Portunus sanguinolentus* (2.3%), negligible quantities of *Charybdis natator*, *Charybdis* spp., and *Scylla serrata* (only 0.1% in 2010). The details are presented in Figures 43 & 44.

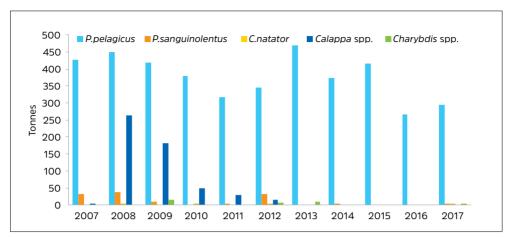


Figure 43- Estimated crab landings (t) at Mandapam (PB) during 2007-2017

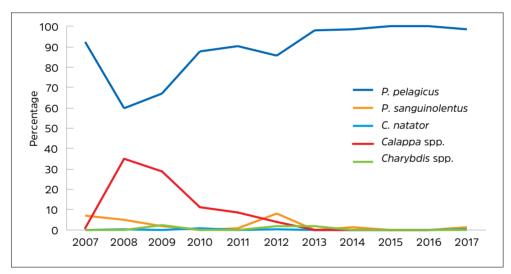


Figure 44- Species composition of crabs (%) at Mandapam (PB) during 2007-2017

3.9. Annexure for Tables

Table 12- Catch of other species recorded in OBBSGN (tonnes)- Thanjavur district (TN-9)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total (t)	%
Arius spp.						-	13	7				21	9.0
Caranx spp.							∞					∞	0.2
Chiloscyllium indicum		16	2	94	73	6		80				275	7.4
Gerres spp.											_	_	0
Himantura spp.	2	168	66	432	118	14	0	45	0	0	0	878	23.5
Kathala axillaris	0	0	0	0	0	0	5	0	0	0	0	5	0.1
Lethrinus spp.	0	0	134	0	0	0	0	0	0	0	0	134	3.6
Miscellaneous	9	114	38	0	0	61	99	56	185	51	39	616	16.5
Mugil spp.	0	0	0	0	0	0	9	0	0	0	0	9	0.2
Penaeus semisulcatus	0	0	0	0	0	0	0	0	446	0	0	446	12
Polynemus spp.	0	0	0	0	0	0	48	0	0	0	0	48	1.3
Psammoperca waigiensis	0	151	234	242	107	169	95	63	54	1	0	1116	29.9
Scomberoides spp.							21					21	9.0
Sepia aculeata									Э		0	3	1.0
Se <i>pia</i> spp.									3			3	0.1
Sepioteuthis lessoniana									3		0	3	0.1
Siganus spp.			101	34				12			2	149	4
Total (t)	∞	449	809	802	298	253	261	262	694	51	43	3729	100.0

Table 13- Catch of other species recorded in OBBSGN-Pudukkottai district (TN-10)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total (t)	% in Total
Arius spp.	4	0	0	0	0	0	0	0	0	0	61	65	2.71
Carcharhinus sorrah	0	0	0	0	0	0	0	0	0	0	_	_	0.03
Chiloscyllium indicum	0	0	0	0	0	0	0	0	0	09	56	116	4.87
Chiloscyllium spp.	0	0	0	0	0	0	0	0	0	0	62	62	2.61
Dasyatis spp.	0	0	0	0	0	0	0	0	0	2	0	2	60:0
Gerres spp.	0	0	0	0	0	0	0	0	0	0	Э	3	0.13
Himantura spp.	0	0	0	0	0	0	0	0	0	0	51	51	2.15
Metapenaeus spp.	0	0	0	0	0	0	0	0	0	0	5	5	0.23
Miscellaneous	170	70	101	93	150	142	154	169	115	47	85	1296	54.52
Octopus spp.	0	0	0	0	0	0	0	0	-	0	28	28	1.20
Penaeus semisulcatus	1	0	0	0	12	0	0	0	2	16	72	112	4.72
Psammoperca waigiensis	0	0	0	0	0	0	0	0	0	24	8	32	1.36
Sardinella spp.	0	0	0	0	0	0	0	252	252	0	0	503	21.17
Scoliodon laticaudus	0	0	0	0	0	0	0	0	0	19	0	19	0.78
Sepia pharaonis	0	0	0	0	0	0	0	0	29	4	0	9	0.26
Siganus canaliculatus	0	0	0	0	0	0	0	0	0	13	0	13	0.55
Siganus spp.	9	0	0	0	0	0	0	0	0	29	9	42	1.75
Terapon spp.	0	0	0	0	0	0	0	0	0	0	1	1	0.03
Triacanthus spp.	0	0	0	0	0	0	0	0	0	0	1	1	0.03
Trichiurus lepturus	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.01
Upeneus spp.	0	0	0	0	0	0	0	0	0	0	14	14	0.57
Uroteuthis duvaucelii	0	0	0	0	0	0	0	0	0	9	0	9	0.25
Total	191	0/	101	93	162	147	154	420	371	220	452	2377	10000

Table 14- Catch of other species recorded in IBBSGN-Ramanathapuram district (TN-11)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total (t)	%
Arius spp.		10059	53634		0	0		0	0	0		63693	36.12
Caranx spp.			10584									10584	00.9
Carcharhinus spp.	2790											2790	1.58
Gerres spp.			24108								1680	25788	14.62
Himantura spp.			2940	5712								8652	4.91
Lethrinus spp.			1764								1680	3444	1.95
Lutjanus spp.											260	260	0.32
Miscellaneous			280	1395								1675	0.95
Mugil spp.			3724									3724	2.11
Penaeus indicus		1929										1929	1.09
Penaeus semisulcatus			3920									3920	2.22
Pennahia spp.		406										406	0.23
Platycephalus indicus		609										609	0.35
Platycephalus spp.			4410									4410	2.50
Psammoperca waigiensis			2058									2058	1.17
Scomberoides spp.			4704									4704	2.67
Scomberomorus commerson	,		8820									8820	5.00
Sepia aculeata			6416									6416	3.64
Sepia pharaonis	1116		2713				630					4459	2.53
Sepioteuthis lessoniana			4774									4774	2.71
Siganus spp.											280	280	0.16
Upeneus spp.			12642									12642	7.17
Total	3906	13003	147491	7107	0	0	630	0	0	0	4200	176337	

Table 15- Catch of other species recorded in OBBSGN-Ramanathapuram district (TN-11)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Arius spp.				32550		4340	46293	30042	152935	118680	12462	397302	7.3
Arothron (= Tetradon) spp.										2940	3780	6720	0.1
Caranx spp.				9114			15913	3388	17360	19752		65527	1.2
Carcharhinus spp.					9548			8463				18011	0.3
Chanos chanos									3472			3472	0.1
Chiloscyllium indicum				9765		3892	20364	4557		17188	1800	27566	1.1
Cynoglossus spp.			2240				5787			5840		13867	0.3
Decapterus spp.										8820		8820	0.2
Gerres spp.				36022		36750	119535	43811	232883	183097	26623	678721	12.5
Himantura spp.				22360	16501	6500	15419		7595	71742		140117	2.6
Himantura uarnak						10633						10633	0.2
Holothuria (Metriatyla) scabra								5880				2880	0.1
Hypolophus (=Pastinachus) sephen						2387						2387	0.0
Leiognathus spp.			6720						36260	4620		47600	6:0
Lethrinus spp.				9440				24617	11935		1890	47882	6:0
Miscellaneous			388	3906		9209			33869			44239	0.8
Mugil cephalus								19502		17240	26505	63247	1.2
Mugil spp.					2315		2219910		5208			2227433	41.0
Nematalosa nasus							12727					12727	0.2
Octopus spp.					2170					7233	11768	21171	0.4
Otolithes ruber									20832			20832	0.4
Pateobatis bleekeri (H. bleekeri)						1302						1302	0.0

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Pellona ditchela								4410	20615	61540	17955	104520	1.9
Penaeus indicus			7140						4600	9779	17457	38976	0.7
Penaeus monodon											2539	2539	0.0
Penaeus semisulcatus			26880		19964		26040		1996	17850	68185	160915	3.0
Pennahia anea (macrophthalmus)										2940		2940	0.1
Pennahia spp.			2352	7595							1116	11063	0.2
Platycephalus indicus							15273			84		15357	0.3
Polynemus spp.				5425								5425	0.1
Pomadasys spp.									898			898	0:0
Psammoperca waigiensis					3472	9135	20482	20615	19468	9859		83031	1.5
Sardinella albella							53340					53340	1.0
Sardinella gibbosa							14980					14980	0.3
Sardinella longiceps										2520		2520	0.0
Scarus (=Callyodon) spp.									248			248	0.0
Scomberoides spp.				22785			6837					29622	0.5
Selaroides leptolepis											10416	10416	0.2
Sepia aculeata			6160	7378			43171	14463	30359	50647	6548	158726	2.9
Sepia pharaonis			2240	9765	6923		51028	9290		39038	3259	121543	2.2
Sepia spp.						36540	26040	24705	35986		36386	159657	2.9
Sepiella inermis										16275		16275	0.3
Sepioteuthis lessoniana							20365		10831	58783	11624	101603	1.9
Sepioteuthis spp.					13671						10769	24440	0.4
Sepioteuthis spp.											10769	10769	0.2
Siganus spp.				3255	2170	210	32285	14000	496	7368	26281	86065	1.6

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Sillago sihama									37240	27125	6944	71309	1.3
Sphyraena spp.							16520		1984	35452	6820	92.209	1.1
Terapon spp.							2893	3600		168	3100	9761	0.2
Triacanthus biaculeatus							19091					19091	0.4
Triacanthus spp.											9792	9792	0.2
Turbinella(= Xancus) pyrum					3906							3906	0.1
Upeneus spp.			2352	7812			65329		24322 40983	40983		140798	2.6
Uroteuthis (=L. duvaucelli)							6491					6491	0.1
Uroteuthis(Photololigo) (=Loligo) spp.							5063					5063	0.1
Total			56472	187172	80640	117765	2881176	231343	711362	837563	334788	56472 187172 80640 117765 2881176 231343 711362 837563 334788 5438281 100.0	100.0

Table 16- Catch of other species recorded in NMBSGN-Ramanathapuram district (TN-11)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Arius spp.	7903	3823			898		1910	0	0	0		14504	7.8
Gerres spp.	1380	2170										3550	1.9
Himantura spp.											1240	1240	0.7
Leiognathus spp.			651				1085					1736	6:0
Lethrinus spp.			217				155					372	0.2
Lutjanus spp.							310					310	0.2
Miscellaneous	21916	13373	35748	17083	6541	6222						100883	54.4
Mugil cephalus		8680										8680	4.7
Mugil spp.	6311											6311	3.4
Nematalosa nasus			2713									2713	1.5
Penaeus indicus	2615		21571									24186	13.0
Penaeus monodon	3020											3020	1.6
Penaeus semisulcatus			3325									3325	1.8
Platycephalus indicus		723										723	0.4
Psammoperca waigiensis			651									651	0.4
Sardinella longiceps							3720					3720	2.0
Sardinella spp.		2170										2170	1.2
Sepia pharaonis		400										400	0.2
Siganus spp.							155					155	0.1
Sillago sihama							3410					3410	1.8
Terapon spp.		1447					620					2067	1.1
Upeneus spp.							1395					1395	0.8
Total	43145	32786	64876	17083	7409	6222	12760	0	0	0	1240	185521	100.0

Table 17- Catch of other species recorded in OBGN-Ramanathapuram district (TN-11)

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Ablennes hians	6975											6975	0.03
Amblygaster sirm											8370	8370	0.04
(=Sardinella sirm)													
Arius spp.	54336	140725	105381	157441	170016	104314	76674	57092	217147	251702	183170	1517998	6.35
Arothron(=Tetradon) spp.										1176	27260	28436	0.12
Caranx spp.	9293	69603	42309	23380	65896	6510	29326	109410	84287	135762	50797	657536	2.75
Carcharhinus spp.					8680						5355	14035	90.0
Chanos chanos				3472	8333						3301	15106	90.0
Chiloscyllium indicum				11848	15190	10416	4340		65884	25976	80106	213760	0.89
Chirocentrus spp.								5580		12152		17732	0.07
Cynoglossus spp.						898	10223			13755	1457	26303	0.11
Dasyatis spp.						19096						19096	0.08
Decapterus spp.										6468		6468	0.03
Dussumieria spp.						6300	71749				4960	83009	0.35
<i>Gerres</i> spp.	16149	28841	89531	243512	128357	134001	190728	285401	171843	347401	373078	2008842	8.40
Hemiramphus spp.	79980	31249	32800	17360	128257	898	140798	29211	66640	75534	50319	653016	2.73
Hilsa kelee											15314	15314	90.0
Hilsa spp.					4629					34944		39573	0.17
Himantura spp.					3038	8680	60326		8820		5425	86289	0.36
Kathala axillaris				3780								3780	0.02
Leiognathus spp.		29241	68204	38366	50610	5642	20317	110236	4340	14880	49674	391510	1.64
Lethrinus spp.	5400		42290	54964	75591	11228	26786	55759	37155	50231	36648	396052	1.66
Loliolus (Nipponololigo) spp.							23725					23725	0.10
Lutjanus spp.	1350				248	2548	4517	006		20641	3342	33546	0.14
Megalaspis cordyla							2100			7750		9850	0.04
Miscellaneous		420	6615	1260	2205	8736		2170				21406	0.09
Mugil cephalus	10881	4340			16478	10705		41520		130741	71202	285867	1.20
Mugil spp.		6510	15190	79227	92939	6944	61655		30184			292649	1.22
Nematalosa nasus											18879	18879	0.08

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Notarius lentiginosus (=A.							21989					21989	0.09
lentiginosus)													
Octopus spp.							3906	15700	32116	3617	56248	111587	0.47
Otolithes ruber						2604		5780	103460	49544	12783	174171	0.73
Pellona ditchela			3780		16458	23581	51329	140728	137883	349888	1262	724909	3.03
Penaeus indicus						8680	14616		11920	12203	2232	49651	0.21
Penaeus monodon									1505			1505	0.01
Penaeus semisulcatus		3183				1736	11718	34284		37044	7556	95521	0.40
Pennahia anea								41995		32253		74248	0.31
(macrophthalmus)													
Pennahia spp.		11772	9929								10149	31850	0.13
Platax spp.							12731					12731	0.05
Platycephalus indicus						1736	3992	009	11312	2025		19665	80.0
Platycephalus spp.						4340					372	4712	0.02
Plectorhinchus (=Gaterin) spp.			2520	12600		4620				800		20540	60:0
Polynemus spp.									6944	3100	372	10416	0.04
Pomadasys spp.		9259							45136			54395	0.23
Psammoperca waigiensis		10416	7425	3255	38977	26960	17234	64223	6121	69236	2699	279546	1.17
Rastrelliger kanagurta							392					392	0.00
Sardinella albella	133920					562086	1567982	695110	272841	3749903		6981842	29.21
Sardinella gibbosa	26505					264978	477739	143766	57288	485171	701299	2156746	9.02
Sardinella longiceps										155311		155311	0.65
Sardinella spp.		2699	45000			30886	2170	4500	85560		14467	189280	0.79
Saurida tumbil								289	1736			2025	0.01
Scarus (=Callyodon) spp.				1736				145			006	2781	0.01
Scomberoides spp.		3038	11700				8506			31234	22801	77279	0.32
Scomberomorus commerson		21700					3100		0668	21700	504	55994	0.23
Selaroides leptolepis			63900				5840				20977	90717	0.38
Sepia aculeata				3570	4166	9548	42853	92602	85279	110501	201389	549908	2.30
Sepia pharaonis		217	13104	488	78430	3038	58825	51270	54544	74913	96628	422825	1.77

Species	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total(t)	%
Se <i>pia</i> spp.						46230						46230	0.19
Sepiella inermis										8138	506	8644	0.04
Sepioteuthis lessoniana		1736	8820	8409	39866	6510	51141	56584	46774	97682	315031	632553	2.65
Sepioteuthis spp.											18643	18643	0.08
Siganus canaliculatus				5040	2670					1395		12105	0.05
Siganus spp.	10463	6412	10800		45327	17187	52087	104032	25860	111543	38447	452158	1.89
Sillago sihama		11393	37632			2604	19560		10230	61162	48474	191055	0.80
Sphyraena spp.	10881	13356	61612	35371	106186	81977	88173	28770	50489		112224	589039	2.46
Stolephorus spp.										210134	3750	213884	0.89
Strongylura spp.	4590		43344	9/09	104098	23800	162202	18491	21480	198121	98112	680314	2.85
Tenualosa ilisha (=Hilsa ilisha)		3640									14868	18508	0.08
Terapon spp.		8377	13888	3780	9383	4666	14637		69440	38196		162367	89.0
Thryssa dussumieri		11139										11139	0.05
Thryssa spp.							588	53494		775		54857	0.23
Trachinotus spp.					13888							13888	90.0
Triacanthus biaculeatus		12586										12586	0.05
Triacanthus spp.								27900			19136	47036	0.20
Trichiurus spp.							1500			620		2120	0.01
Tylosurus crocodilus	21168	2279			27082							50529	0.21
Upeneus spp.	12555	22568	40816	30059	21966	55948	138936	181248	92916	422058	260838	1335908	5.59
Uroteuthis (L. duvaucelli)							06809	4130		756	9367	75143	0.31
Uroteuthis=Loligo) spp.							4687					4687	0.02
Total	404446	470697	776590	744994	1368927	1550571	3622587	2462920	1956124	7468136	3075059	23901051	100.00

4. BSC Price Structure

During 1995, when detailed studies on *P. pelagicus* was initiated, price of BSC was Rs.35/kg and by the year 2000 it has increased to Rs. 50/kg. Thereafter, the price has gone up as the local/export market, demand of the BSC was increasing steadily and currently the prices varies between Rs. 250-300/ Kg at the wholesale rate. Retail prices are much higher than this.

4.1. Value Chain

The fishers bring the BSC in live condition and sell them to the local merchants, most of them are associated with one of the processing companies. In some areas these traders are selling their crabs exclusively to one company. All the main BSC landing centres have their own crab cooking facilities and are set and maintained by

Figure 45-Steam cooked whole crabs (BSC).

the processing companies of the respective areas. After cooking the crabs in steam for 15 minutes and they are spread-out in steel trays for cooling to atmospheric temperature and then packed and transported to mini plants located nearby areas of the landing centres for meat picking (Fig. 45).

The details of raw crab meat utilized by the processing companies are presented Figure 46. This process would be completed within 24-48 hours and from there the picked meat is transported to the main processing plants of the companies ensuring strict quality control protocols. At the processing plants, final products are packed in appropriate cans or plastic containers after grading and shell removal. These containers are pasteurized with automated temperature controlled facilities and stored till shipment. The details of the products are presented in the Figure 47 (Source:CMPA).

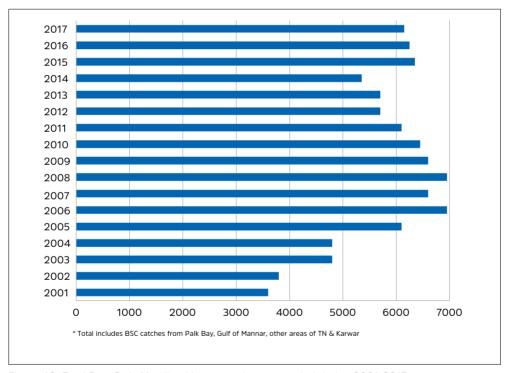


Figure 46- Total Raw Crab (t) utilized by processing companied during 2001-2017

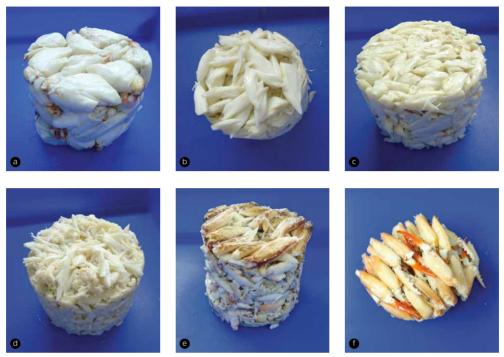


Figure 47- Different BSC pasteurised products exported from India a) Jumbo b) Super lump c) Lump d) Special e) Claw meat f) Claw finger

4.2. Export

United States of America (USA) has been the biggest market for BSC and 99% of the Indian BSC products are exported to US and the remaining to Australia, Italy, Lebanon, Mauritius and Hong Kong. From India, BSC export is happening since 2001 and for the first four years the import was monopolised by Phillips Foods Inc., Baltimore, Maryland and currently apart from Phillips, five more US companies are importing Indian BSC products. The other companies are Chicken of the Sea Frozen Foods, Handy Seafood Incorporated, Newport International, Trans-Global Inc. and Harbor Seafood Inc.

The current export price for the crab meat ranges between 10-11 US $\$ / Can (454 g) and it was 12-13 US $\$ / Can in 2017 and 8-9 US $\$ / Can during 2015& 2016.

4.3. Crab Processing Companies

Presently seven processing companies are exporting the BSC resource from the region as well as other BSC fishing areas. The Indian Crab Processors Association

(ICPA) was established in 2013 with their head office at Tuticorin, Tamil Nadu. In 2016, they have rechristened the association as Crab Meat Processors Association (CMPA), to promote the crab meat industry in various aspects. The list of the companies (not an exhaustive list) is given in the Table 18.

Table 18- Details of Processing Companies with Crab Meat Processors Association (CMPA)

SI. No.	Name of the Company	Year of Establishment	Head Office
1	Phillips Foods India Pvt Ltd.	2000	Thoothukudi, Tamil Nadu
2	Handy Water Base India Pvt Ltd.	2002	Thoothukudi, Tamil Nadu
3	Sandy Bay Seafoods Pvt Ltd.	2005	Visakhapatinam, Andhra Pradesh
4	Vitality Aquaculture Pvt Ltd	2008	Thoothukudi, Tamil Nadu
5	Peninsular Fisheries Pvt Ltd	2014	Kanyakumari, Tamil Nadu
6	Britto Sea Foods Exports Pvt Ltd	2015	Thoothukudi, Tamil Nadu
7	Hirawathy Marine Products Pvt Ltd	2017	Porbandar, Gujarat

5. BSC Biology & Life History

5.1. Life cycle

In *Portunus pelagicus* sexes can be easily differentiated from their colour patterns of dorsal exoskeleton. Males are brightly coloured and more attractive than females. The carapace of the male crab is brilliantly coloured with irregular white patches and the tips of chelate and walking legs bright blue, hence the name 'blue swimming crab'. But female crabs are dull brown in colour with small irregular white patches on the carapace and tips of chelate and walking legs are dark brown (Figs. 48 & 49).

Figure 48 Male crab of Portunus pelagicus (BSC) a) dorsal view b) ventral view

Figure 49 Female crab of *Portunus pelagicus* (BSC) a) dorsal view b) ventral view

Other sexual dimorphic characters in *P. pelagicus* are similar to that of other crabs. Sex is readily distinguished in larger individuals by the shape of the abdomen which is narrow and has the shape of inverted 'T' in males. In females, it is triangular in juveniles and changes to semi-circular in adult. In addition, male has relatively larger chelae than female. In mature crabs pleopods can be seen very clearly when abdominal flap is opened. Male has two pairs of pleopods modified as copulatory organs on the first and second abdominal somites. In the case of females, the first four abdominal somites carry pleopods, and are biramous and possess fine setae for attachment of the extruded eggs till hatching.

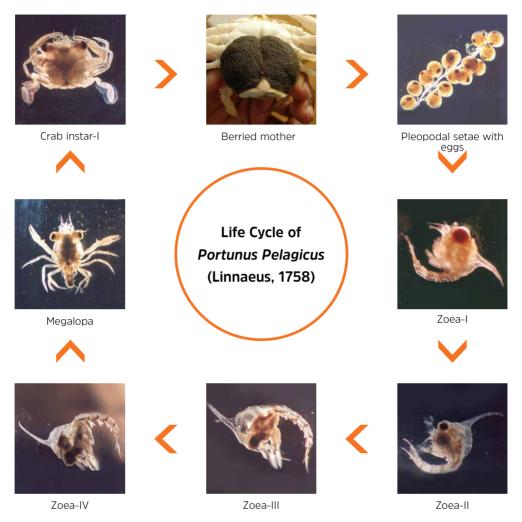


Figure 50- Life cycle of *Portunus pelagicus* (BSC) (Source: Josileen, 2001)

5.2. Larval Phase

The larval development of *Portunus pelagicus* includes four zoeal stages and a megalopa (Josileen and Menon, 2004). The megalopa stage metamorphoses into the crab stage (Fig.50).

5.3. Size Composition and Sex Ratio

At Mandapam (Palk Bay), the fishery was contributed by size ranging from 70-195 mm. The major portion of the catch was contributed by 105-170 mm group in both the sexes.

The dominant size group during 1996-97 was 106-110 mm in males and 126-130 mm in females. At Devipattinam, the fishery was contributed by size range of 81-182 mm. The maximum recorded sizes for male and female were 182 and 176 mm respectively. The bulk of the catch was comprised of size range 101-150 mm in both sexes. In pooled data of males and females the dominating size group was 121-130 mm (Josileen, 2007).

Earlier (1995-98) studies conducted from trawl catches at Mandapam showed that females were dominating the catches during most of the months; whereas in *nanduvalai* catches at Devipattinam, females were dominating during 1995 and for the rest of the period males were dominating in most of the months. At Mandapam, females outnumbered the males, the male: female ratio was 0.72: 1 and in Devipattinam there was a preponderance of males, the sex ratio was 1.26: 1 during the study period (Josileen, 2001) and the present observations also showed a clear domination of females in trawls and males in gillnet.

5.4. Size at Maturity

Close laboratory examination of gonads indicated that males of *P. pelagicus* attained sexual maturity when they attained a size above 80 mm carapace width. The minimum size at which males were mature was 82 mm CW. In females the minimum size at which maturity (ovary stage-IV) recorded was 88 mm CW. In females, mature ovaries were very rare in those below 100 mm CW size. The minimum size of berried females encountered during the study was 105 mm/ 80 g (Josileen,2001).

5.5. Breeding cycle and composition of berried crabs

P. pelagicus is a continuous breeder and berried females were recorded in the landings throughout the year. Berried crabs were more in trawl catches and in near-shore gillnet

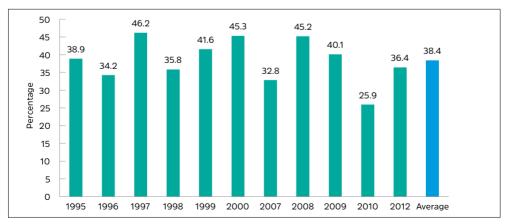


Figure 51- Annual Percentage of berried crabs in BSC Trawl fishery at Mandapam (PB)

catches the percentage was very less and in some months berried females were not represented in the fishery. For maturation and breeding crabs move towards deeper waters (breeding migration) and apparently mature crabs are caught in trawls than in gillnets, as their operational area is deeper than gillnets. So, the annual percentage of berried crabs in trawl is 38.4% (for a period of 11 years) whereas, in gillnets it is only 11.7% (for six years). The details for the composition of berried females from the trawl and gillnets are presented in the Figures 51 & 52.

In trawls in some months more than fifty percent of the female population comprised berried crabs and maximum percentage (84.4%) was recorded during February 2009. BSC is a continuous breeder as the percentage of berried females in the

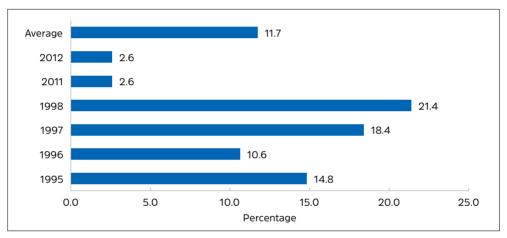


Figure 52- Percentage of berried crabs in BSC nanduvalai fishery in Palk Bay

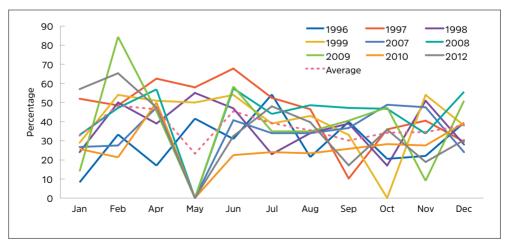


Figure 53- Monthly Percentage of berried crabs in BSC Trawl fishery at Mandapam (PB)

catches did not follow a definite pattern over seasons and annual percentage was always above 25%. Monthly percentage of the berried crabs landed in trawls during different years are presented in Figure 53. At present, there is no ban for fishing berried crabs and hence they are exploited throughout the year.

5.6. Spawning

Spawning usually takes place during night hours and crabs are capable of multiple spawnings and spawn a maximum of 3 times during an intermoult cycle. The newly spawned eggs are bright yellow and as the development progresses colour changes to dull yellow and finally to dark grey just one day before hatching (Fig.54). Spawned eggs are attached to the pleopods of the mother till the hatching. In mature crabs pleopods can be seen very clearly when abdominal flap is opened. In females the first four abdominal somites carry pleopods and are biramous and possess setae for attachment of the extruded eggs till hatching. Male has two pair of pleopods modified as copulatory organs on the first and second abdominal somites. (Fig.55).

The total days taken for embryonic development (incubation period) varied between 8-10 days, depends on the health & size of the mother and water temperature. The incubation time taken by the same crab may also vary between spawnings during the same intermoult period.

Figure 54- Female BSC with newly spawned eggs (yellow) and ready to hatch eggs (Black)

Figure 55- Male (a) and Female (b) BSC with open abdomen showing the pleopods

5.7. Fecundity

The number of eggs present in the sponge/berry in *P. pelagicus* ranged between 60000 and 1976398. Fecundity increased from smaller to larger size groups. In the landings, it was found that the berried crabs that belonged to the size group 120-129 mm were the more frequent, which coincides with the first maturation moult. The egg mass index did not show any clear pattern in relation with the size group of the crab. The increase of the egg mass weight was proportional to the carapace width of the crab, with the highest values in the larger size groups.

The relationships between fecundity (as number of eggs per clutch) and egg mass weight, both related to carapace width and total weight, showed significantly positive correlations, however, the relationships show that, of these parameters, the carapace width and the fecundity constitute the more reliable indices for the estimation of the reproductive potential of *P. pelagicus*, rather than the weight of the crab (Josileen, 2001 & 2007). The average number of eggs for the different size classes and details are presented in the Table 19.

Table 19- Reproductive potential of BSC females in different size groups.

Size range (mm)	No.	Carapace width (mm)	Average weight (g)	Egg mass weight (g)	Average total no.of eggs	Egg mass index
100-109	2	104.7	87.5	13.96	203455	15.95
110-119	6	113.6 ± 2.66	110.96 ± 16.66	11.96 ± 4.07	214175	11.39
120-129	12	124.9 ± 2.93	124.2 ± 19.87	20.84 ± 5.54	640431	16.78
130-139	5	133.8 ± 3.91	148.0 ± 17.18	19.20 ± 8.57	470092	12.97
140-149	4	144.8 ± 3.54	210.0 ± 60.14	28.37 ± 12.00	936731	13.51
150-159	2	157.5	287.5	30.36	1267022	10.56
160-169	2	166.6	320.0	34.50	1230900	10.78
170-179	4	176.1 ± 2.36	406.3 ± 39.87	49.74 ± 5.55	1472240	12.24
180-189	4	183.1 ± 2.01	532.5 ± 32.27	53.41 ± 4.84	1677168	10.03
Source: Josileen (2013)						

5.8. Carapace width and Total weight relationship

Carapace width/length-total weight relationship in males and females of *Portunus pelagicus* are given the Table 20.

Table 20- Carapace width/length-total weight relationship Portunus pelagicus (BSC)

Measurements	Logarithmic equation	Parabolic equation
Male		
Carapace Width-Total Weight	Log = -12.589 + 3.607 log L	W = 0.000003409 L ^{3.607}
Carapace Length-Total Weight	Log = -7.339 + 3.049 log L	W = 0.0006497 L ^{3.049}
Female		
Carapace Width-Total Weight	Log = -11.077 + 3.293 log L	W = 0.00001546 L ^{3.293}
Carapace Length-Total Weight	Log = -6.231 + 2.774 log L	W = 0.001967 L ^{2.774}
Pooled		
Carapace Width-Total Weight	Log = -11.779 + 3.438 log L	W = 0.000007664 L ^{3.438}
Carapace Length-Total Weight	Log = -6.746 + 2.902 log L	W = 0.001176 L ^{2.902}
Source: Josileen (2011b)		

The scatter diagram for males and females was obtained by plotting the weight against carapace width /length of individual crabs (Figs. 56 to 59). It is found that there exists a good relation between width and total weight from the closeness of the scatter and from parabolic nature of the plot.

The exponential values (b) for the carapace width-weight relationship in males and females (3.607 and 3.293 respectively) show that there is marked variation from the isometric pattern of growth. The 't' test confirmed that 'b' significantly differ

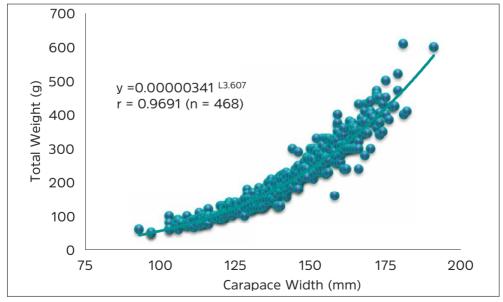


Figure 56- Carapace width- weight relationship in male Portunus pelagicus (BSC)

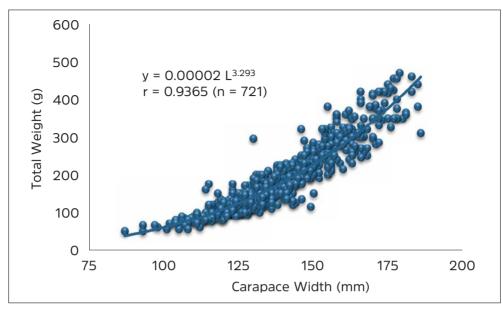


Figure 57- Carapace width- weight relationship in female Portunus pelagicus (BSC)

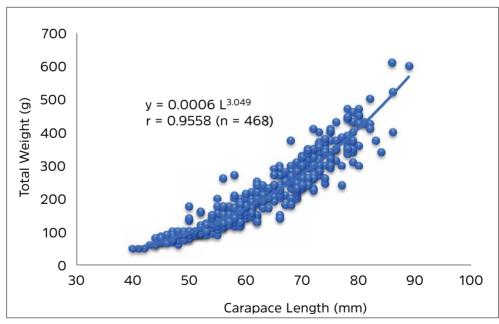


Figure 58- Carapace length-weight relationship in male Portunus pelagicus (BSC)

from 3, in both sexes. The exponential values (b) for carapace length – weight in males and females (3.049 and 2.774 respectively) indicate that, the significant departure from isometric growth is only evident in females.

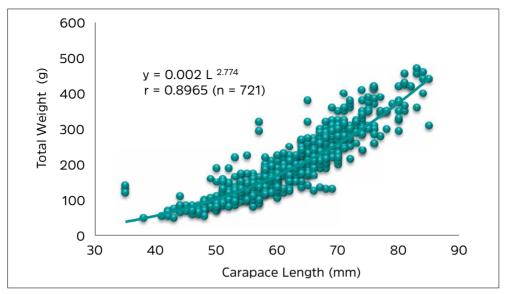


Figure 59- Carapace length-weight relationship in female Portunus pelagicus (BSC)

The results of the length-weight relationship analysis in *P. pelagicus* indicate that in juveniles and pre-adult crabs, weight gain is almost uniform; females are slightly heavier than males until they attain 120-125 mm carapace width. Thereafter males are heavier than females at any given length.

5.9. Food & feeding

Investigations on food habits of BSC in the Palk Bay area revealed that despite the diversity in crab diets and feeding habits, they are opportunistic omnivores with a preference for animal food. In adult (>100 mm CW) crabs, crustaceans constituted the dominant food source and these were present in 78.43% of the stomachs analysed, followed by molluscs and fishes (Josileen, 2011a). The stomach contents of juveniles (< 80 mm CW) and sub-adults (81-100 CW) were dominated by debris. There was no significant difference between sexes in the frequency of occurrence of food items or in their percentage. However, there was a difference between the stomachs of ovigerous and non-ovigerous females. There were also significant differences in the preference for food items in the different size groups of the crab. The results showed that *P. pelagicus* exhibits, in this region at least, a clear preference for crustaceans (Josileen, 2011a).

5.10. Growth in the laboratory

Male crabs grew from an initial average carapace width of 2.38 ± 0.18 mm to 159.86 ± 3.52 mm CW, i.e., from first instar to 16^{th} instar in a mean period of 272 days. Males were reared to a maximum of 455 days. The average total weight gained

was 275.00 \pm 25.41 g from an initial weight of 0.008 g (table 21 & Fig.60). Male crabs attain maturity by the 12th moult (crab instar-12), at a mean size of 82.25 \pm 1.17 CW and the chelar propodus length (CPL) recorded twofold increase, than the previous crab stage (crab instar-11).

Table 21-Growth details of Male BSC in laboratory

Crab	Average days from	CW	CL	CPL	CPD	TW
stage	previous instar	(mm)	(mm)	(mm)	(mm)	(g)
1	0	2.38 ± 0.18	-	-	-	0.008
2	2.83 ± 0.76	4.23 ± 0.24	-	-	=	0.014
3	3.40 ± 0.55	5.13 ± 0.18	-	-	-	0.042
4	4.33 ± 1.03	6.55 ± 0.33	-	-	-	0.082
5	5.60 ± 1.14	9.10 ± 0.39	-	-	-	0.1
6	5.63 ± 1.19	12.13 ± 0.85	6.94 ± 0.31	-	-	0.189
7	6.00 ± 1.15	16.63 ± 0.25	9.00 ± 0.50	-	-	0.299
8	7.88 ± 1.73	23.17 ± 1.04	12.17 ± 0.29	-	-	1.088 ± 0.91
9	8.38 ± 1.41	33.86 ± 1.77	16.20 ± 0.41	-	-	2.41 ± 0.70
10	14.83 ± 3.31	46.38 ± 3.45	19.50 ± 0.50	20.38 ± 0.48	4.94 ± 0.43	5.13 ± 0.68
11	16.33 ± 1.51	60.80 ± 1.82	26.14 ± 1.35	24.85 ± 1.24	8.05 ± 0.93	14.90 ± 1.10
12	15.80 ± 3.11	82.25 ± 1.17	36.07 ± 1.73	49.08 ± 2.33	11.73 ± 0.25	36.22 ± 3.31
13	25.83 ± 5.42	99.01 ± 3.45	44.00 ± 1.87	60.67 ± 2.52	13.20 ± 0.57	68.33 ± 10.18
14	30.33 ± 6.53	122.13 ± 3.50	56.50 ± 1.91	84.50 ± 1.38	17.18 ± 0.96	123.14 ± 4.74
15	50.67 ± 14.77	141.39 ± 2.66	62.78 ± 2.77	102.71 ± 4.31	18.00 ± 1.31	188.92 ± 15.83
16	73.71 ± 8.96	159.86 ± 3.52	72.22 ± 2.99	121.56 ± 2.96	20.91 ± 4.12	275.00 ± 25.41

(CW- Carapace width; CL-Carapace length; CPL-Chelar propodus length; CPD- Chelar propodus depth & TW – Total weight)

Source: Josileen & Menon (2005)

Female crabs grew from an initial average CW of 2.43 ± 0.34 mm CW to 154.31 ± 2.73 mm, and reached the 16^{th} instar in a mean of 332 days. The average weight gain during that period was from 0.006 g to 210.33 ± 18.39 g (table-22).

Figure 60- Observed and fitted growth (VBGF) in laboratory grown males and females of BSC

Female crabs attain maturity by the 14th moult (crab instar-14), at a mean size of 120.43 ± 2.23 CW and the abdominal width (AW) recorded about forty percent increase, than the previous crab stage (crab instar-13).

Table 22- Growth details of Female BSC in laboratory.

Crab Stage	Average days from previous instar	CW (mm)	CL (mm)	AW (mm)	AL (mm)	TW (g)
1	0	2.43 ± 0.34	-	-	-	0.006
2	2.83 ± 0.75	4.10 ± 0.14	-	-	-	0.01
3	3.80 ± 0.84	5.20 ± 0.25	-	-	-	0.024
4	3.83 ± 0.75	6.58 ± 0.57	-	-	-	0.075
5	5.80 ± 1.09	9.62 ± 1.10	5.40 ± 0.29	-	-	0.099
6	5.60 ± 1.79	13.40 ± 0.60	7.25 ± 0.25	-	-	0.177
7	6.20 ± 1.79	17.20 ± 1.20	9.38 ± 0.14	-	-	0.32
8	7.00 ± 1.22	24.27 ± 2.06	12.25 ± 0.32	-	-	1.44 ± 0.32
9	8.80 ± 1.30	33.33 ± 3.78	16.97 ± 1.44	-	-	2.43 ± 0.50
10	14.0 ± 3.54	48.00 ± 4.76	22.30 ± 1.26	9.63 ± 0.95	14.13 ± 1.31	5.98 ± 0.72
11	16.6 ± 2.07	62.88 ± 3.57	27.63 ± 2.29	15.13 ± 1.93	17.88 ± 2.25	15.63 ± 1.70
12	16.0 ± 2.92	85.50 ± 6.75	36.20 ± 3.46	20.50 ± 0.71	24.13 ± 2.59	32.22 ± 2.85
13	25.2 ± 6.66	101.78 ± 2.78	44.11 ± 2.15	25.07 ± 3.12	30.56 ± 3.01	64.33 ± 7.50
14	36.4 ± 7.37	120.43 ± 2.23	51.83 ± 1.17	34.88 ± 3.71	37.00 ± 1.15	106.50 ± 9.94
15	68.2 ± 21.04	139.29 ± 1.81	62.50 ± 1.16	42.75 ± 1.76	47.28 ± 2.17	150.50 ± 2.90
16	112.0 ± 11.89	154.31 ± 2.73	68.23 ± 2.01	50.73 ± 1.38	55.86 ± 2.22	210.33 ± 18.39

(CW- Carapace width; CL-Carapace length; AW-Abdomen width; AL- Abdomen length & TW- Total wieght)

Source: Josileen & Menon (2005)

Laboratory grown crabs: Based on the L ∞ and K values monthly growth of P. pelagicus male and female was computed using the inverse VBGF and the monthly growth estimates of male P. pelagicus following the Faben's method, when compared to actual observed values, gave very close values, while in females the observed mean growth was close to that observed in the Munro's method. Accordingly, males and females attained a length of 176.9, 203.3 and 207.3 mm and 151.3, 181.2 and 187.2 mm at the end of 1st, 2nd and 3rd year respectively (table 23).

The VBGF estimated for the cultured crabs (laboratory grown) and wild crabs are comparable and the details are presented in the Table 23 and a group of laboratory grown juveniles of BSC are shown in Figure 61.

Table 23- Details of von Bertalanffy Growth Function (VBGF) in male and female crabs of BSC

Male	Gulland & Holt (mm)	Munro's (mm)	Faben's (mm)	Female	Gulland & Holt (mm)	Munro's (mm)	Faben's (mm)
L _∞ (Lab)	219.8	204.1	208.0	L _∞ (Lab)	211.8	188.6	211.0
K	1.82	1.9	1.8	K	1.7	1.64	1.62
L _∞ (Wild)	199.4	191.9	195.0	L∞ (Wild)	196.9	190.4	190.0
K	1.56	1.68	1.71	K	1.05	1.37	1.42
Observed L _{max}	195			Observed L _{max}	193		
1st year				1 st year			
culture	184.2	170.4	176.9	culture	173.1	151.3	170.1
wild	157.5	156.1	159.1	wild	128.0	142.0	144.1
2 nd year				2 nd year			
culture	214.6	198.5	203.3	culture	204.7	181.2	203.1
Wild	190.6	185.2	188.6	Wild	172.8	178.1	178.9
3 rd year				3 rd year			
culture	218.9	203.2	207.3	culture	210.5	187.2	209.5
Wild	197.5	190.6	193.8	Wild	188.4	187.2	187.3
Source: Josileen	(2001)						

Figure 61- Five weeks old laboratory grown Blue Swimming Crab

5. 11. Growth in Wild Crabs

In wild, the male crabs attained CW of 156.1-159.1 mm in the 1^{st} year, 185.2-190.6 in the 2^{nd} year and 190.6-197.5 mm in the 3^{rd} year. The females recorded a size of 128.0-144.1 mm in the 1^{st} year, 172.8-178.9 mm in the 2^{nd} year and 187.2-188.4 mm in the 3^{rd} year (Table 23). The growth curve by Gulland and Holt approach is presented in Figure 62.

From the Gulland and Holt growth curve it is found that in the 3rd year male and female attain a respective carapace width of 197.5 mm and 188.4 mm. Hence it is reasonable to assume that the life span of these crabs may be around three years, although majority of the crabs is fished out by intensive trawling in the early phase of their life (0- year class).

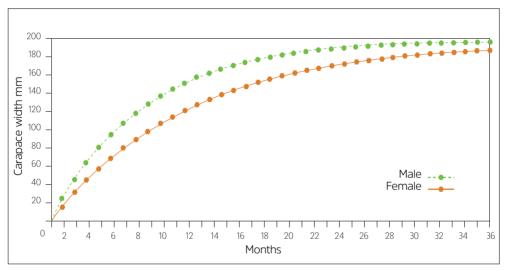


Figure 62- von Bertalnffv's growth curve for wild *Portunus pelagicus* (BSC)

6. Earlier Stock Assessment

6.1. Probability of capture

In males, the L_{25} , L_{50} and L_{75} values were 115.2, 124.7 and 130.4 mm respectively and at carapace width (CW) of 137 mm and above, all the crabs were retained by the trawl. In females these values were 115.4, 122.9 and 129.0 mm respectively and at carapace width of 142 mm and above, all the crabs were retained by the trawl (Fig. 63).

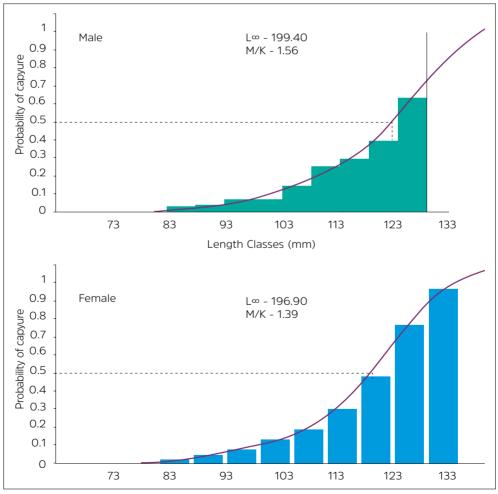


Figure 63- Probability of capture in male and female Portunus pelagicus (BSC)

6.2. Mortality parameters

The total instantaneous mortality coefficient (Z) estimated by length converted catch curve method was 4.54 for males and 3.03 females. The instantaneous natural mortality coefficient (M) estimate for males by following Rikhter & Efanov and Pauly were 2.09 and 2.76. In females the M was 1.46 and 2.11 respectively by the two methods. The instantaneous fishing mortality coefficient (F) was 2.45 for males and 1.57 for females. The exploitation rate (E) was almost similar in males and females, i.e., 0.54 and 0.52 respectively. The details are presented in the Figure 64.

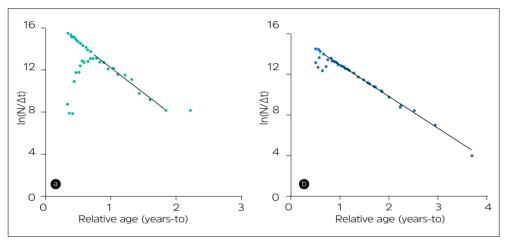


Figure 64 -Catch curve of Portunus pelagicus (BSC) in males (a) & females (b).

Males: Cut off CW (L'): 130.5 mm; mean CW (from L'): 149.6 mm; Z from the catch curve: 4.54; Natural Mortality (M for $T=29^{\circ}C$): 2.72; M value used: 2.09; Fishing Mortality: 2.45; Exploitation rate: 0.54.

Females: Cut off CW (L'): 90.5 mm; mean CW (from L'): 120.5 mm; Z from the catch curve: 3.03; Natural Mortality (M for T = 29° C): 2.11; M value used: 1.46; Fishing Mortality: 1.57; Exploitation rate: 0.52.

6.3. Yield-per-recruit (Y/R)

Analysis of the stock using 1995-1998 data indicated that the E_{max} was estimated as 0.64, E 0.1 as 0.62 and E 0.5 as 0.37 for males and 0.64, 0.61 and 0.38 respectively for females. The exploitation rate of males (0.54) and females (0.52) was almost equal. These values are very close to the E_{max} level (males: 0.638; females:0.648) and well above the 50% exploitation level (males-0.371: females – 0.379) and then yield was close to the MSY level (Figures 65 & 66).

At present, there is no ban on fishing the berried crabs and the minimum size at capture is not restricted in India except in state of Kerala, where MLS is fixed at 90 mm carapace width (CW). Recently, Sivadas *et al.*, (2019), has recommended 90 mm CW as the MLS for BSC fishery in Tamil Nadu. As a conservation measure,

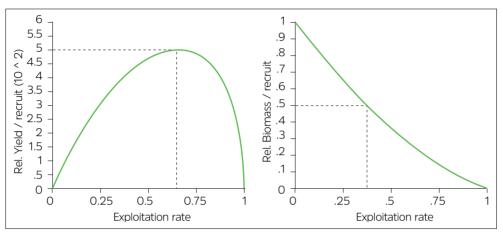


Figure 65 – Yield per recruitment analysis in male crabs of *Portunus pelagicus* (BSC)

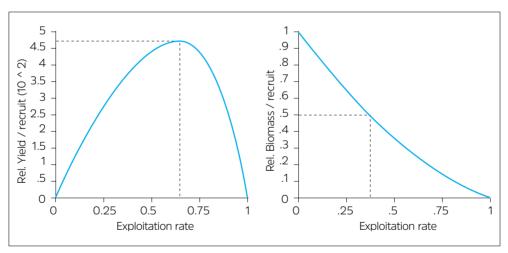


Figure 66– Yield per recruitment analysis in female crabs of Portunus pelagicus (BSC)

fishermen should be educated to release the berried and soft crabs to the sea while they are alive. The governments should take steps to implement the ban on landing and marketing the berried females, certainly these would ensure a sustainable BSC fishery as well as improve the quality of the yield.

7. Current Estimation of Maximum Sustainable Yield (MSY) – Palk Bay BSC

Results of the Bayesian Schaefer Model (BSM) using 2007-2017 catch and catch rate data indicated that the MSY is 7360 tonnes. When compared with the total BSC landings of Palk Bay during the period 2007-2017 indicated that during four years (2010-2013), total catch from the region was more than MSY limits and rest of the years it was below the MSY estimates. The exploitation (F/Fmsy) during 2017 was 0.726 and most of the years this value was above 1. The B/Bmsy in 2017 was 0.833 and from 2012 onwards it is below 1, indicating that stringent management is required for the BSC stock. The details are presented in Figures 67-69 and Table 24.

Assessment of the fishery clearly reveals catches are on the declining trend and stock has been overexploited. It is also alarming that the berried females indiscriminately exploited without any restriction of fishing on berried females.

Currently trawls are operating on three days per week and they are allowed to fish beyond 3 nautical miles as the state jurisdiction. Also total fishing ban of 61 days during April-May every year is implemented for the trawlers. However, for gillnetters or other traditional fishers presently no such ban is prevailing and also no strict enforcement of total fishing days is in place. To bring the fishery to the

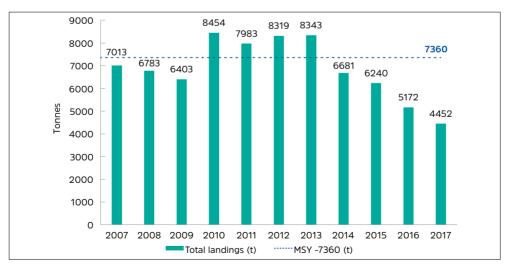


Figure 67- Total Portunus pelagicus (BSC) landings in Palk Bay during 2007-17 and MSY level

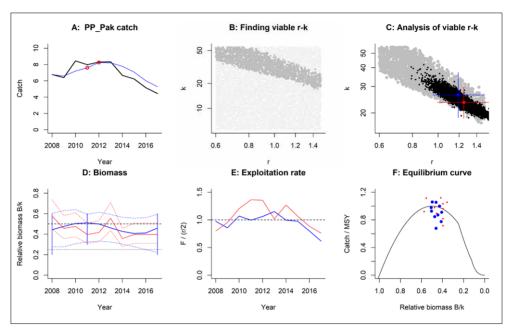


Figure 68- Results of CMSY analysis for Portunus pelagicus (BSC) landings in Palk Bay during 2007-17

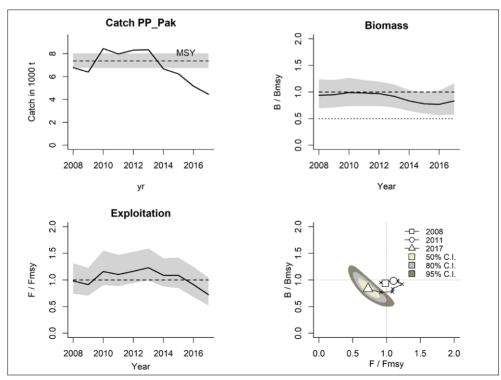


Figure 69- Summary of CMSY analysis in Portunus pelagicus (BSC) for Palk Bay during 2007-2017

sustainable level, the best possible immediate action is the total ban on fishing and landing berried females. This must be immediately bringing to enforcement for all the gears which are exploiting the BSC. The total fishing days of the gillnetters also must be reduced. If these regulatory measures are implemented at the earliest within a couple of years, the BSC stock can be increased. Other suggestions and recommendations are given in the proposed management plan.

Table 24- Estimates of MSY and model parameters of BSC along with confidence limits

Parameters	CMSY	BSM
MSY	7820	7360
	(6060 – 10100)	(6760–8020)
r	1.19	1.25
	(0.957-1.48)	(0.99-1.58)
k	26300	23500
	(18500-37200)	(18400-30100)
Relative biomass in last year	0.457	0.417
(B 2016/k)	(0.218-0.595)	(0.289-0.580)
Exploitation F/(r/2) in last year	-	0.726
		(0.521-1.05)
q	-	0.000214
		(0.000181000254)
$\overline{B_{msy}}$	=	11800
		(9220-15000)
Fishing mortality	-	0.626
(F _{msy})		(0.496-0.788)
F _{msy} in last year	-	0.454
		(0.326 – 0.654)

MSY-Maximum sustainable yield; MSY = r k/4; r = Maximum intrinsic rate of population increase; k = Parameter of the Schaefer model indicating unexploited stock size; B = Biomass, total weight of exploited fish in the water; q-Catchability coefficient; CPUEt = q Bt; B_{msy} -Biomass capable of producing MSY; F_{msy} -Rate of fishing mortality compatible with MSY; F_{msy} = 0.5 r

8. Projection on advantages of not fishing berried females

It is well understood that to sustain the Blue Swimming Crab fishery strict management of the fishery is essential and the best possible immediate action is the total ban on landing and sale of berried females. When berried females exploited indiscreetly that would directly affect the recruitment of the young ones into the fishery.

Tables 25-27 describe the situation/scenario if berried females are not fished and how fishery is going to be benefitted. BSC is a continuous spawner and highly fecund, which ranges between 60000 – 1976398. BSC fishery mainly comprised, of 120-159 mm CW females and the average fecundity of this group is about 828569 nos. Hatchery seed production of crablets proved on an average 5% survival from Zoea 1 to first baby crab stage (Crab instar-1). However, considering the natural predation in the wild, for estimating the seed production survival is fixed at very low percentage (@0.1%). With this survival rate, about 830 baby crabs (crab instar-1) can be produced from a single female and out of that 1 % would survive to the catchable size (100 g) after a period of 4 months. Total duration to obtain this size including the larval phase would be approximately 5 months.

Table 25 – Details of fecundity and survival rates used for the estimation

Size range (mm)	No. of eggs *(Josileen, 2013)	Average fecundity of the major size group in fishery	Facts & Assumptions
100-109	203455		# For further estimation, average no.
110-119	214175		of fecundity taken as 830000.
120-129	640431		# Mass seed production of crablets
130-139	470092	828569	obtained on an average of 5% survival from Zoea-1 to Crab instar (Josileen, 2001 & Maheswarudu,
140-149	936731		
150-159	1267022		et al. 2008). However, for estimation
160-169	1230900		in the wild, survival fixed @ 0.1%
170-179	1472240	_	considering natural predation.
180-189	1677168		

Tables 26 & 27 explain the scenario in trawls and gillnets respectively. In trawl landings generally females are dominating, however for estimation 1:1 ratio has taken and in

gillnets males are pre-dominant and hence 60:40 ratio used for estimation. Previous studies assessed that in trawls, 38% of the landed females are berried (Fig.51) and in gillnets berried females formed 12% (Fig. 52) and these are also taken for the present calculation. The stages of estimation are shown in the respective tables.

In trawls, if berried crabs are not fished for a month, an equal quantity of that month's total production can be harvested after a period of 5 months. Similarly, from gillnets, 32% of the particular month's production can be obtained after a period of 5 months.

Table 26- Illustration – What happens if Berried females are not landed in Trawls for a month

Parameter	Logic	Estimated value
Expected number of first baby crabs (crab instar-1) from one female	Average fecundity is 830000 and survival from zoea-1 (Z-1) to crab instar-1 (C-1) is presumed to be @ 0.1%	830 nos.
Expected number of recruits from one spawning mother	Out of 830 nos., 1% survive to the catchable size (further 4 months)	8 marketable size crabs
Total landing of females in a trawl centre in one month	Suppose 50 tonnes of crabs are landed in the centre in a month and male: female ratio is 1:1, 25 tonnes would be females	25000 kg
Number of females in one kilogram	Average weight of the female is 150 g	7 nos.
Number of berried females in one kilogram	@ 38% of females-considering annual average of berried female for 11 years= 2.66 nos. ~ 2.5 crabs	2.5 nos.
Total number of berried females in one-month catch	25000*2.5	62500 nos.
Potential production of crabs after 5 months	If no fishing of berried crabs for a month, 62500*8	500000 nos.
Total production of marketable size crabs after 5 months	Marketable size = 100 g; 500000*100=50000000 g =50000 kg	50 tonnes
Total value of the 50 tonnes crabs	50000 kg @ 250 Rs. /kg	Rs. 12.5 million.

Conclusion: In trawls, if we save berried females for a month, after a period of 5 months*, an equal quantity of one month's production can be obtained.

(* includes-spawning to hatching period (duration of embryonic development ~ 10 days) & larval development period (zoea-1 to first crab stage ~ 15-18 days) together taken as one month plus four months, duration taken by the first crab (C-1) to reach marketable size)

Table 27-Illustration – What happens if Berried females are not landed in Gillnets for a month.

Parameter	Logic	Estimated value
Expected number of first baby crabs (crab instar-1) from one female	Average fecundity is 830000 and survival from zoea-1 (Z-1) to crab instar-1 (C-1) is presumed to be @ 0.1%	830 nos.
Expected number of recruits from one spawning mother	Out of 830 nos., 1% survive to the catchable size (further 4 months)	8 marketable size crabs
Total landing of females in a gillnet centre in one month	Suppose 100 tonnes of crabs are landed in the centre in a month and male: female ratio is 60:40	40,000 kg
Number of females in one kilogram	Average weight of the female is 125 g	8 nos.
Number of berried females in one kilogram	@ 12% of females-considering annual average of berried female for 6 years= 0.966 nos. ~ 1 crab	1 no.
Total number of berried females in one-month catch	40000*1=40000	40000 nos.
Potential production of crabs after 5 months	If no fishing of berried crabs for a month, 40000*8	320000 nos.
Total production of marketable size crabs after 5 months	Marketable size = 100 g; 320000*100=32000000 g =32000 kg	32 tonnes
Total value of the 32 tonnes crabs	32000 kg @ 250 Rs. /kg	Rs. 8 million.

Conclusion: In gillnets, if we save berried females for a month, after a period of 5 months*, 32 % of a months catch can be obtained.

^{(*} includes–spawning to hatching period (duration of embryonic development \sim 10 days) & larval development period (zoea-1 to first crab stage \sim 15-18 days) together taken as one month plus four months, duration taken by the first crab (C-1) to reach marketable size)

9. Harvest Control Rules for BSC Fishery of Palk Bay

Harvest control rules (HCRs) identify a pre-agreed course of management action as a function of identified stock status and other economic, social or environmental conditions, relative to agreed reference points (Berger et al., 2012). Thus, HCRs formulate a procedure for making harvest policy decisions, such as converting the outcomes from a stock assessment into management actions (i.e. increasing, maintaining, or decreasing levels of fishing) to achieve the desired state. Pre-agreed harvest rules allow managers to act immediately when the state of the fishery degrades beyond acceptable limits like a limit reference point (LRP).

Although harvest strategy and HCRs are not a mandatory requirement as per the current regulatory acts of maritime states in India, it is necessary to develop these

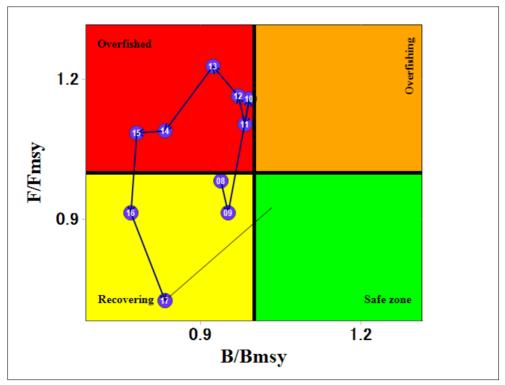


Figure 70- Kobe plot of the BSC fishery in Palk Bay showing the status of the stock during 2007 to 2017.

so that the fishery managers can judiciously act based on the status of the stock for sustainability of the resources. Berger *et al.* (2012) further state that without explicit rules to govern harvest levels, there is a tendency for exploitation rates to move towards levels that maximize short-term gains rather than levels that achieve long-term objectives (e.g., stable yields, maximizing catch rates, maintaining sufficient reproductive capacity, or preventing overfishing).

For the BSC fishery the harvest strategy would be to maintain yields close to the estimated MSY (7360 tonnes) using a catch and effort based harvest control measure (Y/MSY and F/F_{msy}) as reference points. The Kobe plot of the fishery (Fig. 70) shows the stock status of the fishery during the past 11 years. The plot indicates that the stock was overfished during 2011 to 2015 period with high effort and low biomass, subsequently in 2016 and 2017, the effort was considerably less placing the stock in rebuilding status. In order to turn the stock trajectory to healthy status, the recommendation on protection of berried crabs given in this document would help to build up the crab biomass.

The target reference point (TRP) for the fishery would be the MSY of 7360 tonnes allowing for a fluctuation of plus or minus 20%. Once the fishery yields exceed these limits (lower limit -5888 tonnes & higher limit -8832 tonnes) effort limitation should be introduced to maintain the stock at healthy levels. Should the yields increase or decrease by 50% of the TRP, more stringent effort control by way of fishery closures should be put in place as a precautionary approach.

10. Strengths and Weakness

The strength and weakness of the BSC fishery and related aspects are listed out as following:

Strengths

- 1. Regular monitoring of fishery i.e. Trawl as well as Gillnet fishery is in place
- 2. Details of the fishing zones and landing centres are available
- 3. Information available on ecological and geographical parameters of Palk Bay
- 4. Total landing of the BSC and other resources are available
- 5. Details of the population characters and biological parameters of the BSC from the area available
- 6. Complete life cycle of the species studied from wild as well as from captive stock and published data on growth and development, food & feeding, fecundity etc. available
- 7. Biological studies state that BSC is a continuous breeder with high fecundity
- 8. Fast growing species reaching 100 g size within 6 months' time with a short life span of 2.5 to 3 years
- 9. Mass seed production and farming of the species are proven
- 10. The marine fisheries policy guidance to the Tamil Nadu state is prepared by CMFRI
- 11. Crab Meat Processors Association (CMPA) is active and ready to accept and implement the management plan
- 12. Crab gillnet -Nanduvalai- is a non-destructive gear
- 13. No ETP species caught in Nanduvalai

14. In Crab gillnet, only Crabs are targeted; BSC is the major species caught with minor quantities of other crab spp.

Weakness

- 1. No fishery management plan in place in general and also no specific management plan for BSC other than 61 days' ban for trawlers during April-May of every year
- 2. No self-imposed management measures from local fishermen/groups other than compulsory withdrawal from fishing during unfavourable weather.
- 3. Traditional sector also has no regulation in number of boats & nets and no harvesting strategies & rules are in place.
- 4. No management plans for the crab fishing habitat especially for the seagrass beds, which form the nursery ground for BSC
- 5. No serious Fishermen awareness programme.
- 6. No limits or specifications fixed for the crab buyers/traders.

11. BSC Management Plan (BSCMP)

Objectives

The proposed fishery management plan is intended to judiciously sustain and improve the BSC stock from the region through strict adherence to the rules and regulations with active participation and co-operation of all the stakeholders of the BSC fishery. The proper management requires an integrated approach, each stake-holder should adhere to the proposed measures and ensure the compliance with strict enforcement. Ultimately the goal is to achieve a sustainable exploitation of the BSC without causing any damage or harm to the ecosystem and also protecting its biodiversity through careful observation of the rules and regulations from fishing to trade. Hence, the proposed management plan necessitates an early streamlining of all the concerned activities as a precautionary approach which leads to attain a long-term status for BSC fishery as a well sustained fishery without overfishing or stock depletion. Reflections of a well-managed fishery can be observed not only in the sustenance of the fishery but also in the promotion of the environmental, economic and social sustainability.

Based on the facts and evidences gathered and proved over by many years' systematic studies on BSC, the following rules and regulations are recommended for the implementation in the Palk Bay region. Initial phase the proposed plan can be implemented in the Palk Bay and later it can be implemented to other main BSC fishing regions also.

Rules and regulations:

- 1. Minimum Legal Size (MLS) should be fixed at 90 mm CW a MLS measuring device (Fig. 71) must be distributed to the fishers, traders, etc.
- 2. Total Ban on landing of berried females- berried crabs must be put back to the sea as early as possible.
- 3. Soft shelled crabs caught also must be put back to the sea.
- 4. No trade of berried crabs-Crab processors/merchants should not buy berried crabs/ undersized crabs
- 5. BSC nursery grounds like coastal seagrass beds must be declared as Protected Area; no fishing should be permitted in these areas.

- 6. Number of fishing days should be restricted to traditional crab fishers 200 days.
- 7. Compulsory registration and licenses should be given for BSC fishers, boats, gears and collection centers & processing plants.
- 8. Strict enforcement through regular monitoring and punishment for violation.
- 9. Formation local fisher groups /leaders for regulating the crabbers at main BSC landing areas.
- 10. Fisherfolk must adhere to the management measures and ensure the implementations are followed by themselves through patrolling activities.
- 11. BSC fisheries Governance Council (BSCFGC) should be formed with specific responsibilities for each unit to fulfil the regulations and management plan.
- 12. Fishermen must cooperate with other stakeholders and share information, data to implement the management plan.

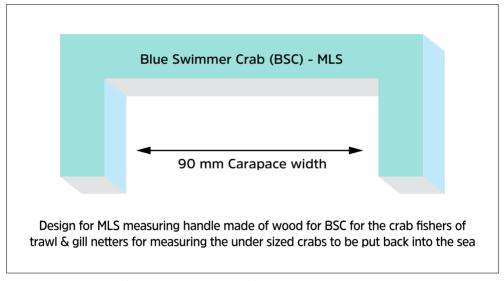


Figure 71- Design for MLS measuring device for BSC fishery

12. References

Ameer Hamsa, K. M. S. 1978. Fishery of the swimming crab Portunus pelagicus Linnaeus from Palk Bay and Gulf of Mannar. Indian J. Fish., 25 (1 & 2): 229-233.

Berger A M, S J Harley, G M Pilling, N Davies, J Hampton. 2012. Introduction to harvest control rules for WCPO tuna fisheries. WCPFC-SC8-2012/MI-WP-03, 33p.

Eldho Varghese, Sathianandan, T. V., Jayasankar, J., Somy Kuriakose, Mini, K.G. and Muktha, M. 2019. Bayesian statespace implementation of Schaefer production model for assessment of stock status for multi-gear fishery. Journal of the Indian Society of Agricultural Statistics: (In press)

Fabens, A. J., 1965. Properties and fitting of the Von Bertalanffy growth curve. Growth, 29: 265-289.

Froese, R., N. Demirel, G.Coro, K. M. Kleisner and H. Winker, 2017. Estimating fisheries reference points from catch and resilience. Fish and fisheries. 18: 506-526.

Gulland, J. A. & S. J. Holt, 1959. Estimation of growth parameters for data at unequal time intervals. Journ. Cons. CIEM. 25 (1): 47-49.

Josileen, J. 2001. On the fishery, biology and the hatchery technology of the portunid crab *Portunus pelagicus*. Ph. D. Thesis, Cochin University of Science and technology, Cochin, India.137p.

Josileen, J. 2011a. Food and feeding of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758) (Decapoda, brachyura) along the Coast of Mandapam, Tamil Nadu, India. Crustaceana, 84 (10):1169-1180.

Josileen, J. 2011b. Morphometrics and Length-Weight Relationship in the Blue Swimmer Crab, Portunus pelagicus (Linnaeus, 1758) (Decapoda, Brachyura) from the Mandapam Coast, India. Crustaceana, 84 (14):1665-1681.

Josileen, J. 2013. Fecundity of the Blue Swimmer Crab. Portunus pelagicus (Linnaeus, 1758) (Decapoda, Brachyura, Portunidae) along the coast of Mandapam, Tamil Nadu, India. Crustaceana, 86 (1): 48-55.

Josileen, J. and Menon, N G. 2004. Larval stages of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758) (Decapoda, Brachyura). Crustaceana, 77 (7): 785-803.

Josileen, J. and N. G. Menon, 2005. Growth of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758) (Decapoda, Brachyura) in captivity. Crustaceana, 78 (1): 1-18.

Josileen, J. and N. G. Menon, 2007. Fishery and growth parameters of the blue swimmer crab Portunus pelagicus (Linnaeus, 1758) along the Mandapam coast, India. Journal of the Marine Biological Association of India, 49 (2): 159-165.

Josileen J., A.Gopalakrishnan, P. R. Divya, V. Basheer and G. Maheswarudu. 2014. Taxonomic identity of Portunus pelagicus species complex in Indian waters using morphological and mitochondrial DNA markers. In Marine Ecosystems - Challenges and Opportunities 2-5 Dec 2014, Kochi, Abstract no. MBTP 42, MECOS-2, MBAI: 287p.

Kasim, H. M. 2015. Resources and livelihoods of the Palk Bay: Information from India & Sri Lanka. https://www. researchgate.net/publication/281198322.

Kumaraguru, A.K., V. Edwin Joseph, M. Rajee and T. Blasubramanian. 2008. Palk Bay-Information and Bibliography, CAS in Marine Biology, Annamalai University, Parangipettai and Centre for Marine and Coastal Studies, Madurai Kamaraj University, Madurai. 227 pp.

Lai J.C, Ng P.K.L and Davie P.J.F. 2010. A revision of the Portunus pelagicus (Linnaeus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. Raffles B Zool 2010, 58: 199-237.

Maheswarudu, G, Josileen Jose, Nair, K. R. Manmadhan, and M. R. Arputharaj. 2008. Evaluation of the seed production and grow out culture of blue swimming crab Portunus pelagicus (Linnaeus, 1758) in India. Indian Journal of Marine Sciences, 37 (3): 313-321.

Mathews, G., K. Diraviya Raj, T. Thinesh, Jamila Patterson, J.K. Patterson Edward and Dan Wilhelmsson. 2010. Status of seagrass diversity, distribution and abundance in Gulf of Mannar Marine National Park and Palk Bay (Pamban to Thondi). Southeastern India. South Indian Coastal and Marine Bulletin. Vol. 2 (2): 1 – 21.

Munro, J. L., 1982. Estimation of parameters of the von Bertalanffy growth equation from recapture data at variable time intervals. Journ. Cons.CIEM, 40: 199-200.

Prasad, R. R. and P. R. S. Tampi. 1952. An account of the fishery and fishing methods for *Neptunus pelagicus* (L.) near Mandapam. J. Zool. Soc. India, 3(2): 335–339.

Rickter, W. E., 1973. Linear regressions in fisheries research. Journ. Fish. Res. Bd Canada, 30 (3): 409-434.

Rajamani, M and A. Palanichamy. 2010. Current Status of Crab Fishery in Artisanal Sector along Gulf of Mannar and Palk Bay Coasts. In: Coastal Fishery Resources of India–Conservation and sustainable utilisation. Society of Fisheries Technologists, pp.90–97.

SDMRI, 2013. Seagrass-Watch, E-Bulletin.pp12. http://www.seagrasswatch.org/publications. html# Ebulletin.

Sivadas, M., P. U. Zacharia, P. T. Sarada, R. Narayanakumar, Shoba Joe Kizhakudan, Margaret Muthu Rathinam, S. Surya, L. Remya, M. Rajkumar, E. M. Chhandaprajnadarsini, P. P. Manojkumar, I. Jagadis, M. Kavitha, K. N. Saleela, Grinson George and P. Laxmilatha 2019. Management Plans for the Marine Fisheries of Tamil Nadu. ICAR-CMFRI Mar. Fish. Policy Series No.11. ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India, 104 pp.

Snedecor, G. W. and W.G. Cochran, 1967. Statistical methods applied to experiments in agriculture and biology. 1-534. (The Iowa State College Press, Ames, Iowa).

Srianth, M., Somy Kuriakose and K.G. Mini, 2005. Methodology for estimation of marine fish landings in India. CMFRI Spl. Publ., No. 86, 57 pp.

Stehlik, L. L., 1993. Diets of the brachyuran crabs *Cancer irroratus*, *C. borealis* and *Ovalipes ocellatus* in the New York Bight. Journ. Crust. Biol., 13 (4): 723-735.

Stephen, J., A. Menon and P. Anbazhagan. 2013. Socio-Economic profile of Palk Bay Fisheries India. "Re-incorporating the excluded: providing space for small-scale fishers in the sustainable development of fisheries of South Africa and Sri Lanka"-REINCORPFISH. Netherlands Organisation for Scientific research, Madras Institute of Development Studies. pp 63.

Acknowledgements

Authors wish to place on record their sincere gratitude to Dr. A. Gopalakrishnan, Director, CMFRI, for his encouragements and support in bringing out this special publication.

We specially thank Dr. T. V. Sathianandan HoD, Fishery Resource Assessment Division, CMFRI for providing the data and Smt. Sindhu K. Augustine, Technical Officer of the division for her timely help. We are thankful to Shri K. M. David, Artist, CMFRI for the illustrations.

The authors acknowledge crab-fishers of the various landing centres Palk Bay for sharing valuable information and their co-operation at various occasions. The first author is grateful to Shri. A. Gandhi. Technical Officer, MRC of CMFRI. Mandapam Camp for his help and assistance during the interactive sessions with Palk Bay crab fishers.

Information on market trends and trade provided by the various members of Crab Meat Processors Association, augmented the data and authors are thankful to them.

We also thank Dr. Vinod Malayilethu, Team leader, Marine Conservation Programme, WWF-India and Dr. Ranjit Suseelan, MSC Co-ordinator, India for their valuable suggestions.

The inputs from the stakeholder meetings held during 06.01.2018 and 10.10.2018, enormously abetted the enhancement of this document and authors are thankful to them

The immense help and assistance extended by the Crustacean Fisheries Division colleagues of MRC of CMFRI, Mandapam Camp during the early phase of the BSC research is unforgettable and Dr. Josileen thank them profusely for their immeasurable support.

Fishery Management Plan for

Palk Bay Blue Swimming Crab

Portunus pelagicus, commonly known as Blue Swimming Crab (BSC) is a highly valuable marine crab in India and bulk of the BSC products are exported to US. BSC is fished continuously from Palk Bay (PB), mainly by indigenous bottom-set gillnets known as *Nanduvalai*. Growth studies revealed that life span of BSC is around three years, although majority of the crabs are fished in the 0-year class. A Minimum Legal Size (MLS) of 90 mm carapace width is recommended to prevent growth overfishing. To sustain the BSC fishery strict management of the fishery is essential and the best possible immediate action is a total ban on landing and sale of berried females. For the BSC fishery the harvest strategy would be to maintain yields close to the estimated Maximum Sustainable Yield (7360 tonnes) using catch and effort based harvest control measure as reference points. Based on the facts and evidences, guidance on a Fishery Management Plan for Palk Bay BSC fishery are presented.

Indian Council of Agricultural Research
Central Marine Fisheries Research Institute

Post Box No.1603, Ernakulam North P.O., Kochi-682 018, Kerala, India. Phone: +91 484 2394357, 2394867 Fax: +91 484 2394909 E-mail: contact@cmfri.org.in www.cmfri.org.in

