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1 | INTRODUCTION  

Abstract 

Ecological differentiation and genetic isolation are thought to be critical in facilitat-

ing coexistence between related species, but the relative importance of these phe-

nomena and the interactions between them are not well understood. Here, we 

examine divergence in abiotic habitat affinity and the extent of hybridization and 

introgression between two rare species of Monardella (Lamiaceae) that are both 

restricted to the same serpentine soil exposure in California. Although broadly sym-

patric, they are found in microhabitats that differ consistently in soil chemistry, 

slope, rockiness and vegetation. We identify one active hybrid zone at a site with 

intermediate soil and above-ground characteristics, and we document admixture 

patterns indicative of extensive and asymmetric introgression from one species into 

the other. We find that genetic distance among heterospecific populations is related 

to geographic distance, such that the extent of apparent introgression is partly 

explained by the spatial proximity to the hybrid zone. Our work shows that plant 

species can maintain morphological and ecological integrity in the face of weak 

genetic isolation, intermediate habitats can facilitate the establishment of hybrids, 

and that the degree of apparent introgression a population experiences is related to 

its geographic location rather than its local habitat characteristics. 
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The sympatric coexistence of closely related species is a common 

feature of diverse lineages and species-rich communities (Abbott 

et al., 2013; Anacker & Strauss, 2014; Grossenbacher, Veloz, & 

Sexton, 2014). For example, Lakes Victoria, Tanganyika and Malawi 

each host hundreds of species of cichlid fish (Meyer, 1993), and the 

small forest reserve at La Selva Biological Station in Costa Rica hosts 

44 species in the plant genus Piper (Gentry, 1993). Understanding 

the ecological and genetic factors that enable coexistence among rel-

atives bears directly on such fundamental biological processes as 

speciation (Barraclough & Vogler, 2000; Fitzpatrick & Turelli, 2006) 

and community assembly (Briscoe Runquist, Grossenbacher, Porter, 

Kay, & Smith, 2016; Chesson, 2000; HilleRisLambers, Adler, Harpole, 

Levine, & Mayfield, 2012). For closely related species, shared ances-

tral traits and habitat affinities can translate into stronger competi-

tion and sharing of pests, pathogens and mutualists compared to 

distantly related species, potentially leading to competitive exclusion, 

character displacement, facilitation or convergent evolution (Beans, 

2014; Moeller, 2004; Parker et al., 2015; Sargent & Ackerly, 2008; 

Yguel et al., 2011). Closely related species may also hybridize if 

reproductive isolation is incomplete, leading to diverse possible out-

comes such as the decline or extinction of one or both parental spe-

cies through genetic or demographic swamping (Holt & 

Gomulkiewicz, 1997; Levin, Francisco-Ortega, & Jansen, 1996; Wolf, 

Takebayashi, & Rieseberg, 2001), reinforcement of reproductive 
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barriers (Dobzhansky, 1940; Kay & Schemske, 2008), establishment 

of new polyploid or recombinational species (Rieseberg et al., 2003; 

Stebbins, 1940) or the transfer of adaptive alleles (Arnold et al., 

2016; Morjan & Rieseberg, 2004). Documenting the ecological and 

genetic interactions (or lack thereof) between closely related sym-

patric species can help establish the relative importance of these 

diverse outcomes. 

Moreover, ecological and genetic interactions between closely 

related species are not independent, as ecological divergence can 

reduce gene flow and genetic isolation can allow for ecological diver-

gence. Niche differentiation between coexisting relatives can be 

implicated in both pre- and postzygotic reproductive barriers, such 

as selection against migrants between habitats, phenological diver-

gence, pollinator and mating system isolation, and extrinsic selection 

against hybrids (reviewed in Coyne & Orr, 2004; Lowry, Modlis-

zewski, Wright, Wu, & Willis, 2008). Although ecologically based bar-

riers can be strong (e.g., Kay, 2006; Ramsey, Bradshaw, & Schemske, 

2003), they may also be reversible under certain conditions, resulting 

in ecologically dependent hybridization (Chase & Raven, 1975). Eco-

logical divergence may also shape the extent of introgression across 

populations and across the genome, if mating patterns of hybrids are 

influenced by ecological factors or there is selection against particu-

lar loci involved in divergent adaptation (Mallet, 2005). Conversely, 

genetic isolation, caused by either pre- or postzygotic isolation, may 

facilitate greater ecological divergence by reducing maladaptive gene 

flow (Hendry & Taylor, 2004; Nosil & Crespi, 2004; Riechert, 1993). 

In these cases, we expect a relationship between the ecological simi-

larity of heterospecific populations and the extent of hybridization 

and introgression (isolation by ecology; IBE). Within species, genetic 

distance commonly increases with environmental or phenotypic dis-

tance, supporting the importance of ecological divergence in shaping 

gene flow within species and initiating speciation (Sexton, Hangart-

ner, & Hoffman, 2014; Shafer & Wolf, 2013). However, any pattern 

of IBE is less clear among heterospecific populations. 

Plants and their edaphic (soil) habitats provide a compelling sys-

tem to examine ecological and genetic isolation between coexisting 

species. Unlike many animals, for which vicariant allopatric speciation 

is the norm (Fitzpatrick & Turelli, 2006; but see Turelli, Lipkowitz, & 

Brandvain, 2014), plants often speciate at small spatial scales (Kisel 

& Barraclough, 2010) with abundant opportunities for sympatric con-

tact (Anacker & Strauss, 2014; Grossenbacher et al., 2014). More-

over, their sessile nature makes plants relatively straightforward to 

characterize ecologically. Edaphic endemism is an especially common 

and important form of habitat specialization in plants (Rajakaruna, 

2018). The striking effects of unusual and often extreme substrates 

(e.g., serpentine, limestone, dolomite, shale, gypsum and guano) on 

plants are found even within distances of a few metres (Rajakaruna 

& Boyd, 2008; Yost, Barry, Kay, & Rajakaruna, 2012), and floras rich 

with edaphic endemics make up a majority of the earth’s biodiversity 

hot spots (Damschen, Harrison, Anacker, & Going, 2011; Mittermeier 

et al., 2005). Edaphic factors can contribute to genetic isolation by 

selecting against migrants, causing genetic or plastic differences in 

flowering phenology, influencing coflowering plant communities 

and/or pollinator assemblages, directly altering pollen–pistil interac-

tions or selecting against hybrids (MacNair & Christie, 1983; Meindl, 

Bain, & Ashman, 2013; Searcy & Macnair, 1990; Yost et al., 2012). 

Serpentine-adapted plants, which inhabit nutrient-deficient soils with 

low Ca:Mg and high heavy metal concentrations, have long been a 

model system for studies of plant speciation (reviewed in Krucke-

berg, 1986; Kay, Ward, Watt, & Schemske, 2011; O’Dell & Rajakar-

una, 2011). 

Here, we study ecological divergence and genetic isolation 

between a pair of broadly sympatric serpentine soil endemics in the 

coyote mint genus Monardella. We first address two primary ques-

tions. First, are the species ecologically divergent? We characterize 

their habitats and soil element uptake strategies, and we ask 

whether there are consistent species-level differences. Second, are 

the species genetically isolated? We use genome-wide genetic mark-

ers to identify whether hybridization and subsequent introgression 

have occurred. We then use our ecological and genetic data to test 

a series of explicit hypotheses about their genetic isolation. First, the 

species may be fully isolated and either not hybridize or not experi-

ence introgression following hybridization. Second, the species may 

hybridize and experience introgression through spatial proximity. 

Third, the species may hybridize in intermediate habitats and intro-

gression may be facilitated by ecological similarity among sites 

regardless of spatial proximity. Finally, the species may hybridize so 

extensively that neutral loci are essentially homogenized and only a 

few key morphological traits are kept distinct by selection. To test 

these hypotheses, we relate genetic distance to both ecological and 

geographic distances. 

2 | MATERIALS  AND  METHODS  

2.1 | Study area and taxa 

We studied two sympatric species of Monardella occurring on the 

Feather River complex in California. The Feather River complex (Lat 

39°59056″N, Lon 121°7026″W) is a belt of ultramafics approxi-

mately 53 km long and three to six km wide consisting of serpen-

tinite, peridotite and other ultramafic rocks. This belt occurs mainly 

in Plumas County (Northern California, USA) although parts stretch 

into Sierra, Placer and El Dorado Counties. Elevation ranges from 

762 to 1,920 m, the latter being the peak of Red Hill, the only 

place where both study taxa have been found growing in close 

sympatry. 

The genus Monardella (Lamiaceae) is found throughout western 

North America, with a centre of diversity in California, and comprises 

over 30 annual and perennial species representing 50 recognized 

taxa at the species, subspecies, and varietal level (Baldwin et al., 

2012; Elvin & Sanders, 2009). It is a taxonomically difficult genus, 

with putative hybrids commonly reported (Baldwin et al., 2012; She-

vock, Ertter, & Jokerst, 1989) and a poor understanding of phyloge-

netic relationships. Monardella stebbinsii and M. follettii are strict 

serpentine endemics (Safford, Viers, & Harrison, 2005), with a short, 

woody, and rhizomatously spreading growth form. The two are 
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distinguished morphologically by their leaves, which are glabrous and 

lanceolate to elliptic in M. follettii and narrowly ovate and covered in 

a dense coat of white hairs in M. stebbinsii (Baldwin et al., 2012). 

Both are self-compatible but predominantly outcrossing and depen-

dent on a variety of insect pollinators for seed set (Woolhouse, 

2012). Whereas both taxa are restricted to the Feather River com-

plex, M. follettii is more common and widespread than M. stebbinsii 

across the belt, with 25 known occurrence sites and an estimated 

total of 5,000–10,000 individuals. Monardella stebbinsii is only found 

on and around Red Hill (Figure 1), with 15 known occurrences and 

<1,500 individuals (CNPS 2014). Both species are state-listed and 

globally ranked (Faber-Langendoen, Tart, & Crawford, 2009). Phylo-

genetic relationships between M. follettii and M. stebbinsii are 

unknown, and taxonomic treatments have not considered them par-

ticularly closely related (Elvin & Sanders, 2009; Hardham & Bartel, 

1990). A recent conservation genetics assessment of these two spe-

cies found contrasting patterns of genetic diversity (Smith & Kay, 

2018). The more widespread M. follettii have lower genetic diversity, 

little differentiation among populations and no evidence of inbreed-

ing. In contrast, the more rare M. stebbinsii have higher genetic 

diversity, high population differentiation over extremely short dis-

tances and significant inbreeding. 

We used a two-stage approach for this study. We first character-

ized ecological attributes for five sites per species, avoiding any 

plants that were morphologically unassignable to species. We 

recorded a set of site-level characteristics and sampled soil and tis-

sue from individual plants for chemical analysis. We then returned 

the following 2 years to genotype individuals from these and addi-

tional sites to characterize patterns of hybridization and genetic dif-

ferentiation and to relate these patterns to ecological attributes. Our 

sampling encompassed the full geographic ranges of both species, 

and we chose sites based on their relatively even spacing, accessibil-

ity and plant numbers (Table S1). 

2.2 | Are Monardella follettii and M. stebbinsii 
ecologically divergent? 

To answer this question, we examined general habitat characteristics 

for five sites per species, sampled soil and plant tissue from five 

plants per site, and related plant tissue composition to the soil envi-

ronment. 

2.2.1 | Ecological sampling 

Site-level habitat characteristics included per cent slope, aspect, per 

cent canopy cover and per cent cover of rocks, boulders, duff, 

shrubs and herbaceous species. Canopy cover was averaged over 

five plants per site, using a convex spherical crown densitometer 

(Forestry Suppliers, Inc., Jackson, Mississippi, Hinds County). Per 

cent cover measurements were made by eye, allowing for overlap of 

layers of coverage. We also recorded all vascular plant species pre-

sent at each site and generated vegetation ordinations using 

detrended correspondence analysis in Jmp Pro version 11. All further 

analyses of plant community composition used the primary axis 

score of the vegetation ordination. 

For each of five plants per site, we analysed both soil chemistry 

and tissue chemistry. We collected two hundred grams of soil from 

the rhizosphere using a stainless steel hand trowel. We air-dried soil 

samples, removed rocks by hand and sent the samples to A & L 

Western Agricultural Laboratory (Modesto, California, Stanislaus 

County) for analysis of cation exchange capacity, organic matter, 

estimated nitrogen release, pH, exchangeable K, Mg, Zn, Mn, Fe, Ni, 

Cu, B, Ca, SO2 , NH4+, Na and Bray P. To determine whether Mon-4 

ardella follettii and M. stebbinsii differ in uptake processes in 

response to soil chemistry, we also collected 45 g (dry mass) of leaf 

tissue from the upper portion of each plant, avoiding any soil con-

tamination. Leaf samples were washed in the field in 0.01M HCl, 

rinsed three times in distilled water and then oven-dried for 48 hr at 

70°F. We sent tissue to the University of Maine (Orono, ME) Analyt-

ical Laboratory for analysis of 11 elements (Ca, K, Mg, P, B, Cu, Fe, 

Mn, Zn, Na and Ni). Elemental concentrations were determined by 

the dry-ashing method and detected by ICP-OES (Thermo Scientific, 

Tewksbury, MA). 

2.2.2 | Ecological analyses 

We used principal components analysis (PCA) in R (R Core Team, 

2014) to investigate the covariance structure of soil elements and 

site characteristics (slope, aspect, vegetation cover, etc.) and to 

reduce these interrelated factors to a small number of orthogonal 

variables. All soil elemental variables were log-transformed and 

scaled to a variance of one, because single-unit changes at small 

concentrations will likely have larger biological impacts than single-

unit changes at high concentrations. We performed three PCAs: one 

on soil elements that were sampled under individual plants, one on 

characteristics that were sampled for each site, and one on soil ele-

ments and site characteristics combined, in which the site character-

istics were identical for each soil sample from that site. The latter 

analysis provided a comprehensive measure of ecological distance 

among sites for downstream analyses. To relate site characteristics 

and soil chemistry to the identity of the occupying species, the prin-

cipal components axes were used as predictors in binomial general-

ized linear (mixed) models with species as a response and with the 

PCA axes as a predictor. Random slopes across sites were included 

for each PCA axis. These GLMMs were fit using package MCMCGLMM 

in R (Hadfield, 2010), and a weakly informative prior was used for 

each to prevent variance inflation in the posterior distributions of 

regression coefficients due to complete separation (Gelman, Jakulin, 

Pittau, & Su, 2008). 

We investigated whether plant ion uptake differed between 

our focal species by relating foliar tissue chemistry to soil chem-

istry in a regression framework. Elemental concentrations in a 

plant’s tissue can be influenced directly by soil elemental concen-

trations, by the bioavailability of elements in the soil, which is 

strongly affected by soil pH (Rajakaruna & Boyd, 2008) and by 

intrinsic physiological differences in ion uptake, exclusion and 
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F IGURE  1  Map of study sites. Numbers below symbols correspond to Figures 2 and 4. Red Hill is the putative hybrid zone between 
Monardella follettii and M. stebbinsii, whereas Bean Hill is the putative hybrid zone between M. follettii and M. sheltonii 

translocation (Rajakaruna, Siddiqi, Whitton, Bohm, & Glass, 2003). 

We fit Gaussian regression models for the log-transformed foliar 

concentrations of Ca, K, Mg, P, B, Cu, Fe, Mn, Zn, Na and Ni 

across 45 individuals in nine populations. One population of 

M. folletii was excluded from this analysis because of a sample 

processing error. We included a random intercept per site in each 

model and used the log-transformed soil concentration of the ele-

ment, soil pH, species and a species-by-soil concentration interac-

tion as fixed effects. We used AIC to select among the ten 

possible models that result from various combinations of these 

fixed effects (Table S2) and averaged model coefficients across the 

top models (e.g., those with DAIC < 2; Burnham & Anderson, 

2003). Models were fit using the LME4 package (Bates, Maechler, 

Bolker, & Walker, 2014) in R statistical language. We were specifi-

cally looking for evidence that species or a species-by-soil concen-

tration interaction would best predict tissue concentration, indicating 

species-specific differences in uptake processes. 

2.3 | Are Monardella follettii and M. stebbinsii 
genetically isolated? 

2.3.1 | Genetic sampling 

We sampled plants for genetic analysis from sites throughout the 

range of M. follettii and M. stebbinsii, including the 10 sites described 

above, and additional M. follettii sites to fully encompass its geo-

graphic range (Figure 1; Table S1). During field sampling, we sus-

pected hybridization between both focal species and a widespread 

serpentine-tolerating congener, M. sheltonii, and thus added limited 

sampling of this third species. At each of seven sites for M. folletii, 

four sites for M. stebbinsii and four sites for M. sheltonii, we sampled 

young leaf tissue from approximately 20 individuals (or a smaller 

number representing every individual found at the site). One of the 

five M. stebbinsii sites sampled for ecological characteristics (Red Hill) 

also had M. follettii present, and both species, along with an array of 
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morphologically intermediate plants, were sampled for genotyping. 

Additionally, one of the five M. folletii sites sampled for ecological 

characteristics (Bean Hill) also had M. sheltonii present, and both 

were sampled for genotyping. At Bean Hill, individuals that key to 

M. follettii display some M. sheltonii-like morphology; they have inflo-

rescences with more flowers, are paler green in colour, and are gen-

erally larger than other M. follettii individuals. Thus, we suspected 

some hybridization at this site. 

We isolated genomic DNA using a modified CTAB protocol (Doyle 

& Doyle, 1987), and we assessed quality and concentration by Nano-

Drop (Thermo Fisher Scientific, Wilmington, Delaware), agarose gel 

electrophoresis and Qubit (Invitrogen, Carlsbad, California). Most 

extractions were further cleaned with a sodium acetate–ethanol pre-

cipitation. We used genotyping by sequencing (GBS; Davey et al., 

2011; Elshire et al., 2011) to identify and characterize single nucleo-

tide polymorphisms (SNPs). We sent DNA samples to the Institute for 

Genomic Diversity (IGD) at Cornell University (Ithaca, New York) for 

library construction using the PstI restriction enzyme followed by 

sequencing on the Illumina HiSeq platform (San Diego, California). 

Ninety-five samples plus one negative control were multiplexed in 

each sequencing lane, for a total of 285 samples. 

We then used the TASSEL/UNEAK bioinformatics pipeline to 

generate bi-allelic SNP calls from the raw sequence data (Lu, Lipka, 

et al., 2013). The Universal Network Enabled Analysis Kit (UNEAK) 

pipeline sorts raw data into files for each barcoded individual, trims 

the reads to 64 bp, compiles exactly matching reads as tags, pairwise 

aligns sequences to find tags differing by only 1 bp, creates net-

works of these nearly matching tags and filters networks that are 

too complex (Lu, Lipka, et al., 2013). This is a conservative pipeline 

appropriate for species lacking a reference genome. We employed 

strict filtering parameters on sequence quality and a minimum cover-

age threshold of 3 to call a SNP (Lu, Glaubitz, et al., 2013). We 

recovered a set of loci shared among all three species. We removed 

any locus that was not sequenced in at least 90% of individuals and 

any individual missing more than 20% of the data. We tried several 

alternative values for these filtering cut-offs; however, our results 

were not qualitatively sensitive to these changes, and therefore, we 

only report results for these filtering levels. We calculated basic sum-

mary statistics of genetic diversity (p and He) and divergence (Dxy) in  

the POPGENOME (Pfeifer, Wittelsb€ Ramos-Onsins, & Lercher,urger, 

2014) and ADEGENET (Jombart, 2008) R packages. 

2.3.2 | Genetic analyses 

We first assessed evidence for hybridization and admixture using a 

Bayesian assignment analysis, implemented as a Markov chain 

Monte Carlo algorithm in the software STRUCTURE (Pritchard, Ste-

phens, & Donnelly, 2000) that identifies genetic clusters (K) within 

the SNP data set and infers the genomic composition of each indi-

vidual in terms of genetic clusters. We ran 15 replicate analyses for 

each level of K using the admixture model with 50,000 burn-in steps 

followed by 100,000 steps. We estimated the hyperparameter k, 

which controls average cluster size, before running the simulations, 

and subsequently fixed it at the estimated value, as suggested for 

SNP data sets by Pritchard et al. (2000). We defined the possible 

range of K as 1–14 to cover the total number of sites sampled (but 

assuming sampling of M. sheltonii was not deep enough to separate 

sites) and determined the most likely K by considering the known 

biology of our study organisms, as recommended by Pritchard et al. 

(2000) and by looking at the rate of change in the probability of suc-

cessive numbers of clusters (Evanno, Regnaut, & Goudet, 2005) in 

StructureHarvester (Earl & vonHoldt, 2012). 

To determine whether the M. stebbinsii 9 M. follettii hybrid zone 

at Red Hill is solely composed of F1 hybrids or whether there is 

mating among hybrids and/or backcrossing to either parental spe-

cies, we used maximum likelihood to estimate the proportion of alle-

les in each individual plant inherited from each parental species, 

using the software hindex (Buerkle, 2005) as implemented in the R 

package INTROGRESS (Gompert & Buerkle, 2010). For the hindex analy-

sis, we used all M. stebbinsii and M. follettii individuals found away 

from hybrid zones as parental populations. 

To assess support for specific scenarios of historical migration 

between M. stebbinsii and M. follettii, we inferred a phylogeny of 

populations with admixture events using site-level allele counts in 

the program TREEMIX (Pickrell & Pritchard, 2012). Although sparsely 

sampled, M. sheltonii has high absolute divergence from all M. follettii 

and M. stebbinsii sites except Bean Hill (see Results). We therefore 

chose to pool the four M. sheltonii sites as an outgroup in the TREEMIX 

analyses, although its relatively distant position may be because of 

hybridization, and not more recent speciation, between the focal 

species. We first inferred a topology without admixture and then 

sequentially added six admixture events. We excluded the two 

hybrid zones from this analysis, as ongoing hybridization in a highly 

admixed population is not well captured by the TREEMIX model. As we 

do not know the species tree and did not sample a nonhybridizing 

outgroup, more formal tests of introgression (e.g., D-statistics; Green 

et al., 2010) were precluded. 

2.4 | How is genetic differentiation related to 
ecological divergence and geographic distance? 

To assess whether hybridization and introgression are promoted by 

habitat similarity, spatial proximity or both, we examined relation-

ships between genetic distance and both ecological and geographic 

distances. We modelled these relationships by type of comparison 

(intraspecific, interspecific and those involving the hybrid zone). We 

used a regression framework with the maximum-likelihood popula-

tion effects (MLPE) correlation structure described in Clarke, Roth-

ery, and Raybould (2002), which models the interdependencies in a 

set of pairwise distances by including two random effects in the lin-

ear predictor of each observation (i.e., one for each population in 

the pairwise comparison). Code implementing the MLPE correlation 

structure within the R package NLME is available from NSP at github.c 

om/nspope/corMLPE. We used linearized pairwise FST values (Slat-

kin, 1995) as our measure of genetic distance, the Euclidean distance 

between population mean PC1 and PC2 values from the combined 
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soil chemistry and site characteristics PCA as our measure of ecolog-

ical distance, and the natural log of linear kilometres as our measure 

of geographic distance. We regressed genetic isolation against the 

type of comparison, ecological distance, geographic distance and 

interactions between each of the two distances and the type of 

comparison. Both independent variables were centred prior to analy-

sis so that the intercepts could be interpreted as the expected 

genetic distance at the mean value of the continuous predictor vari-

ables. We assessed significance of main effects and interactions with 

a marginal (Type III) F test and employed Wald tests for single 

regression coefficients under the null hypothesis of zero IBD/IBE 

slopes. We used partial correlations to check for collinearity between 

the explanatory variables; additionally, to determine whether ecologi-

cal distance is related to geographic distance, we fit a second regres-

sion model with the MLPE correlation structure with ecological 

distance as the response and geographic distance and comparison 

type as the predictor. To assess whether each type of comparison 

exhibited significant isolation by distance or isolation by ecology, we 

parameterized each model so that the slopes for each type of com-

parison (interspecific pairings, intraspecific pairings, Red Hill v. M. fol-

lettii and Red Hill v. M. stebbinsii) were estimated independently. 

Because we found no significant relationship between genetic and 

ecological distance within any comparison type, or any relationship 

between ecological and geographic distance (see Results), we also 

regressed genetic distance against comparison type and geographic 

distance for the full set of sites for which we had genetic data. This 

geography-only analysis included three additional M. follettii sites (7, 

9 and 10 in Figure 1) at intermediate distances from Red Hill from 

which we did not sample ecological data. 

The distance regression analyses provide a phenomenological 

description of spatial genetic structure that is easily visualized, but 

do not provide a generative description of the data; that is, one can-

not take a fitted model and simulate new allele frequencies that can 

be compared to observed allele frequencies. Thus, it is difficult to 

attribute observed patterns to particular scenarios of gene flow and 

introgression. To model covariance in genotypes across populations 

and species, we adopted the approach of Bradburd, Ralph, and Coop 

(2013), which treats observed allele frequencies at a locus as beta-

binomial random variables and (unobserved, logit-transformed) true 

allele frequencies as a Gaussian random field across geographic and 

ecological space. 

We modified the spatial beta-binomial model of Bradburd et al. 

(2013; see also Wang & Bradburd, 2014) to accommodate two spe-

cies with spatially and/or ecologically varying admixture. Specifically, 

we modelled the (logit) allele frequencies of each species across geo-

graphic and/or environmental space as separate Gaussian random 

fields. At a given spatial location (e.g., a population), we assumed 

that the genotypes are a combination of the two species. Thus, we 

modelled the observed allele frequencies as a mixture of two beta-

binomial distributions, each associated with the underlying random 

field of allele frequencies of a species. The mixture weights are 

unknown quantities that represent the degree of admixture of the 

two species within each population. Each of the two random fields 

has its own stationary mean (per locus) and covariance function 

(shared across loci). To compare among different covariance models 

(described below), we used the Watanabe-Akaike information crite-

rion (WAIC; Watanabe, 2010). Mathematical and computational 

details are provided in Appendix S1. 

Each of the covariance models that we considered represents a 

hypothesis about gene flow between populations. We divided the 

populations into three “blocks”: populations that are phenotypically 

M. stebbinsii, phenotypically M. follettii and a single population in the 

putative Red Hill hybrid zone. The models were constructed by fixing 

the covariance between and within certain blocks to zero: (i) zero 

covariance within and between blocks, representing the lack of any 

type of genetic structure; (ii) positive covariance within and between 

blocks, representing genetic structure of all populations, regardless of 

phenotype; (iii) positive covariance within blocks, representing genetic 

structure of both species within species and no gene flow from the 

hybrid zone; (iv) positive covariance within blocks and between hybrid 

and phenotypically M. follettii populations; and (v) positive covariance 

within blocks and between hybrid and phenotypically M. stebbinsii 

populations. Note that we made a distinction between the phenotypic 

identity of populations and the underlying allele frequencies that are 

associated with the species: for example, under (iv), the allele frequen-

cies for both M. stebbinsii and M. follettii are spatially correlated 

between the hybrid zone and the phenotypically M. follettii popula-

tions, but not between the hybrid zone and the phenotypically 

M. stebbinsii populations. Thus, this covariance model represents the 

formation of hybrid genotypes within a single population that have 

subsequently migrated to M. follettii populations but not to M. stebbin-

sii populations. We fit this series of five models three times: once for 

ecological covariance only, once for geographic covariance only and 

once for both geographic and ecological covariance. 

3 | RESULTS  

3.1 | Ecological divergence 

Monardella folettii and M. stebbinsii show significant differentiation in 

both soil and site characteristics. The first three axes of a PCA of 19 

soil variables represent highly correlated soil variables and explain 

62% of the variance (Figure S1a); subsequent axes represent single 

variables or marginal correlations between variables and are not dis-

cussed further. Letting +/ denote the sign of the loading of vari-

ables onto PCA axes; soil organic matter ( ), ENR ( ), pH (+), K (–), 

Ca (–), H (–), CEC (–) and Ni (–) are highly correlated and load 

strongly on PC1 (37% variance explained); Ca:Mg (+), Mg (–), Zn (+) 

and CEC (–) correlate strongly on PC2 (15% variance); and Cu (–) 

and Fe (–) load strongly onto PC3 (11% variance). A binomial GLMM 

with species as a response and fixed predictors and random slopes 

(per population) for all three PC axes reveals that only PC1 influ-

ences species membership (fit via MCMC; log-odds favouring 

M. stebbinsii = 1.48, p < .001, 95% CI = 0.68–2.35, N = 45). 

The first two axes of our PCA of site characteristics (various 

types of ground cover, slope and aspect) explain 73% of the 

https://0.68�2.35
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variation in nine variables among 10 sites (Figure S1b). The first axis 

represents interspecific differences in site characteristics (binomial 

GLM via MCMC; log-odds favouring M. follettii = 9.9, p < .001, 

N = 10) and distinguishes steep, boulder-filled sites (negative load-

ings; M. stebbinsii) from flatter, more vegetated sites (positive load-

ings; M. follettii), each with substantially different co-occurring plant 

communities. The second axis represents intraspecific variation in 

site characteristics, such as aspect, shrubbiness and rock cover. 

Finally, the first two axes of our combined PCA of soil and site 

variables explain 36% and 12% of the variance, with PC1 representing 

interspecific differences and distinguishing steep, boulder-filled sites 

with high pH from flatter, more vegetated sites with high soil organic 

matter, Ca, ENR, Ni, K and CEC (Figure 2). Euclidean distances 

between mean population scores for PC1 and PC2 from the combined 

soil and site PCA were used as a measure of ecological distance among 

populations for further analyses. Although only phenotypically 

M. stebbinsii-like plants were sampled for ecological characteristics at 

Red Hill, this site is intermediate. It shows M. folletti-like soil chemistry 

and M. stebbinsii-like site characteristics (Figure S1). 

Monardella folettii and M. stebbinsii show evidence for differential 

uptake of three elements. Regardless of the soil concentration, foliar 

Fe is higher in M. stebbinsii, while foliar Ni is higher in M. follettii 

(Figure 3, Tables S3 and S4). The influence of soil Zn on foliar Zn 

differed between species; with increasing soil concentrations, foliar 

concentrations increased in M. stebbinsii but decreased in M. follettii 

(Figure 3, Tables S3 and S4). Foliar concentrations of other elements 

were predicted by soil concentrations and/or soil pH, but not by 

species identity per se. Ca, K and Zn decreased with soil pH, while 

Mg increased with soil pH (Figure S2, Tables S3 and S4). Foliar K, 

Mn and Ni increased while foliar Cu decreased with increasing soil 

concentrations (Figure S2, Tables S3 and S4). 

3.2 | SNP genotyping 

The Illumina sequencing returned about 600 million reads for 

M. stebbinsii and M. follettii. After filtering for sequence quality and 

minimum read depth, we recovered 3,615 loci, each containing a sin-

gle bi-allelic SNP. After filtering for coverage across individuals and 

loci, we identified 158 SNP loci shared among 215 individuals, 

including 77 M. stebbinsii, 100 M. follettii, 12  M. sheltonii, 17 individ-

uals from Red Hill and nine individuals from Bean Hill (Table S1). 

The average read depth across all loci was 2.39 prefiltering and 849 

postfiltering. Summary statistics show similar levels of genetic diver-

sity within each or our focal species, but higher diversity at Red Hill, 

as expected for a hybrid zone. They also show low absolute diver-

gence within species compared to between species (Table S5). 

3.3 | Genetic isolation 

The STRUCTURE analysis suggests a complex pattern of hybridization 

and admixture across the three species, with the most extensive 

admixture within M. follettii (Figure 4). The K = 3 model shows three 

clusters that approximately correspond to the three species. 
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F IGURE  2  Principal components analysis of soil chemistry and 
site characteristics showing 95% confidence ellipses (a) and a biplot 
of loading factors (b). Numbers inside each ellipse corresponds to 
Figures 1 and 4. Euclidean distances between mean population 
scores were used as a measure of ecological distance in further 
analyses. For this data set, only plants that morphologically 
resembled Monardella stebbinsii were sampled from Red Hill 

Excluding the hybrid zones at Red Hill and Bean Hill, M. stebbinsii 

individuals have no more than 3% of their genome (mean 0.3%) 

assigned to the M. follettii-like cluster. Yet M. follettii individuals, out-

side of the Red Hill and Bean Hill hybrid zones, show 3%–40% 

assignment (mean 18%) to the M. stebbinsii-like cluster. Across all 

individuals at Red Hill, the site at which M. stebbinsii and M. follettii 

occur in close sympatry assignment to the M. stebbinsii-like cluster 

ranges from 35% to 96%, with the rest of the genome assigned 

almost entirely to the M. follettii-like cluster. Our detailed study of 

hybrid indices at Red Hill using hindex shows that most individuals 

exhibit significant hybridity between M. follettii and M. stebbinsii and 

that hybrid scores form a continuum between the parent species, 

consistent with backcrosses and/or mating among hybrids (Figure 5). 
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F IGURE  3  Three elements show differences in uptake 
independent of soil elemental concentrations or soil pH. For Fe, 
neither soil pH nor soil Fe predicts tissue Fe, but Monardella 
stebbinsii has higher tissue Fe. Tissue Ni is positively related to soil 
Ni, and M. follettii has more tissue Ni for a given soil Ni. For Zn, the 
effect of soil Zn on tissue Zn differs between species (positive for 
M. stebbinsii and negative for M. follettii). Model selection, 
coefficients and significance levels are detailed in Tables S3 and S4 

Both M. stebbinsii and M. follettii also show some assignment to 

the M. sheltonii-like cluster (Figure 4). Approximately 13% of the 

genome for all M. stebbinsii individuals from one site and half the 

individuals from another site are assigned to the M. sheltonii-like 

cluster. The former site is adjacent to a population of M. sheltonii 

that was not sampled for this study, but could be a source of admix-

ture. In contrast, Monardella sheltonii individuals show essentially no 

assignment to the M. stebbinsii-like cluster (range 0.1%–0.5%), but a 

consistent 14% assignment (range 13%–15%) to the M. follettii-like 

cluster. Individuals from M. follettii sites, excluding Bean Hill, show 

0.1%–11% assignment to the M. sheltonii-like cluster (mean 1.6%). At 

Bean Hill, where both M. follettii and M. sheltonii are present, assign-

ment to the M. follettii-like cluster varies from 18%–98% (mean 

80%), with the rest of the genome assigned almost entirely to the 

M. sheltonii-like cluster. At Bean Hill, the M. stebbinsii-like cluster 

composes only 0.5%–11% of the genome (mean 3%). 

TREEMIX indicates that a simple bifurcating tree with no admixture 

is a poor fit to the data (Figure S3). Adding admixture events to the 

tree improves the model fit, with ln(likelihood) scores levelling off 

after the addition of three admixture events. The placement of these 

admixture events on the tree indicates introgression from M. stebbin-

sii into M. follettii populations in the order expected based on their 

geographic distance from Red Hill (Figure S3). In all trees, M. stebbin-

sii shows more neutral divergence among sites due to genetic drift, 

consistent with its higher inbreeding coefficient and FST values 

(Smith & Kay, 2018). 

3.4 | Isolation by ecology and geographic distance 

Within comparison types (intraspecific, pairings involving either spe-

cies and Red Hill, and interspecific) gene flow does not show isola-

tion by ecology (IBE; Figure S4a), although across comparison types 

there is progressively more genetic and ecological distance, as indi-

cated by significantly different intercepts (F4,33 = 5.52, p = .001 for 

genetic distance; F4,37 = 94.97, p < .0001 for ecological distance). 

For isolation by distance (IBD), we find similar patterns for the com-

bined model that includes ecological distance (Figure S4b) and for 

the geography-only model that includes additional M. follettii sites 

(Figure 6). There is no significant IBD for intraspecific comparisons 

(combined model: b = 0.009, p = .16; geography-only model: 

b = 0.002, p = .4775). However, genetic distance is positively corre-

lated with geographic distance for interspecific comparisons (com-

bined model: b = 0.030, p < .0001; geography-only model: 

b = 0.031, p < .0001) and for comparisons between Red Hill and 

M. follettii (combined model: b = 0.018, p = .001; geography-only 

model: b = 0.021, p < .0001). Thus, admixture between species and 

between the Red Hill hybrid zone and M. follettii can be partially 

explained by the geographic distance of those pairings. There is no 

significant relationship between ecological distance and geographic 

distance (F4,37 = 0.23668, p = .916), which facilitates our ability to 

separate the effects of these factors on genetic distance. 

Our modelling of genetic covariance between populations and 

species shows that covariance between species is best explained by 

geographic distance, as opposed to ecological distance or geographic 

and ecological distance combined (Table S6). The best-fit covariance 

model for ecological distance (as measured by WAIC) includes 

covariance only within each species and provides relatively little 

improvement in model fit from a null model of no covariance 
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F IGURE  4  Genetic structure of all individuals in the K = 3 model as estimated by Bayesian assignment. Each vertical bar represents one 
individual, and the proportion of each colour within each bar corresponds to the proportion of the individual’s genome assigned to each of the 
three genetic clusters. Vertical black bars separate different geographic sampling sites. The morphological species sampled at each site are 
indicated below the bars, and numbers correspond to Figures 1 and 2. Monardella follettii populations are arrayed ordinally according to their 
geographic distance from the Red Hill site to highlight the decreasing assignment to the M. stebbinsii-like cluster with geographic distance from 
the hybrid zone 
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F IGURE  5  Maximum-likelihood estimates of ancestry with 95% 
confidence intervals for individual plants at the Red Hill hybrid zone. 
Zero values indicate complete ancestry from Monardella stebbinsii 
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F IGURE  6  Isolation-by-distance (IBD) relationships for different 
types of pairings. Pairings between species and between Red Hill and 
Monardella follettii show significant IBD (solid lines), but pairings within 
species or between Red Hill and M. stebbinsii do not (dashed lines) 

(Table S6a). In contrast, the two best-fit covariance models for geo-

graphic distance substantially improve the model fit over the null 

model and include a model with spatial covariance between all popu-

lations, and a model with spatial covariance within species and 

between M. folletii and the hybrid zone (Table S6b). The model with 

covariance between all populations has the lowest WAIC and effec-

tive number of parameters (the “complexity penalty” component of 

WAIC), while the model where the only cross-species gene flow 

occurs between the hybrid zone and M. follettii had a greater log 

pointwise predictive density (the “goodness-of-fit” component of 

WAIC; Table S6b). Examination of pointwise WAIC scores (i.e., the 

contributions of each data point to the overall score) shows that the 

difference in WAIC between the two top models is strongly 

influenced by a single locus (Figure S5) that is fixed in all populations 

of all species except for three geographically disparate populations 

of M. follettii. Removal of this locus from the analysis swaps the 

order of the WAIC scores of these two models, but leaves the order 

of the remaining models unchanged (Table S6). The ordering of the 

models is invariant to removal of any other single locus. Modelling 

genetic covariance based on both ecological and geographic dis-

tances provides no additional improvement in model fit over geogra-

phy only (Table S6c). 

From this analysis, the species mixture weights agree with the 

results of STRUCTURE and are consistent across all covariance models: 

the allele frequencies in the Red Hill hybrid zone are a mixture of 

the two species at nearly equal proportions, the phenotypically 
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M. stebbinsii populations show little cross-species admixture, and the 

phenotypically M. follettii populations range from little to some 

cross-species admixture (Figure S6). 

4 | DISCUSSION  

4.1 | Species differ in soil chemistry, site 
characteristics and mineral uptake 

Despite the substantial similarities between M. follettii and M. steb-

binsii—both rare perennials with similar stature, nearly identical flow-

ers and restricted to the same ultramafic exposure—we find striking 

differences in habitat affinity and biogeochemical niche. Monardella 

stebbinsii occupies extremely steep, open and boulder-filled slopes 

that are unstable for most plant growth. These physical characteris-

tics lead to extremely thin soils with minimal organic matter, soil 

moisture and nutrient content. In contrast, the gently sloping M. fol-

lettii habitat is more favourable for substantial plant growth as the 

relatively deeper soils accumulate more organic matter, nutrients and 

moisture. Although all sites fall under the broad spectrum of what 

nongeologists call serpentine, they also differ in their parent material, 

with M. stebbinsii found on serpentinite-derived soil and M. follettii 

on peridotite-derived soil (Coppoletta & Woolhouse, 2010), a differ-

ence that likely underlies some of the differences in soil chemistry 

and slope stability (Alexander & DuShey, 2011). For both above- and 

below-ground abiotic factors, the M. stebbinsii habitat is much 

harsher for typical plant growth than the M. folletii habitat, yet it 

may also be a less competitive environment, as there are fewer co-

occurring trees, shrubs and herbs. 

Two lines of evidence suggest the habitat differences we identi-

fied reflect divergent adaptation. The entire serpentine exposure is 

only a few km2 of nearly contiguous habitat, and populations of the 

two species grow interspersed, with distances between heterospeci-

fic populations similar to distances between conspecific populations 

(Figure 6). Thus, the species are within easy dispersal distance of 

each other, yet maintain substantial ecological differences, with only 

the M. stebbinsii adjacent to the Red Hill hybrid zone exhibiting a 

somewhat intermediate habitat (Figure 2). This pattern likely results 

from strong selection against migrants, although only a reciprocal 

transplant in the field would definitively test that hypothesis. 

Because of the species’ conservation status, the fragility of the 

M. stebbinsii habitat and the longevity of the plants, field transplants 

are not possible in this system. We attempted a common garden 

study in the glasshouse, in which both plant species were sown into 

both types of field-collected soil. All plants died within the first cou-

ple months on M. stebbinsii soil. In contrast, M. stebbinsii had lower 

survival and slower growth than M. follettii on M. follettii soils (Wool-

house, 2012). It is unclear how these results can be generalized to 

the field because several habitat characteristics were not replicated 

in the glasshouse, such as water availability and the competitive 

environment. Second, our leaf tissue analyses suggest that the spe-

cies have physiological differences in uptake for several soil ele-

ments, including Zn, Fe and Ni. Future work could use hydroponic 

solutions that manipulate elemental concentrations, perhaps singly 

and in combination with pH (e.g., Rajakaruna et al., 2003) to better 

understand the physiological differences tentatively identified here. 

Our results highlight the wide range of serpentine habitats pre-

sent even in small geographic areas and show that serpentine adap-

tation can be multifaceted. In general, serpentine soils are shallow, 

retain little water and are characterized by low Ca:Mg molar ratios, 

high levels of toxic metals and low concentrations of essential plant 

nutrients (Brady, Kruckeberg, & Bradshaw, 2005; Rajakaruna, Harris, 

& Alexander 2009). However, within the broad category of serpen-

tine, there are habitats ranging from barrens to chaparral, grassland 

and forest; soils derived from a range of ultramafic parent material 

and exposed to weathering for varying amounts of time; and a wide 

range of soil chemistries, water availability and spatial heterogeneity 

(Alexander & DuShey, 2011; Baythavong & Stanton, 2010; Krucke-

berg, 1984; Rajakaruna & Boyd, 2014). Physiological mechanisms of 

serpentine adaptation are also diverse and encompass ion exclusion, 

selective translocation, sequestration, tolerance and hyperaccumula-

tion as well as drought tolerance and physiognomic changes such as 

increased root systems and smaller stature (reviewed in Kay et al., 

2011; Palm & Van Volkenburgh, 2014). Treating adaptation to ser-

pentine as a binary characteristic, as is often done (but see Safford 

et al., 2005), is clearly a simplification. This study, along with other 

studies documenting fine-scale habitat specialization within serpen-

tine among close relatives (e.g., Jurjavcic, Harrison, & Wolf, 2002; 

Pope, Fong, Boyd, & Rajakaruna, 2013; Yost et al., 2012), is impor-

tant for better characterizing the nature of serpentine adaptation 

and for understanding distinct pathways to edaphic specialization in 

a heterogeneous landscape. 

4.2 | Genetic isolation is incomplete among species 

Despite the substantial differences in habitat affinity, we find evi-

dence of extensive hybridization and introgression among our two 

serpentine endemic focal species. Red Hill represents an ecologically 

intermediate site and an active hybrid zone between M. follettii and 

M. stebbinsii, with a nearly continuous distribution of hybrid indices 

indicating advanced generations of hybrids and backcrosses. Outside 

this site, however, introgression appears asymmetrical, occurring 

from M. stebbinsii into M. follettii, but not in the reverse direction. 

Mixed assignment in a STRUCTURE analysis can be caused by factors 

besides introgression, including lineage sorting from a polymorphic 

ancestral species, bottlenecks affecting a derived species in which a 

subset of genetic diversity is lost, and the presence of unsampled 

introgressing species in the area. However, introgression between 

our focal species, specifically from M. stebbinsii to M. follettii, is the 

most parsimonious explanation of our results because there are obvi-

ous morphological hybrids; the measures of absolute genetic diver-

sity and divergence do not support a budded origin of M. stebbinsii 

from within M. follettii; the TREEMIX, distance regression and covari-

ance modelling results all support introgression from M. stebbinsii 

into M. follettii according to geographic distance (both north and 

south) from Red Hill; and we include genotypic data from the third 
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Monardella species on the Feather River serpentine complex (M. shel-

tonii). Our results strongly support a history of gene flow from 

M. stebbinsii and/or the Red Hill hybrid zone into M. follettii, 

although we cannot clearly distinguish these two possible scenarios. 

There is little support for either widespread homogenization of neu-

tral loci between the species or a singular admixture event in their 

evolutionary history. 

We also find STRUCTURE evidence consistent with an active hybrid 

zone between M. follettii and M. sheltonii at Bean Hill (Figure 4), pos-

sible introgression from M. follettii into M. sheltonii and possible 

introgression from M. sheltonii into M. stebbinsii, although we would 

need more extensive sampling of M. sheltonii to substantiate these 

patterns. Nevertheless, our results suggest that genetic barriers 

among these three species are porous, but only in certain directions 

and locations. 

The hybridization and introgression among these species are 

especially striking, as they are not thought to be particularly closely 

related, relative to the rest of the Monardella genus. Elvin and Sanders 

(2009) place M. follettii in the Odoratissimae alliance, in which species 

share glabrous (smooth) leaves and suffrutescent habit (erect stems 

woody near the base and herbaceous at the top). In contrast, they fit 

M. stebbinsii in the Australae alliance, a group of putatively relictual 

mountaintop dwellers that appear similar despite their allopatric dis-

tribution. Others have argued that M. stebbinsii is not closely related 

to any other member of the genus (Hardham & Bartel, 1990). The 

widespread congener, M. sheltonii, occurs prolifically throughout Plu-

mas and Lassen National Forests and is occasionally sympatric on ser-

pentine soils with the rare species. Elvin and Sanders (2009) assign 

M. sheltonii to the Villosae alliance on the basis of its wide distribu-

tion in western North America. In our study, the low number of 

shared GBS loci recovered also supports more distant relationships 

among the species. Unfortunately, standard species-level molecular 

phylogenetic tools, such as chloroplast or nuclear ribosomal DNA, 

have not proven useful in this genus, and we have a poor understand-

ing of phylogenetic relationships or phylogeography. Thus, it is 

unclear whether or how long these species have been geographically 

isolated from each other before experiencing sympatry. 

4.3 | Hybrids occur on an ecologically intermediate 
site, but gene flow is primarily related to geographic 
distance 

Our data best support a scenario in which intermediate habitat sup-

ports an active hybrid zone and spatial proximity determines the 

extent of introgression away from the hybrid zone. Red Hill is essen-

tially a hybrid habitat, with the soil clustering more closely with 

M. follettii (Figure S1a), but the site characteristics clustering with 

M. stebbinsii (Figure S1b). Thus, it appears that the hybrid habitat 

facilitates the establishment of genetic hybrids that span a wide 

range of hybrid indices. Nevertheless, outside of Red Hill, geographic 

proximity of sites, not habitat similarity, predicts the amount of 

introgression from M. stebbinsii into M. follettii. This pattern is sug-

gested by our STRUCTURE results, in which M. follettii populations with 

the highest assignment to the M. stebbinsii-like cluster are near Red 

Hill, the ones with intermediate assignment are further north and 

south of Red Hill, and the ones with very little assignment are on 

relatively distant and disjunct serpentine outcrops to the south (Fig-

ure 4). This pattern is corroborated by the TREEMIX, isolation-by-dis-

tance regressions and covariance modelling results. The Red Hill 

hybrid zone could provide fruitful sampling for a future detailed 

study of genotype–environment associations to understand whether 

hybrid indices, or even particular SNP alleles, are associated with 

particular habitat variables (e.g., Coop, Witonsky, Di Rienzo, & 

Pritchard, 2010). In our current study, we did not find any SNP loci 

with significant departures from neutrality that would indicate selec-

tion for or against introgression (data not shown), yet this is not sur-

prising with our limited set of shared loci, our averaging of 

ecological PC scores across all individuals at a site and our lack of 

ecological data from the full set of sites sampled in the genetic 

study. 

At a mechanistic level, we speculate that hybridization among 

these species is promoted by a lack of strong prezygotic reproduc-

tive isolating mechanisms. The flowers of all three species are nearly 

identical, and at least M. follettii and M. stebbinsii are primarily 

outcrossing and attract a partially overlapping range of insect pollina-

tors, including many bee species and a few flies (Woolhouse, 2012). 

They differ in flowering phenology, with peak M. follettii flowering in 

June and peak M. stebbinsii flowering in July and August, but there 

is some overlap, and the species are seen coflowering at Red Hill 

(Woolhouse, 2012). Postzygotic isolation, in terms of intrinsic hybrid 

viability and fertility or hybrid performance in the field, may also be 

weak and would need to be assessed in experimental crosses. 

The apparent asymmetry of introgression is a striking feature of 

this system and has several potential explanations. There may be 

asymmetry in the strength of prezygotic barriers such as pollinator 

visitation, the mechanics of pollen transfer by pollinators, flowering 

time overlap or pollen–pistil interactions. These barriers show asym-

metries in many plant systems in which they have been examined 

(reviewed in Lowry et al., 2008; Yost & Kay, 2009) and could be 

independent of the edaphic habitat characteristics we measured. 

There also could be asymmetric postzygotic isolation, such as 

cytonuclear incompatibility in one direction (Chou & Leu, 2010; Fish-

man & Willis, 2006). One species could receive more heterospecific 

pollen simply as a result of being more rare; however, in this case, 

we would expect the exceedingly rare M. stebbinsii to experience 

more introgression, which is the opposite of what we found. It could 

be that there has been selection on introgressed alleles; for example, 

perhaps M. stebbinsii alleles are beneficial in allowing M. follettii to 

persist in certain habitats or M. follettii alleles are deleterious in 

M. stebbinsii habitats, as has been found for introgressed alleles 

involved in serpentine adaptation in Arabidopsis species (Arnold 

et al., 2016), although we did not have the appropriate design to 

test this hypothesis. Finally, patterns of inbreeding and migration 

may play an important role in facilitating introgression from M. steb-

binsii to M. follettii but not the reverse. Monardella stebbinsii is char-

acterized by lower heterozygosity, a higher inbreeding coefficient 
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and higher FST than M. follettii (Smith & Kay, 2018); this overall isola-

tion of M. stebbinsii populations may slow the spread of M. follettii 

alleles away from any hybrid zone. 

Factors allowing the coexistence of congeners have generated 

substantial interest for their importance in both speciation and com-

munity assembly processes. Our work provides compelling evidence 

that coexisting congeners are ecologically distinct and robust to the 

potentially homogenizing effects of hybridization and introgression. 

Although our focal taxa show broadly similar habitat affinities, 

co-occurring on the same local serpentine exposure, they partition 

habitats in a fine-grained and consistent way. Monardella follettii is 

especially striking in having essentially no genetically pure individuals 

according to STRUCTURE, yet maintaining its morphological integrity and 

ecological integrity as a species. Although there is a long history of 

comparing close relatives on and off serpentine, this study is one of 

the first to document divergent specialization between close relatives 

within serpentine soil and highlights the complexities of edaphic 

adaptation. 
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