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Chapter 1. General introduction 
The prevalence of antibiotic resistance and decrease in discovery of novel 

antibiotics from the traditional producer actinomycetes in recent years necessitates 

the identification of potentially novel microbial resources to produce natural 

products [1]. Remarkably, the class Ktedonobacteria was established in 2006 for 

the gram-positive, aerobic, filamentous bacterial lineage in phylum Chloroflexi [2],

and was characterized with their complex life cycle by forming spore-like structures 

on branched mycelia [2-4] and relative large genomes (5.56~13.66 Mb) [5, 6]. 

Similar to actinomycetes, isolates and environmental DNA clones belonging to this 

class were detected to be ubiquitous in various terrestrial environments [7-12]. 

Moreover, novel secondary metabolite compounds were discovered from this 

class prior to this study [13, 14]. Altogether, these above characteristics encourage 

us to propose the class Ktedonobacteria as a promising next-generation microbial 

resource for discovery of novel antibiotics [15, 16]. 

However, 1) only two orders, three families, four genera, and seven species have 

been formally proposed prior to this study [2-4, 17-19], which are extremely 

unenough; 2) phylogenetic position, genome features, and biosynthetic potential 

of this class remain unclear; 3) no studies yet had been focused on discovering 

novel bioactive compounds from the class Ktedonobacteria. 

Accordingly, in this study, I attempted to isolate novel Ktedonobacteria strains and 

comprehensively study the taxonomic properties of the class in Chapter 2. In 

Chapter 3, I performed whole genome sequencing for 18 Ktedonobacteria strains,

and studied the genome features and biosynthetic potential of this class. In 

Chapter 4, I screened the antimicrobial activity of the class Ktedonobacteria and 

attempted to isolate novel bioactive compounds. In Chapter 5, I attempted to clone 

a type II polyketide synthase (PKS) gene cluster to heterologously express an

anthraquinone compound discovered in Chapter 4. Given our findings here, I 

concluded in Chapter 6 that, the gram-positive, aerobic, and filamentous 

Ktedonobacteria represents a versatile and promising microbial resource for 

pharmaceutical and biotechnological use. 
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Chapter 2. Isolation and taxonomic study of the class Ktedonobacteria  
According to previous metagenomic studies, the class Ktedonobacteria

predominate in geothermal and high-altitude oligotrophic environments although 

they also exist in common soil at low relative abundance [10-12]. Thus, we

collected soil samples from Onikobe geothermal area, "Tengu-no-mugimeshi" 

(1,870 m above sea level), and Mt. Zao (1,600 m), to efficiently isolate novel 

Ktedonobacteria strains, as shown in Fig. 1. Onikobe geothermal area was the 

isolation source from which two previously proposed Thermogemmatispora

species were recovered [4]. The "Tengu-no-mugimeshi" is soil-like orange-to-

brown colored microbial mass that has been recognized in the volcanic zone of 

central Japan, and is also known as the "eatable soil". According to the 

investigation of bacterial community composition in this study, the "Tengu-no-

mugimeshi" is predominated by the class Ktedonobacteria at 17.31~30.06% 

relative abundances (Fig. 2). Mt. Zao is a complex and active volcano nearby. The

collected soil samples were directly spread on selective medium and incubated at 

30 °C or 65 °C for weeks [18]. Consequently, seven novel Ktedonobacteria strains 

were successfully isolated: strains A1-2T and A1-2T from Onikobe, strains Uno3T,

Uno11T, Uno16T, Uno17 from "Tengu-no-mugimeshi", and strain W12T from Mt. 

Zao. Simultaneously, eight unclassified Italian Ktedonobacteria isolates (strains 

SOSP1-1, SOSP1-9, SOSP1-30, SOSP1-52, SOSP1-85, SOSP1-142, 150039, 

and 150040), which were isolated together from various soil samples (soil collected 

from an ant house, Honduras; black locust wood soil, Italy; pine wood soil, Spain;

soil collected from a solfatara volcano, Italy; and soil under a bush, France) with K. 

racemifer SOSP1-21T [2], were obtained from Dr. Cavaletti, our co-researcher.

Collectively, these Ktedonobacteria isolates were subjected to a comprehensive 

phylogenetic, morphological, physiological, and chemotaxonomic analysis to study 

the taxonomic common features and diversities of the class. 

As given in Fig. 3, members in families Ktedonobacteraceae,

Thermosporotrichaceae, and Thermogemmatisporaceae of the class

Ktedonobacteria are all filamentous and form exospores (1.0~2.0 μm in size) on

branched mycelia by budding. As for the Dictyobacteraceae family, however, 
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Dictyobacter aurantiacus S27T and Dictyobacter sp. SOSP1-9 formed putative 

sporangiospores (8.5~10.0 μm) where other strains formed unclear structures 

(1.0~2.0 μm in size). Sporangia enclose sporangiospores inside and are 

commonly seen in plants and some fungal phyla. In this study, however, the 

formation of sporangia by D. aurantiacus S27T was accidentally observed (Fig. 4),

thus represented the third report of prokaryotic sporangia formation following some 

genera of actinomycetes (such as Actinoplanes) and myxobacteria [20, 21]. Unlike 

that of Actinoplanes [21], sporangiospores of D. aurantiacus S27T are non-motile. 

Besides the morphological similarities, the class Ktedonobacteria also share some 

important phenotypic traits with the members of actinomycetes: Gram-stain 

positive, aerobic, and heterotrophic metabolism on various carbohydrates 

substrates including cellulose (Table 1). However, Ktedonobacteria differentiate 

with actinomycetes in lower genomic G+C content (50~60 mol%), type of major 

menaquinone (MK-9(H2) or MK-9), and the cell wall composition (Table 1). 

Moreover, members of the class Ktedonobacteria contain an unusual amino acid 

of β-alanine on the cell wall peptidoglycan, and unusual cellular fatty acids of C16:1-

2OH and 12,17-Dimethyl C18:0. However, our reconstruction of the phylogenetic 

position basing on 27 core genes extracted from genomes separated the class 

Ktedonobacteria from actinomycetes, and clearly determined its affiliation to the 

phylum Chloroflexi at 100% bootstraps supporting rate (Fig. 5). Nonetheless, the 

class Ktedonobacteria still represent a unique bacterial lineage in the phylum 

Chloroflexi given the dissimilarities in morphological, physiological, and 

chemotaxonomic data between the two.  

Comprehensively considering the taxonomic differences compared with known 

type strains, the seven novel isolates recovered from  Onikobe geothermal area,

"Tengu-no-mugimeshi", and Mt. Zao were formally proposed with the designated 

names: Thermogemmatispora aurantia sp. nov. (strain A1-2T), 

Thermogemmatispora argillosa sp. nov. (A3-2T) within family 

Thermogemmatisporaceae, Dictyobacter kobayashii sp. nov. (Uno11T), 

Dictyobacter alpinus sp. nov. (Uno16T), Dictyobacter vulcani sp. nov. (W12T), and 

Tengunoibacter tsumagoiensis gen. nov., sp. nov. (Uno3T) within the 
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Dictyobacteraceae fam. nov. As for the eight Italian isolates, Dictyobacter sp. strain 

SOSP1-9 represented novel species in the genus Dictyobacter, where strains 

SOSP1-30, SOSP1-52, and SOSP1-85 are classified novel species in the genus 

Ktedonobacter. Dictyobacteraceae bacterium SOSP1-142 and 

Ktedonobacteraceae bacterium SOSP1-1 represented two new genera within the 

families Dictyobacteraceae and Ktedonobacteraceae, respectively.

Ktedonobacterales bacterium 150039 and Ktedonobacterales bacterium 150040,

however, formed independent clades on the phylogenetic tree (Fig. 5). Basing on 

the huge differences on physiological and chemotaxonomic properties, these two 

strains were therefore proposed as two new families in the order 

Ktedonobacterales. These Italian strains will be formally proposed after name 

designating in cooperation with Dr. Cavaletti. 

Chapter 3. Whole genome sequencing, general genome features, and 
biosynthetic and cellulolytic potential of the class Ktedonobacteria
Non-contiguous genomic DNA of the 18 taxonomic studied Ktedonobacteria

strains were extracted and sequenced on Illumina or PacBio platforms. As given 

in Table 2 and Fig. 6, complete genome of Tg. argilla A3-2T contains a circular 

chromosome (5.54 Mb) whereas Ts. hazakensis COM3 contains a linear 

chromosome (7.67 Mb). T. tsumagoiensis Uno3T possesses a circular putative 

chromosome (5.30 Mb) and a circular putative mega-plasmid (2.40 Mb). D. 

aurantiacus S27T and D. alpinus Uno16T each comprises a linear putative 

chromosome (6.13 Mb and 5.58 Mb, respectively) and a linear putative mega-

plasmid (2.75 Mb and 3.14 Mb, respectively). Additionally, D. alpinus Uno16T also 

possesses two circular plasmids (199 Kb and 43 Kb, respectively) (Fig. 6). Initially, 

putative mega-plasmids of these strains were thought to be part of the 

chromosomes because they were quite large in size compared with normal 

bacterial plasmids. However, these sequences were determined to be incomplete 

due to the absence of most bacterial house-keeping genes, translation genes, 

DNA replication and repair genes, and genes involved in TCA cycle and oxidative 

phosphorylation [22], which are essential genes for growth thus suggesting that 

they may be "mega-plasmid" [23, 24]. Moreover, genome sizes of the thermophilic 
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strains in the families Thermosporotrichaceae (7.28 to 7.67 Mb) and 

Thermogemmatisporaceae (5.54 to 5.61 Mb) were the relatively small in the class 

Ktedonobacteria, but were still quite large among thermophilic bacteria given that 

growth temperature and genome size in bacteria are negatively correlated and 

thermophilic bacteria tend to have a small genome [25]. By contrast, the other 

mesophilic families Dictyobacteraceae and Ktedonobacteraceae two novel 

families harbored genomes ranging from 7.21 to 13.66 Mb, which were 

comparable to that of the Streptomyces strains [26].  

To evaluate the biosynthetic potential of the class Ktedonobacteria, I used 

antiSMASH v5.0 [27] to predict putative biosynthetic gene clusters (BGCs) for 

secondary metabolite in the 23 available Ktedonobacteria genomes listed in Table 
2. As shown in Fig. 7, a large number of 5~22 putative BGCs per genome encoding 

for secondary metabolites were predicted in these Ktedonobacteria genomes,

which far exceeded the number of BGCs annotated in other Chloroflexi species 

(0~4 BGCs), and were comparable to well-known antibiotic-producing 

actinomycetes (6~29 BGCs identified in this study). Moreover, these identified 

BGCs exhibited very limited similarity with known clusters, indicating they may 

produce novel natural products. Also, I observed that BGCs encoding for peptide 

compounds including non-ribosomal peptide synthase (NRPS), NRPS/T1PKS 

hybrid, and ribosomally synthesized and post-translationally modified peptide 

(RiPP) family predominate in the Ktedonobacteria genomes, which may assist 

them in fighting against their competitors and predators in their niches [28, 29]. 

Considering that class Ktedonobacteria constitutes a relatively new bacterial taxa, 

to date only very limited knowledge is available regarding their secondary 

metabolites. Thus, the domain-specific phylogenetic analysis of the 

Ktedonobacteria-originated PKS keto-synthesis (KS) and NRPS condensation (C) 

domains may provide a better understanding of their functional and evolutionary 

classification [30]. As shown in Fig. 8A, the most abundant functional type among 

the Ktedonobacteria PKS-KS domains was assigned to hybrid KS and modular KS,

whereas LCL, DCL, and epimerization types were the most abundant in the NRPS-
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C domains (Fig. 8B). Moreover, the majority of Ktedonobacteria-derived KS and 

C domains formed independent clusters from those derived from other phyla. 

Members within the class Ktedonobacteria exhibit a broad range of utilization of 

carbohydrates or degradation abilities in our physiological assays in Chapter 2,

indicating that they may represent a potential cellulolytic bacterial group. However, 

comprehensive characterization of CAZymes in the genomes of Ktedonobacteria

are still rare in the literature. Accordingly, I performed genome-wide analysis to 

profile the composition and distribution of CAZymes in the 23 available 

Ktedonobacteria genomes. As shown in Fig. 9, a large number of 153~320 genes 

per genome encoding for putative CAZymes were predicted, which far exceeded 

the number of CAZymes annotated in other Chloroflexi species (12~165 CAZymes 

per genome), and were comparable to well-known cellulolytic actinomycetes 

(100~244 CAZymes). The most abundant CAZyme class in the genomes of 

Ktedonobacteria were GHs and GTs, with 63-139 GHs and 53-108 GTs per 

genome, and were assigned to 85 GH families, 18 GT families, 11 CE families, 8 

AA families, 5 PL families, and 18 CBM families, as given in Fig. 10. Remarkably, 

GH3 and GH5 families, which predominate in the Ktedonobacteria genomes, are 

characterized as plant polysaccharide-degrading enzymes, and have played 

important roles in cellulose and hemicellulose degradation [31].  

Chapter 4. Antimicrobial activity of the class Ktedonobacteria and discovery 
of novel bioactive compounds  
The above studies indicate the class Ktedonobacteria may produce numerous 

novel natural products. Herein, culture broth of six representative Ktedonobacteria

species were extracted with acetone and subjected to in vitro antimicrobial 

screening. As a result, mesophilic strains of D. aurantiacus S27T, D. alpinus

Uno16T, T. tsumagoiensis Uno3T, exhibited broad antibacterial spectra against 

both gram-positive and gram-negative bacterial strains. The thermophilic strains 

Ts. hazakensis COM3 and Tg. argilla A3-2T also strongly inhibited the gram-

positive bacterial strains. Given that gram-negative bacterial strains are becoming 

increasingly antibiotic resistant owing to their protective outer membranes and 
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constitutively active efflux pumps [32, 33], these mesophilic Ktedonobacteria

strains may contribute to the development of novel antibiotics targeting gram-

negative pathogens. Herein, we decided to fractionate the crude extract and isolate 

novel bioactive compounds from strains Ts. hazakensis COM3 and D. alpinus

Uno16T. 

Ts. hazakensis COM3 was cultured in a liquid medium (0.2% Peptone, 0.1% Yeast 

extract, 0.1% MgSO4, 0.1% NaCl) added with 2% Diaion® HP-20 resin at 50 °C for 

a total volume of 72 L. The culture broth was extracted with acetone and 

fractionated with Sephadex® LH-20 gel filtration chromatography eluted with 20% 

and 80% MeOH (Fig. 11A). The 80% MeOH fraction 1 showed broad antimicrobial 

activity against gram-positive bacterial strains (Fig. 11B), thus was purified with 

various chromatography and the chemical structure was revealed using various 

NMR (1H-, 13C-, and 2D-). Unfortunately, the target compound was determined to 

be 2,4,6-triphenyl-1-hexene (C24H24, MW 312.4), a known metabolite of the fungus 

Phellinus pini [34]. Moreover, the isolated compound showed no antimicrobial 

activity after purification, which was in accordance with previous research [35]. 

However, given that the 80% MeOH fraction 1 showed strong anti-M. bovis activity 

in Fig. 11B, the real antimicrobial compound remained to be discovered in the 

future studies for discovery of anti-Mycobacterium tuberculosis drugs.  

Following a similar compound discovery scheme including ODS column 

fractionation-HPLC purification-NMR/MS structure determination (Fig. 11A), a 

novel anthraquinone compound, designated COM1, was isolated from 80% MeOH 

fraction 2. Anthraquinones are a large class of aromatic secondary metabolites 

produced by many plants, fungi, and some inserts, and their biological activities 

are usually determined by functional group decorations [36]. In the putative 

chemical structure of COM1 (C15H8Cl2O5, NW: 336.97), some hydrogen atoms on

the benzene ring are replaced by one methyl group, three hydroxyl groups, and 

two additional Chloro groups (positions not determined), thus forming a rare 

structure in natural products [37]. Moreover, in addition to the strong antimicrobial 

activity against MSSA and Mu50, COM1 also inhibited the growth of Hela cells 
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(cervical cancer cell) (Fig. 11B), thus may has promising applications in the 

discovery of anti-cancer agent [38]. In addition, COM1 is proposed to be the 

biosynthetic product of a type II PKS gene cluster according to its chemical 

structure [39]. 

Chapter 5. Cloning of a type II PKS gene cluster from Ts. hazakensis COM3  
The above studies indicated the class Ktedonobacteria as a promising microbial 

resource for discovery of novel bioactive compound. However, the efficient transfer 

of novel biosynthetic gene cluster to molecules are extremely important. Moreover, 

only one type II PKS gene cluster was identified in the genome of Ts. hazakensis

COM3 (Fig. 7), thus was proposed to be responsible for the biosynthesis of COM1. 

Herein, I attempted to apply a transformation-associated recombination (TAR) 

approach (Fig. 12A) [40] and used a commercial Saccharomyces cerevisiae/E. 

coli shuttle-actinobacterial chromosome integrative vector pCAP01 [41] to directly 

clone and heterologously express the type II PKS gene cluster. As shown in Fig.
12B~E, the type II PKS gene cluster was directly cloned successfully from the 

genomic DNA of Ts. hazakensis COM3 via a constructed capture vector in yeast 

and was verified with PCR screening. However, unknown DNA recombinations or 

fragmentations occurred when the COM1-pCAP01 construct was transformed into 

E. coli Top10 and E. coli Stbl4 strains (Fig. 12E), thus hampered the following 

conjugal DNA transfer into the Streptomyces host for further heterologous 

expression. 

Chapter 6. Discussion and Conclusion 
In this study, in Chapter 2, we 1) successfully isolated seven novel 

Ktedonobacteria strains from "Tengu-no-mugimeshi", Mt. Zao, and Onikobe 

geothermal area; and formally proposed one novel family, one novel genus, seven 

novel species. Moreover, two novel families, two novel genera, and four novel 

species are prepared to propose in future, thus significantly expanded this class 

and determined it as an unique bacterial lineage in the phylum Chloroflexi; 2) 

successfully isolated one of the predominate bacteria (Ktedonobacteria) from 

"Tengu-no-mugimeshi", thus may contribute to the regeneration and preservation 
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of the eatable soil; 3) reported the first discovery of sporangiospores formation by

D. aurantiacus S27T, thus may have important values on the studies of bacterial 

evolution and cell differentiation. In Chapter 3, we 1) performed whole genome 

sequencing for 18 Ktedonobacteria strains and observed huge genome size, 

mixture of both circular and linear genomes, and putative "mega-plasmid" in the 

genomes of Ktedonobacteria; thus enabled the further characterization of 

Ktedonobacteria genomes; 2) identified large numbers of novel secondary 

metabolite BGCs and CAZymes in 23 available Ktedonobacteria genomes, thus 

determined the secondary metabolites biosynthetic and biomass cellulolytic 

potential of the class via in silico analysis. In Chapter 4, we 1) screened the in vitro

antimicrobial activity of six representative Ktedonobacteria strains, thus revealed 

a broad-spectrum antibacterial activity of the class; 2) successfully isolated the 

novel anthraquinone compound COM1 from Ts. hazakensis COM3, thus 

represented the first bioactive compounds discovered from the class. Collectively, 

I propose here the Gram-positive, aerobic, and filamentous Ktedonobacteria not 

only represents a promising next-generation microbial resource for pharmaceutical 

and biotechnological uses, but also provides important research materials and 

values on the studies of bacterial evolution and cell differentiation. 
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Figures and Tables 

Figure 1. Collection of soil samples from Japan for strain isolation. (A),
Onikobe geothermal area, Miyagi Prefecture; (B), "Tengu-no-mugimeshi", 

mountainous region of Gunma and Nagano Prefectures; (C), Mt. Zao, Yamagata 

and Miyagi Prefectures; (D), the photograph of "Tengu-no-mugimeshi". 
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Figure 2. Bacterial community composition of the "Tengu-no-mugimeshi" at 
class level. Environmental DNA were extracted from the soil-like microbial mass 

and were used as templates to PCR amplify the V3-V4 regions of bacterial 16S 

rRNA gene. The amplicons were sequenced commercially on Illumina MiSeq 

platform and the generated reads were assigned to operational taxonomic units 

(OTUs) using Usearch software at 97% identity. Taxonomic information of each 

OTUs were annotated using RDP classifier [42]. Relative abundance of the 

predominate classes (>5%) in each sample are shown as numbers in the figure.  
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Figure 3. Scanning electron morphology of the class Ktedonobacteria. 
Isolates originated from Onikobe, "Tengu-no-mugimeshi", Mt. Zao, and Dr. 

Cavaletti in Italy are emphasized in bold purple, bold blue, bold green, and bold 

red, respectively. Families Dictyobacteraceae, Ktedonobacteraceae,

Thermosporotrichaceae, and Thermogemmatisporaceae are shaded in blue, 

green, yellow, and red, respectively. Order classification of these strains are given 

as bars on the left. Types of spore formation are given at the top or on the right of 

the figure. 
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Figure 4. SEM, TEM, and phase-contrast microscopy observation of 
sporangia formation by D. aurantiacus S27T. (A), early stage sporangia at 7 

days; (B), middle stage sporangia at 14 days; (C),  mature stage sporangia at 21 

days; (D), sporangium dehiscence and sporangiospores releasing; (E), negatively 

stained TEM micrograph of sporangiospore. Stalk cells and budding spores are 

indicated by white and yellow arrows, respectively. Diameter of the sporangia at 

different stages are marked in the figures directly. D. aurantiacus S27T as cultured 

on 10-fold diluted R2A gellan gum plates at 30 °C anaerobically (H2:CO2=8:2). 
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Figure 5. Phylogenetic analysis of the fifteen novel Ktedonobacteria isolates 
and reconstruction of the phylogenetic position of the class Ktedonobacteria.
The phylogenomic tree was reconstructed on the basis of 13 core genes extracted 

from those genomes using the USEARCH algorithm (50% sequence identity cut-

off by default). Neighbor-joining (NJ) method in MEGA v. 7.0 software was used to 

build the tree. Bootstrap support rates based on 1000 replicates are shown as 

numbers at nodes; only values larger than 70% are shown. Scale bar, 5% amino 

acids sequence dissimilarity. The fifteen novel Ktedonobacteria isolates originated 

from Onikobe, "Tengu-no-mugimeshi", Mt. Zao, and Dr. Cavaletti in Italy are 

emphasized in bold purple, bold blue, bold green, and bole red, respectively.
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Figure 6. Complete genome plot of strains of Tg. argilla A3-2T, Ts. hazakensis 
COM3, T. tsumagoiensis Uno3T, D. aurantiacus S27T, and D. alpinus Uno16T.
From outer layer to inner later: Circular 1 & 2, ORFs on the forward strand (blue) 

and reverse strand (green) respectively. Circular 3 & 4, tRNA genes (blue) and 

rRNA genes (red), respectively. Circle 5, GC content. Circular 6, GC skew (Orange 

above average, purple below average). 
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Figure 10. Composition and distribution of CAZyme families in 23 
Ktedonobacteria genomes. (A) GH families, (B) GT families, (C) CE families, (D)
AA families, (E) PL families, and (F) CBM families. 

389



Figure 11. Discovery of novel bioactive compound from Ts. hazakensis
COM3. (A) Purification of 2,4,6-Triphenyl-1-hexene and novel anthraquinone 

compound COM1. (B) Bioactivity screening against Mycobacterium bovis,

Staphylococcus aureus NBRC 13276, S. aureus NTCT8325 (MSSA), S. aureus

Mu50 (VRSA), Micrococcus luteus NBRC 13867, Geobacillus stearothermophilus

NBRC 13737, and Hela Cell.
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