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ABSTRACT 

Compared to terrestrial ecosystems, the characteristics of marine ecosystems remain largely 

under-explored. Marine and coastal ecosystems provide a number of ecological services and 

societal benefits (resources for commercial opportunity, food, recreation, and transport) which, 

in turn, has developed a strong reliance on these ecosystems. However, the increasing direct 

extraction of living and non-living resources and effects of urbanisation of adjacent coasts has 

placed a significant loss of habitats and associated essential diversity. To conserve biodiversity 

and retain specific goods and services provided by these ecosystems, marine conservation plans 

aim to protect spatial areas that are critical in the support of these benefits. Due to the paucity of 

adequate biological data and the prohibitive cost of directly sampling benthic biota over large 

areas, the most effective means of developing benthic habitat maps, used as biodiversity 

surrogates, is to use commonly available marine abiotic attributes.  

In KwaZulu-Natal (KZN), through marine spatial planning (MSP) the derivation of a marine 

conservation plan is well underway. The next step is to expedite the plan by investigating 

whether surrogates for biodiversity exist at different ecosystem levels, one being the infauna of 

unconsolidated sediments, mid-shelf 50-80 m. This work presents an outcome of the ACEP 

‘Surrogacy Project’ that assessed whether predefined biodiversity zones (biozones) represent the 

taxonomic/functional attributes of macrobenthic communities. Biozones were subdivided into 

various subclusters from Richards Bay to uMkhomazi with 19 (57 replicates) stations sampled 

during the winter of 2014 across the biozones to represent replicate ‘treatments’. Macrobenthic 

communities were classified taxonomically, to the lowest level possible, and then on biological 

traits. Community patterns were investigated along the mid-shelf, and related to measurable 

biophysical factors. Environmental parameters measured included sedimentary characteristics as 

well as the bottom 5 m of water column characteristics per station. A total 33 215 individuals 

belonging to 634 taxa were recorded along the mid-shelf, of which the majority were Polychaeta 

and Crustacea, with the latter being highly abundant. Cluster analysis resolved into seven 

taxonomic groups distributed according to different habitats that are characteristic to the KZN 

shelf.  

The use of coarser taxonomic resolution (Phylum-Genus) or indicator taxa (Polychaeta and 

Amphipoda) as surrogates for total community richness were independently investigated using 

the same macrofaunal abundance data. Results showed similar clustering of samples to total 
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fauna (Species-level) when data were analysed at Family-Genus taxonomic level and at 

Polychaeta indicator taxa, suggesting that the same amount of information was being gained 

using data based on these taxonomic level and indicator taxa. The results of the BIOENV 

analyses were also broadly similar for both taxonomic levels of analyses, in terms of both the 

proportion of the variation in assemblage structure explained by the selected environmental 

variables and the choice of selected variables. These results suggested that the information 

gathered at Family-Genus level and Polychaeta indicator can be used as a proxy for the whole 

macrobenthic community. This has important implications for future studies and for MSP. 

Using nine traits, across 51 categories, four main functional groups were found off Thukela, 

Zinkwazi to Durban, and Durban to uMkhomazi. The groups were characterised as being free-

living carnivores, hard-skeleton direct-developing omnivores, and soft-bodied or hard-shelled 

omnivores with planktotrophic larvae. These patterns were explained by the KZN shelf habitat 

complexity, including level of different sediment grains, TOC, carbonates, water column 

turbidity, salinity, dissolved oxygen and temperature. 

Thus far, distribution patterns and functional attributes of the macrobenthos do not fully agree 

with modelled biozone separations (KZN MSP biozone model). Because they are an important 

component of marine ecosystem functioning, biozone model derivations require the addition of 

a macrobenthic component, in particular information about diversity patterns, to identify areas 

for conservation. Suggested, is a refinement of the current benthic habitat layer by incorporating 

biological data. Further, by using validated sediment distribution, taxonomic and functional 

attributes that determine soft-bottom macrofaunal distribution at a variety of spatial scales, an 

alternative biozone model to the current MSP predefined biozones was proposed. This multi-

approach resolved into a simplified model with four biozones. These are likely better predictors 

of spatial variation in ecosystem processes and biodiversity as domains that are biologically 

informed, and are a key requirement for effective marine management. This study demonstrates 

the critical importance of testing assumptions about surrogacy and an approach for refining 

surrogates. Further studies are required to establish whether the proposed model adequately 

represents other ecological components (e.g. epifauna). 

The findings of this study contribute significantly to existing local knowledge, including 

augmenting and refining taxonomic information of the KZN shelf. In addition, this study 

subsidises poor information for large spatial areas in local and national marine conservation 

plans. The proposed biozone model may facilitate an understating of ecosystem process in the 

region and contributes to integrated marine management.  
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CHAPTER 1. INTRODUCTION 

1.1 Context of study 

The continental shelf on the east coast of South Africa is recognised as a biologically important 

and productive environment (Heydorn et al. 1978, Hutchings et al. 2002, Meyer et al. 2002) 

owing to diverse environmental conditions arising from the Agulhas western boundary current 

(Lutjeharms 2006a, Roberts et al. 2010b). Furthermore, this shelf is characterised by unique 

benthic habitats that are central to the ecology of the region (Green and MacKay 2016, MacKay 

et al. 2016, Untiedt and MacKay 2016). As a consequence of the lack of protection and 

management, this offshore marine environment was among the main concerns identified in the 

recent National Spatial Biodiversity Assessment, with KwaZulu-Natal (KZN) recognised as a 

priority area for the establishment of offshore marine protected areas (MPAs) (Sink et al. 2011). 

The aim of Marine Protected Areas (MPAs) is to conserve biodiversity and maintain ecological 

integrity (Claudet 2011). The establishment of a representative system of protected areas is 

widely regarded as one of the most effective mechanisms for protecting biodiversity while 

permitting the sustainable use of natural resources (Lombard et al. 2004, Driver et al. 2012). 

South Africa, as a signatory to national and international conventions and agreements, has a 

mandatory task to develop and implement strategies for the conservation, sustainable use and 

equitable sharing of its unique marine and coastal environments and associated resources and 

biodiversity benefits. However, KZN shelf biodiversity has been poorly studied and therefore 

conservation plans primarily rely on abiotic information. Biophysical-based habitat 

classification schemes are often used as biodiversity surrogates in the absence or lack of 

biodiversity information to support conservation planning (Ward et al. 1999, McArthur et al. 

2010a, McArthur et al. 2010b, Malcolm et al. 2012, McHenry et al. 2017). Such a plan for the 

KZN shelf has been a joint effort between the conservation authority Ezemvelo KZN Wildlife 

and the South African National Biodiversity Institute to define biodiversity zones (biozones) 

using multiple data layers. These include remotely sensed and seafloor characteristics as 

biodiversity surrogates for the KZN shelf (Harris et al. 2011a). The efficiency of abiotic-based 

habitat classification schemes as biodiversity surrogates in conservation planning is poorly 

understood (Ward et al. 1999, Mumby et al. 2008). The objective of this study is to test the 

efficiency of predefined abiotic-derived habitat classification schemes as surrogates for 

biodiversity conservation on the KZN continental shelf. In this case, to test marine 

macrobenthic distribution as a surrogate for overall biodiversity, through marine spatial 

planning biozones.  
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1.2 Coastal marine environments 

The ocean is the largest ecosystem, covering approximately 70% of the earth’s surface 

(Snelgrove 1997, Ellingsen 2002) and supports millions of diverse species, some as yet 

undiscovered (Snelgrove 1999). The ocean floor, of which 80% is unconsolidated sediments, 

encompasses a number of geological and biological structures, such as canyons, reefs, paleo-

coastal lagoons and biogenic structures, which promote biodiversity wealth (Ellingsen 2002, 

Brooks et al. 2006, Lange 2013). Continental shelves are a relatively small portion of the ocean 

floor (7.5%) but are important for sediments transported from the coast to the deep ocean 

basins. Coastal shelves are also important for social, economic and ecological benefits, 

including supporting commercial and recreational fishery industries. This is due to their high 

biological productivity as they mineralise over 52% of the global organic content, being a 

significant hydrocarbon reservoir and carbon fixation area, among others (Karakassis and 

Eleftheriou 1997, Middelburg et al. 1997, Bauer and Druffel 1998, Weaver et al. 2000, Martín 

et al. 2006, Liu 2014, Snelgrove et al. 2014). 

The Western Indian Ocean (WIO) shelves are generally wide and defined by a smooth relief 

owing to their tectonic inactivity, and are characterised by a thick accumulation of soft 

sediments where fluvial sediments supply is in excess (Falvey and Middleton 1981, Scrutton 

1982, Griffiths et al. 2010). The South African east coast continental margin typifies the above 

and is characterised by deep basins filled with thick soft sediments and sedimentary rocks 

(Uenzelmann-Neben and Huhn 2009). On the east coast of South Africa, the KwaZulu-Natal 

continental margin exhibits a typical passive margin morphology formed by rifting with 

subsequent modification by sea-level rise and sedimentary processes (Moir 1974, Flemming 

1978, 1981). This margin is notable for its narrow shelf and steep slope for the greater part, 

except for the shelf area off the uThukela Estuary, where the shelf widens considerably owing to 

the uThukela River sediments extending to the shelf break offshore (Flemming 1978, 1981, 

Martin and Flemming 1988, Bosman 2012). This shelf is separated from the continental slope 

by the shelf break or edge sharply defined at 200 m isobaths (Moir 1974, Flemming 1978). 

Sometimes, the shelf edge is incised by underwater canyons running perpendicular to it, and 

stretching to deeper waters (Flemming 1981, Ramsey and Miller 2002, Green 2009). These 

canyons may act as a sediment sink offering shelter and protection from the overlying Agulhas 

Current (Ramsay and Miller 2002, Green 2009). Furthermore, they may affect the biocoenosis 

of the region in the manner in which it deflects the flow of bottom water. This topographical 

configuration is said to be responsible for the behaviour of the Agulhas Current, sediment 
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distribution and oceanographic features on the shelf (Lutjeharms 2006a) and will be further 

explained in later sections.  

1.3 Oceanography 

1.3.1 Agulhas Current 

On the east coast, long-term circulation patterns are established by the action of strong synoptic 

winds driven by earth’s vorticity (Schumann 1987). These strong, local winds are not only 

instrumental in the formation of the Agulhas Current (AC), but also drive this highly dynamic 

coastal environment, contributing to a properly mixed water column with limited evidence of 

significant thermocline development (Davies and Clayton 1977, Field and Griffiths 1991, Green 

and Garlick 2011). The AC originates off the coast of northern KwaZulu-Natal at approximately 

27º S flowing in a south-westerly direction and veering off the coast of Port Elizabeth at 

approximately 17º E (Lutjeharms 1981, Lutjeharms and Roberts 1988, Schumann 1988, 

Lutjeharms 2006a). This is a relatively narrow current, with a mean width of ~100 km, flowing 

close inshore near the 200-m isobath with mean speeds of about 1.4 m.s
-1

 to about 1.6 m.s
-1 

(Heydorn et al. 1978, Schumann 1987, Lutjeharms 2006b, Lutjeharms et al. 2010). The AC 

follows a stable path along this shelf, steered by a joint effect of a narrow continental shelf and 

steep slope (de Ruijter et al. 1999, Lutjeharms 2006a, 2007, Lutjeharms et al. 2010) and the core 

of which tends to follow the shelf break tightly (40-60 km offshore of the shelf break). The 

exception is the wider Natal Bight where it does not hold its path (Schumann 1988, Lutjeharms 

2006a, Lutjeharms 2006c, Lutjeharms 2007, Louw 2014) and can meander 15 km to either side 

of the 200 m isobath resulting in mesoscale eddies and Durban sheared eddies (Roberts et al. 

2010b, Louw 2014). Downstream propagation of this meander causes a current reversal along 

the shelf and may contribute to the upstream dispersal of biota (Heileman et al. 2008). Agulhas 

Current core waters are generally 1-2 ºC warmer than the surrounding waters (Heydorn et al. 

1978, Pearson and Rosenberg 1978, Schumann 1988, Lutjeharms 2006a). In a recent survey the 

core AC sea surface temperature varied from 24-26 °C in May to 22.0-22.5 °C in July, while 

shelf waters were up to 4 °C cooler than the AC core (Roberts et al. 2010b). The surface waters 

at the edge of the AC originate inshore and are generally cooler with a slightly lower salinity 

than that of the Agulhas Current. The minimum and maximum average temperature varies 

between 22 ºC in winter and 27 ºC during summer, respectively. Salinity decreases even more 

during the summer months owing to high rainfall and increased river input (Heydorn et al. 

1978). Neighbouring water masses of different salinity and temperature are known to form 

boundaries, and thus the formation of zoogeographical boundaries (Longhurst 1958). 

Occasional landward movement of the AC results in water from the current (including fauna) 
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being transferred to the inshore water contributing to the tropical and subtropical characteristics 

(Pearce 1977, Lutjeharms 2006b). This exerts an effect and impact on the coastal environment, 

biogeography of marine organisms and patterns of energy flow and nutrient recycling (Pearce 

1977, Harris 1978, Schumann 1987, Beckley 1995, Heileman et al. 2008, Lutjeharms et al. 

2010).  

 

 

 

 

 

 

 

 

 

 

1.3.2 Local oceanographic features and circulation 

The northern shelf between Richards Bay and St Lucia has a topographically induced upwelling 

cell (Lutjeharms et al. 1989, Lutjeharms 2006a, Barlow et al. 2008, Heileman et al. 2008, 

Lutjeharms et al. 2010), bringing nutrient-rich waters onto the shelf though Ekman transport 

which may determine the ecology of the region (Pearce 1977, Heydorn et al. 1978, Meyer et al. 

2002, Merino and Monreal 2004, Lutjeharms 2006a).  

The uThukela River outflow, discharges various volumes of freshwater and large quantities of 

detritus and fine-grained sediment (Begg 1978, Heydorn et al. 1978), and has been reported by 

several authors as a source of sediments and detritus along the shelf (Flemming and Hay 1988, 

de Lecea et al. 2013). Mud, from this feature migrates outwards in suspension, resulting in a 

turbid environment, and settles on offshore mud banks, creating a dynamic mud depocentre in 

the subtidal zone (Flemming and Hay 1988), which in turn influences local ecology (MacKay et 

Figure 1.1. Bathymetry of the South West Indian Ocean and the major circulation features. Thick 

solid arrows indicate the direction of the Agulhas Current and circular arrows indicates mesoscale 
eddies (after from Lutjeharms 2006). 
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al. 2016, Untiedt and MacKay 2016). The Durban cyclonic eddy is formed as the AC 

overshoots the narrowing shelf offshore of Durban (Schumann 1988, Lutjeharms and Ansorge 

2001, Lutjeharms 2006a, Lutjeharms et al. 2010, Louw 2014), bringing nutrient rich waters onto 

the shelf waters (Meyer et al. 2002, Lutjeharms 2006a). The pronounced effect of the AC on the 

coastal ocean along the entire KZN coastal stretch is remarkable and understanding the 

dynamics of this phenomenon is fundamental to understanding the ecosystem of this shelf 

(Schumann 1987, Schumann 1988, Beckley 1995, Lutjeharms 2006a, Heileman et al. 2008, 

Vousden et al. 2008, Lutjeharms et al. 2010, Louw 2014).  

The nearshore northern regions of the KZN Bight are strongly influenced by synoptic coastal 

winds (Schumann 1988) and the northerly flow and frequent current reversals are consistent 

with the wind direction (Pearce 1977, Roberts et al. 2016). The trapped water on the KZN Bight 

causes a general cyclonic circulation in the northern Bight, triggering formation of small eddies 

on the mid and outer shelf areas (Schumann 1988). Their intensities of which rely on the 

distance and stability of the AC offshore (Pearce 1977, Harris 1978, Flemming and Hay 1988). 

The inshore currents south of the uThukela River flow in a northerly direction and form a 

general cyclonic circulation in the southern part of the Bight (Roberts et al. 2016), which is 

reflected in the long-shore drift patterns and bedload parting (Flemming and Hay 1988). The 

semi-permanent Durban eddy is associated with strong north-eastward counter currents 

(Guastella and Roberts 2016) transporting water southwards down the KwaZulu-Natal coastline 

as well as northwards onto the shelf and inner regions of the KwaZulu-Natal Bight. This eddy is 

also associated with increased primary productivity due to the upwelling of cooler nutrient rich 

water in the water column (Untiedt and MacKay 2016), which supports high numbers of 

suspension feeders in the macrobenthos on the mid-shelf area off Durban (Untiedt and MacKay 

2016). The combined influence of the aforementioned conditions make for what are apparently 

unique benthic habitats along this shelf area (MacKay et al. 2016). 

1.4 Physico-chemical characteristics 

1.4.1 Temperature 

The sea-surface temperature (SST) of the KZN shelf waters is linked to Southern African 

seasonal rainfall variability (Landman and Mason 1999a, b, Mason and Tyson 2000). Warmer 

SST of the AC system, for instance, has been correlated with the wetter summer season of the 

region, similarly, cooler SST has been associated dry winter season (Jury et al. 1993). The 

average maximum SST off Durban is 25 °C in February during the summer season, and the 

minimum is 21 °C in the months of July and August during the winter season (Heydorn et al. 
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1978). Recent records of SST indicate a range between 20-22 °C in the KZN Bight during the 

month of September 2005 (Barlow et al. 2008). Temperature is among the environmental 

gradients that define species’ fundamental niches by affecting physiological processes and thus 

playing a critical role in the occurrence and distribution of fauna (Meynard and Quinn 2007, 

McArthur et al. 2010a). Temperature gradients are most apparent during summer months, which 

is also peak rainfall season. 

1.4.2 Salinity 

A large number of estuaries are on the KZN coastline (Begg 1978), discharging large quantities 

of freshwater onto the shelf during the peak rainfall of the summer months. This has a 

substantial effect on salinity and temperature gradients of coastal waters (Pearce 1977, Heydorn 

et al. 1978, Clark et al. 2000), with shallow waters being more likely to be affected because 

variation in these parameters are transferred down to the seafloor. Nevertheless, discharges of 

freshwater are sporadic and localised, therefore their overall effect on the vertical density 

structures and currents is negligible (Schumann 1988). In rare events, after heavy summer rains, 

silt-laden floodwaters extend several kilometres offshore, but are of short duration (Schumann 

1988). KZNs shelf water is a composite of tropical and subtropical warm and saline waters, 

brought onto the shelf by the AC (Schumann 1988). On average, surface salinity varies between 

35.3 and 35.5 psu (Schumann 1988), with high salinity values associated with sub-tropical 

water from the mid-latitude Indian Ocean and lower values attributed to tropical water. Certain 

taxa are sensitive to salinity gradients, consequently, variation in salinity could be a limiting 

factor exerting a direct influence on the benthic organism occurrence and distributions (Jones 

1950). Nevertheless, an increase in vertical gradients may be very advantageous in the pelagic 

system by keeping planktonic organisms in the upper layers and concentrating food supply for 

larger organisms (Heileman et al. 2008, Lutjeharms et al. 2010).  

1.4.3 Nutrients  

Mesotrophic and eutrophic coastal waters are associated with high primary production (Bosman 

and Hockey 1986) and are dominated by few taxa able to monopolise these resources under 

ambient conditions (Huston 1979, Bertness et al. 2001) and therefore, support low species 

richness (Snelgrove and Butman 1994) and high species evenness (Hillebrand et al. 2007). This 

is in contrast to the oligotrophic waters, which support low biomass communities with high 

species richness, but have high levels of endemism (Poore et al. 2008). The meso-oligotrophic 

waters of KZN derives nutrients from the topographically induced upwelling cell south of Cape 
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St Lucia, phytoplankton primary productivity and detritus brought along by floods and 

freshwater discharge during the high rainfall season (Pearce 1977, Begg 1978, Heydorn et al. 

1978, Schumann 1988, Lutjeharms and Ansorge 2001, Kunnen 2013, Scharler et al. 2016).  

Lutjeharms et al. (1989) and Meyer et al. (2002) proposed that the upwelling cell off Richards 

Bay is the main source of nutrients for the greater part of the shelf environment. However, 

recent studies have indicated that the uThukela River outwelling is an important nutrient source 

compared with Richards Bay and Durban (Scharler et al. 2016, Untiedt and MacKay 2016). 

This area derives its nutrients from the fluvial input brought onto the shelf by the uThukela 

River. This affects the turbidity of inshore waters (Heydorn et al. 1978, Flemming and Hay 

1988), preventing light penetration and therefore primary productivity. This is evident in the 

deposit-feeding macrobenthos found in the area (Untiedt and MacKay 2016). Several other 

upwelling cells occur and inject nutrients but at lower levels relative to the Richards Bay 

upwelling cell. For example, Gründlingh and Pearce (1990) indicated an upwelling that could be 

caused by an eddy in the large cyclonic rings (deeper than 100 m) propagating downstream 

from north of the KwaZulu-Natal Bight. Schumann (1988) and Carter and d'Aubrey (1988) 

identified an upwelling cell that could result from the Durban eddy. Although such upwelling 

cells last for a short period of time (2-3 days), their effects as fortuitous nutrient source often 

last longer. 

1.4.4 Sediment characteristics  

Sediment dispersal and distribution on the KwaZulu-Natal shelf are controlled by a complex 

interplay of the AC and associated oceanographic processes, shelf configuration, and sediment 

supply (Flemming 1981, Schumann 1987, Lutjeharms 2006a) and these are a vital determinant 

of the structure and distribution of macrobenthic assemblages (Sanders 1958, Heydorn et al. 

1978, Gray 1981). Sediment input onto the KwaZulu-Natal shelf and margin is mainly of fluvial 

origin and from biogenic products (Flemming and Hay 1988). Fluvial entry is mainly from the 

uThukela, uMvoti, uMngeni and uMkhomazi estuaries (Birch 1996, Green and MacKay 2016). 

Shell gravel, animal tubes, mounds, pits and faecal casts constitute biogenic materials of this 

shelf environment (Walling 2006, Passarelli et al. 2012). The uThukela Estuary is by far the 

main source and when outflow is high, acts as an offshore estuary depositing organic matter in 

the sediments and plays an important role in the demersal food web by supporting the majority 

of organisms and communities which occur along the shelf (de Lecea et al. 2016, Untiedt and 

MacKay 2016). Sediments brought onto the shelf by these coastal systems are kept in 

suspension by wave action, wind regimes and ocean currents until they are transported out from 
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the shelf or trapped within closed eddies where they settle out (Flemming and Hay 1988). This 

is reflected by a fine and very fine, well sorted sediments cordon (0.125-0.25 mm) between 

Richards Bay and south of uThukela (Untiedt and MacKay 2016), running perpendicular to the 

shelf from uThukela Estuary to the shelf edge (Green and MacKay 2016). Course grade 

sediments (Green and MacKay 2016) dominate the sediments on the far north KwaZulu-Natal 

shelf, while south of the uThukela there is widespread mixing of the different sand grain sizes 

(Flemming 1978, Flemming and Hay 1988). The shelf area south of Durban is characterised by 

a thick accumulation of sediments and is the second largest sediment deposit on the eastern 

margin located between Amanzimtoti and Hibberdene, known as the uMkhomazi sediment 

deposit (Birch 1996). However, due to the presence of a sub-parallel ridge between Green Point 

and Scottburgh (forming a barrier against sediment movement) the mid-outer shelf area is 

devoid of fine sand. It is mostly characterised by gravels, while small quantities of fine sediment 

(mud, silt and clay) are found on the inner shelf with some mud off the uMkhomazi Estuary 

(Birch 1996).  

On the shelf, the sedimentary characteristics are broadly described based on the inner and outer 

shelf zones. Flemming (1981) defined the inner shelf as a dynamic zone of terrigenous 

deposition and transport from the major river mouths forming an inshore terrigenous prism of 

fine sediments accumulated after the last glaciation (Heydorn et al. 1978). A frontier of the 

inner shelf finer terrigenous sediments from the outer shelf coarser biogenic sediments is 

evident between 50-60 m isobaths, defined by a band of gravel substrate of aeolianites 

associated with a consolidated paleo-dune feature (Flemming 1978, Flemming and Hay 1988, 

Green and MacKay 2016). Finer terrigenous sediments of this region are composed of 

terrigenous mud, which due to the increased levels of organic matter provide a suitable habitat 

for benthic communities, and is where unique communities of macrobenthos occur (MacKay et 

al. 2016). The outer shelf is vulnerable to winnowing and scouring by the AC and is therefore 

dominated by carbonate-rich current induced size-sorted gravel (>2 mm) mainly composed of 

relict shell fragments (Heydorn et al. 1978, Flemming 1981, Flemming and Hay 1988, 

Lutjeharms 2006a). Furthermore, the AC is responsible for the south-westerly facing large-scale 

subaqueous dunes in the unconsolidated sediment of the outer continental shelf (Flemming 

1978, 1980, 1981, Flemming and Hay 1988, Ramsay 1994, Ramsay et al. 1996, Green 2009). 

Sediment composition and distribution is not only useful in determining geological history 

along the sea seafloor but is also an important predictor in species (Roland et al. 2012) 

abundance and community assemblages (MacKay et al. 2016) and is thus a useful biological 

proxy (Snelgrove and Butman 1994, Beaman 2005, McArthur et al. 2010a, Roland et al. 2012, 

MacKay et al. 2016). 
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1.5 Macrobenthic communities 

Marine macrobenthic fauna are the suite of invertebrate animals with a close association with 

the seafloor, inhabiting the sediment, or living on, or in other available bottom substrates of the 

marine ecosystem (Sanders 1958, Gray 1974a, Gray 1981, Karakassis and Eleftheriou 1997, 

Somerfield et al. 2005, Gray and Elliott 2009). Macrobenthos encompasses a wide range of 

taxonomic and functional entities confined to relatively small areas due to their limited 

mobility, therefore unable to avoid unfavourable conditions and effectively integrate historical 

environmental conditions (Warwick 1993, Salas et al. 2006). As such, any disturbance, either 

natural or anthropogenic-induced will eliminate some organisms and the remaining community 

structure reflects species with traits optimised for the altered environment and prevailing 

conditions integrated over time (Townsend and Hildrew 1994). They have a long generation 

time (years rather than months), occur in a wide variety of forms (varied life history strategies) 

and habitats and respond to many types of environmental pressures, e.g. pollution, habitat 

degradation and disturbance (Pearson and Rosenberg 1978, Gray 1981, Warwick 1987, 

Snelgrove and Butman 1994, Snelgrove 1997). Therefore, macrobenthos offer more advantages 

in assessing local effect (Warwick 1993), and for assessing ecosystem quality and 

environmental changes (Gray 1981, Gray et al. 1990, Warwick et al. 1990, Warwick 1993, 

Stewart et al. 2000, Gray and Elliott 2009). Macrobenthic infaunal communities form a vital 

component of marine ecosystems, providing a number of ecosystem functions. These include 

altering chemical conditions between sediment and overlying water column through 

bioturbation activities, enhance nutrient cycling, pollutant metabolism, burial and dispersal and 

promote decomposition (Snelgrove and Butman 1994, Hansen and Kristensen 1997, Tweedley 

and Valesini 2008). Furthermore, macrobenthic fauna play an important component in the food 

web, not only by consuming detrital material and primary food sources (Riisgard 1991), but also 

providing a major food source to fish, thus transfering organic carbon to other food web 

components (Petti et al. 1996, Snelgrove 1999). 

1.5.1 Classification of macrobenthic communities 

1.5.1.1 Taxonomic classification 

In marine benthic ecology, macrofauna community classification is normally based on biotic 

composition separating fauna at the lowest level possible, mostly species (Jones 1950, Boesch 

1973, Gray and Elliott 2009). Analyses based on species taxonomic level are vital as they also 

augment knowledge of regional biodiversity and endemicity. In South Africa, the biodiversity 
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of the continental shelf soft-bottom habitats still remain poorly studied (Griffiths et al. 2010). 

Thus, focusing on the taxonomic approach is adopted in Chapter 3 of this study.  

1.5.2 Functional classification  

Using species based measures such a species richness and diversity provides only taxonomic 

relationships without information regarding their functioning (Ellingsen 2001, Hooper et al. 

2005, Gray and Elliott 2009, Pacheco et al. 2011). Yet ecosystem level processes are influenced 

by species-specific traits rather than their identities (Giller et al. 2004, Hooper et al. 2005). An 

equivalent and perhaps more insightful description is of functional traits of the taxa involved, 

taking into account the limitation of taxon-based classification (e.g. Blondin et al. 2003, 

Mouillot et al. 2006). This approach groups species based on ecological equivalency, e.g. 

energy sources. Several methods are proposed to address different aspects of community or 

ecosystem structure. 

1.5.2.1 Macrobenthos feeding modes 

Derivation of trophic groups involves clustering of taxa based on similar feeding modes and 

resource requirements, to depict linkages between the taxa and the resources they potentially 

regulate (Gray et al. 1988, Roth and Wilson 1998, Bonsdorff and Pearson 1999, Hulot et al. 

2000, Gray and Elliott 2009, Pacheco et al. 2011, Untiedt and MacKay 2016). This functional 

classification distinguishes between autotrophic and heterotrophic groups. Macrobenthos 

comprise detritivores, secondary producers (acquiring their energy from plants or other fauna) 

and predators (Pearson and Rosenberg 1978, Gray 1981, Gibson et al. 2001b). In this context, 

feeding mode refers to the mechanism of food transport from the environment into the organism 

(Fauchald and Jumars 1979), with food acquisition manner and food sources related to the 

physical characteristics of the environment. In this manner, feeding mode analysis also provides 

indirect information about hydrographic conditions and sedimentary characteristics (Sanders 

1958, Probert and Grove 1998, Sanders et al. 2007, Dolbeth et al. 2009). This method focuses 

only on feeding method and neglects other important functions. 

1.5.2.2 Macrobenthos feeding guilds  

Feeding guilds (Fauchald and Jumars 1979, Morin et al. 1985, Mouillot et al. 2006, Dolbeth et 

al. 2009), take into account a few biological traits. These include feeding type, reproductive 

strategy, locomotion type and habitat preference of the constituent taxa, and provides a broader 

perspective of the functional structure of communities and ecosystems (Usseglio-Polatera et al. 

2000a, Bremner et al. 2003b, Siefert 2012, Untiedt 2013). This classification offers stronger 
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links between species and ecosystem functioning, by focusing on a limited set of species traits. 

However, with this some important ecological information and interactions may be overlooked 

or lost (Charvet et al. 1998, Mancinelli et al. 1998). 

All these efforts of classification are useful schemes that have been followed to simplify and 

extract information from the patterns and events shown by the collection of multi-species 

populations or to understand complicated ecological systems (Blondin et al. 2003). Despite their 

usefulness, these approaches can only offer limited information on ecosystem functions in view 

of a small number of traits selected and difficulty in making spatial comparisons (Elliott and 

Quintino 2007, Pacheco et al. 2011, Włodarska-Kowalczuk et al. 2012, Leung 2015a).  

1.5.2.3 Macrobenthos biological traits 

Both functional classification approaches described above simplify communities through 

partitioning of species into homogenous functional units. These units group species based on 

ecological equivalency, such as those based on energy sources (Persson et al. 1992, MacNeil et 

al. 1997, Pace et al. 1999). However, marine benthic organisms are involved in a number of 

ecosystem-level processes, often described as ‘ecosystem functions’, which refer to any 

transformation process that occurs in an ecosystem (Rosenburg 2001, Cooper et al. 2008). 

Fauna can therefore be classified according to their functional role, represented by a set of 

functional traits assigned to behavioural, reproductive and morphological characteristics 

displayed by the observed taxa (Paganelli et al. 2012) (Fig 1.2). In this way, a multifaceted 

nature of the ecosystem is recognised. Therefore, biological traits provide a holistic overview of 

the functional structure of communities and ecosystems (Bremner 2005, Bremner et al. 2006c, 

Beche and Resh 2007, Bremner 2008, Frid et al. 2008, Marchini et al. 2008, Pacheco et al. 

2011, Macdonald et al. 2012, Paganelli et al. 2012, Törnroos and Bonsdorff 2012, Pacheco et al. 

2013, Alves et al. 2014, Snelgrove et al. 2014, Berthelsen et al. 2015). Biological trait analysis 

(BTA) combine quantitative structural data (abundance) with a wider array of biological 

attributes of the taxa (Shettleworth 2012) to functionally characterise community assemblages 

(Bremner et al. 2006c) and is suitable for analysing assemblage responses to environmental 

gradients (Paganelli et al. 2012, Shettleworth 2012). Therefore, BTA offers mechanistic links 

between benthic communities, environment and ecosystem processes (Pacheco et al. 2011, 

Shojaei et al. 2015). This is the approach adopted in Chapter 4. This classification is based on 

sound ecological theory (Townsend and Hildrew 1994), where there are strong correlations 

between functional traits and ecosystem processes.  
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1.6 The effect of environmental factors 

Macrobenthos are directly linked to the substrate in which they reside (Alexander et al. 1981), 

such that the assemblage present at any given time is governed by the prevailing environmental 

conditions (Jones 1950, Thorson 1957, Sanders 1958, Browder 1983, Snelgrove 1999, 

McArthur et al. 2010a, Martins et al. 2013). These interactions play an imperative role in 

physical and chemical changes at the sediment-water interface (Eckman 1983, Pacheco et al. 

2011). Tube-building and burrow construction activities on an otherwise smooth seafloor, result 

in an important architecture of biogenic material. The resultant structural complexity, provides 

refuge for other species (resident and migratory organisms), including juveniles of economically 

and ecologically important fish species (Van Hoey et al. 2004, Rabaut et al. 2007, Van Hoey et 

al. 2008). Furthermore, these structures are known to stabilise sediments by altering the 

character of the near-bed flow (Eckman et al. 1981, Eckman 1983). In contrast to the sediment-

stabilisation effect, burrowing activities destabilise sediments creating mounds and depositing 

faecal material at the sediment surface, thus enhancing nutrient exchange and oxygen 

penetration into the sediments. Biological alteration of the sediment is extremely important; 

shells, animal tubes of a variety of shapes, sizes and durability, faecal piles, holes and pits are 

all key elements of the structure and functioning of these habitats (Eckman 1983, Probert and 

Wilson 1984, Kaiser et al. 1999, Wilson 2005, Levin et al. 2010, Kaiser et al. 2011, Passarelli et 

al. 2012).  

Shelf macrobenthos in relation to environmental variables are widely studied and the best 

correlative habitat drivers shaping the structure, distribution, abundance and diversity of these 

fauna, include sediment granulometry, organic content and turbidity (Gray 1974b, Snelgrove 

and Butman 1994, Ellingsen 2001, Van Hoey et al. 2004, Jayaraj et al. 2007, Steffani et al. 

Biological/Fucntional 

categories
Ecosystem functions Ecosystem services

Growth

Body  design/form Sediment stability Storing nutrients

Living habit Nutirent cycling Absorbing and detoxifying 

Mobility Resilience Shoreline stability

Feeding mode Productivity Sediment formation 

Biotubation/bioirrigation Habitat/Spp. diversity Maintaning biodiversity

Size Carbon sequestration Food privision

Reproduction Bentho-palegic coupling Habitat provision

Body flexibility

Figure 1.2. Examples of biological/functional traits linked with important ecosystem functions and 
services 
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2015, MacKay et al. 2016). Additionally, abiotic characteristics of the pelagic system influence 

macrobenthic community assemblages, including bottom water temperature, salinity, dissolved 

oxygen concentration and light penetration (Gray 1981, McArthur et al. 2010a). Therefore, 

knowledge of environmental variables can help to establish a mechanistic understanding of 

diversity patterns. In particular, where important links are establish between the bottom water 

dynamics and macrobenthic structure, providing insights into benthic ecology (Snelgrove and 

Butman 1994, Bergen et al. 2001, Gotelli et al. 2009, Dou et al. 2016, Herkül et al. 2016, Lee et 

al. 2016, Tittensor and Worm 2016, Veiga et al. 2016, Defeo et al. 2017).  

1.6.1 Macrobenthic infauna in relation to environmental variables 

The distribution of organisms relative to habitat environmental conditions is vital in ecology. A 

number of studies have highlighted that benthic assemblages are distributed according to their 

capability to cope with physico-chemical, hydrodynamic factors and biological forces (Labrune 

et al. 2008, Carvalho et al. 2011, Soto et al. 2017). In coastal ecosystems environmental factors 

are controlled by natural processes (e.g. water masses movement, sediment deposition) and 

factors related to coastal land use management (Akoumianaki et al. 2012, Veiga et al. 2016). 

Other than habitat types, important abiotic factors structuring coastal benthic communities 

include characteristics of the sedimentary environment (Gray 1974a, Snelgrove and Butman 

1994, Martins et al. 2012, Soto et al. 2016, Ellis et al. 2017), sedimentary organic matter lability 

(Pearson and Rosenberg 1978, Rosenberg 1995, Soto et al. 2016), depth (Karakassis and 

Eleftheriou 1997, Hughes et al. 2009, Joydas et al. 2012) and hydrological gradients (e.g. 

turbidity, salinity) (McLusky 1993, Hughes et al. 2009, Anthony et al. 2010, Gogina and Zettler 

2010, Veiga et al. 2017). However, the importance of certain environmental variables in shaping 

macrobenthic communities are related to a wider set of other environmental conditions, e.g. 

sediment configuration is related to current speed and depth (Gray 1974a, Probert et al. 2001, 

Dolbeth et al. 2007, Martins et al. 2012, Sampaio et al. 2016). By the same token, the 

importance of sediment may in the case of muds, play a role in the sediment organic content 

(e.g. a nutrient source) (Weston 1988, Santos and Pires-Vanin 2004). In addition, sediment 

discharge may adversely affect infauna by smothering immobile forms or forcing mobile 

animals to migrate and by altering grain size distribution, thus influencing colonisation during 

recovery (Gray 1997b). Fine sediments in areas with high river runoff are vulnerable to water 

agitation and in combination with discharged terrigenous material can remain in suspension for 

variable periods, affecting light penetration, primary production and in particular, filter feeders 

(Akoumianaki et al. 2012). Sediment texture is also linked to habitat provision where 

heterogeneous sediments, with more potential niches, support higher diversity, but low 
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abundance. This is in contrast to homogeneous nutrient rich sediments tending to support low 

diversity and high abundance (Gray 1974a, Burone et al. 2003).  

Water depth is commonly identified as the most important environmental correlate of marine 

infaunal community structure (Carney 2005). However, depth co-varies with other important 

variables such as temperature, pressure and the downward flux of organic matter that fuels 

benthic organisms (Sanders 1968, Rhoads and Young 1970, Gray 1974b, Snelgrove and Butman 

1994, Ellingsen 2002, Veiga et al. 2016). In this context, increased depth is therefore correlated 

with a decline in the abundance and richness of benthic organisms (Hyland et al. 1991, 

Karakassis and Eleftheriou 1997, Manokaran et al. 2015). Furthermore, with increasing depth, 

substrate variability decreases as do structures as a source of habitat heterogeneity (Sanders 

1968, Levin et al. 2001, Carney 2005, Currie et al. 2009, Williams et al. 2010). Yet an inverse 

relationship between depth and organic content and community variables (# of taxa and 

abundance) has been widely cited for many continental shelf environments. This paradigm does 

not hold for all shelf environments and the opposite (highest abundance) was verified in the 

mid-shelf environments off California (Bergen et al. 2001) and central Chile (Soto et al. 2016).  

1.7 Marine macrofauna of South Africa 

Exploratory expeditions of the South African shelf benthic habitat began at the turn of the 19
th
 

century (Brown 1999, 2003). Most collection was limited to the seashore, only extending 

offshore in the second half of the 19
th
 century (Brown 1999). The nomination of Keppel K.H. 

Barnard to the South African Museum in 1911 was a major event, having important 

implications for South African marine invertebrate taxonomy and he still is the most prolific 

marine taxonomist South Africa has known (Brown 1999, 2003). Barnard monographed some 

800 South African Decapoda taxa (Barnard 1950) and provided descriptions and keys for their 

identification. This remains the formative work on this group (Brown 1999, 2003). During the 

first half of the 20
th
 century, a series of oceanographic expeditions on the South African shelf 

were undertaken aboard the research vessel, R.V. Meiring Naudé (Brown 1999, 2003). 

Important taxonomic compendia emerged from these studies providing the descriptions of 

Echinodermata through the work of Clark (1923) and Clark and Courtman-Stock (1976), 

Amphipoda were studied by Griffiths (1976), while Kensley (1972) described shrimps and later 

Isopoda of the area (Kensley 1978). John Day dedicated most of his career to the extensive 

study of polychaete worms and compiled a comprehensive synopsis in two-parts (Errantia and 

Sedentaria); The Polychaeta of southern Africa (Day 1967). Day (1975-1980) also contributed 

to our little knowledge of Cumacea.  
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A composite taxonomic databank of marine benthic invertebrates collected for South Africa is 

still lacking, despite the taxonomic history of the shelf dating back to the 19
th
 century. This is, in 

part, because the initial work was completed by well-known international taxonomists with 

most records deposited in the international museums, e.g. Europe (Brown 1999, Brown 2003). 

However, locally collections are archived at the Iziko Museum in Cape Town, formerly the 

South African Museum and by other collections such as the Mollusca at the Natal Museum. 

Considering the available taxonomic data collected along the entire KwaZulu-Natal (KZN) 

coast from 1974 to the late 1980s, Polychaeta were the most abundant and speciose group 

sampled (McClurg 1988). Generally, irrespective of location, polychaetes tend to be the most 

commonly encountered animals inhabiting marine sediments, followed by crustaceans, molluscs 

and echinoderms (Fauchald and Jumars 1979, Gray and Elliott 2009). McClurg (1988) reported 

37 polychaete families in the last extensive study of the Natal Bight, with Syllidae and 

Spionidae being the most prolific. Subsequent studies also reported the dominance of 

polychaetes in terms of species and abundances (McClurg et al. 2000, McClurg 2004, McClurg 

et al. 2006, MacKay et al. 2016, Untiedt and MacKay 2016). Crustacea of the KZN shelf are in 

great abundance (per m
2
), particularly the Amphipoda, as highlighted by McClurg (1998) and 

subsequent surveys off Durban in 2004 recording 26 taxa, many of which are endemic to this 

shelf (McClurg 2004). Of the 20 Amphipoda taxa recorded on the Natal Bight, the families 

Haustoriidae, Ampeliscidae, Corophiidae and Phoxocephalidae were the most abundant 

(McClurg 1988). The importance of Ampeliscidae in characterising KZN fauna was also 

confirmed by Arabi (2010). However, additional species and records have been made recently 

in widespread studies of the KZN Bight (MacKay et al. 2016, Untiedt and MacKay 2016), with 

the families Ampeliscidae, Corophiidae, Aoridae, Lysianassidae and Urothoidae recorded in 

high numbers. Until now, 48 subtidal Isopoda and 35 Cumacea are known along the KZN shelf, 

with other Crustacea belonging to Caridea, Penaeida, Anomura and Brachyura being identified 

in subtidal surveys off Durban and Richards Bay (McClurg 1988, McClurg et al. 2000, McClurg 

2005). Recently, KZN Bight studies (MacKay et al. 2016, Untiedt and MacKay 2016), recorded 

Isopoda taxa belonging to the families Anthuridae, Arcturidae and Cirolanidae in excess of 10-

20 individuals per family. Of the Mollusca, the KZN shelf supports the highest richness in 

South Africa (Kilburn 1999). McClurg (1988) recognised a significant increase in the 

occurrence of tropical Indo-Pacific molluscs in KwaZulu-Natal waters, when compared with the 

southern and western coasts. Many descriptions of mollusc fauna (mostly Bivalvia) were 

obtained from material collected during the Natal Museum Dredging Programme (1981-1996) 

(Herbert 1989, 1991, Kilburn 1992, 1998, Kilburn 1999). Few Gastropoda have been identified 

in KZN shelf benthic samples (McClurg et al. 2000, McClurg 2005, MacKay et al. 2016, 
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Untiedt and MacKay 2016). In terms of Echinodermata, McClurg (1988) recorded 40% of the 

240 taxa known in South African on the KZN shelf. A recent examination of the regional 

echinoderms include the studies on holothuroid (Samyn 2003, Thandar and Rowe 2005, 

Thandar 2009) and a revision of the Ophiocoma (Ophiuroidea) taxa of South Africa (Olbers and 

Samyn 2012). 

Comprehensive taxonomic and community studies on the KZN shelf are generally limited and 

far less definitive, with most of the studies undertaken in South African waters, focused mainly 

on the west coast (Mead 2007, Griffiths et al. 2010). Long-term benthic monitoring programmes 

have however been ongoing at specific sites of interest along the shelf, namely Richards Bay, 

Durban and Amanzimtoti, designed to assess the cumulative impacts of pipeline effluents 

(McClurg 1988, McClurg et al. 2000, McClurg 2004, Arabi 2010). These give limited 

information on the ecological aspects of the communities and on the distribution of other 

taxonomic groups. There are, however, recent studies on the region but limited to environments 

associated with coral reef habitat (Harmer 2014). Considering what is known of the diversity 

and endemism of marine fauna, such as becoming increasingly more taxon rich towards the 

subtropical east coast, this dearth of information hinders the ability to accurately appreciate, 

manage and conserve benthic biodiversity of South African waters (Heydorn et al. 1978, 

Emanuel et al. 1992, Mead 2007, Griffiths et al. 2010). 

The first phase of the African Coelacanth Ecosystem Programme (ACEP) was carried out to 

understand the processes that support marine life. This was achieved by implementing a number 

of projects for biodiversity, genetics, environmental education and conservation planning 

including a KZN Bight wide survey for gathering biological, chemical and geological data. 

During the second phase of ACEP (ACEP II), the KZN Bight was surveyed in depth to 

determine and understand the dynamics (physical, geological and biological) of the ecosystem 

functioning within the Bight area. The work of MacKay et al. 2016 and Untiedt and MacKay 

(2016) which emerged from ACEP II  publications, succeeds the generalised review of earlier 

mentioned studies based on limited sampling, and these appear to be the only studies focused 

macrobenthic community of the region, and for which results are available.  

 

 



                                                                                                                                                 GENERAL INTRODUCTION 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

17 

1.8 KZN marine spatial planning surrogacy approach 

Marine ecosystems are suffering the synergistic effects of multiple extractive and non-extractive 

pressures from various human uses (e.g. fishing and mining) (Claudet 2011). Our understanding 

of the effects of these uncontrolled stressors on marine resources remains speculative, despite 

the severity of their accumulated impact (Peterson and Bishop 2005). Better recognition of the 

role of biodiversity and marine ecosystems to the health of the planet and the increasing human 

dependency on ocean resources is vital (Culotta 1996, Bengtsson et al. 1997, Aarts 1999, 

Snelgrove et al. 2014). In response, some pro-active governments have acknowledged the need 

for more ecosystem-based conservation measures in the marine environment (Douvere and 

Ehler 2009, Lester et al. 2013). The use of Marine Protected Areas (MPAs) is becoming widely 

adopted to protect ecosystems and their biodiversity (Halpern et al. 2010, Gleason et al. 2013, 

Edgar et al. 2014). Marine Protected Area (MPA) network design principles traditionally 

include objectives of protecting an exhaustive network of representative habitats and 

ecosystems; those which are rare, distinctive or inter/nationally important (Roberts et al. 2003). 

One major consideration when designing a network of MPAs, is the representation of habitat 

and the ability to capture the diversity and heterogeneity of habitat features that support 

biodiversity (Roberts et al. 2003, Stevens and Connolly 2005, Foley et al. 2010, Halpern et al. 

2010). However, the scarcity of ecological data frequently limits understanding of spatial 

patterns of biodiversity features (both habitats and individual species) that underpin the design 

of biodiversity protection (Snelgrove et al. 2014, Lecours et al. 2015, Dunstan et al. 2016). The 

classification and mapping of ecosystems are foundational steps for biodiversity assessment and 

forms part of the marine spatial planning (MSP) process (McHenry et al. 2017). Marine Spatial 

Planning is an essential tool that provides a spatially explicit framework for assessing the spatial 

distributions of biological and physical patterns and processes that sustain marine biodiversity 

(Douvere 2008, Agardy et al. 2011). A clear understanding of the information derived through 

MSP (spatial distribution of the offshore environment and its biodiversity) is thus a precursor to 

informed decisions regarding spatial management.  

Due to the lack of data for the offshore environment, different surrogate estimates and proxies, 

in which environmental variables are used to predict the patterns of marine biodiversity, provide 

a promising alternative to biological sampling (McArthur et al. 2010a, McArthur et al. 2010b). 

An increasingly-used proxy for biodiversity in the marine environment is some form of 

predefined or categorised seascape or habitat since they are distinguishable or separable in 

nature most often based on abiotic data (Törnroos et al. 2013). This is because abiotic factors 

determine the broad distributional patterns of marine biodiversity at a larger scale (Ellingsen 
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2002, Dutertre et al. 2013, McHenry et al. 2017). Therefore, relationships between fauna and 

environmental conditions can thus characterise seafloor habitats, defined as the physical and 

chemical environment in which assemblages are recognised.  

The technological innovation of remote sensing, geographical information system (GIS), and 

mapping helped gather abiotic data layers which are more widely available (McArthur et al. 

2010b, Brown et al. 2011). These have facilitated development of the relevant ecosystem 

classifications required for MSP-related biodiversity assessments (Ferrier and Watson 1997, 

Roberts et al. 2003, Lombard et al. 2004, Sink and Attwood 2008, Roberts et al. 2010a, Brown 

et al. 2011, Sink et al. 2011, Lecours et al. 2015, Shumchenia et al. 2015). Several studies have 

focused on characterising assemblages through classification of continuous abiotic variables 

into discrete zones of similar abiotic conditions (McArthur et al. 2010b, Brown et al. 2011). 

While abiotic proxies can prove valuable, their usefulness is still unknown as often ignored are 

complex underlying abiotic-biotic relationships, and confinement of continuous ecological 

patterns into discrete classifications, producing maps with assumed, and/or simplified values 

(Przeslawski et al. 2011). When surrogates are proposed, sufficient data to model relationships 

between biophysical and biotic measurements should be available to confirm whether surrogacy 

relationships are appropriate, before these surrogates are used to define MPA networks for 

biodiversity conservation (Roland et al. 2012, Dixon‐Bridges et al. 2014). Often biological 

patterns are used to ground-truth and improve abiotic classifications (Greene et al. 2010, 

Kerrigan et al. 2010, Monteiro et al. 2015).  

South Africa, and in particular the KwaZulu-Natal shelf, was identified as a priority area for the 

expansion of the MPA network in the last national marine spatial biodiversity assessment (Sink 

et al. 2011). This is due to this shelf being recognised as biologically important and productive 

(Heydorn et al. 1978, Meyer et al. 2002, Lutjeharms 2006a), and ascribed to environmental 

conditions emerging from the Agulhas Current (Lutjeharms 2006a, Roberts et al. 2010b). As a 

precursor to the MPAs, declaration information from the MSP sector is required. One such plan 

for KZN province was a joint development by Ezemvelo KZN Wildlife (EKZNW) and the 

South African National Biodiversity Institute (SANBI), through the KZN marine biodiversity 

plan, referred to as SeaPLAN (Harris et al. 2012). In this exercise, environmental data 

(Appendix 1) were digitally mapped and interpolated over the continental shelf and were used 

in systematic conservation planning software, Marxan, to define provincial benthic biozones 

that are potentially different and irreplaceable (Fig 2.2) (Livingstone 2016). This model was 

developed as a basis for conservation and protection of provincial and national biodiversity. The 
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usefulness of the biodiversity surrogate for representing marine benthic biodiversity remains 

poorly understood for marine conservation planning.  

As part of the third phase of ACEP (ACEP Surrogacy) -a multidisciplinary and multi-

institutional investigation- the KZN mid-shelf between Port Durnford and Scottburgh was 

surveyed to examine the validity of defining biozones using physical characteristics as proxies 

for biodiversity pattern in marine conservation planning. The main aims of this project were to 

test the robustness of the use of environmental surrogates for classification of offshore 

biodiversity and to investigate the validity of coupling spatial distribution patterns of benthic 

communities and their overlying pelagic systems in recently identified continental shelf 

Biozones as conservation planning units. Within this framework, the current study investigates 

one ecological component (macrobenthos) as a surrogate for the KZN provincial biozone 

template, where predefined biodiversity zones were established for MSP purposes and the 

establishment of MPAs. 

1.9 Study Aims, Objectives and Hypotheses 

This study investigates the validity of biophysical habitat surrogacy approaches for biodiversity 

pattern mapping by examining and describing soft-bottom macrobenthos taxonomic and 

biological trait community patterns and their relationships with measured environmental 

parameters. Observed patterns were tested relative to the KwaZulu-Natal marine spatial 

planning predefined biozones.  

Objectives  

1. To enumerate and identify macrobenthic fauna along KZN mid-shelf to the lowest practical 

taxonomic unit possible. 

2. To assign each taxon to a biological trait based on available literature. 

3. To characterise habitats based on measured sedimentary and hydrographic variables. 

4. To describe assemblages based on macrobenthos taxonomic and biological trait 

characteristics. 

5. To determine spatial differences in macrobenthic community structure and traitscape. 

6. To relate macrobenthic community structure and traitscape to measured biophysical 

characteristics (sediment composition and hydrographic conditions). 

7. To determine whether macrobenthos taxonomic and biological trait structural patterns agree 

with marine spatial planning predefined biozones. 
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Hypotheses  

H1: There is a significant relationship between macrobenthic community structure and 

biophysical variables measured. 

H2: There is a significant relationship between macrobenthic community traitscape and 

biophysical variables measured. 

H3: There are structural and/or functional differences in community patterns relative to marine 

spatial planning predefined biozones. 

1.10 Thesis Outline 

Despite previous and recent work, there remain many gaps in the knowledge of macrofauna of 

the KwaZulu-Natal shelf environment. This thesis aims to address some of the taxonomic and 

macrobenthic biodiversity gaps. It is presented as a general introduction (Chapter 1), general 

methods and materials (Chapter 2), followed by two chapters investigating taxonomic and trait 

community patterns, and test the efficiency of predefined spatial planning biozones in reflecting 

observed community patterns (Chapters 3 and 4). Chapter 5 integrates results from Chapters 3 

and 4 to refine the existing biozone model, used by conservation planning and protection 

agencies. Lastly, a general discussion and conclusions are presented in Chapter 6. In more 

detail: 

Chapter 1 provides a general description of the KZN shelf environment, its physical 

characteristics and macrofaunal communities, contextualising and highlighting the importance 

of this study.  

Chapter 2 offers a focussed description of the field sampling and laboratory protocols adopted 

during the course of study, along with the information regarding the generic data treatment and 

analyses used for biological and environmental data. Methods and analysis specific to each 

component of the study (each hypothesis) are presented in detail in the subsequent chapters. 

Chapter 3 investigates the general macrobenthic community patterns along the KwaZulu-Natal 

mid-shelf. Here macrobenthic fauna are classified based on taxonomic differences only. 

Community composition and distribution patterns are investigated and related to the measured 

environmental parameters and tested against the predefined biozones.  

Building on the findings of the previous chapter, Chapter 4 takes two steps, firstly to investigate 

whether information aggregated to coarser taxonomic resolution or indicator group reflects 
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multivariate patterns abundance at species level? Secondly, the chapter examines KZN mid-

shelf functional attributes of macrobenthic fauna classified according to biological traits. Each 

taxon and its traits structure were investigated and related to specific environmental parameters. 

In addition, this approach is used as an alternative to find agreement with the predefined 

biozones.  

Chapter 5 uses the findings of Chapters 3 and 4 (taxonomic and trait structure) to refine the 

existing biozone model and to offer an alternative model based on taxonomic, traits and 

sediment characteristics. Further, species and trait assemblages along with sedimentary 

characteristic for the proposed model are provided.  

Chapter 6 integrates and discusses findings from previous chapters, the implications of these 

findings and suggests future lines of investigation.  
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CHAPTER 2. GENERAL MATERIAL AND METHODS 

2.1 Study area  

The study area extends approximately 210 km south from Port Durnford (28° 58' 2" S 32° 10' 

30" E) to Scottburgh (30° 21' 38" S 30° 47' 26" E) along the KZN continental shelf (Fig 2.1). 

The shoreward boundary was the 50 m isobath and the seaward boundary at the 80 m isobath, 

the area is considered the mid-shelf since the shelf break is sharply defined at 200 m (Moir 

1974, Flemming 1978). The seaward boundary is subjected to southwest Indian Ocean influence 

(Pearce 1977, Heydorn et al. 1978, Schumann 1988, Cooper et al. 1995) with the Agulhas 

Current (AC) being the main hydrographic feature of the region that controls physical and 

biological processes, while being influenced by terrigenous inputs on its shoreward boundary 

(Lutjeharms 2006a, Chapter 1). The study area constitutes more than one third of the 570 km of 

KZN coast, including many of the 76 notable estuaries, most of which are intermittently 

connected to the sea during the year (Begg 1978, Turpie et al. 2012), bringing into it nutrient 

and sediment-laden freshwater (Cooper et al. 1995). Based on the Köppen classification 

(Boucher 1975), this coastal-shelf region has a humid sub-tropical climate with southern sub-

tropical high-pressure systems being the main prevailing weather patterns of the region (Tyson 

and Preston-Whyte 2000).  

The study area has been classified as oligotrophic (southern region) to mesotrophic (northern 

region) (Meyer et al. 2002), with intermittent eutrophic conditions in the northern region 

associated with the St. Lucia upwelling cell (Pearce 1977, Lutjeharms et al. 1989, Meyer et al. 

2002). To the south, eutrophic conditions are associated with uThukela terrigenous organic 

input (Scharler et al. 2016, Untiedt and MacKay 2016), and a nutrient upwelling associated with 

the AC and its interaction with the shelf edge (Durban eddy) (Meyer et al. 2002, Barlow et al. 

2008). 

The study was limited to the mid-shelf depth (50-80 m isobaths) to limit issues related to 

community changes with depth and included a large part of the wider shelf - the KZN Bight 

(Port Durnford to Durban) and south of Durban to Scottburgh (Fig 2.1). 
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2.2 Study design and sampling protocol 

Two data sets were used; macrobenthic samples collected during the African Coelacanth 

Ecosystem Program (ACEP) KwaZulu-Natal Bight ecosystem functioning project in Winter 

2010 and augmented with additional stations sampled in Winter of 2014 aboard the Angra 

Pequena during this ACEP Surrogacy project.   

The SeaPLAN biozone model (see Chapter 1) resolved into three main biozones with respective 

biozone subclusters that were not adjacent (1A-1C: 2A-2B; 3A; Fig 2.2). With this model 

serving as a template, 19 stations were set on known (ACEP Natal Bight Project) and suspected 

unconsolidated sediment habitats to avoid reefs (MacKay 2014). Each subcluster hosted three 

stations, with exception of subcluster 2A where an additional station was included and was 

identified as an interesting habitat by video material from a remotely operated vehicle (ROV). 

Figure 2.1. Study area with macrobenthic stations, bathymetry, main oceanographic features and 
main estuaries depicted.  
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Sampling stations were set between the 50-80 m depth, representing mid-shelf sediment facies, 

physico-chemical parameters, and macrobenthic assemblages (MacKay et al. 2016, Untiedt and 

MacKay 2016). 

 

2.3 Field sampling procedure 

2.3.1 Physico-chemical sampling 

Prior to biophysical sampling at each station, spatial reference (latitude and longitude) along 

with prevailing weather conditions were recorded in a field logbook. The near-bottom 

environmental variables (conductivity (mS/cm), temperature (°C) and depth (m)) were recorded 

by means of a single multi-parameter profiler CTD (Sea-Bird: SBE 19 Plus v.2) deployed to just 

above the seafloor (deployment speed 1 m s
–1

), equipped with auxiliary sensors to measure 

additional parameters. These included concentration of dissolved oxygen (mg.l
-1

), pH, turbidity 

(NTU) and fluorescence content (mg.l
-1

) (McArthur et al. 2010a, MacKay 2014). Only the 

bottom 5 m hydrographic characteristics measured at each station were used for further analysis. 

Grab sampling commenced once the CTD was retrieved on deck.  

Figure 2.2. KZN biodiversity planning Biozones and the associated sampling stations. These are 

depicted relative to bathymetry (50-80 m depth shown as red lines) and sampling stations. 
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2.3.2 Macrobenthic and sediment sampling 

Sample collection was limited to daytime hours (MacKay 2014), when many mobile species can 

be expected to be relatively inactive. Prior to grab deployment, a drop video was cast to the 

seafloor to validate the extent of unconsolidated sediments to avoid sampling reef (MacKay 

2014). Triplicate biological samples were collected from each station, using a long armed 0.2 

m
2 

van Veen grab and extra weights to 40 kg. A minimum of three replicates were collected to 

increase the probability of sampling rare taxa (in this context refer to individuals with low 

abundance or small range size (Ellingsen 2001)) and are considered appropriate for statistical 

comparison (Gray and Elliott 2009). The grab was deployed through a mechanical winch over 

the side of the vessel (MacKay 2014).  

Bucket type grabs such as the van Veen are appropriate in soft-bottoms, although the volumes 

of sediment sampled are mostly affected by the type of substrate, with samples collected from 

muddy bottoms often filling the grab completely, while samples collected in sand to gravel 

substrates often penetrate to minimum depth (Somerfield et al. 2005, Tagliapietra and Sigovini 

2010). Care was taken to ensure all replicates were within 100 m of each other. Once a grabbed 

sample was retrieved, sediment depth was measured to the nearest mm through a top opening 

window on the grab. A sample was acceptable and considered a successful grab, only if vertical 

sediment depth was at least 50 mm or more with no indication of disturbance (MacKay 2014).  

The interrelation between macrobenthos and sediments requires characterisation of the bottom 

environment. Therefore, a sub-sample (175 g) was taken from the upper 5 cm from each 

grabbed sample for bicarbonate content, sand grain size and organic content analysis. The latter 

required fixation by addition of 40% formalin (MacKay 2014). The remaining biological sample 

was washed through a square stainless steel sieve with 1000 µm mesh size. Square mesh sieves 

are advisable as they provide a larger percentage of open area (Somerfield et al. 2005).  

Sediment colour and the odour were noted in a field trip logbook before washing. Any visible 

fauna were carefully handpicked and bottled in the suitably labelled sample jar. Sieving was 

gentle to minimise sediment being displaced out of the sieve and the impact of strong water 

pressure on delicate animals (MacKay 2014). Material remaining on the mesh sieve after 

washing, consisting of benthic animals, tubes, shells, shell hash, and coarse sediments, were 

bottled in a suitable biological sample jar and preserved unstained with buffered forma-saline 

(4%) allowing for subsequent analysis ashore (MacKay 2014).  
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In certain cases samples (e.g. at stations S1 and S3) were dominated by coarse sediments (sand 

and gravel >10 kg) that were retained on the sieve and precluded the sorting of infauna in a 

reasonable timeframe. In these cases, elutriation was conducted to separate light material and 

small animals from sediments (Wilson 2005, MacKay 2014). The process: 2 litres of unsorted 

sediments from the larger sample was put into a 20 L bucket three-quarter filled with seawater 

and well agitated to suspend light material and small animals. Floating animals and materials 

were collected by pouring the agitated volume of water through a 1000 µm sieve before 

resettlement. This was repeated at least five times or until the water ran clear before sorting for 

large and heavy fauna such as molluscs and characteristic sedimentary elements (Somerfield et 

al. 2005, Wilson 2005, MacKay 2014).  

2.3.3 Laboratory procedure 

Sedimentary analysis 

The sedimentary analysis was performed at a sedimentological analysis laboratory 

(Environmental Mapping and Survey (EMS)) on samples collected from every grab. The 

granulometric analysis was used to characterise the sedimentary environment and provides an 

insight into local physical conditions. 

Grain size analysis 

The aim of grain size analysis is to define relative proportions of different grain sizes which 

make up a given sediment population (Gray 1981, Bale and Kenny 2005). A number of 

techniques have been defined for grain size analysis (Gray and Elliott 2009). In this regard, a 

sieving technique was employed as a result of the advantages associated with it, such as being 

less expensive, an easily reproducible method and deemed the most practical way of 

characterising particle size larger than 0.063 mm (Bale and Kenny 2005).  

Grade scales apply random set of finite ranges to the continuous frequency distribution of 

particle sizes in order to produce logical classifications for the numerical divisions (Gray 1981, 

Bale and Kenny 2005). The Wentworth (1922) ordination scale is most commonly used by 

marine ecologists and geologists to characterise sediment particles (Bale and Kenny 2005, Gray 

and Elliott 2009). By applying a logarithmic scale transformation (millimetres into whole 

integers) to the Wentworth scale produces the phi (Φ) notation which was initially employed to 

graphically manipulate data (Gray 1981, Hayes et al. 1992, Bale and Kenny 2005), based on the 

following definition: phi units (F) = -log2 (diameter in mm). This was done to graphically 

manipulate data (Gray 1981, Bale and Kenny 2005). Three general categories (gravel, sand, and 

mud), classified according to the dominant size of the individual clasts are recognised. For data 
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analysis in this study, the substratum was retrospectively subdivided into seven categories 

(Table 2.1).  

 

 

 

 

Sorting  

Grain size alone does not account for particle size variation or the particle shape, therefore 

applicability of this measure is limited in describing a highly unimodal sediment grain size 

distributions (Lewis and McConchie 1994). Sorting is another measure used to characterise 

grain size according to sorting classes (Table 2.2). Sorting, or grain-size variation reflects the 

amount of interstitial space available within sediment as a habitat for biota (Gray 1974b). Well-

sorted sediments are generally associated with a high energy or dynamic environment and the 

majority of the sample comprised of particles with the same diameter (Mackay 2006, Gray and 

Elliott 2009). In contrast, poorly-sorted sediments mostly comprise various grain sizes and are 

mostly associated with a stable environment, less frequently affected by hydrodynamics (Gray 

and Elliott 2009, McArthur et al. 2010a).  

 

 

 

Skewness 

This descriptive measure indicates symmetry, which is a preferential distribution to one side of 

the mean (Gray and Elliott 2009). Symmetrical sediments will have a value of 0.00, whereas 

those with more courser grain-size are positively skewed (- phi values). Negative skewed (+ phi 

values) sediments are dominated by finer grained size (Table 2.3) (Gray 1981).  

Organic content 

Features of organic matter include their ability to form water-soluble and insoluble complexes, 

interact with clay minerals, bind particles together, to absorb and release organic compounds 

Table 2.1. Wentworth scale of sediment particle size (mm) classification with the accompanying phi 

(ɸ) notation. (Adopted from Wentworth 1922 and Gray 1981). 
 Sediment type Grain size (mm) Phi (ɸ) scale 

Gravel > 2 < -1.0

Very coarse sand -3 -1

Coarse sand 0.5 - 1 0.0 - 1.0

Medium sand 0.25 - 0.5 1.0 - 2.0

Fine sand 0.125 - 0.25 2.0 - 3.0

Very fine sand 0.0625 - 0.125 3.0 - 4.0

Silt and clay fraction < 0.0625 > 4.0

Table 2.2. Sediment sorting classes used to classify sediments (modified from Gray 1981).  

 
phi (ɸ) scale

˂ 0.35 ɸ

0.35 - 0.50 ɸ

0.50 - 0.71 ɸ

0.71 - 1.00 ɸ

˃ 1.00 ɸ

Sorting classes

Very well sorted

Well sorted

Moderately well sorted

Moderately sorted

Poorly sorted
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and plant nutrients and retain water in the sediment (Schumacher 2002). Therefore, examination 

of total organic carbon is critical, since organic materials present in sediments can be expressed 

as carbon, and carbon is available in inorganic and organic form, the latter being an important 

food resource for macrobenthic communities (Sverdrup et al. 1942, Cocito et al. 1990, Méndez 

and Green 1998) 

 

 

 

 

A suite of techniques have been developed to determine organic content, all relying on the 

principle of destroying organic matter present in a given set of sediments through chemical or 

heat energy and then measuring the loss directly (Schumacher 2002). This study used a 

chemically-based digestion technique to determine total organic content (TOC) of sediments. 

This was adopted from Schumacher (2002) and the basic steps for this technique are: 

1. Inorganic carbonates are eliminated by adding 6% Hydrogen peroxide (H2O2) to a 

known weight of sediment until the frothing reaction ceases. 

2. The sample is incinerated at 105°C, cooled and weighed. 

3. Organic matter present in the sediment sample is determined gravimetrically and 

calculated as: 

𝑂𝑀 =
𝑊i−𝑊f

𝑊i

× 100%  

 (2.1) 

Where OM is organic matter (%), Wi is the initial sample weight (g) and Wf the final sample 

weight (g). 

4. Organic matter is converted to a value of TOC (Table 2.4) by using an 

appropriate factor. A conversion factor of 1.72 is commonly used, based on the 

assumption that organic matter contains 58-60% Carbon (Schumacher 2002).  

 

 

 

Table 2.3. Skewness categories used to indicate a proportion of sediments grain-size (adopted 

from Folk 1974).  

 Verbal classification

from to Graphically skewed to

1 0.3 Strongly + skewed Very – phi values (coarse sand)

0.3 0.1 + skewed - phi values

0.1 -0.1 Nearly symmetrical symmetrical

-0.1 -0.3 - Skewed + phi value

-0.3 -1 Strongly - skewed Very + phi values (fine sand)

Values
symmetry
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Macrobenthos 

In the laboratory, prior to sorting, samples were rinsed with seawater through a 1000 µm sieve 

to remove all traces of formaldehyde. Animals from each sample were separated from non-

biogenic material under a magnifying lamp/microscope and sorted according to major 

taxonomic groups (polychaetes, bivalves, decapods, amphipods and isopods) to aid taxonomic 

identification. To reduce the risk of human error, sorted samples were cross-checked between 

sorters to ensure that no animals were left. Sorted fauna were then identified to coarse 

operational taxonomic units (OTUs) by a single researcher to minimise observer bias. 

Stereomicroscopes (Zeiss stemi-DV4, Zeiss Stereo v.12) and appropriate taxonomic keys (Clark 

1923, Barnard 1950, Day 1967, Kensley 1972, Griffiths 1976, Kensley 1978, Kilburn and 

Rippey 1982) and online keys (e.g. Crustacea.net (Lowry 1999)) were used for taxonomic 

identification. The species level (lower taxonomic resolution) is the level at which animals 

interact with their habitat (Bertrand et al. 2006), and quantification of biodiversity and the utility 

of potential surrogates therefore are often affected by the taxonomic resolution (Bertrand et al. 

2006); coarse taxonomic resolution providing rudimentary spatial variation (Anderson et al. 

2005). 

In the case of a damaged specimen or when some of the diagnostic morphological features were 

not observable, a staining procedure (Methyl blue) was used (Winsnes 1985). Taxonomic 

identification was checked and verified by a macrobenthic scientist (C.F. MacKay at 

Oceanographic Research Institute). To confirm a species name, taxonomic information was 

checked against the World Registry of Marine Species (WoRMS Editorial Board n.d.) database 

and the nomenclature herein was based on the latest available taxonomic information during the 

drafting of this thesis. The number of individuals of species was counted and recorded together 

with sample details (e.g. date and sample location). Larval and pelagic fauna were excluded and 

only benthic fauna were considered for further analysis. 

2.4 Generic statistical analyses  

The abundance of each taxon was standardised to 1.0 m
2
. As a standard area of 0.2 m

2
 was 

sampled with the van Veen grab, abundance values were multiplied by a factor of 5 in order to 

Table 2.4. Percentage total organic content of the sediments (adopted from Mackay 2006) 

 
Verbal classification

Total Organic 

Contents (%)

High ˃ 4 %

Medium 2 - 4 %

Moderately low 1 - 2 %

Low 0.5 - 1 %

Very low ˂ 0.5 % 
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express values per m
2 

(ind. m
-2

). Abundance data was pooled over three replicates (divided by 3 

to account for area sampled)  from each station to even out variability and to give a holistic 

picture of the general community patterns (Ellingsen 2002). Community patterns were analysed 

at a station level and surrogacy testing was based on the biozones explained previously (Fig 

2.2). Software packages Excel 2010, PAST v.3.15 (Hammer et al. 2001) and PRIMER v.6 

(Clarke and Gorley 2006) were used for analysis. 

2.4.1 Abiotic data 

Nineteen environmental variables were measured for this study (Table 2.5). Occurrences of 

multi-collinearity were examined using parametric Pearson (product-moment) correlation 

analysis, which quantifies the strength and significance of the linear relationship between two 

data sets (Clarke and Warwick 2001). Pearson correlation analysis evaluates linear relationships 

and multi-collinearity between two or more sets of variables and report as correlation 

coefficients (r) varying between +1 and -1. The former indicates that a change in one variable is 

associated with a proportional change in the other variable, whereas the latter indicates an 

inverse relationship between variables. A value of zero indicates no relationship between 

variables (Quinn and Keough 2002). For highly correlated variables (r=0.95, sig. <0.05), only 

one variable was retained for subsequent analysis. As such, mean phi and median phi were 

highly correlated (r=0.988), as were mean mm and median mm (r=0.966). Since each pair of the 

four sets of variables represent similar information only one (Median phi) was retained for 

subsequent analysis. Verfaillie et al. (2006) highlighted the importance of median as the best 

descriptor that characterises sedimentary environments and being critical in describing and 

projecting soft-sediment benthic assemblages. All environmental data were presented as mean 

values (with SD) over the study area and in the case of stations, measured values were used. 

To test for normality and homoscedasticity, Shapiro-Wilks tests (Shapiro and Wilk 1965) were 

used and data was further visually inspected using Draftsman’s plots (Clarke and Warwick 

1994). Variables including total organic carbon, carbonate, sediment grain particles (mud to fine 

sand), dissolved oxygen, fluorescence and turbidity were corrected by a square-root 

transformation. Due to outliers noted in other parameters, all parameters except for median phi 

and skewness were square root (√) transformed to reduce the influence of outliers as 

recommended by Anderson et al. (2008). Since environmental variables are expressed in 

different units of measure, the remaining set of variables were standardised to enable 

comparison (Clarke and Warwick 1994). A Q-type analysis was applied to evaluate whether 

environmental variables had similar patterns as biotic data, however, the environmental matrix 

was based on Euclidean distance as opposed to Bray-Curtis (B-C) similarity. 
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Assemblage distributions are presumably affected by various environmental factors related to 

the habitat type characteristics, analysis of PERMANOVA (9999 permutations) was performed 

to test for the significance of spatial differences. 

 

 

 

 

 

 

 

 

 

 

2.4.2 Biotic data 

2.4.2.1 Univariate analysis 

The raw taxon abundance data was used to calculate univariate community measures using the 

DIVERSE function within the PRIMER v.6 statistical programme (Clarke and Warwick 2001). 

Two primary community measures of abundance (N: no. of ind.m
-2

) and number of species (S: 

no. of taxa) were used in this study. Univariate measures were computed to reduce the specific 

composition of a community to a single value or few single values that can easily be interpreted 

and manipulated (for subsequent analysis) and to further allow comparability of factors. A 

number of diversity indices have been established and used in the study of macrobenthic 

communities that integrate species richness and the equitability of species within a community 

(Gray 1981, Gray 2000, Gray and Elliott 2009). The diversity discussed here concerns samples 

and even at such small scale, there are biological interactions between species (competing for 

food and space). This is defined as within-habitat (α) diversity (Gray 2000).  

Table 2.5. Environmental variables measured during this study. 

Units
Sampling 

level

Temperature ºC

Depth m

Salinity PSU Station

Dissolved oxygen mg.L-1

Turbidity NTU

Fluorescence mg.L-1

pH

Gravel

Very coarse 

Coarse sand

Medium sand

Sediment Fine sand % Sample

Very fine sand

Mud x3 per

Organics  station

Carbonate

Mean grain size 

Median grain 

Sorting

mm

Skewness

Environmental variables
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S
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Physico-chemical

(water column)
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Three main components of diversity were computed, the Shannon-Wiener index (H') (Shannon 

and Weaver 1963), which is widely employed in macrobenthic community studies (Gray 1981, 

2000, Gray and Elliott 2009). This function gives a measure of species diversity with respect to 

number of species (S) and equitability of each species present. This index is greatly influenced 

by the taxa in the middle of the rank sequence (Magurran 2004, Gray and Elliott 2009).  

𝐻′ = − ∑ 𝑝

𝑠

𝑖=1

i ln 𝑝i   

 (2.2) 

Where pi is the proportion of individuals found in species ith (Ni/N) 

Since this is a proportionality-based index, high values are recorded when a large number of 

taxa occur in similar numbers and a low value if a small number of species dominate a sample 

(Magurran 2004). To account for the factor contributing to low and high index values, two 

additional indexes were calculated (Gray 1981). The Margalef’s Richness (d) index (Margalef 

1961), was determined.  

𝑑 =
(𝑆 − 1)

ln 𝑁
 

 (2.3) 

Where S is the number of species and N is the number of individuals.  

Pielou’s Evenness index (J’) (Pielou 1966)determines how evenly distributed individuals are 

within a community, being high when all taxa have similar abundances and being low when 

certain taxa are numerically dominant. 

𝐽′ =
𝐻′

ln 𝑆
 

 (2.4) 

Where H’ is Shannon-Wiener diversity index and S is the number of taxa. 

This index assumes a value in a range (0, 1) where the dominance of few taxa with high 

abundance is indicated by 0, whereby values close to 1 indicate a similar number of individuals 

across taxa (Magurran 2004). One-way analysis of variance (ANOVA) within the PAST 

statistical software package v. 2.18 was used to test for significant differences (p<0.05) in the 

univariate measures between sample groups.  
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2.4.2.2 Multivariate analysis 

The normal Q-type analysis was adopted as the multivariate analysis approach. This involves 

comparing and grouping samples in relation to the extent to which they share similar taxa 

(Clarke and Warwick 1994, 2001). Although few assumptions are made about the nature of the 

data when employing multivariate techniques and there is no need to transform data to attain 

normality, it is still necessary to apply a transformation in order to balance the contributions 

from common and rare taxa (Field et al. 1982). This can be accomplished through a number of 

means: square root (√), fourth root (√√), log or log (x + 1) transformation (Clarke and Green 

1988, Clarke and Warwick 1994). The more severe the transformation applied the greater the 

influence less abundant taxa will have on the output (Clarke and Warwick 1994). 

In community analysis in which taxa have been identified and counted, similar to this study, 

there are often many rare species and a few common, abundant ones so that the distributions of 

data are highly skewed (Clarke and Warwick 1994). Therefore, abundance data were square-

root transformed prior to subsequent analysis to avoid undue influence of the dominant taxa on 

the overall results (Clarke and Warwick 1994). Square-root transformation has been widely 

used and recommended for count data (McDonald 2014) since it a mild transformation and has 

minor bias compared to other transformations (O’hara and Kotze 2010). 

To examine patterns in the ecological structure of the macrobenthos assemblages, the first step 

was to determine ecologically meaningful distance (dissimilarity) between each pair of station. 

The commonly applied Bray-Curtis (BC) similarity coefficient was used (Bray and Curtis 

1957), with a measure range of zero (identical assemblages) to one (no species in common). 

This similarity coefficient was chosen because it is considered one of the most vigorous and 

reliable measure of ecological dissimilarity (Faith et al. 1987), and has been widely used in 

marine benthic studies (Gauch 1982, Gray and Elliott 2009). Additionally, it has two properties 

that are appropriate for these data. Firstly, it is not affected by joint absences and secondly it 

gives more weight to abundant taxa (Clarke and Warwick 1994, Legendre and Legendre 1998). 

However, here data were square-root transformed to avoid undue influence of highly abundant 

taxa. Joint absences are common in ecological data in that a taxon can be absent in two different 

samples but this does not mean that these samples are similar on the basis that neither contains 

this particular animal (Clarke and Warwick 1988). Zero values are therefore important in 

ecological data and can’t be treated as any other number (Clarke and Warwick 1988). The 

(dis)similarity between samples was further interrogated by applying multivariate methods of 

hierarchical classification which successively pools together samples into discrete groups 
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starting with samples sharing the highest similarity in a community composition, gradually 

lowering to the most trivial similarity level (Clarke and Warwick 1994, Gray and Elliott 2009). 

A hierarchical agglomerative clustering method was used, which pools samples together based 

on their average level of similarity (Clarke and Warwick 1994). The disadvantages of the 

method were noted, such as random sequencing of samples (unrelated samples can be placed 

close to one other), irreversible hierarchy (sample lose its identity once place in a group) and the 

fact that the dendrogram only shows inter-group relationships based on the average similarity. 

Thus, with cluster analysis, Similarity Profile (SIMPROF) analysis was used (9999 

permutations) to ascertain statistical significance (α= 0.01) of recognised groupings, with the 

assumption of no a priori groups. The significance level was set more stringent given the 

multiple testing inherent in this hierarchical approach as suggested by Clarke et al. (2008). 

Ordination allows a visual assessment of the similarity of assemblages among sites and 

represent sample relationships in a specified number of dimensions (Gray et al. 1988). Here, 

non-metric multidimensional scaling ordination (nMDS), which finds the 2-dimensions 

representation to accurately depict patterns of multidimensional multivariable data (Clarke and 

Warwick 1994), was used. Multidimensional scaling ordination was recommended as the most 

robust technique for the examination of ecological gradients for community data, using the B-C 

measure, in a simulation study comparing methods of ordination (Minchin 1987). This method 

represents the B-C similarity between two samples as Euclidean space separating the samples, 

such that proximity of samples reflects similarity in terms of macrobenthic taxon abundance 

(Clarke and Warwick 1994). The final nMDS ordination map is produced through a number of 

iterations, (~25) which proceed with several alternate configurations (Clarke and Warwick 

1994). The extent to which this ordination map represents realistic relationships between 

samples is indicated by Kruskall stress value(Clarke and Warwick 1994). Large stress values 

(0.5> Stress <0.25) indicate that the ordination plot poorly represents observed sample 

relationships in 2D space while stress values between 0.1 and 0.25 indicate satisfactory results 

and values <0.1 indicate a good representation (Clarke 1993). Sample(s) with very low or very 

high abundance values compared to the rest of the data set are often encountered since normal 

distribution of abundance data is never approached in a natural condition. These samples are 

referred to as outliers and result in an condensed nMDS ordination plot (Clarke and Warwick 

1994, Anderson et al. 2008b). Condensed display is corrected by omitting the outlier and repeats 

the ordination (Clarke and Warwick 1994). When the results drawn from ordination 

complement results from cluster analysis, interpretation of data is said to be intuitive and 

straightforward with less risk of misinterpretation (Clarke and Warwick 2001). Cluster analysis 
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was used in Chapter 3 and ordination used in Chapter 4 as each method best-suited the 

respective data types. 

The resultant sample groups (clusters) from cluster analysis was further characterised in terms 

of number of taxa (S), abundance (N), species richness (d), Pielou’s evenness (J'), and Shannon 

Wiener diversity (H'). Significant differences in these univariate parameters between sample 

groups were tested through one-way PERMutational ANalysis Of VAriance (PERMANOVA) 

analyses with unrestricted permutation of raw data and through pair wise tests (Anderson et al. 

2008a). PERMANOVA produces a pseudo-F rather than classical Fisher’s F ratio. Pseudo-F is a 

test statistic used to examine the extent to which a particular design of interest has explanatory 

power over community variation. Pseudo-F value tends to be higher when the model(s) have 

been fitted to the data using least squares. This is based on the ratio of explained to residual 

variation in the data. P-values indicate the significant difference (p<0.05) between the factors 

obtained using necessary permutations based on the design (Anderson 2001, 2006).  

Taxa and trait modality characterising similarity and differences between groupings observed 

from cluster and ordination analyses were evaluated through the Similarity Percentage 

breakdown (SIMPER) function (cut-off 90%) in the PRIMER v.6 statistical package. This 

function uses a pairwise comparison of samples and finds the mean contribution (δi) of each 

taxon or trait modality to the (dis-)similarity computed from B-C similarity among all pairs of 

samples within a sample group (Clarke and Warwick 1994). In conjunction with the associated 

standard deviation (SD) δi are calculated. Deductions on whether taxon or trait modality 

characterise similarity or dissimilarity are based on the resultant ratio ((δi)/SD (δi)), which 

measures how consistent a taxon or trait modality contributes to the mean (dis-)similarity 

between the groups. An adequate discriminating taxon or trait modality contributes more often 

to dissimilarity/similarity and consequently has a low SD and accompanied by a high ((δi)/SD 

(δi)) ratio (≥1) (Clarke and Warwick 1994). Therefore, large values of the ratio indicate those 

taxa or trait modalities that typify sample groups (Clarke and Warwick 1994). The more 

abundant a taxon or trait modality is within a group, the more it contributes to the intra-group 

similarity, while a taxon or trait modality with a consistently high contribution to the 

dissimilarity between groups is a good discriminating species (Clarke & Warwick 2001). 

SIMPER results were tabulated for all identified sample groups, focussing only on species 

contributing >2% of the abundance to the individual groups (Field et al. 1982).  
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Relating faunal and environmental patterns 

A one-way fixed analysis was used (within PRIMER v.6) to test the assumption of homogeneity 

of variance between stations on square-root transformed abundance data. The RELATE function 

then computed a rank correlation coefficient (Spearman’s (ρ)) between samples from the 

biological and environmental dataset. When ρ=1 or close to 1, it indicates that data correlate 

perfectly (Anderson 2006). The RELATE procedure was employed to ascertain whether the 

arrangement of rank orders of similarity among stations in the BC faunal matrix was 

significantly correlated with that in the complementary Euclidean distance matrix constructed 

from the environmental variables.  

The Biota Environment Matching (BIO-ENV) procedure within the BEST function in PRIMER 

v.6 (Clarke and Ainsworth 1993) was used to determine the single or combination of variables 

that maximised the degree of correlation between biotic and abiotic matrices. In this analysis, 

the biota similarity matrix and a parallel environmental variables matrix (generated from various 

sets of environmental data) were compared to determine which variable best explained 

community patterns observed using the Spearman’s Rank Correlation (ρ). Spearman Rank 

Correlation varies between (-1, +1), where negative values indicate inverse correlation and the 

latter indicating a perfect monotone of ranks. Where there is no relationship between matrices ρ 

will be indicated by 0 (Clarke and Warwick 1994). The BVSTEP algorithm was used on all 

environmental variables, with stepwise forward and backward techniques for selecting and 

eliminating variables. A stepwise forward selection technique selects a subset of variables by 

starting with no variables, trying iteratively each variable and progresses successively until 

environmental variables contributing least are eliminated and those accounting for macrobenthic 

assemblage structure are found (highest ρ values) (Clarke and Warwick 1994, Clarke 2005, 

Clarke et al. 2008). The global BEST test was used to determine significance of the subset of 

environmental parameters, testing the null hypothesis of a negative relationship between biotic 

and abiotic dataset collected for the chosen set of samples (Clarke et al. 2008). 

A distance-based Redundancy Analysis (dbRDA) was further performed using a distance based 

Linear Model (distLM) routine from PRIMER v.6 (Clarke and Gorley 2006) and the 

PERMANOVA + add-on (Anderson et al. 2008a). This ordination technique operates on species 

abundances and corresponding environmental variables and extracts synthetic gradients from 

combinations of the measured environmental variables (ordination axes) that maximize the 

niche separation among species. Within distLM, marginal tests determine the relative 

importance of each environmental variable in explaining community variation and the 
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proportion of variance explained irrespective of other variables using a stepwise routine that 

employed 9999 permutations based on Akaike’s AICc selection criterion (Clarke and Warwick 

1988, Anderson et al. 2008a). In further chapters, specific analyses pertaining to testing 

individual aims and hypotheses are presented in more detail.  
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CHAPTER 3. SPATIAL PATTERNS OF SOFT-BOTTOM 

MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL 

MID-SHELF, RELATIVE TO MARINE SPATIAL PLANNING 

BIOZONES 

3.1 Overview 

Macrobenthic species and communities were investigated on the KZN mid-shelf, to examine the 

influence of different environmental variables on the spatial distribution of the macrobenthos 

assemblages. These patterns were further examined (as biodiversity surrogates for macrobenthic 

communities) relative to predefined Marine Spatial Planning (MSP) biozones in KZN. 

Knowledge gained from these types of ecological assessments is critical for the effective 

management and conservation of marine ecosystems. Macrobenthic samples were collected 

using a 0.2 m
2
 Van Veen grab from 19 stations. Total abundance, number of taxa and various 

diversity indices were computed and used for spatial comparison. Polychaetes, crustaceans, 

molluscs and sipunculids were the four dominant taxonomic groups with crustaceans being 

most abundant. Cluster analyses resolved into seven habitat specific benthic assemblages that 

differed significantly in terms of species composition and diversity. Spatial distribution as 

univariate measures were best explained by sediment grain size (mud to medium and coarse 

sand), sediment organic content and carbonates, and water column turbidity. In contrast, 

multivariate analyses identified median grain size, mud content and water column turbidity as 

the major variables influencing the faunal patterns. Results showed that macrobenthic 

communities (or community patterns) did not fully agree with the KZN spatial planning 

classification model. Disagreement between macrobenthic structure and predefined biozones 

unit does not suggest that traditional community structure-based measures are inappropriate 

rather a potential to illustrate variability on several scales. Furthermore, this suggests the need to 

refine the existing biozone classification model for effective representation of benthic 

biodiversity. 

3.2 Introduction 

Due to the synergistic effects of multiple stressors on shelf ecosystems that alter ecosystem 

structure and function (Worm et al. 2006), proper management measures  are required to assure 

sustainable use of natural resources and to maintain ecosystem services (Barbier et al. 2011). To 

develop operational conservation plans, basic knowledge of the structure and functioning of the 

target ecosystem is critical (Reiss et al. 2010, Reiss et al. 2015). Regardless of soft-bottom 
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marine habitats being the largest ecosystem on Earth in terms of spatial coverage, only a small 

percentage of the macrobenthos has been studied there, and most of the species are still 

undescribed (Snelgrove 1997). Moreover, macrobenthic community studies have for many 

years been conducted to study species composition and community structuring for 

environmental monitoring, pollution assessment and anthropogenic impact, with little attention 

given to describing biodiversity patterns (Warwick 1987, Olsgard and Somerfield 2000); 

through a combination of species identification, characterisation and habitat mapping (Ellingsen 

2002, Veiga et al. 2016). 

Macrobenthos forms a substantial component of soft-bottom habitat biodiversity, and are 

important contributors to myriad of ecological functions (Schwinghamer 1981, Ganesh and 

Raman 2007, Sokołowski et al. 2012), as well as in local ecological processes including the 

food resources for higher trophic levels such as commercially important fish species (Joydas 

and Damodaran 2009). Also, community spatial configuration and heterogeneity have important 

implications for the distribution and relative abundance of marine organisms (Thrush et al. 

2001, Anderson et al. 2009) and may be important predictors of biodiversity and ecosystem 

function (Reise 2002, Solan et al. 2004, Anderson et al. 2013, Dutertre et al. 2013). As such, 

studies of macrobenthic communities are relevant to assess biodiversity and establish the 

baseline knowledge required to detect future potential changes in species distribution which are 

useful for depicting or monitoring management issues (Desroy et al. 2002, Dutertre et al. 2013). 

Lastly, macrobenthos species distribution is used to assess benthic habitat status and to identify 

priority areas for marine protection, conservation and management (Snelgrove 1998, Koulouri 

et al. 2006, Cacabelos et al. 2008, Gogina and Zettler 2010, Claudet 2011, Dixon‐Bridges et al. 

2014, McHenry et al. 2017). 

Some studies have detailed the distributional patterns of macrobenthic communities and 

identified factors and processes that are important in determining spatial patterns (Thrush 1991, 

Thrush et al. 1998, Moulaert et al. 2008). In several, sediment features (e.g. grain size, organic 

matter content and food availability) are identified as important factors responsible for 

macrofaunal distribution (Gray 1974a, Hily 1987, Snelgrove and Butman 1994, Ellingsen 2002, 

Van Hoey et al. 2004, Hily et al. 2008, MacKay et al. 2016, Veiga et al. 2017). However, on 

large spatial scales, other natural environmental factors such as the hydrodynamic conditions 

and physicochemical properties of the water column directly or indirectly affect the presence 

and distribution of macrobenthos by influencing food availability, bottom-water oxygenation 

and larval dispersion (Pearson and Rosenberg 1987, Rosenberg 1995, Dutertre et al. 2013, 

Blanchard and Feder 2014), making distribution heterogeneous (Hewitt et al. 2005, McClain 

and Barry 2010, Mann and Lazier 2013).  
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The KwaZulu-Natal (KZN) shelf is a region of unusual environmental conditions characterised 

by a complex current system, arising from the Agulhas western boundary current (Lutjeharms 

2006a, Roberts et al. 2010b). The macrobenthos of KZN shelf environment is not well studied 

(Mead 2007, Griffiths et al. 2010, Milne 2012), despite transitional coastal habitats such as 

estuaries (MacKay et al. 2010, Ngqulana et al. 2010, Turpie et al. 2012), intertidal rocky shores 

(Bustamante et al. 1995, Bustamante and Branch 1996, Branch et al. 2005, Sink et al. 2005) and 

sandy beaches (Harris et al. 2011b) having been afforded attention. As proof of this, new 

macrobenthos species have been recently described from the intertidal and shallow reef habitat 

(Milne and Griffiths 2013), from a very limited set of samples in one area off the KZN north 

coast. Dedicated studies on the shelf communities were last carried out in the 1980s. 

Unpublished environmental impact and monitoring reports giving basic macrobenthic data exist 

(McClurg 1988, McClurg et al. 2000, McClurg et al. 2006), but these are area-specific and give 

limited information on ecological aspects of the communities and on the distribution of other 

taxonomic groups. There are, however, recent studies on the region but limited to environments 

associated with coral reef habitat (Harmer 2014). The only recent comprehensive studies on the 

unconsolidated KZN shelf habitats are those of MacKay et al. (2016), Untiedt and MacKay 

(2016). By using identical collection and analytical methods and applying similar taxonomic 

rigour to those of the aforementioned studies, this study offers a good opportunity to study the 

patterns of distribution and composition of benthic assemblages. Findings of this study will not 

only improve the regional knowledge by adding to the small number of studies describing 

infaunal community structure, but will also assist to develop proper strategies for management 

and conservation of soft-bottom benthic habitats. 

3.3 Aims, Objectives and Hypotheses 

The aim of this chapter is to identify and describe patterns of macrobenthic composition and 

distribution along the KwaZulu-Natal mid-shelf environment. Furthermore, to evaluate the 

relationship between physical seafloor conditions and macrobenthic faunal distribution to 

identify the key abiotic factors responsible for observed community patterns. Results obtained 

will not only complement our insights into the regional biodiversity but will further be used to 

test the efficiency of the KwaZulu-Natal marine spatial planning predefined biozones as a 

potential biodiversity surrogate (reflecting macrobenthic communities patterns).  

Objectives 

1. To characterise the KwaZulu-Natal mid-shelf abiotic habitat. 

2. To characterise macrobenthic community assemblages. 
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3. To determine if there are spatial differences in macrobenthic communities along the 

KwaZulu-Natal mid-shelf. 

4. To determine the possible relation between measured environmental variables and 

distributional patterns of the benthic fauna. 

5. To determine if patterns observed in macrobenthic communities agree with provincial 

marine spatial planning predefined biozones. 

Hypotheses 

H1: There are structural differences in macrobenthic communities observed along KZN mid-

shelf.  

H2 There is a significant coupling between macrobenthic community structure and biophysical 

variables measured. 

H3: There are differences in macrobenthic community patterns relative to KZN marine spatial 

planning predefined biozones. 

3.4 Materials and Methods 

The general materials and methods including sections on the study area, the field-sampling 

protocol, laboratory processing and data analyses are presented in Chapter 2. The following are 

protocols relevant only to this chapter. 

3.4.1 Study area and sampling design 

Sampling stations were set along the shelf using the existing biozone model as a template of 

known and suspected unconsolidated sediment habitats. The stations were approximately evenly 

replicated between biozone subclusters.   

3.4.2 Data treatment and analysis 

3.4.2.1 Biotic data 

Taxon abundance for the 57 samples collected was considered in this study. Frequently 

encountered taxa (F= occurred in more 50% of the sampled stations) were expressed as 

percentages of the number of stations where the taxon was recorded. Taxa restricted to a single 

station were regarded as ‘unique or rare’, while taxa represented by a single individual at a 

station as a ‘singleton’ and taxa represented by two individuals at a station as ‘doubleton’ 

adopting a terminology of Colwell and Coddington (1994). These classifications were used to 

refine data for statistical testing. 
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3.4.3 Univariate measures  

The number of taxa (S) and Species abundance (N) were computed from raw data for each 

station and sample groups obtained from cluster analysis considering all 57 replicates. The 

‘DIVERSE’ programme within PRIMER v.6 was used to compute univariate indices (d, J’, and 

H’) for each sampled station and for sample groups obtained from cluster analysis and the 

associated standard deviation (±SD). Non-parametric Chao 1 (abundance based and sensitive to 

the frequencies of rare species) and Chao 2 (presence-absence based) were used to estimate the 

true Species Richness of this study (Chao 1984, Colwell and Coddington 1994, Chao et al. 

2009, Gotelli et al. 2009). The Chao 1 true richness estimator was considered due to its high 

performance in the case of many rare species and species with a small frequency range, 

whereas, Chao 2 provides a least biased estimate of true species richness in small samples, and 

have been found to be very accurate (Chao 1984, Colwell and Coddington 1994). Here Chao1= 

Sobs + (Q1
2
/2Q2), where Sobs is the number of species in the sample, Q1 is the number of 

singletons and Q2 is the number of doubletons and Chao2 = Sobs + (Q1
2
/2Q2), where Sobs is as 

above and Q1 and Q2 are the frequency of unique and duplicates, respectively. Curves were 

plotted in PRIMER v.6, which through permutation generates standard deviation values for the 

curve.  

3.4.4 Community patterns  

In order to characterise spatial patterns in macrobenthos, a Bray-Curtis (B-C) resemblance 

matrix was computed on square-root transformed abundance data and the subsequent triangular 

resemblance matrix was subjected to cluster analysis (Chapter 2). A series of Similarity Profiles 

(SIMPROF) (p=0.05) was used to test the validity of the clusters. Taxa with the greatest 

contribution to the division of stations into clusters (species assemblage) were determined using 

the similarity percentages procedure SIMPER (Chapter 2). Resultant clusters were subjected to 

non-parametric multivariate analysis of variance (PERMANOVA) (Anderson 2001) for testing 

the hypothesis that macrobenthic communities differed between clusters.  

3.4.5 Relating faunal and environmental patterns 

The correlation between the B-C similarity matrix and Euclidean distance matrix was evaluated 

through the RELATE procedure (Chapter 2). Patterns in sedimentary characteristics were 

investigated using Principal Component Analysis (PCA) and stations were ordinated based on 

the dissimilarity matrices. The BVSTEP algorithm contained within the BEST procedure in 

PRIMER v.6 was used to identify a suite of variables that best maximises the degree of 

correlation (highest ρw values) between biotic and abiotic matrices (Chapter 2). The Global 
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BEST test was used to determine the significance of the subset of environmental parameters. 

The relative importance of each environmental variable in accounting for univariate and 

community variation was analysed using nonparametric multivariate multiple regression. 

Environmental variables were subjected to a step-wise procedure with Akaike’s Information 

Criterion (AICc) used as the selection criterion to develop a response model of the 

macrobenthos community attributes (i.e. S, N, d, H´ and the multivariate structure of 

assemblage). P-values were ascertained after 9999 permutations of residuals under the reduced 

model (Anderson 2001) using the Distance Based Linear Models (distLM) (Clarke and 

Warwick 1988, Anderson et al. 2008a) procedure. The distance-based Redundancy Analysis 

(dbRDA was used to visualise the relationship between the best correlative variables and the 

macrobenthic assemblages. 

A non-parametric multivariate linkage tree test (LINKTREE) was used to determine what 

ranges of values of the explanatory variables were responsible for discriminating different 

sample groupings together with the associated SIMPROF test to determine statistically 

significant (p=0.05) groupings within the tree (Anderson et al. 2008a). In this procedure 

environmental parameters were placed into a single group, successively subdivided, in binary 

partitions, in a way as to minimise the within-group variance (Anderson et al. 2008a). Only the 

ranks of the resemblances are utilised to maximise the ANOSIM R statistic between the two 

groups formed at each division. The R measure depicts the degree of separation of two groups 

in the high-dimensional space represented by the resemblance matrix for those samples, with 

R=1 when dissimilarities between the two groups exceed any dissimilarity within either group 

(Anderson et al. 2008a). Ocean Data Viewer 4.7.10 was used to plot hydrographic variables of 

each station and interpolated between stations and biozones.  

3.4.6 Biozones as surrogates for macrobenthic community structure 

The number of species (S) and species abundance (N), Shannon-Wiener Diversity (H'), and 

Margalef’s Richness (d) were computed for each biozone subcluster and subjected to two-factor 

nested non-parametric multivariate analysis of variance (PERMANOVA) (Anderson 2001) for 

hypothesis testing that these univariate indices differed among biozone subclusters but not 

among sites within each biozone subcluster. PERMANOVA was used over ANOVA, as it does 

not assume normal distribution (Anderson, 2001). When PERMANOVA showed significant 

differences (p<0.05), a pair-wise comparison (9999 permutations) was done to explore 

differences among all pairs of biozone subclusters. Homogeneity of richness and diversity was 

tested prior to PERMANOVA by Levene’s test. Unequal-variance ANOVA (Welch test) was 

considered since it is more robust for data where assumption of constant variance is not met 
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(Hammer et al. 2001). Two-factor PERMANOVA (Anderson et al. 2008a) was used to compare 

and test if macrobenthic assemblages were significantly different or not, based on a Bray–Curtis 

similarity matrix of the square-root transformed abundance data. Spatial structuring of 

macrobenthic assemblages within biozone subclusters was visualized by nMDS (2-

dimensional). In order to test whether differences in the structure of assemblages between 

biozones were due to varying multivariate dispersion, the permutational test of multivariate 

dispersion (PERMDISP) (Anderson 2004) procedure was used to test homogeneity in average 

dispersion of samples from their group centroids. Taxa characterising and discriminating the 

structure of the subcluster were analysed through the SIMPER procedure. PERMDISP was used 

to test the hypothesis of homogeneity in average dispersion of samples based on environmental 

variables. Average Euclidean distance to centroid (±SD) was used to visualise differences 

between biozone subclusters. 

3.5 Results  

3.5.1 Sedimentary Characteristics 

3.5.1.1 Sediment grain size distribution, total organic carbon (TOC) and carbonates 

Detailed results of grain-size analysis and the spatial distribution of superficial sediments on the 

KwaZulu-Natal (KZN) Bight are given in MacKay et al. (2016) and Green and MacKay et al 

(2016). However, for this study, the distributions of sediment classes along the KZN mid-shelf 

are illustrated in Fig 3.1. There were significant differences in sediment distribution 

(PERMANOVA, df=18, Pseudo-F=56.991, p-perm<0.001) across grain-size classes and 

associated statistics of sorting and skewness (Table 3.1, Fig 3.1). Medium sand (24.5%), fine 

sand (21.7%), mud (17.1%), coarse sand (16.4%) and comparable proportions of very coarse 

grains and gravel dominated the sediment grain-size classes (Table 3.1) along the study area. 

The seafloor is highly heterogeneous along the mid-shelf with distinct sediment habitat features 

such as coarse-grained sands ranging between 0.79-1.03 ɸ (15.0-48.0%) low in TOC (0.32-

0.68%) with moderate percentage carbonates (22.9-36.4%) off Port Durnford (Fig 3.1), 

indicative of a habitat subjected to strong current activities coupled with minimal sediment 

supply. A mud deposition (>4 ɸ, >70.0%) area off the uThukela Estuary with moderate TOC 

(1.61-2.72%) and low in percentage carbonates (10.0-15.0%) was another distinct habitat (Fig 

3.1). The area between Zinkwazi and uMdloti varied with stations J4 to M3 dominated by fine-

grain sands, while coarse-grained sand characterised stations L3 and K3 off Zinkwazi (Fig 3.1). 

Medium-fine grain sand (-0.06-2.32 ɸ, >45.0%), low in organic content (0.18-0.64%) with 

moderate high ranges of carbonates (15.7-67.3%) predominated sampling stations between 

Durban and uMkhomazi (S1-S6). 



 

                                                     SOFT-BOTTOM MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL MID-SHELF 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

45  

 

 

 

 

 

 

 

 

 

Overall, the sediment grain along the KZN mid-shelf ranged from poorly sorted to moderately 

well sorted (x̅: 1.02 ɸ ±0.39SD), indicating the presence of several textural types. The sediment 

gran size distribution was coarse skewed (negatively skewed) (x̅: -0.50 ɸ ±2.71SD), suggestive 

of fine-grain sands dominance (Table 3.1). A positive correlation (r=0.771, p-perm<0.001, 

n=19) was obtained between the sediment TOC and median grain sizes, while an inversely (r=-

0.674, p-perm=0.001, n=19) relationship was observed between carbonates and sediment 

organic content.  

 

 

 

 

 

 

 

Table 3.1. Overview of the sedimentary characteristics along the KZN mid-shelf (mean, SD and 
range) 

Variables Mean SD Min Max

%Gravel 7.43 8.70 0.00 28.44

%Very coarse sand 9.80 10.77 0.14 36.03

%Coarse sand 16.41 14.09 0.14 42.38

%Medium sand 24.54 15.96 0.17 54.18

%Fine sand 21.70 23.73 0.96 78.90

%Very fine sand 3.03 4.09 0.14 16.66

%Mud 17.10 30.62 1.19 95.32

Median phi (ɸ) 1.73 1.40 -0.06 4.48

Sorting 1.02 0.39 0.38 1.62

Skewness -0.50 2.71 -5.95 6.52

%TOC 0.73 0.66 0.18 2.72

%Carbonates 30.40 14.55 10.00 67.25

Figure 3.1. Sediment distribution along the KwaZulu-Natal mid-shelf from south (left) to north (right). 

Sediment classification is according to seven classes described by Wentworth (1922) and  Gray (1981) 
expressed as median phi (ɸ). Main cities and coastal systems from north to south (Port Durnford-
uMkhomazi).  
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3.5.1.2 PCA analysis 

Classification analysis identified five groups (I-V) based on different sedimentary 

characteristics visualised in a Principal Component Analysis (PCA) ordination plot (Fig 3.2). 

PCA revealed that stations were distinguished mainly according to the dominant sediment grain 

size. The first two PC axes were retained as together they explained 75.4% of the total variance. 

The eigenvalues of the first two PC axes (displayed in Fig 3.2) were 7.09 and 1.95, respectively. 

The PCA plot shows that axis 1 (PC1-59.1%), mainly separated data along a gradient between 

coarse and very fine substrates and associated carbonate content, with approximately 

moderately sorted sediments. High mud content, sediment organics, fine-to- medium sand with 

highest eigenvector coefficient defines PC2, which accounted for 16.3% of the variation (Fig 

3.3). Group (I) comprised of stations off the uThukela Estuary dominated by mud (68.0-95.0%) 

and high total organic content. Group II was mainly characterised by samples with an important 

contribution of medium-fine sand (10.0-78.0%), deficient in TOC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. PCA plot. Two-dimensional visualisation of the sedimentary environment displaying the 

distribution of five sample groupings (Group I-V) of 19 samples collected along the KwaZulu-Natal 
mid-shelf. Responsible eigenvectors are indicated adjacent to axes PC1 and PC2.  
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The third (III) group comprised of stations dominated with coarser sand (10-35%), also low in 

TOC, but high in percentage carbonates. Group IV consisted of stations with coarse-to-fine 

sediments low in TOC with average values of carbonates. The remaining stations with low to 

moderate values of TOC, and showing heterogeneous sediment grain composition ranging from 

fine sand to gravel formed Group V.  

3.5.2 Water column characteristics  

3.5.2.1 Bottom-water temperature and salinity 

Temperatures >20°C were consistently measured between Port Durnford and Zinkwazi. An 

exception was F6 where cooler water was measured, perhaps indicative of Agulhas Current 

cooler water on the shelf (Fig 3.3 a). An area of cooler water was also noted off Durban 

corresponding to the Durban Eddy. Overall, the study area exhibited a fairly large temperature 

range 16.31 and 21.65°C (Table 3.2). In general, a saline homogeneity was observed (range: 

35.4 to 35.5, x̅: 35.4 ± 0.03SD), despite some indication of hydrographically induced variability 

in other variables (Table 3.2 and Fig 3.3 b).  

3.5.2.2 Dissolved Oxygen (O2) 

The bottom water along the KZN mid-shelf was consistently low in dissolved oxygen (x̅: 4.06 

mg.l
-1

 ±0.45SD, range: 3.27 (S2) - 4.56 (S6), exhibiting a near-constant trend between Port 

Durnford and uThukela (Fig 3.3). An exception was F6 with the lowest O2 concentration in the 

vicinity, suggestive of the offshore oxygen minimum zone commonly transported onto the 

shelf-edge by the Agulhas Current (Roberts et al. 2006). The area of low O2 concentration 

between the sampling stations L3 and M3 could be associated with primary production as 

reflected by Chlorophyll-a coupled with high nutrient levels from the uThukela outflow 

(Scharler et al. 2016) (Fig 3.3 c). The low O2 concentration was also noted off Durban between 

N3 and P4, suggestive of the hydrological conditions more typical of deeper water settings and 

this could be associated to the Durban Eddy, occasionally linked with the Natal pulse 

(Lutjeharms and Ansorge 2001, Bryden et al. 2005, Roberts et al. 2016).  

3.5.2.3 Chlorophyll-a (Chl-a) 

Chl-a was generally low and fairly uniform (0.41 µg.l
-1 

± 0.31SD) (Fig 3.3 d, Table 3.2). The 

highest Chl-a was found at sampling station K3 just south of Thukela River mouth (1.35 µg.l
-1

). 

Elevated values were also recorded at station S6 corresponding to the Durban Eddy, S5 and 

ASNTH2 both located off iSiphingo Estuary and adjacent to the Amanzimtoti southern outfall 
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(Fig 3.3 d). The lowest Chl-a values were found between Port Durnford and uThukela, 

including where the lowest recorded value (0.17 µg.l
-1

) during the study was found (off uMdloti 

Estuary) (Fig 3.3 d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3. Near bottom environmental variables measured along the KwaZulu-Natal mid-shelf environment. 
Temperature (a), Salinity (b), Chlorophyll-a (c), Dissolved Oxygen (d), Turbidity (e), and pH (f). 
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3.5.2.4 Turbidity and pH 

The turbidity showed a uniform trend of lower values (x̅:0.58 NTU ±0.05SD). Turbidity values 

>1.5 NTU were generally recorded at stations between Port Durnford and uThukela, while 

values <1 NTU were consistently recorded south of uThukela to uMkhomazi (Fig 3.3 e). The 

highest turbidity (3.98 NTU) was recorded at sampling stations off the uThukela corresponding 

to uThukela outflow and dominated by high mud content. During the sampling period, pH 

values remained approximately constant along the study area, on average being x̅:8.12±0.05 and 

reflected a narrow range between 8.04 and 8.20 (Table 3.2). Stations with lower pH were 

recorded off Port Durnford and uMkhomazi (Fig 3.3 f). 

 

 

 

 

3.5.3 Macrobenthos composition 

From 57 grabs, a total of 33 272 macrobenthic organisms distributed across 634 taxa were 

sampled from approximately 11.4 m
2
 of seafloor. Macrobenthic community was from seven 

Phyla representing 18 Classes, 149 Families, and 281 Genera. These are presented in Table 3.3 

based on their percentage contribution to the number of taxa (S) and abundance (N). These 

included Annelida, Arthropoda, Mollusca, Echinodermata, Cnidaria, and Sipuncula. The 

remaining species summarised as ‘others’ played a minor role in diversity and were only 

important at specific stations (Platyhelminthes, nemerteans, nematodes, and echiurids) (Table 

3.3). Annelida (almost exclusively Polychaeta) was the most diverse phylum constituting 45% 

of the total fauna (S), but only represented 27% of faunal abundance (N) (Table 3.3). 

Arthropoda (peracarid crustaceans) was the second most species rich phylum, represented 33% 

of the total fauna, but contributed 60% to the total abundance (Table 3.3), with Amphipods 

being the main representative. Mollusca (S: 7%, N: 3%), Echinodermata (S: 3%, N: 4%) and (S: 

4%, N: 1%), and Sipuncula (S: 3%, N: 4%) were also an important part of KZN mid-shelf 

macrobenthos. Faunal groups summarised as ‘others’ contributed only 4% to total S and 1% to 

N. In total, unique (restricted to a single station) taxa were represented by 189 organisms and 

corresponded to 30% of the total S and 154 of the rare occurances were singletons (24% of the 

total community) and 21 were doubletons (3% of the total community). 

Variables Mean SD Min Max

Temperature (°C) 19.26 1.36 16.31 21.17

Salinity (psu) 35.42 0.03 35.36 35.46

Dissolve Oxygen (mg.l
-1

) 4.06 0.45 3.27 4.56

Chlorophyll-a (µg.l
-1

) 0.41 0.31 0.05 1.35

Turbidity (NTU) 0.58 1.24 0.11 3.98

pH 8.12 0.05 8.04 8.20

Table 3.2. Overview of the bottom-water environmental variables measured along the KZN mid- shelf. 
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Figure 3.4. Species accumulation curve for macroinvertebrates of the KwaZulu-Natal mid-shelf 
(±SD). 

 

 

 

 

 

3.5.3.1 Species estimator 

Estimates of the total number of taxa are presented in Fig 3.4. Sobs (634 taxa) was smaller than 

Chao 1 (1061 taxa) and Chao 2 (941 taxa) non-parametric estimators which gave almost 

identical results taking into account the variability associated with each estimator for all 

assemblages. The KwaZulu-Natal mid-shelf macroinvertebrate fauna were reasonably well 

sampled as the observed contributed >60 of the predicted total Richness (Fig 3.4). 

 

 

 

 

 

 

3.5.4 Diversity (S) and abundance (N) gradients per major Phyla 

The number of taxa (S) varied between sampled stations with highest values (84-163 taxa m
-2

) 

recorded at the transition region of the uThukela River and Durban (stations J4-N3), however 

this was highly variable between replicates. Stations off uThukela River and Port Durnford 

supported lower number of taxa (13-53 taxa m
-2

) (Fig 3.5). Overall, the mean (x̅) number of taxa 

was 88 taxa m
-2

 (±41SD) with approximately 70% of the sampled stations each containing >85 

taxa (Fig. 3.5). Species composition exhibited differences among stations, with Annelida and 

Crustacea together contributing the most to the number of taxa per station. Approximately equal 

numbers of different Species of Polychaeta and Crustacea occurred between south of Durban 

and uMkhomazi (stations P4-S1) (Fig. 3.6). However, this pattern did not hold between Durban 

% % 

contribution contribution

Annelida 288 45 9019 27

Arthropoda 213 34 20035 60

Mollusca 45 7 1034 3

Echinodermata 20 3 468 4

Cnidaria 22 4 1173 1

Sipuncula 18 3 1283 4

Others 28 4 259 1

Phyla S N

Table 3.3. Contribution of the major Phyla to the total number of taxa (S), abundance (N), and their 
respective percentage contribution (%). 
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and uThukela (N3-J4) where Polychaeta showed high local richness. Stations between uThukela 

and Port Durnford (I5-E4) had lowest number of taxa recorded, yet diverse in that these stations 

contained most taxonomic groups.  

 

 

 

 

 

 

 

 

The highest macrobenthos abundance (N) value was recorded at iSiphingo (S5-2096 ind. m
-2

, 

±451SD) and coincided with high abundances of specific faunal components (Unciolella 

spinosa (880 ind. m
-2

) and Byblis giamardii (240 ind. m
-2

)). Relative intermediate values were 

recorded at the habitat between uThukela and Durban (K3-631 ind. m
-2

, ±577SD; L3-769 ind. 

m
-2

, ±208SD; S6-1305 ind. m
-2

, ±1112SD), being comparable to S4 (609 ind. m
-2

, ±147SD), S3 

(679 ind. m
-2

, ±283SD) and S2 (1132 ind. m
-2

, ±465SD) south of iSiphingo to uMkhomazi. 

Lowest abundances (85-133 ind. m
-2

) were recorded off uThukela Estuary (H4-36 ind. m
-2

, 

±31SD; G5-91 ind. m
-2

, ±42SD) and off Port Durnford (E4-87 ind. m
-2

, ±34SD). Overall, the 

mean abundance was x̅:587 ind. m
-2

 (±512 SD) (Fig 3.6). In terms of taxa relative contribution, 

polychaetes worms were important from the uThukela to Durban (N3-J4), whereas crustaceans 

were ubiquitous between Durban and uMkhomazi (stations S1-S6) (Fig. 3.6). When considering 

the distribution range for each Phylum, only Annelida, Arthropoda, Mollusca, and Sipuncula 

featured similar spatial pattern (high in N at specific stations) (Fig. 3.6). This pattern was less 

clear for other Phyla due to a lower number of taxa. There were significant differences in S 

(pseudo-F=8.539, df=18, p=0.0004) and N (pseudo-F=10.650, df=18, p=0.0007) between 

stations (n=19).  

 

Figure 3.5. Spatial representation of number of taxa (S±SD) aggregated to main Phyla for 

macrobenthic fauna sampled along the KwaZulu-Natal mid-shelf stations. Arrows indicate the direction 
of the current. 
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3.5.5 Taxonomic composition  

3.5.5.1 Polychaeta 

Polychaeta was the most diverse group with a total number of 288 different taxa identified to 

lowest practical taxa (Species level) possible across 42 Families and 140 Genera representing 

45% of the total community (Table 3.3). Within sampled polychaetes, both errant (51%) and 

sedentary forms (49%) were comparable, but sedentary forms were more diverse 

(representatives of different families and genus) over the errant members. In increasing order, 

Cirratulidae (5.5%), Maldanidae (6%), Syllidae (8%), Terebellidae (10%) and Spionidae (11%) 

presented the highest number of indivduals, each represented by >15 taxa (Fig 3.7). 

Terebellidae, Spionidae, Nephtyidae and Capitellidae were the most abundant Families, each 

represented by >500 individuals (Fig 3.7). Among the sampled Families, thirteen were rare 

(4.5% of the polychaete fauna, and 4% of polycheata N), only significant at specific stations and 

classified as ‘others’ (Fig 3.7). The families Nephtyidae, Glyceridae and Capitellidae were 

present at most sampled stations. Frequently encountered taxa (F) included Lumbrineris 

aberrans (F=52%), Tharyx filibranchia (F=57%), Spiochaetopterus vitrarius (F=57%), 

Aglaophamus dibranchis (F=57%), Notomastus latericeus (F=68%) and Nephtys capensis 

(F=74%). Of the thirteen taxa classified as ‘others’, seven were identified as rare. These 

included Caulleriella acicula, Macroclymene cf monilis, Caulleriella bioculata, Haplosyllis 

spongicola, Oxydromus spinosus, Prionospio cirrifera and Sphaerosyllis cf semiverrucosa. The 

remaining fauna were not classified because they were identified either to genus or to higher 

taxonomic level and represented existing taxa (e.g. Scolelepis and Syllidae). The most abundant 

Figure 3.6. Spatial representation of mean abundance (No. ind. m
-2 

±SD) aggregated to main Phyla for 

macrobenthos sampled along the KwaZulu-Natal mid-shelf stations. Arrows indicate the direction of the 
current.  



 

                                                     SOFT-BOTTOM MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL MID-SHELF 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

53  

species included the terebellid, Lanice conchilega with 480 ind. m
-2 

(based on the individual 

abundance per total polychaete abundance (Ap)=5.3%) which was restricted to medium coarse 

substrates, followed by the spionid, Prionospio nirripa, with 338 ind. m
-2

,
 
accounting for 

AP=3.8%. The spiochaetopterid, Spiochaetopterus vitrarius was a distinct resident at several 

locations and textural types, being the third most abundant species (323 ind. m
-2

), accounting for 

AP=3.6% of polychaeta total abundance. Nephtys capensis with 288 ind. m
-2 

accounted for 

AP=3.2% was also an important component in most of the stations.  

 

 

 

 

 

 

 

 

3.5.5.2 Crustacea 

Within the peracarid Crustacea group, Amphipoda was the most dominant order represented by 

25 Families, 43 Genera and 89 taxa and accounted for 42% of the total crustacean fauna (CF) 

and 85% of the crustacean abundance (CA) and overall contributing ~14% of the total fauna (TF) 

(Fig 3.8). In decreasing order, Ampeliscidae with two Genera and seventeen Species (amphipod 

fauna: AF=20% and CF=8%), Photidae with 3 Genera and 12 Species (AF=14% and CF=6%), 

Mearidae comprising of six Genera and eight Species (AF=9% and CF=4%) and Lysianassidae 

with three Genera and seven Species (AF=8% and CF=3%) were the most species diverse 

Families. The most frequently encountered taxa included, Mandibulophoxus stimpsoni 

(F=47%), Hippomedon onconotus (F=47%), Ampelisca diadema (F=52%), Urothoe pulchella 

(F=52%), Unciolella spinosa (F=52%), A. palmata (F=68%), and Byblis gaimardii (F=68%). W 

The most abundant species based on the amphipod total abundance (AA) were A. insignus (757 

ind. m
-2

 (AA=4%)), U. pulchella (1003 ind. m
-2

 (AA=5%)), A. diadema (1632 ind. m
-2

 (AA=8%)), 

Byblis gaimardii (2596 ind. m
-2

 (AA=13%)), and Unciolella spinosa (3904 ind. m
-2

 (AA=19%)). 

Figure 3.7. Number of taxa per polychaete Family and the associated abundance (number above 
each bar).  
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Singletons represented 27% of the amphipods fauna (24 taxa) and 11% of the total Crustacea. 

Besides amphipods, Decapoda represented by 21 Families, 12 Genera and 49 species (CF=23%, 

CA=6% and TF=8%) was the next dominant taxa (Fig 3.8). Callichirus sp.1 (260 ind. m
-2

) and 

Hippolytidae sp.1 (168 ind. m
-2

) were the most abundant taxa, but restricted to muddy habitats 

(F>50). Singletons contributed 49% to the decapod fauna. Isopoda comprised nine Families, 16 

Genera and 31 Species (CF=15%, CA=5% and TF=5%) were also important (Fig 3.8). Specious 

families included Anthuridae (five Genera and seven Species) and Cirolanidae (one Genus and 

seven Species). Leptanthura cf laevigata and Arcturinoides sexpes were the most common 

species (F=50%) and dominant taxa included L. laevigata (110 ind. m
-2

), L. cf laevigata (126 

ind. m
-2

), and Amakusanthura africana (185 ind. m
-2

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Composition represented as percentage contribution of the number of taxa (S) per 

Class (various colours in each chart) in Phyla and the associated abundance (N). 
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3.5.5.3 Mollusca 

Altogether, 45 taxa were identified belonging to Bivalvia, Gastropoda, and Scaphopoda. 

Bivalvia was the most diverse group with 32 taxa spread across 14 Families (mollusc fauna: 

MF=71%, mollusc abundance: MA=84% and TF=5%) (Fig 3.8). In sequential order, Veneridae, 

Tellinidae, and Nuculidae were the most species rich families, each represented by more than 

three taxa, common in muddy sediments. From 45 Mollusca taxa, seventeen were singletons 

and accounted for 38% of the total molluscan fauna. Taxa recorded in high abundances were 

restricted spatially (F=28%) and included Pallidea palliderosea (204 ind. m
-2

), Nucula sp.1 (164 

ind. m
-2

), Diplodonta sp.1 (61 ind. m
-2

) and Donax burnupi (60 ind. m
-2

). Gastropods were 

present in markedly lower abundances (ten individuals in eight families). The scarce 

Scaphopoda belonged to two Families (three Species). Together, Gastropoda and Scaphopoda, 

constituted 29% of the remaining molluscan fauna (Fig 3.8). 

3.5.5.4 Echinodermata and Sipuncula  

Echinodermata, with 20 different taxa, spread across five Families and four Orders contributed 

3% to the total community. The Order Ophioroidae was by far the most dominant (65%), 

whereas Holothuroidea and Asteroidae each contributed 20% to the Echinodermata fauna (Fig 

3.8). Although restricted spatially (F=30%), Amphiuridae sp.1 (152 ind. m
-2

) and Ophiopsila 

seminuda (119 ind. m
-2

) were the most abundant taxa. Of the 20 taxa recorded, 50% (10 

Species) represented singletons. Sipuncula were represented by 18 taxa across two Orders 

(TF=3%). Phascolionidea and Sipunculidae were equally important, each contribute 28% to 

Sipuncula fauna and the ‘others’ contributing the major fraction (44%) (Fig 3.8). Dominant taxa 

included Aspidosiphon sp.1 (403 ind. m
-2

), Phascolionidae sp.1 (199 ind. m
-2

) and Sipuncula 

sp.3 (176 ind. m
-2

).  

3.5.5.5 Cnidaria and ‘Others’  

Cnidaria (22 taxa) and the ‘others’ group consisting of minor Phyla, such as Nemertea (three 

taxa), Echuira (three taxa), Nematode (two taxa), Platyhelminthes (four taxa), picnogonids (one 

taxon), worms (three taxa), and unidentified (four taxa) contributed a minor part (4% to the total 

fauna and 1% to the number of individuals) to the KZN mid-shelf macrobenthic community.  

3.5.6 Macrofaunal diversity gradients  

Margalef’s Richness (d) ranged between 5.29 (off the uThukela (H4), a habitat characterised by 

high percentage mud) and 23.7 (north of Durban (N3), a habitat associated with fine-grained 
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sand) with a mean of x̅:13.9±3.4 SD (Fig 3.9). The Pielou’s evenness measure (J') showed a 

monotonic spatial trend with a lowest value recorded at a station off iSiphingo (S5) where there 

was a high abundance of specific faunal elements (e.g. Unciolella spinosa and Byblis giamardii) 

(Fig 3.9). The Shannon-Weiner diversity (H') component varied in conformity with J' (mean 

3.5±2.3 SD, range: 0.58 and 4.5) with an exception to H4 where low values of H’ were recorded 

(Fig 3.9). In this study, averagely high diversity (H') and evenness (J') values coincided with 

stations where abundance had the lowest values. The sampling station P4 reflected a highly 

variable fauna in terms of evenness and diversity component. This is attributable to one 

replicate where no live organisms were recorded. The distribution test performed for all 

diversity descriptors indicated significant differences between stations (n=19) (p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9. Richness (d±SD), Evenness (J'±SD), and Diversity (H'±SD) calculated from abundance 

data of macrobenthic species sampled along the KwaZulu-Natal mid-shelf stations. Arrows between 
the main cities or/and river indicate the direction of the current. 
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3.5.7 Univariate descriptors relationship with environmental parameters 

Results of distLM showed that nine environmental variables were important in explaining 

variation in diversity indices (Table 3.4). The single variable that explained the greatest amount 

of variation in S was turbidity (72.10%) followed by mud content (44.40%), median phi 

(36.40%), and TOC (35.60%) (Table 3.4). However, after model fitting, the p-values associated 

with the conditional test to add other variables and the subsequently fitted terms in the model 

were not statistically significant (p>0.05) (Table 3.4). In this way, the best model to explain S 

included only turbidity and medium sand that together explained 78.91% of the variation (Table 

3.4). Results further showed that seven variables were important in explaining variation in N, 

while nine variables were important for d and three explained variation in H'(Table 3.4). The 

fitted model showed turbidity to be important in explaining variation in S as alone it explained 

52.73%, while medium sand, turbidity and salinity explained 83.40% of the variation in d and 

turbidity and salinity together accounted for 46.30% of the variation in H' (Table 3.4). 

Macrobenthic richness and abundance was highest in sandy sediment and minimum in mud. 

Grain size distribution may have played an important role in the distribution of macrobenthos.  

 

 

 

 

 

 

 

 

 

 

Prop. Pse-F    P Prop. Pse-F    P Prop. Pse-F    P Prop. Pse-F    P

%Medium sand  (1.0-2.0 ɸ) 0.211 4.541 0.030 - - - 0.230 5.065 0.026 - - -

%Fine sand (2.0-3.0 ɸ) 0.215 4.665 0.025 0.171 3.515 0.046 0.221 4.820 0.028 0.206 4.406 0.047

%Mud (>4.0 ɸ) 0.440 13.379 0.002 0.212 4.567 0.020 0.511 17.747 0.002 0.294 7.077 0.019

Median phi 0.364 9.714 0.003 0.189 3.957 0.030 0.426 12.620 0.002 - - -

Sorting 0.215 4.659 0.030 - - - 0.245 5.510 0.023 - - -

%Total organics carbon (TOC) 0.356 9.395 0.003 0.202 4.298 0.022 0.392 10.940 0.003 - - -

%Carbonates 0.265 6.134 0.013 0.189 3.970 0.030 0.275 6.451 0.013 - - -

Salinity 0.253 5.743 0.012 0.211 4.538 0.023 0.230 5.070 0.025 - - -

Dissolved Oxygen (mg.l-1) - - - - - - 0.186 3.886 0.047 - - -

Turbidity (NTU) 0.721 44.007 0.000 0.527 18.969 0.000 0.740 48.418 0.000 0.339 8.707 0.009

 Prop. Pse-F    P Prop. Pse-F    P Prop. Pse-F    P Prop. Pse-F    P

+%Medium sand  (1.0-2.0 ɸ) 0.068 5.141 0.006 - - - 0.054 4.245 0.016 - - -

+Turbidity (NTU) 0.721 44.007 0.000 0.527 18.969 0.000 0.740 48.418 0.000 0.339 8.707 0.009

+Salinity - - - - - - 0.039 3.567 0.038 0.124 3.706 0.070

Cum(%) =  78.91 Cum(%) = 52.73 Cum(%) = 83.40 Cum(%) = 46.30

d

M-TESTS

H'

M-TESTSVariable

S-TESTS S-TESTS S-TESTS S-TESTS

Sediment 

M-TESTS

S N

M-TESTS

Water column 

Table 3.4. DistLM results for the number of taxa (S), abundance (N), Margalef’s Richness (d) and 

Shannon-Weiner diversity (H'). M-tests=marginal tests and S-tests=Sequential tests. Prop=Proportion of 
variance in species data explained by that variable, Pse-F= Critical values of PERMANOVA, P=Level of 
statistical difference. Two variables together explaining most of the variance in the indices indicated in 
bold. 
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3.5.8 Faunal community analyses and spatial patterns 

Cluster analysis, taking into account 634 studied species, distinguished two sets of sample 

groupings at 10% (dotted line and brackets), and at 20% (black line and brackets) B-C 

similarity, and several sub-groups that grouped at a wider range (15-50%) of similarities (Fig 

3.10). The overall B-C similarity percentage was low and no sample groups shared >50% of 

resemblance (Fig 3.10). This indicated an important inter-sample variability. Group A (10% B-

C similarity threshold) encompassed three stations off the uThukela at 15.25%, with H4 and I5 

grouped tightly at a higher similarity (~30%) level than G5 (Fig 3.10). Sample Group B grouped 

the remaining stations, which shared 11.77% similarity (Fig 3.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Dendrogram of hierarchical clustering (based on group-average linkage) of 19 KZN 

mid-shelf stations, based on Bray-Curtis similarities calculated from square root transformed 
abundance (N) data. Dotted line and respective bracket designate two groups (A and B) at 10% 
similarity level, while solid black line and respective bracket designate seven groups (I-VII) at 20% 
similarity level with corresponding median grain size (phi), sediment organics (%) and carbonates 
(%). Sim=similarity 
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The 20% B-C similarity based on macrofaunal abundance clearly demarcated seven main 

sample groups (communities) represented by numerals I-VII. A series of Similarity Profile 

(SIMPROF) permutation tests confirmed that assemblages were genuinely different at 5% 

significance (red dotted lines in Fig 3.10). Five species assemblages (I-IV, VI) showed confined 

geographical distribution, whereas the others (V and VII) were more widely distributed (Fig 2.2 

and 3.10). Group I comprised of a single station collected off uThukela, separated from other 

stations at 19.96% similarity (Fig 3.10). H4 and I5 off the uThukela supported similar fauna and 

clustered at 15.75% similarity, forming group II. Group III samples off Port Durnford (E4-F6), 

characterised by coarser grains of sand, supported similar macrobenthic communities and 

clustered at 15.27% similarity. Group IV (J4) supported a unique community, representing a 

transition between macrobenthic communities in muddy substrate off the uThukela and those in 

coarse grain size south of the uThukela. Group V at 17.34% comprised of three stations that 

were widely separated geographically and included M3 off Umhlanga, supporting communities 

similar to N3 and P4 south of Durban. Stations off Zinkwazi (L3 and K3) formed group VI at 

31.12% similarity level supported a distinct community (Fig 3.10). Group VII comprised the 

largest number of samples (seven) and two subgroups at approximately 50% similarity. Samples 

comprising Group VII were collected south of Durban to uMkhomazi. 

3.5.8.1 Univariate measures: Taxa 

Significant differences were observed between sample groups assemblages for macrobenthic 

abundance (Kruskal-Wallis ANOVA, N: df=6, Pseudo-F=5.627, p-perm=0.0007), numbers of 

taxa (S: df=6, Pseudo-F=13.764, p-perm=0.0004), Margalef’s Richness (d: df=6, Pseudo-

F=14.218, p-perm=0.0001) and Shannon-Weiner diversity index (H': df=6, Pseudo-F=3.784, p-

perm=0.0297).  

 

 

 

 

 

 

 
Figure 3.11. Mean abundance (N±SD) and mean taxa (S±SD) for sample groups I-VII defined in 
cluster analysis. Circles=mean S, Diamonds=mean N. 
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Abundance (N), numbers of taxa (S), and Margalef’s Richness (d) index were highest in Group 

VII (N: 967 ind. m
-2 

±620SD, S: 359 taxa ±12SD, d: 52.08 ± 1.54SD), while Shannon-Weiner 

diversity was highest in Group V (H': 4.83±0.09SD) and Group VI (H': 4.47 ± 0.37SD), 

respectively (Fig 3.11, Table 3.5). Lowest number of taxa and Margalef’s Richness values were 

recorded for samples comprising Group I, II, and IV as well as abundance and Shannon-Weiner 

diversity index for samples comprising Group I, II, and III (Fig 3.11, Table 3.5). Lowest 

Pielou's Evenness values were recorded for sample Group VII (J': 0.67±0.10SD), while the 

maximum was recorded in sample Group I (J': 0.91±0.02SD) and group II (J': 0.91±0.04SD) 

(Table 3.5). 

 

 

 

 

 

 

3.5.8.2 Groupings of major macrobenthic Phyla 

Annelida and Crustacea together accounted for most of the number of taxa (S: 46.43-88.73%) 

and faunal abundance (N: 40.00-95.22%) in the seven sample groups. Annelida dominated S 

(46.81-57.14%) of Groups II, III, IV, V, and IV and N (35.89-54.64%) of Groups II, III, V, and 

IV, while Arthropoda (Crustacea) was the most species rich (47.31%) Phylum for Group VII 

and numerically dominant (54.05-77.82%) Phylum recorded from Groups IV and VII (Fig 

3.12). Group VII (Annelida 41.1%, Crustacea 38.68%) had approximately comparable 

contributions by these two Phyla in S and also Group V (Annelida 43.88%, Crustacea 38.68%) 

in N. In all cases, members of the Class Polychaeta represented over 95% of the Annelida, while 

within Crustacea, members of the Order Amphipoda represent at least 40%. The lowest 

combined percentage contribution of Polychaeta (S: 30.67%, N: 32.14%) and Crustacea (S: 

9.33%, N: 14.29%) was observed in Group I, where Mollusca (S: 33.33%, N: 35.71) and 

Cnidaria (S: 10.71%, N: 5.33%) were well represented in the samples of this group (Fig 3.12). 

Mollusca was well represented in Group I in terms of S and Group I and II (23.12%) in terms of 

N comprising of muddy stations (Fig 3.12). Echinodermata was characteristic in Group I and 

III, whereas Sipuncula characterised V and VI, comprising of coarser grains of medium sand 

(Fig 3.12). Minor Phyla classified, as ‘others’ were numerous in Group I (Fig 3.12).  

Table 3.5. Mean univariate measures (±SD) calculated from taxon abundance data for sample 

groups I-VII defined in cluster analysis. 

Indices

(Taxon abundance) i ii iii iv v vi vii

Margalef's Richness

(d)

Pielou's Evenness 

(J')

Shannon-Weiner 

Diversity (H')
3.96±0.42

31.08±0.89 52.08±1.54

Sample Groups

3.1±0.26 2.85±0.56 4.28±0.37

0.91±0.02 0.8.±0.10 0.91±0.04 0.81±0.15 0.87±0.04 0.84±0.02 0.67±0.10

3.60±0.78 4.83±0.35 4.47±0.09

6.87±0.71 7.67±0.87 23.29±1.15 13.62±1.68 38.10±0.89
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3.5.8.3 Taxon contribution 

SIMPER results indicated that sample groupings were characterised by a small subset of taxa 

with distributions indicating a continuous change rather than a sharp discontinuity between the 

groups (Table 3.6, Table 3.7). Overall, 134 taxa were identified as being responsible for 

(dis)similarities between sample Groups I-VII. Collectively, these taxa contributed more than 

90% to the total (dis)similarity, although only the contribution by seventeen of them was ≥2% 

(Table 3.6 and Table 3.7). Group I comprised six taxa representing four Phyla, three of which 

each contributed >2% to within group similarity (19.96%). The main discriminating taxon was a 

free-living carnivorous polychaete, Aglaophamus sp 1 recorded in greater abundances on this 

group. The least discerning taxon was a tube-dwelling filter-feeding polychaete, 

Spiochaetopterus cf vitrarius (Table 3.6). In pairwise comparison between sample Groups I and 

II, I and III (x̅. Dissimilarity >92%) the carnivorous Scaphopoda, Aglaophamus sp 1 and Antalis 

longitrorsa, found in high abundance exclusively in Group I, contributed >2% to between group 

dissimilarity (Table 3.7). Group II comprised six taxa, three of which represented a single 

Phylum and contributed >2% to within group similarity (15.75%). Pallidea palliderosea and 

Linopherus microcephala contributed the most to the average abundance (Table 3.6). The latter 

also contributed >2% to dissimilarity (x̅. Dissimilarity >96%) between Group II and III (Table 

3.7). Anthozoa sp.5 dominated the community in Group III and contributed >2% to similarity 

(15.27%). Together with Ophioroidae sp.2, Anthozoa sp.5 was identified as the main 

discriminating taxa (Table 3.6). By comparison, the contribution of most taxa to similarity was 

generally low (<2%), reflecting their low abundance and irregular occurrence (Table 3.6).  

Figure 3.12. Contributions (%) of the seven major taxonomic groups to the relative number of taxa 

and abundance within the seven main sample groups identified on the basis of total macrofauna 
composition.  
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Table 3.6. Characterization of the seven (I-VII) species assemblages defined by cluster analysis, showing species contributing >2% to average ‘within group’ 

similarity and abundance defined by sim/SD ratio based on one-way SIMPER analysis of square-root transformed abundance data. Species accounting for 90% 
cumulative contribution of the ‘within group’ similarity are listed along with their contribution (Contr.%). Text in grey shading indicates taxa typifying sample group. 
Text in bold indicates taxa contributing >2% mean similarity. Sim=similarity, SD=Standard deviation. 
 

x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.%

Aglaophamus sp.1 14.67 9.44 1.24 47.29 4.00 3.50 0.37 22.25 - - - - - - - - - - - - - - - - - - - -
Ophiocentrus sp.2 5.33 2.84 0.58 14.21 - - - - - - - - - - - - - - - - - - - - - - - -
Antalis longitrorsa 5.33 2.42 0.58 12.14 - - - - - - - - - - - - - - - - - - - - - - - -
Callianassa australis 4.00 1.42 0.58 7.11 - - - - - - - - - - - - - - - - - - - - - - - -
Dosinia sp.2 4.00 1.42 0.58 7.11 - - - - - - - - - - - - - - - - - - - - - - - -
Spiochaetopterus cf vitrarius 2.67 1.21 0.58 6.07 - - - - - - - - - - - - - - - - - - - - - - - -
Linopherus microcephala - - - - 12.67 3.17 0.76 20.12 - - - - - - - - - - - - - - - - - - - -
Opisthobranchia sp.1 - - - - 4.00 1.50 0.74 9.52 - - - - - - - - - - - - - - - - - - - -
Aglaophamus dibranchis - - - - 9.33 4.80 0.66 30.48 - - - - - - - - - - - - - - - - 2.50 0.20 0.76 0.77

Pallidea palliderosea - - - - 16.67 1.10 0.26 6.96 - - - - - - - - - - - - - - - - - - - -
Ommatocarcinus pulcher - - - - 1.33 0.36 0.26 2.29 - - - - - - - - - - - - - - - - - - - -
Ophioroidae sp.2 - - - - - - - - 3.11 1.94 1.12 12.70 - - - - - - - - - - - - - - - -
Anthozoa sp.5 - - - - - - - - 11.56 6.15 1.11 40.31 - - - - - - - - - - - - - - - -
Quantanthura serenasinus - - - - - - - - 1.78 0.64 0.44 4.22 - - - - - - - - - - - - - - - -
Nephtys capensis - - - - - - - - 2.22 0.60 0.44 3.90 - - - - - - - - 6.00 0.42 1.28 1.35 10.65 0.48 0.76 1.86

Ampelisca sp. 3 - - - - - - - - 2.22 0.37 0.30 2.45 - - - - - - - - - - - - - - - -
Onuphis eremita - - - - - - - - 2.22 0.31 0.30 2.02 - - - - 14.22 0.94 0.92 5.42 - - - - - - - -
Ampelisca palmata - - - - - - - - 1.33 0.31 0.30 2.02 - - - - - - - - - - - - - - - -
Streblosoma persica - - - - - - - - 1.33 0.29 0.30 1.89 - - - - - - - - - - - - - - - -
Phascolionidae sp.1 - - - - - - - - - - - - 4.00 0.91 11.16 4.06 - - - - 26.67 2.61 1.70 8.39 - - - -
Spiophanes duplex - - - - - - - - - - - - 5.33 0.91 11.16 4.06 - - - - - - - - - - - -
Sigalion capensis - - - - - - - - - - - - 4.00 0.91 11.16 4.06 - - - - - - - - - - - -
Lumbrineris aberrans - - - - - - - - - - - - 13.33 1.45 1.65 6.52 - - - - 10.67 1.11 1.35 3.56 - - - -
Byblis gaimardii - - - - - - - - - - - - 25.33 2.83 0.87 12.66 - - - - - - - - 115.05 4.97 1.01 19.36

Callichirus sp.1 - - - - - - - - - - - - 86.67 4.60 0.58 20.60 - - - - - - - - - - - -
Mandibulophoxus stimpsoni - - - - - - - - - - - - 40.00 3.84 0.58 17.21 - - - - - - - - - - - -
Onuphis holobranchiata - - - - - - - - - - - - 13.33 1.10 0.58 4.92 - - - - - - - - - - - -
Ampelisca diadema - - - - - - - - - - - - - - - - 16.44 1.12 1.22 6.47 - - - - 70.69 2.61 0.85 10.18

Arcturinoides sexpes - - - - - - - - - - - - - - - - 5.78 0.48 1.02 2.79 - - - - - - - -
Amakusanthura africana - - - - - - - - - - - - - - - - 16.44 0.93 1.01 5.37 - - - - - - - -
Phyllodoce longipes - - - - - - - - - - - - - - - - 6.67 0.50 0.90 2.90 - - - - - - - -
Scolaricia dubia - - - - - - - - - - - - - - - - 3.56 0.23 0.80 1.32 - - - - - - - -
Sipuncula sp. 5 - - - - - - - - - - - - - - - - 11.56 0.58 0.79 3.34 - - - - - - - -
Spiochaetopterus vitrarius - - - - - - - - - - - - - - - - 23.56 1.23 0.78 7.12 - - - - - - - -
Ophiurida sp.2 - - - - - - - - - - - - - - - - - - - - 10.67 1.31 4.13 4.20 - - - -
Aspiodosiphon sp. 1 - - - - - - - - - - - - - - - - - - - - 57.33 5.57 2.60 17.90 - - - -
Goniadella gracilis - - - - - - - - - - - - - - - - - - - - 17.33 2.09 2.14 6.73 - - - -
Notomastus aberans - - - - - - - - - - - - - - - - - - - - 11.33 1.10 1.57 3.55 - - - -
Pherusa sp.1 - - - - - - - - - - - - - - - - - - - - 31.33 2.55 1.11 8.18 - - - -
Hippolytidae sp.1 - - - - - - - - - - - - - - - - - - - - - - - - 6.11 0.36 1.07 1.40

Latigammaropsis atlantica - - - - - - - - - - - - - - - - - - - - - - - - 19.71 1.23 0.99 4.81

Cheiriphotis megacheles - - - - - - - - - - - - - - - - - - - - - - - - 21.23 1.46 0.88 5.71

Unciolella spinosa - - - - - - - - - - - - - - - - - - - - - - - - 177.71 4.12 0.78 16.05

Mean Sim GVI = 31.12% Mean Sim GVII = 25.65%
Species

Mean Sim GI = 19.96% Mean Sim GII = 15.75% Mean Sim GIII = 15.27% Mean Sim GIV = 22.23% Mean Sim GV = 17.34%
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Table 3.7. Results from SIMPER analysis of taxon abundance data, listing the main discerning taxa revealed by pairwise comparison to contribute >2% to ‘between 

group’ dissimilarity (I-VII), with Sim/SD ratio in parentheses. Sim=similarity, SD=Standard deviation, G=group, DS=Dissimilarity percentage.  
 Gp GI GIII GI GIV GI GV GI GVI GI GVII GII GIII GII GIV GII GV GII GVI GII GVII GIII GIV GIII GV GIII GVI GIII GVII GIV GV GIV GVI GIV GVII GV GVI GV GVII GVI GVII

DM

Aglaophamus sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Antalis longitrorsa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spiochaetopterus cf vitrarius - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Siphonodentalium booceras - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Opisthobranchia sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ophioroidae sp.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Anthozoa sp.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Siphonodentalium booceras - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Phascolionidae sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sigalion capensis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spiophanes duplex - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Lumbrineris aberrans - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Byblis gaimardii - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Spiochaetopterus vitrarius - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Hippomedon onconotus - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Urothoe pulchella - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ophiurida sp.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Goniadella gracilis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Aspiodosiphon sp. 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ampelisca diadema - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Latigammaropsis atlantica - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Hippolytidae sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Aglaophamus dibranchis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Linopherus microcephala - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Phascolionidae sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Onuphis eremita - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Arcturinoides sexpes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Phyllodoce longipes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pherusa sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Aorcho sp.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Unciolella spinosa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Nephtys capensis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sipuncula sp. 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Species               
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Only three taxa of 15 recorded, contributed >2% to similarity within Group IV (22.23%). 

Phascolionidae sp.1, Spiophanes duplex and Sigalion capensis were the primary discriminating 

species for this group (Table 3.6). Most of the taxa occurred in relatively high abundances 

(13.33-86.67 ind. m
-2

). Pairwise comparison (x̅. Dissimilarity >92%) revealed Aspiodosiphon 

sp.1 as the only taxon that contributed >2% to between groups IV and VI dissimilarity (Table 

3.7). Group V formed intermediate collection (in terms of no. of taxa per sample group) with 55 

taxa, seven of which represented two Phyla characterising this group. Spiochaetopterus vitrarius 

dominated communities in this group (Table 3.6). Pairwise comparison (x̅. Dissimilarity >91%) 

between Group V and VI indicated Aspiodosiphon sp.1 to contribute >2% to dissimilarity. Two 

samples off Zinkwazi (Group VI) contained 104 taxa, eight of which characterised this group 

and four contributed >2% to within group similarity (31.12%) (Table 3.6). The siphonculid 

Aspiodosiphon sp.1 and Phascolionidae sp.1 dominated communities here. Byblis giamardii and 

Ampelisca diadema contributed >2% to dissimilarity between group VI and VII (x̅. 

Dissimilarity>90%). Group VII was the largest group, characterised by high abundances of 

Byblis gaimardii and Unciolella spinosa (115 ind. m
-2 

and 178 ind. m
-2

). The latter together, 

with Hippolytidae sp.1, were the main taxa typifying this group (Table 3.6).  

3.5.9 Linking faunal patterns to environmental parameters 

Biological-environmental matching (BIOENV) analysis indicated that %mud and turbidity 

contributed to community structuring (rho=0.707, p <0.05), showing a good match between 

biota and variables. In addition, when analysing a combination of five parameters the coefficient 

remained comparable rho=0.662 (Table 3.8), therefore, mud and turbidity remained the most 

structuring parameters.  

 

 

 

 

Marginal tests in distance-based redundancy analysis (dbRDA) showed most variables apart 

from very coarse sand, chlorophyll-a, pH and temperature explained a proportion of variation 

observed in the macrobenthos (Table 3.9). Environmental parameters depicted as significant by 

the marginal tests, each explained >10% of variation, except for sorting. Turbidity was the most 

important variable (16.4%) followed by %mud (15.6%) and TOC (15.4%) (Table 3.9).  

Table 3.8. Summary of BIOENV results. Correlations (ρ) are presented relative to KZN mid-shelf 

macrobenthos patterns considering lowest taxon. fs=fine sand, vfs very fine sand 

No of variables ρ Variables

%Mud

Turbidity 

%Mud,vfs, fs

TOC,Turbidity 

Best combination (2 variables)

0.7072

Best combination (5 variables)

5 0.662
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A dbRDA plot (Fig 3.13) indicated how different macrobenthic assemblages were distributed 

relative to environmental conditions. The first axis showed a gradient of conditions from the 

uThukela to uMkhomazi, underpinned by fine and coarse substratum, explaining 19.4% of the 

total variation of (Fig 3.13). On db-RDA2, Port Durnford reef complex stations were separated 

based on salinity and coarser grains of sediments. Indeed, the rest of the stations were separated 

from those in the Port Durnford reef complex by the factors turbidity, carbonates and levels of 

nutrient concentrations (TOC), explaining a total variation of 11.1% (Fig 3.13). The reduced 

model (not shown) explained 37.8% of the total variation. 

The most correlated species suggestive of the aforementioned conditions, were 

Ommatocarcinus pulcher, Aglaophamus sp.1 and Opisthobranchia sp.1 which showed high 

preference to very fine sand and mud nutrient enriched sediments as found off uThukela. Port 

Durnford reef complex stations presents the coexistence of coarser grains of sand and reef 

rubble low in TOC, and the presence of Anthozoa sp. 1, Cyclaspis scissa, Pareurythoe chilensis 

(Fig 3.13). Stations further south (uMdloti-uMkhomazi), presents heterogeneous grains (coarse-

medium-fine sand) with higher sedimentary CaCO3 content and separated a diverse community 

comprising species of capitellid terebellid and ampeliscid among others (Fig 3.13). The primary 

abiotic variables responsible for discriminating communities (assemblages) along KZN mid-

shelf were %mud and turbidity. 

Table 3.9. Distance Linear model results (Marginal and sequential tests) for the relationship 

between KZN mid-shelf macrobenthos and environmental variables. Asterisks denote statistical 
significance (*<0.05, ** <0.01, ***<0.001). 

    Prop. Pseudo-F      P

%Gravel (<-1.0 ɸ) 0.113 2.171 0.003**

%Very coarse sand (-1.0-0.0 ɸ) 0.107 2.037 0.005**

%Coarse sand (0.0-1.0 ɸ) 0.116 2.232 0.003**

%Medium sand  (1.0-2.0 ɸ) 0.121 2.348 0.001**

%Fine sand (2.0-3.0 ɸ) 0.101 1.906 0.009*

%Very fine sand (3.0-4.0 ɸ) 0.119 2.304 0.002**

%Mud (>4.0 ɸ) 0.155 3.109 0.000***

Median phi 0.141 2.784 0.000***

Sorting 0.088 1.640 0.030*

% Total organic carbon (TOC) 0.153 3.067 0.000***

%Carbonates 0.148 2.955 0.000***

Salinity 0.133 2.602 0.001**

Turbidity (NTU) 0.164 3.344 0.000***

AICC     Prop. Pseudo-F      P

+Turbidity (NTU) 156.22 0.16438 3.344 0.0001

MARGINAL TESTS
Variable

Sediment

Water column

SEQUENTIAL TESTS

Cum(%)=16.43AICC=156.22
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However, different environmental parameters of the samples within each assemblage were also 

variable (Fig 3.3) and these might be responsible for the variance found in abundance, number 

of taxa and diversity. Macrobenthos at stations off uThukela was distributed based on high mud 

content (>68.7%) and turbidity (>3.1 NTU) (group A, R=0.93) (Fig 3.14) suggestive of the 

influence of the uThukela outflow. Conversely, on the right side of the division, Port Durnford 

reef complex stations split (group B, R=0.89) based on low mud content (<1.72%) (Fig 3.14). 

While mud and turbidity were the main factors explaining faunal structuring and distribution, 

other factors are more important at specific stations. Granulometry had an influence on 

macrobenthos distribution and diversity: medium sand (>37.0%) influenced macrobenthic 

distribution and abundance at a transitional station south of uThukela Estuary (group H, 

R=0.56), whereby well-sorted fine sediment (>64.1%) with low bottom water temperature 

(<16.3°C) was more important in explaining macrobenthos at P4 (Durban region: group D, 

R=0.80) (Fig 3.14). Group F (R=0.80) on the left (S5 and S6) split based on chlorophyll-a (as 

surrogate for primary productivity) >0.74 mg.l
-1

 and very fine sand >1.06%, driving 

macrobenthos abundance and distribution south of Durban (Fig 3.14). Group G (R=0.83) 

separated S1 and ASNTH2 on the left according to fine sand >25.9% with carbonate >37.3%, 

while on the right of the division, macrobenthos at S2-4 was distributed according to coarser 

grains (>35.4%) high in carbonates (>39.9%) (Fig 3.14). 

Figure 3.13. Distance-based redundancy analysis (db-RDA) of KZN mid-shelf macrobenthic data using a 

stepwise selection and AICc selection criterion: (A) db-RDA-axes with main habitat/area and (B) vector 
overlay of Spearman rank correlations of environmental variables (r>0.5) and vectors of the most 
correlated species (r>0.5) are provided. 
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Figure 3.14. LINKTREE showing divisive clustering of sites from abundance data (left), constrained by inequalities on one or more 

abiotic variables (right). Given for each split is the optimal ANOSIM R value (relative subgroup separation) and B% (absolute subgroup 
separation, scaled to maximum for first division). For each binary partition (A-G), first inequality defines group to left, second inequality 
(in brackets) group to right. 
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3.6 Predefined biozones as surrogacy for KZN biodiversity 

3.6.1 Diversity (S) and Abundance (N) within biozone subclusters  

Univariate measures of macrobenthic community structure detected significant differences 

between the six biozone subclusters (BS). Both the mean number of taxa (S±SD) and abundance 

(N±SD) differed between BS (Table 3.14, Fig 3.17). The mean (S±SD) number of taxa recorded 

for each BS varied between 25±11.02 in BS 3A to 135±28.62 number of taxa in BS 1B, whereas 

abundance ranged between 86±58.79 in BS 3A to 1021±939.58 ind. m
-2 

in BS 2A (Fig 3.15). 

The significant variation amongst BS can be attributed to lower number of taxa recorded within 

stations of biozone subcluster 3A and 1C. 

 

 

 

 

 

 

3.6.2 Richness (d) and Diversity (H') within biozones  

Margalef’s Richness (d) differed significantly between BS (Fig 3.16, Table 3.11). Variation was 

due to lower values recorded within stations of BS 3A and 1C coupled with variation observed 

within stations of BS 2A, 1B and 2B (Fig 3.16). Significant differences in richness were also 

observed between BS 1 (A-C) (Table 3.11). Species diversity also differed significantly 

between BC and in particular between the subcomponents of BC 1 (A-C) (Table 3.11, Fig 3.16). 

 

 

 

 

Table 3.10. PERMANOVA results of mean number of taxa (S) and mean abundance (N) 

differences among biozones (and respective subclusters). df=degree of freedom, MS=Mean 
square, F=critical values of PERMANOVA and p=level of statistical difference. Asterisks denote 
statistical significance *<0.05, **<0.01, ***<0.001. Var=square root of the components of variation. 

PERMANOVA No of Species (S) Abundance (N)

Factors (nested design)

df F p-perm df F p-perm

Biozone 2 2.443 0.1593 2 1.309 0.3498

Biozone subclusters 5 6.314 0.001** 5 5.735 0.001**

Residual 38 38

1A-C 2 19.720 0.01* 2 19.444 0.031

2A-B 1 0.568 0.718 1 0.649 0.594
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3.6.3 Macrobenthic community patterns within biozones  

Patterns in biozone subclusters (BS) as potential surrogates for KZN mid-shelf macrobenthic 

communities reflected a distinct community structure (nested PERMANOVA: p-perm <0.001, 

Table 3.12). Pairwise comparison revealed significant differences between pairs of BS 2A and 

2B (p-perm=0.029), 2A and 3A (p-perm=0.028), 2A and 1C (p-perm=0.029). Visually, there 

was a limited structuring of species based on biozone classification, since grouping of stations 

from the same BS was only limited to BS 1C and 3A (Figure 3.10). 

 

Table 3.11. Two-factor nested PERMANOVA test on univariate measures of taxon abundance 
data. df=degree of freedom, F=critical values of PERMANOVA and p=level of statistical significant 
difference calculated from permutation of residuals under a reduced model (n=9999 permutations). 
Asterisks denote statistical significance *<0.05, **<0.01,***<0.001 . 

PERMANOVA

Factors (nested design)

df F p-perm df F p-perm

Biozones 2 3.100 0.106 2 1.119 0.035*

Biozone subclusters 5 4.611 0.007** 5 5.076 0.357

Residual 38 38

1A-C 2 31.245 0.000*** 2 15.566 0.000***

2A-B 1 320.630 0.980 1 0.711 0.709

 Richness (d)  Diversity (H')

Figure 3.15. Mean number of taxa (S±SD) and abundance (N: of ind. m
-2

 ±SD) for square-root 

transformed macrobenthic taxa sampled between subclusters. PD=Port Durnford, TK=uThukela, 
M/Z=uMdloti/Zinkwazi, DBN=Durban, Mk=uMkhomazi.  
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Biozone subcluster 1A and 2A and 1B and 2B grouped closely (Fig 3.17), and pairwise 

comparison revealed no significant difference (p-perm=0.399, p-perm=0.104) respectively, nor 

were any clear differences detected by the univariate measures (Fig 3.15, 3.16). This suggested 

that biozone subclusters were not biologically distinct. Community assemblages in biozone 

subcluster 1C differed from both biozone subclusters 1A and 1B (Table 3.12) and stations 

grouping paralleled those of Group III (Fig 3.10) which clustered at 20% similarity, while BS 

3A sample grouping was in agreement with those of group A (Fig 3.10) clustered at 10% 

similarity. 

 

 

 

 

 

 

 

Table 3.12. PERMANOVA based on taxon abundance calculated between biozone subclusters. 
df=degree of freedom, pseudo-F=critical values of PERMANOVA and p=level of statistical 
difference. Asterisks denote statistical significance *<0.05, **<0.01, ***<0.001. 

PERMANOVA df Pseudo-F p-perm

Factors (nested design)

Biozones 2 1.104 0.368

Biozone subclusters 5 2.172 0.000***

Residual 1

Biozone 1 subclusters 

1A, 1B and 1C 2 2.326 0.004**

Residual 6

Biozone 2 subclusters 

2A and 2B 1 2.125 0.029*

Residual 5

 components of variation

Source Estimate X2

Biozones 106.42 10.316

Biozone subclusters 1011.10 31.799

Residual 2711.60 52.073

Figure 3.16. Mean Margalef’s Richness (d±SD), and Shannon-Wiener Diversity (H'±SD) based on 

square-root transformed taxon abundance data for macrobenthos sampled between subclusters. 
PD=Port Durnford, TK=uThukela, M/Z=uMdloti/Zinkwazi, DBN=Durban, Mk=uMkhomazi.  
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Differences were also detected in macrobenthic communities between BS of cluster 2 (A-B) 

(Tables 3.12). PERMDISP analyses results are summarised by P-values (>0.05) (Table 3.13) 

and showed that the dispersion of samples to be homogenous between and within BS. However, 

BC represented the smallest component of variation, while BS (X
2
=31.799) represent the 

greatest component of variation (square root of estimated component of variation), therefore 

considering these results and those outlined above, the between BS differences was assumed 

valid (Table 3.13). Therefore, these results did not support MSP predefined biozones. 

 

 

 

 

 

3.6.4 Taxon contribution to biozone subclusters  

SIMPER analyses identified 127 taxa contributing to (dis)similarities between biozone 

subclusters (BS) 1A-1C. Collectively, they contributed more than 90% to the total 

(dis)similarity; although only the contribution by ten was ≥ 2% similarity (Table 3.14 and Table 

3.15). SIMPER analyses revealed that the dissimilarity among biozone subclusters was driven 

primarily by the abundances in polychaetes, sipunculids and amphipods species. The latter 

occurred in high abundances and contributed >2% to between BS similarity (Table 3.14). By 

comparison, the contribution of most of the other taxa to similarity among BS was generally 

low (<2% individually), reflecting their low abundance and irregular occurrence. 

Figure 3.17. N-MDS of macrobenthic community structure, with biozone subcluster as a factor. 

Each point represents the community structure at a given station. The distance between points 
indicates the similarity among communities within and between biozone subclusters, with closer 
points denoting more-similar communities than distant points. 

Table 3.13. PERMDISP test based on taxon abundance calculated between biozone subclusters. 
df=degree of freedom, F=critical values of ANOVA and p=level of statistical difference. Asterisks 
denote statistical significance *<0.05, **<0.01, ***<0.001. 

PERMDISP df F p-perm

Deviation from centroids

Subclusters 5 1.697 0.534

Biozone 1 Subclusters

1A, 1B and 1C 2 3.286 0.186

Biozone 2 Subclusters 

2A and 2B 1 8.223 0.717
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Biozone subcluster 1A stations comprised 28 taxa and were characterised by high abundances 

of Amphipods, with Unciolella spinosa and Byblis gaimardii contributing >2% to the within 

sample similarity (27.18%) (Table 3.14). The latter including Latigammaropsis atlantica, 

Cheiriphotis megacheles and B. gaimardii contributed to within BS 1A and 2A similarity (Table 

3.14). Hippolytidae sp.1, Ampelisca brevicornis and L. atlantica distinguished this BS from all 

others (Table 3.14). Pairwise comparisons (x̅. Dissimilarity >78%) revealed that the tube 

dwelling suspension feeder A diadema consistently contributed >2% dissimilarity between BS 

1A and all others except for BS 2B and 1C (Table 3.15). Biozone subcluster 2A with four 

stations comprised 35 taxa, eight of which represented two Phyla characterising this biozone 

subcluster. The Amphipods, B. gaimardii, A. diadema and Urothoe pulchella were recorded in 

high abundances here and contributed >2% to within BS similarity (19.95%) except for the 

latter (Table 3.14) which consistently contributed >2% dissimilarity (x̅. Dissimilarity>78%) 

between BS 2A and 1A-C and 3A (Table 3.15). The primary discriminating taxon for BS 1B 

was a facultative feeding polychaete, Notomastus latericeus and a filter suspension feeder 

Spiochaetopterus vitrarius. Most of the taxa here were recorded in excess of 4 ind. m
-2

 with A 

diadema contributing most to the abundance (Table 3.14). Pairwise comparisons (x̅. 

Dissimilarity>95%) identified the polychaete, S. vitrarius, occurring exclusively here, as the 

taxon contributing >2% to between BS 1B and 1C dissimilarity (Table 3.15). Only one taxon 

(Aspiodosiphon sp.1) of 43 recorded, contributed >2% to similarity within BS 2B (18.56%). 

Ophiurida sp.2, Lumbrineris aberrans and Phascolionidae sp.1 were the main discerning taxa 

for this BS, with Aspiodosiphon sp.1 contributing the most to the average abundances (Table 

3.14). The latter, together with Phascolionidae sp.1 were unique here and contributed >2% to 

between biozone subcluster 2B and 3A and 2B and 1C dissimilarity (x̅. Dissimilarity >95%) 

(Table 3.15). Biozone subcluster 3A comprised ten taxa, with two polychaete species 

(Aglaophamus dibrachis and Aglaophamus sp.1) contributing >2% similarity (11.77), while the 

bivalve, Pallidea palliderosea contributed the most to mean abundance here (Table 3.14). 

Faunal components here were similar to those of group I and II (see section 3.7.8). Pairwise 

comparison (x̅. Dissimilarity >97%) identified Anthozoa sp.5, Aglaophamus sp.1 and 

Opisthobranchia sp.1 as taxa contributing >2% dissimilarity between BS 3A and 1C (Table 

3.15). Biozone subcluster 1C communities mirrored those found in sample Group III including 

taxa typifying communities (section 3.7.8). Generally, BS 1C gathered 21 taxa with 

Ophioroidae sp.2 and Anthozoa sp.5 characterising communities here. The latter, also was the 

only taxon contributing >2% to within BS similarity (15.27%) (Table 3.14). 
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Table 3.14. Characterization of the biozone subclusters as per marine spatial planning model, showing species contributing >2% to average ‘within group’ similarity 

and abundance defined by sim/SD ratio based on one-way SIMPER analysis of square-root transformed abundance data. Species accounting for 90% cumulative 
contribution of the ‘within group’ similarity are listed along with their contribution (Contr.%). Grey shading indicates taxa typifying biozone subclusters. Text in bold 
indicate taxa contributing >2% to biozone subclusters mean similarity. Sim=similarity, SD=Standard deviation. 

x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun.x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.%

Hippolytidae sp.1 6.83 0.65 2.08 2.41 - - - - - - - - - - - - - - - - - - - -

Ampelisca brevicornis 19.97 1.79 1.69 6.60 - - - - - - - - - - - - - - - - - - - -

Latigammaropsis atlantica 15.88 0.85 1.33 3.11 21.25 1.38 0.86 7.06 - - - - - - - - - - - - - - - -

Cheiriphotis megacheles 27.57 1.56 0.93 5.76 14.81 1.07 0.67 5.47 - - - - - - - - - - - - - - - -

Unciolella spinosa 83.83 4.53 0.91 16.66 - - - - - - - - - - - - - - - - - - - -

Byblis gaimardii 95.70 4.19 0.84 15.42 80.57 2.19 0.77 11.17 - - - - - - - - - - - - - - - -

Aglaophamus dibranchis 2.23 0.14 0.79 0.53 - - - - - - - - - - - - 6.22 2.00 0.39 17.00 - - - -

Gammaropsis sp.4 19.43 0.80 0.77 2.94 - - - - - - - - - - - - - - - - - - - -

Ampelisca diadema - - - - 56.06 2.02 0.83 10.30 42.67 1.29 0.84 6.44 - - - - - - - - - - - -

Nephtys capensis - - - - 12.5 0.52 0.79 2.66 - - - - 4.44 0.27 0.81 1.44 - - - - 2.22 0.60 0.44 3.90

Notomastus latericeus - - - - 2.79 0.16 0.74 0.82 19.11 1.47 1.77 7.37 7.56 0.46 0.65 2.48 - - - - - - - -

Leptanthura cf laevigata - - - - 5.03 0.28 0.71 1.40 - - - - - - - - - - - - - - - -

Urothoe pulchella - - - - 52.38 1.37 0.69 6.98 - - - - - - - - - - - - - - - -

Spiochaetopterus vitrarius - - - - - - - - 25.33 1.50 1.07 7.52 - - - - - - - - - - - -

Sipuncula sp. 5 - - - - - - - - 12.44 0.65 0.94 3.28 - - - - - - - - - - - -

Diplodonta sp.1 - - - - - - - - 6.22 0.30 0.88 1.51 - - - - - - - - - - - -

Arcturinoides sexpes - - - - - - - - 4.00 0.27 0.74 1.34 - - - - - - - - - - - -

Aphelochaeta marioni - - - - - - - - 5.33 0.27 0.71 1.37 - - - - - - - - - - - -

Onuphis eremita - - - - - - - - 11.11 0.60 0.70 3.01 - - - - - - - - 2.22 0.31 0.30 2.02

Ophiurida sp.2 - - - - - - - - - - - - 9.33 1.16 1.59 6.26 - - - - - - - -

Lumbrineris aberrans - - - - - - - - - - - - 11.56 1.28 1.52 6.92 - - - - - - - -

Phascolionidae sp.1 - - - - - - - - - - - - 19.11 1.52 1.13 8.21 - - - - - - - -

Aspiodosiphon sp. 1 - - - - - - - - - - - - 38.67 2.43 0.81 13.10 0.89 0.26 0.17 2.25 - - - -

Sipuncula sp.3 - - - - - - - - - - - - 8.44 0.32 0.73 1.73 - - - - - - - -

Goniadella gracilis - - - - - - - - - - - - 11.56 0.87 0.72 4.70 - - - - - - - -

Aglaophamus sp.1 - - - - - - - - - - - - - - - - 7.56 4.68 0.61 39.78 - - - -

Opisthobranchia sp.1 - - - - - - - - - - - - - - - - 4.89 1.16 0.54 9.87 - - - -

Linopherus microcephala - - - - - - - - - - - - - - - - 8.44 1.32 0.43 11.22 - - - -

Pallidea palliderosea - - - - - - - - - - - - - - - - 11.11 0.46 0.17 3.88 - - - -

Ophiocentrus sp.2 - - - - - - - - - - - - - - - - 1.78 0.24 0.17 2.01 - - - -

Antalis longitrorsa - - - - - - - - - - - - - - - - 1.78 0.20 0.17 1.72 - - - -

Ophioroidae sp.2 - - - - - - - - - - - - - - - - - - - - 3.11 1.94 1.12 12.70

Anthozoa sp.5 - - - - - - - - - - - - - - - - - - - - 11.56 6.15 1.11 40.31

Quantanthura serenasinus - - - - - - - - - - - - - - - - - - - - 1.78 0.64 0.44 4.22

Ampelisca sp. 3 - - - - - - - - - - - - - - - - - - - - 2.22 0.37 0.30 2.45

Ampelisca palmata - - - - - - - - - - - - - - - - - - - - 1.33 0.31 0.30 2.02

Streblosoma persica - - - - - - - - - - - - - - - - - - - - 1.33 0.29 0.30 1.89

Mean Sim 3A = 11.77% Mean Sim 1C = 15.27%
Species

Mean Sim 1A = 27.18% Mean Sim 2A = 19.59% Mean Sim 1B = 19.97% Mean Sim 2B = 18.56%
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Table 3.15. Results from SIMPER analysis listing the main distinguishing taxa revealed by pairwise comparisons as contributing >2% to the average dissimilarity 

between biozone subclusters (1A-1C), with Sim/SD ration in parentheses. DS=Bray-Curtis dissimilarity percentage. Sim=similarity, SD=Standard deviation. 

1A 2A 1A 1B 1A 2B 1A 3A 1A 1C 2A 1B 2A 2B 2A 3A 2A 1C 1B 2B 1B 3A 1B 1C 2B 3A 2B 1C 3A 1C

Latigammaropsis atlantica - - - - - - - - - - - - - -

Ampelisca brevicornis - - - - - - - - - - - - - - - - - -

Nephtys capensis - - - - - - - - - - - - - - - - - - - -

Ampelisca diadema - - - - - - - - - - - - - -

Urothoe pulchella - - - - - - - - - - 5.38 0.00 - - - - - - - - - - - -

Notomastus aberans - - - - - - - - - - - - - - - - - - - - - -

Hippolytidae sp.1 - - - - - - - - - - - - - - - - - - - -

Notomastus latericeus - - - - - - - - - - - - - - - - - - - - - - - - - -

Ophiurida sp.2 - - - - - - - - - - - - - - - - - - - - - -

Lumbrineris aberrans - - - - - - - - - - - - - - - - - - - - - -

Nototropis granulosus - - - - - - - - - - - - - - - - - - - - - -

Ophioroidae sp.2 - - - - - - - - - - - - - - - - - - - - - -

Byblis gaimardii - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Goniadella gracilis - - - - - - - - - - - - - - - - - - - - - - - - - -

Spiochaetopterus vitrarius - - - - - - - - - - - - - - - - - - - - - - - - - -

Anthozoa sp.5 - - - - - - - - - - - - - - - - - - - - - - - -

Onuphis eremita - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Euclymene cf oerstedi - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Aspiodosiphon sp. 1 - - - - - - - - - - - - - - - - - - - - - - - - - -

Phascolionidae sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sipuncula sp. 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Aglaophamus sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Opisthobranchia sp.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Quantanthura serenasinus - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1.64 (1.51)

6.56 (1.37)

4.15 (1.05)

2.21 (0.82)

1.03 (0.81)

1.37 (1.90)

0.45 (1.68)

1.65 (1.54)

1.66 (1.30)

4.72 (1.20)

1.38 (1.80)

1.79 (1.61)

4.84 (1.21)

2.62 (1.16)

1.58 (1.15)

2.13 (1.36)

2.80 (1.30)

1.19 (1.28)

1.18 (1.22)

0.55 (1.13)

2.49 (1.68)

0.89 (1.62)

1.69 (1.28)

0.47 (1.27)

5.51 (1.12)

0.99 (1.24)

0.62 (1.24)

1.73 (1.21)

0.8 (1.21)

0.32 (1.21)

4.59 (1.39)

5.81 (1.25)

2.54 (1.20)

1.21 (1.16)

3.91 (1.05)

2.54 (1.20)

1.21 (1.16)

4.59 (1.39)

2.49 (1.13)

0.79 (1.40)

1.41 (1.39)

2.96 (1.30)

0.7 (1.26)

3.93 (1.20)

3.21 (1.27)

1.13 (1.32)

1.28 (1.17)

0.61 (1.17)

1.63 (1.28)

2.39 (1.72)

0.80 (1.52)

0.46 (1.27)

0.39 (1.47)

1.69 (1.28)

2.49 (1.68)

5.51 (1.12)

0.47 (1.27)

0.89 (1.62)

1.31 (1.55)

0.71 (1.83)

0.47 (1.58)

0.8 (1.41)

0.28 (1.23)

1.21 (1.53)

0.39 (1.33)

0.29 (1.22)

3.64 (1.18)

1.16 (1.59)

1.21 (1.46)

1.67 (1.37)

0.72 (1.32)

4.00 (1.29)

2.94 (1.09)

DS=96.36% DS=96.77% DS=97.14DS=99.43% DS=97.23% DS=90.07% DS=97.43% DS=96.00%DS=97.39% DS=89.42% DS=92.93%
Species

DS=78.25% DS=88.89% DS=96.23% DS=99.40%



                                SOFT-BOTTOM MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL MID-SHELF 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

 
75 

3.7 Discussion 

The main objective of this chapter was to give an overview of the spatial variation of the 

macrobenthos at species and community level and to investigate the relation with the spatial 

variation of environmental variables. Observed patterns were further related to the predefined 

biozone model to test the surrogacy approach. To address the most relevant results from the 

analysis of KZN mid-shelf macrobenthic fauna, discussion of the findings is structured 

according to the research questions initially posed.  

3.7.1 General characteristics of the macrobenthos of the KZN mid-shelf 

This study, in the oligotrophic-to-mesotrophic KZN mid-shelf waters (Lutjeharms et al. 2000, 

Meyer et al. 2002), revealed a diverse soft-bottom benthic macrofauna in line with other tropical 

and subtropical shelves environments, e.g. the Seychelles (Taylor et al. 1997, Mackie et al. 

2005). Nonetheless, this is contrary to Valiela's (1984) hypothesis that faunal diversities will be 

low under low food resource conditions due to limiting resources. A total of 32 215 individuals 

belonging to 634 different taxa were identified in sediments ranging from very coarse sand to 

mud. Direct comparison of values obtained from this study with those obtained from similar 

studies can be complicated by the heterogeneity in sampling strategies, gears, sampling effort, 

habitat type, and taxonomic knowledge. It is therefore often more meaningful to express 

diversity values (total number of taxa and abundance) in terms of the depth range and area 

sampled. The 57 samples collected from the KZN mid-shelf (50-80 m) covered a combined area 

of 11.4 m
2
. Values presented here are in line with those of the previous studies in the region 

where Untiedt and MacKay (2016) found a total of 38 215 individuals belonging to 826 

different taxa in a combined area of 10.8 m
2
, while MacKay et al. (2016) recorded 33 630 

individuals belonging to >1 000 taxa in a combined area of 9.6 m
2
. A study of macrobenthic 

communities on the Great Australian Bight found 240 taxa in a combined area of 6.5 m
2
 along 

40-200 m depth range (Currie et al. 2009), while a total of 18 858 individuals belonging to 547 

taxa were recorded on the Cretan shelf in a 19.8 m
2 

area along 40-190 m depth gradient 

(Karakassis and Eleftheriou 1997). A widespread study conducted in the subtropical waters off 

Hong Kong, covering a sample area of 120 m
2
, recorded a total of 603 taxa and over 50 000 

individuals (Shin et al. 2004). Gray (1997a), on the Norwegian continental shelf, found 39 582 

individuals belonging to 620 taxa along 70-300 m depth gradient in a combined area of 50 m
2
. 

Considering that, this study area was limited to the mid-shelf, therefore this shelf supports a 

highly diverse community (in terms of abundance and number of taxa). Recent KZN Bight 

studies (MacKay et al. 2016, Untiedt and MacKay 2016) also reported a diverse community 

along the same depth gradient. These results are also in agreement with the earlier reports from 



                                SOFT-BOTTOM MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL MID-SHELF 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

 
76 

the Southern Californian Bight (45-100 m) (Bergen et al. 2001), Indian waters (50-75 m) 

(Ganesh and Raman 2007, Jayaraj et al. 2007, Jayaraj et al. 2008, Ansari et al. 2012). 

Macrobenthos recorded here, included species expected within the area and others with no 

previous reference for KZN shelf and were possible new location records and corresponded to 

species previously known elsewhere in the West Indian Ocean region (e.g. Seychelles and 

Australian waters) (Pearson 1970). The polychaete Litocorsa sp.1. and the amphipod 

Siphonoecetes (Orientoecetes) erythraeus are known to occur in Red Sea (Ruffo 1959) and 

Madagascar (Ledoyer 1982), among others. In addition, some of the dominant taxa here are also 

conspicuous at middle shelf depths elsewhere, e.g. Byblis, Ampelisca, Nephyts, Nucula and 

Corophiidae (Mills 1971, Probert and Wilson 1984, Lange et al. 2014).  

3.7.2 Macrobenthic taxonomic composition  

Qualitative characterisation of macrobenthic community assemblages are based on large 

dominant groups (Manokaran et al. 2015). In terms of Phyla, Polychaeta generally dominate, 

followed by Crustacea, Mollusca and Echinodermata (Gray and Elliott 2009, Ansari et al. 2012, 

Manokaran et al. 2015, MacKay et al. 2016, Untiedt and MacKay 2016). Other taxa, such as 

Nemertea and Anthozoa tend to contribute little to numbers of taxa or individuals (Dubois et al. 

2009). Results presented in this study agree with these general patterns, with polychaetes 

contributing most to the numbers of taxa. However, the high abundance of peracarid 

crustaceans, in particular amphipods, was noteworthy. Specific locations of interest concerning 

crustaceans are discussed further.  

Polychaeta 

The mid-shelf region of the KZN continental shelf showed polychaetes to support species 

richness with approximately equal numbers of sedentary and errant forms, which constituted the 

second most abundant group in terms of abundances. Such dominance of polychaetes on this 

shelf were previously reported by McClurg (1988), and recently by KZN Bight studies 

(MacKay et al. 2016, Untiedt and MacKay 2016). Various regions of Southern African waters 

(Lange and Griffiths 2014, Steffani et al. 2015) and other parts of the world, such as the Indian 

(Ganesh and Raman 2007, Jayaraj et al. 2007, Jayaraj et al. 2008, Joydas and Damodaran 2009, 

Manokaran et al. 2015), Belgian (Van Hoey et al. 2004), Portuguese (Martins et al. 2013), and 

Norwegian continental shelves (Ellingsen 2002) have also reported dominance of polychaetes. 

In this study, Spionidae, Terebellidae, Syllidae, Maldanidae and Cirratulidae presented the 

highest number of species, in agreement with previous regional study by McClurg (1988). The 

large number of species from these families, in this work, reflects the high heterogeneity of the 
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sediments along the shelf. Recent studies (MacKay 2010, MacKay et al. 2016, Untiedt and 

MacKay 2016) along the KZN Bight also reported the dominance of Spionidae, Terebellidae 

and Cirratulidae and associated these taxa with outwelling and the mud depocentre off the 

uThukela Estuary. In addition, the percentage of rare species found here was also comparable to 

these studies. Other studies, in tropics and subtropical regions (Lourido et al. 2008, Hernández-

Alcántara and Solís-Weiss 2011, Montiel et al. 2011, Martins et al. 2013) have also reported 

>15 spionid and syllid species in fine sand-to-mud substrate. Polychaetes constituting the most 

dominant (in terms of number of taxa) group, with spionid species represented in high numbers 

have been reported off the west coast of South Island, New Zealand, Tasman Bay, (Probert et al. 

2001), the North Queensland coast, Australia (Alongi and Christoffersen 1992), the Norwegian 

continental shelf (Ellingsen 2002) and the Bay of Bengal (Ganesh and Raman 2007). In 

contrast, studies elsewhere have generally reported lower number of polychaete taxa such as one 

undertaken in the North Sea, English Channel, Irish Sea and Outer Bristol Channel (Quiroz-

Martinez et al. 2011). Differing habitat types and hydrodynamics may be a reason for the 

variability observed among the mentioned studies (De Grave et al. 2001). The dominance of 

polychaetes among the macrobenthic components is attributed to this group’s high morpho-

functional diversity resulting in a multi-faceted response to environmental gradients (Fauchald 

and Jumars 1979, Wilson 1991, Jumars et al. 2015b), whereby different species occupy different 

gradients and almost all substrate types (Day 1967, Fauchald and Jumars 1979). Moreover, 

polychaetes often constitute over one-third of the total number of species (Fauchald and Jumars 

1979), with their dominance and wide distributional ranges linked to their quick reproduction 

(Hutchings 1998). The large number of species recorded from these families reflected the high 

variability of the sedimentary characteristics along the KwaZulu-Natal mid-shelf. High 

dominance of polychaetes is important for the functioning of the ecosystem as they play have 

roles in the food chain, bioturbation and sediment reworking (Snelgrove 1997, Rosenburg 2001, 

Snelgrove et al. 2014).  

Crustaceans  

In this study crustaceans were the second most taxon-rich group, as found in previous studies by 

McClurg (1988) and recently in MacKay et al. (2016). Such observations have been reported in 

other subtropical/tropical shelf environments (Levin et al. 2001, Jayaraj et al. 2007, Jayaraj et al. 

2008, Joydas and Damodaran 2009). However, faunal composition was different among various 

crustacean groups in this study; amphipods were the most taxon rich and supported high 

abundances (>60% of the total fauna). Results from the tropical and subtropical continental 

shelves are uncommon, however, Joydas and Damodaran (2009) on the west coast of India 
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highlight the importance of crustaceans although precise details of species composition was not 

provided. Similar dominance of the crustacean fauna by amphipod species have also been 

recorded by Martínez et al. (2010) on the Bay of Biscay and by Mamouridis et al. (2011) on the 

Catalonia coast despite crustaceans being the third most important taxa in these studies.  

In this study, amphipod families such as Ampeliscidae, Photidae, Mearidae, Gammaridae, 

Corophiidae, and Lysianassidae were speciose, with species Byblis giamardii, Ampelisca 

palmata, Urothoe palmata, and Unciolella spinosa being the main species recorded. Dominance 

of similar faunal components were previously cited by Griffiths (1974a), McClurg (1988) and 

recently by MacKay et al. (2016) at similar depths. Arabi (2010) recorded high abundance of 

species belonging to the Genus Ampelisca and advocated that these species are typical of the 

region. Other parts of the world also share similar faunal components as reported by Velerio-

Berado et al. (2000), Sampaio et al. (2016), Khan et al. (2017). Amphipods owe their high 

abundance to a high degree of niche specificity and demonstrate a high tolerance to varying 

physico-chemical characteristics in sediment and water, allowing large distributional range in 

various biotopes (Thomas 1993, Thomas et al. 2000, Dauvin and Ruellet 2007). In general, 

crustaceans are more ambulatory than most of other macrofauna, which is an advantage in 

exporting local deadfall or other patchy nutrient sources (Martins et al. 2013). Moreover, 

amphipod dominance in tropical and subtropical areas is often linked to the fact that they breed 

almost continuously (Dauvin et al. 1994).  

Mollusca 

Mollusca were the third most species rich group. Bivalves overwhelmingly dominated the 

molluscan fauna and benthic biocoenosis dominated by bivalves has been cited in fine well-

sorted sediments (Péres 1967, Michel et al. 2011, Martins et al. 2014). This was also true for the 

bivalves species recorded in this study, which were restricted to the shelf between uThukela and 

uMdloti in fine-mud sediments. Donax burnupi, which is known and diagnostic of the 

upwelling regions of Africa (Branch et al. 2002, Michel et al. 2011), was among the abundant 

molluscan taxa in this study. Nucula nucleus and Papillicardium turtoni and Diplodonta sp.1 

represent a clear tropical affinity (Michel et al. 2011, Huber 2015), which could have been 

transported as larvae by the Agulhas Current. Overall, the number of molluscs was low in 

comparison to other studies, e.g. Zettler et al. (2009) on the northern continental shelf of 

Namibia, Lange et al. (2014) on the Angolan shelf and Michel et al. (2011) on the Mauritania 

shelf. Visually, molluscs formed a large portion of bioclastic sediments and biogenic structures 
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as abraded shell fragments (noted during sorting), particularly in the fine-coarse sand between 

uThukela and uMkhomazi; however, live specimens were particularly rare. 

In South Africa, 12 915 marine species are known (9 632 invertebrates) from which 2331 are 

crustaceans, 787 are annelids, 3154 are molluscs and 410 are echinoderms (Griffiths et al. 

2010). Therefore, this study includes approximately 5% of the total animal species known in 

South Africa, and up to 37% of the polychaetes, 9% of the crustaceans, 1.4% of the molluscs, 

and 11% of the echinoderms. Given that, not all taxa from the samples were identifiable to 

species level, partly because of the lack of characteristic appendages that are required for 

identification, especially in case of immature or physically damaged individuals, being small 

and not more a few millimetres. It can be assumed that diversity was underestimated at certain 

stations. Furthermore, coarser level of taxonomic resolution in this study places limits on the 

ability to detect fine scale overview of the spatial variations in community patterns. However, 

while species level data would have potentially revealed additional spatial patterns, coarser 

taxonomic resolution can often provide similar results (Wlodarska-Kowalczuk and Kedra 2007, 

Tataranni et al. 2009), as shown in Chapter 4.  

Considering the heterogeneity in sedimentary characteristics, complexity of the shelf 

morphology and hydrodynamics, studied area (11.4 m
2
), the depth zone (50-80 m), narrowness 

of the shelf and marine species in South African (Griffiths et al. 2010), it is reasonable to 

conclude that the Polychaeta species richness found in this study was high, while Crustacea and 

Mollusca were a poor reflection.  

Species estimators 

The total number of species in a given sampled area often cannot be directly computed as the 

total number of identified species because of sampling limitations. Several indices have been 

proposed to infer true species richness (Chao 1984, Chao et al. 2009). Results from the 

extrapolation of singleton and doubleton ratios (Colwell and Coddington 1994, Chao et al. 

2009) indicated the likelihood of recording high Richness with intense sampling using Chao 1 

and 2 true richness estimators. The difference between observed and true Richness estimators 

was high (>40%), reflecting the higher heterogeneity of the sampled areas, resulting in 

differences in the scale of variation of species richness (Thrush et al. 2006). This was further 

shown by the occurrence of rare species by almost 30% of the total fauna and suggests that a 

more intense sampling effort should lead to the inclusion of the missing species. The true 

percent of uniques may be higher, considering that the number of uniques was likely deflated by 

the grouping of taxa to high taxonomic levels (where diagnostic features were damaged or 
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obscured). An attempt to identifying all taxa to species level is likely to substantially increase 

the current number of macrofaunal taxa recorded supporting the overall high biodiversity and 

endemism previously reported by Scott et al. (2012) for this region. However, the collection of 

realistic (true) richness is always confronted with the effort required to sample and process 

macrobenthos.  

In macrobenthic communities with patchy distribution, the number of patches with minor 

differences increases with increasing sampling effort because of microscale habitat variation, 

therefore, even in well-sampled environment extrapolation curves are unlikely to assume 

asymptotes (Ellingsen 2001, 2002). Moreover, taxa with low local abundance, irrespective of 

the number of stations at which they were encountered, have a low probality of being recorded. 

Sampling effort of marine biological data generally has a relatively low spatial resolution and is 

often biased towards shallow sites close to the coast driven by politically, socially, and 

economically interesting areas (e.g. important fishing grounds, MPAs) (Phillips et al. 2009, 

Robinson et al. 2011) and toward regions close to research facilities (Milne 2012) and such has 

been the case for this coastal shelf environment recent KZN Bight studies.   

3.7.3 Macrofaunal diversity and distribution 

It is widely accepted that sediment heterogeneity is generated by hydrodynamic features such as 

terrigenous inputs, biological components, such as macrofauna bioturbation and engineering 

(Gooday et al. 2010). These features further cause habitat fragmentation and thus creation of 

macro-habitats. Such habitat heterogeneity creates high variability in species composition, 

distribution and diversity (Zalmon et al. 2013). Habitat heterogeneity or complexity is not 

further discussed, but conditions arising from it are noteworthy. On the other hand, abiotic 

factors determine the broad distributional patterns of benthic organisms (Ellingsen 2002). To 

characterise the mid-shelf habitat, hydrographic and sediment variables, which attempt to 

describe broad environmental conditions, were considered. Also considered was that some of 

the factors that affect macrobenthos distribution may be indirect, such as particulate organic 

matter (POM) (de Lecea et al. 2013), but these were not specifically considered further. In terms 

of species composition, abundance and number of taxa, the macrobenthic communities studied 

were typical of muddy and sandy KZN mid-shelf habitats. Composition variables S and N 

varied in relation to the nature of sediments (texture and organic content) and hydrographic 

features (turbidity gradient), which are related to known oceanographic features and coastal 

influences brought about by the uThukela Estuary. Weston (1988) studying macrobenthic fauna 

of the continental shelf off Cape Hatteras, North Carolina, corroborated that sediment texture 
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was the most important factor influencing faunal composition. The study assumed the 

importance of the sediment is, in part, a result of its role in determining the type and abundance 

of food resources available for different species. The loose and nutrient deficient sediment off 

Port Durnford and the mud nutrient richer sediment off the uThukela harboured a relatively 

impoverished macrobenthos. These differences were expected based on the different 

hydrodynamic regimes characterising these habitats (McClurg 1988, MacKay et al. 2016). 

Medium-to-fine sand with moderate nutrients in the transition area between Zinkwazi and 

Durban (Stations K3, L3, S6, and N3) and south of Durban to uMkhomazi (Stations N3 and S5) 

sheltered rich life. For the same stations (K3, L3, and N3), MacKay et al. (2016) recently 

reported high values of S and N and attributed this to the relatively stable nature of sediment in 

the area (Green and MacKay 2016) resulting from the current induced sorting (adjacent semi-

tenacious Durban Eddy and the Southern Bight swirl (Roberts et al. 2016)). These finding are 

also in agreement with those reported by Ganesh and Raman (2007) on the mid-shelf (51-75 m) 

of the northeast Indian shelf, Bay of Bengal, where heterogeneous substrates (mixture of 

medium-fine sand) supported high species richness and abundance. The role of food resources 

in regulating abundance of macrobenthic communities was reported by Karakassis and 

Eleftheriou (1997) and has also been demonstrated by several manipulative laboratory and field 

experiments (Snelgrove et al. 2001, Currie and Small 2005). In this study, elevated chl-a 

recorded at S6 corresponding to the Durban Eddy, and at S5 corresponding to Amanzimtoti 

outfall, coupled with the heterogeneous nature of the sediment, were important in explaining 

high abundances at these stations.  

The spatial diversity patterns were different to those observed for abundance and number of 

taxa. This may be an artefact of high abundance of crustaceans at specific stations. Species 

Richness varied with sediment structure along this shelf, i.e. low values were recorded in 

homogenous substrate (off uThukela River), intermediate values in habitat with much sand and 

the highest values were recorded in area with mixed coarse, medium and fine sands (transitional 

area between Zinkwazi and Durban). This gradient is largely explicable in terms of increasing 

grain heterogeneity, providing a range of potential niches for different fauna (Santos and Pires-

Vanin 2004). This supports Gray’s (1974a) view, who concluded that the faunal diversity of 

coarse and heterogeneous sediment tends to be higher than that of the homogenous sediment. 

Evenness values (in excess of 0.8) were very high and showed scarce variation between stations 

as species: abundance values were relatively high due to the community being characterised by 

a high number of low-abundance taxa.  
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Since Evenness (J') incorporates both Richness and Shannon-Weiner diversity (H') properties of 

the sample, the overall distribution trend assumed the pattern displayed by both indices. H’ 

exhibited highest values at stations where polychaetes and peracarid crustacean were the 

important constituents and in a same way as data provided by Richness. Evenness was highest 

at station with low number of polychaetes and peracarid crustaceans. Therefore, the higher 

diversity values recorded in this study appeared to be characterised by the higher number of 

polychaetes and peracarid crustacean species. 

3.7.4 KZN mid-shelf macrobenthos faunal communities  

Univariate indices and multivariate community structure of macrobenthic assemblages differed 

spatially supporting the theory that the spatial composition of macrobenthic communities differs 

along the shelf. The term community usually indicates a group of species co-occurring in a 

particular place or physical habitat (Mills 1969). Based on Mackie et al. (1997) definition to 

define biological communities and the statistical analyses performed on taxa abundance, a clear 

faunal assemblage (Sample group III) on the medium-to-very coarse sand off Port Durnford 

could be discerned. This assemblage presented low values of composition variables S and N, 

but high in J' and H'. Conspicuous features of this assemblage include free-living carnivorous 

predators such as Quantanthura serenasinus, Nephtys capensis and Onuphis eremita, capable of 

switching to deposit feeding opportunities with a changing food supply (Riisgård and 

Kamermans 2001, Untiedt and MacKay 2016). The carnivorous species can facilitate the 

transport of nutrients retained in the detritivores and deposit feeders tissues back in to the 

mobile pool (Ngai and Srivastava 2006) and hence renew the nutrients for primary producers. 

Moreover, this assemblage was also characterised by interstitial species (Protodorvillea 

biarticulata, Syllis amica and Podarkeopsis capensis) and had no correspondence with the 

known shelf communities elsewhere.  

Assemblage (sample group) I comprising a single station had a low number of exclusive 

species, suggesting that this station is a transition zone between Port Durnford and uThukela 

communities. A notable feature of this assemblage was the suspension feeding mollusc species, 

Antalis longitrorsa and Dosinia sp.2 with tropical-subtropical affinities (Michel et al. 2011, 

Huber 2015). The uThukela mud assemblage (sample group II) characterised by muddy 

sediments and the highest content of organic matter, presented lowest values of diversity 

indices. The important features of this assemblage were free-living carnivorous polychaetes 

Aglaophamus dibranchis and Linopherus microcephala, the bivalve Pallidea palliderosea and 

the decapod Ommatocarcinus pulcher. The latter, also capable of switching between the feeding 
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methods. This assemblage has faunal affinities with the Nephtyid assemblage from the northeast 

Indian shelf, Bay of Bengal (Ganesh and Raman 2007) and was also closer to other terrigenous 

mud-shelf assemblages found elsewhere (Peres 1967). The continual resuspension of sediment 

either by current or actions of feeding animals and the subsequent burial of juveniles may be a 

limiting factor, with few species that can cope with such conditions. Moreover, shelves under 

severe riverine influences show reduced faunal populations (Aller and Aller 2004). 

Van Hoey et al. (2004) showed that as a result of the unimodal distribution of species along 

environmental gradients, biological and physical boundaries of benthic communities are not 

strict and gradual shifts between communities exist. As such, the transition assemblage can be 

seen as a ‘hybrid’ assemblage, representing the shift between adjacent communities. The 

transition assemblage (sample group IV) characterised with medium-fine sand with TOC 

comparable to uThukela, hosted a mix of species and trophic groups of secondary importance in 

both assemblages. This could be related to the presence of the medium-fine sand, which is the 

sharp boundary separating assemblages (uThukela and Zinkwazi), but also provided a suitable 

habitat to allow for the colonisation and successful establishment of surface deposit-feeding 

polychaetes (e.g. Spiophanes duplex) characteristic of clean, fine to medium shelf sand (Dauer 

et al. 1981, Probert and Wilson 1984) despite their relatively low abundances. 

Further South (Durban area), environmental conditions were more stable as a result of a semi-

persistent eddy (Guastella and Roberts 2016, Roberts et al. 2016) and more beneficial for other 

benthic organisms, resulting in a completely different species assemblage. The Durban Eddy 

fine sand assemblage (sample group V) presented the highest number of taxa, diversity (H’) and 

intermediate abundances. Adjacent to the Durban fine sand also, some differences could be 

noted southward, both in environmental parameters and macrobenthic communities. Sample 

group VII was characterized by lower sediment TOC in the sediment, carbonate rich coarse 

sediments with elevated chlorophyll-a. These conditions had a positive influence on the 

macrobenthic abundance (N) and richness (d). Noteworthy was the high dominance of 

suspension feeding and habitat engineering species Byblis gaimardii, Unciolella spinosa and 

Lanice conchilega, despite the latter being at relatively low abundances.  

Overall, communities presented here have a relatively lower similarity and high species 

replacement suggesting that patterns may result from environmental filtering, which has been 

suggested as a major driver in areas influenced more by abiotic factors (Sommer et al. 2014). 

Most of the communities had limited correspondence with several shelf communities described 

elsewhere. This lack of correspondence can be due to the limited number of studies in the region 
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from which further conclusions can be drawn. However, one notable way in which KZN mid-

shelf macrobenthos bears an affinity to shelf fauna in comparable habitats elsewhere (e.g. 

Amazon shelf (Nittrouer and DeMaster 1996) and Ebro Delta continental shelf (de Juan et al. 

2007)), is in the abundance of certain tubicolous polychaetes and amphipods that are widely 

distributed or cosmopolitan (e.g. Lanice conchilega, Nothria conchilega, and Ampelisca 

brevicornis) (Probert and Wilson 1984, Alongi 1990, Darbyshire and Mackie 2003).  

3.7.5 Macrobenthic faunal distribution and relationships with the habitat variables 

Among the main goals of many subtidal soft-bottom benthic ecology studies was to define the 

spatial variation of the macrobenthos and identify the driving forces structuring spatial faunal 

patterns (Ellis and Schneider 2008, Moulaert et al. 2008, Veiga et al. 2017). The complex 

interaction between biological communities and biophysical factors act at different spatial scales 

and depends on a location (Moulaert et al. 2008). At a larger scale, biophysical factors 

determine the broad distributional patterns, while biotic factors take a leading stand at a local 

scale (Ellingsen 2002, Gogina and Zettler 2010). Benthic ecosystems are also naturally variable. 

This complicates the process of identifying the main variables that shape spatial patterns of 

benthic fauna (Rubal et al. 2014) and because they differ among areas (Lu 2005). In this way, 

studies that provides description of their assemblages and associated habitats are useful in 

establishing a baseline for detection of ecological changes (Schückel et al. 2015). 

Many studies have investigated spatial distribution patterns of macrobenthic communities and 

have concluded that no single factor or mechanism alone has explained faunal patterns 

(Snelgrove and Butman 1994, Levin et al. 2000, Jayaraj et al. 2007). It has been recognised that 

at any given location, a variety of interacting hydrographic and sedimentary parameters driven 

by local processes and conditions are involved in explaining faunal patterns (Snelgrove and 

Butman 1994, Mackie et al. 1997, Zalmon et al. 2013, Veiga et al. 2017) as shown by BIOENV 

and distLM results here. The mid-shelf depth range was considered here to counteract 

confounding issues of depth and stations selection was based on maximising differences in other 

environmental factors, of which mud and turbidity were identified as best correlated with 

macrofaunal communities. These are a reflection of physical dynamics, which in turn indirectly 

influence macrobenthos through habitat disturbance (Blanchard and Feder 2014). As natural 

disturbance agents, physical dynamics also play a key role in determining community structure 

and distribution (McArthur et al. 2010b).  

Mud predominantly originates from the uThukela Estuary, which provides large flux of 

suspended matter into the ocean each year (Begg 1978). From the river mouth, mud migrates 
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both in suspension resulting in a turbid environment and in the form of mudbanks creating a 

dynamic mud depocentre in the subtidal zone (Flemming and Hay 1988). These factors 

individually or in synergy seem to play a vital role in shaping the ecology of the soft sediment 

macrobenthic communities off uThukela Estuary.  

Distance linear models showed that macrobenthos could be differentiated into distinct 

communities separated by a subset of medium sand, mud, TOC, carbonates, salinity and 

turbidity. When variables were analysed by sets (e.g. sediment and water column) results 

showed a significant synergistic contribution, although sedimentary variables explained a higher 

percentage of variation. Relationships between the distribution of soft-bottom macrofauna and 

sediment characteristics, in general, have been studied for decades, and historically, sediment 

type has often been emphasized as key a factor to determine the composition and structure of 

benthic systems (Pearson and Rosenberg 1978, Snelgrove and Butman 1994, Snelgrove 1997). 

This has been described in terms of the optimal sediment particle size range tolerated by each 

species (Hily 1987, Van Hoey et al. 2004, Hily et al. 2008). Based on their lifestyle, 

macrobenthic communities require particular sediment properties for tube building and 

burrowing capabilities, as mechanically it is difficult to burrow in certain grain sizes and thus 

choice of habitats is governed by sediment type (Probert and Wilson 1984). Likewise, in the 

KZN mid-shelf, variations in the community structure are directly linked to sediment types, 

since the sandy bottoms are populated by a more abundant and diversified fauna than the muddy 

habitat. Also considered is the influence of the Agulhas Current as the main driver of sediment 

distribution along this region (Flemming 1980, 1981, Flemming and Hay 1988), in the process 

of transporting sediment particles could also carry invertebrate larvae and therefore influence 

the spatial structure of the macrobenthos assemblages.  

The relationship between animals and sediment can include other complex interactions; 

sediment types can influence other variables such as microbial content and food supply (Weston 

1988, Snelgrove and Butman 1994, Barros et al. 2008). The retention of organic matter in 

sediment is influenced by the particle size (Milliman 1994) which in turn is largely governed by 

the hydrodynamic of the region. The sediment in the study area was mainly composed of fine-

to-coarse sand, which has lower holding capacity than mud found predominantly off uThukela 

and as expected, a relatively high sediment organic content. Although there is a logical 

functional link between macrobenthic organisms and sediment organic matter as a food source, 

in this study low macrofaunal abundance were found off uThukela Estuary (high TOC 

concentrations).  
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In addition to substrate type, sediment carbonate and sorting were shown to be important factors 

associated with the distribution of the benthic taxa. Substrates with high sedimentary carbonate 

(CaCO3) content contribute to grain/sedimentary heterogeneity and are associated with 

accumulation of the superficial sediment providing a wide range of potential ecological niches. 

This promote high variation in stochastic species occupancy patterns (Barton et al. 2013), and 

shell fragments could also help to protect the organisms against predation (Santos and Pires-

Vanin 2004, Carvalho et al. 2011). In this study, sediment with high carbonate content 

supported a high number of taxa and abundance. Sediment sorting was also identified as an 

important variable contributing to the faunal distribution, although their precise role in 

controlling species number and abundance is harder to interpret. In this study, high number of 

taxa was found at stations (e.g. S5) with poorly sorted sediments. These results support Gray’s 

(1974a) hypothesis that poorly sorted sediment support higher species richness because of the 

presence of a wide variety of grain size for benthic fauna to use.  

Salinity is often regarded among the major factors affecting species richness and composition of 

macrobenthos (Moulaert et al. 2008). Results presented here showed salinity to be an important 

factor in explaining composition variables d and H'. Despite salinity being statistical important 

in explaining composition variables, it has a less definable role in explaining community 

patterns, and showed monotonic trend along the study area. Glockzin and Zettler (2008) and 

Veiga et al. (2017) also reported similar results. 

Pelagic food supply plays an important role in the structure and abundance and biodiversity of 

macrofaunal communities especially in the oligotrophic area (Grebmeier et al. 1989, Albertelli 

et al. 1999). The quality and quantity nutrient that sinks to the bottom depend on the intensity of 

the primary production of the water column (Danovaro and Fabiano 1997). In this study, 

elevated values of chlorophyll-a ((Chl-a) surrogate for primary production) corresponded with 

stations (e.g. K3) where diversity and richness was high and stations where selective 

detritus/suspension-feeding amphipods (e.g. ampeliscid and unciolid) dominate both in 

abundance and number of taxa (e.g. S5). Therefore, it can be assumed that high resource 

availability and allochthonous inorganic nutrients via Zinkwazi and iSiphingo Estuary acted 

synergistically and positively influenced diversity and abundance. Moreover, the lack of 

predators at S5 could explain high abundance of filter/suspension feeders recorded there. 

Despite chl-a being less definitive statistically here, the relationship between macrofaunal 

abundance, diversity and chl-a was confirmed by a significant correlations found between chl-a 

and macrofaunal abundance and diversity. The importance of chl-a in driving macrofaunal 

patterns was also highlighted by MacKay et al. (2016) and Untiedt and MacKay (2016) in the 
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recent KZN Bight studies. On the other hand, stations where high carbonates and heterogeneous 

sediments occur had higher diversity (e.g. S6 and N3). This suggests that carbonate and 

sediment structure were more influential on macrobenthos abundance and species number. 

Sediment heterogeneity as a major factor affecting benthic diversity was also reported by 

Grebmeier et al. (1989). The relationship between macrofaunal diversity and sediment 

heterogeneity was confirmed by the significant correlations found between diversity and 

carbonates.  

Aside from abiotic factors, engineering species can cause modifications of the environmental 

conditions, which are not usually accounted for in the output from statistical models (Reise 

2002). For example, high densities of Lanice congilega tube-dweller can significantly increase 

the oxygen flux in the sediment by ventilating their burrows (Rhoads and Young 1970, Vopel et 

al. 2003, Rabaut et al. 2007). Changes in the structure of benthic communities may also be 

associated with the increased intensity of biotic factors such as competition and predation 

(Rhoads and Young 1970). These are important regulators of the abundance and exercise an 

influence on the distribution of species. For instance, Thalamita spinifera, Lissocarcinus sp.1, 

Ommatocarcinus pulcher and carcinus sp.1 are active predators and may exert appreciable 

influence on macrobenthic organisms. Other biotic factors such as availability and abundance of 

benthic larvae may also be more important than sediment in determining benthic settlement and 

recruitment (Wu and Shin 1997). These were not considered in this study but may throw light in 

understading macrobenthos patterns and distribution.  

Overall, the geomorphological complexity, the intricate patterns of sediment distribution and the 

oceanographic conditions of the KZN shelf lead to a rich habitat diversity, which in turn 

supports a higher variability of faunal assemblages. The high species richness of the 

assemblages associated with medium-to-coarse grained sediments draped with shell fragments, 

supports the hypothesis that enhanced sediment heterogeneity along shelf habitats promote beta 

diversity.  

3.7.6 Habitat heterogeneity attributes and biodiversity patterns 

Habitat heterogeneity is well recognised as a major driver of variability in ecological patterns 

and processes, affecting species distributions, community composition and diversity (Ellingsen 

and Gray 2002), supporting global species diversity by increasing niche availability and 

community complexity and thus facilitating the formation of distinct species assemblages 

(McClain and Barry 2010), as such, is among the key considerations for marine spatial planning 

(Foley et al. 2010). The importance of fine-scale habitat heterogeneity in enhancing diversity 
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has been established in several shelf settings (Hewitt et al. 2005, Thrush et al. 2010). In the case 

of the KwaZulu-Natal shelf, different sedimentary settings (e.g. ratio of sand, mud), proximity 

to river inflows (affecting sediment deposition) and local hydrographical conditions (e.g. 

primary production, mesoscale circulation) appeared important (e.g. Alongi 1990, Ganesh and 

Raman 2007) as a consequent of the known oceanographic features in the Port Durnford area, 

off uThukela and Durban. These, with Agulhas Current functioning as a driving force contribute 

to a variety of unique/rare habitats and each with a set of characterising variable ranges.  

In tropical/subtropical latitudes, the coexistence of unconsolidated sediment with reef rubble is 

frequent (Alsaffar et al. 2017, Ellis et al. 2017). Seafloor heterogeneity associated with such 

mosaic of habitats and the resulting variability in the hydrographic factors, even within small 

spatial scales, provide a wide range of potential ecological niches for many species of different 

trophic groups (Barton et al. 2013), thus are expected to support a greater diversity (Santos and 

Pires-Vanin 2004, Oliveira et al. 2007). In the Port Durnford area, a comparable habitat type 

exists and the effects of stronger hydrodynamic regimes result in a gradation of sediment grain 

size, which translates into a presence of assemblages typical of coarse sediment. In this study, 

free-living carnivorous predators such as Quantanthura serenasinus, Nephtys capensis and 

Onuphis eremita dominated this habitat. The preference of carnivores for coarser sediments is 

well-established (Tena et al. 1993, Muniz and Pires 1999, Santos and Pires-Vanin 2004) due to 

large interstices among grains creating space enough to favour the mobility and feeding of 

carnivores, proliferation of potential prey organisms and the oxygenation of the sediments 

(Fenchel 1970, Gaston 1987, Muniz and Pires 1999). High abundance of filter/suspension 

feeders such as Anthozoa sp.5, Ampelisca sp. 3, and Ampelisca palmata could be related to the 

accumulation of particulate matter due to topographically induced upwelling in the vicinity 

(Lutjeharms et al. 1989). Sub/surface deposit feeding fauna were present in low abundances in 

this habitat, e.g. Ophioroidae sp.2. This might be a consequence of the effect of reef rubble and 

shell fragments in hampering the feeding of the species that ingest sediment and digest only 

organic matter and micro-organisms associated with the substrate (Santos and Pires-Vanin 

2004). 

A distinct situation occurs just south of the aforementioned habitat, where the uThukela Estuary 

faces the open sea and an effective transport of less saline waters to the adjacent shelf occurs 

(Begg 1978). Here, the potential effect of the riverine outwelling could be a function of the 

interaction between physical processes (e.g. sediment supply and advection causing muddy 

coasts), biological processes (e.g. losses due to low-salinity intolerance) and chemical processes 

(e.g. nutrient enhancement and increased primary production) resulting in productive shelf 
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waters (Keith et al. 2002, Rabalais et al. 2004) relative to the surrounding oligotrophic AC 

waters (Snelgrove 1998), which in turn influence macrobenthos composition and distribution. 

The environmental stress in tropical shelves under severe riverine-influence is naturally high: 

deposition and resuspension of fine sediments and turbid water due to extensive river runoff 

(Nittrouer and DeMaster 1996). Only few infauna and other taxa can thrive under these habitat 

conditions (Huston 1979), as a result support low infaunal populations (Aller and Aller 2004). 

Such deposition areas with negligible hydrodynamic movement allows fine particle to settle, so 

that only a small amount of organic content in suspension is available as food for 

filter/suspension, which in turn restrict filter/suspension feeding fauna from inhabiting such 

habitat. Species assemblage here were dominated by carnivorous fauna, capable of using deposit 

feeding opportunities with a changing food supply (Untiedt and MacKay 2016). The possibility 

exists that the newly settled larvae are eaten at the surface by carnivores (Thorson 1966), or may 

also be a consequence of considerable hydrodynamic movement exerting a negative effect on 

larval recruitment and settlement (Eckman 1983, Butman 1987). 

Rosenberg (1995) discussed the importance of grain-size characteristics as predictors of benthic 

faunal assemblages and assumed that the importance of the sediment is, in part, a consequence 

of its role in determining the type and abundance of food available to fauna that flourish in 

specific sediment types. Therefore, differing feeding modes among habitat types reflects the 

covariance of hydrodynamics with ecological adaptation: stronger currents result in coarser 

sediments, reduced organic content deposition in sediments, and more suspension-feeding 

organisms due to the greater volume of particulate organic matter (POM) passing by in the 

water column. The alternate is that weaker currents result in greater deposition of POM and 

thus, greater proportions of deposit-feeding organisms (Milliman 1994, Sivadas et al. 2013, 

Blanchard and Feder 2014, Pilditch et al. 2015). However, the bioturbation activities of 

macrofauna ensure that the organic matter is transported and stored in deeper sediment for the 

subsurface deposit feeders. In this study, the bioturbation potential has been inferred from the 

functional traits, which are further discussed in Chapter 4.  

Biogenic features are known to structure and modify benthic habitats and have a major 

influence on the macrobenthos distributional patterns (Passarelli et al. 2012). These include 

mollusc shells, polychaete and amphipod tubes, which increase habitat complexity and 

environmental heterogeneity, providing a large variety of ecological niches across a small 

spatial scale, thus promoting diversity and co-existance through non-equilibrium mechanisms 

(Pearson and Rosenberg 1978, Hewitt et al. 2008, Passarelli et al. 2012). However, high 

densities of biogenic features (e.g. Calichirus burrows (Pillay et al. 2007) and L. congilega 
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tubes (Rabaut et al. 2007)) can also reduce water flow at the sediment surface. This improves 

the settlement of both inert and living particles and ultimately result in the increase in organic 

content. Increased organic matter with increasing meshwork of tubes has also been highlighted 

by Godet et al. (2010). These organic enriched stable habitats may result in a colonisation of 

other species, thus increased diversity (Gooday et al. 2010, Leung 2015b). These may also 

provide refuge against predation such a Bulia gastropod shells occupied by Paguristes sp. 

(Thrush et al. 2001, Thrush et al. 2006, MacKay et al. 2016). 

3.7.7 Spatial planning biozone as surrogates of benthic biodiversity 

Abiotic based habitat classification as surrogates for marine biodiversity management and 

conservation involves the partition of the seafloor into spatial units (Kirkpatrick and Brown 

1994, Stevens and Connolly 2005, Carmel and Stoller-Cavari 2006). In this approach, 

environmental data are interpolated and combined to form discrete seafloor habitats, each of 

which is assumed to correspond to a marine benthic habitat, that are relatively homogeneous in 

composition, community and functional characteristics with similar environmental 

characteristics and different from other seascapes (Harris et al. 2008, Heap et al. 2011). These 

biophysical factors are known to affect communities (McArthur et al. 2010b) and when used to 

define habitat should reflect the organismal diversity and result in protecting all biodiversity 

associated with each habitat class (Faith and Walker 1996). As such, high congruence is 

expected between abiotic based habitat and the actual distribution of many species that make up 

biodiversity. However, the efficacy of biophysical habitat surrogates for representing marine 

benthic biodiversity remains poorly understood (Przeslawski et al. 2011) and has been strongly 

criticised because of low overlap between habitat classes and actual species distributions (Faith 

et al. 2003, Brooks et al. 2004, Jackson and Lundquist 2016). Indeed, results from this study 

also showed limited overlap between marine spatial planning (MSP), predefined biozones and 

macrobenthic community patterns. Therefore biozones currently set for the province were not a 

useful predictor of spatial variation in macrobenthic biodiversity.  

Biodiversity indices (S, N, d, and H’) showed that biozones were not a consistently useful 

surrogate at all biozone subclusters, the strength and significance of relationships with 

macrobenthos varying. That is, some biozone subclusters differentiated communities and others 

showed no biological differences. The inference is that these animals are not distributed 

discretely rather in a continuum and vary relative to environmental gradient and habitat 

complexity (Mills 1969, Stephenson 1973, Gray 1976). The observed significant relationship 
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between some pairs of biozones could be attributed to differences in the individual stations 

within each subcluster, e.g. high abundance of a specific group in one station. 

Biozone subcluster (BS) 3A corresponded well with the sedimentary patterns (grouping of 

samples) and macrobenthic community structure. This indicates that mapped surrogate (BS 3A) 

successfully captured patterns of both aforementioned attributes in the unique habitat off 

uThukela Estuary. Similarly, BS 1C (off Port Durnford) represented patterns in macrobenthic 

communities. These BS’s were also significantly different from all other BS’s in terms of 

composition variables and community patterns, indicating that biological communities at these 

BS’s are likely to be consistently different from other assemblages in the region. Both BS’s (3A 

and 1C) captured biological patterns at different similarity thresholds, as reflected by samples of 

BS 3A clustering at a very low similarity level, with G5 least similar to I5 and H4. This was 

attributed to the presence of moderately sorted fine sediment (>10%) at station G5, which 

allowed fauna with a preference for fine sand to establish and thus contributed to a shift in the 

community composition. Result presented here, highlighted the importance of the interrelation 

between sedimentary characteristics and biological community when selecting/classifying 

habitats. Biozone subclusters 1A and 2A and 1B and 2B grouped closely and there were no 

significant differences detected in the community structures. Likewise, no obvious differences 

were detected by the univariate measures. Therefore, these BS’s were not biologically distinct, 

rather indicative of over-classification (Przeslawski et al. 2011). 

Recent studies on classification systems have shown that biological communities respond to 

physiographic variables that are used to define ecological units. These are defined as the 

physical and chemical environment in which a species or a community lives (Bolam et al. 2008, 

McArthur et al. 2010b, Dutertre et al. 2013). Indeed, this study provided evidence that abiotic 

variables were responsible for spatial patterns in the KZN mid-shelf macrobenthic communities. 

However, here variables only explained 30.5% of the total variation and therefore does not serve 

as effective abiotic proxies for creating high-resolution maps of important ecological attributes. 

The inability of biozone classification to capture macrobenthic spatial patterns could have been 

driven by the microscale variation in environmental variables not included during biozone 

classification, overriding the effects of environmental factors incorporated in biozone 

derivations. Overall, the heterogeneous nature of KZN mid-shelf soft-sediment benthic habitat 

was overlooked in the MSP predefined biozone classification. Despite analytical techniques 

being sufficiently sophisticated to detect multiple gradients in ecosystems (Dolédec and Chessel 

1991, Clarke and Warwick 2001, Clarke and Gorley 2006, Anderson et al. 2008a), correlations 

between species distributions and habitat characteristics have limited potential for a mechanistic 



                                SOFT-BOTTOM MACROBENTHIC COMMUNITIES ON THE KWAZULU-NATAL MID-SHELF 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

 
92 

understanding of ecological patterns. This is because analyses based on taxonomic grounds 

alone do not provide confirmation of assembly rules independent of species biology (Fleishman 

et al. 2006). 

Biophysical habitats are usually derived using a small subset of variables, yet habitat is defined 

by a collection of biotic and abiotic factors associated with it. Habitat features used to define 

abiotic habitat should include all abiotic factors that influence the distribution and abundance of 

species across a region. For a surrogate to be efficient, distribution of oceanographic and 

geomorphological characteristics that collectively define an ecosystem should be incorporated 

during biophysical habitat derivation (Young and Carr 2015). Abiotic habitat surrogates can 

assist in conservation planning, with substantial improvements in performance achieved when 

they are biologically informed (Young and Carr 2015, Jackson and Lundquist 2016). Despite 

the lack of correlation between the current biozone classifications for KZN, the use of 

macrobenthos is still advocated to be incorporated in such plans. Macrobenthos forms a 

substantial component of shelf biodiversity and are important contributors to ecological 

functions, and thus ecosystem functioning (Schwinghamer 1981, Ganesh and Raman 2007, 

Sokołowski et al. 2012). Also, their spatial configuration and heterogeneity have important 

implications for the distribution and relative abundance of marine organisms (Thrush et al. 

2001, Anderson et al. 2009). Accordingly may be effective predictors of biodiversity and 

ecosystem functions (Reise 2002, Solan et al. 2004, Anderson et al. 2013, Dutertre et al. 2013). 

In addition, their sedentary lifestyle reflects habitat history (Dauvin and Ruellet 2007). 

Therefore, including macrobenthos into conservation planning will ensure representation and 

protection of biodiversity. Likewise, the ecological processes that sustain biodiversity and 

ecosystem services as a goal of marine conservation planning (Roberts et al. 2003). 

Conclusion 

This study provides an overall view of the spatial distribution of KZN (Port Durnford-

uMkhomazi) mid-shelf soft-bottom macrobenthic communities. This study further showed the 

ecological importance of this study area due to its rich macrofauna community with high 

abundance and diversity. Polychaetes were the most common taxonomic group and had the 

highest proportion of widespread species, whereas crustaceans, bivalves and echinoderms were 

more confined with crustaceans being highly abundant. Quantitative characterisation of fauna 

distinguished seven species assemblages distributed according to different habitats characteristic 

along KZN mid-shelf, but overall structured by spatial differences in seafloor and water column 

characteristics such as the proportion of medium sand, fine sand, mud, TOC, associated statistic 
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of sorting and turbidity. Depending on the habitat type and the number of explanatory variables 

that were taken into account, different parameters were more important in influencing spatial 

variation, e.g. Northern mid-shelf (Port Durnford) macrobenthos is influenced more by coarse 

grades of sediment deficient in sediment organic content, while cohesive nutrient richer mud 

coupled with near bottom turbidity were important variables for macrobenthos off uThukela. 

The transition area between uThukela and Zinkwazi is influenced by poorly sorted coarse sand, 

while Zinkwazi to Durban is more influenced by fine sand as a consequent of current induced 

sorting owing to the semi-persistent Durban Eddy. Carbonate rich coarse sediment influenced 

the mid-shelf macrobenthos between Durban and uMkhomazi. Zinkwazi to Durban habitat 

support a highly taxon-rich community, while highly abundant macrobenthos was found south 

of Durban.  

Overall, this study demonstrates a clear link between macrobenthic community structure and 

habitat heterogeneity. Stations with greater grain size heterogeneity supported high diversity. 

Environmental variables depicted as important in explaining community variation only 

accounted for a small percentage of variation, therefore it is probably that factor(s) other than 

those measured have influence on macrobenthic community structure. The results presented 

here provide a much more detailed account of biological communities of KZN mid-shelf and 

their distribution on much finer (station level-assemblages-biozones) spatial scales, which can 

be useful to inform conservation planning. Furthermore, this study addresses knowledge gap 

(macrobenthic biodiversity patterns) in the “Northern” east coast benthic communities, which 

are poorly studied. 

The selection and use of biodiversity surrogates is part of marine conservation planning, yet 

there is no consensus regarding the criteria for the selection of appropriate surrogates (Lovell et 

al. 2007). This is in part due to marine conservation lagging significantly behind its terrestrial 

counterpart, with serious attempt at marine habitat not being undertaken until the 1990s 

(Zacharias and Roff 2000). Identification and testing of suitable surrogates for biodiversity will 

increase the likelihood that the selection or/and zoning of individual MPAs results in effective 

representation and protection of biodiversity or/and target habitats (Malcolm et al. 2012). 

Results from this chapter showed limited overlap between biophysical habitat surrogates 

(predefined biozone classification) and KZN mid-shelf macrobenthic community patterns, 

suggesting that the existing biozone model is not a good surrogate for KZN benthic 

communities. Refining of the existing model is recommended by optimising it against real, 

sampled biological data.  
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CHAPTER 4. TAXONOMIC AND FUNCTIONAL ATTRIBUTES OF 

KWAZULU-NATAL MID-SHELF MACROBENTHIC FAUNAL 

COMMUNITIES 

4.1 Overview  

This chapter uses the concept of taxonomic sufficiency (TS) and organism functional attributes 

to describe the KZN mid-shelf macrobenthic community. It focusses on this group in finer scale 

from those presented in Chapter 3 by considering different taxonomic levels (Species to 

Phylum), indicator groups (Polychaeta or Amphipoda) and biological traits to distinguish 

surrogates and establish traits responsible for patterns in community assemblages. Based on 

taxonomic levels and indicator taxa, minor information was lost when aggregating data from 

Species to Family level and to the Polychaeta indicator group considering Weighted-Spearman 

correlations and non-metric Multidimensional Scaling (NMDS). The biological trait analysis 

added new insight (confirmation of assembly rules) regarding the association of diverse 

biological traits as contributing to ecosystem functioning. Three main functional/taxonomic 

groups were found using nine traits, across 51 categories from 634 taxa; off uThukela, between 

Zinkwazi and Durban, and Durban to uMkhomazi. The groups were characterised as being free-

living carnivores, hard-skeleton direct-developing omnivores and soft-bodied or hard-shelled 

omnivores with planktotrophic larvae. These patterns were explained by the KZN shelf habitat 

complexity, including sediment organic, carbonate content, water column turbidity, and 

dissolved oxygen. Results of nMDS, PERMANOVA and PERMDISP analyses showed that 

functional structure did not agree with current KZN spatial planning biozones classification. 

4.2 Introduction 

Growing awareness of biodiversity issues has brought the need for comparable and meaningful 

measures of diversity at many scales into sharp focus (Gray 1997, Snelgrove et al 2014). In 

particular, factors controlling the biodiversity of an area, and thus ecosystem function, are 

central to biodiversity research (Tilman, 2000). The typical methods for macrobenthic 

community analysis by aggregation of species data to higher taxonomic groups (such as Family, 

Genus, etc) show similar results (Wlodarska-Kowalczuk and Kedra 2007). However, traditional 

taxonomic-based macrobenthic community analysis may not fully account for the group diverse 

roles in ecosystem functioning. It has been recognised that protection of the habitat and its 

related functional processes is a key element ensuring ecological sustainability (Frid et al. 2008, 

Snelgrove et al. 2014).  
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4.2.1 Taxonomic resolution 

Soft-bottom benthic communities are perhaps the most extensively used indicators of natural 

and human-induced environmental changes (Warwick 1993, Wlodarska-Kowalczuk and Kedra 

2007, Alves et al. 2014). The commonly used responsive variables include taxon composition 

and distribution, examined with univariate and multivariate biodiversity measures (Clarke and 

Warwick 1994). Traditionally, analysis of distribution and diversity patterns has been based on 

the identification to the lowest possible taxonomic level, usually species-level. Biodiversity and 

its conservation are important and fundamental concepts in community ecology and its 

assessment requires data on species inventories (Yekta et al. 2017). However, this level is not 

always practical due to the taxonomic expertise required, budgetary constraints associated with 

it, and the presence of sibling or cryptic species (Knowlton 1993, Bickford et al. 2007). These 

major drawbacks limit mapping of biodiversity over a large spatial area using species level 

analyses (Olsgard et al. 2003), especially when dealing with large-scale data in a limited time 

span (Bertasi et al. 2009). As a consequence, selection of reserves or marine protected areas 

(MPAs) has largely relied on the use of rapid biodiversity assessments (Gladstone and Davis 

2003) such as physical and habitat surrogates (McArthur et al. 2010b, McHenry et al. 2017), 

lower taxonomic resolution (Bowman and Bailey 1997, Olsgard and Somerfield 2000, Heino 

and Soininen 2007, Wlodarska-Kowalczuk and Kedra 2007, Shokri and Gladstone 2008, 

Mueller et al. 2013) or identification of indicator groups or/and taxonomically coherent subsets 

(Ward et al. 1999, Olsgard et al. 2003, Giangrande et al. 2005, Shokri et al. 2009). Few studies 

have evaluated the efficacy of biodiversity surrogates for marine reserve selection or to facilitate 

marine spatial planning. The KwaZulu-Natal shelf environment is no exception to these 

drawbacks. In order to address this and to find a time and cost-effective methods for more rapid 

description and cataloguing of biodiversity to expedite provincial marine spatial planning for 

conservation and management of biodiversity, the search for a surrogate in an ecological 

investigation is being explored. Surrogates are defined as quantities that reflect Species level 

community patterns but can be more easily determined than traditional analyses (Olsgard and 

Somerfield 2000).  

The aforementioned approaches have been used extensively in the quest for a perfect surrogate 

in marine benthic studies and have proven useful in some applications, but has failed to 

accurately predict patterns of biodiversity elsewhere (Maurer 2000, Giangrande 2003, Drew 

2011). Taxonomic Sufficiency (TS), involves identifying taxa to the highest taxonomic level 

when loss of information has no significant effect on the ability to assess community patterns 

(Ellis 1985). This approach to assessing biodiversity patterns, and the potential dis/advantages 
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alternatives, has for the past decades remained controversial (Bowman and Bailey 1997, Gaston 

2000), but recent studies show the effectiveness of coarser taxonomic resolution in detecting 

spatial patterns (Bevilacqua et al. 2012, Mueller et al. 2013, Yekta et al. 2017).  

The use of a single lower-order taxonomic group whose responses to a natural gradient may 

produce analogous responses to those obtained from a fine taxonomic resolution has been 

advocated by Olsgard and Somerfield (2000) and Olsgard et al. (2003) as a biodiversity 

indicator. Several groups are proposed, among others, assemblages of amphipods, polychaetes 

and molluscs are recognised as valid surrogates for total macrofaunal assemblages (Olsgard et 

al. 2003, Giangrande et al. 2005, Smith 2005, Mendes et al. 2007, Wlodarska-Kowalczuk and 

Kedra 2007, Shokri et al. 2009, Lindenmayer and Likens 2011). The use of selected taxa in 

conservation and management programmes is however limited to the few regions where 

ongoing comprehensive taxonomic and natural history investigations have also been 

undertaken. Potential for subset taxa as biodiversity indicators exist across a wide variety of 

environments, especially in the tropics. However, their incorporation as indicator species has 

remained debated because of the subjectivity of selection criteria and the ambiguity in the use of 

terminology (Morrison 2009, Lindenmayer and Likens 2011, Borrett et al. 2014, Siddig et al. 

2016).  

Most surrogacy studies consider coarse taxonomic resolution or selected taxa performance, with 

only a few that simultaneously examines the adequacy of both surrogacy methods (Wlodarska-

Kowalczuk and Kedra 2007). To date, few studies of marine macroinvertebrates have 

considered the capability of detecting community patterns using coarser taxonomic levels in 

South Africa (Clarke 2005, Untiedt 2013). These also focused mainly on polychaetes.  

4.2.1.1 South African Polychaeta 

Polychaetes play a critical role in the functioning of benthic communities (Hutchings 1998). 

This is not solely driven by their richness (Fauchald and Jumars 1979) and abundances (Day 

1967, Chambers and Muir 1997, Giangrande et al. 2005), but also because of the high morpho-

functional diversity resulting in a multi-faceted response to environmental gradients (Wilson 

1991, Jumars et al. 2015b), whereby different species occupy different gradients and almost all 

substrate types. A comprehensive synopsis of the South African polychaetes was given by Day 

(1967) in two separate volumes, which still serve as the only identification guide for the 

regional fauna to date. This work described more than 800 taxa high in endemism and diversity 

(Day 1967).  
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4.2.1.2 South African Amphipoda 

Amphipoda are a highly abundant, taxonomically rich and ecologically important component of 

soft-bottom marine benthic communities (Thomas 1993, Smith 1995, Basset et al. 2004). These 

attributes, suggest that amphipods are frequently among the most dominant groups in the 

biocoenosis (Conlan 1994, De-la-Ossa-Carretero et al. 2012), and play a crucial role in the 

ecology of soft-bottom habitats through nutrient cycling and secondary production (Thomas et 

al. 2000, Jennings et al. 2002). Amphipods comprised of individuals with a high degree of niche 

specificity and those that demonstrate high tolerance to varying physico-chemical characteristics 

in sediment and water, allowing large distributional range in various biotopes (Thomas 1993, 

Thomas et al. 2000, Dauvin and Ruellet 2009, Arabi 2010). In consequence, they show a high 

diversity of feeding habits (Dı́az and Cabido 2001, Navarro-Barranco et al. 2013). Benthic 

amphipods conform to several criteria that render them highly recommendable for inclusion in 

ecotoxicological studies and marine monitoring programmes (Marchini et al. 2008, Villéger et 

al. 2010, Navarro-Barranco et al. 2013). In addition, amphipods are an invaluable food source 

for numerous economically valuable fishes (Nair et al. 1973) and therefore their abundance and 

distribution have important implications for the distribution of fishery resources (Thrush et al. 

2001, Anderson et al. 2009). Barnard (1950) provided a synopsis of all known South African 

representatives of the order Amphipoda. Subsequently, there have been some revisions of the 

taxonomy, and these have resulted in some additional records and changes in the nomenclature 

of South African species (Griffiths 1973, Griffiths 1974b). These have contributed to the listing 

of the benthic marine Amphipoda of Southern Africa by Griffiths (1976), however, additional 

species and records have been recognised since then, mainly by Griffiths (1976, 1977, 1979) 

and recently by Milne and Griffiths (2013).  

4.3 Functional diversity 

While many studies in soft-bottom benthic ecosystems have examined taxonomic diversity (and 

associated indices) of macrobenthic invertebrates and appreciated the advantages offered, this 

method provides a unimodal property of the ecosystem while omitting other biodiversity-related 

key functions (Pacheco et al. 2011). Therefore, does not fully account for taxon diverse roles in 

the ecosystem functioning (Schratzberger et al. 2007, Pavoine and Bonsall 2011, Leung 2015a). 

Knowledge of both taxonomic and functional diversity across different habitats is essential for 

understanding potential future change in provision of ecosystem services and to inform 

conservation objectives and management practices (Wong and Dowd 2015). Given that when 

attempting to evaluate biodiversity for conservation and management purposes, the inclusion of 

functional properties has been recommended (De Jonge et al. 2006, Snelgrove et al. 2014), an 
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alternative approach that incorporates species function is required. Few studies have examined 

functional trait diversity and how it relates to soft-bottom benthic habitats structures. 

Functional diversity refers to a variety of roles performed by benthic species in a community 

(Tillin et al. 2006). These roles/functions are important in regulating ecosystem processes and 

can be portrayed by the biological traits organisms exhibit (Snelgrove, 1998). A biological trait 

is a measurable characteristic of an organism that reflects its adaptation to environmental 

conditions (Violle et al. 2007). As such, the range and contribution of the biological traits of 

species in a community will determine its ecosystem functional diversity (Tillin et al. 2006), 

which is considered a key indicator for conservation and management (Cadotte et al. 2011).  

4.3.1 Biological Trait Analysis  

Biological trait analysis (BTA) is increasingly used to examine the ecological functions of 

macrobenthic communities and patterns in response to environmental gradients (Pacheco et al. 

2011, Paganelli et al. 2012, Fleddum et al. 2013, Berthelsen et al. 2015, Shojaei et al. 2015). 

This approach provides greater mechanistic understanding on how communities may respond to 

environmental change and as traits are known to influence the rate and relative importance of 

particular ecosystem processes, they are expected to further improve understanding of 

ecosystem functioning (Vandewalle et al. 2010, Snelgrove et al. 2014, Berthelsen et al. 2015). 

The BTA uses a series of life history, morphological and behavioural characteristics of the 

species present in assemblages to indicate key aspects of their ecological functioning over a 

multidimensional niche space (Chevene et al. 1994, Bremner et al. 2006c, Norling et al. 2007, 

Paganelli et al. 2012), where niche-processes are more likely to explain the patterns (Petchey 

and Gaston 2002). This approach differs from previous unidimensional trait-based approaches, 

such as trophic or functional groups (Pearson and Rosenberg 1987, Snelgrove and Butman 

1994)) as it uses a wider range of trait information. Ecosystem functioning cannot be provided 

by a single parameter; simultaneous consideration of multiple variables is considered most 

effective, thus, this approach allows for synchronised assessments of several functions (Bremner 

2008, Frid et al. 2008). The BTA incorporates information on the relative abundance of species 

and a wide variety of biological characteristics (trait information). Changes in the abundance of 

taxa resulting in changes in the patterns of trait expression within assemblages, may be 

indicative of the effects of impacts on ecological functioning (Bremner et al. 2006a) and are 

often reflected by an increase in those species able to withstand the impacts. Unlike the 

taxonomic based approach, biological trait analysis uses biological characteristics which can be 

shared by different species (Usseglio-Polatera et al. 2000b, Mah and Blake 2012). Therefore, 

BTA can be applied to different taxonomic groups of organisms and also over a wide spatial 
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coverage where there are gradients in species composition (Bremner 2005, Hewitt et al. 2008). 

In this context, trait-based approaches are robust with decreased taxonomic resolution (Menezes 

et al. 2010), and problems associated with misidentification are less critical since macrobenthic 

species with high morphological similarity will most probably share the same trait category 

(Alves et al. 2014).  

Traits are usually divided into two categories (Costello et al. 2015): biological traits (e.g. life 

cycle, physiology and behavioural characteristics, and reproductive) and ecological traits (e.g. 

mobility, body design, diet and trophic level). Traits are measured at an individual level and 

used comprehensively across increasing taxonomic level. Moreover, traits can be compared 

among individuals within and between communities (Boersma et al. 2016), therefore may 

highlight patterns within and across ecosystems that are not apparent in taxonomic-based 

approaches (Boersma et al. 2016, Weigel et al. 2016, van der Linden et al. 2017). Each trait has 

several sub-categories, or modalities (e.g. the ‘trait movement method’ contains the modalities 

crawler, burrower and swimmer). Modalities allow for functional characterisation of the state of 

the membership of each taxon. This study is the first of its kind for invertabrates on the KZN 

shelf. Fleddum et al. (2013) used BTA on the west coast to examine impacts of demersal 

trawling on marine benthic habitat. 

Aims, Objectives, and Hypotheses 

This chapter examines if higher taxonomic levels (Genus-Phylum) or potential indicator groups 

(Polychaeta and Amphipoda) are surrogates for community patterns shown by whole 

microbenthic assemblages. The aims are to improve the poor state of knowledge of east coast 

macrobenthic species, between Richards Bay and Mkomaas by describing the biological trait 

structure of macrobenthos, and to test relationships between trait structure and measured 

environmental parameters relative to provincial marine spatial planning predefined biozones. 

Objectives  

1. To determine if data aggregated to lower taxonomic resolution or to potential indicator 

groups are comparable to those at Species level. 

2. To characterise macrobenthic trait composition 

3. To define KZN mid-shelf macrobenthic community traitscape and test if there are spatial 

differences between them. 

4. To determine the relationship between the macrobenthic community traitscape and measured 

environmental parameters.  
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5. To determine whether functional structures of KZN macrobenthic communities agree with a 

predefined biozone classification.  

Hypotheses 

H1: Species richness and diversity decrease with data aggregation to lowest taxonomic 

resolution, and is lowest when considering a potential indicator group. 

H2: The ability to detect abiotic factors responsible for spatial patterns decrease with data 

aggregation to lowest taxonomic resolution, and is lowest when considering a potential indicator 

group. 

H3: There is congruence in the spatial structure of macrobenthic fauna when the data are 

aggregated to lower taxonomic groups (Genus to Phylum), potential indicator groups and 

functional traits. 

H3: There are differences in macrobenthic trait composition between the stations and 

community traitscapes along the KZN mid-shelf. 

H4: There is a significant relationship between the macrobenthic community traitscape and 

biophysical variables measured.  

H5: There are functional differences in community patterns relative to the predefined biozones 

classification.  

4.4 Materials and Methods 

General materials and methods including a section on the study area, field-sampling protocol, 

laboratory processing and data analysis are given in Chapter 2. The following are protocols 

relevant to this chapter. 

4.5 Data Treatment and analysis  

Hypotheses were tested using two datasets; species abundance data (as per chapter 3) and 

weighted-abundance data (methods to follow). 

4.5.1 Taxonomic resolution information 

Fine resolution taxonomy data sets are required to study the fitness of different taxonomic 

resolution data for ecological analyses. The resolution of these data sets can be modified by 

aggregation to coarser levels. Taxonomic aggregation was applied by successively aggregating 

species abundance data (used in Chapter 3) to Genus, Family, Order, Class and Phylum (coarse-

taxonomic resolution) to produce six test data sets.  

From the abundance data, two additional data sets were extracted (Polychaeta and Amphipoda). 

The indicator group ‘Polychaeta’ (multiple species per group) was used, because it contributed 
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more than 60% to all taxa recorded (Chapter 3), and the ‘Amphipoda’ indicator group (multiple 

species per group) was used because it contributed approximately 70% to total abundance 

(Chapter 3). Furthermore, Amphipoda are a recognised, dominant component of the KZN 

macrobenthic communities (Arabi 2010). Polychaetes (Olsgard and Somerfield 2000, Olsgard et 

al. 2003) in particular has been suggested as possible surrogates of marine macrofauna 

communities in soft sediment because they are both abundant and ecologically important group. 

4.5.2 Biological trait definition and information 

For this study, eight biological traits (respective modalities) were considered (Table 4.1). 

Biological traits were chosen to represent processes, properties and activities that are either 

directly linked to these traits or are indirect indicators of important biological, chemical and 

structural properties of the ecosystem and its functioning (Fig 1.2 and Table 4.1). Trait and 

modality names as well as the general classification structure were kept standard as per other 

functional/biological trait studies cited herein (e.g. Bremner et al. 2003a, Frid et al. 2008 and 

Shojaei et al. 2015) to ensure comparability. Importantly, the traits used herein were selected 

because of their importance for the structure and key ecological functions of the benthic system. 

Furthermore, because they aid in designation and management of MPA’s (Frid et al. 2008, 

Paganelli et al. 2012), thus addresses the main aims of this study.  

 

Information for assigning taxa to biological traits were obtained from peer-reviewed articles, 

books and taxonomic keys (monographs), mostly collected at a lowest taxonomic level. Trait 

information included primary sources from the region (e.g. Day 1967), but when regional 

information was not available, species characteristics information from equivalent environment 

were used, e.g. Australia waters (Beesley et al. 2000). Benthic species have the potential to 

show plasticity in certain trait categories, such that congeneric species can respond differently 

within the same habitat (Törnroos and Bonsdorff 2012). Frequently, information for individual 

genera or species was not available and information from congeneric species were used, since 

phylogenetically related species might have evolved similar adaptations (Usseglio-Polatera et al. 

2000a). The methodology of assigning traits follows the categorical approach where a trait (e.g. 

movement method) is divided into modalities (e.g. sessile, semi-sessile, or mobile). Individual 

taxa were then scored to the extent they exhibit trait modalities using a “Fuzzy coding” 

procedure (Chevene et al. 1994). This procedure expresses each category on a scale of ‘ 0’ and ‘ 

3’ ,with ‘ 0 ’ indicating no affinity of a species to a trait category, and ‘3 ’indicating a high 

affinity to the trait category. This coding system allows for species traits to be dispersed over a 

number of modalities (code classes) to reflect its biology. For example, a tube-dwelling 

polychaete Lanice conchilega is a ‘deposit feeder’, but may feed as a ‘suspension feeder’. 
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Table 4.1. Biological trait variables (including modalities), categories, function and processes used to 

describe functional diversity in the KZN mid-shelf macrobenthic communities. (Functions and processes, 
see also Tyler et al. (2012), van der Linden et al. (2017) and (Beauchard et al. 2017)) 
 

Traits Modalities (or category) Function and process 

 
Body design (BD) 

1 Soft (S) Survival against abiotic 
damages and biotic 
aggressions. 

2 Hard – exoskeleton (HE) 

3 Hard – shell (HS) 

 
 
 
Movement method 
(MM) 

1 Sessile (Se) Foraging mode, ability to 
escape predation, 
migratory requirements 
and dispersal, influences 
bioturbation processes 
and pumping or irrigation 
features for oxygenation. 
(Reise 2002) 

2 Semi-mobile (SM) 

3 Burrow (Bu) 

4 Bore (Bo) 

5 Crawl/creep/ (C/C) 

6 Jump (J) 

7 Swim (S) 

8 Unknown (U) 

 
 
Reproductive 
technique (RT) 

1 Asexual (budding) (A) Juvenile survival, 
dispersal potential, 
resource to higher trophic 
levels, recruitment 
success. (Christiansen 
and Fenchel 1979) 

2 Sexual (broadcast spawner) (SBS) 

3 Sexual (egg layer/brooder–planktotrophic larvae) 
(SB-PL) 

4 Sexual (egg layer/brooder-mini adult) (SB-MA) 

5 Unknown (U) 

 
Sexual differentiation 
(SD) 

1 Gonochoric (G) Larvae and juvenile 
survival, dispersal 
potential (Ghiselin 1969) 

2 Synchronous hermaphrodite (SYH) 

3 Sequential hermaphrodite (SEH) 

4 Unknown (U) 

 
Larval development 
(LD) 

1 Direct developer (DP) Juvenile survival, 
dispersal potential. 
(Jablonski and Lutz 1983, 
Jablonski 1986, McHugh 
and Fong 2002) 

2 Lecithotrophic (L) 

3 Planktotrophic (P) 

4 Unknown (U) 

 
 
 
 
FD Feeding method 
(FD)   

1 Filter/suspension feeder (F/SF)  
Food acquisition, growth 
requirements, 
demographic control 
(predation), influences 
energy flow and nutrient 
cycling.  
 
(Pearson and 
Rosenberg 1978, 
Fauchald and Jumars 
1979, Watling 1993, 
Jumars et al. 2015a) 

2 Surface deposit feeder (SFD) 

3 Subsurface deposit feeder (SSFD) 

4 Interface feeder (IF) 

5 Predator (P) 

6 Scavenger (Sc) 

7 Chemosymbiotic (Ch) 

8 Grazer (G) 

9 Unknown (U) 

 
 
Diet preference (DP) 

1 Carnivore (C) 

2 Herbivore (H) 

3 Omnivore (O) 

4 Detritivore (D) 

5 Unknown (U) 

 
 
 
Living habit (LH)  

1 Tube dweller (TB) Foraging mode, 
protection against 
epibenthic and ben-
thopelagic predators, 
biogeochemical impacts. 
(Ullberg and Ólafsson 
2003) 

2 Permanent burrower/gallery dweller (PB) 

3 Crevice dweller (CD) 

4 Shell dweller (SD) 

5 Encrusting (E ) 

6 Attach (A) 

7 Free-living (FL) 

8 Unknown (U) 

 
 
Habitat engineering 
(HE) 

1 None (N) Biogeochemical 
requirements, niche 
creation, refuge, nursery, 
sediment oxygenation, 
Food acquisition, organic 
matter re-distribution.  

2 Forms settlement/attachment sites (FS/A) 

3 Forms shelters (FS) 

4 Sediment accretion/removal (S-A/R) 

5 Unknown (U) 
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Accordingly, this species was coded ‘1’ for the suspension-feeding trait, ‘3’ for deposit feeding, 

and ‘0’ for scavenging, predatory, or interface feeding. This approach allows for a much more 

genuine representation of functional biology of assemblage (Frid et al. 2008). Where no 

information was available, ‘trait unknown’ was assigned to avoid undue influence on the overall 

results (Bremner et al. 2003b). Columns of the matrix were trait modalities and rows were trait 

score for each taxon. The BTA matrices computation followed the procedure described by 

Bremner et al. (2003b), where three different numerical matrices were computed using the ‘taxa 

by station’ abundance matrix used for analysis in Chapter 3, (1) ‘taxa by traits’ abundance 

matrix (biological trait for each taxon), (2) ‘traits by station’ (biological traits in each sampling 

station) and (3) abundance-weighted trait by multiplying trait categories for each taxon at a 

station by the taxon abundance. Finally, summation of trait over all taxa present at each station 

to obtain a single value for each trait category (trait score) (Bremner et al. 2006c).  

4.6 Statistical Analysis 

4.6.1 Taxonomic resolution  

The reduction (H1) in the information for each taxonomic level and potential indicator group 

was taken as a statistically significant drop in (1) diversity indices (indicating a change in taxon 

richness (Weighted-Spearman correlation coefficients)). Good surrogate taxa will have high ρw-

values, reflecting a less noisy, and thus more predictable, relationship with richness and 

diversity. The reduction in r
2
-values (2) (indicating a change in capability to detect 

environmental gradient; (BEST analysis)) and (3) ρ-values (indicating a change in multivariate 

community pattern; (2
nd

 stage)), from species level (fine resolution) to the next most coarse 

taxonomic level. This method was proposed by Demšar (2006) and recommended for 

comparison across datasets. Higher-level taxa likely to prove suitable surrogates are those that 

are proportionally rich and diverse. In this study, the ‘Diverse’ procedure (Clarke and Gorley 

2006) was used to compute taxon richness (Pielou 1969) and diversity (Shannon and Weaver 

1949) for each taxonomic level and potential indicator group.  

Taxon richness and diversity values (1) were pooled over all data sets (Species-Phyla and 

indicator taxa) and tested for normality using Shapiro-Wilk test (Shapiro and Wilk 1965) being 

the most robust of the proposed normality tests (Hammer et al. 2001). Homogeneity of variance 

was tested using the Levine’s test (Zar 1999). Unequal-variance (Welch) ANOVA was 

considered since it is more robust on non-normal distributions (Hammer et al. 2001). All 

univariate statistical analyses were carried out in the PAleontological STatistics (PAST) 

software program (Version 3.14) (Hammer et al. 2001). The BEST procedure (2)  within 
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PRIMER (Clarke and Warwick 2001) that uses stepwise search procedure and Spearman rank 

correlation to find the best single or combination of environmental variable(s) that maximises 

correlation coefficient between environmental parameters and faunal abundance data aggregated 

to lower taxonomic resolution (r
2
) was used to depict the best variables that explains community 

patterns (Olsgard et al. 1998).  

A total of eight Bray–Curtis (B-C) similarity matrices (square root transformed abundance data) 

were incorporated into the 2
nd

-Stage MDS routine (3) (PRIMER v.6, Clarke and Gorley 2006) 

to examine the efficiency of data aggregated to higher taxonomic resolution in preserving the 

multivariate pattern (H3) defined at species level. Independency constraints are maximised in 

2
nd

-stage MDS. Weighted Spearman rank correlation (ρw), a nonparametric analog to the Mantel 

test, was used to compare B-C similarity matrices because it weights the distance between two 

ranks using a linear function of those ranks, giving more importance to higher ranks than lower 

ones (Somerfield and Clarke 1995, Olsgard et al. 1998, Olsgard and Somerfield 2000).  

Results of the second stage analysis can be presented using a nonmetric multidimensional 

scaling (NMDS) plot to display patterns in the degree of correlation (Somerfield and Clarke 

1995, Olsgard and Somerfield 2000). However, since an NMDS plot is only a two-dimensional 

estimation of all relationships (including those between surrogates), weighted-Spearman 

correlation coefficients between each surrogate set and the complete suite of fauna was 

computed. A statistical significant correlation (r=close to 1, sig. <0.05) suggest a high degree of 

concordance between pairs of similar matrices and therefore there are negligible changes 

between data analysed at different taxonomic levels. Non-metric multidimensional scaling 

(nMDS) was run on each B-C matrix from different taxonomic levels and indicator groups (ρ as 

similarity measure) to represent the relatedness of samples. Kruskal’s stress (Kruskal 1964) 

values associated with each MDS plot reflect the accuracy of the plot represented (Chapter 2). 

4.6.2 Biological trait analysis  

Abundance–weighted data of nine traits subdivided into 51 categories were used to test if there 

are differences in trait composition and relative to environmental parameters driving each 

different traitscape. Here, the DIVERSE programme was used to compute Shannon-Wiener 

Diversity (Ht') (Shannon and Weaver 1949), Margalef’s Richness (dt) and Pielou’s Evenness 

(Jt') (Pielou 1969) at each sample site. One-way analysis of variance (ANOVA) was used to test 

for significant difference in univariate measures within sampled stations (H4).  

The Bray-Curtis (B-C) similarity matrix for abundance-weighted biological trait was subjected 

to cluster analysis and visualised through nMDS. Similarity profiles (SIMPROF, p=0.05) was 
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used to test statistical significance of separate cluster. Each significant traitscape, resulting from 

the multivariate analyses, was characterised by the associated values of univariate indices (St, 

Nt, dt, Jt' and Ht'). The SIMPER procedure was used to determine trait characterising 

assemblages and those that contribute to the average (dis)similarity between the samples 

(Chapter 2 and 3). One-way fixed PERMANOVA (9999 permutations) analysis was used to test 

the hypothesis of no significant differences in the trait composition and distribution of 

macrobenthic communities (Chapter 2 and 3). 

4.6.3 Environmental-biological trait relationships  

The BVSTEP algorithm was used to identify a suite of variables that best explains the patterns 

(H4) observed in the traitscape, and Global BEST test was used to determine the significance of 

the subset of environmental parameters (Chapter 2 and 3). The relative importance of each 

environmental variable in accounting for the community variation was further investigated by 

distLM with Akaike’s AIC as the selection criterion (Chapters 2 and 3). The dbRDA routine 

was used to visualise the relationship between the best correlative variables and the trait 

assemblages (Chapter 2 and 3). Biological trait distributions are presumably affected by various 

environmental factors related to the habitat type characteristics, PERMANOVA (9999 

permutations) analysis was performed to test for the significance of environmental factors on 

trait distribution (Chapters 2 and 3). 

4.6.4 Biozones as surrogates for functional structure 

Trait modality abundance weighted scores (Nt: no. of ind. m
-2

) and number of trait modalities 

(St: no. of trait modalities) were computed for biozone subclusters (BS), with the DIVERSE 

programme used to calculate Shannon-Wiener Diversity (Ht'), Margalef’s Richness (dt), and 

Pielou’s Evenness (Jt'). Two-factor nested, non-parametric multivariate analysis of variance was 

used to test the hypothesis that the univariate indices differed among BS (H5) and did not differ 

among sites within each BS. Two-factor PERMANOVA was used to test for the same 

hypothesis in the trait assemblages. Biological trait structure in BS was visualized through a 

principal component analysis (PCA) ordination. Permutational tests of multivariate dispersion 

(PERMDISP) were used with PERMANOVA analyses to test for homogeneity in average 

dispersion of samples from their group centroids. Taxa typifying the structure of the cluster 

were analysed through the SIMPER procedure. PERMDISP was used to test the hypothesis of 

homogeneity in average dispersion of samples based on environmental variables. Average 

Euclidean distance to centroid (±SD) was used to visualise differences between BS. This 

indicates whether samples on each BS group based on measured parameters or not. 
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4.7 Results 

4.7.1 Taxonomic resolution 

4.7.1.1 Effects of taxonomic resolution on biodiversity 

Univariate comparisons of richness (d) and diversity (H') indices from different taxonomic 

levels (Species-Phylum) and indicator taxa are presented in Fig 4.1, and resulted in both d and 

H’ values decreasing with increasing aggregation from Species-to-Phylum and to indicator 

taxon. The observed decrease with coarser taxonomic level was most strong for d and moderate 

for H’ (Fig 4.1). Pairwise comparison showed significant drop in Order-to-Phylum taxonomic 

levels for both richness (p<0.001) and Shannon-Weiner index (p<0.001). Analyses of 

congruence in richness and diversity exhibited significant correlations between Species-to-

Family taxonomic levels and indicator taxon (Polychaeta). Spearman rank correlation showed a 

strong correlation in richness between Species-to-Family taxonomic level (r>0.85, p=0.001) and 

between Genus level and the Polychaeta group (r=0.98, p=0.001). Similarly, there were strong 

correlation in Shannon-Weiner index between Species-to-Family and Polychaeta group (r=0.88, 

p=0.001). 

 

 

 

 

 

 

4.7.1.2 Effects of taxonomic resolution on multivariate community patterns 

Macrofaunal assemblages aggregated to higher taxonomic levels resulted in similar ordination 

plots, however, when taxa were aggregated to Order, Class or Phylum, the separation of stations 

was less apparent (Fig 4.2). High correlation was observed Genus and Family and comparable 

to Species, thus indicated congruence with species level. The indicator taxon ‘Polychaeta’ was 

comparable to Species assemblages, whereas ‘Amphipoda’ showed some differences when 

compared with Species-level assemblages.  

Figure 4.1. Box-and-whisker plots showing diversity indices (d and H’) at various taxonomic levels and 

indicator taxon. Black lines within boxes represent the median, box ends show quartiles and whiskers 
show range. S=Species, G=Genus, F=Family, O=Order, C=Class, Ph=Phylum. Indicator taxon, 
P=Polychaeta A=Amphipoda at Species level. 
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Figure 4.2. NMDS ordination plots at various taxonomic levels (Species-Order) and selected 

indicator groups (Polychaeta and Amphipoda) showing the efficiency of decreasing taxonomic 
resolution (relative to Species) at maintaining community spatial distribution across stations. 
Efficiency is measured by similarity of Weighted-Spearman rank correlation coefficients (ρw) of the 
coarser taxonomic levels compared with Species level. 
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However, a comparison of ρw-values indicated that a correlation between Species-level and 

‘Amphipoda’ taxon was high (Fig 4.2). The highest correlation was observed between Species 

and the Polychaeta taxon (Fig 4.2). Stress values were relatively low (0.08-0.15=indicated 

satisfactory results) and almost constant along different taxonomic levels. Taxonomic 

aggregations showed a clear spatial segregation of the stations (e.g. uThukela stations (G5, H4 

and I5), Port Durnford (E4, EE4 and F6)) irrespective of the taxonomic level and indicator 

taxon, and this reflects specific macrofaunal assemblages typical of these unique habitats. 

4.7.1.3 Relationship of taxonomic level and environmental variables  

Biological-Environmental matching (BIOENV) analysis indicated a combination of %mud, 

%medium sand on the sediment and turbidity as the variables best explaining community 

structuring at Species-to-Phylum taxonomic levels and selected indicator groups (Table 4.2). A 

significant lower correlation was observed at Order-to-Phylum taxonomic levels (Table 4.2). 

BEST analysis revealed the highest correlation at Species and Family levels. 

 

 

 

 

 

 

4.7.2 Biological trait analysis 

4.7.2.1 Number of trait modalities (St) and trait abundance-weighted scores (Nt) 

No significant difference was detected in abundance weighted scores amongst the stations 

(t=0.281, df=18, p>0.782). The mean (±SD) Nt was 18469 ± 16286 and spread amongst 883-

65843 trait modalities per station, while the distribution was left skewed with the bulk of Nt 

lying below the median (Fig 4.3). In total, 51 trait modalities were considered, with most 

represented at all stations x̅: 41±3, ranging between 33-48 trait modalities per station. Overall, 

no single station hosted all trait modalities. 

Table 4.2. Spearman rank correlation coefficients (ρ) for macrobenthos and environmental variables. 

Macrobenthos aggregated to various taxonomic levels and selected indicator group. Asterisks denote 
taxonomic levels that were significantly correlated with environmental variables (p<0.001). 
MS=Medium sand. 

Resolution ρ Variables

Species* 0.859 Mud, Turbidity

Genus* 0.829 Mud, Turbidity

Family* 0.837 Mud, Turbidity

Order 0.751 MS, Mud, Turbidity

Class 0.633 MS, Mud, Turbidity

Phylum 0.634 MS, Mud, Turbidity

Polychaeta* 0.827 Mud, Turbidity

Amphipoda* 0.833 Mud, Turbidity
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4.7.3 Biological trait modality distribution 

Trait modalities differed between the sampled stations and in their spatial distribution (Fig 4.4 

a-e; 4.5 a-d). Overall, hard exoskeleton fauna (BDHE) dominated at most sampled stations and 

were recorded in high numbers at S2 and S5, while soft-bodied (BDS) fauna formed the second 

dominant group with hard shell (BDHS) fauna being rare in most stations (Fig 4.4 a). These 

fauna were generally moderately mobile (MMSM) to sessile (MMSe) with burrowing (MMBu) 

behaviours (Fig 4.4 b). There was a dominance of brooders (RTSB-MA) with direct larval 

development compared with broadcast spawners with forms producing early stage larvae 

(RTSB-PL) (Fig 4.4 c, e). The reproductive mode was mainly gonochoric (separate sexes-SDG) 

(Fig 4.4 d). Surface deposit (FDSDF) and filter/suspension (FDF/SD) feeding methods were 

generally the dominant feeding types, while predation (FDP) and scavenging (FDSc) feeding 

methods were also common at most sample stations.Overall, feeding types were more 

heterogeneous amongst stations (Fig 4.5 b). The diet preference trait was dominated by 

omnivores (DPO), which constituted the highest proportion within the individual stations, while 

carnivores (DPC) contributed the second dominant modality within stations. Herbivorous 

(DPH) and detrital (DPD) diets were rare in most sampled stations (Fig 4.5 a). However, it 

should be noted that where detrital diets were present, corresponded to the stations where 

facultative feeders (capable of switching between feeding methods with changing food 

resources) were also present. Living habitats were mainly tube dwelling (LHTD) and burrowing 

(LHPB) forms, which consequently contributed to bioturbation activities (HES-A/R) and habitat 

provision for other species (HEFS and HEFS/A) (Fig 4.5 c-d). 

Figure 4.3. Boxplots of trait modalities abundance-weighted scores (Nt) and number of trait 

modalities (St) for macrobenthos sampled along the KwaZulu-Natal mid-shelf. Black lines within 
boxes represent the median. 
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Figure 4.4. Distribution of abundance-weighted modality scores of benthic faunal assemblages 

across sampling station in KZN mid-shelf: (a) body design, (b) movement method, (c) reproduction 
technique, (d) sexual differentiation, and (e) larval development. Main cities and coastal systems 
from north to south (Port Durnford-uMkhomazi). For explanation of modality codes refer to Table 
4.1. 
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4.7.4 Community patterns based on biological trait along KZN mid-shelf 

Non-metric MSD ordination based on Bray-Curtis (B-C) similarity using biological traits 

identified four sample groups at 70% percentage reflecting geographical differences in 

traitscapes (Fig 4.6). The similarity amongst stations within sample groups ranged between 78-

94%. Overall similarity percentage was high, and sample groups shared >70% of similarity 

resemblance (Fig 4.6). Group I comprised two stations (H4 off the uThukela and EE4 off Port 

Figure 4.5. Distribution of abundance-weighted modality scores of benthic faunal assemblages 

across sampling station in the KwaZulu-Natal mid-shelf environment: (a) diet preference, (b) 
feeding mode, (c) living habit, (d) habitat engineering. Main cities and coastal systems from north to 
south (Port Durnford-uMkhomazi). For explanation of modality codes refer to Table 4.1. 
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Durnford) represented habitat that hosted the lowest number of trait modalities and abundance-

weighted scores. Group II comprised other samples off the uThukela and Port Durnford that 

also represented low number of trait modalities and abundance-weighted scores. Group III 

comprised of larger number of samples and together with Group IV consisted of stations from 

Zinkwazi to uMkhomazi, and represented high number of trait modalities and abundance-

weighted scores. A series of Similarity Profile (SIMPROF) permutation tests confirmed the 

statistical significance (p=0.05) of sample Groups I-IV, obtained from cluster analysis (Clarke 

et al. 2008). 

 

 

 

 

 

 

 

 

4.7.5 Components of diversity  

Univariate measures differed between sample groups (p-perm<0.001). Macrobenthic trait 

weighted abundance (Nt) and the number of traits (St) were highest in Group IV (Nt: 

47424±16314, St: 43±1.15), while Margalef’s Richness (dt) was highest in Group I (dt: 

4.82±0.14) (Table 4.3). Pielou's Evenness (J’t) was high in Group I and II (J’t: 0.89±0.02, 

0.89±0.01) and Shannon-Weiner diversity (H’t) was high in Group II (H’t: 3.26±0.02). Lowest 

number of traits and weighted abundance values were recorded for samples comprising Group I 

(EE4 and H4) as well as Margalef’s Richness, Pielou's Evenness, and Shannon-Weiner diversity 

index for samples comprising Group IV (E4, F6, G5 and I4) (Table 4.3). 

 

 

Figure 4.6. NMDS ordination plots of biological trait assemblages of macrobenthos per station. 

Dashed line indicates samples grouped at 70% Bray-Curtis similarity. GI-IV=Sample groups. For 
explanation of modality codes refer to Table 4.1.  
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4.7.6 Trait characterising sample groups 

The main trait modalities responsible for characterising and discriminating between sample 

Groups I-IV obtained from cluster analysis were determined by SIMPER (Table 4.4; 4.5). 

Sample groups were dominated and characterised by gonochoristic differentiation (separate 

sexes: SDG), which further contributed to the (dis)similarity between the sample groups (Table 

4.4).  

Group I, comprising the smallest number of samples was also dominated by soft-bodied (BDS) 

broadcast spawners (RTSBS) with planktotrophic larvae (RTSB, LDP). The latter was found 

exclusively in this group and together with semi-mobile movement method (MMSM) and 

predatory feeding method contributed >4% to within group similarity (85.23%) and were 

identified as being characteristic of Group I (Table 4.4). Soft bodied (BDS) omnivores (DPO) 

dominated group II and contributed >4% to within group similarity (73.39%). Surface dwellers 

(LHFL) found exclusively here, together with additional six-trait modalities typified group II 

(Table 4.4). Pairwise comparison (Ave. Dissimilarity >65%) revealed semi-motile (MMSM) 

omnivores (DPO) to contribute >4% dissimilarity between group II, and III-IV (Table 4.5). 

Group III, comprising the largest number of samples was dominated by semi-motile (MMSM) 

omnivores (DPO). These further contributed >4% to within group III similarity (73.62%) and 

together with seven other trait modalities were identified as characteristic of this group (Table 

4.4). Hard exoskeleton (BDHE) omnivorous (DPO) filter/suspension feeders (FDF/SF) were 

found in greater abundances in group IV. These tube dwelling (LHTB) brooders (RTSB-MA) 

with direct larval development (LDDP) resulted in the formation of shelter (HEFS) for other 

species as reflected by the presence of semi-mobile fauna (MMSM) and altogether contributed 

>4% to within group similarity (71.23%). These, including permanent burrowers, typified this 

group (Table 4.4). SIMPER results showed that no trait modality contributed >4% to the 

dissimilarity between groups III and IV (Table 4.5).  

 

Indices

(Trait-weighted abundance) i ii iii iv

No. of traits (St) 35±2.12 39±1.50 42±2.24 43±1.15

Abundance (Nt) 1052±239 3462±1025 19267±4827 47424±16314

Margalef's Richness (dt) 4.82±0.15 4.18±0.26 4.18±0.31 3.88±0.03

Pielou's Evenness (J't) 0.89±0.02 0.89±0.01 0.85±0.02 0.81±0.04

Shannon-Weiner Diversity (H't) 3.18±0.01 3.26±0.02 3.19±0.09 3.06±0.16

Sample groups

Table 4.3. Univariate measures of diversity (±SD) calculated from trait weighted abundance for 
sample groups I-IV defined in cluster analysis. 
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 x̅ abun. x̅ sim. Sim/SDContr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.

RTSB-PL 16.67 1.46 23.78 1.91 - - - - - - - - - - - -

BDS 74.00 6.14 15.08 8.05 194.00 4.20 5.47 5.73 - - - - - - - -

RTSBS 64.67 5.34 14.24 7.00 - - - - - - - - - - - -

FDSDF 18.67 1.52 12.23 1.99 104.75 2.17 5.42 2.95 644.69 2.48 3.28 3.37 - - - -

LDP 72.00 5.82 11.49 7.63 - - - - - - - - - - - -

SDG 92.00 7.28 9.61 9.55 307.75 7.54 8.15 10.28 1802.94 7.91 7.60 10.74 4427.11 7.50 6.71 10.53

BDHE 22.00 1.70 8.05 2.23 - - - - - - - - - - - -

MMSM 46.67 4.21 7.63 5.52 150.42 3.98 6.45 5.42 1162.20 5.09 6.82 6.91 2945.78 4.92 6.41 6.91

HES-A/R 41.33 3.62 6.25 4.75 - - - - 859.74 3.53 3.66 4.80 - - - -

FDP 47.33 4.07 5.61 5.34 132.58 3.24 8.02 4.42 475.24 1.89 3.66 2.57 - - - -

DPC - - - - 112.67 2.98 8.28 4.06 442.50 1.69 4.15 2.30 - - - -

LDL - - - - 90.83 1.94 8.12 2.64 481.29 2.03 7.02 2.76 - - - -

FDF/SF - - - - 105.25 2.57 7.64 3.50 - - - - 2168.00 4.25 5.56 5.97

DPO - - - - 193.00 4.13 7.32 5.62 1220.12 5.17 6.86 7.02 3588.00 6.14 6.48 8.62

LHFL - - - - 112.08 2.15 5.54 2.92 - - - - - - - -

MMSe - - - - - - - - 793.06 3.30 4.09 4.48 1912.00 3.53 5.86 4.96

LHTB - - - - - - - - 873.08 3.44 3.95 4.67 3176.00 4.88 5.91 6.85

LDDP - - - - - - - - - - - - 3660.44 5.64 5.63 7.92

BDHE - - - - - - - - - - - - 3511.56 5.17 5.03 7.26

RTSB-MA - - - - - - - - - - - - 3506.22 5.05 4.53 7.10

LHPB - - - - - - - - - - - - 862.22 1.41 4.51 1.98

Traits 

Modalities Mean Sim GI = 76.26% Mean Sim GII = 73.39% Mean Sim GIII =73.62% Mean Sim GIV = 71.23%

Table 4.4. Characterization of the four (I-IV) traitscapes defined by cluster analysis, showing trait modality 

contributing to average ‘within group’ abundance defined by sim/SD ratio based on one-way SIMPER 
analysis of square-root transformed trait weighted abundance data. Trait modalities accounting for 90% 
cumulative contribution of the ‘within group’ similarity are listed along with their contribution (Contr.%). Text 
in bold indicates trait modalities contributing >4% mean similarity. Text in grey shading indicates trait 
modalities typifying sample group. Sim=Similarity, SD=Standard deviation, Mean Sim=Similarity 
percentage and G=group. For explanation of modality codes refer to Table 4.1. 
 

x̅ abun.I x̅ abun. II x̅ dis. Dis/SD Contr. x̅ abun.I x̅ abun. III x̅ dis. Dis/SD Contr. x̅ abun.I x̅ abun. IV x̅ dis. Dis/SD Contr.

DPC 38.00 112.67 1.65 10.26 3.11 - - - - - - - - - -

SDG 92.00 307.75 4.69 5.49 8.83 92.00 1802.94 8.36 20.72 9.37 92.00 4427.11 8.94 44.55 9.37

FDP 47.33 132.58 1.84 5.42 3.47 - - - - - - - - - -

MMSM 46.67 150.42 2.35 4.09 4.43 46.67 1162.20 5.46 11.29 6.13 46.67 2945.78 5.95 23.58 6.23

FDSDF 18.67 104.75 1.81 3.23 3.41 - - - - - - - - - -

DPO - - - - - 48.67 1220.12 5.74 5.75 6.43 48.67 3588.00 7.32 31.69 7.67

LDL - - - - - 17.33 481.29 2.27 4.90 2.55 - - - - -

MMSe - - - - - 52.67 793.06 3.60 4.75 4.03 52.67 1912.00 3.95 6.61 4.14

LHPB - - - - - - - - - - 23.33 862.22 1.73 6.09 1.82

x̅ abun.II x̅ abun. III x̅ dis. Dis/SD Contr. x̅ abun.II x̅ abun. IV x̅ dis. Dis/SD Contr. x̅ abun.III x̅ abun. IV x̅ dis. Dis/SD Contr.

SDG 307.75 1802.94 6.47 7.04 9.32 307.75 4427.11 8.04 19.12 9.36 1802.94 4427.11 3.81 2.79 8.39

MMSM 150.42 1162.20 4.39 7.30 6.33 150.42 2945.78 5.43 16.37 6.33 1162.20 2945.78 2.58 2.70 5.67

DPO 193.00 1220.12 4.46 4.08 6.43 193.00 3588.00 6.65 18.62 7.74 1220.12 3588.00 3.47 3.36 7.63

LDL 90.83 481.29 1.69 3.38 2.44 - - - - - - - - - -

MMSe 141.00 793.06 2.80 3.74 4.04 141.00 1912.00 3.56 7.22 4.15 793.06 1912.00 1.69 3.00 3.71

LHTB - - - - - 60.00 3176.00 6.01 5.66 7.00 873.08 3176.00 3.32 2.58 7.30

Mean Dissim G II-III = 69.40% Mean Dissim G II-IV = 85.86% Mean Dissim G III-IV =45.44%

Traits 

Modalities

Traits 

Modalities Mean Dissim G I-II = 53.08% Mean Dissim G I-III = 89.18% Mean Dissim G I-IV =95.41%

Table 4.5. Results from SIMPER analysis of trait weighted abundance data, listing the main discerning trait 

modalities revealed by pairwise comparison to contribute to ‘between group’ dissimilarity (I-IV). Text in bold 
indicates trait modalities contributing >3% mean dissimilarity. Dis=Dissimilarity, SD=Standard deviation. 
Mean Dissim=Dissimilarity percentage, G=group. For explanation of modality codes refer to Table 4.1. 
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4.7.7 Biological trait structure-environmental relationship 

Biological-Environmental matching (BIOENV) analysis showed that turbidity and temperature 

contributed to trait structuring (rho=0.646). Marginal tests from distLM showed an additional 

five variables that were important in explaining variation in the biological trait structure as 

evidenced by the p-values <0.05 (Table 4.6). The most noteworthy variable (49.0% variation) 

was turbidity followed by TOC (32.2%) and dissolved oxygen (30.0%) (Table 4.6). The fitted 

model showed that gravel and very coarse sand added significantly to explain variation in trait 

structure and together with turbidity explained 64.6% of the total variation (Table 4.6).  

 

 

 

 

 

 

 

 

 

 

The full model was visualised on the dbRDA plot (Figure 4.7) and indicated traitscape relative 

to environmental conditions along the KZN mid-shelf. The first two axes together explained 

>85% of the variability in trait structure. The first RDA axis separated stations in the shelf area 

between Durban and Mkomaas by higher percentage of positively skewed fine sand and 

carbonates and hosted a diverse traitscape. Conversely, the remaining Port Durnford and the 

uThukela stations were separated on higher bottom water chlorophyll-a (µg.l
-1

), DO (ml l
–1

), 

turbidity (NTU) and TOC (%) (Fig 4.7a). On RDA2, stations of groups I and IV were separated 

from groups II and III based on the distribution of mud and gravel, respectively (Fig 4.7a). In 

terms of trait modality suggestive of these conditions, tube dwelling omnivorous 

filter/suspension feeders with a hard exoskeleton prefer coarse substrates as found in Durban 

and uMkhomazi. In contrast, soft-bodied carnivores prefer fine sediment, whereas sessile, 

attached and surface dwelling forms prefer habitats high in mud, TOC and turbidity (Fig 4.7b).  

  Prop. Pseu-F P-Perm

%Mud (>4.0 ɸ) 0.222 4.853 0.020*

Median(phi) 0.182 3.786 0.044*

%Total organic carbon (TOC) 0.322 8.083 0.003**

% Sediment Carbonates 0.204 4.355 0.031*

Dissolved Oxygen (mg.l-1) 0.300 7.287 0.004**

Chlorophyll-a (mg.m-3) 0.229 5.060 0.021*

Turbidity (NTU) 0.490 16.304 0.0001***

AICC   Prop. Pseu-F P-Perm

+Turbidity (NTU) 117.30 0.489 16.304 0.000***

+%Very coarse sand (-0.1-0.0 ɸ) 116.90 0.080 2.976 0.047*

+%Gravel (<-0.1 ɸ) 116.47 0.076 3.213 0.034*

Variables
MARGINAL TESTS

Water column

Sediment

SEQUENTIAL TESTS

AICC=116.47 Cum=0.645

Table 4.6. DistLM results (marginal and sequential tests) describing the relationship between KZN 

mid-shelf trait structures and environmental variables. AIC=Akaike’s Information Criterion: a 
measure of the relative quality of model for a given set of environmental variables. Asterisks denote 
statistical significance *<0.05, **<0.01, ***<0.001. 
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4.8 Biozones units as surrogates – basic differences in trait structures 

4.8.1 Traits (St) and Abundance-weighted (Nt) within biozone subclusters 

The univariate measures of biological trait structure detected significant differences between all 

biozone cluster. The trait modality abundance-weighted scores also differed between biozone 

subclusters (BS) (df=5, Pseudo-F=8.97, p-perm=0.01). The mean (Nt±SD) trait modality 

abundance-weighted scores recorded for each BS varied from 2 490±1 223 in BS 1C to 31 

829±29 709 trait modalities per station in BS 2A (Fig 4.8). Significant differences were also 

observed between BS 1 (A-C: df=1, Pseudo-F=15.1, p-perm=0.001) and BS 2 (A-B: df=1, 

Pseudo-F=12.9, p-perm=0.004). Subcluster 2A was characterised by a high variability in trait 

modality (Fig 4.8).The number of trait modalities across subclusters were also significantly 

different (df=5, Pseudo-F=4.81, p-perm=0.01). A significant relationship was also observed 

between SC in BS 1 (A-C: df=1, Pseudo-F=2 691, p-perm=<0.001) and in subcluster 2 (A-B: 

df=1, Pseudo-F=1457, p-perm=<0.001). The mean number of trait modalities (St±SD) ranged 

between 36±2.64 in SC 3A to 44±1.15 trait modalities in SC 2A (Fig 4.8). In total, 51 trait 

modalities were used in the present study, and no subcluster hosted all trait modalities.  

Figure 4.7. Distance-Based redundancy analysis (db-RDA) of KZN mid-shelf biological trait data using 

a stepwise selection and AICc selection criterion. (A) db-RDA-axes with main habitat/area and (B) 
vector overlay of Spearman rank correlations of environmental variables (r>0.5) and vectors of the most 
correlated species (r>0.5) are provided. Chl-a=chlorophyll-a, DO= dissolved oxygen and Turb=turbidity. 
Main cities and coastal systems from north to south (Port Durnford-uMkhomazi) highlighted in brown. 
For explanation of modality codes refer to Table 4.1. 
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4.8.2 Biological trait Richness (dt) and Diversity (H't) within biozones  

Trait modality richness (dt) was comparable between BS (Table 4.7, Fig 4.9), as most trait 

modalities were expressed in all BS and significant differences were only detected between BS 

1 (A-C) and 2 (A-B) (Table 4.7). Trait diversity also exhibited a monotonic trend between BS 

(Figure 4.10). However, significant differences were detected between BS (p<0.05, Table 4.7) 

and within BS 1 (A-C) and 2 (A-B) (Table 4.7). 

 

 

 

 

 

PERMANOVA

Factors (nested design)
df Pseudo-F P-Perm df Pseudo-F P-Perm

Subclusters 5 4.519 0.010 5 5.603 0.005**

Cluster 2 1.923 0.199 2 0.307 0.739

Residual 38 38

1A-C 2 50.050 0.001*** 2 16.480 0.001***

2A-B 1 122.900 0.001*** 1 71.950 0.001***

Richness (d) Diversity (H')

Table 4.7. Two-way PERMANOVA test on univariate measures of biological traits. Df= Degree of 
freedom, Pseudo-F=critical values of PERMANOVA, and p=level of statistical difference. Asterisks 
denote statistical significance *<0.05, **<0.01, ***<0.001. 
 

Figure 4.8. Mean biological trait abundance-weighted scores (Nt: ind.m
-2

 ± SD) and mean number 

of trait modalities (St±SD) per biozone subcluster. PD=Port Durnford, TK=uThukela, T/Z= 
uMdloti/Zinkwazi, DBN=Durban, Mk=uMkhomazi. 
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4.8.3 Biological traits patterns within biozones  

In agreement with the univariate analyses, biozone subclusters (BS) as surrogates for 

macrobenthic traits reflected a different trait structure (Table 4.8). Pairwise comparisons 

revealed that differences were between pairs of BS 2A and 3A (t=3.146, p-perm=0.026) and 2A 

and 1C (t=3.659, p-perm =0.028). Visually, there was no structuring of traits based on biozone 

classification, since there was no distinct grouping of stations from the same BS (Fig 4.10). 

Biozone subcluster 1A and 2A as well as 1B and 2B were similar (Fig 4.10), and pairwise 

comparisons revealed no significant differences (t=0.542, p-perm=0.800; t=1.280, p-

perm=0.303). Trait assemblages in BS 1C were significantly different from assemblages in both 

BS 1A and 1B, but was most similar to BS 3A (Table 4.8, Fig 4.10).  

PERMDISP analyses results are presented by P-values (>0.05) in Table 4.9. The dispersion of 

samples was homogenous between and within biozone subclusters. Despite this, the different 

outcomes of the PERMANOVA analysis regarding the fit of predefined biozones justified a 

more thorough examination of the role of within-subcluster variability for defining biozones as 

surrogates. Therefore, these results did not support KZN marine spatial planning, as trait 

structure did not group according to the predefined biozones and variability was among BS. 

Sample grouping did not match predefined biozone model. 

Figure 4.9. Mean biological trait Richness (dt±SD) and Diversity (H't±SD) per biozone subcluster. 

PD=Port Durnford, TK=uThukela, M/Z=uMdloti/Zinkwazi, DBN=Durban, Mk=uMkhomazi.  
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The similarity level on which any grouping in the functional structure could reflect predefined 

biozones was a Bray-Curtis similarity level of 50-65 % (e.g. Table 4.10). At this level, two 

subclusters can be distinguished (1C and 3A). At a lower similarity level, the functional 

structure was sufficiently homogenous and could not identify any subcluster as a separate unit.  

 

 

 

 

 

 

4.8.4 Traits characterising biozones  

SIMPER analysis based on biozone groups revealed trait modalities that contributed to 

dis(similarity) between and within biozone subclusters. Trait modalities that drove similarity 

were predominantly associated with reproduction, feeding and movement methods. These 

included gonochoristic differentiation (separate sexes), the highest abundances of which were 

found in BS 1A and 2A. This trait modality consistently contributed >4% to within BS 1A, 2A, 

2B and 1C similarity (Table 4.10). Sessile movement method (MMSe) comperable found in 1A, 

2A and 1B contributed to the similarity between these BS (Table 4.10). Filter/suspension 

PERMANOVA df Pseudo-F p-perm

Factors (nested design)

Subclusters 5 8.011 0.001***

Biozones 2 1.194 0.388

Residual 13

Biozone 1 subclusters 

1A, 1B and 1C 2 17.056 0.002**

Residual 6

Biozone 2 subclusters 

2A and 2B 1 1.276 0.279

Residual 5

Components of variation

Source Estimates X2

Biozones 66 8.140

Subclusters 551 23.471

Table 4.8. PERMANOVA results for functional measures of biozone subclusters differences. 
F=critical values of PERMANOVA, and p=level of statistical difference. Asterisks denote statistical 
significance *<0.05, **<0.01, ***<0.001.  

Figure 4.10. NMDS of macrobenthic trait structure, with biozone subcluster as a factor. Each point 
represents the trait structure at a given station. 
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feeders (FDF/SF) recorded the highest abundances in BS 1 (A and B), also contributed to the 

similarity between BS 1 (A, B and C) and 2B (Table 4.10). A carnivorous (DPC) and 

herbivorous (DPH) diet preference and scavenging (FDSc) feeding method unique to BS 3A, as 

well as shell dwellers (LHSH) and burrowers (MMBu) unique to BS 1C distinguished these BS 

(Table 4.10). The between BS differences observed in PERMANOVA results were further 

confirmed by the high average dissimilarity observed between BS in post hoc tests (Tables 

4.10). Differences within clusters were further supported by the high Bray-Curtis dissimilarities 

between the subclusters belonging to a particular biozones (e.g. biozone 1 (A-C)) (Table 4.10). 

 

 

 

 

4.9 Discussion 

Aspects of this study contribute to an improved understanding of the KZN mid-shelf 

macrobenthic community and therefore the contribution to ecosystem functioning. By 

describing the taxonomic and biological trait structure of shallow marine macrobenthic 

assemblages, and comparing the results obtained using these different approaches, this study has 

highlighted the importance of KZN shelf spatial gradients in driving the distribution of 

taxonomic and functional attributes. Surrogate studies have focused mainly on the efficient 

conservation of taxonomic diversity (e.g. Heap et al. 2011, Przeslawski et al. 2011, Dixon-

Bridges et al. 2014), with only a few that have considered functional attributes (e.g. Törnroos et 

al. 2013). The main aim of this chapter was to broaden this knowledge and assess to what extent 

KZN marine spatial planning predefined biozones could efficiently capture functional structures 

(through biological traits) of macrobenthic communities. To address the most relevant results 

from the analysis of KZN mid-shelf macrobenthic fauna, discussion of the findings is structured 

according to this chapter’s hypotheses and the main research questions initially posed (Chapter 

2). 

 

 

PERMDISP df Pseudo-F p-perm

Deviation from centroids

Subclusters 5 1.582 0.722

Subcluster (Cluster 1)

1A, 1B and 1C 2 1.107 0.677

Subcluster (Cluster 2)

2A and 2B 1 2.622 0.259

Table 4.9. PERMDISP results between biozone subclusters. Df=degree of freedom, F=critical 
values of ANOVA, and p=level of statistical difference. Asterisks denote statistical significance 
*<0.05, **<0.01, ***<0.001. 
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 x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.  x̅ abun. x̅ sim. Sim/SD Contr.

FDSDF 553.16 1.71 6.71 2.29 - - - - - - - - 725.78 3.51 14.63 4.53 - - - - - - - -

MMS 1639.81 4.70 6.61 6.29 1644.63 2.90 2.61 5.19 - - - - - - - - 59.11 1.35 3.24 2.68 - - - -

SDG 2372.93 7.56 6.42 10.13 2756.98 5.46 2.61 9.76 - - - - 1751.56 7.74 12.71 9.99 - - - - 227.56 6.15 4.05 9.60

MMSM 1561.92 4.96 6.35 6.65 1881.07 3.64 2.65 6.51 - - - - 1164.00 5.06 11.03 6.53 106.78 2.66 3.18 5.30 - - - -

LDDP 2073.49 6.36 6.09 8.52 - - - - - - - - 918.67 3.47 13.30 4.48 30.89 0.76 4.38 1.51 - - - -

MMSe 1122.52 3.10 5.99 4.15 1119.10 2.45 2.66 4.39 1172.89 3.15 7.16 4.54 - - - - - - - - 135.56 4.28 6.70 6.68

FDF/SF 1479.39 3.89 5.82 5.21 - - - - 1155.56 2.59 6.61 3.73 481.33 1.81 9.06 2.33 - - - - 92.00 3.13 7.01 4.88

RTSB-MA 2052.49 6.43 5.72 8.61 - - - - 1096.89 1.98 6.15 2.86 - - - - - - - - - - - -

LDL 795.51 1.94 5.17 2.6 - - - - - - - - 402.22 1.84 14.07 2.37 - - - - - - - -

BDHE 2016.51 6.35 5.33 8.50 - - - - 1013.33 1.43 6.36 2.06 - - - - 33.00 0.82 3.45 1.63 - - - -

HES-A/R - - - - 918.96 2.34 2.88 4.19 - - - - - - - - - - - - 96.00 1.79 6.40 2.80

DPO - - - - 2061.49 3.71 2.75 6.63 - - - - 1034.22 4.72 14.62 6.09 - - - - 136.44 3.96 4.75 6.18

LHTB - - - - 1865.00 2.94 2.73 5.25 892 2.36 6.02 3.4 679.11 2.69 10.50 3.48 - - - - - - - -

RTSBS - - - - 421.45 1.01 2.60 1.80 1274.22 3.99 6.64 5.75 - - - - - - - - 124.00 3.46 6.67 5.41

LHFL - - - - - - - - 736.44 1.88 7.43 2.72 - - - - 105.89 2.02 4.52 4.02 - - - -

BDS - - - - - - - - 1446.67 4.44 7.40 6.40 - - - - 160.00 2.99 3.82 5.94 148.00 4.06 7.88 6.35

FDP - - - - - - - - 569.33 1.56 6.69 2.26 525.33 2.63 10.90 3.39 113.67 2.67 4.09 5.30 - - - -

RTSB-PL - - - - - - - - 513.33 1.32 6.03 1.91 - - - - - - - - - - - -

LDP - - - - - - - - - - - - 735.56 3.44 14.50 4.44 - - - - 138.22 3.84 5.50 5.99

DPC - - - - - - - - - - - - - - - - 95.11 2.35 4.04 4.67 - - - -

FDSc - - - - - - - - - - - - - - - - 34.11 0.72 4.58 1.44 - - - -

DPH - - - - - - - - - - - - - - - - 59.00 1.86 3.44 3.70 - - - -

LHSD - - - - - - - - - - - - - - - - - - - - 62.22 2.19 3.60 3.42

MMBu - - - - - - - - - - - - - - - - - - - - 89.33 2.09 3.30 3.26

1A 1A 2A 1A 2A 1B 1A 2A 1B 2B 1A 2A 1B 2B 3A

2A 1B 1B 2B 2B 2B 3A 3A 3A 3A 1C 1C 1C 1C 1C

x̅ Dis. 31.39 34.23 39.43 38.82 21.23 27.54 79.79 78.05 80.80 74.85 81.12 78.79 82.53 76.38 40.51

Groups

Mean Sim SB 1C = 65.05%

Traits 

Modalities Mean Sim SB 1A = 74.66% Mean Sim SB 2A = 55.94% Mean Sim SB 1B = 69.29% Mean Sim SB 2B = 77.51% Mean Sim SB 3A = 50.28%

Table 4.10. Traits identified by SIMPER analysis as contributing to the average (dis)similarity within biozone clusters. Text in bold indicates trait modalities contributing 

>4% to within subclusters similarity. Text in grey shading indicates characteristic trait modality. Mean dissimilarities from pairwise comparison presented below.  
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4.9.1 Taxonomic resolution 

Biodiversity assessment studies provide the basis for conservation evaluation and planning 

across sets of sites. Large-scale assessment have practical limitations, such as being very costly 

to conduct in terms of money, human effort, expertise and time, especially when analyses have 

to be conducted at a lower (Species-level) taxonomic resolution (Villasenor et al. 2005). Thus, it 

would be highly desirable if taxonomic resolution could be used as surrogates for Species-level 

assemblage patterns. However, despite the advantages of a coarser resolution, in biodiversity 

assessment studies a finer resolution can be necessary to reveal differences in the community 

structure (Trigal-Domínguez et al. 2010). 

Biodiversity is often presented as the total species richness at a site or time (Fleishman et al. 

2004). Since total richness can be difficult to measure, researchers have suggested the use of 

surrogates based on the richness of particular higher taxa. In this chapter, significant pairwise 

correlations was identified between Species Richness (d) and Diversity (H’) and that for Genera, 

Families the Polychaeta indicator taxon, indicating that even after aggregation of the data to the 

higher taxa, overall spatial pattern was retained. Therefore, spatial patterns obtained from higher 

taxonomic resolutions and/or subset indicator taxon could be used for predicting the overall 

pattern for Species Richness and Diversity in rapid biodiversity surveys where the objective is 

to use biodiversity patterns to rank sites according to their conservation priority. However, it 

should be noted that, mapping of rare occurrences that plays a vital role in ecosystem 

functioning is not practical when using this higher taxon approach. These observations raise the 

possibility that the variety of ecological and/or functional roles, rather than the number of 

individuals or taxa within a taxon, may be a better determinant of the suitability of a surrogate 

set. These results are in accordance with findings of Olsgard et al. (2003), Doerries and Van 

Dover (2003), Heino and Soininen (2007), Shokri and Gladstone (2008) and Yekta et al. (2017), 

who similarly found significant pairwise correlations between assemblages constructed based 

on species richness and those constructed by higher taxonomic resolutions. The magnitude of 

richness in each taxonomic level, as it decreases with taxa aggregated to courser taxonomic 

resolution, may violate the effectiveness of species richness for higher taxonomic resolutions. 

For instance, in this chapter, 634 taxa represented by 281 Genera, 149 Families 18 Classes and 7 

Phyla were only correlated with richness at Genus and Family levels.  

Since there are robust arguments to advocate use of multivariate similarity measures, such as 

Bray-Curtis to compare biodiversity among sites rather than total species richness or Shannon-

Wiener diversity (Su et al. 2004), robustness of surrogates of multivariate patterns in 

community structure to spatial variation in community structure was tested. The spatial pattern 
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obtained from NMDS analyses based on Bray–Curtis similarity matrices in assemblage 

composition mirrored that of richness and diversity. Results of nMDS did not depict a similar 

grouping pattern at Order-to-Phylum taxonomic levels or the Amphipoda indicator taxon 

compared with species level. These results suggest that Genus and Family have potential 

applicability for conservation studies. Polychaeta as an indicator taxon provided the closest 

match to the overall dataset. This may be argued as a numerical artefact as polychaetes 

contributed more than 60% of all species found (Chapter 3). Many other species from other 

Phyla were relatively rare and occur in small abundances, their influence is negligible such that 

by analysing number of taxa and abundance may in essence provide similar patterns as the 

overall data set. The contrasting results between indicator taxa (Polycheata and Amphipoda) 

probably reflect differences in the ecological roles of these taxa in different habitat types and 

highlight the importance of validating a surrogacy technique for the specific community being 

examined. The spatial analysis of macrobenthic data at different taxonomic levels or indicator 

taxa revealed a clear spatial segregation of the communities, reflecting specific macrofaunal 

assemblages typical of unique habitats in the KZN mid-shelf. 

However, the use of higher taxa may not prove useful in biogeography studies, since higher taxa 

are not very sensitive to the regional changes. As a result, some of the major geographical 

boundaries are not well demarcated by higher taxa data (Roy et al. 1996). Other studies have 

highlighted the relative importance of taxonomic distinctness as a reason for using the lower 

taxonomic resolution to assess the conservation priority of areas. Vane-Wright et al. (1991) 

suggested that taxonomically distinct groups (taxon diversity) should receive greater priority 

rather than species in terms of conservation (Vanderklift et al. 1998) which may cause the 

selection of areas for conservation differently than those on the basis of species-level diversity 

(May 1990). In addition, when communities are compared, differences in natural environmental 

variables may lead to enormous variability in species composition from place to place. At 

higher taxonomic levels the taxonomic composition of these communities becomes increasingly 

similar though (Warwick 1993).  

Results from this chapter further showed that data aggregated to Genus and Family or/and 

Polychaeta and Amphipoda indicator taxa responded to similar environmental variables. In turn, 

it was asserted that these taxonomic resolutions and indicator taxa were efficient in detecting 

environmental gradients. Marchant et al. (1995) and Alves et al. (2014) reported similar results 

and concluded that Genus and Family taxonomic levels respond similarly to the same key 

environmental gradients. This suggests that higher taxonomic resolution may provide an 

alternative when examining environmental impacts or pollution in marine systems. Nonetheless, 
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many studies suggest the lower taxonomic resolution appropriate for environmental impact 

studies, mostly pollution in marine systems (Warwick 1988, James et al. 1995 , Yekta et al. 

2017). Overall, results from this study show that temporally robust surrogates can be identified; 

however, the nature of these surrogates will depend on how biodiversity is defined (Noss 1990).  

4.9.2 Biological traits 

Biological trait-based studies conducted in marine benthic habitats are often confronted by the 

need to find available, detailed and accurate trait information for macroinvertebrates (Tyler et 

al. 2012). Gaps of knowledge and restricted availability of literature were a common problem in 

this chapter, especially with regard to the molluscs, crustaceans and small Phyla that are not 

well studied. The traits of many of these groups were neither described in scientific literature, 

nor on electronic trait databases, which mostly include trait information of macroinvertebrates 

from well-studied higher latitude waters (van der Linden et al. 2017). The trait information of 

these groups in this study was therefore based on available information for closely related 

species or the same species in the analogous biogeography elsewhere. Trait data are not yet 

readily being shared by research communities, and even if they are, a lack of trait data 

repositories and standards for data formats leads to the publication of trait information in forms 

which are not user-friendly (Faulwetter et al. 2014). Despite the challenges, a large number of 

traits than those with presumed important are recommended in order to accurately describe 

functioning over the assemblage (Bremner et al. 2006c, Snelgrove et al. 2014).  

Some traits (e.g. body size) were excluded from this study because they are less informative 

than other biological traits (Bremner et al. 2006c, Paganelli et al. 2012). Other biological traits 

are generally neglected in benthic studies despite their importance when defining community 

structure (Costello et al. 2015). Auto-ecological knowledge is scarce and most often incomplete 

in the literature, if available, often contradictory (Paganelli et al. 2012) and thus were also 

excluded. This is more so for less used traits such as ‘reproductive technique’ and ‘life span’ 

and for rare species as mentioned by Bremner et al. (2003b) and Paganelli et al. (2012). Traits 

that affect resource use, feeding mechanism and habitat availability are regarded as 

fundamentally important for ecosystem functioning (Bremner 2005), thus were considered in 

this study as they relate to bentho-pelagic coupling (Grebmeier et al. 1989, Covazzi-Harriague 

et al. 2007).  

Choosing optimal number of traits is not recipe-driven. A potential problem with using large 

numbers of biological traits in BTA relates to the time and data required for carrying out the 

analysis. Limiting the number of biological traits involved in BTA could mitigate the potential 
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time and effort in preparing databases for a large number of species, especially in an 

environment with high species richness such as KZN shelf environment. A number of methods 

have been proposed on the biological traits selection criteria. Mérigoux et al. (2001) suggested 

the removal of traits that behave the same. These traits were assessed through a correlation 

analysis and co-variates removed. Indeed, the set of traits and respective modalities used in this 

study synthesis ecological relevance, verified by a number of previous BTA studies (Bremner et 

al. 2003b, Bremner 2005, Bremner et al. 2006c, Pacheco et al. 2011, Paganelli et al. 2012, 

Shojaei et al. 2015). Here, traits contributed to the variability of the KZN mid-shelf 

macrobenthic communities varied spatially, thus suggesting differences in the ecosystem 

properties and functioning. 

Communities were more governed by traits related to lifestyle and behaviour of species (body 

design, movement method, feeding method, diet preference, living habit and habitat 

engineering). Similar results were also obtained by Bremner et al. (2006b) off the British 

Atlantic coasts, Marchini et al. (2008) in Northern Adriatic lagoons and Paganelli et al. (2012) 

along the North-West Adriatic Sea. Traits related to life cycle properties (reproductive 

techniques, and larval development) were found to be poorly correlated with both RDA axes. 

This could be attributed to the dominance of individual trait modalities; for instance, species 

with hard exoskeletons largely dominates over species with a soft body or shell in most 

samples. Different organisms produce different forms of larvae, reflecting adaptation to 

environmental variability. An organism with direct development displays no dispersive potential 

and higher extinction risk than an organism with pelagic larval development (McHuhg and Fong 

2002). Moreover, fauna with limited dispersal potential may result in an isolated community, at 

times characterising regional fauna. In the case of the present study, Callianassa and Ampelisca 

populations typify the aforementioned. The dominance of species with a direct development 

larval type was not expected since this larval development type is associated with more stable 

environments, whereas this region is characterised by a fast flowing western boundary current. 

There were, however, habitats that displayed distinct and very different sediment character, 

indicative of stable environment but dearth of fauna with direct development larval type. Some 

studies have, however, highlighted dispersal potential in some immobile post-larvae inhabiting 

soft-sediment (Olafsson et al. 1995, Pacheco and Stotz 2006). Dispersal potential has also been 

documented in organisms with direct developing larval type (Levin 1984, Johnson et al. 2001, 

Pacheco et al. 2013), this might potentially account for their dominance. Life-cycle traits are 

related to the reproductive techniques of a species and to its habit. In a dynamic environment, 

such as the KZN shelf, marked differences between life cycle traits were expected. Instead, 
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minor differences were found and brooders that produce miniature adults (crustaceans) 

prevailed in most parts of the study area. 

4.9.3 Shelf functional diversity  

The extent to which a species loss can translate to a trait loss and threaten basic ecosystem 

processes depends on the functional richness (e.g. the number of trait and modalities) and 

evenness (e.g. the distribution of trait and modalities across functional structures) in an 

ecosystem (Mouillot et al. 2006, Faulwetter et al. 2014). Evenness is of vital importance to 

community dynamics as it is used as an argument for the competing theories of species 

composition being driven by environmental filters rather than competition (Zobel 1997). High 

functional evenness suggest that species have been environmental filtered and most of the niche 

space has been filled thus species share many traits, while low evenness indicates that some part 

of niche space, whilst occupied, may be under-utilized, which can lead to a decrease in system’s 

productivity and an increased opportunity for invasion (Mason et al. 2005). Therefore, the high 

evenness between trait structures in this study reflects the potential for the maintenance of 

function with the loss or replacement of individual species. Lower functional evenness in this 

study was observed in the trait structure comprising stations in Durban to uMkhomazi. This 

likely resulted from the dominance of specific trait modalities conforming to the high 

dominance of amphipods. Functional richness measure the amount of niche space filled by 

species in the community. The presence of low richness indicated that some of the resources 

potentially available to the community are under-utilised and may thus reduce system primary 

productivity (Petchey and Gaston 2002).  

Similar representation of traits across two habitat types (Port Durnford and uThukela) was 

observed despite these habitat characterized by taxonomically distinct assemblages (Chapter 3). 

Several reasons could be attributed to different habitats with homogenous functional structure: 

among them, strong connectivity and metacommunity dynamics between habitats and 

movements of nutrients between habitats (Törnroos et al. 2013). Homogeneity in functional 

structure suggests that the regional species pool is not a major constraint to trait assemblages 

(Bremner et al. 2006b, Hewitt et al. 2008) and that ecological functioning can be shared 

amongst assemblages that are taxonomically different (Veríssimo et al. 2012, Berthelsen et al. 

2015). The ability of assemblages differing in taxonomic composition to be functionally similar 

allows BTA to be used across different groups of organisms (Bremner et al. 2006b), and also 

across large geographical scales where different species contribute to the overall make-up of an 

assemblage (Hewitt et al. 2008). Moreover, this functional consistency has consequences for 
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ecosystem management and conservation where geographical gradients in taxonomic 

composition make these difficult on a larger scale. Nonetheless, due to environmental filtering, 

differences were observed between Durban and uMkhomazi (elevated chlorophyll-a 

contributing to bentho-pelagic coupling), indicating differences in the ecosystem attributes and 

functioning. Habitat filters or deletes individual taxa from a regional pool because they own a 

set of traits suitable for a given habitats) (Southwood 1977, Townsend and Hildrew 1994, Maire 

et al. 2012). This further shows that life history assembly theories for ecological communities 

are important in defining distribution of trait values in an assemblage. 

4.9.4 Biological trait composition 

The benthic assemblages along the KZN mid-shelf are characterised by a few dominant taxa, 

combined with a large pool of rare taxa (Chapter 3). Accordingly, traits displayed the same 

pattern of dominance. For instance, higher frequencies of trait expression between Durban to 

uMkhomazi corresponding to high abundances of amphipods (Chapter 3), highlighted the 

importance of abundance shifts in driving the functional attributes of habitats (Hewitt et al. 

2008, Paganelli et al. 2012, Berthelsen et al. 2015). This suggests that, depending on the relative 

abundance of trait expression, some ecosystem functions derived from macrobenthic 

invertebrates may differ across habitats. Body design, sexual differentiation, feeding method, 

diet preference, living habitat and habitat engineering strongly contributed to the overall trait 

structure. Surprisingly, two traits that were assumed to be important, such as ‘movement 

method’ that relates to locomotion, predation avoidance and life cycle attributes (e.g. 

reproductive techniques) contributed poorly to the biological typology of macroinvertebrates 

and were weakly correlated to environmental condition.  

Ordination showed a clear spatial gradient of trait modalities reflecting geographical position. 

Such a gradient can be linked to a gradient in habitat characteristics (Evin and Talley 2002, 

Leung 2015a) such as sediment distribution (abundance of different grain sizes), sediment 

organic contents, near bottom turbidity, dissolved oxygen and chlorophyll-a and the presence of 

biogenic features. In this sense, biological trait analysis succeeded in showing the response of 

infauna to the existing sediment composition. The results of this study support the hypotheses 

that trait structure differed spatially and was related to habitat features.  

Rather than describing elements of the food web the trait feeding method is one of the most 

important traits as it relates to energy pathway flows and nutrient recycling. The heterogeneous 

nature of KZN shelf feeding types suggest diverse pathways of energy and matter cycling 

(Pacheco et al. 2011). In shelf soft-bottom communities, several feeding groups are known to 

coexist in different proportions, relative to sediment characteristics (Sanders 1958, Snelgrove 
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and Butman 1994). In shelly-coarse sand, suspension feeders usually prevail, whereas detritus 

feeders dominate in muddy environment. This is because of the clogging effect of re-suspended 

particles on filter/suspension feeding apparatus (Rhoads and Young 1970, Paganelli et al. 2012). 

Trait composition relating to feeding method recorded in this study fitted this depiction. The 

presence of immobile surface deposit-feeders off uThukela and utilising organic matter may 

have attracted carnivores, while the presence of carrion that might have been left by predating 

carnivores could also attract scavengers (Navarro-Barranco et al. 2013). Dominance of 

carnivorous fauna in mudflats has been reported elsewhere suggesting a mechanism by which 

nutrients in deposit feeders and detritivore tissues could be transferred to the mobile pool (Ngai 

and Srivastava 2006), therefore together with bacteria renew the nutrients for primary 

producers. The high dominance of the omnivorous trait reflects an ability to utilise a variety of 

food sources, and could suggest they occupy relatively wide niches and thus multiple pathways 

(Thrush et al. 2011). This is important for functional maintenance.  

Traits reflecting the species’ capability of habitat modification were important in determining 

differences between trait structures. Biogenic structures such as shell litter and biogenic 

architecture (meshwork of tubes) provides an important secondary substrate/habitat that can be 

used as shelter or attachment sites or refuge by other species, therefore potentially enhancing the 

bottom structural complexity, and thus having implications for biodiversity and ecological 

functioning (Rabaut et al. 2007, Van Hoey et al. 2008, Pacheco et al. 2011). Habitat engineering 

fauna presented another interesting insight into the KZN shelf ecosystem functioning. For 

instance, fauna with temporary burrows that were semi-mobile and able to displace themselves 

contributed to sediment reworking. This influences the exchange of materials between the 

sediment and the overlying water column (Eckman 1983, Snelgrove and Butman 1994, Hansen 

and Kristensen 1997, Tweedley and Valesini 2008). Also, sessile species with permanent 

burrows or tube-constructing fauna influence nutrient cycling by increasing the area of the oxic-

anoxic interface and the transport of ions through the sediment (Snelgrove 1999). This suggests 

that there is a possibility of water penetrating to lower sediment layers, which may serve to 

transport organic matter for decomposition, and concurrently providing oxygen (e.g. fluid 

pumping by Lanice conchilega (Forster and Graf 1995). Well-oxygenated environments through 

bioturbation actions of the dominant tube builders may have contributed to the establishment of 

species that would not be able to live in the low oxygenated sediment (Gomez-Gesteira and 

Dauvin 2000), therefore promoting biodiversity.  

Tube-dwelling surface defecators are considered to have low bioturbation activity, while 

subsurface depositors and motile forms are good bioturbators  (Gutiérrez et al. 2000). It may 

also be concluded that bioturbation activity could be high since the community was dominated 
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by subsurface deposit feeders, free living, burrowing, and mobile forms (mobile and discreetly 

mobile). The activity of these macrofaunal species possibly helps in the exchange of material 

not only between the water column and sediment but also to deeper sediment layers. 

Analysis of traits related to reproduction and propagule dispersal, to some extent infer 

information about transport of matter within and between systems (Pacheco et al. 2011). For 

example, pelagic dispersal was represented in many stations but in order of magnitude lower 

than non-dispersal form, suggesting that the supply of propagules in the water column is an 

important form of matter export that contributes to bentho-pelagic coupling in both systems. It 

worth noting that most stations supported traits that indicate input of nutrients.  

Larval development mechanisms influence macrobenthic communities through dispersal and 

offer recovery patterns (Jablonski and Lutz 1983, Jablonski 1986, Boström et al. 2010). In 

general, two types of larval development have planktonic phases (planktotrophic and 

lecithotrophic). Planktotrophic larvae have a longer planktonic stage and hence higher dispersal 

potential than lecithotrophic larvae and direct developers. The higher relative frequency of 

direct developers south of Durban to uMkhomazi area suggested limited dispersal potential as 

described by Pacheco et al. (2013). Limited dispersal potential suggests that the persistence of 

population relies on immigration of adults from the neighbouring pool and/or the recruitment of 

juvenile from within the habitat. Furthermore, limited dispersal potential is indicative of stable 

habitats (uThukela) (Paganelli et al. 2012), surpassing on this shelf with its multitudes of 

oceanographic features such as outwelling.  

Biological traits relating to body design, depending on the environmental conditions, are often 

responsible for distinguishing trait structures (Paganelli et al. 2012). For instance, a soft body 

design associated with fine sand, (e.g. uThukela) may be an advantage for mobility in this 

habitat, while hard exoskeleton associated with medium-to- coarse sand may be an advantage 

for the coarse sediment habitats (e.g. uMkhomazi). Body design trait can further be used to infer 

potential linkages between traits and taxonomic relationships (Munari 2013). For instance, the 

frequent occurrence of the hard exoskeleton trait in this study reflected the numerical 

dominance of arthropod crustaceans.  

Maintaining functional diversity in an ecosystem can provide a barrier against large 

environmental shifts caused by either natural effects or anthropogenic activities (Folke et al. 

2004, Frid et al. 2008, Fleddum et al. 2013). Functional diversity is increasingly used to 

understand the ecological functions of a community following disturbance or management 

measures (Hulot et al. 2000, Usseglio‐Polatera et al. 2000, Bady et al. 2005, Cadotte et al. 2011, 

Michel 2011). Normally, higher functional diversity indicates better performance, higher 
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productivity and higher utilisation of resources of a community in view of higher niche 

complementarity (Petchey and Gaston 2002). A number of studies have also underlined the 

functional diversity-environmental gradient relationship and its influence in ecosystem 

processes (Harmelin–Vivien et al. 2009, Karlson et al. 2010). Paganelli et al. (2012) observed 

that macrofaunal functional diversity increased away from sites with riverine input along the Po 

River delta and attributed excessive terrigenous input to contribute to low functional diversity. 

Similar results were obtained from this study, the uThukela outwelling as a natural disturbance 

agent, may have a deleterious effect on the fauna and associated traits, and thus contribute to 

low functional diversity. However, overall efficiency is heavily influenced by the choice and 

definition of traits, which are in turn reliant on the availability of detailed and accurate data 

(Usseglio-Polatera et al. 2000b). This is generally rare for many marine communities (Borja et 

al. 2011, Munari 2013), including here.  

4.9.5 Biozone as surrogates for trait structure  

This study showed that marine spatial planning predefined biozones do not agree with trait 

patterns, either considering univariate community measures or macrobenthic trait patterns. 

Therefore, biozones were not a useful predictor of spatial variation in macrobenthic functional 

structure. There were no significant relationships between biozone subclusters when considering 

trait richness and diversity. This was surprising given that the study area hosted unique habitats 

(e.g. Port Durnford reef complex and uThukela mud bank) with different suite of fauna. Chapter 

3 of this study indicated under sampled species richness. This is particular so for rare 

occurrences and consequently rare trait modalities. This might therefore confront significant 

relationships between habitats and warrant further investigation. Predefined marine spatial 

planning biozones also did not reflect macrobenthic trait patterns, suggesting that variation in 

trait patterns was poorly correlated with biozones. The use of functional analysis to measure 

effectiveness of surrogates in this study, is in line with other studies that have assessed the 

validity of predefined habitats as biodiversity surrogates (Törnroos et al. 2013). Törnroos et al. 

(2013) found inconsistence in macrobenthic functional structure and predefined habitat.  

The importance of using abundance-based measures for testing the efficiency of biophysical 

habitat as surrogates was clear from this study. Previous studies have also highlighted the role 

of abundance-weighted data rather than specific traits for understanding the functional structure 

(Hewitt et al. 2008, Przeslawski et al. 2011, Törnroos et al. 2013). In this chapter, the 

abundance-weighted functional analysis showed a similar community trait structure (e.g. station 

south of uThukela, Durban and uMkhomazi). In this context, trait structure refers to the 

distribution and composition of biological traits in a habitat (since functional analysis is habitat 
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specific). Here this corresponds to the clustering together of stations from Port Durnford and 

uThukela to form one functional unit. Several mechanisms could possible explain why different 

habitats seemed to function homogenously (e.g. strong connectivity and metacommunity 

dynamics between habitats).  

The terrestrial surrogacy literature states that the selected set of surrogates must ultimately 

ensure the full representation of biodiversity more so than spatial correlation and agreements 

(Sarkar et al. 2005). Accordingly, the predefined biozones in this study could not be said to 

effectively represent functional structure, since biozone subclusters did not match the functional 

variability. Particularly noteworthy is the lack of biozone subclusters to capture functional 

variability due to the generally high functional similarity. Disagreement between traits patterns 

and predefined biozones does not suggest that the functional measure is inaccurate or 

unrelevant, rather that there is potential to illustrate variability on several scales. Such low 

functional beta-diversity has recently been emphasised for better understanding community 

assembly and processes structuring communities over different scales (Villéger et al. 2012). 

Despite that, there were no significant differences between biozone subclusters in terms of trait 

richness, the fact that no biozone subcluster hosted all trait modalities indicated a poor 

representation of functionality. In this context, it reasonable to combine subclusters identified 

by SIMPER to share similar trait modalities such that unique trait modalities within combined 

subclusters increase functional representation. Trait patterns in biozone subclusters 1A were 

similar to those of 2A, similarly for biozone subclusters 1B and 2B, while biozone subclusters 

3A and 1C were different.  

However, this spatial disagreement between biozone classification and trait structure is probably 

an effect of the openness of marine systems. This is a reason why surrogacy work in marine 

benthic systems should specifically attend to and address this issue (McArthur et al. 2010a, 

Mellin et al. 2011). Consequently, planners relying on biophysical habitat may cautiously 

proceed to do so under the assumption that it captures functional variability. These types of 

inherent species-related community differences in the habitats are contemporary to some extent 

incorporated as secondary parameters on lower levels in e.g. the EUNIS habitat classification 

system (Davies et al. 2004). However, including functional attributes more comprehensively in 

habitat classification and in the way habitat maps are derived is essential for more diverse and 

targeted future spatial planning (McGill et al. 2006). Especially since incorporating a broader 

knowledge of species traits such as feeding, reproductive, mobility and behavioural ones, apart 

from the most often used body size, is relevant for understanding spatial patterns of benthic 

functional diversity and for measuring human impacts on benthic communities (e.g. trawling 

impacts ) (Frid et al. 2008, Fleddum et al. 2013).  
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Conclusion 

The general conclusion that arise from the results of this chapter is that, in the examination of 

the macrobenthic fauna of the KZN mid-shelf, little information is lost about the inter-sample 

relationship when analyses are based on intermediate taxonomic levels such as Genus and 

Family level or/and the use of Polychaeta as potential indicator taxon. The structure of the 

macrobenthos at the Family, Genus and Species-level and Polychaeta indicator taxa was 

accounted for by mud distribution and water column turbidity and in each case explained >80% 

of the total variability. This indicates that spatial structuring of the macrobenthic community in 

KZN shelf can be reliably approximated when community data are aggregated to Genus of 

Family or restricted to one group of benthic organisms.  

The BTA applied to macrobenthic fauna of KZN mid-shelf showed that biological traits of the 

communities respond to spatial gradient across habitats. This corresponds to differences in 

sediment composition and the influence of the river inputs from the uThukela. Functional 

composition analysis showed that changes in benthic assemblages are not necessarily linked 

with changes in ecological functions played by organisms as reflected by benthic assemblages 

off Port Durnford and uThukela. Biological traits analysis (BTA) is a sensitive method in 

identifying differences among benthic assemblages and thus, can provide additional information 

of community distribution patterns (Alves et al. 2014). Furthermore, BTA is less affected by the 

large-scale geographic influence. The gradients in environmental parameters filters species with 

particular functional traits in which this attribute was consequently reflected in the ecosystem 

functioning of the KZN mid-shelf. Therefore, it can be inferred that bioturbation activities of 

macrofauna transported organic matter to deeper sediment for subsurface deposit feeders. The 

presence of carnivorous species further helped to transfer the nutrients retained in the deposit 

feeders back into the mobile fauna. Thus, the functional diverse macrobenthic community 

rapidly consumed the organic matter and converted it to benthic biomass, which forms the food 

for organism at the higher trophic level such as the demersal fish. 

One important product of this study is the production of a macrobenthos functional database, 

which will serve as a starting point for further functional analysis of attributes of the KwaZulu-

Natal shelf. Results from this study highlighted significant discrepancies between coarse taxon 

and species level, and between biological communities relative to marine spatial planning 

biozones. Abiotic based habitat classifications often are unrepresentative of underlying 

biological assemblages, which frequently exhibit considerable spatial variability amongst areas. 

There is a clear need for improved surrogate and methods used for gathering and classifying 

marine biodiversity data in conservation planning. Future mapping of marine biodiversity 
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should not only emphasize biophysical characteristics, but also aim towards assessing 

distributions of functionally different units on the KwaZulu-Natal shelf. Moreover, knowledge 

of specific processes would benefit from comparisons among measures of community structure. 

Community analyses in this study have identified a number of significantly different 

communities associated with unique habitats. However, there were no correlations between 

benthic habitat distributions abiotic variables abiotic variables. Combined biotic and abiotic 

variables may provide the best representation of biodiversity in conservation planning. Using 

detailed KZN mid-shelf microbenthic characteristics, Chapter 5 refines the current biozone 

classification model. 



                                                                                               PROPOSED MSP MACROBENTHIC LAYER 
 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES 

134 

CHAPTER 5. PROPOSED MARINE SPATIAL PLANNING 

MACROBENTHIC LAYER AS BIODIVERSITY 

SURROGATE 

5.1 Overview 

Effective marine spatial planning, which must be representative of ecological conditions, 

services and habitats, require spatial knowledge of biotic patterns, seafloor habitats and habitat-

biotic relationships at a relevant scale. However, such information is mostly not available. 

Surrogates to any of these components often compensate for this constrain in marine 

conservation planning. However, habitat classification schemes are a potentially useful 

surrogate with prior confirmation of their relationship to spatial variation in biodiversity. This 

chapter builds on the findings of Chapters 3 and 4, which showed contrasting results in 

sediment, taxonomic and functional structure across the shelf and further showed that the 

predefined biozone scheme only partly depicted the true spatial variation in the KwaZulu-Natal 

mid-shelf macrobenthic biodiversity. Using habitat characteristics (validated sediment 

distribution and hydrographic variables that were significant in explaining patterns), and infauna 

taxonomic and functional attributes, this chapter aimed to refine and improve on the existing 

predefined biozone model and to propose an alternative biozone classification as an input into 

KwaZulu-Natal marine spatial planning efforts. An alternative biozone classification resolved 

into four biozones using a cluster analysis. This chapter demonstrates the importance of testing 

assumptions about surrogacy and introduce a proposed approach for refining the use of 

surrogates in the information poor environment. Further validation of the proposed biozone 

classification using other components of ecology (e.g. epifauna) is however still required. 

5.2 Introduction 

Recently, a major challenge faced by conservation efforts is how to incorporate the many 

aspects of biodiversity and ecosystem functioning (potentially unique, representative, or 

vulnerable habitats and species) when planning and establishing protected areas and reserves 

(Ward et al. 1999, Currie et al. 2009, Przeslawski et al. 2011). A key principle underpinning 

planning is efficient representation of biodiversity (Stevens and Connolly 2005). This involves 

habitat heterogeneity and microhabitats, as they are key considerations for marine spatial 

planning (Foley et al. 2010). Planning that aims to fulfil this principle requires spatial 

knowledge of biota, at scales relevant to marine spatial planning (MSP) (Brown et al. 2011). 

However, such information is often not available for most marine species and habitats, 
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particularly at a relevant spatial scale (Douvere 2008, Douvere and Ehler 2009, Ehler and 

Douvere 2009, Collie et al. 2013, Snelgrove et al. 2014, Dunstan et al. 2016, McHenry et al. 

2017). If some information is available, it is often highly fragmented (Robinson et al. 2011). 

Furthermore, knowledge of the processes that sustain biodiversity is rudimentary for most 

regions (Grantham et al. 2010).  

Macrobenthic patterns have been shown to relate to environmental variables, such as seafloor 

complexity, at a range of scales (McArthur et al. 2010b, Dixon‐Bridges et al. 2014). Where 

strong relationships occur, biophysical variables can be applied as surrogates for biodiversity, 

especially where macrobenthic data is scarce (McArthur et al. 2010b). This involves 

classification of continuous abiotic variables into discrete zones of similar conditions (McArthur 

et al. 2010b, Brown et al. 2011). This approach assumes that biodiversity differs among habitat 

types and that faunal assemblages have strong associations (Heap et al. 2011). This approach 

can ignore complex underlying abiotic-biotic relationships and also confines inherently 

continuous ecological patterns into discrete classifications (e.g. patchy distributions of species 

within and between habitat types, especially for rare, locally endemic, and threatened taxa); 

(McHenry et al. 2017, Chapter 3 and 4), thereby producing maps with unknown, assumed, 

and/or simplified values (Mac Nally et al. 2002, Dangerfield et al. 2003).  

Testing the effectiveness of the biophysical-based maps as biodiversity surrogates can improve 

methods for developing new surrogates and help to understand their unavoidable limitations 

(listed above) (Grantham et al. 2010). Studies that have tested this, have focused mainly on 

effectively safeguarding taxonomic diversity (Dalleau et al. 2010, Przeslawski et al. 2011, 

Dixon‐Bridges et al. 2014, McHenry et al. 2017), with the functional component rarely 

considered (Törnroos et al. 2013), yet this aspect of biodiversity and ecosystem functioning 

contributes an important level of complexity which is acknowledged as a vital criterion for 

implementing sound and holistic ecosystem-based management (Arkema et al. 2006). 

The focus of this thesis has been to test the effectiveness of predefined biozones as surrogates 

for marine macrobenthos taxonomic (Chapter 3) and functional structures (Chapter 4). Results 

showed that the predefined biozone model did not represent the existing variability in 

sedimentary, taxonomic and trait patterns (see results Chapter 3 and 4). The regional specificity 

and low level of agreement between macrobenthic patterns and the predefined biozones using 

taxonomic and functional structure reinforce the need to refine this biozone model for more 

effective and representative MSP. Integrating macrobenthic assemblage patterns (taxonomic and 

functional attributes) and seafloor characteristics, as a composite biodiversity surrogate, can 

improve spatial planning for KZN shelf (Dixon‐Bridges et al. 2014) and may fortuitously 
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represent other groups with similar patterns in the benthic layer (Bridge et al. 2016). The aim of 

this chapter is to synthesise macrobenthic community patterns and sediment characteristics to 

refine the existing KZN biozones as identified by KZN MSP (Livingstone 2016). The results 

from this chapter should facilitate future methodological improvement, including the 

identification of additional environmental data layers for deriving the biozones. 

Aim 

The aim of this chapter is to combine habitat characteristics (hydrographic and sedimentary 

variables), macrobenthic taxonomic and functional characteristic attributes to refine a 

predefined biozone model for marine spatial planning. 

Objectives  

1. To improve and refine the existing MPS model by integrating habitat features and taxonomic 

and biological trait assemblage patterns.  

2. To identify taxa and traits characterising a new, proposed model that best reflects the 

benthos. 

3. To identify environmental factors driving biological patterns in the proposed benthic model.  

5.3 Materials and methods 

This chapter builds on the results of Chapters 3 and 4. The general materials and methods, the 

study area, field-sampling protocol, laboratory processing and data analyses are presented in 

Chapter 2 and the following present only protocols relevant to this chapter. 

5.3.1 Data treatment  

Taxon abundance (Chapter 3) and trait-weighted abundance (Chapter 4) data were square root 

transformed to allow rarer taxa and trait modalities to influence discrimination between groups 

without discarding abundance information. Rare fauna contributed 30% of the total 

macrobenthic community (Chapter 3). Here, the strong links between habitat and biota 

(Chapters 3 and 4) suggested incorporation of the habitat features, in order to capture the 

heterogeneity that shapes species diversity, distribution patterns and ecological functioning. 

Environmental (sediment and hydrographic) variables found to be responsible for spatial 

variation in macrobenthic taxonomic and functional patterns (Chapter 3 and 4) using the 

BIOENV procedure and distLM routines were incorporated to refine and define categories. The 

three datasets were combined to be analysed as a single dataset. 
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5.3.2 Integrating sediment, taxonomic and biological traits patterns  

A similarity matrix was constructed using a modified Gower dissimilarity measure (Anderson et 

al. 2006) which derives similarity from conjoint absences and is more robust to variables with 

different measurement scales (Legendre and Legendre 1998, Clarke and Warwick 2001, 

Anderson et al. 2006). Moreover, although this is not a unitless measure, it has the advantage of 

being directly interpretable as the average change in orders of magnitude per species between 

two sampling units (Anderson et al. 2006). To define biozone clusters and distinguish between 

separate groups, a complete linkage hierarchical clustering was applied. That is, stations were 

allocated into groups of relative similarity, based on consistently occurring groups of stations. 

This was supplemented with SIMPROF analysis to test the validity of resultant biozone clusters. 

PERMANOVA was used to test for differences between subgroups within a biozone cluster and 

between biozone clusters (Chapter 2). Resultant biozone clusters were subsequently subjected to 

inter-group similarity using the SIMPER (similarity percentage breakdowns) module in the 

PRIMER package (Clarke 1993, Chapter 2). Additionally, for all new biozone clusters 

identified, univariate indices for taxonomic (S, N, d and H’) and biological traits (St, Nt, dt and 

Ht’) were calculated from non-transformed data. Associated sediment characteristics were also 

to distinguish if biozone clusters were distinct community in different habitats (e.g. grain size, 

TOC and carbonate content)  

5.4 Results 

5.4.1 Biozone cluster analysis to propose a new MSP benthic layer for KZN mid-shelf 

Hierarchical agglomerative clustering distinguished five sample groups (SIMPROF at 5% 

significance) (Fig 5.1). Sample groups 1, 2 and 4 (hereafter referred to as BZ1, BZ2, and BZ4) 

were clearly defined habitats on the shelf while sample group 3 (BZ3) resolved into subgroups 

corresponding, in part, to subclusters 1B and 2B of the existing MSP biozone model (Fig 5.1 

and 5.2A). Visually (nMDS, not shown), subclusters grouped together and pairwise comparison 

(PERMANOVA) showed that subclusters 1B and 2B supported similar taxonomic assemblages 

(t=1.135, p-perm=0.199) and biological traits (t=1.280, p-perm=0.302), which were 

subsequently merged to form BZ3. PERMANOVA analysis verified that the proposed biozones 

(BZ1-4) were significantly different from each other (Table 5.1) (p-perm <0.05). This alternate 

scheme on benthic MSP proposed divides the KZN mid-shelf into four biozones (Fig 5.1 and 

5.2b). Macrobenthos and functional traits compositions found on these biozones strongly 

separate from each other and are highly different. These strong biotic patterns have a clearly 

defined (pattern-based) surrogate model for MSP of soft sediments benthos.  
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5.4.2 Species, ecological traits and sedimentary attributes characterising biozones 

The biological and sediment characteristics of the four biozones are summarised in Table 5.2. 

Inter-biozone similarity for taxa results was low (18.93 -38.23%) indicating an overall high 

level of variation in faunal composition (Table 5.2). Between-biozone dissimilarity was high 

(80.47-96.04%) (Table 5.3) driven primarily by the abundance of different species of 

polychaetes and amphipods. By comparison, the contribution of most of the other taxa to 

dissimilarity among biozones was generally low (<2%), reflecting their low abundance and 

irregular occurrence. In terms of traits, similarity was moderate, ranging between 50.28 to 

73.22% (Table 5.2). In pairwise comparison, dissimilarity ranged between 36.58 and 79.64% 

(Table 5.3), indicating that identified biozones were potentially discrete in terms of taxa and 

traits.  

 

 

PERMANOVA df Pseudo-F p-perm

Factor

Biozone clusters 3 3.469 0.000***

Residual 15

Components of variation

Source Estimate X2

BZ Clusters 0.197 0.444

Residual 0.361 0.601

Table 5.1. PERMANOVA results for biozone clusters differences. Df=degree of freedom, MS= 

Mean square, F=critical values of PERMANOVA and p=level of statistical difference. Asterisks 
denote statistical significance *<0.05, **<0.01, ***<0.001. 
 

Figure 5.1. Proposed marine spatial planning biozone classification based on macrobenthic 

attributes. BZ=Biozone, PD=Port Durnford, TK=uThukela, ZNK=Zinkwazi, DBN=Durban, 
ISI=iSiphingo, MK=uMkhomazi. (SIMPROF 5% significance=grey dotted line.  
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 Figure 5.2. Maps illustrating (A) the KwaZulu-Natal marine spatial planning pre-defined biozone 
model and (B) proposed macrobenthic scheme. 
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x̅ abun. x̅ sim. Sim/SD Contr.% x̅ abun. x̅ sim. Sim/SD Contr.% Sediments

Biozone cluster 1

Nephtys capensis 1.44 1.72 13.84 7.85 BDS 148.00 4.06 7.88 6.35

Mandibulophoxus stimpsoni 1.44 1.72 13.84 7.85 FDF/SF 92.00 3.13 7.01 4.88

Quantanthura serenasinus 1.31 1.72 13.84 7.85 MMSe 135.56 4.28 6.70 6.68

Ophioroidae sp.2 1.72 2.10 3.87 9.60 RTSBS 124.00 3.46 6.67 5.41

Anthozoa sp.5 3.19 3.38 1.92 15.45 HES-A/R 96.00 1.79 6.40 2.80

Ampelisca sp. 3 1.21 0.84 0.58 3.82 HEN 125.33 4.07 5.51 6.36

Poecilochaetus serpens 0.77 0.60 0.58 2.75 LDP 138.22 3.84 5.50 5.99 MCS

Scoloplos  uniramus 0.93 0.60 0.58 2.75 DPO 136.44 3.96 4.75 6.18 Median phi: 0.89ɸ

Monticellina dorsobranchialis 0.77 0.60 0.58 2.75 SDG 227.56 6.15 4.05 9.60 TOC : 0.47%

Pista macrolobata 0.93 0.60 0.58 2.75 LHSD 62.22 2.19 3.60 3.42 Carbonates: 28.77%

Cyclaspis scissa 1.05 0.60 0.58 2.75 MMBu 89.33 2.09 3.30 3.26

Leptanthura urospinosa 0.77 0.60 0.58 2.75 FDP 94.67 2.27 3.10 3.54

Notomastus latericeus 0.93 0.59 0.58 2.70 LDL 58.22 1.49 2.73 2.32

Paratanaidae sp.1 0.93 0.59 0.58 2.70 FDSDF 68.44 1.37 2.45 2.15

Pareurythoe chilensis 0.77 0.59 0.58 2.70 LHFL 65.78 1.30 2.38 2.04

S N d H' St Nt dt H't
111 68 26.12 4.65 42 2490 5.24 3.28

Biozone cluster 2

Opisthobranchia sp.1 2.11 3.85 4.24 20.36 FDSc 34.11 0.72 4.58 1.44

Aglaophamus sp.1 2.59 4.85 2.53 25.61 LHFL 105.89 2.02 4.52 4.02

Aglaophamus dibranchis 1.99 2.15 0.58 11.35 LDDP 30.89 0.76 4.38 1.51

Linopherus microcephala 2.13 1.52 0.58 8.02 FDP 113.67 2.67 4.09 5.30

Aspiodosiphon sp. 1 0.77 1.15 0.58 6.07 DPC 95.11 2.35 4.04 4.67

Ommatocarcinus pulcher 0.77 1.07 0.58 5.67 BDS 160.00 2.99 3.82 5.94

Caprellidae sp. 1 0.77 1.07 0.58 5.67 HEN 125.33 1.43 3.47 2.85 VFS-Mud

Carcinus sp.1 0.77 1.07 0.58 5.67 BDHE 33.00 0.82 3.45 1.63 Median phi: 4.39ɸ

Platyhelminthes sp.1 0.77 0.73 0.58 3.86 DPH 59.00 1.86 3.44 3.70 TOC : 2.00%

- - - - - MMS 59.11 1.35 3.24 2.68 Carbonates: 12.67%

- - - - - MMSM 106.78 2.66 3.18 5.30

- - - - - MMBu 183.56 3.31 2.91 6.58

- - - - - RTSBS 185.33 3.09 2.20 6.14

- - - - - SDG 244.11 4.26 2.02 8.48

- - - - - HES-A/R 150.78 3.00 1.84 5.96

S N d H' St Nt dt H't
61 41 16.19 3.92 38 2827 4.66 3.29

Biozone cluster 3

Sipuncula sp.3 2.40 0.64 3.08 2.88 SDG 2182.57 7.35 6.30 10.04

Byblis gaimardii 4.47 0.90 1.82 4.05 DPO 1470.57 4.55 5.95 6.22

Notomastus latericeus 1.73 0.45 1.46 2.02 MMSM 1394.19 4.68 5.40 6.40

Lumbrineris aberrans 2.39 0.69 1.27 3.09 MMBu 1057.33 3.91 5.32 5.34

Notomastus aberans 2.97 0.73 1.24 3.27 FDP 604.86 2.16 5.28 2.95

Arcturinoides sexpes 1.64 0.45 1.22 2.04 LHTB 934.19 2.63 5.10 3.59

Hippomedon onconotus 2.53 0.47 1.00 2.13 HES-A/R 1098.19 4.01 5.06 5.47 FCS

Spiochaetopterus vitrarius 3.00 0.60 0.97 2.69 LHPB 771.05 2.81 4.88 3.84 Median phi: 1.51ɸ

Ophiurida sp.2 2.23 0.59 0.92 2.66 LDL 644.10 1.84 4.54 2.51 TOC : 0.63%

Ampelisca palmata 1.27 0.34 0.91 1.53 DPC 559.33 1.79 4.18 2.45 Carbonates: 27.94%

Aglaophamus sp.2 1.23 0.26 0.91 1.18 FDSDF 860.76 2.80 4.05 3.83

Lanice conchilega 2.43 0.22 0.91 1.00 FDF/SF 772.95 2.07 3.68 2.82

Onuphis eremita 2.31 0.54 0.90 2.43 LDDP 1189.05 3.32 3.29 4.53

Sipuncula sp. 5 1.77 0.30 0.90 1.33 RTSB-MA 1055.43 2.99 3.16 4.09

Monticellina dorsobranchialis 1.51 0.31 0.89 1.40 MMSe 934.10 2.95 3.16 4.02

S N d H' St Nt dt H't
439 242 79.82 5.72 46 23626 4.47 3.31

Biozone cluster 4 

Eunice vittata 1.57 0.63 7.59 1.66 LDL 697.15 1.71 3.45 2.66

Ampelisca diadema 7.54 2.67 5.55 6.99 MMSe 1187.99 2.88 3.36 4.49

Nephtys capensis 3.27 1.23 5.50 3.21 FDF/SF 1354.98 3.51 3.32 5.48

Leptanthura cf laevigata 2.16 0.84 5.21 2.19 DPC 493.62 1.16 3.22 1.80

Latigammaropsis atlantica 4.56 1.81 4.04 4.74 HEN 958.87 1.65 3.20 2.57

Tharyx filibranchia 1.50 0.59 3.70 1.55 SDG 2672.12 6.28 3.18 9.79

Hippolytidae sp.1 2.11 0.77 3.26 2.02 MMSM 1783.34 4.13 3.16 6.44 FS-to- Gvl

Ampelisca brevicornis 4.58 1.39 2.74 3.65 FDP 489.73 1.20 3.16 1.86 Median phi: 1.06ɸ

Unciolella spinosa 11.06 2.69 2.27 7.03 DPO 2111.86 4.61 3.12 7.18 TOC : 0.33%

Cheiriphotis megacheles 4.56 1.62 2.27 4.25 LHTB 1953.24 3.99 3.09 6.22 Carbonates: 41.27%

Ampelisca palmata 3.24 1.09 2.14 2.86 LDDP 2348.24 5.33 3.08 8.30

Byblis gaimardii 8.95 2.72 2.01 7.12 MMS 1763.32 3.78 3.02 5.89

Urothoe pulchella 4.73 1.15 1.72 3.00 FDSDF 928.92 1.53 3.02 2.38

Sipuncula sp.3 0.86 0.32 1.35 0.84 RTSB-MA 2308.92 5.16 2.97 8.05

Cirriformia cf filigera 0.92 0.34 1.34 0.88 HES-A/R 787.23 2.25 2.90 3.50

S N d H' St Nt dt H't
311 212 57.85 5.08 50 28261 4.78 3.05

BZ
 Biozone cluster 1 = 64.05%

Species Traits
 Biozone cluster 1 = 21.88%

A

B

C

D

Biozone cluster 4 = 38.23% Biozone cluster 4 = 64.14%

Biozone cluster 3 = 22.26% Biozone cluster 3 = 73.22%

Biozone cluster 2 = 18.93% Biozone cluster 2 = 50.28%

Table 5.2. Species and biological traits from SIMPER analysis that characterise proposed biozones. 

Included are sediment characteristics for each biozone. Abun=Abundance, Sim=similarity, 
SD=Standard deviation. For explanation of modality codes refer to Table 4.1. A-D=results for BZ1-4. 
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Overall, 171 taxa and 34 trait modalities were identified as being responsible for dissimilarities 

between BZ 1-4. BZ1 was characterised by clean coarse sand (median phi=0.89 ɸ, mud content 

<1%) (Table 5.1). Faunal components characterising BZ1 represented four Phyla (Annelida, 

Arthropoda, Echinodermata and Cnidaria). Annelid polychaetes were the most abundant taxon 

(7 taxa), whereas different Classes (Isopoda, Amphipoda and Tanaidacea) within Crustacea 

hosted equal number of taxa (2 taxa). Complex substrate, with spaces between broken branched 

forms and hard calcareous surfaces supported sessile fauna (MMSe), mainly represented by 

soft-bodied (BDS) omnivorous (DPO) filter/suspension feeders (FDF/SF) such as Anthozoa 

sp.5, free-living (LHFL) surface deposit feeders (Ophioroidae sp.2) and carnivorous predators 

(DPC: Nephtys capensis, Mandibulophoxus stimpsoni and Quantanthura serenasinus). These 

together distinguished BZ1 from all other biozones, with most trait modalities well represented 

despite low species richness. The presence of burrower (MMBu) and sediment accretion and 

removal (HES-A/R) suggest enhanced sediment oxygenation and nutrient cycling from the 

activities of macrobenthos (Table 5.2). BZ2 off uThukela Estuary, was supported by mud 

(median phi 4.39 ɸ, mud content >80%) high in TOC (Table 5.2). Such homogeneous sediments 

hosted five Phyla, low in species richness mainly comprising soft-bodied (BDS) 

predatory/scavenging (DPC/FDSc) surface dwellers (LHFL) (Aglaophamus sp.1, Aglaophamus 

dibranchis and Linopherus microcephala). These together with Opisthobranchia sp.1 

distinguished BZ2. Low abundances in hard exoskeleton (BDHE) and direct developing larval 

type LDDP trait modality reaffirm the low number of crustaceans characterising this biozone. 

Bioturbation by actions of borrowers (MMBu) and habitat engineering fauna (HES-A/R) 

suggest enhanced oxygenation of the sediment. BZ3 was characterised by fine to coarse 

sediments (median phi >1.5 ɸ, mud content >7%) and supported a diverse community with high 

species richness (Table 5.2). In this BZ, Polychaeta and Crustacea represented most of taxa and 

were numerically dominated by Amphipoda, which have a direct developing larval type 

(LDDP). BZ 3 supported semi-motile (MMSM) tube dwelling (LHTD) filter/suspension feeders 

(FDF/SF) (e.g. Byblis gaimardii, Spiochaetopterus vitrarius, Ampelisca palmata and Lanice 

conchilega) and surfaced deposit feeders (FDSDF) (e.g. Notomastus latericeus and N. aberans) 

(Table 5.2). Overall, this BZ represented most of the trait modalities and appeared as a 

transitional region. High abundance of HES-A/R, MMBu and LHTD suggest enhanced 

sediment oxygenation and nutrient cycling from the activities of macrobenthos (Table 5.2). BZ4 

Biozone 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4

Taxa

x̅ dissim (%)

Traits

x̅ dissim (%)
78.8 36.58

96.04 94.11

40.51 79.64 79.63 78.04

97.68 80.4790.17 88.97

Table 5.3. Average dissimilarity in taxa and biological traits between biozone clusters. 

Dissim=Dissimilarity percentage  
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was characterised by heterogeneous sediment showing a median phi varying between -0.36 to 

1.93 ɸ. Amphipoda, direct developing (LDDP) tubicolous (LHTB) filter/suspension feeders 

(FDF/SF) presented most of the taxa in high abundances with least equitability (e.g. Unciolella 

spinosa and B. gaimardii). Overall, most traits were represented in this biozone (Table 5.1).  

5.4.3 Environmental variables driving biological patterns 

Biological-environmental matching (BIOENV) analysis indicated that mud and turbidity were 

the main variables driving biological patterns (rho=0.707, p <0.05), showing a good match 

between biota and variables. In addition, when analysing a combination of four parameters the 

coefficient remained comparable (rho=0.680) (Table 3.8), therefore, mud and turbidity 

remained the most structuring parameters.  

 

 

 

 

 

Marginal tests in distance-based redundancy analysis (dbRDA) showed that most variables apart 

from sediment skewness, dissolved oxygen, chlorophyll-a, pH and temperature explained a 

proportion of the variation (mostly >10%) observed in biological patterns (Table 5.5). Turbidity 

was the only significant variable depicted by the marginal tests and explained 22% of the 

variation (Table 5.5). 

5.5 Discussion 

5.5.1 Proposed biozone characteristics  

In terms of taxa, inter-biozone similarity was low and inter-biozone dissimilarity was high, 

suggesting that the newly identified biozones are distinct and variable in terms of spatial 

distribution. Indeed, there was a limited overlap in the characterising taxa for each identified 

biozone as determined by SIMPER, with very few taxa common between biozones. The 

presence of specialist taxa restricted over a narrow range of environmental conditions may also 

increase between-biozone dissimilarity (Brown et al. 2012). 

 

No of varibles ρ Variables 

Mud 

Turbidity 

Mud, fs, Turbidity

Carbonates 

Best combination (2 variables)

2 0.714

Best combination (4 variables)

4 0.680

Table 5.4. Summary of BIOENV results. Correlations (ρ) are presented relative to proposed 

macrobenthic scheme biological patterns. fs=fine sand 
 



                                                                                               PROPOSED MSP MACROBENTHIC LAYER 
 

MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES 

143 

 

 

 

 

 

 

 

 

 

 

Research suggests that benthic community distribution in offshore habitats is often characterised 

by faunal gradients rather than sharp discontinuities due to the lack of strong environmental 

changes (Brown el at. 2011, Chapter 3). This may explain the presence of the few taxa 

overlapping between the newly identified biozones. On the other hand, intra-biozone trait 

similarity was moderate and inter-biozone dissimilarity ranged between low and high, 

indicating high variability in the trait structure. This suggests that trait, as surrogates, were only, 

in part, important. Results obtained from SIMPER showed considerable trait overlap between 

biozones indicating that functionality was maintained between biozones. This is particularly the 

case for biozone 1, 3 and 4, which share movement methods and feeding traits, among others.  

5.5.2 Biozone identification  

Preservation of overall ecosystem function is implicit to the concept of marine spatial planning. 

This is not guaranteed in practice especially when multipurpose interests are involved. This 

chapter integrated sediment, taxonomic and biological trait data and proposed new biozone 

clusters for inclusion into marine spatial planning. Data not originally intended for defining 

biozones were repurposed. This led to challenges, particularly during the biozone identification 

stage. Cluster analysis and nMDS were used to identify biozones. Different types of association 

measure and cluster analysis produce different sample groupings, as would be expected. Due to 

Prop. Pseudo-F P

%Gravel (<-1.0 ɸ) 0.115 2.198 0.012*

%Very coarse sand (-1.0-0.0 ɸ) 0.103 1.961 0.021*

%Coarse sand (0.0-1.0 ɸ) 0.109 2.083 0.017*

%Medium sand  (1.0-2.0 ɸ) 0.113 2.164 0.012*

%Fine sand (2.0-3.0 ɸ) 0.122 2.369 0.008**

%Very fine sand (3.0-4.0 ɸ) 0.100 1.884 0.023*

%Mud (>4.0 ɸ) 0.158 3.193 0.001**

Median phi 0.148 2.954 0.002**

Sorting 0.098 1.846 0.034*

% Total organic carbon (TOC) 0.160 3.245 0.000***

%Carbonates 0.152 3.058 0.000***

Salinity 0.139 2.7404 0.002**
Turbidity (NTU) 0.221 4.821 0.000***

AICC Prop. Pseudo-F      P

+Turbidity (NTU) -13.795 0.221 4.821 0.000***

Variable
MARGINAL TESTS

Sediment

Water column

SEQUENTIAL TESTS

AICC=-13.795 Cum(%)=0.221

Table 5.5. Distance linear model results (Marginal and sequential tests) for the relationship 

between KZN mid-shelf macrobenthos and environmental variables. Asterisks denote statistical 
significance (*<0.05, ** <0.01, ***<0.001). 
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the low number of samples, minor changes in sample groupings had large impacts on biozone 

characteristics and boundaries. 

Results illustrate consistently occurring associations of stations belonging to BZ1 BZ2 and BZ4, 

and sub-groups. For instance, J4-P4, L3-K3 and S6 were interpreted at a level where between-

group difference might seem greatest. Since there is no reliable objective means of determining 

the optimal association measure, cluster analysis method, or number of groups, it was necessary 

to rely on comparisons of classifications with PERMANOVA. Results showed that the between-

group difference is negligible. Therefore, subgroups were merged to form BZ3. The proposed 

biozone model divides KZN mid-shelf into four biozones with boundaries determined by 

gradients in the biophysical variables shown to be important in determining species and traits 

distribution patterns (Fig 5.2A). This is in contrast to the existing predefined model (Fig 5.2B) 

dividing the shelf into a complex mix of sediment and physico-chemical categories with sub-

category biozone compartment spatially far-removed. The use of Gower’s similarity (robust 

with heterogeneous data) was an important consideration in this study, as it suggests that the 

identified biozones can be optimised with any reliable benthic data.  

5.5.3 Representability of proposed biozones 

The revised model is likely a better predictor of spatial variation in biodiversity patterns, as well 

as ecosystem processes, as it was based on directly measured biological patterns (Stevens and 

Connolly 2005). Each biozone cluster in the revised model supported a statistically unique suite 

of biota (species and trait assemblages), associated with specific habitats and therefore also the 

environmental variables characterising these habitats (e.g. Port Durnford reef complex=BZ 1, 

uThukela mudbanks=BZ 2, among others), reflecting their ecological relevance. 

These strong patterns in macrobenthos assemblage composition in relation to specific habitat 

characteristics provided the basis for a refined biozone model. Proposed biozone categories 

have unique biodiversity values in terms of representing individual species and traits, abundance 

of both species and trait modalities, species assemblages and functional structure. The 

importance of macrobenthic fauna in ecological processes is well documented (Hutchings 1998, 

Rosenburg 2001, Harmelin–Vivien et al. 2009) and representation and protection of both 

biodiversity and the ecological processes that sustain biodiversity and ecosystem services is a 

goal of marine conservation planning (Roberts et al. 2003, Frid et al. 2008). Overall, the refined 

biozone model is a tested surrogate for benthic biodiversity patterns, which can usefully inform 

marine spatial planning in KwaZulu-Natal. 
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5.5.4 Potential key drivers 

Understanding the environmental variables that determine the biodiversity pattern will help in 

the effective conservation plans of coastal habitat. The distribution and composition of soft-

bottom macrobenthic communities are potentially influenced by numerous environmental 

variables comprising characteristics of both the underlying seafloor and the overlying water 

column (Gray 1981, Gray and Elliott 2009, Brown et al. 2011). Depending on the spatial extent 

considered, certain variables may prove to have the strongest effects on biological features 

(Gogina and Zettler 2010). BIO-ENV results identified two potential key drivers of 

macrobenthic patterns within the proposed model. These indicated the importance of the 

uThukela outwelling. Oceanic features such as this is known to positively influence abundance 

and diversity of marine taxa by improving food availability, biological development and 

survival (Olafsson et al. 1995, Cowen and Sponaugle 2009, Dou et al. 2016). In contrast, as a 

natural disturbance agent, this feature may also have deleterious effects on the marine taxa, thus 

determining community structure and distribution (McArthur et al. 2010b). The large volume of 

fine sediments brought into the shelf during periods of high river flow results into a highly 

turbid water. This can reduce light transmission, thereby influencing the relative importance of 

primary production (Thrush et al. 2004). Nonetheless, high-resolution remote sensing data 

might throw the on the role and influence of terrigenous input (Lück-Vogel et al. 2016). 

Therefore, synchronisation of high-resolution multispectral imagery and ground truthing 

turbidity, primary productivity and sediment data can thus improve the classification accuracy 

of the proposed biozone model. Variables relating to sediment characteristics (e.g. grain size) 

are regarded as particularly important drivers of community composition in many studies (Gray 

2002). Sediment characteristics and salinity were also considered as major influences in this 

study.  

5.5.5 Implications for revised biozone model 

The key to understanding and managing the biodiversity of soft-bottom benthic systems is an 

appreciation of the contributory functions of different organisms, communities, and habitats 

(Thrush et al. 2004, Snelgrove et al. 2014). The proposed model provides a useful tool that 

allows identification of important ecological attributes, defining foundational ecological 

principles for the study region, and developing planning priorities to guide effective MSP for 

conservation and management of biodiversity. This revised model resulted in ecological 

meaningful representatives of habitats and functional trait and taxa utilising and residing in 

these habitats. This allows a MSP exercise with clear expectations about what uses might be 

best suited across different areas. As an example, the proposed model reaffirms the widely 
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acknowledged importance of the uThukela mudbanks not only as a unique benthic habitat 

(MacKay et al. 2016), but also an important location on the KZN Bight for larvae of non-

planktonic species as well as purely planktonic species (Beckley et al. 2002), fisheries 

(Fennessy and Groeneveld 1997, Lamberth et al. 2009) and more importantly a Phakisa 

proposed MPA. By incorporating these foundational principles early in the MSP process, this 

will likely result in suitable protection of important ecological processes and even create a 

spatial refuge from natural and anthropogenic disturbances, and perhaps to better stabilise food-

web dynamics in these biologically productive and important areas (e.g. uThukela) (Foley et al. 

2010). In addition, the proposed model provided insight regarding how ecological principles 

might be applied through ecological trait analysis. The fact that boundaries were defined by 

environmental variables found to be important in biotic patterns, improved the model to 

describe important ecological attributes of assemblages at a relevant scale, thereby allowing 

planning to begin to prioritise the most valuable habitats on the KZN mid-shelf. Eventually, the 

planning process will need to be informed by other ecological dimensions such as epifauna 

(Lester et al. 2013), however, studies that integrate biotic pattern and physical characteristics 

provide a useful starting point for advancing MSP.  

Bio-physical based habitat surrogates are a potentially cost-effective, time efficient method for 

initial identification of priority areas to manage diversity of shelf and coastal marine ecosystems 

(Ward et al. 1999, Yekta et al. 2017). However, there is limited understanding of the variables 

that determine occurrence and patterns of most marine organisms (Hutchings et al. 2002). Use 

of bio-physical based habitat surrogates that protect particular habitat types will lead to the 

protection of a larger suite of species whose conservation needs, distribution and abundance 

remains unknown (Dixon‐Bridges et al. 2014). Throughout the marine planning process it has 

been recognized that testing of effectiveness of surrogates is required to better define 

ecosystems and habitats at the scale relevant to MSP (Ehler and Douvere 2009, Collie et al. 

2013, Snelgrove et al. 2014, McHenry et al. 2017). Studies such as this are crucial to ensure the 

success of MPA’s in achieving representation and conservation of biodiversity in a system 

established.  

The selection and use of biodiversity surrogates is part of conservation planning, yet there is no 

coherence in the selection procedure (Pressey 2004). Recognising and testing of suitable 

biodiversity surrogates will increase the likelihood that the selection of individual marine 

protected areas (MPAs) results in successful representation and protection of biodiversity and 

the associated ecosystem processes and services (Malcolm et al. 2012) (e.g. the proposed 

uThukela MPA through operation Phakisa). Benthic macrofauna plays a key role in marine 
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ecosystem, being involved in cycling of nutrients and detrital decomposition and constituting a 

food source for higher trophic levels (Constable 1999, Reiss et al. 2010). Macrobenthos are 

known to have low dispersal rates and relatively long life cycles, comprising diverse species 

with different tolerances to stress (Constable 1999, Borja et al. 2000). Due to these 

characteristics, macrobenthic species are ecological indicators of disturbances occurring in their 

habitat, either from natural or anthropogenic factors, being therefore widely used in marine 

monitoring and management programs (Borja et al. 2011, Schiele et al. 2014). Moreover, 

macrobenthos spatial configuration and heterogeneity have important implications for the 

distribution and relative abundance of other marine organisms (Thrush et al. 2001, Anderson et 

al. 2009). Therefore, macrobenthic based biodiversity surrogates similar to the revised biozone 

model developed in this chapter is likely to represent spatial variation of other taxa (Reise 2002, 

Solan et al. 2004, Anderson et al. 2013, Dutertre et al. 2013) as well as fortuitously represent 

other groups with similar patterns or groups that co-vary with macrobenthos spatio-temporal 

patterns (Bridge et al. 2016). As such, a network of MPAs selected to represent macrobenthic 

communities ultimately include species of other taxa and groups at a rate significantly greater 

than MPAs selected at random or MPAs selected using biophysical habitat with assumed value 

(Shokri et al. 2009, Yekta et al. 2017). The proposed model recommended in this chapter is a 

more accurate representation of variation in macrobenthic patterns and ecological functions. 

This suggests that future MSP planning should incorporate macrobenthic patterns in the 

classification process to improve accuracy of a proposed surrogate for capturing biodiversity 

patterns and to minimise discrepancies associated with biophysical based design. The proposed 

model has potential for wider application to other shelf and coastal marine environments, 

however, warrants further testing using other ecological components (e.g. epifauna and fish 

data). 

5.6 Conclusion 

This chapter integrated habitat characteristics, taxonomic and functional attributes to refine the 

predefined biozone model as used by various South African agencies responsible for 

conservation and management. Four benthic biozone clusters were identified using multivariate 

analysis. Each biozone cluster in the revised model supported unique species and trait 

assemblages distributed according to specific habitats and therefore the environmental variables 

characterising these habitats. The refined model resolved into a simple model, with boundaries 

determined by gradients in the biophysical variables shown to be important in determining 

species and traits distribution patterns. More importantly proposed model corresponds to the 

known habitats along the region. Overall, the proposed model is likely a better predictor of 
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spatial variation in ecosystem processes and biodiversity as it is based on a known surrogacy 

value of biological patterns (taxonomic and biological trait patterns), however, reliability can be 

affected most notably by trait used. The integration of sediment characteristics, taxonomic and 

functional patterns in other habitat classification systems can likewise improve the surrogate 

value and thus the capacity for effective spatial planning of MPAs. 
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CHAPTER 6. GENERAL DISCUSSION AND CONCLUSION 

This study formed part of a larger, multi-disciplinary, multi-institutional programme under the 

auspices of the African Coelacanth Ecosystem Programme (ACEP) Surrogacy project, which 

investigated the validity, and robustness of habitat surrogacy approaches for biodiversity 

patterns mapping. Macrobenthos community characteristics and functional attributes tested 

whether infauna distribution is a proxy for overall biodiversity patterns within identified 

offshore biodiversity zones on the KwaZulu-Natal (KZN) shelf, between Port Durnford and 

uMkhomazi. 

Chapters 3 and 4 answer the main study questions by addressing hypotheses posed in the 

introduction. The outcomes of the study provide a substantial new body of data about benthic 

habitats and are valuable contributions to the poorly studied KZN shelf environment. 

Furthermore, it was identified that existing MSP predefined biozones did not adequately capture 

spatial variation in both macrobenthic community and trait structure. The findings of Chapter 5 

contribute to the refinement of the predefined marine spatial planning biozones and will 

improve conservation initiative for this ecosystem. 

This study described macrobenthic communities and functional trait structure of the KwaZulu-

Natal mid-shelf. Macrobenthos taxonomic and trait structure were compared and related to 

sediment and water-column habitat characteristics. Patterns observed were further related to the 

predefined marine spatial planning (MSP) biozones to test the validity of this as an overall 

ecosystem surrogate. The principal hypotheses under investigation were that there are 

discontinuities in taxonomic and trait composition along the shelf and these differ relative to the 

predefined MSP biozones. Communities were classified in terms of their taxon composition and 

the ecological function based on biological traits of constituent taxa. 

6.1 Study contribution to understanding of subtidal east coast ecosystem  

The KwaZulu-Natal mid-shelf sheltered a diverse macrobenthic community, this in itself 

making biodiversity conservation a priority for the area. Based on broad taxonomic groupings, 

Polychaeta were the most speciose group accounting for 45% of the total fauna collected and 

the second most numerous group accounting for 27% of the total abundance. Peracarid 

crustaceans were also an important faunal component accounting for 34% of the total fauna, 

while being the most abundant taxa accounting for 60% of the total abundance. Crustaceans, in 

decreasing order of number of taxa, were mainly Amphipoda followed by Decapoda including 
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Brachyura, Penaeidea and Caridea, Isopoda, Tanaidacea and Cumacea and Mysida sharing 

equal numbers. Mollusca contributed an average of 7% to the total fauna sampled and 3% to the 

total number of individuals. Bivalves overwhelmingly dominated molluscan fauna, accounting 

for 71% of the number of mollusc fauna, Gastropoda were less diverse (22%), and Scaphopoda 

were rarely sampled (7%). The remaining macrofaunal groups contributed the least to the 

number of taxa and abundance. The patterns of species diversity documented in this study 

conformed to the often-described general pattern of shelf environment under riverine influence. 

This pattern has been reported from a number of mid-shelf habitats in different geographical 

regions and differing in the nature of basic environmental gradients driving the biotic patterns 

and processes. Low species richness and species diversity on the muddy habitat off the major 

estuarine system has been recorded in other tropical and subtropical regions (e.g. off Amazon 

Estuary in Brazil (Willems et al, 2015)) and in temperate regions (e.g. off Vilaine and Loire 

estuaries in South Brittany (Dutertre et al, 2013)). Overall, the higher diversity values recorded 

in this study appeared to be influenced by the higher number of polychaetes and peracarid 

crustacean species. The high diversity of macrobenthos in this region, in part, may be related to 

the fact that the studied area is at the biotic transition between two biogeographical regions 

(tropical and subtropical bioregions) (Teske et al. 2011). Macrobenthos, for example, include 

possible endemic species and representatives from tropical regions north of Western Indian 

Ocean (Huber 2015) brought onto the shelf as larvae by the Agulhas Current (Lutjeharms 

2006b). Despite this high richness and diversity, this is, however an under-representation of the 

true richness based on Chao 1 and 2 richness estimator. The difference between the results 

derived from these two estimators and observed is high.  

Multivariate analyses of the 57 samples collected in this study identified seven major sample 

groups, reflecting differences in shelf habitats in terms of sediment and taxon composition of 

macrobenthic communities. Five assemblages showed limited geographical distribution, 

whereas two were more widely distributed. These assemblages provided a baseline against 

which the surrogate habitat classifications could be measured.  

KZN mid-shelf communities are particularly diverse, supporting an abundant and taxon rich 

community. This is due to the heterogeneous sediments characterising habitats here. Grain size 

heterogeneity is known to influence richness (St Pierre and Kovalenko 2014) and support 

diverse macrobenthic communities (Ellingsen 2002, Santos and Pires-Vanin 2004). This is, in 

part, due to the increased availability of potential niches for many species (Probert and Wilson 

1984, Hutchings et al. 2002). In tropical and subtropical regions, the coexistence of 

unconsolidated sediment (including coral rubble) and reef biotopes is frequent (Alsaffar et al. 
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2017). Such was exemplified by Port Durnford reef complex stations characterised by medium-

coarse sand (median phi=0.89 ɸ) and warm bottom water (20.38°C). High level of complexity 

associated with this mosaic of habitats provided a wide range of potential ecological niches, 

across a small spatial scale, promoting high variation in stochastic species occupancy patterns 

(Barton et al. 2013). Furthermore, these habitats provide hard attachment and an elevated 

position off the sea floor, enhancing the food supply for sessile filter/suspension feeders 

(Starmans et al. 1999). In this case, this was exemplified by the high dominance of filter feeding 

anthozoa occurring exclusively at these stations and by the occurrence of fossorial amphipods, 

Ampelisca sp. 3 and A. diadema. Dominance of filter/suspension feeders may also be related to 

the irregular pulses of organic matter fluxes from the upwelling cell in the vicinity (Lutjeharms 

et al. 1989), which also benefit opportunistic species (Soto et al. 2016). Naturally, the species 

that feed on surface detritus are better adapted to those conditions (López-Jamar et al. 1992), as 

reflected by the presence of Ophioroidae sp.2. Interestingly, the polychaetes of the family 

Capitellidae (Notomastus latericeus and Capitellidae sp) and Spionidae (Prionospio nirripa), 

considered as opportunistic organisms were also recorded in low abundance. Seemingly, the 

organic matter accumulating in the interstitial spaces of sediment was sufficient to allow for the 

colonisation and successful establishment of a community of such opportunistic taxa. The 

faunal component here was also characterised by the presence of tubicolous and free-living 

carnivorous fauna (Onuphis eremita, Nephtys capensis and Mandibulophoxus stimpsoni). The 

preference of carnivores to coarser sediments with low levels of mud is well-established (Tena 

et al. 1993, Muniz and Pires 1999, Santos and Pires-Vanin 2004). In these habitats, the large 

interstices among grains can create space enough to favour the mobility and feeding of 

carnivores, proliferation of potential prey organisms and oxygenation of the sediments (Fenchel 

1970, Gaston 1987, Muniz and Pires 1999). Hydrodynamic conditions have been reported to 

influence sediment characteristics and physico-chemical properties of the water column 

(Dutertre et al. 2013). Strong hydrodynamic conditions induce high environmental selectivity, 

which in turn results in relatively low species richness (Dutertre et al. 2013, Willems et al. 2015, 

Veiga et al. 2017). Therefore, hydrodynamic conditions here may explain the low richness and 

composition recorded.  

The uThukela mudbanks area revealed a unique community, low in number of taxa and 

abundances. Free-living carnivorous nephytids (Aglaophamus sp.1 and A. dibranchis) 

dominated communities at these stations. Other abundant carnivores recorded here were 

Pallidae palliderosa and Linopherus microcephala. The scaphopod Antalis longitrosa and the 

bivalve Dosinia sp.2 formed the intermediate faunal components of this community. Rare 
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faunal components of this community include, a parasitic isopod family Gnathiidae and the 

amphipod Leucothoe spinicarpa that inhabit sponges as well as the pelagic prawns, Lucifer sp.1 

and caprellid amphipods that cling to algae, hydroids or bryozoan, indicated the presence of an 

exposed rocky component as a result of the coarse paleo-dune cordon which runs along the 60 

m isobaths here. The large volume of fines brought onto the shelf during periods of high river 

outflow here increases the turbidity and nutrient input. The deleterious effect of these can alter 

benthic faunal composition. Numerical dominance of few species can be indicative of a stressed 

ecosystem (Méndez 2002). Therefore, the dominance of mobile carnivores here can be 

indicative of the stability and recovery potential of the benthic ecosystem when facing 

environmental change and mobile fauna may contribute to juvenile dispersal (disturbance and 

sediment deposition) (Bonsdorff and Pearson 1999, Foley et al. 2010, Pilditch et al. 2015). From 

a benthic ecosystem function perspective, dispersal, recolonization and connectivity are 

essential for maintaining biodiversity and the resilience of the ecosystem (Pilditch et al. 2015). 

A station between habitats (J4) characterised by medium-fine sand (median phi=2.13 ɸ) with 

relatively warm near-bottom water presented species with contrasting mobility and feeding 

habit: burrowers, tube-dwellers and free-surface dwellers and may enhance predator–prey 

interactions, which determines food web stability and the existence of inter-specific 

relationships (Pires-Vanin et al. 2011). The community sampled here was characterised by a 

fossorial carnivorous amphipod (Mandibulophoxus stimpsoni). Notable feature of this 

assemblage was an abundant Callichirus population. This genus is presented in Barnard (1950) 

as Callianassa but has recently been moved to the genus Callichirus (Sakai 2011). Barnard 

(1950) reported this taxon to occur on the inner shelf (depth 36.6 m) off the KZN coast 

(Durban). Recently no further mention occured in local literature until it was also reported by 

Untiedt (2013) around the same depth range (22-27 m). This study reaffirms the importance of 

this population at this location, and also at the mid-shelf depth. 

Samples collected between uThukela and uMhlali were characterised by a coarser grade of fine 

to sandy-gravel sediment (median phi 0.97 ɸ) with relatively cooler near bottom water 

(19.36°C). The assemblage here was characterised by the presence of interstitial fauna such as 

sipunculids (Phascolionidae sp.1 and Aspiodosiphon sp. 1) and the carnivorous polychaete 

(Goniadella gracilis). Samples collected between uMdloti and Durban were characterised by a 

coarser grade of fine sand (mean phi=2.38 ɸ) with cooler near bottom waters (17.78°C) which 

hosted a filter feeding amphipod Ampelisca diadema and the isopod Amakusanthura africana. 

Among other taxa recorded here, notable was Lanice conchilega presented at relatively high 

abundances. Sand masons (L. conchilega), which lives in a tube of sand or shell breccia 
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attached to an inner thin organic layer are considered highly important bioturbators in 

macrobenthic habitats (Rabaut et al. 2007, Van Hoey et al. 2008). The tube itself is crowned 

with a sand-fringe, which protrudes 1–4 cm above the sediment surface (Rabaut et al. 2007). 

Specifically, benthic fauna type of tube construction and reworking mode are essential traits that 

regulate biological sediment mixing, which enhance sediment oxygenation and redox gradients 

and ultimately the benthic respiration and denitrification (Hansen and Kristensen 1997, Solan et 

al. 2004, Norling et al. 2007). This increases the hospitability for other organisms that are 

sensitive to low dissolved oxygen levels. Such benthic fauna through irrigation of burrows and 

tubes can also offer refugia for other species and increases sediment stability (Eckman et al. 

1981). Tube aggregation further improves the settlement of passively transported particles 

(Passarelli et al. 2012) enhancing food availability for deposit feeding fauna. This was indicated 

by the presence of the facultative omnivores Onuphis eremita in this community. 

Samples collected south of Durban to uMkhomazi (surrogacy samples) clustered together and 

were typified by an assemblage with a preference for cooler water (19.13°C), fine-coarse sand 

(median phi=0.99 ɸ) with relatively higher sediment carbonates (>40%). Noteworthy was the 

large amount of biogenic material in the form of mollusc shells (personal observation in 

sediment), but the recovery of these as live specimens was relatively low. Fauna collected here 

were characterised by a wide range of amphipod and polychaete species with a distinct 

dominance by the families Ampeliscidae and Unciolidae. Byblis gaimardii, Ampelisca diadema 

and Unciolella spinosa were found to contribute the most in terms of abundance. These 

fossorial crustaceans are presented in Griffiths (1974a): U. spinosa at 54 m depth off 

Umzimkhulu and B. gaimardii at 94 m depth. These are in good agreement with the depth range 

considered here (50-80 m isobath), besides being recorded further south of the study area. 

McClurg (2004) considered these as important constituents of the marine benthos along the 

KwaZulu-Natal continental shelf. Both of these Families comprise mostly of detritus-feeding 

species, with Ampeliscidae being the most diversified amphipod Family in the ocean (Griffiths 

1976, Dauvin and Bellan-Santini 1996). They gather organic materials from the sediment 

surface and filter feed from the water column, but overall show preference for fine sands and 

mud. Faunal components of this community, through tube construction also contribute to the 

habitat engineering.  

6.1.1 Higher taxa and indicator groups as community surrogates 

The results presented in this study identified significant pairwise correlations between the 

spatial patterns of species richness and that for Genera, Families and the potential indicator 
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taxon: Polychaeta indicator taxa indicated that even after data aggregation to the higher 

taxonomic levels, the species richness found in this study was retained. The spatial structuring 

of the macrobenthic community of the KwaZulu-Natal mid-shelf can be reliably approximated 

when community data are aggregated to high taxonomic resolution (Genus, Family) and/or 

when restricted to one group of benthic organisms (Polychaeta). Further, spatial ecological 

patterns obtained from higher taxonomic resolution could be used for predicting the pattern for 

the species richness in rapid biodiversity surveys, where the objective is to examine overall 

biodiversity patterns or for spatial patterns estimated by multiple groups (Tyler and Kowalewski 

2017, Yekta et al. 2017).  

These results are in accordance with findings of Heino and Soininen (2007) who found 

significant correlations between assemblages based on species richness and those constructed by 

aggregating data to Genus and Family taxonomic level. Mackie et al. (1997) and Olsgard et al. 

(2003) showed that polychaetes are good surrogates for whole macrobenthic assemblages. The 

implication is that the limited association between assemblages based on species richness and 

those higher taxonomic levels may have be violated by the magnitude of richness in each 

taxonomic level or indicator taxa and, thus this limits the ability to infer richness since members 

of other taxa may maintain species diversity (Joydas and Damodaran 2009). Moreover, when 

species of a community are taxonomically distinct at higher taxonomic levels (e.g. Phylum, 

Class), then the community is more likely to show a correlation between species richness and 

richness for higher taxa in comparison to a community in which the species are distinct in lower 

taxonomic resolutions such as genus (Yekta et al. 2017). The decline in the correlation 

coefficient values from finer to coarser resolutions may occur, in part, due to the difficulties in 

assigning organism to a specific taxonomic level. This leaves an organism as unknown and 

therefore the richness of that taxonomic level would be reduced (Shokri and Gladstone 2008).  

Although the outcomes of this study are consistent with previous studies demonstrating that 

coarser taxonomic resolution and subset-taxa surrogates perform well in capturing spatial 

ecological patterns (Mellin et al. 2011), further work is needed to assess the effect of the 

magnitude of richness. Especially in biogeography studies, where higher taxa are poor in 

detecting regional changes. As a result, some of the major geographical boundaries are not well 

demarcated by higher taxa data (Roy et al. 1997). 

The spatial pattern obtained from nMDS analyses based on Bray–Curtis similarity matrices on 

assemblage composition for Genus and Family levels and indicator Polychaeta taxon were 

similar to the pattern obtained at Species level. The second stage non-metric MDS plots of 
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similarity matrices of different taxonomic levels, verified that resemblance of Genus and Family 

levels to species level. Results of nMDS did not depict similar grouping patterns based on 

Amphipoda indicator taxon with that obtained from species level. However, a relatively strong 

correlation was observed in their matrices. This could be an artefact of high abundance of this 

group and the presence of monotypic Families and Genera causing a reduction in similarity. 

Matching biota and environmental parameters using BIOENV analysis showed turbidity and 

mud as important explanatory variables. These discriminations were also reflected in Genus and 

Family taxonomic levels and by Polychaeta and Amphipoda indicator taxa, suggesting potential 

applicability in detecting environmental variables responsible for overall macrobenthic patterns. 

Thus, this study suggests that spatial structuring of macrobenthic community and factors 

influencing patterns can be reliably detected when community data are aggregated to Genus and 

Family taxonomic level or restricted to Polychaeta and Amphipoda indicator taxa for KZN mid-

shelf macrobenthos. 

Coarse taxonomic levels or subset surrogates may reduce time and costs associated with 

identification to the species level. Consequently, more resources can be allocated to further 

spatial and temporal sampling (Dauvin et al. 2003). However, coarser taxonomic levels are 

ideally used after a close relationship between species level and coarser levels has been 

established (Olsgard et al. 2003), which requires the species to be identified in the first place. 

Unfortunately, this has not been carried out for most of the marine macroinvertebrates on the 

KZN shelf. For instance, there are limited comprehensive macrobenthic studies and up-to-date 

taxonomic guides. Those available (e.g. Barnard 1950, Day 1967) are outdated (Clarke 2005). 

This is particularly true as taxonomy continues to be a low priority for both researchers and 

funding bodies and is conducted in relative isolation from the other disciplines in the life 

sciences (Magierowski and Johnson 2006). Therefore, yet coarser taxonomic levels may be used 

as effective surrogates for diversity patterns, species level studies are still critical when 

assessing biodiversity to understand the structure and function of macrobenthic assemblages 

(Naser 2010). Because any taxonomic rank higher than species can behave as a random group of 

species not providing ecologically meaningful information (Bevilacqua et al. 2012) and the 

outcomes of taxonomic groupings may vary between habitats and trophic levels.  

Although diversity patterns vary among ecosystems and organisms (Heino and Soininen 2007), 

the outcomes of this study are consistent with previous studies demonstrating that data 

aggregated to higher taxa or subset-taxa surrogates perform well (Mellin et al. 2011) and 

provide congruent representations of macrobenthic spatial patterns. These results tentatively 
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indicate that spatial ecological analyses restricted to one group of marine benthic organisms 

may produce meaningful proxies for assessing spatial patterns estimated by multiple groups, a 

potentially powerful tool in conservation planning (Ward et al. 1999). For this shelf 

environment, where biodiversity information is poor, comprehensive studies on which 

surrogacy can be based on, are still required. Especially to assess the effect of richness 

magnitude in testing the surrogacy value of different taxonomic resolutions. Furthermore, to 

determine how morphological characteristics associated with the identification of families and 

genus can be aligned with functional properties of an organism as this has potentially important 

implications for the understanding of how biodiversity is linked to ecosystem properties and 

function. 

6.1.2 Macrobenthos functional structure and characteristics on the KZN mid-shelf  

One of the main aims of this study was to determine the trait structure of soft-bottom 

invertebrate assemblages, to study their spatial variation and to investigate the factors that may 

be responsible for these variations. As the data used to describe trait composition relate to a 

number of benthic habitats along the KZN mid-shelf, which together comprise most of the shelf 

sedimentary regions, results presented provide valuable information that could be used to 

inform effective provincial marine spatial planning. This is because habitat heterogeneity and 

multiple habitats are a key consideration for marine spatial planning (Foley et al. 2010). 

In biological trait analysis studies, the choice of traits is generally of particular importance 

(Kokarev et al. 2017). Nonetheless, there is no theoretical limitation to the number of traits to 

use, at least if a procedure justifies the selection of a subset of traits significantly associated to 

habitats (Kleyer et al. 2012). Different numbers of traits and trait categories produce, different 

views of relationships between functional diversity/ecosystem functioning and species richness, 

with fewer traits producing an ambiguous view of assemblage functioning (Beauchard et al. 

2017). In general, the inclusion of many traits as possible has been suggested, in order to obtain 

more perfect description of ecological functioning (Bremner et al. 2006a). This approach was 

adopted in this study since different body morphologies can result in different biological 

characteristics. Traits relating to behaviour, morphology and life history were considered for 

their potential ability to reflect patterns in community assembly, thereby addressing spatial 

variation. Overall, most traits used here were found useful to describe the observed patterns. 

Nine traits subdivided into 51 modalities were considered and overall, trait modalities were well 

represented at all stations, but no single station hosted all trait modalities.  
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Total abundances had a strong influence on biological trait representation (i.e. specific traits 

were present in higher abundances in stations where crustaceans were also recorded in high 

abundances), highlighting the ability of changes in macrobenthos abundance to drive trait 

frequency (Hewitt et al. 2008, Paganelli et al. 2012). On the other hand, benthic communities 

along the mid-shelf were characterised by the dominance of a few taxa, combined with a large 

pool of rare taxa accounting for 30% of total fauna (Chapter 3). Rare species often have traits 

that are distinct from those of common species (Mouillot et al. 2013). These ‘rare’ traits may be 

a reflection of a richer variety of available food resources and microhabitats that provide shelter 

from predation created by the environmental conditions (Ellingsen et al. 2007). For example, 

the grazing amphipod, Caprellidae sp.1 that clings to algae, only appeared off uThukela, despite 

being relatively unimportant in terms of abundance, it added traits (grazing) otherwise 

unrepresented, implying enhanced primary production and organic-matter flux as these relies on 

the grazing rate of planktonic heterotrophs (Wong and Dowd 2015, Alsaffar et al. 2017). This 

suggests that while faunal abundance may exert strong influences on biological trait 

frequencies, functional diversity could increase with species loss if functionally unique species 

are higher in abundance relative to less unique species (Petchey and Gaston 2006). In this study, 

two habitats Port Durnford and uThukela exemplifies this, where the constituent taxa were low 

in abundances and represented rare fauna that contributed to the maintenance of habitat 

functionality.  

Examination of functional trait composition provided information on the range and distribution 

of traits and how they relate to environmental variables. Differences in the relative proportion of 

biological traits between habitats are in line with the habitat templet and environmental filtering 

concept, which state that the environment dictates community assembly through selection of 

specific species traits (Townsend and Hildrew 1994). In this study, the differences in trait are 

the reflection of the gradient in the community structure influenced by environmental parameter 

such as sedimentary characteristics (%mud and very coarse sand, TOC, carbonates) and 

hydrological gradient (turbidity, chlorophyll-a and DO). Results showed a clear difference in 

functional profiles across stations (i.e. the community weighted mean values for each single 

trait-category). Movement in sediments (surface dweller), living in burrows (burrower) and 

tubes (tube dweller) were mostly prevalent in this study and have important implication in the 

chemistry, nutrient cycling and composition of sediment. For example, burrow dwelling could 

augment the oxygen level in the bottom, thus increase the hospitable environment for other 

organisms that cannot obtain dissolved oxygen directly from the sediment or could influence the 

concentration of organic matter (Rhoads and Boyer 1982). Ventilation of burrow structures and 



                                                                                              GENERAL DISCUSSION AND CONCLUSION 

 
MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

158 

sediment by feeding (deposit feeding) and bioturbation (sediment accretion and removal) 

activities increases the processes of nitrification (Aller 1982) and facilitate biogeochemical 

reactions that include re-oxidation of reduced compounds (Norling et al. 2007). These, 

including respiration activities, directly affect the quality of the organic material that is 

mineralised (Norling et al. 2007). Patchwork of tubes (tube dweller) can also have a significant 

effect on sediment stability (Eckman et al. 1981). 

In marine benthic communities, several feeding groups are known to co-occur in different 

proportions, according to sediment characteristics. In coarse sediments, suspension feeders 

usually dominate the community, whereas in fine to muddy sediments deposit feeders 

dominates (Snelgrove and Butman 1995). Suspension feeders are obviously disadvantaged in 

muddy sediments due to the clogging effect of re-suspended particles and the destabilising 

effect by the actions of deposit feeding organisms (Rhoads and Young 1970, Moore 1977). 

Results presented here are in agreement with this model. A further analogy is that the 

relationship between sediment characteristics and feeding method may be used as an indicator 

of hydrographic flow (Pisareva et al. 2015). In that study, it was concluded that, generally 

benthic filter/suspension feeders are associated with regions of stronger flow and deposit feeders 

with regions of calm hydrodynamic conditions. High current velocities tend to contain high 

loads of suspended particles that serve as food for filter feeders. In this study, high proportions 

of detritus/suspension feeders, some with pelagic dispersion dominated the coarse sediment on 

the narrow shelf area off Port Durnford and south of Durban. These fauna gather particulate 

organic material from the surrounding water, thereby coupling the pelagic and benthic 

environment Covazzi-Harriague et al. (2007). Furthermore, analysis of traits related 

reproduction and larval dispersal permit, to some degree, inferences about the transport of 

matter within and between systems. For example, pelagic dispersion, suggested that the supply 

of propagules via the water column is a vital form of matter export that contributes to benthic-

pelagic coupling, while asexual trait may also perform this function (Pacheco et al. 2013). 

Multivariate analyses distinguished four functional trait compositions that reflect geographical 

position. These compositions were more governed by traits related to lifestyle and behaviour of 

the species (movement method, feeding method, diet preference, living habit and habitat 

engineering). Similar results were also obtained by van der Linden et al. (2017) in tropical 

estuaries, Bremner et al. (2003a), (2006b) off the British Atlantic coasts, Marchini et al. (2008) 

in Northern Adriatic lagoons and by Paganelli et al. (2012) in North-West Adriatic Sea. Poor 

representation (variability) of trait modalities related to life history may be related to the 

homogeneous dominance of single modalities: For example, those traits representing 
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reproduction modes, sexual differentiation and larval development showed little to no variation. 

This high dominance may be suggestive that these traits are less influenced by oceanographic 

features, water mass properties and sediment composition than those mentioned earlier.  

Several biological traits distinguished KZN mid-shelf associated faunal assemblages by being 

consistently more common than others. This suggests that, depending on the relative abundance 

of trait modality, ecosystem functions may differ across habitats. Potential linkages between 

expressed functional traits and subsequent ecosystem functions can be inferred from knowledge 

of the weighted functional trait values within each habitat (Wong and Dowd 2015). Patterns in 

functional diversity across Port Durford and uThukela were similar. Low species richness and 

the low abundance of trait modalities contributed to these results. Functional evenness indicated 

that, despite low diversity, niche space were generally utilised suggesting niche 

complementarity and thus buffer ecosystem processes (maintenance of ecosystem functioning) 

(Mason et al. 2005). The fact that there was no biological trait exclusive to either habitat suggest 

that they were functionally similar, which is surprising given the differences in taxonomy and 

environmental variables between them. This result supports the idea that species turnover can 

occur within the constraints imposed upon biological traits (Bremner et al. 2006b) and that 

ecological functioning can be shared amongst assemblages that are taxonomically distinct 

(Hewitt et al. 2008). 

Port Durnford and uThukela, characterised by coarse sand and muddy bottom, respectively, 

favoured species that concentrate their activity on the surface of the sediment. Mud sediment off 

uThukela supported detritus/deposit feeding, while this trait off Port Durnford is likely 

explained by the complex substratum, which offers only small spaces for fauna to dwell and 

also trap detritus/fine sediment within spaces (Cowles et al. 2009). The thriving mobile 

carnivores and scavengers of uThukela might be suggestive of recovering macrobenthic 

community in habitats that are frequently subjected to disturbance and sediment deposition 

(Bonsdorff and Pearson 1999). While some traits (e.g. soft body design and surface dweller) 

displayed the same pattern of dominant modalities in both habitats, other traits (e.g. clinging and 

attachment) off uThukela allowed identification of differences and abundance patterns of single 

modalities.  

Trait composition south of Zinkwazi to Durban displayed high functional heterogeneity. For 

example, most of the modalities of the biological traits (movement method and diet preference) 

were almost equally represented. These findings confirm those after the application of 

taxonomic-based methods (Chapter 3). The high level of omnivory exhibited by KZN mid-shelf 
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fauna reflects an ability to utilise a variety of food sources, and could suggest that they occupy 

relatively wide niches (Thrush et al. 2011).  

In this study, dominance of direct developing larvae was largely driven by the high number of 

brooding peracarid crustaceans and egg-laying gastropods with direct larval development. The 

type of larva an organism produces reflects its adaptation to environmental variability: species 

with a direct developing larval type display limited dispersive potential and greater extinction 

risk (McHugh and Fong 2002). On the other hand, low dispersal suggests that the persistence of 

populations in KZN mid-shelf relies on the immigration of adults from adjacent habitats or 

brought about by the Agulhas Current (Lutjeharms 2006a) and/or the recruitment of juveniles 

from within the habitats. Asexuality (e.g. fragmentation in annelids, fissiparity in sea stars and 

brittle stars) shared further insight into the persistence of populations since it control recruitment 

and habitat colonisation (Mladenov and Emson 1984).Overall, low larval mobility indicated that 

the habitats along KZN mid-shelf were relatively stable (Verberk et al. 2008). Whether the 

prominence of taxa with direct larval development was driven by environmental conditions (e.g. 

adaptation strategy to avoid being swept by the current) or whether these differences are driven 

by competitive interactions within the community, is difficult to determine. Nonetheless, life-

cycle traits are linked to the reproductive technique of a species and to its habit (Verberk et al. 

2008) and these are especially complex processes with multiple trade-offs and often induce 

confounding effects (Verberk et al. 2008).  

6.1.3 Taxonomic vs functional approach 

In this study, Genus and Family taxonomic levels and Polychaeta indicator taxon showed 

similar findings regarding univariate descriptors of the faunal communities. This was also true 

in the multivariate analysis. However, the contrasting results between Species-level and 

taxonomic resolution higher than Family and Amphipoda indicator taxa probably reflect 

differences in the ecological roles of these higher taxa and indicator taxa in different habitat 

types. This suggests the possibility that the variety of ecological and/or functional roles, rather 

than the number of individuals or taxa within a taxon, may be a better determinant of the 

suitability of a surrogate set. 

Ecosystem functioning is governed more by functional assemblages than by taxonomic 

assemblages (Walker 1992). Changes in functional diversity are thus more likely to affect the 

stability, resistance and resilience of species assemblages than changes in taxonomic diversity 

(Bellwood et al. 2002, Guillemot et al. 2011). For these reasons, conservation planning should 

incorporate functional criteria in the analysis to complement taxonomic data and improve 
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efficiency (Guillemot et al. 2011, Heap et al. 2011, Jackson and Lundquist 2016). In this study, 

MSP biozones were generally weak surrogates for both taxonomic and functional fish data. For 

both, results were highly variable but it was noted that for taxonomic data there were some 

agreement at specific habitats. Since both types of data did not provide the same general pattern 

suggests that conservation plans built on taxonomic criteria could not be transposed to 

functional criteria, and vice versa. Therefore, integration of both data types is deemed a viable 

option for effective conservation.  

The taxonomic approach showed that KZN mid-shelf is not homogenous in terms of faunal 

assemblages, rather different faunal assemblages are characteristic to specific habitats along the 

mid-shelf. Trait categories were expected to tie with the taxonomic approach since the trait 

structure reflected the functional characteristics of the dominant species within assemblages. 

However, this was not the case here, since changes in phylogenetic diversity of species 

assemblages are not explicitly linked to change in functional diversity (Gibson et al. 2001a). 

Instead, traits analysis advanced the knowledge of community of organisms as a complement to 

a taxonomic composition analysis of abundance and distribution. Nonetheless, biological trait 

analysis proved to be a sensitive method of distinguishing differences between benthic 

communities and as outlined above provided complementary information and essential features 

of macrobenthic faunal communities on the KZN mid-shelf (Alves et al. 2014, Shojaei et al. 

2015). Although multivariate patterns obtained through the taxonomic approach were not 

overlaid on that obtained through BTA analysis, community distributions related to a similar set 

of environmental parameters. Important to biodiversity protection, yet uncertain, is the issue of 

building a sound indicator system of biodiversity that could be standardised across organisms 

and disciplines. In this context, the combination of taxonomic and functional attributes has the 

potential to lead to improved biodiversity assessment tools (Dı́az and Cabido 2001, Villéger et 

al. 2010).  

Study of community composition and diversity in terms of functional traits can provide 

mechanistic insight into ecosystem functioning. Thus, the inclusion of both taxonomic and 

functional trait diversity can be useful when developing comprehensive management 

approaches for ecosystems (Lavorel et al. 2011). 

6.1.4 Relation of KZN mid-shelf macrobenthic fauna with habitat features 

Considerable number of studies has been carried out to understand the role of environmental 

factors in structuring the macrobenthic community in tropical coastal habitats (Alongi 1990, 
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Sivadas et al. 2013). However, the majority of the studies were based on species diversity, and 

very few studies have focused on the functional diversity, especially in the tropical/subtropical 

developing countries (Mertz et al. 2007). This study provides an opportunity to understand the 

biodiversity-environment relation of the KZN mid-shelf, and the knowledge of such natural 

variation in biodiversity patterns will be helpful for effective conservation plans of these 

ecologically important habitats. The first step to identify and understand the drivers that shape 

the structure of natural assemblages is to define their distribution patterns, based on which 

explanatory models of structuring processes can be proposed (Underwood et al. 2000). 

The macrofaunal community patterns showed that turbidity and mud best explained overall 

patterns in taxonomic and functional composition. This congruence between taxonomical and 

functional dimensions of community organisation suggests that the functional groups and 

species composition seem to be modulated by the same environmental factors and possible 

processes acting at the same spatial scales. Overall, the taxonomic composition of faunal 

assemblages along the KZN mid-shelf showed a higher level of variation between stations along 

an overall environmental gradient than did the biological traits composition. 

The large volume of terrigenous fines brought onto the shelf by the uThukela Estuary outflow 

increases the turbidity of the shelf waters so that the nutrient rich plume waters are also 

available to primary producers in mid-shelf waters. Boundaries between different water masses 

are characterised by high primary production (Mann and Lazier 1996). The macrobenthic 

community at this station was significantly affected by nutrient input coupled with mud from 

the Thukela. It was no surprise that sedimentary characteristics were the important ecological 

drivers underpinning biodiversity patterns. Because infaunal species inhabit spaces between 

sediment grains, as such their feeding, mobility and reproduction behaviours are regulated by 

sediment characteristics (Hirst 2004). This, therefore, reinforces the animal-sediment 

interrelations. Huang et al. (2014) in their study of predictive mapping of soft-bottom benthic 

biodiversity using a surrogacy approach in Carnarvon shelf, Western Australia, arrived into at 

this important conclusion. 

Based on the patterns of db-RDA plot, it can be concluded that the communities and traits in 

Port Durnford and the Durban Eddy region were mostly influenced by sediment grain size. The 

Port Durnford community was significantly correlated with the proportion of medium and 

coarse sand, while the Durban Eddy area was significantly correlated with the proportion fine 

sand in the sediments. The orientation of the macrobenthic community and associated traits 

sampled from south of Durban to the uMkhomazi area are in the centre of the db-RDA plots 



                                                                                              GENERAL DISCUSSION AND CONCLUSION 

 
MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

163 

(Chapters 3 and 4), suggesting that the measured environmental parameters in this study do not 

adequately account for the biotic variation at these areas. The presence of biogenic elements in 

this area positively influences macrobenthic biodiversity and function. Sediments in these 

stations were characterised by a significant shell component as shown by high carbonate content 

recorded in these stations (Chapter 3). Biogenic structures (polychaetes tubes, gastropods shells) 

provided refuge areas and supported gastropod egg capsules that were found attached to dead 

gastropods and shell fragments. The presence of high polychaete tubes densities (network) 

reduces water flow at the sediment surface (Passarelli et al. 2012). This improves the settlement 

of both inert and living particles (Friedrichs et al. 2000), and enhances the accumulation of 

passively transported sediment and organic particles. Foraminifera tests (shell) provide an 

additional biogenic structure (Peachey and Bell 1997). In this study dead foraminifera were used 

by Dipolydora capensis as burrows (Untiedt 2013), which in turn contributed to the habitat 

heterogeneity (McArthur et al. 2010a). 

The value of total organic carbon (TOC) content to macrobenthos as food source is well 

established (Alongi and Christoffersen 1992, Snelgrove and Butman 1995, Soto et al. 2016). 

However, in this study impoverished fauna in both number of taxa and abundance were 

recorded in stations with high TOC. This is not indicative of the absence of any direct 

relationship with TOC, but, suggest that  the values of TOC include the refractory component, 

which is of little nutritional value to macrobenthos (Pilditch et al. 2015). Measured TOC does 

not accurately reflect the amount of labile organic carbon (Nodder et al. 2003). The values of 

water column Chl-a concentration suggested that pelagic primary production has a significant 

effect on the macrobenthic communities of the uThukela habitat as well as Durban Eddy area. 

Benthic primary production is probably more important, given the general dominance of deposit 

feeding macrobenthos. While no attempts were made to quantify benthic primary production in 

this study, Lange et al. (2014) found a high number of taxa in fine and medium grain sand, 

associated with diatoms and shell fragments and inferred that diatoms provide a good food 

source for benthic organisms with shell detritus providing protection. On the same token, 

Wieking and Kröncke (2003) inferred that benthic primary production comprised a major food 

source in communities dominated by sand licking, fossorial amphipods, such as Haustoriidae 

and Ampeliscidae, which browse directly on microphytobenthos and macroalgal cells (Grippo 

et al. 2011). A number of gravid female macrobenthos, especially peracarid crustaceans, were 

sampled here. This corresponds to the recruitment as both pelagic and benthic juveniles 

dominated the population. There is strong evidence that availability of high quality food is 

critical for the survival of juveniles and population dynamics of benthic species (stations with 
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high chlorophyll-a corresponded with high abundance of filter feeding Ampelisca and 

Unciolella species) (Covazzi-Harriague et al. 2007). On the other hand, this may be explained 

by the fact that crustaceans, in particular amphipods, breed almost continuously in tropical and 

subtropical areas (Rodrigues and Pires-Vanin 2012). This indicates that, the KZN shelf is a 

locally important habitat for reproduction and recruitment, providing a suitable area for larval 

settlement and the development of a diverse macrobenthic community. 

6.1.5 Contribution to improved conservation planning (biodiversity surrogates) 

The use of MPAs as a management strategy is increasing around the world (Stevens and 

Connolly 2005). Effective conservation planning for protection of biodiversity requires either 

detailed information on species distributions, or, where information on the ecology and biology 

of much of the marine fauna are not available, reliable surrogates for species distributions. 

Where surrogates are used in planning, these need to be representatives of biodiversity (habitat 

types, species and functioning) (Foley et al. 2010, Rees et al. 2010). The use of habitats in MPA 

planning is generally regarded as a useful strategy (Harris et al. 2008). The underlying principle 

of using broad habitat types for the creation and subdivision of MPAs into conservation zones is 

based on the absence of methodically surveyed biological data resulting in a considerable 

proportion of marine species yet to be described or even known (Gladstone and Davis 2003). 

Advances in remote sensing technology have enabled the production of high-resolution maps of 

biophysical factors that can be used to create habitat maps that are often used as surrogates for 

benthic biodiversity. Habitat maps as surrogates for marine biodiversity management and 

conservation involves the partition of the seafloor into spatial zones (Kirkpatrick and Brown 

1994, Stevens and Connolly 2005, Carmel and Stoller-Cavari 2006). Each of which 

corresponded to a marine benthic habitat, that are relatively homogeneous in composition, 

community and functional attributes with similar habitat attributes and different from other 

habitats (Harris et al. 2008, Heap et al. 2011). These biophysical factors are known to affect 

communities (McArthur et al. 2010b) and when used to define habitat maps should reflect 

organismal diversity and result in the protection of all biodiversity associated with habitat class 

(Faith and Walker 1996). As such, high congruence is expected between abiotic based habitats 

and biodiversity. Nonetheless, efficacy of biophysical habitat surrogates for representing marine 

benthic biodiversity remains poorly understood (Przeslawski et al. 2011), as studies have 

produced inconsistent results (Faith et al. 2003, Brooks et al. 2004, Jackson and Lundquist 

2016). Therefore, the use of a biodiversity surrogate, such as habitats and in the case of KZN 

MSP predefined biozones, for marine conservation planning should be preceded by tests, so that 

the surrogate actually represents variation in biodiversity at scales relevant to planning (Ward et 
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al. 1999, Mumby et al. 2008, Shokri and Gladstone 2013). Ideally, the classification of biozones 

Should be tailored to the scale of management (Stevens and Connolly 2005). In this study, 

KwaZulu-Natal MSP predefined biozones were tested for their effectiveness in reflecting spatial 

variability in macrobenthic communities (Chapter 3) and functional attributes (Chapter 4). 

Although there was a relationship between abiotic variables and macrobenthic assemblages, 

results indicated limited overlap between marine spatial planning (MSP) predefined biozones 

and sediment distribution and macrobenthic community patterns, while functional 

characteristics showed no coherence with MSP predefined biozones. Therefore, biozones 

currently set for the province were not a useful predictor of spatial variation in macrobenthic 

biodiversity. The hypotheses set in Chapters 3 and 4 were accepted as predefined biozone 

classifications were found to not be representative of the macrobenthic community distributions 

when tested against benthic infauna data. Franken (2015) also reported limited overlap of 

benthic epifaunal patterns with KZN marine spatial planning predefined biozones. This non-

generality of the relationship between macrobenthic community patterns and predefined biozone 

classifications is also found at high latitudes as demonstrated by Törnroos et al. (2013), who 

further concluded that predefined habitats did not meet the variation in functional structure. 

Studies along the subtropical regions have also found varying results in terms of bio-physically 

derived habitat as surrogates for distinguishing variation in soft-bottom communities (Heap et 

al. 2011, Mellin et al. 2011, Przeslawski et al. 2011). Over-classification and under-

classification tend to occur when biophysical derived habitats are used as surrogates for 

biological communities (Stevens and Connolly, 2005). To test the Australian benthic seascape 

classification, Przeslawski et al. (2011) used epibenthic invertebrate community structures and 

found a limited overlap between abiotic surrogates and the benthic community structure. Results 

from Przeslawski et al. (2011) indicated that biophysical-derived surrogates were not 

biologically distinct, an example of over-classification. Seascapes defined in a heterogeneous 

habitat such as the Great Barrier Reef, were found to encompass more than one biological 

assemblage and were thus under-classified (Heap et al. 2011, Przeslawski et al. 2011). The 

utility of bio-physically derived habitat classifications as biodiversity surrogates is still to be 

fully established as studies have produced both negative (Stevens and Connolly 2005) and 

positive (Przeslawski et al. 2011) results. 

Knowledge on the macrobenthos spatial distribution in relation to the environment is crucial to 

understand the functioning of the coastal ecosystem, and forms the ecological basis for 

sustainable management (Reiss et al. 2010). Of the suite of abiotic environmental attributes 

tested, macrobenthic assemblage structure (taxonomic and functional) was optimally explained 



                                                                                              GENERAL DISCUSSION AND CONCLUSION 

 
MACROBENTHOS AND MARINE BIODIVERSITY SPATIAL ZONES  

166 

by a combination of turbidity and mud. These reflect the importance of uThukela outwelling in 

structuring marine benthic assemblages (Pilditch et al. 2015). Spatial variation in macrobenthic 

assemblages was also associated with variation in sediment particle size. Substrate type has a 

strong role in structuring marine benthic assemblages (Mair et al. 2009), and has been shown to 

act as an effective surrogate for macroinvertebrate assemblages (McArthur et al. 2010a, Dixon‐

Bridges et al. 2014). Using some of the biological dataset from which this study draws, MacKay 

et al. (2016) also found abundance of different sediment particle sizes to be a significant driver 

of macrobenthic biodiversity in the KZN Bight. From the biophysical variables used to define 

biozone model, mud and turbidity were the main variables that significantly correlated with 

macrobenthic invertebrate communities. Other strong relationships included fine sand and 

sediment carbonate. Therefore, turbidity and sediment distribution characteristics (%mud, fine 

sand and sediment carbonates) were the key drivers of community structure. However, for 

habitat classification systems such as the biozone approach to reach their full potential, basic 

surrogacy research quantifying the relationships between sediment grain size and turbidity and 

benthic community structure across a range of habitats, regions, and spatial scales is crucial 

(McArthur et al. 2010b).  

Although MSP predefined biozones were not consistent surrogates here, the measure of 

biodiversity and data used should be considered in the evaluation. Biodiversity here is defined 

as community structure based on numerical abundance, which is driven by small animals. 

Future studies investigating other measures of biodiversity (e.g. biomass) may yield improved 

differentiation of communities among biozones. Nonetheless, the importance of using 

abundance-based measures for identifying community differences and efficiency of habitat as 

surrogates has been demonstrated by previous studies (Hewitt et al. 2008, Przeslawski et al. 

2011, Törnroos et al. 2013). On the other hand, the type and the resolution of data used during 

habitat derivation may contribute to poor fit. One obvious explanation for KZN is that in such 

heterogeneous region, the sediment layer used was based on interpolated maps created from 

Birch (1996) coarse sediment data. This may have resulted in a poor representation of fine sand 

and muddy habitats and thus had an overriding effect on the other environmental factors 

incorporated during biozone classification. Future refinements to biozone derivations may 

improve their performance and utility to predict macrobenthic biodiversity across a range of 

spatial scales by incorporating additional abiotic layers relevant to seabed characterisation (e.g. 

suspended particulate organic matter, freshwater input) and updated layers of existing 

biophysical data (e.g. sediment data from Green and MacKay 2016).  
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Results here identified sediment properties as one of the ecological factors driving 

macrobenthos biodiversity. As such, marine spatial activities on the KZN shelf may be better 

focussed on the shelf unique benthic habitats (Green and MacKay 2016, MacKay et al. 2016). 

These complement each other (e.g. uThukela mudbank and Port Durnford reef complex) and 

correspond to the sediment distribution patterns on the KZN Bight (Green and MacKay 2016).  

Existing MSP predefined biozones are not consistently useful surrogates because the strength 

and significance of their relationships with taxonomic and functional structure were 

incapacitated. Nonetheless, existing biozone classification (Livingstone 2016) can be effective 

when a biological data layer is incorporated into biozones at a relevant scale (Heap et al. 2011). 

The regional specificity and low level of agreement between macrobenthic patterns and 

predefined biozones reinforced the need to refine the biozone model for more effective and 

representative marine spatial planning. Therefore, biozones were weighted with macrobenthic 

taxonomic and functional attributes. The resultant model resolved into four biozones, with each 

supporting a distinct community, associated with specific habitat under the influence of well-

known oceanographic features (e.g. uThukela outwelling=BZ 2, Durban Eddy=BZ 3, among 

others). The revised biozone classification scheme is, in part, supported by recent KZN Bight 

studies (MacKay et al. 2016, Untiedt and MacKay 2016), which identified distinct communities 

at these unique habitats. Furthermore, a study undertaken between the Phakisa proposed 

uThukela MPA and expanded Aliwal Shoal MPA investigating the efficiency of the existing 

biozone also found distinct benthic epifaunal assemblages between Zinkwazi and Durban (BZ 

3) and the South of Durban to Umkhomazi (BZ 4), supporting the potential of dividing the shelf 

into zones (Franken 2015). Overall, these results indicated that habitat-classification (biozones 

and seascapes) methods based on environmental variables are useful in providing a broad-scale 

indication of habitat diversity at various scales (Freitas et al. 2011, Huang et al. 2011, Kostylev 

2012), but they cannot entirely replace the need for biological sampling. 

The proposed model is likely a better predictor of spatial variation in biodiversity patterns, as 

well as ecosystem processes, as it was based on directly measured biological patterns (Stevens 

and Connolly 2005), and therefore is considered a more accurate representation of variation in 

macrobenthic communities and ecological functions of the KZN mid-shelf. Each proposed 

biozone contains differing faunal communities with different functional characteristics. The 

importance of macrobenthos in benthic ecological processes is well-documented (Hutchings 

1998, Pillay et al. 2007, Hewitt et al. 2008, Passarelli et al. 2012) and representation and 

protection of both biodiversity and the ecological processes that sustain biodiversity and 

ecosystem services is a goal of marine conservation planning (Roberts et al. 2003). Spatio-
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temporal patterns in measures of macrobenthos biodiversity co-vary with other taxa (Anderson 

et al. 2009), therefore, macrobenthic pattern based biodiversity surrogate is likely to represent 

spatial variation of other co-varying marine fauna (Bridge et al. 2016). For instance, Gladstone 

(2002) suggested that marine reserves established to conserve mollusc diversity would also 

adequately protect total biodiversity (of noncryptic organism .5 mm maximum dimension) on 

rocky shores in New South Wales, Australia. This study has shown that the proposed biozone 

model for KZN MSP is adequate in capturing the variation in macrobenthos biodiversity 

represented by the revised biozone classification model and, based on the known surrogacy 

value of biological patterns. 

Results obtained from Chapter 3 showed that fauna recorded in this study represent 60% of the 

KZN mid-shelf fauna. Therefore, multiple samples of macrobenthic assemblages from a range 

of locations subject to differing environmental influences are required to adequately conserve 

representative samples of biodiversity within KZN shelf. In such a case, each individual site 

would have a lower contribution to the overall diversity sampled and thus reduce the patchy 

distribution common in macrobenthic studies. The presence of transitional communities 

represented by a single station clearly reinforced the notion that macrobenthos is patchy 

distributed and vary at a very fine scale. In order to advance this knowledge, more studies 

documenting a great small-scale spatial variability under wide environmental domains are 

required. Furthermore, studies evaluating the sources of variation in macrofaunal biodiversity 

can share useful insight and improve the suitability of biozone classification schemes so they 

can act as a surrogate for biodiversity for the range of assemblages found along the shelf. 

However, the pressing factor to further advance the knowledge and conservation of this shelf is 

the need to update macrobenthic identification guides. 

A beneficial extension to this thesis would be to incorporate several additional datasets not 

utilised for this research and relevant to biozone classification (e.g. synchronisation of high-

resolution remote sensed and ground truthing data (including sea floor slope, freshwater input 

and suspended solutes) can improve classification accuracy of the proposed biozone model). In 

addition, future refined biozones should include updated layer of existing biophysical data. For 

instance, an updated sediment data (Green and MacKay 2016) and remote sensed turbidity data 

(Lück-Vogel et al. 2016). Macrobenthic distributions are only one of the several possible biotic 

datasets that could be used to improve classification efficiency. The inclusion of other 

ecological components (e.g. epifaunal communities) is likely to highlight additional important 

information and can help to establish whether the proposed model adequately represents overall 

biodiversity. It is also worthy to examine what additional conservation benefits can be provided 
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by the proposed biozone model. Notwithstanding the above, the use of macrobenthos to 

optimise the performance of biodiversity surrogates is justifiable for several reasons. Firstly, 

macrobenthos spatial configuration and heterogeneity have important implications for the 

distribution and relative abundance of other marine organisms (Gotelli et al. 2009). 

Furthermore, macrobenthos is one of the few groups for which such an extensive array of data 

are available on this shelf.  

This thesis assessed the effectiveness of MSP biozone classification model as surrogates for 

biodiversity conservation in KZN, and found that the biozone model is not a suitable surrogate 

for biodiversity of macrobenthos. Subsequent analyses were constructed to support KZN MSP 

processes currently undertaken. Proposed biozone model will be used to inform pathways to 

protecting and enhancing the ecological value (being recognised as a biological productive area, 

presence of unique benthic habitats) of this shelf environment. While most MSP exercises are 

challenged by the lack of consistent, spatially comprehensive datasets, understanding the 

limitation of the current biozone model in representing KZN biodiversity can assist in future 

classification exercises (Ward et al. 1999). Further studies are required to effectively understand 

what additional information needs to be incorporated into MSP biozone classification to achieve 

high classification accuracy so that biozones can act as a surrogate for biodiversity for the range 

of assemblages that will be conserved within the MPA.  
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Appendix 1. Biophysical layers used to define marine spatial planning biodiversity zones (biozones).  

 

Data Type Period Source

SeaSea surface temperature (SST) Advanced High Resolution Radiometer (AVHRR) 2001-2004 Oceanspace institute, University of Cape Town

Chlorophyll-a Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 2001-2004 Oceanspace institute, University of Cape Town

Bottom oxygen raster dataset 2006 Fiona Duff, University of Cape Town

Bottom temperature SADCO 1930-2005 Fiona Duff, University of Cape Town

Bathymetric data Grids and digitised contour maps 32 Datasets 2009 Paul Young 

Slope data Vector slopes along the X and Y gradients Interpolated from bathymetric data

Level 3 browser, Oceancolor 

(http://oceancolor.gsfc.nasa.gov/cg/ilevel3.pl

Photosynthetically Available Radiation 

(PAR), as a surrogate for turbidity K 490 data

ArcGIS and maps (Mud-gravel, Organic carbon and 

phosphate) 1996 Birch manuscript (single source)Sediment data 

2004


