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General Introduction 
 

1. General introduction 
 
 
 
 
 
 
Biodiversity comprises the variety of life on Earth at all its levels, from genes to 

ecosystems, through species, populations and communities including the ecological and 

evolutionary processes that sustain it (Gaston 1996; Williams & Humphires 1996). 

Within the last decades biodiversity became a central topic of social, political and 

scientific discussion. The currently most recurrent issues relative to biodiversity are its 

conservation and sustainable use. The increasing interest to biodiversity is mainly due to 

the increasing public awareness of its essential role to assure human well-being and 

survival by providing food, medicine and other important products (Chapin et al. 2000; 

Loreau et al. 2001; Millenium Ecosystems Assessment 2005b; Díaz et al. 2007; Hector 

& Bagchi 2007). The reason of this increasing interest in biodiversity is the overall 

threat to its maintaining, leading to its loss, caused by different factors such as climate 

change, strong demographic growth of the world and different destructive land used 

types (Baillie et al. 2004; Millenium Ecosystem Assessment 2005a). This threat is more 

accentuated in areas with high population density and growth, which has as direct 

consequences the increasing need for resources leading to an overexploitation, 

overgrazing and deforestation. 

There is thus a general consensus that biodiversity is under assault on a global basis and 

that species are being lost at a pronouncedly enhanced level (Lawton & May 1995; 

Royal Society 2003). In response to that, over the last two decades, several prominent 

international organizations as well as the scientific community have engaged in 

developing regional, continental, and global schemes (UNCBD 1992; Dinerstein et al. 

1995; UNEP 2002b; UNEP 2003c) to capture and prioritize substantial new flows of 

conservation investment (Dalton 2000; Myers & Mittermeier 2003; Whittaker et al. 

2005 ).  

An important component of biodiversity is its spatial patterning. The structure of 

communities and ecosystems (e.g. the number of individuals and species present) can 
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vary in different parts of the world. Similarly, the function of these communities and 

ecosystems (i.e the interactions between the organisms present) can vary from one place 

to another. Different assemblages of ecosystems can characterize quite diverse 

landscapes that cover large areas. These spatial patterns of biodiversity are affected by 

climate, geology, and physiography (Redford & Richter 1990). Understanding plant 

species distribution patterns and the underlying factors is hence a crucial step for the 

conservation and management of plant communities and ecosystems. 

Thus, to achieve an effective conservation of biodiversity, a central prerequisite is the 

biogeographic and macroecologic analysis of the factors and processes that determine 

the contemporary, and potentially also the future geographic distribution of species 

(Porembski 2003; Balmford et al. 2005; Brooks et al. 2006). These analyses include, for 

example, the identification of centers of species richness and centers of endemism 

(Barthlott et al. 1999; Kier & Barthlott 2001; Jetz et al. 2004; Lennon et al. 2004, Küper 

et al. 2004), the influence of different historical processes and biotic factors on 

biodiversity, the delineation of biogeographical regions from national to global scale 

(Wallace 1876; Engler 1879; Williams et al. 1999; Houinato 2001; Linder 2005) and the 

analysis of the impact of climate change on species distribution and biogeographic 

regions (Iverson 2001; Morin 2006; Sommer 2008). 

In the present thesis we are interested in the analysis of species richness and the 

delineation of biogeographical regions, as well as the analysis of the potential impact of 

climate change on species distributions and on the phytogeographical regions in West 

Africa. 

 

1.1 Spatial patterns of biodiversity 

There are general, perhaps universal, patterns of biodiversity that have led to a plethora 

of hypotheses concerning their underlying processes. Species richness increases with 

the area sampled commonly known as species-area relationship (Arrhenius 1921; 

Preston 1962; Williams 1964; Connor & McCoy 1979; Rosenzweig 1995; Lomolino 

2000; Williamson et al. 2001; Kreft et al. 2008). Moreover a well-documented and most 

general pattern in macroecology is the decrease in species richness (for most taxonomic 

groups) from the equator towards the poles, and generally high species richness in hot 

and humid places (Fischer 1960; Pianka 1966; Stevens 1989; Gaston 1996a; Rohde 
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1998; Field 2002; Mutke & Barthlott 2005; Lomolino 2005). However, other factors 

such as elevation gradients, changes of temperature, humidity, productivity, strongly 

affect the distribution patterns of species richness (Rahbek 1995; Rahbek 1997; 

Lomolino 2001; Braun et al. 2002; Grytnes & Vetaas 2002) 

 

Biodiversity mapping: Biodiversity maps are useful for several reasons (Gaston 1998a). 

First, biodiversity maps provide concise, primary information about a highly complex 

phenomenon, i.e., the spatial distribution of biological diversity. Second, species 

richness (e.g. Barthlott et al. 1996; Barthlott et al. 1999a; Barthlott et al. 2005) can be 

much better illustrated than for instance depictions of latitudinal gradients (see Ruggiero 

& Hawkins 2006 and Kier et al. 2006 for a more detailed discussion). Biodiversity maps 

may thus be helpful to explore putative mechanisms and environmental factors 

contributing to these patterns. Spatial information on biodiversity distribution may also 

be important for conservationists and decision makers or may be useful for educational 

purposes (Brooks et al. 2006; Kier et al. 2006). 

An obvious strategy to conserve plant biodiversity is to map distributional patterns and 

look for concentrations of diversity and endemism (Gentry 1992). Further, the 

management of forest requires understanding of its composition in relation to other 

forests, the effects of past impacts on the present status and the present relationship of 

the forest with surrounding land uses. 

 

Biodiversity mapping approaches: Two basics approaches are used to map patterns of 

species richness at a broad scale (Barthlott et al. 1999a): the taxon-based approach and 

the inventory based-approach. 

In the inventory based biodiversity mapping approach (Barthlott et al. 1999a), the data 

used are derived from species inventories within geographical units which can be 

represented by a variety of political boundaries (i.g., countries, provinces) or natural 

geographical areas (i.e. deserts or mountain ranges). These are, for example the total 

number of species or families, but also the taxon numbers of selected groups in a given 

region. The inventory based approach has been frequently applied to map the global 

richness pattern of vascular plants (Barthlott et al. 1996; Barthlott et al. 1999a; Barthlott 

et al. 2005; Mutke & Barthlott 2005) and for geo-statistical analyses of relationships 
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between species richness and environmental variables (Mutke 2000; Mutke & Barthlott 

2000; Mutke 2002a; Mutke 2002b; Mutke et al. 2002; Mutke & Barthlott 2005). Major 

constraints of this approach are related to complications with the data used and to some 

methodological issues in the analyses: inventory-based data do not provide any 

information on the taxonomy, ecology, or range-size related aspects of the diversity of 

an area. Given the low resolution of the data used, diversity maps are produced with a 

coarse spatial precision. Moreover, the geographical units involved in this approach are 

of different size, making comparisons between units difficult. 

The taxon-based approach refers to information on the distribution of individual taxa 

(Barthlott et al. 1999a). In this approach, distribution maps of individual species are 

superimposed and the number of species is given per standard geographic units (e.g., 

grid cell) by simply counting the number of intersections between the range maps of all 

single species. The main sources of information on species occurrences worldwide stem 

from expert knowledge, museums, herbaria or other natural history collections (Graham 

et al. 2004). At the continental scale of Africa, data from natural history collections 

have been extensively used for analyzing plant richness (Linder 1998; Lovett et al. 

2000; Linder 2001; Küper et al. 2004b; Küper et al. 2006). The main advantage of 

taxon-based diversity mapping is that measures of species richness can be reassigned to 

certain species pools, which allows the analysis of range size and endemism patterns as 

well as the complementarity of the species composition across different areas. 

Moreover, expert range maps have been frequently used to guide broad-scale 

conservation strategies, because they contain information on complementarity (Stuart et 

al. 2004; Ceballos et al. 2005; Ceballos & Ehrlich 2006; Grenyer et al. 2006). A major 

drawback of this approach is the frequent shortfall of reliable species distribution data. 

Furthermore, depending on the degree of knowledge and generalization, this approach 

may produce overestimated distribution ranges as compared to their real occurrences. 

In this study we use the taxon-based approach to analyze the diversity patterns of 

vascular plants in West Africa based on a multi-sources database (Chatelain et al. 2002; 

Schmidt et al. 2005) with a relatively high spatial resolution of approximately 10km x 

10km grid size. 
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Species distribution modeling: A great constraint in biodiversity mapping is the 

availability of sufficient data on species distribution ranges. Indeed, it is unrealistic to 

completely explore a large area (i.e. from national to global scale) to compile extensive 

data on the distribution of individual species from a given taxonomic group. A surrogate 

is to apply predictive species distribution models which are empirical models relating 

field observations and environmental variables based on statistically or theoretically 

derived response surfaces (Guisan & Zimmermann 2000; Guisan & Thuiller 2005) in 

order to fill gaps in data availability on a species in a given area. Maps of potential 

species distribution ranges are derived on the assumption that species distribution areas 

are more determined by different environmental factors (Guisan & Zimmermann 2000; 

Scott et al. 2002). Many previous studies have shown at different spatial scales good 

correlation between species richness and different climatic factors such as annual 

precipitation, actual and potential evapotranspiration and temperature (i.e. Wright et al. 

1993; Jetz & Rahbek 2002; Mutke et al. 2002; Francis & Currie 2003; Hawkins et al. 

2003a; Currie et al. 2004; Field et al. 2005; Mutke & Barthlott 2005). Species 

distribution models constitute a valuable tool for decision-makers in biodiversity 

conservation, invasive species monitoring and other natural resources management 

fields. A great range of algorithms developed within the last decade allow to predicting 

the potential distribution ranges of species. In this study, distribution ranges of the 

investigated species have been predicted by the mean of one of the most commonly 

used and most powerful algorithm, the Maximum Entropy approach (MaxEnt; Phillips 

et al. 2004; Phillips et al. 2006). 

 

1.2 Delineation of biogeographical regions 

The delineation of biogeographical regions based on floras and/or faunas is one of the 

most important features in ecological biogeography (Dufrêne & Legendre 1991). 

Moreover, knowledge about spatial patterns and location of ecologically homogenic 

entities is a major precondition for priority setting and representative area selection 

approaches in conservation biology and policy (Olson et al. 2001; Kier et al. 2005). 

The delineation of biogeographical regions has a long history; since 1876 

biogeographers started dividing the world into floral kingdoms and fauna regions 

(Wallace 1876; Engler 1879). From continental to regional extent in Africa, several 
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authors in earlier studies defined biogeographical regions (Chevalier 1933; Lebrun 

1947; Aubréville 1949a; Aubréville 1949b; Monod 1957; Trochain 1970; White 1979; 

White 1983; Guinko 1983; Adjanohoun et al. 1989). All these studies are solely based 

on the knowledge of the authors, and that of people, who much like them, had travelled 

broadly and had noted the composition of floras and faunas. Later, analytical 

approaches have worked their way into biogeography, and clustering procedures are 

now commonly employed (e.g. Williams et al. 1999; Qians 2001; Kingston et al. 2003). 

The delineation of homogeneous areas based on present-day floras is one of the typical 

challenges in ecological biogeography. Clustering methods represent one of the 

interesting approaches to solve this problem (Birks 1987; Legendre 1990). These 

methods can also be applied on our datasets to search for geographically homogeneous 

areas. 

A set of criteria, which could be summarized in four main categories are used to 

distinguish biogeographical regions (see Senterre 2005 for a detailed review): (1) 

floristic criteria generally used when dealing with large areas (global to continental 

scale) are based on species distributions and floristic or faunistic composition of the 

regions concerned; (2) physiognomic criteria used to delineate regions based on the 

physiognomy of the different types of vegetations present in the investigated area 

(Trochain 1970; Aubréville1962; Olson et al. 2001); (3) phytosociological criteria used 

(generally at a relatively small scale) to classify vegetation types are based on the 

analysis of plant communities; (4) ecological criteria used in the definition of regions 

(known as bioclimatic regions) take into account different climatic parameters such as 

rainfall, temperature, potential evapotranspiration and soil type. 

In this study we based our analysis on species composition of standard geographical 

units and on different environmental parameters to redefine potential phytogeographical 

regions in the area. 
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1.3 Biodiversity and climate change 

Emissions scenarios and projection of future climate change: The world’s climate is 

continuing to change at rates that are projected to be unprecedented in recent human 

history. The forth assessment report of the 2007 International Panel on Climate Change 

(IPCC 2007) indicates that the global average surface temperature increased by about 

0.6 °C during the twentieth century, and that most of the warming observed over the last 

50 years is attributable to human activities. The IPCC climate model projections for the 

period between 2000 and 2100 suggest an increase in global average surface 

temperature of between 1.4 and 5.8 °C. Some works have even indicated that the 

temperature increases to 2100 may be larger than those estimated in 2001 (Stainforth et 

al. 2005; Lovelock 2006). According to the IPCC Special Report on Emissions 

Scenarios (SRES, 2000), there are four groups of scenario families (A1, A2, B1 and B2) 

that explore alternative development pathways, covering a wide range of demographic, 

economic and technological driving forces and resulting greenhouse gas (GHG) 

emissions: 

The A1 storyline assumes a world of very rapid economic growth, a global population 

that peaks in mid-century and rapid introduction of new and more efficient 

technologies. A1 is divided into three groups that describe alternative directions of 

technological change: fossil intensive (A1FI), non-fossil energy resources (A1T) and a 

balance across all sources (A1B).  

A2 describes a very heterogeneous world with high population growth, slow economic 

development and slow technological change. No likelihood has been attached to any of 

the SRES scenarios. 

B1 describes a convergent world, with the same global population as A1, but with more 

rapid changes in economic structures toward a service and information economy. 

B2 describes a world with intermediate population and economic growth, emphasising 

local solutions to economic, social, and environmental sustainability.  

Projected warming in the 21st century shows scenario-independent geographical 

patterns similar to those observed over the past several decades. Warming is expected to 

be greatest over land and at most high northern latitudes, and least over the Southern 

Ocean (near Antarctica) and northern North Atlantic, continuing recent observed trends 

(Figure 1.1). 
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Figure 1.1: Modelled global mean surface temperature rise according to IPCC – SRES 
scenarios A1T, A1B, A1F1, A2, B1 and B2 (multimodel averages). Solid lines show 
the predicted continuations of the 20th century simulations. The bars in the middle of 
the Figure indicate the best estimate (solid line within each bar) and the range amongst 
the different scenarios for 2090 – 2099. Source: IPCC Fourth assessment Report 2007 

Impact of climate change on ecosystems: According to the IPCC fourth assessment 

report, the resilience of many ecosystems is likely to be exceeded within this century by 

an unprecedented combination of climate, associated disturbances (e.g. flooding, 

drought, wildfire, insects) and other global change drivers (e.g. land-use change, 

pollution, fragmentation of natural systems, overexploitation of ressources). 

Approximately 20 to 30% of plant and animal species assessed might be at increased 

risk of extinction if increases in global average temperature exceed 1.5 to 2.5 ° C. 

According to the increases in temperature there are projected to be major changes in 

ecosystem structure and function (e.g., vegetation types or biogeographical regions), 

species’ ecological interactions and shifts in species geographical ranges, with 
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predominantly negative consequences for biodiversity and ecosystem goods and 

services. 

This study investigates the potential impacts of climate change on vascular plant species 

richness at the regional scale across West Africa. This area is also known for its variety 

of phytogeographical regions; in the present work potential impacts of climate change 

on these regions are also evaluated. 

 

1.4 General features of West African plant biodiversity 

The wide range of ecosystems (forests, savannas, Sahel, rivers, mountains, mangroves) 

due to the variety in environments in West Africa, including topographical variation, a 

range of soil types, and sometimes very steep climatic gradient, makes the region rich in 

biodiversity.  
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Figure 1.2: Plant species richness patterns in West Africa according to: (a) Barthlott 
et al. 2005; (b) Sommer, 2008. 1: Benin; 2: Burkina Faso; 3: Côte d’Ivoire;  
4: Ghana; 5: Togo 
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This great variation induces an uneven distribution of biodiversity in general and 

vascular plant species in particular across the area (Figure 1.2, Barthlott 2005; Sommer 

2008). 

The rainforests of West Africa have been marked as one of the world’s hotspots of 

biodiversity where exceptional concentrations of species with high levels of endemism 

face exceptional threats of destruction (Myers et al. 2000, revised by Küper et al. 

2004b): Indeed it is estimated that this region contains 2800 vascular plant species, of 

which 650 species (c. 23 %) are endemic, and c. 400 species are considered to be rare 

(Poorter 2004). But these endemic species are threatened by deforestation, habitat 

fragmentation, and over-exploitation. The process of deforestation in Africa, which is 

mainly due to shifting cultivation and timber exploitation, is proceeding at an alarming 

rate. From 1990 to 2000, 12 millions hectares of forest have been cleared in West Africa 

(FAO 2001b). According to the FAO’s study conducted from 1990 to 1995 (FAO 

1995), the highest annual rate of African forest and woodland destruction occurred in 

West African countries such as Togo (1.44%), Ghana (1.26%), Bénin (1.25%), Guinea 

(1.12 %), Côte d’Ivoire and Nigeria (0.86%).  

 

 

Figure 1.3: Vegetation zones of West Africa according to White (1983) 

 

 

 

 

Guineo-Congolian rain forest: drier types
Lowland rain forest: wetter types
Mangrove
Mosaic of Guineo-Congolian wetter and drier rain forests
Mosaic of lowland rain forest and secondary grassland
Mosaic of lowland rain forest, Isoberlinia woodland and sec
Sahel Acacia wooded grassland and deciduous bushland
Sudanian undifferentiated woodland with islands of Isoberli
Sudanian woodland with abundant Isoberlinia
Swamp forest
Undifferentiated montane vegetation
Undifferentiated woodland
West African coastal mosaic
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1.5 Institutional background of the thesis 

This thesis has been conducted at the Nees Institute for Biodiversity of Plants (formerly 

the Department of Systematics and Biodiversity of the Botanical Institute) at the 

Rheinische Friedrich-Wilhelms Universität Bonn. Since 1995, the BIOMAPS working 

group (Biodiversity Mapping for Protection and Sustainable Use of Natural Resources, 

www.nees.uni-bonn.de/biomaps) focuses on the mapping and macroecological analysis 

of broad-scale of biodiversity (Barthlott et al. 1996; Barthlott & Winiger 1998; Barthlott 

et al. 1999a; Mutke et al. 2001; Barthlott et al. 2003; Barthlott et al. 2005; Kier et al. 

2005; Mutke & Barthlott 2005; Barthlott et al. 2007; Kreft & Jetz 2007; Kreft et al. 

2008).  

The Nees Institute of Biodiversity of Plants, through its BIOMAPS working group is 

one of the numerous institutions working in the frame of the BIOLOG-BIOTA Africa 

research network supported, since its foundation in 2001, by the German Federal 

Ministry of Education and Research. The overall aims of BIOTA (“Biodiversity 

Monitoring Transect Analysis in Africa”, www.biota-africa.org) are, among others, “to 

assess zoological and botanical biodiversity, its structural features and spatial patterns at 

various spatial scales, to assess the effects of anthropogenic land use and climate 

change, and to develop analytical and predictive tools for decision-making in the 

context of environmental and development policy” (BMBF 2003). 
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2. Aims of the study 
 
The present study analyzes the spatial patterns of plant species diversity, the structure of 

phytogeographical regions on the basis of species composition and their possible change 

in the future under the effect of the climate change. 

The study is divided in three main chapters: 

 
Chapter 3: Patterns of vascular plant species richness along a climatic gradient 

and across protected areas in West Africa. Here, we model the potential distribution 

of species richness in West Africa at a relatively high spatial resolution (10km x 10km 

grid cell) on the basis of the distribution of 3,393 individual vascular plant species. We 

determine potential areas of species richness in the area of West Africa covering five 

countries (Bénin, Burkina Faso, Côte d’Ivoire, Ghana and Togo). We also investigated 

the effectiveness of the existing network of protected areas at regional and national 

scale by determining the proportion of covered species. 

 

Chapter 4: Quantitative delineation of phytogeographical regions based on 

modeled plant species distributions in West Africa. In this chapter, we analyze the 

variation in species composition among sites (grid cells) across the region in order to 

identify and spatially represent areas with similar species composition. Clustering 

techniques are applied to define potential phytogeographical regions in West Africa, and 

the resulting patterns are compared to classical approaches (White 1983).  

Finally, the importance of each defined phytogeographical region in terms of species 

richness and their value of sheltering range-restricted or endemic species are evaluated. 

 

Chapter 5: Prediction of species richness and shift in phytogeographic regions 

under climate change in West Africa. In this chapter we evaluate the potential effect 

of climate change on the distribution range of species and the species richness pattern 

according to the A2 and B2 - IPCC climate scenario from two different models at 

different periods of time until 2080. We also estimate potential shift in 

phytogeographical regions induced by future climate change. 
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3. Patterns of vascular plant species richness along a climatic 
gradient and across protected areas in West Africa 

 

3.1 Abstract 

Knowledge on spatial patterns of biological diversity is fundamental for ecological and 

biogeographical analyses and for priority setting approaches in nature conservation. 

Here we present a map of vascular plant species richness in West Africa (for the 

countries of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo) based on the 

potential distribution of 3,393 species derived from natural history collections and field 

collections databases. We used the maximum entropy approach (MaxEnt) to model the 

geographic distribution of each species at a fine spatial resolution of 10km by 10km 

grid cell size and produced a species richness map by superimposing the distribution 

ranges of all species. Species richness decreases along the major temperature and 

precipitation gradient with high species number in the south and lower number towards 

the north. Our results show a very strong positive correlation (r² = 0.93 and r² = 0.94) 

between patterns of species and family richness supporting the feasibility of using 

higher taxa to dentify priority sites for conserving biodiversity in the region.  

We identified regional centers of plants species diversity and additionally denominated 

national centers of species richness by considering the 25% and 50% most species rich 

areas per country. All centers of plant species diversity are confined to humid areas in 

concordance to the high positive correlation between species richness patterns and 

rainfall which appears to be the most important delimiter for the distribution ranges of 

many species in the area.  

We also investigated the effectiveness of the existing network of protected areas at 

regional and national level by calculating the proportion of species they cover. While at 

regional scale 95% of all species are adequately represented by protected areas 

according to their potential distribution ranges, this proportion is considerably lower for 

some countries when considered separately. 

 

Keywords: Species and Family richness, Vascular plant, Centers of species richness, 

Species distribution modeling, Protected Areas, West Africa. 
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3.2 Introduction 

Describing and understanding the geographic patterns of species distributions and 

biodiversity are a major goal in ecology (Schall & Pianka 1978; Wright 1983; Rohde 

1992; Gaston 2000a; Jetz & Rahbek 2002; Hawkins et al. 2003a; Currie et al. 2004; 

Ricklefs 2004). Knowledge on the spatial distribution of biodiversity is crucial for its 

further exploration, sustainable use and conservation (Mutke & Barthlott 2005). Among 

many principles used to guide conservation and management, an effective way to 

conserve biodiversity and sustain key ecological functions at different spatial scales 

from global to local extent, is the protection of locations with high species numbers 

(Scott et al. 1987; Pressey & Nichols 1989; Myers et al. 2000; Howard et al. 1998). In 

other words species richness is assumed to be one important indicator of conservation 

value (e.g., Meir et al. 2004) and identification of geographic centers of species richness 

and endemism constitute a central prerequisite in any conservation plan (Davis et al. 

1994; Heywood et al. 1995; Gaston 2000; Purvis & Hector 2000; Mutke & Barthlott 

2005).  

Because of the respective importance of investigating species richness, ecologists have 

put considerable effort into documenting species richness and developing methods to 

identify potential predictors of species richness for different taxonomic groups. One of 

the most concerned taxonomic group are vascular plants which are considered as 

indicator group for overall biodiversity investigation given their central role as primary 

producers and providers of habitat space and structure in terrestrial ecosystems. 

Moreover, the distribution of plant species is relatively well known as compared to 

many other taxa as most animal groups, i.e. insects and arthropods (Barthlott et al. 

1999; Meyers et al. 2000). 

The investigation of spatial patterns of biodiversity at a sufficient accuracy is strongly 

hampered by the availability of qualitatively and quantitatively comprehensive data on 

species distributions. This is the case because it is practically not possible to explore a 

relative large area (i.e. regional and national extent) to collect distributional data of 

species in each cell in order to determine the number of species it contains. Yet, the 

more accurate the spatial information, the more effective can conservation actions be. 

One way to deal with this shortage is to apply predictive species distribution models 

which are empirical models relating field observations and environmental variables 
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based on statistically or theoretically derived response surfaces (Guisan & Zimmermann 

2000; Guisan & Thuiller 2005). This allows filling gaps in data availability on a species 

in a given area. Maps of potential species distribution ranges are derived on the 

assumption that species distribution areas are determined by different climatic factors 

(Guisan & Zimmermann 2000; Scott et al. 2002) such as parameters related to annual 

precipitation and temperature which have been shown as most important factors shaping 

species geographic ranges in many previous studies (i.e. Wright et al. 1993; Jetz & 

Rahbek 2002; Mutke et al. 2002; Francis & Currie 2003; Hawkins et al. 2003a; Currie 

et al. 2004; Field et al. 2005; Mutke & Barthlott 2005; Kreft & Jetz 2007).  

The use of numbers of higher taxa as estimators concords with several definitions of 

biodiversity, which explicitly recognize that the diversity of taxa in general, and not 

solely of species, are appropriate measures of biodiversity (Wilson 1992; Gaston 1994; 

Harper & Hawksworth 1994; Gastom & Blackburn 1995; Balmford et al. 1999). 

In addition to the identification of geographic centers of species richness, a 

complementary step to evaluate the sustainable use and conservation of biodiversity is 

to test the efficiency of the existing protected areas (Fjeldså et al. 2004; Burgess et al. 

2005). As a key component to maintain biodiversity (Rodrigues et al. 2004b; Chape et 

al. 2005), protected areas build the basis for comprehensive conservation efforts. 

In West Africa, assessing biodiversity and understanding mechanisms of its change are 

difficult in many areas because of scarcity of qualitative and quantitative field data 

(Schmidt et al. 2005). And yet spatial information on biodiversity, in particular on 

vascular plants, is urgently needed because of the increasingly threat to biodiversity in 

the region due to deforestation, habitat fragmentation, over-exploitation and the 

currently observed climate change. Many previous studies have investigated spatial 

patterns of vascular plants diversity at the continental scale of Africa (Barthlott et al. 

2005; Küper et al. 2005; Mutke et al. 2001; Linder 2001; Sommer 2008) using different 

approaches. While these studies have a continental extent, they are conducted at a 

relatively coarse spatial resolution and are based on only a fraction of the overall species 

occurring all over Africa. Studies at national scale in West Africa have investigated 

vascular plant diversity with relatively coarse spatial resolution (Schmidt et al. 2005) or 

are limited only to some families (Chatelain et al. 2002; Thiombiano et al. 2006). There 

is a wide range of protected areas in the region, according to the World Database on 
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Protected Areas (IUCN & UNEP, 2007), but very few of them are internationally 

recognized, the other being nationally designated. There is also no specific information 

on how well is the coverage of vascular plant species by the network of protected areas 

in the region. 

In this chapter we modeled the potential distribution of species richness in West Africa, 

for the first time at a relatively high spatial resolution (10km x 10km grid cell) on the 

basis of the distribution of 3,393 vascular plant species (approx. 65% of all species 

estimated in the region). We determined potential areas of species richness in the area of 

West Africa covering five countries (Bénin, Burkina Faso, Côte d’Ivoire, Ghana and 

Togo). We also used modeled data at the family level to map in the region of West 

Africa the diversity of vascular plants. We then investigated the relationship between 

species richness and the most important environmental variables. We also evaluated the 

effectiveness of the existing network of protected areas at regional and national scales.  
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3.3 Data and Methods 

Study area: We analyzed plant diversity patterns in the area located in West Africa 

between the latitudes 4°30’ and 15°05’N and the longitudes 8°30’ W and 3°55’E 

extending from the Atlantic coast to the Sahel area and covering five countries: Bénin, 

Burkina Faso, Côte d’Ivoire, Ghana and Togo. The study area has been partitioned into 

a grid of 12,152 pixels of ca. 10km x 10km (approx. 0.0833°) size each. 

 

Species distribution data: We established a multi-sources database on vascular plant 

species distribution in the study area comprising 180,987 distribution records for 5,397 

species in 576 genera and 224 families. The data originate mainly from herbarium 

specimens, as well as from taxonomic revisions and digitized distribution maps. This 

database is a combination of a set of autonomous data sources: the BISAP 

(Biogeographical Information System on African Plant Diversity, see Küper et al. 2004) 

database, the SIG-IVOIRE database (Gautier et al. 1999; Chatelain et al. 2002) and the 

OUA/VegDa database (Schmidt et al. 2005). The established database represents the 

best documented dataset on plant species distribution in the region. However, as we can 

notice on Figure 3.1 no collections are included for two countries (Ghana and Togo). 
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Figure 3.1: Data set comprising localities of 129,333 distribution records of 4,887 
species across Bénin, Burkina Faso, Côte d’Ivoire. Each black dot represents at least 
one specimen at a spatial resolution of 10km grid cell size. As shown on Figure no 
data are available for Ghana and Togo. 
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Each occurrence locality is simply a latitude-longitude pair denoting a site where the 

species has been observed. Combining different data sources induces some 

inconsistencies in the final database to be used. First of all we proceeded to a pre-

processing of the distribution data. The precision at which each species has been 

collected differ inside and between the databases, varying from 100 square meters to ca. 

10,000 square kilometers. More than 90 % of all species (4,887 species in 129,333 

distribution records) comprised in the common database have been collected with a 

spatial resolution of at least 100 square kilometers. We thus decided to use this 

resolution for the analyses. Duplicated records in each grid cell per species were 

excluded, as well as species with less than five collection points in the whole study area. 

Moreover, some taxonomic inconsistencies have been observed in the databases 

(taxonomic errors in the species names, presence of synonyms, presence of subspecies 

or varieties, species not completely identified and referred to as their genus followed by 

two or more coded letters given by the collector). These inconsistencies altogether 

induce an erroneous increase of the species number in the database by about 12%. 

“Cleaning” the database was hence a first and required step in order to avoid major 

artifacts in the results, though it appears to be time consuming. 

 

Environmental data: The environmental variables used in this study fall into three 

categories: climate, elevation and land-cover. The climate variables are derived from 

data provided by the WorldClim database (Global Climate Data downloadable at 

www.worldclim.org, see Hijmans et al. 2005, for the documentation on the data). The 

climate variables are provided with an original spatial resolution of one square 

kilometer and comprise minimum, maximum and mean annual of precipitation and 

temperature. Data on the elevation are also available at the WorldClim database. In 

addition to climate parameters we used land-cover variables comprising among others, 

percentage of tree and herbaceous cover, percentage of bare ground cover and the 

annual average of spectral response values, downloaded from the Global Landcover 

website (GLC 2000, http://glcf.umiacs.umd.edu/data/). We rescaled all the 

environmental variables to a common resolution of 10km x 10km pixel size. Altogether, 

16 environmental variables have been used in this study. A detailed list of all these 

variables is given in the Appendix 1.  
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Protected areas: We extracted data on protected areas for the study area from the 2007 

Annual Release of the World Database on Protected Areas (IUCN & UNEP 2007; 

http://www.wdpa.org/). This database includes a set of 664 nationally designated (i.e. 

classified forests) and internationally recognized (IUCN categories I-IV) protected areas 

in our study area. 

 

Niche-based models from presence-only data: The task of the modeling method is to 

predict environmental suitability for the species as a function of the given 

environmental variables. Geographic ranges for 3,393 species (approx. 63 % of all 

species comprised in the database) with more than five records have been modeled 

using MaxEnt (Philips et al. 2006). MaxEnt is one of the many available niche-based 

species distribution models, or environmental niche models (Segurado & Araújo 2004; 

Elith et al. 2006; Pearson et al. 2007; Tsoar et al. 2007; Costa et al. 2007), which 

currently play a central role in many areas of ecology, conservation and evolutionary 

biology, both because they can fill gaps in knowledge and because they allow a 

comprehensive estimate of multiple components of species diversity (Guisan & 

Zimmermann 2000; Araújo & Guisan 2006; Costa et al. 2007). 

MaxEnt is a machine-learning method that estimates distributions of organisms by 

finding the probability distribution of maximum entropy (i.e., the most uniform) given 

the constraint that the expected value of each environmental predictor under this 

estimated distribution matches the empirical average of sample locations (Phillips et al. 

2006). Different studies highlight the good quality of MaxEnt in predicting species 

distributions in comparison to other algorithms (see NCEAS: 

http://www.nceas.ucsb.edu/). 

 

Dealing with the model transferability: Transferability is the possibility to predict a 

species’ distribution in broad unsampled regions (Phillips et al. 2008; Peterson et al. 

2007). As shown at Figure 3.1, we do not have any distributional data available for the 

region covering Ghana and Togo. However, the modeling approach allows filling the 

data gap in this region by extrapolating the distribution ranges of species over the entire 

study area, as long as the major environmental gradients for the entire study area is 

covered by distribution data elsewhere. We then proceeded to an “empirical validation” 
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of the model output by simply comparing the modeled distribution ranges of some 

selected species with their overall documented distribution produced in a previous study 

(Poorter et al. 2004); see Appendix 2.  

 

Species richness: For each species we recorded the area of occurrence predicted by the 

algorithm by transforming the probability value output of MaxEnt into a 

presence/absence value. We choose the 10 percentile training presence value as 

threshold, indicating that 90 percent of each species records with the highest predicted 

model values are counted as presence. One major problem in predicting species 

potential distribution range is the choice of an appropriate threshold. Because we are 

actually modeling richness and not individual ranges, we expect that problems of 

threshold estimates do not qualitatively affect the outcomes (Wisz et al. 2007). We 

produced the species richness map by superimposing the presence/absence distribution 

ranges of all 3,393 species and counting the number of intersections between these 

maps per grid cell.  

For the purposes of providing more applicable tools for decision-makers, we decided to 

present the richness maps at the national scale of each country, by simply extracting the 

corresponding area (see Appendix 3).  

 

Geographic centers of species richness: We looked for centers of species richness with 

a high concentration of species for the entire study area, and also at the level of each 

single country by selecting the 25 % and 50% of all grid cells with the highest species 

number. 

 

Family diversity: The use of numbers of higher taxa as estimator concords with several 

definitions of biodiversity, which explicitly recognize that the diversity of taxa in 

general, and not solely of species, is an appropriate measure of biodiversity (Gaston & 

Williams 1993; Harper & Hawksworth 1994; Gaston et al. 1995). Justifying the use of 

higher taxa as surrogates requires good evidence that spatial differences in species 

richness are mirrored at other taxonomic levels (Prance 1994). We investigated the 

distribution pattern of species family richness based on species modeled distribution 

ranges.  

22 



Species richness and protected areas 
 

Species richness and the distribution of protected areas: The purpose of this step of 

analysis is to highlight the proportion of vascular plant species covered by the network 

of the existing protected areas in the region. We overlaid the distribution of the existing 

protected areas on the species richness maps and extracted the number of species falling 

at least once inside any protected area (compare Sommer 2008). Because we are 

working at a spatial resolution of 100 km² (10,000 ha) grid cell size, we removed from 

the analysis all protected areas with a size of less than 10,000 ha. We also selected only 

grid cells overlapping at least by 50 % with protected areas (compare Sommer 2008). 

 

Importance of environmental variables on species distributions: Among the outputs of 

MaxEnt a table giving the contribution of each environmental variable in predicting the 

distribution range of each species is provided. To know which variables contribute most 

to the distribution of all species in the area, we calculated the average contribution of 

each environmental variable over the all species that have been modeled.  

 

3.4 Results 

Plant diversity and spatial patterns of species richness: With its 4,887 species 

distribution records available at a spatial resolution of at least 100 square kilometer, 512 

genera and 224 families, the database we established is the best available for the region. 

Figure 3.2 shows the most represented plant species families in the region.  
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Figure 3.2: Floristic composition at family level – representation of the most 
speciose families from the database. 
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The frequency distribution of the geographic range sizes of species tends to be unimodal 

with a strong right-skew. That means, most species have relatively small range sizes, 

and very few have relatively large ones according to the documented database (Figure 

3.3). The average number of collections per species is 11.55. The same tendency is also 

observed with the modeled data, but with an increase in the proportion of species having 

their range extended. 
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Figure 3.3: Species-range distribution in the study area of West Africa:  
(a) based on documented data; dark bar indicates percentage of species with less 
than five collection points; (b) based on modeled data 

 

The general patterns of vascular plant species diversity in the region of West Africa are 

relatively well known (Barthlott et al. 2005; Sommer 2008). However, for the first time 

in the region, pattern of vascular plants diversity is depicted at relatively high spatial 

resolution with a grid cell size of about 10km x 10km (Figure 3.4). A remarkable 

observation is that this pattern follows a latitudinal gradient with high species number in 

the southern part and progressively decreasesing species numbers towards the north as 

already noticed by others authors at continental, regional and local scale (Barthlott et al. 

2005; Sommer 2008; Poorter et al. 2004; Schmidt et al. 2005). However some spatial 

discontinuities in the diversity gradient are observed in some areas. For example in the 

extreme northern part of the Sahel zone, we noticed species richness values higher than 

expected, as well as in south-east and the south-west of the study area. Also in the 

north-western part of Benin corresponding to the region of Atacora mountain ranges 
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extending to the north-east of Togo. Compared to other regions at the same latitude, we 

notice high species richness in the middle of Côte d’Ivoire corresponding to the so-

called “V-Baoulé” region.  

In the entire study area, the most prominent centers of species richness are located in the 

southern part, and particularly close to the coastline and also in the south-eastern part of 

Côte d’Ivoire, corresponding to the rainforest region. We can clearly distinguish for 

example the shape of one of the last remaining primary rainforests corresponding to the 

Tai National park protected area in the western part of Côte d’Ivoire.  

Moreover, this pattern follows the gradient of precipitation. In general the richest 

regions are located in the most humid areas, as highlighted by the determination of the 

geographic centers of species richness at different levels. There is a higher correlation 

between species richness and rainfall gradient than to other environmental variables. 

According to the MaxEnt output the variable contributing most to the distribution range 

of many species is the minimum value of annual precipitation followed by the 

maximum value of precipitation over the year and the standard deviation of the 

maximum of temperature. Two land cover variables, namely the percentage of tree and 

bare ground cover, are also highlighted as important in predicting species distribution 

ranges in the region. 

The east-west variation in species richness within the region indicates major differences 

at the same latitude. For example at the southernmost border of Ghana, relatively low 

species richness is observed as compared to other areas at the same latitude. 

The species family richness map, produced for the first time in the region, shows a great 

similarity between patterns of species richness and family richness. Likewise species 

richness patterns, family richness show the classic latitudinal gradient existing in the 

region. There is a significant positive correlation (r² = 0.93 for documented data and r² = 

0.94 for the modeled data) between the numbers of families and the numbers of species 

in each grid square when considered at log/log scale (Figure 3.5). This correlation 

shows that it is possible to use higher taxa as a surrogate for species in survey of 

richness. 
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 Figure 3.4: Patterns of vascular plant diversity in West Africa at a spatial resolution of 
10km x 10km. (A) species richness; (B) family richness. The family richness map shows 
a very similar pattern with the richness map of species. White areas are those with no 
environmental data and generally correspond to water body. 
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The number of vascular plant species based on the modeling results for each surveyed 

country, except Côte d’Ivoire, falls between the range of estimated numbers of species 

comprised in the checklist of the corresponding country in concordance to the existing 

literature (see Appendix 4 for details). 

 

 Table 3.1: Modeled species number and percentage of species covered at least once 
by the existing network of Protected Areas (PAs) per surveyed country. Results are 
given for all types of PAs, only for PAs internationally recognized and only for 
national designated PAs.  
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rea extent Modelled total                     Percentage of species  
species number                            covered by

All PAs IUCN National 
recognized PAs designated PAs

Whole study area 3393 95.87% 94.08% 90.36%

Benin 2726 54.99% 48.86% 44.06%
Burkina Faso 1875 77.12% 62.45% 60.27%
Côte d'Ivoire 3107 93.11% 89.18% 91.02%
Ghana 3117 83.64% 79.79% 77.61%
Togo 2771 53.84% 47.92% 35.29%
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Considering the entire study area at once, the existing network of all protected areas 

(nationally designated and internationally recognized) of at least 10,000 ha size cover 

up to 95.87% of species included in the analysis, according to their potential distribution 

range (Table 3.1). However if we consider each country separately, the percentage of 

species covered decrease considerably for some countries like Togo (approx. 54% of 

species covered), Benin (approx. 55%) and Burkina Faso (approx. 77%), Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Spatial distribution of the network of protected areas (internationally 
recognized, in black color and national designated, in grey) and the modeled plant 
species richness in the study area. Only protected areas with more than 10,000 ha size are 
shown 
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3.5 Discussion 

Geographic patterns of richness: In accordance with the well-known patterns of plant 

species richness in general, species number increase along the latitudinal gradient from 

the south to the northern part of the study area. The observed discontinuity in the 

species richness gradient in the upper border of the Sahel zone can be explained by the 

presence of an uncommon vegetation type in this area, usually known as the tiger bush. 

The tiger bush formation is a vegetation complex of striped thickets, occurring under 

special climatic and edaphic conditions on the slightly inclined pediplain (Lebrun 1999; 

Müller 2003), constituting an appropriate habitat for many species. For instance, some 

species known to be completely absent from other parts of the Sahel zone occur in this 

vegetation type. 

Other notable discontinuities are observed in mountainous areas like the north-west of 

Benin and north-east of Togo, corresponding to the Atacora Chain having a high species 

number as already noticed by Adomou (2005). The same applies for the southwest of 

Burkina Faso in the sandstone massif area, as well as the western border of Côte 

d’Ivoire where the highest altitudes of the respective country are found. Our results 

therewith support the observation made by Barthlott et al. (2005) indicating that 

mountain regions constitute suitable habitats for many species because of the existence 

of variable climatic conditions due to the high geodiversity. Geodiversity, the diversity 

of abiotic factors, is an important factor which favors high species richness of vascular 

plants (Barthlott et al. 1996; Faith & Walker 1996; Barthlott et al. 1999, 2000; Jedicke 

2001; Braun et al. 2002). Especially, mountainous regions are characterized by steep 

climatic gradients within short distances, heterogeneous geology and a diversity of 

different soil conditions. These mountainous regions in the study area are also known to 

shelter some highly endemic plant species (Akoègninou & Lisowski 2004; Adomou 

2005; Poorter et al. 2004). 

Moreover, the outstanding plant diversity observed in the middle of Côte d’Ivoire is due 

to the presence of the so called “V-Baoulé” a transition area where forest tends to take 

over the savanna (Spichiger & Blanc-Pamard 1973; Gautier 1992b, Poorter et al. 2004). 

The presence of different ecosystem types in this area provides suitable conditions for 

many species. In addition, a belt of high richness of rare and endemic species richness 
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was found about 50-100 km inland, starting in Sierra leone, running through Liberia to 

southwest Côte d’Ivoire. 

The patterns observed in the extreme southwest of Côte d’Ivoire showing an unexpected 

low number of plant species can be related to the climate variables used in the model as 

data on the importance of the seasonality of rainfall were not included into the model. In 

an earlier study for southeast Liberia and southwest Côte d’Ivoire, Bongers et al. (1999) 

showed that water availability, rather than rainfall alone was the most important 

parameter determining the abundance or the number of species. Length of the dry period 

and the intensity of that period (calculated as the cumulative water deficit) also had an 

effect, but were weaker than the amount of rainfall (Bongers et al. 1999). The lack of 

not including these parameters in our modeling approach could be overcome by using 

more parameters related to water availability, like soil water holding capacity. However, 

Poorter et al. (2004) indicate that the amount of rainfall alone accounts for 74% of the 

variation in species composition at the vegetation level.  

Due to their insufficient representation in the data base, all species with less than 5 

collection points had to be removed from the analysis. The amount of the removed 

species could concern a high number of the rare or endemic species, thus resulting in an 

underestimation of the grade of endemism in some regions. Also, most of the data for 

Côte d’Ivoire had been collected during the period corresponding to the civil war in 

Liberia; thus people avoided traveling into the southwestern part of the country, 

resulting in a higher grade of under-representation of this area in the data base. 

Given the great similarity between species and family richness, an alternative to species 

based assessments can be the description of biodiversity at family level in the area, 

since it is sometimes difficult to collect exhaustive information on each species 

distributions. Many species had to be excluded from the analysis because of a lack of 

sufficient data. A surrogate could be to use higher taxonomic level data, i.e. family 

affiliation to look for areas with high biodiversity in the region, in order to overcome 

the insurmountable resource demands in obtaining equivalent data on species numbers 

more directly (Wiliams & Gaston 1994; Gaston et al. 1995). The advantage is that it is 

substantially easier and cheaper to identify specimens from survey samples to the level 

of higher taxa than to the level of species (Wiliams & Gaston 1994). However, the 

obvious difficulty with this approach is how to combine information on numbers of 
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higher taxa, when these may in effect be defined in rather different ways (Gaston et al. 

1995).  

 

Protected areas: The network of protected areas in the region covers the distribution of 

vascular plant species relatively well, as already noticed in previous studies for the 

whole continent of Africa (Burgess et al. 2005; Sommer 2008). However, at more 

restricted spatial scale (national extent) the proportion of species covered by the national 

network of protected areas is much lower in some countries. This is due to the fact that 

a given species could be covered by protected areas in a given country, and is 

completely outside the network of protected areas elsewhere. 

More and larger protected areas are required to adequately cover the maximum number 

of species at national level. For example in north-west and southern part of Benin as 

well as in north-east of Togo where a transboundary protected area covering both 

countries is of high conservation value. More protected areas in the south-west of 

Burkina Faso are also strongly required.  

In comparison to previous studies, the spatial resolution used in this study is relatively 

high, thus allowing assessing with more accuracy the proportion of species covered by 

the protected areas. However, this spatial resolution remains more or less rough, given 

the method of analysis and also the size of protected areas comprised in the data base. 

We removed from the data all protected areas with less than 10,000 ha (corresponding 

to the spatial resolution). Yet, in the data, there are a great number of protected areas of 

very small size and are thus excluded. This leads undoubtedly to an underestimation of 

the amount of species falling inside the protected areas, which could explain the lower 

proportion of covered species at national scale. 

 

Modeling approach: The goal of species distribution modeling is to predict the 

potential distribution of species which describes where conditions are suitable for 

survival of the species, which is in turn of great importance for conservation (Anderson 

& Martínez-Meyer 2004; Phillips et al. 2004). Some areas have been identified to being 

suitable to a higher number of species than primarily observed. One advantage of the 

modeling is to look for potentially suitable areas for many species, if there is no human 

disturbance. Thus, these areas could be set as priority areas for conservation. However, 
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this approach has the weaknesses of sometimes overestimating the distribution ranges of 

species. This weakness can be corrected, for example by removing areas where the 

species is known to be absent because of deforestation or other habitat destruction. The 

model thus remains very unreliable if based on climate variables alone. It is therefore 

important to include different categories of environmental parameters if available, such 

as land cover data (see Appendix 5 for a visual comparison between patterns of species 

richness with and without the land cover variables). The latter seems to result in an 

overestimation of species richness, because of the absence of any kind of disturbance 

factors. This is not the case if some land cover factors are included into the model. 

Other ecological and historical factors are also important drivers of species richness 

patterns and must be taken into account both in theoretical modeling and data analysis.  

Biotic interactions, and more particularly competition, represent a challenge for the 

future development of species distribution modeling. Further improvements of the 

distribution models can be expected from detailed soil data. Moreover, it is a key 

challenge to make empirical and correlative species models meet process-based 

community models. A way of integrating biotic interactions into static distribution 

models might be the use of integrated systems of simultaneous regression equations or 

generalized linear models.  

 

3.6 Conclusion 

Altogether, our results indicate that species distribution models are valuable tools to 

improve the understanding on species richness gradients also in areas with 

heterogeneous availability of distribution data. The link between species occurrence 

data, climatic maps and modeling algorithms offers important advantages for the 

documentation, assessment and conservation of biodiversity. However, the reliability of 

the model output strongly depends on the quality, resolution and spatial heterogeneity of 

the available documented occurrence data. Further improvement of the distribution 

models can be expected from detailed soil data. A principal issue for the future will be 

linking biodiversity data with measures characterizing human impact, e.g. human 

population and cattle density. 
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4. Quantitative delineation of phytogeographical regions 
based on modeled plant species distributions in West Africa 

 

 

4.1. Abstract 

The delineation of biogeographical regions is one of the major challenges in 

biogeography. Classical approaches are mainly based on expert knowledge on features 

of macroclimate, species distributions and vegetation structure. Here, we use a novel 

approach to identify fundamental phytogeographical regions for Sub-Saharan West 

Africa based on modeled potential species distributions for 3,393 plant species in 

combination with agglomerative hierarchical clustering and indicator species analyses 

across 12,152 grid cells at a spatial resolution of 10km x 10km. We found that patterns 

of plant species composition in the region are closely related to the steep north-south 

environmental gradient existing in the region. The clustering resulted in a 

phytogeographic regionalization consisting of seven clearly distinguishable groups of 

grid cells. We then allocated ecological information of these quantitatively defined 

regions by identifying character species for certain vegetation types. The identified 

phytogeographical regions broadly reflect the vegetation zones as defined in the seminal 

work of White (1983). Refering to their spatial distribution, notable differences occur at 

the margins of some regions that are shifted southwards resulting in a decline of the area 

covered by the rainforest region close to the Atlantic Coast. The introduced approach 

represents a repeatable and objective approach to discern and characterize 

biogeographical regions based on species data and hence is a major improvement to 

classical subjective approaches. 

 

Keywords: Species distribution modeling, Cluster analysis, Indicator species, 

Phytogeographical regions, West Africa, White’s vegetation zones.  
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4.2. Introduction 

The delineation of biogeographical regions based on floras and/or faunas is a central 

issue in ecological biogeography (Dufrêne & Legendre 1991; Williams et al. 1999). 

Moreover, knowledge about spatial patterns and location of ecologically homogeneous 

entities is a major precondition for priority setting and representative area selection 

approaches in conservation biology and policy (Olson et al. 2001; Leathwick et al. 

2003; Kier et al. 2005). 

Already in the 19th century biogeographers started delineating biogeographical regions 

(from regional to global scale) based only on their own estimates and that of people who 

had comprehensive knowledge about composition of flora or fauna (Wallace 1876 in 

Cox & Moore 1993; Cox 2001; Heikinheimo et al. 2007; Engler 1879; Chevalier 1933; 

Lebrun 1947; Aubréville 1949a; Aubréville 1949b). A major drawback of these 

classical approaches is that they are not repeatable and different studies provide very 

different results for same area (Cox & Moore 1993).  

Following these early seminal works, studies based on more analytical approaches have 

been conducted using clustering methods (Williams et al. 1999; Qian 2001; Kingston et 

al. 2003; McLaughlin 1992; Linder et al. 2005). 

Clustering methods represent a useful approach that can be applied to a given biological 

dataset to search for regions with a homogenous taxonomic composition (Birks 1987; 

Legendre 1990). In a geographical context, regions are delineated based on 

dissimilarities according to their specific and inherent features. In biogeography, 

clustering techniques to delineate biogeographical regions can be based on information 

of species occurrences within defined sub-units of the area of investigation (Linder et al. 

2005). Hence, biogeographical regions in this sense represent areas of a certain 

minimum size with a largely homogenous species composition that differs from that of 

other biogeographical areas. 

A major constraint for delineating biogeographic regions by clustering techniques 

across large areas (e.g. at regional to continental extents) is the availability of sufficient 

species distribution data. One option to deal with this data shortage is to apply species 

distribution models for individual species as a function of environmental variables at 

their known collection sites, thereby extrapolating the potential distribution of species to 
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all suitable sites within the entire region of interest (see Guisan & Zimmermann 2000 

for a review of different modeling approaches) before applying clustering methods. This 

“predict first, assemble later”-approach (Ferrier & Guisan 2006), appears appropriate 

and legitimate in cases of insufficient distribution data availability.  

Early contributions to the phytogeographical division of continental Africa into a 

number of chorological units such as regions, domains and sectors mainly used intuitive 

approaches (e.g. Chevalier 1933; Monod 1957; Trochain 1970; White 1979 & 1983). A 

first and unique attempt to subdivide the entire Sub-Saharan Africa into 

phytogeographical regions based on clustering approach at a rather coarse resolution is 

the work of Linder et al. 2005. 

For West Africa, the existing studies on subdivision of phytogeograhical regions are 

mostly based on expert knowledge using observations on vegetation physiognomy 

(Lebrun 1947; Aubréville 1949a & 1949b; White 1983; Adjanohoun et al. 1989; 

Guinko 1983). Studies at local or national level have used phytosociological approaches 

(Adomou 2005; Poorter et al. 2004), some of them referring to particular taxonomic 

groups (Thiombiano et al. 2006) to delimit phytogeographical regions.  

Recently, comprehensive floristic datasets became available for the countries of Benin, 

Burkina Faso, Côte d’Ivoire and adjacent areas, collected within the frame of the 

BIOTA Africa research project and from other institutions (Küper 2005; Schmidt et al. 

2005; Chatelain et al. 2002). These data for the first time allow a comprehensive 

quantitative analysis of species compositions and the delineation of phytogeographic 

regions across this area and at a high spatial resolution.  

Here, we analyzed the variation in species composition among sites (grid cells) across 

the region in order to identify and map areas with similar species composition. 

Clustering techniques are applied to define potential phytogeographical regions in West 

Africa, and the resulting patterns are compared to classical approaches (e.g. White 

1983). Finally, the importance of each defined phytogeographical region in terms of 

species richness and their value of sheltering range-restricted or endemic species have 

been evaluated. 
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4.3. Data and Methods 
Study area: The study area is located in West Africa between the latitudes 4° 30’ N and 

15° 05’ N and longitudes 8°30’ W and 3° 55’ E extending from the Atlantic coast to the 

Sahel area and covering five countries: Bénin, Burkina Faso, Côte d’Ivoire, Ghana and 

Togo. It is a region with a considerable variation in temperature, precipitation and 

vegetation types from north to south. 

The study area has been divided into 12,152 regular grid cells of approximately 10km x 

10km (approx. 0.0833°). Grid cells falling inside the coastal areas (corresponding to 

mangrove vegetation type) have been removed from the analysis because species of this 

type of vegetation are not included in the raw database.  

 

Modeling of species distribution ranges: We used a database of Natural History 

Collections of plant species and environmental data (see below) to perform species 

distribution models. The potential distribution of all 3,393 species comprising at least 5 

collection points was modeled using the Maximum Entropy approach (MaxEnt, Phillips 

et al. 2006). As output we obtained the potential distribution of each species as 

probability values per grid cell. These probability values were transformed into a binary 

(presence/absence) dataset by choosing the 10 percentile training presence value as 

threshold, indicating that 90 percent of each species records with the highest predicted 

model values are counted as presence (Cameron et al. 2008). Moreover, we set up a 

presence/absence matrix containing all modeled species and all grid cells.  

 

Environmental data: As environmental predictor variables for the species distribution 

models, a set of 16 environmental parameters was selected. These data include climate 

variables obtained from the WorldClim website (Hijmans et al. 2005; 

www.worldclim.org), and land-cover variables downloaded from the Global Landcover 

(GLC 2000, www.glcf.umiacs.umd.edu/data/) website. A detailed list of all these 

variables is given in Appendix 1. 

.
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Dissimilarity matrix: From the modeled species distribution database (species 

presence/absence matrix) we computed a dissimilarity matrix between all possible pairs 

of grid cells using the Bray-Curtis dissimilarity index with values ranging from 0 to 1. 

The smaller the value, the more similar is the species composition in the respective grid 

cell. The Bray-Curtis dissimilarity in its presence/absence form corresponds to the 

Sørensen index.  

The formula of the presence–absence version of the Bray-Curtis dissimilarity index is: 

 

                                             
CBA

ADij
++

−=
2

21                                                     (1)  

 

(Ferrier et al. 2007) where A is the number of species common to both sites i and j (here 

grid cells); B is the number of species present only at site i; and C is the number of 

species present at site j. 

In contrast to other indices, the Bray-Curtis dissimilarity index has many advantages for 

the integration of ecological data, including independence from scale of measurement 

and from joint absence (Su et al. 2004; Clarke 1993; Clarke & Warwick 1994). 

 

Cluster analysis - Analyzing the variation in species composition: After computing the 

dissimilarity matrix between all possible pairs of locations we performed a cluster 

analysis in order to identify grid cells with similar species composition. We used the 

complete linkage of the agglomerative clustering method (see Legendre & Legendre 

1998 for a review of different clustering methods). The output of the clustering is a 

dendrogram from which we classified the sites into groups by choosing a dissimilarity 

level (h). Varying this dissimilarity level, we obtained different groups of cells with 

similar species composition and visualized these groups as maps. A major difficulty of 

cluster analysis is to identify the level of abstraction where the clustering has to be 

stopped. Here, at the dissimilarity level of h=0.8, we obtained 24 clusters. A 

dissimilarity analysis between these 24 clusters was performed in order to merge some 

similar “subgroups” into one with the purpose to get clusters that better correspond to 

phytogeographical regions (Zhou et al. 2003). 
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The dissimilarity matrix establishment and the cluster analysis were conducted using the 

“vegan” library (Oksanen et al. 2008) of the R statistical language (R Development 

Core Team, 2008).  

 

Delineation of phytogeographic regions and searching for character species of each 

region: Beyond portraying resemblance between locations, the spatial patterns that 

emerge when groups of sites with similar species composition are mapped should be 

ecologically meaningful. Therefore in the next step we looked for clusters that species 

composition could be used to derive ecological information, by identifying indicator or 

characteristic species for each groups of sites. Indicator species were defined as the 

most characteristic species of each group, found mostly in a single of typology and 

present in the majority of the sites belonging to that group (Dufrêne & Legendre 1997). 

This index is at maximum when all individuals of a species are found in a single group 

of sites and when the same species occurs in all sites of that group. 

We used the “labdsv” library (Roberts 2006) to perform the indicator species analysis: 

for each species i in each cluster of sites j, the product of two values, Aij and Bij is 

calculated. Aij is a measure of specificity whereas Bij is a measure of fidelity:  

 

  IndValij = Aij * Bij*100                                                  (2) 

Aij = Nindividuals (ij) /Nindividuals (i)          Bij= Nsites (ij) / Nsite (j) 

 

Nindividuals (ij) is the mean number of individuals of species i across sites of group j, while 

Nindividuals (i) is the sum of the mean numbers of individuals of species i over all groups. 

Nsites (ij) is the number of sites in cluster j where species i is present, while Nsites (j) is the 

total number of sites in that cluster. 

For presence/absence data, Aij = (Nsites (ij) / Nsites (i))    where Nsites (i) is the total number of 

sites occupied by species i. 

The indicator value of species i for a group of sites is the largest value of IndValij 

observed over all clusters i of that partition:  

 

IndVali = max [IndValij]                                               (3) 
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Relative richness of each defined phytogeographical region: After delineating the 

potential phytogeographical zones of the region we estimated the importance of each 

zone in terms of species richness by counting the number of species which fall inside 

the given area.  

 

Range-restricted species / Species restricted to each phytogeographical region: We 

identified range restricted species from the results of the indicator value calculation. The 

indicator value is the product of the specificity and the fidelity, see Formula (2). A 

species exclusively restricted to a region has its specificity equal to 1 for that region 

(IndVal different to 0) while 0 in others regions (IndVal = 0 in these regions). 

 

4.4. Results 

Spatial Clusters: A first illustration of the clustering results is presented in form of a 

dendrogram showing different groups of cells with similar species composition 

according to the level of similarity/dissimilarity. 

At the dissimilarity level of h = 0.98 (similarity equal 0.02), all grid cells are grouped 

into two different clusters, latitudinally dividing the study area in two parts with the 

northern part almost two times larger than the southern part. 

Decreasing the level of dissimilarity (increasing similarity level) between grid cells we 

got different groups of cells with similar species composition. The different spatial 

patterns obtained are presented below (Figure 4.1). 

At the dissimilarity value of 0.96, three major patterns of groups of cells with similar 

species composition emerged. These follow major environmental features along the 

north-south gradient. We distinguished a first group in the south extending from the 

coast to about 7° N (i.e. the wettest part in the region), an adjacent group of cells laying 

between 7 ° and 11 ° N separating the southern one from the northern one which cover 

the driest part of the study area. These 3 major groups correspond to the subdivision of 

the study area into 3 climatic zones: the Guineo-Congolian and Sahelian regions linked 

by the Soudanian zone. 
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Figure 4.1: Groups of locations (grid cells of 10 km x 10km size) with similar species 
composition, according to the level of dissimilarity between pairs of sites: the color is used to 
distinguish the clusters within each image, and we also tried as close as possible to imply a 
one-to-one matching of clusters between images: at different levels of dissimilarity, the 
unchanged clusters are plotted using the same color as previously. New appearing groups 
from a level to another are plotted using new colors.  
 



Delineation of potential phytogeographic regions 
 

Beyond this level of dissimilarity, many different groups of very small size emerged 

and we obtained different patterns difficult to distinguish. 

At a dissimilarity level from h = 0.96 to h = 0.91, we successively obtained 4, 5, 6, 7 

clusters only deriving from the previously intermediate group (the Soudanian zone), 

whereas the two other groups (in the north and the south) remained unchanged. This 

means that at this level of dissimilarity, the three groups have very little species in 

common; there are species with their range limited only to one of the region. The rapid 

change in the Sudanian region is due to the heterogeneity in environmental attributes of 

this region. Indeed, it is a region of a variety of habitat types with different assemblage 

of species (from very small to large assemblage of species). 

First changes in the southern group are observed at the dissimilarity level of h = 0.90, 

dividing the whole area into eight clusters, the northern cluster still remaining constant. 

At the dissimilarity value of h = 0.8, we got 24 different clusters; among which some 

previous cluster remain unchanged. However the southernmost cluster is split into two 

important groups. Most of the new formed groups are derived from a subdivision of 

clusters located between 7° and 11° N.  

Beyond this level of dissimilarity, many different groups of very small size emerged 

and we obtained different patterns difficult to distinguish. Therefore, we stopped any 

further splitting at this point and used the 24 regions to delineate potential 

phytogeographic regions in the study area. 

 

Delineation of potential phytogeographical regions: From the 24 groups of grid cells 

with similar species composition at the dissimilarity level of h = 0.8, groups of different 

size emerged, but only few of them were large enough to match our definition of a 

phytogeographical region (at least 10.000 km2), the others had a very small size and 

could not be interpreted ecologically. We then merged some spatially contiguous 

subgroups into one group referring to: (1) their resemblance in terms of species 

composition by performing a dissimilarity and cluster analysis between the 24 groups; 

(2) the relevance of the borders between homogeneous areas. Most of the groups 

between 7° and 11° N are sunnarized into one when we cut the dendrogramm at a given 

level (given the nature of the data, the dissimilarity index used here is the Euclidian 

distance). 
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Figure 4.2: The proposed new potential phytogeographical regions in West Africa 
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 Figure 4.3: Species – area relationship per region. The richest regions in species are 

the rainforests though they have a small extent as compared to other phytogeogrphic 
regions. The total species number and the percentage of range restricted species in this 
study are based on modeled potential distributions and not on documented species 
richness of these phytogeographic regions. 
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This step allowed us to divide the study area into 7 major and homogenous 

distinguished groups here refered as groups I to VII, running in roughly parallel bands 

from the southern Guinean coast with high and well distributed rainfall throughout the 

year to increasingly drier zones in the Sahel. In the following step we determined the 

ecological significance of these groups by looking for indicator species which 

characterize each group. We decided to use the nomenclature of White to distinguish 

our new delimited phytogeographic areas. 

 
Indicator species per phytogeographic region: For each region we derived a list of 

characteristic species; for some regions this list comprises a great number of species. As 

an example, we showed a list of 10 selected indicator species per region with their 

indicator value over all the defined phytogeographic regions (Table 4.1). We chose 

these species according to the existing literature, if possible, presenting them as 

indicator species of the corresponding region. According to the maximum of the 

indicator value of the species, an exhaustive list of all possible indicator species (with 

IndVal > 50%) of each region is presented in Appendix 6.  

 

Species distribution ranges and commonness over the phytogeographic regions: We 

classified the species into different distribution types based on their range size 

(proportion of species restricted to one pytogeographic region) and their commonness 

(proportion of species belonging to different regions simultaneously). The classification 

was based on the value of the specificity of the species to each region. The results are 

summarized in Figure 4.5. In the diagram we distinguish three main types of regions 

having the highest number of species restricted to them: the rainforest (I), the soudanian 

(V) and the Sahelian (VII) vegetation types (Figure 4.4). On the basis of the total 

species number used for the analysis, the percentage of species restricted to each region 

is also shown in Figure 4.4. The rainforest is the region having the highest species 

richness but only 67 (ca. 2% of all species used in this study) have been identified as 

restricted to this region. 
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Species Family I II III IV V VI VII 
Tabernaemontana glandulosa APOCYNACEAE 63.19 1.94 0.04     
Combretum grandiflorum 

Crotalaria vogelii 

COMBRETACEAE 

FABACEAE 

57.70 

 

2.23 

 

1.64 

 

 

 

 

10.15 

 

43.63 

 

1.92 

Xylopia staudtii 

Hyparrhenia rudis 

ANNONACEAE 

POACEAE 

55.22 

 

0.15 

 

0.04 

 

0.02 

 

 

1.85 

 

41.20 

 

1.74 

Salacia cerasifera 

Ficus iteophylla 

CELASTRACEAE 

MORACEAE 

52.15 

 

7.22 

 

0.05 

 

0.12 

 

 

4.43 

 

39.75 

 

12.13 

Vitex phaeotricha 

Lippia chevalieri 

VERBENACEAE 

VERBENACEAE 

50.09 

 

1.92 

 

0.27 

 

 

 

 

0.26 

 

32.81 

 

0.83 

Cola nitida 

Capparis tomentosa 

STERCULIACEAE 

CAPPARACEAE 

47.05 

 

7.01 

 

2.99 

0.16 

 

0.92 

 

17.58 

 

30.32 

 

0.16 

Palisota bracteosa 

Blepharis maderaspatensis 

COMMELINACEAE 

ACANTHACEAE 

43.67 

 

14.70 

 

0.79 

 

 

 

 

1.98 

 

28.25 

 

12.29 

Bulbophyllum saltatorium 

Loudetia annua 

ORCHIDACEAE 

POACEAE 

41.49 

 

3.47 

 

7.85 

 

0.03 

 

 

3.51 

 

28.03 

 

0.30 

Leptaspis zeylanica 

Caralluma decaisneana 

POACEAE 

APOCYNACEAE 

33.26 

 

4.72 

 

3.71 

 

 

 

 

0.05 

 

11.47 

 

66.22 

Streblus usambarensis 

Capparis rothii 

MORACEAE 

CAPPARACEAE 

9.48 

 

44.59 

 

1.87 

 

0.58 

 

 

0.06 

 

1.41 

 

63.57 

Irvingia robur 

Eragrostis cilianensis 

IRVINGIACEAE 

POACEAE 

28.08 

 

42.12 

 

2.75 

 

0.90 

 

 

0.05 

 

11.35 

 

59.39 

Uvaria anonoides 

Caralluma dalzielii 

ANNONACEAE 

APOCYNACEAE 

32.14 

 

41.56 

 

2.77 

 

1.31 

 

 

 

 

0.45 

 

52.27 

Psychotria kitsonii 

Acacia nilotica 

RUBIACEAE 

FABACEAE 

1.01 

 

39.49 

 

0.02 

 

1.10 

0.04 

 

0.51 

 

28.48 

 

46.95 

Alafia barteri 

Bauhinia rufescens 

APOCYNACEAE 

FABACEAE 

25.51 

 

38.09 

 

4.83 

 

2.98 

0.93 

 

0.14 

 

4.59 

 

45.06 

Ficus sagittifolia 

Colocynthis vulgaris 

MORACEAE 

CUCURBITACEAE 

25.52 

 

32.10 

 

0.12 

 

10.94 

 

 

0.50 

 

15.90 

 

42.11 

Bulbophyllum phaeopogon 

Leptadenia hastata 

ORCHIDACEAE 

APOCYNACEAE 

13.30 

 

31.54 

 

0.02 

 

1.04 

 

 

0.03 

 

3.89 

 

41.63 

Acroceras gabunense 

Euphorbia balsamifera 

POACEAE 

EUPHORBIACEAE 

3.65 

 

29.56 

 

0.24 8.53 

 

 

7.14 

 

6.01 

 

30.53 

Dicliptera elliotii 

Ziziphus spina-christi 

ACANTHACEAE 

RHAMNACEAE 

6.90 

 

29.53 

 

0.31 7.32 

 

 

5.54 

 

23.44 

 

30 

Combretum racemosum COMBRETACEAE 19.32 29.16 4.05 21.84    
Asplenium megalura ASPLENIACEAE 4.79 0.27 40.58 0.02 0.38   
Nervilia fuerstenbergiana ORCHIDACEAE 6.54 1.74 35.15 0.04 0.24   
Dicranolepis pubescens THYMELAEACEAE 3.81 5.04 34.76 0.71    
Vernonia doniana ASTERACEAE 14.81 14.82 31.22 0.81 0.07   
Melinis minutiflora POACEAE 1.19  31.12 0.21    
Zanthoxylum viride RUTACEAE 3.06 2.88 29.73 16.99 0.34   
Drypetes inaequalis EUPHORBIACEAE 6.88 17.35 27.49 3.49 1.04   
Dissotis thollonii MELASTOMATACEAE 0.99 1.24 27.45 2.00 10.50   
Dissotis grandiflora MELASTOMATACEAE   25.97 0.64 13.00   
Salacia pyriformis CELASTRACEAE 23.04 3.86 24.72 0.11 0.20   
Cordia guineensis BORAGINACEAE  9.55 0.07 55.15 1.11   
Utricularia reflexa LENTIBULARIACEAE   0.26 51.02 0.42   
Albizia coriaria FABACEAE 0.57 13.99 0.33 50.23 2.50   
Eulophia angolensis ORCHIDACEAE 0.20 4.70 3.70 49.51 1.31   
Pycreus nuerensis CYPERACEAE  0.66 3.55 49.28 6.21   
Commelina bracteosa COMMELINACEAE  12.02 0.17 48.82 0.05   
Physalis pubescens SOLANACEAE 0.47 21.97 0.02 47.66    
Indigofera congesta FABACEAE 0.08 0.35 1.11 47.14 1.81  0.04 
Cola millenii STERCULIACEAE  1.77 1.01 45.24 0.58   
Sabicea solitaria RUBIACEAE 11.49 19.29 15.71 40.17 0.91   
Digitaria exilis POACEAE 1.82 0.10 3.89 1.15 58.05 5.22  
Schizachyrium rupestre POACEAE   0.57 5.02 52.21 8.33 1.98 
Celtis integrifolia ULMACEAE    0.76 47.83 20.50 17.60 
Bambusa vulgaris POACEAE 3.90 5.31 6.47 19.72 47.74 6.29 0.11 
Vernonia purpurea ASTERACEAE   0.15 0.39 47.22 0.14 0.06 
Landolphia heudelotii APOCYNACEAE   3.72 8.10 42.33 0.11  
Indigofera macrocalyx FABACEAE   4.93 2.96 40.56 19.94 0.77 
Xeroderris stuhlmannii FABACEAE   1.33 0.03 37.40 6.74 0.35 
Fagara zanthoxyloides RUTACEAE    0.03 18.79 0.02  
Capparis tomentosa CAPPARACEAE   0.16 0.92 17.58 30.32 0.16 
Bulbostylis scabricaulis CYPERACEAE     8.67 48.43 1.54 
Cassia singueana FABACEAE     1.20 44.51 0.16 

 
 

Table 4.1: List of 10 selected indicator species per potential phytogeographical 
regions (group I – VII) with their indicator value (bold numbers). The indicator value 
of a species for a group is the maximum value observed over all groups. 
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Among these species are for instance: Anthonotha vignei; Tapinanthus praetexta; 

Dichapetalum dictyospermum; Albertisia cordifolia; Dorstenia embergeri; Xylopia 

rubescens. 

Species solely present in the Sudanian region, are for example: Saba florida; Vernonia 

glaberrima; Ficus capensis; Laggera pterodonta; Borreria scandens. Despite its low 

species richness, the Sahel zone shelters a high number of species exclusively restricted 

to it (55 species). Among these species the most well-known are for example: Acacia 

laeta; Acacia raddiana; Aristida mutabilis; Carraluma retropiciens; Cenchrus prieurii; 

Grewia tenax; Leptadenia pyrotechnica. 

See Appendix 7 for an exhaustive list of all species restricted to one phytogeographical 

region according to our results. Figure 4.4, shows the number and proportion of species 

common to at least two different phytogeographic regions.  

 
 

 
 
 
 
 

 

 

 

 

 

 

 

Comparison with the classic approach- phytogeographic regions of White (1983): The 

selected 7 clusters correspond fairly well with the vegetation zones defined by White 

(1983). However, some differences exist: White distinguished, including the regions 

delineated through our study, three other important phytogeographical regions: the 

mangrove, swamp forest and the West African coastal mosaic, which are not identified 

in our study, because our database does not contain species of this type of vegetation. 

Moreover notable differences in the extent of some areas are observed (Figure 4.6). The 

similarity and differences are discussed below. 

Figure 4.5: Proportion of species 
present in the 7 phytogeographic 
regions (PR): sp2PR: species common 
to: 2 phytogeographic regions; sp3PR: 
3 regions; sp4PR: 4 regions; sp5PR: 5 
regions; sp6PR: 6 regions; sp7PR: all 
the 7 regions  

Figure 4.4: Number of range-
restricted species per phyto-
geographical region: from I to 
VII; refer to the Figure 4.2 for 
the identification of each region  
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Figure 4.6: Comparison of area extent between our delineated 
phytogeographic regions and the vegetation zones of White (1983) 

 

 

4.5. Discussion 

Phytogeographical regions: Our delimited potential phytogeographic regions based on 

species composition of standard sites (grid cells) are closely similar to the vegetation 

zones defined by White (1983) in West Africa. Seven clear phytogeographic regions 

have been distinguished and are disposed along a climatic gradient from the south to the 

north, with different vegetation types corresponding to those of White (1983). However, 

White distinguished nine main types of vegetation zones including the mangrove and 

swamp vegetation area. These vegetation types were not included in our analysis 

because data on the distribution of species characterizing these types of vegetation are 

not included in the database we used.  
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The rainforest regions cover the southern part of the study area, extending from the 

south-west of Côte d’Ivoire to the south-west of Ghana where it ends due to the 

Dahomey gap effect. The Dahomey gap, covering the south-eastern part of Ghana and 

the southern part of Togo and Bénin, is a savanna vegetation zone or transition zone 

between savanna and rainforest splitting the rainforest zone into two parts commonly 

known as the Upper Guinea and Lower Guinea/Congolian Forest Blocks and was 

already highlighted in several previous studies (for example Aubréville 1938, White 

1983, Poorter et al. 2004). 

The Sudanian zone is a region of high heterogeneity due to the presence of many 

different habitat types. This induced notable artifacts during the clustering procedure. 

Our analyses retrieved broadly two regions: the north sudanian vegetation zone includes 

many species that can also be found in the Sahelian region and the south sudanian zone.  

Opposed to previous studies which subdivided the Sahelian zone into two different 

phytogeographic regions (Guinko 1983; Fontès & Guinko 1995; Thiombiano et al. 

2006), this region in our analysis is indentified as one phytogeographic zone and 

remained unchanged during the clustering procedure, also at a low level of dissimilarity 

(Figure 4.1). This could be due to the southward spread of the distribution of many 

Sahelian species, as already observed in the area for some species of the genera 

Combretum (Thiombiano et al. 2006), and Acacia (Wittig et al. 2004).  

The delineated phytogeographic zones largely reflect the basic climatic zones. Previous 

studies in the region at a more restricted spatial scale have already shown a good 

correlation between the climatic zones and phytogeographical areas (Adjanohoun 1989) 

and indicated that rainfall constitutes the major factor determining vegetation pattern 

and largely explains the variation in species composition (Aubréville 1962, Newbery & 

Garlan 1996; Adomou 2005; Thiombiano et al. 2006). One reason for changing 

phytogeographic regions boundaries is the observed decrease of the mean annual 

rainfall in the region from north to south (Le Houérou 2009). Indeed climatic 

fluctuations require plants to be able to shift their distribution range by spreading into 

areas with good representation of their ecological niche.  

Other notable differences between our new pattern of vegetation zones and the 

phytochoria of White are observed in the spatial extent of some areas (Figure 4.6). 

Beside the ecological factors (such as climate, geology, landform, soil), the observed 
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phytogeographic patterns could be described as a result of historical human activities 

and climate fluctuations. For instance, we notice a southward shift in the margins of the 

rainforest zones (drier and wetter types) induced by the transformation of one vegetation 

type into an other one. Given the decrease of precipitation over the last decades at the 

northern edges of the most humid zone, the wetter rainforest type is progressively 

transformed into the drier type by its upper border, while a part of the drier rainforest 

type is becoming a zone of transitional vegetation between rainforest and savanna. The 

transformation is more accentuated in the Sudanian and Sahelian areas which are 

extended due to the conversion of the northern border of the rainforest/savanna 

transition zone and the southward spread of Sahelian species into the northern 

sudannian vegetation zone. These observations could be explained by the high 

degradation of vegetation in the area. Indeed in the last two decades, the vegetation of 

West Africa was subject to strong changes induced mainly by deforestation with a 

percentage of deforestation up to 90%, habitat fragmentation and over-exploitation 

(Collins 1990; Sayer et al. 1992; Hawthorne 1996; Fairhead & Leach 1998; FAO 1993; 

FAO 2001 b). The steady increase in human population leads to an extension of 

agricultural land. The same tendency is observed in the drier areas, causing an extension 

of the Sahelian vegetation zone. In semi-arid regions tree cover decreased (Anhuf et al. 

1990; Breman & Kessler 1995) due to firewood cutting, overgrazing and droughts of 

the 1970s. Many former tree savannas were changed to shrubs/grass savannas or ended 

up in bare land. 

Also, changes in vegetation cover are mostly followed by micro and meso scale climatic 

changes. Together with the aspect of global changes, this may lead undoubtedly to shifts 

of vegetation zones. 

 

Indicator species analysis: The search for indicator species was conducted in order to 

determine the ecological meaningful and the floristic characteristics of each 

phytogeographical region. Among the great number of indicator species characterizing 

some regions, two different groups of species can be distinguished: rare species that 

characterize a given region and are present in a few sites of this region, and widespread 

or common species that characterize a given region and are found in almost all the sites 

of this region. The labels rare or common species depend on the level of the sampling 
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patch size (Nee et al. 1991). Species that are rare at a higher level may be common at 

the lower levels. The issue here is to deal with the ability to assess the spatial and 

temporal consistency of indicator status. The consistency of indicator status may depend 

on the spatial scale of the analysis and the ecological amplitude of a species (Bakker 

2008). On a broad spatial scale, rare species will have a small indicator value while 

common species will have a high indicator value. Based on the indicator value of each 

species and according to the results of previous studies (i.e. Guinko 1984; Poorter et al. 

2004; Adomou 2005) in which some species have been identified as indicators of a 

given vegetation type in the area, we drew up a list of indicator species per potential 

phytogeographical region. For example in our analysis, the species Acacia raddiana 

(IndVal = 2.18%), Aristida mutabilis (IndVal = 3.30%), Leptadenia pyrotechnica 

(IndVal = 1.69%) have a very low indicator value, but they are well-known as 

characteristic species of the Sahel vegetation type (Guinko 1984; Lebrun et al.1991). 

Likewise rare indicator species for other regions have been identified. If we set a 

threshold of the IndVal > 25 %, to identify indicator species, as suggested by Dufrêne & 

Lengendre (1997 ), many interesting species would have been ignored, though they are 

known to be characteristic of a given vegetation type. 

The indicator value analysis also allows identifying species that contribute to the 

specificity of each group. Indeed, most of the rare species are exclusively restricted to 

one phytogeographic region and have the highest specificity value for this region.  

 

Range-restricted species or endemic species: According to the literature, the rainforest 

region (drier and wetter type), has been identified to harbor almost one third of the total 

estimated number of all species in this region (; Hall & Swaine 1981, White 1983, 

Poorter et al. 2004). However our results bring out only 67 species (ca. 2% of the 

species used in this study) to exclusively occur in the rainforest (Figure 4.4). This could 

be explained by the exclusion of many endemic species during data processing for the 

modeling. Indeed, we only considered species that are well represented in the area in 

terms of the number of collection localities. The other species, which may contain a 

great number of range restricted species to a given region, have been removed from the 

list (about 63% of all species comprised in the raw database have been modelled).  
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Strengths and weaknesses of our approach: One major issue in delineating 

biogeographical regions is whether it can be based on quantitative statistical methods or 

on human expertise alone (McMahon et al. 2001). Quantitative approaches are more 

explicit, repeatable, transferable and defensible than subjective approach based on 

human expertise. Moreover, the applied approach allows overcoming issues related to 

data shortage. However, some weaknesses remain at different levels of the analysis. 

Despite the advantages of this approach it still requires subjective ecological expertise 

to adjust the border of some regions. Indeed, in descriptive multivariate data analysis in 

general, it is always a challenge to assess the reality of the clusters that have been 

identified. The difficulty comes from the fact that borders cannot be statistically tested 

through analysis of variance for instance, since the data necessary to perform this test 

are the very same that gave birth to the borders to be tested (Dufrêne & Legendre 2003); 

see Perruchet (1983) for a review of this question. Thus, after defining our regions we 

manually reshaped borders of some regions based on expert-knowledge (compare 

Dufrêne & Legendre 2003). 

Uncertainties induced by setting a threshold: the output of the model used to predict 

species’ potential distribution ranges is given in the form of probabilities of occurrence 

which have to be translated into a presence/absence form by setting a threshold for 

cluster analysis. However, a great issue to deal with in species distribution modeling is 

the choice of an appropriate threshold, which constitutes an important level of 

uncertainty. For each species, the right threshold should be found to avoid an over- or 

under-prediction of its distribution range. This step may also need the help of experts 

who know the ecology of the given species. But dealing with big data sets (i.e. database 

comprising more than 1000 species) it is too time consuming and unrealistic to go 

through the distribution map of each species in order to estimate their distribution range 

as close as possible to their real distribution. 

Technical issues: in this study, the analyses were based only on one clustering method; 

attempts to apply others techniques have been strongly hampered because of the limited 

power of the computer (because of the size of the database, we used species 

presence/absence matrix of 3,393 species by 12,152 grid cells). As different clustering 

algorithms may produce markedly different results because clustering methods impose 

different models onto the data (Legendre & Legendre 1998; Williams et al. 1999), it is 

50 



Delineation of potential phytogeographic regions 
 

 51

worthwhile and strongly recommended to apply different methods for comparison in 

order to validate the obtained patterns. With an increase in processing power of 

computers, different methods could be applied for comparison between the results 

produced easily in the future. 

 

4.6 Conclusion and perspectives 

This study shows that similarity analysis between sites (here grid cells) based on their 

species composition in combination with the application of indicator value approaches 

can contribute to delineate biogeographical regions more accurately than by expert 

estimation alone. The major constraints are related to the availability of representative 

data on species distributions, an issue that was tackled by the modeling of species 

distribution ranges.  

The considerably high similarity between our phytogeographical regions and those 

delineated by White (1983) indicates a good relationship between our method of 

analysis and the perception of the phytogeographers. 

It would be also very interesting to apply kind of studies to other taxonomic groups such 

as Bats and Amphibians, since quantitative and qualitative data on these groups are now 

available, as comparable studies do not exist for this region to date. 
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5. Prediction of species richness and shift in phytogeographic 
regions under climate change in West Africa 

 
 
 

5.1 Abstract 

Analyzing the possible impact of projected future climate changes on biodiversity is a 

crucial step towards the development of suitable adaptation and mitigation strategies.  

Here we used two IPCC climate change scenarios from two different climate models to 

evaluate the potential impact of climate change on plant species richness and also 

assessed the possible shift in potential phytogeographical regions in West Africa.  

We modeled potential current and future distributions of 3,393 vascular plant species at 

a spatial resolution of 10km x 10km grid cell size based on species distribution 

modeling techniques (MaxEnt). Summing up the potential distribution ranges of all 

modeled species per grid cell, we produced species richness maps for each climate 

scenario (global average increase in temperature of 2.4°C and 3.4°C) and each climate 

model for 2020, 2050, and 2080. Based on the distribution ranges of species, current 

and future potential phytogeographic regions were defined by the mean of cluster 

analyses and indicator species analyses. 

The results of our analysis show a generally negative impact of climate change on 

biodiversity in the area, with a severe loss of suitable habitats for many plant species, 

particularly in the rainforest region, with losses of up to 50% of species per grid cell by 

2080. Moreover, these changes also affect the potential future distribution of 

phytogeographic regions: in general, there is a southward shift in the potential location 

of phytogeographic regions, with a considerable increase of the drought-adapted Sahel 

region, contrasted by a severe decline of the rainforest region. The rainforest area in 

West Africa must be set as high priority area for biodiversity conservation. 

 

Keywords: Species distribution modeling, Species diversity patterns, Vegetation zones, 

Climate change scenarios 

 53



Species richness and phytogeographic regions under climate change 
 

5.2 Introduction 

Understanding the impact of projected climate change on plant species diversity and 

vegetations zones is a required precondition to develop effective strategies for 

conservation (Schroter et al. 2005, Araújo and Rahbek 2006, Engler et al. 2009).  

Climate is a strong regulator for the distribution, productivity and many other aspects 

(i.e. abundance) of species, as well as diversity patterns (Holdridge 1947; Woodward 

1987). The climate impact on species has been used to reconstitute paleoclimates from 

information on species past distributions (Guiot 1987). There is also a general 

agreement that climate (mainly temperature and precipitation) is the primary factor 

explaining the distribution of forest and savanna, at least at a continental scale 

(Adejuwon 1971, Swaine 1992, Cramer and Leemans 1993, Adams 2007).    

According to the IPCC greenhouse gas emission scenarios projections (IPCC 2000) 

temperature and rainfall will change considerably in Africa within the next decades 

(Mitchell et al. 2004; de Wit & Stankiewiecz 2006; Alley et al. 2007; IPCC 2007; 

Richardson et al. 2009) due to anthropogenic actions (Karl & Trenberth 2003; Raupach 

et al. 2007). Increase in temperature of about 1.5 to 2.5°C and decrease in precipitation 

ranging from 100 to 400 mm/yr may be possible (Dietz et al. 2004). 

The increasing anthropogenic climate change will undoubtedly have a high impact on 

plant species distribution and diversity (Parmesan & Yohe 2003; Root et al. 2003; 

Thuiller et al. 2008; Sommer 2008). The consequence of this influence at species level 

may be expansions, contractions or shifts of their ranges (Walther et al. 2002, Parmesan 

2006). The extreme situation may be extinction of some species at regional or local 

scale (Thomas et al. 2004; Thuiller et al. 2005). 

Moreover, species composition of assemblage and vegetation will be strongly 

influenced by climate change (Pamesan & Yohe 2003, Baselga & Araújo 2009, 

Sommer et al. 2010). Several studies have suggested that species turnover may be high 

in some regions under climate, potentially resulting in modifications of community 

structure strong enough to lead to ecosystem disruption (Bakkenes et al. 2002; Erasmus 

et al. 2002; Peterson et al. 2002).  

Evidence of accelerating climate change (IPCC 2007) highlights the urgency of 

obtaining accurate estimations of species range shifts in coming decades so that 

effective mitigation strategies can be developed to sustain ecosystem services and 

54 



Species richness and phytogeographic regions under climate change 
 

function (MEA 2005, Rosenzweig et al. 2008). To achieve this goal, species 

distribution modeling tools are commonly used in an effective way. 

The relationship between climate and species distributions has been a basis for 

numerous models in ecology and especially in biogeography (Austin 1985; Prentice et 

al. 1992; Neilson 1995; Kleidon & Mooney 2000; Thuiller et al. 2003, Kreft & Jetz 

2007). A widespread method to assess the impact of future climate change on plants has 

been the utilization of species distribution models (Guisan and Zimmermann 2000, 

Guisan and Thuiller 2005). The models commonly used to assess climate impacts, 

indicate that climate may result in substantial shifts in species distributions. The models 

make a number of assumptions, the most fundamental being that climate ultimately 

limits species distributions. 

In Africa, some studies have already been carried out to estimate future plant species 

distributions, at large geographical scales (continent-wide), but they remain at a 

relatively coarse spatial resolution (Sommer 2008); or at regional extent, focusing 

mainly on southern Africa (Midgley et al. 2002, Bomhard et al. 2005, Erasmus et al. 

2002, Simmons et al. 2004, Thuiller et al. 2006, Broennimann 2006). 

To our knowledge, there are no published assessments of potential impacts of climate 

change on regional plant species diversity of West Africa. Only very few investigations 

exist on vegetation dynamic under climate changes in this area (Wittig et al. 2007). 

These studies are only limited at local or national scale.  

Here, we used documented data on 3,393 vascular plant species distributions and 

present-day climate variables to build contemporary bioclimatic models. We then apply 

these models to project changes in species diversity under future climate scenarios. By 

comparing current versus future potential distributions, we assess whether suitable 

climate space for plant species is projected to increase or decrease with projected 

climate change in West Africa.  

Based on today and future distribution of plant species, we assessed possible shifts in 

phytogeographic regions in the study area. 
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5.3 Data and Methods 

Study area: Extending from the Atlantic coast to the Sahel zone, the study area is 

located in West Africa between the latitudes 4°30’ and 15°05’N and the longitudes 

8°30’W and 3°55’E and cover five countries: Bénin, Burkina Faso, Côte d’Ivoire, 

Ghana and Togo. It is a region of contrasts with a great variation in temperature, 

precipitation, and vegetation types along a gradient from north to south. 

The study area has been divided into 12,152 regular grid cells of approximately 10km x 

10km each (approx. 0.0833°). Grid cells falling inside the coastal areas (corresponding 

to mangrove vegetation type) have been removed from the analysis because species of 

this type of vegetation are not included in the documented database we established.  

 

Species distribution data: We compiled a database on the distribution of 4,887 vascular 

plant species of which 3,393 have sufficient geographic records were used in this study. 

The database consists of a combination of three main sources of data on plant species 

distribution: the BISAP database (Biogeographical Information System on African Plant 

Diversity, see Küper et al. 2004), the SIG-IVOIRE database (Gautier et al. 1999; 

Chatelain et al.2002) and the OUA/VegDa database (Schmidt et al. 2005). Each 

occurrence locality is a latitude-longitude pair denoting a site where the species has 

been observed. The spatial resolution is approximately 10km. 

 

Environmental variables: We assembled eleven environmental variables relating to 

three principal traits: temperature, precipitation and topography (Table 5.1). All these 

variables were extracted from the Worldclim database (Hijmans et al., 2005; 

http://www.worldclim.org/), which provides a set of global climate layers generated 

through interpolation of climate data from weather stations at a original resolution of 

30” grid (c. 1km²). The dataset comprises monthly averages of each climate variable for 

the period from 1950 to 2000, here referred to as today. The same variables are 

available for the future derived from the IPCC 3rd Assessment data downloadable from 

http://www.worldclim.org/futdown.htm. These future climate data have been simulated 

using different General Circulation Models (GCMs) and based on different IPCC 

climate-change scenarios. In this study, we concentrate on HadCM3 (Hadley Center for 

Climate Prediction and Research) and CSIRO (Australia’s Commonwealth Scientific 
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and Industrial Research Organisation) models and the IPCC A2 and B2 climate-change 

scenarios, referring to an average global warming of +3.4 °C and 2.4 °C, respectively. 

For the analysis we rescaled all the environmental variables to a common resolution of 

10km x 10km pixel size to match species data. 

 

 

 

 

Table 5.1: Environmental variables used in MaxEnt to predict current and projected 
potential distribution ranges of species. These variables have been downloaded from 
the WorldClim website with an original resolution of approx. 1 km that has been 
rescaled to approximately 10km grid cell size. Source: http://www.worldclim.org  

 
Abbreviation Variables description 

 
Alt Altitude  

 prec_30_max Maximum value (“wettest month”) of the 12 monthly precipitation 

 prec_30_min Minimum value (“driest month”) of the 12 monthly precipitation 
 
prec_30_std Standard deviation of the 12 monthly precipitation data 

 
Total annual precipitation calculated as the sum of all 12 monthly 
rainfall prec_30_sum  

 tmax30_max Maximum of the mean monthly maximum temperature 
 tmax30_min Minimum of the mean monthly maximum temperature 
 
tmax30_std Standard deviation of the mean monthly maximum temperature 

 
tmin30_max Maximum of the mean monthly minimum temperature  

tmin30_min Minimum of the mean monthly minimum temperature  

 tmin30_std Standard deviation of the mean monthly minimum temperature 
 

Species distribution modeling: Assuming that climate is the most important factor 

determining the distribution range of species, we modeled individual species niches 

from point observations and project these models into the future using different future 

climate scenarios. Historical factors, particularly species dispersion capacity have not 

been taken into account. 

For each 3,393 investigated vascular plants species, we used MaxEnt (The Maximum 

Entropy approach, Phillips et al. 2006) to create contemporary (here referred to as 

today) niche-based distribution models based on locality points and climate surfaces. 
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We then projected these models for climatic conditions in 2020, 2050 and 2080 

according to the IPCC A2 and B2 scenarios and the HadCM3 and CSIRO climate 

models.  

The potential geographic ranges of species are given in form of probabilities for the 

presence of each species. At each time period and for each model and scenario, we 

transformed the probability value output of MaxEnt into a presence/absence matrix. We 

chose the ten percentile training thresholds from the MaxEnt logistic output, indicating 

that 90 percent of each species records with the highest predicted model values are 

counted as presence. 

 

Potential species richness and change in species diversity: We produced potential 

species richness maps for today as well as for the future according to different scenarios 

and models by superimposing the presence/absence potential distribution ranges of all 

3,393 species. The number of species falling inside each grid cell was counted. 

We then estimated the possible potential gain and loss in species number per grid cell 

by 2080. Absolute values of species gained and lost have been calculated by simply 

making the difference between present and future values. 

 

Current and projected potential phytogeographical regions: From the current potential 

species presence/absence matrix, we calculated Bray-Curtis dissimilarity between all 

possible pair of sites (here grid cells) according to the formula: 

 

dij = 1 – 2A/2A + B + C 

 

where A is the number of species common to both sites i and j (here grid cells); B is the 

number of species present only at site i; and C is the number of species present at site j. 

We then clustered grid cells on the basis of the Bray-Curtis dissimilarity matrix by 

using the complete linkage of the agglomerative clustering method (see Legendre et al. 

1998 for a review of different clustering methods). We defined current potential 

phytogeographic regions based on the indicator species analysis (Dufrêne and Legendre 

1997); see chapter 4 for details. These steps have been repeated separately for each 

climate scenario and model and for each time period. 
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5.4 Results 

Contemporary and projected future potential species richness: the pattern of 

contemporary species richness here presented (Figure 5.1) differs slightly by its 

smoothly structure from the richness pattern when we included landcover variable into 

the model (see Appendix 5 for visual comparison).  
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Figure 5.1: Contemporary potential vascular plant species richness based on the 
distribution records and superimposed modeled geographic range of 3,393 species in 
West Africa. Only precipitation, temperature and altitude have been used as 
prediction variables. Here land cover variables have been excluded from the model. 

 

As already noticed (see chapter 4, for more detail), species richness patterns follows the 

steep environmental gradient in the region, with high species number in the south and  

decreases progressively toward the north (Figure 5.1). Similar altitudinal structures are 

observed in the future spatial patterns of species richness for all models and scenarios, 

but with gain or loss of species for some areas (Figure 5.2). 
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 Figure 5.2: Projected potential species richness for IPCC A2 and B2 scenario according to two 
different models, at different periods of time. According to IPCC report (2007) an average 
increase in global temperature of +3.4 for A2 and +2.4 for B2 scenarios is expected.  
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In general high values of species richness are located in most humid areas, as well as in 

mountains areas for all diversity patterns (current and projected according to different 

scenarios and models). However between consecutive periods of time, there is a general 

decrease in species number per grid cell. This decrease reaches up to 50% per grid cell 

in some areas, in particular in the rainforest regions (Figure 5.3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

HadCM3 CSIRO number of 
species lost 
or gainA2a 

B2a 

Figure 5.3: Change in species richness by 2080 according to A2 (+3.4 °C) and 
B2 (+2.4 °C) IPCC climate change scenarios for HadCM3 and CSIRO climate 
models showing the absolute number of species predicted to be lost or gained per 
grid cell. Severe impact of climate change occurred in the southern part with up to 
approx. 50 % of species loss per grid. White cells are no data areas. 
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The rate of decrease in species richness is very high in the extreme southern part of the 

study area, corresponding to the rainforest regions. In contrast, this rate is lower in the 

drier regions, as well as in the regions of high altitude: for instance, southwest of 

Burkina Faso around the Pic de Sindou; also in the region extending from northwest of 

Benin to southwest of Togo along the mountains ranges of Atacora. 

Amongst all scenarios and models in average 9.5% of all species in the study area are 

committed to extinction by the end of the century under climate change. More than 95% 

of the species threatened by extinction have small contemporary ranges. Here we 

referred to as small range species, species present in less than 15 % of all grid cells 

comprised in the study area. 

For all models and IPCC climate change scenarios there is negative impact on plant 

diversity in the study area. However, the B2 scenario appeared less harmful to vascular 

plant diversity than the A2 scenario (see Table 5.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Potential phytogeographic regions: Based on the contemporary potential distribution of 

the investigated vascular plant species, we delineated seven potential phytogeographic 

regions, which structure and disposition reflect those of the vegetation zones defined by 

White (1983). By the mean of indicator species analysis the delineated regions are 

defined as (Figure 5.4): Guineo-Congolian rainforest wetter type (I); Guineo-Congolian 

rainforest drier type (II); Mosaic of Guineo-Congolian wetter and drie type (III); 

Transition zone between rainforest and Sudanian vegetation type (IV); Sudanian 

vegetation zone (V); North-sudanian vegetation zone (VI) and the Sahelian vegetation 

zone (VII).  

IPCC scenario A2 B2 
Climate model CSIRO HadCM3 CSIRO HadCM3 
Percent of species with area increase 35.53 28.82 33.19 30.86 
Percent of species with area decrease 64.17 70.88 66.48 68.84 
Percent range loss 34.76 41.39 30.80 35.18 
Percent of species extinct 10.27 13.44 6.70 7.87 

Table 5.2: Summary of projections for investigated vascular plant species in the year 
2080. This table shows the percentage of species subject to an increase or decrease in 
their potential range size; the percentage of species extinct and the average percentage 
of loss in range for all species by 2080. 
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Figure 5.4: Potential shift in phytogeographical regions in West Africa for the IPCC A2 
and B2 scenario according to two different global climate models. Maps are displayed at 
different period of times from the years 2000 to 2080. White cells are no data areas 
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Each region is characterized by a set of well known indicator species (according to the 

literature). 

The same vegetation zones are delineated for the future under different climate 

scenarios and climate models. We identified corresponding possible future vegetation 

zones based on a set of indicator species for each region. For all groups delimited at 

different periods of time by cluster analysis a similar set indicator species are identified. 

As shown at Figure 5.5 notable changes are observed in future potential vegetation 

zones; the rainforest vegetation types decrease considerably; in contrast expansions in 

drier areas are observed (Figure 5.5). 

Moreover southward slight expansion in the sudanian vegetation zone occurred, as well 

as in the transition zone between forest and sudanian savanna region. Figure 5.5 shows 

the future possible dynamic of vegetation zones under climate change, according to the 

used climate scenarios and models. We can clearly notice a general negative impact for 

all models and scenarios. 
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Figure 5.5: Potential change in phytogeographic regions by 2080 according to IPCC A2 
and B2 scenarios and based on two climate models (HadCM3 and CSIRO). Here are 
presented: (a) the proportion of each contemporary potential phytogeographic region in 
the study area with a total size of 12,152 grids cell of 10 km resolution; (b) the 
percentage of possible change (reduction or expansion) in each region by 2080 under 
climate change. 
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5.5 Discussion 

 
For the first time in West Africa, we modeled the distribution ranges of 3,393 vascular 

plants species and projected their future potential ranges under different climate 

scenarios and models at relatively fine spatial resolution of approximately 10km x 

10km. For all scenarios, a negative impact of future climate on the size of species 

potential ranges change is expected. According to our results, the A2 scenario (with an 

projected average temperature increase of +3.4°C by 2080) appeared as being 

threatening plant diversity in the investigated area to a higher rate than the B2 scenario 

(average temperature increase of +2.4°C by 2080). According to the latest assessments 

on the rate of possible global warming that incorporate the rate of warming since the 

year 2000, the A2 scenario is considered as a realistic one that may even be 

pronouncedly exceeded (Richardson 2009). 

According to our models, the major losses in species habitat suitability observed in the 

most humid areas could be explained by the rapid decrease in the rainfall amount in 

these areas. Indeed in several previous studies, rainfall has been described as the most 

important water factor determining the distribution of plant species, as well as 

vegetation patterns in West Africa (Hall & Swaine 1976; van Rompaey 1993, van 

Rompaey & Oldeman 1997, Bongers et al. 2004, Tchouto 2004). As species 

distributions are – apart from biotic interactions as competition – mostly constrained by 

their physiological level of tolerance (O’Brien 1998; Hawkins et al. 2003; Currie et al. 

2004), a decrease in precipitation will possibly lead to local extinction events for plant 

species that are getting below their level of drought tolerance. 

In contrary to what could be expected, the drier regions are projected to loss only very 

few species according to our results. Interestingly, the results indicate even considerable 

gains of species in some areas of these regions. Possible explications of this observation 

could be related to water availability in terms of precipitation. The applied General 

Circulation Models are characterized by a major discontinuity in terms of the estimated 

changes in the amount and variability of precipitation events, causing somewhat 

inconsistent responses in the species distribution models. 

Our results support the general assumption that mountain areas seem to be less sensitive 

to climate change. This may be due to the structural complexity of habitats in mountain 
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areas that facilitate the persistence of species in small pockets of suitable conditions, 

e.g. in gallery forests or in mountain areas with still suitable meso- and microscale 

conditions even when broad-scale climate conditions are getting harsh and unsuitable 

(Sommer et al. 2010). 

According to our results, almost all species that lose their entire suitable habitats in 

future have presently small distribution ranges. This supports the paradigm of narrow 

ranged species that are more vulnerable to extinction (Pimm and Raven 2000, 

Broennimann et al. 2006) and they should be particularly in the focus of conservation 

(Gaston 1994; Purvis et al. 2000). However, the higher vulnerability of narrow ranging 

species in our models also has methodological reasons simply because it is more 

unlikely for a small environmental envelope to persist under changing climate 

conditions when distribution models are applied. In contrast to this, there is empirical 

evidence that narrow ranging species often occur in azonal systems where they are to a 

high degree adapted to, and that these species are less affected by broad scales climate 

conditions (Kreft et al. 2006). This effectuates that a severe threat or an extinction of 

these species is unlikely as long as their habitats are not actively destroyed.  

It is well known that patterns of spatial and temporal change in vegetation are ultimately 

controlled by climate and its dynamics (Prentice & Solomon 1991, Printice 1992), that 

species distributions in the past have varied in accordance with changing climate 

conditions, and that we can accordingly expect plant species to continue to change their 

distribution ranges (Woodward 1987). The possible potential gain and loss in the 

climatic potential for species richness per grid cell may induce changes in species 

composition, and therefore on vegetation zones (Pamesan & Yohe 2003, Baselga & 

Araújo 2009).The pronounced decline of potential species richness observed in the 

forest regions due to deteriorating living conditions caused by a shift of the relation 

between temperature and rainfall towards more arid conditions may induce a conversion 

of forest habitats into other vegetation types. As the delineation of our vegetation zones 

is based only on their respective species composition, the expansions of the Sahel 

region and the reduction of the north Sudanian region could be due to the southward 

spread of the distribution of many Sahelian species. This was already observed in the 

area for some species (Wittig et al. 2004, Thiombiano et al. 2006). Also, the slight 

southward expansion of the Sudanian vegetation region could be a consequence of the 

66 



Species richness and phytogeographic regions under climate change 
 

migration of some of its species into adjacent regions. In concordance with the local 

extinction of some species formerly occurring in this transition area, this could trigger 

the conversion of the northern border of deciduous rainforest vegetation. 

Identifying regions with high absolute numbers of species lost or gained is of prime 

importance for conservation planning, whereas regions with a high percentage turnover 

may experience a high reshuffling of biological assemblages, which may further lead to 

some ecosystems disruption (Bakkenes et al. 2002; Erasmus et al. 2002; Peterson et al. 

2002). Therefore, the creation of reserves requires the consideration of the possible 

effects of climate change and these reserves should not be restricted to areas with a high 

probability of change. As many diverse systems are located in the transition zones 

between ecosystems or biomes (Leemans 1990), reserves have to be large enough to 

allow for spatial shifts of these areas within the protected areas, or at least provide 

corridors between them (Williams et al. 2005). 
Our study does not include the impacts of land-use change, yet climate change is also 

predicted to interact with other drivers of biodiversity change such as habitat destruction 

and fragmentation due to human land use activities (Pearson & Dawson 2005). In 

general, vegetation in Africa faces an increasing pressure by human land use such as 

livestock production, deforestation and crop production (Williams et al. 2007). Many 

countries in West Africa have their economy based on agricultural production, therefore 

a large proportion of suitable areas were transformed into farmland areas resulting in 

major loss of species as well as vegetation coverage (FAO 1995, FAO 2001, Achard et 

al. 2002). Moreover the introduction of foreign species could cause possible changes in 

vegetations structure (Kriticos et al. 2003). However, a previous study carried out at 

coarser spatial resolution has shown that species turnover in the sense of 

supplementation or replacement of the indigenous flora of an area by other species is of 

minor importance in Africa (Sommer 2008). Altogether, these threats may possibly act 

in synergy to increase extinction risk. 

Biotic interactions can affect the species’ ability to adapt to changes in their 

environment. For example Jordano (2000) suggests that >90% of tropical plant species 

rely on animals for the dispersal of their seeds. However, modifying individual species 

distribution models to account for complex biotic interactions is difficult (Araújo and 
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Luoto 2007, Heikkinen et al. 2007). Indeed, it requires information on the biology of 

organisms that is either unavailable or available for specific case studies alone. 

 

Uncertainties in assessing impact of climate change: Different levels of uncertainties 

could be distinguished in assessing the potential impact of climate change on species 

distribution, as well as on vegetation zones dynamics. Uncertainties can be induced by 

the selection of climate variables that are used to predict the potential distribution range 

of each species. We used only environmental variables related to temperature, 

precipitation and elevation because of data availability. Yet, other important factors are 

known to shape considerably the distribution range of many species and vegetation 

structure such as biotic interaction. Moreover, fire is a major factor in structuring 

vegetation (Bond et al. 2005), and some biome shifts follow these changes in fire 

regime, whereas others are forced directly by climate.  

Further uncertainties are induced by scarcity in climate data in regions and there is a 

notable lack of geographic balance in data and literature on observed changes in natural 

and managed systems, with marked scarcity in developing countries (IPCC 2007). Also 

the confidence in the projections derived from the General Circulation Models is higher 

for some variables (e.g. temperature) than for others (e.g. precipitation) and it is higher 

for larger spatial scales and longer time averaging periods (IPCC 2007). 

Uncertainties appear additionally due to the cut-off methods used to determine species 

presence/absence ranges as part of the species distribution models. Here, we used the 

same threshold for all species over the time periods. Choosing an appropriate threshold 

is a crucial step for the quality of the model output. Different thresholds could lead to 

very different projected distributions, causing additional challenges for biodiversity risk 

assessment and conservation purposes (Manel et al.2001, Thuiller 2004). Furthermore, 

projections into the future with climatic conditions outside the current range necessarily 

involve uncertainties in the form of over- and underestimations of the respective 

consequences. Hence, predictions of current and future species distributions need to be 

interpreted in consideration of the related methodological uncertainties to ensure that 

results in relation to species range shifts, extinctions, colonizations and species turnover 

are adequately emphasized (Thuiller 2004). 
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5.6 Conclusion 

Based on potential species distributions derived from natural history and field 

collections, future climate projections and species distribution modeling, our analysis 

show a generally negative impact of climate change on vascular plant species richness 

in West Africa, as well as on the maintenance of vegetation zones of the area. 

The major losses in species habitat suitability observed in the most humid areas, while 

the drier regions are projected to loss only very few species according to our results, in 

contrary to what could be expected. Morevore, mountain areas seem to be less sensitive 

to climate change. 
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6. General conclusions 
 
The present thesis investigated the spatial patterns of vascular plant species richness, the 

distribution of phytogeogaphical regions based on potential distribution of species, as 

well as the potential impact of projected future climate change on the observed patterns. 

Findings of the study can be used to support the sustainable monitoring and 

conservation of biodiversity in West Africa.  

Our results indicate that species distribution models are valuable tools to improve the 

understanding on species richness gradients particularly in areas with a heterogeneous 

availability of distribution data (chapter 3). We applied a species distribution model 

(The Maximum Entropy approach, Phillips et al. 2006) to calculate the potential 

distribution ranges of individual plant species in relation with their environmental 

suitability. For the first time, a regional species richness map for all vascular plant 

species in the area of investigation has been produced at a relatively high spatial 

resolution. In accordance with the spatial distribution of global plant species richness 

(Barthlott et al. 1996; Mutke & Barthlott 2005, Barthlott et al. 2007) the patterns of 

plant species richness follow the steep climatic gradient existing in the region of West 

Africa. The main determinant of species distribution ranges appeared to be the amount 

of rainfall. Highly important areas in terms of plant species richness at regional scale as 

well as at national extent of each surveyed country have been identified in the most 

humid areas in concordance to many previous observations. As surrogate to data 

shortage on species distributions, this study confirmed the suitability of the use of 

higher taxa, such as plant family affiliation, to depict the distribution patterns of 

biodiversity. This has the advantage to be much more efficient in getting valuable 

information for the development of biodiversity conservation strategies. As a 

complementary step to analyse the conservation status of biodiversity, an investigation 

of the effectiveness of existing protected areas in the region shows an overall good 

coverage of species. However at national scale, the establishment of new protected areas 

is suggested, in particular in Burkina Faso, Benin and Togo.  

Knowledge on the distribution of biogeographical regions is also an essential 

precondition for setting priorities in conservation biology and policy (Olson et al. 2001; 

Kier et al. 2005). The proposed potential phytogeographical regions (chapter 4) were 
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delineated by using a newly developed methodological approach tha investigates the 

variation in species composition among standard sites. The results can be considered as 

a refinement of the well known vegetation zones, established on the basis of classical 

approaches (White 1983). An important aspect integrated in this study is the use of 

indicator species analysis (Dufrêne & Lengendre 1997). This allowed identifying 

groups of species that characterize each phytogeographical region. It further facilitates 

the analysis of range-restricted or endemic species, thus highlighting the qualitative 

importance of the corresponding regions. Moreover, an imperative finding from this 

study is the pronounced shift of the phytogeographical regions observed in comparison 

to the vegetation zones of White (1983) especially in the forest zones in the south and in 

the drier areas in the north. The spatial resolution used in this analysis seems to be, at 

the moment, the finest possible because of many limitations in the methodology due to 

the limited comprehensiveness of the database. 

Accurate estimations of the likely future impacts of climate change on plant diversity 

are critical for the development of conservation strategies (Araújo and Rahbek 2006). 

An important tool for these estimations is species distribution modeling: the modeling 

of individual species, groups of species such as ‘functional types’, communities, 

ecosystems or biomes. The strong relation between species distributions, vegetation 

patterns, and climate indicates that plant species are sensitive to climate change. Our 

results showed a generally negative impact of climate change on species richness in the 

region according to two IPCC climate change scenarios based on the HadCM3 and 

CSIRO General Circulation Models (chapter 5). This impact is particularly accentuated 

in most humid areas, resulting in a loss of habitat suitability for up to 50% of species 

per grid cell. In the study area, an average of 9.5% of all investigated species is losing 

its entire potential suitable habitats by 2080. 

Moreover, our results indicate a pronounced negative impact of climate change on the 

potential distribution of vegetation zones. While the Sudanian vegetation zone possibly 

enlarges, a considerable reduction of the forest zone is possible by the end of the 

century. The potential contemporary distribution of vegetation zones, as well as the 

respective projected future changes are in particular alarming as these types of 

vegetation is in West Africa already under heavy threat due to habitat conversion (FAO 

1995, FAO 2001, Achard et al. 2002). One major advantage of the applied method to 
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define phytogeographic regions is its repeatability, and therefore its applicability for the 

long term monitoring of vegetation, as well as for the assessment of the impact of future 

climate change on vegetation dynamics (chapter 5). 

As the introduced approach is repeatable, it would be recommendable to apply this to 

other groups of organisms such as bats and amphibians, since quantitative and 

qualitative data on these groups are now gathered and available within the BIOTA 

project. Moreover, the impacts of climate change are predicted to amplify other drivers 

of biodiversity loss such as habitat destruction and fragmentation (Pearson & Dawson 

2005), or the introduction of invasive species (Kriticos et al. 2003). Further, fire is a 

major factor in structuring vegetation (Bond et al. 2005), and some vegetation shifts due 

to changes in fire regime, whereas others are forced directly by climate. Including these 

aspects into the modeling algorithm would be highly recommendable in future studies, 

for a better understanding of biodiversity issues in the region. 

The implementation of ecosystem-based approaches of biodiversity conservation and 

environmental management requires the availability of species richness maps, as well as 

maps depicting geographic areas with similar ecosystem characters. In the direction of 

achieving the overall goal of the Convention on Biological Diversity (UNCBD 1992), 

this thesis constitutes a contribution to provide decision-makers with spatial information 

for the development of sustainable conservation strategies of biodiversity at regional 

level of West Africa, as well as at the national scale of each investigated country. On 

top of identifying important areas in terms of their qualitative and quantitative features 

for biodiversity conservation, the study calls for an establishment of supplement 

protected areas, as well as for the reinforcement of the existing network of protected 

areas which are highly threatened by many factors such as uncontrolled logging and 

land conversion for agriculture (IUCN 2010). Moreover, the achieved results are helpful 

in elaborating effective strategies for mitigating the projective impact of future climate 

change on biodiversity in the region.  
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7. Summary 
 

DA, Sié Sylvestre (2010). Spatial patterns of West-African plant diversity along a 

climatic gradient from coast to Sahel. Doctoral Thesis, Mathematisch-

Naturwissenschaftliche Fakultät (Nees-Institut für Biodiversität der Pflanzen), 

Rheinische Friedrichs-Wilhems-Universität Bonn. 121 pp. 

 

Understanding species distribution patterns and the corresponding environmental 

determinants is a crucial step in the development of effective strategies for the 

conservation and management of plant communities and ecosystems. Therefore, a 

central prerequisite is the biogeographical and macroecological analysis of factors and 

processes that determine contemporary, potential, as well as future geographic 

distribution of species. This thesis has been conducted in the framework of the 

BIOMAPS-BIOTA project at the Nees Institute of Biodiversity of Plants, which was 

funded by the German Federal Ministry of Education and Research (BMBF). The study 

investigated patterns of plants species richness and phytogeographic regions under 

contemporary environmental conditions and forecasted future climate change in the area 

of West Africa covering five countries: Benin, Burkina Faso, Côte d’Ivoire, Ghana and 

Togo. 

Firstly, geographic patterns of vascular plant species richness have been depicted at a 

relatively fine spatial resolution based on the potential distribution of 3,393 species. 

Species richness is closely related to the steep climatic gradient existing in the region 

with a high concentration of species in the most humid areas in the south and decreases 

towards the northern drier areas. The investigation of the effectiveness of the existing 

network of protected areas shows an overall good coverage of species in the study area. 

However, the proportion of covered species is considerably lower at national extent for 

some countries, thus calling for more protected areas in order to cover adequately a 

maximum number of plants species in these countries. 

Secondly, based on the potential distribution range of vascular plant species, seven 

phytogeographic regions have been delineated that broadly reflect the vegetation zones 

as defined by White (1983). However notable differences to the delineation of White 

(1983) occur at the margins of some regions. Corresponding to a general southward 
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shifted of all regions. And expansion of the Sahel vegetation zone is observed in the 

north, while the rainforest zone is decreased in the very south.This is alarming since the 

rainforest shelters a high number of species and a high proportion of range-restricted or 

endemic species, despite their relatively small extent compared to the other regions. 

Finally, the evaluation of the potential impact of climate change on plant species 

richness in the study area, results in a severe loss of future suitable habitat for up to 50% 

of species per grid cell, particularly in the rainforest region. Moreover, the analysis of 

the possible shift of phytogeographic regions shows in general a strong deterioration of 

the West African rainforest. In contrast the drier areas are expanding continuously, 

although a slight gain in species number can be observed in some particular regions. 

The overall lesson to retain from the results of this study is that the West African 

rainforest should be fixed as a high priority area for the conservation of biodiversity of 

plants, since it is subject to severe contemporary and projected future threats. 
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DA, Sié Sylvestre (2010). Räumliche Muster der Pflanzendiversität entlang eines 

klimatischen Gradienten von der Küste Westafrikas bis in den Sahel. Dissertation, 

Mathematisch-Naturwissenschaftliche Fakultät (Nees-Institut für Biodiversität der 

Pflanzen), Rheinische Friedrichs-Wilhems-Universität Bonn. 121 Seiten. 

 

Das Verständnis des Zusammenhangs zwischen räumlichen Verbreitungsmustern von 

Pflanzenarten und Umweltfaktoren ist ein entscheidender Schritt für die Entwicklung 

von effektiven Schutz- und Managementstrategien für Arten, Pflanzengemeinschaften 

und Ökosystemen. Biogeographische und makroökologische Untersuchungen 

ermöglichen die Analyse der bestimmenden Faktoren und Prozesse, welche die 

potentielle, die aktuelle wie auch die zukünftige geographische Verbreitung von Arten 

bestimmen. Die vorliegende Arbeit wurde am Nees-Institut für Biodiversität der 

Pflanzen im Rahmen des BIOMAPS-BIOTA Projekts durchgeführt, welches vom 

Bundesministerium für Bildung und Forschung (BMBF) gefördet wurde. Es werden 

Muster der pflanzlichen Artenvielfalt, sowie die Verbreitung der phytogeographischer 

Regionen unter heutigen und zukünftigen klimatischen Bedingungen untersucht. Das 

Untersuchungsgebiet liegt in Westafrika und besteht aus den fünf Staaten Benin, 

Burkina Faso, Elfenbeinküste, Ghana und Togo. 

Zuerst wurden, basierend auf der potentiellen Verbreitung von 3393 Arten, geografische 

Muster der Artenvielfalt von Gefäßpflanzen auf einer hohen räumlichen Auflösung 

dargestellt und beschrieben. Die Zunahme der Artenvielfalt von Nord nach Süd 

korreliert mit der Zunahme des mittleren Jahresniederschlages. Somit finden sich hohe 

Artenzahlen in den Regionen feuchter Klimate im Süden und geringe Artenzahlen in 

den nördlichen trockenen Regionen.  

Die Effizienz des des bestehenden Schutzgebietssystems Westafrikas wurde hinsichtlich 

der Repräsentierung der untersuchten Pflanzenarten ermittelt. Bei einer Betrachtung des 

gesamten Untersuchungsgebietes zeigte sich eine insgesamt gute Repräsentation aller 

Pflanzenarten. Auf nationaler Ebene besteht jedoch ein Defizit im Schutz einiger Arten. 

Daher ist in diesen Ländern die Einrichtung weiterer Schutzgebiete erforderlich, um 
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eine maximale Anzahl von Pflanzenarten in den nationalen Schutzgebietssystemen zu 

repräsentieren. 

Des Weiteren wurden basierend auf der potentiellen Verbreitung der Gefäßpflanzen 

sieben phytogeographische Regionen klassifiziert, welche hinsichtlich ihrer Verbreitung 

weitgehend mit denen nach White (1983) definierten Vegetationszonen 

übereinstimmen. Jedoch sind im Vergleich zu White (1983) alle Grenzen der 

phytogeographischen Regionen südwärts verschoben. Während die Sahel-

Vegetationszone folglich eine ausgedehntere Fläche einnimmt ist die Größe der 

Regenwaldgebiete geringer. Dies ist besonders alarmierend, weil die Regenwaldflächen 

trotz ihrer vergleichsweise geringen Ausdehnung eine Vielzahl kleinräumig verbreiteter 

und endemischer Arten beherbergen. 

Abschließend wurde eine Analyse des potenziellen Einflusses des Klimawandels auf die 

Vielfalt der Pflanzenarten im Untersuchungsgebiet durchgeführt. In den 

Regenwaldregionen betrafen diese Verluste bis zu 50% aller Arten pro Gridzelle. 

Bezogen auf eine mögliche Veränderung der phytogeografischen Regionen durch den 

Einfluss des Klimawandels ist generell eine starke Verringerung des Areals des 

westafrikanischen Regenwaldes zu erwarten, bei einer gleichzeitigen Ausdehnung von 

Regionen, die in trockenen Gebieten liegen. In diesen Regionen ist ebenso ein 

geringfügiger Anstieg der Artenzahlen möglich. 

Die Ergebnisse dieser Studie heben die Bedeutung der westafrikanischen Regenwälder 

für den Schutz der pflanzlichen Biodiversität hervor. Da sie bereits heute und im 

Kontext des globalen Klimawandels in der Zukunft starken Bedrohungen ausgesetzt 

sind, bedarf es einer besonderen Schutzpriorität dieser Wälder.  
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DA, Sié Sylvestre (2010). Les modèles spatiaux de la diversité des plantes le long 

d’un gradient climatique de la côte Ouest Africaine jusqu’au Sahel. Thèse de 

Doctorat Unique, Mathematisch-Naturwissenschaftliche Fakultät (Nees-Institut für 

Biodiversität der Pflanzen), Rheinische Friedrichs-Wilhems-Universität Bonn. 121 p. 

 

Comprendre les modèles spatiaux de la distribution des espèces et les facteurs 

environnementaux déterminants, est une étape cruciale dans l’élaboration de stratégies 

efficaces pour la conservation et l’aménagement des communautés végétales et des 

écosystèmes. Par conséquent, l’analyse biogéographique et macroécologique des 

facteurs et processus déterminant la distribution géographique réelle, potentielle et 

future des espèces, constitue un préalable. Financièrement supportée par le Ministère 

Allemand de l’Éducation et de la Recherche (BMBF) à travers le projet BIOMAPS-

BIOTA, cette étude a été conduite à l’Institut Nees pour la Biodiversité des Plantes. Elle 

examine les modèles spatiaux actuels et futures, sous l’effet des changements 

climatiques, de la richesse en espèces végétales ainsi que des régions 

phytogéographiques dans la zone de l’Afrique de l’ouest couvrant cinq pays dont le 

Bénin, le Burkina Faso, la Côte d’Ivoire, le Ghana et le Togo.  

D’abord, les modèles géographiques de la richesse en espèces de plantes vasculaires ont 

été décrits à une résolution spatiale relativement fine sur la base de la distribution 

potentielle de 3393 espèces. La richesse en espèces est étroitement liée au fort gradient 

climatique qui existe dans la région, avec une forte concentration d’espèces dans les 

zones les plus humides au sud et décroit progressivement lorsque l’on se déplace vers 

les zones de plus en plus sèches au nord. L’analyse de l’efficacité du réseau des aires 

protégées montre une bonne couverture des espèces dans toute la zone. Cependant, la 

proportion d’espèces couvertes diminue considérablement pour certains pays lorsqu’on 

se limite à l’échelle nationale, faisant ainsi ressortir la nécessité d’aires protégées 

supplémentaires afin de parvenir à une couverture adéquate d’un nombre maximum 

d’espèces végétales dans ces pays. 

Ensuite, sur la base de l’aire de distribution potentielle des espèces de plantes 

vasculaires, sept régions phytogéographiques ont été délimitées et dont la disposition et 
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la structure reflètent largement celles des zones de végétation de White (1983), avec 

cependant des différences remarquables. Notamment au niveau de l’étendue de 

certaines zones telles que les zones de forêt dense humide et décidue qui voient leur 

superficie réduite considérablement, réduction se traduisant par un déplacement des 

limites nord de ces zones vers le sud. Tandis qu’une extension significative de la zone 

de végétation sahélienne est observée. Cependant, malgré leur superficie réduite, les 

régions de forêts demeurent les plus riches en espèces végétales et abritent un nombre 

considérable d’espèces endémiques, comparativement aux autres zones 

phytogéographiques. 

Enfin, l’évaluation de l’impact des changements climatiques sur la richesse en espèces 

végétales de la zone d’étude, met en évidence une perte sévère des habitats favorables 

pour plusieurs espèces, et particulièrement dans la zone de forêt dense où plus de 50% 

des espèces par carré pourraient être touchées. De plus l’analyse des modifications 

possibles induites par les changements climatiques au niveau des zones de végétations 

révèle en générale une forte destruction des forêts Ouest-africaines. Par contre on 

assistera à une extension des zones plus arides, bien qu’un léger gain en espèces 

végétales y soit observé. 

La leçon à retenir de l’ensemble des résultats de cette étude est de définir la zone de 

forêt dense Ouest-africaine comme zone de haute priorité pour la conservation de la 

biodiversité des plantes, du fait des menaces actuelles et futures auxquelles elle fait 

face.  

 



References 
 

10. References 
 

Achard F., Eva H.D., Stibig H.-J., Mayaux P., Gallego J., Richards T. & Malingreau J.-
P. (2002). Determination of deforestation rates of the world's humid tropical 
forests. Science, 297, 999–1002. 

Adams J. (2007). Vegetation-Climate Interaction – How Vegetation Makes the Global 
Environment. Springer, Berlin, Heidelberg, Germany. 

Adejuwon J.O. (1971). Savannah patches within forest areas in Western Nigeria: a 
study of the dynamics of forest-savannah boundary. Bulletin de l'Institut 
Fondamental d'Afrique Noire, série A, 33, 327–344. 

Adjanohoun E.J., Adjakidjè V., Ahyi M.R.A., Ake Assi L., Akoègninou A., d’Almeida 
J., Apovo F., Boukef K., Chadare M., Cusset G., Dramane K., Eyme J., 
Gassita J.–N., Gbaguidi N., Goudote E., Guinko S., Houngnon P., Issa L.O., 
Keita A., Kiniffo H.V., Kone–Bamba D., Musampa Nseyya A., Saadou M., 
Sodogandji T., de Souza S., Tchabi A., Zinsou Dossa C. & Zohoun T. (1989). 
Contribution aux études ethnobotaniques et floristiques en République 
Populaire du Bénin. Agence de Coopération Culturelle et techniques, Paris, 
895 pp. 

Adjanohoun E.J., Ahyi A.M.R., Ake Assi L., Baniakaq J., Chibon P., Cusset G. & 
Doulou V. (1988). Médecine traditionnelle et pharmacopée: contribution aux 
études ethnobotaniques et floristiques en Republique Populaire du Congo. 
Rapport ACCT, Paris, 605.  

Adomou A. (2005). Vegetation patterns and environmental gradients in Benin. Doctoral 
Thesis, Van Wageningen University, Wageningen, Netherlands. 

Akoègninou A. & Lisowski S. (2004). Un Ipomoea (Convolvulaceae) nouveau et un 
Thunbergia (Acanthaceae) nouveau du Bénin. Notulae Florae Beninensis, 
Systematics and Geography of Plants, 74, 337–345. 

Alley R.B., Berntsen T., Bindoff N.L., Chen Z., Chidthaisong A., Friedlingstein P., 
Gregory J., Hegerl G., Heimann M., Hewitson B., Hoskins B.J., Joos F., 
Jouzel J., Kattsov V., Lohmann U., Manning M., Matsuno T., Molina M., 
Nicholls N., Overpeck J., Qin D., Raga G., Ramaswamy V., Ren J., Rusticucci 
M., Solomon S., Somerville R., Stocker T.F., Stott P.A., Stouffer R.J., 
Whetton P., Wood R.A. & Wratt D. (2007). Contribution of Working Group I 
to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change. IPCC, Geneva, Switzerland. 

Anderson R.P. & Martínez–Meyer E. (2004). Modeling species’ geographic 
distributions for preliminary conservation assessments: an implementation 
with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 
116, 167–179. 

 81



References 
 

Anhuf D., Grunert J. & Koch E. (1990). Veränderungen der realen Bodenbedeckung im 
Sahel der Republik Niger (Regionen Tahoua und Niamey) zwischen 1955 und 
1975. Erdkunde, 44, 195–209.  

Araújo M.B. & Luoto M. (2007). The importance of biotic interactions for modelling 
species distributions under climate change. Global Ecology and Biogeography, 
16, 743-753. 

Araújo M.B. & Rahbek C. (2006). How does climate change affect biodiversity? 
Science, 313, 1396–1397. 

Arrhenius O. (1921). Species and area. Journal of Ecology, 9, 95–99. 

Aubréville A. (1938). La forêt coloniale: les forêts d’Afrique Occidentale française. 
Ann. Acad. Sci. Colon., Paris, 9, 1-245. 

Aubréville A. (1949a). Contribution à la paléohistoire des forêts de l’Afrique tropicale. 
Société d’éditions géographiques, maritimes et coloniales, Paris, 99 pp. 

Aubréville A. (1949b). Climats, forêts et désertification de l’Afrique tropicale. Société 
d’éditions géographiques, maritimes et coloniales, Paris, 351 pp. 

Aubréville A. (1962). Savannisation tropicale et glaciations quaternaires. Adansonia, 2, 
2, 16-84. 

Austin M.P. (1985). Continuum Concept, Ordination Methods and Niche Theory. 
Annual Review in Ecoogy and Systematics, 16, 39-61. 

Baillie J.E.M., Hilton–Taylor C. & Stuart S.N. (2004). IUCN Red List of Threatened 
Species: a global species assessment. IUCN, Gland, Switzerland. 

Bakkenes M., Alkemade R.M. & Ihle F. (2002). Assessing effects of forecasted climate 
change on the diversity and distribution of European higher plants for 2050. 
Global Change Biology, 8, 390–407. 

Bakker J.D. (2008). Methodological insights - Increasing the utility of indicator Species 
Anlysis. Journal of Applied Ecology, 45, 1829-1835. 

Balmford A., Bennun L., ten Brink B., Cooper D., Coté I.M., Crane P., Dobson A., 
Dudley N., Dutton I., Green R.E., Gregory R.D., Harrison J., Kennedy E.T., 
Kremen C., Leader–Williams N., Lovejoy T., Mace G., May R., Mayaux P., 
Morling P., Phillips J.F.V., Redford K., Ricketts T.H., Rodriguez J.P., 
Sanjayan M., Schei P.J., Van Jaarsveld A.S. & Walther B.A. (2005). The 
Convention on Biological Diversity´s 2010 target. Science, 307, 212–213. 

Balmford A., Lyon A.J.E. & Lang R.M. (2000). Testing the higher-taxon approach to 
conservation planning in a megadiverse group: the macrofungi. Biological 
Conservation, 93, 2, 209-217. 

82 



References 
 

Barthlott W. & Winiger M. (1998). Biodiversity: a challenge for development research 
and policy. Springer, Berlin, Heidelberg. 

Barthlott W., Biedinger N., Braun G., Feig F., Kier G. & Mutke J. (1999). 
Terminological and methodological aspects of the mapping and analysis of 
global biodiversity. Acta Botanica Fennica, 162, 103–110. 

Barthlott W., Hostert A., Kier G., Küper W., Kreft H., Mutke J., Rafiqpoor M.D. & 
Sommer J.H. (2007). Geographic patterns of vascular plant diversity at 
continental to global scales. Erdkunde, 61, 4. 

Barthlott W., Lauer W. & Placke A. (1996). Global distribution of species diversity in 
vascular plants: towards a world map of phytodiversity. Erdkunde, 50, 317–
328. 

Barthlott W., Mutke J., Braun G. & Kier G. (2000). Die ungleiche globale Verteilung 
pflanzlicher Artenvielfalt – Ursachen und Konsequenzen. Berichte der 
Reinhold Tüxen–Gesellschaft, 12, 67–84. 

Barthlott W., Mutke J., Rafiqpoor M.D., Kier G. & Kreft H. (2005). Global centres of 
vascular plant diversity. Nova Acta Leopoldina, 92, 61–83. 

Baselga A. & Araújo M.B. (2009). Individualistic vs. community modelling of species 
distributions under climate change. Ecography, 32, 1, 55-65. 

Birks H.J.B. (1987). Recent methodological developments in quantitative descriptive 
biogeography. Annales zoologici fennici, 24,165–178.  

Bomhard B., Richardson D.M. & Donaldson J.S. (2005). Potential impacts of future 
land use and climate change on the red list status of the Proteaceae in the cape 
floristic region, South Africa. Global Change Biology, 11, 1452–1468. 

Bond W.J., Woodward F.I. & Midgley G.F. (2005). The global distribution of 
ecosystems in a World without fire. New Phytologist, 165, 525-538. 

Bongers F., Poorter L. & Hawthorne W.D. (2004). The forest of Upper Guinea: 
gradients in large species composition. In: Biodiversity of West African 
Forests: An ecological atlas of woody plants species. (eds. Poorter L., Bongers 
F., Kouamé F.N. & Hawthorne W.D.), 41-52. CABI Publishing, Oxon, UK & 
Cambridge, USA. 

Bongers F., Poorter L., Van Rompaey R.S.A.R. & Parren M.P.E. (1999). Distribution of 
twelve moist forest canopy tree species in Liberia and Côte d’Ivoire: response 
curves to a climatic gradient. Journal of Vegetation Science, 10, 371–382 

Braun G., Mutke J., Reder A. & Barthlott W. (2002). Biotope patterns, phytodiversity 
and forestline in the Andes, based on GIS and remote sensing data. In: 
Mountain Biodiversity: a global assessment (eds. Körner C. & Spehn E.M.), 
75–89. Parthenon Publishing, London. 

 83



References 
 

Breman H. & Kessler J.J. (1995). Woody plants in agro–ecosystems of semi–arid 
regions  (Advanced Series in Agricultural Sciences). Springer, Germany.  

Broennimann O., Thuiller W.,  Hughes G., Midgley G., Alkemades J.M.R. & Guisan A. 
(2006). Do geographic distribution, niche property and life form explain 
plants’ vulnerability to global change? Global Change Biology, 12, 1079–
1093. 

Brooks T.M., Mittermeier R.A., da Fonseca G.A.B., Gerlach J., Hoffmann M., 
Lamoreux J.F., Mittermeier C.G., Pilgrim J.D. & Rodrigues A.S.L. (2006). 
Global biodiversity conservation priorities. Science, 313, 58–61. 

Burgess N.D., Küper W., Mutke J., Brown J., Westaway S., Turpie S., Meshack C., 
Taplin J.R.D., McClean C. & Lovett J.C. (2005). Major gaps in the 
distribution of protected areas for threatened and narrow range Afrotropical 
plants. Biodiversity and Conservation, 14, 1877–1894. 

Cameron R.A.D. (2008). The distribution and variation of three species of land snail 
near Rickmansworth, Hertfordshire. Biological Journal of the Linnean Society, 
48, 83–111.  

Ceballos G. & Ehrlich P.R. (2006). Global mammal distributions, biodiversity hotspots, 
and conservation. Proceedings of the National Academy of Sciences of the 
USA, 103, 51, 19374–19379. 

Ceballos G., Ehrlich P.R., Soberón J., Salazar I. & Fay J. P. (2005). Global Mammal 
Conservation: What Must We Manage? Science, 309, 603–607. 

Chape S., Harrison J., Spalding M. & Lysenko I. (2005). Measuring the extent and 
effectiveness of protected areas as an indicator for meeting global biodiversity 
targets. Philosophical Transactions of the Royal Society B, 360, 443–455. 

Chapin F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., 
Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C. & Diaz S. 
(2000). Consequences of changing biodiversity. Nature, 405, 234–242. 

Chatelain C., Gautier L. & R. Spichiger (2002). Application du SIG IVOIRE à la 
distribution potentielle des espèces en fonction des facteurs écologiques. 
Systematics and Geography of Plants, 71, 2, 313–326.  

Chevalier A. (1933). Le territoire géo–botanique de l’Afrique tropicale nord–
occidentale et ses subdivisions. Bulletin de la Société Botanique de France, 
80, 4. 

Clarke K.R. & Warwick R.M. (1994). Similarity–based testing for community pattern: 
the two–way layout with no replication. Marine Biology, 118, 167–176.  

Clarke K.R. (1993). Non–parametric multivariate analyses of changes in community 
structure. Austral Ecology, 18, 117–143.  

84 



References 
 

Collins M. (1990). Atlas of the rain forests. The last Rain Forests, 150.  

Connor E.F. & McCoy E.D. (1979). The statistics and biology of the species–area 
relationship. American Naturalist, 113, 791–833. 

Costa G.C., Nogueira C., Machado R.B. & Colli G.R. (2007). Squamate richness in the 
Brazilian Cerrado and its environmental–climatic associations. Diversity and 
Distribution, 13, 714–724. 

Cox B.C. & Moore P. (1993). Biogeography, 5 edition. Blackwell, Oxford, UK. 

Cox B.C. (2001). The biogeographic regions reconsidered. Journal of Biogeography, 
28, 511-523. 

Cramer W.P. & Leemans R. (1993). Assessing impacts of climate change on vegetation 
using climate classification systems. In: Vegetation Dynamics Modelling and 
Global Change (eds. Solomon A.M. & Shugart H.H.), 190–217. Chapman-
Hall, New York, USA. 

Currie D.J., Mittelbach G., Cornell H.V., Field R., Guégan J., Hawkins B.A., Kaufman 
D.M., Kerr J.T., Oberdorff T., O'Brien E.M. & Turner J.R.G. (2004). 
Predictions and tests of climate–based hypotheses of broad–scale variations in 
taxonomic richness. Ecology Letters, 7, 1121–1134. 

Dalton R. (2000). Biodiversity cash aimed at hotspots. Nature, 406, 818. 

Davis S.D., Heywood V.H. & Hamilton A.C. (1994–1997). Centres of plant diversity. A 
guide and strategy for their conservation. IUCN Publications Unit, 
Cambridge. 

de Wit M. & Stankiewiecz J. (2006). Changes in Surface Water Supply across Africa 
with Predicted Climate Change. Science, 311, 1917–1921. 

Diaz S.J., Fargione J., Chapin III F.S. & Tilman D. (2007). Biodiversity loss threatens 
human well–being. Public Library of Science Biology, 4, 1300–1305. 

Dietz T., Verhagen J. & Ruben R. (2001). Impact of Climate Change on Drylands with 
a focus on West Africa. ICCD. Report for Dutch Research Programme on 
Global Air Pollution and Climate Change, Wageningen, 133 pp. 

Dinerstein E., Olson D.M., Graham D.J., Webster A.L., Pimm S.A., Bookbinder M.A. 
& Ledec G. (1995). A conservation assessment of the terrestrial Ecoregions of 
Latin America and the Caribbean. The World Bank, Washington, D.C. 

Dufrêne M. & Legendre P. (1991). Geographic structure and potential ecological factors 
in Belgium. Journal of Biogeography, 18, 3, 257–266.  

Dufrêne M. & Legendre P. (1997). Species assemblages and indicator species: the need 
for a flexible asymmetrical approach. Ecological monographs, 67, 3, 345–366.  

 85



References 
 

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., 
Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle 
B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.M., 
Peterson A.T., Phillips S.J., Richardson K., Scachetti–Pereira R., Schapire 
R.E., Soberón J., Williams S., Wisz M.S. & Zimmermann N.E. (2006). Novel 
methods improve prediction of species' distributions from occurrence data. 
Ecography, 29, 129–151. 

Engler A. (1879). Entwicklungsgeschichte der Pflanzenwelt 1–2. Leipzig. 

Engler R., Randin C.F., Vittoz P., Czáka T., Beniston M., Zimmermann N.E. & Guisan 
A. (2009). Predicting future distributions of mountain plants under climate 
change: does dispersal capacity matter? Ecography, 32, 34–45. 

Erasmus B.F.N., Van Jaarsweld A.S. & Chown S.L. (2002). Vulnerability of South 
African animal taxa to climate change. Global Change Biology, 8, 679–693. 

Fairhead J. & Leach M. (1998). Reframing Deforestation: Global analyses and local 
realities – studies in West Africa. Routledge, London, UK. 

Faith D.P. & Walker P.A. (1996). Environmental diversity: on the best–possible use of 
surrogate data for assessing the relative biodiversity of sets of areas. 
Biodiversity and Conservation, 5, 399–415. 

FAO (1993). Forest resources assessment 1990: Tropical countries. FAO, Rome, Italy. 

FAO (1995). Forest resources assessment 1990 – Global synthesis. FAO Forestry Paper 
124. FAO, Rome, Italy. 

FAO (2001). La situation des forêts et de la faune sauvage en Afrique. Commission 
régionale de la FAO pour l’Afrique. Rome, Italie. 

Ferrier S. & Guisan A. (2006). Spatial modelling of biodiversity at the community level. 
Journal of Applied Ecology, 43, 393–404.  

Ferrier S., Manion G., Elith J. & Richardson K. (2007). Using generalized dissimilarity 
modelling to analyse and predict patterns of beta diversity in regional 
biodiversity assessment. Diversity and Distributions, 13, 252–264. 

Field R. (2002). Latitudinal Diversity Gradients. Encyclopedia of Life Sciences, 1–8. 

Field R., O'Brien E.M. & Whittaker R.J. (2005). Global models for predicting woody 
plant richness from climate: development and evaluation. Ecology, 86, 2263–
2277. 

Fischer A.G. (1960). Latitudinal variations in organic diversity. Evolution, 14, 64–81. 

Fjeldså J., Burgess N.D., Blyth S. & de Klerk, H.M. (2004). Where are the major gaps 
in the reserve networks for Africa's mammals? Oryx, 38, 17–25. 

86 



References 
 

Fontes J. & Guinko S. (1995). Carte de la végétation et de l’occupation du sol du 
Burkina Faso. Note explicative, Ministère de la coopération française, 
Toulouse, 53.  

Francis A.P. & Currie D.J. (2003). A globally consistent richness–climate relationship 
for angiosperms. The American Naturalist, 161, 1–37. 

Gaston K.J. & Blackburn T.M. (1995). Mapping biodiversity using surrogates for 
species richness: macro–scales for New World birds. Proceedings of the Royal 
Society of London B, 262, 335–41. 

Gaston K.J. & Williams P.H. (1993). Mapping the world's species - the higher taxon 
approach. Biodiversity Letters, 1, 2-8. 

Gaston K.J. (1994). Rarity. Chapman & Hall, London, UK. 

Gaston K.J. (1995). Spatial covariance in the species richness of higher taxa. In The 
genesis and maintenance of biological diversity (eds. Hochberg M., Clobert 
M.E. & Barbault R.). Oxford University Press, Oxford, UK. 

Gaston K.J. (1996). What is biodiversity? In: Biodiversity: a biology of numbers and 
difference. (ed. Gaston K.J), pp. 1–9. Oxford, UK, Blackwell Science Ltd.  

Gaston K.J. (1998). Biodiversity – the road to an atlas. Progress in Physical 
Geography, 22, 269–281. 

Gaston K.J. (2000). Global patterns in biodiversity. Nature, 405, 220–227. 

Gautier L. (1992). Contact forêt–savane en Côte d’Ivoire centrale: rôle de 
Chromoleana odorata (L.) R. King & H. Robinson dans la dynamique de la 
végétation. Doctoral thesis, Laboratoire de botanique systématique et 
floristique, Université de Genève, Genève, Switzerland. 

Gautier L., Aké Assi L., Chatelain C. & Spichiger R. (1999). Ivoire: a geographic 
information system for biodiversity managment in Ivory Coast. In: African 
Plants: Biodiversity Taxonomy and uses (eds. Timberlake, J. & Kativus, S.), 
183–194. Royal Botanical Gardens, Kew, UK. 

Gentry A.H. (1992). Tropical forest biodiversity: distributional patterns and their 
conservational significance. Oikos, 63, 19–28. 

GLC 2000: Global Land Cover Facility, http://glcf.umiacs.umd.edu/data/. 

Graham C.H., Ferrier S., Huettman F., Moritz C. & Peterson A.T. (2004). New 
developments in museum–based informatics and applications in biodiversity 
analysis. Trends in Ecology and Evolution 19, 9, 497–503. 

Grenyer R., Orme C.D.L., Jackson S.F., Thomas G.H., Davies R.G., Davies T.J., Jones 
K.E., Olson V.A., Ridgely R.S., Rasmussen P.C., Ding T.–S., Bennett P.M., 
Blackburn T.M., Gaston K.J., Gittleman J.L. & Owens I.P.F. (2006). Global 

 87



References 
 

distribution and conservation of rare and threatened vertebrates. Nature, 444, 
93–96. 

Grytnes J.A. & Vetaas O.R. (2002). Species richness and altitude: A comparison 
between null models and interpolated plant species richness along the 
Himalayan altitudinal gradient, Nepal. American Naturalist, 159, 294–304. 

Guinko S. (1984). Végétation de la Haute–Volta. Doctoral Thesis, University of  
Bordeaux, Bordeaux, France. 

Guiot J. (1987). Late Quaternary climatic change in France estimated from multivariate 
pollen time series. Quaternary Research, 28, 100–118. 

Guisan A. & Thuiller W. (2005). Predicting species distribution: offering more than 
simple habitat models. Ecology Letters, 8, 993–1009. 

Guisan A. & Zimmermann N. E. (2000). Predictive habitat distribution models in 
ecology. Ecological Modelling, 135, 147–186. 

Hahn-Hadjali K. (1998): Les groupements végétaux des savanes du sud-est du Burkina 
Faso (Afrique de l'ouest). Etudes flor veg Burkina Faso, 3, 3–79. 

Hall J.B. & Swaine M.D. (1981). Distribution and ecology of vascular plants in a 
tropical rain forest. Forest vegetation in Ghana. Kluwer Academic Publishers. 

Harper J.L. & Hawksworth D.L. (1994). Biodiversity: measurement and estimation. 
Preface. Philosophical Transactions of the Royal Society B, 345, 5-12. 

Hawkins B.A., Field R., Cornell H.V., Currie D.J., Guégan J., Kaufman D.M., Kerr 
J.T., Mittelbach G., Oberdorff T., O'Brien E.M., Porter E.E. & Turner J.R.G. 
(2003). Energy, water, and broad–scale geographic patterns of species 
richness. Ecology, 84, 12, 3105–3117. 

Hawthorne W.D. (1996). Holes and the sums of parts in Ghanaian forest: Regeneration, 
scale and sustainable use. Proceedings of the Royal Society B, 104, 75-176. 

Hector A. & Bagchi R. (2007). Biodiversity and ecosystem multifunctionality. Nature, 
448, 188–190. 

Heikinheimo H., Fortelius M., Eronen J. & Mannila H. (2007). Biogeography of 
European land mammals shows environmentally distinct and spatially 
coherent clusters. Journal of Biogeography, 34, 6, 1053–1064. 

Heikkinen R.K., Luoto M., Virkkala R., Pearson R.G. & Körber J.-H. (2007). Biotic 
interactions improve prediction of boreal bird distributions at macro-scales. 
Global Ecology and Biogeography. 16, 754-763. 

Heywood V.H. (1995). Global biodiversity assessment. Cambridge University Press, 
Cambridge, UK. 

88 



References 
 

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. (2005). Very high 
resolution interpolated climate surfaces for global land areas. International 
Journal of Climatology, 25, 15, 1965–1978.  

Holdridge L.R. (1947). Determination of world plant formations from simple climatic 
data. Science, 105, 367-368. 

Houinato M.R.B. (2001). Phytosociologie, écologie, production et capacité de charge 
des formations végétales pâturées dans la région des Monts Kouffé (Bénin). 
Doctoral thesis, Free University of Brussels, Brussels, Belgium. 

Howard P.C., Viskanic P., Davenport T.R.B., Kigenyi F.W., Baltzer M., Dickinson C.J., 
Lwanga J.S., Matthews R.A. & Balmford A. (1998). Complementarity and the 
use of indicator groups for reserve selection in Uganda. Nature, 394, 472-475. 

Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., 
Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.M., Peterson 
A.T., Phillips S.J., Richardson K., Scachetti–Pereira R., Schapire R.E., 
Soberón J., Williams S., Wisz M.S. & Zimmermann N.E. (2006). Novel 
methods improve prediction of species' distributions from occurrence data. 
Ecography, 29, 129–151. 

Intergovernmental Panel on Climate Change (2000). Special Report on Emissions 
Scenarios. Cambridge University Press, Cambridge, UK. 

Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Climate 
Change Impacts, Adaptation and Vulnerability. Fourth Assessment Synthesis 
Report. (eds. Pachauri R.K. & Reisinger A.) IPCC, Geneva, Switzerland. 

IUCN (2010). La Lettres des Aires Protégées en Afrique de l’Ouest. The West African 
Protected Areas Newsletter , 29. 

IUCN & UNEP (2007). The World Database on Protected Areas (WDPA). UNEP–
WCMC, Cambridge, UK. 

Iverson L.R. & Prasad A.M. (2001). Potential Changes in Tree Species Richness and 
Forest Community Types following Climate Change. Ecosystems, 4, 186–199. 

Jedicke E. (2001). Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der 
Landschaftsstruktur – ein konzeptioneller Diskussionsbeitrag. Naturschutz und 
Landschaftsplanung, 33, 59–68. 

Jetz W. & Rahbek C. (2002). Geographic range size and determinants of avian species 
richness. Science, 297, 1548–1551. 

Jetz W., Rahbek C. & Colwell R.K. (2004). The coincidence of rarity and richness and 
the potential signature of history in centres of endemism. Ecology Letters, 7, 
1180–1191. 

 89



References 
 

Jordano P. (2000). Fruits and frugivory. In: Seeds: the ecology of regeneration in 
natural plant communities (ed. Fenner M.), 125-166. Commonwealth 
Agricultural Bureau International, Wallingford Oxon, UK. 

Karl T.R. & Trenberth K.E. (2003). Modern Global Climate Change. Science, 302, 
1719–1723. 

Kier G. & Barthlott W. (2001). Measuring and mapping endemism and species richness: 
a new methodological approach and its application on the flora of Africa. 
Biodiversity and Conservation, 10, 1513–1529. 

Kier G., Küper W., Mutke J., Rafiqpoor M.D. & Barthlott W. (2006). African vascular 
plant species richness: a comparison of mapping approaches. Taxonomy and 
ecology of African plants, their conservation and sustainable use. Addis 
Ababa, Royal Botanic Gardens, Kew and National Herbarium, Addis Ababa 
University. 

Kier G., Mutke J., Dinerstein E., Ricketts T.H., Kueper W., Kreft H. & Barthlott W. 
(2005). Global patterns of plant diversity and floristic knowledge. Journal of 
Biogeography, 32, 7, 1107–1116.  

Kingston N., Waldren S. & Bradley U. (2003). The phytogeographical affinities of the 
Pitcairn Islands – a model for south–eastern Polynesia? Journal of 
Biogeography, 30, 9, 1311–1328.  

Kleidon A. & Mooney H.A. (2000). A global distribution of biodiversity inferred from 
climatic constraints: results from a process-based modelling study. Global 
Change Biology. 6, 507-523. 

Kreft H. & Jetz W. (2007). Global patterns and determinants of vascular plant diversity. 
Proceedings of the National Academy of Sciences of the USA, 104, 5925–
5930. 

Kreft H., Jetz W., Mutke J., Kier G. & Barthlott W. (2008). Global diversity of island 
floras from a macroecological perspective. Ecology Letters, 11, 116–127. 

Kreft H., Sommer J.H. & Barthlott W. (2006). The significance of geographic range 
size for spatial diversity patterns in Neotropical palms. Ecography, 29, 21-30.  

Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W. & Maywald G.F. (2003). 
Climate change and the potential distribution of an invasive alien plant: Acacia 
nilotica ssp. indica in Australia. Journal of Applied Ecology. 40, 111-124. 

Küper W. (2005). Patterns of plant diversity in Africa and their implications for 
biodiversity conservation. Doctoral Thesis, Rheinische Friedrich–Wilhelms–
Universität Bonn, Bonn, Germany. 

Küper W., Sommer J.H., Lovett J.C. & Barthlott W. (2006). Deficiency in African plant 
distribution data – missing pieces of the puzzle. Botanical Journal of the 
Linnean Society, 150, 355–368. 

90 



References 
 

Küper W., Sommer J.H., Lovett J.C., Mutke J., Linder H.P., Beentje H.J., van Rompaey 
R.A.S.R., Chatelain C., Sosef M. & Barthlott W. (2004b). Africa's hotspots of 
biodiversity redefined. Annals of the Missouri Botanical Garden, 91, 525–536. 

Küper W., Wagner T. & Barthlott W. (2004a). Diversity Patterns of Plants and 
Phytophagous Beetles in Sub–Saharan Africa. Bonner zoologische Beiträge, 
53, 283–289. 

Lawton J.H. & May R.M. (1995). Extinction rates. OUP, Oxford. 

Le Houérou H.N. (2009). Bioclimatology and Biogeography of Africa. Springer, Berlin, 
Germany. 

Lebrun J. (1947). La végétation de la plaine alluviale au sud du lac Edouard. Institut des 
parcs nationaux du Congo belge. Institut des parcs nationaux du Congo belge.  

Lebrun J.P., Toutain B., Gaston A. & Bouget G. (1991). Catalogue des plantes 
vasculaires du Burkina Faso, I.E.M.V.T., Genève, Switzerland. 

Leemans R. (1990). Possible changes in natural vegetation patterns due to a global 
warming. Publication Number 108 of the Biosphere Dynamics Project. WP 
90-08. 

Legendre P. & Legendre L. (1998). Numerical ecology. Elsevier Science.  

Legendre P. (1990). Quantitative methods and biogeographic analysis. In: Evolutionary 
biogeography of the marine algae of the North Atlantic, 9–34.  

Lennon J.J., Kolef P., Greenwood J.J.D. & Gaston K.J. (2004). Contribution of rarity 
and commonness to patterns of species richness. Ecology Letters, 7, 81–87. 

Leprun J.C (1999). The influences of ecological factors on tiger bush and dotted bush 
patterns along a gradient from Mali to northern Burkina Faso. Catena, 37, 25–
44. 

Linder H.P. (1998). Numerical analyses of African plant distribution patterns. In: 
Chorology, taxonomy and ecology of the floras of Africa and Madagascar 
(eds. Huxley C.R., Lock J.M. & Cutler D.F.), 67–86. Royal Botanic Gardens, 
Kew, UK. 

Linder H.P. (2001). Plant diversity and endemism in sub–Saharan tropical Africa. 
Journal of Biogeography, 28, 169–182. 

Linder H.P., Lovett J., Mutke J., Barthlott W., Jürgens N., Rebelo T. & Küper W. 
(2005). A numerical re–evaluation of the sub–Saharan phytochoria of 
mainland Africa. Plant diversity and complexity patterns: local, regional, and 
global dimensions: Proceedings of an international symposium held at the 
Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25–
28 May, 2003, 55: 229.  

 91



References 
 

Lomolino M.V. (2000). Ecology's most general, yet protean pattern: the species–area 
relationship. Journal of Biogeography, 27, 17–26. 

Lomolino M.V. (2001). Elevation gradients of species–density: historical and 
prospective views. Global Ecology & Biogeography, 10, 3–13. 

Lomolino M.V. (2005). Body size evolution in insular vertebrates: generality of the 
island rule. Journal of Biogeography, 32, 1683–1699. 

Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J.P., Hector A., Hooper D.U., 
Huston M.A., Raffaelli D., Schmid B., Tilman D. & Wardle D.A. (2001). 
Biodiversity and ecosystem functioning: Current knowledge and future 
challenges. Science, 294, 804–808. 

Lovelock J. (2006). The Revenge of Gaia. Allen Lane, London, UK. 

Lovett J.C., Rudd S., Taplin J. & Frimodt–Moller C. (2000). Patterns of plant diversity 
in Africa south of the Sahara and their implications for conservation 
management. Biodiversity and Conservation, 9, 37–46. 

Manel S., Williams H.C. & Ormerod S.J. (2001). Evaluating presence–absence models 
in ecology: the need to account for prevalence. Journal of Applied Ecology, 
38, 921–931. 

McLaughlin S.P. (1992). Are floristic areas hierarchically arranged? Journal of 
Biogeography, 19, 21–32.  

McMahon G., Gregonis S.M., Waltman S.W., Omernik J.M., Thorson T.D., Freeouf 
J.A., Rorick A.H. & Keys J.E. (2001). Developing a spatial framework of 
common ecological regions for the conterminous United States. 
Environmental Management, 28, 293–316. 

Meir E., Andelman S. & Possingham H.P. (2004). Does conservation planning matter in 
a dynamic and uncertain world? Ecology Letters, 7, 615–622. 

Midgley G.F., Hannah L. & Millar D. (2002). Assessing the vulnerability of species 
richness to anthropogenic climate change in a biodiversity hotspot. Global 
Ecology and Biogeography, 11, 445–451 

Millennium Ecosystem Assessment (2005a). Ecosystems and Human Well–being: 
Synthesis. Island Press, Washington, DC, USA 

Millennium Ecosystem Assessment (2005b). Ecosystems and Human Well–being: 
Biodiversity Synthesis. World Ressources Institute, Washington, DC, USA 

Mitchell T.D., Carter T.R., Jones P.D., Hulme M. & New M. (2004). A Comprehensive 
Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: 
The Observed Record (1901–2000) and 16 Scenarios (2001–2100). In: Tyndall 
Centre Working Paper No. 55. Tyndall Centre for Climate Change Research, 
Norwich, U.K. 

92 



References 
 

Monod T. (1957). Les grandes subdivisions chorologiques de l’Afrique. 
C.S.A./C.C.T.A. 24, 1– 150. 

Morin X. (2006). Biogéographie des espèces d’arbres européens et nord–amécains: 
déterminisme et évolution sous l’effet du changement climatique. Doctoral 
Thesis, University of Montpellier, Montpellier, France. 

Müller J. (2003). Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina 
Fasos. Doctoral thesis, J.W. Goethe–Universität Frankfurt am Main, 
Frankfurt, Germany. 

Mutke J. & Barthlott W. (2000). Some aspects of North American phytodiversity and its 
biogeographic relationships. Results of worldwide ecological studies – 
Proceedings of the 1st Symposium by the A.F.W. Schimper–Foundation. S.–W. 
Breckle, B. Schweizer and U. Arndt. Stuttgart, Verlag Günter Heimbach, 435–
447. 

Mutke J. & Barthlott W. (2005). Patterns of vascular plant diversity at continental to 
global scales. Biologiske Skrifter, 55, 521–537. 

Mutke J. (2000). Methodische Aspekte der räumlichen Modellierung biologischer 
Vielfalt – das Beispiel der Gefäßpflanzenflora Nordamerikas. 3. Symposium 
Konfliktfeld Biodiversität. Arbeitsbericht IANUS 5/2000. M. E. Hummel, H.–
R. Simon and J. Scheffran. Darmstadt, IANUS / Technische Universität 
Darmstadt. 5/2000, 15–29. 

Mutke J. (2002a). Räumliche Muster Biologischer Vielfalt – die Gefäßpflanzenflora 
Amerikas im globalen Kontext. Doctoral thesis, University of Bonn, Bonn, 
Germany. 

Mutke J. (2002b). Methodische Aspekte der räumlichen Modellierung biologischer 
Vielfalt – das Beispiel der Gefäßpflanzenflora Nordamerikas. In: Konfliktfeld 
Biodiversität (eds. Hummel M.E., Scheffran J. & Simon H.–R.), 175–198. 
Agenda–Verlag, Münster, Germany. 

Mutke J., Kier G., Braun G., Schultz C. & Barthlott W. (2001). Patterns of African 
vascular plant diversity – a GIS based analysis. Systematics and Geography of 
Plants, 71, 1125–1136. 

Myers N. & Mittermeier R.A. (2003) Impact and acceptance of the hotspots strategy: 
response to Ovadia and to Brummitt and Lughadha. Conservation Biology, 17, 
1449–1450. 

Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. & Kent J. (2000). 
Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. 

Nakicenovic N. & Swart R. (2000). Emissions Scenarios: A Special Report of Working 
Group III of the Intergovernmental Panel on Climate Change. Cambridge 
University Press, Cambridge, UK. 

 93



References 
 

Nee S., Read A.F., Greenwood J.J.D. & Harvey P.H. (1991). The relationship between 
abundance and body size in British birds. Nature, 351, 312–313. 

Neilson R.P. (1995). A model for predicting continental-scale vegetation distribution 
and water balance. Ecological Application, 5, 362–385. 

Newbery D. & Gartlan J.S. (1996). A structural analysis of rain forest at Korup and 
Douala-Edea, Cameroon. Proceedings of the Royal Society B, 104, 177-224. 

O’Brien E. (1998). Water-energy dynamics, climate, and prediction of woody plant 
species richness: an interim general model. Journal of Biogegraghy, 25, 379-
398. 

Oksanen J., Kindt R., Legendre P., O’Hara B., Simpson G.L., Stevens M.H.H. & 
Wagner H. (2008). vegan: Community Ecology Package. R package version 
1.13–1.  

Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powel G.V.N., 
Underwood E.C., D'Amico Hales J.A., Itoua I., Strand H.E., Morrison J.C., 
Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel 
W.W. & Hedao P. (2001). Terrestrial Ecoregions of the World: A New Map of 
Life on Earth. BioScience, 51, 11, 933–938. 

Parmesan C. & Yohe G. (2003). A globally coherent fingerprint of climate change 
impacts across natural systems. Nature, 421, 37–42. 

Parmesan C. (2006). Ecological and evolutionary responses to recent climate change. 
Annual Review of Ecology, Evolution and Systematics, 37, 637–669. 

Pearson R.G. & Dawson T.P. (2005). Long-distance plant dispersal and habitat 
fragmentation: identifying conservation targets for spatial landscape planning 
under climate change. Biological Conservation. 123, 389-401. 

Pearson R.G., Raxworthy C.J., Nakamura M. & Peterson A.T. (2007). Predicting 
species distributions from small numbers of occurrence records: a test case 
using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117. 

Perruchet C. (1983). Significance tests for clusters: overview and comments. Numerical 
taxonomy (ed. Felsenstein J.), 199-208. NATO ASI Series Vol. G1. Springer, 
Berlin, Germany. 

Peterson A.T., Ortega-Huerta M.A. & Bartley J. (2002). Future projections for Mexican 
faunas under global climate change scenarios. Nature, 416, 626–629. 

Peterson A.T., Papes M. & Eaton M. (2007). Transferability and model evaluation in 
ecological niche modeling: a comparison of GARP and Maxent. Ecography, 
30, 550–560. 

94 



References 
 

Phillips S.J. (2008). Transferability, sample selection bias and background data in 
presence–only modeling: a response to Peterson et al. (2007). Ecography, 31, 
272–278. 

Phillips S.J., Anderson R.P. & Schapire R.E. (2006). Maximum entropy modeling of 
species geographic distributions. Ecological Modelling, 190, 231–259. 

Phillips S.J., Dudík M. & Schapire R.E. (2004). A Maximum Entropy Approach to 
Species Distribution Modeling. In: Proceedings of the 21st International 
Conference on Machine Learning, 655–662. ACMPress, New York, USA. 

Pianka E.R. (1966). Latitudinal gradients in species diversity: A review of concepts. 
American Naturalist, 100, 910, 33–46. 

Pimm S.L. & Raven P. (2000). Extinction by numbers. Nature, 40, 843–845. 

Poorter L., Bongers L., Kouamé F.N. & Hawthorne W.D. (2004). Biodiversity of West 
African Forests: An ecological Atlas of Woody Plant Species. CABI 
Publishing, Oxon, UK. 

Porembski S. (2003). Trends in Plant Diversity Research. Progress in Botany, 64, 506–
522.  

Prance G.T. (1994). A comparison of the efficacy of higher taxa and species numbers in 
the assessment of biodiversity in the neotropics. Philosophical Transactions of 
the Royal Society B, 345, 89-99. 

Prentice I.C., Cramer W., Harrison S.Y.P., Leemans R., Monserud R.A., & Solomon A. 
L.M. (1992). A global biome model based on plant physiology and 
dominance, soil properties and climate. Journal of Biogeography. 19, 177-134. 

Prentice I.E. & Solomon A.M. (1991). Vegetation models and global change. In Global 
changes of the past (ed. by R.S. Bradley), 365-384. UCARlOffice for 
Interdisciplinary Earth Studies, Boulder, USA. 

Pressey R.L. & Nicholls A.O. (1989). Application of a Numerical Algorithm to the 
Selection of Reserves in Semi-arid New south Wales. Biological 
Conservation, 50, 263-278. 

Preston F.W. (1962). The canonical distribution of commonness and rarity. Part I+II. 
Ecology, 43, 185–215, 410–432. 

Purvis A. & Hector A. (2000). Getting the measure of biodiversity. Nature, 405, 212–
219. 

Qian H. (1999). Floristic analysis of vascular plant genera of North America north of 
Mexico: characteristics of phytogeography. Journal of Biogeography, 28, 
1307–1321.  

 95



References 
 

Qian H. (2001). Floristic analysis of vascular plant genera of North America north of 
Mexico: spatial patterning of phytogeography. Journal of Biogeography, 28, 
525-534. 

R Development Core Team (2008). R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria. 

Rahbek C. (1995). The elevational gradient of species richness – a uniform pattern? 
Ecography, 18, 200–205. 

Rahbek C. (1997). The relationship among area, elevation, and regional species richness 
in neotropical birds. American Naturalist, 149, 875–902. 

Raupach M.R., Marland G., Ciais P., Le Quéré C., Canadell J.G., Klepper G. & Field 
C.B. (2007). Global and regional drivers of accelerating CO2 emissions. 
Proceedings of the National Academy of Sciences of the USA, 1–6. 

Redford K.H. & Richter B.D. (1999). Conservation of biodiversity in a world of use. 
Conservation Biology, 13, 6, 1246–1256. 

Richardson K. (2009). Synthesis report from the International Scientific Congress 
‘Climate change: global risks, challenges and decisions’. Copenhagen, 
Denmark. 

Ricklefs R.E., Qian H. & White P.S. (2004). The region effect on mesoscale plant 
species richness between eastern Asia and eastern North America. Ecography, 
27, 129–136. 

Roberts D.W. (2006). labdsv: Laboratory for Dynamic Synthetic Vegephenomenology. 
R package version 1.2–2.  

Rodrigues A.S.L., Andelman S.J., Bakarr M.I., Boitani L., Brooks T.M., Cowling R.M., 
Fishpool L.D.C., da Fonseca G.A.B., Gaston K.J., Pilgrim J.D., Pressey R.L., 
Schipper J., Sechrest W., Stuart S.N., Underhill L.G., Waller R.W., Watts 
M.E.J. & Yan X. (2004). Effectiveness of the global protected area network in 
representing species diversity. Nature, 428, 640–643. 

Rohde K. (1992). Latitudinal gradients in species diversity: the search for the primary 
cause. Oikos, 65, 514–527. 

Rohde K. (1998). Latitudinal gradients in species diversity. Area matters, but how 
much? Oikos, 82, 184–190. 

Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C. & Pounds A. (2003). 
Fingerprints of global warming on wild animals and plants. Nature, 421, 57–
60. 

Rosenzweig C., Karoly D., Vicarelli M., Neofotis P., Wu Q., Casassa G., Menzel A. 
Root T.L., Estrella N., Seguin B., Tryjanowski P., Liu C., Rawlins S. & 

96 



References 
 

Imeson A. (2008). Attributing physical and biological impacts to 
anthropogenic climate change. Nature, 453, 353-357. 

Rosenzweig M.L. (1995). Species diversity in space and time. Cambridge University 
Press, Cambridge, UK. 

Royal Society (2003). Measuring Biodiversity for Conservation. Policy document 
11/03. http://www.royalsoc.ac.uk/ document.asp?id=1474 

Ruggiero A. & Hawkins B.A. (2006). Mapping macroecology. Global Ecology and 
Biogeography, 15, 433–437. 

Sayer J.A., Harcourt C.S. & Collins N.M. (1992). The Conservation Atlas of Tropical 
Forests: Africa. IUCN and Simon & Schuster, Cambridge, UK. 

Schall J.J. & Pianka E.R. (1978). Geographical trends in numbers of species. Science, 
201, 679–686. 

Schmidt M., Kreft H., Thiombiano A. & Zizka G. (2005). Herbarium collections and 
field data–based plant diversity maps for Burkina Faso. Diversity and 
Distributions, 11, 509–516. 

Schroter D., Cramer W. & Leemans R. (2005). Ecosystem service supply and 
vulnerability to global change in Europe. Science, 310, 1333–1337. 

Scott, J.M., Csuti B., Jacobi J.D. & Estes J.E. (1987). Species richness. BioScience, 37, 
782–788. 

Segurado P. & Araújo M.B. (2004). An evaluation of methods for modelling species 
distributions. Journal of  Biogeography, 31, 1555–1568. 

Senterre B. (2005). Recherches méthodologiques pour la typologie de la végétation et la 
phytogéographie des forêts denses d'Afrique tropicale. Doctoral thesis, Free 
University of Brussels, Brussels, Belgium. 

Simmons R.E., Barnard P. & Dean W.R.J. (2004). Climate change and birds: 
perspectives and prospects from southern Africa. Ostrich, 75, 295–308. 

Sommer J.H. (2008). Plant Diversity and Future Climate Change – Macroecological 
Analyses of African and Global Species Distributions. Doctoral thesis, 
Rheinische Friedrich–Wilhelms–Universität Bonn, Bonn, Germany. 

Sommer J.H., Kreft H., Kier G., Jetz W., Mutke J. & Barthlott W. (2010). Projected 
impacts of climate change on regional capacities for global plant species 
richness. Proceedings of the Royal Society of London B, Published online 
before print (doi: 10.1098/rspb.2010.0120). 

Spichiger R. & Blanc–Pamard C. (1973). Recherches sur le contact forêt–savane en 
Côte d’Ivoire: étude du recrû forestier sur des parcelles cultivées en lisière 
d’un îlot forestier dans le sud du pays baoulé. Candollea, 28, 21–37. 

 97



References 
 

Stainforth D.A., Aina T., Christensen C., Collins M., Faull N., Frame D.J., 
Kettleborough J.A., Knight S., Martin A., Murphy J.M., Piani C., Sexton D., 
Smith L.A., Spicer R.A., Thorpe A.J. & Allen M.R. (2006). Uncertainty in 
predictions of the climate response to rising levels of greenhouse gases. 
Nature, 433, 403–406. 

Stevens G.C. (1989). The latitudinal gradient in geographical range: How so many 
species coexist in the Tropics. The American naturalist, 133, 240–256. 

Stuart S.N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S.L., Fischman D.L. & 
Waller R.W. (2004). Status and Trends of Amphibian Declines and 
Extinctions Worldwide. Science, 306, 1783–1786. 

Su J.C., Debinski D.M., Jakubauskas M.E. & Kindscher K. (2004). Beyond Species 
Richness: Community Similarity as a Measure of Cross-Taxon Congruence for 
Coarse-Filter Conservation. Conservation Biology, 18, 1, 167-173. 

Swaine M.D. (1996). Rainfall and soil fertility as factors limiting forest species 
distribution in Ghana. Journal of Ecology, 84, 419–428. 

Tchouto M.P.G. (2004). Plant diversity in a Central African rain forest: Implications 
for biodiversity conservation in Cameroon. Doctoral thesis, Wageningen 
University, Wageningen, Netherlands. 

Thiombiano A., Schmidt M., Kreft H. & Guinko S. (2006). Influence du gradient 
climatique sur la distribution des espèces de combretaceae au Burkina Faso 
(Afrique de l'Ouest). Candollea, 61, 189–213.  

Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont J.L., Collingham 
Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., 
Hunley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., 
Peterson A.T., Phillips O.L. & Williams S.E. (2004). Extinction risk from 
climate change. Nature, 427, 145–148. 

Thuiller W. (2003). BIOMOD – optimizing predictions of species distributions and 
projecting potential future shifts under global change. Global Change Biology, 
9, 1353-13621.  

Thuiller W. (2008). Predicting global change impacts on plant species’ distributions: 
future challenges. Perspectives in Plant Ecology, 9, 137–152. 

Thuiller W., Broennimann O., Hughes G., Alkermade J.R.M., Midgley G.F. & Corsi F. 
(2006). Vulnerability of African mammals to anthropogenic climate change 
under conservative land transformation assumptions. Global Change Biology, 
12, 424–440. 

Thuiller W., Lavorel S., Araújo M.B., Sykes M.T. & Prentice I.C. (2005). Climate 
change threats to plant diversity in Europe. Proceedings of the National 
Academy of Sciences of the USA, 102, 8245–8250. 

98 



References 
 

Trochain J.–L. (1970). Les territoires phytogeographiques de l’Afrique Noire 
francophone d’après la trilogie: climat, flore et végétation. Compte Rendu des 
Séances de la Société de Biogéographie, 139–157, 395–403. 

Tsoar A., Allouche O., Steinitz O., Rotem D. & Kadmon R. (2007). A comparative 
evaluation of presence only methods for modelling species distribution. 
Diversity and Distribution, 13, 397–405. 

UNCBD (1992). Convention on Biological Diversity. Report of the United Nations 
Conference on Environment and Development, 1–31, Rio de Janeiro, Brasil. 

UNEP (2002). Global Strategy for Plant Conservation. Secretariat of the Convention on 
Biological Diversity, Montreal, Canada. 

UNEP (2003a). Global strategy for plant conservation. Target 5: Important Plant Areas. 
Stakeholder consultation report. UNEP/CBD/GSPC/Target 5. Durban: 9. 

UNEP (2003b). Implementation of the strategic plan: evaluation of progress towards 
the 2010 biodiversity target: development of specific targets, indicators and a 
reporting framework. UNEP/CBD/COP/7/20/Add.3. Pages 1–22. Secretariat 
CBD, Kuala Lumpur, Malaysia. 

van Rompaey R.S.A.R & Oldeman R.A.A. (1997). Analyse spatiale du gradient 
floristique arborescent dans les forêts de plaine du SE Liberia and SW Côte 
d’Ivoire. In: Phytogéographie tropicale. Réalités et perspectives (eds. 
Guillaumet J.L., Belin M. & Puig H.), 353- 364. ORSTOM, Paris, France. 

van Rompaey R.S.A.R. (1993). Forest gradients in West Africa: a spatial gradient 
analysis. Doctoral Thesis, Wageningen Agricultural University, Wageningen, 
Netherlands. 

Wallace A.R. (1876). The geographical distribution of animals: with a study of the 
relations of living and extinct faunas as elucidating the past changes of the 
earth's surface. Macmillan, London, UK. 

Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin 
J.-M., Guldberg O.H. & Bairlein F. (2002). Ecological responses to recent 
climate change. Nature, 416, 389–395. 

White F. (1979). The Guineo–Congolian Region and its relationships to other 
phytochoria. Bulletin du Jardin botanique national de Belgique, 49, 11–55. 

White F. (1983). Vegetation of Africa, a descriptive memoir to accompany the 
UNESCO/AETFAT/UNSO Vegetation. UNESCO, Paris, France. 

Whittaker R.J., Araújo M.B., Paul J., Ladle R.J., Watson J.E.M & Willis K.J. (2005). 
Conservation Biogeography: assessment and prospect. Diversity and 
Distributions, 11, 3–23. 

 99



References 
 

Williams C.A., Hanan N.P., Neff J.C., Scholes R.J., Berry J.A., Denning A.S. & Baker 
D.F. (2007). Africa and the global carbon cycle. Carbon Balance and 
Management. 2, 3. 

Williams C.B. (1964). Patterns in the Balance of Nature. Academic Press, New York, 
USA. 

Williams P.H. & Gaston K.J. (1994). Measuring more of biodiversity: can higher–taxon 
richness predict wholesale species richness? Biological Conservation, 67, 
211–217. 

Williams P.H. & Humphries C.J. (1996). Comparing character diversity among biotas. 
In: Biodiversity: a biology of numbers and difference (ed. K.J. Gaston), 54–76. 
Blackwell Science Ltd., Oxford, UK. 

Williams P.H., de Klerk H.M. & Crowe T.M. (1999). Interpreting biogeographical 
boundaries among Afrotropical birds: spatial patterns in richness gradients and 
species replacement. Journal of Biogeography, 26, 459–474. 

Williams P.H., Hannah L., Andelman S.J., Midgley G.F., Araújo M.B., Hughes G.O., 
Manne L., Martinez-Meyer E. & Pearson R.G. (2005). Planning for Climate 
Change: Identifying Minimum-Dispersal Corridors for the Cape Proteaceae. 
Conservation Biology. 19, 1063-1074. 

Williamson M., Gaston K.J. & Lonsdale W.M. (2001). The species–area relationship 
does not have an asymptote. Journal of Biogeography, 28, 827–830. 

Wisz M.S., Walther B.A. & Rahbek C. (2007). Using potential distributions to explore 
determinants of Western Palaearctic migratory songbird species richness in 
sub–Saharan Africa. Journal of Biogeography, 34, 828–841. 

Wittig R., König K., Schmidt M. & Szarzynski J. (2007). A Study of Climate Change 
and Anthropogenic Impacts in West Africa. Environmental Science & 
Pollution Research, 14, 3, 182–189. 

Wittig R., Schmidt M. & Thiombiano A. (2004). Cartes de distribution des espèces du 
genre Acacia L. au Burkina Faso. Etudes flor. vég. Burkina Faso, 8, 19-26. 

Woodward F.I. (1987). Climate and plant distribution. Cambridge University Press, 
Cambridge, UK. 

Wright D.H. (1983). Species–energy theory: an extension of species area–theory. Oikos, 
41, 496–506. 

Wright D.H., Currie D.J. & Maurer B.A. (1993). Energy supply and patterns of species 
richness on local and regional scales. In: Species diversity in ecological 
communities: historical and geographical perspectives (eds. Ricklefs R.E. & 
Schluter D.), 66–74. University of Chicago Press, Chicago, USA. 

 

100 



References 
 

 101

Zhou Y., Narumalani S., Waltman W.J., Waltman S.W. & Palecki M.A. (2003). A GIS-
based Spatial Pattern Analysis Model for eco-region mapping and 
characterization. International Journal of Geographical Information Science, 
17, 5, 445-462. 

 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

102 



    List of Figures 
 

List of Figures 
 
Figure 1.1: Modelled global mean surface temperature rise according to IPCC – SRES 
scenarios A1T, A1B, A1F1, A2, B1 and B2…………………………………………………...8 
 
Figure 1.2: Plant species richness patterns in West Africa according to: (a) Barthlott et al. 
2005; (b) Sommer, 2008……………………………………………………………………….9 
 
Figure 1.3: Vegetation zones of West Africa according to White (1983)…………………...10 
 
Figure 3.1: Data set comprising localities of 129,333 distribution records of 4,887 species 
across Bénin, Burkina Faso, Côte d’Ivoire…………………………………………………...19 
 
Figure 3.2: Floristic composition at family level – representation of the most speciose 
families from the database……………………………………………………………………23 
 
Figure 3.3: Species-range distribution in the study area of West Africa: (a) based on 
documented data; (b) based on modeled data………………………………………………...24 
 
Figure 3.4: Patterns of vascular plant diversity in West Africa at a spatial resolution of 10km 
x 10km. (A) species richness; (B) family richness…………………………………………...26 
 
Figure 3.5: Relationship between numbers of families and numbers of species among grid 
cells of size 10km x 10km. (a) based on documented data; (b) based on modeled data……...27 
 
Figure 3.6: Spatial distribution of the network of protected areas and the modeled plant 
species richness in the study area……………………………………………………………..28 
 
Figure 4.1: Groups of locations (grid cells of 10 km x 10km size) with similar species 
composition, according to the level of dissimilarity between pairs of sites…………………..40 
 
Figure 4.2: The proposed new potential phytogeographical regions in West Africa………..42 
 
Figure 4.3: Species – area relationship per region…………………………………………...42 
 
Figure 4.4: Number of range-restricted species per phytogeographical region……………...45 
 
Figure 4.5: Proportion of species present in the 7 phytogeographic regions………………...45 
 
Figure 4.6: Comparison of area extent between our delineated phytogeographic regions and 
the vegetation zones of White (1983)………………………………………………………...46 
 
Figure 5.1: Contemporary potential vascular plant species richness West Africa based only 
on climate variables…………………………………………………………………………..59 
 
Figure 5.2: Projected potential species richness for IPCC A2 and B2 scenario according to 
two different global climate models, in 2020, 2050 and 2080……………………………….60 
 

 103



List of Figures 
 

104 

Figure 5.3: Change in species richness by 2080 according to A2 and B2 IPCC climate change 
scenarios for HadCM3 and CSIRO climate models………………………………………….61 
 
Figure 5.4: Potential shift in phytogeographical regions in West Africa for the IPCC A2 and 
B2 scenario according to two different global climate models……………………………….63 
 
Figure 5.5: Potential change in phytogeographic regions by 2080 according to IPCC A2 and 
B2 scenarios and based on two climate model: (a) the proportion of each contemporary 
potential phytogeographic region in the study area; (b) the percentage of possible change 
(reduction or expansion) in each region………………………………………………………64 
 
 
 



    List of Tables 
 

List of Tables 
 
Table 3.1: Modeled species number and percentage of species covered at least once by the 
existing network of protected areas per surveyed country……………………………………27 
 
Table 4.1: List of 10 selected indicator species per potential phytogeographical regions with 
their indicator value…………………………………………………………………………..44 
 
Table 5.1: Environmental variables used in MaxEnt to predict current and projected potential 
distribution ranges of species…………………………………………………………………57 
 
Table 5.2: Summary of projections for investigated vascular plant species in the year 2080, 
percentage of species subject to an increase or decrease in their potential range size; 
percentage of species extinct and the average percentage of loss in range for all species by 
2080…………………………………………………………………………………………...62 
 

 105



List of Abbreviations 
 

106 

List of Abbreviations 
 
 
 
BIOMAPS  :  “Biodiversity Mapping for Protection and Sustainable Use of   

                                       Natural Resources” – Working group at the Nees Institute for  

                                       Biodiversity of Plants, University of Bonn 

BIOLOG  :  Research project “Biodiversity and Global Change” of the  

                                       BMBF  

BIOTA Africa  :  BIOdiversity monitoring Transect Analysis in Africa, Project 

                                      network within the BIOLOG-Programme 

BISAP   :  Biogeographic Information System on African Plant Diversity 

BMBF   :  German Federal Ministry of Education and Research 

CSIRO   : Commonwealth Scientific Industrial Research Organisatin  

                                      (Australia), specific GCM 

GCM   :  General Circulation Model 

GLC   :  Global Land Cover 

HadCM  : specific GCM including future climate simulations 

IPCC   :  Intergovernmental Panel on Climate Change 

MaxEnt  :  Maximum Entropy probability distribution model 

 
 
 
 
 
 



    Appendix 
 

Appendix 
 
 
 
Appendix 1: List of all environmental variables used in this study. 

 

Appendix 2: Some illustrations of closing the „data gap“ in Ghana and Togo. Comparison 

between our potential distribution maps and the observed distribution according to Poorter et 

al. 2004 (chapter 3). 

 

Appendix 3: Extracted vascular plant potential species richness maps for each surveyed 

country in West Africa (chapter 3). 

 

Appendix 4: The number of vascular plant species based on the modeling result for each 

surveyed country compared to the estimated numbers of species comprised in the checklist of 

the corresponding country concordantly to the existing literature (chapter 3). 

 

Appendix 5: Patterns of vascular plant potential species richness based on two different set of 

environmental variables (chapter 3 & 5). 

 

Appendix 6: List of all possible indicator species with an indicator value higher than 50% per 

phytogeographical region (chapter 4). 

 

Appendix 7: List of species with their distribution ranges restricted to the corresponding 

phytogeographical region, according to our results (chapter 4). 

 
 
 
 
 

 107



Appendix 
 

Appendix 1: List of 16 environmental variables (comprising climate and land cover data) 
used to model species potential distribution range (chapter 3). The environmental datasets 
were jointly selected and prepared in the frame of the BIOTA West project network under 
special contribution of the working groups from Ulm and Würzburg (remote sensing group). 
 

Abbreviation Variables description Sources Original 
resolution

   
alt Altitude WorldClim1.4 1km

prec_30_max Maximum value (“wettest month”)
of the 12 monthly precipitation 

WorldClim1.4 1km

prec_30_min Minimum value (“driest month”)  
of the 12 monthly precipitation 

WorldClim1.4 1km

prec_30_std Standard deviation of the 12 
monthly precipitation data 

WorldClim1.4 1km

prec_30_sum Total annual precipitation 
calculated  
as the sum of all 12 monthly 
rainfall 

WorldClim1.4 1km

tmax30_max Maximum of the mean  
monthly maximum temperature 

WorldClim1.4 1km

tmax30_min Minimum of the mean monthly  
maximum temperature 

WorldClim1.4 1km

tmax30_std Standard deviation of the mean  
monthly maximum temperature 

WorldClim1.4 1km

tmin30_max Maximum of the mean monthly  
minimum temperature 

WorldClim1.4 1km

tmin30_min Minimum of the mean monthly  
minimum temperature 

WorldClim1.4 1km

tmin30_std Standard deviation of the mean  
monthly minimum temperature 

WorldClim1.4 1km

glc_raw2 Annual average of spectral 
response  
values in the Near-Infrared, band2 

SPOT-
VEGETATION 
composite 

-

glc_raw3 Annual average of spectral 
response  
values in the Red channel. Band3 

SPOT-
VEGETATION 
composite 

-

bare Percent of bare ground cover MODIS 500m

herb Percent of herbaceous ground cover MODIS 500m

tree Percent of tree ground cover MODIS 500m
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Appendix 2: Some illustration of closing the „data gap“ in Ghana and Togo. 
Comparison between our potential distribution maps (left side) and the observed 
distribution according to Poorter et al. 2004 (right side). 
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Appendix 3: Extracted vascular plant potential species richness maps for each surveyed 
country in West Africa. The same color scheme has been used to illustrate species 
richness for all countries, but classes indicating species number per grid cell differ 
between countries 
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Appendix 3: Extracted vascular plant potential species richness maps for each surveyed 
country in West Africa. The same color scheme has been used to illustrate species 
richness for all countries, but classes indicating species number per grid cell differ 
between countries. 
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 Appendix 4: The number of vascular plant species based on the modeling result for each 
surveyed country compared to the estimated numbers of species comprised in the checklist 
of the corresponding country concordantly to the existing literature Except for Côte 
d’Ivoire, there is general congruence between both estimated numbers for the surveyed 
countries 
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Appendix 5: Patterns of vascular plant potential species richness based on two different 
set of environmental variables: (1) with land cover variables included into the model; 
(2) without land cover variables, only precipitation, temperature and altitude have been 
used as predictor variables. 
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Appendix 6: List of all possible indicator species with an indicator value higher than 
50% per phytogeographic region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Species Family I II III IV V VI VII 
Tabernaemontana glandulosa APOCYNACEAE 63.19 1.94 0.04     
Dichapetalum oblongum 

Abutilon pannosum 

DICHAPETALACEAE 

MALVACEAE 

62.84

 

7.38

 

0.00

 

0.00 

 

 

0.02 

 

3.67 

 

74.55

Dichapetalum toxicarium 

Hibiscus sidiformis 

DICHAPETALACEAE 

MALVACEAE 

60.39

 

5.68

 

0.00

 

 

 

 

0.01 

 

3.41 

 

71.96

Crotonogyne chevalieri 

Cyperus pulchellus 

EUPHORBIACEAE 

CYPERACEAE 

57.76

 

5.66

 

1.14

 

0.01 

 

 

 

0.00 

4.78 

 

70.25

Combretum grandiflorum 

Alternanthera repens 

COMBRETACEAE 

AMARANTHACEAE 

57.70

0.01

2.23

 

1.64

 

 

 

 

0.05 

 

4.36 

 

68.86

Diospyros gabunensis 

Caralluma decaisneana 

EBENACEAE 

APOCYNACEAE 

57.57

 

8.97

 

0.03

 

0.00 

 

 

0.05 

 

11.47 

 

66.22

Nephthytis afzelii 

Capparis rothii 

ARACEAE 

CAPPARACEAE 

56.70

 

2.10

 

0.06

 

 

 

 

0.06 

 

1.41 

 

63.57

Cuviera acutiflora 

Hibiscus esculentus 

RUBIACEAE 

MALVACEAE 

56.69

0.02

4.44

 

0.21

 

0.00 

 

 

 

 

0.63 

 

63.12

Iodes liberica 

Marsilea polycarpa 

ICACINACEAE 

MARSILEACEAE 

55.61

0.00

1.02

0.04

0.02

0.21

 

0.84 

 

0.05 

 

1.27 

 

62.26

Adenia dinklagei 

Luffa aegyptiaca 

PASSIFLORACEAE 

CUCURBITACEAE 

55.55

 

4.40

 

2.19

 

0.01 

 

 

0.07 

 

4.49 

 

61.39

Xylopia staudtii 

Tapinanthus globiferus 

ANNONACEAE 

LORANTHACEAE 

55.22

0.01

0.15

 

0.04

 

0.02 

0.00 

 

0.34 

 

13.07 

 

59.85

Cercestis dinklagei 

Eragrostis cilianensis 

ARACEAE 

POACEAE 

54.51

0.00

3.72

 

0.79

 

0.00 

0.00 

 

0.05 

 

11.35 

 

59.39

Psychotria gabonica 

Solanum incanum 

RUBIACEAE 

SOLANACEAE 

54.14

 

13.75

 

0.90

 

0.00 

 

 

0.00 

 

3.22 

 

57.75

Diospyros vignei 

Utricularia inflexa 

EBENACEAE 

LENTIBULARIACEAE 

53.79

 

4.21

 

0.00

 

0.00 

 

 

0.10 

 

23.17 

 

54.34

Ostryocarpus riparius 

Hibiscus micranthus 

FABACEAE 

MALVACEAE 

53.70

 

4.37

 

0.27

 

0.03 

 

 

0.07 

 

0.55 

 

53.75

Psychotria subobliqua 

Caralluma dalzielii 

RUBIACEAE 

APOCYNACEAE 

53.28

 

1.93

 

0.53

 

 

 

 

0.00 

 

0.45 

 

52.27

Anthonotha fragrans 

 

FABACEAE 53.10 4.21 0.53     
Dictyophleba leonensis APOCYNACEAE 53.10 5.98      
Scaphopetalum amoenum STERCULIACEAE 53.08 5.89 0.00 0.00    
Uvariastrum insculptum ANNONACEAE 53.05 5.36 0.00 0.00    
Diospyros sanza-minika EBENACEAE 52.96 2.25 0.04     
Gilbertiodendron preussii FABACEAE 52.71 5.21 0.11 0.00    
Landolphia incerta APOCYNACEAE 52.55 20.36 0.07 0.02    
Spathandra blakeoides MELASTOMATACEAE 52.45 6.61 0.99 0.02    
Salacia cerasifera CELASTRACEAE 52.15 7.22 0.05 0.12    
Mapania ivorensis CYPERACEAE 51.81 9.71 0.02 0.00    
Sabicea ferruginea RUBIACEAE 51.74 4.00 0.36     
Axonopus flexuosus POACEAE 51.64 9.30 0.28 0.20    
Rhigiocarya racemifera MENISPERMACEAE 51.37 9.25 1.44 0.01  0.00  
Lasianthus batangensis RUBIACEAE 51.17 2.88 0.02     
Campylospermum duparquetianum OCHNACEAE 50.35 1.49 0.01     
Chrysophyllum pruniforme SAPOTACEAE 50.10 10.32 0.34 0.05    
Vitex phaeotricha VERBENACEAE 50.09 1.92 0.27     
Calpocalyx aubrevillei FABACEAE 50.05 1.16 0.60 0.00    
         
Phyllanthus bancilhonae EUPHORBIACEAE 0.14 0.59 56.33 0.22 0.11   
Cordia guineensis BORAGINACEAE 0.00 9.55 0.07 55.15 1.11   
Utricularia reflexa LENTIBULARIACEAE 0.01 0.00 0.26 51.02 0.42   
Albizia coriaria FABACEAE 0.57 13.99 0.33 50.23 2.50   
Polysphaeria arbuscula RUBIACEAE 0.00  0.32 6.00 58.72 1.90  
Digitaria exilis POACEAE 1.82 0.10 3.89 1.15 58.05 5.22 0.00
Cissampelos mucronata MENISPERMACEAE 0.00  1.21 3.48 54.63 1.66 5.22
Canscora diffusa GENTIANACEAE   0.45 0.00 54.14 1.79  
Vigna luteola FABACEAE 0.70 0.12 0.05 3.66 53.63 2.85  
Loudetiopsis scaettae POACEAE 0.00  0.13 0.55 52.32 0.13  
Schizachyrium rupestre POACEAE 0.00  0.57 5.02 52.21 8.33 1.98
Elephantopus mollis ASTERACEAE 5.51 3.42 8.39 11.67 51.55 6.76 0.02
Ischaemum amethystinum POACEAE   0.35 1.73 50.60 0.43 0.00
Indigofera oubanguiensis FABACEAE  0.00 0.05 10.92 50.24 6.00  
         
Cyperus digitatus CYPERACEAE 0.00  0.55 0.70 50.11 19.44 16.69
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Appendix 7: List of species with their distribution ranges restricted to the 
corresponding phytogeographical region, according to our results.  
 
 

        
Region Species Family Fidelity 

I Aframomum chrysanthum ZINGIBERACEAE 0.003 
I Airyantha schweinfurthii FABACEAE 0.041 
I Albertisia cordifolia MENISPERMACEAE 0.003 
I Albertisia mangenotii MENISPERMACEAE 0.083 
I Albertisia scandens MENISPERMACEAE 0.029 
I Alternanthera littoralis AMARANTHACEAE 0.003 
I Anisopus mannii APOCYNACEAE 0.003 
I Anthonotha vignei FABACEAE 0.348 
I Anthostema aubryanum EUPHORBIACEAE 0.052 
I Avicennia germinans AVICENNIACEAE 0.005 
I Berlinia confusa FABACEAE 0.076 
I Brachystegia leonensis FABACEAE 0.132 
I Calophyllum inophyllum HYPERICACEAE 0.105 
I Catharanthus roseus APOCYNACEAE 0.027 
I Coelocaryon preussii MYRISTICACEAE 0.006 
I Conocarpus erectus COMBRETACEAE 0.022 
I Crinum purpurascens AMARYLLIDACEAE 0.079 
I Crudia klainei FABACEAE 0.033 
I Cyperus crassipes CYPERACEAE 0.011 
I Dalbergia ecastaphyllum FABACEAE 0.011 
I Dasylepis racemosa FLACOURTIACEAE 0.087 
I Dichapetalum dictyospermum DICHAPETALACEAE 0.006 
I Didelotia brevipaniculata FABACEAE 0.033 
I Diospyros tricolor EBENACEAE 0.003 
I Dorstenia embergeri MORACEAE 0.057 
I Dracaena praetermissa DRACAENACEAE 0.006 
I Dramsenia grandiflora APOCYNACEAE 0.032 
I Eugenia whytei MYRTACEAE 0.04 
I Eulophia caricifolia ORCHIDACEAE 0.025 
I Haplormosia monophylla FABACEAE 0.062 
I Hibiscus tiliaceus MALVACEAE 0.011 
I Hydrocotyle bonariensis APIACEAE 0.021 
I Iodes africana ICACINACEAE 0.003 
I Ipomoea imperati CONVOLVULACEAE 0.006 
I Ipomoea pes-caprae CONVOLVULACEAE 0.008 
I Isonema smeathmannii APOCYNACEAE 0.019 
I Landolphia leptantha APOCYNACEAE 0.037 
I Lycopodiella affinis LYCOPODIACEAE 0.003 
I Macaranga beillei EUPHORBIACEAE 0.06 
I Machaerium lunatum FABACEAE 0.056 
I Mapania mangenotiana CYPERACEAE 0.046 
I Megastachya mucronata POACEAE 0.003 
I Mesanthemum radicans ERIOCAULACEAE 0.024 
I Monanthotaxis laurentii ANNONACEAE 0.005 
I Oncoba echinata FLACOURTIACEAE 0.059 
I Ormocarpum verrucosum FABACEAE 0.029 
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I Pellegriniodendron diphyllum FABACEAE 0.027 
I Pycreus polystachyos CYPERACEAE 0.013 
I Rhizophora racemosa RHIZOPHORACEAE 0.032 
I Rhynchospora holoshoenoides CYPERACEAE 0.008 
I Saxicolella submersa PODOSTEMACEAE 0.086 
I Schizachyrium pulchellum POACEAE 0.008 
I Spilanthes costata ASTERACEAE 0.081 
I Sporobolus virginicus POACEAE 0.005 
I Stemonocoleus micranthus FABACEAE 0.005 
I Stenotaphrum secundatum POACEAE 0.011 
I Synsepalum tsounkpe SAPOTACEAE 0.052 
I Tapinanthus belvisii LORANTHACEAE 0.06 
I Tapinanthus praetexta LORANTHACEAE 0.057 
I Terminalia catappa COMBRETACEAE 0.06 
I Torulinium odoratum CYPERACEAE 0.013 
I Typha domingensis TYPHACEAE 0.016 
I Uapaca paludosa EUPHORBIACEAE 0.008 
I Utricularia foliosa LENTIBULARIACEAE 0.049 
I Utricularia tortilis LENTIBULARIACEAE 0.005 
I Warneckea membranifolia MELASTOMATACEAE 0.106 
I Xylopia rubescens ANNONACEAE 0.013 
II Eugenia coronata MYRTACEAE 0.006 
II Ischaemum indicum POACEAE 0.003 
II Macropodiella taylorii PODOSTEMACEAE 0.003 
II Rivina humilis PHYTOLACCACEAE 0.014 
III Argostemma pumilum RUBIACEAE 0.004 
III Asplenium formosum ASPLENIACEAE 0.001 
III Brachycorythis macrantha ORCHIDACEAE 0.005 
III Bulbophyllum bidenticulatum ORCHIDACEAE 0.012 
III Bulbophyllum cochleatum ORCHIDACEAE 0.001 
III Cyphostemma rubrosetosum VITACEAE 0.003 
III Dicranolepis laciniata THYMELAEACEAE 0.009 
III Dryopteris manniana DRYOPTERIDACEAE 0.001 
III Gladiolus aequinoctialis IRIDACEAE 0.006 
III Kotschya ochreata FABACEAE 0.021 
III Maesa lanceolata MYRSINACEAE 0.004 
III Panicum sadinii POACEAE 0.008 
III Polystachya dalzielii ORCHIDACEAE 0.026 
III Polystachya leonensis ORCHIDACEAE 0.014 
III Preussiella kamerunensis MELASTOMATACEAE 0.019 
III Rubus pinnatus ROSACEAE 0.001 
III Sericostachys scandens AMARANTHACEAE 0.028 
III Syzygium staudtii MYRTACEAE 0.01 
III Trichilia djalonis MELIACEAE 0.01 
III Vernonia myriantha ASTERACEAE 0.001 
IV Andropogon ivorensis POACEAE 0.034 
IV Indigofera barteri FABACEAE 0.004 
V Adenodolichos paniculatus FABACEAE 0.003 
V Aedesia baumannii ASTERACEAE 0.002 
V Aeschynomene lateritia FABACEAE 0.001 
V Aloe schweinfurthii ALOACEAE 0.002 
V Becium obovatum LAMIACEAE 0.003 

116 



    Appendix 
 

V Beckeropsis uniseta POACEAE 0.014 
V Bewsia biflora POACEAE 0.006 
V Borreria pusilla RUBIACEAE 0 
V Borreria ruelliae RUBIACEAE 0.007 
V Borreria scandens RUBIACEAE 0.001 
V Brachiaria brachylopha POACEAE 0.003 
V Brachiaria disticha POACEAE 0.001 
V Byrsocarpus coccineus CONNARACEAE 0.008 
V Cissus corniculata VITACEAE 0.001 
V Clematis hirsuta RANUNCULACEAE 0.002 
V Crassocephalum togoense ASTERACEAE 0.001 
V Crotalaria deightonii FABACEAE 0.005 
V Crotalaria graminicola FABACEAE 0.001 
V Cussonia barteri ARALIACEAE 0.011 
V Cyperus karlschumannii CYPERACEAE 0.025 
V Dolichos scarabaeoides FABACEAE 0.033 
V Dyschoriste heudelotiana ACANTHACEAE 0.011 
V Eriosema afzelii FABACEAE 0.006 
V Fadogia cienkowskii RUBIACEAE 0.043 
V Ficus capensis MORACEAE 0.003 
V Gnidia kraussiana THYMELAEACEAE 0.003 
V Haumaniastrum buettneri LAMIACEAE 0.003 
V Hippocratea pallens CELASTRACEAE 0.001 
V Hyparrhenia barteri POACEAE 0.002 
V Hypoestes verticillaris ACANTHACEAE 0.001 
V Indigofera confusa FABACEAE 0.001 
V Kohautia grandiflora RUBIACEAE 0.003 
V Laggera gracilis ASTERACEAE 0.004 
V Laggera pterodonta ASTERACEAE 0.054 
V Lepidagathis filifolia ACANTHACEAE 0.001 
V Micrargeria barteri SCROPHULARIACEAE 0.004 
V Mitracarpus villosus RUBIACEAE 0.001 
V Psorospermum senegalense HYPERICACEAE 0.005 
V Rytigynia neglecta RUBIACEAE 0.001 
V Saba florida APOCYNACEAE 0.001 
V Sapium ellipticum EUPHORBIACEAE 0.001 
V Scleria atrovierensis CYPERACEAE 0.001 
V Steganotaenia araliacea APIACEAE 0.004 
V Synaptolepis retusa THYMELAEACEAE 0.004 
V Trochomeria atacorensis CUCURBITACEAE 0.002 
V Vernonia glaberrima ASTERACEAE 0.003 
V Vernonia nestor ASTERACEAE 0.004 
V Vernonia plumbaginifolia ASTERACEAE 0.001 
V Vernonia poskeana ASTERACEAE 0.009 
V Vernonia pumila ASTERACEAE 0.008 
V Vigna nigritia FABACEAE 0 
VI Brachiara villosa POACEAE 0.003 
VI Capparis corymbosa CAPPARACEAE 0.01 
VI Cassia sengueana FABACEAE 0.001 
VI Glyricidia sepium FABACEAE 0.002 
VI Ipomea coscinosperma CONVOLVULACEAE 0.003 
VI Maeuria angolensis CAPPARACEAE 0.003 
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VI Mukia maderaspatena CUCURBITACEAE 0.001 
VI Munechma ciliatum ACANTHACEAE 0.002 
VII Acacia laeta FABACEAE 0.048 
VII Acacia raddiana FABACEAE 0.021 
VII Aerva javanica AMARANTHACEAE 0.06 
VII Aristida funiculata POACEAE 0.097 
VII Aristida mutabilis POACEAE 0.032 
VII Aristida sieberiana POACEAE 0.133 
VII Bergia suffruticosa ELATINACEAE 0.046 
VII Boerhavia coccinea NYCTAGINACEAE 0.043 
VII Boerhavia repens NYCTAGINACEAE 0.069 
VII Boscia senegalensis CAPPARACEAE 0.039 
VII Caralluma retrospiciens APOCYNACEAE 0.031 
VII Cenchrus prieurii POACEAE 0.06 
VII Chloris prieurii POACEAE 0.038 
VII Chrozophora brocchiana EUPHORBIACEAE 0.04 
VII Citrullus vulgaris CUCURBITACEAE 0.049 
VII Cleome scaposa CAPPARACEAE 0.099 
VII Cleome violacea CAPPARACEAE 0.019 
VII Crotalaria arenaria FABACEAE 0.057 
VII Cucumis ficifolius CUCURBITACEAE 0.053 
VII Cyperus conglomeratus CYPERACEAE 0.002 
VII Dalbergia melanoxylon FABACEAE 0.096 
VII Euphorbia aegyptiaca EUPHORBIACEAE 0.03 
VII Gisekia pharnacioides GISEKIACEAE 0.039 
VII Grangea maderaspatana ASTERACEAE 0.077 
VII Grewia tenax TILIACEAE 0.04 
VII Hybanthus thesiifolius VIOLACEAE 0.297 
VII Indigofera diphylla FABACEAE 0.014 
VII Ipomoea coptica CONVOLVULACEAE 0.007 
VII Leptadenia pyrotechnica APOCYNACEAE 0.016 
VII Limeum pterocarpum MOLLUGINACEAE 0.059 
VII Limeum viscosum MOLLUGINACEAE 0.032 
VII Maerua crassifolia CAPPARACEAE 0.171 
VII Merremia pinnata CONVOLVULACEAE 0.029 
VII Mollugo cerviana MOLLUGINACEAE 0.055 
VII Momordica balsamina CUCURBITACEAE 0.051 
VII Pennisetum fallax POACEAE 0.029 
VII Pergularia tomentosa APOCYNACEAE 0.113 
VII Phyla nodiflora VERBENACEAE 0.042 
VII Rogeria adenophylla PEDALIACEAE 0.304 
VII Sesamum alatum PEDALIACEAE 0.047 
VII Tephrosia lupinifolia FABACEAE 0.013 
VII Tephrosia uniflora FABACEAE 0.049 
VII Tetrapogon cenchriformis POACEAE 0.118 
VII Tragus berteronianus POACEAE 0.036 
VII Trianthema pentandra AIZOACEAE 0.002 
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