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ABSTRACT 

 

In order to effectively manage and conserve species, it is essential to have a basic 

understanding of their ecology. Unfortunately, such information is unavailable for most crayfish 

species, including the two members of the genus Barbicambarus. To obtain ecological data I 

conducted surveys for Barbicambarus simmonsi within the Shoal Creek drainage in Lawrence 

County, Tennessee and Lauderdale County, Alabama from Summer 2013-Spring 2014. The 

objectives of the first part of my study were to determine distribution, habitat use, and site 

occupancy of the Tennessee Bottlebrush Crayfish, Barbicambarus simmonsi. The distribution 

was increased from 3 to 14 sites across Shoal Creek. Habitat use modeling did not yield 

significant results, but observations indicate large flat boulders as utilized habitat. Flow was the 

most important covariate when determining site occupancy, but this should be interpreted with 

some caution, as it does not match field observations. The objectives of the second part of my 

study were to determine trophic position and diet of B. simmonsi and B. cornutus using stable 

isotope analysis and gut content analysis, and determine if there was correlation between 

carapace length and trophic position for each species. Crayfish for the analysis were collected 

during the fall of 2012 and the spring of 2013. My results indicate both species occupy a higher 

trophic position compared to other sympatric crayfish species. I also noted a significant positive 

correlation between trophic position and body size. My data suggest Barbicambarus species 

function as a predator within the stream and there is some niche separation between them and 

other crayfish species. 
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CHAPTER 1: GENERAL INTRODUCTION 

 Since its inception in the 1980s, the term biodiversity has accrued a variety of definitions 

(Meinard et al. 2014). The widely accepted definition is that biodiversity encompasses all 

biological variation, ranging from large-scale biomes and ecosystems down to the level of 

species, genes, and behaviors (Purvis and Hector 2000).  At times species richness is used as a 

general indicator of biodiversity in an area (Fleishman et al. 2006). Because species richness and 

ecosystem function are linked (Hooper et al. 2005), knowledge of both is essential for effective 

conservation practices. Conservation of biodiversity and ecosystem function is often hindered 

when basic ecological data is lacking for particular species and is exacerbated when knowledge 

is lacking for keystone species (Taylor et al. 2007). 

 Freshwater ecosystems are perhaps the most endangered ecosystem in the world, mainly 

due to anthropogenic effects (Dudgeon et al. 2006; Martinuzzi et al. 2014).  Human water 

practices have led to severe degradation of freshwater systems by pollution and habitat loss, 

which in turn have had negative effects on biodiversity (Martinuzzi et al. 2014). Aquatic 

ecosystems are biologically invaluable because they support 10% of the world’s species (Carrizo 

et al. 2013). Nowhere is the endangerment of freshwater systems more pronounced than in 

biologically rich regions of the world with high levels of human population centralization and 

growth, with one example being the southeastern United States (Martinuzzi et al. 2014). The 

endangerment of southeastern freshwater systems is alarming, as the area is a known hotspot for 

aquatic biodiversity for fishes, crayfishes, mussels, and amphibians (Taylor et al. 2007; 

Martinuzzi et al. 2014). Although the conservation status of fish for the southeastern United 

States is regularly assessed (Deacon et al. 1979; Williams et al. 1989; Warren et al. 2000), the 
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status of crayfish is not, and ecological data is lacking for crayfish in general (Taylor et al. 2007; 

Moore et al. 2013) 

Among aquatic invertebrates, crayfish are a diverse group often comprising a large 

amount of the biomass in aquatic systems and having large impacts on the ecosystem (Momot 

1995; Taylor and Soucek 2010). Crayfish are considered a keystone species because of their 

capacity to affect vegetation and invertebrate communities through predation and their ability 

alter habitat through substrate disturbance (Momot 1995; Geiger and Alcorlo 2005). Nearly two-

thirds of the 600+ crayfish species occur in North America (Taylor et al. 2007), and about 3.4 

new species are described each year (Moore et al. 2013). Of the 410 North American species, 

approximately two-thirds, mostly endemic species, occur in the southeast United States (Taylor 

et al. 2007). Endemic species typically have small ranges and are at higher risk to threats such as 

habitat loss or invasive species (Jones and Bergey 2007). Thus, it is imperative to conserve 

crayfish, a unique biotic resource, by broadening our knowledge of basic crayfish ecology.  

 The genus Barbicambarus is a unique genus in the eastern United States consisting of 

only two species. The first record of Barbicambarus cornutus was by Faxon in 1884 from the 

Green River and the species ranges within the Barren and upper Green river systems in Kentucky 

and Tennessee (Hobbs 1974). The first record of Barbicambarus simmonsi was by Taylor and 

Schuster in 2010 from Shoal Creek in Tennessee and Alabama. Crayfish within Barbicambarus 

are characterized by having antennae densely covered in long setae, a larger than average body 

size, and a strongly dorsoventrally flattened carapace (Taylor and Schuster 2010).  Little is 

known about the ecology of Barbicambarus species other than anecdotal observations on habitat 

found in their initial descriptions. Moore et al. (2013), describe how basic life history and 

ecological knowledge of populations and species are essential for management and conservation. 
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This extends to other aquatic species.   The objectives of my study were to determine the 

distribution, habitat use, and site occupancy of B. simmonsi and the trophic position and diet of 

both species in the genus, which will aid in the future management of these rare species. For 

example, Denic and Geist (2014) show functional habitat must be preserved for the pearl mussel 

to survive. Without functional habitat, captive breeding methods must be enlisted to preserve 

mussel populations (Denic and Geist 2014). Diet is also important, as the presence of preferred 

food items is an indicator of good habitat quality. For example, Hilderbrand et al. (1999) 

described how important the availability of salmon was in determining habitat quality for North 

American brown bears.  

 Initially, B. simmonsi was only known from two locations within Shoal Creek and one of 

its tributaries (Taylor and Schuster 2010).  Since Taylor and Schuster (2010), no work has been 

done to determine the full extent of the distribution of B. simmonsi. I conducted 

presence/absence surveys along the entirety of Shoal Creek, and collected detailed habitat data.  

My goals were to determine distribution, habitat use, and site occupancy. 

 Although it has been previously assumed many crayfish are opportunistic omnivores, 

studies also report evidence of some species being primary predators (Momot 1995; Parkyn et al. 

2001; Taylor and Soucek 2010; Thomas and Taylor 2013). Unfortunately, little is known on the 

diets of most crayfish species, including B. simmonsi and B. cornutus. Therefore, I conducted a 

study to examine the diet and trophic position of both species using gut content and stable 

isotope analysis. I also examined the setose structure of Barbicambarus antennae, which are 

unique to the genus and can possibly perform a function aiding in feeding behavior. 
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CHAPTER 2: DISTRIBUTION AND HABITAT REQUIREMENTS OF 

BARBICAMBARUS SIMMONSI 

INTRODUCTION 

 All organisms require certain structures or conditions in their environment for survival. 

Some organisms are generalists with broad habitat niches, while others are specialists with 

narrow habitat ranges. The distribution of specific habitat requirements is often comparable to 

the distribution of the species occupying them. Thus, distribution and habitat needs of a species 

are fundamental components of its ecology. Information on distribution is important as it allows 

for more effective management of native species and helps to limit introduction of non-native 

species (Peters et al. 2014). Habitat data is also essential for effective management, as multiple 

studies have shown many organisms require specific habitat in order to survive. For example, 

Williams et al. (1981) illustrated how hellbenders are dependent upon dissolved oxygen levels, 

temperature, and flow in swift water areas for survival. Denic and Geist (2014), show pearl 

mussels are affected by levels of fine sediment deposition. The above studies show specific 

ecological data is needed for effective management of specific species.  

Smith et al. (1995) indicate how a thorough understanding of habitat requirements for 

crayfish species is essential to any kind of conservation strategy. Thus, it is alarming we lack 

basic ecological information for many North American species. Moore et al. (2013) estimated 

natural history data is lacking for 305 of 347 crayfish from the USA and Canada. With 

increasing levels of urbanization threatening aquatic habitats, natural history data is becoming 

more essential for efforts to conserve our diverse array of crayfish species within the 

southeastern United States (Taylor et al. 2007; Martinuzzi et al. 2014). An example of a crayfish 
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from this potentially affected region is the Tennessee bottlebrush crayfish, Barbicambarus 

simmonsi. 

 Barbicambarus simmonsi is a narrowly endemic crayfish, known only from a single 

stream system, Shoal Creek, a direct tributary of the Tennessee River in southern Tennessee and 

northern Alabama. The genus Barbicambarus is characterized by its larger than average body 

size and their unique antennae, which are densely covered in long, hair like setae (Taylor and 

Schuster 2010). At the beginning of my study, the only known ecological information for B. 

simmosi was it seemed to prefer large flat slab rocks within deeper parts of riffles and it was only 

known from 3 sites within the Shoal Creek drainage in southern Lawrence County, Tennessee 

and northern Lauderdale County, Alabama. The objectives of my study were to: 1) determine the 

distribution of B. simmonsi within Shoal Creek and nearby streams; 2) document habitat use; and 

3) use field data to produce an updated distribution map and to model detectability and 

occupancy for the species. 

METHODS 

Study Area/Site Selection 

 I conducted my study in the Tennessee River drainage in southern Lawrence County, 

Tennessee and northern Lauderdale County, Alabama. Most of my sampling occurred at 36 sites 

in riffle/run sections of Shoal Creek and 1 in Factory Creek, a tributary to Shoal Creek. Three 

sites had recent records for B. simmonsi, whereas 34 sites were new.  I used satellite imagery of 

Shoal Creek, to grossly locate reaches having wadeable riffles and runs suitable for sampling and 

ground truthed the reaches as sampling sites. I divided the creek into sections consisting of 8.0 

stream km. Four sites, at least 1.6-stream km apart, were selected within each section using a 

randomization algorithm in Microsoft Excel. In addition, I sampled eight unwadeable pools. Pool 
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locations were recorded during my first sampling period through Shoal Creek. The eight pools 

sampled were randomly selected from recorded localities using the randomization algorithm in 

Microsoft Excel. Again, sites were not permitted to be within one mile of each other. Finally, I 

sampled fourteen sites in Tennessee River tributaries directly to the east and west of Shoal 

Creek. Within Cypress Creek and Little Cypress Creek to the west, nine sites were sampled and 

within Bluewater Creek to the east, five sites were sampled. Sites in Cypress Creek, Little 

Cypress Creek, and Bluewater Creek were not randomly selected, but were chosen wherever 

there was a road-stream crossing for ease of access.  

Sampling Methods 

 I conducted my presence/absence sampling from 03 June to 26 September of 2013. At 

each site, I calculated sampling reach length by multiplying the stream width by 10 (adapted 

from Barbour et al. 1999). To reduce sampling time, I set maximum reach length at 100 m. I then 

divided each sampling reach into 10 m sections then conducted 3 kick sets in each using a 1.5x3 

meter mesh minnow seine. Within each 10 m section, I performed kick sets on a staggering 

diagonal beginning with one of the downstream corners, moving to the middle and then to the 

opposite upstream corner (Fig. 2.1). Kick sets consisted of disturbing the substrate or overturning 

rocks within 1 m
2
 of the streambed immediately upstream of the anchored seine to catch any 

organisms I flushed out. After each kick, I recorded the presence/absence of B. simmonsi and 

other crayfish species. All crayfish captured were counted, identified to genus, and saved live in 

a bucket. After sampling, all crayfish were returned to the stream.  

I recorded the following habitat variables: substrate, depth, flow, distance to shore, 

presence/absence of vegetation, and the presence/absence of other crayfish species. I determined 

substrate using a metal substrate cross, where a substrate classification is made at the center and 
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each point of the cross. Substrate types were determined using a modified Wentworth particle 

size scale (Bovee and Milhous 1978) and defined as; sand (S), gravel (G), pebble (P), cobble (C), 

boulder (B), silt (Si), or bedrock (Bed) then given a score of sand and/silt=1, bedrock=1.5, 

gravel=2, pebble=3, cobble=4, and boulder=5 (Bain et al. 1985 and Litvan et al. 2010). Depth 

and flow were measured using a Global Water flow probe. Depth was measured in meters and 

flow was measured in m/sec. Recorded habitat variables were used as covariates in my 

subsequent occupancy modeling.  Upon completing sampling for a reach, an additional 30 min 

(1.5 man-hours) of seining specific microhabitats (usually boulders) missed by randomized 

sampling was conducted to minimize the probability of recording a false absence for B. simmonsi 

at the site. All individual B. simmonsi captured were measured for carapace length to the nearest 

mm using calipers and gender was recorded by determining the presence/absence of gonopods 

before release at their capture points. Specimens incidentally injured or killed during sampling 

were vouchered for deposition in the Illinois Natural History Survey Crustacean Collection. 

Other crayfish species were identified to genus and returned to the stream. 

 Unwadable pools could not be sampled using seines because of depth and preliminary 

trials showed B. simmonsi was unresponsive to trapping. Thus, I sampled visually by SCUBA 

diving. At each site, I measured pool length and divided it into five equal length sections.  Divers 

then descended to the stream bottom and a location was selected by tossing a rock over one’s 

shoulder within each of the five sections. The diver visually surveyed for B. simmonsi within a 2 

m radius by slowly turning over rocks. Any B. simmonsi captured were returned to the surface 

where they were sexed and measured. Specimens captured from my pool sites were vouchered 

for the Illinois Natural History Survey Crustacean Collection. 
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 Cypress Creek, Little Cypress Creek, and Bluewater Creek were all sampled purely for 

presence/absence of B. simmonsi during spring of 2014. At the time these sites were sampled, the 

habitat use for B. simmonsi had been determined so sampling was targeted on large flat boulders. 

Sites were sampled using a 1.5x3 meter kick seine for three man-hours.  

Distribution Maps 

 I created dot distribution maps of B. simmonsi using DIVA GIS (Ver. 7.5.0.0). Maps 

were created with a base layer outlining the United States, and two layers outlining the rivers and 

streams of North America. Coordinates of sites were entered into a Microsoft Excel file and then 

imported into DIVA GIS where they were placed as the top layer on the map.  

Habitat Analysis 

 I consolidated all kicksets and transects to represent site-averaged measurements of 

depth, flow rate, distance to shore, and width. In order to convert my substrate measurements 

into a more continuous variable, I categorized them as follows, mean modal substrate type, mean 

maximum substrate type, and mean minimum substrate. Presence or absence of vegetation 

remained a binary variable. Using IBM® SPSS® Statistics (ver. 22.0, 2013), I performed 

variable reduction using Principle Components Analysis (PCA) on the continuous variables of 

average depth, average flow rate, average distance to shore, average stream width, mean modal 

substrate, mean maximum substrate, and mean minimum substrate. I retained all components 

with an Eigenvalue <1.00 and then used VARIMAX rotation for the factor loadings. I then 

performed a mixed effects binary logistic regression using the lme4 package (Bates et al. 2014) 

in R (R Core Team, 2014), to determine if the random effect (site nested within habitat), fixed 

effects (presence/absence of vegetation), and covariates (retained principle components) 

explained the presence/absence of B. simmonsi. I included repeated site-specific data for sites 
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where crayfish were captured multiple times. I determined which model was the best and defined 

my candidate set as having a cumulative sum of Akaike Weights of 0.95 using the R package 

MuMIn (Bartoń, 2014) The MuMIn package was also used to perform model averaging if there 

were multiple competing models. 

Occupancy Modeling 

 I removed highly correlated variables based on correlation analysis using Pearson’s and 

Spearman’s rank correlation coefficients for continuous and categorical data, respectively in JMP 

(Ver. 9.0.0) (Appendix A; Table A.2 and A.3). To account for imperfect detection (Mackenzie 

et al. 2006), I then used single-season occupancy models in the program PRESENCE (Ver. 6.1) 

to estimate occupancy and detection probabilities of B. simmonsi using the uncorrelated habitat 

variables, standardized with a z-transformation, as covariates. Candidate models were ranked 

using Akaike’s Information Criterion (AIC) and model selection was based on Akaike Weights. 

In the event there was no equivocal top model (e.g. Akaike Weights > 0.90), I performed full 

model averaging (Johnson and Omland 2004). Such a situation can occur when models are 

nested and the complexity added by covariates has little improvement on the model (Burnham 

and Anderson 2002; Richards 2008).  

RESULTS 

Distribution 

 I found B. simmonsi at 14 of 43 (33%) sites sampled, three of which were known 

previously (Figure 2.2,   Table 2.1). Barbicambarus simmonsi was found to occur in two of the 

eight pool sites sampled, a habitat not previously sampled for the species. Barbicambarus 

simmonsi typically occurred in low numbers where no more than 1-5 individuals were found at a 
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site after extensive sampling (Table 2.1). Within Cypress Creek, Little Cypress Creek, and 

Bluewater Creek, B. simmonsi did not occur at any of the 14 sites sampled.  

Habitat Analysis 

 Summary of raw habitat variables at the site level did not indicate any one covariate as 

good indicators of B. simmonsi habitat use. I found B. simmonsi present within a broad range of 

habitat measurements, which overlapped with the habitat measurements in which they were 

absent (Fig. 2.2). The species was consistently found under large flat boulders within a site, at 

depths between 0.20-0.60 m and in flow ranging from zero to 0.90 m/s (Table 2.2). There were 

cases, especially in the upstream half of the creek, where suitable habitat was abundant but B. 

simmonsi was not found. Habitat covariates for all kick sets are presented in Appendix B. Using 

PCA my data could be summarized by three components explaining 85.5% of the cumulative 

variance (Table 2.3). PC-1 had mean minimum substrate, mean maximum substrate, and mean 

modal substrate, load positively with an eigenvalue of 3.12 explaining 44.53% of variance. I 

termed PC-1, Substrate (Table 2.4). In PC-2, the average distance to shore and average stream 

width both loaded positively with an eigenvalue of 1.86 explaining 26.40% of variance.  I termed 

PC-2, Stream Width (Table 2.4). Lastly, PC-3 had covariates for depth and flow load positively 

with an eigenvalue of 1.01 explaining 14.43% of variance. I termed PC-3, Depth and Flow 

(Table 2.4). Modeling yielded 12 competitive models and the top model only included the 

substrate component (Table 2.5). However, none of my models were highly weighted (Wi) so 

model averaging was utilized. Model averaging indicates none of the parameters are good 

predictors of habitat use as all parameter estimates bound zero (Fig. 2.4).  
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Occupancy Modeling 

 I detected B. simmonsi at eight of my 43 sites sampled with my standardized sampling 

methods (naïve occupancy = 0.1860). A candidate set of seven competitive models was 

developed for detectability (ΔAIC < 2, Table 2.6) (Burnham and Anderson 2004). I decided to 

use the model with the highest AIC weight and highest model likelihood (Table 2.6) which 

contained both depth and substrate. Detectability increased with increased depth and larger 

substrate ((βdepth=1.54, SE=0.5400; βsubstrate=0.43, SE=0.27).  

I developed a set of six competitive models for occupancy of B. simmonsi (Table 2.7; all 

other occupancy models can be seen in Appendix A, Table A.1). By summing my Akaike 

weights (Wi) across all models I found my most important covariate, out of my six, for predicting 

site occupancy was flow (flow Wi=0.74, presence/absence of other crayfish species Wi=0.33, site 

type Wi= 0.26 depth Wi=0.26, width Wi=0.25, substrate Wi=0.24) (Symonds and Moussalli 2010). 

Flow was a component of all six competitive models and occupancy probability was higher at 

sites with faster flows (Table 2.7; Fig. 2.5).  However, none of my candidate models were 

strongly weighted (Wi), meaning no single model overwhelmingly supports the data. Thus, 

model averaged parameters suggest occupancy was positively related to flow (βFLOW=1.56, 

SE=1.25) and stream width (βWIDTH=0.03, SE=0.73). Occupancy was negatively related to site 

type (βSITE=-0.04, SE=1.89), presence/absence of other crayfish species (βOS=-0.48, SE=0.57), 

substrate type (βSUBSTRATE=-0.06, SE=0.58), and depth (βSITE=-0.04, SE=0.34).  However, because 

of large standard error, none of the parameters are significant. 

DISCUSSION 

Distribution 
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 My results indicate B. simmonsi occurs over a wider range than previously recorded 

within Shoal Creek, but are still endemic to a limited portion of the stream system. I captured 

individuals primarily in the middle and lower regions of Shoal Creek. Based on my surveys, the 

distribution of B. simmonsi in Shoal Creek extends from near the mouth of the Poplar Branch in 

southwestern Lawrence County, Tennessee down to the County Road 8 stream crossing in 

Lauderdale County, Alabama. Despite sampling, it appears B. simmonsi does not occur in the 

adjacent streams along the Tennessee/Alabama border. Although adjacent streams were not 

sampled as extensively, I rigorously sampled the similar habitat found in Shoal Creek.  Adjacent 

stream sites were sampled during the spring of 2014 when the weather was uncharacteristically 

cold for the time of year, and was more similar to winter conditions. Multiple studies have 

crayfish have reduced levels of activity during periods of low temperatures and some retreat to 

deeper portions of their habitat or burrow into the banks, which could also explain my failure to 

detect any individuals (Aiken 1968; Momot and Gowing 1972; Flint 1977; Grow and Merchant 

1980; Karplus et al. 1998; Bubb et al. 2002). Some sites did have what appeared to be favorable 

habitat that could have warrant future site visits to ensure the species is not there. Stream-road 

crossings were the only sites sampled as well, meaning there is potential for B. simmonsi to occur 

on less accessible sites along the streams. Areas of possible B. simmonsi occurrence have been 

shaded in green in Figure 2.2. 

Habitat Analysis 

 For my habitat analysis, neither the analysis of our raw data or of our parameter estimates 

yielded results that were good indicators of B. simmonsi habitat use at the site level. This could 

potentially be explained by the uniformity of Shoal Creek. Habitat was similar across most of the 

stream leading to low habitat variability between sites. The rarity of B. simmonsi led to low 
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levels of detection and a small number of sites for which to measure positive habitat covariates, 

which in turn led to the development of weaker models for predicting habitat use. 

 Because my analysis did not yield any good predictors of habitat use I can only describe 

habitat use based on field observations which indicated B. simmonsi uses large flat boulders as 

habitat. My observation is consistent with the type of habitat described by Taylor and Schuster 

(2010) as being utilized by the specimens collected at their two sites. It is also similar to habitats 

used by its sister species Barbicambarus cornutus (Taylor and Schuster 2004). I found 

specimens from a variety of microhabitats spanning a wide range of flows, depths, and widths, 

which is potentially due to the dynamic nature of Shoal Creek, which can experience large and  

rapid fluctuation in flow and depth during rain events. As such, flow and depth may not play a 

large role in determining habitat for B. simmonsi. This was further supported by the presence of 

B. simmonsi in unwadable pools that have greater depth than the riffles and runs and low flow 

rates of 0.2000-0.4000 m/s. However, even within the pools, B. simmonsi use the same type of 

large boulder substrate. I also found the majority of B. simmonsi within the lower half of Shoal 

Creek, indicating stream width could potentially be a factor in habitat use. 

Occupancy Modeling 

 My occupancy results indicate flow is the most important factor in determining site 

occupancy out of my six covariates. The species description for B. simmonsi described the flow 

at the two sites sampled to be strong in all regions, lending support to my results (Taylor and 

Schuster 2010). B. cornutus is also described as occurring in areas having current (Taylor and 

Schuster 2004). However, I captured B. simmonsi under a range of flow rates and thus the 

species is capable of persisting in sites with low flow. 
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 Although my results indicate B. simmonsi occupancy is related to flow, they should be 

interpreted carefully. During my sampling, I discovered B. simmonsi uses large flat substrate as 

habitat. Because nearly every B. simmonsi encountered during sampling occurred underneath or 

near a large boulder, I would have expected occupancy to be related to substrate. In my analysis, 

substrate was not a significant variable because I recorded only overall substrate type at each 

site. The boulders B. simmonsi use are rarely the dominant substrate, and can be missed with my 

standardized sampling. Thus, a future study should include an added site covariate accounting 

for the presence/absence or abundance or large boulders. Given my results, the addition of a 

boulder covariate should yield better predictive models. 

I did not find width to be an important covariate, even though we only found specimens 

within the bottom half (widest part) of Shoal Creek. Width may play an important factor because 

wider stretches of stream provide more area overall for habitat. It is more likely for a wide 

stretch of creek to contain more flat boulders than a narrower stretch. The presence/absence of 

other species was also not found to be important, which may be a result of different uses of 

habitat between sympatric species. Site type and depth were also found to be unimportant, likely 

because we found B. simmonsi from a wide range of depths in both pools and riffles. 

 Potentially, there are additional covariates explaining site occupancy of B. simmonsi. A 

study by Nolen et al. (2014) showed many local and landscape-scale variables can affect 

modeling, including geology and soils, which I was unable to account for. The study also found 

the local and landscape variables depended on the focal species being studied and the spatial 

scale of the modeling. If a future occupancy study was done, it could also be beneficial to look 

into a broader scale of environmental variables, such as geomorphology, urbanization effects, 

and hydrology of Shoal Creek and the surrounding land. 
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Conclusions 

 My results indicate I did not account for the appropriate covariates to explain habitat use 

or site occupancy using modeling, showing how difficult it can be to incorporate different 

sampling methods when attempting to model for a rare species. Until more efficient models can 

be produced, habitat specific targeted sampling is likely the most effective method in 

determining presence/absence of B. simmonsi. Future studies attempting to model occupancy or 

habitat for B. simmonsi should include a variable accounting for different size classes of boulders 

in order to increase the strength of models when trying to describe microhabitat. Future studies 

may also benefit from being designed to account for the apparent habitat specificity of 

Barbicambarus species by randomly selecting sites from a subset already determined to contain 

large pieces of substrate.  
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TABLES AND FIGURES 

Table 2.1: Sites, coordinates, dates sampled, site type, and number of individuals for all sites where B. simmonsi were 

located in Shoal and Factory creeks.  

Site County, State Date Lat/Long Type No. B. simmonsi 

Shoal Creek Lauderdale, AL 3-Jun-13 34.95339, -87.59387 Riffle/Run 7 

Shoal Creek Lauderdale, AL 17-Aug-13 34.95339, -87.59387 Riffle/Run 6 

Shoal Creek Lawrence, TN 4-Jun-13 35.1203, -87.5089 Riffle/Run 14 

Shoal Creek Lawrence, TN 27-Mar-14 35.1203, -87.5089 Riffle/Run 2 

Shoal Creek Lawrence, TN 31-Jul-13 35.13384, -87.44829 Riffle/Run 1 

Shoal Creek Lawrence, TN 1-Aug-13 35.1066, -87.50932 Riffle/Run 2 

Shoal Creek Lawrence, TN 1-Aug-13 35.10046, -87.52119 Riffle/Run 1 

Shoal Creek Lawrence, TN 1-Aug-13 35.08008, -87.54720 Riffle/Run 4 

Shoal Creek Lawrence, TN 15-Aug-13 35.05922, -87.56850 Riffle/Run 2 

Shoal Creek Lawrence, TN 15-Aug-13 35.05085, -87.56524 Riffle/Run 6 

Shoal Creek Lawrence, TN 15-Aug-13 35.03847, -87.56725 Riffle/Run 4 

Shoal Creek Lawrence, TN 15-Aug-13 35.03237, -87.57729 Riffle/Run 1 

Shoal Creek Lauderdale, AL 16-Aug-13 35.00348, -87.57726 Riffle/Run 1 

Shoal Creek Lawrence, TN 25-Sep-13 35.04272, -87.56043 Pool 5 

Shoal Creek Lawrence, TN 25-Sep-13 35.01212, -87.57323 Pool 1 

Factory Creek (Shoal 

Creek Trib) 

Lawrence, TN 26-Sep-13 35.10119, -87.53975 Riffle/Run 4 
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Table 2.2: Habitat covariates at each kick set location where B. simmonsi were collected. Substrate measurements were 

recorded at each point of a substrate cross giving 5 readings. B=Boulder, C=Cobble, P=Pebble, G=Gravel, S=Sand, 

Si=Silt, and Bed=Bedrock. Lat/Longs are unique to the sampling reach, not the kick set location. 

Site  Lat/Long Substrate Depth 

(meters) 

Flow 

(m/s) 

Site Type 

Shoal Creek 34.95339, -87.59387 B,B,B,B,B 0.48 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.47 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.45 0.30 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.49 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.43 0.30 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.45 0.40 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.29 0.50 Riffle/Run 

Shoal Creek 35.1203, -87.5089 B,B,G,G,S 0.56 0.10 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.33 0.20 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.39 0.30 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.39 0.30 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.39 0.30 Riffle/Run 

Shoal Creek " B,B,B,G,G 0.30 0.20 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.29 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,G 0.50 0.10 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.50 0.40 Riffle/Run 

Shoal Creek " B,B,G,G,G 0.50 0.40 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.50 0.40 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.33 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.33 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.33 0.20 Riffle/Run 

Shoal Creek 35.13384, -87.44829 B,B,B,P,P 0.21 0.10 Riffle/Run 

Shoal Creek 35.1066, -87.50932 B,B,B,G,Bed 0.40 0.50 Riffle/Run 

Shoal Creek " B,B,Bed,Bed,Bed 0.62 0.90 Riffle/Run 

Shoal Creek 35.10046, -87.52119 B,B,B,B,B 0.36 0.80 Riffle/Run 

Shoal Creek 35.08008, -87.54720 B,B,B,B,B 0.27 0.90 Riffle/Run 

Shoal Creek " B,B,B,C,G 0.39 0.90 Riffle/Run 

Shoal Creek " B,B,C,G,G 0.40 0.80 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.37 0.90 Riffle/Run 

Shoal Creek 35.05922, -87.56850 B,B,B,B,B 0.30 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.39 0.40 Riffle/Run 

Shoal Creek 35.05085, -87.56524 B,B,C,C,P 0.29 0.00 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.45 0.80 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.21 0.30 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.20 0.20 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.26 0.20 Riffle/Run 

Shoal Creek " B,B,B,G,Bed 0.52 0.30 Riffle/Run 

Shoal Creek 35.03847, -87.56725 B,B,B,B,G 0.45 0.80 Riffle/Run 

Shoal Creek " B,B,B,Bed,Bed 0.37 0.60 Riffle/Run 

Shoal Creek " B,B,Bed,Bed,Bed 0.60 0.60 Riffle/Run 

Shoal Creek " B,B,B,B,Bed 0.45 0.70 Riffle/Run 

Shoal Creek 35.03237, -87.57729 B,B,B,P,G 0.64 0.90 Riffle/Run 

Shoal Creek 35.00348, -87.57726 B,B,G,G,G 0.58 0.40 Riffle/Run 

Shoal Creek 34.95339, -87.59387 B,B,G,G,Bed 0.29 0.40 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.41 0.50 Riffle/Run 

Shoal Creek " B,B,B,B,B 0.42 0.50 Riffle/Run 

Shoal Creek " B,B,B,Bed,Bed 0.33 0.40 Riffle/Run 

Shoal Creek " B,B,B,G,G 0.27 0.30 Riffle/Run 

Shoal Creek " B,B,B,G,Bed 0.20 0.40 Riffle/Run 

Shoal Creek 35.04272, -87.56043 B,B,B,C,C 0.95 0.20 Pool 

Shoal Creek " B,B,B,C,C 1.27 0.20 Pool 

Shoal Creek " B,B,B,C,P 1.20 0.20 Pool 

Shoal Creek " B,B,B,C,C 1.43 0.20 Pool 

Shoal Creek " B,B,B,B,B 1.87 0.20 Pool 

Shoal Creek 35.01212, -87.57323 B,B,C,C,C 1.00 0.40 Pool 

Shoal Creek 35.10119, -87.53975 B,C,P,P,G 0.30 0.70 Riffle/Run 
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Table 2.2 cont’d      

Site  Lat/Long Substrate Depth 

(meters) 

Flow 

(m/s) 

Site Type 

Shoal Creek " B,B,B,P,G 0.29 0.90 Riffle/Run 

Shoal Creek " B,B,B,P,P 0.49 0.60 Riffle/Run 

Shoal Creek " dead: in the open - - Riffle/Run 

Shoal Creek 35.1203, -87.5089 In the open 0.31 0.30 Riffle/Run 

Shoal Creek " B,B,B,P,G 0.31 0.30 Riffle/Run 
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Table 2.3: Eigenvalues and the variance explained for principal component scores for seven habitat covariates measured 

from 43 sites along Shoal Creek sampled for Barbicambarus simmonsi 

Component Total % of Variance Cumulative % 

1 3.12 44.53 44.53 

2 1.86 26.59 71.12 

3 1.01 14.43 85.54 

4 0.57 8.12 93.66 

5 0.28 3.99 97.65 

6 0.14 1.97 99.62 

7 0.03 0.38 100.00 
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Table 2.4: Component loadings for seven habitat covariates measured from 43 sites on Shoal Creek which were sampled 

for Barbicambarus simmonsi. Scores greater than 0.50 and less than -0.50 are bolded. All values are from a PCV with a 

VARIMAX rotation. 

Variable 

Component 

1 2 3 

Depth 
0.41 0.07 0.79 

Flow 
0.42 -0.16 -0.73 

DistoShore 
-0.21 0.92 -0.07 

AvgWidth 
0.14 0.84 0.35 

MModSub 
0.97 -0.07 0.15 

MMaxSub 
0.91 -0.06 0.03 

MMinSub 
0.95 -0.001 -0.10 
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Table 2.5: Ranking of habitat use models for B. simmonsi. The covariates include the intercept, principal component 1, 

principal component 2, principal component 3, and presence/absence of vegetation. Delta AICc is the AICc for a given 

model minus the AICc for the top model. K represents the number of parameters, Wi represents Akaike weights, -2*LL 

represents the log likelihood, and Likelihood represents the model likelihood. All 12 competitive models are presented. 

Model (Intercept) PC1 PC2 PC3 Vegetation ΔAICc Wi K -2*LL Likelihood 

2 -1.49 0.75 NA NA NA 0.00 0.20 3.00 -22.05 1.00 

1 -1.85 NA NA NA NA 0.26 0.18 2.00 -23.33 0.88 

4 -1.52 0.77 -0.49 NA NA 1.50 0.10 4.00 -21.60 0.47 

3 -1.90 NA -0.46 NA NA 1.79 0.08 3.00 -22.95 0.41 

10 -2.11 0.89 NA NA + 1.98 0.08 4.00 -21.84 0.37 

5 -1.91 NA NA -0.30 NA 2.21 0.07 3.00 -23.16 0.33 

6 -1.58 0.75 NA -0.19 NA 2.22 0.07 4.00 -21.96 0.33 

9 -1.90 NA NA NA + 2.55 0.06 3.00 -23.33 0.28 

12 -1.96 0.87 -0.44 NA + 3.77 0.03 5.00 -21.47 0.15 

7 -1.96 NA -0.46 -0.30 NA 3.85 0.03 4.00 -22.78 0.15 

8 -1.55 0.77 -0.47 -0.16 NA 3.89 0.03 5.00 -21.54 0.14 

11 -1.90 NA -0.46 NA + 4.19 0.02 4.00 -22.95 0.12 
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Table 2.6: Ranking of detection (p) models for B. simmonsi based on Akaike’s Information Criterion (AIC). The 

covariates include depth, substrate, the presence/absence of vegetation (vegetation), distance from shore (distance), and 

flow. Delta AIC is the AIC for a given model minus the AIC for the top model. K represents the number of parameters, 

Wi represents Akaike weights, and -2*LL represents the log-likelihood. Likelihood represents the model likelihood. All 

models better than the intercept-only model are shown. 

Model ΔAIC Wi K -2*LL Likelihood 

ψ(.),p(depth,substrate) 0.00 0.16 4 102.73 1.00 

ψ(.),p(depth) 0.41 0.13 3 105.14 0.81 

ψ(.),p(depth,substrate,vegetation) 0.99 0.10 5 101.72 0.61 

ψ(.),p(distance,depth,substrate) 1.30 0.08 5 102.03 0.52 

ψ(.),p(distance,depth) 1.49 0.08 4 104.22 0.47 

ψ(.),p(depth,vegetation) 1.75 0.07 4 104.48 0.42 

ψ(.),p(depth,flow,substrate) 2.00 0.06 5 102.73 0.37 

ψ(.),p(distance,depth,substrate,vegetation) 2.22 0.05 6 100.95 0.33 

ψ(.),p(depth,flow) 2.40 0.05 4 105.13 0.30 

ψ(.),p(distance,depth,vegetation) 2.75 0.04 5 103.48 0.25 

ψ(.),p(depth,flow,substrate,vegetation) 2.98 0.04 6 101.71 0.23 

ψ(.),p(distance,depth,flow,substrate) 3.27 0.03 6 102.00 0.20 

ψ(.),p(distance,depth,flow) 3.38 0.03 5 104.11 0.18 

ψ(.),p(depth,flow,vegetation) 3.70 0.02 5 104.43 0.16 

ψ(.),p(substrate) 4.38 0.02 3 109.11 0.11 

ψ(.),p(distance,depth,flow,vegetation) 4.52 0.02 6 103.25 0.10 

ψ(.),p(flow,substrate) 5.92 0.01 4 108.65 0.05 

ψ(.),p(substrate,vegetation) 5.96 0.01 4 108.69 0.05 

ψ(.),p(distance,substrate) 5.98 0.01 4 108.71 0.05 

ψ(.),p(distance,flow,substrate) 7.26 0.004 5 107.99 0.03 

ψ(.),p(flow,substrate,vegetation) 7.41 0.004 5 108.14 0.02 

ψ(.),p(distance,substrate,vegetation) 7.52 0.004 5 108.25 0.02 

ψ(.),p(distance,flow,substrate,vegetation) 8.69 0.002 6 107.42 0.01 

ψ(.),p(.) 10.49 0.0008 2 117.22 0.01 
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Table 2.7: Ranking of occupancy (ψ) models for B. simmonsi. The covariates include flow, presence/absence of other 

species (OS), depth, substrate, stream width, and site type. Delta AIC is the AIC for a given model minus the AIC for the 

top model. K represents the number of parameters, Wi represents Akaike weights, -2*LL represents the log likelihood, 

and Likelihood represents the model likelihood. All models better than the intercept-only model are shown. All other 

models can be seen in Appendix A, Table A.1. 

 

Model ΔAIC Wi K -2*LL Likelihood 

ψ(flow),p(depth,substrate) 0.00 0.14 5 98.37 1.00 

ψ(flow,OS),p(depth,substrate) 1.18 0.08 6 97.55 0.55 

ψ(flow,depth),p(depth,substrate) 1.99 0.05 6 98.36 0.37 

ψ(flow,substrate),p(depth,substrate) 1.99 0.05 6 98.36 0.37 

ψ(width,flow),p(depth,substrate) 2.00 0.05 6 98.37 0.37 

ψ(site,flow),p(depth,substrate) 2.00 0.05 6 98.37 0.37 

ψ(.),p(depth,substrate) 2.36 0.04 4 102.73 0.31 
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Figure 2.1: Schematic of crayfish occupancy sampling protocol within a 100m stream reach. Each red dot represents a 

kick set location. 
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Figure 2.2: Map of sites sampled during 2013 and 2014 in the Tennessee River drainage of southern Tennessee and 

northern Alabama. Green dots indicate positive sites for B. simmonsi. Red dots indicate negative detection sites. Areas 

shaded in green represent areas where favorable habitat is possibly present, but B. simmonsi was either undetected or was 

not sampled for during surveys. 
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Figure 2.3: Mean measurements for all habitat covariates measured at sites where B. simmonsi was present and absent. 

(sites, n=43) Horizontal lines are means, boxes indicate plus/minus one standard error, and whiskers indicate the upper 

and lower confidence intervals. Note the different ranges and units of the Y-axis.  
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Figure 2.4: Parameter estimates for all parameters run for habitat analysis. PC1 represents substrate, PC2 represents 

stream width, and PC3 represents depth and flow. Horizontal lines indicate estimates, boxes indicate plus/minus one 

standard error, and whiskers indicate the upper and lower confidence intervals. 
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Figure 2.5:  Relationship between probability of site occupancy by B. simmonsi and flow. Taken from the highest ranked 

model by AIC (Table 2.7). Flow is measured in meters per second. 
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CHAPTER 3: TROPHIC ECOLOGY OF BARBICAMBARUS SPECIES 

INTRODUCTION 

 All life requires some transfer of energy or nutrients in order to survive. Where nutrients 

are acquired from varies for every different species. Generalist species can utilize a broad range 

of energy sources, while some other species have narrower dietary niches. In either situation, diet 

is a fundamental part of species ecology, when it comes to conservation. By investigating diet, 

key resources can be identified that are important for species fitness and population densities 

(Coogan et al. 2014). Once identified, knowledge of diet can be implemented to develop 

management and conservation plans based around prey species. For example, Hayward et al. 

2006 identified Thomson’s gazelle as the most important prey item for cheetahs on the Serengeti. 

As a result, managing for increased abundance of gazelle may help lead to a corresponding 

increase in cheetah (Hayward et al. 2006).  

 Trophic position studies are a good method to study the diet of an organism. Trophic 

position studies are effective because they can look at the food web of a site, determine 

functional roles of organisms, and trace the flow of energy and nutrients throughout a system 

(Post 2002, Vander Zanden and Rasmussen 1996). Assessing trophic position and food web 

relationships in aquatic food webs is effectively done by means of stable isotope analysis. Stable 

isotope analysis reflects the isotopic ratios of all food sources consumed and gives a long-term 

indication of diet and functional role compared to the small time frame represented by other 

methods such as gut content analysis (Stenroth et al. 2006; Taylor and Soucek 2010). Stable 

isotope analysis is also effective at measuring levels of omnivory (Vander Zanden and 

Rasmussen 1996) making it an excellent tool to study trophic positon of crayfishes. 
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The diversity of aquatic species in North American streams is matched by the many 

different functional roles they play. Crayfish are well documented as opportunistic omnivores 

and utilize a wide variety of food sources (Momot 1995; Alcorlo 2004). They are capable of 

fulfilling multiple levels of the trophic scale including primary consumer, scavenger, and higher-

level predator (Momot 1995; Parkyn et al. 2001; Taylor and Soucek 2010; Thomas and Taylor 

2013; Vollmer 2014). Because crayfish can occupy multiple levels within an aquatic ecosystem 

and aspects of their behavior, they can significantly alter their habitat in various ways, including 

the transfer of energy between trophic levels, vegetation reduction, substrate disturbance, and 

direct competition with each other (Momot 1995; Geiger et al. 2005; Westhoff and Rabeni 2013; 

Jackson et al. 2014). The large effects crayfish have on their ecosystem have led many to declare 

them to be ecosystem engineers of aquatic systems (Statzner et al 2000; Statzner et al. 2003; 

Creed Jr. and Reed 2004; Reynolds et al. 2013). To properly understand and manage aquatic 

ecosystems, it is important to determine the functional roles of individual crayfish species 

present. Different functional roles could indicate a variation of diet, and understanding preferred 

prey is an important step in managing a species (Lyngdoh et al. 2014). While diet and trophic 

position of crayfish is largely generalized in the literature, there is a lack of sufficient species-

specific data regarding these life history aspects (Moore et al. 2013).  

 In my study, I hoped to quantify diet and trophic positon of both species in the genus 

Barbicambarus, B. simmonsi and B. cornutus, two species for which basic ecological 

information is lacking. The objectives of my study were to: 1) determine trophic position using 

stable isotope analysis; 2) determine diet from both stable isotope analysis and gut content 

analysis; and 3) to perform a small side project investigating the unique setae on Barbicambarus 

antennae, which potentially aid in feeding.  
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METHODS 

Study Area 

 My study was conducted within the native ranges of both species of Barbicambarus.  For 

B. simmonsi, I sampled populations from Shoal Creek at the Busby road bridge, Lawrence 

County, Tennessee and Shoal Creek at the AL County Road 8 bridge, Lauderdale County, 

Alabama. For B. cornutus I sampled populations from Trammel Fork at the Pope road bridge, 

Allen County, Kentucky and from the Nolin River at Taylor Bend Park, Hardin County, 

Kentucky (Green River drainage). Site localities for B. simmonsi were taken from Taylor and 

Schuster (2010) and previous field work by the author. Historic localities for B. cornutus were 

obtained from the Illinois Natural History Survey Crustacean Collection and Eastern Kentucky 

University Crustacean Collection records. 

Sampling Methods 

 Crayfish were collected from the sites by performing kick sets using a 1.5x3 m mesh 

minnow seine. Kick sets consist of disturbing the substrate in 1 m
2
 of the streambed while the 

seine is held immediately downstream to catch any disturbed organisms. The streams were 

sampled until at least seven crayfish were captured from each site. 

 For large B. simmonsi , I used a non-lethal approach to collect muscle tissue for stable 

isotope analysis by removing 1-2 legs, then re-releasing the crayfish at Shoal Creek. Preliminary 

analysis showed the substitution of legs for tail tissue did not affect the isotopic signature. I used 

a non-lethal approach in order to reduce any damage done to the population at the site, as I did 

not have knowledge of population sizes. Specimens too small or accidentally killed during 

sampling were used as whole body samples. At my two sites for B. cornutus, all specimens were 

collected as whole specimens. Whole body specimens were frozen for later analysis. 
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I also collected representative species of other feeding groups for stable isotope analysis 

at each site including fine particulate organic matter (FPOM), algae, macrophytes, leaf litter, 

snails, predatory insects, predatory fish, and other sympatric crayfish species. I collected fine 

particulate organic matter by disturbing the substrate and scooping up water into a Whirlpak 

while sediment was suspended in the water column. I collected plants by hand and all insects, 

sympatric crayfish, and fish were collected with a 1.5x3meter mesh minnow seine. All samples 

were frozen for later analysis. 

Stable Isotope Analysis 

 All samples were prepared for stable isotope analysis in a laboratory on the University of 

Illinois Urbana-Champaign campus. Samples were removed from the freezer and allowed to 

thaw. Plant specimens were cleansed of any dirt or contamination and  placed in an aluminum 

weighing dish. Insect specimens were placed into the dishes as either whole specimens or just 

their legs depending on the species and the number of individuals needed. In some cases, 3-4 

insects were combined to obtain enough tissue to make a proper sample. Snails had their 

operculum removed, were removed from their shells, and had their gut removed. Tissue from 

most crayfish samples was attained by removing a muscle plug from the tail tissue or legs. For 

fish specimens, scales were scraped away and a muscle plug was removed from the caudal 

region of the fish. All tissues were placed in the aluminum weighing dishes then dried in an 

incubator set at 45 °C for 48 hrs. to dry. After drying, plant tissues and FPOM samples were 

placed in a desiccator with hydrochloric acid for an additional 6 hrs. to remove inorganic 

carbonates. All specimens were ground into a fine powder with a mortar and pestle and weighed 

on a scale to either 2.00mg for animal tissue or 3.00mg for plant tissue as requested by the 

facility performing the analysis. The powder from each sample was placed into a small tin 
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capsule, closed, and sent to Southern Illinois University Carbondale’s Mass Spectrometry 

Facility for analysis. 

The samples were analyzed using continuous flow EA-IRMS for δ
15

N and δ
13

C. I used 

the results to calculate a trophic position (TP) using the equation: 

𝑇𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 = 𝑇𝑃𝑏𝑎𝑠𝑒 + (𝛿15𝑁𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 − 𝛿15𝑁𝑏𝑎𝑠𝑒)/∆𝑁 

where algae was used as the base and 𝑇𝑃𝑏𝑎𝑠𝑒 = 1. The ∆𝑁was set at 3.40 based on an established 

average fractionation rate (Petersen and Fry 1987, Vander Zanden and Rasmussen 2001,  Post 

2002, Nilsson et al 2011). 

 The data for each site was checked for normality in JMP by analyzing the distribution for 

continuous fit and then looking at goodness-of-fit. Normal data was analyzed for homogeneity of 

variance by analyzing the fit of species by trophic position and checking for unequal variances. 

Trophic positions of all crayfishes from each site were plotted using linear regression analysis in 

JMP (Ver. 9.0.0). Non-parametric data was analyzed using a Wilcoxon Signed Rank test. 

Gut Content Analysis 

 Gut content analysis was conducted on specimens collected for the stable isotope portion 

of my study. Because I saved a low number of whole B. simmonsi specimens, I supplemented 

those with 6 individuals from a collection of B. simmonsi made at the Shoal Creek at AL County 

Road 8 crossing site on 9 November 2010 that were collected in the Illinois Natural History 

Survey Crustacean Collection. Crayfish were dissected by cutting the connective tissue between 

the carapace and the abdomen and carefully lifting the carapace up. The stomachs were carefully 

removed to avoid rupture as best as possible. Upon removal, the stomachs were opened up and 

the contents were spread across an 8 by 8 grid of 1 cm squares on a petri dish. The gut contents 

were viewed under a stereo dissecting microscope and a percent estimate to the nearest 5% was 

made for each kind of food type present in each grid cell. Contents were categorized into one of 
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nine categories: fish, crayfish, macroinvertebrates, leaf litter, macrophytes, algae, wood, 

sediment, and unidentified organic material. Percent values of gut contents were averaged 

together for all crayfish at a site and the means were plotted to show the average percentages of 

each food type at all four sites.  

Antennal Structure  

 I compared the antennae of Barbicambarus crayfish to other North American species by 

examining samples using the Environmental Scanning Electron Microscope (ESEM) housed at 

the University of Illinois’ Microscopy Suite. I compared the antennae of five different crayfish 

species, B. cornutus, Orconectes virilis, Procambarus lephotus, Cambarus girardianus and 

Cambarus graysoni. Barbicambarus antennae samples used were taken from frozen crayfish 

collected for stable isotope analysis. I clipped the antennae into small pieces and dried them 

under a fume hood for 2 days. I mounted the dry antennae onto ESEM mounts and sputter coated 

them with gold/palladium. Each crayfish had at least one cross section of an antenna and one 

lengthwise antenna on the mount. I viewed the mounts with the microscope, and images were 

taken of the antennae and setae at 5 µm, 50 µm, and 500 µm. Images taken at 500 µm were taken 

as both top down cross sections and as lateral views of the antennae. For B. simmonsi and O. 

virilis lateral images were taken at a scale of 1 mm and 200 µm respectively, as these 

magnifications provided the best lateral view of the antennae. Lateral images for B. simmonsi 

and O. virilis were taken at 1 mm and 200 µm respectively, instead of 500 µm, as these 

magnifications provided a better lateral image for comparison. 

RESULTS 

 I collected a total of 21 B. simmonsi and 23 B. cornutus to be analyzed with stable isotope 

analysis. I collected 14 individuals from Shoal Creek at Busby Road and seven from the Shoal 
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Creek site. From Kentucky, I collected 10 individuals from the Nolin River and 13 individuals 

from Trammel Fork. 

Stable Isotope Analysis 

 Trophic position for B. simmonsi ranged from 1.80-2.75 and 1.77-2.49 at the Busby Road 

site and the AL Co. Road 8 site respectively (Table 3.1). Trophic position for B. cornutus ranged 

from 3.35-4.08 and 2.52-3.17 at the Trammel Fork site and the Nolin River site respectively 

(Table 3.2). This placed Barbicambarus crayfish at a higher trophic position compared to other 

sympatric occurring species of crayfish within sites and at a lower trophic position than 

predatory fishes with the exception of Nolin River in Kentucky (Tables 3.3-3.6). Site specific, 

general food web positions of community members plotting δ
13

C vs δ
15

N are presented in Figure 

3.1A-3.1D. I observed similar structure between all four site where the levels of δ
15

N for 

Barbicambarus is higher than all other plant and invertebrate organisms present. At all sites, 

except for the Nolin River site in Kentucky, predatory fish had higher levels of δ
15

N. My results 

show Barbicambarus occupying a trophic position below predatory fish and above plants and 

invertebrates, with the exception of the Nolin River site where they occupy the highest trophic 

position.  

 At three sites, I observed no significant relationship between trophic position and body 

size for all crayfish at the site with the exception of Barbicambarus crayfish. At Nolin Creek in 

Kentucky, C. graysoni (p=0.2477), O. barrenensis (p=0.2491), and O. rusticus (p=0.5711) all 

showed no relationship between carapace length and trophic position, while Barbicambarus 

cornutus (p=0.0316) showed a positive relationship between the two variables (Fig. 3.2A). At 

Trammel Fork in Kentucky, O. compressus (p=0.9361) and O. putnami (p=0.7035) both showed 

no relationship between the two variables while B, cornutus (p=<0.0001) again showed a 



 
 

43 
 

positive relationship between trophic position and carapace length (Fig. 3.2B). At Shoal Creek at 

County road 8 crossing in Alabama, neither O. erichsonianus (p=0.3885) or O. forceps 

(p=0.0494) showed relationships between the two variables while B. simmonsi (p=0.0010) 

showed a strong positive relationship between the two (Fig. 3.2C). Lastly at Shoal Creek at 

Busby road Tennessee C. girardianus (p=0.5893)) did not show a significant relationship 

between trophic position and carapace length, while B. simmonsi (p=<0.0001) showed a 

significant positive relationship (Fig. 3.2D). 

Gut Content Analysis 

  Gut content analysis of 11 B. simmonsi and 22 B. cornutus revealed both species had 

large amounts of plant material and unidentified organic matter, moderate amounts of algae and 

leaf litter, and small amounts of wood, sediment, and macroinvertebrates in their guts. One 

individual from Kentucky was found to contain a fish scale. Average percentages of gut contents 

did not seem to vary by large amounts between species or between sites (Fig. 3.3A-3.3D).  

Antennal Analysis 

 My antennal analysis showed setae structure varied considerably across crayfish species. 

Variation in structure is solely based on the photos included and is purely observational. I cannot 

draw any major conclusions from the images, but I can show a physical difference between the 

antennal setae of different crayfish genera. The images can be seen in Figure 3.4 and Figure 3.5. 

Figure 3.4 shows that B. cornutus has longer and larger setae, in higher densities than other 

crayfish species. Figure 3.5 shows close ups of the surface of the setae, which are covered in 

small spines varying in size and shape across species. 
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DISCUSSION 

Stable Isotope Analysis 

 My stable isotope analysis shows Barbicambarus species are feeding at higher trophic 

levels than other sympatric crayfish and may occupy a higher trophic level as an omnivore or a 

predator. Thus, indicating B. simmonsi are acquiring energy from feeding on primary or 

secondary consumers. Results of comparing carapace length and trophic position show 

Barbicambarus crayfish increase in trophic position as they grow larger while other sympatric 

species do not, indicating interspecies niche partitioning. It is also possible Barbicambarus  

species are occurring at higher trophic positions because they are larger. Vollmer and Gall 

(2014) showed larger crayfish more easily captured salamander larvae. The large size of 

Barbicambarus crayfish could afford them the ability to capture larger or higher trophic level 

prey items. Thus, resulting in the more enriched level of nitrogen observed. In addition, studies 

have shown that crayfish rely on animal protein to grow (Momot 1995; Parkyn et al. 2001; 

Hollows et al. 2002). Therefore, it is possible Barbicambarus crayfish are achieving larger sizes 

by assimilating larger amounts of animal protein, further supporting the idea that Barbicambarus 

crayfish are acting as predators. 

Gut Content Analysis 

 The identifiable gut contents of the crayfish I investigated consisted largely of plant, 

algae, and leaf litter, with smaller amounts of animal matter. These types of findings in crayfish 

gut contents are not uncommon and have been reported in various studies (Whitledge and Rabeni 

1997; Whitemore and Huryn 1999; Helms and Creed 2005). My results indicate Barbicambarus 

are performing the function of a primary consumer. However, gut contents only represent what 

has been ingested over a short period of time and thus may not be indicative of the long-term diet 
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of a species. The vast majority of the gut contents across species and sites were unidentifiable 

organic material. Crayfish have been shown to eat high amounts of animal protein (Momot 1995; 

Parkyn et al. 2001; Stenroth et al. 2006; Thomas and Taylor 2013). As such, it is possible some 

of the unidentifiable material is actually derived from animal tissue. Animal tissue is much softer 

and digests at faster rates than plant tissue, which could explain why it has been turned into an 

unidentifiable pulp. Crayfish also have grinding mandibles and a second set of gastric teeth, 

which could easily grind up soft animal tissue. In my study, there were instances where hard 

pieces of animal matter such as pieces of snail shell, crayfish carapace, and fish scales were 

found, but not soft tissue was able to be identified which again, possibly accounts for the large 

amount of unidentified material within the gut contents. A stable isotope analysis on the 

unidentifiable organic matter could provide additional insight on the source of the matter and the 

diets of crayfish in general. 

Conclusions 

 My stable isotope and gut content data yield differing results. Conflicting data between 

the two types of analysis has been documented before in other crayfish species (Parkyn et al. 

2001; Hollows et al. 2002; Evans-White et al. 2001). The difference in results could be a result 

of the two types of data providing information of different scales. Stable isotope analysis serves 

as a measure of long-term energy assimilation whereas gut contents represent short-term recent 

ingestion. Other reasons accounting for the lack of comparable results between gut contents and 

stable isotope analysis is the sample size being too small to draw comparable conclusions from. I 

collected a small number of individuals for gut content analysis because I did not wish to affect 

the local populations and the number of B. simmonsi encountered was low. The small sample 

size could account for the lack of many individuals containing signs of animal protein. In 



 
 

46 
 

addition, I only sampled on one occasion. Perhaps there is seasonality to the diet of 

Barbicambarus crayfish, and another gut content analysis spread over different seasons could 

yield more accurate results. 

 My study indicates all crayfish within a site are capable of functioning at different trophic 

levels, which is indicative of resources partitioning and reduced interspecific interaction. Jackson 

et al. (2014) observed an indicated shift in diet between crayfish species, where the introduction 

of one species drove up the nitrogen levels of the other. Other studies indicate similar 

phenomenon among stream dwelling fish (Naman et al. 2014). Understanding differences in diet 

will have implications in conservation, as conservation of key prey species is crucial in the 

survival of any organism (Lyngdoh et al. 2014). Thus, knowing trophic position and dietary 

habits of B.simmonsi will aid management efforts for its continued persistence. 

Antennal Analysis 

 My antennal analysis was purely an observational study, and as such, I cannot draw any 

major inferences from it. However, my SEM imagery shows definite structural difference 

between the setae of different crayfish genera. Barbicambarus cornutus had antennae covered in 

long dense setae where as other crayfish had shorter and far less dense setae. When the setae 

were magnified even more I could see B. cornutus setae were covered in small needle like 

projections, where as other species such as O. virilis had small stunted projections, and others 

such as C. girardianus appeared to have smooth setae without small projections on them at all. 

The differences in structure could indicate that antennal function is unique among genera. 

Antennae are known to function as chemoreceptive organs as well as being involved with tactile 

sensation (Holdich and Reeve 1988). Other studies have shown setae on the second antennae are 

predominantly mechanosensory and respond to vibrations in the water (Tautz et al. 1981; 
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Sandeman 1989). Perhaps, different genera have varying levels of mechanosensory sensitivity 

determined by the shape and structure of their antennal setae. To draw more conclusions, a lab 

study would need to be done looking at sensory ability of different genera. 
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TABLES AND FIGURES 

Table 3.1: Trophic Positions (TP) of all B. simmonsi collected ranked from lowest to highest. 

Species Site TP 

B. simmonsi Shoal Creek @AL Co. road 8 1.77 

B. simmonsi Shoal Creek @Busby Rd 1.80 

B. simmonsi Shoal Creek @Busby Rd 1.82 

B. simmonsi Shoal Creek @Busby Rd 2.04 

B. simmonsi Shoal Creek @Busby Rd 2.05 

B. simmonsi Shoal Creek @Busby Rd 2.06 

B. simmonsi Shoal Creek @Busby Rd 2.10 

B. simmonsi Shoal Creek @AL Co. road 8 2.11 

B. simmonsi Shoal Creek @Busby Rd 2.24 

B. simmonsi Shoal Creek @AL Co. road 8 2.25 

B. simmonsi Shoal Creek @Busby Rd 2.30 

B. simmonsi Shoal Creek @Busby Rd 2.33 

B. simmonsi Shoal Creek @AL Co. road 8 2.41 

B. simmonsi Shoal Creek @AL Co. road 8 2.44 

B. simmonsi Shoal Creek @Busby Rd 2.46 

B. simmonsi Shoal Creek @AL Co. road 8 2.47 

B. simmonsi Shoal Creek @AL Co. road 8 2.50 

B. simmonsi Shoal Creek @Busby Rd 2.52 

B. simmonsi Shoal Creek @Busby Rd 2.62 

B. simmonsi Shoal Creek @Busby Rd 2.75 

B. simmonsi Shoal Creek @Busby Rd 2.75 
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Table 3.2: Trophic Positions (TP) of all B. cornutus collected ranked from lowest to highest. 

Species Site TP 

B. cornutus Nolin River @Taylor Bend Park 2.52 

B. cornutus Nolin River @Taylor Bend Park 2.64 

B. cornutus Nolin River @Taylor Bend Park 2.71 

B. cornutus Nolin River @Taylor Bend Park 2.78 

B. cornutus Nolin River @Taylor Bend Park 2.84 

B. cornutus Nolin River @Taylor Bend Park 2.86 

B. cornutus Nolin River @Taylor Bend Park 2.87 

B. cornutus Nolin River @Taylor Bend Park 2.89 

B. cornutus Nolin River @Taylor Bend Park 2.91 

B. cornutus Nolin River @Taylor Bend Park 3.17 

B. cornutus Trammel Fk @Pope road 3.36 

B. cornutus Trammel Fk @Pope road 3.39 

B. cornutus Trammel Fk @Pope road 3.47 

B. cornutus Trammel Fk @Pope road 3.51 

B. cornutus Trammel Fk @Pope road 3.57 

B. cornutus Trammel Fk @Pope road 3.58 

B. cornutus Trammel Fk @Pope road 3.76 

B. cornutus Trammel Fk @Pope road 3.82 

B. cornutus Trammel Fk @Pope road 3.83 

B. cornutus Trammel Fk @Pope road 3.87 

B. cornutus Trammel Fk @Pope road 3.92 

B. cornutus Trammel Fk @Pope road 3.97 

B. cornutus Trammel Fk @Pope road 4.08 
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Table 3.3: Trophic positions of all sample groups collected at Shoal Creek at Busby road, Lawrence County, TN 

Site Sample TP 

Shoal Creek @Busby Rd Leaf -0.19 

Shoal Creek @Busby Rd FPOM 0.58 

Shoal Creek @Busby Rd Algae 1.00 

Shoal Creek @Busby Rd Odonata 1.69 

Shoal Creek @Busby Rd Hellgrammite (Megaloptera) 1.72 

Shoal Creek @Busby Rd Snails (Gastropoda) 1.78 

Shoal Creek @Busby Rd Crayfish (C. girardianus) 2.00 

Shoal Creek @Busby Rd B. simmonsi 2.28 

Shoal Creek @Busby Rd Darter (Etheostoma) 2.77 

Shoal Creek @Busby Rd Rock Bass (Ambloplites) 3.11 
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Table 3.4: Trophic positions of all sample groups collected at Shoal Creek at AL County road 8, Lauderdale County, AL 

Site Sample TP 

Shoal Creek @AL Co. road 8 Leaf -0.95 

Shoal Creek @AL Co. road 8 FPOM 0.30 

Shoal Creek @AL Co. road 8 Algae 1.00 

Shoal Creek @AL Co. road 8 Ephemeroptera 1.14 

Shoal Creek @AL Co. road 8 Odonata 1.23 

Shoal Creek @AL Co. road 8 Hellgrammite (Megaloptera) 1.50 

Shoal Creek @AL Co. road 8 Crayfish (O. erichsonianus) 1.67 

Shoal Creek @AL Co. road 8 Snail (Gastropoda) 1.67 

Shoal Creek @AL Co. road 8 Crayfish (O. forceps) 1.71 

Shoal Creek @AL Co. road 8 Crayfish (C. girardianus) 1.87 

Shoal Creek @AL Co. road 8 B. simmonsi 2.28 

Shoal Creek @AL Co. road 8 Sunfish (Lepomis) 2.40 

Shoal Creek @AL Co. road 8 Darter (Etheostoma) 2.54 
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Table 3.5: Trophic positions of all sample groups collected at Trammel Fork at Pope road, Allen County, KY 

Site Sample TP 

Trammel Fk @Pope road Algae 1.00 

Trammel Fk @Pope road FPOM 1.55 

Trammel Fk @Pope road Leaf 1.03 

Trammel Fk @Pope road Cranefly (Diptera) 1.76 

Trammel Fk @Pope road Crayfish (O. putnami) 2.99 

Trammel Fk @Pope road Odonata 3.35 

Trammel Fk @Pope road Crayfish (O. compressus) 3.46 

Trammel Fk @Pope road Snail (Gastropoda) 3.47 

Trammel Fk @Pope road B. cornutus 3.70 

Trammel Fk @Pope road Darter (Etheostoma) 4.05 

Trammel Fk @Pope road Bass (Micropterus) 4.59 
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Table 3.6: Trophic positions of all sample groups collected at Nolin River at Taylor Bend Park, Hardin County, KY. 

Site Sample TP 

Nolin River @Taylor Bend Park Leaf -0.03 

Nolin River @Taylor Bend Park FPOM 0.19 

Nolin River @Taylor Bend Park Algae 1.00 

Nolin River @Taylor Bend Park Damselfly (Odonata) 1.85 

Nolin River @Taylor Bend Park Crayfish (O. rusticus) 1.95 

Nolin River @Taylor Bend Park Crayfish (C. graysoni) 1.97 

Nolin River @Taylor Bend Park Hellgrammite (Megaloptera) 2.03 

Nolin River @Taylor Bend Park Crayfish (O. barrenensis) 2.32 

Nolin River @Taylor Bend Park Snail (Gastropoda) 2.48 

Nolin River @Taylor Bend Park Sunfish (Lepomis) 2.51 

Nolin River @Taylor Bend Park Sculpin (Cottus) 2.66 

Nolin River @Taylor Bend Park B. cornutus 2.82 
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Figure 3.1A: δ13C vs δ15N plots for all organisms collected within the Nolin River site in Kentucky. Trophic position can 

be interpreted from the levels of δ15N. (B. cornutus n=10; Cambarus graysoni n=4; O. barrenensis n=8; O. rusticus n=8) 
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Figure 3.1B: δ13C vs δ15N plots for all organisms collected within the Trammel Fork site in Kentucky. Trophic position 

can be interpreted from the levels of δ15N. (B. cornutus n=13; O. compressus n=8; O. putnami n=7) 
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Figure 3.1C: δ13C vs δ15N plots for all organisms collected within the Shoal Creek at Busby road site in Tennessee. 

Trophic position can be interpreted from the levels of δ15N. (B. simmonsi n=14; C. girardianus n=8) 
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Figure 3.1D: δ13C vs δ15N plots for all organisms collected within the Shoal Creek at AL county road 8 in Alabama. 

Trophic positions can be interpreted from the levels of δ15N. (B. simmonsi n=7; O. erichsonianus n=5; O. forceps n=5) 
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Figure 3.2A: Linear regression of trophic position and body size for B. cornutus (p=0.0316), C. graysoni (p=0.2477), O. 

barrenensis (p=0.2491), and O. rusticus (p=0.5711) collected at the Nolin Creek site, Kentucky.  
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Figure 3.2B: Linear regression of trophic position and body size for B. cornutus (p=<0.0001), O. compressus (p=0.9361), 

and O. putnami (p=0.7035) collected at the Trammel Fork site, Kentucky. 
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Figure 3.2C: Linear regression of trophic position and body size for B. simmonsi (p=0.0010), O erichsonianus (p=0.3885), 

and O. forceps (p=0.0494) collected at the Shoal Creek at AL County road 8 crossing, Alabama. 
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Figure 3.2D: Linear regression of trophic position and body size for B. simmonsi (p=<0.0001) and C. girardianus 

(p=0.5893) collected at the Shoal Creek at Busby road crossing, Tennessee. 
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Figure 3.3A: Percent of total gut contents for N=5 B. simmonsi at Shoal Creek at Busby Road, Lawrence County, TN 

 

Figure 3.3B: Percent of total gut contents for N=7 B. simmonsi at Shoal Creek at AL county road 8, Lauderdale County, 

AL 
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Figure 3.3C: Percent of total gut contents for N=10 B. cornutus at Nolin River at Taylor Bend Park, Allen County, KY 

 

Figure 3.3D: Percent of total gut contents for N=13 B. cornutus at Trammel Fork at Pope Road, Hardin County, KY 
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Figure 3.4A: ESEM images of B. cornutus antennae taken at 500 µm. The left image is a top down view, while the image 

on the right is a side view. 

 
Figure 3.4B: ESEM images of O. virilis antennae taken at 500 µm. The left image is a top down view, while the image on 

the right is a side view. 

 
Figure 3.4C: ESEM images of C. girardianus antennae taken at 500 µm. The left image is a top down view, while the 

image on the right is a side view. 
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Figure 3.4 cont. 

 
Figure 3.4D: ESEM images of C. graysoni antennae taken at 500 µm. The left image is a top down view, while the image 

on the right is a side view. 

 
Figure 3.4E: ESEM images of P. lephotis antennae taken at 500 µm. The left image is a top down view, while the image on 

the right is a side view. 
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Figure 3.5A: The antennal setae of B. cornutus\ at a scale of 50 µm (left) and 5 µm (right) 

 
Figure 3.5B: The antennal setae of O. virilis at a scale of 50 µm (left) and 5 µm (right) 

 
Figure 3.5C: The antennal setae of C. girardianus at a scale of 50 µm (left0 and 5 µm (right) 
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Figure 3.5 cont. 

 
Figure 3.5D: The antennal setae of C. graysoni at a scale of 50 µm (left) and 5 µm (right) 

 
Figure 3.5E: The antennal setae of P. lephotis at a scale of 50 µm (left) and 5 µm (right) 
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CHAPTER 4: SUMMARY 

 The southeast United States is a known hotspot in North America for aquatic 

biodiversity. However, many of the aquatic species within this assemblage of rich diversity are 

endemic to certain drainages and water bodies. Small distributions make these endemic groups 

more vulnerable to negative affects by any kind of natural or man-made disaster. It is important 

to do as much as possible to understand and maintain the high level of biodiversity in the 

southeast United States. One major aquatic group, crayfish, has a large knowledge gap in basic 

natural history for many species. Natural history knowledge is essential if efforts ever need to be 

made to attempt to manage for an existing species.  

 My study of the distribution and habitat use of the Tennessee Bottlebrush Crayfish, 

yielded valuable information expanding  the known distribution from  only 3 sites to 14 and 

determined habitat use and site covariates that may be indicative of site occupancy. My results 

provide information that was previously unknown or only speculated at, and can be beneficial in 

the event that a management plan is needed for B. simmonsi. 

 I also performed a stable isotope analysis on B. simmonsi and B. cornutus. I yielded 

similar results between the two species indicating Barbicambarus crayfish occupy a higher 

trophic level than other crayfish within their sites, indicating the possibility of some level of 

niche separation and differentiation in ecosystem roles. I also observed the larger body size of 

Barbicambarus crayfish is likely responsible for their elevated trophic position, as they show a 

positive correlation between body size and trophic positon, unlike other crayfish species. This 

information is important because it suggests Barbicambarus crayfish perform a different 

functional role within the stream, and could put a greater emphasis on why we should ensure 

they maintain stable populations.  
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Appendix A: Occupancy Modeling Supplementary Material 

Table A.1 Ranking of occupancy models for Barbicambarus simmonsi in Shoal Creek based on Akaike’s Information Criterion 

(AIC). Detection covariates include depth and substrate. Occupancy covariates included site width, flow, substrate, depth, type of 

site, and the presence-absence of other crayfish species (OS). ΔAIC = AIC for a given model minus AIC for the best model. K = 

number of model parameters, wi = Akaike weights, LL is the log-likelihood, and Likelihood is the model likelihood. 

 

Model ΔAIC Wi K -2*LL Likelihood 

ψ(flow),p(depth,substrate) 0 0.1444 5 98.37 1 

ψ(flow,OS),p(depth,substrate) 1.18 0.08 6 97.55 0.5543 

ψ(flow,depth),p(depth,substrate) 1.99 0.0534 6 98.36 0.3697 

ψ(flow,substrate),p(depth,substrate) 1.99 0.0534 6 98.36 0.3697 

ψ(width,flow),p(depth,substrate) 2 0.0531 6 98.37 0.3679 

ψ(site,flow),p(depth,substrate) 2 0.0531 6 98.37 0.3679 

ψ(.),p(depth,substrate) 2.36 0.0444 4 102.73 0.3073 

ψ(site,flow,OS),p(depth,substrate) 2.79 0.0358 7 97.16 0.2478 

ψ(flow,depth,OS),p(depth,substrate) 2.94 0.0332 7 97.31 0.2299 

ψ(flow,substrate,OS),p(depth,substrate) 2.94 0.0332 7 97.31 0.2299 

ψ(width,flow,OS),p(depth,substrate) 3.17 0.0296 7 97.54 0.2049 

ψ(OS),p(depth,substrate) 3.64 0.0234 5 102.01 0.162 

ψ(width,flow,substrate),p(depth,substrate) 3.98 0.0197 7 98.35 0.1367 

ψ(site,flow,depth),p(depth,substrate) 3.98 0.0197 7 98.35 0.1367 

ψ(site,flow,substrate),p(depth,substrate) 3.98 0.0197 7 98.35 0.1367 

ψ(width,flow,depth),p(depth,substrate) 3.98 0.0197 7 98.35 0.1367 

ψ(width,site,flow),p(depth,substrate) 3.99 0.0196 7 98.36 0.136 

ψ(flow,depth,substrate),p(depth,substrate) 3.99 0.0196 7 98.36 0.136 

ψ(width),p(depth,substrate) 4.14 0.0182 5 102.51 0.1262 

ψ(depth),p(depth,substrate) 4.23 0.0174 5 102.6 0.1206 

ψ(substrate),p(depth,substrate) 4.23 0.0174 5 102.6 0.1206 

ψ(site),p(depth,substrate) 4.34 0.0165 5 102.71 0.1142 

ψ(site,flow,depth,OS),p(depth,substrate) 4.72 0.0136 8 97.09 0.0944 

ψ(width,flow,depth,OS),p(depth,substrate) 4.93 0.0123 8 97.3 0.085 

ψ(site,OS),p(depth,substrate) 5.02 0.0117 6 101.39 0.0813 

ψ(width,OS),p(depth,substrate) 5.24 0.0105 6 101.61 0.0728 

ψ(substrate,OS),p(depth,substrate) 5.63 0.0086 6 102 0.0599 

ψ(depth,OS),p(depth,substrate) 5.63 0.0086 6 102 0.0599 

ψ(site,flow,depth,substrate),p(depth,substrate) 5.98 0.0073 8 98.35 0.0503 

ψ(width,site,flow,depth),p(depth,substrate) 5.98 0.0073 8 98.35 0.0503 

ψ(width,site,flow,substrate),p(depth,substrate) 5.98 0.0073 8 98.35 0.0503 

ψ(width,flow,depth,substrate),p(depth,substrate) 5.98 0.0073 8 98.35 0.0503 

ψ(width,depth),p(depth,substrate) 6 0.0072 6 102.37 0.0498 

ψ(width,substrate),p(depth,substrate) 6 0.0072 6 102.37 0.0498 
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Table A.1 cont’d      

Model ΔAIC Wi K -2*LL Likelihood 

ψ(site,substrate),p(depth,substrate) 6.03 0.0071 6 102.4 0.049 

ψ(site,depth),p(depth,substrate) 6.03 0.0071 6 102.4 0.049 

ψ(width,site),p(depth,substrate) 6.12 0.0068 6 102.49 0.0469 

ψ(depth,substrate),p(depth,substrate) 6.23 0.0064 6 102.6 0.0444 

ψ(site,depth,OS),p(depth,substrate) 6.77 0.0049 7 101.14 0.0339 

ψ(site,substrate,OS),p(depth,substrate) 6.77 0.0049 7 101.14 0.0339 

ψ(width,site,OS),p(depth,substrate) 6.93 0.0045 7 101.3 0.0313 

ψ(width,depth,OS),p(depth,substrate) 7.24 0.0039 7 101.61 0.0268 

ψ(width,substrate,OS),p(depth,substrate) 7.24 0.0039 7 101.61 0.0268 

ψ(depth,substrate,OS),p(depth,substrate) 7.63 0.0032 7 102 0.022 

ψ(width,site,substrate),p(depth,substrate) 7.96 0.0027 7 102.33 0.0187 

ψ(width,site,depth),p(depth,substrate) 7.96 0.0027 7 102.33 0.0187 

ψ(width,depth,substrate),p(depth,substrate) 8 0.0026 7 102.37 0.0183 

ψ(site,depth,substrate),p(depth,substrate) 8.03 0.0026 7 102.4 0.018 

ψ(site,depth,substrate,OS),p(depth,substrate) 8.77 0.0018 8 101.14 0.0125 

ψ(width,depth,substrate,OS),p(depth,substrate) 9.24 0.0014 8 101.61 0.0099 
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Table A.2: Matrix of Pearson correlation coefficients (r) for occupancy covariates. Covariates include stream width, flow, 

depth, substrate, presence/absence of other crayfish species (OS), and site type. Values marked with an asterisk indicates 

a significant correlation (P <0.05) 

 

 Width Flow Depth Substrate OS Site Type 

Width 1 -0.274 0.340* -0.094 0.044 0.193 

Flow . 1 -0.245 0.200 -0.062 -0.055 

Depth . . 1 0.194 -0.409* 0.813* 

Substrate . . . 1 -0.178 0.204 

OS . . . . 1 -0.511* 

Site Type . . . . . 1 
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Table A.3: Table of Spearman correlation coefficients (ρ) for occupancy covariates. Covariates include stream width, 

flow, depth, substrate, presence/absence of other crayfish species (OS), and site type. Values marked with an asterisk 

indicates a significant correlation (P <0.05) 

 

Variable by Variable Spearman ρ Prob>|ρ| 

Flow Width -0.3463 0.0229* 

Depth Width 0.1088 0.4875 

Depth Flow -0.0305 0.8459 

Substrate Width -0.1711 0.2727 

Substrate Flow 0.1496 0.3383 

Substrate Depth 0.2592 0.0932 

OS Width 0.0594 0.705 

OS Flow -0.083 0.5968 

OS Depth -0.3672 0.0154* 

OS Substrate -0.0935 0.5507 

Site Type Width 0.1976 0.2097 

Site Type Flow -0.1735 0.2718 

Site Type Depth 0.6689 <.0001* 

Site Type Substrate 0.0654 0.6807 

Site Type OS -0.5447 0.0002* 
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Appendix B: Crayfish Sampling Supplementary Material 

 
Table B: Habitat covariates at each kick set location where B. simmonsi was not collected, at sampling reaches where B. 

simmonsi was present. Substrate measurements were recorded at each point of a substrate cross giving 5 readings. 

B=Boulder, C=Cobble, P=Pebble, G=Gravel, S=Sand, Si=Silt, and Bed=Bedrock. Lat/longs are unique to the site not the 

kick set. 

 

Site Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek 35.13384, -87.44829 GCPPP 0.14 0.2 Riffle/Run 

Shoal Creek " CPGGG 0.16 0.9 Riffle/Run 

Shoal Creek " PPGGC 0.505 0.8 Riffle/Run 

Shoal Creek " PPPCC 0.5 0.7 Riffle/Run 

Shoal Creek " PPGGC 0.2 1.1 Riffle/Run 

Shoal Creek " CCCPG 0.26 0.9 Riffle/Run 

Shoal Creek " CCPPG 0.32 1 Riffle/Run 

Shoal Creek " CPPGG 0.24 1 Riffle/Run 

Shoal Creek " PGGGG 0.26 0.5 Riffle/Run 

Shoal Creek " PGGGG 0.185 0.7 Riffle/Run 

Shoal Creek " CCPGG 0.25 1 Riffle/Run 

Shoal Creek " CCPPP 0.39 0.7 Riffle/Run 

Shoal Creek " CCPPG 0.425 0.4 Riffle/Run 

Shoal Creek " CPPPG 0.475 0.7 Riffle/Run 

Shoal Creek " CGGGG 0.08 0 Riffle/Run 

Shoal Creek " CCGGG 0.08 0 Riffle/Run 

Shoal Creek " CPPGG 0.635 0.8 Riffle/Run 

Shoal Creek " CPGGS 0.08 0 Riffle/Run 

Shoal Creek " BBPPG 0.08 0 Riffle/Run 

Shoal Creek " CCPPG 0.37 1.5 Riffle/Run 

Shoal Creek " PPSSS 0.08 0.2 Riffle/Run 

Shoal Creek " PPPGS 0.08 0.2 Riffle/Run 

Shoal Creek " CPPPP 0.255 1.4 Riffle/Run 

Shoal Creek " GGGGBed 0.16 0.7 Riffle/Run 

Shoal Creek " GGGGS 0.23 0.7 Riffle/Run 

Shoal Creek " CCCPP 0.61 0.6 Riffle/Run 

Shoal Creek " PSSSS 0.2 0.2 Riffle/Run 

Shoal Creek " GGGGG 0.16 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.23 0.7 Riffle/Run 

Shoal Creek " BBCCC 0.21 0.1 Riffle/Run 

Shoal Creek 35.1066, -87.50932 BPPGG 0.365 0.7 Riffle/Run 

Shoal Creek " Bedx5 0.525 1 Riffle/Run 

Shoal Creek " BBGGG 0.01 0.1 Riffle/Run 

Shoal Creek 

 

" SSBedx3 0.57 0.1 Riffle/Run 
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Table B cont’d      

Site  Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " CCPPP 0.255 0 Riffle/Run 

Shoal Creek " CPPPG 0.2 0 Riffle/Run 

Shoal Creek " BCBedx3 0.59 1.1 Riffle/Run 

Shoal Creek " PGGGG 0.59 0.2 Riffle/Run 

Shoal Creek " SiSiSiSiBed 0.62 0.2 Riffle/Run 

Shoal Creek " CPPPP 0.13 0.1 Riffle/Run 

Shoal Creek " PGGGG 0.32 0 Riffle/Run 

Shoal Creek " PPGGG 0.335 0 Riffle/Run 

Shoal Creek " PPPPP 0.82 1 Riffle/Run 

Shoal Creek " PPPPP 0.125 0 Riffle/Run 

Shoal Creek " PGGGG 0.255 0.4 Riffle/Run 

Shoal Creek " CPPPP 0.175 1.5 Riffle/Run 

Shoal Creek " PPGGG 0.08 0.5 Riffle/Run 

Shoal Creek " CCPPP 0.08 0.7 Riffle/Run 

Shoal Creek " CCPPP 0.195 1 Riffle/Run 

Shoal Creek " PPPGG 0.32 0.9 Riffle/Run 

Shoal Creek " BBBBG 0.25 0.9 Riffle/Run 

Shoal Creek " CCPPP 0.45 0.9 Riffle/Run 

Shoal Creek " PPPPP 0.08 0 Riffle/Run 

Shoal Creek " PPPPP 0.08 0 Riffle/Run 

Shoal Creek " PPPGG 0.555 0.6 Riffle/Run 

Shoal Creek " GGGGG 0.35 0 Riffle/Run 

Shoal Creek " GGSSS 0.495 0 Riffle/Run 

Shoal Creek " CPGGG 0.62 0.7 Riffle/Run 

Shoal Creek " PPGGG 0.08 0.1 Riffle/Run 

Shoal Creek 35.10046, -87.52119 CPPGG 0.125 0.3 Riffle/Run 

Shoal Creek " GGGBP 0.43 1.3 Riffle/Run 

Shoal Creek " BBBPG 0.32 0.9 Riffle/Run 

Shoal Creek " BBCCP 0.3 0.1 Riffle/Run 

Shoal Creek " CCCCC 0.31 0.4 Riffle/Run 

Shoal Creek " CCPGG 0.135 0.5 Riffle/Run 

Shoal Creek " PPGSS 0.195 0.4 Riffle/Run 

Shoal Creek " PPPPG 0.21 0.7 Riffle/Run 

Shoal Creek " PPPPC 0.8 0.2 Riffle/Run 

Shoal Creek " PPPPG 0.8 0.4 Riffle/Run 

Shoal Creek " CPGGG 0.155 0.7 Riffle/Run 

Shoal Creek " BBGGG 0.535 1.2 Riffle/Run 

Shoal Creek 

 

" CCPGG 0.17 0.5 Riffle/Run 
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Table B cont’d      

Site Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " GGGGW 0.19 0.4 Riffle/Run 

Shoal Creek " Bedx5 0.79 0.6 Riffle/Run 

Shoal Creek " PPGGG 0.36 0.4 Riffle/Run 

Shoal Creek " PPGGG 0.395 0.5 Riffle/Run 

Shoal Creek " BGGGBed 0.69 0.6 Riffle/Run 

Shoal Creek " Bedx5 0.87 0.8 Riffle/Run 

Shoal Creek " Bedx5 0.87 0.7 Riffle/Run 

Shoal Creek " BGGGG 0.88 0.9 Riffle/Run 

Shoal Creek " GGGGG 0.175 0.2 Riffle/Run 

Shoal Creek " PPGGG 0.2 0.2 Riffle/Run 

Shoal Creek " CPPPG 0.41 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.51 0.5 Riffle/Run 

Shoal Creek " GGGGG 0.45 0.5 Riffle/Run 

Shoal Creek " GGGGG 0.54 1.4 Riffle/Run 

Shoal Creek " PPGGG 0.375 0.9 Riffle/Run 

Shoal Creek " BBGGG 0.33 0.9 Riffle/Run 

Shoal Creek " BGGGG 0.59 0.9 Riffle/Run 

Shoal Creek 35.08008, -87.54720 GGGGG 0.295 0.1 Riffle/Run 

Shoal Creek " CCCCC 0.44 0.4 Riffle/Run 

Shoal Creek " Bedx5 0.56 1 Riffle/Run 

Shoal Creek " Bedx5 0.54 1 Riffle/Run 

Shoal Creek " Bedx5 0.95 0.5 Riffle/Run 

Shoal Creek " GGGGG 0.555 0.1 Riffle/Run 

Shoal Creek " PPGSS 0.635 0.3 Riffle/Run 

Shoal Creek " Bedx5 0.885 0.9 Riffle/Run 

Shoal Creek " BBBedx3 0.38 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.45 0.7 Riffle/Run 

Shoal Creek " PPPPG 0.65 0.1 Riffle/Run 

Shoal Creek " GGGGG 0.395 0 Riffle/Run 

Shoal Creek " CCPPP 0.38 0 Riffle/Run 

Shoal Creek " GGGGG 0.68 0.9 Riffle/Run 

Shoal Creek " BGBedx3 0.45 0.9 Riffle/Run 

Shoal Creek " BPPPP 0.6 1.2 Riffle/Run 

Shoal Creek " SiSiSiSiSi 0.205 0.5 Riffle/Run 

Shoal Creek " PPPPP 0.235 1.2 Riffle/Run 

Shoal Creek " CGGGG 0.42 1.1 Riffle/Run 

Shoal Creek " BBCCG 0.44 1.3 Riffle/Run 

Shoal Creek " BBBedx3 0.56 1.1 Riffle/Run 
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Table B cont’d      

Site  Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " BBBBP 0.34 0.4 Riffle/Run 

Shoal Creek " GGGGG 0.08 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.12 0.3 Riffle/Run 

Shoal Creek " BBBGG 0.365 0.7 Riffle/Run 

Shoal Creek " BPBedx3 0.36 0.5 Riffle/Run 

Shoal Creek " BBBedx3 0.345 0.8 Riffle/Run 

Shoal Creek " BBBGG 0.35 0.8 Riffle/Run 

Shoal Creek " GGGGG 0.16 0.1 Riffle/Run 

Shoal Creek 35.05922, -87.56850 PPGGG 0.29 0 Riffle/Run 

Shoal Creek " PPPPP 0.47 0.3 Riffle/Run 

Shoal Creek " CSSSS 0.545 0.6 Riffle/Run 

Shoal Creek " CPGSS 0.375 0.6 Riffle/Run 

Shoal Creek " BBBGG 0.235 0.4 Riffle/Run 

Shoal Creek " PPPGG 0.14 0.1 Riffle/Run 

Shoal Creek " PPGGG 0.16 0.1 Riffle/Run 

Shoal Creek " BBBPG 0.465 0.5 Riffle/Run 

Shoal Creek " CGGGG 0.205 0.4 Riffle/Run 

Shoal Creek " BCGGG 0.27 0.2 Riffle/Run 

Shoal Creek " GGGGG 0.45 0 Riffle/Run 

Shoal Creek " BBBBB 0.7 0 Riffle/Run 

Shoal Creek 35.05085, -87.56524 BBBGG 0.27 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.525 0.4 Riffle/Run 

Shoal Creek " CCPGG 0.41 0.3 Riffle/Run 

Shoal Creek " CPPPG 0.405 0.3 Riffle/Run 

Shoal Creek " Bedx5 0.53 0.8 Riffle/Run 

Shoal Creek " Bedx5 0.175 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.21 0.1 Riffle/Run 

Shoal Creek " BBCGBed 0.43 0.6 Riffle/Run 

Shoal Creek " BCGGG 0.38 0.5 Riffle/Run 

Shoal Creek " GGGGG 0.33 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.535 0.4 Riffle/Run 

Shoal Creek " BBedx4 0.12 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.155 0.1 Riffle/Run 

Shoal Creek " BBedx4 0.435 0.4 Riffle/Run 

Shoal Creek " GGGBedx2 0.47 0.3 Riffle/Run 

Shoal Creek " GGGGBed 0.48 0.3 Riffle/Run 

Shoal Creek " Bedx5 0.46 0.4 Riffle/Run 
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Table B cont’d      

Site  Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " BBedx4 0.085 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.07 0.2 Riffle/Run 

Shoal Creek " GGGBedx2 0.37 0.4 Riffle/Run 

Shoal Creek " PPPPP 0.19 0.1 Riffle/Run 

Shoal Creek " PPGGG 0.2 0.1 Riffle/Run 

Shoal Creek " GGGGG 0.545 0.3 Riffle/Run 

Shoal Creek " Bedx5 0.245 0 Riffle/Run 

Shoal Creek " Bedx5 0.2 0 Riffle/Run 

Shoal Creek " Bedx5 0.68 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.34 0 Riffle/Run 

Shoal Creek " PGGGG 0.4 0 Riffle/Run 

Shoal Creek " SBedx4 0.64 0.5 Riffle/Run 

Shoal Creek 35.03847, -87.56725 GGGGG 0.26 0.4 Riffle/Run 

Shoal Creek " Bedx5 0.43 0.4 Riffle/Run 

Shoal Creek " GGGGG 0.3 0.2 Riffle/Run 

Shoal Creek " GGSSS 0.26 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.345 0.5 Riffle/Run 

Shoal Creek " GSiSiSiSi 0.295 0.8 Riffle/Run 

Shoal Creek " GGGGG 0.29 0.8 Riffle/Run 

Shoal Creek " PGBedx3 0.435 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.455 0.6 Riffle/Run 

Shoal Creek " Bedx5 0.515 0.6 Riffle/Run 

Shoal Creek " GBedx4 0.535 0.2 Riffle/Run 

Shoal Creek " GGGGG 0.57 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.59 0.9 Riffle/Run 

Shoal Creek " BBCCP 0.22 0.1 Riffle/Run 

Shoal Creek " BCPPG 0.1 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.56 0.5 Riffle/Run 

Shoal Creek " SSSSS 0.2 0 Riffle/Run 

Shoal Creek " SSSSS 0.225 0 Riffle/Run 

Shoal Creek " SSSSBed 0.67 0.7 Riffle/Run 

Shoal Creek " PGGGS 0.365 0 Riffle/Run 

Shoal Creek " PPGSS 0.39 0 Riffle/Run 

Shoal Creek " GGBedx3 0.635 0.6 Riffle/Run 

Shoal Creek " CPPGG 0.255 0.3 Riffle/Run 

Shoal Creek " PPPPP 0.32 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.67 0.4 Riffle/Run 

Shoal Creek " Bedx5 0.53 0.1 Riffle/Run 
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Table B cont’d      

Site  Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " Bedx5 0.53 0.1 Riffle/Run 

Shoal Creek " GBedx4 0.545 0.5 Riffle/Run 

Shoal Creek " PPPPP 0.39 0.2 Riffle/Run 

Shoal Creek 35.03237, -87.57729 PPPPG 0.11 0.1 Riffle/Run 

Shoal Creek " CPPPP 0.33 0.7 Riffle/Run 

Shoal Creek " PPGGG 0.265 0.4 Riffle/Run 

Shoal Creek " GGGGG 0.32 0.1 Riffle/Run 

Shoal Creek " PPPPP 0.4 0.8 Riffle/Run 

Shoal Creek " CPPGG 0.27 0.6 Riffle/Run 

Shoal Creek " BPPPG 0.175 0.5 Riffle/Run 

Shoal Creek " PPPGG 0.31 0.7 Riffle/Run 

Shoal Creek " PPPPP 0.195 0.7 Riffle/Run 

Shoal Creek " PPPPP 0.245 0.6 Riffle/Run 

Shoal Creek " PPPGG 0.385 0.5 Riffle/Run 

Shoal Creek " PPPPP 0.085 0.1 Riffle/Run 

Shoal Creek " PPPPG 0.16 0.1 Riffle/Run 

Shoal Creek " GGGGG 0.435 0.3 Riffle/Run 

Shoal Creek " PPGGG 0.28 0.1 Riffle/Run 

Shoal Creek 35.00348, -87.57726 CCPPP 0.26 0.7 Riffle/Run 

Shoal Creek " GGGGG 0.43 0.8 Riffle/Run 

Shoal Creek " PGGGBed 0.3 0.7 Riffle/Run 

Shoal Creek " PPPPG 0.26 0.5 Riffle/Run 

Shoal Creek " GGGGG 0.345 0.9 Riffle/Run 

Shoal Creek " PPGGG 0.295 0.3 Riffle/Run 

Shoal Creek " PPGGG 0.29 0.2 Riffle/Run 

Shoal Creek " PPPPP 0.435 1.1 Riffle/Run 

Shoal Creek " CCGGG 0.45 0.5 Riffle/Run 

Shoal Creek " BBBGG 0.455 0.5 Riffle/Run 

Shoal Creek " PPPPP 0.515 1.3 Riffle/Run 

Shoal Creek " CPPPP 0.535 0.1 Riffle/Run 

Shoal Creek " PGGGG 0.57 0.1 Riffle/Run 

Shoal Creek " GGGGG 0.59 0.8 Riffle/Run 

Shoal Creek " PPPPP 0.22 0.7 Riffle/Run 

Shoal Creek " PPPPP 0.1 0.7 Riffle/Run 

Shoal Creek " CPPPP 0.56 0.9 Riffle/Run 

Shoal Creek " CPPPG 0.2 0.4 Riffle/Run 

Shoal Creek " CCPPG 0.225 0.3 Riffle/Run 

Shoal Creek " PPPPG 0.67 0.5 Riffle/Run 
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Table B cont’d      

Site  Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " CPPPP 0.365 0.3 Riffle/Run 

Shoal Creek " PPPGS 0.39 0.3 Riffle/Run 

Shoal Creek " PGGGG 0.635 0.4 Riffle/Run 

Shoal Creek " BGGGG 0.255 0.2 Riffle/Run 

Shoal Creek " PPGGG 0.32 0.2 Riffle/Run 

Shoal Creek " PPPPP 0.53 0.3 Riffle/Run 

Shoal Creek " PPPGG 0.53 0.3 Riffle/Run 

Shoal Creek " GGGGG 0.545 0.4 Riffle/Run 

Shoal Creek " CGGGG 0.39 0.1 Riffle/Run 

Shoal Creek 35.04272, -87.56043 Bedx5 1.9 0.6 Pool 

Shoal Creek " Bedx5 1.7 0.5 Pool 

Shoal Creek 35.01212, -87.57323 BBBBB 1.25 1 Pool 

Shoal Creek " CGGGG 1.3 1.2 Pool 

Shoal Creek " BBBGP 1.38 1.1 Pool 

Shoal Creek " Bedx5 1 1.4 Pool 

Shoal Creek 35.1203, -87.5089 PPPGG 0.165 0.4 Riffle/Run 

Shoal Creek " CCPGG 0.61 1.2 Riffle/Run 

Shoal Creek " CCGGG 0.05 0.4 Riffle/Run 

Shoal Creek " CPGGG 0.18 0 Riffle/Run 

Shoal Creek " PPPGS 0.495 0.7 Riffle/Run 

Shoal Creek " PPPPG 0.125 0.5 Riffle/Run 

Shoal Creek " PPGGG 0.19 0.4 Riffle/Run 

Shoal Creek " GGGGG 0.675 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.77 0 Riffle/Run 

Shoal Creek " SiSiSiSiSi 0.72 0 Riffle/Run 

Shoal Creek " CPPPG 0.275 0.6 Riffle/Run 

Shoal Creek " GGGGG 0.27 0.3 Riffle/Run 

Shoal Creek " PGGGG 0.335 0.2 Riffle/Run 

Shoal Creek " PPPGG 0.34 0.6 Riffle/Run 

Shoal Creek " SSSSS 0.32 0 Riffle/Run 

Shoal Creek " SSSSS 0.245 0.1 Riffle/Run 

Shoal Creek " PPGGG 0.385 0.4 Riffle/Run 

Shoal Creek " GGGSiSi 0.36 0.1 Riffle/Run 

Shoal Creek " GGGGSi 0.365 0.1 Riffle/Run 

Shoal Creek " CPPGG 0.435 0.5 Riffle/Run 

Shoal Creek " SiSiSiSiSi 0.321 0.1 Riffle/Run 

Shoal Creek " SiSiSiSiSi 0.262 0.2 Riffle/Run 

Shoal Creek " PPPPP 0.415 0.5 Riffle/Run 
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Table B cont’d      

Site   Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Shoal Creek " BBPPP 0.205 0.3 Riffle/Run 

Shoal Creek " CGGGG 0.175 0.2 Riffle/Run 

Shoal Creek " PPGGG 0.395 0.4 Riffle/Run 

Shoal Creek " PGGSS 0.525 0.1 Riffle/Run 

Shoal Creek " GGGSS 0.45 0.1 Riffle/Run 

Shoal Creek " GGGGS 0.4 0.4 Riffle/Run 

Shoal Creek " BBBGG 0.305 0.3 Riffle/Run 

Shoal Creek 34.95339, -87.59387 CCCPP 0.28 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.18 0.6 Riffle/Run 

Shoal Creek " Bedx5 0.26 0.2 Riffle/Run 

Shoal Creek " Bedx5 0.095 0.2 Riffle/Run 

Shoal Creek " CGGGBed 0.33 0.6 Riffle/Run 

Shoal Creek " PPPGG 0.42 0.8 Riffle/Run 

Shoal Creek " CCPGG 0.335 0.8 Riffle/Run 

Shoal Creek " GGBedx3 0.405 0.6 Riffle/Run 

Shoal Creek " CCBedx3 0.29 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.25 0.1 Riffle/Run 

Shoal Creek " BBGGP 0.44 0.4 Riffle/Run 

Shoal Creek " BBCGG 0.275 0.4 Riffle/Run 

Shoal Creek " BCGGG 0.27 0.4 Riffle/Run 

Shoal Creek " CGGGG 0.36 0.3 Riffle/Run 

Shoal Creek " Bedx5 0.1 0.1 Riffle/Run 

Shoal Creek " GGGGBed 0.1 0.1 Riffle/Run 

Shoal Creek " BBGGG 0.345 0.4 Riffle/Run 

Shoal Creek " PGSSS 0.13 0.1 Riffle/Run 

Shoal Creek " PGSBedx2 0.19 0.1 Riffle/Run 

Shoal Creek " CCGGBed 0.24 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.14 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.11 0.1 Riffle/Run 

Shoal Creek " BBedx4 0.3 0.5 Riffle/Run 

Shoal Creek " Bedx5 0.205 0.1 Riffle/Run 

Shoal Creek " CCBedx3 0.135 0.1 Riffle/Run 

Shoal Creek " BBBedx3 0.37 0.5 Riffle/Run 

Shoal Creek " BBGGP 0.25 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.145 0.1 Riffle/Run 

Shoal Creek " Bedx5 0.645 0.6 Riffle/Run 

Shoal Creek " BGGGS 0.38 0 Riffle/Run 

Factory Creek 35.10119, -87.53975 PPPGG 0.15 0.3 Riffle/Run 
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 Table B cont’d      

Site   Lat/Long Substrate Depth (m) Flow (m/s) Site Type 

Factory Creek " BBGBedx2 0.15 0.6 Riffle/Run 

Factory Creek " SSSSS 0.26 0.6 Riffle/Run 

Factory Creek " CCPSBed 0.45 0.8 Riffle/Run 

Factory Creek " CPPPP 0.16 0.1 Riffle/Run 

Factory Creek " PPPPP 0.18 0.1 Riffle/Run 

Factory Creek " PPPGC 0.65 0.75 Riffle/Run 

Factory Creek " SSSGG 0.27 0.4 Riffle/Run 

Factory Creek " SSSSS 0.25 0.4 Riffle/Run 

Factory Creek " BBBGG 0.26 0.6 Riffle/Run 

Factory Creek " GGGPP 0.1 0.3 Riffle/Run 

Factory Creek " GGPPP 0.12 0.3 Riffle/Run 

Factory Creek " PPPPP 0.56 0.5 Riffle/Run 

Factory Creek " SSSPC 0.21 0 Riffle/Run 

Factory Creek " PPGGG 0.08 0.2 Riffle/Run 

Factory Creek " BBBGG 0.46 0.6 Riffle/Run 

Factory Creek " CGPPP 0.4 0.1 Riffle/Run 

Factory Creek " PPPPG 0.3 0.1 Riffle/Run 

Factory Creek " Bedx5 0.06 0.1 Riffle/Run 

Factory Creek " Bedx5 0.05 0.1 Riffle/Run 

Factory Creek " SSBedx3 0.53 0.5 Riffle/Run 

Factory Creek " GGGGG 0.37 0.5 Riffle/Run 

Factory Creek " GGGGS 0.34 0.5 Riffle/Run 

Factory Creek " CCBedx3 0.46 0.6 Riffle/Run 

Factory Creek " Bedx5 0.11 0 Riffle/Run 

Factory Creek " Bedx5 0.12 0 Riffle/Run 

Factory Creek " GGGPBed 0.51 0.5 Riffle/Run 

Factory Creek " SSSSS 0.1 0 Riffle/Run 


