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CHAPTER I 

INTRODUCTION TO THE SOUTHERN OKALHOMA AULACOGEN 

Note: 

 This thesis is set up to be the manuscript option. Chapter 1 provides a comprehensive 

overview of the Southern Oklahoma Aulacogen (SOA). Chapter 2 is the manuscript itself. 

Chapter 3 details future work split between ongoing projects, and possible avenues of research 

for other workers.  

1. INTRODUCTION: 

 

 The Southern Oklahoma Aulacogen (SOA) is a NW trending aulacogen in Oklahoma and 

Texas, where it divides locally into the Wichita Uplift (WU) and Amarillo Uplift (AU), 

respectively (Fig. 1).  The SOA originated as a Cambrian failed rift associated with Rodinia 

disassembly, and experienced structural inversion in the Late Paleozoic as part of the Ancestral 

Rocky Mountain (ARM) uplift (Keller and Stephenson, 2007; Leary et al., 2017).  Post inversion 

the SOA has remained tectonically inactive and erosion has resulted in extensive deposition 

along the northern flank of the SOA, resulting in the hydrocarbon rich Anadarko basin (Perry, 

1989)  

In the modern day the SOA is a notable seismic hazard in the south central United States 

(Peterson et al., 2014; Boyd et al., 2015) with seismicity frequently clustering along its length 
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(Fig. 2).  The SOA also houses the Meers fault, which is the only known Quaternary fault 

in the south central US (Crone and Luza, 1990; Hornsby, 2017). Despite these hazards the SOA 

still represents a seismic hazard with a poorly constrained internal structure.  Here I use this 

study to map the structure of the SOA, in order to better understand the fault system and map 

potentially hazardous faults, which are critical for seismic source models (CEUS-SSCN, 2012) and 

seismic hazard assessments (Peterson et al., 2014).  

 
Figure 1: Map showing Ancestral Rocky Mountain related uplifts and midcontinent aulacogens, 

highlighting the Southern Oklahoma Aulacogen (SOA) as the only feature belonging to both of 

these subgroups. Modified from Leary et al. (2017) and references therein; relies on Budnik, 

(1986) and Stein et al. (2014).  WU-Wichita Uplift; AU-Amarillo Uplift; Du-Diablo Uplift; Cb-

Central Basin Platform; MRR-Matador-Red River Uplift; Ar-Arbuckle Uplift; Na-Nemaha 

Uplift; Ca-Cambridge Arch; Fr-Front Range Uplift; Uu-Uncompahgre Uplift; P-Perdernal Uplift; 

A-Albuquerque fault; RF-Reelfoot Rift; MC-Midcontinent Rift; AN-Anadarko Basin; PD-Palo 

Duro Basin. 
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Figure 2: Seismicity in the US midcontinent from USGS catalogs spanning 1900-2019 and from 

Walter et al. (2018) draped over major tectonic features in the region.  Red bodies show paleo-

rifts, black lines show borders and/or traces of various tectonic features.  Clustered seismicity 

related to wastewater activities in Texas, Oklahoma, Arkansas and Colorado is not included.  

ETSZ – Eastern Tennessee Seismic Zone ; NMSZ – New Madrid Seismic Zone; WSZ – Wabash 

Seismic Zone; SOA – Southern Oklahoma Aulacogen; YMS – Yavapai-Mazatzal Suture; CB - 

Cheyenne Belt 

 

2.0 GEOLOGIC HISTORY AND SETTING  

 The SOA originated as the failed rift arm of a rift-rift-rift triple junction during Rodinia 

disassembly (Hoffman et al., 1974) along a relatively stable southern margin of Laurentia.  

Rifting is suggested to have initiated in response to a plume impact somewhere around modern 

Dallas, TX (Hoffman et al., 1974; Burke and Dewey, 1973).  The signature of this plume and 

related rift volcanism is still preserved as anomalously high gravity extending in 3 directions 

from Dallas: south into Texas, northwest as the SOA, and northeast into Arkansas where it is 

partially obscured by the later Ouachita orogenic event (Keller and Baldridge, 1995; Keller and 

Stephenson, 2007). Further support for the plume model comes from modern geochemical 

sampling of SOA igneous rock, which suggests plume origins for SOA volcanics (Wall et al., 

2018; 2019).  Initial extension produced the intrusive mafic Glen Mountain Layered Complex 
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(GMLC) and extrusive Navajoe mountain basalts (Gilbert, 1983; Lambert et al., 1988) (Fig. 3A, 

B).  Faulting, half-graben extension, and rotation of the GMLC followed prior to the intrusion of 

the Roosevelt Gabbro Plutons (RGP) (McConnell and Gilbert, 1990) (Fig. 3C). Continued 

magmatism resulted in the Meers Quartzite, Carlton Rhyolite, and Wichita Granites; magmatism 

ended with the intrusion of late diabase dikes that cut all other igneous rocks in the region, but do 

not cross the regional unconformity into the overlying Upper Cambrian-Paleozoic Reagan 

Sandstone (McConnell and Gilbert, 1990; Gilbert, 1983; Ham et al., 1964) (Fig. 3D, E).  Rift 

associated volcanism and magmatic activity within the SOA may be broadly defined into two 

primary phases. The first was an intercalated mafic gabbro phase (Fig. 3B-D), which was later 

followed by a more felsic eruption phase (Fig. 3E). These two phases also had various pulses of 

dolerite dikes emplacement (Gilbert and Hogan, 1998; Hanson et al., 2013).  Magmatism is 

suggested to have occurred from ~539-528 Mya, with the majority of magmatism occurring in an 

approximately 2 My timeframe from 532-530 Mya (Hogan and Gilbert, 1998; Wall et al., 2018; 

2019).  On the basis of the extensive magmatism Hanson et al. (2013) has argued that rifting in 

the SOA was voluminous enough to be classed as a Large Igneous Province (LIP), the only one 

along the southern margin of Laurentia.   

Following the period of extension was a period of rift subsidence and pulses of broad 

crustal flexure (Amsden, 1982) from the Ordovician to the Devonian. Here marine transgression 

deposited some 4-5 km of carbonate muds, shelf carbonates, clean sands, and an increasing 

record of unconformities (Hanson et al., 2013; Gilbert, 1983; Ham et al., 1964) (Fig. 3F, G). 

Uplift and inversion followed in the Late Paleozoic as part of the wider ARM, a suite of 

contemporaneous uplifts and deformation features spanning from Chihuahua, Mexico into 

British Columbia, Canada (Shumaker et al., 1992; Dickerson, 2003; Leary et al., 2017). 
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Causative forces for ARM uplift remains enigmatic and a variety of tectonic models, frequently 

competing, exist to explain uplift (e.g. Leary et al., 2017; Marshak et al., 2000; Kluth et al., 

1998; Ye et al., 1996; Budnik, 1986; Kluth, 1986; Kluth and Coney, 1981, among a variety of 

others). Faulting styles also remain controversial with high angle reverse faults being invoked 

frequently (Leary et al., 2017 and references therein), which are suggested to be reactivated 

remnants of Precambrian rifting in the region (Marshak et al., 2003).   

In the SOA thrust faulting appears to be the dominant method of ARM related uplift 

(Brewer et al., 1983; McConnell, 1989; Perry, 1989) (Fig. 3B in Chapter II) in line with other 

south central ARM uplifts (King, 1965; Ye et al., 1996).  During inversion approximately 15 +/- 

5 km of crustal shortening occurred, along with 12-15 km of vertical uplift (Brewer et al., 1983; 

Perry, 1989; Keller and Stephenson, 2007). Strike slip movement is also present, but is a point of 

debate with estimates ranging from a few km to >150 km, and frequently showing the opposite 

direction of motion (e.g. Leary et al., 2017; Marshak et al., 2003; McConnell, 1989; Granath, 

1989; Budnik, 1986 among a variety of others). 

Of note in the literature is the argument by Thomas (1991, 2011) who suggests that the 

SOA, and associated magmatism is due to it being a leaky transform, and not a failed rift.  While 

strike slip movement in the SOA is noted (see above) the large spatial extent of volcanic material 

noted by Ham et al. (1964), alongside the large volume of at-depth mafic materials (Hanson et 

al., 2013; Brueseke et al., 2016) is in contrast to the relatively small volume of magmatic 

material associated with leaky transform systems (Skulski et al., 1991; 1992).  Additionally, the 

geochemical characteristics of SOA magmatic material exhibits tholeiitic, intraplate continental 

rift affinity, and matches well with known geochemical signature of ocean island basalts and 

plumes (Gilbert, 1983; Hanson, et a., 2013; Brueseke et al., 2016; Wall et al., 2018; 2019).  This 
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is in contact to leaky transforms, which are usually characterized by alkaline and transitional 

magmatic affinities (Skulski et al., 1991; 1992).  It should be noted that some igneous rocks in 

the SOA do have alkaline signatures, but these are typically interpreted to represent materials 

created by either crustal fractionalization or crustal contamination/assimilation (Gilbert, 1983; 

Hanson, et al., 2013; Brueseke et al., 2016).  Finally, Hanson et al. (2013) notes that leaky 

transforms and rifting are not mutually exclusive, and that strike slip movement attributed to 

leaky transforms is a common feature of developing rifts.  Given the results of these previous 

works, we will refer to the SOA within the context of a failed rift, when necessary. 
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Figure 3. Tectonic history of the SOA.  A-E is the rifting phase; F-G is the post rift subsidence 

phase; H is the post ARM inversion phase. Figure adapted from Gilbert (1983). Relies on 

Amsden (1982), Brewer et al. (1981, 1983),  Donovan (1982), Myers et al. (1981), Keller and 

Stephenson (2007), Cullen, (2016), Powell et al., (1980), Ham et al. (1964), McConnell and 

Gilbert (1990); Denison (1995); Wall et al., (2018; 2019); Hanson et al., (2013); Gilbert and 

Hogan (1998) and this report.
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ABSTRACT 

While intraplate seismicity can occur anywhere, events frequently localize along preexisting 

buried basement faults associated with ancient tectonic features and boundaries (ATFBs).  

Detailed structural study of these structures can help to determine critically oriented faults vital 

for intraplate seismic source models and hazard assessments. Here, we use recently acquired 

high resolution aeromagnetic data over the Southern Oklahoma Aulacogen (SOA), a failed 

Cambrian rift which experienced inversion during the Ancestral Rocky Mountain orogeny, to 

provide an unprecedented view of the basement. We integrate the aeromagnetic data with 

seismic reflection, well-log, remote sensing, field, and earthquake data to assess the modern 

seismic hazard of SOA faults. Our results reveal the dominance of NW and E-W trending fault 

sets, the latter of which contains a previously unmapped ~100 km-long E-W trending sinistral 

strike-slip fault, which we call the Willow Fault. Our results also augment the subsurface extent 

of the NW trending Meers Fault, the only known seismogenic fault with Quaternary expression 

in south-central United States. Further, we demonstrate the seismic hazard of the major faults in 

the SOA; and show that in the current stress field the NW trending Meers Fault is critically 

oriented, while the additional NW trending faults could represent additional hazards.  We also 

find that the Willow Fault, and the other sub-vertical E-W faults, while not critically oriented in 

the regional stress field, are not mis-oriented for failure. Recent observations of pronounced 

natural seismicity along E-W and NW-striking planes in the SOA and the flanking Texas 

Panhandle underscore the contemporary seismic hazards of the buried structures. The 

investigative approach and results presented in this study demonstrate both the seismic hazard of 

intraplate ATFBs and the method of characterizing the relevant buried faults. 
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1.0 INTRODUCTION    

 Earthquakes largely cluster along plate boundaries in response to stress from plate 

motions.  However, infrequent large events like the December 1811 and February 1812 Mw >7.0 

New Madrid, 2017 Mw 6.5 Moiyabana, Botswana, and 2011 Mw 5.8 Mineral, Virginia 

earthquakes (Hough et al., 2000; McNamara et al., 2013; Kolawole et al., 2017) demonstrate that 

damaging events can occur within stable continental interiors, far from areas of intense strain 

related to active plate boundaries. Locating many of the causative faults of these earthquakes has 

historically been after the fact (e.g., McNamara et al., 2013; Kolawole et al., 2017) and 

frequently, the causative faults remain poorly understood despite concentrated study of singular 

events (e.g., CEUS-SSCN, 2012). This likely reflects the inherent difficulties of identifying 

hazardous faults in intraplate regions as tectonic stability, erosion and very long recurrence 

intervals ranging from 100-100,000 years limit surface exposures and recent surface ruptures 

(Peterson et al., 2014; Liu and Stein, 2016; Magnami et al., 2017). Thus, of perhaps first order 

importance is knowing where faults are located, and assessing which represent the most probable 

hazards in the current stress field, as a way to develop better seismic source models and seismic 

hazard assessments (CEUS-SSCN, 2012; Peterson et al., 2014), and to help to direct future 

paleoseismic and geodetic studies. 

Since intraplate events tend to cluster near crustal zones of weakness, often associated 

with ancient tectonic features and boundaries (ATFBs) such as orogenic belts, rifts, failed rifts 

and sutures (Tuttle et al., 2002; McNamara et al., 2013; Shah et al., 2014; Kolawole et al., 2017; 

Levandowski et al., 2017), ATFBs represent areas of primary concern and interest. ATFBs are 

often characterized by litho-structurally distinct fabrics relative to the bounding blocks, thus high 
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resolution geophysical imaging may be well-suited for delineating the associated buried 

basement faults to assess their seismic hazards. For example, aeromagnetic data proved useful in 

revealing the causative faults of the 2017 Mw 6.5 Moiyabana, Botswana earthquake where it was 

shown the event resulted from extensional reactivation of splay faults within a suture zone 

(Kolawole et al., 2017).  

Recent and historic observations of pronounced natural seismicity along the Southern 

Oklahoma Aulacogen (SOA) and the flanking Texas Panhandle area (Crone and Luza, 1990; 

Hornsby, 2017; Walter et al., 2018) presents a major contemporary seismic hazard in south-

central U.S. Recently-acquired high-resolution aeromagnetic data over the SOA now affords us 

the opportunity to investigate the basement structure of the aulacogen and characterize its 

seismic hazard. 

2.0 GEOLOGIC OVERVIEW/HISTORY  

The SOA is a NW trending aulacogen located near the Oklahoma – Texas boundary, 

USA, and is characterized by two major segments: the Wichita Uplift (WU) and the Amarillo 

Uplift (AU) (inset map in Fig. 1); a minor segment known as the Arbuckle Uplift is also present 

in south central Oklahoma. The SOA is suggested to be a failed arm of an inferred Rift-Rift-Rift 

triple junction (Hoffman et al., 1974) that formed during the Late Cambrian break-up of Rodinia 

(Keller and Stephenson, 2007). Syn-rift magmatism produced intercalated mafic-gabbro and 

felsic phases, and multiple episodes of diking (Gilbert and Hogan, 1998; Hanson et al., 2013).  

Post rifting, the SOA was inverted as part of the Pennsylvanian Ancestral Rocky Mountain uplift 

(Leary et al., 2017). After inversion, the SOA has remained tectonically inactive (Perry, 1989). 
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Figure 1: Regional and geologic map of the Wichita Uplift portion of the Southern Oklahoma 

Aulacogen (SOA) in Oklahoma.  The geologic map shows only the exposures of igneous rock 

associated with the SOA.  Red outline indicates the extent of 2017 aeromagnetic coverage; red 

cross-hatch outline pattern denotes aeromagnetic coverage with 4000m line spacing; purple 

outline is the 1954 aeromagnetic data; grey shaded region is the historical subsurface extent of 

the Wichita Uplift section of the SOA in southern Oklahoma; black dotes are cities; vertical 

black lines denote the seismic lines in Fig. 3B, C; black dashed line is the depth to basement 

coverage and the green are the wells used (Fig. 3a); colored stars are field locations studied in 

Fig. S2. Geologic units and the Wichita Uplift subsurface extent are modified from maps 

produced by the Oklahoma Geological Survey (OGS). Blue lines are major mapped faults from 

Hollard, 2015 and are MVF-Mountain View Fault; BCCF-Blue Creek Canyon Fault; WM-MF-

Wichita Mountain-Meers Fault; NFF- North Fork Fault; BF-Burch Fault; MF-Muenster Fault; 

AF-Altus Fault. Inset map displays the Amarillo Uplift (AU), Wichita Uplift (WU). 

3.0 DATA AND METHODS 

 3.1 Aeromagnetic Data 

We use two high-resolution aeromagnetic datasets acquired in 1954 (‘Wichita’) and 2017 

by the United States Geological Survey (‘2017’), and the lower-resolution North American 

Magnetic Anomaly Map (NAMAM) data to fill the data gaps (high-resolution survey areas are in 

Fig. 1). Technical details for the survey, links to the data, and relevant sources can be found in 

Table S1 in the online supplement. These data were knitted together to produce seamless 
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magnetic maps over the region (Fig. 2). Additional details on knitting, aeromagnetic theory and 

aeromagnetic filtering can be found in the supplementary section below. 

Prior to data knitting, we reduced the residual anomaly grid of each of aeromagnetic 

datasets to the pole (RTP) (Baranov, 1957; Arkani-Hamed, 1988) in order to position magnetic 

anomalies directly over their causative sources. After the datasets were then knitted together, we 

applied upward-continuation the aeromagnetic data to increasing depths to assess the subsurface 

extents of target structures (Jacobsen, 1987). Finally, we applied vertical derivative filters to 

resolve the edges related to subsurface structures (Miller and Singh, 1994) (Figs. 2A and Fig. 

S1).  

According to standard practice, edges in the filtered aeromagnetic data can be interpreted 

as abrupt terminations related to fault offsets, dikes, and changes the trends of basement foliation 

(e.g., Grauch and Hudson, 2007, 2011; Blakely et al., 2000; Kolawole et al., 2017, 2018). These 

observations are consistent here, particularly along the well-studied Wichita Frontal Thrust 

(WFT), between the Mountain View and Wichita Mountain-Meers Fault (Fig. 1), where spatial 

correspondence is observed between magnetic derived faults and known faults (overlapping blue 

and black lines in Fig. 2B).  

3.2 Other Datasets 

We integrate the aeromagnetic data with other available subsurface datasets, generate 

basement structure map from well logs (Fig. 3A), and interpret shallow subsurface geometry of 

target faults from 2-D seismic reflection data. Further, we analyze satellite fracture orientations 

over the exposed Cambrian WU granites (Fig. 2D). Finally, we use field structural data (Fig. 2E; 
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S2) to ground truth the aeromagnetic, satellite, and seismic data interpretations. Additional 

details can be found in the supplementary section below.  

4.0 RESULTS AND DISCUSSION 

4.1 Basement Fault Systems  

 Our filtered aeromagnetic maps provide details on the basement structure of the WU, 

which is dominated by a NW trending central region of high amplitude and short wavelength 

magnetic lineaments/edges surrounded by a region of more subdued magnetic anomalies (Fig. 

2A and S1). Faults traced from the aeromagnetic data dominantly trend 280° (±3°) (~E-W) and 

330° (±4.5°) (~NW) (Fig. 2C) while fractures and faults in the remotely sensed data trend 272° 

(±6.2) (~E-W) and 12° (±11.5) (~NNE) (Fig. 2D).  To understand the kinematics of the large 

satellite fractures and faults in WU granites we integrate structural mapping of McLean and 

Stearns (1986) Fig. 2E) who suggest the E-W set commonly shows sinistral strike-slip offsets, 

whereas the NNE fractures show predominately dextral strike slip offsets. Interestingly, both 

trends also parallel field measurements of Cambrian rift-related dike trends (Fig. S5). 

The magnetic data highlights the largest structures of these trends as the NW trending 

Meers Fault, a known seismogenic fault (Crone and Luza, 1990; Hornsby, 2017) and a 

previously unrecognized 100-110 km E-W trending magnetic low (herein referred to as the 

Willow Fault after Willow, Oklahoma) (Fig. 2).  As the largest single fault of the E-W set much 

of our focus on this set is directed towards the Willow Fault.  The upward continued 

aeromagnetic maps show the Willow Fault extends to at least 7.5 km depth (Fig. S1A-D), and 

while we lack unequivocal piercing points we follow Blakely et al. (2000) and use the shift in 
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anomalies to provide reasonable displacement estimates. This approach suggests ~40 km of 

maximum sinistral movement on the Willow Fault (yellow bars in Fig. 2A). 

In the 2-D seismic reflection profiles and well penetration basement structure map, the 

Willow Fault shows: (1) minimal vertical offsets, but disrupts seismic reflectors of the overlying 

Permian strata in the east (Fig. 3A, B); (2) ~460 m of vertical offset in the basement and folding 

in overlying Permian strata (Fig. 3C) in the west, which corresponds to monocline folding and 

surface fractures in the west (Fig. S2C, D); and (3) modifications of depth to basement along 

trace (Fig. 3A). Coupling this last observation with aeromagnetic depth analysis shows the 

Willow Fault is deeply rooted in the basement. Hence, we interpret the Willow Fault as a 

basement rooted, steeply dipping, sinistral strike slip fault, with a small component of oblique 

slip.   
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Figure 2: A) Reduced to Pole (RTP) 2017 magnetic data that has been upward continued to 400 

meters and had the First Vertical Derivative (FVD) taken. White arrows point to the Willow 

fault; yellow box is the possible connection zone for the Meers and Willow faults; white dashed 

lines mark suturing artifacts. B) Structural interpretations map derived from A.  Black lines 

correspond to aeromagnetic lineaments and faults; red line corresponds to the Willow fault, 

Meers fault, and their connection; shaded regions are tectonic historic or magnetic domains of 

note; black SHmax orientation is the regional value used for Mohr-Coulomb modeling and is 

from Alt and Zoback (2016); faded orange bars are SHmax orientations from Heidback et al. 

(2018); blue lines are the same major faults as Fig. 1.  C) Orientation of fault segments derived 

from the magnetic data with the Willow Fault (WF) and Meers Fault (MF) orientation overlaid. 

D) Rose diagram of fractures and faults mapped in exposed granites in the Wichita Uplift from 

60 km eye altitude satellite data. E) Fracture and fault orientations sense of offset modified from 

McLean and Stearns (1986); green indicates right lateral; blue indicates right lateral. Color 

scheme is the same as in D.  Note the similar trends. 
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Figure 3: A) Depth to basement coverage from well data, see figure 1 for location and well 

coverage.  B) Eastern seismic line showing limited vertical displacement along the Willow fault 

(WF) but disruptions in overlying sedimentary packages.  C) Western seismic line showing more 

vertical displacement along the WF and monocline folding in the overlying sedimentary 

packages. Refer to Fig. S3 for interpreted seismic sections. 

4.2 Seismic Hazards 

The igneous basement of Oklahoma exhibits frictionally unstable behavior at the depths 

of observed earthquakes (Kolawole at al., 2018b), and slip is dominantly strike-slip to normal 

when faults reactivate in the current ~E-W stress field (e.g., Alt & Zoback, 2017). Occurrences 

of recent natural seismicity within the WU, AU and flanking regions (Gordon, 1988; Walter at 

al., 2018; Fig. 4B), and the geomorphic expression and Holocene paleoseismicity of the Meers 

Fault system (Crone and Luza, 1990; Hornsby, 2017) indicate the presence of seismic hazards 

associated with basement rooted faults along the SOA (e.g. Boyd et al, 2015).  The bulk of these 

faults can be grouped into either a ~E-W or ~NW set, with the major faults for each being the 

Willow and Meers Faults, respectively.  A smaller ~N-S set is also present but does not appear to 

constitute many major structures (Fig. 2C). 

 To better understand the hazard of the two major faults and similar trending faults, we 

consider the Mohr-Coulomb criterion for fault reactivation. Previous studies of Oklahoma 

basement faults and seismicity provide constrains on mechanical parameters of the faults (Table 

S1).  Mean stress field (SHmax) orientation and magnitude at ~5km basement depth (Alt and 

Zoback, 2017), cohesion and coefficient of static friction of intact and pre-existing fault 

basement rock (Katz et al., 2001; Kolawole et al., 2018b) and geometries of target faults from 

geophysical data (this study) are used to assess nearness of failure for each fault set. 

Our analysis (Fig. S3) suggests that in the current strike-slip to reverse-strike slip stress 

state along the WU (Lund-Snee and Zoback, 2016) the ~55 km-long Meers fault is critically 
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oriented for failure. These observations underscore the current seismic hazard of the Meers Fault 

system and build on the hazard determined by paleoseismic work over the Meers, which has 

suggested that 3-4 Holocene events have occurred along the fault, with the strongest being a Ms 

~7.0 (Crone and Luza, 1990; Hornsby, 2017).  These observations argue also argue that the ~100 

km-long Willow Fault, which has similar geometry, occurs in similar basement lithologies, and 

hosts similar surface monocline warping (Fig. S2D; Hornsby, 2017) could also be capable of a 

Meers Fault-like seismic rupture. We do note that while our Mohr-Coulomb analysis shows the 

Willow is not currently critically oriented for failure it is however not-misoriented for failure.  

Further, while we opted for a more regional SHmax orientation for use in our Mohr-Coulomb 

modelling we note that Heidback et al. (2018) and the World Stress Map Project suggested 

SHmax rotates closer to ~NE near the WU (Fig. 2B, 4B). This possible stress rotation would 

result in the Willow Fault being more critically oriented for failure.   

In the western SOA stress field data in the AU is limited to only a few points but appears 

to be similar to that observed regionally in Oklahoma (Heidback et al. 2018). The few known 

faults in the AU (Ewing et al., 1990) and those interpreted from the low resolution aeromagnetic 

data show similar orientations to WU faults (Fig. 4B), suggesting a population of faults with 

similar orientations. Given both uplifts are a part of the SOA and are genetically related AU 

faults likely behave similar to WU faults. Walter et al. (2018) recently cataloged a variety of 

natural events in the AU missed in other catalogs, and we note many spatially correspond to 

Meers and Willow like oriented faults, while the few focal mechanisms also suggest activity 

along fault planes trending subparallel to W and NW (Fig. 4B). While there is a clear need for 

collection of subsurface data and increased seismic monitoring of the SOA the reliance on small 

earthquakes to predict large ones (CEUS-SSCN, 2012), paired with the spatial localization of 
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recorded events, focal mechanism data, similar fault orientations and a similar stress field 

highlights that many of the AU faults constitute hazards similar to the Meers, Willow and similar 

trending faults.   
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Figure 4: A) Reduced to Pole (RTP) Regional Total Magnetic Intensity (TMI) map of the 

Southern Oklahoma Aulacogen (SOA) of the high resolution data and MAMNA data; black 

dashed lines denote knitting artifacts. B) Interpretations for each SOA terrain based on this data 

and from Fig. 2B; black lines correspond to structures from Fig. 2B and those interpreted from 

the lower resolution MAMNA data; orange bars are the same SHmax orientation displayed in 

Fig. 2; the larger SHmax orientation is the direction used for Mohr-Coulomb modelling from Alt 

and Zoback (2016); red circles are earthquakes from the USGS catalog from 1900-2019; purple 

circles are earthquakes from Walter et al. (2018); blue lines are regional faults from Marsh and 

Holland (2016) and Ewing et al. (1990); focal mechanisms are from Saint Louis University 

Earthquake Center; earthquake events display natural seismicity, and the bulk of non-natural 

events in central Oklahoma have been removed. D) Rose diagram of fractures and faults mapped 

in exposed granites in the Wichita Uplift from 60 km eye altitude satellite data. E) Fracture and 

fault orientations sense of offset modified from McLean and Stearns (1986); green indicates right 

lateral; blue indicates right lateral. Color scheme is the same as in D.  Note the similar trends. F) 

Mohr-Coulomb failure modelling for the Meers Fault (MF) and Willow Fault (WF), and their 

respective fault sets.  

5.0 Conclusions  

Overall, the SOA is defined as an ATFB composed NW and E-W trending faults, with 

the NW set, and Meers Fault, being critically oriented in the current stress field and constituting 

much of the hazard posed by the SOA over a broad region. The E-W set, and Willow Fault, may 

represent possible additional hazard depending on previously proposed stress field rotations near 

the SOA by Heidback et al. (2018). While there is a need for increased seismic monitoring of the 

SOA, this study demonstrates that the SOA may represent an underweighted seismic hazard in 

the region. This study also demonstrates the value of collecting high resolution aeromagnetic 

data for its ability to constrain fault systems in hazardous ATFBs, which can be used to directed 

future geodetic and paleoseismic work. Extending this approach to other ATFBs with deeply 

buried faults will impose limits on the resolving power of high resolution magnetic surveys, but 

those faults with the greatest hazard potential and activity likely rupture into overlying 

sedimentary strata.  In these cases an approach similar Grauch and Hudson (2007), which is 

useful for highlighting sedimentary faults with magnetic data, may be useful in these cases. 
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7.0 SUPPLEMENTARY SECTION  

 7.1 Main Text Supplementary Figures  

 

 

Figure S1. Sutured magnetic data that has been Reduced to Pole (RTP), had the vertical 

derivative taken, and been upward continued to various elevations to show depth extent of 

structures in the Wichita Uplift region and along the Willow Fault (see Fig. 2 for comparison). 

The value by which data has been upward continued by is displayed next to the tiles letter.   One-

half of the upward continuation elevation added to flight height is the approximate depth 

(Jacobsen, 1987).  Given survey flight elevation was an average of 140 m, and these depths are 
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approximation, the role of flight height is minimal compared to upward continuation filtering.  

The white line is the Willow fault trace and MT is the Memphis Trough domain. White dashed 

lines (only needed in panel A) correspond to suturing artifacts that have been highlighted to 

avoid possible misinterpretation. 

 

Figure S2. Summary of the in-field structural analysis of a monocline flexure above the Willow 

Fault. Star symbols are color coded and correspond to the location stars in Fig. 1.  A) Locations 

of study first field site.  The circles are color coded and mark the locations of S2B, C, and D.  

Yellow line is the possible fault trace of possibly the Willow Fault or related splay structure; red 

lines are fractures. B) Zoomed fractures from A. C) Ground level expression of the fractures 

localizing grass growth. D) Un-interpreted and interpreted surface monocline folding consistent 

with observations in the seismic data. E) Location of second field site. F) Un-interpreted image 

and interpreted images showing fractures observed.  
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Figure S3. A) Uninterpreted western seismic section SL-1.  B) Uninterpreted seismic section Sl-

2.   
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Figure S4. Compilation of dike measurements in the Wichita Uplift using data from this study, 

Johnson (1955),  McLean and Stearns (1986), and Al-Shaieb (1988). 
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 7.2 Supplementary Tables 

Survey 

Year and 

Name 

Data Website  Notes  -Flight height 

-Line Spacing 

-Flight direction 

-Tie line 

spacing/direction  

 (m) 

2017 – 

“2017” 

https://www.sciencebas

e.gov/catalog/item 

/5a9f0b3ce4b0b1c392e

50241 

Data and contractor report 

containing survey technical details 

can be found here.   

-138 

-400 w/ 200m 

infill 

-NE-SW 

-4000/E-W 

1954 – 

“Wichita” 

https://pubs.usgs.gov/d

s/2005/138/neksok.htm

l 

Click “Get Data” 

Survey data and secondary 

processing done by Sweeney and 

Hill (2005) can be found here. 

-152 

-402 

-E-W 

-unknown 

 

1974 to 

1981 – 

“NURE” 

 

Variety of 

years - 

“National 

Magnetic 

Anomaly 

Map of 

North 

America” 

or 

“NAMAM” 

https://pubs.usgs.gov/o

f/2009/1129/NURE.ht

ml 

For Individual State 

Grids 

 

https://mrdata.usgs.gov

/magnetic/ 

https://crustal.usgs.gov

/projects/namad/#US 

For United States 

national grid and 

individual surveys 

Interested users of this data are 

advised to read the respective 

Metadata for the national map, 

individual surveys, and individual 

NURE ‘blocks.’  Resolution 

changes frequently from area to 

area and frequently better 

resolution data than the NAMAM 

grid displays is available in 

specific areas. 

Survey data and technical details 

can be found for individual 

surveys or for the entire NAMAM 

grid.  

-121 

-~4800 

-E-W 

-single cross 

continental tie 

line 

Table S1. Details for the aeromagnetic data used in this survey.  

 

 

 

 

 

 

 

 

https://www.sciencebase.gov/catalog/item%20/5a9f0b3ce4b0b1c392e50241
https://www.sciencebase.gov/catalog/item%20/5a9f0b3ce4b0b1c392e50241
https://www.sciencebase.gov/catalog/item%20/5a9f0b3ce4b0b1c392e50241
https://www.sciencebase.gov/catalog/item%20/5a9f0b3ce4b0b1c392e50241
https://pubs.usgs.gov/ds/2005/138/neksok.html
https://pubs.usgs.gov/ds/2005/138/neksok.html
https://pubs.usgs.gov/ds/2005/138/neksok.html
https://pubs.usgs.gov/of/2009/1129/NURE.html
https://pubs.usgs.gov/of/2009/1129/NURE.html
https://pubs.usgs.gov/of/2009/1129/NURE.html
https://mrdata.usgs.gov/magnetic/
https://mrdata.usgs.gov/magnetic/
https://crustal.usgs.gov/projects/namad/#US
https://crustal.usgs.gov/projects/namad/#US


 

28 
 

Parameter Mean Value Notes 

Stress State N/A 

Strike-slip state is determined 

from A_phi in Lund Snee & 

Zoback (2016) 

Coefficient of friction (intact 

rock) 
1.31 

Mount Scott Granite (Wichita 

Uplift, Southern Oklahoma) 

from Katz et al. (2001) 

Cohesion (intact rock) 46 MPa 

Mount Scott Granite (Wichita 

Uplift, Southern Oklahoma) 

from Katz et al. (2001) 

SHmax 155.42 MPa 

Mean SHmax magnitude for 

Oklahoma, from Walsh & 

Zoback (2016) 

SHmin 76.6 MPa 

Mean SHmin magnitude for 

Oklahoma, from Walsh & 

Zoback (2016) 

SHmax orientation 085° ±5 

Mean SHmax for Oklahoma, 

from Alt & Zoback (2016) at 

5-6 km depth 

Pore pressure 47.5 MPa 

Natural pore pressure 

distribution of 45.2 to 50.9 

MPa bounds (Nelson et al., 

2015; Walsh & Zoback, 

2016). Mean estimate is for 5 

km depth. 

Coefficient of friction (pre-

existing Basement Fault) 
0.68 

Oklahoma granite basement 

faults from Kolawole et al., 

2018 

Meers Fault Geometry:   

Strike 300° 
Surface trace and 

aeromagnetic data (this study) 

Dip 89° 

From Jones-Cecil (1995); dip 

of steep Oklahoma basement 

faults in Walsh and Zoback 

(2016)  

Willow Fault Geometry:   

Strike 91° 

Aeromagnetic data and mean 

trend of surface deformation 

(this study) 

Dip 89° 

From Jones-Cecil (1995); dip 

of steep Oklahoma basement 

faults in Walsh and Zoback 

(2016)  

Table S2. Parameter values used for the Mohr-Coulomb Failure Analyses of Oklahoma 

basement faults. 
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8.0 AEROMAGNETIC DATA USED AND GRID KNITTING 

 We use two high resolution aeromagnetic datasets acquired in 1954 (‘Wichita’) and 2017 

(‘2017’) by the United States Geologic Survey, alongside the more coarse North American 

Magnetic Anomaly Map (MAMNA) data, which is used to fill in data gaps between the two 

higher resolution surveys (high resolution surveys drawn in Fig. 1 in Chapter 2).  Specifications 

for the Wichita, 2017 and MAMNA datasets, respectively, are as follows. Average flight height 

(m): 152, 138, 12; Line spacing (m): 402, 400 with 200 infill, and 4828. Flight direction: E-W, 

NE-SW, E-W. Tie Lines/Direction (m): single cross-continent, 4000 E-W, single tie line flown.  

These data were knitted together to produce seamless magnetic maps over the region (Figs. 2 and 

4 in Chapter 2). The associated magnetic datasets, and further technical information, may be 

found in the links provided in Table S1. 

All magnetic knitting was done in the Oasis Montaj software package using industry standard 

techniques. All grids are displayed with the default color hill shade. Below are the processing 

steps used for grid-knitting: 

First, subsets (known as ‘masks’) of the MAMNA map, which is largely National 

Uranium Resource Evaluation (NURE) data in Oklahoma and Texas, were taken to examine just 

the South Central (SC) United States (Oklahoma and Texas here) anomalies. This was done to 

reduce computational load required by working with the entire MAMNA dataset.  

All the individual girds are first displayed as a total magnetic intensity (TMI) map, which 

represents the resulting magnetic responses after the main magnetic field of Earth has been 

removed via IGRF removal.  The individual grids were then Reduced-to-Pole (RTP) in order to 

center anomalies over their causative bodies and correlate them with geologic information 
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(Baranov, 1957; Baranov and Naudy, 1964; Arkani-Hamed, 1988). RTP filtering values of 

declination and inclination were taken on the following dates (these represent the rough 

midpoints for all surveys, or in the case of the MAMNA/NURE data, the rough midpoint of all 

survey blocks): 

Dates are in decimal years. 

 MAMNA/NURE: 1976.421 

 2017: 2017.721 

 Wichita: 1954.833 

The Wichita data was then masked to keep effects of knitting with the newer, higher 

quality, 2017 data to a minimum.  In other words, Wichita data was reduced in overall area to the 

bare minimum, such that it would fill gaps in the 2017 data, but overlap was kept to a minimum, 

and the coverage by only the 2017 data was maximized.  This was done primarily because the 

Wichita data has sparse to no original survey documentation, as noted by Sweeney and Hill 

(2005).  The result of this is that only a final magnetic anomaly value labeled ‘mag_anom’ is 

provided.  Similar to what has been noted in NURE data lacking documentation (see Hill et al., 

2009), we assume that this represents some processed magnetic value with an undetermined 

International Geomagnetic Reference Field (IGRF) having been removed.  Because a lack of 

documentation means that the processing cannot be undone, this resulted in large nanotesla (nT) 

values discrepancies between the 2017 and Wichita data when measured at any overlapping 

point, even though grids displayed similar structure (i.e. structure was similar in both grids at any 

given point of overlap).  Regardless we opted to mask as much of the Wichita data when possible 

to limit its influence on final maps. 
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Grid merging or ‘knitting’ two grids directly together is a standard process in Oasis 

Montaj.  However, given the limited information regarding the Wichita dataset we modified this 

knitting method by first leveling the Wichita and 2017 data relative to the MAMNA/NURE data 

before knitting.  The result is a knitted grid that has had its independent sub-grids leveled about a 

constant value, or the regional MAMNA grid in this case (Oasis Montaj support, personnel 

communication).  After some visual comparisons with grids produced by directly knitting the 

two grids together this method was deemed to be the best at maintaining structures unique to 

each dataset, while also providing the most seamless knitting of the grids (i.e. less knitting 

artifacts) over regions where the individual-grids overlapped.  This combined grid was then 

knitted to the MAMNA data.  Individual parameters in the knitting process were left on default 

settings, as various knitting renditions where these parameters were changed proved to produce 

limited to no improvements for the grids.  

9.0 OTHER DATASETS 

9.1 Depth to Basement Data 

Well logs used are partially owned by Chesapeake Energy Corporation but were 

supplemented by Oklahoma Geological Survey (OGS) logs.   

The map was hand contoured in GeoGraphix using well data and surface exposure. The 

top of basement was picked on well logs where available. The top of basement was estimated to 

be deeper than the total depth of any single well when the well did not penetrate basement. 

Aeromagnetic, 2D seismic, and tops from wells logs were used to constrain fault geometries. En 

echelon faults in the south-west part of the map were modified from Heran et al. (2003). 

OGS data may be found here: 
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http://www.ou.edu/ogs/data/oil-gas  -- Under “Wells Drilled to Basement” – Table 1 XLS 

A summary of the process that went into this OGS compilation may be found here: 

http://ogs.ou.edu/docs/specialpublications/SP2006-1.pdf 

9.2 Seismic Data 

Seismic data is controlled by Chesapeake Energy and by Seismic Exchange Inc (SEI).  

Uninterpreted sections may be found in Fig. S4.   

9.3 Remote Sensing Data 

Data was collected at eye altitude of 60 km in the Google Earth program.  This eye altitude was 

chosen in order to remove the effects of smaller scale fractures and bias results towards more 

regional trends.  Ultimately this elevation was chosen after trial and error attempts at high and 

lower altitudes, which resulted in either too few data or data contaminated by exfoliation 

fractures, respectively.  

http://www.ou.edu/ogs/data/oil-gas
http://ogs.ou.edu/docs/specialpublications/SP2006-1.pdf
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CHAPTER III 

FUTURE WORK  

FUTURE WORK 

Avenues for future work in the Southern Oklahoma Aulacogen (SOA) and surrounding 

region are varied and this section seeks to provide some of the potential areas forfuture work.   

1.0 MAGNETOTELLURIC (MT) INVESTIGATIONS 

The subsurface structure of the SOA is relatively well defined in the upper 10-15 km due 

to seismic experiments (e.g. Brewer et al., 1983; Chang et al., 1989) and gravity modelling 

(Keller and Stephenson, 2007). On the contrary little is known beneath these depths, but these 

regions provide insight on crustal architecture and paleo-tectonics in the south central United 

States. As a result we set out to image these regions using Magnetotellurics (MT), a lithosphere 

imaging electromagnetic method (see Simpson and Bahr, 2005 for a comprehensive 

understanding of MT). Other paleo-tectonics features have benefited from the use of MT. These 

studies have uncovered conductive anomalies interpreted as crustal graphite/sulfides, olivine 

diminution, remnant lithosphere mantle hydration, and mantle metasomatism; which have been 

help to inform on questions related to the tectonic assembly of North America, crustal 

architecture, and so forth (Jones et al., 2001; Bedrosian, 2016; Wunderman et al., 2018; DeLucia 

et al., 2019). 

The SOA presents an interesting opportunity for applying MT as a causative mechanism 

for its localization remains elusive. Further the SOA cuts clear along a suggested terrain 
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boundary between the Mazatzal and Granite-Rhyolite provinces, while also penetrating deeply 

into the Mazatzal (Whitmeyer and Karlstrom, 2007; Keller and Stephenson, 2007). Popular 

theories concerning why the SOA localized include an initial unknown lithosphere weakness 

which facilitated rift localization (Denison, 1982) a perhaps underreported mobile belt in the 

region called the Red River mobile belt (Hamilton, 1956 and references therein), or an earlier 

shear zone (Budnik, 1986).  The last of these is a favored interpretation for anomalous 

conductivity in the recently revealed NW trending Missouri Conductivity Belt, which was 

suggested to have localized due to a whole-lithosphere rooted trans-North America NW trending 

shear zone (DeLucia et al., 2019).  Interestingly the development, and inversion, of the SOA has 

been suggested to have occurred on a similar NW trending shear zone (Budnik, 1986), one of 

many suggested in the North American continent (Paulsen and Marshak, 1994; Thomas, 2011). 

If a similar shear zone or tectonic weakness is present beneath the SOA it may help to explain 

the localization of initial rifting, and perhaps the seismicity in the region (as was noted by 

DeLucia et al., 2019 in the Missouri Belt). 

 As part of this study, we acquired 13 long period LEMI-417 MT soundings over the 

SOA. These devices are ideal for imaging the whole lithosphere down to multiple hundreds of 

kilometers. We spaced 10 of the stations at ~20km over the gravity, magnetic, and historic trace 

of the SOA, and had 3 additional stations spaced at ~ 50 km off the trace of the SOA. The profile 

was oriented perpendicular to the strike of the SOA (Fig. 1, below), which is standard practice 

for collection of MT and adata. The final results of this portion of study are forthcoming, but 

initial models show the lithosphere beneath the SOA markedly conductive compared to the 

regions around it.  Future work will focus on defining the source of this conductive signature. 
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Figure 1. Image showing the locations of the 13 Magnetotelluric stations deployed over the 

southern Oklahoma Aulacogen in a NE trending profile. Red triangles denote stations.  

2.0 SEISMIC HAZARDS 

The work in Chapter 2 shows the SOA to be a hazardous ancient tectonic features with 

NW and E-W trending fault sets.  The NW set was shown to be the most active in the modern 

day, and the most probable hazard for the future; while the E-W set acts as an additional possible 

hazard. The largest possible fault-related hazards, and thus the areas that deserve the most 

attention for these sets are the Meers (NW trending) and Willow (E-W trending) faults.  While 

the Meers is a known seismic hazard, we have used the aeromagnetic data to extend its length to 

~80 km, and modify its trace with additional splays and other structures not previously 

recognized. The new Meers trace and associated structures cross additional Quaternary deposits 

that would allow further paleoseimic studies, which have even recently uncovered previously 
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unknown paleo-earthquakes along the Meers (Hornsby, 2017).  The Willow fault also crosses 

Quaternary deposits along its length, suggesting paleoseismic studies could be performed along 

it as well.  The traces of both faults are also only shallowly buried in the region (Figs. 2 in 

Chapter II) meaning accessing them to determine the fault properties which allow for slip along 

intraplate faults may be possible.  Further, while Quaternary ruptures are not present, or at least 

obvious, for the extended Meers or the Willow this may reflect inherent limits in using obvious 

quaternary faulting to determine intraplate hazards. This is because long recurrence intervals can 

lead to burial of hazardous faults, and/or faults may not always break into overlying Quaternary 

units (Peterson et al. 2014). One possible avenue of use for determining modern scarps along the 

extended Meers and Willow faults is the collection of LIDAR data. LIDAR has had considerable 

success delineating hazardous faults when both satellite imagery and digital elevation data have 

failed (e.g. Lienkaemper et al., 2015). 

3.0 THE SOUTHERN OKLAHOMA AULACOGEN AND ANCESTRAL ROCKY 

MOUNTAIN TECTONICS  

As one of the series of Ancestral Rocky Mountain (ARM) uplifts (Fig. 1 in Chapter I) the 

SOA preserves the kinematics of the poorly understood tectonic processes driving ARM 

inversion. ARM uplift has a variety of models invoked to explain it (e.g. Leary et al., 2017; 

Marshak et al., 2000; Ye et al., 1996; Kluth, 1986; Kluth et al., 1998; Kluth and Coney, 1981, 

among a variety of others) which frequently compete, conflict, compliment and so forth.  It is the 

view of the author that the SOA is perhaps best suited for understanding ARM uplift. This is 

because unlike the ARM uplifts in Colorado-New Mexico the SOA has escaped reactivation and 

overprinting by younger tectonic processes like the Rio Grande Rift, Laramide Orogeny and 

Basin and Range. Further, while the other ARM uplifts in Texas and Oklahoma may have 



 

37 
 

escaped younger tectonic reactivation many are deeply buried, and thus not readily accessible. 

This is in contrast to the SOA where one can find both surface exposures of critical structure 

and/or comparatively limited burial.   

 A brief analysis of the data presented here suggests that the inversion of the SOA was 

accommodated via thrust faulting (Brewer et al., 1983; Fig. 3 in Chapter 2) and sinistral strike 

slip faulting (Fig. 2, 3 in Chapter 2; Granath, 1989), which resulted in NE-SW shortening, and E-

W sinistral strike slip movement.  The timings of thrust fault movement began in the 

Pennsylvanian and ended by the Atokon (Brewer et al., 1983), whereas sinistral strike slip 

movement began in the Pennsylvanian (Granath, 1989) and extends well into the Permian (Fig. 

3C in Chapter 2).  Within the greater models invoked to explain ARM uplift these trends and 

timings agree well with the Sonora (Mexico) transpressional model of Leary et al. (2017), which 

was colliding along the SW section of Laurentian during this time (Domerier and Torsvik, 2014). 

Given that ARM uplifts represent contemporaneous structural inversion (Schumaker, 1992; 

Leary et al., 2017) one would expect to see similar fault movements and timings in the other 

ARM uplifts, and this remains an avenue of research. Additionally, a more comprehensive 

analysis of SOA structure, as it relates to ARM inversion, is also warranted.    
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