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ABSTRACT 

Anthropogenic activities are fundamentally altering the chemistry of the world’s oceans. 

Many of these modifications could have a significant impact on the health of marine 

organisms. Yet, despite being proposed as one of the most significant threats that 

marine ecosystems face, to date very little is known about the impact of anthropogenic 

climate change, and ocean acidification in particular, on host defence. The aims of this 

thesis are to investigate the impact of environmental stressors on the invertebrate 

immune response, providing empirical data on how anthropogenically induced stressors 

will impact the invertebrate immune system and how this will impact organism 

condition and subsequent physiological trade-offs. Exposure to reduced seawater pH 

and increased temperature significantly reduced the immune response in the blue 

mussel, Mytilus edulis. This reduction in immune response could indicate stress-induced 

immune dysfunction. However, the immune system protects an organism from 

infectious disease, ensuring survival, and should therefore be evaluated functionally 

rather than immunologically. By subsequently exposing mussels to a bacterial challenge 

this study demonstrated that an earlier study which measured a reduction in host 

defence represented a trade-off of immune system maintenance costs, with mussels 

maintaining a capacity to up-regulate immune defence when required. However, whilst 

this immune plasticity ensures mussels are able to survive a pathogen exposure, such a 

strategy appears to be physiologically costly. This cost is seen as a reduction in 
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reproductive investment, an altered energy metabolism and an altered fatty acid 

composition in organisms exposed to low pH. Therefore the overarching picture that 

emerges is, without measuring physiological processes functionally, and in neglecting 

any physiological trade-offs, it is possible that many studies may misinterpret the 

complex physiological responses of marine organisms to ocean acidification.  
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“The scientist does not study nature because it is useful; he studies it because he 

delights in it, and he delights in it because it is beautiful. If nature were not beautiful, it 

would not be worth knowing, and if nature were not worth knowing, life would not be 

worth living.” 

Jules Henri Poincaré (1854-1912) 
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1.1 INTRODUCTION 

 

Evolutionarily, host defence appeared alongside the emergence of the Protozoa 

approximately 2.5 billion years ago (Beck and Hanbicht, 1996), with its successful 

development being a prerequisite for more than a billion years of separate phyla 

evolution (Hoffmann and Reichhart, 2002). The early appearance of host defence has 

ensured elements of immunity are detectable in almost all living things (Beck and 

Hanbicht, 1996), with the immune system forming a major physiological mechanism to 

ensure host survival (Lochmiller and Deerenberg, 2000), controlling or fighting any 

pathogenic or parasitic insult (Lochmiller, 1996; Lochmiller and Deerenberg, 2000; 

Sheldon and Verhulst, 1996; Zuk, 1996). This has led to immunity being of vital 

importance to all animals (Zuk et al., 2004), and in plants the selection for an improved 

host defence has led to the evolutionary acquisition of over 100,000 secondary 

metabolites (Dixon, 2001). Therefore the immune system offers an ideal model system 

with which to investigate the ecological and evolutionary significance of stressors.  

 The notion of immunity, or what it is now understood to have been acquired 

immunity, was first described in historical records in 430 BC through Thucydides’ 

accounts of the plague of Athens during the Peloponnesian war (Seder and Hill, 2000). 

However, it took a further 2000 years before the physiological mechanisms 

underpinning this observation began to be properly understood. Firstly with Edward 

Jenner’s historic discovery of vaccination in 1796, finding that an inoculation with the 

cowpox virus protected recipients against the often lethal smallpox virus (Seder and 

Hill, 2000), and later through the groundbreaking work of others including Louis 

Pasteur, Elie Metchnikoff, Robert Koch, Emil von Behring and Paul Ehrlich 

(Silverstein, 1989).   
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 Traditionally, immunological investigation has focused on the molecular and 

physiological foundations of host-pathogen relationships under optimal conditions, 

often in the absence of pathogens (Hoffmann and Reichhart, 2002; Rolff and Siva-

Jothy, 2003; Tirapé et al., 2007). However, through the renewed application of these 

traditional investigations to include ecological, evolutionary biology and population 

biology theories, one of the most rapidly increasing areas of Biology has appeared; 

namely ecological immunology (Rolff and Siva-Jothy, 2003; Schmid-Hempel, 2003; 

Sheldon and Verhulst, 1996). The inception of ecological immunology has led to an 

ever increasing body of literature that investigates the impact of environmental stressors 

on the immune response and in particular how these stresses act to create and maintain 

immune system variation, although the majority of studies to date are restricted to the 

study of vertebrates (Rolff and Siva-Jothy, 2003; Zuk et al., 2004). However, as innate 

immunity is the only immunological defence mechanism available for the five to ten 

million species of invertebrate metazoans, compared with around 45,000 extant 

vertebrate species that are able to rely on both innate and adaptive immunity (Hoffmann 

and Reichhart, 2002), there is growing realisation that invertebrate immunology 

provides an ideal model system with which to investigate the response, and subsequent 

evolution, of immune defences to environmental stressors.  

 The invertebrate immune response is a non-adaptive system, based on both 

cellular and humoral components (Schmid-Hempel, 2003; Fig 1.1), each being divided 

into two aspects: being the afferent (or sensing) and efferent (or effector) arms (Beutler, 

2004). The afferent arm involves receptor-mediated recognition of pathogen-associated 

molecular patterns (PAMPs; Fig 1.1a), which are highly conserved within microbial 

species and generally absent in the host (Janeway and Medzhitov, 2002). Pathogen 

recognition receptors (PRRs), such as toll like receptors (TLRs), lipopolysaccharide-  



Chapter 1                                                                                                                        General Introduction 

- 4 - 

 

 
  

Figure 1.1 Schematic overview of the marine invertebrate immune response, using the bivalve 

mollusc, Mytilus edulis, as a model species (following Philipp et al. 2012). a) Pathogen recognition: 

recognition of non-self PAMPs is via PRRs, triggering a multifaceted immune response, b) 

Phagocytsis: PAMP recognition induces bacterial engulfment by haemocytes, phagosome then fuses 

with lysosome, releasing lysosomal enzymes and reactive oxygen intermediates (ROIs), leading to 

pathogen degradation. c) Release of cytotoxic factors: pathogen recognition also stimulates 

production of cytokines, chemokines, antimicrobial peptides (AMPs) and ROIs via a diverse array of 

transcriptional and regulatory pathways (see Philipp et al. 2012), as well as reactive nitrogen 

intermediates (RNIs) enzymatically catalysed by nitric oxide synthase (NOS). d) Apoptosis: 

programmed cell death is induced via complex regulatory pathways (which includes tumour necrosis 

factors (TNFs), BCL2 and caspase-like factors), leading to cell shrinkage, chromatin condensation, 

cell membrane blebbing, nuclear collapse and, finally, the production of apoptotic bodies, which are 

destroyed via phagocytosis.     
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binding proteins (LBPs), peptidoglycan recognition receptors (PGRPs) and glucan 

binding proteins (GNBPs), bind to a pathogen, triggering a multifaceted immune 

response, being the efferent arm (Beutler, 2004; Bosch, 2008). Through the employment 

of a variety of cells that are capable of performing phagocytic (Fig 1.1b), cytotoxic (Fig 

1.1c) or inflammatory responses, alongside apoptosis (Fig 1.1d) and autophagy, a broad 

suite of possible innate immune responses are triggered when an organism is 

immunologically challenged (Roch, 1999). Understanding the exact complexity of the 

invertebrate immune response, and understanding how the immune system responds to 

changes in the environment is vital to help further our understanding of how host-

pathogen interactions will be affected by such changes, which in turn will help us to 

understand and predict how changes in immunocompetence, caused by environmental 

variability, may impact at a population or community level (Morley, 2010). 

 In what follows I discuss the response of the immune system to environmental 

perturbation and the methodological advances made within marine invertebrate 

ecological immunology over the past decade. In focusing on the efferent, or effector, 

arm of the immune response, the environmental stressors investigated and the immune 

parameters these stressors affect will be highlighted. In critically reviewing the cellular 

and humoral immune parameters typically tested within this field, the potential for the 

advancement of ecological immunity through the incorporation of newly emerging 

molecular and genetic techniques will be emphasised. Finally, the necessity of 

incorporating additional stressors and the need to employ different stressor models to 

further elucidate the ecological and evolutionary impact of stressors will be outlined. 
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1.2. CELLULAR IMMUNITY 

 

The predominant mechanism of marine invertebrate internal defence involves 

phagocytosis by immune cells (Coteur et al., 2005a; Pipe et al., 1995a). Active 

phagocytosis has even been demonstrated in animals such as the Cnidaria, which lack 

mobile phagocytes, haemolymph or an impermeable barrier to invading organisms, with 

phagocytosis being carried out by ectodermal as well as endodermal epithelial cells in 

Hydra (Bosch et al., 2009; Bosch and David, 1984, 1986). This led Bosch et al. (2009) 

to hypothesise that the epithelium is an ancient line of host defence. Immune cells, or 

phagocytes, can be classified into sub-populations based upon separate functional and 

staining characteristics (Noël et al., 1994; Pipe, 1990a; Pipe et al., 1995a), and they are 

particularly abundant in haemolymph, reaching a concentration between 2 to 4 x 106 

cells ml-1 in bivalves (Mitta et al., 2000a) and 2 to 9 x 106 cells ml-1 in starfish (Pinsino 

et al., 2007). In phagocytising a pathogen, phagocytes are capable of; non-self 

recognition, via the use of lectins (Mitta et al., 2000a; Pipe, 1990a; Renwrantz et al., 

1985), attaching to and endocytosing a pathogen (Mitta et al., 2000a) and killing an 

invader, via the production of cytotoxic factors which include reactive oxygen 

intermediates, nitric oxide and antimicrobial enzymes (Bachère et al., 1991; Carballal et 

al., 1997; Mitta et al., 2000a).  

 Considering its integral role in innate immune defence, it is not surprising that 

phagocytosis is the measure that has received the greatest amount of investigation when 

assessing the impact of changing environmental conditions on the marine invertebrate 

immune response. Typically the measure of phagocytosis investigates one of two 

components; the proportion of haemocytes that are phagocytically active in a haemocyte 

population (e.g. Gagnaire et al., 2006a) or the phagocytic index, being the number of 
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bacteria engulfed by each haemocyte, (e.g. Duchemin et al., 2007). Indeed, when 

measuring phagocytosis there are many separate methodologies used, which include 

conventional methods of microscopic assessment or agarose plate assays (Pipe et al., 

1999), measuring the activity in vivo via endocytosis of ferritin (e.g. de Faria and da 

Silva, 2008) or fluorescently labelled bacteria (e.g. Coteur et al., 2005a), measuring the 

uptake of neutral red stained zymosan, via a change in optical density using microplate 

analysis (e.g. Parry and Pipe, 2004) or measuring the uptake of fluorescent latex beads 

by flow cytometric analysis (e.g. Duchemin et al., 2007). However, irrespective of the 

measure investigated or the method used, each approach aims to measure the same end 

point, which is the ability of haemocytes to phagocytose bacteria, and therefore these 

measures will be considered as one entity, phagocytic activity, and results will be 

compared irrespective of the method the study used.  

 In demonstrating an alteration in phagocytic activity, a number of authors have 

shown this immune system component to be sensitive to environmental perturbation. 

Changes in environmental parameters such as temperature (Chen et al., 2007a, b; Cheng 

et al., 2004c; Hégaret et al., 2003; Monari et al., 2007; Parry and Pipe, 2004), salinity 

(Cheng et al., 2004d; Gagnaire et al., 2006a; Martello et al., 2000; Matozzo et al., 

2007), air exposure (Chen et al., 2007b; Malagoli et al., 2007; Malham et al., 2002), 

seawater pH (Bibby et al., 2008), hypoxia (Cheng et al., 2004e) and anoxia (Matozzo et 

al., 2005; Pampanin et al., 2002), as well as changes in concentrations of ammonia 

(Cheng et al., 2004a) and nitrite (Cheng et al., 2004b) have been shown to reduce 

phagocytic activity significantly. Additionally, phagocytic activity is significantly 

reduced by a number of anthropogenically-induced stressors, such as mechanical 

disturbance related to aquaculture (Ballarin et al., 2003; Lacoste et al., 2002; Malagoli 

et al., 2007) and pollution, via contaminants such as butyltins (Bouchard et al., 1999), 
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polyaromatic hydrocarbons (Wootton et al., 2003), pesticides (Gagnaire et al., 2006b) 

and metals including; lead (Coteur et al., 2005a), cadmium (Bouilly et al., 2006), copper 

(Parry and Pipe, 2004; Pipe et al., 1999) mercuric chloride (HgCl2) and methylmercury 

chloride (CH3HgCl) (Fournier et al., 2001).   

 Whilst phagocytic activity is shown to be sensitive to both natural and 

anthropogenically induced environmental change, this immune parameter also 

demonstrates natural seasonal variation caused by alterations in organism physiology. 

Duchemni et al. (2007) showed that the lowest phagocytic activity occurred during late 

spring spawning in the Pacific oyster, Crassostrea gigas, whilst maximum activity 

occurred in autumn. Furthermore, this study noted uneven variation in this immune 

parameter between males and females during ongoing gametogenesis and, when 

phagocytic activity was compared in diploid and triploid individuals, the immune 

response in triploids seemed to be less sensitive to environmental changes than in 

diploids. Therefore as highlighted by this study, understanding seasonal variability of 

the immune response, and variation in the response of males and females in a given 

population, is an area of invertebrate immunology that requires significant investigation 

(Li et al., 2009a; Nahrgang et al., 2012).  

 Studying the impact of environmental stressors on the general immune response, 

as has been done in many studies to date, offers a vital step in understanding how 

organisms will be impacted by changing environmental conditions. Yet when assessed 

alone, a change in the immune response at a single time point/season assumes that an 

organisms provisioning in the immune response is fixed throughout the reproductive 

cycle and that environmental conditions do not fluctuate temporally. However given 

many environmental parameters, such as temperature and salinity, vary seasonally and 

given the immune response of an organism is affected by factors such as nutritional 
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status (Moret and Schmid-Hempel, 2000) and different reproductive provisioning 

between sexes (Zuk et al., 2004), understanding exactly how an organism will respond 

to environmental stress at different times seasonally is crucial to predict how 

environmental stress will affect organism disease resistance and impact population 

dynamics. 

 Measuring phagocytic activity serves as a commonly used proxy for 

immunocompetence (Hooper et al., 2007), with immunocompetence being the general 

capacity of the individual to mount an immune response (Schmid-Hempel, 2003). 

However, demonstrating a change in phagocytic activity in isolation fails to show the 

mechanisms by which this immune parameter is impacted and indeed, this approach 

fails to account for any further possible cellular immune dysfunction that would go 

unnoticed if the apparent ability of haemocytes to engulf bacteria remained unaffected. 

Therefore, in measuring a number of additional haemocyte parameters, such as changes 

in the abundance (e.g. Parry and Pipe, 2004), morphology (e.g. Gagnaire et al., 2003) or 

viability (e.g. Gagnaire et al., 2004) of haemocytes, investigators are able to understand 

the processes involved in phagocytosis that are specifically affected by environmental 

stressors. Consequently, studies are able to demonstrate subtle differences in the 

response of phagocytic activity and overall cellular immunity that may go unnoticed if 

phagocytic activity was the only endpoint measured. 

 Whilst an increase in phagocytic activity might indicate an increase in the 

activity of the haemocytes themselves, it is also entirely possible that this increase could 

be caused by an alteration in haemocyte proliferation, with the increase just an indirect 

effect of increased haemocyte numbers. Therefore, in measuring total cell counts 

(THC), it is possible to demonstrate a change in the number of haemocytes in context 

with changes in other cellular immunological measures. In investigating the effect of 
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both a pathogen and temperature stress on the Caribbean fan  coral, Gorgonia ventalina, 

Mydlarz et al. (2008) demonstrated that an Aspergillus sydowii infection led to a 

localised increase in the number of amoebocytes in tissue closest to the infection, 

amoebocytes being phagocytically active cells in gorgonian corals (Olano and Bigger, 

2000), whereas an increase in temperature from 27°C – 29 °C to 31.5 °C for 8 days led 

to a systemic and spatially homogenous increase in amoebocyte numbers throughout 

undamaged coral tissue. Temperature was also shown to significantly affect THC in the 

Pacific whiteleg shrimp, Litopenaeus (=Penaeus) vannamei (Pan et al., 2008). 

Individuals maintained at lower temperatures (18 °C and 21 °C) compared to the 

controls (maintained at 24 °C) demonstrated a sustained reduction in THC for the entire 

12 day experiment, whilst shrimp maintained in higher temperatures (27 °C and 30 °C) 

decreased THC during the first 3 days of the 12 day exposure, after which THC returned 

to levels comparable to those in the controls. The ability of the number of circulating 

haemocytes to recover after exposure to higher temperatures, as was noted by Pan et al. 

(2008), has also been demonstrated by a number of other investigators, where THC has 

been shown to recover either during or after an exposure to a number of environmental 

stressors. Lorenzon et al. (2001) demonstrated an exposure to trace metal 

contamination, including Hg2+, Cd2+, Cu2+, Cr6+, Zn2+ and Pb2+,  in the glass prawn, 

Palaemon elegans led to a decrease in THC during the first 8 h of contaminant 

exposure, however after a 16 h immersion haemocyte numbers returned to levels noted 

prior to the investigation. Furthermore, whilst THC failed to stabilise and return to 

levels noted in control individuals in the blue swimmer crab, Portunus pelagicus, during 

a 48 h sub-lethal exposure to elevated ammonia-N, Romano and Zeng (2010) showed 

that the number of haemocytes was able to recover to levels noted in control individuals 

after 84 h of recovery post exposure. In considering the ability of immune parameters to 
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recover either immediately after an exposure to an environmental stressor, or in some 

instances during the stressor exposure period, it is vital to account for the duration of an 

exposure to an environmental stressor and the stage of exposure at which the immune 

system is investigated. 

 Pipe et al. (1999) proposed migration of haemocytes from tissues to the 

haemolymph as the principle mechanism to increase haemolymph cell counts, and in 

doing so demonstrated the ability of copper concentration to alter total numbers of 

circulating haemocytes within the blue mussel, Mytilus edulis. Additionally, alongside 

measuring total number of circulating haemocytes, this study also measured the 

differential cell count (DHC), in this case being the proportion of eosinophilic and 

basophilic cells. After a 7-day exposure at copper concentrations of 0.02 and 0.05 mg l-

1, total haemocyte count significantly increased, with DHC remaining unaffected. 

However, at copper concentrations of 0.2 and 0.5 mg l-1 this result was reversed with no 

significant impact of the copper on total cell counts, compared with controls, yet the 

proportion of differential haemocytes was significantly affected; eosinophils decreasing 

and basophils increasing compared with the controls. Furthermore, phagocytic activity 

was only significantly affected by a copper concentration of 0.2 mg l-1, with other 

concentrations (0.02, 0.05 and 0.5 mg l-1) failing to impact mussel phagocytic activity 

significantly. This study therefore highlights the different possible effects of just one 

contaminant on various haemocyte parameters that would have been missed if 

phagocytic activity had been measured in isolation.  

 With different haemocyte subpopulations undertaking different functions with 

respect to immune defence, an alteration in the proportion of different haemocyte 

subgroups could potentially have significant effects on differential immune functions 

and the overall immunocompetence of the organism concerned. This is highlighted by 
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Mercier et al. (2009) who suggest a change in the proportion of hyalinocytes to be a 

possible mechanism for the increased clotting time demonstrated in the Pacific whiteleg 

shrimp, Litopenaeus (=Penaeus) vannamei 1 h after exposure to a handling stress. 

 To further elucidate the way in which environmental stressors affect 

haemocytes, Oweson et al. (2010) investigated the effect of manganese and hypoxia on 

the proliferation of haematopoietic cells and the number of circulating immune cells 

(coelomocytes in echinoderms) in the starfish, Asterias rubens, together with measuring 

the composition of coelomocyte sub-populations. Manganese contamination had 

previously been shown to reduce the number of circulating haemocytes in the Norway 

lobster, Nephrops norvegicus (Hernroth et al., 2004; Oweson et al., 2006) and the blue 

mussel, Mytilus edulis (Oweson and Hernroth, 2009),  yet increase coelomocyte 

numbers in Asterias rubens (Oweson et al., 2008). Whilst Oweson et al. (2010) also 

showed manganese to increase number of coelomocytes, proliferation of haematopoietic 

cells and the number of dividing cells in the coelomic epithelium, believed to be the 

main tissue for renewal of coelomocytes in Asterias rubens (Holm et al., 2008), this 

study failed to show any effect of hypoxia on coelomocyte numbers or cell 

proliferation. This reflects results from previous studies on Asterias rubens that found 

the numbers of circulating coelomocytes to be unchanged by other physical stressors 

including temperature and salinity (Coteur et al., 2004).  

 Whilst Pipe et al. (1999) measured DHC by investigating the different staining 

characteristics of mussel haemocytes, separation of Asterias coelomocytes by 

conventional methods does not allow reliable identification of coelomocyte sub-

populations (Oweson et al., 2010). Therefore to identify the impact of manganese and 

hypoxia on the DHC in Asterias rubens Oweson et al. (2010) additionally measured 

ArRunt mRNA expression. ArRunt is a runt-related transcription factor expressed in the 
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coelomocytes and coelomic epithelium of Asterias rubens, with runt-related 

transcription factors playing a major role in the differentiation of specific blood cell 

lineages in vertebrates and invertebrates (Oweson et al., 2010). Runt factors are 

evolutionarily conserved and have been shown to carry out various functions, which 

alongside cell differentiation also include regulating cell proliferation and maintenance 

of stem cells, with their roles often differing between developmental stages (Braun and 

Woollard, 2009). However, in finding no relation between elevated ArRunt mRNA 

expression and either elevated coelomocyte numbers or cell proliferation in Asterias 

rubens, Oweson et al. (2010) suggest this transcription factor plays an important role in 

cell differentiation. Therefore in demonstrating that hypoxia but not manganese 

exposure stimulated ArRunt expression, these authors propose that the adjustment in the 

composition of coelomocyte subpopulations possibly compensates for the increased 

demand on gas exchange under hypoxic conditions (Oweson et al., 2010).  

 In exposing the lagoon cockle, Cerastoderma glaucum to the xenoestrogen, 4-

nonylphenol (NP), Matozzo et al. (2008) showed this endocrine-disrupting chemical  to 

affect haemocyte population distribution, with a 7 day exposure to 0.1 mg l-1 NP 

increasing the THC of cockles compared to control organisms. Furthermore, in 

measuring the haemocyte size frequency distribution, through the use of a coulter 

counter, these authors showed that after a 7 day exposure to NP, at a concentration of  

0.1 mg l-1, the haemocyte fraction measuring 7-8 µm in diameter (250 femtolitres in 

volume) significantly increased in exposed cockles compared to controls (Matozzo et 

al., 2008). However, whilst NP is shown to significantly impact haemocyte numbers 

and size frequency distribution, there is a need for experimental studies that measure the 

impact of chemical pollutants to avoid the masking of mechanisms of specific 

immunotoxic versus non-specific systemic toxicity.  For example, understanding the 
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maximum tolerated concentration of a toxicant will help distinguish between specific 

immunotoxic effects versus gross physiological stress or systemic toxicity (Hutchinson 

et al., 2009). 

 Brousseau et al. (2000) measured the impact of a number of different trace metal 

contaminants, including cadmium chloride (CdCl2), zinc chloride (ZnCl2), mercuric 

chloride (HgCl2), methyl mercury chloride (CH3HgCl) and silver nitrate (AgNO3), on 

phagocytic disturbance in the soft shelled clam, Mya arenaria together with haemocyte 

viability, at a range of metal concentrations (10-9 – 10-3 M). In measuring phagocytic 

activity using flow cytometry, these authors showed that a low dose exposure (10-9 or 

10-8 M for 18 h) of 4 out of the 5 trace metals tested, induced a stimulation of 

phagocytic activity, yet cell viability remained unaffected. At greater concentrations of 

three of the contaminants (methyl mercury at 10-6 and 10-5 M, mercuric chloride at 10-5 

M and silver nitrate at 10-4 M), phagocytic activity was significantly impaired yet there 

was no cytotoxic impact of these metals and again no reduction of cell viability at these 

contaminant concentrations. However, exposure to 10-4 M of both cadmium and zinc 

resulted in a notable reduction in phagocytic activity attributed to a marked cytotoxic 

impact of these two contaminants, leading to a reduced cell viability of haemocytes. If 

Brousseau et al. (2000) had measured phagocytic activity in isolation, the contaminant 

dose at which trace metal contamination impaired phagocytic activity would still have 

been correctly presented. However, this approach may have resulted in the reduced 

phagocytic activity, noted with an exposure to methyl mercury at 10-6 and 10-5 M, 

mercuric chloride at 10-5 M and silver nitrate at 10-4 M, being attributed to a 

cytotoxicity of trace metal contamination, masking the true nature of the way in which 

these metals impact the immune system of the clams. Therefore, by measuring cell 

viability concurrently, the authors were able to attribute trace metal cytotoxicity 



Chapter 1                                                                                                                        General Introduction 

- 15 - 

 

specifically to cadmium and zinc concentrations of 10-4 M.  

 In a study investigating the haemocyte condition of the Pacific whiteleg shrimp, 

Litopenaeus (=Penaeus) vannamei, Costa et al. (2009a) measured the percentage of 

apoptotic haemocytes in shrimp naturally infected with myonecrosis virus (IMNV), 

during different stages of the infection. Apoptosis plays an important role during viral 

infection in shrimp (Flegel, 2007), inducing early cell death of the host cell to limit or 

inhibit viral replication (Costa et al., 2009a). Therefore, in measuring the percentage of 

apoptotic cells, alongside THC and DHC, Costa et al. (2009a) were able to demonstrate 

the impact of IMNV on the cellular immune response of Litopenaeus vannamei during 

infection. In asymptomatic infected shrimp and shrimp showing initial signs of infection 

there appeared to be no impact of IMNV on the immune response, with the shrimp 

immune system seemingly failing to detect the virus. However, in shrimp at an 

advanced stage of infection, a reduction in THC of 30 % was demonstrated compared to 

the earlier stages of infection, alongside a reduction in the percentage of circulating 

granulocytes (7 %) and an increase in apoptotic haemocytes (8-fold). This failure of 

Litopenaeus vannamei to detect the IMNV before advanced stages of the virus, at which 

point shrimp recovery is unlikely due to the serious damage of shrimp tissues (Costa et 

al., 2009a), indicates the complex nature in which host-pathogen interactions manifest. 

Such studies indicate the vital need to investigate many aspects of the immune system 

simultaneously to fully understand the mechanisms by which stressors impact the 

immune system and affect host-pathogen relationships, and additionally account for the 

dynamic nature in which a host organism detects and interacts with a pathogen. 

 Parry and Pipe (2004) demonstrated the impact of a combination of stressors on 

phagocytic activity, total number of circulating haemocytes and differential haemocyte 

counts. The study exposed the blue mussel, Mytilus edulis to copper concentrations of 
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0.02 and 0.05 mg l-1 for 7 days. However, as well as investigating the impact of the 

metal contamination this study additionally investigated the interactive impact of 

temperature and pathogen stressors. Mussels were held at either 10 or 15 ºC and, after 

the initial 7 day copper exposure, were exposed to the pathogen, Vibrio tubiashii for a 

further 3 days. Temperature was shown to significantly impact phagocytic activity, 

having increased at 15 ºC compared to 10 ºC, a result also noted in THC with mussels at 

10 ºC having lower numbers of circulating haemocytes than at 15 ºC, however 

temperature did not affect DHC. Mussels exposed to 0.02 mg l-1 copper also 

demonstrated increased levels of phagocytic activity and an increased THC compared to 

controls, yet the percentage of circulating basophils decreased compared to controls. 

Mussels exposed to a copper concentration of 0.05 mg l-1, however, demonstrated a 

significantly reduced phagocytic activity when compared with controls matched by a 

decreased THC and an increase in the percentage of circulating basophils. Copper was 

also shown to interact with the pathogen stressor, with mussels exposed to 0.02 mg l-1 

and Vibrio demonstrating the highest noted phagocytic activity and THC, and mussels 

exposed to 0.05 mg l-1 and Vibrio demonstrating the lowest noted phagocytic activity. 

Whilst both temperature and copper concentration were shown to impact phagocytic 

activity individually, the most striking result of this study is the interactive effect of all 

three stressors, highlighting the complex nature of the impact of environmental stressors 

on the immune response. Mussels exposed to copper at 0.02 mg l-1 and Vibrio at 15 ºC 

had a significantly higher level of phagocytosis and a higher THC than mussels exposed 

to any other treatment, at either temperature. In  nature, stressors seldom occur in 

isolation and in highlighting the complex nature by which just three stressors can 

interact to impact just one aspect of an organism’s immune response, Pipe and Parry 

(2004) emphasized the need to investigate a wider array of environmental stressors and 
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a greater number of stressors in combination. 

 In addition to phagocytosis of foreign particles, haemocytes are able to secrete 

soluble antimicrobial peptides (AMPs) and other cytotoxic substances into the 

haemolymph (Mitta et al., 2000a). Together with other non-specific humoral defence 

molecules, including agglutinins, opsonizing lectins, bactericidins, lysozymes and 

serine proteases (Roch, 1999), these comprise the humoral component of invertebrate 

immunity. Measuring humoral immunity offers a further insight into the impact of 

stressors on haemocyte functionality, associated with an organism’s 

immunocompetence. 

 

1.3. HUMORAL IMMUNITY 

 

Humoral defence molecules effect bacterial killing by opsonising and/or agglutinating 

an invader and by neutralizing the pathogen, either causing lysis or causing the 

disruption of metabolism, cell wall binding, cell membrane permeability or growth 

inhibition (Smith et al., 1995). The suite of antimicrobial molecules, together with the 

site of both production and storage of these molecules is species, tissue and even cell 

specific (Mitta et al., 2000b). Invertebrate humoral investigation therefore investigates 

the production of these antimicrobial factors, which include superoxides, lectins, 

microbicidal pigments and AMPs, as well as their storage, secretion and release 

pathways.  

 Within humoral immunological investigation, over the past decade, there has 

been an increasing understanding of the genetic control of the humoral immune 

response. The development and application of novel genetic and proteomic techniques, 

which demonstrate changes in gene expression and function of innate immune response 
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components, has led to the production of a new and potentially distinct field of research 

when considered alongside traditional humoral techniques; the study of AMP 

expression and production.  

  

1.3.1  Haemolymph cytotoxicity and the respiratory burst 

 

Traditionally humoral immunological investigation has studied haemocyte 

functionality, measuring the ability of haemocytes to produce antimicrobial molecules, 

as well as the release of these molecules and their ability to kill bacteria. To this end 

studies investigating humoral immunity often adopt one of three methodologies; i) 

investigating the functionality of haemocytes themselves, ii) measuring the 

antimicrobial activity of cell-free haemolymph by separating the cellular and cell-free 

fractions and studying each independently or, iii) studying the haemolymph containing 

both the cellular and cell-free fractions simultaneously.  

Measuring the cellular fraction of haemolymph independently allows investigation of 

any change in haemocyte functionality, and specifically the ability of haemocytes to 

produce antimicrobial factors, associated with an alteration in environmental conditions. 

In measuring haemocyte reactive oxygen intermediate (ROI) production and enzyme 

activity any stressor-induced change in haemocyte mediated bactericidal activity can be 

empirically investigated.  

 Measuring the production of ROIs, using either chemiluminescence or 

fluorescence, allows researchers to study the respiratory burst associated with 

phagocytosis and assess how the oxidative killing of bacteria is impacted by 

environmental stressors. In assessing the production of ROIs via luminol-enhanced 

chemiluminescence, a method which mainly measures peroxidases produced both 
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internally and externally by amoebocytes (Coteur et al., 2002),  Coteur et al. (2004) 

demonstrated the ability of both an increase in temperature and salinity to decrease ROI 

production in the common starfish Asterias rubens. Conversely, Hégaret et al. (2003) 

measured the production of reactive oxidative species (ROS) in the American cup 

oyster, Crassostrea virginica by measuring a change in fluorescence. Fluorescence, in 

this case was induced by adding 2’,7’-dichlorofluorescein diacetate (DCFH-DA) to the 

haemolymph sample. DCFH-DA diffuses into the cells where it is hydrolysed and 

subsequently oxidised by ROS production to form 2’,7’-dichlorofluorescein (DCF), a 

highly fluorescent probe, which is then measured using flow cytometry. Whilst in this 

study Hégaret et al. (2003) showed that a sudden temperature elevation failed to 

significantly alter oyster ROS production, in A. rubens an exposure to cadmium has 

been shown to increase the production of ROS under laboratory and field conditions 

(Coteur et al., 2003, 2005b). By studying the impact of cadmium exposure under field 

conditions,  Coteur et al. (2003) demonstrated the triphasic nature in which an 

environmental stressor impacts the immune response. Initially, stressors act via short-

term direct inhibition of the immune response followed by immune recovery due to 

induction of protective mechanisms. After this, animal physiology is impacted globally 

due to the overwhelming of protective measures leading to the onset of durable and 

indirect stimulation of the immune response. The stage of impact of an environmental 

stressor will therefore depend on two factors, the duration of stressor exposure and the 

condition of the organism which ultimately dictates its ability to maintain successful 

protective mechanisms. Therefore, accounting for latent effects of natural stressors in 

organisms studied both in the wild, and wild-collected animals for laboratory study, is 

vital to fully understand possible impacts of experimentally applied stressors on 

immune function. 
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 In measuring a change in chemiluminescence or fluorescence, investigators 

demonstrate a change in overall haemocyte ROI production. However, within marine 

invertebrate immunology the most widely used technique to investigate the ability of 

haemocytes to produce ROIs is to measure a specific reactive oxidative species, such as 

superoxide anion (O2
-)  production, rather than a suite of ROIs. Superoxide anion 

production can be measured both as an extracellular kinetic assay through the reduction 

of cytochrome-C or alternatively as an intracellular end point assay with the reduction 

of  nitroblue tetrazolium, NBT, (Pipe et al., 1995a). Of the marine invertebrates 

investigated the bivalve molluscs have received the vast majority of attention with 

respect to ROI production with studies investigating this immune parameter in the 

American cup oyster, Crassostrea  virginica  (Anderson et al., 1998; Boyd and Burnett, 

1999; Fisher et al., 2000; Hégaret et al., 2003; Oliver et al., 2001), the Pacific oyster, 

Crassostrea gigas  (Gagnaire et al., 2006a, b; Lacoste et al., 2002), the blue mussel  

Mytilus edulis  (Bibby et al., 2008; Parry and Pipe, 2004; Pipe et al., 1999; Wootton et 

al., 2003),  the Zhinkong scallop, Chlamys farreri (Chen et al. 2007a, b), the Taiwan 

abalone Haliotis diversicolor supertexta (Cheng et al., 2004a, b, c, d, e), the surf clam, 

Mactra veneriformis (Yu et al., 2010), the striped venus clam, Chamelea gallina 

(Monari et al., 2005, 2007) and the lagoon  cockle, Cerastoderma glaucum  (Matozzo et 

al., 2008). In investigating the impact of anoxic stress induced by air exposure in the 

surf clam, Mactra veneriformis, Yu et al. (2010) noted a significant reduction in the 

production of superoxide anions as measured through a decreased reduction of NBT 

after a 24 h air exposure. Furthermore, after an initial 24 h recovery in seawater, clam 

ROS production returned to levels noted pre-exposure. However, after a 48 h or 72 h air 

exposure, superoxide anion production was unable to recover even when returned to 

seawater for 24 h.  
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 Whilst the majority of studies that have specifically measured superoxide anion 

production do so in bivalve molluscs, a number of authors have also employed these 

techniques to investigate ROS production in other phyla. In the Indian spiny lobster, 

Panulirus homarus, superoxide anion production was significantly reduced by both a 

reduction and an increase in salinity compared to controls after a 7 day exposure 

(Verghese et al., 2007). Additionally a natural infection with IMNV was demonstrated 

to cause a 50 % increase in superoxide anion production in the Pacific whiteleg shrimp 

Litopenaeus (=Penaeus) vannamei, although only at an advanced stage of the infection 

when recovery was  unlikely (Costa et al., 2009a). Exposure to a number of 

immunostimulants has also been shown to increase ROS production in the Japanese 

common sea cucumber, Apostichopus japonicus (Gu et al., 2010). Immunostimulants 

have been suggested as an effective mechanism to increase disease resistance and 

immunocompetence, and therefore reduce mortality, during aquaculture (Sakai, 1999). 

Therefore, investigating the ability of these compounds to stimulate the immune 

response offers an alternative method to the expensive use of antibiotics and other 

chemicals which often have an additional unwanted risk through environmental 

contamination (Gräslund and Bengtsson, 2001). In using pathogen-associated molecular 

patterns (PAMPs) as immunostimulants,  such as β-glucan (a homopolysaccharide 

found in cell walls), CpG DNA (a nucleic acid motif) and Mannan oligosaccharides 

(MOS; yeast wall constituents), Gu et al. (2010) showed superoxide anion production to 

be increased. This increase in ROS production occurred 1 h and 3 h after exposure to β-

glucan (5, 25 and 100 µg ml-1), 1 h, 3 h and 6 h after exposure to CpG DNA (2.5 µM) 

and 6 h and 12 h after exposure to MOS (40 and 80 µg ml-1), after which superoxide 

anion production returned to control levels despite a continued immunostimulant 

exposure for 24 h. 
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 Nitric oxide (NO) is a short-lived radical, generated by nitric oxide synthases 

(NOS), which, like the superoxide anion, plays an important role in the elimination of 

pathogens as part of the innate immune response (Rodríguez-Ramos et al., 2010). NO is 

not toxic itself, playing an important role as a signal molecule throughout the animal 

kingdom (Colasanti et al., 2010), but together with superoxide anions it forms 

peroxynitrile anion (ONOO-) which is a highly toxic compound with antibacterial and 

antiviral activity (Beckman and Koppenol, 1996; Fang, 1997; Fuji et al., 1999; Roch, 

1999). In demonstrating a significant increase in the production of NO in the 

Mediterranean mussel, Mytilus galloprovincialis, exposed to Micrococcus lysodeikticus 

and Vibrio anguillarum, Costa et al. (2009c) showed NO to be both an important, and 

inducible, factor in the invertebrate immune response. Additionally NO, through the 

bystander response, has been shown to be involved in the host defence in sponges 

challenged with xenobiotica and attacking microorganisms (Colasanti et al., 2010; 

Muller et al., 2006). An exposure to β-glucan has been shown to induce an up-

regulation in the production of NO in the carpet shell clam, Ruditapes decussates, and 

in the Mediterranean mussel Mytilus galloprovincialis (Costa et al., 2008). Furthermore, 

as well as demonstrating the ability to induce NO production, Rodrígues-Ramos et al. 

(2010) show the activity of nitric oxide synthase (NOS) and the expression of this gene 

can also be upregulated. When exposed in vitro to Escherichia coli O55:B5 

lipopolysaccharide (LPS), haemocytes of the Caribbean spiny lobster, Panulirus argus, 

increased both the activity of NOS and also NOS gene expression. 

 Alongside measuring ROI and NO production, by measuring the activity of a 

number of separate enzymes within haemocytes, such as NOS, the bactericidal activity 

of haemocytes can be further quantified. When studying enzyme activity, a number of 

investigators have concentrated on the activity of hydrolytic, lysosomal enzymes shown 
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to be involved with bactericidal killing including; acid phosphatase (e.g. Chen et al., 

2007a), β-glucuronidase (e.g. Ballarin et al., 2003; Pampanin et al., 2002), esterase (e.g. 

Gagnaire et al., 2003, 2004, 2006a, b), peroxidase (Couch et al., 2008; Mydlarz and 

Harvell, 2007), amino peptidase (e.g. Gagnaire et al., 2003, 2004), and lysozyme (e.g. 

Matozzo et al., 2007 ; Monari et al., 2007 ; Wang et al., 2008a, b).  

 Wootton et al. (2003) investigated the impact of the polycyclic aromatic 

hydrocarbon, phenanthrene, on the immune response of three bivalve species; the blue 

mussel, Mytilus edulis, the razor shell,  Ensis siliqua, and the common edible cockle, 

Cerastoderma edule. In demonstrating the differential effects of phenanthrene on the 

immune response of these three bivalve species, Wootton et al. (2003) concluded that 

one had to be cautious when using only one species as an indicator, or sentinel, for the 

likely immune response of an entire group or community. The razor shell, Ensis siliqua, 

showed no modulation in the percentage of haemocytes expressing non-specific esterase 

or acid phosphatase activity, while Mytilus edulis also demonstrated no significant 

change in non-specific esterase activity. However, acid phosphatase activity 

significantly increased after a 7-day incubation at contaminant concentrations of 50, 100 

and 200 µg l-1 with a significant decrease in acid phosphatase activity after 14 days at 

higher contaminant concentrations of 100, 200 and 400 µg l-1. Conversely, in 

Cerastoderma edule phenanthrene contamination significantly affected enzyme activity. 

Non-specific esterase activity decreased after a 7-day incubation at 400 µg l-1 with acid 

phosphatase activity significantly increasing at a concentration of 100 µg l-1 and 

significantly decreasing at a concentration of 400 µg l-1 after a 7-day incubation. In 

considering this result, and other immune parameter results, Wootton et al. (2003) 

highlighted the pressing need to investigate the impact of environmental stressors on the 

invertebrate immune system from within a wider group of organisms and from a 
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number of differing groups, families and phyla.  

 As well as measuring humoral immunity specifically within haemocytes and 

through haemocyte functioning, many authors have measured humoral immunity and 

more specifically the presence and activity of humoral antimicrobial components within 

the cell-free lysate, separating the cellular and cell free fractions of the haemolymph. It 

is possible to demonstrate the antimicrobial activity of invertebrate serum, as outlined 

by Smith et al. (1995), by measuring bacterial viability using a spread plate, scoring the 

percentage of colony forming units both before and after exposure to the test material. 

Yet this method does not elucidate the mechanism of bactericidal activity, merely 

showing a response due to direct killing (Smith et al., 1995). A method more commonly 

used investigates the lysozyme-like bactericidal activity of the cell-free haemolymph  

(Matozzo et al., 2005; Yu et al., 2010). Lysozyme is a lysosomal enzyme capable of 

hydrolyzing mucopolysaccharides (bacterial cell wall constituents) (Pipe, 1990b), 

therefore measuring its activity measures the ability of the cell-free haemolymph to 

undertake bactericidal killing, via the production and activity of hydrolytic enzymes. In 

exposing Micrococcus lysodeikticus to the mucus of the spiny starfish, Marthasterias 

glacialis using an agar diffusion lysozyme test, Stabili and Pagliara (2009)  noted the 

ability of zinc exposure, at a concentration of 5 mg l-1 for 48 h, to lower the lysozyme-

like activity of Marthasterias glacialis. Alterations in lysis diameter, being the diameter 

of cleared zones around wells of mucus on a Petri dish, were standardised against a 

known concentration of lysozyme from crystalline hen egg white (Stabili and Pagliara, 

2009). Whilst this study does not measure the antibacterial activity of organism 

haemolymph, it does demonstrate the true nature of mucus as a first line of host defence 

in species such as Marthasterias glacialis.  

 In exposing a log growth phase broth culture of a known bacterium to the 
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invertebrate serum and subsequently measuring the change in optical density of this 

culture over time, it is also possible to demonstrate the inhibition of bacterial growth 

using turbidometry. Alterations in optical density can then be quantified by 

standardising these values against a known concentration of lysozyme from crystalline 

hen egg white, as was done by Mattozzo et al. (2007) where an increase in salinity was 

shown to decrease lysozyme-like activity of cell-free haemolymph in the striped venus 

clam, Chamelea gallina.  

 A number of studies have also successfully measured bacterial growth inhibition 

in corals, demonstrating the antimicrobial activity of coral extracts via a change in 

optical density of a bacteria culture. Mydlarz et al. (2009), in testing the impact of 

yellow band disease (YBD) and bleaching on coral immune response in the 

mountainous star coral, Montastraea faveolata, noted a significant elevation in the 

antibacterial activity of coral extracts from both healthy and diseased tissue in corals 

infected with YBD compared to tissue from healthy corals. Interestingly however, coral 

extracts from bleached corals had the lowest noted antibacterial activity, possibly 

implicating the above average temperature and/or bleaching event in the depleted 

immune defence and subsequent spread of YBD in Montastraea favolata colonies 

(Mydlarz et al., 2009). Temperature was also shown to affect antifungal activity of coral 

extracts in the Caribbean sea fan coral, Gorgonia ventalina, interacting with an 

Aspergillus sydowii infection (Ward et al., 2007). In this study, antifungal activity was 

increased in all colonies inoculated with Aspergillus sydowii, with the greatest increase 

in extracts of coral fragments maintained at the warmest temperature. Whilst an increase 

in temperature and a bleaching event are suggested to have played a key role in the 

variation noted within the coral immune response by Mydlarz et al. (2009), Couch et al. 

(2008) also correlate site-specific environmental factors to an altered immune defence 
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in healthy, uninfected, Gorgonia ventalina. Whilst there was no correlation between 

previous disease prevalence, or severity, and any measured immune parameter, there 

was a relationship between antifungal activity and the percentage of bare substrate 

cover, with a low coral density possibly activating a change in antifungal activity, SOD 

activity and a change in exochitinase expression (Couch et al., 2008). 

 In studying the cell-free haemolymph it is also possible to measure the activity 

of numerous enzymes with respect to environmental perturbation. Bouilly et al. (2006) 

showed an increase in phenoloxidase like (PO-like) activity of the Pacific oyster, 

Crassostrea gigas when exposed to a cadmium concentration of  0.5 µg l-1 after an 

exposure of 66 days. This study found  no effect of cadmium on PO-like activity when 

compared with controls at lower concentrations or a shorter exposure duration.  In 

contrast, Verghese et al. (2007) showed PO activity to decrease in the Indian spiny 

lobster, Panulirus homarus in response to hypoxia, ammonia-N concentration and a 

change in pH. Together with a reduction in PO activity, environmental stressors have 

also been shown to alter the activity of the antioxidant enzyme superoxide dismutase 

(SOD). Increasing anoxia was shown to cause a decrease in SOD activity (Monari et al., 

2005), and an increase in temperature was shown to cause an increase in the activity of 

this enzyme (Monari et al., 2007), in cell-free haemolymph of the striped venus clam, 

Chamelea gallina. Conversely, Chen et al. (2007b) showed that while SOD activity was 

not affected by temperature stress in the Zhinkong scallop, Chlamys farreri, activity of 

the hydrolytic enzyme, acid phosphatase (ACP), decreased significantly with increasing 

temperature.  

 Whilst demonstrating a reduction in the activity of different hydrolytic enzymes 

shows a clear reduction in the bactericidal activity of the cell-free haemolymph, and a 

reduction in antioxidant enzyme activity shows a reduction in an organisms ability to 



Chapter 1                                                                                                                        General Introduction 

- 27 - 

 

protect itself against the production of ROIs, the significance of a reduction in PO, or 

PO-like, activity for host defence remains uncertain for many invertebrate species 

(Coles and Pipe, 1994). Within many arthropod species PO is involved in melanisation 

and encapsulation of foreign bodies (Coles and Pipe, 1994), and also it is involved with 

the melanisation cascade (the prophenoloxidase or proPO activating system), recently 

shown to be intimately associated with the appearance of factors that aid phagocytosis 

by stimulating cellular defence (Cerenius et al., 2008). PO activity is shown to be 

involved in the susceptibility of the Sydney rock oyster, Saccostrea glomerata, to QX 

disease caused by the protozoan  Marteilia sydneyi  (Butt et al., 2006; Newton et al., 

2004; Peters and Raftos, 2003) and a reduction in PO activity has been suggested to 

compromise disease resistance in other bivalve species (Muñoz et al., 2006; Yu et al., 

2010). Furthermore, in the Caribbean sea fan coral, Gorgonia ventalina, PO activity is 

involved in melanisation and immune defence of the host in response to an Aspergillus 

sydowii infection (Mydlarz et al., 2008). However, much controversy and uncertainty 

still remains within the field as to the importance of PO for immune defence in non-

arthropod systems (Cerenius et al., 2008), but despite this PO activity is still often used 

as a measure of the immune response in studies investigating the impact of 

environmental stressors on the invertebrate immune system.  

 Costa et al. (2009a) demonstrated that PO activity was reduced in farm-reared 

Pacific whiteleg shrimp, Litopenaeus (=Penaeus) vannamei during late stages of an 

IMNV infection, and temperature was also shown to decrease PO activity, serine 

protease activity and proteinase inhibitor activity, in the same species (Pan et al., 2008), 

demonstrating an impact of temperature on the prophenoloxidase (proPO) system. 

However, whilst solid evidence exists for the role of the proPO system in arthropod 

immune defence, Cornet et al. (2009) suggest that caution is still needed when 
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measuring  immunocompetence using proPO activity in an arthropod system, as the 

activity of the proPO system was shown be an in-sufficient estimate of bacterial 

resistance at a population level in the freshwater amphipod, Gammarus pulex.  

 Whilst the studies described above investigate the activity of a number of 

separate enzymes with a range of functions within the cell-free haemolymph, a number 

of others have demonstrated the ability of environmental stressors to alter the enzymatic 

activity of total haemolymph, where both the cellular haemocyte fraction and the cell-

free serum fractions of the invertebrate haemolymph are investigated simultaneously 

(e.g. Hauton et al., 2000). Soudant et al. (2004) showed that the lysozyme-like activity 

in total haemolymph of the Manila clam, Venerupis (=Tapes or Ruditapes) 

philippinarum was affected by season (decreasing from Oct to Feb in a population from 

Marennes, France), also finding that the lysozyme-like activity varied with rearing site. 

Wang et al. (2008a) also show season to affect lysozyme activity, along with the 

activity of SOD, catalase (CAT) and myeloperoxidase (MPO) (all of which are involved 

in the detoxification of ROIs), in the Japanese common sea cucumber, Apostichopus 

japonics. The activity of these enzymes was changed significantly from July to October, 

caused by the induction of aestivation which is an indispensible state in sea cucumber 

life history induced by high temperature, causing major physiological and 

morphological changes that increase organism survival (Liu et al., 1996; Wang et al., 

2008a). However, alongside a physiological cause, a direct influence of temperature on 

A. japonicus immune enzyme activity should also be considered, as both acute 

temperature changes and changes in salinity have been shown to significantly alter 

lysozyme, SOD, CAT and MPO activity (Wang et al., 2008b). Hauton et al. (2000) also 

showed a decrease of lysozyme-like activity and demonstrated a decrease in hydrogen 

peroxide concentration (indicating a reduction in the respiratory burst and production of 
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this ROI), compared with controls, in total haemolymph of the European flat oyster, 

Ostrea edulis inoculated with Listonella anguillarum, and Paillard et al. (2004) showed 

that temperature and a pathogenic challenge altered the leucine aminopeptidase 

concentration in haemolymph from Venerupis philippinarum.  

 Although investigating the total haemolymph fraction allows the study of both 

intra- and extra- cellular presence of bactericidal activity simultaneously, providing a 

good overall measure of  humoral immunity, it does not allow the distinction to be made 

between stressors acting on the haemocytes themselves or acting on the release of 

antimicrobial factors into the haemolymph. Therefore, understanding how differences in 

the sampling methodology may impact experimental results within humoral 

immunology will allow a greater understanding of the mechanisms by which stressors 

are impacting haemocyte and humoral functionality. 

 

1.3.2 Antimicrobial peptides and immune genes– A change in expression and direction? 

 

Antimicrobial peptides (AMPs) are ubiquitous antibiotic defence agents, highly 

conserved throughout evolution, being present in all phyla (Bachére et al., 2004). They 

comprise one of the main humoral components of the innate immune system (Costa et 

al., 2009b) and recently their study has received increasing attention with over 1,200 

peptides having been characterized from within eukaryotes (Wang et al., 2009). These 

defence molecules have little or no functional specificity and possess a broad spectrum 

of antimicrobial activity, acting against Gram-positive and Gram-negative bacteria, 

fungi, yeast and in some instances viruses and protozoa (Bachére, 2003). These peptides 

possess an enormous sequence and structural diversity, with only a few shared 

characteristics which include their small size, cationic character and the presence of 30 
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– 50 % hydrophobic residues (Hancock et al., 2006), thus enabling different groups of 

AMPs to demonstrate significantly different antimicrobial activities and modes of 

action (Muňoz et al., 2002).  

 Since their discovery in the cecropia silkmoth, Hyalophora cecropia (Steiner et 

al., 1981), at least 50 % of the inducible AMPs reported have been identified within 

invertebrates, mainly within insects (Bulet et al., 1999). Within marine invertebrates the 

expression and action of these defence molecules has predominantly been investigated 

in bivalve molluscs (mussels and oysters) and crustaceans (Bachére, 2003). However, 

with an increasing understanding of the importance of AMPs for invertebrate innate 

immunity, alongside the potential for their use in drug development (Li et al., 2008a), 

AMPs have now been discovered and characterised in many marine invertebrate phyla 

including the Echinodermata, Porifera, Annelida, Chelicerata, Chordata (Urochordata) 

and Cnidaria (Li et al., 2008a; Ovchinnikova et al., 2006).  

 Despite the growing level of interest that the investigation of AMPs has received 

within marine invertebrates, there is still a scarcity of studies in which these genetic and 

proteomic tools have been used to investigate the impact of environmental variability on 

invertebrate immunology, with many studies to date having focused on the discovery, 

characterization and regulation of AMPs (e.g. Gonzalez et al., 2007; Jung et al., 2009; 

Li et al., 2008a; Ovchinnikova et al., 2006). Yet due to the integral role of AMPs in the 

innate immune system, investigating genomic and proteomic expression of AMPs 

provides a unique opportunity to vastly advance current understanding in the field of 

ecological immunology, and specifically the impact of environmental stressors.  

 In investigating the impact of a temperature, physical and pathogen stress on the 

expression of MGD2, an AMP in the defensin family, in both the blue mussel, Mytilus 

edulis and the Mediterranean mussel, Mytilus galloprovincialis, Mitta et al. (2000a) 
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demonstrated the ability of multiple environmental stressors to impact AMP regulation. 

This study showed the expression of MGD2 increased when mussels were exposed to a 

physical shock or a heat shock, yet in contrast, expression was reduced when exposed to 

a bacterial challenge. Cellura el al. (2007) also demonstrated a down-regulation of AMP 

gene expression when Mytilus galloprovincialis were exposed to a heat-shock and 

several bacterial challenges. An exposure to Micrococcus lysodeikticus, was shown to 

significantly decrease defensin mRNA expression immediately after the challenge, 

however this decrease lasted less than 24 h. Exposure to Vibrio splendidus decreased 

the expression of mytilin and myticin mRNAs yet increased defensin expression, whilst 

exposure to Vibrio anguillarum increased mytilin expression. Heat-shock was also 

shown to increase myticin mRNA.  

 In undertaking a three year survey between 2005 and 2008, investigating the 

expression of AMPs in response to temperature, salinity and Escherichia coli tissue 

content, Li et al. (2009a) successfully demonstrated the seasonal variability of AMP 

expression. Temperature was shown to positively influence the regulation of defensin, 

and myticin B but failed to alter mytilin B, whereas salinity only affected defensin 

expression. Interestingly, given the role of AMPs in the innate immune response, E. coli 

tissue content failed to influence AMP expression in this study. In analysing these 

results in context with season therefore, defensin and myticin B appeared to be 

expressed to a greater extent in spring-summer compared to winter due to the decrease 

in temperature. However, these results need to be interpreted with caution due to the 

failure of this study to quantify the relationship between immune gene regulation and 

the measured environmental parameters despite their positive influence. Whilst the 

studies by Mitta et al. (2000a), Cellura el al. (2007) and Li et al. (2009a) offer only three 

examples in which AMP expression can be differentially altered by various 
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environmental stressors, they demonstrate how a variable environment can differentially 

change the genetic expression of an integral component of the innate immune system. 

Therefore, to increase our understanding of the extent to which environmental stressors 

alter the gene expression, structure and function of the immune response, a fundamental 

mechanism involved in organism survival (Lochmiller and Deerenberg, 2000), there is a 

need to investigate changes in AMP expression with response to a greater array of 

environmental stressors and across a wider range of organisms. 

 Furthering the investigation of AMP expression with respect to environmental 

perturbation, the investigation of the immune genome within marine invertebrates has 

received a rapidly increasing level of study. The development of new molecular 

methodologies has allowed the investigation of an enormous suite of immune genes, 

and more specifically enabled investigators to further elucidate which specific immune 

genes are important for the evolution of the immune response with respect to 

environmental variability and stress. Through the employment of novel molecular 

techniques such as quantitative real-time PCR (qRT-PCR) (e.g. Li et al., 2008b; Yang et 

al., 2010), cDNA microarray analysis (e.g. de la Vega et al., 2007b; Desalvo et al., 

2008; Place et al., 2008), transciptomics (e.g. De Zoysa et al., 2009; Philipp et al., 2012) 

and suppression subtractive hybridisation (SSH) (e.g. de la Vega et al., 2007a), the 

influence of a range of environmental stressors and the induction and expression of a 

wide range of immune genes is possible.  

 Philipp et al. (2012) demonstrated a complex immune gene repertoire within the 

blue mussel, Mytilus edulis, providing an unprecedented in-depth analysis of the mussel 

transcriptome. In highlighting a high number of innate immune recognition receptors 

and downstream pathway members, these authors demonstrate the sophisticated nature 

of the invertebrate innate immune system repertoire, which provides a novel insight in 
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to the phylogeny of the immune system  (Philipp et al., 2012). Tirapé et al. (2007) also 

demonstrated a complex expression of immune related gene, in this instance during 

ontogenesis of the Pacific oyster, Crassostrea gigas. In measuring the expression 

patterns of 18 selected genes in the developing oysters, they demonstrated differential 

gene expression at separate developmental stages, increasing our understanding of the 

ontogeny of the oyster immune response during very early life cycle stages. This 

potentially explains the variability of susceptibility to infections noted during oyster 

development (Tirapé et al., 2007). Additionally, by exposing the developing oysters to a 

bacterial challenge this study demonstrated the ability of gene expression to be altered 

not only by developmental stage but also by the timing of the bacterial challenge and 

also by the amount of bacteria used for the challenge.  Yang et al. (2010) also 

investigated the expression of immune-related genes in embryos and larvae of a marine 

invertebrate. In studying the Japanese sea cucumber, Apostichopus japonicus, these 

authors  demonstrated further evidence for the up-regulation of immune gene expression 

in larvae, exposing larval A. japonicus to a lipopolysaccharide challenge (Yang et al., 

2010). By furthering the understanding of immune response ontogenesis within 

Crassostrea gigas and Apostichopus japonicus the studies by Tirapé et al. (2007) and 

Yang et al. (2010) demonstrated the importance of understanding the natural variation 

noted within marine invertebrate immune response during different life cycle stages. 

Whilst these studies only investigated the very early life cycle stages of these species, 

the changes in gene expression and differences noted in the ability of a bacterial 

challenge to alter gene expression at different developmental stages highlighted the 

importance of life cycle stage in understanding the invertebrate immune response. 

Therefore, investigating the impact of a variable environment together with the 

difference in gene expression during immune system ontogenesis may help to highlight 
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and explain any noted increase in disease susceptibility during the early life cycle stages 

of marine invertebrates. This will in turn help to outline tipping points and potential 

thresholds for the survival of developing marine invertebrates exposed to environmental 

stressors and anthropogenically induced climate change (Luna-Acosta et al., 2012). 

 

1.4. DISEASE RESISTANCE AND MORTALITY 

 

Our increased understanding of the immune system and of its separate components has 

fed a tendency to then use the separate components as a proxy for overall immunity or 

immunocompetence  (Viney et al., 2005). However, as has been demonstrated above 

(Sect. 1.2 and 1.3), whilst this approach offers an accurate measure of the impact of 

stressors on the separate immune parameters, the perceived level of stress-induced 

immune dysfunction will be wholly dependent upon which parameters are chosen as the 

immunocompetence proxy. Consequently, this approach alone does not directly address 

an actual change in overall susceptibility to a pathogenic insult. By measuring a change 

in host susceptibility, disease prevalence and both the onset, and overall mortality 

caused by a pathogen during or after exposure to a stressor, the functional capacity of 

the immune system can be quantified. Such quantification is crucial to our 

understanding of the ecological impact of environmental stressors on the immune 

response of marine invertebrates (Morley, 2010; Viney et al., 2005). Linking an 

alteration in immunocompetence to an organism’s susceptibility to a pathogen offers the 

greatest opportunity to measure the reduction in immune functional capacity, and a 

reduction in organism fitness (Viney et al., 2005). However, investigating the impact of 

stressors in the presence of a pathogen and measuring disease resistance has attracted 

significantly less attention than the measure of either cellular or humoral immune 
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parameters alone. This may be due, in part, to the practical challenges involved in 

developing reliable experimental models for infection studies (Le Moullac and Haffner, 

2000).  

 Naturally in the marine environment, a host organisms’ exposure to a pathogen 

will be wholly dependent upon a number of overriding factors that will influence the 

number of viable and virulent bacteria the host is exposed to. These include the 

heterogeneity of pathogen abundance within the environment, bacterial survival and 

virulence under changing environmental conditions, levels of other competing bacteria 

in the environment and physical variables in the marine environment such as tides and 

water currents which will affect bacterial distribution. Whilst all these influences 

combine to increase the variability of the level of bacteria a host organism is naturally 

exposed to, experimentally this natural variability is significantly reduced and an equal 

exposure level is desired to successfully investigate the effect of experimental 

conditions on the host immune defence. To achieve an equal bacteria exposure 

experimentally, a method commonly employed exposes a host organism to a known 

number of pathogenic bacteria directly, through an injection of a set volume and 

abundance of bacteria into the host’s internal tissues (e.g. Hauton et al., 2007). Whilst 

this method ensures an even level of bacterial exposure, which is required for an 

experimental approach, it also highlights the limitations inherent in an experimental 

pathogen exposure. Bacterial exposure brought about by an injection removes the 

natural variability of pathogen distribution and survival in a natural environmental 

setting. Additionally, this method bypasses the first line of defence offered in a host 

organism, being the defence offered by an intact epithelium or exoskeleton. Whilst 

removing this natural variability is unavoidable, it is also necessary to truly elucidate 

the impact of environmental stressors on the host’s immune defence, and ensure that it 
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is not a general change in host-pathogen interactions which could be due to a change in 

any number of physiological or behavioural mechanisms in the host, or the pathogen. 

Therefore, whilst there is a vital need to experimentally expose organisms to a realized 

pathogenic threat, it is crucial to understand the limitations that are inherent with current 

experimental infection models when comparing to a natural system. 

 In studying an alteration in overall immunocompetence and a reduction in 

disease resistance, one method currently used to demonstrate a change in pathogenic 

resistance is to measure an organism’s clearance efficiency to a realized pathogenic 

challenge. In studying clearance efficiency, Oweson and Hernroth (2009) investigated 

the impact of trace metal contamination, in this case manganese exposure, on the 

bactericidal response of the  starfish, Asterias rubens, the blue mussel, Mytilus edulis, 

and the Norway lobster, Nephrops norvegicus. In studying the antibacterial activity of 

these three species, measured via the clearance capacity when inoculated with Vibrio 

parahaemolyticus and subsequently counting the remaining viable bacteria, this study 

showed manganese contamination (15 mg l-1 for 5 d) had no effect on the bactericidal 

activity of A. rubens haemolymph or digestive tissue. In M. edulis however, the 

bactericidal activity of haemolymph was significantly lower in animals exposed to 

manganese contamination 8 h after inoculation with V. parahaemolyticus, yet 24 h after 

bacterial exposure, the number of bacteria remaining in the mussel  haemolymph had 

reduced significantly and there was no difference between manganese exposed or 

control animals. In mussel digestive tissue, the mean number of remaining viable 

bacteria was significantly higher in manganese exposed mussels, 24 h after bacterial 

injection, compared to control organisms, and this significant difference remained 48 h 

after bacteria were injected. Similarly to A. rubens, there was no significant impact of 

manganese on the number of viable bacteria in the blood of N. norvegicus, however 
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manganese significantly reduced the bactericidal impact of N. norvegicus digestive 

tissue. There was a higher number of remaining bacteria in manganese contaminated 

individuals after just 8 h post-injection, compared to controls, and this significant 

difference lasted over 48 h after injection. Therefore, in measuring clearance efficiency 

there is again a need to account for species differences in the impact of stressors and 

how stressors impact immune dysfunction and overall disease resistance. 

 In transplanting the blue mussel, Mytilus edulis from what was perceived to be a 

contaminated site, where mussel general  immunity was depressed, to what was 

perceived to be a relatively clean site, Mayrand et al. (2005) tested the impact of 

contamination on bactericidal activity of mussel haemolymph  measured by clearance 

efficiency. Additionally however, this study investigated the recovery potential of the 

invertebrate immune system. In comparing a wide set of mussel immune parameters, 

the authors noted the ability of a number of these parameters, after the 9 day transplant, 

to recover in contaminated mussels towards a level seen in mussels originating from the 

clean site. Following this 9 day period mussels were then inoculated with a known 

pathogen, Listonella anguillarum. Mussel haemolymph was assessed 36 h later to 

quantify the remaining levels of viable bacteria. Those originating from the 

contaminated site expressed a higher bacterial count, thus meaning a reduction in their 

clearance efficiency and a suggestion that the functional recovery of the immune 

response in the transplanted mussels may not have been as complete as had been 

indicated by the measured parameters. 

 Whilst measuring clearance efficiency does successfully demonstrate a reduction 

in overall immunocompetence, the extent to which the population dynamics of the 

species may be impacted cannot be fully interpreted from this result, as an organism 

with higher levels of viable bacteria remaining in the haemolymph after a 36 h 
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inoculation may feasibly still survive and recover fully from the infection. St-Jean et al. 

(2002) found the clearance efficiency of  Mytilus edulis exposed to tributyltin (TBT) 

and dibutyltin (DBT), whilst lower in a dose dependant fashion compared with control 

individuals, was still able to show recovery with a reduction of bacterial levels in the 

haemolymph from 4 days post challenge up to 14 days post-challenge in all treatment 

groups. Therefore, accounting for possible recovery of the immune system and 

understanding the time scale a recovery could still feasibly occur over is both an 

interesting and critically important measure when assessing the impact of stressors. 

 To further the current understanding on the link between immune system and 

population biology, Cheng and colleagues (Cheng et al., 2004a, b, c, d, e) tested the 

impact of various environmental stressors by measuring the clearance efficiency 

together with the onset of mortality and the overall increase in cumulative mortality, in 

the Taiwan abalone, Haliotis diversicolor supertexta, exposed to Vibrio 

parahaemolyticus. In studies investigating the impact of elevated ammonia (Cheng et 

al., 2004a) and nitrite (Cheng et al., 2004b) concentrations, a significant reduction in 

clearance efficiency and an increase in cumulative mortality was demonstrated when 

individuals were exposed to both stressors, increasing the susceptibility of this abalone 

to a V. parahaemolyticus infection. Additionally, together with an increase in 

cumulative mortality, an increase in water temperature was shown to shorten the onset 

of mortality, with individuals transferred to 28 ºC or 32 ºC beginning to die after just 6 h 

compared to 12 h for individuals transferred to 20 ºC or  24 ºC (Cheng et al., 2004c). 

Hypoxia (Cheng et al., 2004e) and salinity (Cheng et al., 2004d) have also been shown 

to negatively impact the pathogenic susceptibility and subsequent survival of H. 

diversicolor supertexta, decreasing the clearance efficiency and the onset of mortality 

together with increasing the cumulative mortality in this species. 
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 In addition to measuring the impact of environmental stressors on the resistance 

of Haliotis diversicolor supertexta to a known pathogenic species, it is also possible to 

investigate whether a decrease in pathogenic resistance is attributable to an increased 

virulence in the bacteria. In measuring the impact of temperature on the susceptibility of 

the Taiwan abalone to either Vibrio alginolyticus H11 or to V. parahaemolyticus B4 

challenges, Lee et al. (2001) showed that this bivalve, when kept at higher temperatures, 

was more susceptible to the bacteria. However, by also measuring the susceptibility of 

H. diversicolor supertexta to the extracellular products (ECP) of both V. alginolyticus 

H11 and V. parahaemolyticus B4, this study demonstrated a reduced LD50 of ECP, with 

a lower dosage able to kill the abalone at higher temperatures. The reduced dosage of 

both bacterial cells and ECP able to affect killing in the abalone indicated a difference 

in virulence of these bacterial species at different temperatures, and also highlighted the 

role of temperature in mass mortality outbreaks of vibriosis associated with warm water 

exposure in this bivalve.  

 In their ability to alter bacterial virulence, environmental stressors further 

complicate host-pathogen interactions and the impact of stressors on host population 

biology. However, in investigating and attributing an alteration in host disease 

resistance to an increase in pathogen virulence, Lee et al. (2001) demonstrated the value 

of elucidating bacterial performance in an experimental system and how this may 

influence the perceived outcome of a study. Therefore, understanding pathogen 

dynamics allows the true understanding of whether environmental stress is impacting 

the host or pathogenic organism. 

 In all the studies discussed above, the authors have simultaneously attributed 

changes in the susceptibility and survival of the study organisms to both an 

environmental and a pathogenic stressor. However, in exposing individuals of the 



Chapter 1                                                                                                                        General Introduction 

- 40 - 

 

Pacific oyster, Crassostrea gigas to the pathogen  Vibrio splendidus, followed by a 

mechanical stress three days later, Lacoste et al. (2001) demonstrated the ability of a 

stressor to modulate an organisms disease susceptibility to an already established 

pathogenic challenge. In showing an increase in the severity of infection, measured by 

an increase in both the pathogenic load and the cumulative mortality of the test oysters, 

compared with control organisms exposed to the pathogen and no mechanical stress, the 

authors demonstrated the ecological impact of an acute stressor on an already 

established infection. These results were supported by Anderson et al. (1998) in a study 

where the cumulative mortality of the American cup oyster, Crassostrea virginica, 

naturally infected by the protozoan parasite, Perkinsus marinus, increased when 

exposed to hypoxia when compared with untreated control oysters. This study also 

showed that an exposure to TBT failed to alter the species’ cumulative mortality yet 

when exposed simultaneously to hypoxia and TBT these stressors acted synergistically, 

significantly increasing the cumulative mortality of the oysters to a greater extent than 

the combined magnitude of either of the two stressors when tested in isolation. The 

results from Anderson et al. (1998) therefore highlight the need to study multiple 

stressors simultaneously, to allow the impact of complex stressor interactions to be 

elucidated.  

 Whilst a number of studies have shown the benefit and also demonstrated the 

potential pitfalls encountered when measuring disease resistance, the number of 

investigations that have actually studied a change in the susceptibility of a host to a 

pathogenic threat is still very low. Therefore, to fully understand the impact of 

environmental stress on organism disease resistance, and to understand what this will 

mean at an ecological scale, there is a need to investigate the response of a host 

organism to a realised pathogenic threat. 
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1.5. THE COST OF IMMUNITY – PHYSIOLOGICAL TRADE-OFFS 

 

Our understanding of the marine invertebrate immune response, immune response 

effector systems and the impact of environmental stress on immune defence 

mechanisms has significantly advanced over the past decade following the development 

and employment of novel genetic techniques (see Philipp et al., 2012). However, the 

basic observation that immune defences are induced by infection rather than being 

constitutively active suggests immune activity is costly (Lazzaro and Little, 2009).  It is 

these costs that are central to ecological immunology understanding (Rolff and Siva-

Jothy, 2003; Sheldon and Verhulst, 1996). Owing to finite resources, the costs 

associated with immune system maintenance and activation divert resources away from 

other important physiological processes and life history traits, such as reproduction or 

growth (Bonneaud et al., 2003; Lochmiller and Deerenberg, 2000; Sokolova et al., 

2012). A hosts ability to maintain an effective immune response is subsequently 

affected by its overall condition and energetic reserves (Kelly, 2011; Lazzaro and Little, 

2009), and understanding the impact of environmental stress on host defence therefore 

requires an understanding of condition, energy homeostasis and physiological trade-offs 

within the host organism (Fig. 1.2; Sokolova et al., 2012).  

 Whilst the acquisition of energy, its allocation to different physiological 

processes and its expenditure are vital to an organism’s fitness (Sokolova et al., 2012), 

very few studies to date have investigated the energetic trade-offs between host defence 

and other physiological processes in invertebrate organisms. Furthermore, the majority 

of invertebrate studies that have investigated the energetic trade-offs induced by host 

defence have focused on insects, and specifically the trade-off between immune defence 

and reproduction in this group (e.g. Kelly, 2011; Steiger et al., 2011; Zuk et al., 2004).   
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Figure 1.2 A bioenergetic framework of resource allocation, adapted from Sokolova et al. 

(2012), incorporating the general model of resource allocation from Pook et al. (2009), and the 

‘oxygen- and capacity- limited thermal tolerance concept (OCLTT)’ from Pörtner (2010). 

 Within marine invertebrate research there is currently a dearth of studies that 

have investigated the trade-off between host defence and other life history traits. Petes 

et al. (2008), investigating the energetic trade-off between stress resistance and 

reproduction in the Californian mussel, Mytilus californianus, demonstrated organisms 

sampled from higher vertical edges of the intertidal zone invested less relative energy in 

reproduction in this stressful environment compared to lower-tidal edge organisms, 

suggested they experience less environmental stress. Furthermore, high-edge mussels 

released all their gametes in one spawning period early in the summer, whilst 

accumulating high concentrations of carotenoid pigments in mantle tissue. Conversely, 

organisms collected from the lower-tidal edge, invested more energy in reproduction, 
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spawning throughout the year, whilst accumulating less carotenoid pigments in mantle 

tissues. The higher concentration of caroteniod pigments in high-edge organisms is 

proposed to protect the host from oxidative stress induced from living in a higher stress 

environment at higher tidal levels. The authors suggest that reallocating energy from 

reproduction towards costly physiological processes such as stress resistance and host 

defence under environmental stress may improve survival but could impact population 

dynamics and ultimately species persistence (Petes et al., 2008). Similarly, Li et al. 

(2009b) investigated the effect of spawning activity on host defence in the Pacific 

oyster, Crassostrea gigas. Oysters that were studied following a spawning period were 

shown to suffer significantly higher mortality when exposed to extracellular products 

from Vibrio harveyi, compared to pre-spawning oysters. Furthermore, glycogen 

reserves were shown to be lower in post-spawned oysters, highlighting the energetic 

cost of spawning. This increased metabolic demand of spawning oysters is therefore 

shown to compromise immune defence and metabolic reserves in post-spawned 

organisms, ultimately influencing the susceptibility of these organisms to a pathogenic 

challenge. 

 Despite very few studies having investigated the trade-off between immune 

defence and other physiological processes in invertebrate systems, the research that has 

taken place to date indicates pathogen resistance involves the entire physiology of the 

host organism and is influenced by the demand of non-immunological physiological 

processes (Lazzaro and Little, 2009). Therefore, to fully understand the response of the 

immune system to environmental stress it is vital to include measures of organism 

condition, energy homeostasis and physiological trade-offs when assessing host defence 

and disease susceptibility (Pook et al., 2009; Sokolova et al., 2012).  
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1.6. THE IMMUNE RESPONSE AND CLIMATE CHANGE 

 

Anthropogenically induced climate change poses a major threat to marine ecosystems 

and the organisms that reside within them (Harley et al., 2006). Increased atmospheric 

carbon dioxide (CO2) levels have already led to an increase in global temperatures 

(IPCC, 2007) and a concurrent reduction in seawater pH (Caldeira and Wickett, 2003; 

discussed in Sect 2.2). Also, as anthropogenic CO2 emissions continue to increase, 

global temperatures are projected to increase by a further 4ºC by the end of this century 

(IPCC, 2007), and over the same period seawater pH is projected to fall lower than it 

has been for 55 million years (Zachos et al., 2005). These environmental changes are 

predicted to have a significant impact on the health and functioning of marine 

organisms (Raven et al., 2005), potentially having significant implications for marine 

biodiversity and ecosystem functioning (Widdicombe and Spicer, 2008). Therefore to 

fully understand the impact of environmental stressors on marine invertebrate health 

and immune response it is vital to investigate the impact of climate change, and the 

environmental stressors associated with this global phenomenon, on immunological 

functioning.      

 

1.6.1 The impact of temperature on the invertebrate immune response 

 

Habitat temperature is a key environmental variable as it governs all physiological 

processes in ectothermal organisms (Pörtner et al., 2006). Due to its importance in 

regulating organismal performance, temperature is an often used stressor to investigate 

the impact of environmental stress on invertebrate immune functionality. Indeed it is 

one of the chief stressors, covered throughout this chapter, that is shown to affect all 
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aspects of the invertebrate immune system (e.g. Cellura et al., 2007; Lee et al., 2001; Li 

et al., 2009a; Pan et al., 2008; Parry and Pipe, 2004). However, whilst temperature is 

shown to affect the invertebrate immune response in a number of different organisms, 

the majority of studies to date have focused on an acute (< 48 h), or a short term (less 

than 10 days), temperature exposure (e.g. Chen et al., 2007b; Cheng et al., 2004c; 

Hégaret et al., 2003; Wang et al., 2008a). These studies offer important insight into the 

impact of temperature on immune system functioning, and yet paradoxically may not 

contribute as much to our understanding of increased seawater temperatures in the 

context of global climate change. Anthropogenically induced climate change is 

projected to cause shifts in environmental temperature that are often much lower than 

those used in acute exposures (e.g. Wang et al., 2008b) and which are occurring over a 

much longer time scale. Therefore to understand the potential impact of long term 

exposure to altered seawater temperatures and to investigate the possibility for organism 

acclimation or adaptation, it is vital to undertake longer term experimental perturbations 

under realistic future warming scenarios.  

 One area of ecological immunology that is currently addressing the impact of 

increased temperature stress in the context of climate change is the study of coral 

immunology, and specifically the impact of temperature on coral bleaching and disease 

resistance (e.g. Mydlarz et al., 2009; Ward et al., 2007). With increasing global 

temperatures it is projected organisms, such as corals, will be exposed to prolonged 

periods of abnormally high sea surface temperatures. One such warming event occurred 

in 2005, when annual sea surface temperatures rose 1 °C above the mean monthly 

maximum for a continuous 14 week period in the Caribbean. This temperature rise 

created conditions that were significantly warmer than previous years and also warmer 

than the following summer period (Clark et al., 2009). Using this higher temperature 



Chapter 1                                                                                                                        General Introduction 

- 46 - 

 

year as a temperature stress proxy, Mydlarz and colleagues (2009) investigated the 

impact of increased temperature on bleaching and resistance to yellow band disease 

(YBD) in the mountainous star coral, Montastraea faveolata. The study found that the 

coral immune system was significantly impacted by temperature with prophenoloxidase 

(PO) activity increasing in bleached or diseased corals during the warming event, 

compared to healthy corals, whereas lysozyme-like activity and antibacterial activity 

was reduced in bleached corals. Despite this noted increase in PO activity in bleached or 

diseased corals during the warming event, this stimulation of the immune response did 

not confer increased disease resistance as 20 of the 21 bleached or diseased corals 

originally sampled had died by the end of the study in 2007. Whilst temperature was 

shown to initially increase apparent immunocompetence in the coral host during a 

temperature stress event, this study showed that increased temperature led to deleterious 

impacts on overall coral health, outbreaks of bleaching and YBD disease, and thus 

significantly increased coral mortality over a longer time scale. The complex nature by 

which temperature interacts with bleaching, host defence and pathogen resistance in 

corals highlights the potential catastrophic impact of increased temperature on coral reef 

ecosystems, within a realistic climate change scenario, and emphasizes the need to 

understand the impact of prolonged temperature increases on host-pathogen 

interactions. 

 Whilst temperature can have a significant impact on organism immunological 

function, it is also important to understand the potential implication of climate change 

on host-pathogen interactions. Ward et al. (2007) exposed the Caribbean sea fan coral, 

Gorgonia ventalina, to an Aspergillus sydowii infection and increased seawater 

temperatures. There was an increased in antifungal activity in sea fans maintained at 

higher temperatures following the bacterial infection, thus highlighting a temperature-
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induced stimulation of the immune response. Critically, however, this study also noted 

an increased growth rate of the pathogen at increased temperatures. If the pathogen 

could establish an infection before host defence systems are able to act, due to this 

increased growth rate, any immune system stimulation induced by increased 

temperature could be rendered inconsequential. Thus increased pathogen virulence 

noted in warmer conditions could have significant implications for host pathogen 

interactions and thus host survival.  Therefore to understand the impact of increased 

temperature, due to climate change, on the invertebrate immune response it is also vital 

to investigate the impact of increase temperature on pathogen dynamics. 

  

1.6.2 The impact of ocean acidification on the invertebrate immune response 

 

Unlike temperature, it is only over the past decade that the scientific community has 

begun to understand the potential impact of increasing atmospheric CO2 on seawater 

carbonate chemistry (see Caldeira and Wickett, 2003). This phenomenon, referred to as 

‘ocean acidification’, is now understood to significantly impact a number of key 

seawater carbonate chemistry parameters (outlined in Sect 2.2), and therefore 

potentially impact marine invertebrate health. These findings have sparked considerable 

interest, with the scientific community struggling to meet the knowledge and 

understanding deficit surrounding ocean acidification (Widdicombe and Spicer, 2008).  

 To date only a handful of studies have been published investigating the impact 

of ocean acidification on the invertebrate immune response.  Bibby et al. (2008) 

exposed the blue mussel, Mytilus edulis, to  reduced seawater pH for 32 days, and 

measured the response in a number of key immune parameters over the course of the 

experiment. Mussels maintained in seawater with reduced pH (7.7, 7.5 or 6.7) displayed 
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reduced phagocytic activity, compared with controls maintained at pH 7.8, after the 32 

day exposure. Concluding that reduced phagocytic activity is likely caused by a 

reduction in the physiological condition, and thus the subsequent functionality, of 

haemocytes, these authors stress the potential impact of ocean acidification on 

invertebrate disease resistance and therefore organism survival. Matozzo et al. (2012) 

demonstrated a similar reduction in host defence in mussels exposed to reduced 

seawater pH, with the lysozyme-like activity of cell free haemolymph reduced in 

Mytilus galloprovincialis exposed to pH 7.7 and 7.4. Finally, Hernroth et al. (2011) 

demonstrated a suppression of phagocytic activity, a reduction in coelomocyte counts 

and an inhibition of p38 MAP-kinase activity, in Asterias rubens exposed to pH 7.7. 

 Ocean acidification (OA) is highlighted as one of the greatest threats the marine 

environment faces (Harley et al., 2006). Yet despite the potential impact of this global 

stressor, to date very little is known about how a reduced seawater pH will impact 

organism immune function, disease resistance, and consequently host survival. The few 

studies that have investigated the impact of OA on invertebrate immune function to 

date,  by Bibby et al. (2008), Hernroth et al. (2011) and Matozzo et al. (2012), highlight 

the potential negative impact of reduced seawater pH on host defence mechanisms and 

therefore emphasize the importance of studying the impact of this environmental 

stressor on a wide range of marine invertebrates, in combination with other climate 

change stressors and in the context of host-pathogen interactions. Therefore to fully 

understand the potential implications of ocean acidification for invertebrate 

immunological functioning further study is urgently required.  

 

 

 



Chapter 1                                                                                                                        General Introduction 

- 49 - 

 

1.7. CONCLUSIONS 

 

Despite an increase in the number of studies addressing the impact of environmental 

stressors on the marine invertebrate immune system over the past decade, there are still 

many key areas where the understanding of marine invertebrate ecological immunology 

remains deficient. This incomplete understanding hampers our ability to predict how 

population biology, and therefore whole ecosystems, may respond to an ever changing 

and anthropogenically modified climate. This in turn limits our ability to predict 

possible impacts on species and ecosystem evolution. To advance our current 

understanding of the ecological and evolutionary significance of environmental stressor 

related immune dysfunction, and to allow policy makers and environmental managers to 

make informed decisions on how to mitigate any anthropogenic impact on Earth’s 

climate, we therefore need to employ new stressor models and incorporate newly 

emerging techniques. 

 Life history theory dictates that physiological trade-offs exist in all organisms 

(Roff, 1992; Sibly and Calow, 1986; Stearns, 1992). Owing to finite resources, immune 

system maintenance and upregulation therefore requires resources that would otherwise 

be used to maintain other fitness related traits such as metabolism, growth or 

reproduction (Lochmiller and Deerenberg, 2000; Sheldon and Verhulst, 1996). Like 

many fitness-related traits, immunocompetence is condition dependant (Lochmiller and 

Deerenberg, 2000; Thomkins et al., 2004; Zuk and Stoehr, 2002), being affected by an 

organisms nutritional status (Moret and Schmid-Hempel, 2000) and reproduction 

(Kelly, 2011; Zuk et al., 2004). Therefore the extent to which an organism must trade-

off resources allocated to physiological processes such as metabolism or reproduction, 

in an attempt to successfully defend itself from a pathogenic challenge, will depend on 
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its energy reserves and physiological state. Consequently, to fully the understand the 

impact of environmental stress on an organism’s immune response, and ultimately its 

fitness, it is vital to also measure organism condition. By measuring an organisms 

metabolic functioning, energetic reserves and reproductive investment, alongside host 

defence, it will be possible to fully understand the fitness implications of any 

physiological trade-offs induced by an alteration in immunocompetence. 

 A major drawback of many of the studies that have investigated the impact of 

environmental stressors on the invertebrate immune response to date is their failure to 

account for seasonal variability. Environmental parameters naturally fluctuate, changing 

dramatically over a wide range of spatial and temporal scales. Therefore whilst it is key 

to understand organism’s condition and subsequently the impact of any physiological 

trade-offs, to fully understand the dynamic interaction between environmental stressors 

and the invertebrate immune response, and to be able to predict how environmental 

stress will impact population dynamics, it is also vital for future studies to investigate 

the impact of season (Duchemin et al., 2007). 

 As demonstrated throughout this chapter, many recent studies investigating the 

impact of environmental stressors on the invertebrate immune response have 

demonstrated significant interspecific differences in response to a single environmental 

stressor. Perhaps more importantly still, many studies have also demonstrated a wide 

range of intraspecific responses to different environmental stressors, or to different 

exposure levels of single stressor. Therefore, to understand the impact of a variable 

environment at a species, population or even at an ecosystem level, there is a need 

within the field of ecological immunology to investigate responses across a wider group 

of species. Studying species from more families and from a greater range of phyla, as 

well as investigating these responses to a wider range of stressors, will build on our 
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current knowledge of the immune system and help further understand the impact of a 

variable environment.  

 Together with the need to investigate a greater range of stressors, there is also a 

requirement to investigate the impact of different stressors in combination. To date 

many ecological immunology studies have investigated a single stressor model which, 

whilst a necessary first step in elucidating stressor impacts, does not account for stressor 

interactions. However, as highlighted by Anderson et al. (1998) and Parry & Pipe 

(2004), when the invertebrate immune response is tested to demonstrate the impact of 

multiple environmental stressors, the impact varies significantly depending on whether 

the stressors were tested in isolation or in combination. In a heterogeneous and naturally 

variable world, environmental stressors seldom occur in isolation, therefore 

investigating a greater array of environmental stressors, and more importantly a greater 

number of stressors in combination, is crucial to further our understanding of the impact 

of environmental stressors on the immune response.  

 Whilst many of the studies cited in this review successfully employ a multi-

assay approach to assess stressor induced immune dysfunction, crucial if we are to fully 

understand the impact of environmental stress on the invertebrate immune response, 

many do not investigate how organism disease resistance and subsequent survival are 

impacted. Measuring a number of cellular and humoral immune parameters does 

demonstrate how environmental stressors impact the invertebrate immune system, yet 

understanding how these changes affect the disease resistance and survival of the host 

organisms will enable the implications of any  immune dysfunction to be understood at 

an ecological scale. The cost of maintaining the immune system may render the trade-

off of immune defence, to ensure physiological homeostasis, advantageous in the 

absence of any realized pathogenic threat. However, it is equally likely that the host 
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organism may maintain the ability to up-regulate the immune response when 

encountering a realized pathogenic threat. Therefore to fully understand how changes in 

an organism’s immune response will impact host-pathogen interactions, to understand 

how these changes will impact host organism survival and finally to predict any 

possible ecological and evolutionary implications of any change in survival induced by 

environmental stressors, immunocompetence should be measured functionally (Viney et 

al. 2005), measuring direct host-pathogen interactions and the survival of a host in the 

presence of a pathogen.  

  Alongside measuring host-pathogen interactions, there is also a need to 

investigate the experimental infection of marine invertebrates with a pathogen. The 

current lack of understanding surrounding invertebrate infection models is one of the 

major limitations in our ability to fully comprehend host-pathogen interactions. It is also 

a significant factor in contributing to the dearth of studies that have investigated the 

relationship between environmental stressors and host-pathogen interactions to date, 

probably the most important aspect of invertebrate immunology. Therefore improving 

the current understanding of infection models would enable a better prediction of how 

environmental change will impact host survival. Producing experimental results that are 

representative of a change in immunocompetence noted with a natural infection would 

then enable a better prediction of how the population dynamics of a particular species 

would change when faced with a pathogenic challenge.  

 Being able to demonstrate the possible impact of environmental stressors, from 

the level of gene expression to a population or an ecosystem level, will further the 

current understanding of the impact environmental stressors have on ecosystem 

dynamics and how these effects may drive evolution. Therefore, through the 

development and application of novel genomic and proteomic techniques, and 
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subsequently applying these alongside traditional cellular, humoral and disease 

susceptibility methodologies, invertebrate ecological immunology is uniquely placed in 

its ability to investigate the impact of anthropogenically induced environmental 

stressors. However, the number of studies that have employed these novel genetic 

techniques alongside traditional cellular and humoral techniques, as well as measuring 

disease resistance, to date remains very low. Therefore, to maximise the ability of 

ecological immunity to predict the ecological and evolutionary significance of 

environmental stressors, more studies need to employ traditional immunological 

methodologies alongside novel genetic and disease resistance techniques. Furthermore, 

in demonstrating differential expression of separate defence related genes during 

ontogenesis, Tirapé et al. (2007) demonstrate the importance of studying stressor 

impacts at different life cycle stages, with it being crucial to understand immune 

function from fertilization to reproduction and beyond, incorporating the entire life 

history of an organism.  

 With a fully integrated, multi-assay, experimental design incorporating cellular, 

humoral, molecular and organism disease resistance techniques, marine invertebrate 

immunology may be able to demonstrate the full impact of an anthropogenically altered 

climate on this physiological function. Understanding how a variable environment 

impacts upon an organism’s physiological functioning is vital if we are to predict the 

possible ecosystem patterns, and understand possible evolutionary implications, any 

anthropogenically induced environmental change may generate.  

 

1.8 AIMS AND OBJECTIVES 

 

The aims of this thesis are to investigate the impact of environmental stressors on the 
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invertebrate immune response, providing empirical data on how anthropogenically-

induced stressors will impact the invertebrate immune system and how this will impact 

organism condition and subsequent physiological trade-offs. By furthering the current 

understanding in the fields of invertebrate immunology, invertebrate physiology and 

climate change research, this thesis will then provide data to inform policy makers and 

environmental managers about the impact of anthropogenic stressors on the marine 

environment and the need to mitigate increasing levels of atmospheric carbon dioxide. 

• Chapter 2 outlines the anthropogenic stressors used throughout this thesis to test 

the impact of environmental stress on the invertebrate immune response. In outlining 

the impact of increasing seawater temperature and reducing seawater pH on the marine 

environment, this chapter then highlights the marine organisms that are at particular risk 

to changing environmental conditions, before introducing Mytilus edulis as the model 

species which was chosen to study the invertebrate immune response. The Biology of 

this species is outlined and the current understanding of the impact of climate change 

stressors on mussel physiology discussed. 

• Chapter 3 details an experiment used to investigate the impact of ocean 

acidification, temperature and a bacterial challenge on the immune response of adult 

Mytilus edulis. In studying cellular and humoral aspects of mussel immunity this 

experiment provides information on the impact of climate change on overall immune 

system functionality and how any immune dysfunction affects organism disease 

resistance and survival of a pathogenic challenge. 

• Chapter 4 describes an experiment used to study the impact of environmental 

and pathogenic stressors on the physiological condition of adult mussels. By measuring 

the total lipid stores and fatty acid composition in mussel mantle tissue, alongside the 

investment in reproduction in response to ocean acidification, temperature and an 
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exposure to Vibrio tubiashii, this study investigated the impact of environmental stress 

on Mytilus edulis energy reserves and how this may impact potential physiological 

trade-offs used to manage stress.  

• Chapter 5 outlines an experiment that used metabolomics to investigate the 

impact of ocean acidification, temperature and a bacterial challenge on the metabolic 

status in mussels.  By investigating the impact of environmental stress on the 

metabolism of mussels, this study highlights the physiological impact of different 

environmental and pathogenic stressors at a cellular level. Thus providing a snapshot of 

the overall physiological conditioning of immunologically challenged organisms 

maintained under varying levels of environmental stress.  

• Chapter 6 brings together all the previous experiments to discuss the impact of 

climate change stressors on overall mussel physiology, how future climate change 

scenarios may impact mussel fitness and ultimately what this means for mussel survival 

at a population, a community or an ecosystem level. 
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CHAPTER 2.  EXPERIMENTAL RATIONALE 

 

 

Anthropogenic climate change and the blue mussel (Mytilus edulis) – A model 

system to study the impact of environmental stress on the invertebrate immune 

system. 
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2.1. INTRODUCTION 

 

The coastal marine ecosystem is one of the most ecologically and socio-economically 

diverse systems on the planet (Harley et al., 2006), providing US$ 14 trillion in goods 

and services per year (Costanza et al., 1997). However in exploiting these resources; 

through activities such as overfishing, coastal urbanisation, pollution and the 

introduction of alien species, man has altered the marine environment through both 

direct and indirect means (Halpern et al., 2008). One of the greatest threats the marine 

environment faces is anthropogenic climate change (Harley et al., 2006). Increased CO2 

emissions are predicted to significantly impact marine organism health and functioning 

(Raven et al., 2005), which could in turn lead to a reduction in marine biodiversity 

(Widdicombe and Spicer, 2008). Ultimately such changes to marine ecosystems could 

have far reaching consequences for human health and welfare (Harley et al., 2006).  

 The presence of CO2 in the atmosphere is vital for the support of life on Earth, 

with this greenhouse gas helping to regulate the warm temperature of the Earth’s 

atmosphere by trapping solar radiation (Thomson, 1997; Tuckett, 2009). However, 

since the industrial revolution (circa 1750), the levels of carbon dioxide (CO2) in the 

atmosphere have risen from 280 to 385 ppm (IPCC, 2007). This increase is at least 100 

times faster than has occurred during previous natural events (Blackford and Gilbert, 

2007), and is due to increased fossil fuel burning, increased cement production and 

changes in land-use, such as deforestation and agriculture (Raupach et al., 2007). Based 

on a range of projected anthropogenic CO2 emissions, the Intergovernmental Panel on 

Climate Change (IPCC) has predicted atmospheric CO2 concentrations will continue to 

rise, and could reach as much as 970 ppm by 2100 (IPCC, 2007).  
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 Being closely linked to global temperature, alterations in atmospheric CO2 

concentration represent a significant human driver of climate change (Canadell et al., 

2007). Any temperature change impacts the entire Earth’s system (atmosphere, 

continents, cryosphere and oceans), with 84 % of the total heating of the Earth’s system 

having gone into warming the world’s oceans over the last 40 years (Barnett et al., 

2005). Therefore, since the industrial revolution annual mean sea surface temperatures 

have increased by 0.76 °C (IPCC, 2007).  

 Whilst increasing temperature marks a significant shift in the Earth’s climate; 

this increase could have been far greater, were it not for oceanic and terrestrial sinks 

removing CO2 from the atmosphere (Gattuso and Hansson, 2011). Since 1800, oceanic 

surface waters have removed 118 Pg C, or 25 % of the carbon, generated by human 

activities (Sabine et al., 2004). Yet, evidence suggests that the airborne fraction of 

anthropogenic emissions has increased yearly over the past 50 years from about 40 % to 

45% (Le Quéré et al., 2009), suggesting a reduced efficiency of these CO2 sinks 

(Canadell et al., 2007). With the projected rise in anthropogenic CO2 emissions and a 

reduced efficiency of CO2 sinks, it is predicted global temperatures could increase by as 

much as 1.5 °C – 4.5 °C by the end of the current century (IPCC, 2007). 

  

2.2 THE IMPACT OF INCREASING ATMOSPHERIC CO2 ON OCEAN 

CHEMISTRY 

 

A large amount of CO2 is naturally exchanged between the atmosphere and the ocean. 

Prior to the industrial revolution there was a natural net influx of around 0.6 Gt C yr-1 

from the ocean to the atmosphere (IPCC, 2007). However, increasing atmospheric CO2 

concentrations have reversed this flux, with 2 Gt C now passing from the atmosphere 
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into the ocean annually. Initially it was thought, due to the oceans perceived ability to 

buffer changes brought about by increasing CO2 concentration (Brewer, 1978), that 

seawater carbonate chemistry would not be affected by this increased flux of CO2. 

However, in 2003 Caldeira and Wickett (2003) highlighted that although equally large 

changes in atmospheric CO2 concentrations have occurred in the Earth’s geological 

history, the current rate of change is reducing the ocean’s buffering capacity, thus 

making it more sensitive to alterations in seawater carbonate chemistry than initially 

thought. 

 

2.2.1 Ocean acidification 

 

Seawater is unique in that it has a well-defined composition compared to other natural 

waters (Dickson, 2011), therefore alterations in its carbonate chemistry brought about 

by the addition of carbon dioxide are relatively well understood  (Fig. 2.1). CO2 is 

extremely soluble and exchanges with its dissolved form in surface seawater readily, 

here the aqueous form firstly reacts with water to form carbonic acid (H2CO3), which 

then rapidly dissociates to produce hydrogen  ions (H+) (Orr, 2011). Most of these 

hydrogen ions are then neutralised by reacting with carbonate ions (CO3
2-), to form 

bicarbonate ions (HCO3
-), however some of the hydrogen ions remain which in turn 

reduces the pH of the seawater  (Orr, 2011). It is this reduction in seawater pH which 

has resulted in this phenomenon being termed ‘ocean acidification’. However, this does 

not mean the oceans will become acidic (below pH 7.0) anytime in the near future, 

merely implying that the oceans are currently becoming more acidic than they were in 

the past (Gattuso and Hansson, 2011). 
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likely to be exacerbated by the impact of OA, intermittently producing conditions that 

go way beyond any projected worst case acidification scenarios for surface oceans 

(Feely et al., 2010; IPCC, 2007; Thomsen et al., 2010). 

 Alongside the overall increase in [H+] and [HCO3
-], and the concurrent decrease 

in pH and [CO3
2-], the addition of CO2 to seawater affects the saturation of the water 

with respect to calcium carbonate (CaCO3) minerals (Orr et al., 2005). The saturation 

state (Ω) of CaCO3 in seawater is affected by [CO3
2-], and therefore the addition of CO2 

results in reduced Ω. Seawater CaCO3 saturation (Ω) is said to be in equilibrium when 

Ω = 1 (Dickson, 2011). Therefore when Ω > 1 seawater is said to be supersaturated with 

respect to that mineral and biogenic calcification is favoured, yet when Ω < 1 the 

seawater is undersaturated and corrosive to CaCO3 structures, possibly causing 

problems for organisms that form calcium carbonate shells or skeletons (Feely et al., 

2008; Langdon and Atkinson, 2005). 

 Three main biogenic calcium carbonate minerals occur in seawater, being 

calcite, aragonite and high magnesium calcite, listed here in order of increasing 

solubility. Whilst the ocean is at present supersaturated with respect to calcium 

carbonate (Orr et al., 2005), an increasing partial pressure of CO2 (pCO2) in seawater 

will lead to undersaturation. The Arctic Ocean is projected to become undersaturated 

with respect to aragonite within the next 20 years (Steinacher et al., 2009). Furthermore, 

OA is already exacerbating the extent to which aragonite undersaturated seawater is 

naturally upwelling off the western north American coastline (Feely et al., 2010). 

Together with increased seawater temperatures, increasing [H+] and [HCO3
-], and a 

reduced pH and [CO3
2-], a reduction of Ω could pose a significant threat to the health of 

marine organisms and thus impact marine biodiversity (Widdicombe and Spicer, 2008). 
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2.2.2. Carbon capture and storage 

 

With anthropogenic CO2 emissions projected to have a catastrophic impact on the 

global climate, there is significant international pressure to reduce future emissions and 

mitigate any further human impact on the environment. However, given the continued 

development of emerging economies globally, and given our continued reliance on 

fossil fuels, the prospect of a rapid reduction or a complete end to CO2 emissions in the 

near future is highly unlikely (Ohsumi, 2004). Therefore, whilst efforts are being made 

to exploit alternative energy sources, additional technologies are also being developed 

to reduce atmospheric CO2 concentrations (Berge et al., 2006).  

 The principle method proposed to reduce atmospheric CO2 is through carbon 

capture and storage, or “CCS” (Holloway, 2005). CCS is a technique that captures CO2 

emission from large point sources, such as power stations, and then injects this captured 

CO2 into large underground saltwater aquifers, reducing the effect of this green house 

gas on global ecosystems (Berge et al., 2006). CCS is currently being investigated at 

number of sites globally (e.g. Goldberg et al., 2008), such as the Sleipner West gas field 

in Norway, where CO2 is already being stored in large sub-seabed reservoirs (Holloway, 

2005). A technique such as CCS would therefore seem a practical bridging technology 

to reduce CO2 emissions during the global transition from fossil fuel burning to low 

carbon energies (Holloway, 2005). However, such a technology does not come without 

risk, and there is a significant threat of storage leaks over time (Hawkins, 2004). The 

Earth’s geological system is extremely variable (Holloway, 2005) and any shift in 

seabed geology would potentially lead to a leak of stored CO2 into the overlaying water 

column. The impact of such leaks would depend on the duration and spatial extent of 

any release, but it has been suggested that such an event could lead to a reduction in 
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seawater pH of 1.0 unit in the body of water immediately adjacent to the leak 

(Blackford et al., 2009). Any such leak event would then also be superimposed upon 

any OA scenario, producing extremely low pH conditions that could have a significant 

impact for the marine organisms residing within close proximity to a storage site 

habitat.  

 

2.3. THE IMPACT OF ANTHROPOGENIC CLIMATE CHANGE ON MARINE 

ORGANISMS 

 

Whilst the impact increasing atmospheric CO2 concentrations will have on seawater 

temperature and carbonate chemistry are well understood, and whilst the magnitude of 

these changes are not widely debated within the scientific community (Orr, 2011), the 

impact anthropogenic climate change (namely increasing sea temperature and OA) will 

have on marine organisms is unclear. It is therefore vital for the scientific community to 

address the current dearth of empirical data and investigate the impact of increasing 

seawater temperatures, the impact of OA and the ecological impact of any possible 

mitigation technology, such as CCS, on marine organisms and on subsequent ecosystem 

function.  

 

2.3.1 The impact of temperature on marine organisms 

 

Environmental temperature plays an important role in determining body temperature in 

ectothermic organisms and thus directly impacts all physiological processes (Pörtner et 

al., 2006; Young et al., 2011). Metabolic rate, for example, generally increases with 

increasing environmental temperature (Ede and Krogh, 1914; Pörtner et al., 2006). 
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Furthermore, the rate of chemical and enzyme reactions, the fluidity of membranes, the 

structure of proteins and the rate of diffusion are all affected by temperature (Rayssac et 

al., 2010). Most biological processes that are temperature-sensitive are only able to 

operate optimally within a narrow thermal window, outside of which trait performance 

is seen to decline significantly (Angilletta, 2009; Kearney and Porter, 2009; Young et 

al., 2011). Such a temperature deviation will ultimately result in an organism re-

allocating resources that would otherwise be used for growth or reproduction to 

maximise fitness (Pörtner et al., 2001; Sibly and Calow, 1986). Temperature is therefore 

a major determinant of the large scale geographical distribution of marine species (Jones 

et al., 2009; Pörtner, 2008), and the sensitivity of a species to changes in environmental 

temperature will thus largely be governed by how close an organism is to its thermal 

limits (both mean habitat temperature and extreme habitat temperatures) (Bosonovic et 

al., 2011; Pörtner et al., 2006).  

 With temperature shaping species’ geographical distributions, global warming 

has already been shown to affect the geographical distribution of aquatic and terrestrial 

organisms (Bosonovic et al., 2011; Hoegh-Guldberg, 2005; Parmesan and Yohe, 2003; 

Perry et al., 2005). This trend for species movement from lower to higher latitudes 

under warming scenarios could result in local extinctions and major shifts in ecosystem 

functioning (Rayssac et al., 2010; Thomas et al., 2004). To predict the ecological 

consequence of global warming, a better understanding of thermal tolerance driven 

biogeographic patterns is therefore needed (Bosonovic et al., 2011; Jones et al., 2009). 

For example, Sagarin et al. (1999) compared the recent species distribution of intertidal 

communities along the Californian coastline with a historical dataset from the 1930’s, 

and found that a general increase in habitat temperature of 0.79 °C was accompanied by 

a significant northward shift in species distribution. The successful shift of an organism 
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to a more favourable habitat will depend on the mobility of the species, its mode of life 

and its reproductive status, as well as on the speed at which habitats are being altered by 

climate change (Pörtner, 2008). 

 As well as impacting organism physiology directly, temperature is also shown to 

interact with a number of other biotic and abiotic factors to impact organism 

performance including: salinity (e.g. Strasser et al., 2008), oxygen (e.g. Niklitschek and 

Secor, 2009),  ultraviolet radiation (e.g. Przeslawski et al., 2005), food availability and 

trophic interactions (e.g. Morelissen and Harley, 2007),  and pollution and pathogen 

exposure (e.g. Parry and Pipe, 2004). Furthermore, in many of these studies temperature 

is shown to increase the sensitivity of the organism to the additional stressors even 

when it is not shown affect organism performance directly. Such interactions are 

therefore likely to determine the impact of climate change stressors on ecosystem 

functioning, and the physiological principles that dictate performance may be far more 

intertwined with climate dependant ecological patterns than traditionally thought 

(Pörtner, 2008; Pörtner and Farrell, 2008). 

 

2.3.2 The impact of OA on marine organisms 

 

Like temperature, OA has been shown to significantly impact the physiological 

functioning and survival of marine organisms. Reduced  seawater pH has been shown to 

impact calcification (e.g. Gazeau et al., 2007; Kurihara and Shirayama, 2004; Orr et al., 

2005; Wood et al., 2010), photosynthesis (e.g. Langdon and Atkinson, 2005; Schneider 

and Erez, 2006), acid-base balance (e.g. Miles et al., 2007; Spicer et al., 2007), 

metabolism (e.g. Michaelidis et al., 2005b; Small et al., 2010; Thomsen and Melzner, 

2010), growth (e.g. Berge et al., 2006; Michaelidis et al., 2005b; Thomsen et al., 2010), 
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organism health (e.g. Beesley et al., 2008), immune response (e.g. Bibby et al., 2008; 

Hernroth et al., 2011) and behaviour (e.g. Bibby et al., 2007; Nilsson et al., 2012).  

Furthermore OA is also shown to affect different life cycle stages in a number of marine 

organisms; impacting embryonic development (e.g. Egilsdottir et al., 2009; Ellis et al., 

2009), larval development (e.g. Arnold et al., 2009; Dupont et al., 2010a; Munday et al., 

2010) and reproduction (e.g. Havenhand et al., 2008).  

 However, whilst there is a growing body of literature investigating the impact of 

OA on marine organisms, increasing from an average of 9 peer-reviewed papers 

published per year between 1989 and 2003, to 213 articles in 2010 (a 43-fold increase) 

(Gattuso and Hansson, 2011), there is often a lack of any “significant mean effect” 

reported,  with the prevalence of apparently contradictory results in the literature 

growing (e.g. Iglesias-Rodriguez et al., 2008; Riebesell et al., 2000). Much of this 

uncertainty may stem from the fact that reduced seawater pH affects a variety of 

organismal processes (Kroeker et al., 2010), with each of these processes likely 

interacting and competing for energetic resources at the level of the whole organism 

(Wood et al., 2008). The high maintenance costs experienced under the stressful 

conditions associated with OA indicate that the impact of climate change on marine 

organisms may be far more complex than initially anticipated (Hendriks et al., 2010; 

Kroeker et al., 2010). Such complexity makes it difficult to predict the response of even 

a single organism to these environmental changes, with the prediction of ecosystem 

level responses harder still.  

 

2.3.3. Combined impact of climate change stressors 

 

The combined study of OA and temperature has received very little attention with most 



Chapter 2                                                                                                                    Experimental Rationale 

- 67 - 

 

OA studies to date focusing on a single stressor model, despite the fact that changes to 

these two environmental stressors are predicted to occur in concert with each other, 

alongside other biotic and abiotic stressors (Kroeker et al., 2010). From the handful of 

studies that have investigated temperature and OA in combination (Anthony et al., 

2008; Byrne et al., 2009; Martin and Gattuso, 2009; Munday et al., 2009; Reynaud et 

al., 2003; Rodolfo-Metalpha et al., 2010), it is clear that at present we are unable to 

make any generalizations surrounding the overall ecological impact of these climate 

change stressors, with temperature having been shown to both increase and decrease the 

sensitivity of organisms to OA (Kroeker et al., 2010). Anthony et al. (2008) showed 

pCO2 to act synergistically with temperature to lower the thermal bleaching threshold in 

coral species, with high temperature increasing bleaching by up to 50 % at high pCO2 

compared to high pCO2 and low temperature. Similarly, Reynaud et al. (2003) showed 

that calcification remained unaffected by reduced seawater pH at control temperatures, 

however when additionally exposed to a concomitant increase in temperature 

calcification was seen to decrease by 50 % compared to ambient temperature and 

control pCO2 in exposed corals. Conversely, Gooding et al. (2009)  exposed the sea star, 

Piaster ochraceus to elevated pCO2 and increased temperature, demonstrating that 

increasing both temperature and pCO2 enhanced growth in this keystone echinoderm. 

Whilst likewise Connell and Russell (2009) demonstrated  that temperature and pCO2 

acted synergistically, leading to a phase shift in algal communities from a kelp 

dominated ecosystem to an algal turf dominated  system under a future climate 

compared to current environmental conditions, with turf communities doubling in 

biomass and covering 4 times as much available space (Connell and Russell, 2009). In 

finding such a confounding impact of temperature on the sensitivity of marine 

organisms to OA, these studies may go some way to explaining the variability reported 
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in much of the literature concerning calcification rates and increasing pCO2. 

 The importance of studying the combined impact of temperature and CO2 is also 

highlighted by a number of recent discussions, where these two stressors are proposed 

to have been influential during mass extinction events in the Earth’s history; including 

the end-Permian mass extinction where marine ecosystems experienced a  species loss 

estimated to be as high as 90% (Knoll et al., 1996, 2007; Knoll and Fischer, 2011). With 

temperature, alongside atmospheric and aquatic CO2, appearing to have been influential 

in the course of the Earth’s evolutionary history (Pörtner, 2008), understanding the 

impact of these stressors in combination will be vital to accurately predict the likely 

impact of climate change on ecosystem function and biodiversity.  

 

2.4 MUSSELS AS A MODEL SYSTEM TO STUDY THE IMPACT OF 

CLIMATE CHANGE  

 

Whilst a comprehensive review of the response of all marine organisms to a suite of 

environmental stressors, including OA and temperature, would offer the most accurate 

understanding of future ecosystem change, it is not possible to take this approach in the 

real world. Therefore selecting keystone species, or model organisms, to offer the most 

valuable scientific insight is crucial. In a recent meta-analysis investigating the 

vulnerability of marine organisms to OA, one group of organisms shown to be 

particularly vulnerable to changes in ambient pH were the bivalves (Hendriks et al., 

2010). The class Bivalvia, comprises of groups such as mussels, oysters, scallops and 

clams, and numbers around 7,500 species (Gosling, 2003). As dominant members of 

coastal and estuarine communities, bivalves form an important component of intertidal 
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marine fauna, having an extensive geographical distribution and being of increasing 

importance economically (Widdows and Donkin, 1992).  

 The family Mytilidae, to which mussels of the genus Mytilus belong, is a 

dominant component of rocky shore communities in cooler waters of northern and 

southern hemispheres (Gosling, 1992; Seed and Suchanek, 1992). Of the genus Mytilus, 

the blue mussel, Mytilus edulis is the species with the widest recorded distribution, 

extending from the Arctic to mild sub-tropical regions (Gosling, 2003). It occurs from 

the White Sea to southern France in the north east Atlantic, from the Canadian 

Maritimes to North Carolina in the west Atlantic, along the coasts of Chile, Argentina, 

the Falkland Islands and along the west coast of North America (Beesley et al., 2008; 

Berge et al., 2006). Furthermore, in each of these regions it extends from the high 

intertidal to the shallow sublittoral, from sheltered to extremely wave-exposed shores 

and from fully marine to estuarine conditions (Gosling, 2003). Like many intertidal 

organisms the upper range limit of intertidal mussel populations is determined by a 

physiological intolerance of temperature extremes and desiccation, as well as a 

reduction in the time available for feeding, whereas its lower limits are governed by 

biological factors such as competition and predation (Seed and Suchanek, 1992). 

 Mussels are sedentary filter feeders, settling on a variety of hard or semi-

consolidated substrates that are firm enough to provide a strong anchorage (Gosling, 

2003; Seed and Suchanek, 1992). They attach themselves to other objects using byssus 

thread (Gosling, 2003) and aggregate to form large beds which are considered to be one 

of the most diverse temperate systems (Fig. 2.2) (Suchanek, 1994). In providing a 

structurally complex microhabitat, mussel beds can support up to 300 species at any one 

location, and up to 750 species regionally (Kanter, 1980; Suchanek, 1979), providing 

associated species with a large surface area for settlement, as well as a refuge from 
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Figure 2.2 Mytilus edulis growing on a wild mussel bed which creates a complex microhabitat 

for associated fauna, Exmouth, Exe Estuary, Devon, UK. Scale bar = 100 mm. (Picture  taken  

by R. Ellis). 

 

harsh environmental conditions and  predation (Gutiérrez et al., 2003; Smith et al., 

2006). By maintaining biodiversity and sediment stability in coastal and estuarine 

habitats, mussels carry out a vital role in temperate marine and estuarine ecosystems 

worldwide, making them a key ecosystem engineer (Beesley et al., 2008). 

 As well as their importance ecologically, mussels are also of huge importance 

economically. Bivalve culture dates back over 2,000 years, with Aristotle mentioning 

the cultivation of oysters in Greece in 350 BC (Gosling, 2003), and their importance to 

the aquaculture sector continues to steadily grow (Gestal et al., 2008). The worldwide 

harvest of mussels exceeded 1.7 million tonnes in 2008, with an estimated value of US 

$ 1.6 billion, of which approximately 95 % was from aquaculture (FAO, 2010). 
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However, an increasing distribution and intensity of bivalve culture worldwide has also 

led to an increase in the prevalence and severity of  disease outbreaks, causing mass 

mortality events which significantly impact bivalve fisheries and natural bivalve 

populations alike (Elston et al., 2008; Gestal et al., 2008).  

 Due to their high abundance, cosmopolitan spread and filter feeding lifestyle,  

mussels have become established as one of the most widely used indicator species for 

environmental monitoring (Dondero et al., 2006; Rittschof and McClellan-Green, 

2005). Previous studies investigating the impact of OA on mussels have shown a 

reduction in seawater pH is shown to have a significant and often  negative impact on 

these bivalves. Michaelidis et al. (2005b) demonstrated that adult mussels reduced their 

metabolic rate and increased protein degradation when exposed to reduced seawater pH. 

In contrast Thomsen and Melzner (2010) demonstrated that during a long-term exposure 

to increased pCO2 mussels did not undergo any global metabolic depression, however 

these authors did measure an increased protein metabolism, reduced shell length and 

reduced shell mass. Furthermore OA has also been shown to reduce growth (Berge et 

al., 2006), calcification (Gazeau et al., 2007), immune function (Bibby et al., 2008) and 

organism health (Beesley et al., 2008) in Mytilus species. 

 Early life cycle stages are generally considered to be more vulnerable than adults 

to environmental disturbance (Raven et al., 2005). Gazeau et al. (2010) demonstrated 

that mussel larvae developed under increasing pCO2 had smaller shells at hatching, with 

these shells also being thinner. The population also demonstrated a reduced hatching 

rate under future OA conditions (Gazeau et al., 2010). Such changes at early life stages 

could have considerable knock on effects for overall population dynamics, and thus 

ecosystem function.  
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 To date very little is known about what impact a concurrent exposure to 

temperature and OA will have on marine mussels, with only one study having measured 

mussel bed community dynamics in response to climate change. Carried out by Smith et 

al. (2006), this study measured a large decline in species diversity on Californian mussel 

beds between the 1960’s/1970’s and 2002, with 58.9 % of this mean diversity loss 

measured being attributed to climate change (Smith et al., 2006). Considering this result 

and the understanding of projected climatic change, future increases in global 

temperatures and reductions in seawater pH could potentially have a catastrophic effect 

on community biodiversity and ecosystem function. 

 Negative impacts of climate change stressors on mussels would not only impact 

coastal biodiversity and ecosystem functioning, but additionally would result in 

significant economic loss (Cooley and Doney, 2009; Gazeau et al., 2007). The 

importance of mussels, both economically and ecologically, thus highlights a need to 

investigate the impact of climate change stressors on these ecosystem engineers. In 

elucidating the interactive impact of climate changes stressors on disease prevalence 

and disease resistance in marine mussels and by understanding the ecological processes 

that control populations, communities and ecosystems, we will be better able to project 

which stressors will cause serious ecosystem alterations, in turn helping us avoid or 

alleviate these impacts (Suchanek, 1994). 
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CHAPTER 3.  MUSSEL IMMUNE RESPONSE 

 

 

Effect of CO2-induced seawater acidification, increased temperature and a 

bacterial challenge on the immune response of the blue mussel, Mytilus edulis. 
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3.1 INTRODUCTION 

 

Anthropogenic activities are fundamentally altering the chemistry of the world’s oceans, 

through an excess input of nutrients, pollution, increased temperature and altered 

carbonate chemistry (Doney, 2010). As outlined in Chapter 1, these perturbations are in 

turn significantly impacting marine organism immune function. However, despite being 

proposed as one of the greatest threats that marine ecosystems face (Harley et al., 2006), 

to date very little is known about the impact of anthropogenic climate change, and 

ocean acidification (OA) in particular, on the immune response of marine organisms.  

 In demonstrating a reduced phagocytic activity at reduced seawater pH in the 

blue mussel, Bibby et al. (2008) highlight the potential impact of altered seawater 

carbonate chemistry on invertebrate immune function. However,  the study by Bibby et 

al. (2008) is amongst only a handful of studies to date to have investigated the impact of 

OA on the invertebrate immune response. Furthermore, each of these previous studies 

(Bibby et al., 2008; Hernroth et al., 2011; Matozzo et al., 2012) were carried out in the 

absence of any pathogenic insult, and thus were not designed to quantify the potential 

impact of any immune suppression on organism fitness. The immune system protects an 

organism from infectious disease in order to maximise fitness (Viney et al., 2005). It is 

possible that when exposed to stressful environmental conditions, and in the absence of 

any pathogenic threat, an organism may reduce the energy it allocates to immune 

system maintenance, instead reallocating these resources to other physiological 

functions in an attempt to optimise fitness (Lochmiller and Deerenberg, 2000; Sheldon 

and Verhulst, 1996). However, whilst an organism may trade-off  the cost of immune 

system maintenance, it is possible that it may maintain an ability to up-regulate its 

immune response when required. Immunocompetence should therefore be measured and 
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defined functionally, in the presence of a pathogen, to accurately assess any possible 

immune suppression (Morley, 2010; Viney et al., 2005).   

 Therefore the aim of this chapter is to, for the first time, assess the impact of 

climate change stressors on invertebrate immune system functionality in the presence of 

a pathogen. By investigating the impact of reduced seawater pH and increased seawater 

temperature on the total and differential cell counts, as well as the antibacterial activity 

of cell-free haemolymph, in the blue mussel, Mytilus edulis, this study will elucidate the 

impact of anthropogenic climate change on the maintenance of cellular and humoral 

host defence. Furthermore, in subsequently exposing mussels to a bacterium shown to 

be pathogenic to marine bivalves, namely  Vibrio tubiashii, (Elston et al., 2008), this 

study will then be able to demonstrate the impact of any possible immune suppression 

on organism disease resistance. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Study organisms and experimental setup 

 

Adult Mytilus edulis (50 to 70 mm shell length) were collected by hand from an 

intertidal estuarine mussel bed, Exmouth, Devon, UK (50º 37.09’N, 03º 25.42’W) on 

17th Dec 2009. This site was chosen as the mussel population at Exmouth are shown to 

comprise of pure M. edulis, despite previous research having demonstrated a complex 

speciation in the genus Mytilus across south-west England (Gilg and Hilbish, 2003; 

Hilbish et al., 2002).  Following collection mussels were transported to a mesocosm at 

Plymouth Marine Laboratory (PML) within 2 h of harvest. Upon arrival mussels were 
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cleared of all epibionts using a fixed blade scalpel. Once cleaned, 4 individuals were 

placed into each of the 60 experimental chambers described below.  

 Experimental chambers (vol. = 250 ml) were evenly distributed between 10 re-

circulating water baths (vol. = 75 l; 125 cm x 60 cm x 10 cm). Each chamber was 

haphazardly assigned to one of ten experimental treatments, consisting of five pH levels 

crossed with two different temperatures. Each treatment combination contained 6 

replicate chambers. The nominal pH values used in this experiment were pH 8.05 

(present day ambient seawater pH), pH 7.80 (reduced seawater pH predicted to occur by 

2100; IS92 emissions scenario; IPCC, 2007), pH 7.60 (reduced seawater pH predicted 

to occur by 2100; A2 scenario; Caldeira and Wickett, 2005), pH 7.35 (reduced seawater 

pH predicted to occur by 2300; IS92 emissions scenario; IPCC, 2007) and pH 6.50 (low 

pH conditions expected from a Carbon Capture Storage CO2 leak under already 

acidified conditions; Blackford et al., 2009). The mesocosm was maintained at 12.5 ± 1 

°C (surface seawater temperature recorded by the western channel observatory at station 

L4, 1st Dec 2009), with mussels in the elevated temperature treatment being exposed to 

a temperature of 17.0 ± 0.5°C (representing a temperature increase predicted to occur by 

2100; IPCC, 2007; Sokolov et al., 2009). The increased temperature was achieved by 

placing heaters in the five water baths which had been haphazardly assigned to the 

elevated temperature treatment.  

 Each water bath contained six experimental chambers that were continuously 

supplied with seawater from one of ten header tanks (vol. = 450 l), via a peristaltic 

pump (13 ± 0.5 ml min-1; Watson Marlow 2058). Overflow water from experimental 

chambers was allowed to run off, creating a flow-through experimental system that 

prevented the build up of any metabolic waste products (Fig. 3.1). Header tank pH was 

adjusted through the bubbling of CO2 gas (Fig 3.2), using the system described by 
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Widdicombe and Needham (2007). The pH in header tanks was monitored using 

combination pH electrodes (Walchem S650CD), calibrated using NIST standardised 

buffers and connected to a computerised feedback system (Walchem Webmaster-GI 

controller USA), which regulated the addition of CO2. During the experiment mussels  

 

Figure 3.1 Experimental setup showing header tanks supplying seawater to experimental 

chambers via a peristaltic pump. Experimental chambers are housed in water baths that flow to 

waste, creating flow-through system. Photo taken by R.Ellis. 

were fed with Isochrysis galbana (30 mg dry mass mussel-1 day-1; Isochrysis 1800: 

Reed Mariculture Inc.), suspended in seawater and added to each header tank daily. 

Using daylight simulation lights, the mesocosm was subject to a 9 h light: 15 h dark 

regime. This closely replicated the natural day light hours for the collection site, 

measured at the time of mussel collection.  



Chapter 3                                                                                            

 

 The pH, temperature and salinity were monitored 3 times a week in header tanks 

and experimental chambers. The pH was measured using 

InLab 413 SG) calibrated with NIST standardized buffers.

salinity were measured 

325). Total alkalinity 

 

Figure 3.2 Schematic diagram of the experimental setup used during the mesocosm experiment 

(adapted from Hale et al., 2011

 

at the beginning of the experiment and then every 7 days until completion. To measure 

AT a 125 ml sample of seawater was tak

tank, poisoned with a saturated solution of mercuric chloride (50 µl equating to 0.04

of final volume) and stored in amber glass bottles (125 ml) until later analysis. Stored 

alkalinity samples were subsequent

titration technique (Apollo Sci Tech model AS
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The pH, temperature and salinity were monitored 3 times a week in header tanks 

and experimental chambers. The pH was measured using a pH meter (

InLab 413 SG) calibrated with NIST standardized buffers. T

salinity were measured  using a combined temperature and salinity 

325). Total alkalinity (AT) was measured in header tanks and experimental

Schematic diagram of the experimental setup used during the mesocosm experiment 

adapted from Hale et al., 2011). 

at the beginning of the experiment and then every 7 days until completion. To measure 

a 125 ml sample of seawater was taken from each experimental chamber and header 

tank, poisoned with a saturated solution of mercuric chloride (50 µl equating to 0.04

of final volume) and stored in amber glass bottles (125 ml) until later analysis. Stored 

alkalinity samples were subsequently analyzed using an open

titration technique (Apollo Sci Tech model AS-ALK2). Carbonate system 

                                Immune Response 

The pH, temperature and salinity were monitored 3 times a week in header tanks 

pH meter (Mettler Toledo 

Temperature (°C) and 

salinity probe (Tetra con 

measured in header tanks and experimental chambers 

Schematic diagram of the experimental setup used during the mesocosm experiment 

at the beginning of the experiment and then every 7 days until completion. To measure 

en from each experimental chamber and header 

tank, poisoned with a saturated solution of mercuric chloride (50 µl equating to 0.04 % 

of final volume) and stored in amber glass bottles (125 ml) until later analysis. Stored 

ly analyzed using an open-cell potentiometric 

Carbonate system variables 
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(pCO2, TCO2, Ωcalcite, Ωaragonite, HCO3
-, and CO3

2-) were calculated from the measured 

pH (NBS scale) and AT values using the CO2sys program (Pierrot et al., 2006), using 

the constants from Mehrbach et al. (1973), refitted by Dickson and Millero (1987), and 

using the KSO4 dissociation constants from Dickson (1990).  

 

3.2.2 Sampling protocol and bacterial exposure 

 

Mussels were maintained in the experimental setup, as described above (Sect. 3.2.1), for 

a total of 98 days. On day 90, one mussel was sampled from each experimental chamber 

to measure the immune response (as described in Sect. 3.2.3). Following this initial 

sampling the remaining mussels were exposed to a bacterial challenge. Vibrio tubashii 

NCIMB 1337 (ATCC19106) was chosen as it is pathogenic to bivalves and due to its 

recent re-emergence having been linked to a reduction in hatchery bivalve populations 

(Elston et al., 2008). V. tubiashii was grown under thermo-stable conditions (24 °) in 

marine broth (sterile marine saline + 1 g l-1 yeast extract and 0.5 g l-1 tryptone). Log 

phase broth culture was harvested into a sterile centrifuge tube (vol = 15 ml; Sarstedt®), 

centrifuged (10 min, 2000 x rpm; 15 °C; Centrifuge 5810R, Eppendorf) and re-

suspended in sterile marine saline. Bacteria were rinsed a further two times before being 

re-suspended in fresh marine saline at a concentration of ca. 2 x 108 ml-1 (OD600nm ca. 

2). Bacteria were then further diluted by two serial tenfold dilutions in marine saline to 

give a final working concentration of 2 x 106 ml-1 (Parry and Pipe, 2004). On day 91 

these mussels were removed from the flow-through system and injected with 1.0 ml of a 

live bacterial suspension (Vibrio tubiashii at 2 x 106 bacterial cells ml-1) directly into the 

posterior adductor muscle, using a 1.0 ml syringe fitted with a 21g needle. Mussels were 

then left immersed at their respective experimental temperatures (either 12.5 °C or 17.0 
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°C) for 2 h, held shut with an elastic band, after which time the elastic band was 

removed and they were returned to the experimental system. The mussel immune 

response was then measured again in one randomly chosen individual from each 

experimental chamber on day 92 (1 day post inoculation) and day 98 (7 days post 

inoculation). 

 

3.2.3 Immunological assays 

 

Haemolymph (0.5 ml) was extracted from the large sinus within the posterior adductor 

muscle, using a 1.0 ml syringe fitted with a 21g needle. Haemolymph was transferred to 

a siliconised microcentrifuge tube (vol. = 1.6 ml, Eppendorf®) stored on ice, to 

minimise cell aggregation.  

 

Total and differential cell counts: 

An aliquot of haemolymph (vol. = 150 µl) was added to an equal volume of Baker’s 

formal calcium (10 % formalin, 1 % calcium chloride and 2.5 % sodium chloride). The 

total number of fixed haemocytes per ml of haemolymph was then quantified using an 

improved Neubauer haemocytometer on a Leitz (Leitz Wetzlar) compound microscope. 

Differential haemocyte counts were prepared using a cytocentrifuge (Shandon, UK); 

100 µl of fixed haemolymph was spun (1,000 rpm) onto glass microscope slides. Cells 

were then post fixed in methanol (100 %; Sigma-Aldrich) for 3 min, stained with 

Wrights stain (diluted 1:4 with 0.05 M Tris-buffered saline (TBS), pH 7.6) for 5 min, 

rinsed with deionised water, air dried and mounted in Canada Balsam. The Wrights 

stain enables eosinophilic (granular, dark pink/purple) and basophilic (non-granular, 

light blue) blood cells to be differentiated (Fig 3.3) (Pipe, 1990a). Relative numbers of 



Chapter 3                                                                                                                            Immune Response 

- 81 - 

 

eosinophils and basophils were calculated by counting 200 haemocytes from each 

animal (Parry and Pipe, 2004). 

 

 

Figure 3.3 Light micrograph of Mytilus edulis haemocytes differentially stained with Wrights 

stain. Eosinophilic cells stained purple, basophilic cells stained light blue. Scale bar = 40µm. 

 

Antibacterial activity of cell-free haemolymph: 

An aliquot of haemolymph (vol. = 250 µl) was added to an equal volume of marine 

saline and centrifuged (2.5 min, 400 x g, 15 °C; Centrifuge 5810R, Eppendorf). The 

supernatant, cell-free haemolymph, was transferred to a microcentrifuge tube 
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(Eppendorf®) and stored at -20°C until analysed. To measure antibacterial activity of the 

cell-free haemolymph, a 100 µl aliquot of cell-free haemolymph was pipetted into 4 

replicate wells of a microplate with an equal volume of Vibrio tubiashii suspension (2 x 

106 bacterial cells per ml-1 suspended in marine saline). 50 µl of marine saline and 50 µl 

of marine broth were added to 100 µl of Vibrio tubiashii suspension in 4 replicate wells 

to determine bacterial growth over 22 h (bacterial controls). 150 µl of marine saline and 

50 µl of marine broth was used as a blank. Plates were incubated at 20 °C and read 

using a microplate reader (Molecular Devices VersaMax Microplate Reader) at λ = 340 

nm. Results were presented as bacterial growth inhibition after 22 h, measured as a 

change in optical density between haemolymph exposed samples and bacterial control 

growth. 

 

3.2.4 Statistical analysis 

 

All data were tested statistically using the PERMAONVA+ add in (beta version; 

Anderson et al., 2008) in PRIMER 6.1 (Clarke and Gorley, 2006). As PERMANOVA+ 

is sensitive to differences in multivariate dispersion between groups (Anderson, 2006), 

data were first tested for homogeneity of variance using PERMDISP. If data were seen 

to have heterogeneous variance an appropriate transformation, square root or log(x+1), 

was applied. Euclidean distance similarity matrices were then constructed for all data. 

 For carbonate chemistry parameters, P-values were calculated using an 

unrestricted permutation of raw data. When a statistically significant difference was 

shown, pair-wise comparisons between all levels of a given environmental parameter 

were undertaken, using PERMANOVA+. To measure the effect of reduced seawater 

pH, temperature and a bacterial exposure on immune system maintenance P-values were 
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calculated using 999 permutations of the residuals under a reduced model. Pair-wise 

comparisons were again undertaken where a significant P-value was encountered for a 

given factor with more than two levels, or where a significant interaction was 

demonstrated between two or more experimental factors. Furthermore, the effect of 

organism gender, determined using histology (as described in Sect. 4.2.1), on immune 

system maintenance was assessed using PERMANOVA. Again, P-values were 

calculated using 999 permutations of the residuals under a reduced model, and pair-wise 

comparisons undertaken where gender was shown to interact with another experimental 

factor.  

 To test the impact of OA, ocean warming and gender on the ability of mussels to 

up-regulate their immune response when encountering a bacterial challenge, the change 

in host defence following a pathogenic exposure was calculated. A change in the 

immune response was calculated as an increase or decrease in the ability of cell-free 

haemolymph to inhibit bacterial growth, an increase or decrease in total cell count or a 

change in the proportion of eosinophilic haemocytes in pathogen exposed mussels 

within each treatment group, compared to mussels at day 90. These data were then 

tested in PERMANOVA+ using the same procedure as used to test other immune 

system data. 

 

3.3. RESULTS 

 

3.3.1 Experimental conditions 

 

The carbonate chemistry parameters within the header tanks and experimental chambers 

are summarised in Tables 3.1 and 3.2 respectively. The pH of seawater was significantly 
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lowered in all header tanks and experimental chambers assigned to the reduced seawater 

pH treatments, compared to the control treatment, and remained stable throughout the 

98 d exposure. The slight difference recorded between the pH in header tanks and 

exposure chambers at pH 8.05, 7.80 and 7.60 is likely to be due to mussel respiration in 

experimental chambers, and bacterial respiration in the tubes supplying chambers.  

 Salinity did not differ significantly between treatments, whereas temperature 

was significantly lower in exposure chambers maintained at 12.5 °C, compared to 17.0 

°C. However, there was no significant difference in the temperature of experimental 

chambers within treatments. Total alkalinity was not significantly different between 

treatment groups in header tanks; however in exposure chambers the AT measured at pH 

6.50 was significantly higher than at any other pH level, and this was the case at both 

12.5 °C and 17.0 °C. Such an increase in AT may be caused by increased dissolution of 

mussel shells at low pH, a phenomenon demonstrated by Melzner et al. (2011), and one 

which would not be unexpected due to the severe undersaturation of both calcite and 

aragonite at pH 6.50 (Table 3.1).  

 pCO2 was shown to significantly increase with decreasing pH, as was total 

carbon dioxide (TCO2) and [HCO3
-]. Reduced pH was also shown to significantly 

decrease [CO3
2-] and the saturation of both calcite and aragonite. Seawater was shown 

to become undersaturated with respect to calcite at pH 7.35 at 12.5 °C (Table 3.2a), and 

pH 7.60 at 17.0°C (Table 3.2b). Seawater was shown to become undersaturated with 

respect to aragonite at pH 7.80 at both 12.5 °C and 17.0 °C. 

 

  



Chapter 3                                                                                                                                                                                                                                                      Immune Response 

  

- 85 - 

 

 

Table 3.1 Carbonate chemistry of seawater in header tanks for each pH exposure level.  

 

Data are represented as mean (± S.E.). Significant differences (p ≤ 0.05) between treatment levels are indicated by different letters based on pair-wise tests. 

†Calculated using CO2SYS software. 

Parameter

pHNBS 8.09 ± 0.01
a

7.77 ± 0.01
b

7.60 ± 0.01
c

7.33 ± 0.01
d

6.46 ± 0.02
e

Temperature (°C) 13.83 ± 0.11 13.94 ± 0.10 13.85 ± 0.10 14.01 ± 0.10 13.87 ± 0.10
Salinity 34.17 ± 0.07 34.15 ± 0.07 34.17 ± 0.07 34.16 ± 0.07 34.15 ± 0.07

A T  (µmol kg
-1

 SW) 2402.32 ± 30.27 2396.70 ± 27.89 2412.67 ± 30.79 2392.42 ± 31.71 2420.65 ± 30.62

pCO2
 
(µatm)† 518.02 ± 22.25

a
1177.85 ± 64.12

b
1940.40 ± 240.51

c
5075.37 ± 1402.88

d
25242.14 ± 1938.82

e

TCO2
 
(µmol kg

-1
 SW)† 2229.22 ± 30.55

a
2344.67 ± 32.00

b
2422.27 ± 39.09

b,c
2558.20 ± 69.25

c
3396.81 ± 98.58

ΩCalcite† 3.201 ± 0.080
a

1.625 ± 0.058
b

1.098 ± 0.084
c

0.535 ± 0.091
d

0.091 ± 0.005
e

ΩAragonite† 2.045 ± 0.051
a

1.038 ± 0.037
b

0.701 ± 0.053
c

0.342 ± 0.058
d

0.058 ± 0.003
e

HCO3
-
 (µmol kg

-1
 SW)† 2075.62 ± 29.83

a
2230.62 ± 31.06

b
2300.70 ± 34.23

b,c
2337.81 ± 33.04

c,d
2411.68 ± 30.78

d

CO3
2-

 (µmol kg
-1

 SW)† 133.31 ± 3.31
a

67.68 ± 2.34
b

45.70 ± 3.44
c

22.29 ± 3.79
d

3.80 ± 0.20
e

6.508.05 7.80 7.60 7.35
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Table 3.2 Carbonate chemistry of seawater in experimental chambers maintained at a) 12.5 °C and b) 17.0 °C for each pH exposure level.   

Data are represented as mean (± S.E.). Significant differences (p ≤ 0.05) between treatment levels are indicated by different letters based on pair-wise 

tests. †Calculated using CO2SYS software. 

a)

Parameter

pHNBS 8.02 ± 0.01
a

7.68 ± 0.01
b

7.51 ± 0.01
c

7.30 ± 0.01
d

6.55 ± 0.01
e

Temperature (°C) 12.36 ± 0.09 12.27 ± 0.10 12.30 ± 0.10 12.32 ± 0.09 12.46 ± 0.10

Salinity 34.00 ± 0.06 34.01 ± 0.06 34.04 ± 0.06 34.00 ± 0.06 33.98 ± 0.06

A T  (µmol kg
-1

 SW) 2395.15 ± 20.60
a

2394.45 ± 20.01
a

2436.43 ± 19.58
a

2434.78 ± 17.50
a

2584.84 ± 44.15
b

pCO2
 
(µatm)† 787.87 ± 30.60

a
1704.95 ± 46.67

b
2413.11 ± 92.87

c
3786.12 ± 174.12

d
24751.24 ± 1109.09

e

TCO2
 
(µmol kg

-1
 SW)† 2266.87 ± 18.83

a
2374.63 ± 18.16

b
2459.72 ± 17.22

c
2528.75 ± 21.03

d
3457.39 ± 73.87

e

ΩCalcite† 2.605 ± 0.079
a

1.344 ± 0.044
b

1.043 ± 0.057
c

0.677 ± 0.028
d

0.121 ± 0.004
e

ΩAragonite† 1.676 ± 0.051
a

0.865 ± 0.029
b

0.672 ± 0.037
c

0.436 ± 0.018
d

0.078 ± 0.003
e

HCO3
-
 (µmol kg

-1
 SW)† 2130.53 ± 17.57

a
2258.08 ± 17.20

b
2330.75 ± 16.48

c
2366.17 ± 17.50

d
2573.00 ± 44.04

e

CO3
2-

 (µmol kg
-1

 SW)† 108.33 ± 3.34
a

55.86 ± 1.87
b

43.41 ± 2.40
c

28.18 ± 1.18
d

5.04 ± 0.18
e

b)

Parameter

pHNBS 7.95 ± 0.01
a

7.63 ± 0.01
b

7.51 ± 0.01
c

7.29 ± 0.01
d

6.51 ± 0.01
e

Temperature (°C) 17.12 ± 0.07 17.04 ± 0.07 17.11 ± 0.07 17.16 ± 0.06 17.07 ± 0.08

Salinity 34.07 ± 0.06 34.03 ± 0.06 34.06 ± 0.06 34.03 ± 0.06 34.03 ± 0.06

A T  (µmol kg
-1

 SW) 2407.38 ± 17.57
a

2408.32 ± 18.32
a

2424.32 ± 12.09
a

2440.25 ± 17.63
a

2630.13 ± 36.18
b

pCO2
 
(µatm)† 624.60 ± 21.85

a
1535.21 ± 77.30

b
2341.68 ± 104.76

c
3494.13 ± 148.63

d
21846.26 ± 1055.31

e

TCO2
 
(µmol kg

-1
 SW)† 2272.95 ± 14.85

a
2396.34 ± 19.75

b
2469.47 ± 12.96

c
2549.17 ± 21.43

d
3523.37 ± 67.34

e

ΩCalcite† 2.640 ± 0.095
a

1.242 ± 0.057
b

0.849 ± 0.031
c

0.587 ± 0.022
d

0.116 ± 0.007
e

ΩAragonite† 1.682 ± 0.061
a

0.791 ± 0.036
b

0.541 ± 0.020
c

0.374 ± 0.014
d

0.074 ± 0.004
e

HCO3
-
 (µmol kg

-1
 SW)† 2137.02 ± 13.82

a
2281.07 ± 18.20

b
2337.58 ± 11.43

c
2380.36 ± 17.67

d
2618.70 ± 36.03

e

CO3
2-

 (µmol kg
-1

 SW)† 110.10 ± 4.04
a

51.79 ± 2.40
b

35.36 ± 1.30
c

24.45 ± 0.91
d

4.84 ± 0.28
e

6.50

6.50

8.05 7.80 7.60 7.35

8.05 7.80 7.60 7.35
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3.3.2 Mortality 

 

Mortalities were noted in all treatments during the course of the exposure; however 

cumulative mortality was higher at low pH. At pH 8.05 and pH 7.80 mussel survival 

was 93.75 %  after the initial 90 d exposure, whereas at pH 7.60 survival fell to 89.58 

%. Survival of mussels at pH 7.35 dropped to 81.25 % over the duration of the 

exposure. The most significant reduction in mussel survival was noted at pH 6.50, 

where survival was 33.33%.  When the impact of temperature on mussel survival is 

considered, increased temperature appears to increase the sensitivity of mussels to low 

pH. At 12.5 °C mussel survival was maintained above 91 % at pH 8.05, pH 7.80, pH 

7.60 and pH 7.35 (Fig 3.4a), however at pH 6.50 survival fell to 45.83%. Conversely, at 

17.0 °C mussel survival was only maintained above 91 % at pH 8.05 (Fig 3.4b). At pH 

7.80 and pH 7.60 survival was shown to drop to 87.50 %, whereas at pH 7.35 survival is 

shown to fall to 66.67%. The greatest reduction in survival however is shown at pH 

6.50, in mussels maintained at 17.0 °C, where survival was shown to drop to just 20.85 

% during the experimental exposure (Fig 3.4b). An inoculation with the pathogenic 

bacteria, Vibrio tubiashii, was not shown to further impact mussel mortality at any pH. 

 

3.3.3 Antibacterial activity of cell-free haemolymph 

 

As shown in Fig. 3.5a, an extreme reduction in seawater pH significantly reduced the 

antibacterial activity of cell-free haemolymph in mussels after an initial 90 day exposure 

(Pseudo-F = 8.68, d.f. = 4, p = 0.005). Pair-wise analyses showed that mussels 

maintained at pH 6.50 had a significantly lower antibacterial activity compared to 

mussels maintained at all other pH levels (Fig. 3.5a), with the ability of  cell free   
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Figure 3.4 Percentage survival of Mytilus edulis maintained under control and acidified 

seawater conditions at a) 12.5 °C and b) 17.0 °C. Data show the percentage survival of the 

mussel population, pooled within treatment, over the duration of the experimental exposure. 
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Figure 3.5 Antibacterial activity of mussel cell-free haemolymph, expressed as the inhibition of 

bacterial growth by cell-free haemolymph as a percentage of control bacterial growth, after 

exposure to low seawater pH. a) The bacterial growth inhibition of mussel haemolymph after an 

initial 90 day exposure (data are pooled for temperature and gender, N = 60 individuals). b) The 

change in antibacterial activity of mussel haemolymph after inoculation with Vibrio tubiashii 

(data are pooled from 1 d and 7 d post inoculation, as well as for temperature and gender, N = 

84 individuals). Values are means (± S.E.). Significant differences (p ≤ 0.05) between treatment 

levels are indicated by an asterisk and based on pair-wise tests. 
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Figure 3.6 Antibacterial activity of cell-free haemolymph, expressed as the inhibition of 

bacterial growth by cell-free haemolymph as a percentage of control bacterial growth, following 

an initial 90 day exposure to increased seawater temperature. Values are means (± S.E.). Data 

are pooled for pH and gender. Significant differences (p ≤ 0.05) between treatment levels are 

indicated by an asterisk and based on pair-wise tests. N = 60 individuals. 
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measured at day 90, whereas mussels maintained at pH 8.05, 7.80, 7.60 and 7.35 

reduced the antibacterial activity of their haemolymph by around 4% (Fig. 3.5b).  

Alongside reduced seawater pH, gender was also shown to affect the impact of a 

bacterial exposure on the antibacterial activity of mussel haemolymph (Pseudo-F = 

9.15, d.f. = 1, p = 0.004). Inoculation with a pathogen was shown to increase the ability 

of cell-free haemolymph to inhibit bacterial growth in females, whereas in males 

antibacterial activity is reduced following a pathogenic exposure (Fig. 3.7). The 

duration of a bacterial exposure did not significantly affect the impact of reduced 

seawater pH, increased temperature or gender on the antibacterial activity of 

haemolymph, with no difference in the response measured 1 day and 7 days post 

inoculation.  

 

 

Figure 3.7 The change in antibacterial activity of cell-free haemolymph in male and female 

mussels, expressed as a change in the bacterial growth inhibition of cell-free haemolymph as a 

percentage of control bacterial growth, following an inoculation with Vibrio tubiashii. Values 

are means (± SEM). Data pooled from 1 d and 7 d post inoculation as well as for pH and 

temperature. Significant differences (p ≤ 0.05) between treatment levels are indicated by an 

asterisk and based on pair-wise tests. N = 84 individuals. 
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3.3.4 Total cell count 

 

Following an initial 90 day exposure, pH significantly affected total haemocyte 

numbers within mussel haemolymph (Pseudo-F = 3.10, d.f. = 4, p = 0.026). Pair-wise 

 

  

 

Figure 3.8 a) The effect of reduced seawater pH on the number of circulating haemocytes per 

ml of haemolymph (data pooled for temperature and gender) and b) the effects of reduced 

seawater pH and temperature on the number of circulating haemocytes per ml of haemolymph 

in mussels (data pooled for gender). Values are means (± S.E.). Significant differences (p ≤ 

0.05) between treatment levels are indicated by different letters and based on pair-wise tests. N 

= 60 individuals. 
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analyses indicated that total cell counts in mussels maintained at pH 7.60 were 

significantly higher than measured in mussels maintained at either pH 7.80 or 6.50 (Fig. 

3.8a). However, as can be seen in Fig. 3.8a, total cell counts are naturally variable and 

the response shown at reduced seawater pH falls within the natural variability noted at 

pH 8.05.  

 Seawater pH was also shown to interact with temperature to affect total cell 

counts (Pseudo-F = 2.71, d.f. = 4, p = 0.04). At 12.5 °C mussels maintained at pH 7.80 

and 6.50  had a significantly lower haemocyte count compared to mussels maintained at  

pH 7.60 or 7.35. Yet at 17.0 °C total cell counts were only lower in mussels maintained 

at pH 7.80 compared to those at pH 7.60. However, none of the total cell counts 

measured in mussels maintained at any of the reduced pH levels, or at either 

temperature, was shown to be significantly different to that measured at pH 8.05 (Fig. 

3.8b). 

  Exposure to reduced seawater pH significantly affected the change in the 

number of circulating haemocytes in mussels exposed to V. tubiashii (Pseudo-F = 4.75, 

d.f. = 4, p = 0.003). However, contrary to the pattern shown after an initial 90 day 

exposure, pair-wise analyses indicate that control mussels reduce the number of 

circulating haemocytes in response to a bacterial challenge, whereas there was no 

significant change in total cell counts in mussels maintained at all other pH levels (Fig. 

3.9a). Gender was also shown to affect the ability of mussels to alter the number of 

circulating haemocytes in response to a pathogenic challenge. Females significantly 

reduced the number of haemocytes in haemolymph when encountering V. tubiashii, 

while males slightly increased haemocyte numbers (Pseudo-F = 4.41, d.f. = 1, p = 

0.042) (Fig. 3.9b). Again duration of a bacterial exposure did not affect total haemocyte 

counts.  



Chapter 3                                                                                                                            Immune Response 

- 94 - 

 

  

Figure 3.9 The change in the number of circulating haemocytes in mussels, expressed as the 

absolute change in cells per ml of haemolymph, following an inoculation with Vibrio tubiashii. 

a) The effect of reduced seawater pH on the change in the number of circulating haemocytes 

(data pooled from 1 d and 7 d post inoculation, and for temperature and gender). b) The effect 

of gender on the change in the number of circulating haemocytes (data pooled from 1 d and 7 d 

post inoculation as well as for pH and temperature). Values are means (± S.E.). Significant 

differences (p ≤ 0.05) between treatment levels are indicated by an asterisk and based on pair-

wise tests. N = 84 individuals. 
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3.3.5. Differential cell counts 

 

After the initial 90 day exposure to experimental conditions, the only factor shown to 

significantly affect the proportion of circulating eosinophilic haemocytes was gender, 

with males shown to have a significantly greater proportion of eosinophils in their 

haemolymph compared to females (Pseudo-F = 4.37, d.f. = 1, p = 0.039) (Fig. 3.10).  

 Gender also significantly affected the impact of a pathogen exposure on 

differential cell counts (Pseudo-F = 4.98, d.f. = 1, p = 0.029). Females were shown to 

increase the proportion of circulating eosinophils within their haemolymph following a 

pathogen exposure, whilst males were shown to decrease eosinophils (Fig. 3.11a). 

Furthermore, gender was shown to affect how the proportion of circulating haemocytes 

changed over the seven days following a bacterial exposure (Pseudo-F = 6.70, d.f. = 1, p 

= 0.006) (Fig. 3.11b). Initially, one day after a pathogen exposure, females were shown 

to decrease the proportion of eosinophils in their haemolymph compared to female 

mussels measured pre-inoculation, whilst males were shown to subtly increase the 

proportion of eosinophils compared to pre-inoculation males (Fig. 3.11b). Conversely, 

seven days after a pathogen exposure, the proportion of eosinophils in female 

haemolymph was shown to have increased significantly compared to the level measured 

in females both pre- and one day post-inoculation. Furthermore, whilst not shown to be 

statistically significant, the proportion of eosinophils in male haemolymph was shown 

to have reduced seven days after inoculation compared to mussels measured pre- and 

one day post-inoculation (Fig. 3.11b). 

 Finally, exposure to reduced seawater pH was shown to affect the proportion of 

circulating eosinophilic haemocytes, following a pathogen exposure (Pseudo-F = 7.00, 

d.f. = 1, p = 0.001).  Mussels maintained at pH 7.60 significantly increased the 
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proportion of eosinophils within their haemolymph when exposed to V. tubiashii 

compared to mussels at maintained at this pH sampled prior to a bacterial inoculation. 

Conversely, no significant difference was measured between mussels maintained at all 

other pH levels and sampled pre and post-inoculation (Fig. 3.12). 

 

 

Figure 3.10 The effect of gender on the proportion of circulating eosinophilic haemocytes, 

expressed as the relative percentage of eosinophils in the total haemocyte fraction, following an 

initial 90 day exposure to experimental conditions. Values are means (± S.E.). Data are pooled 

for pH, temperature and bacterial exposure. Significant differences (p ≤ 0.05) between treatment 

levels are indicated by an asterisk and based on pair-wise tests. N = 133 individuals. 
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Figure 3.11 The change in the proportion of circulating eosinophils in mussel haemolymph 

following an inoculation with Vibrio tubiashii, expressed as the change in the relative 

percentage of eosinophils compared to the response measured pre-inoculation. The effect of: a) 

gender on the proportion of eosinophils (data are pooled from mussels sampled 1 d and 7 d post 

inoculation as well as for pH and temperature), b) gender and the duration of a bacterial 

exposure on the proportion of eosinophils (data are pooled for pH and temperature). Values are 

means (± S.E.). Significant differences (p ≤ 0.05) between treatment levels are indicated by 

different letters and based on pair-wise tests. N = 83 individuals. 
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Figure 3.12 The effect of reduced seawater pH on the change in circulating eosinophil 

proportion in mussel haemolymph following an inoculation with Vibrio tubiashii, expressed as 

the change in the relative percentage of eosinophils compared to the response measured pre-

inoculation. Values are means (± S.E.). Data are pooled from mussels measured 1 d and 7 d post 

inoculation as well as for temperature and gender. Significant differences (p ≤ 0.05) between 

treatment levels are indicated by an asterisk and based on pair-wise tests. N = 83 individuals. 
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seawater pH predicted to occur by the end of the current century, a concurrent exposure 

to elevated temperature increases the sensitivity of these mussels, further reducing 

survival. A reduction in immune system maintenance at low pH could indicate reduced 

immunocompetence, and thus an increased susceptibility to disease, in mussels. 

However in the current study, a subsequent exposure to a pathogenic bacterium led to 

an up-regulation in the immune response, suggesting that the initial reduction was a 

physiological trade-off, rather than a negative impact of acidification on immune system 

functionality, as has been suggested previously (Bibby et al., 2008). This result could 

have significant consequences for the perceived susceptibility of mussels to 

anthropogenic climate change. 

 

3.4.1 The impact of anthropogenic climate change on mussel mortality 

 

Reduced seawater pH is shown to significantly reduce mussel survival over a 90 day 

exposure to experimental conditions in mussels maintained at 12.5 °C. However, 

survival is only impacted in mussels maintained at pH 6.50. In showing no impact of 

OA on mussel mortality, at a level predicted to occur within the next 100-300 years 

(Caldeira and Wickett, 2005; IPCC, 2007), this study supports previous research that 

has shown mussels are relatively resilient to changes in seawater carbonate chemistry 

(e.g. Ries et al., 2009; Thomsen et al., 2010; Thomsen and Melzner, 2010). The mussels 

used in the current study were collected from an intertidal estuarine mussel bed. Such 

habitats frequently experience CO2 concentrations significantly higher than expected 

from equilibrium with the atmosphere (Feely et al., 2010; Frankignoulle et al., 1998), 

with estuarine pH ranges of 6.7-8.9 reported (Attrill et al., 1999). Therefore in 

maintaining survival at reduced seawater pH, the mussels used in this experiment may 
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be pre-adapted to coping with the impact of low pH. Such resistance to naturally 

acidified seawater has been demonstrated by Thomsen et al. (2010), where a population 

of mussels from Kiel fjord, naturally exposed to pH values <7.5 during summer and 

autumn periods, maintained calcification, somatic growth and juvenile recruitment.    

 In showing a reduced survival of mussels maintained at pH 6.50, these findings  

support Bamber (1990) who demonstrated an exposure to a pH of ≤ 6.5 significantly 

increased mortality in these ecosystem engineers. Such low pH conditions may be 

experienced during a catastrophic leak from sub-seabed CO2 storage (Blackford et al., 

2009). This means any proposed mitigation project would need to carefully consider the 

impact of a leak on the local ecosystem and its resident fauna. However, with carbonate 

chemistry already shown to fluctuate drastically in near shore coastal areas (Andersson 

and Mackenzie, 2011; Frankignoulle et al., 1998), and with pH ranges in these habitats 

already shown to far exceed those projected to occur in the open ocean (Attrill et al., 

1999; Feely et al., 2010; Morris and Taylor, 1983), OA may also result in these extreme 

pH conditions (i.e. pH 6.50) being prevalent in near shore coastal areas within the next 

100-300 years (Feely et al., 2008; Pelejero et al., 2010). If this were to occur it could 

have a devastating impact on the population dynamics of the organisms residing in these 

coastal zones, significantly impacting the aquaculture practices which occur in these 

productivity ‘hot spots’ (Turley and Boot, 2010).  

 Whilst this present study appears to support the findings of Bamber (1990), care 

should be exercised when comparing studies using different methods of seawater 

acidification. In the current study seawater was acidified via the addition of CO2 gas 

which is suggested as the most applicable method for understanding the impact of OA 

(Gattuso and Lavigne, 2009). However, Bamber (1990) used the addition of a strong 

acid to lower seawater pH, which does not alter seawater carbonate chemistry 
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comparably to CO2 bubbling (Gattuso and Lavigne, 2009). Therefore the extent to 

which the data generated by Bamber (1990) can be used to understand the ecological 

implications of anthropogenic climate change is questionable.  

 The only other study to date to have measured mussel survival in response to 

OA using the addition of CO2, was carried out by Beesley et al. (2008). In contrast to 

the current study however, these authors reported mussel survival to be unaffected by 

reduced seawater pH at any level, including pH 6.5. However, whilst this result appears 

to directly contradict the current findings, it is again crucial to carefully consider the 

experimental protocol used in each study, and consequently the experimental conditions 

each study reports. Beesley et al. (2008) measured a significant increase in seawater pH 

between header tank and exposure tanks in the pH 6.5 treatment (measuring an increase 

from pH 6.5 to 7.36). These authors suggest that this increase in seawater pH was 

caused by the dissolution of mussel shells, a response that has subsequently been 

measured in mussels exposed to OA (Melzner et al., 2011). However, whilst in the 

present study it is likely that reduced seawater pH led to the dissolution of mussel 

shells, the flow of seawater was maintained at a sufficient rate to ensure that this 

dissolution did not subsequently affect the pH of seawater in the exposure chambers. As 

a result no significant difference was measured between the pH of header tanks and 

exposure chambers at this treatment level. Consequently, in showing no mortality in the 

pH 6.5 treatment (analogous to the pH 7.35 exposure in the current study), the study by 

Beesley et al. (2008) supports the current research that suggests mussels are resilient to 

seawater acidification predicted to occur by 2300 (IPCC, 2007). 

 As well as showing an impact of reduced seawater pH on mussel mortality, this 

is the first study to date to have investigated the combined impact of OA and elevated 

temperature on adult mussel survival, with temperature shown to compound the effect 
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of reduced seawater pH. Anthropogenic climate change is causing a gradual decrease in 

seawater pH and a concomitant increase in seawater temperature (IPCC, 2007). 

Therefore, to fully understand how climate change will impact marine organism 

survival it is essential to study how these two stressors interact. The increased 

sensitivity of mussels to reduced seawater pH, when concurrently exposed to increased 

temperature, highlights the fact that organisms may be more vulnerable to climate 

change over the next 100 - 300 years than suggested by single stressor studies.  

 

3.4.2. The impact of reduced seawater pH, increased temperature and gender on 

immune system maintenance     

 

Adult mussels exposed to reduced seawater pH demonstrated a significant reduction in 

their immune response following an initial 90 day exposure, with antibacterial activity 

and total cell counts being impacted at low seawater pH. In showing immune system 

maintenance to be compromised by seawater acidification, this study therefore supports 

previous research where a reduction in seawater pH was shown to reduce phagocytic 

activity (Bibby et al., 2008), as well as  lysozyme-like activity of cell free haemolymph 

(Matozzo et al., 2012), in mussels. Bibby et al. (2008) found that a 32 day exposure to 

OA reduced the ability of impacted mussels to increase phagocytic activity when 

compared to controls, and suggest that exposure to acidified seawater may therefore 

impact the ability of stressed mussels to express an immune response. Similarly, 

Matozzo et al. (2012) demonstrated that mussels reduced lysozyme-like activity of cell-

free haemolymph following a 7 day exposure to pH 7.7 or 7.4. However, whilst the 

studies by Bibby et al. (2008) and Matozzo et al. (2012) noted a reduction in phagocytic 

activity as a decreasing function of seawater pH, in the current study antibacterial 
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activity of cell-free haemolymph was only impacted at a seawater pH of 6.50.  

 It is possible that the difference noted in the immune response of mussels 

exposed to reduced seawater pH in the present study, and those of Matozzo et al. (2012) 

and Bibby et al. (2008), may be as a result of seasonal differences in the resource 

allocation of organisms studied. Previous research has shown the immune system of 

bivalve molluscs is significantly affected by season, with organisms demonstrating a 

reduced immune response during summer spawning, compared to spring and autumn, as 

a result of a reallocation of energetic resources from host defence to reproduction 

(Matozzo et al., 2003; Pipe et al., 1995b). In the present study organisms were collected 

in December and maintained in the laboratory until March, a period of energy 

reconstitution that avoids studying organisms during spawning in the population studied 

(Lowe et al., 1982). Conversely, Bibby et al. (2008) sampled organisms in June, during 

a summer spawning period. It is therefore possible that the reduction in phagocytic 

activity measured in organisms exposed to pH 7.7 and 7.4 seawater in the Bibby study 

may be as a result of a reduction in the energy available for host defence, as a result of 

the increased cost of maintaining homeostasis, as well as the energetically costly 

process of spawning. However, whilst a seasonal difference in the energy allocated to 

host defence may explain the contrasting results noted by Bibby et al. (2008) and this 

thesis, Matozzo et al. (2012) also studied mussels during winter. Thus a seasonal 

difference in immune system maintenance cannot fully explain the apparently 

contrasting results noted in studies investigating the impact of reduced seawater pH on 

mussel host defence.     

 Alternatively, as discussed in Section 3.4.1, it is possible the tolerance to low 

seawater pH noted in the mussels used in the current study is an adaptation to the 

natural conditions experienced in the intertidal estuarine habitat from which they were 
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collected. The mussels used in the study by Bibby et al. (2008) were collected from 

Trebarwith Strand, which is an exposed rocky shore population that is likely to 

experience different local conditions to the mussels from Exmouth. Similarly, Matozzo 

et al. (2012) collected organisms from along the west coast of the North Adriatic sea, 

which will again likely experience different environmental conditions from those noted 

in an intertidal estuarine habitat (Borges and Gypens, 2010; Borges et al., 2006). It is 

therefore possible that the difference in immune system tolerance between the 

populations studied in each of the three studies is due local adaptation. Parker et al. 

(2011) also demonstrated the response in two populations of bivalve, in this case the 

Sydney rock oyster, Saccostrea glomerata, to vary significantly when exposed to OA. 

These authors suggest that variability noted in the sensitivity of different populations to 

climate change may have a vital role to play in the protection of important aquaculture 

practices under future climate change scenarios, as selective breeding of resistant 

organisms may help to produce more tolerant populations. This in turn may therefore 

safeguard economic activities from climate change associated loss (Parker et al., 2011). 

However, local adaptation could also have significant consequences for the perceived 

vulnerability of a species to climate change, with any population specific sensitivity 

needing to be accounted for when predicting the response of a species to climate change 

at a global level. 

 In addition to seasonal differences in host defence and local adaptation of 

populations, it is possible that the contrasting results noted by Bibby et al. (2008), 

Matozzo et al. (2012) and this thesis may be a result of the complex mussel speciation 

in the north-west Atlantic. Matozzo et al. (2012) studied the response in Mytilus 

galloprovincialis, whilst the present study measured the response of mussels collected 

from a site confirmed to comprise of pure M. edulis (Hilbish et al., 2002). Conversely, 
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Bibby et al. (2008) studied mussels from a population proposed to fall within a Mytilus 

hybrid zone. Therefore, it is possible that, in predominantly occupying sheltered 

habitats under freshwater influence (Bierne et al., 2003), the reduced sensitivity noted in 

M. edulis in the present study may be due to a genetic adaptation of this species to 

reduced seawater pH. 

 Whilst the apparent difference in immune system tolerance between the mussels 

used in this study and those used by Bibby et al. (2008) may be due to local adaptation, 

the complex mussel speciation in south-west England or seasonal factors, it is also 

possible that this varying response is due to the different sensitivity of immune system 

parameters measured.  It is widely accepted that the perceived sensitivity of the immune 

system is often dictated by the immune parameters chosen as an immunocompetence 

proxy (Ellis et al. 2011). Bibby et al. (2008) measured a reduction in the capacity of 

mussels to up-regulate phagocytic activity, with phagocytosis being carried out by the 

haemocytes in bivalves (Pipe et al., 1995a). Therefore in measuring a disruption in 

phagocytic activity, Bibby and colleagues (2008) suggest that altered seawater 

carbonate chemistry disrupts haemocyte function, and thus cellular immunity. However, 

in measuring a reduction in antibacterial activity the present study measured an impact 

of reduced seawater pH on humoral immunity.  

 Phagocytic activity was not measured in the current study, and therefore it is not 

possible to directly compare the impact of reduced seawater pH on cellular immunity 

between this study and that of Bibby et al. (2008). Nonetheless, reduced seawater pH 

was shown to impact total haemocyte counts in the present study, with mussels exposed 

to pH 7.60 and 7.35 increasing the number of circulating haemocytes in their 

haemolymph compared to mussels maintained at pH 7.80. An increased total blood cell 

count has been shown in mussels under increasing levels of stress, with an exposure to 
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an increasing temperature (Renwrantz, 1990), cadmium concentration (Coles et al., 

1994a) and fluoranthene concentration (Coles et al., 1994b) leading to an increase in the 

number of circulating haemocytes. Furthermore, a higher number of circulating 

haemocytes has been shown in mussels inhabiting contaminated sites within the 

Mediterranean, compared to individuals from uncontaminated reference sites (Auffret et 

al., 2006). Thus, moderate seawater acidification predicted to occur within the next 100 

- 300 years (IPCC, 2007) would appear to impact the cellular immune response of 

mussels from Exmouth, supporting the findings of Bibby et al. (2008).  

 Conversely, at pH 6.50 haemocyte number was not shown to increase compared 

to mussels maintained at pH 7.80.  A similar stress response was shown by Pipe et al. 

(1999), where exposure to increasing copper concentrations (0.02 mg l-1 and 0.05 mg l-

1) were shown to increase haemolymph cell counts these bivalves, however beyond a 

concentration of 0.2 mg l-1 no increase in haemolymph cell counts was measured. These 

authors suggest the inability of mussels exposed to the very high copper concentrations 

to increase haemolymph cell counts may be due to the toxic impact of the metal on 

haemocytes themselves, or due to the movement of haemocytes out of circulation and 

into tissues. Therefore it is possible in the current study mussels maintained at pH 6.50 

may be moving haemolymph cells out of circulation in order to minimise the 

pathological impacts of an exposure to reduced pH, indicating a significant level of 

stress. 

 Whilst the number of circulating haemocytes is seemingly impacted by reduced 

seawater pH in mussels from Exmouth, this result needs to be interpreted with caution. 

Haemocyte numbers are typically variable and shown to fluctuate greatly (Parry and 

Pipe, 2004), in the current study the haemocyte counts in mussels maintained at reduced 

seawater pH, despite being different between acidification treatments, all fell within the 
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natural variability measured within the control group. Thus the response of supposedly 

impacted mussels may merely be a result of natural variability, and immunocompetence 

may remain unaffected.  

 As with mortality, elevated temperature is also shown to significantly impact the 

mussel immune response, significantly increasing the antibacterial activity of cell-free 

haemolymph. This supports previous research, where Matozzo et al. (2012) noted an 

increase in lysozyme-like activity of cell-free haemolymph in Mytilus galloprovincialis, 

whilst  Monari et al. (2007) demonstrated an increase in the antibacterial activity of the 

striped venus clam, Chamelea gallina, when exposed to increased seawater 

temperatures. It is widely accepted that temperature is shown to affect enzymatic 

activity and metabolism in ectothermic organisms (Somero, 2002). Therefore the 

increase in antibacterial activity measured in the current study, and the increase in 

lysozyme-like activity measured by Monari et al. (2007) and Matozzo et al. (2012), may 

represent an increased activity of hydrolytic enzymes at increasing temperature. Such an 

increase in antimicrobial activity with increased temperature was also shown the in the 

green shore crab, Carcinus maenas, where the activity of antimicrobial proteins was 

shown to be highest at high temperatures (Chrisholm and Smith, 1994). In measuring an 

elevated antimicrobial activity at increased temperature it is possible that the rise in 

seawater temperature predicted to occur within the next 100 - 300 years (IPCC, 2007) 

may counteract any reduction in immune system maintenance caused by a concomitant 

reduction in seawater pH. 

 Alongside measuring a significant impact of reduced seawater pH and increased 

temperature on immune system maintenance in the mussel, M. edulis, this is also the 

first study to demonstrate a gender difference in the immune response of this bivalve 

species. Females are shown to have a higher proportion of eosinophils within the 
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haemolymph compared to males. Haemocytes can be separated into different functional 

groups based on morphological and staining characteristics (Pipe et al., 1999), with 

different subpopulations undertaking separate functions with respect to an organisms 

immune response. In bivalves granular eosinophils are thought to be more phagocytic 

(Foley and Cheng, 1975) and account for most peroxidase and phenoloxidase activity 

(Pipe et al., 1997). Therefore, in measuring a higher proportion of eosinophils, females 

appear to maintain a higher immunocompetence than males when exposed to stressful 

environmental conditions. This would appear to support the dogma of sexual selection, 

with males, who are limited in their reproductive success by the number of females they 

can inseminate taking a more risk-prone strategy compared to females, who are limited 

by the far less variable number of offspring they are able to produce (Andersson, 1994; 

Trivers, 1972; Zuk et al., 2004). In appearing to invest less energy in immune system 

maintenance, males may therefore enable a greater allocation of resources to 

reproduction. However, any reduced allocation of energy to immune response could 

have significant consequences for the survival of the organism.  

 

3.4.3. Response of the immune system to a bacterial challenge 

 

In measuring a reduced  immune response in mussels exposed to OA the current study 

supports the findings of Bibby et al. (2008) and Matozzo et al. (2012). However, whilst 

a reduced immune response may suggest reduced immune system functionality, when 

measured in the absence of a pathogen it is impossible to accurately assess the impact of 

any immune suppression on organism fitness. The evolved function of the immune 

system is to protect a host from any pathogenic challenge, ensuring survival. Its 

magnitude is therefore contingent on the presence and identity of any parasite, alongside 
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the fitness priorities of the host (Martin et al., 2010). With the resources an organism 

allocates to different life history traits, such as defence, reproduction or metabolism, 

coming from a finite energetic pool, such processes must trade-off against each other in 

order for an organism to maintain optimal fitness (Roff, 1992; Sibly and Calow, 1986). 

Under stressful environmental conditions, and in the absence of a pathogen, an 

organism may therefore trade-off the costs of immune system maintenance, reallocating 

these resources instead to other costly physiological processes in an attempt to 

maximise fitness (Lochmiller and Deerenberg, 2000; Sheldon and Verhulst, 1996; Zuk 

and Stoehr, 2002). However, an organism that has down-regulated immune system 

maintenance may maintain the ability to up-regulate its immune response when 

required, ensuring immunocompetence and the ability of an organism to survive a 

pathogenic challenge remains unaffected. Immune system regulation should therefore 

be measured functionally, rather than immunologically, in the presence of a pathogen 

(Viney et al., 2005).  

 In exposing mussels to the pathogenic bacterium, V. tubiashii, the current study 

was able to demonstrate that the initial reduction in immune system maintenance was in 

fact a physiological trade-off induced by environmental stress. Mussels maintained at 

pH 6.50, which had initially reduced the antibacterial activity of their haemolymph, 

reversed this trade-off when a pathogen was encountered. Whilst an exposure to a 

pathogenic challenge has been demonstrated to alter immune system regulation in a 

number of previous studies (e.g. Cellura et al., 2006, 2007; Ciacci et al., 2009; Kim et 

al., 2008; Rodríguez-Ramos et al., 2010), this is the first study to demonstrate a 

reversible trade-off of in immune maintenance costs in an invertebrate exposed to 

stressful environmental conditions. Such plasticity in immune system maintenance, and 

an apparent ability to control resource allocation between different physiological 
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processes, could have major implications for the interpretation of an organism’s 

response to anthropogenic climate change. However, to fully understand the impact of a 

physiological trade-off on an organism’s fitness it is vital to study the concurrent impact 

on other vital life-history traits. Wood et al. (2008) demonstrated an exposure to 

reduced seawater pH led to an increase in calcification in the brittlestar Amphiura 

filiformis. However whilst increased calcification was shown to ameliorate the impact 

of OA, it came with a physiological cost measured as an increase in muscle wastage 

(Wood et al., 2008). Therefore whilst the reallocation of resources between different 

physiological processes may reduce the immediate impact of unfavourable 

environmental conditions, the extent to which this strategy will be sustainable in the 

long term will depend on an organism’s condition and energetic reserves (Wood et al., 

2008, 2010). 

 Alongside demonstrating an impact of seawater pH on the change in 

antibacterial activity, reduced pH is also shown to impact total and differential cell 

counts in mussels exposed to V. tubiashii. An exposure to a pathogen reduced the 

number of circulating haemocytes in mussel haemolymph, supporting previous research 

by Ciacci et al. (2009). However, this response was only demonstrated in mussels 

maintained at pH 8.05, with the total cell count in mussels maintained at all other pH 

levels remaining unchanged by a bacterial inoculation. Conversely, a bacterial exposure 

was only shown to impact the proportion of circulating eosinophils in mussels 

maintained at pH 7.60. Haemocytes are responsible for phagocytic activity (Pipe et al., 

1995a), and phagocytosis is the principle mechanism of bacterial clearance in molluscs 

(Parry and Pipe, 2004). Therefore it is possible that a reduction in the number of 

circulating haemocytes in response to a pathogenic challenge could be due in part to an 

increase in phagocytosis. Thus, in only showing a reduced cell count in control mussels, 



Chapter 3                                                                                                                            Immune Response 

- 111 - 

 

reduced seawater pH could be inhibiting an increase in phagocytic activity in response 

to a subsequent bacterial challenge. However, with granular eosinophils thought to be 

more phagocytic (Foley and Cheng, 1975), any change in phagocytosis would be 

expected to induce a concomitant change in the proportion of haemocyte sub-

populations. This response was demonstrated by Ciacci et al. (2009) where in concert 

with a reduction in total cell counts, an inoculation with bacteria induced a large 

decrease in the proportion of large granulocytes. Yet, in showing no change in 

haemocyte sub-populations in mussels exposed to bacteria at pH 8.05, and in only 

showing a slight increase in the proportion of eosinophils in response to a bacterial 

challenge in mussels maintained at pH 7.60, the impact of seawater pH on differential 

cell counts would not appear to support this hypothesis in the current study. 

Nonetheless, in not having measured phagocytic activity directly, and with some 

uncertainty still surrounding the exact function of different haemocyte sub-populations 

(Pipe et al., 1999), the exact impact of reduced seawater pH on phagocytosis in the 

current study is not clear. 

 Whilst seawater pH is shown to impact the cellular and humoral immune 

response of mussels exposed to a pathogenic challenge, gender is also demonstrated to 

affect the response of mussels to V. tubiashii. Females are proposed to benefit from 

longevity, with a greater immune defence ensuring long-term survival, yet conversely 

males are proposed to invest more in immediate reproductive effort, often at the expense 

of immunity (Stoehr, 2007; Zuk and Stoehr, 2002). Therefore the balance of costs and 

benefits of defence is suggested to lead to sexual dimorphism in immunocompetence, 

with females proposed to have a greater immune defence (Stoehr, 2007). In showing 

females to significantly decrease the number of circulating haemocytes, significantly 

increase the antibacterial activity of cell-free haemolymph and significantly increase the 
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proportion of eosinophils to a greater extent than males, when exposed to a pathogen, 

this study would appear to support the suggestion of sexual dimorphism in 

immunocompetence. Furthermore, with females reducing the number of circulating 

haemocytes in response to a pathogen, a response that is comparable to organisms 

maintained at control pH, and with females increasing antibacterial activity of cell free 

haemolymph compared to males, it would also appear females invest more in defence 

than males. Such a differing strategy of immune investment between males and females, 

both in immune system maintenance and in response to a bacterial exposure, could have 

a significant consequence for the response of mussel populations to an outbreak of 

disease.   

 

3.4.4. Conclusions 

 

The current study demonstrates that the survival and immune response of mussels 

appears to be impacted by reduced seawater pH. However, this response only became 

apparent at a level of seawater acidification that is predicted to occur in conjunction 

with a catastrophic leak from a sub-seabed geological CO2 storage site. This estuarine 

population of mussels is therefore seemingly tolerant to moderate fluctuations in 

carbonate chemistry, yet when concurrently exposed to increased temperatures the 

sensitivity of mussels to reduced pH is shown to increase. This result highlights the 

importance of studying multi-stressor exposures. As well as indicating an impact of 

anthropogenic climate change on mussel survival and immune defence, gender is also 

shown to impact mussel immunocompetence, with females shown to maintain a higher 

proportion of circulating eoisinophils compared to males. 
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 Alongside investigating the impact of anthropogenic climate change on mussel 

immune system maintenance, this study also measured the impact of a subsequent 

pathogenic challenge on host immune defence. Exposure to V. tubiashii highlighted that 

an initial reduction in humoral immunity in mussels exposed to low seawater pH was in 

fact a trade-off of immune system maintenance costs. In reallocating the energy 

afforded to immune system maintenance under stressful conditions, yet maintaining the 

ability to up-regulate immune defence when required, mussels may be better able to 

cope with the energetic requirements of surviving in a sub-optimal environment. 

However, such physiological trade-offs likely come at a cost, which must be paid in 

terms of other life-history traits such as reproduction or growth (Roff, 1992; Sibly and 

Calow, 1986; Stearns, 1992). The sustainability of such a strategy therefore will depend 

on an organisms energy reserves and the detrimental impact of a reduction in energy 

allocated to other processes (Wood et al., 2008, 2010).  
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CHAPTER 4.  REPRODUCTIVE PROVISION AND 

ORGANISM CONDITION 

 

 

 

The cost of stress resistance in Mytilus edulis: The effect of CO2-induced seawater 

acidification, increased temperature and a bacterial challenge on reproductive 

provisioning and organism condition. 
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4.1. INTRODUCTION 

 

The immune response is a major physiological mechanism that protects against a 

pathogenic challenge and thus ensures host survival (discussed in Chapter 1; Ellis et al., 

2011; Lochmiller and Deerenberg, 2000). Yet, mounting an immune response, or 

maintaining the immune response in a state of readiness, is costly (Schmid-Hempel, 

2003; Sheldon and Verhulst, 1996). Owing to finite resources, such costs must therefore 

be traded off against other physiological processes such as reproduction or growth 

(Lochmiller and Deerenberg, 2000; Sheldon and Verhulst, 1996; Steiger et al., 2011). 

However, whilst successfully defending itself from a pathogenic challenge would 

ensure a host maintains itself in a given environment, any parallel suppression in 

reproduction could have large and negative consequences for the population dynamics 

of an organism, reducing its persistence within an environment (Petes et al., 2008). 

Therefore, to fully understand the implication of an immune challenge, and the 

subsequent up-regulation of immune defence, it is vital to understand the 

environmental, or life-history, circumstances that would render an increase or decrease 

in the allocation of resources towards other life-history traits, such as reproduction, as 

profitable.  

 Investment in reproduction has been shown to be accompanied by a reduction in 

immune function in a number of taxa (e.g. Adamo et al., 2001; Kerr et al., 2010; Siva-

Jothy et al., 1998; Zuk et al., 2004). Furthermore, a number of studies have shown 

immune challenged individuals to have compromised reproduction and reduced 

fecundity (e.g. Ahmed et al., 2002; Bonneaud et al., 2003; Fevrier et al., 2009; Jacot et 

al., 2004; Kelly, 2011; Kerr et al., 2010). However the extent to which an organism 

must trade-off its resources between different physiological processes will ultimately 



Chapter 4                                                                           Reproductive Provision and Organism Condition 

- 116 - 

 

depend upon its condition, with many fitness-related traits, such as immunocompetence 

and reproduction, being condition dependant (Lochmiller and Deerenberg, 2000; 

Schulte-Hostedde et al., 2005; Zuk and Stoehr, 2002).   

 An organism’s condition, defined nutritionally as its relative energy reserves, 

has important fitness consequences and is often considered as a sign of overall health 

(Moya-Laraño et al., 2008; Schulte-Hostedde et al., 2005; Thomkins et al., 2004). 

Whilst a number of body condition indices have been developed, such as body mass or 

the regression of body mass on an ordinary least squares regression index of body size 

(which attempts to determine the mass of an individual associated with energy reserves 

after correcting for structural body size) (Schulte-Hostedde et al., 2005), much recent 

debate has focused on the validity of these approaches (Green, 2001). However, lipids 

are a major source of metabolic energy (Bergé and Barnathan, 2005), with body fat 

often providing the energy to produce and maintain life-history traits (Kelly, 2011). 

Thus, an organism’s lipid content provides an accurate measure of its condition (Rolff 

and Joop, 2002; Thomkins et al., 2004). In molluscs, lipids provide energy for growth 

when resources are limited and when carbohydrate levels are low (Beninger and Lucas, 

1984; Beukeme and De Bruin, 1979; Pazos et al., 1996, 1997).They also provide an 

important energetic food reserve in bivalve oocytes (Gallager and Mann, 1986; Gallager 

et al., 1986; Helm et al., 1973). Therefore, measuring tissue lipid content arguably 

allows a better assessment of an organism’s condition, its metabolic resource allocation 

and thus  a greater understanding of any physiological trade-offs (Pazos et al., 1997). 

 As discussed in Section 2.3, anthropogenic climate change is projected to lead to 

a concurrent increase in seawater temperature and reduction in seawater pH. Yet whilst 

previous research has shown that exposure to future climate change scenarios has led to 

varying, but often negative impacts on marine organisms (Hendriks et al., 2010; 



Chapter 4                                                                           Reproductive Provision and Organism Condition 

- 117 - 

 

Kroeker et al., 2010), very little is currently known about the impact of anthropogenic 

climate change on reproductive provisioning. Any impact of climate change on gamete 

production could potentially have significant carry-over consequences for population 

biology, possibly affecting larval numbers and larval development, as well as the 

dispersal, distribution and abundance of adults (Kurihara, 2008; Parker et al., 2009, 

2010; Pechenik, 2006). The aim of this chapter is therefore to investigate the impact of 

reduced seawater pH and increased temperature on the reproductive provisioning in the 

blue mussel, Mytilus edulis. By additionally measuring the impact of anthropogenic 

climate change on the lipid content and fatty acid composition of mussel mantle tissue, 

this study will also enable a greater understanding of the trade-off between reproductive 

provisioning and the investment in energy storage in organisms experiencing 

environmental stress. Furthermore, in exposing mussels to a subsequent pathogenic 

challenge, this study will also elucidate the impact of immune system activation on the 

allocation of resources to reproduction under future climate change scenarios, providing 

vital information on stressor induced physiological trade-offs. 

 

4.2. MATERIALS AND METHODS 

 

The adult mussels used in the present study were collected, maintained and sampled 

exactly as described previously in Sections 3.2.1 and 3.2.2 respectively. Briefly, 

mussels were collected during Dec 2009, from an intertidal estuarine mussel bed in 

Exmouth, east Devon, before being returned to the PML mesocosm. Mussels were 

immediately placed in the experimental system (described in Sect. 3.2.1) and 

maintained for 90 days. During the experiment mussels were fed with Isochrysis 

galbana (30 mg dry mass mussel-1 day-1). The impact of reduced seawater pH and 
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increased seawater temperature on the mussel immune response, reproductive status and 

lipid content, was subsequently assessed following an initial 90 day exposure to 

experimental conditions. To test the impact of experimental conditions on the mussel 

immune response haemolymph was extracted from the posterior adductor muscle to 

measure the total cell count, differential cell count and the antibacterial activity of cell-

free haemolymph (described in Sect. 3.2.3). The reproductive status of individuals 

exposed to experimental conditions was assessed histologically (described in Sect. 

4.2.2), whilst tissue lipid content was assessed using GC-MS (described in Sect. 4.2.2 

and 4.2.3). Following this initial sampling time point the remaining mussels in the 

experimental system were then exposed to a bacterial challenge exactly as described in 

Section 3.2.2, and the abovementioned parameters measured again 1 day and 7 days 

post inoculation. 

 

4.2.1 Preparation of tissue sections for histological analysis 

 

Mussel soft-tissues were collected for histological analysis following the protocol used 

by Beesley et al. (2008). To sample soft-tissues, mussel shells were held open using a 

fixed bladed scalpel. A single incision was made to sever the anterior adductor muscle 

to allow access to the mantle cavity. Tissues were completely removed from the shell 

and a transverse slice, containing the digestive gland and mantle tissue, was excised 

from the body mass. These sections were immediately placed in Bakers formal calcium 

(10 % formalin, 1 % calcium chloride and 2.5 % sodium chloride) and stored in fixative 

for a minimum of 24 h at 4 °C. Once fully fixed, specimens were removed from the 

fixative and excess tissue was removed.  

 Using an automatic programmable tissue processor (Pathcentre, Thermo 
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Shandon), samples were then dehydrated, being passed through a graded alcohol series 

(Bakers formal calcium [100 %, 10 min], Industrial Methylated Spirit [IMS; 70 %, 1 h], 

IMS [90 %, 1 h], IMS [100 %, 3 h], IMS / Xylene [50% / 50 %, 1.5 h]), cleared in 

xylene (100 %, 3.5 h) and finally impregnated in paraffin wax over a 5 h period. Once 

impregnated, samples were blocked up in fresh molten wax using a stainless steel 

mould and were allowed to cool at room temperature prior to cutting. Sections, 7 µm 

thick, were cut using a microtome (Microm HM340E, Thermo Scientific) and then 

floated out onto microscope slides, which were coated with (3-Aminopropyl) 

triethoxysilane (A3648, Sigma-Aldrich) to aid adhesion. Dried sections were stained 

using Papanicolaou’s stain (Culling, 1963), which colours adipogranular (ADG) cells 

orange, male reproductive tissues mauve and female reproductive tissues blue, whereas 

vesicular connective tissue (VCT) cells remain unstained (Fig. 4.1) (Lowe et al., 1982). 

Stained slides were then cover slipped before being analysed.  

 The sex of mussels was assessed based on the presence of eggs or sperm in the 

mantle tissue. Where the gender of an individual could not be reliably identified, e.g. 

due to the absence of any gametes, individuals were classified as unsexed. To assess the 

condition of mussel mantle tissue, the volume fraction of the different tissue 

components within the mantle were determined using stereology. Stereology measures 

the relative quantity of different tissue components from within a thin tissue section by 

obtaining a point count, using a Weibel test grid (Lowe et al., 1982). This point count is 

then converted to a volume fraction, through the extrapolation of two dimensional to 

three dimensional space (Briarty, 1975). The stereological protocol outlined by Lowe 

and Moore (1985) was followed. Mantle sections were examined under high power 

magnification (x400) with a Leitz (Leitz Wetzlar) compound microscope fitted with a 

Weibel eyepiece graticule (Graticules Ltd). Point counts on ADG cells, VCT cells,  
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Figure 4.1 Section through the mantle 

edulis showing adipogranular cells (ADG), vesicular connective tissue cells (VCT), developing 

gametes (GD), ripe gametes (GR) an
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Section through the mantle tissue of a) male, b) female and 

showing adipogranular cells (ADG), vesicular connective tissue cells (VCT), developing 

(GD), ripe gametes (GR) and spent  follicles (FS). Magnification x 400.

Reproductive Provision and Organism Condition 

female and c) unsexed Mytilus 

showing adipogranular cells (ADG), vesicular connective tissue cells (VCT), developing 

d spent  follicles (FS). Magnification x 400. 
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developing gametes and morphologically ripe gametes were made on five fields per  

mussel, following a raster scanning pattern, to quantify the volume fraction of these 

different tissue components (Lowe and Moore, 1985; Weibel and Elias, 1967).  

 

4.2.2 Lipid extraction 

 

After dissecting mussel soft tissue for histological analysis, an additional transverse 

section of mantle tissue was excised and immediately snap frozen in liquid nitrogen. 

Samples were stored at -80 °C for further analysis. Lipids were extracted from the 

stored mantle tissue using  the method of Bligh and Dyer (1959) modified as follows. 

Approximately 100 mg of mantle tissue was first transferred to a Precellys tube, stored 

on ice, and 4 µl mg-1 of methanol and 0.85 µl mg-1 of deionised water were added. 

Samples were then homogenised, being subjected to 2 cycles of 10 s (with a 5 s pause in 

between) homogenisation at 6400 rpm using a mechanical homogeniser (Precellys®24). 

Homogenised samples were transferred to a clean 1.8 ml glass vial, with Precellys tubes 

being rinsed using a further 2 µl mg-1 of deionised water. Chloroform (4 µl mg-1) was 

then added to this mixture and the samples were vortexed for 30  s  to ensure complete 

mixing. Samples were placed on ice for 10 min before being centrifuged (10 min, 1800 

x g, 4 °C; Centrifuge 5810R, Eppendorf). After centrifugation, samples were allowed to 

acclimate to room temperature for 5 min before the non-polar lower chloroform phase 

was removed using a Hamilton syringe and transferred to a clean 1.8 ml glass vial. This 

sample was then stored at -80 °C prior to derivatisation for fatty acid methyl ester 

(FAME) analysis (see below).  
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4.2.3 Lipid derivatisation 

 

Fatty acid concentrations and profiles in mussel mantle tissue were determined post 

conversion to fatty acid methyl esters (FAMEs) and analysis by GC-MS (Agilent 

7890A GC and 5975C inert MSD, Agilent Technologies Ltd.). A 100 µl aliquot of each 

sample obtained from the lipid extraction (see above; Sect. 4.2.2) was transferred to a 

15 ml glass tube, placed on a heating block at 45 °C and blown down under a 

continuous stream of N2 until all the solvent had evaporated. A 20 µl aliquot of 

nonadecanoic acid (C19:0; 1 mg ml-1) was added to each tube as an internal standard 

and fatty acids were then converted directly to fatty acid methyl esters (FAMEs) by 

adding 1ml of transesterification mix (95:5 v/v 3N methanolic HCl; 2,2-

dimethoxypropane), flushing with N2 and incubating at 90 ºC for 1 h. After cooling, 

FAMEs were recovered by addition of 1 % w/v NaCl solution (1 ml) and n-hexane (1 

ml). Samples were then vortexed for 10 s before being centrifuged (30 s, 1,200 x g, 15 

°C; Centrifuge 5810R, Eppendorf). The upper hexane layer was transferred to a clean 

1.8 ml GC glass vial before being injected directly into the GC-MS system. FAMEs 

were separated on a fused silica capillary column (15 m x 0.1 mm x 0.1 µm; 

Omegawax™ 100, Supelco, Sigma-Aldrich) using an oven temperature gradient of 140 

ºC to 280 ºC at 40 ºC min-1 followed by a 3 min hold time at 280  ºC. Helium was used 

as a carrier gas (0.4 ml min-1) and the injector and detector inlet temperatures were 

maintained at 280  ºC and 230  ºC, respectively. FAMEs were identified using retention 

times and qualifier ion response, and quantified using respective target ion responses. 

All values were derived from calibration curves generated from a FAME standard mix 

(Supelco, Sigma-Aldrich, Gillingham, UK). 
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4.2.4 Statistical analysis 

 

The effect of seawater pH, temperature, bacterial exposure and their interaction on 

reproductive histology and mantle lipid composition were analysed in Primer 6.1 

(Clarke and Gorley, 2006) using the PERMANOVA+ add in (beta version, Anderson et 

al., 2008). As outlined in Section 3.2.5, data were tested for homogeneity of variance 

and transformed when necessary. Euclidean distance similarity matrices were 

constructed for all data, and P-values were calculated using 999 permutations of the 

residuals under a reduced model. Where a significant main effect or an interaction was 

shown, pair-wise comparisons between all levels of a given factor were undertaken. 

Where the percentage composition of saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA) or polyunsaturated fatty acids (PUFA) in mantle tissue were shown 

to be significantly impacted by an experimental factor, SIMPER analyses were 

employed. SIMPER analysis, using a Bray-Curtis similarity matrix, determines the 

dissimilarity between treatment groups, indicating the percentage contribution of each 

individual fatty acid, within each class, to this dissimilarity.  

 

4.3. RESULTS    

 

The environmental conditions and organism mortality measured during this study are 

reported in Chapter 3 of this thesis (Sect. 3.3.1 and 3.3.2; Table 3.1, Table 3.2 & Fig 3.4 

respectively).  

 

4.3.1 Reproductive histology 

 

Of the 153 mussels used for histology, 63 were females, 78 were males and it was not  
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 Figure 4.2 The effect of low seawater pH on the volume fractions (mean ± S.E.) of mussel 

mantle tissue: a) developing gametes, b) ripe gametes, c) ADG cells and d) VCT cells. Data are 

pooled for temperature, bacterial exposure and gender. Significant differences (p ≤ 0.05) 

between treatment levels are indicated by an asterisk and based on pair-wise tests. N = 144 

individuals. 
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possible to sex 11 individuals. Due to the relatively low number of unsexed individuals 

and the roughly equal level of males and females, it was decided that unsexed 

individuals would be omitted from the remaining statistical analysis to enable gender to 

be included as an additional experimental factor.   

 As shown in Figure 4.2, a severe reduction in seawater pH significantly reduced 

the percentage of ripe gametes within the mantle (Pseudo-F = 5.61, d.f. = 4, p = 0.002). 

Pair-wise analyses indicated that mussels exposed to a pH of 6.50 significantly reduced 

the percentage of ripe gametes compared to mussels maintained at all other pHs (Fig. 

4.2b). When maintained at a pH of between 8.05 and 7.35 mussels had an average 

volume of 20.25 % ripe gametes within the mantle, whereas in mussels maintained at 

pH 6.50 this was reduced to 4.37 %. Reduced seawater pH was also shown to 

significantly affect the volume of VCT cells within the mantle (Pseudo-F = 3.14, d.f. = 

4, p = 0.017), with mussels at pH 6.50 increasing volume of VCT cells compared to 

mussels maintained at all other pH levels (Fig. 4.2d). Reduced seawater pH did not 

significantly affect the volume fraction of developing gametes or ADG cells.  

 Similarly to pH, temperature was shown to have a significant impact on the 

volume fraction of different mantle tissue components. An increase in temperature was 

shown to significantly reduce the volume of developing gametes (Pseudo-F = 7.18, d.f. 

= 1, p = 0.014) (Fig. 4.3a) and ripe gametes (Pseudo-F = 16.94, d.f. = 1, p = < 0.001) 

(Fig. 4.3b). However this temperature induced reduction in gamete provisioning was 

marked by a concomitant increase in the volume of both ADG cells (Pseudo-F = 31.04, 

d.f. = 1, p = < 0.001) (Fig. 4.3c) and VCT cells (Pseudo-F = 6.27, d.f. = 1, p = 0.012) 

(Fig. 4.3d).  

 Gender was also shown to significantly impact the volume fraction of tissue 

components within the mantle (Fig. 4.4), with males having a significantly higher  
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Figure 4.3 The effect of temperature on the volume fractions (mean ± S.E.) of mussel mantle 

tissue: a) developing gametes, b) ripe gametes, c) ADG cells and d) VCT cells. Data are pooled 

for pH, bacterial exposure and gender. Significant differences (p ≤ 0.05) between treatment 

levels are indicated by an asterisk and based on pair-wise tests. N = 144 individuals. 
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Figure 4.4 Volume fraction (mean ± S.E.) of mantle tissue components in male and female 

mussels: a) developing gametes, b) ripe gametes, c) ADG cells and d) VCT cells. Data are 

pooled for pH, temperature and bacterial exposure. Significant differences (p ≤ 0.05) between 

treatment levels are indicated by an asterisk based on pair-wise tests. N = 133 individuals. 
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volume of both developing (Pseudo-F = 8.49, d.f. = 1, p = 0.008) (Fig. 4.4a) and ripe 

gametes (Pseudo- F = 19.38, d.f. = 1, p = < 0.001) (Fig. 4.4b) compared  to females. 

Whilst the volume of ADG and VCT cells did not differ significantly between the two 

sexes, temperature was also shown to significantly interact with gender. Increased 

temperature was shown to increase the volume of VCT cells within the mantle tissue of 

females, however there was no significant difference in the volume of VCT cells in 

males maintained at 17.0 °C compared to those maintained at 12.5 °C (Pseudo-F = 4.64, 

d.f. = 1, p = 0.042) (Fig. 4.5). This difference may be due to the extent to which 

temperature reduced gamete provision in males and females.  

 Whilst temperature reduced gamete provision in both sexes, this effect was more 

pronounced in females with reproductive investment being reduced from 21.40 % at 

12.5 °C to 6.70 % at 17.0 °C. However, in males, gamete investment was reduced from 

25.88 % at 12.5 °C to 21.95 % of the mantle at 17.0 °C. The significant increase in VCT 

cells at 17.0 °C in females may therefore represent the larger decrease in gametes in 

females, compared to males. 

 

Figure 4.5 The effect of temperature (mean ± S.E.) on VCT cells within the mantle of male and 

female mussels. Data are pooled for pH and bacterial exposure. Significant differences (p ≤ 

0.05) between treatment levels are indicated by different letters based on pair-wise tests. N = 

133 individuals. 
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Figure 4.6 The effect of a bacterial exposure on the volume fraction (mean ± S.E.) of 

developing gametes within mantle tissue. Data are pooled for pH, temperature and gender. 

Significant differences (p ≤ 0.05) between treatment levels are indicated by an asterisk and 

based on pair-wise tests. N = 133 individuals. 

 
 Alongside pH, temperature and gender, an exposure to Vibrio tubiashii was also 

shown to significantly impact the volume fraction of developing gametes, with 

inoculated mussels significantly reducing the volume of developing gametes compared 

to mussels sampled prior to a bacterial exposure (Pseudo-F = 6.58, d.f. = 2, p = < 

0.001). Interestingly the duration of the exposure did not alter this effect, with no 

significant difference between mussels sampled 1 day and 7 days post inoculation (Fig. 

4.6). Bacterial exposure was not shown to impact the volume of ripe gametes, ADG 

cells or VCT cells. 

 

4.3.2 Fatty acid composition of mussel mantle tissue 

 

The change in the total lipid content, measured as the total FAME content of mussel 
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Table 4.1 Fatty acid profile (% of total fatty acids) and total lipid content (mean ± S.E.) of male 

and female Mytilus edulis. Data are pooled for pH, temperature and bacterial exposure. 

Significant differences (p  ≤ 0.05) are indicated by an asterisk, main contribution to group 

differences as measured by SIMPER are indicated by letters, with the three individual fatty 

acids that represent the greatest contribution marked in descending order (a-c). N = 133 

individuals. 

 

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. 

 

Sign.

C14:0 2.13 ± 0.10 1.06 ± 0.11
C15:0 0.37 ± 0.04 0.18 ± 0.02
C16:0 18.60 ± 0.26 15.46 ± 0.25 a
C17:0 0.26 ± 0.03 0.38 ± 0.03
C18:0 2.05 ± 0.09 3.15 ± 0.14
C23:0 1.38 ± 0.28 1.98 ± 0.35 c

C24:0 1.76 ± 0.44 1.68 ± 0.41 b

Σ SFA 26.54 ± 0.43 23.88 ± 0.54 *

C16:1 13.59 ± 0.64 6.53 ± 0.41 a
C18:1 2.77 ± 0.20 1.30 ± 0.20
C20:1 3.87 ± 0.16 3.33 ± 0.15
C22:1 1.16 ± 0.27 1.47 ± 0.26 c

C24:1 0.73 ± 0.29 2.94 ± 0.53 b

Σ MUFA 22.11 ± 0.78 15.57 ± 0.60 *

C18:2 1.05 ± 0.07 0.85 ± 0.07
    C18:3 n3 1.86 ± 0.12 2.45 ± 0.23
    C18:3 n6 1.01 ± 0.07 0.87 ± 0.08

C20:2 0.41 ± 0.05 0.46 ± 0.05
C20:3 0.17 ± 0.03 0.22 ± 0.04

    C20:3 n3 ND 0.06 ± 0.06
C20:4 3.14 ± 0.10 3.32 ± 0.12

    C20:5 n3 (EPA) 20.81 ± 0.34 23.14 ± 0.30 b
C22:2 0.55 ± 0.20 1.21 ± 0.26 c

    C22:6 n3 (DHA) 22.35 ± 0.49 27.97 ± 0.43 a

Σ PUFA 51.35 ± 0.79 60.54 ± 0.69 *

Total lipid (µg/mg of dry 
weight)

120.88 ± 5.12 84.33 ± 3.1 *

Female Male



Chapter 4                                                                           Reproductive Provision and Organism Condition 

- 131 - 

 

gender (Table 4.1). Females had a higher lipid content than males (Pseudo-F = 23.65, 

d.f. = 1, p = < 0.001), with a greater percentage of SFAs (Pseudo-F = 12.29, d.f. = 1, p = 

< 0.001) and MUFAs (Pseudo-F = 47.91, d.f. = 1, p = < 0.001), whereas males had a 

greater percentage of PUFAs (Pseudo-F = 81.91, d.f. = 1, p = < 0.001). SIMPER 

analysis identified three saturated fatty acids; 16:0, 24:0 and 23:0, that contributed over 

70% of this gender dissimilarity in  SFAs, with 16:0 contributing 30.27 % and having 

the largest contribution. With respect to the MUFAs, the three fatty acids shown to 

contribute most significantly to the difference between males and females were 16:1, 

24:1 and 22:1, contributing 47.41 %, 19.33% and 12.65 % to the average dissimilarity 

respectively. Finally, of the PUFAs, the fatty acids shown to have the greatest 

contribution to the dissimilarity between males and females were two long-chain 

PUFAs; docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-

3). These essential fatty acids contributed 40.57 % and 22.47 % of the dissimilarity 

respectively, and alongside docosadienoic acid (22:2n-6), contributed over 70 % of the 

gender dissimilarity in PUFAs.   

 Whilst males and females had significantly different total FAME content in 

mantle tissue, they also responded differently to temperature. Temperature interacted 

with gender (Pseudo-F = 4.66, d.f. = 1, p = 0.036), with increased temperature shown to 

significantly increase the total lipid content in mantle tissues of males, yet in females 

temperature had no effect on lipid content (Table 4.2). Temperature also affected the 

percentage of MUFAs within mantle tissue (Pseudo-F = 5.75, d.f. = 1, p = 0.017), and 

interacted with gender to affect the percentage composition of PUFAs (Pseudo-F = 

7.21, d.f. = 1, p = 0.009). 

 An increase from 12.5 °C to 17.0 °C decreased the percentage of MUFAs in 

both male and female mussels (Table 4.2), whereas an increase in temperature only  
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Table 4.2 Fatty acid profile (% of total fatty acids) and total lipid content (mean ± S.E.) of male 

and female Mytilus edulis maintained under control (12.5 °C) and increased (17.0 °C) seawater 

temperatures. Data are pooled for pH and bacterial exposure. Significant differences (p ≤ 0.05) 

between mussels maintained at different temperatures, within gender, are indicated by an 

asterisk. N = 133 individuals. 

 

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty 

acids. 

 

C14:0 2.16 ± 0.15 2.08 ± 0.15 0.76 ± 0.12 1.48 ± 0.19
C15:0 0.39 ± 0.05 0.35 ± 0.06 0.13 ± 0.02 0.25 ± 0.04
C16:0 18.67 ± 0.33 18.52 ± 0.41 14.97 ± 0.36 16.18 ± 0.29
C17:0 0.22 ± 0.03 0.30 ± 0.04 0.36 ± 0.05 0.41 ± 0.05
C18:0 1.86 ± 0.12 2.26 ± 0.11 3.18 ± 0.19 3.12 ± 0.21
C23:0 1.40 ± 0.40 1.35 ± 0.42 1.25 ± 0.37 3.05 ± 0.65
C24:0 1.90 ± 0.60 1.59 ± 0.66 1.85 ± 0.57 1.43 ± 0.58

  Σ SFA 26.61 ± 0.59 26.46 ± 0.66 22.50 ± 0.73 25.91 ± 0.65

C16:1 15.37 ± 0.96 11.47 ± 0.64 6.56 ± 0.60 6.48 ± 0.53
C18:1 3.07 ± 0.28 2.41 ± 0.26 1.09 ± 0.31 1.62 ± 0.17
C20:1 3.88 ± 0.18 3.85 ± 0.28 3.21 ± 0.20 3.50 ± 0.23
C22:1 0.76 ± 0.35 1.62 ± 0.42 1.41 ± 0.35 1.56 ± 0.38
C24:1 0.74 ± 0.42 0.71 ± 0.40 3.97 ± 0.75 1.44 ± 0.60

  Σ MUFA 23.83 ± 1.19 20.07 ± 0.81 * 16.23 ± 0.93 14.60 ± 0.56 *

C18:2 1.04 ± 0.10 1.07 ± 0.11 0.70 ± 0.08 1.07 ± 0.11
    C18:3 n3 1.70 ± 0.18 2.05 ± 0.15 2.68 ± 0.36 2.11 ± 0.23
    C18:3 n6 0.96 ± 0.09 1.06 ± 0.10 0.77 ± 0.09 1.01 ± 0.13

C20:2 0.42 ± 0.06 0.39 ± 0.08 0.48 ± 0.07 0.44 ± 0.07
C20:3 0.16 ± 0.05 0.19 ± 0.05 0.17 ± 0.05 0.30 ± 0.08

    C20:3 n3 ND ND 0.10 ± 0.10 ND
C20:4 3.09 ± 0.13 3.20 ± 0.17 3.27 ± 0.16 3.40 ± 0.18

    C20:5 n3 20.45 ± 0.52 21.24 ± 0.42 23.12 ± 0.43 23.18 ± 0.38
C22:2 0.21 ± 0.15 0.96 ± 0.39 1.18 ± 0.34 1.25 ± 0.41

    C22:6 n3 21.52 ± 0.76 23.32 ± 0.56 28.80 ± 0.58 26.73 ± 0.58
  Σ PUFA 49.56 ± 1.17 53.47 ± 0.91 * 61.27 ± 1.01 59.48 ± 0.83

Total lipid (µg/mg 
of dry weight)

124.05 ± 7.19 117.10 ± 7.58 77.63 ± 3.51 94.15 ± 5.05 *

Female Male
12.5 17.012.5 17.0



Chapter 4                                                                           Reproductive Provision and Organism Condition 

- 133 - 

 

increased PUFAs in females, with the proportion of PUFAs in males exposed to either  

12.5 °C or 17.0°C not significantly different (Table 4.2). As with gender, SIMPER 

analysis indicated that the three main fatty acids that contributed to the temperature 

dissimilarity of the MUFAs were 16:1, 24:1 and 22:1, contributing 41.14 % 22.44 % 

and 15.01 % respectively, whilst in females the fatty acids that have the greatest 

contribution to the temperature dissimilarity in PUFAs were DHA, EPA and 22:2n-6. 

 Bacterial exposure also affected the FAME content of mussel mantle tissues 

(Pseudo-F = 3.61, d.f. = 2, p = 0.032). Pair-wise analysis showed that mussels which 

were sampled prior to the bacterial exposure had a higher lipid content compared to 

mussels sampled post inoculation, again there was no significant difference between 

mussels sampled 1 day and 7 days post inoculation (Fig 4.7).  

 Whilst pH did not have a significant main effect on the fatty acid profile or total 

lipid content of mussels, it did interact with gender to affect the percentage contribution 

of  MUFAs to the overall fatty acid profile of mantle tissue (Pseudo-F = 2.82, d.f. = 4, p  

   

Figure 4.7 The effect of a bacterial exposure on total FAME content. Values are means (± 

S.E.), data are pooled for pH, temperature and gender. Significant differences (p ≤ 0.05) are 

indicated by different letters based on pair-wise tests. N = 144 individuals. 
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Figure 4.8 The effect of reduced seawater pH on the proportion of MUFA in the mantle tissue 

of male and female mussels. Values are means (± S.E.), data are pooled for both temperature 

and bacterial exposure. Significant differences (p ≤ 0.05) between males and females at each pH 

are indicated by an asterisk based on pair-wise tests. N = 133 individuals. 

 

= 0.019). At pH 8.05, 7.80 and 7.60 the percentage of MUFAs in mantle tissue of 

females was significantly higher than that noted in males, however a reduction in pH is 

shown to reduce the proportion of MUFAs in females yet increase these fatty acids in 

males (Fig 4.8). And although the increase in females and the decrease in males were 

not statistically significant within gender, it did mean that at pH 7.35 and 6.50 there was 

no significant difference between the sexes. 

 

4.4. DISCUSSION  

 

4.4.1. The effect of reduced seawater pH, increased temperature and gender on 

reproductive provisioning 

 

When exposed to increased seawater temperature the energetic provision attributed to 

reproduction in the mussel, Mytilus edulis, is significantly reduced. This is marked by a 
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concurrent increase in both ADG cells and VCT cells at increased temperatures. These 

results support previous research where increasing seawater temperatures were shown to 

reduce the energy allocated to reproduction in marine mussels (e.g. Bayne et al., 1978; 

Fearman and Moltschaniwskyj, 2010). Furthermore, temperature was also shown to 

have a greater effect on the mantle tissues of females compared to that of males, a result 

that has not been shown previously but one that could have a significant impact on the 

population dynamics of this ecologically and commercially important species. 

 It is widely accepted that increasing temperature increases metabolism in 

ectothermic organisms (Somero, 2002). Therefore the reduced allocation of energy to 

reproduction in both males and females is likely due to the increased energetic demand 

of metabolism in mussels at increased temperature. However, in concurrently measuring 

an increase in ADG cells and VCT cells, which form the nutrient storage cells of mussel 

mantle tissue (Lowe et al. 1994), in addition to increasing the allocation of energy to 

metabolism, mussels also appear to maintain their ability to produce energy reserves. 

This pattern of reduced gamete investment, whilst maintaining a capacity for nutrient 

storage, has been suggested as a possible plastic response to prevailing environmental 

conditions in wild populations (Lowe et al., 1994). In measuring the composition of 

mussel mantle tissue monthly over three concurrent annual cycles from 1977 to 1980, 

Lowe et al. (1982) demonstrated a naturally occurring period of concurrent gamete 

production and nutrient storage after spring spawning in an estuarine mussel population, 

followed by a second period of spawning later in the year. Such a strategy may be a 

mechanism to maintain gamete production over an annual reproductive cycle, in this 

population sampled from Beggar’s Island, at the intersection of the Rivers Tamar and 

Lynher, Plymouth, whilst reducing the energy required during any one period of 

gametogenesis. Reducing the energy required for any single spawning period would 
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then ensure that more residual energy was available for the increased metabolic 

requirements associated with unfavourable environmental conditions, whilst net gamete 

production would remain unaffected. However, the current study only lasted 3 months. 

Therefore to test this hypothesis fully, and to test the potential longevity of any such 

strategy under future conditions of oceanic warming, a longer term exposure to 

increased temperatures is required.   

 Whilst an increased proportion of nutrient storage cells may suggest mussels 

maintained the capacity for nutrient storage, it is also possible that such an increase 

merely reflects the proportional reduction in gamete investment. VCT cells are a rich 

store of glycogen within the mantle of mussels, however they are also the structural 

basis of mantle tissue, forming the interfollicular connective tissues (Lowe et al., 1982). 

In measuring an increase in nutrient storage tissues associated with a reduced gamete 

production in mussels exposed to increased temperatures, Fearman et al. (2010) also 

subsequently measured a reduction in glycogen levels. Therefore, whilst the fraction of 

the mantle that was attributed to nutrient storage appeared to increase, this did not 

provide an accurate assessment of the actual energy reserve in these tissues, merely 

reflecting a proportional increase in connective tissue. However, in grouping ADG and 

VCT cells as nutrient storage, the study by Fearman et al. (2010) was unable to account 

for any difference in the response of these two cell types. In the current study, 

measuring a significant increase in ADG cells, in addition to the increase in VCT cells, 

suggests mussels do maintain a capacity for increased nutrient storage, as ADG cells, 

which contain large reserves of protein and lipid as well as glycogen, have no structural 

function in mantle tissue (Lowe et al., 1994).  

 Unlike temperature, a reduction in seawater pH, at levels predicted to occur 

within the next 100 to 300 years (pH 7.80 and pH 7.35 respectively; IPCC, 2007), was 
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not shown to impact the reproductive investment in mussels. This supports previous 

research where the reproductive tissue of mussels was not impacted by reduced 

seawater pH, and where mussels maintained under acidification scenarios retained the 

ability to spawn (Beesley et al., 2008). Furthermore, in maintaining the proportion of 

ADG and VCT cells at a level comparable to those measured in control organisms, 

mussels in the current study maintained at a pH of 7.80 to 7.35 appeared capable of 

maintaining nutrient storage at reduced seawater pH. Such resilience to reduced 

seawater pH may be due to the naturally variable seawater carbonate chemistry that 

mussels experience in their natural habitat, as discussed in Chapter 3 (Sect. 3.4.1), 

leading to a natural pH tolerance in this organism. 

 In  not detecting an impact of ocean acidification (OA) on reproductive 

provisioning, under seawater pH conditions predicted to occur within the next 100 - 300 

years, the current study agreed with the findings of previous research (Beesley et al., 

2008). However, in contrast to the research by Beesley et al. (2008), where there was no 

impact of very low pH seawater (pH 6.5) on reproductive processes, the current study 

demonstrated a significant reduction in the proportion of the mantle tissue attributed to 

reproduction in mussels maintained at pH 6.50. The apparent contradiction between this 

study and Beesley et al. (2008) could be due to the different seawater pH conditions 

experienced by mussels in the two studies (outlined in Sect. 3.4.1) or due to the 

different sampling methods employed. Beesley et al. (2008) qualitatively assessed the 

mantle tissue of mussels; however in using stereology the current study was able to gain 

a more objective assessment of the reproductive cycle (Morvan and Ansell, 1988). This 

enabled subtle differences in mantle composition to be assessed, which may have been 

missed by the qualitative approach used by Beesley et al. (2008). 
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 In finding a reduced gamete provision within the mantle tissue of organisms 

maintained at pH 6.50, mussels exposed to very low pH were unable to maintain gamete 

production at a comparable level to organisms maintained under other pH conditions. 

However, in not being able to detect a significant change in the proportion of ADG cells 

at pH 6.50, this reduction does not appear to be accompanied by an increase in nutrient 

storage, as measured with increased temperature. Measuring a significant increase in 

VCT cells at pH 6.50 therefore likely represents a proportional increase in interfollicular 

connective tissues, proportional to the reduced gamete investment. The reduced 

energetic investment in reproduction is likely due to an increase in the energetic costs 

associated with maintaining cellular homeostasis or calcified structures at extremely low 

pH (e.g. Melzner et al., 2011; Wood et al., 2008, 2010), which in turn has led to a 

physiological trade-off. However the sustainability of this strategy will ultimately 

depend on the condition of impacted organisms, potentially impacting an organism’s 

persistence. 

 Whilst temperature and low pH were shown to impact reproductive provisioning 

and nutrient storage in mussels, gender also significantly impacted the composition of 

mantle tissue. Males had a higher proportion of gametes in the mantle compared to 

females, irrespective of the exposure conditions. As discussed in Section 3.4.2., males 

are proposed to invest more energy in reproduction compared to females, being limited 

in their reproductive success by the number of females they can inseminate (Andersson, 

1994; Trivers, 1972; Zuk et al., 2004). However, in not being able to detect a significant 

difference in the volume fraction of ADG cells between males and females, this increase 

in gamete production does not appear to be at the expense of nutrient storage cells 

within the mantle of males, and therefore must be at the expense of other physiological 

processes, or life-history traits. In measuring a reduction in immune defence (Sect. 
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3.4.2), males therefore appear to take a more risk prone strategy, reducing 

immunocompetence to maximise fecundity. The possible implications of such a strategy 

will be discussed in Chapter 6. 

 The interaction of temperature and gender affected the mantle composition of 

mussels. An increase in temperature significantly increased the proportion of VCT cells 

in females, but the proportion of VCTs in males was unaffected. When comparing the 

volume fraction of different mantle components in both sexes, it would appear this 

interaction between temperature and gender indicates a proportional reduction in gamete 

investment. An increase in temperature is shown to reduce gamete investment in both 

males and females, however this response is far more pronounced in females. The 

proportion of the female mantle attributed to reproduction is reduced by 14.7 % with 

increased temperature, whereas in males the same temperature increase reduces gamete 

investment by just 3.93 %. Therefore the significant increase in VCT cells with 

increased temperature in females represents the greater proportional decrease in 

reproductive tissues. Again, this would suggest males take a greater risk at high 

environmental temperatures by maintaining their energetic investment in reproduction 

to a greater extent than females, despite the unfavourable environmental conditions.  

 

4.4.2 Effect of reduced seawater pH, temperature and gender on mantle lipid 

composition 

 

Providing an important food reserve for larvae during the period of development until 

first feeding (Gallager and Mann, 1986; Gallager et al., 1986; Helm et al., 1973), it is 

the lipid content of the bivalve eggs that is a major determinant of larval fitness 

(Honkoop et al., 1999). With this lipid largely derived maternally, it is not surprising 
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that in the present study gender was shown to significantly affect both total lipid content 

and fatty acid composition of the mantle tissue in mussels. Despite being shown to have 

a higher proportion of mantle tissue attributed to gametes, the lipid content within the 

mantle of males was lower than that measured in females. This is likely due to the 

different strategies of reproduction between male and female mussels, and is a similar to 

the response measured in other bivalve species (e.g. Ansell, 1974; Caers et al., 1999; 

Napolitano and Ackman, 1992). Reproductive success in male sessile invertebrates is a 

function of total gamete production, with the number of gametes produced ultimately 

influencing the probability of successful fertilization (Yund and McCartney, 1994). In 

females however, reproductive success is governed to a greater extent by the quality of 

individual gametes (Levitan and Petersen, 1995), with a greater energetic investment in 

individual gametes increasing the probability of larvae surviving until first feeding. 

Therefore, measuring a higher lipid content in the mantle of females, despite having a 

lower number of individual gametes, represents the important role of females in 

providing energy reserves for the developing embryo (Blackmore, 1969). 

 The major fatty acids found in the mantle tissue of mussels were the SFAs 16:0, 

18:0, the MUFAs 16:1, 20:1 and the PUFAs 20:4, DHA and EPA. This fatty acid profile 

was similar to that found in previous studies on mussels (e.g. Alkanani et al., 2007), 

with PUFAs contributing the greatest proportion of total fatty acids. PUFAs, and in 

particular EPA and DHA, are shown to be essential fatty acids in molluscs, particularly 

bivalves, forming an important tissue component which is crucial for growth and 

survival (Langdon and Waldock, 1981; Pettersen et al., 2010; Soudant et al., 1999). 

Whilst the fatty acid profile in mussels is essential for survival and growth, gender was 

also shown to affect the composition of major fatty acids in mantle tissue. Females were 

shown to have a higher percentage of SFAs and MUFAs, whereas males were shown to 
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have a higher proportion of PUFAs. This result supports previous research, where 

females of the prosobranch mollusc, Patella depressa, had a higher total lipid content as 

well as a higher proportion of SFAs and MUFAs (Brazão et al., 2003).  

 Fatty acids such as 16:0 (palmitic acid) are generally characterised as having an 

energetic-type function (Bergé and Barnathan, 2005), with SFAs and MUFAs forming 

an important energy source in the female gonad that is transferred to the developing 

embryo (Blackmore, 1969). With the energy from saturated fats released more 

efficiently than from unsaturated fats (Brown et al., 1997), the higher percentage of 

SFAs and MUFAs in the female gonad is likely due to their function in providing 

metabolic energy to developing embryos (Brazão et al., 2003). This is further supported 

by research that has shown larval mortality in mussels decreases proportionately with a 

higher SFA content (Pettersen et al., 2010). In contrast to female gametes whose 

function is the provision of energy, the gametes in male mussels are known to be 

composed largely of structural polar lipids, rich in PUFAs (Blackmore, 1969). 

Therefore, the higher percentage of PUFAs, yet lower SFA and MUFA composition, in 

males is likely due to the different role of gametes, and thus the different gamete 

composition, between genders.  

 Whilst PUFAs were greatest in males, they also formed the largest portion of the 

fatty acid profile in females. Female gametes require a large reserve of energy to ensure 

larval survival, however they also require a large proportion of structural polar lipids, 

rich in PUFAs, to provide the material required for the process of cell division 

(Napolitano and Ackman, 1992). Therefore a high proportion of PUFAs in female 

mantle tissue, such as DHA which is shown to have an important structural-type 

function (Bergé and Barnathan, 2005), highlights the additional role of females in also 

providing the structural material required for early larval development and cell division. 
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The importance of PUFAs for larval development in mussels has been further supported 

by Pettersen et al. (2010), who have shown the proportion of DHA to be positively 

correlated with larval survival, and the ratio of n-3 LC-PUFA (namely EPA and DHA) 

to the n-6 LC-PUFAs (20:4 n-6, arachidonic acid, ARA) to be positively correlated with 

settlement. Unfortunately, in the present study it was not possible to distinguish n-3 and 

n-6 ARA, and therefore the ratio of n-3 to n-6 LC-PUFA could not be compared 

between the two studies. 

 Alongside being affected by endogenous factors, such as sexual maturation and 

gender (Brazão et al., 2003; Galap et al., 1999), a fluctuation in environmental 

conditions is shown to impact the lipid composition in molluscs (Brazão et al., 2003; 

Pazos et al., 1997). Largely governed by the stage of gonad development and the 

quantity and quality of food available, the accumulation and depletion of lipid reserves 

in molluscs is also affected by the impact of environmental factors on metabolic 

activities (Pazos et al., 1996). In the present study temperature was shown to impact 

both the lipid content and the fatty acid composition of mussel mantle tissue, however 

interestingly the mantle tissue of male and female mussels was affected by temperature 

differently. An increase in temperature was shown to significantly increase the total 

lipid content of male mantle tissue, whereas in females the lipid content was shown to 

decrease slightly, although this decrease was not statistically significant. The difference 

in the response of the lipid content in males and females may be due to the impact of 

temperature on reproductive provisioning and the different composition of gametes 

between the genders. An increase in temperature was shown to slightly decrease the 

allocation of resources to reproduction in males, which was concurrently marked by a 

slight increase in ADG storage cells. This reallocation of resources from gametes, which 

in males have a lower provision of energy than in females, to ADG storage cells may 
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therefore result in the increased lipid content. In females, however, gametes are 

characterised by their large reserve of lipids with an energy-type function, which 

support larvae until first feeding. A decrease in resource allocation to gametogenesis in 

females would likely result in a large decrease in overall lipid content. Therefore, with 

male mussels increasing lipid content at increasing temperature, with females 

maintaining lipid reserves despite reduced gamete investment, this result appears to 

support the hypothesis that despite reducing gamete investment at increasing 

temperatures, mussels maintain an ability to lay down nutrient reserves, as discussed in 

Section 4.4.1. 

 Whilst temperature affected lipid content differently in males and females, an 

increase in temperature also affected the fatty acid profile. The proportion of MUFAs 

was significantly reduced under increasing temperatures in both males and females, 

whereas temperature only increased the proportion of PUFAs in females. To maintain 

membrane fluidity under decreasing temperatures, the proportion of unsaturated fatty 

acids  generally  increases (Pazos et al., 1997). Therefore, in showing mussels 

maintained at 12.5 °C to have a higher proportion of MUFA compared to mussels 

maintained at 17.0 °C, the current study supports previous research where increased 

temperature corresponded to reduced unsaturation in bivalve molluscs (Piretti et al., 

1988). Furthermore, whilst not statistically significant, increased temperature may have 

resulted in a slight decrease in the proportion of PUFAs and a slight increase in the 

proportion of SFAs in the mantle of males, which further supports the remodelling of 

membrane lipids under decreasing temperature, a process known as homeoviscous 

adaptation (HVA) (Hazel, 1995; Pernet et al., 2007). 

 Conversely, in females an increase in temperature was shown to lead to a 

significant increase in PUFA, alongside a slight decrease in SFA, although this decrease 
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in SFA was not significant. The response in females is not consistent with temperature 

induced remodelling of membranes due to HVA in mussels. As with total lipid content 

however, it is likely this difference in the response of the fatty acid profile of males and 

females is due to the strong influence of the gametogenic process on the lipid 

composition in mussel mantle tissues. With an increase in temperature shown to reduce 

the provision of energy to reproduction in females, the proportion of SFA and MUFA 

allocated to developing gametes would be reduced. Therefore, the reduction of SFA and 

MUFA allocated to gametes under increased temperature in females may mask the 

small fluctuations in fatty acid profile brought about by temperature induced HVA. 

Such a response was noted by Pazos et al. (1997), where the impact of temperature on 

the fatty acid profile of female gonads in the scallop, Pecten maximus, was masked by 

the strong influence of the gametogenic cycle. Furthermore, the increase in PUFAs in 

females at increasing temperature may also represent a proportional increase due to the 

decrease in both SFA and MUFA provision in female gametes. 

 Unlike temperature, reduced seawater pH did not have a significant main effect 

on the total lipid content or fatty acid composition of mussel mantle tissue. This is 

perhaps surprising, given the impact of OA on the provision of resources to 

reproduction in mussels, with organisms maintained at pH 6.50 reducing the proportion 

of the mantle attributed to reproduction yet not concurrently increasing the proportion 

of nutrient storage cells. However, whilst pH did not directly affect the lipid 

composition of mantle tissue directly, reduced pH was shown to interact with gender to 

affect the proportion of MUFA in mantle tissue of mussels. At pH 8.05 to 7.60 females 

are shown to have a higher proportion of the mantle attributed to MUFAs compared to 

males, whereas at pH 7.35 and pH 6.50 this gender difference is shown to disappear. 

With MUFAs representing an important energy source to developing gametes in 
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females, and with male gametes largely dominated by structural-type PUFAs 

(Blackmore, 1969), it is possible that the reduction in reproductive provisioning at low 

pH may affect the difference in mantle lipid composition between gender. However, 

whilst OA is shown to interact with gender, this is the first study to have investigated 

the impact of OA on the lipid composition in the mantle of male and female mussels. 

Therefore it is not possible to distinguish the exact mechanism by which pH may affect 

lipid composition differently between males and females. 

 

4.4.3 Impact of a bacterial exposure on reproduction and the lipid profile of the mantle 

 

In the current study, an immune challenge was shown to significantly reduce the total 

lipid content of mantle tissue in the blue mussel, M. edulis. This reduction in lipid 

content highlights the significant cost of a pathogenic challenge in mussels, and 

supports previous research where exposure to a pathogen was shown to reduce both 

organism condition and energetic reserves in a bivalve host  (Dittman et al., 2001; Ford 

and Figueras, 1988). Similarly, in a study investigating the impact of Vibrio tapetis on 

the condition and energy budget of the Manila clam, Ruditapes philippinarum, Flye-

Sainte-Marie et al. (2007) demonstrated that an exposure to a bacterial pathogen led to a 

significant weight loss in this clam species, when compared to uninfected hosts. These 

authors therefore proposed that the reduction in weight, alongside a reduced host 

condition, was due to the energetic burden of the pathogen on the host, with the energy 

mobilised for the development of an immune response depleting the hosts energy 

reserves (Flye-Sainte-Marie et al., 2007; Palliard, 2004).  

 Whilst it is possible that an increased immune response led to decreased energy 

reserves in mussel mantle tissue, it is also possible that this depletion was due to other 
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processes, such as a direct impact of bacterial respiration on the host’s energy budget or 

as an indirect result of a host spawning. However, in calculating the energy 

consumption of a Vibrio population on a host’s metabolism, Flye-Sainte-Marie et al. 

(2007) estimate that even in a bacterial population shown to have a high growth rate, 

bacterial respiration was calculated to use less than 1% of the host’s total metabolised 

energy. Furthermore, in not measuring any reduction in the proportion of the mantle 

tissue attributed to ripe gametes, and in not measuring any increase in regression 

observed in mantle tissues, bacterial exposure was not shown to lead to a spawning 

event or to a significant increase in the reabsorption of gamete lipid reserves. Therefore, 

the reduction in the lipid content of mantle tissue in mussels exposed to a bacterial 

challenge is likely to be as a result of an enhanced immune response. 

 Reproduction, similarly to immune defence, is energetically expensive 

(Williams, 1966), therefore under stressful environmental conditions reproduction is 

likely to be compromised to ensure survival (Wingfield and Sapolsky, 2003). With 

lipids providing an important energy reserve in bivalves (Gallager and Mann, 1986; 

Gallager et al., 1986; Helm et al., 1973), any reduction in the lipid content of mantle 

tissues, as a result of a bacterial challenge, would therefore be expected to reduce the 

resources available for other life-history traits, leading to a physiological trade-off. 

Subsequently, in measuring a reduction in the energy allocated to reproduction when 

exposed to V. tubiahsii, measured as a reduced proportion of the mantle attributed to 

newly developing gametes, the current study demonstrated that increased 

immunocompetence was shown to lead to the physiological trade-off against 

reproduction, as predicted. This supports the findings of Kelly (2011), who measured 

the impact of a bacterial exposure in the insect, Hemideina crassidens. Exposure to this 

pathogen led to both a reduction in the body condition, measured as a reduced body fat 
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content, as well as a reduction in the number and quality of eggs in this terrestrial insect. 

This result led Kelly (2011) to suggest that both immunocompetence and reproduction 

are condition dependant, and furthermore that these two physiological processes trade-

off against each other to maintain organism fitness, as was shown in the current study.  

 Whilst having predominantly been demonstrated in vertebrates and terrestrial 

insects, the up-regulation of host defence is shown to lead to a reduction in the energy 

allocated to reproduction in a number of species (Bonneaud et al., 2003; Jacot et al., 

2004; Kelly, 2011; Kerr et al., 2010). However, being paid in terms of future 

reproductive success and survival, the costs associated with reproduction are the most 

prominent for life history (Roff, 1992; Sibly and Calow, 1986; Stearns, 1992). Impaired 

or suppressed reproduction has significant consequences for the population dynamics of 

a species and, in the most extreme cases, can lead to a reduction in species persistence 

(Petes et al., 2008). Therefore, in measuring a reduced investment in reproduction in 

response to a pathogenic exposure, the current study highlights the potential impact of 

emerging diseases, and of a pathogenic outbreak, on the population dynamics of the 

blue mussel, M. edulis.  

 Moreover, rising summer temperatures are shown to increase both the spread 

and severity of shell-fish pathogenic outbreaks (Elston et al., 2008), and an increase in 

global temperatures is shown to increase the occurrence of these outbreak events 

(Martin et al., 2010). Therefore, over the next 100 years anthropogenic climate change 

could have an additional indirect, but highly significant impact, on bivalve populations, 

through the mediation of host-pathogen interactions and through the increasing 

influence of disease outbreaks. 
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4.4.4 Conclusions 

 

In the current study anthropogenic climate change predicted to occur within the next 

100-300 years is shown to significantly impact reproductive provisioning in mussels. 

However, it is an increase in temperature, rather than a reduction in seawater pH that is 

shown to have the greatest impact on metabolic investment in gametes. Mussels 

exposed to increased seawater temperature significantly reduced gamete investment, yet 

mussels exposed to an OA scenario predicted to occur within the next 100 - 300 years 

appear tolerant of moderate changes in seawater carbonate chemistry, with both 

reproductive provisioning and mantle lipid composition remaining unaffected. When 

exposed to reduced seawater pH predicted to occur with a catastrophic CCS leak 

however, the reproductive provisioning in mussels is significantly reduced. 

 Whilst this response to temperature has been shown in previous bivalve studies, 

this is the first study to demonstrate a different response to environmental stress in male 

and female mussels. Males and females are known to employ a different reproductive 

strategy, which in the current study resulted in different level of reproductive 

investment and a different mantle fatty acid composition between the two sexes. 

However, when exposed to challenging environmental conditions males are shown to 

take a more risky strategy, maintaining gamete investment at a higher level than was 

shown in females. Such a discovery could have significant consequences for the 

understanding of anthropogenic climate change impacts on the population dynamics of 

mussels. 

 Alongside measuring a significant impact of gender and anthropogenic climate 

change on the reproductive investment in mussels, this study also highlighted a 

significant impact of a bacterial exposure on the total lipid content of mussel mantle 
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tissue, reducing the energetic reserve within mussels. This reduction in available energy 

led to a subsequent physiological trade-off, measured as a reduction in energy afforded 

to developing gametes. In showing a significant cost of a pathogenic exposure, this 

study demonstrated that both reproduction and immunocompetence are condition 

dependant and trade-off against each other in order to maintain host survival under 

stressful environmental conditions. Therefore to fully understand the impact of 

anthropogenic climate change on an organism’s fitness, and to understand the impact of 

any additional environmental stressors, such as a pathogen exposure, it is crucial to 

account for any physiological trade-offs. This will then enable an understanding of the 

circumstances under which any increase or decrease in the allocation of resources to 

reproduction is profitable. 
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CHAPTER 5.  MUSSEL METABOLOME 

 

 

 

Metabolic responses in the mantle of the blue mussel, Mytilus edulis exposed to 

reduced seawater pH, increased temperature and Vibrio tubiashii: an NMR-based 

metabolomics approach 
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5.1. INTRODUCTION 

 

Whilst traditional environmental monitoring programmes have attempted to develop 

biomarkers  as indicators of ecosystem health, these studies have typically relied on the 

assessment of sentinel species and the measure of single test endpoints (Jones et al., 

2008). Consequently, such approaches often fail to ascertain vital information 

concerning the mode of action of a particular stressor. This lack of information 

subsequently reduces our ability to  understand which biological pathways are 

impacted, hampering our ability to predict the overall response of an organism to 

environmental stress (Lin et al., 2006). However, due to the technological development 

of molecular profiling techniques over the past two decades, our ability to investigate 

the composition of an organism’s transcriptome, proteome and metabolome has vastly 

increased (Veldhoen et al., 2012). The application of these ‘omics’ techniques in 

environmental assessment has provided an additional level of understanding when 

monitoring ecosystem health, characterising the molecular signatures that signify an 

organism’s ability to respond and/or adapt to changing conditions (Veldhoen et al., 

2012). In displaying highly sensitive response profiles, molecular signatures have the 

potential to highlight the specific mode of action of an environmental stressor, and to 

provide the information required to understand which biological processes are being 

impacted and how an organism will respond to stress (Lin et al., 2006; Veldhoen et al., 

2012). Whilst such techniques enable a previously unprecedented understanding of 

stressor impacts on an organisms physiological functioning, to interpret such 

information these ‘omics’ techniques require an accurate definition of the study species, 

collection site and season (Genard et al., 2012; Li et al., 2010; Philipp et al., 2012). 
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 Metabolomics is the newest of these ‘omic’ approaches and is based on the 

study of low molecular weight endogenous metabolites within a biological sample (Lin 

et al., 2006; Tikunov et al., 2010; Viant, 2007). Enabling the cost-effective, unbiased 

and rapid analysis of a wide range of small-molecule metabolites simultaneously 

(Tikunov et al., 2010; Viant, 2007), metabolomics provides information on the 

functional status of an organism, which can in turn be related to its phenotype (Bundy et 

al., 2009; Spann et al., 2011). Metabolomics subsequently holds great promise as a 

research tool for environmental risk assessment (Ekman et al., 2008; Schock et al., 

2010), for the development of environmental systems models (Bundy et al., 2008; 

Schock et al., 2010; Viant, 2008) and for the discovery of new biological insights 

(Bundy et al., 2002; Schock et al., 2010).  

 High-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy is a 

post-genomic metabolomic technique, combining the high throughput metabolic 

profiling capabilities of 1H NMR with pattern recognition techniques to identify the 

metabolic differences between samples (Fiehn, 2002). Involving the rapid cessation of 

metabolic activity, following chemical exposure of a sample to liquid N2, NMR-based 

metabolomics provides a holistic assessment of an organism’s metabolic actions at the 

time of sampling (Tjeerdema, 2008). This method is therefore uniquely suited to 

detecting a large range of endogenous low molecular weight metabolites in a biological 

sample, due to the rapid processing of this technique, and the rich structural and 

quantitative information obtained (Wu and Wang, 2010). Yet, despite the advantages of 

applying metabolomics in environmental monitoring, to date much of this work has 

focused on vertebrate and terrestrial systems, with only a handful of studies having 

investigated the metabolome of aquatic species (Jones et al., 2008; Viant, 2007). Of the 

aquatic organisms studied it is perhaps not surprising that bivalves have received 
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particular attention. As outlined in Section 2.4, bivalves have traditionally been used for 

marine biomonitoring studies due to their life history and commercial importance 

(Dondero et al., 2006; Goldberg, 1986). The incorporation of metabolomic data into 

environmentally relevant results is therefore likely to be easier for this group than for 

many others (Jones et al., 2008).  

 With metabolomics providing a valuable technique for the investigation of 

environmental stressors, and with bivalves having received particular attention with 

respect to metabolomics in aquatic organisms, the application of metabolomics in 

bivalves holds great potential to increase the current understanding of anthropogenic 

climate change. To date only one study has investigated the impact of climate change 

stressors on the metabolic profile of a marine bivalve. Lannig et al. (2010) reported that 

exposure to reduced seawater pH led to an altered energy metabolism in the Pacific 

oyster, Crassostrea gigas, as measured by 1H NMR spectroscopy. However, this study 

did not measure the impact of a concomitant increase in seawater temperature, instead 

assessing the ability of oysters to survive an acute temperature challenge following 

exposure to reduced pH. Anthropogenic climate change is projected to lead to a 

reduction in seawater pH and a simultaneous increase in seawater temperature 

(discussed in Sect. 2.1 and 2.2). Therefore studying the impact of these two stressors 

together, and in concert with additional stressors, arguably offers the most biologically 

relevant insight. Furthermore, the study by  Lannig et al. (2010) did not take account of 

gender differences, and gender has been shown to significantly impact an organisms 

metabolic processes (Hines et al., 2007a). Consequently, to successfully detect a 

molecular signature of environmental stress, and to effectively decipher the information 

from such a technique, it is crucial to fully understand the phenotype of the organism 

concerned (Hines et al., 2007a, b, 2010). 



Chapter 5                                                                                                                         Mussel Metabolome 

- 154 - 

 

 In the present study, 1H NMR-based metabolomics was applied to analyse the 

metabolomic response of the blue mussel, Mytilus edulis. The aim was to detect 

metabolic biomarkers that characterise exposure to reduced seawater pH and increased 

seawater temperature, to assess the impact of a pathogen exposure on the metabolism of 

blue mussels and finally to detect any difference in the metabolic response of male and 

female mussels exposed to these environmental stressors. 

 

5.2. MATERIALS AND METHODS 

 

The mussels used in this metabolomics study were collected, maintained and sampled 

exactly as described in Sections 3.2.1 and 3.2.2 respectively). Briefly, mussels were 

collected during Dec 2009, from an intertidal estuarine mussel bed in Exmouth, east 

Devon, before being returned to the PML mesocosm. Mussels were immediately placed 

in the experimental system (described in Sect. 3.2.1) and maintained for 90 days. 

During the experiment mussels were fed with Isochrysis galbana (30 mg dry mass 

mussel-1 day-1). After an initial 90 day exposure to experimental conditions, one mussel 

was chosen at random from each replicate experimental chamber to sample the 

individual immune response, reproductive status, lipid content and metabolome. To 

study the mussel immune response haemolymph was extracted from the posterior 

adductor muscle to enable the antibacterial activity of cell-free haemolymph, total cell 

counts and differential cell counts to be measured (Sect. 3.2.3). In addition to measuring 

the immune response, tissue samples were taken to quantify reproductive status using 

histology (outlined in Sect. 4.2.1), GC-MS was used to quantify the fatty acid 

composition of mussel mantle tissue (described in Sect. 4.2.2. and 4.2.3) and the 

metabolite profile of mantle tissue was assessed using 1H NMR spectroscopy (described 



Chapter 5                                                                                                                         Mussel Metabolome 

- 155 - 

 

in Sect. 5.2.1, 5.2.2 and 5.2.3 below). After this initial sampling time point, the 

remaining mussels in the system were exposed to a pathogenic challenge, exactly as 

outlined in Section 3.2.2, with the aforementioned parameters being measured again 1 

day and 7 days post inoculation. 

 

5.2.1 Metabolite extraction. 

 

Polar metabolites were extracted from the mantle tissue of mussels using the 

methanol/chloroform extraction method (Bligh and Dyer, 1959; Hines et al., 2007a, b, 

2010), exactly as outlined previously in Section 4.2.2 for the extraction of lipids. Unlike 

the lipid extraction it was the methanol layer containing the polar metabolites that was 

collected for metabolomic analysis. Polar metabolites were collected using a Hamilton 

syringe and transferred to a 1.5 ml Eppendorf® centrifuge tube. Each metabolite sample 

was subsequently dried using a centrifugal concentrator (Thermo Savant, Holbrook, 

NY) and stored at -80 °C.  

 

5.2.2 
1
H NMR Spectroscopy 

 

Immediately prior to NMR analysis, dried polar extracts were resuspended in sodium 

phosphate buffer (0.1 M in 10 % D2O and 90% H2O, pH 7.0, containing 0.5 mM 

sodium 3-trimethylsilyl-2,2,3,3,-d4-propionate (TMSP) chemical shift standard) (Hines 

et al. 2007a, b). Mantle tissue extracts were then analysed on a DRX-500 NMR 

spectrometer (Bruker Biospin, Coventry, UK; Fig. 5.1), equipped with a cryoprobe and 

operated at 500.18 MHz (at 300 K). One-dimensional (1-D) 1H NMR spectra were 

obtained as described by Hines et al. (2007a). Spectra were obtained using excitation  
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Figure 5.1 Bruker DRX-500 MHz NMR spectrophotometer used to obtain 1H NMR spectra. 

Image courtesy of J. Byrne, NERC metabolomics facility, University of Birmingham. 

 

sculpting for water suppression (Hwang and Shaka, 1995) and using a 8.4 µs (60°) 

pulse, 6 kHz spectral width and a 2.5 s relaxation delay with water presaturation. A total 

of 64 transients were collected into 16 348 data points, requiring a 4.5 min acquisition 

time. Data sets were zero-filled to 32 768 points, before line-broadenings of 0.5 Hz 

were applied prior to Fourier transformation. To maximise metabolite discrimination 

two-dimensional (2-D) 1H J-resolved (JRES) NMR spectra were also acquired (Viant, 

2003), being processed according to Hines et al. (2007b). 2-D JRES spectra were 

acquired for each sample using 16 transients per increment, for 16 increments, which 

were collected into 16 000 data points with spectral widths of 6 kHz in F2 (chemical 

shift axis) and 50 kHz in F1 (spin-spin coupling constant axis). A 4.0 s relaxation delay 
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was employed resulting in a total acquisition time of 24 min. Data sets were zero-filled 

in F1, the F2 dimension was then multiplied by a SEM window function using 0.5 Hz 

line broadening while the F1 dimension was multiplied by a sine-bell window function, 

all prior to Fourier transformation. JRES spectra were tilted by 45°, symmetrised about 

F1 and calibrated using TopSpin (Bruker Biospin). Data were exported as the 1-D 

skyline projections of JRES spectra (pJRES) and converted to a format for multivariate 

analysis using custom-written ProMetab software in MATLAB (version 7.1; The 

MathsWorks, Natick, MA; Viant 2003).  

 

5.2.3. Spectral pre-processing and statistical analysis 

 

Each spectrum was segmented into 0.005 ppm bins between 0.6 and 10.0 ppm, with 

bins resulting from water and TMSP excluded from all spectra, and with data points 

between 7.988 and 8.016 ppm being compressed into a single point. Data were 

normalised using the Probabilistic Quotient approach and noise filtered, with the noise 

threshold set to 3 times the standard deviation of a region of known noise (9.5 – 

10.0ppm). This produced a data matrix of 144 samples by 1000 bins. This matrix was 

then subject to a generalised log transformation using the lambda parameter 1.49 e-9, 

which stabilised the technical variance across the bins (Parsons et al., 2007; Purohit et 

al., 2004).  

 To test the impact of reduced seawater pH, increased temperature, a bacterial 

exposure and organism gender, data were tested using the PERMANOVA+ add in (beta 

version; Anderson et al., 2008) in PRIMER 6.1 (Clarke and Gorley, 2006). Data were 

first tested for homogeneity of variance, as outlined in Section 3.2.5, and Euclidean 

distance similarity matrices constructed. P-values were calculated using 999 



Chapter 5                                                                                                                         Mussel Metabolome 

- 158 - 

 

permutations of the residuals under a reduced model.  Pair-wise comparisons were 

undertaken where a significant main effect, or an interaction between factors, was 

shown. Following pair-wise comparison, ordination of samples using non-metric multi-

dimensional scaling (MDS) was performed to display the biological relationships 

between samples, highlighting sample relatedness, and subsequently sample grouping, 

in low-dimensional ordination space (Clarke and Warwick, 2001).  

 Where a significant main effect was shown using PERMANOVA, data were 

further tested using SIMPER analysis, using a Euclidean distance similarity matrix. 

SIMPER analysis determines the percentage contribution of individual variables, in this 

instance different shifts, to the overall group dissimilarity. Annotation of shifts shown to 

contribute over 50 % of the group dissimilarity was then undertaken, using the software 

FIMA (Unpublished), identifying those metabolites that were shown to be important in 

the separation of treatment groups, and furthermore indicating the direction of the 

changes within each treatment. 

 

5.3. RESULTS 

 

Experimental parameters and organism mortality recorded during this study are reported 

in Chapter 3 of this thesis (Sect. 3.3.1 and 3.3.2 respectively). 

 

5.3.1. 
1
H-NMR spectroscopy of mussel mantle tissue 

 

A representative 1-D projection of a 2-D JRES NMR spectrum of mussel mantle tissue 

from M. edulis is presented in Figure 5.2. Several metabolite classes were identified, 

including amino acids (e.g. alanine), organic osmolytes (e.g. betaine, homarine), and 
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Krebs cycle intermediates (e.g. succinate). However, NMR spectra were found to be 

dominated by the key organic osmolytes betaine (3.27 and 3.91 ppm) and taurine (3.25 

and 3.43 ppm), which were shown to have a 10 - 100 times higher intensity than all 

other metabolites. 

 

5.3.2. Metabolic response to reduced seawater pH 

 

Metabolic responses of mussels to environmental stress were investigated using 

PERMANOVA, which revealed a significant effect of reduced seawater pH on the 

mussel metabolome (Psuedo-F = 3.18, d.f. = 4, p = <0.001). As shown in Figure 5.3a 

exposure to reduced seawater pH resulted in significant separation of samples, with 

mussels exposed to pH 6.50 separating from all other pH treatments. This was further 

supported by pair-wise analysis, where the metabolome of mussels exposed to pH 6.50 

was shown to be significantly different from all other samples. Additionally, whilst the 

MDS ordination of samples revealed minimal separation of mussels exposed to the 

other pH levels (Fig.5.3b), pair-wise comparison also highlighted a significant 

difference in the metabolic profile of mussels exposed to pH 7.60 and 7.35 compared to 

control individuals maintained at pH 8.05.  

 Of the successfully identified metabolites from within the mantle tissue of 

mussels, SIMPER analysis indicated 19 metabolites that were shown to contribute over 

50 % of the dissimilarity between mussels exposed to pH 6.50, compared to all other 

pH levels. This group dissimilarity was largely caused by a decrease in metabolite 

concentration, with 14 out of the 19 identified metabolites shown to decrease (Table 

5.1). Furthermore, of the five metabolites shown to contribute most significantly to the 
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Figure 5.2 Representative one-dimensional 600 MHz 1H NMR spectrum of mussel (Mytilus 

edulis) a) mantle issue extract and b) vertical expansion of the aromatic region. Keys: (1) 

Branched chain amino acids: isoleucine, leucine and valine, (2) lactate, (3) alanine, (4) arganine, 

(5) glutamate, (6) succinate, (7) aspartate, (8) asparagines, (9) lysine, (10) malonate, (11) 

taurine, (12) betaine, (13) glycine, (14) homarine, (15) ATP/ADP, (16) tyrosine and (17) 

histidine. 
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difference in mussels exposed to pH 6.50, valine (219.1 %), isoleucine (282.3 %), 

alanine (18.6 %), tyrosine (270.4 %) and succinic acid (219.5 %) were all shown to 

increase in concentration at this low pH.  

 Whilst exposure to pH 6.50 led to a general increase in metabolite concentration, 

interestingly it was a decrease in metabolite concentration in mussels exposed to pH 

7.60 and 7.35 that was shown to contribute to the difference between these mussels and 

those in the control group. Of the 22 metabolites shown to contribute over 50 % of the 

group dissimilarity, 16 were shown to decrease in concentration compared to mussels at 

pH 8.05. The five metabolites shown to contribute most significantly to the difference 

between control mussels and those at pH 7.60 and 7.35, were alanine, shown to 

decrease by 27.9 %, succinic acid, shown to decrease by 44.7 %, and an unidentified 

peak at 1.10 ppm, which is shown to decrease by 2.2%, whilst glycine (2.6 %) and 

formic acid (24.4 %) were both shown to increase in concentration at pH 7.60 and 7.35.  

 

5.3.3 Metabolic response to increased seawater temperature 

 

As with reduced seawater pH, an increase in seawater temperature had a significant 

effect on the metabolome of mussel mantle tissue (Pseudo-F = 2.50, d.f. = 1, p = 0.01). 

However, minimal separation of samples was revealed in the MDS ordination based on 

seawater temperature (Fig. 5.3c). SIMPER analysis revealed that 23 metabolites were 

responsible for over 50 % of the group dissimilarity between mussels exposed to 12.5 

°C and 17.0 °C. This group dissimilarity is predominantly caused by an increase in 

metabolite concentration, with 14 of the 23 metabolites shown to increase in mussels 

exposed to 17.0 °C, however a significant proportion of the metabolites were also 

shown to decrease in concentration, with 9 metabolites being reduced in mussels  
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Figure 5.3 Non-metric multi-dimensional scaling ordination plots for the Euclidean distance 

similarity metabolite data for a) reduced seawater pH (▼= pH 8.05 – 7.35;▲= pH 6.5), b) 

reduced seawater pH (▼ = pH 8.05;▲ = pH 7.80,  = pH 7.60;  = pH 7.35), c) increased 

temperature (■ = 12.5°C; ■ = 17.0°C), d) a bacterial exposure (♦ = pre-bacterial exposure; ♦ = 

post inoculation) and e) gender (● = Female; ● = Male). N = 144 individuals.

2D Stress: 0.182D Stress: 0.15

2D Stress: 0.15 2D Stress: 0.15

2D Stress: 0.15
e) 

2D Stress: 0.18

d) c) 

a) b) 
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Table 5.1 Relative changes in the metabolite concentration between treatment groups. Arrows represent the direction of change in metabolite levels. Relative 

metabolites have been selected as those which are shown to contribute over 50 % of the dissimilarity between different treatment groups as measured by SIMPER. 

Main contribution to group differences are indicated by letters, with the five individual metabolites shown to represent the greatest contribution marked in 

descending order (a-e). N = 144 individuals.  

3-Aminoisobutyric acid 54.7 % ↓ 30.5 % ↑ 100.1 % ↑ 3.6 % ↑ 902.2 % ↑

3-Methylhistidine 6.6 % ↓ 12.7 % ↓ 67.6 % ↑

Alanine 18.6 % ↑ c 27.9 % ↓ a 1.2 % ↑ a 27.2 % ↓ a 24.5 % ↓ a

AMP 18.6 % ↑ 7.3 % ↓ 9.2 % ↑ 0.5 % ↓ 51.9 % ↓

Arginine 9.9 % ↑ 17.1 % ↓ 1.4 % ↑ 23.0 % ↓ 8.6 % ↓

Asparagine 176.1 % ↑ 19.0 % ↓ 2.7 % ↑ 23.5 % ↓ 3.2 % ↑

Aspartic acid 53.7 % ↓ 24.2 % ↑ 17.1 % ↑ 21.3 % ↓

Carnosine 114.1 % ↑ 22.3 % ↑ 5.9 % ↑ 4.9 % ↑ 42.3 % ↓

Dimethylamine 21.3 % ↑ 20.6 % ↑ 5.5 % ↑ 27.3 % ↑

Formic acid 60.6 % ↓ 24.4 % ↑ e 17.7 % ↓ 18.1 % ↑ 140.8 % ↑

Glutamine 27.1 % ↓ 14.7 % ↑ 2.7 % ↑ 29.3 % ↓

Glutamine/Glutamate 217.3 % ↑ 7.8 % ↓ 1.9 % ↓ 11.6 % ↑

Glycine 61.9 % ↓ 2.6 % ↑ c 56.0 % ↓ e 23.2 % ↑ e 203.7 % ↑ c

Inosine 5 monophosphate 57.6 % ↓ 0.5 % ↑ 24.4 % ↓ 13.8 % ↑ 29.8 % ↑

Isoleucine 282.3 % ↑ b 17.4 % ↓ 4.0 % ↓ 43.8 % ↓ d 6.0 % ↑

Leucine 239.5 % ↑ 5.9 % ↓ 5.2 % ↓ 40.7 % ↓ 27.1 % ↓

Lysine 99.7 % ↑ 5.2 % ↓ 11.8 % ↑ 20.5 % ↓ 24.8 % ↑

Proline 97.9 % ↑ 35.0 % ↓ 25.7 % ↑ 20.2 % ↓ 23.3 % ↓

Succinic acid 219.5 % ↑ e 44.7 % ↓ b 26.6 % ↑ c 59.6 % ↓ c 28.9 % ↓ d

Threonine 140.4 % ↑ 7.1 % ↓ 8.7 % ↓ 26.5 % ↓ 11.8 % ↓

Tyrosine 270.4 % ↑ d 6.4 % ↓ 17.9 % ↑ 39.3 % ↓ 4.4 % ↓

Unknown largae peak 1.098 2.2 % ↓ d 8.7 % ↓ d 12.3 % ↑ 11.8 % ↑ e

Valine 219.1 % ↑ a 12.6 % ↓ 0.7 % ↑ b 33.2 % ↓ b 4.7 % ↑ b

Effects of reduced 
seawater pH 
(pH 8.05-7.35 vs 
pH 6.5)

Effects of 
increased seawater 
temperature 
(12.5°C vs 17.0°C)

Effects of a 
bacterial exposure 
(Pre-exposure vs 
Post inoculation)

Effects of gender 
(Females vs Males)

Metabolite

Effects of reduced 
seawater pH 
(pH 8.05 vs 
pH 7.60 + 7.35)
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maintained at an elevated seawater temperature (Table 5.1). Of the five metabolites 

shown to contribute most significantly to group dissimilarity, an increase in temperature 

was shown to increase the concentration of alanine (1.2 %), valine (0.7 %) and succinic 

acid (26.6 %), yet decrease both glycine (8.7 %) and an unidentified peak at 1.10 ppm 

(8.7 %).  

 

5.3.4 Metabolite response to a bacterial challenge 

 

Whilst PERMANOVA demonstrated a significant impact of a bacterial challenge on the 

metabolite profile of mussel mantle tissue (Pseudo-F = 2.02, d.f. = 2, p = 0.009), MDS 

ordination of samples revealed little separation based on pathogen exposure (Fig. 5.3d). 

Subsequent pair-wise analysis indicated a significant impact of a pathogenic challenge 

but not exposure duration. Mussels measured prior to a bacterial exposure were shown 

to have a significantly different metabolome to those measured both 1 day and 7 days 

post inoculation. However, there was no significant difference between the metabolome 

of mussels sampled 1 d and 7 d post inoculation. SIMPER analysis revealed 21 

metabolites that were responsible for over 50 % of this group dissimilarity. Of these, 9 

metabolites were shown to increase in concentration following a pathogenic challenge, 

whilst 12 were shown to decrease (Table 5.1). The five metabolites shown to contribute 

most significantly to group dissimilarity between mussels measured pre- and post-

bacterial exposure were alanine, shown to decrease by 27.2 %, valine, shown to 

decrease by 33.2 %, succinic acid, shown to decrease by 59.6 %, and isoleucine, shown 

to decrease by 43.8 %, whilst glycine was shown to increase by 23.2 %.  
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5.3.5 Metabolite composition of mantle tissue in male and female mussels 

 

Whilst reduced seawater pH, increased temperature and a bacterial exposure were all 

shown to significantly impact the metabolome of mussels, PERMANOVA also 

demonstrated a significant impact of gender (Pseudo-F = 14.38, d.f. = 1, p = <0.001). 

Furthermore, this sample separation was also clearly demonstrated by MDS ordination 

(Fig 5.3e). SIMPER analysis indicated 21 metabolites that were responsible for over 50 

% of the group dissimilarity between male and female mussels (Table 5.1). Males had a 

higher concentration of valine (4.7 %), glycine (203.7 %) and a compound that 

produced an unidentified peak at 1.10 ppm (11.8 %), whereas females had a higher 

concentration of alanine (24.5 %) and succinic acid (28.9%).  

 

5.3.6 Metabolic response of mussels exposed to a combination of stressors 

 

Whilst each of the experimental factors tested in this study were shown to impact the 

mussel metabolome independently, there was no significant interaction between these 

factors. Furthermore, whilst the metabolome of males and females was significantly 

different, there was no difference in the response of males and females to any of these 

experimental factors.  
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5.4. DISCUSSION 

 

5.4.1. Effects of reduced seawater pH and increased temperature on the mussel 

metabolome 

 

In showing a clear separation between the control and reduced seawater pH exposed 

groups, this study demonstrated that ocean acidification (OA) significantly affects the 

metabolic profile of mussel mantle tissue. Furthermore, as was shown for both immune 

system maintenance (Sect. 3.4.2) and for reproductive provisioning (Sect. 4.4.1), this 

effect became most apparent in mussels exposed to pH 6.50. Whilst an exposure to pH 

7.60 and 7.35 was shown to impact the mussel metabolome, this was less pronounced, 

with no clear separation of these samples using MDS ordination.  

 Mussels exposed to pH 6.50 were characterised as having significantly higher 

levels of both alanine and succinic acid (also referred to as succinate), as well as valine, 

isoleucine and tyrosine. Constituting the major end-product in the anaerobic breakdown 

of glucose (Liu et al., 2011; Stokes and Awapara, 1968), alanine is an early indicator of 

acute anaerobiosis in marine bivalves (Grieshaber et al., 1994; Kurochkin et al., 2009), 

with its presence usually preceding an accumulation of succinate (De Zwaan et al., 

1976; Michaelidis et al., 2005a). Therefore in demonstrating a significant elevation in 

both these metabolites in the mantle tissue of mussels exposed to pH 6.50, it would 

appear these mussels may have gone beyond their optimum range for aerobic 

performance, with a limited capacity for ventilation and cardiac performance at pH 6.50 

leading to oxygen limitation and a reduced aerobic scope in this tissue (Frederich and 

Pörtner, 2000). Whilst metabolic rate and oxygen consumption were not measured in 

the present study, previous research showed that exposure to elevated CO2 led to an 
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accumulation of succinate in both the gill and hepatopancreas of oysters, as measured 

by NMR-based metabolomics (Lannig et al., 2010). Furthermore, the study by Lannig et 

al. (2010) also measured a concomitant reduction in haemolymph oxygen concentration 

at a constant standard metabolic rate, which would suggest oysters exposed to reduced 

seawater pH experience anaerobiosis. Additionally, Michaelidis et al. (2005b) 

demonstrated that mussels exposed to reduced seawater pH experience a decreased rate 

of oxygen consumption and a marked decrease in their metabolic rate. Whilst 

Michaelidis et al. (2005b) did not measure alanine or succinate content in mussel 

tissues, these authors did measure a respiratory acidosis in the extracellular fluids of 

mussels, suggesting that the reduction in extracellular pH (pHe) led to the reduced 

aerobic scope and the observed reduction in aerobic metabolism. 

 Extracellular pH has been shown to be an important determinant of metabolic 

rate in a number of organisms, with a reduction in metabolic rate occurring if pHe drops 

below a certain threshold (Pörtner, 2008). Previous research has shown that mussels 

exposed to elevated pCO2 have a poor capacity to control or compensate their 

extracellular pH (Thomsen et al., 2010). Subsequently, it is likely that the accumulation 

of both alanine and succinate in the mantle tissue of mussels exposed to pH 6.50 is 

therefore as a result of a drop in pHe, reducing the scope for aerobic metabolism and 

thus increasing anaerobic metabolism. 

 In addition to measuring an increase in alanine and succinic acid in mussels 

exposed to pH 6.50, this study also measured an accumulation of valine, isoleucine and 

tyrosine in these organisms. Jones et al. (2008) measured an increase in the 

concentration of valine in mussels exposed to a combination of nickel, a trace metal, 

and chlorpyrifos, an insecticide, whilst Tuffnail et al. (2009) showed a hypoxia-related 

increase in valine levels in M. edulis. Furthermore, Liu et al. (2011) also measured an 
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elevated level of these branched-chain amino acids in the Manila clam exposed to 

mercury. These authors consequently proposed a disturbance in osmotic balance to be 

the cause of this metabolite accumulation,  highlighting the role of the free amino acid 

pool in balancing intracellular osmolarity in molluscs (Viant et al., 2003). However, 

these oxidisable amino acids are also used extensively for energy metabolism (Tikunov 

et al., 2010). Therefore further study is required to confirm the mechanism by which 

these branched-chain amino acids increase in concentration in mussels exposed to pH 

6.50.  

 Whilst exposure to pH 6.50 led to an increase in both alanine and succinic acid 

concentration, exposure to pH 7.60 and 7.35 resulted in a decrease in both amino acids. 

Furthermore, exposure to moderate seawater acidification led to a reduction in an 

unidentified metabolite (spectral peak 1.10 ppm), as well as an increase in the 

concentration of both isoleucine and glycine. Measuring a reduction in both alanine and 

succinic acid in mussels exposed to moderate seawater acidification would suggest they 

have not exceeded their aerobic scope at this pH. Indeed, as alanine can be 

transaminated to pyruvate as part of gluconeogenesis, a process that fuels an increased 

metabolic demand (Lannig et al., 2010), recording a decrease in alanine and succinic 

acid more likely suggests an increase in aerobic metabolism in these organisms. Such an 

increase in gluconeogenesis, and the subsequent decrease in alanine concentration as 

measured in the current study, has previously been recorded in fish and oysters exposed 

to moderate seawater acidification (Deigweiher, 2009; Lannig et al., 2010). Whilst 

gluconeogenesis was not measured in this present study it is interesting that Thomsen 

and Melzner (2010) also demonstrated an increase in metabolic rate in mussels exposed 

to pH 7.70, 7.38 and 7.14, compared to controls. These authors suggest that mussels 

exposed to moderate seawater acidification increase their metabolic rate to compensate 
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for the increased cellular energy demand and increased nitrogen loss experienced under 

these conditions. 

 As well as showing a decrease in alanine and succinic acid in mussels exposed 

to pH 7.60 and 7.35, mussels also show a reduced concentration of the unknown 

metabolite 1.10 ppm, whilst glycine and formic acid increased. The spectral peak at 

1.10 ppm has been documented previously in NMR-based metabolomics, with this 

metabolite being important in the separation of control and cadmium exposed groups of 

the green mussel, Perna viridis (Wu and Wang, 2010). However, despite the impact of 

metal toxicity on this metabolite, its identity and therefore its mode of action remain 

unknown, as is also the case with formic acid at present. Conversely, glycine is one of 

the most commonly annotated metabolites in marine bivalves, being an important 

organic osmolyte, central to bivalve osmotic regulation. Previous research has 

demonstrated an increase in glycine in response to mercury (Liu et al., 2011), whilst an 

exposure to copper (Wu and Wang, 2010; Zhang et al., 2011), cadmium (Wu and Wang, 

2010) and nickel (Jones et al., 2008) are all shown to decrease glycine concentration. As 

with valine and isoleucine, an alteration in glycine concentration is widely accepted as 

an indication of a disturbance to osmoregulation, therefore in measuring an increase in 

glycine at pH 7.60 and 7.35 likely indicates a disturbance to osmoregulation under 

moderate seawater acidification.  

  

5.4.2 Effects of increased seawater temperature on the mussel metabolome 

 

An increase in temperature is understood to lead to an increase in metabolism in 

ectothermic organisms (Somero, 2002). Subsequently, in showing alanine and succinic 

acid to be important factors in the separation of the control (12.5 °C) and increased 
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temperature (17.0 °C) mussel groups, the current study demonstrated such an impact of 

temperature on the energy metabolism in mussels. Interestingly however, as noted in 

mussels exposed to pH 6.50, individuals exposed to the increased temperature treatment 

in the present study were shown to have higher levels of both alanine and succinic acid 

in their mantle compared to mussels maintained at 12.5 °C. With an increase in alanine 

and succinate widely accepted as biomarkers of anaerobiosis (De Zwaan et al. 1976; 

Michaelidis et al. 2005a), this would suggest that at 17.0 °C the mussels used in the 

present study have reached their thermal tolerance limit and exceeded their aerobic 

scope. This is perhaps surprising, given the moderate level of warming used in the 

current study and the range of temperatures mussels would naturally be exposed to in 

their temperate intertidal estuarine habitat (Attrill et al., 1999; Morris and Taylor, 1983). 

One possible explanation for this response may be due to the difference between the 

temperature exposure used in the current study and the marked fluctuation of extreme 

temperatures mussels will naturally experience in the field. Estuaries are typically 

dynamic systems, with conditions fluctuating over a multitude of temporal scales, such 

as seasonal, diurnal and tidal cycles (Attrill et al., 1999). Therefore, whilst mussels will 

likely experience temperatures far in excess of 17.0 °C, often in concert with additional 

stressors such as air exposure, these exposures will often be of a much shorter duration 

(circa 6 hours) interspersed by periods of respite at cooler temperatures. Mussels may 

therefore have adapted to cope with such an exposure regime, with adaptation 

mechanisms having evolved in mussels to ensure survival of acute periods of stress 

exposure followed by periods in which organisms can restore physiological 

homeostasis. In the present study however, mussels were subjected to a prolonged 

exposure to increased seawater temperatures, as proposed to occur at the end of the 

current century (IPCC 2007), with no respite offered by periodic exposure to cooler 
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temperatures. Therefore, prolonged exposure to increased temperature may lead to a 

reduction in oxygen capacity, a reduction in aerobic scope and thus an increase in 

anaerobiosis. It is also possible however, that the increase in both alanine and succinic 

acid are as part of a tissue specific response, with mussels reducing metabolic demand 

and oxygen consumption in mantle tissues as a physiological trade-off to maintain 

homeostasis in other tissues, such as the gills or hepatopancreas. As a result, to fully 

understand the mechanism by which a moderate temperature increase impacts the 

overall mussel metabolic status, further study is required to investigate whole organism 

oxygen consumption and tissue specific metabolic profiles under stressful conditions. 

Nonetheless, in showing an altered energy metabolism in the mantle of mussels exposed 

to a warming scenario predicted to occur within the next century (IPCC, 2007), this 

study has emphasised the importance of this abiotic factor in determining organism 

performance even under a relatively moderate, yet stable, increase.  

 In addition to measuring an increase in alanine and succinic acid in mussels 

exposed to increased seawater temperatures, warming led to an increase in valine as 

well as a decrease in both glycine and an unidentified metabolite at 1.10 ppm. The 

increase in valine was also shown in mussels exposed to pH 6.50 (Sect. 5.4.1). It is 

likely that this increase in valine and reduction of glycine is due to a disturbance of 

osmoregulation or energy metabolism under increasing seawater temperatures, however 

further study is required to confirm this hypothesis. Additionally, the unidentified 

metabolite at 1.10 ppm was shown to be reduced by moderate seawater acidification, 

however with the identity of this metabolism remaining unknown, its mode of action 

cannot be understood at present. 
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5.4.3 Effects of a pathogen exposure on the mussel metabolome 

 

Exposure to a pathogenic challenge is understood to be energetically costly (Flye-

Sainte-Marie et al., 2007), therefore it is not surprising that in the current study a 

bacterial exposure was shown to have a significant effect on the mussel metabolome. As 

shown in mussels exposed to pH 7.60 and 7.35, an exposure to Vibrio tubiashii led to a 

decrease in both alanine and succinic acid concentration. As an increase in both alanine 

and succinic acid are clear biomarkers of anaerobic metabolism in marine molluscs (De 

Zwaan et al., 1976), this would suggest a pathogenic challenge does not lead to 

anaerobiosis in these organisms under the conditions of the current experiment. 

Furthermore, as was proposed with a moderate reduction in seawater pH (Sect. 5.4.1), it 

is possible that a reduction in both alanine and succinic acid indicates an increased 

energetic demand in infected mussels, and thus an increased metabolic rate. However, 

to confirm this hypothesis and to understand the full metabolic cost of a pathogen 

exposure further study is required taking into account seasonal factors and ideally a 

range of ecologically relevant pathogens for European mussel populations.   

 Alongside measuring a reduction in succinic acid and alanine, mussels exposed 

to a pathogenic challenge were shown to have lower levels of both valine and isoleucine 

in their mantle, compared to organisms studied prior to an inoculation, as well as 

increased levels of glycine. As discussed previously (Sect. 5.4.1), valine and isoleucine 

are branched-chain amino acids involved in both osmoregulation and energy 

metabolism in marine molluscs (Tikunov et al., 2010; Viant et al., 2003), whilst glycine 

is an important organic osmolyte (Liu et al., 2011). The accumulation of these 

metabolites is shown to be affected by trace metal contamination, hypoxia and an 

insecticide exposure (Jones et al., 2008; Liu et al., 2011; Tuffnail et al., 2009; Wu and 



Chapter 5                                                                                                                         Mussel Metabolome 

- 173 - 

 

Wang, 2010; Zhang et al., 2011), indicating their importance as indicators of metabolic 

stress. However, whilst it is likely that it is a disturbance of energy metabolism or 

osmoregulation that has led to the altered levels of these metabolites in the present 

study, the exact mechanism resulting in altered accumulation remains unknown at 

present.  

 

5.4.4 Effects of gender on the mussel metabolome 

 

In demonstrating an effect of gender on the metabolome of mussel mantle tissue, this 

study supports previous research which has shown the metabolic profile in male and 

female mussels to differ significantly (Hines et al., 2007a, b). However, in contrast to 

previous research, in the present study the difference is predominantly caused by higher 

levels of alanine and succinic acid in females, and higher concentrations of valine, 

glycine and an unidentified metabolite at 1.10 ppm in males. Hines et al. (2007a) also 

showed that male mussels where characterised by a higher concentration of glycine. 

However these authors also demonstrated higher concentrations of phosphoarginine and 

glutamate in males, a difference that was not noted in the present study. Furthermore, in 

the study by Hines et al. (2007a), females were shown to have higher levels of 

acetoacetate, lysine, tyrosine and an unidentified metabolite at 3.69 ppm, whilst no 

significant difference in the levels of alanine or succinic acid were noted. The difference 

between the two studies may be due, in part, to the season in which the organisms were 

sampled. Hines et al. (2007a) studied the response of organisms collected during July, 

falling within the spawning period of the sample population. Conversely, in the present 

study the mussel metabolome was measured during winter. Therefore, the differences 

noted in the metabolome of male and female organisms between the current study and 
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that of Hines et al. (2007a) may be caused by a varying influence of reproductive 

processes on the metabolome at different times of the year. Conversely the different 

metabolic profile noted in the two studies may be due to species differences, caused by 

a slight difference in the reproductive strategy of the two study organisms. Whilst the 

present study used M. edulis, Hines et al. (2007a) investigated the metabolic profile of 

M. galloprovincialis. M. edulis is shown to have a shorter, more vigorous and 

concentrated spawning period compared to M. galloprovincialis (Bayne, 1976). Thus, a 

more distinct metabolic change might be predicted to occur in the ripe tissues of M. 

edulis, leading to a different metabolic profile and hence to different metabolites 

contributing to the gender differences. Such an impact of species on metabolite profile 

was subsequently demonstrated by Hines and colleagues in a subsequent study, where 

both the impact of gender and reproductive status were investigated (Hines et al., 

2007b). In showing ripe M. edulis to differ in their metabolite profile compared to M. 

galloprovincialis, this second study by Hines et al. (2007b) outlined the subtle but 

significant differences in the metabolome of these two mussel species, highlighting that 

understanding an individual’s species is crucial to accurately interpret any metabolomic 

data. 

 Whilst it is possible that the disparity between the two studies is due to species 

differences, it is also feasible this contrast is due to the time during the reproductive 

season at which mussels were sampled. In the present study mussels were collected in 

December and maintained until late March, a period during which mussels typically 

reconstitute energy reserves before undergoing gametogenesis (Lowe et al., 1982). 

However by sampling in July, typically a period in the middle of the mussel spawning 

season, the study by Hines and colleagues (2007a) investigated individuals later in their 

reproductive season, likely resulting in a different metabolic profile. Similarly, Hines et 
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al. (2007b) demonstrated an impact of season on the mussel metabolome. Whilst 

spawning was shown to lead to an increase in the glycine concentration of female M. 

edulis, spent males had a significantly lower glycine concentrations compared to ripe 

individuals. This impact of spawning led to a reversal of the gender difference in the 

concentration of glycine noticed in ripe mussels, leading the authors to suggest that 

investigators need to be cautious in using this metabolic marker as a determinant of 

gender assignment, and that as with species, understanding an individual’s reproductive 

status will help in interpreting metabolomic data. Therefore in the present study, the fact 

that all the mussels included in the metabolomic study were ripe adults, or organisms 

still undergoing gametogenesis, this may have resulted in a different metabolic profile 

compared to mussels used by Hines et al. (2007a).  

 Interestingly, in showing both alanine and succinic acid to be important 

discriminates of gender, the present study highlights the importance of energy 

metabolism for differentiating between male and female mussels. Females are shown to 

have a higher level of both metabolites in their mantle tissue compared to males, 

suggesting anaerobic metabolism is more prevalent in female reproductive tissues. 

Given that males are widely understood to adopt a more risk prone strategy with respect 

to resource allocation and reproduction (as discussed in Sect. 3.4.2), this metabolic 

profile may therefore have been as a result of males investing more resources towards 

reproduction and thus reproductive tissues, potentially at the expense of other 

physiological processes under stressful environmental conditions. However, to test this 

hypothesis further study is again required to investigate the metabolic profile and 

oxygen consumption of other tissues within male mussels and to investigate the impact 

of anthropogenic climate change on the metabolic profile of mussels at different stages 

of the reproductive cycle. 
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5.4.5 Conclusions 

 

In showing the metabolome of M. edulis to be impacted by reduced seawater pH, 

increased seawater temperature, a bacterial exposure and gender, the current study 

further highlights the potential of this post-genomic molecular technique for 

investigating the impact of environmental stress on marine invertebrate physiology. 

Unsurprisingly, exposure to reduced seawater pH, increased seawater temperature and a 

bacterial exposure were all shown to impact the energy metabolism in mussels, with 

both alanine and succinic acid contributing significantly to the group dissimilarity 

measured between impacted and control groups for each of these environmental 

stressors. Exposure to moderate seawater acidification is shown to lead to a slight 

increase in aerobic metabolism, whilst exposure to pH 6.50 led to anaerobiosis in the 

mantle tissues of mussels. Surprisingly, an increased seawater temperature expected to 

occur within the next century (IPCC 2007) was also shown to lead to an increase in 

metabolic biomarkers of anaerobic metabolism, despite this temperature being within 

the range of environmental temperatures mussels will be naturally exposed to in their 

estuarine intertidal habitat. In addition to measuring a cost of reduced seawater pH and 

increased temperature, a bacterial exposure was also shown to be metabolically costly, 

with a decrease in alanine suggesting increased aerobic metabolism. However, to fully 

understand the extent to which mussels increase aerobic respiration or the threshold at 

which they exceed their aerobic scope, under environmental stress requires the 

investigation of tissue specific oxygen consumption and metabolic profiles. 

  The free fatty acid pool, and specifically the metabolites valine, glycine and 

isoleucine are also shown to be important biomarkers of environmental stress in mussels 

in the current study. However, whilst these metabolites are the most predictive 
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parameters of environmental stress, the exact mechanism by which stress is impacting 

the mussel metabolism remains unknown. Branched-chain amino acids, such as glycine 

and valine, are important for both energy metabolism and osmoregulation in bivalves, 

and thus to understand how environmental stress is impacting mussel physiology again 

requires further study. Moreover, this study highlighted the importance of an unknown 

metabolite at 1.10 ppm for determining exposure to environmental stress, demonstrating 

its importance in the mussel stress response. Yet the identity of this metabolite is 

required to fully characterise and understand its mode of action. 

 Whilst environmental stressors are shown to significantly impact the mussel 

metabolome, as measured by 1H-NMR based metabolomics; gender is also shown to be 

a key determinant of the metabolic profile in M. edulis. Furthermore, it is the same 

metabolites that are shown to be responsible for the group dissimilarity in organisms 

exposed to environmental stress that are also shown to be predictive of organism 

gender. This study therefore re-emphasises the importance of accounting for organism 

gender when investigating the impact of environmental stressors on marine invertebrate 

physiological functioning and when interpreting metabolomic data derived from 

perturbation experiments. 
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CHAPTER 6.  OVERALL DISCUSSION AND 

CONCLUSIONS  
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6.1. INTRODUCTION 

 

The aims of this thesis, as outlined in Chapter 1, were two-fold. To investigate the 

impact of environmental stressors on the mollusc immune response, providing empirical 

data on how anthropogenically induced stressors affect the invertebrate immune system, 

and how this in turn influences organism condition and physiological trade-offs. As 

discussed in chapter 2, this study focused on the impact of anthropogenic climate 

change, proposed as one of the greatest threats to marine ecosystems (Harley et al., 

2006). Using a laboratory based experimental setup, adults of the blue mussel, Mytilus 

edulis, were exposed to a range of environmental temperatures and seawater pH levels 

predicted to occur over the next 100 – 300 years (IPCC, 2007). Assessing the impact of 

any stressor-induced immune suppression on organism disease resistance in the 

presence of the pathogenic bacterium, Vibrio tubiashii, this study investigated the 

impact of ocean acidification (OA) and ocean warming on mussel immunocompetence 

functionally (Chapter 3). Furthermore, in addition to measuring host defence, this study 

also investigated reproductive investment (Chapter 4), fatty acid composition of mantle 

tissue (Chapter 4) and the mussel metabolome (Chapter 5), with the aim of investigating 

the impact of anthropogenic climate change on organism condition as well as on the 

trade-off of resources allocated to different life-history traits. 

 The results obtained from this thesis have demonstrated that exposure to reduced 

seawater pH, increased temperature and a pathogen exposure induces a complex set of 

physiological responses in M. edulis. Mussels are seemingly tolerant of a moderate 

reduction in seawater pH, with immune response, reproduction and energetic resource 

sequestration remaining unaffected. However, when exposed to pH 6.50 mussel 

survival, immune defence, reproduction and metabolism are all significantly depressed. 
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Whilst exposure to OA had little impact on these organisms at a level predicted to occur 

by 2300, increased seawater temperature significantly affected reproduction and 

metabolism. Furthermore, increased temperature enhanced the sensitivity of mussels to 

low pH seawater, significantly reducing survival. However, perhaps the most notable 

result from this study is that an inoculation with the pathogenic bacterium V. tubiashii 

was shown to lead to an alteration in mussel energy allocation. Organisms exposed to 

pH 6.50 were shown to up-regulate host defence alongside a concurrent decrease in the 

energy allocated to reproduction. In exposing mussels to a pathogenic challenge, this 

study was able to demonstrate the complex physiological trade-offs employed by M. 

edulis exposed to environmental stress, yet failing to account for these trade-offs may 

lead to a misinterpretation of results and an inaccurate assessment of the sensitivity of 

mussels to anthropogenic climate change. Furthermore, as highlighted throughout this 

thesis it is crucial to account for the impact of gender, season and local adaptation when 

assessing the sensitivity of an organism to reduced seawater pH and increasing 

temperature. 

 Having above summarised the main experimental results obtained from this 

thesis, the remainder of this discussion chapter will first consider these results within 

the context of existing literature (Sect. 6.2). Section 6.3 will then outline the limitations 

of current research, highlighting the specific areas in which a concerted research effort 

is needed to help develop our understanding of environmental stressor impacts. Finally, 

any overall conclusions that can be drawn from this thesis will be presented in Section 

6.4. 
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6.2. FROM METABOLITES TO META-ANALYSIS - THE RESPONSE OF 

MUSSELS TO ANTHROPOGENIC CLIMATE CHANGE  

 

As calcifying marine organisms of significant commercial importance (FAO, 2010; 

Gestal et al., 2008; Gosling, 2003), mussels have received particular attention over the 

past decade with respect to OA and anthropogenic climate change. Yet despite being 

perceived as one of the most vulnerable groups to perturbations in seawater carbonate 

chemistry (Fabry et al., 2008; Kleypas et al., 2006; Orr et al., 2005), there is as yet no 

consensus on what the impact of anthropogenic climate change on marine mussels or 

other species of molluscs will be. The present study suggests that the inability to 

observe a significant mean effect in previous research may be due, in part, to the 

different experimental levels of acidification used in those studies or artefacts of the 

experimental design leading to a subsequent misinterpretation of results. Furthermore, 

as shown throughout this thesis, it is possible that failing to account for gender 

differences in the response of mussels to environmental stress may result in previous 

research having reported contrasting results. These contrasting results could in turn 

impede a conclusive meta-analysis of the sensitivity of mussels to OA. By considering 

the results of this thesis in light of previous research on M. edulis, the below subsections 

will discuss the likely impact of reduced seawater pH, increased seawater temperature 

and a pathogenic challenge on the survival of mussel populations in a future ocean. 

 

6.2.1 Effects of reduced seawater pH on the immune response, reproduction and energy 

allocation in mussels 

 

In showing the mussel immune response to be unaffected by a moderate reduction in 
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seawater pH, this present study appears to contradict previous research where mussels 

exposed to pH 7.7 and 7.4 were shown to significantly reduce phagocytic activity 

(Bibby et al., 2008) and lysozyme-like activity of cell-free haemolymph (Matozzo et al., 

2012). Previous research has shown that the bivalve mollusc immune response is 

significantly affected by season, with organisms having a reduced immune response in 

summer, during their spawning period, compared to organisms studied in the spring or 

autumn (Matozzo et al., 2003; Pipe et al., 1995b). This reduced investment in immune 

system maintenance during summer could be as a result of a trade off between the cost 

of immunity and the energetically expensive process of spawning. As proposed in 

Chapter 3, it is possible that the difference between the current thesis and the studies 

carried out by Bibby et al. (2008) and Matozzo et al. (2012), may be due in part to the 

seasonality of the mussel immune response or to a difference in the sensitivity of the 

different populations used. In the present study, mussels were sampled during the 

winter, a period of energy reconstitution in  these organisms (Lowe et al., 1982), 

whereas Bibby et al. (2008) sampled mussels during June, corresponding to the summer 

spawning period in the sampled population. However, whilst the seasonality of the 

immune system may partially explain this variation, a recent study by  Matozzo et al. 

(2012) would appear to refute an overriding seasonal impact on organism response. 

These authors collected individuals during December, with organisms collected during 

winter still showing a reduction in host defence under OA scenarios (Matozzo et al. 

2012).  

 Alternatively, it is possible that the difference between the present study, and 

that of Bibby et al. (2008) and Matozzo et al. (2012), is due to a different sensitivity of 

populations studied. The mussels used throughout this thesis were collected from an 

intertidal estuarine site, whereas the two previous studies collected individuals from 



Chapter 6                                                                                                                           General Discussion 

- 183 - 

 

intertidal rocky shore locations. It is possible therefore that differences in the variability 

of carbonate chemistry parameters that exist naturally between these habitats (Borges 

and Gypens, 2010; Borges et al., 2006)  may have led to local adaptation, and thus to 

different sensitivities of mussel populations to OA. Finally, it is possible that these 

differences are in part due to the complex speciation of the Mytilus genus in the north 

west Atlantic (Hilbish et al., 2002). In collecting mussels from Exmouth, east Devon, 

the current study investigated a population that is proposed to comprise entirely of pure 

M. edulis (Hilbish et al., 2002). Conversely, Matozzo et al. (2012) measured the 

response in M. galloprovincialis, whilst Bibby et al. (2008) investigated the response of 

a population of mussels from North Cornwall, proposed to fall within a Mytilus hybrid 

zone (Hilbish et al., 2002). Therefore, it is possible that the different responses noted in 

the three studies may be as a result of genotypic differences in the response of mussels 

to environmental stress.   

 As with host defence, this present study demonstrated that seawater acidification 

(pH 7.80 to 7.35) did not impact reproductive processes, or the lipid composition of 

mantle tissue (Chapter 4). In showing reproduction to be largely unaffected by OA, the 

present study supports the findings of Beesley et al. (2008). Thus it is concluded that the 

mussels used in the current study are seemingly tolerant of ‘moderate’ seawater 

acidification, at least at levels predicted to occur over the next 100 - 300 years. 

Thomsen et al. (2010) noted a similar tolerance to OA in M. edulis from a population in 

Kiel fjord, where seawater pH naturally falls below 7.5 during the summer and autumn 

months. The results from Thomsen et al. (2010), along with the findings from the 

present study, suggest mussels may be able to adapt to local carbonate chemistry 

conditions. Such increased tolerance, or local adaptation, may be critical in assessing 

the overall vulnerability of mussels to reduced seawater pH across their geographical 
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range. Indeed, Parker et al. (2011) argue that selective breeding of resistant populations 

may offer a vital mechanism to safeguard aquaculture brood stock, as well as natural 

populations, under future seawater conditions. Nevertheless, failing to account for 

variations in the response of different populations may hamper our ability to make 

accurate predictions on the likely fate of mussels in a future ocean. 

  Despite showing no impact of moderate seawater acidification (pH 7.80 to 7.35) 

on immune defence, reproductive provisioning or fatty acid composition, exposure to 

pH 7.60 and 7.35 seawater was shown to impact the mussel metabolome (Chapter 5), 

with a decrease in alanine levels indicating a possible increase in aerobic metabolism. 

This observation supports findings reported by Lannig et al. (2010), the only previous 

study to have use metabolomics to investigate the impact of OA on the bivalve 

metabolome. In showing a decreased level of alanine in oysters exposed to pH 7.7, 

Lannig et al. (2010) proposed that this increased metabolic flux is a mechanism to 

compensate for the increased energy demand during moderate stress. Similarly, 

Thomsen and Melzner (2010) also demonstrated an increase in routine metabolic rates, 

measured by an increase in rates of oxygen consumption, in mussels exposed to pH 

7.70, 7.38 or 7.14.  Previous research showed that exposure to reduced seawater pH 

significantly decreased calcification (Gazeau et al., 2007) and increased shell 

dissolution (Melzner et al., 2011) in mussels. It is therefore possible that the increased 

metabolic demand noted in the present study at pH 7.60 and 7.35 may be associated 

with the increased cost of maintaining net calcification under these conditions (Findlay 

et al., 2012; Melzner et al., 2011; Wood et al., 2008). In demonstrating that exposure to 

pH 7.60 and 7.35 led to a slight increase in the shell breaking strength in the mussels 

sampled in the present study, whilst shell composition remained unaffected, Pearce et 

al. (unpublished) highlight these organisms are indeed able to maintain net calcification. 
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Nonetheless, despite measuring an increased metabolic rate, mussels in the current 

study still appear able to maintain the energy allocated to other physiological processes, 

indicating a certain level of tolerance to reduced seawater pH. The extent to which this 

increase is sustainable longer term, and thus the perceived vulnerability of these mussels 

to OA, will ultimately depend on the energetic resources available to mussels, as well as 

organism condition (Melzner et al., 2011; Wood et al., 2008, 2010).   

 Exposure to extreme acidification (pH 6.50) resulted in a reduction in the mussel 

immune response, supporting the findings of Bibby et al. (2008) and Matozzo et al. 

(2012), albeit under a more severe acidification scenario. Furthermore, maintenance in 

pH 6.50 seawater resulted in a pronounced reduction in gamete investment, suggesting 

this low pH is exerting a significant energetic cost on these organisms. This hypothesis 

is further supported by the results from chapter 5, where mussels exposed to pH 6.50 

were shown to switch from aerobic to anaerobic metabolism, indicating a disturbance of 

energy homeostasis. Whilst entering a metabolically depressed state may conserve 

energy, ensuring extended survival time under extreme stress (Guppy and Withers, 

1999; Lannig et al., 2010), this strategy is unlikely to be sustainable in the long term. 

Prolonged exposure to pH 6.50 is therefore likely to impact a mussel’s physiological 

performance and ultimately reduce survival.  

 Exposure to pH 6.5 is thought unlikely to occur in natural systems with the level 

of acidification projected to occur by the end of the current century, or indeed by 2300 

(Caldeira and Wickett, 2003, 2005; IPCC, 2007). Importantly however, both the 0.5 unit 

decrease in seawater pH projected to occur by 2100 (Caldeira and Wickett, 2005) and 

the 0.7 unit decrease projected to occur by 2300 (IPCC, 2007) are largely derived from 

global models of surface seawater pH. These models have little resolution for regional 

variability and the complex influence of estuarine and upwelling systems (Feely et al., 
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2010). With seawater pH already shown to fall below projected worst case OA 

scenarios in upwelling and estuarine ecosystems (Attrill et al., 1999; Feely et al., 2008; 

Thomsen et al., 2010), it is possible that mussels may in fact experience a reduced 

seawater pH of 6.50 due to OA. Furthermore, in many benthic (sessile) marine 

organisms the exchange of respiratory gases across the gills and/or general body surface 

results in the formation of a diffusive boundary layer, often resulting in a reduced 

seawater pH layer of up to 1 mm thick immediately surrounding the organism (Kühl et 

al., 1995). This can mean that the pH actually experienced by an organism may again 

differ greatly from that of the bulk water phase (Sand-Jensen et al., 1985). With recent 

research showing that OA exacerbates this boundary layer pH gradient (Flynn et al., 

2012), it is again quite possible that benthic organisms may experience seawater pH 

levels far lower than models have predicted. In addition, extremely low levels of pH are 

projected to occur in conjunction with the possible leakage of CO2 from a sub-seabed, 

geological storage reservoir (Blackford et al., 2009), which as reported here is likely to 

have a significant impact on the persistence of mussels in an impacted environment. 

The results obtained from this thesis at pH 6.50 are therefore pertinent to assessing the 

vulnerability of mussels under a variety of natural and anthropogenically induced 

scenarios of seawater acidification. 

 

6.2.2 The response of host defence, reproduction and the mussel metabolome to 

increased seawater temperature 

 

Unlike reduced seawater pH, in the present study increased seawater temperature was 

shown to have a significant impact on mussel host defence and reproductive 

provisioning at a level projected to occur in the next 100 years. Mussels maintained at 



Chapter 6                                                                                                                           General Discussion 

- 187 - 

 

17.0 °C significantly increased the antibacterial activity of their cell-free haemolymph 

(Chapter 3), supporting previous research on the impact of temperature on the bivalve 

immune response (e.g. Chen et al., 2007a; Matozzo et al., 2012; Monari et al., 2007). 

This increase in immune system maintenance may represent an increase in the activity 

of hydrolytic enzymes at warmer temperatures, with mussels potentially experiencing 

an increase in immunocompetence due to increasing seawater temperature. Any 

increase in immune defence may prove to be a crucial factor in the survival of mussel 

populations under anthropogenic climate change conditions, with increased seawater 

temperatures also linked to an increase in the spread of pathogens (Elston et al., 2008; 

Martin et al., 2010) and to an increase in the occurrence of mass mortality events in 

bivalve populations (Li et al., 2009a). 

 In contrast to the response measured with host defence, an increase of 4.5 °C in 

seawater temperature was shown to significantly reduce the reproductive investment in 

mussels (Chapter 4). Individuals maintained at 17.0 °C reduced the proportion of the 

mantle attributed to gametes compared to the control. Any reduction in gamete 

production could have major a consequence for the persistence of mussels within an 

environment, with compromised larval production in turn jeopardising adult populations 

and marine communities (Byrne, 2011). Furthermore, when considered alongside 

previous research that showed larval bivalves to be particularly sensitive to 

anthropogenic climate change (e.g. Bechmann et al., 2011; Gaylord et al., 2011; Gazeau 

et al., 2010), any reduction in gamete investment in adults may compound the 

sensitivity of these calcified marine organisms during their early life cycle stages.  

 Although previous research demonstrated that mussels can reduce the energy 

allocated to reproduction under stressful environmental conditions (Petes et al., 2008), 

this present study is the first to demonstrate that males and females alter the investment 
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in reproduction differentially (Chapter 4). By reducing the investment in immune 

defence whilst maintaining reproductive investment, males may ensure that they are still 

able to successfully reproduce under stressful environmental conditions. Conversely, by 

significantly reducing the energetic investment in reproduction when exposed to stress, 

females may ensure maintained homeostasis and thus future fecundity.  

 In addition to gamete investment, gender also affected the fatty acid composition 

of mantle tissue and the impact of temperature on the fatty acid content (Chapter 4). 

Females had a greater fatty acid content, a greater proportion of SFAs and a greater 

proportion of MUFAs, compared to males. However, increased temperature was shown 

to increase the fatty acid content of mantle tissue in males, a response that was not 

found in females. Again this is the first study to have demonstrated a difference in the 

fatty acid composition of males and females exposed to increased temperature. With 

males and females responding differently to temperature, possibly as a result of 

different reproductive strategies under stressful environmental conditions, 

anthropogenic climate change could have significant consequences on the population 

dynamics of this species. 

 Perhaps the most unexpected result was that at 17.0 °C mussels appeared to have 

exceeded their aerobic threshold (Chapter 5), despite this temperature falling within the 

temperature range naturally experienced by this species. Furthermore, this response 

again appeared to be enhanced in females, with an increased level of alanine and 

succinate in females contributing to the difference between the male and female 

metabolome. In indicating a transition to anaerobic metabolism and a reduced 

reproductive investment at 17.0 °C, it is likely that seawater temperature, rather than a 

moderate reduction in seawater pH, will largely determine the impact of anthropogenic 

climate change on mussels over the next 100 years. This sensitivity to increased 
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temperature has already been shown to lead to a marked shift towards higher latitudes in 

wild mussel populations (Jones et al., 2009), as well as to a dramatic decline in the 

diversity of mussel bed communities over the past 50 years (Smith et al., 2006). 

Furthermore, in showing females to be particularly vulnerable to increased temperature, 

it is possible that rising seawater temperatures could lead to a significant shift in the 

dynamics of these populations. 

 Whilst increased temperature is proposed to lead to a general poleward shift in 

many organisms, recent research on mussel has shown this response, and the sensitivity 

of populations to increasing temperature, also varies both on a global and regional scale. 

Sorte et al. (2011) noted that populations of M. edulis in the Western Atlantic were 

more susceptible to increasing temperatures, compared to their Eastern Atlantic and 

Pacific counter-parts, indicated by a recent range contraction. Similarly Hilbish et al. 

(2012) noted a difference in the sensitivity of mussel populations to increasing 

temperature, as indicated by the Mytilus hybrid zone dynamics in the North West 

Atlantic. Whilst the hybrid zone in the English Channel was shown to shift 

approximately 100 km eastwards with continued warming over the past two decades, 

two similar hybrid zones along the Atlantic coast of France were not shown to change in 

position or shape over the same period. A temperature-induced shift in mussel 

speciation could affect the perceived susceptibility of mussel populations to additional 

environmental stressors if, as possibly indicated in this study, M. edulis is more tolerant 

to reduced seawater pH than M. galloprovincialis, or the hybrid of these two species. 

Alternatively, it is possible that the difference in susceptibility to anthropogenic climate 

change between these two species may reduce the distribution and spread of hybrid 

zones. As proposed by Bierne et al. (2003), habitat preference has a significant impact 

on the marine-speciation paradox, and whilst the hybrid zones of species such as M. 
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edulis and M. galloprovincialis could potentially spread over thousands of kilometres, 

in reality these hybrid zones are often characterised by a small-scale mosaic distribution 

influenced by the ecological barriers enforced by changing regional environmental 

conditions. Increasing temperatures could, therefore, potentially lead to an increase in 

the available habitat range of the more thermo-tolerant M. galloprovincialis, yet equally 

this could be counteracted by reducing seawater pH, and the possible enhanced 

vulnerability of M. galloprovincialis to moderate OA.    

 

6.2.3 Impact of a bacterial challenge on Mytilus edulis exposed to anthropogenic 

climate change 

 

Exposure to anthropogenic climate change is shown to have a significant impact on 

immune system maintenance in M. edulis (Sect. 6.2.2 and 6.2.3). Furthermore, the stress 

induced by altered environmental conditions also resulted in a reduction in the energy 

allocated to other important life-history traits, as well as to a shift in metabolism. 

However, whilst measuring an altered immune response could indicate immune 

dysfunction, as has been proposed previously (Bibby et al., 2008; Matozzo et al., 2012), 

the function of the immune system is to protect an organism from infection (Ellis et al., 

2011) and arguably is best investigated in the presence of a pathogen (Viney et al., 

2005). Following an inoculation with the pathogenic bacterium, Vibrio tubiashii, the 

present study noted that a pathogen exposure led to an increase in the mussel immune 

response. Furthermore, a bacterial exposure was also shown to lead to an increase in 

aerobic metabolism, as well as a reduction in the fatty acid content of mantle tissue and 

a reduction in the energetic investment in reproduction.  
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 This is the first study to date to have investigated the trade-off between immune 

defence, reproduction and metabolism in organisms exposed to anthropogenic climate 

change. It is also the only study to date to have measured this response in the presence 

of a pathogen. Whilst exposure to V. tubiashii was shown to increase host defence in 

mussels, this was only noted in individuals maintained at pH 6.50. The immune system 

of mussels maintained at all other pH levels remained unaffected by this immune 

system challenge. Interestingly, when considered alongside the response of individuals 

sampled prior to a pathogenic challenge (as discussed in Sect. 6.2.2), it would appear 

that mussels exposed to pH 6.50 reduced the energy allocated to host defence. Crucially 

however, it appears mussels maintained the ability to increase host defence when 

required, in this instance when exposed to V. tubiahsii. Therefore, the initial reduction 

in the antibacterial activity of cell-free haemolymph measured in the absence of a 

pathogen likely indicates a physiological trade-off in the energy allocated to immune 

system maintenance, rather than a reduction in immune system functionality as 

previously suggested (Bibby et al., 2008; Matozzo et al., 2012). Consequently, without 

the context provided by a subsequent pathogen exposure, the complex response noted in 

the immune system of M. edulis exposed to reduced seawater pH and increased 

temperature could have been misinterpreted, altering the perceived susceptibility of this 

species to environmental stress. 

 In maintaining immune system plasticity, it appears that mussels in the current 

study were able to reduce the energy required to maintain host defence whilst not 

significantly reducing immunocompetence. However, a pathogenic challenge is known 

to be energetically expensive (Lochmiller and Deerenberg, 2000), with the resources 

required to mount an immune response being physiologically costly (Kelly, 2011). The 

cost of condition dependant life-history traits, such as reproduction and host defence, 
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must therefore trade-off against each other (Sheldon and Verhulst, 1996). In showing 

that mussels in the current study reduced their energetic investment in reproduction, as 

well as showing they have reduced fatty acid content in their mantle tissue, it appears 

immune-challenged mussels reallocate resources from energy storage and reproduction 

in order to overcome a bacterial exposure. Furthermore, as measured using 1H NMR 

metabolomics, exposure to V. tubiashii was also shown to lead to an increased ATP 

demand, indicated by an increase in aerobic metabolism following a pathogen 

inoculation. 

 This is the first study to have demonstrated a physiological trade-off in mussels 

exposed to anthropogenic climate change and a pathogenic bacterium. However, in 

demonstrating a physiological trade-off in mussels exposed to reduced seawater pH, this 

thesis supports the research of Thomsen and Melzner (2010). These authors proposed 

the reduced shell growth measured under acidified conditions in M. edulis  to be as a 

result of the increased cellular energy demand, and thus a reallocation of energetic 

resources under stressful environmental conditions. Furthermore, this response has since 

been shown to be closely linked to an organism’s energy budget, with energy being re-

allocated from shell conservation to more vital processes, such as somatic mass 

maintenance, under food limited conditions (Melzner et al., 2011). Seibel et al. (2012) 

also demonstrated food limited energetic plasticity in another mollusc, the pteropod 

Limacina helicina forma antarctica, with CO2-induced metabolic depression being 

altered by changes in the abundance and composition of the phytoplankton community. 

These authors consequently argue that conflicting results on the ecological 

consequences of OA may reflect the true complexity of physiological responses, and 

physiological trade-offs, in marine organisms in response to a multi-faceted changing 

climate. 
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 From the research carried out in the present study, it is clear that mussels exert 

significant biological control over the allocation of resources to competing 

physiological processes. Such plasticity, and the ability to modulate biological 

processes, could ensure M. edulis is able to survive in a future ocean. Nonetheless, the 

sustainability of this response will ultimately depend on organism condition and the 

availability of energetic resources (Wood et al., 2008, 2010). Therefore, understanding 

the capacity of different species to respond effectively to climate change thus requires 

investigation at the whole organism level, rather than the process level (Wood et al., 

2008). This will ensure that the direct impacts of environmental stress on physiological 

functioning are considered alongside the indirect impacts on resource allocation and 

physiological trade-offs. Only when these responses are understood will we be able to 

accurately predict the likely impact of anthropogenic climate change on marine 

organisms.  

    

6.2.4 The impact of reduced seawater pH, increased temperature and a bacterial 

exposure on mussel survival 

  

Whilst measuring host defence or metabolism offers an understanding of how individual 

mussels may respond to a changing climate, ultimately to understand the impact of 

environmental stress at a population level it is important to measure mortality. In this 

thesis (Chapter 3) mortality was shown to increase when mussels were exposed to 

reduced seawater pH. It is therefore possible that OA could have a significant impact on 

mussel populations in a future ocean. Additionally, the magnitude of this mortality was 

shown to be temperature dependant. At 12.5 °C mussel mortality was only above 10% 

in mussels maintained at pH 6.50, yet at 17.0 °C mortality was greater than 10 % in 
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mussels maintained at pH 7.60, 7.35 and 6.50. In showing mussel mortality to be 

unaffected by moderate seawater acidification at 12.5 °C, this present study supports 

previous research where mussels were shown to be resilient to changes in seawater 

acidification (Beesley et al., 2008; Ries et al., 2009; Thomsen et al., 2010). Conversely, 

in showing mussel mortality to be drastically reduced when exposed to pH 6.50, this 

study highlights the potential negative impact of a carbon capture storage leak on 

mussel populations (Blackford et al., 2009). 

 Whilst previous research has shown mussels to be resilient to moderate changes 

in seawater pH, much of this literature has focused on single stressor ‘OA’ studies (e.g. 

Beesley et al., 2008; Gazeau et al., 2007; Thomsen and Melzner, 2010). In highlighting 

the possible implication of a combined increase in temperature and reduction in pH, this 

thesis further indicates the importance of multi-stressor studies. This is the only study to 

date to have investigated the combined impact of increased temperature and reduced 

seawater pH on mussel physiology, yet supports previous research where the sensitivity 

of marine invertebrates to OA is enhanced by a combined exposure to increased 

temperature (e.g. Findlay et al., 2010; Wood et al., 2010). In showing mussel mortality 

to increase when exposed to both increased temperature and reduced seawater pH, this 

present work demonstrates the important role environmental temperature will play in 

determining the sensitivity of this bivalve species to anthropogenic climate change over 

the next 100 - 300 years.  

 Increased mortality will ultimately reduce the persistence of mussel populations. 

However, it is critical to also consider what impact this will have on the perceived 

sensitivity of mussels to environmental stress. In the current study exposure to pH 6.50 

seawater was shown to increase mussel mortality to 66.7 %. Consequently, all 

subsequent physiological measurements made in mussels exposed to pH 6.50 were 
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taken from the surviving 33.3 % of the population. This ‘survivor response’ could lead 

to a significant skew in the data, with the organisms that are able to survive representing 

the most resilient proportion of the population. When considered in the absence of any 

mortality data, this survivor response could thus significantly impact the perceived 

susceptibility of organisms to anthropogenic climate change. Alternatively, it is also 

possible that this surviving 33.3 % may represent the proportion of the population that 

genetically are naturally resilient to reduced seawater pH. Recent research has 

demonstrated such a genetic basis for the individual variation in response to OA 

(Pistevos et al., 2011; Sunday et al., 2011), and the extent to which this individual 

genetic variation is heritable within a population represents the potential of that 

population to evolve due to natural selection (Dupont et al., 2010b; Pistevos et al., 2011; 

Sunday et al., 2011; Widdicombe and Spicer, 2008). Therefore, whilst this survivor 

response could impede our ability to accurately assess the fate of mussels in a future 

ocean, it may also offer a vital mechanism with which to investigate the ability of 

mussel populations to adapt to changing conditions and to survive in the face of 

otherwise overwhelming stress. 

  

6.3. TOWARDS AN IMPROVED UNDERSTANDING - KEY DIRECTIONS 

FOR FUTURE RESEACH 

 

The work reported in this thesis has provided important data on the impact of 

environmental stress on invertebrate immune response. Furthermore, it provides a new 

insight into the impact of anthropogenic climate change on Mytilus edulis physiology. 

However, by considering the results of this study in light of previous research, this 

thesis has also highlighted a number of key areas in which a concerted research effort is 
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required to improve our understanding. This section will outline these research areas, 

highlighting where a focused effort will help to provide an accurate prediction of the 

ecological implications of a changing marine climate. 

 Many of the experiments that have investigated the impact of environmental 

stress on the invertebrate immune response have, to date, been carried out in the 

absence of a pathogenic challenge, investigating the immunological response of the 

separate immune system parameters rather than investigating host-pathogen interactions 

functionally (Ellis et al., 2011). However, as outlined in this study, it is possible such an 

approach could lead to an inaccurate interpretation of the impact environmental stress 

has on organism disease resistance. Moreover, it is clear from this thesis that to fully 

understand the impact of anthropogenic climate change future studies need to account 

for physiological trade-offs. In coming to such a conclusion, this thesis adds to a 

growing body of literature that has emerged in recent years (e.g. Melzner et al., 2011; 

Wood et al., 2008, 2010), showing organisms reallocate resources between important 

physiological processes, or different life-history traits, in order to maximise fitness. 

Whilst driven ultimately by organism condition and food availability, it is clear from the 

current study organisms also maintain a level of control over this energetic plasticity. 

Therefore, to fully understand the impact of environmental stress on organism 

physiology future studies should investigate processes functionally, accounting for the 

possibility that a reduction in function could be as a result of an energetic trade-off.  

 When accounting for physiological trade-offs, the extent to which an organism 

must trade-off its resources between different physiological processes, or life-history 

traits, is dependent upon an organism’s condition (Kelly, 2011), as well as the resources 

that are available within its environment, such as food (Melzner et al., 2011). 

Furthermore, resource allocation will be dependent upon season, with gametogenesis 
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and spawning being two processes that will place a significant energetic burden on an 

organism’s available resource pool (Lowe et al., 1982). Therefore, there is a need within 

ecological immunology, as well as within the field of OA research in general, to 

measure and account for the impact of seasonal cycles. Fully understanding the 

implications of variable food availability within a natural ecosystem, as well as the 

impact this has on an organism’s resource sequestration, will help further explain 

sources of variability within current literature that to date have impeded our ability to 

predict species level responses. 

 As noted throughout this thesis, the mussels used in the current study were 

seemingly tolerant of a moderate reduction in seawater pH. This would appear to 

contradict previous research on this species (e.g. Bibby et al., 2008; Matozzo et al., 

2012), impacting our ability to accurately predict the impact of OA on marine mussels. 

However, whilst this thesis has not been able to definitively explain the cause of this 

variation, a number of hypotheses have been proposed that require further investigation. 

Firstly, it is possible that the contrasting results noted from studies on M. edulis to date 

are due to local adaptation to environmental conditions. However, despite the 

understanding that seawater pH varies significantly both on a temporal and spatial scale 

(Attrill et al., 1999; Feely et al., 2010), to date no study has attempted to incorporate 

this pH variability when investigating the sensitivity of marine organisms. What’s more, 

virtually all perturbation experiments to date have used the present day average surface 

seawater pH (nominally pH 8.05) as a control, using the mean values of projected 

change in seawater pH globally to represent impacted ecosystems (i.e. the IPCC 

projected reductions of 0.3 and 0.5 units by 2100 and 2300 respectively). It has been 

demonstrated that extreme events are likely to be far more important than average 

conditions, especially in the intertidal (e.g. Denny et al., 2006). Furthermore, OA is 
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likely to be superimposed upon this naturally variable pH profile noted in many marine 

habitats (Feely et al., 2010). Therefore, to fully understand the potential impact of 

reduced seawater pH on marine organisms, studies should ideally incorporate a measure 

of this natural variability. This will enable an understanding of the conditions marine 

organisms are actually likely to experience in their natural habitat, rather than 

investigating a global average change, which in reality very few benthic organisms will 

experience. Only then will we truly begin to understand the ability of marine organisms 

to acclimate and adapt to the climate conditions they will encounter in a future ocean.  

 Whilst local adaptation is indeed one possible explanation for the contrasting 

results achieved to date, it is important to investigate to what extent this adaptation is 

through phenotypic or genotypic variation. Many studies to date have, through 

necessity, investigated the response of marine organisms at a particular life-history 

stage, with very few studies having investigated the response of organisms across 

generational boundaries (Parker et al., 2012). Single generation studies inevitably 

incorporate a measure of intraspecific variation in response traits, often reported as a 

standard deviation or error of a mean, with this variation treated as ‘noise’ (Sunday et 

al., 2011). Yet it is this variation that could indeed hold the key to understanding the 

extent to which an organism may be able to evolve to a changing climate over a time-

scale of multiple generations (Spicer and Gaston, 1999). If this noise is indeed attributed 

to genetic variation within a population, rendering a proportion of a population as more 

resilient to environmental change, then the heritability of this genotypic variation will 

determine the adaptability of a population through natural selection (Pistevos et al., 

2011; Sunday et al., 2011). It is this lack of understanding, concerning the extent to 

which a species will be able to adapt or evolve in response to changing environmental 

conditions, which is one of the major limitations in our ability to accurately predict 
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species level responses. Future studies should therefore aim to investigate the response 

of different organisms to environmental stress, measuring the response across two or 

three generations. By elucidating the extent to which positive carry-over effects afford 

larvae genetically enhanced resistance will help explicate the true potential of a species 

to adapt and evolve in response to anthropogenically induced climate change. 

 It is becoming increasingly apparent, particularly with respect to studies 

investigating the metabolomic, proteomic or genomic response of an organism to 

environmental stress, phenotypic anchoring is key (Hines et al., 2007a). That is, 

knowing the true species, gender and reproductive status of the organism concerned. 

Whilst phenotypic anchoring is increasingly commonplace in these ‘omics’ based 

approaches, within other scientific disciplines this is not the case. However, in 

demonstrating that gender has a significant effect on the response of the blue mussel to 

anthropogenic climate change, particularly with respect to energy metabolism, this 

study highlights that the gender ratio of a sample population could significantly affect 

the result of a study. Additionally, as is particularly the case with the Mytilus genus in 

the north-west Atlantic (Hilbish et al., 2002; Riginos and Cunningham, 2005), 

speciation could significantly affect the response of an organism to environmental 

stress. Additionally, with reproductive processes shown to significantly affect an 

organism’s resource allocation and condition (Lowe et al. 1982, Kelly 2011), as well as 

any subsequent physiological trade-offs (e.g. Petes et al. 2008), understanding the 

reproductive condition of a sample population is critical. Therefore, future studies 

should at least attempt to define the species composition, gender ratio and reproductive 

status of a sample population, offering a further insight that will help explain any 

variable results that will inevitably arise with continued species level investigation.  
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6.4. CONCLUSIONS 

 

• Mytilus edulis appears to be resilient to moderate seawater acidification, at a level 

predicted to occur over the next 100 - 300 years; conversely exposure to pH 6.50 

significantly increases mussel mortality, as well as additionally leading to a 

physiological trade-off, and a shift in energy metabolism, in surviving organisms. 

• Host defence, like reproduction and energy metabolism, should be considered 

functionally, and in the context of the whole organism. Mussels are able to reduce 

the energy invested in host defence under stressful environmental conditions. 

However, these organisms maintain control over this plasticity, increasing immune 

response when required. Nonetheless, such plasticity is costly. To understand the 

implications of such costs it is crucial to measure the impact of a change in resource 

allocation for other physiological processes, or important life-history traits.   

• Increased seawater temperature, projected to occur by 2100, has a significant 

impact on mussel physiology and energy metabolism. Furthermore, temperature 

acts antagonistically, increasing the sensitivity of mussels to reduced seawater pH 

by increasing mortality.  

• Phenotypic anchoring is key to interpreting species level molecular ‘omics’ 

responses, with gender impacting the response of mussels to environmental stress. 
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