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ABSTRACT
The systematics of grasses has advanced through applications of plastome

phylogenomics, although studies have been largely limited to subfamilies or other

subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250

complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae.

Plastome sequences were determined from high throughput sequencing libraries

and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal

was characterized in 14 partitions, including (1) complete plastomes; (2) protein

coding regions; (3) noncoding regions; and (4) three loci commonly used in single

and multi-gene studies of grasses. Each of the four main partitions was further

refined, alternatively including or excluding positively selected codons and also the

gaps introduced by the alignment. All 76 protein coding plastome loci were found to

be predominantly under purifying selection, but specific codons were found to be

under positive selection in 65 loci. The loci that have been widely used in multi-gene

phylogenetic studies had among the highest proportions of positively selected

codons, suggesting caution in the interpretation of these earlier results. Plastome

phylogenomic analyses confirmed the backbone topology for Poaceae with

maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309

resolved were maximally supported in all trees. Analyses of newly sequenced

plastomes were in agreement with current classifications. Five of seven partitions in

which alignment gaps were removed retrieved Panicoideae as sister to the remaining

PACMAD subfamilies. Alternative topologies were recovered in trees from partitions

that included alignment gaps. This suggests that ambiguities in aligning these

uncertain regions might introduce a false signal. Resolution of these and other
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critical branch points in the phylogeny of Poaceae will help to better understand the

selective forces that drove the radiation of the BOP and PACMAD clades comprising

more than 99.9% of grass diversity.

Subjects Biodiversity, Evolutionary Studies, Genomics, Plant Science, Taxonomy

Keywords Grasses, Phylogenomics, Plastome, Classification, Systematics, Incongruence, Positive

selection, Purifying selection, Aristidoideae, Panicoideae

INTRODUCTION
Grasses (Poaceae) are the fifth largest family of flowering plants in the world, with some

11,500 species and about 768 genera (Soreng et al., 2017), and the family is economically

important because it includes wheat (Triticum L.), rice (Oryza L.) and corn (Zea L.), as

well as numerous forage, bamboo and biofuel species. Grasses grow on all continents in

tropical, temperate and Arctic zones. Grasses are common and often dominant

components of open ecosystems (prairies, pampas, steppes, veldts), but also occur in

association with forests, and they have diversified to inhabit aquatic to desert habitats. The

deep phylogenetic framework for Poaceae is well established (Grass Phylogeny Working

Group, 2001; Duvall et al., 2007; Bouchenak-Khelladi et al., 2008; Saarela & Graham, 2010;

Grass Phylogeny Working Group II, 2012). Three small, deeply diverging subfamilies

(Anomochlooideae, Pharoideae, Puelioideae) are the successive sister groups of a major

clade comprising two lineages, the BOP and PACMAD clades. The BOP clade consists of

three subfamilies: Bambusoideae (bamboos or bambusoids), Oryzoideae (rices or

oryzoids) and Pooideae (cool season or pooids). The PACMAD clade consists of six

subfamilies: Panicoideae (panicoids), Arundinoideae (arundinoids), Chloridoideae

(chloridoids), Micrairoideae (micrairoids), Aristidoideae (aristidoids) and

Danthonioideae (danthonioids).

The systematics of grasses have been studied throughout the history of botany, with the

first dedicated classification by Brown (1814), and classifications of the whole family or

parts thereof have been continually proposed through time as new information has

accumulated. The current subfamily classification was proposed by Grass Phylogeny

Working Group (2001) and modified by Sánchez-Ken et al. (2007) and Sánchez-Ken &

Clark (2010). The phylogenetic structure of the family was synthesised and reconciled with

morphological and developmental genetic data by Kellogg (2015). A recent worldwide

classification of grasses based explicitly on molecular phylogenetic evidence recognized 12

subfamilies, six supertribes, 52 tribes and 90 subtribes of grasses, with 21 genera unplaced

to tribe and 39 unplaced to subtribe (Soreng et al., 2017); this is an update of a

classification proposed two years earlier by Soreng et al. (2015b).

Complete plastid genomes from across the land plant tree of life are being sequenced

rapidly (Tonti-Filippini et al., 2017), including those from grasses. Saarela et al. (2015)

summarized all publications of grass plastomes published as of September 2014, and

many new plastomes have since become available. Recent grass plastome sequences have

been variously published in short contributions (Myszczy�nski et al., 2015; Wang & Gao,
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2015, 2016; Lu et al., 2016; Perumal et al., 2016) or in the context of detailed phylogenomic

analyses of different grass lineages, including the PACMAD clade (Cotton et al., 2015;

Teisher et al., 2017), Bambusoideae (Wu et al., 2015; Wysocki et al., 2015; Attigala et al.,

2016; Vieira et al., 2016; Zhang & Chen, 2016), Aristidoideae (Besnard et al., 2014),

Brachypodieae (Sancho et al., 2017), early diverging grasses (Burke et al., 2016a),

Panicoideae (Burke et al., 2016b), Chloridoideae (Duvall et al., 2016), Zea (Orton et al.,

2017), Micrairoideae (Duvall et al., 2017), Pooideae (Saarela et al., 2015) and Oryzeae

(Kim et al., 2015; Liu et al., 2016; Wu & Ge, 2016; Zhang et al., 2016a, 2016b).

Phylogenomic analyses of plastomes have contributed increased resolution and support

for many relationships within and among grass subfamilies compared with earlier single-

and multi-gene plastid studies. However, the large number of publicly available grass

plastome sequences have not been combined in a single study.

One issue of plastome phylogenomics relates to data partitioning. A few plastome

phylogenomic studies of grasses have investigated different ways to partition complete

plastome sequences, primarily by comparing analyses of coding, noncoding, and coding

plus noncoding regions. These studies failed to find unambiguous evidence to support

any specific partitioning strategy, but this may reflect insufficient taxonomic sampling

(Zhang, Ma & Li, 2011; Burke, Grennan & Duvall, 2012; Ma et al., 2014; Saarela et al.,

2015). Gapped sites in an alignment are another partition that can be analyzed, and that

may be problematic for phylogenetic inference (Warnow, 2012). The effects of including

vs. excluding gapped sites on phylogenetic reconstruction has not been fully explored in

grass phylogenomic analyses. Some gapped sites in an alignment reflect evolutionary

history (e.g., indels), but others may represent suboptimal alignment possibly resulting in

spurious phylogenetic results. Indeed, as plastome-scale data sets rapidly increase in size,

manual curation of alignments is increasingly difficult, especially as phylogenetic breadth

of taxon sampling increases. Generating alignments automatically for these large data sets

is practical, but such alignments are likely to include some ambiguously aligned regions,

particularly among the most rapidly-evolving parts of the plastome for which it is

necessary to introduce alignment gaps.

Yet another way to partition plastomes for phylogenetic reconstruction is through

comparison of positively selected vs. nonselected nucleotide sites. The plastome is a

mosaic of selected and nonselected nucleotide sites. Sites under selection are found in

polycistronic protein and RNA coding regions together with their associated promoter

and intron-processing regions. These regions constitute approximately 45% of the grass

plastome, although many third codon positions in protein coding loci are unconstrained

by selection. Positive selection can bias reconstruction of phylogenetic relationships

(Christin et al., 2012). In grasses, positive selection has been characterized in rbcL (Christin

et al., 2008b) and in all plastome protein genes across the PACMAD clade (Piot et al.,

2018). The latter study identified positive selection in 25 of 76 plastid genes, and found

that the multiple origins of C4 photosynthesis in the PACMAD clade were accompanied

by positive selection in rbcL but not in other plastid genes. Potential bias in plastome

phylogenetic reconstruction when positively selected sites are included in analysis has not

been explored previously in grasses.
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Here, we report a phylogenomic study of 250 plastomes broadly representing the

subfamilies, families, tribes and subtribes of grasses, including 15 new plastomes. We

characterize phylogenetic signal in 14 plastome partitions, including a three-gene

partition, coding regions, noncoding regions, and complete plastomes, each variously

including or excluding gapped sites and positively selected sites in the alignment. With

these analyses we test the hypotheses that selection, alignment ambiguities, or other

characteristics of specific partitions contribute to difficulties in retrieving consistent

topologies in grass phylogenies when taxonomic sampling is consistent. In particular, the

problematic deep relationships among the PACMAD subfamilies are investigated (i.e.,

what is the branching order among Aristidoideae, Panicoideae, Chloridoideae +

Danthonioideae, and Arundinoideae + Micrairoideae). We also compare and contrast the

results of our phylogenomic analyses with current grass classifications and with existing

knowledge of phylogenetic relationships in grasses derived from plastid/plastome and

nuclear analyses.

MATERIALS AND METHODS
Taxon sampling
Taxon sampling includes 15 new (Table 1) and 235 plastomes obtained from GenBank

(Asano et al., 2004; Saski et al., 2007; Bortiri et al., 2008; Diekmann et al., 2009; Leseberg &

Duvall, 2009; Wu et al., 2009; Wu & Ge, 2012; Morris & Duvall, 2010; Nock et al., 2011;

Young et al., 2011; Zhang, Ma & Li, 2011; Zhang et al., 2016b; Burke, Grennan & Duvall,

2012; Burke et al., 2014, 2016a, 2016b; Waters et al., 2012; Besnard et al., 2013, 2014; Hand

et al., 2013; Gornicki et al., 2014; Jones, Burke & Duvall, 2014; Lee et al., 2014; Ma et al.,

2014, 2015; Mariac et al., 2014; Middleton et al., 2014; Ye et al., 2014; Cotton et al., 2015;

Gogniashvili et al., 2015; Kim et al., 2015; Lundgren et al., 2015; Rousseau-Gueutin et al.,

2015; Saarela et al., 2015; Wambugu et al., 2015; Wang & Gao, 2015; Wysocki et al., 2015;

Attigala et al., 2016; Duvall et al., 2016, 2017; Gao & Gao, 2016; Gao, Li & Gao, 2016; Nah

et al., 2016) (Table S1). Plastomes not available on GenBank as of 19 November 2015 were

not included in our analyses, unless generated by us. The voucher specimen for the

plastome published as Microstegium vimineum (Trin.) A. Camus (GRIN, PI 659331) in

Burke et al. (2016b) was mis-identified; its correct identity is Arthraxon prionodes (Steud.)

Dandy (E. Kellogg, 2016, personal communication). The same seed accession was

sequenced in Estep et al. (2014), as A. prionodes, and in Liu et al. (2014), as M. vimineum.

We have corrected this error in GenBank (accession KU291471). For new plastomes, we

obtained DNA from either fragments of herbarium mounted leaf tissues or silica-dried

seedlings germinated in the greenhouse. For the latter, voucher specimens were prepared

from greenhouse material when it reached a flowering stage suitable for identification, and

these were deposited in the herbarium (DEK) of the Biological Sciences Department,

Northern Illinois University, DeKalb, Illinois. Tissue was homogenized manually in liquid

nitrogen before extraction. The DNA extraction protocol was followed using the Qiagen

DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA, USA).

We follow the subdivisional classification of Poaceae by Soreng et al. (2017) with one

exception: following the results of Burke et al. (2016b), we consider Whiteochloa C.E.
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Hubb. as part of Panicinae rather than Cenchrinae. Generic classification also follows

Soreng et al. (2017), including for plastomes published under different names, as noted in

Table S1. Major lineages in the bamboo tribe Arundinarieae have been referred to as clades

I–XII (Triplett & Clark, 2010; Zeng et al., 2010; Yang et al., 2013; Attigala et al., 2014; Zhang

et al., 2016c), and we here follow this informal naming system. The plastome sampling

represents all 12 subfamilies, 44 tribes, 63 subtribes, 179 genera and 250 species of grasses.

Plastome sequencing, assembly, annotation and alignment
Plastome sequencing methods generally followed those of Burke et al. (2016b). Single end

libraries were prepared depending on different starting quantities of DNA with the

Table 1 Vouchers (standard herbarium codes are used) or seed sources of plant material for 15 new plastomes, GenBank accession numbers,

and other sequencing and assembly details.

Species GenBank

accession

number

Voucher/seed

source

Single end library

prep. method

Sequence

mode

Assembler Annotation

reference

Agrostis gigantea Roth MF460976 PI 619538 Nextera High output Iterative velvet NC_027468

Alopecurus arundinaceus Poir. MF460977 PI 380664 Nextera High output Iterative velvet NC_027468

Aristida ternipes Cav. MF460978 MSB 98474 Nextera XT Rapid mode SPAdes NC_025228

Connorochloa tenuis

(Buchanan) Barkworth,

S.W.L. Jacobs & H.Q. Zhang

MF460979 PI 531685 Nextera XT Rapid mode SPAdes NC_021761

Drepanostachyum falcatum

(Nees) Keng f.

MF460981 L. Clark 1756 (ISC) Nextera High output Iterative velvet NC_024725

Lamarckia aurea (L.) Moench MF460982 PI 378959 Nextera XT Rapid mode SPAdes NC_0274373

Leptochloa pluriflora

(E. Fourn.) P.M. Peterson &

N. Snow

MF460983 PI 337598 Nextera XT Rapid mode SPAdes NC_027650

Oxychloris scariosa (F. Muell.)

Lazarides

MF460971 PI 238262 Nextera XT Rapid mode SPAdes NC_024262

Prosphytochloa prehensilis

(Nees) Schweick.

MF460972 G. Guala 1689 (ISC) Nextera High output Iterative velvet NC_026967

Rytidosperma pallidum (R. Br.)

A.M. Humphreys & H.P.

Linder

MF460980 P. Linder 5664 (BOL) Nextera High output Iterative velvet NC_025232

Stipagrostis uniplumis (Licht. ex

Roem. & Schult.) De Winter

var. uniplumis

MF460973 N. Snow &

M. Chatukuta

6853 (MO)

Nextera High output Iterative velvet NC_025228

Taeniatherum caput-medusae

(L.) Nevski

MF460974 PI 561092 Nextera XT Rapid mode SPAdes NC_009950

Triodia stipoides (S.W.L.

Jacobs) Crisp & Mant

MF460970 Barrett 3523 (PERTH) Nextera High output Iterative velvet NC_024262

Triodia wiseana C.A. Gardner MF460975 Peterson et al.

14384 (US)

Nextera High output Iterative velvet NC_024262

Zingeria biebersteiniana (Claus)

P.A. Smirn.

MF460984 W6 19209 Nextera XT Rapid mode SPAdes NC_009950

Note:
PI, Plant Introduction number; W6, West Regional PI group; U.S. National Plant Germplasm System (https://npgsweb.ars-grin.gov/); MSB, Millenium Seed Bank, Kew
(http://apps.kew.org/seedlist/SeedlistServlet).

Saarela et al. (2018), PeerJ, DOI 10.7717/peerj.4299 5/71

http://dx.doi.org/10.7717/peerj.4299/supp-1
http://www.ncbi.nlm.nih.gov/nuccore/MF460976
http://www.ncbi.nlm.nih.gov/nuccore/MF460977
http://www.ncbi.nlm.nih.gov/nuccore/MF460978
http://www.ncbi.nlm.nih.gov/nuccore/MF460979
http://www.ncbi.nlm.nih.gov/nuccore/MF460981
http://www.ncbi.nlm.nih.gov/nuccore/MF460982
http://www.ncbi.nlm.nih.gov/nuccore/MF460983
http://www.ncbi.nlm.nih.gov/nuccore/MF460971
http://www.ncbi.nlm.nih.gov/nuccore/MF460972
http://www.ncbi.nlm.nih.gov/nuccore/MF460980
http://www.ncbi.nlm.nih.gov/nuccore/MF460973
http://www.ncbi.nlm.nih.gov/nuccore/MF460974
http://www.ncbi.nlm.nih.gov/nuccore/MF460970
http://www.ncbi.nlm.nih.gov/nuccore/MF460975
http://www.ncbi.nlm.nih.gov/nuccore/MF460984
https://npgsweb.ars-grin.gov/
http://apps.kew.org/seedlist/SeedlistServlet
http://dx.doi.org/10.7717/peerj.4299
https://peerj.com/


Nextera or Nextera XTmethods (Illumina, San Diego, CA, USA). All sequencing was done

on the Illumina HiSeq 2500 platform at the core DNA Facility, Iowa State University,

Ames, IA, USA. Details are given (Table 1). Illumina reads were assembled into complete

plastid chromosomes with de novo assembly methods. For Nextera data the Velvet

software package (Zerbino & Birney, 2008) was used iteratively, loading contigs from the

previous step into the assembler multiple times with stepwise increasing kmer lengths (see

details inWysocki et al. (2014)). For Nextera XT data, SPAdes v.3.5.0 (http://bioinf.spbau.

ru/spades) was used for de novo assembly (Bankevich et al., 2012). Contigs were scaffolded

with the anchored conserved region extension method (Wysocki et al., 2014), which

queries contig sets for regions that are invariant across Poaceae. Any remaining gaps in the

scaffolds were resolved by in silico genome walking. A final verification was performed by

mapping reads to the newly assembled plastome to detect and correct inconsistencies.

Annotations were determined in Geneious Pro v9.1.6 (Biomatters Ltd., Auckland, New

Zealand) (Kearse et al., 2012) initially using the pairwise align function. A published

reference for each new plastome was obtained from a closely related grass species.

Annotations from the reference were transferred to the newly assembled plastome. The

boundaries of coding sequences (CDSs) were adjusted to preserve reading frames. The

endpoints of the large inverted repeats (IR) were located using the methods of Burke,

Grennan & Duvall (2012). Data partitions were aligned in Geneious Pro with the MAFFT

v7.017 (Katoh & Standley, 2013) plugin using the auto function for the algorithm and

other settings as defaults. In the interest of reproducibility no manual adjustments were

made to the alignments. This approach may have discarded informative microstructural

mutations or possibly allowed regions with micro inversions to be misaligned. However,

in the context of whole plastome alignments, these events are overwhelmed by

unambiguously aligned coding and noncoding regions and so have minimal effect.

Purifying/positive selection
Purifying/positive selection detection and the removal of positively selected sites were as

follows: alignments for each of the 76 protein CDSs, excluding duplicated copies of loci in

one of the IRs, for the 250 taxa were individually extracted. Each extracted CDS was

imported into Mega6 v6.06 (Tamura et al., 2013) and aligned by codon via Muscle

(Edgar, 2004). The computed overall mean distance function determined the mean

nonsynonymous substitutions per non-synonymous site (dN) and the mean synonymous

substitutions per synonymous site (dS) values for each CDS based on default parameters.

Each CDS was then tested for positive or purifying selection using the codon-based Z-test

of selection (Nei & Kumar, 2000) on default parameters (Dataset S1).

After the predominant type of selection for each locus was identified, the specific

number of positively selected codons in each locus was determined using the following

methods. Each extracted CDS was then first analyzed with the codon alignment tool in

HyPhy v2.22016030beta (MP) (Pond & Frost, 2005), under the “Data File Tools” (option 4),

under the following encoded conditions: 1 (CDS aligned to reference using protein

translations), 1 (default BLAST BLOSUM62 matrix), 1 (prefix and suffix indels were

not penalized), 2 (the longest sequence in the data file was used as the reference), and
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1 (there were no reference coordinate sequences; i.e., no external standard). Each

alignment was then analyzed with “Data File Tools” (option 4) following the options of: 6

(convert sequence names to HyPhy valid identifiers if needed and replace stop codons

with gaps in codon data if any are present), and 1 (universal code), to remove stop codons

and convert sequence names just for the following analysis. Each CDS alignment was then

tested for positive selection at individual codon sites using mixed effects model of

evolution (MEME) (Murrell et al., 2012). This was done through the “Positive Selection”

option in HyPhy following the options of 9 (quickly test for positive selection using

several approaches), 1 (universal code), 1 (new analysis), 1 (default, use HKY85 and

MG94xHKY85), 1 (neutral dN/dS = 1), and 11 (MEME to search for evidence of episodic

selection at individual sites). Based on this output, for each data partition that had

positively selected sites removed, these sites were manually removed for each CDS.

Phylogeny estimation
We analysed 14 different data partitions (Table 2), which variously included a subset of

plastome coding regions (partitions A–D), all plastome coding regions (E–H), plastome

noncoding regions (Q–R) and complete plastomes (coding and noncoding partitions)

(W–Z). The subset of coding regions (rbcL, ndhF,matK, and the trnK intron) was selected

to compare against previously published family wide analyses such as Grass Phylogeny

Working Group II (2012). In each of these four core partitions we variously included or

excluded gapped sites in the alignment and positively selected sites in partitions including

coding regions when applicable, so that each core partition had four variants except the

noncoding partition, from which there were no positively selected sites to exclude.

Table 2 Descriptions of the plastome partitions analyzed.

Code Data partition Gapped sites

stripped

Positively selected

sites removed

Matrix length

A rbcL, ndhF, matK - - 7,195

B rbcL, ndhF, matK + - 3,476

C rbcL, ndhF, matK - + 6,722

D rbcL, ndhF, matK + + 5,077

E Plastome coding - - 59,299

F Plastome coding + - 46,707

G Plastome coding - + 55,851

H Plastome coding + + 44,975

Q Plastome noncoding - n/a 143,401

R Plastome noncoding + n/a 26,307

W Complete plastome - - 197,529

X Complete plastome + - 78,714

Y Complete plastome - + 197,332

Z Complete plastome + + 71,140

Note:
Partitions variously included a subset of coding regions, all coding regions, noncoding regions and the complete
plastome, including coding and noncoding partitions. In the alignments of each of these four core partitions we
variously included or excluded gapped sites and positively selected sites in partitions including coding regions.

Saarela et al. (2018), PeerJ, DOI 10.7717/peerj.4299 7/71

http://dx.doi.org/10.7717/peerj.4299
https://peerj.com/


Alignment gaps found in one or more sequences were removed using the “remove gaps”

command in Geneious. Alignment files are presented in Datasets S2–S15. We refer to the

four trees based on the reduced datasets as “three-gene trees,” and to the ten trees based on

large partitions of whole plastomes as “plastome trees.”

We conducted only maximum likelihood (ML) analyses, given the extensive

partitioning that was conducted and the large number of comparisons that needed to be

made among the many clades in trees from different partitions. Since our study is focused

on plastome phylogeny of the entire grass family, it would be ideal to root the tree with

non-grass taxa. The closest relatives of grasses are the families Joinvilleaceae,

Ecdeiocolaceae and Flagellariaceae. Plastome data based on 77 coding regions and some

smaller data sets identify Ecdeiocolaceae and grasses as sister taxa (Bremer, 2002; Chase

et al., 2006; Graham et al., 2006; Givnish et al., 2010; Barrett et al., 2016), while other

studies have identified a clade of Ecdeiocolaceae + Joinvilleaceae as the grass sister group

(Marchant & Briggs, 2007; Christin et al., 2008a; Saarela & Graham, 2010). Of these three

nongrass graminid families, complete plastome data are available only for Joinvilleaceae

(Wysocki et al., 2016a). Moreover, there are major rearrangements in the large single copy

(LSC) regions of grass plastomes compared to other Poales and all other angiosperms

(Doyle et al., 1992; Katayama & Ogihara, 1996; Michelangeli, Davis & Stevenson, 2003;

Burke et al., 2016a; Wysocki et al., 2016a). In a recent plastome phylogenomic study of

grasses, including a highly rearranged Poales outgroup (Joinvillea Gaudich. ex Brongn.

and Gris) resulted in the loss of substantial data, especially in noncoding regions (Burke

et al., 2016a). Using Joinvillea as an outgroup in the current study would similarly result in

a loss of data, which would be detrimental to our partitioned analyses. Thus, considering

the difficulty of aligning grasses with nongrasses, and consistent with the purpose of the

present analysis, we opted to root our trees along the branch leading to Anomochlooideae

(Anomochloa marantoidea Brong. and Streptochaeta spicata Schrad. ex Nees), given the

well-established sister group relationship of Anomochlooideae to the rest of the grasses

A substitution model was selected using jModelTest v. 2.1.3 (Guindon & Gascuel, 2003;

Darriba et al., 2012). For all partitions, the GTR + I + G model was selected under the

Akaike information criterion (Akaike, 1974). ML analyses were performed using RAxML-

HPC2 on XSEDE v. 8.1.11 (Stamatakis, 2014) at the CIPRES Science Gateway (Miller,

Pfeiffer & Schwartz, 2010). The number of bootstrap replicates was automatically halted by

the “autoMRE” function. All model parameters were estimated.

To compare and contrast the phylogenetic trees generated from each of the 14

partitions, we compared branch support for identical (i.e., shared) clades across all trees

(Dataset S16). First, we chose a reference tree, named all clades on that tree by assigning a

unique number to each branch subtending a clade, and then recorded, in a spreadsheet,

BP for each clade when �50%. Second, we recorded BP �50% for the same clades in all

other trees. When we encountered a clade in a non-reference tree not present in the

reference tree, we named that clade and recorded BP for it, when �50%, across all trees.

We chose the tree resulting from analysis of partition X as our reference tree, for the

following reasons: (1) a priori partition exclusion is minimized in X (i.e., it includes

coding and noncoding regions), so we are not arbitrarily choosing one of those two major
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partitions for our reference tree; (2) stripping gapped sites is necessary since accurate ML

estimation cannot be guaranteed, even with long sequences, when indels are included and

treated as missing data (Warnow, 2012); (3) erring on the side of including more data, as

found in complete plastomes, keeps our large analysis from running into an insufficient

phylogenetic information wall. We present the ML reference tree (X) in multiple figures,

including a summary tree showing relationships among subfamilies, with within-

subfamily sampling collapsed to a single branch.

We performed six pairwise comparisons of trees generated from data partitions

differing only by the inclusion or exclusion of positively selected codons, to gain insight

into the relative effect of these characters on the inferred phylogenies. We conducted

similar comparisons of trees differing only by the inclusion or exclusion of gapped sites.

To characterize the effect of datasets comprising three-genes and all plastome coding genes

on tree topology and support we conducted pairwise comparisons of trees A vs. E, B vs. F,

C vs. G and D vs. H.

Descriptions of phylogenetic results focus on the plastome trees (not the three-gene

trees), and clades with support <50% are not discussed. We use the terms “weak or poor,”

“moderate,” and “strong” in reference to clades that received BP values of 50–70%,

71–90% and 91–100%, respectively, and “unsupported” for clades with BP <50%.

RESULTS
Purifying/positive selection
Selection analyses of 76 protein coding loci in the grass plastome indicated that all were

under selection. The predominate selective force identified for all loci was purifying

selection (all 76 significant at p < 0.05). However, positively selected codons could be

identified in 65 out of the 76 loci (Fig. 1). Loci without positively selected codons included

two subunits of the cytochrome b6/f complex (petL, petN), seven photosystem II proteins

(psbE, psbF, psbI, psbL, psbN, psbT, psbZ) and two ribosomal proteins (rpL36, rps19). All 11

were relatively short loci (mean length <150 bases). Of the 65 loci with positively selected

codons, the greatest number were found in rpoC2 (184 codons),matK (74), ndhF (67) and

rbcL (47).

Comparison of phylogenetic trees from partitioned datasets
The entire 250 plastome alignment, including gapped sites, is 197,529 bp in length, and

there is considerable variation in the lengths of the plastome partitions considered

(Table 2). The plastome coding, plastome noncoding and complete plastome alignments

including gapped sites are 24–32%, 445% and 151–177% longer, respectively, than when

gapped sites are excluded. The plastome coding and complete plastome alignments

including positively selected sites are 5.8% and 0.1% greater in length than when

positively selected sites are excluded.

Maximum likelihood cladograms and phylograms of all 14 analyses are provided in

Fig. S1. Mean BP across all branches with support �50% in each of the 14 trees ranges

from 90.1% to 97.9%. Support is generally lower in the three-gene trees than in the

plastome trees (Fig. 2). Among the four three-gene trees, mean support is highest in tree
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A, and that support is significantly different from mean support in trees B–D (Fig. 2).

Among the 10 plastome trees, support is generally lower in tree R compared to the others,

but mean support in tree R is not significantly different than that in trees E–H. Mean

branch support is highest in trees Q and W–Z, but is not significantly different among

these trees (Fig. 2).

The reference tree X (Figs. 3–8) includes 242 clades with BP �50%, and the 14 trees

include 309 clades with support�50% in at least one tree (Dataset S16). Eighty-five clades

are maximally supported in all 14 trees and 144 in all plastome trees, 231 clades are
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Figure 1 Proportion and raw numbers of positively selected codons for each plastome protein coding sequence (CDS). (A) Proportion of

codons. (B) Number of codons. Red represents positive selection in CDS that are commonly used in phylogenetic studies, while blue represents

positive selection in other CDS. Proportionate data are only represented up to 0.15 selected codons for clarity of illustration.

Full-size DOI: 10.7717/peerj.4299/fig-1
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Figure 2 Comparison of bootstrap support across trees. (A) Support values and trend lines for all

clades identified in at least one tree with support �50%. Trend lines were plotted in R, using the

command geom_smooth in ggplot2 with the method “LOESS.” Clade no. corresponds to numerical

clade identifiers as noted in Dataset S16. (B) Mean support values with standard error bars for each tree.

Trees were grouped by a least significant difference test with a Bonferonni correction. Groups are

identified by the analysis and labeled with one or two letter designators showing overlap in some cases.

Full-size DOI: 10.7717/peerj.4299/fig-2
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maximally supported in at least one plastome tree, and 78 clades are not maximally

supported in any tree. There are 197 clades with support �50% in at least one plastome

tree and 24 clades with support�50% in only single plastome trees. The number of clades

in each tree with support �50% ranges from 206 to 246. There are fewer clades with

support �50% in the three-gene trees (206–215 clades, �x ¼ 212) than in the plastome

trees (224–246, �x ¼ 239).

In pairwise comparisons of trees generated from data partitions differing by the

inclusion or exclusion of positively selected codons (Table 3), the number of shared clades

(i.e., identical clades with support �50%) ranges from 192 to 238 and the number of

shared clades with maximal support from 90 to 203. When positively selected sites are

excluded, the number of shared clades with increased support in one of the compared

trees ranges from 11 to 46 (�x ¼ 22� 12), with identical support in the compared trees

from 100 to 205 (�x ¼ 166� 42), and with decreased support in one of the compared trees

from 12 to 58 (�x ¼ 32� 15). In all comparisons, the ranges of support differences for

shared clades are considerable (up to 48%), and some clades identified in each tree with

BP �50% are unsupported in the other. Overall, however, excluding positively selected

codons has relatively little effect on support values, with average support differences for

shared clades in each comparison ranging from 1% to 4%. The largest effect of positively

BP = 100% in all three-gene and complete plastome trees
BP = 100% in all complete plastome trees
BP = 90–100% in all complete plastome trees
BP = 80–100% in all complete plastome trees
BP = 70–100% in all complete plastome trees

BP = 53% (tree D), 93% (R) 
and 58% (Z)
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Figure 3 Maximum likelihood phylogram from analysis of complete plastomes excluding gapped

sites and including positively selected sites (tree X) showing relationships among major lineages

of Poaceae. Subfamilies are collapsed and only the branch subtending each subfamilial clade is

shown. Bootstrap support is indicated along branches, according to the legend on the upper left. Two

alternative topologies within the PACMAD clade, not shown in the figure, are identified in our trees: (1)

Aristidoideae are sister to the rest of the PACMAD clade, with BP = 69–100%, in trees A, C, Q, Wand Y;

and (2) Aristidoideae and Panicoideae form a weakly supported clade (BP = 52%) in tree F that is sister

to the rest of the PACMAD clade. Full-size DOI: 10.7717/peerj.4299/fig-3
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Figure 4 Pooideae portion of the maximum likelihood tree inferred from complete plastomes excluding gapped sites and including positively

selected sites (tree X). Bootstrap support, when �50%, for clades in this tree and clades shared among this and other trees, is summarized along

branches, according to the legend. Numbers along branches are bootstrap support values in tree X. Full-size DOI: 10.7717/peerj.4299/fig-4
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Figure 5 Bambusoideae portion of the maximum likelihood tree inferred from complete plastomes excluding gapped sites and including

positively selected sites (tree X). Bootstrap support, when �50%, for clades in this tree and clades shared among this and other trees, is sum-

marized along branches, according to the legend. Numbers along branches are bootstrap support values in tree X.

Full-size DOI: 10.7717/peerj.4299/fig-5
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selected sites is in comparison B vs. D. These are three-gene data sets, with all genes known

to have positively selected sites.

In pairwise comparisons of trees generated from data partitions differing only by

inclusion or exclusion of gapped sites (Table 3), the number of shared clades ranges from

197 to 230 and the number of shared clades with maximal support from 95 to 200. When

gapped sites are excluded, the number of shared clades with increased support in one of

the compared trees ranges from 3 to 32 (�x ¼ 15� 9), with identical support in the

compared trees from 103 to 201 (�x ¼ 164� 38), and with decreased support in one of the

compared trees from 19 to 68 (�x ¼ 38� 13). In all comparisons, the ranges of support

differences for shared clades are considerable (up to 44%), and, as in the comparisons

excluding positively selected sites, some clades identified in each tree with BP �50% are

unsupported in the other. Overall, excluding gapped sites has relatively little effect on

support values, with average support differences for shared clades in each comparison

ranging from 2% to 4%. The largest effect of gapped sites are in comparisons Y vs. Z

(complete plastome data sets excluding positively selected sites) and Q vs. R (noncoding

plastome data).
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Figure 6 Oryzoideae portion of the maximum likelihood tree inferred from complete plastomes excluding gapped sites and including

positively selected sites (tree X). Bootstrap support, when �50%, for clades in this tree and clades shared among this and other trees, is sum-

marized along branches, according to the legend. Numbers along branches are bootstrap support values in tree X.

Full-size DOI: 10.7717/peerj.4299/fig-6
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Figure 7 Panicoideae portion of the maximum likelihood tree inferred from complete plastomes excluding gapped sites and including

positively selected sites (tree X). Bootstrap support, when �50%, for clades in this tree and clades shared among this and other trees, is sum-

marized along branches, according to the legend. Numbers along branches are bootstrap support values in tree X.

Full-size DOI: 10.7717/peerj.4299/fig-7
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In each comparison of three-gene vs. plastome coding trees, 103–119 shared clades are

maximally supported (Table 4). Three to six shared clades are more strongly supported in

the three-gene trees than the plastome coding trees; the difference in support is �10% in

0–4 of these clades. Reciprocally, 71–91 shared clades are more strongly supported in the

plastome coding trees than in the three-gene trees; the difference in support is �10% in

26–50 of these clades. Two to eight clades are identified with support �70% in the three-

gene trees that are unsupported in the plastome coding trees. Reciprocally, 30–34 clades

are identified with support �70% in the plastome coding trees that are unsupported in

the three-gene trees. Twenty-seven clades not supported in any of the three-gene trees are

supported (BP � 50%) in one or more of the plastome coding trees, and 25 clades

identified with BP � 50% in one or more three-gene trees are not supported in the

plastome coding trees (Dataset S16). Nine of the latter have support �70% in at least one

three-gene tree: PCMAD [aristidoid sister], Monachather + Micrairoideae,

Dactyloctenium + Tripogoninae, Trichoneurinae + Eleusininae, Otachyriinae +

Paspalinae, Bambusinae + Greslaninae + Dinochloinae, Bambusa multiplex + Bambusa

oldhamii + Bambusa emeiensis + Bambusa bambos + Dendrocalamus, Diarrhena +

Bromeae + Poeae + Triticeae, and Agrostidinae + Brizinae + Anthoxanthinae + Aveninae.

We define conflicting clades as those with moderate to strong support (BP � 70%) in

two or more trees and different but overlapping sets of species. In 22 instances one or

more taxa are part of two conflicting clades, and in five instances one or more taxa are part

of three conflicting clades (Table 5). Nineteen conflicting clades are present in a single tree,

20 in two to four trees, and 18 in five or more trees. Conflicts occur in Bambusoideae,

Chloridoideae, Oryzoideae, Panicoideae and Pooideae, among subfamilies of the

PACMAD clade and among taxa of the Arundinoideae + Micrairoideae clade. There are

four instances of conflict among congeneric species in Aegilops L., Bambusa Schreb.,Oryza

and Triticum.

Table 4 Pairwise comparison of bootstrap support (BP) for clades identified in three-gene (A–D)

and complete plastome coding trees (E–H).

A vs. E B vs. F C vs. G D vs. H

Number of shared clades with maximum BP 119 103 116 103

Number of shared clades with BP >50%

(�10% higher) in the first of the two

compared trees, and the range of the

differences in BP for shared clades

6 (4),

2–29%

6 (2),

2–28%

6 (1),

1–14%

3 (0),

1–7%

Number of shared clades with BP >50% and

higher (�10% higher) in the second of the

two compared trees, and the range of the

differences in BP for shared clades

71 (26),

1–44%

91 (50),

1–47%

77 (38),

1–49%

86 (44),

1–49%

Number of clades with BP �70% in the first

of the compared trees and <50% in the

second of the compared trees

8 2 5 7

Number of clades with BP support <50% in

the first of the compared trees and �70%

in the second of the compared trees

34 31 30 31
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Table 5 Summary of moderately to strongly supported conflicting clades among trees inferred from different plastome partitions.

Conflicting clades Trees Support (%)

Panicoideae + Chloridoideae + Micrairoideae + Arundinoideae +

Danthonioideae (“aristidoid sister” hypothesis) // Aristidoideae +

Chloridoideae + Micrairoideae + Arundinoideae + Danthonioideae

(“panicoid sister” hypothesis)

A, Q, W, Y // R 87–100 // 93

Arundinoideae [Phragmites + Hakonechloa + Elytrophorus + Monachather] //

Monachather + Micrairoideae

E–H, Q, R, W–Z // D 93–100 // 72

Tripogoninae + Dactylocteniinae + Trichoneurinae + Triodiinae + Eleusininae //

Boutelouinae + Hilariinae + Monanthochloinae + Dactylocteniinae +

Trichoneurinae + Triodiinae + Eleusininae

A–C, E–H, Q, W–Z // R 83–100 // 95

Dactylocteniinae + Trichoneurinae + Triodiinae // Dactylocteniinae +

Trichoneurinae + Eleusininae

X // Q, Y 72 // 77–92

Leptochloa + Chloris + Eustachys + Oxychloris // Astrebla + Chloris + Eustachys +

Oxychloris

A–H, W, X, Z // Q 93–100 // 100

Dactylocteniinae + Trichoneurinae // Eleusininae + Trichoneurinae //

Dactylocteniinae + Tripogoninae

E–G, Q, R, W, X, Z //

D // A

73–100 // 80 // 72

Centotheceae + Thysanolaeneae + Tristachyideae + Zeugiteae + Chasmanthieae //

Chasmanthieae + Zeugiteae + the rest of Panicoideae except Centotheceae +

Thysanolaeneae + Tristachyideae

E, F, G, X // Q, W, Y 70–87 // 90–100

Paniceae + Paspaleae // Lecomtelleae + Paspaleae A, E–H, Q, X–Z // R 89–100 // 72

Echinochloa + Amphicarpum + Alloteropsis // Oplismenus + Amphicarpum +

Alloteropsis // Echinochloa + Oplismenus + Alloteropsis

A, B, F // W // Y 70–84 // 75 // 97

Amphicarpum + Alloteropsis // Amphicarpum + Thyridolepis // Oplismenus +

Alloteropsis

B, E–H, Q, R, X, Z //

Y // Y

71–100 //

97 // 73

Cenchrus + Setaria italica + Setaria viridis // Setaria italica + Setaria viridis +

Setaria geminata

G, H, Q, R, W, X–Z //

B, D, E

100 // 77–100

Arthropogoninae + Otachyriinae // Otachyriinae + Paspalinae E–H, Q, R, W–Z // C, D 98–100 // 74–95

Thyridolepis + Dichanthelium // Thyridolepis + Amphicarpum E–H, Q, R, W, X, Z // Y 98–100 // 97

Eulalia + Sorghastrum + Andropogoninae // Eulalia + Sorghastrum + Imperata +

Saccharum + Sorghum

E, F, X, Z // G, Q, W, Y 70–82 // 75–93

Potamophila + Zizania + Rhynchoryza // Chikusichloa + Zizania + Rhynchoryza E–H, X, Z // Q, W, Y 100 // 100

Oryza sativa + Oryza nivara // Oryza sativa + Oryza rufipogon G, Q, R, W–Z // F 95–100 // 87

Bambusa multiplex + Bambusa oldhamii + Bambusa emeiensis + Bambusa

bambos // Bambusa multiplex + Bambusa oldhamii + Bambusa emeiensis +

Bambusa arnhemica // Bambusa multiplex + Bambusa oldhamii + Bambusa

emeiensis + Dendrocalamus

R, W, X, Z // Q // G 83–97 // 84 // 75

Olmeca + Otatea // Olmeca + Guadua A–H, Q, W–Z // R 97–100 // 87

Indosasa + Oligostachyum // Indosasa + Pleioblastus Q, W–Z // E, F, H 70–93 // 70–78

Oligostachyum + Indosasa + Pleioblastus // Oligostachyum + Indosasa +

Acidosasa

E–H, Y, Z // R, W 72–93 // 83–93

Brachypodieae + Poeae + Bromeae + Triticeae // Diarrheneae + Brachypodieae //

Diarrheneae + Poeae + Bromeae + Triticeae

A–C, E, G, Q, W, Y //

Z // D

80–100 // 72 // 78

Triticum macha + Triticum turgidum // Triticum turgidum + Triticum aestivum //

Triticum macha + Triticum aestivum

A, C, F, H, R, X, Z //

E, G, W // Y

80–100 //

75–90 // 88

Aegilops kotschyi + Aegilops sharonensis // Aegilops longissima + Aegilops

sharonensis

Q, W, Y // A 78 // 74

Poa + Alopecurus // Phleum + Alopecurus D–H, X–Z // Q, W 85–100 // 100
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Phylogenetic relationships
The following descriptions of phylogenetic relationships refer only to the 10 plastome

trees unless otherwise indicated. In all plastome trees, Pharoideae and Puelioideae are

successively diverging sisters of a lineage comprising the BOP and PACMAD clades

(Figs. 3–8). The BOP clade is maximally supported in all plastome trees except Y

(BP = 88%), and the PACMAD clade is maximally supported in all plastome trees.

BOP clade
In the plastome trees, Bambusoideae (BP = 100%), Oryzoideae (BP = 87–100%) and

Pooideae (BP = 100%) are strongly supported, and Bambusoideae and Pooideae form a

maximally supported clade (Figs. 3 and 5; Fig. S1).

Pooideae
Brachyelytrum aristosum (Michx.) P. Beauv. ex Trel. (Brachyelytreae), Lygeum spartum

L. (Lygeae) + Nardus stricta L. (Nardeae), Phaenosperma globosum Munro ex Benth.

(Phaenospermateae), Melica L. (two species; Meliceae), and Stipeae–Ampelodesmeae

diverge successively with respect to the rest of the Pooideae clade in all trees (BP = 88–100%).

Within Stipeae–Ampelodesmeae (BP = 100%), Eriocoma hymenoides (Roem. and Schult.)

Rydb. +Nassella hyalina (Nees) Barkworth (BP = 100%) and Piptatherum songaricum (Trin.

and Rupr.) Roshev. ex Nikitina form a clade (BP = 100%), andOryzopsis asperifoliaMichx. +

Ampelodesmos mauritanicus (Poir.) T. Durand & Schinz (Ampelodesmeae) (BP = 88–100%)

and Piptochaetium avenaceum (L.) Parodi form a clade (BP = 88–100%).

Seven trees identify a clade comprising Brachypodium distachyon (L.) P. Beauv.

(Brachypodieae), Bromus vulgaris (Hook.) Shear (Bromeae), Poeae and Triticeae, with

varying support. Gapped sites in the plastome noncoding alignments contribute strongly

to support for the clade. In tree Q, based on noncoding regions including gapped sites,

and in the two complete plastome trees including gapped sites (W, Y), support for the

clade is 100%, whereas in tree R, based on noncoding regions excluding gapped sites,

support for the clade is less than 50%. Plastome coding regions also identify the clade, but

with weaker support, when gapped sites are included (G, E; BP = 80%, 85%) and excluded

(F, H; BP = 62%, 55%). When gapped sites are excluded from the complete plastome

datasets, however, Diarrhena obovata (Gleason) Brandenburg (Diarrheneae) and

Brachypodieae are sister taxa with weak (X, BP = 55%) and moderate (Z, BP = 72%)

Table 5 (continued).

Conflicting clades Trees Support (%)

Helictochloa + Holcus // Helictochloa + Deschampsia + Dactylidinae + Loliinae W–Y // F 92–100 // 70

Phalaridinae + Torreyochloinae + Anthoxanthinae + Brizinae + Agrostidinae //

Aveninae + Anthoxanthinae + Brizinae + Agrostidinae

Q, R, Z // A–D, H,

W, Y

98–100 // 64–100

Hickeliinae + Dinochloinae + Greslaninae // Bambusinae + Dinochloinae +

Greslaninae

E–H, Q, W, Y //

A, C, D, R, X, Z

92–100 // 70–100

Note:
The table identifies clade compositions, the trees in which the clades are present with bootstrap support �70%, and bootstrap support for the clades. Shared taxa in
conflicting clades are boldfaced.
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support. In all trees, Bromeae and Triticeae are maximally supported sister taxa, and

Bromeae + Triticeae and Poeae form a maximally supported clade.

Within Triticeae, Hordeum L. (two species sampled), Connorochloa tenuis (Buchanan)

Barkworth, S.W.L. Jacobs & H.Q. Zhang, Secale cereale L. and Taeniatherum caput-

medusae (L.) Nevski diverge successively with respect to the rest of the clade, with all

branches strongly supported in most trees. An Aegilops L. + Triticum clade is variously

supported (BP = 60–100%) (Fig. 4) and divided into two subclades. One subclade

comprises Triticum macha Dekapr. & Menabde + Triticum turgidum L. + Triticum

aestivum L. (BP = 100%) sister to Aegilops speltoides Tausch + Triticum timopheevii

(Zhuk.) Zhuk. (BP = 100%). Relationships among taxa in the former clade conflict

among trees (Table 5). The other subclade comprises Triticum urartu Thumanjan ex

Gandilyan + Triticum monococcum L. (BP = 100%) sister to an eight-species Aegilops clade

(BP = 98–100%) in which relationships are mostly strongly supported; however,

relationships among Aegilops kotschyi Boiss., Aegilops sharonensis Eig and Aegilops

longissima Schweinf. & Muschl. conflict among trees (Table 5).

Within Poeae, maximally supported clades correspond to Poeae chloroplast groups 1

and 2 (Fig. 4). In group 1, Phalaris arundinacea L. (Phalaridinae) and Torreyochloa pallida

(Torr.) G.L. Church (Torreyochloinae) are sister taxa (BP =100%); Agrostidinae,

comprising Agrostis L. (two species sampled), Calamagrostis breviligulata (Fernald)

Saarela [syn. Ammophila breviligulata Fernald (Saarela et al., 2017)] and Gastridium

ventricosum (Gouan) Schinz & Thell., is monophyletic; Agrostidinae + Briza maxima

L. (Brizinae) form a clade (BP = 80–100%); and Agrostidinae + Brizinae + Anthoxanthum

L. (two species; Anthoxanthinae) form a clade (BP = 100%). There is conflict among trees

for the relative branching order of Phalaridinae + Torreyochloinae and Aveninae (Avena

sativa L. and Trisetum cernuum Trin.) with respect to the remainder of the clade (Table 5).

Poeae chloroplast group 2 is divided into two subclades (Fig. 4). One comprises

Puccinellia nuttalliana (Schult.) Hitchc. + Zingeria biebersteiniana (Claus) P.A. Smirn.

(Coleanthinae) (BP = 100%) and Alopecurus arundinaceus Poir. (Alopecurinae) + Phleum

alpinum L. (Phleinae) + Poa palustris L. (Poinae) (=supersubtribe Poodinae; BP = 100%).

Relationships among Phleum, Alopecurus and Poa conflict among trees (Table 5). The other

subclade of group 2 is recovered in all trees (BP = 77–100%) but R and comprises Cynosurus

cristatus L. (Cynosurinae), Catapodium rigidum (L.) C.E. Hubb. (Parapholiinae), Holcus

lanatus L. (Holcinae), Deschampsia antarctica E. Desv. (Aristaveninae), Helictochloa hookeri

(Scribn.) Romero-Zarco (Airinae), Dactylis glomerata L. and Lamarckia aurea (L.) Moench

(Dactylidinae) and Festuca ovina L., Drymochloa sylvatica (Pollich) Holub and Lolium

L. (four species) (Loliinae). Holcinae and Airinae are sister taxa in six trees (E, G, Q, W–Y,

BP = 50–100%). In all trees, Cynosurinae and Parapholiinae are sister taxa (BP = 100%) and

form a clade with Dactylidinae (BP = 83–100%), and in all trees except R these subtribes

form a clade with Loliinae (BP = 92–100%).

Bambusoideae
Within Bambusoideae (Fig. 5), Arundinarieae, Bambuseae and Olyreae are each

monophyletic (BP = 100%), and Bambuseae and Olyreae are sister taxa (BP = 100%).
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Within Olyreae, Buergersiochloa bambusoides Pilg. (Buergersiochloinae) is sister to a clade

of Eremitis Döll sp. + Pariana Nakai (three accessions and at least two species)

(Parianinae; BP = 100%) and Diandrolyra Stapf sp. + Raddia brasiliensis Bertol. + Olyra

latifolia L. + Cryptochloa strictiflora (E. Fourn.) Swallen + Lithachne pauciflora (Sw.)

P. Beauv. (Olyrinae; BP = 100%). Relationships within Parianinae and Olyrinae are

strongly supported.

Within Bambuseae, two major clades are identified (Fig. 5). The paleotropical woody

bamboo clade comprises Hickelia madagascariensis A. Camus (Hickeliinae), Neololeba

atra (Lindl.) Widjaja (Dinochloinae) + Greslania Balansa sp. (Greslaninae) and Bambusa

spp. + Dendrocalamus latiflorus Munro (Bambusinae) (BP = 100%). Dinochloinae and

Greslaninae form a clade (BP = 98–100%), but relationships among Dinochloinae +

Greslaninae, Bambusinae and Hickeliinae conflict among trees (Table 5). The five species

of Bambusa form a clade in seven trees (E, Q–Z, BP = 50–93%), with a maximally

supported subclade comprising Bambusa emeiensis L.C. Chia & H.L. Fung and

B. multiplex (Lour.) Raeusch. ex Schult. & Schult. f. + B. oldhamii Munro. Relationships

among this latter clade, B. bambos (L.) and B. arnhemica Voss vary among trees (Table 5).

The neotropical woody bamboo clade (BP = 88–100%) comprises Chusquea Kunth (four

accessions representing at least three species; Chusqueinae; BP = 100%), Rhipidocladum

pittieri (Hack.) McClure (Arthrostylidiinae), and Guadua weberbaueri Pilg., Olmeca

reflexa Soderstr. and Otatea acuminata (Munro) C.E. Calderón & Soderstr. (Guaduinae;

BP = 100%). Within Chusqueinae, Chusquea spectabilis L.G. Clark is robustly resolved

as sister to the remainder of the genus. Arthrostylidiinae and Guaduinae are sister taxa

(BP = 100%). Relationships among the three sampled genera of Guaduinae conflict

among trees (Table 5).

Within Arundinarieae (Fig. 5), Ampelocalamus calcareus C.D. Chu & C.S. Chao (clade

XI; see Methods for details of informal clade names in this tribe) is sister to the rest of the

subtribe. Gelidocalamus tessellatus T.H. Wen & C.C. Chang and Shibataea kumasaca

(Zoll. ex Steud.) Makino are sister taxa in all trees (BP = 52–100%), and these plus

Ferrocalamus rimosivaginus T.H. Wen form a clade in all trees (clade IV; BP = 80–100%).

Sasa veitchii (Carrière) Rehder, Arundinaria Michx. (three species; BP = 73–100%),

Pseudosasa japonica (Siebold & Zucc. ex Steud.) Makino ex Nakai, Pleioblastus maculatus

(McClure) C.D. Chu & C.S. Chao, Acidosasa purpurea (Hsueh & T.P. Yi) Keng f., Indosasa

sinica C.D. Chu & C.S. Chao and Oligostachyum shiuyingianum (L.C. Chia & P. But) G.H.

Ye & Z.P. Wang form a clade (clade VI) in all trees (BP = 95–100%). Indocalamus wilsonii

(Rendle) C.S. Chao & C.D. Chu (clade VIII) forms a clade with clades IV and VI in three

trees (Q, W, Y, BP = 67–93%) and is sister to clade IV in two of those trees (W, Y, BP = 98,

75%). Within clade VI, S. veitchii and Arundinaria form a clade (BP = 63–98%) in all

plastome trees except R, in which S. veitchii is sister to the rest of the subtribe (BP = 68%).

The remaining taxa form a strongly supported clade, in which Pseudosasa japonica is

sister to the rest of the lineage. However, relationships among Pleioblastus maculatus,

A. purpurea, I. sinica and O. shiuyingianum are discordant among trees (Table 5).

A deep lineage of Arundinarieae is recovered in five trees (H, W–Z, BP = 50–92%)

comprising Chimonocalamus longiusculus Hsueh & T.P. Yi (clade III), Thamnocalamus
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spathiflorus (Trin.) Munro (clade VII), Gaoligongshania megalothyrsa (Hand.-Mazz.) D.Z.

Li, Hsueh &N.H. Xia (clade IX), Sarocalamus faberi (Rendle) Stapleton,Drepanostachyum

falcatum (Nees) Keng f., Indocalamus longiauritus Hand.-Mazz., Yushania Keng. F. (two

species), Bashania fargesii (E.G. Camus) Keng f. & T.P. Yi, Fargesia Franch. (two species)

and Phyllostachys Siebold & Zucc. (five species) (clade V). Clades III, IX and V form a

clade in all trees except R (BP = 55–85%), and clades III and IX are sisters in all trees

except Q and R (BP = 60–93%). Within clade V, I. longiauritus and Yushania form a clade

in all trees except G, H and R. Fargesia nitida (Mitford ex Anonymous) Keng f. ex T.P. Yi

and Fargesia murielae (Gamble) T. P. Yi form a clade (BP = 55–100%) in all trees except R.

In all trees, the five species of Phyllostachys form a clade (BP = 65–100%), Phyllostachys

aurea Carrière ex Rivière & C. Rivière and Phyllostachys propinqua McClure form a clade

(BP = 68–100%), and Phyllostachys sulphurea (Carrière) Rivière & C. Rivière and

Phyllostachys nigra var. henonis (Mitford) Stapf ex Rendle form a clade (BP = 87–100%).

In subsets of trees, Phyllostachys edulis (Carrière) J. Houz. and P. aurea + P. propinqua

form a clade (Q,W, Y, BP = 82–100%), and P. aurea, P. propinqua, P. sulphurea and P. nigra

var. henonis form a clade (E, X, Z, BP = 58–68%). Phyllostachys and Fargesia are sister taxa

in two trees (X, Y, BP = 68, 58%), and a broader clade including these genera and Bashania

is recovered in all trees (BP = 52–100%).

Oryzoideae
Oryzoideae is monophyletic and moderately to strongly supported in all trees (BP = 87–

100%) (Fig. 6). Streptogyna americana C.E. Hubb. (Streptogyneae), Ehrharta bulbosa Sm.

+ Microlaena stipoides (Labill.) R. Br. (Ehrharteae; BP = 100%) and Humbertochloa

bambusiuscula A. Camus & Stapf (Phyllorachideae) are successively diverging sisters to

Oryzinae + Zizaniinae, with strong support for all branches. Within Oryzinae, Leersia

tisserantii (A. Chev.) Launert and Prosphytochloa prehensilis (Nees) Schweick. are sister

taxa (BP = 100%), and the multiple species of Oryza form a clade (BP = 100%).

Relationships among most species ofOryza are strongly supported in most trees; however,

relationships among Oryza sativa L., Oryza nivara Sharma & Shastry and Oryza rufipogon

Griff. conflict among trees (Table 5). Within Zizaniinae, Rhynchoryza subulata (Nees)

Baill. and Zizania aquatica L. are sister taxa (BP = 100%), and relationships among this

clade, Chikusichloa aquatica Koidz. and Potamophila parviflora R. Br. are discordant

among trees (Table 5).

PACMAD clade
The deepest split in the PACMAD clade varies among complete plastome trees (Figs. 3 and 8,

Table 4; Fig. S1). In two trees, Panicoideae are sister to the rest of PACMAD clade, with

weak (Z, BP = 58%) and strong (R, BP = 93%) support for the ACMAD subclade. In three

trees, Aristidoideae are sister to the rest of PACMAD clade, with moderate (W, BP = 87%)

and strong (Q, Y, BP = 93% and 100%) support for the PCMAD subclade. In one tree,

Aristidoideae + Panicoideae (F, BP = 52%) are the sister to the rest of the PACMAD clade.

In the four other trees (E, G, H, X), no deep topology receives support �50%. The four

remaining PACMAD subfamilies—Arundinoideae, Micrairoideae, Chloridoideae and
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Danthonioideae—form a clade in all trees (BP = 96–100%; Figs. 3 and 8). Chloridoideae

and Danthonioideae are sister taxa in all trees (BP = 78–100%). All taxa of Arundinoideae

and Micrairoideae form a clade (BP = 100%). Arundinoideae is not consistently resolved

as monophyletic, however, because in one three-gene treeMonachather forms a clade with

Micrairoideae (D, BP = 72%) (Table 5).

Panicoideae
At the base of the Panicoideae subtree, Zeugites pittieri Hack. (Zeugiteae) and

Chasmanthium sessiliflorum (Poir.) H.O. Yates (Chasmanthieae) form a clade

(BP = 57–100%). Loudetiopsis kerstingii (Pilg.) Conert + Danthoniopsis dinteri (Pilg.)

C.E. Hubb. (Tristachyideae; BP = 100%) and Thysanolaena latifolia (Roxb. ex Hornem.)

Honda (Thysanolaeneae) + Centotheca lappacea (L.) Desv. (Centotheceae) (BP = 100%)

are sister groups. Paniceae, Paspaleae, Andropogoneae and Arundinelleae are each

monophyletic, and relationships among these four tribes, which compose the core

Panicoideae, are maximally supported in all trees: Paniceae is sister to Paspaleae +

(Andropogoneae + Arundinelleae) (Fig. 7). However, deep relationships among Zeugiteae

+ Chasmanthieae, Tristachyideae, Centotheceae + Thysanolaeneae and Paniceae +

Paspaleae + Andropogoneae + Arundinelleae vary among trees (Table 5).

Within Andropogoneae, most aspects of relationships are strongly supported,

including the successive branching of A. prionodes (Arthraxoninae) and Zea mays L.

(Tripsacinae) sister to the rest of the tribe. Coix lacryma-jobi L. (Coicinae) and Rottboellia

cochinchinensis (Lour.) Clayton (Rottboelliinae) are sister taxa (BP = 93–100%), Coicinae +

Rottboelliinae and Ischaemum afrum (J.F. Gmel.) Dandy (Ischaeminae) form a clade

(BP = 87–100%), and this three-subtribe clade is sister to the rest of Andropogoneae. The

two species of SorghumMoench are sister taxa (BP = 100%), Sorghum and Saccharum cv.

NCo310 are sister taxa in all trees (BP = 87–100%) except R, and these plus Imperata

cylindrica (L.) P. Beauv. form a clade (BP = 72–100%). Eulalia aurea (Bory) Ku and

Sorghastrum nutans (L.) Nash are sister taxa in all trees (BP = 62–100%) except F, but

relationships among these species, the rest of Saccharinae, and Andropogoninae are

discordant among trees (Table 5). Saccharinae, comprising Sorghum, Saccharum,

Imperata, Eulalia and Sorghastrum, is monophyletic only in trees G, Q, W and Z

(BP = 75–93%). Within Andropogoninae, the following lineages diverge successively with

strong support:Diheteropogon amplectens var. catangensis (Chiov.) Clayton +Hyparrhenia

subplumosa Stapf, Themeda Forssk. sp., Iseilema macratherum Domin and Capillipedium

venustum (Thwaites) Bor + Bothriochloa alta (Hitchc.) Henrard.

Within Paniceae, Digitaria exilis (Kippist) Stapf (Anthephorinae) is sister to the rest of

the tribe (BP = 88–100%) (Fig. 7). Alloteropsis J. Presl (three species), Amphicarpum

muhlenbergianum (Schult.) Hitchc., Echinochloa P. Beauv. (two species) and Oplismenus

hirtellus (L.) P. Beauv. form a clade (Boivinellinae; BP = 100%) in all trees except Y, in

which Amphicarpum muhlenbergianum and Thyridolepis xerophila (Domin) S.T. Blake

(Neurachninae) form a clade (BP = 97%). Within Boivinellinae, relationships among the

four genera are discordant among trees (Table 5). Alloteropsis angusta Stapf and

Alloteropsis semialata (R. Br.) Hitchc. are sister taxa (BP = 100%). The remaining taxa of
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Paniceae form a clade in all trees (BP = 80–100%; Fig. 7). Dichanthelium acuminatum

(Sw.) Gould & C.A. Clark (Dichantheliinae) and T. xerophila (Neurachninae) are sister

taxa (BP = 98–100%) in all trees except Y (see above). The two species of Panicum L. and

Whiteochloa capillipes (Benth.) Lazarides form a clade (Panicinae; BP = 100%), but

Panicum is not monophyletic because Panicum capillare L. andW. capillipes are sister taxa

(BP = 97–100%). Eriochloa meyeriana (Nees) Pilg. and Urochloa reptans (L.) Stapf are

sister taxa (BP = 100%), and these species plus Megathyrsus maximus (Jacq.) B.K. Simon

& S.W.L. Jacobs form a clade (Melinidinae; BP = 100%). Cenchrus americanus (L.)

Morrone and the three species of Setaria P. Beauv. form a clade (Cenchrinae; BP = 100%)

in all trees, but Setaria is monophyletic only in trees E and F (BP = 98–100%). In all other

trees, Setaria geminata (Forskk.) Veldkamp is sister to Cenchrus americanus + (Setaria

italica (L.) P. Beauv. + Setaria viridis (L.) P. Beauv.). Cenchrinae and Melinidinae are sister

taxa (BP = 100%), and Panicinae and Cenchrinae + Melinidinae form a broader clade

(BP = 98–100%).

Within Paspaleae, Axonopus fissifolius (Raddi) Kuhlm. and Paspalum L. (three species)

form a clade (Paspalinae; BP = 100%). Otachyrium versicolor (Döll) Henrard and

Steinchisma laxum (Sw.) Zuloaga are sister taxa (BP = 100%), and these plus Plagiantha

tenella Renvoize form a clade (Otachyriinae; BP = 100%). Coleataenia prionitis (Nees)

Soreng and Oncorachis ramosa (Zuloaga & Soderstr.) Morrone & Zuloaga form a clade

(Arthropogoninae; BP = 98–100%; Fig. 7). Arthropogoninae and Otachyriinae are sister

groups (BP = 98–100%).

Chloridoideae

Within Chloridoideae, Centropodia glauca (Nees) Cope (Centropodieae), Neyraudia

reynaudiana (Kunth) Keng ex Hitchc. (Triraphideae), Eragrostideae, Zoysieae and

Cynodonteae diverge successively, with maximum support for all branches (Fig. 8).

Eragrostideae (BP = 100%) comprises Eragrostis Wolf (two species; Eragrostidinae) and

Uniola paniculata L. (Unioliinae). Zoysieae (BP = 100%) comprises Zoysia macrantha

Desv. (Zoysiinae) and three species of Sporobolus R. Br. nom. cons. (Sporobolinae; BP =

100%). Sporobolus michauxianus (Hitchc.) P.M. Peterson & Saarela and Sporobolus

maritimus (Curtis) P.M. Peterson & Saarela are sister taxa (BP = 100%). The eight

sampled subtribes of Cynodonteae form a clade in all trees (BP = 100%). Bouteloua Lag.

(two species; Boutelouinae; BP = 100%) +Distichlis Raf. (two species; Monanthochloinae;

BP = 100%) and Hilaria Kunth (two species; Hilariinae; BP = 100%) form a clade

corresponding to supersubtribe Boutelouodinae. Melanocenchris abyssinica (R. Br. ex

Fresen.) Hochst. andHalopyrummucronatum (L.) Stapf form a clade (Tripogoninae; BP =

100%), as do the two species of Triodia R. Br. (Triodiinae; BP = 100%). Trichoneura

grandiglumis (Nees) Ekman (Trichoneurinae) and Dactyloctenium aegyptium (L.) Willd.

(Dactylocteniinae) are sister taxa (BP = 68–100%). Within Eleusininae (BP = 100%),

Oxychloris scariosa (F. Muell.) Lazarides + Eustachys glauca Chapm. (BP = 100%) and

Chloris barbata Sw. form a clade (BP = 100%), and relationships among this clade,

Astrebla pectinata (Lindl.) F. Muell. ex Benth and Leptochloa pluriflora (E. Fourn.) P.M.

Peterson & N. Snow are discordant among trees (Table 5). Eleusininae, Triodiinae,
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Dactylocteniinae and Trichoneurinae form a clade in all trees (BP = 65–97%), but

relationships vary both within the clade and among the four-subtribe clade, Tripogoninae

and Boutelouodinae (Table 5).

DISCUSSION
We conducted plastome phylogenomic analyses of 250 species of grasses, many of which

have not previously been combined in a single study, including 15 newly generated

plastomes from six subfamilies. Deep relationships among grass subfamilies are fully

congruent with most previous few-gene plastid and plastome studies that identified

Anomochlooideae, Pharoideae and Puelioideae as successive sisters to a clade comprising

the BOP and PACMAD clades (Clark, Zhang & Wendel, 1995; Grass Phylogeny Working

Group, 2001; Duvall et al., 2007; Bouchenak-Khelladi et al., 2008; Saarela & Graham, 2010;

Grass Phylogeny Working Group II, 2012; Jones, Burke & Duvall, 2014; Burke et al., 2016a,

2016b). The plastome phylogeny represents 85% of the lineages of grasses currently

recognized as tribes, 67% as subtribes, 23% as genera and ca. 2% as species (Peterson,

Romaschenko & Herrera Arrieta, 2017a; Soreng et al., 2017), and our results corroborate

many aspects of relationships among tribes, subtribes, genera and species identified in

previous plastid studies, in most cases with increased support here. Indeed, over 230

clades are identified with maximum support in at least one plastome tree, 85 clades are

maximally supported in all 14 trees, and 144 clades are identified with maximum support

in all plastome trees. Clades that are maximally supported in all trees are distributed from

the deepest to the shallowest levels of the grass tree of life, including the branches defining

the spikelet clade (all Poaceae excluding Anomochlooideae), the BOP + PACMAD clade,

the PACMAD clade, as well as clades comprising subfamilies, tribes, subtribes, genera and

even multiple congeneric species.

Comparison of three-gene vs. complete plastome coding trees
We compared trees inferred from three plastome coding regions and all plastome coding

regions, the former being more representative of, and comparable to, the numerous few-

gene/region phylogenetic studies of grasses conducted previously. If phylogenetic signal

among plastome CDSs is congruent, support for a topology, when less than maximal in a

few-gene tree, would be expected to increase as the number of CDSs and phylogenetically

informative characters in an analysis increase. More than 100 shared clades are maximally

supported in each of the compared three-gene and plastome coding trees. For these clades,

there is sufficient phylogenetic signal in the three-gene datasets to robustly resolve

relationships, and recovery of the same maximally supported clades in the plastome

coding trees indicates there is either no conflict among plastome coding regions, or

minimal conflict that does not affect support levels; the current data do not distinguish

between these two possibilities. On the other hand, there is increased support for many

clades in plastome coding trees compared to three-gene trees, consistent with our

expectations and with results of earlier phylogenomic studies of grasses (Jones, Burke &

Duvall, 2014; Cotton et al., 2015; Saarela et al., 2015; Burke et al., 2016a, 2016b; Duvall

et al., 2016, 2017; Orton et al., 2017), confirming the utility of plastome phylogenomic
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studies for clarifying phylogenetic relationships at multiple hierarchical levels of the grass

family.

However, we also found some differences in resolution and support among three-gene

and plastome coding trees. Twenty-three clades identified in one or more of the three-gene

trees are not present in the plastome coding trees (Dataset S16). Thirteen of these are only

weakly supported in one to three of the three-gene trees, but the remaining ten are

moderately to strongly supported (BP � 70%) in one or more of the trees; these clades

represent relationships among subfamilies, tribes, subtribes and species of a bamboo

genus. In most cases, the plastome coding trees identify alternative moderately to strongly

supported topologies, indicative of character conflict among the three-gene data and the

complete plastome coding data. In the plastome coding trees, the differing signal in the

three-gene data, whatever its origin, may be “swamped” by the stronger signal in the much

larger plastome coding dataset. Similar conflict was identified among few-gene vs.

plastome coding partitions in a study of monocot phylogeny (Davis et al., 2013). Overall,

these results indicate that supported clades in few-gene plastid trees may sometimes be

misleading, such that well-supported and few-gene phylogenies should not necessarily be

accepted as the “final word” on plastome phylogenetic relationships, until compared with

whole plastome phylogenies that maximize available phylogenetic information in the

plastome.

Comparison of coding, noncoding and complete plastome partitions
We also identified some strongly conflicting topologies among our analyses of coding,

noncoding and complete plastome partitions variously including and excluding coding

gapped sites and positively selected sites (Table 4). Of these conflicting relationships, only

one, or possibly none, is likely to be an accurate representation of the evolutionary history

of the plastome, which is uni-parentally inherited. Although at least one instance of

conflict was identified among each of the 14 trees, conflicting clades (relative to the

majority topology) were more common in trees derived from partitions including gapped

sites, noncoding data or both. For example, three of the four conflicting clades in tree R

(plastome noncoding partition excluding gapped sites) are not present in any other trees,

indicating the conflicting signal is restricted in these alignments to noncoding regions,

whereas most other conflicting clades are present in two or more trees inferred from

datasets including gapped sites.

Effects of gapped sites on tree topology and support
The complete 250 plastome alignment includes many gapped sites, given that it is

approximately 45% longer than the length of an average unaligned grass plastome (ca.

136,000 bp; Saarela et al., 2015). Gapped sites in an alignment of plastome sequences often

reflect evolutionary history and may result from microstructural changes (indels,

inversions) in specific lineages and from gene transfers. Such rare genomic changes

are generally straightforward to align, at least among close relatives, and may be

phylogenetically informative, as demonstrated for several grass lineages (Jones, Burke &

Duvall, 2014; Burke et al., 2016a; Orton et al., 2017). However, gapped sites may also be
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introduced in an alignment when portions of the plastome are difficult to align across

divergent taxa, and poorly aligned regions may represent noise in an analysis. As such,

unique clades in trees inferred from datasets including ambiguously aligned gapped sites

may reflect systematic error. A particular challenge in phylogenomics is differentiating

data signal reflecting evolutionary history from nonphylogenetic signal reflecting

systematic error (Rodrı́guez-Ezpeleta et al., 2007).

Options for dealing with gapped sites in a phylogenetic analysis include removing

them, assigning an additional state for each gap, coding gaps and treating them as binary

characters, and treating gaps as missing data; the latter option is the most common

approach (Warnow, 2012), and is what we did in a subset of analyses. Warnow (2012)

demonstrated, however, that ML analyses may be statistically inconsistent when gaps are

treated as missing data (but see Truszkowski & Goldman, 2016), and other studies have

similarly shown that treating gaps as missing data can result in incorrect tree topologies in

varying phylogenetic contexts (Roure, Baurain & Philippe, 2013; Shavit Grievink, Penny &

Holland, 2013; McTavish, Steel & Holder, 2015). Therefore, as an alternative treatment for

another subset of analyses we removed possibly–ambiguously aligned nucleotides by

excluding all sites with a gap in at least one taxon (Jones, Burke & Duvall, 2014;

Cotton et al., 2015; Saarela et al., 2015; Attigala et al., 2016; Burke et al., 2016a, 2016b;

Duvall et al., 2016; Orton et al., 2017). This allowed us to compare the effects on

topology of including vs. excluding gapped sites. A limitation of this approach, however,

is that potentially phylogenetically informative gapped sites or characters within

alignment portions including gapped sites are also excluded from consideration.

Differentiating between phylogenetically informative gaps and noninformative gaps in

an alignment would require manual characterization of all alignment gaps, which we

did not explore.

Another strategy for minimizing potential systematic error in plastome phylogenomic

analyses caused by gapped sites is to exclude all noncoding data from consideration

because the majority of gapped sites in plastome alignments are present in the noncoding

partition. This would also exclude potential conflicting signal in the unambiguously

aligned subset of noncoding data, like we found in a few instances in tree R. Researchers

routinely exclude noncoding data from phylogenomic analyses, especially when

generating phylogenies spanning multiple families and orders, where it is often difficult or

impossible to align the more rapidly evolving noncoding regions among distantly related

taxa. On the other hand, plastome noncoding regions are usually straightforward to align

among closely-related species and genera with little overall plastome divergence, and

branch support from noncoding data alone or when combined with coding data is

sometimes stronger than from coding data for relationships among closely related taxa

(Ma et al., 2014; Saarela et al., 2015). Examples in the current study of shared clades with

higher support in noncoding compared to coding trees include Trichoneurinae +

Dactylocteniinae + Triodiinae + Eleusininae, Trichoneurinae + Dactylocteniinae,

Oryza sativa + O. nivara + O. rufipogon, the Bambusa clade, the Phyllostachys clade, and

Gelidocalamus + Shibataea (Dataset S16).
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Effect of positively selected sites on tree topology and support
Positively selected codons have been shown to impact phylogenies inferred from single

loci, and widely used phylogenetic methods do not automatically identify or correct for

such bias. For example, in grasses in which photosynthetic genes, such as rbcL or PEPC,

converge under selection for C4 photosynthesis, misleading phylogenies can result

(Christin et al., 2008a, 2008b). Multi-gene analyses should be somewhat less susceptible to

selection bias since loci under different selective regimes would not be expected to

reinforce an erroneous phylogenetic signal. Four protein coding loci commonly used for

phylogenetic inference in grasses are rbcL,matK, ndhF and rpoC2 (Clark, Zhang &Wendel,

1995; Duvall et al., 2003, 2007; Grass Phylogeny Working Group II, 2012). We find the

highest numbers of selected codons in these four loci among all of the protein coding loci

in the grass plastome. Piot et al. (2018) identified these same four genes as having the

greatest signature of positive selection in plastomes of 113 PACMAD species. The

considerable range in support for clades, differing by up to 41%, among three-gene trees

that include and exclude positively selected sites indicates that the possibility of selection-

induced bias in multi-gene analyses of these loci cannot be discounted.

Including positively selected sites in complete plastome analyses did not considerably

affect topology and support for the majority of clades in our trees. However, like in the

three-gene trees, we found a considerable range of BP for some clades in analyses

including or excluding positively selected sites, indicating these sites influence

phylogenetic reconstruction. In several instances clades identified when positively selected

sites were included were not identified when those sites were excluded. This is most

evident in the complete plastome trees: in tree W (including positively selected sites) there

are 10 clades with support �70% that in tree Y (excluding positively selected sites) are

unsupported. Reciprocally, in tree Y there are 11 clades with support�70% that in tree W

are unsupported. Furthermore, two cases of strong conflict between trees Wand Y can be

attributed specifically to inclusion or exclusion of positively selected sites: relationships

among Oplismenus P. Beauv., Amphicarpum Kunth, Alloteropsis and Echinochloa, and

among Triticum turgidum, T. aestivum and T. macha.

Among our analyses, we also compared phylogenies inferred from partitions with all

plastome coding loci against exclusively noncoding partitions. This diversity of loci across

the functional groups of the plastome would again be expected to reduce any particular

selection bias, but possibly at the expense of increasing the noise to signal ratio. Consistent

with this observation is that the removal of selected sites in our analyses did not introduce

extensive topological incongruities and that a greater range of support values for the

included clades was observed.

Comparison of plastome trees with previous phylogenetic studies
of plastomes, subsets of plastid regions, and nuclear genes
BOP Clade

The robust sister group relationship between Pooideae and Bambusoideae is congruent

with most previous studies of multiple plastid genes and plastomes (Bouchenak-Khelladi

et al., 2008; Saarela & Graham, 2010; Zhang, Ma & Li, 2011; Grass Phylogeny Working
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Group II, 2012; Wu & Ge, 2012) as well as nuclear genes (Zhao et al., 2013; Wysocki et al.,

2016b). However, in a recent plastid study Oryzoideae and Pooideae were recovered as

sister taxa, although with uneven sampling throughout the family (Pimentel et al., 2017).

Bambusoideae
Bambusoideae is divided into two tribes of woody bamboos (the tropical Bambuseae with

eleven subtribes and two genera incertae sedis, and the temperate Arundinarieae with a

single subtribe) and one of herbaceous bamboos (Olyreae, with three subtribes) (Bamboo

Phylogeny Group, 2012; Soreng et al., 2017). Bamboo taxonomy is complicated by the fact

that woody bamboos are polyploid. Many genera are paraphyletic or polyphyletic, and in

many cases revised generic classifications have not yet been proposed. The plastome

sampling includes six subtribes of Bambuseae, subtribe Arundinariinae and each subtribe

of Olyreae (Buergersiochloinae, Olyrinae, Parianinae). Wysocki et al. (2015) identified an

insertion of approximately 500 bp in the rps16–trnQ intergenic spacer in the 10 members

of Arundinarieae they sampled that was not present in taxa of the other bamboo tribes,

and we confirm this insertion is present in all members of Arundinarieae sampled here,

with the single exception of P. japonica. A 150 bp inversion in the trnD–psbM intergenic

spacer defines the Olyrinae clade (Wysocki et al., 2015). In the plastome trees,

Arundinarieae is sister to Bambuseae + Olyreae, congruent with other studies of plastid

data that identified paraphyly of woody bamboos (Clark et al., 2007; Bouchenak-Khelladi

et al., 2008; Sungkaew et al., 2008; Bamboo Phylogeny Group, 2012; Kelchner & Bamboo

Phylogeny Group, 2013). Phylogenetic studies of nuclear genes, however, identify

Bambuseae and Arundinarieae as sister taxa, supporting monophyly of woody bamboos

(Triplett et al., 2014; Wysocki et al., 2016b).

Olyreae

Species of Olyreae fall on long branches relative to species of Arundinarieae and

Bambuseae, indicating a faster mutation rate in plastomes of Olyreae than in woody

bamboos. Within Olyreae, the robustly resolved relationships among Buergersiochloinae,

Parianinae and Olyrinae in the plastome trees are congruent with previous plastid studies

(Oliveira et al., 2014; Wysocki et al., 2015). Although the three sampled species of Pariana

form a maximally supported clade in our trees, the genus is not monophyletic in plastid

and ITS trees in Oliveira et al. (2014) because two species of Eremitis, including one now

recognized in Parianella Hollowell, F.M. Ferreira & R.P. Oliveira (Ferreira et al., 2013;

Soreng et al., 2017), are nested within it. A molecular phylogenetic analysis of these three

genera is in progress (L.G. Clark, 2017, unpublished data). The robustly supported

topology within Olyrinae is congruent with trees based on six plastid regions (Zhang et al.,

2016c) and plastome-scale data (Wysocki et al., 2015), and better resolved and supported

than in a tree based on the trnD–trnT intergenic spacer (Oliveira et al., 2014).

Arundinarieae

Seven of the twelve major lineages (clades I–XII) of Arundinarieae are represented in the

plastome trees, which in many cases are better resolved and supported than trees based on

a few plastid regions. Within the tribe, only 12 clades of two or more taxa are weakly to
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strongly supported in all plastome trees, indicating weak or conflicting signal in some of

the plastome partitions analyzed. Placement of A. calcareus (clade XI) as sister to the rest

the tribe is congruent with other studies (Ma et al., 2014; Attigala et al., 2016; Zhang &

Chen, 2016; Zhang et al., 2016c), but some deep relationships among the other lineages of

Arundinarieae are variously unsupported or discordant. In previous phylogenies based on

complete plastomes, a lineage comprising clades IV, VI and VIII was identified, with

strong support only in Bayesian trees (Ma et al., 2014; Attigala et al., 2016). This same

clade is identified in two ML trees here (plastome noncoding including gapped sites and

complete plastome including gapped sites) with weak to moderate support. Within the

clade, the Chinese species I. wilsonii (clade VIII) is moderately to strongly supported as

sister to clade IV in the two complete plastome trees including gapped sites. In the earlier

plastome trees, I. wilsonii is also sister to clade IV (Ma et al., 2014; Attigala et al., 2016),

but again with support only in the Bayesian trees. In few-gene plastid trees, placement of

I. wilsonii is unresolved within Arundinarieae (Zeng et al., 2010; Zhang et al., 2016c). In the

plastome noncoding tree, however, clades IVand VI are strongly supported as sister taxa, a

topology that conflicts with the trees that identify clades VIII and IV as sister taxa. All

known taxa that are part of the clade comprising clades VI, VIII and IV have leptomorph

rhizomes (Attigala et al., 2016), but we are not aware of morphological characters that

would favor one or the other of the topologies among the three clades. Resolution of

relationships among these clades is likely complicated by the short branches that define

each of them (Fig. S1).

The robustly supported clade IV has been recovered in other studies, many of which are

more broadly sampled than our analyses (Triplett & Clark, 2010; Zeng et al., 2010; Attigala

et al., 2014; Zhang et al., 2016c). The plastome tree here includes three of the five genera

recognized in the clade compared to two genera included in earlier plastome studies

(Ma et al., 2014; Attigala et al., 2016). The sister relationship between Gelidocalamus

tessellatus and Shibataea kumasaca is congruent with the plastid tree in Zeng et al. (2010),

but contrasts with a plastid tree in which species of Ferrocalamus Hsueh & Keng f.,

Shibataea Makino ex Nakai and Sasa Makino & Shibata form a clade that excludes G.

tessellatus (Zhang et al., 2016c). In other few-gene plastid studies, relationships among

taxa of clade IV are mostly unresolved (Triplett & Clark, 2010; Attigala et al., 2014).

The strongly supported clade VI (also called the Arundinaria clade) was similarly

resolved in earlier plastome trees (Ma et al., 2014; Attigala et al., 2016). It includes

subclades referred to as the Japan-North American clade (here including Arundinaria spp.

and Sasa veitchii) and Sino-Japanese clade (Pseudosasa japonica, Pleioblastus maculatus,

Acidosasa purpurea, Indosasa sinica and Oligostachyum shiuyingianum) (Zhang et al.,

2016c). Support for the Japan-North American clade varies fromweak to strong in all trees

except R, in which the clade is not resolved because S. veitchii is sister to the rest of the

subtribe. In other studies, support for the clade is moderate in maximum parsimony

(MP) and ML trees based on plastomes and taxon sampling comparable to the current

study (Attigala et al., 2016), and weak in MP and ML trees based on four plastid regions

and denser taxon sampling (Triplett & Clark, 2010). The clade was not, however, identified

in the eight-region plastid tree in Zeng et al. (2010). The generally strong support for the

Saarela et al. (2018), PeerJ, DOI 10.7717/peerj.4299 32/71

http://dx.doi.org/10.7717/peerj.4299/supp-2
http://dx.doi.org/10.7717/peerj.4299
https://peerj.com/


three species New World Arundinaria clade in the current and earlier plastome trees

(Burke et al., 2014; Attigala et al., 2016), in which Arundinaria tecta and Arundinaria

appalachiana are sister taxa, is an improvement on few-gene plastid trees, in which the

three species do not form a clade (Triplett & Clark, 2010) or form a clade with support

only in BI trees (Zeng et al., 2010) and in BI and MP trees (Zhang, Zeng & Li, 2012).

The three species formed an unsupported clade in a nuclear GBSSI phylogeny, with a

differing but weakly supported internal topology (Zhang, Zeng & Li, 2012). Recovery of

the Sino-Japanese clade in all plastome trees, and placement of P. japonica as sister to the

rest of the lineage (a four-taxon strongly supported clade), is congruent with other plastid

trees (Triplett & Clark, 2010; Zhang, Zeng & Li, 2012; Attigala et al., 2016; Zhou et al., 2016)

but not with a nuclear phylogeny (Zhang, Zeng & Li, 2012). In plastid trees with better

taxon sampling, Pseudosasa japonica is part of a deep lineage referred to as the “Medake

subclade” (Triplett & Clark, 2010; Zeng et al., 2010). The Acidosasa purpurea +

Indosasa sinica + Oligostachyum shiuyingianum clade, strongly supported in two trees

(R, W) and with Pleioblastus maculatus resolved as its sister group, is also identified in the

plastome tree in Zhang & Chen (2016), based on “complete cp genomes” (they did not

indicate how they dealt with gapped sites, although there were likely fewer gapped sites in

their alignments than ours because they analyzed only plastomes of bamboos), and in the

complete plastome tree in Ma et al. (2014), and congruent with the tree in Attigala et al.

(2016). In six trees, however, P. maculatus + I. sinica + O. shiuyingianum form a

moderately to strongly supported clade (E–H, Y, Z). Neither of these conflicting clades is

identified in other plastid trees (Yang et al., 2013; Zhang et al., 2016c). We are not aware of

morphological characters that would support one of these competing topologies, as

morphological variation of the genera of clade VI, none of which is monophyletic, is

insufficiently known.

The deep lineage of Arundinarieae comprising clades III, V, VII and IX recovered in

three complete plastome trees with weak to moderate support is weakly supported or

unsupported in other multi-region plastid trees (Triplett & Clark, 2010; Zeng et al., 2010;

Yang et al., 2013; Zhang et al., 2016c), and variously supported (depending on method of

phylogenetic inference) to strongly supported in earlier plastome trees (Ma et al., 2014;

Attigala et al., 2016). Placement of T. spathiflorus (clade VII) sister to the rest of the clade in

nine plastome trees here is congruent with one earlier plastome tree (Attigala et al., 2016)

but not the other, in which clades III + IX are sister to the rest of the clade (Ma et al., 2014).

The deep placement of T. spathiflorus in the plastome trees here was not recovered in

broadly sampled few-gene plastid trees (Triplett & Clark, 2010; Zeng et al., 2010; Yang et al.,

2013; Zhang et al., 2016c). The sister relationship between G. megalothyrsa (clade IX) and

C. longiusculus (clade III) in all plastome trees except the two based on noncoding data, one

of which weakly supports clades III and VII as sister taxa, is congruent with other studies

(Zeng et al., 2010; Yang et al., 2013;Ma et al., 2014; Attigala et al., 2016; Zhang et al., 2016c).

In a better sampled plastome study also including clades II and XII, however, clades II, III,

IX and XII form a clade and clades III and XII are sister taxa (Attigala et al., 2016).

The strongly supported clade V, the Phyllostachys clade (Zeng et al., 2010; Kellogg, 2015),

has been recovered in other few-gene plastid and plastome trees with varying support
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(Triplett & Clark, 2010; Zeng et al., 2010; Yang et al., 2013; Ma et al., 2014; Attigala et al.,

2016; Zhang et al., 2016c), but not in a nuclear GBSSI phylogeny in which most deep

branches of Arundinarieae are unresolved or poorly supported (Zhang, Zeng & Li, 2012).

Most genera currently recognized in clade Vare not monophyletic (Kellogg, 2015). Overall,

resolution and support for relationships in clade Vare better and stronger in the plastome

trees here compared to few-gene plastid trees (Triplett & Clark, 2010; Zeng et al., 2010;

Zhang, Zeng & Li, 2012; Zhang et al., 2016c). The varying support we find for S. faberi

being sister to the rest of clade V is congruent with the plastome tree in Ma et al. (2014),

whereas its affinities in clade V are unresolved in the tree in Triplett & Clark (2010).

Affinities of D. falcatum (type species of the genus) within clade Vare poorly supported in

the plastome trees, as in previous studies of plastid and GBSSI sequences in which species

of Drepanostachyum Keng f. and Himalayacalamus Keng. f., neither of which is

monophyletic, form a clade of unresolved affinity within clade V (Triplett & Clark, 2010;

Zeng et al., 2010; Zhang, Zeng & Li, 2012, 2016). The D. falcatum plastome is the first one

sequenced for the genus, which comprises ten species from the Himalayan regions of

Bhutan, China, India and Nepal (Kellogg, 2015). No plastomes have been published from

Himalayacalamus, comprising eight species also from Bhutan, China, India and Nepal

(Kellogg, 2015). Relationships among the remaining taxa of clade V are mostly congruent

with those found byMa et al. (2014). The five species of Phyllostachys included here have

not previously been combined in a phylogenetic analysis. They form a clade in all

plastome trees, an improvement compared to few-gene trees here and elsewhere (Triplett

& Clark, 2010; Zeng et al., 2010; Zhang et al., 2016c). Within Phyllostachys, the affinities of

P. edulis, a species that grows rapidly and is of critical ecological, economic and cultural

value in Asia (Peng et al., 2013), vary among analyses.

Bambuseae

Two major clades have been identified in Bambuseae: the paleotropical woody bamboo

clade and the neotropical woody bamboo clade (Kelchner & Bamboo Phylogeny Group,

2013; Zhang et al., 2016c). Our plastome sampling in the paleotropical woody bamboo

clade represents four of the eight subtribes that are part of the lineage (Sungkaew et al.,

2009; Goh et al., 2010; Kelchner & Bamboo Phylogeny Group, 2013;Wong et al., 2016; Zhang

et al., 2016c). Plastomes representing subtribes Racemobambosinae, Holttumochloinae

and Temburongiinae have not yet been published. The sister group relationship between

Dinochloinae and Greslaninae and the monophyly of Bambusinae are congruent with

earlier plastome trees (Wysocki et al., 2015) and with better sampled few-gene plastid trees

(Yang et al., 2008; Sungkaew et al., 2009; Chokthaweepanich, 2014; Zhou et al., 2017).

However, relationships among Hickeliinae, Bambusinae, Dinochloinae and Greslaninae

vary among our plastome trees, as they do among other studies. Relationships among

these lineages in an 18-region plastid tree are unresolved (Zhou et al., 2017). Hickeliinae

forms a strongly supported clade with Dinochloinae + Greslaninae in seven trees (E–H, Q,

W, Y), a topology found in an earlier plastome study (Wu et al., 2015), and congruent with

a six-gene plastid tree in which Dinochloinae is not sampled (Zhang et al., 2016c). On the

other hand, Hickeliinae is sister to a strongly supported Bambusinae + Dinochloinae +
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Greslaninae clade in three trees (R, X, Z), a topology recovered with moderate support in

analyses of a plastome matrix equivalent to X here (Wysocki et al., 2015) and of plastomes

excluding gapped sites (Vieira et al., 2016). Plastome sampling from the eight additional

genera included in Hickeliinae may help resolve ambiguity in affinities of the subtribe

within Bambuseae, as well as from Melocanninae, Racemobambosinae, Temburongiinae

and Holttumochloinae, the subtribes of the paleotropical woody bamboo clade not

represented in our plastome trees.

The neotropical woody bamboo clade includes subtribes Chusqueinae,

Arthrostylidiinae and Guaduinae. Placement of Chusqueinae (Chusquea) sister to a

maximally supported clade comprising Arthrostylidiinae and Guaduinae is congruent

with other studies (Sungkaew et al., 2009; Kelchner & Bamboo Phylogeny Group, 2013;

Chokthaweepanich, 2014; Vieira et al., 2016; Zhang et al., 2016c). Within Guaduinae,

Olmeca Soderstr. andOtatea (McClure & E.W. Sm.) C.E. Calderón & Soderstr. are strongly

supported sister taxa in most trees, but in tree R, Olmeca and Guadua Kunth form a

moderately supported clade. The former topology was previously identified in a plastome

study (Wu et al., 2015) and is congruent with a few-gene plastid study (Ruiz-Sanchez,

Sosa & Mejia-Saules, 2011). Relationships among the four samples of Chusquea are

congruent with a more detailed study of Chusquea phylogeny (Fisher, Clark & Kelchner,

2014). Chusquea spectabilis used to be included in Neurolepis Meisn., a genus that lacked

elongated woody culms of Chusquea as historically applied (Fisher et al., 2009).

Pooideae

Relationships among subtribes

The successive divergences of Brachyelytreae, Lygeae + Nardeae, Phaenospermateae,

Meliceae and Stipeae (including Ampelodesmeae) with respect to the rest of the subfamily

in the plastome trees are congruent with previous few-gene plastid studies, and the robust

support in the plastome trees for the respective branches is in many instances stronger

than in few-gene trees (Catalán, Kellogg & Olmstead, 1997; Soreng & Davis, 1998, 2000;

Mathews, Tsai & Kellogg, 2000; Grass Phylogeny Working Group, 2001; Davis & Soreng,

2007, 2010; Döring et al., 2007; Duvall et al., 2007; Bouchenak-Khelladi et al., 2008;

Schneider et al., 2011; Grass Phylogeny Working Group II, 2012; Blaner, Schneider & Röser,

2014; Hochbach, Schneider & Röser, 2015; Pimentel et al., 2017). Morphological

synapomorphies supporting most of these deep splits in Pooideae have been identified

(Kellogg et al., 2013; Kellogg, 2015). Of the early diverging lineages of Pooideae, the only

tribes from which plastomes have not been sampled are Brylkinieae and Duthieae

(Soreng et al., 2017). The three plastomes of Stipeae newly sampled here (Eriocoma

hymenoides, Nassella hyalina, Piptatherum songaricum) form a clade sister to a lineage of

Oryzopsis asperifolia, Ampelodesmos mauritanicus (Ampelodesmeae), which is a polyploid

reticulate species with Duthieeae and Stipeae that obtained its plastome from a stipoid

grass (Romaschenko et al., 2014), and Piptochaetium avenaceum. The strongly supported

relationships within both clades are congruent with a tree based on fewer plastid regions

but denser taxon sampling (Romaschenko et al., 2012).
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Tribes Brachypodieae, Diarrheneae, Bromeae, Poeae and Triticeae form a maximally

supported clade in all trees here, as in numerous other studies of plastid and nuclear

ribosomal DNA (Catalán, Kellogg & Olmstead, 1997; Davis & Soreng, 2007; Bouchenak-

Khelladi et al., 2008; Schneider et al., 2011; Pimentel et al., 2017; Sancho et al., 2017).

Diarrheneae is unique in the clade in having nondistichous two-ranked inflorescence

phyllotaxy, a character-state reversion in this taxon following the origin of distichous

phyllotaxis in the ancestor of the clade including Phaenospermateae and the rest of the

subfamily (Kellogg et al., 2013). The maximally supported relationships among Bromeae,

Poeae and Triticeae are congruent with a recent plastome study (Saarela et al., 2015) and

numerous few-gene plastid studies. Monophyly of Triticeae is maximally supported in all

plastome trees here. However, when plastid data for PsathyrostachysNevski are included in

analysis, Triticeae is paraphyletic because Bromeae is included within it (Bernhardt et al.,

2017). We have not sampled the monogeneric tribe Littledaleae (Soreng et al., 2017), which

is sister to Bromeae + Triticeae in plastid trees (Soreng, Davis & Voionmaa, 2007;

Schneider, Winterfeld & Röser, 2012) and sister to Triticeae in nuclear trees (Hochbach,

Schneider & Röser, 2015). A plastome from a species of Littledalea Hemsl. was recently

published (Liu et al., 2017).

Clarification of the evolutionary placement of Brachypodium P. Beauv. within pooids is

important because the annual species B. distachyon is a model system for grasses

(International Brachypodium Initiative, 2010). Relationships and support levels among

Diarrheneae, Brachypodieae and Bromeae + Poeae + Triticeae vary among plastome trees

and are affected particularly by inclusion or exclusion of gapped sites in the noncoding

data partition. Relationships among these taxa inferred from different plastome partitions

were similarly variable in an earlier plastome study, which also found differences among

ML, BI and MP trees (Saarela et al., 2015). Presence of parallel-sided subsidiary cells is a

putative synapomorphy for a Brachypodieae + Bromeae + Poeae + Triticeae clade

(Kellogg, 2015), found in a subset of our trees. Some analyses of low copy nuclear genes

also identify a Brachypodieae + Bromeae + Poeae + Triticeae clade (Hochbach, Schneider &

Röser, 2015), but in others relationships among these lineages are either unresolved or

Diarrhena and Brachypodium are sister taxa (Hochbach, Schneider & Röser, 2015; Minaya

et al., 2015), like in the trees here based on complete plastomes excluding gapped sites. In a

recent study including plastomes from three Brachypodium species, Diarrhena,

Brachypodium, and Bromeae + Poeae + Triticeae diverged successively, with strong

support for the topology (Sancho et al., 2017). Those trees were based on a dataset that

excluded poorly aligned regions but included “robust gaps.”

Variation in topology and support among Diarrheneae, Brachypodieae and Bromeae +

Poeae + Triticeae in the plastome trees might be related to the long branch subtending B.

distachyon—the longest one in Pooideae in our trees—relative to the lengths of nearby

branches (Fig. S1). This long branch might be attributable to one or a combination of an

accelerated plastome substitution rate in the genus or the one annual species of the genus

we sampled, long persistence of the lineage since its divergence from the common

ancestor it shares with its sister group, or extinction(s) of closely related taxa (none of

which is known). Substitution rates in plastid coding regions are significantly lower in
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lineages of Triticum and Aegilops compared to Brachypodium (Gornicki et al., 2014),

supporting an accelerated rate of evolution along the Brachypodium branch. Combined

plastid and nuclear ribosomal data do not support an older age for the Brachypodium

crown clade than for the Poeae + Triticeae crown clade (Catalán et al., 2012), whereas in a

plastome-based nested dating analysis of the grass family and Brachypodium, the ages of

the Brachypodium and Poeae + Bromeae–Triticeae crown clades were estimated at 10.1 Ma

and 27.8 Ma, respectively (Sancho et al., 2017). Plastomes from the other two annual

species of Brachypodium, when analyzed phylogenetically with B. distachyon in analyses

including some gapped sites in the alignment, resulted in a slightly shortened stem branch

of the Brachypodium clade, which may have contributed to the strongly resolved

relationships among Brachypodieae, Diarrheneae and Bromeae–Poeae–Triticeae in those

analyses (Sancho et al., 2017). Plastomes from the perennial species Brachypodium

mexicanum (Roem. & Schult.) Link and Brachypodium boissieri Nyman, based on their

affinities to the annual species and the core perennial clade in a two-gene plastid tree

(Catalán et al., 2012, 2016), might further break up the long stem branch, which may help

clarify relationships among Brachypodieae, Diarrheneae and Bromeae–Poeae–Triticeae

from different plastome partitions. Plastome sampling of Neomolinia Honda, the other

genus of Diarrheneae, might also help clarify these relationships. Neomolinia, with five

species and sometimes treated as a synonym of Diarrhena (Kellogg, 2015), has been

sampled in only three studies (Schneider et al., 2011; Romaschenko et al., 2012; Hochbach,

Schneider & Röser, 2015).

Triticeae

Within Triticeae, the strongly supported successive divergences ofHordeum, Connorochloa

tenuis, Secale cereale, Taeniatherum caput-medusae and Aegilops/Triticum in the plastome

trees are congruent with (or at least not in conflict with) and better supported than

few-gene plastid trees (Petersen & Seberg, 1997; Mason-Gamer, Orme & Anderson, 2002;

Petersen et al., 2006; Seberg & Petersen, 2007) and some nuclear trees (Mason-Gamer, 2001;

Petersen et al., 2006; Escobar et al., 2011). However, conflict is well known among plastid

and nuclear trees, reflecting hybridization in the origins of many genera and species in the

tribe (Petersen & Seberg, 2002;Mason-Gamer, 2005; Petersen et al., 2006; Seberg & Petersen,

2007; Escobar et al., 2011). The plastome topology here is congruent with the plastome tree

in Bernhardt et al. (2017). C. tenuis, an octoploid endemic to New Zealand and the only

species in its genus (Barkworth, Jacobs & Zhang, 2009), has apparently not been included

in any previous phylogenetic study.

Our sampling includes plastomes from additional species of Aegilops and Triticum

(Gornicki et al., 2014; Gogniashvili et al., 2015) compared to an earlier study (Saarela et al.,

2015). Although all species of Aegilops and Triticum form a clade in the plastome trees,

other studies have demonstrated that genera not sampled here (e.g., Amblyopyrum (Jaub.

& Spach) Eig, Thinopyrum Á. Löve, Lophopyrum Á. Löve, Crithopsis Jaub. & Spach.) are

part of the lineage (Petersen et al., 2006). Despite our incomplete genus-level sampling of

the Aegilops and Triticum lineage, recovery of major subclades in the lineage is congruent

with other studies (Petersen et al., 2006; Gornicki et al., 2014; Bernhardt et al., 2017).
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The A. speltoides + T. timopheevii sublineage has been found in other studies (Golovnina

et al., 2007; Gornicki et al., 2014; Gogniashvili et al., 2015), as has the lineage comprising

T. macha (=T. aestivum subsp. macha (Dekapr. & Menabde) MacKey), T. turgidum and

T. aestivum “Chinese Spring,” whose relationships conflict strongly among the plastome

trees. Close relationships among multiple subspecies of T. turgidum (sometimes

recognized at species level) and T. aestivum “Chinese Spring” were found in earlier

plastome (Gornicki et al., 2014) and nuclear (Petersen et al., 2006; Nasernakhaei et al.,

2015) trees, but none of those studies sampled the Georgian endemic T. macha. Golovnina

et al. (2007) sampled one individual of T. macha in theirmatK tree, which was identical to

multiple other taxa, including Triticum durum Desf. and T. aestivum, congruent with our

results. The subclade comprising T. urartu + T. monococcum and the eight-species Aegilops

clade is congruent with other plastid trees with similar sampling (Petersen et al., 2006;

Golovnina et al., 2007; Gornicki et al., 2014; Middleton et al., 2014; Gogniashvili et al.,

2015). The sister relationship between Aegilops cylindrica Host and Aegilops tauschii Coss.

has been found in other studies (Middleton et al., 2014; Gogniashvili et al., 2015), as has the

five-species clade comprising Aegilops bicornis (Forssk.) Jaub. & Spach, A. sharonensis,

A. longissima, A. kotschyi and Aegilops searsii Feldman & Kislev (Gornicki et al., 2014).

Poeae

The maximally supported clades in the plastome trees recognized as Poeae chloroplast

groups 1 and 2 have been recovered in other plastid-based studies (Quintanar, Castroviejo

& Catalán, 2007; Saarela et al., 2010, 2015, 2017; Pimentel et al., 2017; Sancho et al., 2017),

but not in studies based on nuclear ribosomal DNA, in which Scolochloinae and

Sesleriinae, both part of Poeae chloroplast group 2 and not sampled here, are closely

related to taxa of Poeae chloroplast group 1 (Quintanar, Castroviejo & Catalán, 2007;

Saarela et al., 2010, 2015, 2017). Six of the eight subtribes of Poeae chloroplast group 1

(Soreng et al., 2017) are represented in our trees. Relationships among the four taxa of

Agrostidinae and the sister-group relationship between Agrostidinae and Brizinae in the

plastome trees are congruent with other plastid studies, with the caveat that studies with

broader sampling of these subtribes and related taxa have identified problems with generic

circumscriptions and conflicts between plastid and nuclear data (Quintanar, Castroviejo &

Catalán, 2007; Soreng, Davis & Voionmaa, 2007; Saarela et al., 2017). The maximally

supported sister group relationship between Anthoxanthinae and Agrostidinae + Brizinae

is also congruent with other plastome and few-gene plastid studies (Saarela et al., 2015,

2017). In a recent five region plastid study, however, Anthoxanthinae is strongly supported

as sister to Aveninae/Koeleriinae and Lagurus L. (Pimentel et al., 2017), a topology

conflicting with our results.

The sister-group relationship between Phalaridinae and Torreyochloinae was first

identified in a previous plastome study (Saarela et al., 2015); however, these subtribes

are not sister taxa in combined ITS + ETS trees, possibly indicative of ancient

hybridization (Saarela et al., 2017). The major conflict in the relative branching order of

Phalaridinae + Torreyochloinae and Aveninae at the base of Poeae chloroplast group 1 in

the plastome trees was also found in a previous plastome study (Saarela et al., 2015), but
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in that study the different topologies were inferred in ML and BI vs. MP analyses rather

than among plastome partitions, as is the case here. The phylogenetic signal for

Phalaridinae + Torreyochloinae being sister to the rest of the clade is present in plastome

noncoding data, regardless of whether gapped sites are included or excluded, whereas

phylogenetic signal for Aveninae being sister to the rest of the clade is present primarily in

plastome coding data including and excluding gapped sites. The latter topology is also

identified in trees based on complete plastomes, both including and excluding gapped

sites. In complete plastome trees, when gapped sites are excluded and positively selected

sites are included in the analysis, the branching order at the base of the subtree is

ambiguous, whereas when both gapped and positively selected sites are excluded in

complete plastome trees, Phalaridinae + Torreyochloinae are strongly supported as sister

to the rest of the clade. These differences indicate the presence of some conflicting signal

in positively selected sites of plastome coding regions that affect support levels when

gapped sites are excluded. The latter is confirmed by the decrease in support for Aveninae

being sister to the rest of the clade in analyses of plastome coding regions including and

excluding positively selected sites (E vs. G, BP = 98% vs. 80%).

Poeae chloroplast group 2 comprises 18 subtribes and numerous genera unplaced to

subtribe (Soreng et al., 2017), and twelve subtribes are represented in the current plastome

sampling. The major clade comprising Puccinellia nuttalliana + Zingeria biebersteiniana

(Coleanthinae), and Alopecurus arundinaceus (Alopecurinae) + Phleum alpinum

(Phleinae) + Poa palustris (Poinae) has been identified in other plastid studies (Gillespie,

Archambault & Soreng, 2007; Gillespie et al., 2008; Soreng, Davis & Voionmaa, 2007;

Schneider, Winterfeld & Röser, 2012; Hochbach, Schneider & Röser, 2015), but relationships

among Alopecurinae, Poinae and Phleinae are discordant among the plastome trees. The

conflict is primarily between the noncoding partition, which identifies Phleum alpinum

and A. arundinaceus as sister taxa (also in one complete plastome analysis including

gapped sites) and all other partitions, which identify Poa palustris and A. arundinaceus as

strongly supported sister taxa. Although it is unclear which of the two highly supported

topologies is accurate, there is sufficient variation in complete plastomes to robustly

resolve relationships among these closely related genera compared to earlier plastid

studies in which relationships among clades including these three genera were unresolved

and/or poorly supported (Gillespie, Archambault & Soreng, 2007; Gillespie et al., 2008;

Soreng, Davis & Voionmaa, 2007). Poa L. and Phleum L. were more closely related to each

other than to Alopecurus L. in analyses of combined plastid and nuclear ribosomal data

(Gillespie et al., 2010; Soreng et al., 2015a), a topology probably influenced by the nuclear

ribosomal signal in that dataset. None of the plastome trees identify a Poa + Phleum clade.

Holcinae (Holcus lanatus) and Airinae (Helictochloa hookeri) are strongly supported

sister taxa in three plastome trees. This topology conflicts with the combined ITS

and plastid tree in Minaya et al. (2015), in which Helictochloa bromoides (Gouan)

Romero-Zarco (as Avenula bromoides (Gouan) H. Scholz) is sister to a Dacytilidinae +

Cynosurinae clade, and Holcus L. + Echinaria Desf. (Sesleriinae) are sister to a clade

including taxa of Airinae and Deschampsia P. Beauv. The plastome topology also conflicts

with the b-amylase tree in Minaya et al. (2015), indicative of reticulation. Although
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Helictochloa Romero-Zarco is currently classified in subtribe Airinae, few-gene plastid and

nuclear analyses indicate the genus is not allied with other taxa of the subtribe (Quintanar,

Castroviejo & Catalán, 2007; Saarela et al., 2017). Plastome sampling is needed of the

other genera included in Airinae (Aira L., Antinoria Parl., AvenellaDrejer, Corynephorus P.

Beauv., Molineriella Rouy, Periballia Trin.) to clarify circumscription of the subtribe.

In a previous classification (Soreng et al., 2015b), Holcinae comprised Deschampsia,

Holcus and Vahlodea Fr., but in the plastome trees here and in other plastid and nuclear

trees, Deschampsia and Holcus + Vahlodea (not sampled here) do not form a clade

(Quintanar, Castroviejo & Catalán, 2007; Saarela et al., 2010, 2017; Grass Phylogeny

Working Group II, 2012;Minaya et al., 2015; Persson & Rydin, 2016). In the plastome trees,

Deschampsia is sister to a clade comprising taxa of Cynosurinae, Dactylidinae,

Parapholiinae and Loliinae. Accordingly, Deschampsia is now recognized in its own

subtribe, Aristaveninae, and Holcinae is circumscribed more narrowly comprising only

Holcus and Vahlodea (Soreng et al., 2017).

Relationships among the remaining six sampled subtribes of Poeae chloroplast group 2

are robustly resolved here. The close relationship between D. glomerata and L. aurea, both

included in Dacytilidinae, is congruent with other plastid and nuclear analyses (Inda et al.,

2008; Birch et al., 2014; Minaya et al., 2015). The sister group relationship between

Cynosurinae (Cynosurus L., monotypic) and Parapholiinae (eight genera, represented by

Catapodium rigidum) is congruent with earlier plastid and nuclear ribosomal analyses

(Inda et al., 2008; Schaefer et al., 2011; Schneider, Winterfeld & Röser, 2012; Pimentel et al.,

2017) with denser sampling of Parapholiinae. The sister-group relationship between

Dactylidinae and Cynosurinae + Parapholiinae corroborates the findings of earlier studies

(Inda et al., 2008; Birch et al., 2014). The strongly supported Cynosurinae + Dactylidinae +

Parapholiinae + Loliinae clade in the plastome trees is congruent with a matK tree

(Schneider, Winterfeld & Röser, 2012) and is an improvement on the mostly unresolved

and poorly supported relationships among these taxa in other plastid trees (Quintanar,

Castroviejo & Catalán, 2007; Soreng, Davis & Voionmaa, 2007; Pimentel et al., 2017). In an

earlier plastome study, Dactylis L. was weakly supported as sister to Loliinae in a ML tree

based on plastome coding regions (Saarela et al., 2015), whereas in the tree based on the

parallel plastome coding dataset here (F), the same branch is strongly supported. This

increased support may be a function of the improved taxon sampling in Dactylidinae,

Cynosurinae and Parapholiinae here. Sampling and relationships within Loliinae here and

in an earlier plastome study (Saarela et al., 2015) are identical, although here we have

updated names of some species to reflect their current classification.

Oryzoideae
Subfamily Oryzoideae is divided into tribes Streptogyneae, Ehrharteae, Phyllorachideae

and Oryzeae (Soreng et al., 2017), which are each represented in our analyses.

Streptogyneae

Clarification of the evolutionary affinities of the amphi-Atlantic genus Streptogyna P.

Beauv. has been problematic. Streptogyna was traditionally classified as a herbaceous
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bamboo in its own tribe, Streptogyneae (Calderón & Soderstrom, 1980; Soderstrom &

Judziewicz, 1987). It shares several morphological characters with various distantly related

lineages (Kellogg, 2015), interpretation of which has complicated classification. Molecular

studies have helped clarify its affinities. In studies based primarily on one or a few plastid

regions, Streptogynawas sister to Oryzoideae with varying levels of support (Clark, Zhang &

Wendel, 1995; Zhang, 2000; Duvall et al., 2007; Davis & Soreng, 2010; Triplett & Clark,

2010; Kelchner & Bamboo Phylogeny Group, 2013). Kelchner & Bamboo Phylogeny Group

(2013) identified a high level of character conflict in Streptogyna at “key nodes” in a

neighbour net analysis of a five-region plastid data set, despite strong support for its

placement in their tree. In recent classifications, Streptogyna has been treated as incertae

sedis among grasses (Grass Phylogeny Working Group, 2001), as incertae sedis within the

BOP clade (Kellogg, 2015) and as a tribe of Oryzoideae (Soreng et al., 2015b, 2017).

Streptogyna differs from other oryzoids by having multi-flowered (vs. one-flowered)

spikelets. Our results corroborate previous support for the monophyly of Oryzoideae

including Streptogyna, as the subfamily is maximally supported in all plastome trees

except the two based on noncoding regions, in which support for the same topology is

lower (BP = 87–88%), indicative of some conflict in the noncoding partition relative to

the rest of the plastome. Nevertheless, there is robust support in the plastome trees for

Streptogyna being sister to the rest of the subfamily.

The affinities of Streptogyna are different, however, in nuclear trees. In a phylogeny

based on phytochrome B, Streptogyna is sister to the BOP clade (Mathews, Tsai & Kellogg,

2000), and in a phylogeny based on FLOWERING LOCUS T (FT) in which both species of

Streptogyna were sampled, the genus is monophyletic and sister to Bambusoideae with

moderately strong support, and an Oryzoideae + (Streptogyna + Bambusoideae) clade is

weakly supported (Hisamoto, Kashiwagi & Kobayashi, 2008); no pooid taxa were included

in that study. Given the discordances among nuclear and plastome phylogenies, it is

possible Streptogynamight have arisen as part of an ancient hybridization event involving

a maternal parent ancestral to crown Oryzoideae and a paternal parent ancestral to crown

Bambusoideae. The evolutionary patterns identified in the nuclear trees might

alternatively reflect incomplete lineage sorting. Further sampling of the nuclear genome of

Streptogyna, bamboos and other oryzoids will be required to further characterize the

history of this lineage of grasses.

Ehrharteae and Phyllorachideae

Ehrharteae includes four genera: Ehrharta Thunb., Microlaena R. Br., Tetrarrhena R. Br.

and Zotovia Edgar & Connor (Soreng et al., 2017), all of which are sometimes included in a

single genus, Ehrharta (Kellogg, 2015), a classification congruent with phylogenetic data

(Verboom et al., 2003). As expected, the two species we sampled, E. bulbosa and M.

stipoides (= Ehrharta stipoides Labill.), form a clade, and this clade is robustly placed as

sister to the rest of the subfamily except Streptogyna. This topology is congruent with

other plastid trees, although not all included Streptogyna (Grass Phylogeny Working Group,

2001; Bouchenak-Khelladi et al., 2008; Grass Phylogeny Working Group II, 2012).
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The poorly known tribe Phyllorachideae comprises two genera: Humbertochloa A.

Camus & Stapf, with two species fromMadagascar and Tanzania, and Phyllorachis Trimen,

with one species from equatorial Africa (Kellogg, 2015; Soreng et al., 2017).Humbertochloa

has been included in only two molecular studies (Zhang, 2000; Vorontsova et al., 2016),

neither of which have sufficient taxon sampling from which to draw conclusions about its

affinities to other rice grasses, and Phyllorachis has not been sampled in any molecular

studies. In our trees,Humbertochloa is maximally supported as sister to the Oryzeae clade.

This topology is congruent with recognition of the lineage at either tribal rank within

Oryzoideae or subtribal rank within Oryzeae, with the caveat that the affinities of

Phyllorachis sagittata Trimen are unknown.

Oryzeae

Clades corresponding to Oryzeae and the subtribes Oryzinae and Zizaniinae (Ge et al.,

2002; Guo & Ge, 2005; Tang et al., 2010; Soreng et al., 2017) are maximally supported in all

plastome trees. Oryzinae includes four genera: Oryza, Leersia Sw.,Maltebrunia Kunth and

Prosphytochloa Schweick. (Tang et al., 2010; Kellogg, 2015; Soreng et al., 2017). An earlier

classification (Soreng et al., 2015b) placed Maltebrunia and Prosphytochloa in Zizaniinae,

based on phylogenies in which a sample identified as Prosphytochloa prehensilis was

resolved as part of the Zizaniinae clade (Ge et al., 2002; Guo & Ge, 2005). However,

that Prosphytochloa sample was later re-determined as a species of Potamophila R. Br.

(Tang et al., 2010). Prosphytochloa and Leersia are maximally supported sister taxa in the

plastome trees, and this clade is sister to Oryza, congruent with a plastid tree in which

Maltebrunia and Prosphytochloa are sister taxa and a Maltebrunia + Prosphytochloa +

Leersia clade is sister to Oryza (Tang et al., 2010).

Since rice (Oryza) is the most important food crop worldwide, there has been extensive

phylogenetic research on the ca. 22 wild and two cultivated species of the genus. Although

the 11 plastomes included here have all been published elsewhere, they have not all

been combined in a single phylogenomic analysis. The relationships among the species of

Oryza in our plastome trees are mostly congruent with similar plastome trees (Kim et al.,

2015; Liu et al., 2016), although when multiple individuals of O. nivara, O. sativa,

O. rufipogon, Oryza barthii A. Chev. and Oryza glaberrima Steud. were sampled none of

the species was monophyletic (Kim et al., 2015). Placement of Oryza australiensis Domin

sister to the rest of the genus is congruent with the neighbor joining tree in Liu et al.

(2016), in which Oryza brachyantha A. Chev. & Roehr.—the most distant congeneric

relative of cultivated rice—and O. australiensis are successive sisters to the rest of the

genus, a topology congruent with studies based on other types of data (Ge et al., 1999).

Plastome data are useful for robustly resolving relationships among closely related species

of Oryza with limited conflict among partitions.

Zizaniinae includes seven genera (Soreng et al., 2017) and our sampling includes four of

these. The sister group relationship between Rhynchoryza subulata and Zizania aquatica

in the plastome trees is congruent with results of other studies (Tang et al., 2010, 2015),

but the varying branching order of Chikusichloa aquatica and Potamophila parviflora at

the base of the clade is a novel result. Successive branching of Chikusichloa Koidz. and
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Potamophila, found in six trees, is congruent with an ML tree based on 20 plastid regions

(Tang et al., 2010, 2015). The plastome partitions that identify Potamophila and

Chikusichloa as successively diverging lineages comprise noncoding regions including

gapped sites, either alone or in combination with coding regions. The dominant signal for

this topology (whether accurate or not) is present in the gapped sites of the noncoding

alignment, which when combined with coding region data seemingly override the

conflicting signal in the latter partition. Recent data from the nuclear genome provides

further insight into the Zizaniinae evolutionary tree, even though the nuclear trees are

discordant, in part, with plastome trees. In trees based on 15 individual nuclear genes,

relationships among taxa of Zizaniinae varied considerably and were strongly discordant

with each other and with the plastid topologies here and elsewhere, whereas when the

same 15 genes were analyzed together, Chikusichloa and Potamophila formed a clade sister

to the rest of the subtribe (Tang et al., 2015). No plastome trees here identify a

Chikusichloa + Potamophila clade. This discordance between plastid and nuclear trees

might be due to incomplete lineage sorting, introgression, or both (Tang et al., 2015).

PACMAD clade
Although the PACMAD clade has been consistently identified in molecular studies,

relationships among the subfamilies have been generally poorly resolved and weakly

supported, and identifying the root of the PACMAD clade—placement of the branch

defining the first or deepest split in the lineage—has proven particularly challenging

(Clark, Zhang & Wendel, 1995; Mathews, Tsai & Kellogg, 2000; Grass Phylogeny Working

Group, 2001; Duvall et al., 2007; Bouchenak-Khelladi et al., 2008; Davis & Soreng, 2010;

Saarela & Graham, 2010; Grass Phylogeny Working Group II, 2012). Numerous studies,

mostly of plastid data, have identified Aristidoideae as the sister group of the rest of the

PACMAD clade, but support for this topology (i.e., for the subclade including all

PACMAD subfamilies except Aristidoideae) has mostly been weak (Clark, Zhang &

Wendel, 1995; Hilu, Alice & Liang, 1999; Grass Phylogeny Working Group, 2001; Duvall

et al., 2007; Sánchez-Ken & Clark, 2007; Christin et al., 2008a; Grass Phylogeny Working

Group II, 2012); for an exception see Vicentini et al. (2008). Cotton et al. (2015) explored

relationships among the PACMAD subfamilies based on complete plastomes and

identified two strongly conflicting topologies at the base of the clade. In their ML and BI

trees, Panicoideae were moderately to strongly supported as the sister group of the rest of

the PACMAD clade (the “panicoid-sister” hypothesis)—this was an unexpected topology

not recovered in previous studies. In their MP tree, however, Aristidoideae were strongly

supported as the sister group to the rest of the PACMAD clade (the “aristidoid-sister”

hypothesis), congruent with most earlier studies of grasses. In a subsequent plastome

study with increased Panicoideae taxon sampling but fewer representatives of most other

PACMAD subfamilies, Burke et al. (2016b) also identified the panicoid-sister topology. By

contrast, in a plastome study focused on Arundinoideae and with broad sampling across

Poaceae, Teisher et al. (2017) recovered all three possible topologies for the base of

PACMAD, of which none was particularly well supported. For example, they recovered the

aristidoid-sister topology when gapped sites were included, with weak support in ML and
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BI trees. Teisher et al. (2017) concluded that plastome data may be insufficient to resolve

this particular set of relationships. The plastome phylogeny of the PACMAD clade

generated by Piot et al. (2018) cannot be used to address deep relationships in the clade

because they rooted their tree with Aristidoideae.

Relationships at the base of the PACMAD clade in our 14 trees similarly vary in

topology and support. The same two conflicting topologies are identified in seven of our

trees, each with moderate to strong support in at least one of these trees. Three trees

excluding gapped sites identify the panicoid-sister topology (D, R, Z), similar to gap-

stripped results in Teisher et al. (2017), three trees including gapped sites identify the

aristidoid-sister topology (Q, W, Y), and in one tree (F), Aristidoideae + Panicoideae are

weakly supported as sister to the rest of the PACMAD clade, a topology rarely inferred

elsewhere. Our three-gene trees parallel the plastid sampling of Grass Phylogeny Working

Group II (2012) (partition A is most similar to their dataset), who identified the

aristidoid-sister topology with weak support in ML trees and maximum support in BI

trees, a topology congruent with the two three-gene trees including gapped sites reported

here. Overall, the aristidoid-sister topology is solely recovered in matrices in which gapped

sites were not stripped, suggesting that the signal for this topology is largely in the gapped

regions.

It is surprising that the two trees of complete plastomes excluding gapped sites provide

no (BP < 50%; X) or only weak (BP = 58%; Z) support for the panicoid-sister topology

because (1) this partition includes noncoding regions excluding gapped sites (dataset R),

which, when analyzed separately, strongly support the panicoid-sister topology; and (2)

this partition includes coding regions that, when analyzed separately, do not provide

support greater than 50% for any particular topology. Nevertheless, it is possible there is

discordant signal in coding regions that might be contributing to reduced support for the

panicoid-sister topology when combined with noncoding regions excluding gapped sites.

Indeed, the alternative topology in tree F, even though only weakly supported, supports

the idea of discordant signal in coding regions. Furthermore, the lack of support greater

than 50% for any topology in tree X differs from the ML tree in Cotton et al. (2015) based

on an equivalent dataset, in which the panicoid-sister topology receives moderate support

(BP = 77%). These differences might be related to the denser taxon sampling here in

Panicoideae and particularly in Aristidoideae, in which we sampled two species each of

Aristida L., Sartidia De Winter and Stipagrostis Nees, compared to Cotton et al. (2015), as

well as possible alignment differences.

Choice of outgroup in a phylogenetic analysis can affect inferences of the location of the

root of a clade (Graham, Olmstead & Barrett, 2002; de la Torre-Bárcena et al., 2009),

especially in clades such as the PACMAD clade with short deep internodes that are

difficult to resolve. Cotton et al. (2015) tested the effects of including different and varying

numbers of non-PACMAD grass outgroups on the basal topology of the PACMAD clade

in ML analyses. Although the panicoid-sister topology was supported in all but one of

their experiments, BP for this topology ranged considerably (from 60% to 91%)

indicating some effect of outgroup on ingroup branch support. We do not attribute our
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conflicting topologies to outgroup-effect, since all analyses include the same broad

sampling of taxa of Poaceae, which exceeds the diversity in any other plastome analysis.

In spite of the uncertain branching order of Aristidoideae and Panicoideae with respect

to the rest of the PACMAD clade, the four remaining PACMAD subfamilies—

Arundinoideae, Micrairoideae, Chloridoideae and Danthonioideae—form a strongly to

maximally supported clade in the plastome trees. This clade has been identified in

previous studies (Duvall et al., 2007, 2010; Grass Phylogeny Working Group II, 2012; Cotton

et al., 2015; Burke et al., 2016b; Piot et al., 2018; Teisher et al., 2017). The strongly

supported sister group relationship between Chloridoideae and Danthonioideae has

similarly been found in other plastid studies, with weak (Hilu & Alice, 1999; Duvall et al.,

2007; Sánchez-Ken & Clark, 2007; Christin et al., 2008a) or moderate to strong support

(Grass Phylogeny Working Group, 2001; Bouchenak-Khelladi et al., 2008; Peterson,

Romaschenko & Johnson, 2010; Piot et al., 2018; Teisher et al., 2017). These relationships

were also found in a combined ITS and plastid tree with strong support (Minaya et al.,

2015), and in a BI tree based on 122 nuclear loci, but not in MP-EST (maximum pseudo-

likelihood for estimating species analyses) analyses of the same nuclear data (Liu, Yu &

Edwards, 2010). By contrast, a strongly supported conflicting topology, in which

Danthonioideae is sister to Arundinoideae + Chloridoideae + Panicoideae (Micrairoideae

not sampled), was identified in a Bayesian analysis of combined ndhF and phyB data

(Vicentini et al., 2008), a topology likely influenced by the nuclear gene included there.

Another strongly conflicting topology, in which the remainder of the PACMAD

subfamilies did not form a clade, was found in a nuclear b-amylase phylogeny:

Chloridoideae were placed sister to the BOP clade, Danthonioideae were sister to

Chloridoideae + the BOP clade, and Panicoideae was not resolved as monophyletic

(Minaya et al., 2015). The maximally supported clade comprising Arundinoideae and

Micrairoideae in the plastome trees has been recovered in other plastome studies (Duvall

et al., 2010; Cotton et al., 2015; Teisher et al., 2017), whereas in few-gene studies the clade

has been recovered with poor (Duvall et al., 2007; Sánchez-Ken et al., 2007; Christin et al.,

2008a) or strong support (Grass Phylogeny Working Group II, 2012). Given the consistent,

non-conflicting support in the plastome trees we are confident in the accuracy of the

relationships among these four subfamilies inferred from plastome data.

Danthonioideae

Danthonioideae includes a single tribe comprising 18 genera, and one genus is incertae

sedis in the subfamily (Linder et al., 2010; Soreng et al., 2017). The current analyses include

plastomes from seven species and six genera. We find strong support from all plastome

partitions for successive divergences of Chionochloa macra Zotov, Chaetobromus

involucratus subsp. dregeanus (Nees) Verboom, Danthonia californica Bol., Tribolium

hispidum (Thunb.) Desv., Tenaxia guillarmodiae (Conert) N.P. Barker & H.P. Linder and

Rytidosperma Steud. (two species). This topology is congruent with and better supported

than the few-gene phylogenetic tree on which the current classification of the subfamily is

based (Linder et al., 2010).
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Arundinoideae and Micrairoideae
Arundinoideae includes Arundineae, with four genera and represented here by

Monachather paradoxa Steud., and Molinieae, with two subtribes (Crinipinae and

Molininae) and three genera incertae sedis (Soreng et al., 2017). Crinipinae includes four

genera and is represented here by Elytrophorus spicatus (Willd.) A. Camus, and subtribe

Molininae includes four genera and is represented here by Hakonechloa macra (Munro)

Honda and Phragmites australis (Cav.) Trin. ex Steud., as in Cotton et al. (2015).

Relationships among these taxa are congruent with the plastome trees in Piot et al. (2018)

and Teisher et al. (2017), the latter one better sampled.

Micrairoideae includes three tribes, each represented here: Micraireae (monogeneric),

represented here by Micraira F. Muell., Eriachneae (monogeneric) by Eriachne Eck-

Boorsb. and Isachneae (six genera) by Isachne R. Br. As in other studies, Micraireae is sister

to Eriachneae + Isachneae (Sánchez-Ken et al., 2007; Cotton et al., 2015; Piot et al., 2018;

Teisher et al., 2017). Of the eight genera of Micrairoideae (Soreng et al., 2017), plastomes

have not yet been published from species of Coelachne R. Br., Heteranthoecia Stapf. and

Sphaerocaryum Nees ex Hook. f.

Panicoideae
Panicoideae includes 13 tribes and three genera incertae sedis (Soreng et al., 2017). Overall

support and topology among panicoid lineages here is nearly identical to the earlier

plastome study of Burke et al. (2016b), and the plastome trees are generally better resolved

and supported than in earlier few-gene plastid trees (Sánchez-Ken & Clark, 2010;Morrone

et al., 2012). However, deep relationships among Zeugiteae, Chasmanthieae,

Tristachyideae, Centotheceae and Thysanolaeneae conflict among plastome partitions: the

five taxa form a weakly to moderately supported clade in some trees (E–H, X, Z, BP = 60–

87%), as in Burke et al. (2016b). In three trees, however, Tristachyideae + Centotheceae +

Thysanolaeneae and Zeugiteae + Chasmanthieae are successively diverging sisters to the

rest of the subfamily, with the large clade including Zeugiteae + Chasmanthieae strongly

supported as the sister group of the rest of Panicoideae excluding Tristachyideae +

Centotheceae (Q, W, Y, BP = 90–100%). These differing topologies indicate some strong

discordance in the plastome datasets. Plastomes representing Cyperochloeae and

Steyermarkochloeae have not yet been published. Lecomtella madagascariensis A. Camus is

the next to diverge, consistent with recognition of this taxon in its own tribe, Lecomtelleae

(Besnard et al., 2013; Soreng et al., 2017).

The strongly supported relationships among Paniceae, Paspaleae, Andropogoneae and

Arundinelleae in the plastome trees are congruent with other studies: Paniceae is sister to a

clade comprising Paspaleae + (Andropogoneae + Arundinelleae) (Grass Phylogeny

Working Group II, 2012; reviewed in Kellogg (2012)). This latter clade was recently

recognized as supertribe Andropogonodae (Soreng et al., 2017), a clade mainly of species

with x = 10 that is robustly supported in the plastome trees. Paspaleae genera, recently

reconstituted a tribe (Morrone et al., 2012), were historically included in supertribe

Panicodae (Soreng et al., 2015b).

Saarela et al. (2018), PeerJ, DOI 10.7717/peerj.4299 46/71

http://dx.doi.org/10.7717/peerj.4299
https://peerj.com/


Andropogoneae

Nine subtribes and six genera incertae sedis are recognized in tribe Andropogoneae (Soreng

et al., 2017), a large lineage in which multiple allopolyploidization events have been

documented (Estep et al., 2014). The two subtribes of Andropogoneae for which

plastomes are not sampled here are Chionachninae (five genera) and Germainiinae (four

genera) (Soreng et al., 2017). Relationships among the seven subtribes sampled in the

plastome trees here and in Burke et al. (2016b) are much better resolved and supported

than in studies based on a few plastid genes and ITS (Mathews et al., 2002; Skendzic,

Columbus & Cerros-Tlatilpa, 2007; Teerawatananon, Jacobs & Hodkinson, 2011), and are

mostly congruent with recent studies of low-copy nuclear loci in the tribe (Estep et al.,

2014; Hawkins et al., 2015) and with another plastome tree with somewhat different

sampling (Piot et al., 2018). Andropogoninae and Saccharinae are sister taxa, and within

Andropogoninae, the sister group relationship between Diheteropogon amplectens var.

catangensis and Hyparrhenia subplumosa, and the successive branching of Themeda sp.,

Iseleima macratherum and Bothriochloa alta + Capillipedium venustum, are congruent

with other plastid and nuclear trees (Kellogg, 2012; Estep et al., 2014; Hawkins et al., 2015).

Saccharinae includes 26 genera, of which we sampled Eulalia Kunth, Saccharum L.,

Sorghum, SorghastrumNash and Imperata Cirillo. In all but one plastome tree, Eulalia and

Sorghastrum are sister taxa, with varying levels of support; this topology is congruent with

the plastome tree in Burke et al. (2016b). Most earlier studies did not identify a close

relationship between these genera (Skendzic, Columbus & Cerros-Tlatilpa, 2007; Grass

Phylogeny Working Group II, 2012), although they were included in the same clade (with

other genera) in trees based on low-copy nuclear loci (Estep et al., 2014; Hawkins et al.,

2015). In all but one plastome tree, Saccharum and Sorghum form a strongly supported

clade, and Imperata is sister to this clade. The affinities of the Eulalia + Sorghastrum and

Imperata + Saccharum + Sorghum clades, however, vary among trees; in other words,

Saccharinae is not consistently resolved as monophyletic. Burke et al. (2016b) found

Eulalia + Sorghastrum to be sister to Andropogoninae, with weak to strong support, and

we find this same topology with weak to moderate support in five plastome trees, of which

all but one are based on partitions excluding gapped sites. In four analyses including

gapped sites, however, Saccharinae is monophyletic, and Eulalia + Sorghastrum and

Imperata + Saccharum + Sorghum are sister clades.

The strongly supported clade comprising I. afrum (Ischaeminae; six genera) and

C. lacryma-jobi (Coicinae; one genus) + R. cochinchinensis (Rottboelliinae; 16 genera) that

is sister to Andropogoninae + Saccharinae in the plastome trees has also been found in

other plastid studies (Grass Phylogeny Working Group II, 2012), but was not recovered in

nuclear analyses, in which most deep branches within the tribe were poorly supported

(Estep et al., 2014). At the base of the Andropogoneae clade in the plastome trees, subtribes

Arthraxoninae (one genus) and Tripsacinae (seven genera, represented by Zea) diverge

successively as sisters to the rest of the tribe, consistent with the better-sampled nuclear

tree in Estep et al. (2014).
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Paspaleae

Paspaleae includes subtribes Paspalinae, Otachyriinae and Arthropogoninae and the

incertae sedis genus Reynaudia Kunth. Our sampling includes two genera of Paspalinae

(Axonopus P. Beauv. and Paspalum), three of Otachyriinae (Otachyrium Nees, Plagiantha

Renvoize and Steinchisma Raf.) and two of Arthropogoninae (Coleataenia Griseb. and

OncorachisMorrone & Zuloaga). Monophyly of each subtribe is robustly supported in the

plastome trees, and despite our limited taxon sampling, the strong support for a sister

group relationship between Arthropogoninae and Otachyriinae is an improvement on

earlier studies with greater taxon sampling but less sequence data per taxon, in which

relationships among the three subtribes were unresolved (Acosta et al., 2014) or only

weakly supported (Grass Phylogeny Working Group II, 2012). Relationships among the

subtribes are similarly resolved in the plastome tree of Piot et al. (2018). Relationships

among the three sampled genera of Otachyriinae in our plastome trees are congruent with

earlier plastid trees (Grass Phylogeny Working Group II, 2012; Acosta et al., 2014).

Paniceae

Paniceae includes seven subtribes and eight genera incertae sedis (Soreng et al., 2017).

There has been considerable phylogenetic investigation of the tribe, mostly based on one

or a few gene regions (reviewed in Washburn et al. (2015)). Numerous clades now

recognized as tribes and subtribes were identified in a single-plastid-gene study with dense

taxon sampling, in which most aspects of backbone relationships were unresolved

(Morrone et al., 2012). Phylogenomic studies are providing new insights into relationships

in this tribe. Washburn et al. (2015) analyzed 78 chloroplast, 22 mitochondrial and 2

nrDNA loci from 45 taxa of Paniceae, Burke et al. (2016b) analyzed complete plastomes

from 16 taxa of Paniceae, and our sampling of the tribe builds slightly on the latter study

by adding three additional plastomes. Plastid-based topologies in the two earlier studies

and the current one are similar, with the following lineages diverging successively:

Anthephorinae, Boivinellinae, Dichantheliinae + Neurachninae, Panicinae, Melinidinae

and Cenchrinae. The strong support along the backbone of the Paniceae tree in the

current and earlier plastome studies (Washburn et al., 2015; Burke et al., 2016b) is a

substantial improvement on studies with considerably less genomic sampling (Grass

Phylogeny Working Group II, 2012; Morrone et al., 2012; Zuloaga, Salomón & Scataglini,

2014). The moderately to maximally supported clade comprising Dichantheliinae +

Neurachninae and Cenchrinae + Melinidinae + Panicinae is congruent with the plastome

and combined plastome, mitochondrial and nuclear trees inWashburn et al. (2015). They

also found Sacciolepis Nash (incertae sedis within Paniceae and not sampled here) to be

part of this clade and moderately to strongly supported as sister to Dichantheliinae +

Neurachninae. In a combined nuclear (phyB) and plastid (ndhF) tree, however, Sacciolepis

is embedded in Panicinae (Vicentini et al., 2008), possibly reflecting discordance between

plastid and nuclear data due to hybridization. Relationships inferred among taxa of

Melinidinae in Washburn et al. (2015), Burke et al. (2016b) and the current trees are also

congruent. In this study, W. capillipes is united with species of Panicinae in all trees from

the 14 partitions (mean BP = 92%) as was inferred earlier (Burke et al., 2016a). However,
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this result conflicts with those of two previous studies using incompletely sequenced

plastid loci. The previous studies placed W. capillipes among Cenchrinae, but with

marginal jackknife or BP (both <50%; Grass Phylogeny Working Group II, 2012; Morrone

et al., 2012). The two earlier studies obtained DNA from the same plant (voucher: J. Risler

1804, MO) and the loci sequenced are among those with the greatest number of positively

selected sites (ndhF, matK and rbcL); the plastome data were obtained from a different

accession. The inflorescence and spikelet morphologies of Whiteochloa C.E. Hubb. are

more similar to those of Panicinae than Cenchrinae. Setae, which are synapomorphic for

Cenchrinae (hence the common name “Bristle clade”), are notably absent from

Whiteochloa (Morrone et al., 2012).

Four possible explanations for this discrepancy are: (1) The use of plastid loci, which

have high numbers of positively selected sites, skewed previous phylogenetic analyses.

Such phylogenies, especially when based on a single gene, are susceptible to selection

artifacts (see above). (2) One of the two plants was misidentified, although it is not clear

which other Australian grasses might be mistaken for W. capillipes. When homologous

regions from our complete plastome are aligned with the previously sequenced markers,

nucleotide identities range only from 95% to 97%, which suggests that the two sources of

DNA are not conspecific. The plant used to produce the complete plastome (Duvall s.n.,

DEK) shows characters that are diagnostic for Whiteochloa. However, two duplicates of

the voucher J. Risler 1804 (DNA, MO) are also consistent with the current concept of

W. capillipes. (3)W. capillipes is actually a complex of hybrids between species of Panicinae

and Cenchrinae. The direction of the cross would determine which of two possible

plastome haplotypes (Panicinae or Cenchrinae) was captured, depending on the female

parent, whereas the morphological phenotypes of the reciprocal hybrids might be similar.

Nuclear sequences of Panicinae and Cenchrinae, which have not been obtained to date,

would be needed to test this third point and determine the identities of parent species. (4)

There was a labeling mix-up or contamination somewhere in the extraction or sequencing

process. This could be clarified by re-extracting and sequencing both specimens.

Subtribe Cenchrinae includes some 24 genera (Soreng et al., 2017) and most aspects of

its phylogeny are poorly resolved (Kellogg et al., 2009; Chemisquy et al., 2010; Morrone

et al., 2012). The two genera included here, Cenchrus L. and Setaria, of which we sampled

three species, form a clade, as in Burke et al. (2016b), but relationships among them

conflict strongly. In eight trees, Cenchrus and Setaria italica + Setaria viridis form a

maximally supported clade, whereas in two trees Setaria is strongly supported as

monophyletic and sister to Cenchrus. Although the species treated here as Setaria

geminata has been recognized in the genus Paspalidium Stapf, many authors have included

it in Setaria (Webster, 1993, 1995; Veldkamp, 1994;Morrone et al., 2014; Soreng et al., 2017).

In our trees, inclusion of Paspalidium in Setaria is supported only by plastome coding

data. In other studies, relationships among Setaria and related genera are unclear. For

example, in a broadly sampled ndhF tree of Setaria and related genera, species of

Paspalidium formed a clade that was part of a broader clade including a subset of Setaria

species (including the type species) from China and South America, Ixophorus unisetus

(J. Presl) Schltdl., Zuloagaea bulbosa (Kunth) E. Bess, Stenotaphrum secundatum (Walter)
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Kuntze and Uranthoecium truncatum (Maiden & Betche) Stapf (Kellogg et al., 2009).

Sampling of a much broader selection of genera and species in Cenchrinae will be needed

to clarify the plastome phylogeny in this group.

Subtribe Boivinellinae includes 18–19 genera (Silva et al., 2017; Soreng et al., 2017).

Burke et al. (2016b) sampled three of these and found them to form a maximally

supported clade, but relationships among the genera differed among their MP

(Amphicarpum sister to Oplismenus + Echinochloa), and ML and BI analyses (Oplismenus

sister to Amphicarpum + Echinochloa). Relationships among these genera similarly differ

among our plastome trees. In nuclear phylogenies, Echinochloa is not part of the

Boivinellinae clade (Christin et al., 2007; Vicentini et al., 2008). In a better-sampled

plastome tree, a maximally supported clade of six species of Echinochloa is weakly

supported as sister to a maximally supported clade comprising Brachiaria fragrans A.

Camus, Panicum locopodioides Bory ex Nees, Chasechloa A. Camus, Lasiacis nigraDavidse,

Oplismenus burmannii (Retz.) P. Beauv. and Pseudolasiacis leptolomoides (A. Camus) A.

Camus (Piot et al., 2018). Washburn et al. (2015) sampled Alloteropsis, Echinochloa (two

species) and Oplismenus, and relationships among these taxa were weakly supported in

their plastid tree. Our trees include Amphicarpum, Oplismenus, two species of Echinochloa

and three species of Alloteropsis. The latter genus is of particular interest to evolutionary

biologists (Lundgren et al., 2015) because one species, A. semialata, has two subspecies

differing in photosynthetic pathway: one is C3 and one is C4 (Gibbs Russell, 1983; Lundgren

et al., 2016). Monophyly of Boivinellinae is strongly supported in all but tree Y, in which

Amphicarpum is strongly supported as sister to T. xerophila and the lineage is placed

outside the main Boivinellinae clade; reasons for this alternative topology are unclear.

Relationships among the three species of Alloteropsis are congruent with the tree in

Ibrahim et al. (2009), which identifies two major lineages in the genus: one comprising

Alloteropsis cimicina (L.) Stapf sister to Alloteropsis paniculata (Benth.) Stapf + Alloteropsis

papillosa Clayton; the other comprising Alloteropsis angusta and Alloteropsis semialata.

Relationships among the four genera, however, vary among the plastome trees. Similar

uncertainty at the base of the Boivinellinae tree is present in other studies based on fewer

gene regions but greater taxon sampling (Grass Phylogeny Working Group II, 2012;

Morrone et al., 2012; Silva et al., 2017).

Chloridoideae

Chloridoideae includes five tribes (Centropodieae, Triraphideae, Eragrostideae,

Cynodonteae and Zoysieae) and seven genera incertae sedis at tribal rank (Soreng et al.,

2017). The successive branching order of Centropodieae, Triraphideae, Eragrostideae,

Zoysieae and Cynodonteae is congruent with other studies of plastid data (Columbus

et al., 2007; Peterson, Romaschenko & Johnson, 2010; Peterson et al., 2011, Peterson,

Romaschenko & Herrera Arrieta, 2016; Peterson, Romaschenko & Arrieta, 2014a; Duvall

et al., 2016; Piot et al., 2018). However, the relationship of Centropodieae to the rest of

Chloridoideae is unclear in nuclear trees, which did not resolve relationships among

Chloridoideae, Arundinoideae, Danthonioideae and Centropodieae (including

Centropodia Rchb. and Ellisochloa P.M. Peterson & N.P. Barker) (Fisher et al., 2016).
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Relationships among the other four tribes of Chloridoideae in nuclear trees, however, are

congruent with the plastome trees (Fisher et al., 2016). Our sampling of Chloridoideae

includes one of the three genera of Triraphideae (Triraphis R. Br.), two of the three

subtribes of Eragrostideae (Eragrostidinae, Unioliinae) and both subtribes of Zoysieae

(Sporobolinae, Zoysiinae). The relationships we find among the three sampled species of

Sporobolus (Sporobolinae), of which two were previously recognized in the genus Spartina

Schreb., are congruent with previous studies (Peterson et al., 2014b, 2014c).

Cynodonteae is a large and variable tribe consisting of 94 genera (Peterson,

Romaschenko & Herrera Arrieta, 2016; Soreng et al., 2017) for which there are no known

morphological synapomorphies. Twenty-five subtribes of Cynodonteae are currently

recognized (Peterson, Romaschenko & Arrieta, 2014a; Peterson, Romaschenko & Herrera

Arrieta, 2016; Peterson, Romaschenko & Herrera Arrieta, 2017a; Soreng et al., 2017), some

of which are combined in Kellogg (2015), and eight of these are represented here. Sampling

in Boutelouinae, Monanthochloinae and Hilariinae is identical to that in Duvall et al.

(2016), and relationships among these subtribes (Hilariinae sister to Boutelouinae +

Monanthochloinae) are congruent with other plastid analyses (Peterson, Romaschenko &

Johnson, 2010; Peterson, Romaschenko & Arrieta, 2014a, 2015). They are also congruent

with the 56 nuclear gene MP-EST tree in Fisher et al. (2016), but not their 122 locus BI

tree, in which Distichlis and Hilaria are sister taxa. Based on a phylogeny using seven

plastid and ITS regions, these three subtribes are part of a larger clade recognized as

supersubtribe Boutelouodinae, also including subtribes Allolepiinae, Jouveinae,

Kaliniinae, Muhlenbergiinae, Scleropogoninae, Sohnsiinae and Traginae (Peterson,

Romaschenko & Herrera Arrieta, 2017a). In Peterson, Romaschenko & Herrera Arrieta

(2017a), Boutelouinae + Monanthochloinae are moderately supported as sister to

Kaliniinae and Hilariinae are unsupported as sister to Allolepiinae.

Compared to a previous plastome study of Chloridoideae (Duvall et al., 2016), we

include new plastomes from Trichoneurinae (Trichoneura grandiglumis), Tripogoninae

(Halopyrum mucronatum and Melanocenchris abyssinica), Triodiinae (Triodia stipoides

(S.W.L. Jacobs) Crisp & Mant and Triodia wiseana C.A. Gardner), Eleusininae (Astrebla

pectinata, Chloris barbata, Eustachys glauca, Leptochloa pluriflora, Oxychloris scariosa) and

Dactylocteniinae (Dactyloctenium aegyptium). The sister group relationship between

Trichoneurinae and Dactylocteniinae is congruent with and better supported than

recent plastid trees in which Neobouteloua Gould + Dactyloctenium (L.) Willd.

(Dactylocteniinae) are sister to a large but weakly supported clade including Orcuttiinae

and a clade recognized as supersubtribe Gouiniodinae comprising subtribes Cteniinae,

Farragininae, Gouiniinae, Hubbardochloinae, Perotidinae, Trichoneurinae and

Zaqiqahinae, of which only Trichoneurinae is sampled here (Peterson, Romaschenko &

Arrieta, 2015; Peterson, Romaschenko & Herrera Arrieta, 2016; Soreng et al., 2017). In a

combined plastid and ITS tree, however, Dactylocteniinae and Eleusininae are sister taxa,

albeit with weak support (Peterson, Romaschenko & Herrera Arrieta, 2016). The close

relationship between the two species of Triodia (Triodiinae), one of which (T. stipoides)

was previously recognized in Monodia S.W.L. Jacobs, is congruent with other studies

(Hilu & Alice, 2001; Grass Phylogeny Working Group II, 2012). Monodia is nested within
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Triodia (Toon et al., 2015), and this and the related genus Symplectrodia Lazarides have

been synonymized under Triodia (Crisp et al., 2015; Soreng et al., 2017).

The branching order of the five sampled taxa of Eleusininae is congruent with the

plastid tree that included 28 genera of the subtribe in Peterson, Romaschenko & Arrieta

(2015), but clear resolution of relationships awaits the inclusion of the remaining 143

species in 23 genera of Eleusininae not sampled in our study. Strong support in six trees

for A. pectinata and L. pluriflora being successive sisters to the O. scariosa + E. glauca +

C. barbata clade is congruent with other plastid trees (Peterson, Romaschenko & Herrera

Arrieta, 2016). However, the strongly supported but discordant (reversed) branching

order of A. pectinata and L. pluriflora in one plastome tree (noncoding regions including

gapped sites) is congruent with the combined plastid + ITS tree in Peterson, Romaschenko

& Herrera Arrieta (2016), although the relevant deep branches in their tree only

moderately supported. Relationships among Eleusininae, Triodiinae and Dactylocteniinae

are poorly supported in the plastid trees in Peterson, Romaschenko & Herrera Arrieta

(2016), whereas we find these three lineages plus Trichoneurinae to be a clade with

moderate to strong support in analyses of noncoding regions and complete plastomes.

Peterson, Romaschenko & Herrera Arrieta (2016) found this same unsupported clade to

include nine additional subtribes (Aeluropodinae, Cteniinae, Farragininae, Gouiniinae,

Hubbardochloinae, Orcuttiinae, Orininae, Perotidinae, Zaqiqahinae). Nevertheless,

interrelationships among these subtribes vary. The topology in two trees, in which

Dactylocteniinae + Trichoneurinae and Eleusininae are sister groups, is congruent with the

56 nuclear gene MP-EST tree in Fisher et al. (2016), who did not sample Trichoneurinae.

However, topology of the nuclear tree in Fisher et al. (2016) was mostly incongruent with

better sampled plastid trees (Peterson, Romaschenko & Johnson, 2010; Peterson, Romaschenko

& Arrieta, 2014a), and they attributed these nuclear and plastid incongruences to

incomplete lineage sorting and gene flow.We also find onemoderately supported alternative

topology in one plastome tree, in which Triodiinae and Dactylocteniinae + Trichoneurinae

are sister groups. The deep branches in this part of the Cynodonteae clade are consistently

short in all trees (Fig. S1), which is likely contributing to the topological uncertainty. Lack of

representative sampling of related subtribes in the plastome tree is also likely contributing to

the problematic reconstruction of deep relationships among these lineages.

Peterson, Romaschenko & Herrera Arrieta (2016) were the first to sample the monotypic

Halopyrum Stapf in a molecular study and found it to be nested within Tripogoninae,

where it is now classified. Our results are consistent with this, as we find H. mucronatum

andM. abyssinica to be sister taxa, although we lack samples of five additional genera that

have been placed in the subtribe (Peterson et al., 2017b; Soreng et al., 2017). The differing

deep placements for Tripogoninae in the plastid trees, either in a robust clade with

Eleusininae + Triodiinae + Dactylocteniinae + Trichoneurinae (the dominant topology)

or sister to the remainder of the Cynodonteae (only in tree R), are likely the result of either

conflicting signal or lack of signal in the noncoding partition excluding gapped sites.

Moreover, in the single best ML tree from this analysis (Fig. S1), relationships among these

lineages are unresolved and it is therefore surprising there is such high BP for this

alternative topology. Overall, the strong support from plastome data for the mostly
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non-conflicting relationships inferred among subtribal taxa of Cynodonteae is a

considerable improvement on earlier plastid trees, in which relationships among these

subtribal lineages were mostly poorly supported (Grass Phylogeny Working Group II, 2012;

Peterson, Romaschenko & Arrieta, 2014a, 2015), and denser plastome sampling across the

tribe may lead to improved understanding of relationships, particularly of deep branches.

However, studies of nuclear loci that have identified topologies that conflict with those

from plastid data indicate that plastome analyses likely do not accurately reflect

evolutionary history in this large clade (Fisher et al., 2016).

FUTURE DIRECTIONS
Taxon density is key for resolving contradictory branching patterns. A robust plastome

phylogeny of Poaceae with complete genus-level sampling is likely attainable within five

years, dependent on the availability of rare species or those restricted to remote areas.

Such a phylogenetic tree would contribute to further improvement, refinement and

confidence in classification of grasses, and would facilitate broad characterization of the

molecular evolutionary histories of plastomes in grasses, allow more precise divergence

estimations, and produce complete descriptions of microstructural events and rare

genomic changes in the plastome. We suggest that future work on plastome phylogeny of

Poaceae should aim to (1) sample representatives from the few tribes (Guaduelleae,

Duthieae, Brylkinieae, Cyperochloeae, Steyermarkochloeae) and many subtribes for

which plastomes have not yet been published, as well as the few genera that remain

unplaced to a tribe or a subtribe, most of which have no sequence data available; (2)

complete genus-level sampling of plastomes in all tribes and subtribes, focusing first on

genera whose affinities within tribes, subtribes and subfamilies are unclear in existing

phylogenies (e.g.,Milium, Beckmannia, Cinna) in Poeae group 2; Avenella in Airinae) and

genera that have not been included in any phylogenetic study, such as Phyllorachis

(Phyllorachideae); (3) sample plastomes representing all lineages of genera known to be

para- or polyphyletic and which have not yet undergone taxonomic revision; (4) sample

taxa of particular evolutionary interest, such as Aristida longifolia, the C3 sister to all other

species of Aristida, which are C4. Attention should also be paid to stems and loop micro

inversions and data bias from complementary base pair mutations in stems, in mechanical

alignments. Attention to nuclear genomes is needed beyond all this, to clarify reticulation

events, as those are not evident in plastid trees.

CONCLUSION
High throughput sequencing, high speed computation, and big data science software tools

together facilitate genome-scale systematic studies of plants. Here, we present the most

comprehensive plastome phylogenomic study of Poaceae to date with specific emphasis

on the effects of data partitioning. The plastome phylogeny is highly congruent with the

latest classifications of Poaceae, with most branches that define tribes and subtribes

strongly, and usually maximally supported, even though we have not sampled plastomes

from all of the tribes. One interesting exception is the subtribal placement ofWhiteochloa

in Panicoideae, a result that should be confirmed through further study.
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We demonstrate strong improvements in resolution and support in our plastome

phylogenomic analyses of Poaceae, particularly when compared to single and few-gene

plastid phylogenies. We recommend analyses of both coding and noncoding plastome

regions while excluding regions that may be aligned ambiguously by removing all sites

with gaps introduced by the alignment. Such ambiguous regions sometimes showed

spurious “signal.”

Although the plastid coding loci uniformly show a dominant signal of purifying

selection, positively selected codons were also identified in most loci. We show that widely

used loci in grass systematics, such as ndhF,matK, rpoC2, and rbcL, are particularly subject

to selective effects and have the highest numbers of positively selected codons among

plastid loci. Use of noncoding intergenic spacers, introns, and protein coding loci such as

certain photosystem genes e.g., psaA and psaB, which have few positively selected codons,

can reduce phylogenomic artifacts due to selection.

Relationships among PACMAD subfamilies were previously reported and widely cited in

a benchmark paper of grass systematics (Grass Phylogeny Working Group II, 2012). That

study was taxonomically denser than this study, but relied on considerably less molecular

data, coincidentally analyzed the loci with the most positively selected codons, and, in the

interest of retaining the most sequence data, included alignment gaps. Here we show that

the positions of Panicoideae and Aristidoideae relative to the remaining PACMAD

subfamilies is dependent on the data partition that is analyzed, and that earlier results

should be viewed in the context of that information. This is a pivotal node in grass

systematics that has broad historical significance for the adaptive changes that occurred

during transitions from forests/forest margin habitats to open grasslands. Additional

taxonomic sampling of plastomes and parallel nuclear studies obtained from transcriptomes

or libraries enriched with specific targets will be needed to fully address these issues.
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