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ELECTRON IMAGE SIMULATION:

A COMPLEMENTARY PROCESSING TECHNIQUE

Michael A. O'Keefe

National Center for Electron Microscopy
Building 72, Lawrence Berkeley Laboratory
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Telephone (415) 486-4610

Abstract

At present it is difficult to use direct image
processing techniques to determine the specimen
structure from electron micrographs obtained under non-
linear imaging conditions, and impossible when the effects
of dynamical scattering are strong (as in the case of
thicker specimens). However, computing techniques are
available to simulate high-resolution transmission electron
microscope (HRTEM) images of postulated model
structures. With these techniques it is possible to confirm
the validity of interpretation of recorded micrographs, to
help analyze crystal defects, to characterize microscope
parameters, and to determine the ranges of validity of
commonly used interpretive approximations. Because
processed micrographs can lead to suitable model
structures and, in turn, models can indicate optimum
directions for processing, the two techniques are excellent
complements.

Key Words: Processing, simulation, interpretation,
modeling, computing, high-resolution transmission
electron microscopy.

209

Introduction

The ultimate goal of the image processing of elec-
tron micrographs is to obtain all possible information
about the specimen that may be contained in the micro-
graph. In fact, since the electron microscope acts some-
what as a spatial frequency filter, more information is
available from a "focal series" of micrographs than from
any single image. Saxton (1980) shows examples of the
application of Schiske's (1973) generalization of the
Wiener filter to focal series of micrographs under so-
called "linear image" conditions.

Under more general conditions the so-called
"second-order" terms can alter the weights of spatial
frequencies present in the image and even introduce
higher frequencies formed from combinations of the
frequencies present in the linear-image contribution to
the micrograph. Second-order terms complicate the
processing procedure immensely, and no satisfactory
method of incorporating them has been published.
O'Keefe and Sanders (1976) suggested that it may be
possible to remove the second-order component from
experimental optimum defocus images by subtracting the
minimum contrast (or Gaussian focus) image, since this
latter image is formed by selecting the value of focus
which produces minimum linear contribution to the image
intensity and second-order contributions change only
slowly with change in focus. Saxton (1980) has proposed
removing the second-order contribution by processing
bright-field/dark-field pairs of micrographs, but the
method introduces some experimental difficulties. Kirk-
land (1982) has proposed a computational method, but

O'Keefe and Saxton (1983) show that some of the
approximations involved are unjustified. At present,
therefore, linear transfer can be inverted, but non-linear
transfer cannot. Thus in image reconstruction the linear
approximation is often chosen even when it is realized
that for thicker specimens, the approximation may be
poor. After this initial linear step has been used to set up
reasonable model structures and yield information on
transfer function parameters, simulations can be made
both with and without non-linear effects, not only to
assist reconstruction, but also in order to assess the
importance of the non-linear contribution, and thus the
reliability of the initial linear step. In some
circumstances the linear approximation can be used to
quite high values of crystal thickness (Tanaka and
Jouffrey, 1984), whereas in others it fails dramatically by
150A (O'Keefe and Saxton, 1983).

Present processing methods (and even future ones
incorporating the second-order effects) are capable only
of determining the complex amplitude (modulus and phase)
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of the electron wave leaving the exit surface of the
specimen. Under some conditions this electron wave is a
simple function of the specimen structure projected in the
direction of the electron beam, so that the structure is
easily derived from the exit surface wave. This procedure
is possible when the specimen scatters sufficiently weakly
to be considered a "phase-object" or even a "weak phase
object". Conditions of strong scattering occur for thicker
specimens composed of heavier atoms and viewed down
low index planes where atoms superpose exactly. These
conditions are often those desirable in studies of periodic
structures, especially of defects in such structures. On
the other hand, when atom positions do not superpose, as
for the case of defects in the thickness direction,
interpretation is often impossible even with the aid of
image simulation. Fortunately, biological and organic
crystals are weak scatterers and hence can be interpreted
as phase objects to thicknesses of several hundred
Angstrom units; similarly many oxidgs and gsilicate
minerals have a thickness limit in the 50A to 100A range,
as do the important semiconductors Si and GaAs.
However most metals and alloys have limits of only a few
tens of Angstroms. For specimens thicker than the above
limits, no simple relationship between the projected
specimen structure and the exit-surface wave can be
found (e.g. Jap and Glaser 1980) and image simulations
must be used.

For the simulation of HRTEM images, a model
structure is proposed, assembled in the computer, and
images computed incorporating the various microscope
parameters. In the decade since simulated high-resolution
images of known crystal structures first appeared in the
"n-Beam Lattice Images" series of papers (Allpress et al.,
1972; Lynch and O'Keefe, 1972, Anstis et al., 1973;
O'Keefe, 1973; Lynch et al., 1975, O'Keefe and Sanders,
1975), it has become commonplace to interpret HRTEM
images of uncharacterized structures by comparing them
with simulated images. Such images are currently
produced by a variety of programs written in various
laboratories around the world; in fact, commercial
packages such as Skarnulis' (1979) interactive program and
the more general SHRLI suite of programs (O'Keefe et al.,
1978) are now available.

Theory of Simulation

The starting point for image simulation is to model
the electron microscope as a simple system of electron
beam, specimen and lens system (Fig. 1). Generally the
initial electron beam is considered to be a parallel beam
of plane wave electrons. The microscope lens system is
replaced by one spherically-aberrated lens which can be
regarded as representing the objective lens. In a real
electron microscope the objective lens has the crucial
duty of re-assembling the diffracted beams emerging from
the specimen into an image which is merely magnified
further by subsequent lenses.

In any simulation three functions representing the
electron wave amplitude must be computed at three
positions within the model microscope; at the exit surface
of the specimen, f(x); at the back-focal plane (diffraction
plane) of the objective lens, f, ; and at the image plane of
the lens, ¥ (x). The computation of the exit-surface wave
f(x), involves mainly the model specimen structure (the
only microscope parameter involved is the energy of the
electrons in the incident beam). The wave at the back-
focal plane, f, , is obtained via a simple Fourier transform
of the exit-surface wave f(x). Calculation of the image
from the electron wave at the diffraction plane does not
involve the specimen but only microscope parameters,

A.
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such as objective lens defocus and spherical aberration;
together with the objective aperture size and position,
these modify f, before it is transformed into v (x), the
image amplitude.

Calculation of the Exit-Surface Wave

Self et al., (1983) give details on calculating f_ by
various methods and conclude that the multislice me%hod
(Goodman and Moodie, 1974) is preferable. In this
method, the steps involved in calculating the (structure
dependent) values of f _ are:

(i) calculation of V,, the Fourier coefficients of
potential (structure factors) at reciprocal lattice points k,
lying in the zone perpendicular to the electron beam
direction. Summing over all atoms in the unit cell:

2 =

Zefjlg}expwzm(g.ggj)? (1)

h
Vk T 2rm eV
~ e’ ¢
where V_ is the volume of the unit cell, and ®f. and x.
are the &lectron scattering factor, and the positi:lm of thd
jth atom respectively. Here the electron scattering
factor for each atom is defined as the Fourier transform
of the potential distribution for that atom. Inclusion of
all Vi within 4A ~° of the origin of reciprocal space
provides sufficient accuracy for most calculations.

(ii) Fourier transformation of the V, values produces
¢p(x) the crystal potential of one unit cellf projected in the
direction of the electron beam. The effect of such a thin
"slice" of crystal on the electron beam is that of a phase
object, and the electron "transmission function" for the
slice is

q(x) = exp{iu;‘,p(g),'.z } (2)

where Az is the "slice thickness" and ¢ is the interaction
parameter for electrons of the designated energy.

(iii) The exit-surface wave at the desired crystal
thickness, H = mlz, is found from q(x) by iteration. After
m slices the electron wave f(x) is given by

Mex) = [MLe0x) *+ Mp(x) 1Mq(x) (3)

where mq(g) is the transmission function of the mth slice
and p(x) is the small-angle approximation to the free
space propagator for the distance between the (m-1)th and
mth slices (i.e. the familiar Fresnel propagator); *
represents the convolution operation. mThe diffraction
plane wavefield ' f_ is obtained from ' f(x) by Fourier
transformation. Noé(e that for heavy atoms, or unit cells
large in the direction of the electron beam, the slice
thickness Az may need to be chosen smaller than the unit
cell height. In such cases a number of projected
potentials must be calculated and  appropriate
transmission functions stored for each slice. Many
structures are formed from atgms sufficiently light to
allow slice thicknesses from 3A to 5A without intracell
slicing.

The iteration of (3) is best performed in reciprocal
space, where the wavefunction exists only at the discrete
points of the reciprocal lattice. Furthermore, as the
Fourier components of the wavefunction fall off with
increasing order, it is a good approximation to consider
the reciprocal space wavefunction as bandwidth limited
(i.e. having intensity in only a finite number of beams). In
reciprocal space, (3) becomes

m
f ) (4)

X
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where P and Q  are the Fourier transforms of p(x) and
q(x). This form gives f, directly and is the form used in
the SHRLI programs (O'Keefe et al., 1978) and shown in
Figure 1.

Now that large amounts of computer memory are
available to an individual user, an alternative to both the
real-space (3) and diffraction-space (4) methods has
become viable. This method uses the fast Fourier
transform (FFT) algorithm of Cooley and Tukey (1965) to
replace the convolution by an FFT followed by a simple
multiplication and an inverse FFT (Ishizuka and Uyeda,
1977). This procedure is faster than direct convolution for
large numbers of beams and extremely fast when
programmed on an array processor. One problem is that
only 2/3 of the extent of the FFT array can be used in
order to avoid the aliasing produced by multiplication of
two functions in a pseudo-periodic diffraction space, the
pseudo-periodicity resulting from sampling the continuous
functions f(x) and q(x). Thus only 4/9 of the two-
dimensional array can be used for active beams without
the danger of overlap of adjacent diffraction cells over-
emphasizing the amplitudes of the outer reflections.

Van Dyck (1980) has used an approximate form of (3)
to calculate the scattering in real space. Although the
diffraction-space method (4) requires a time proportional
to N” (where N is the number of diffracted beams), and
the FFT method requires a time proportional to N log N,
the time for Van Dyck's small-block convolution method is
proportional to N. Unfortunately practical trials (Self,
1982; Kilaas and Gronsky, 1983) showed that this method
required much larger values of N and smaller values of Az
than both the FFT and diffraction-space methods,
resulting in calculations that took 4 to 5 times as long as
an FFT multislice to produce an equivalent result.
Calculation of the Image-Plane Wave

In order to compute the image plane intensity from
the exit surface wave, we need to include the effects of
objective lens defocus and spherical aberration. These
parameters act merely to change the phases of the
diffracted electron beams passing through the aperture of

the lens. Thus:
V7 = { -iv(k)} 5
Yy = fKAE exp{ -iy (k) (5)
where:
) = makS Bt + 12 zzcsgz,) (6)
and |k | = 2s = 2 sin@/), C_ is the spherical aberration

coefficient of the lens, and Af is the amount of defocus of
the objective lens from the Gaussian or in-focus position
(here a negative value of Af has been chosen to correspond
to the underfocus condition produced by a weakened lens,
and a positive value to overfocus). The objective aperture
function A, is unity for beams passing through the
aperture ané zero for those outside.

The intensity in the image plane can be calculated
by Fourier transform of ¥, to obtain the amplitude ¥ (x)
followed by squaring of the amplitude:

(7)

Early programs (Lynch and O'Keefe, 1972) used the above
procedure to form the image, relying on the objective
aperture function to select the correct number of diffrac-
ted beams in order to limit the resolution in the simulated
image to that of the electron microscope. However, it
was soon found that images calculated with an aperture
cutoff corresponding to that used experimentally con-
tained more detail (O'Keefe, 1973) than the experimental
micrograph.
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Fig. 1. Model of a simplified electron microscope toge-
ther with the associated functions for simulating high-
resolution images, and showing the three microscope
planes at which the electron wavefield is required.

O'Keefe and Sanders (1975) considered two types of
"smearing' aberrations which could be responsible for loss
of resolution, the convergent character of the incident
electron beam and the spread of focus produced by energy
spread in the incident electrons. Both these aberrations
have the effect of smearing the microscope image by
making it a composite of higher-resolution images.
Incident beam convergence produces a composite image
formed by the summation of many images, each at a
different angle within the incident cone. Spread of focus
produces a composite formed from images summed over a
range of defocus.

O'Keefe and Sanders (1975) measured the experi-
mental value of convergence from a diffraction pattern
obtained with the microscope illumination set as for
imaging (Fig. 2). Calculation of 49 images at sampling
positions within the convergent cone (Fig. 3) produced a
set of images (Fig. 4) which could be summed to match
the experimental result (Fig. 5). Fejes (1977) included the
effect of spread of focus, and also found a degradation in
image resolution.

In order to obtain a better understanding of the
manner in which resolution is degraded by beam conver-
gence and spread of focus, we can reformulate (7) by
taking its Fourier transform to obtain

*

K

L =¥ (8)

= i

where 1
sents the convolution operation.
ution gives

is the image intensity spectrum, and * repre-
Writing out the convol-

Y \?-)(-
K k'K (9
Thus I, , the image intensity spectrum, the Fourier trans-
form of the image intensity, can be calculated directly
from the ¥, , the aberrated diffraction-plane wavefield;
the image intensity is formed by later Fourier transform
of the intensity spectrum.
Figure 6 shows the image intensity spectrum formed
by an aberrated diffraction-plane wavefield (or image
amplitude spectrum) consisting of five colinear diffracted




obtained with
illumination adjusted for imaging, and showing discs due
to electron beam convergence in imaging mode.

Fig. 2. 001 diffraction pattern of Nb,,0O

Objective
ape.rture

Fig. 3. Method of including beam convergence in the
image simulation. FEach disc admitted by the objective
aperture is sampled at 49 points and images calculated at
angles corresponding to each sampling point.

beams. We see that an amplitude spectrum containing
terms out to h = + 2 produces an intensity spectrum with
frequencies out to h = + 4. As shown in the figure, each
frequency in the intensity spectrum is made up of a
number of terms produced by pairwise multiplication of
members of the amplitude spectrum. Terms containing
the zercth order of the amplitude spectrum are called
first-order (or linear image) terms (note that they do not
occur in frequencies greater than the amplitude spectrum
limits of h = + 2), and those containing no zeroth order are
called second-order (or non-linear) terms.

Linear Images

In wavefields (and hence images) from specimens
thin enough to be regarded as phase objects, most of the
electron intensity resides in the central or zeroth order
diffracted beam. In this type of situation the amplitude
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Fig. 4. Tilted-beam images obtained at angles within one
quadrant of the convergence cone (the other quadrants are
generated from these images by symmetry). The radii
(marked a through d) correspond to those so marked in fig.
3. The specimen is S0A thick Nb1,029 imaged at 100keV
with an objective aperture size of 0.308 A 7, CS = 1.8mm,
and defocus = -600A.
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Fig. 5. Experimental image of Nbj,05q with inset images
simulated without (a) and with (b) inclusion of the conver-
gence effect.

of the zeroth beam is typically 0.9 of the amplitude of the
incident beam, while the stronger diffracted beams may
attain values of 1073, The ratio of the weights of the first
order terms to those of the second order is thus
approximately one thousand times, meaning that the
second-order terms may safely be disregarded in
interpreting this type of image.
Linear Image Theory

Dropping second-order terms in (9) we find that only
two linear terms remain,

5

I (10)

) N*
.\k,: EK“YD * :‘OY_E
and this is confirmed by figure 6. =
Substituting from (5) and recalling Yg = g =1 we
get

L

*
Ik = fK exp {-iy(k)} + f'lS exp {+iy(-k) }. C11 )

From (2), the object transmission function for a phase
object of thickness H is

o) = explios (OH) . (12)
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For a weak phase object (WPQO) we can make a kinematic
scattering approximation and approximate the trans-
mission function as

Wpoq(_x) =1+io0¢ p(>~<)H (13)
so that Fourier transformation gives
WPOf
k = 60k)+ioHV, . (14)
Substituting for W in (11) produces the linear image

approximation to the image intensity spectrum as,

*
Ly =iy siny(k) + oH V_, sin (k)

K K K

*
and since V| =V , and vy is radially symmetric for a
properly-aligned microscope,

|

['S = 20H VE sin Y(k) fork £0
For k = 0O the zeroth frequency is approximately &(k) so
that the full expression is

L
k

I, = Sk +20HV, siny(k) . (15)
Thus for a specimen sufficiently thin that (i) the kine-
matic approximation to electron scattering is adequate,
and (ii) the second-order intensity spectrum terms are
small, the image intensity may be found by Fourier trans-
formation of (15), or alternatively an experimental micro-
graph may be interpreted as if the transfer of spatial
frequency V, into the image were controlled by the value
of sin at that value of k. Since C_ is always positive
(for magnetic lenses) and Af may be chosen to be negative
by underfocussing the lens, the shape of the curve of sin
v(k) against k can be controlled to some extent by
choosing particular values of underfocus.

Scherzer (1949) searched for the optimum linear
image and found that it occurs when a value of defocus

near to -ll.‘}(js“» is chosen. In this case, sin y(k) is
L e S A
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Fig. 7. Linear image contrast transfer function (plot of
sin v (k) against |k|) for an objective lens close to

Scherzer defocus. Spatial frequencies are transferred
with weights proportional to sin y. Frequencies within
the passband (marked) are considered to contribute with-
out significant attenuation. The cutoff frequency that
determines resolution in structure images lies at the upper
limit of the passband.

approximately equal to minus one over a band of fre-
quencies extending to

1.5 c'l/“/\‘}/a

S
Thus for frequencies within this band
L.
I‘S: 8(k) - 20H VE (16)

and the image intensity is

Y1) = 1 - 20156 (x) (17)

where Lq‘(zg) is a projected potential with resolution
limited to the highest frequency Vk falling within the
passband. This type of image is extremely important,
because it shows directly the projected potential of the
specimen, albeit to a limited resolution, with low intensity
(black) in regions of high potential (high concentrations of
atoms) and high intensity (white) in low potential regions
(tunnels). This type of image is often called a structure
image, and the particular value of underfocus is referred
to as "Scherzer" defocus. Figure 7 shows a sin Y(k) curve,
or linear image "contrast transfer function" for a value of
defocus close to Scherzer focus; the passband and cutoff
frequency are marked. The cutoff frequency defines the
structure image resolution, or Scherzer resolution, for any
particular electron microscope.

2 m 1 2
2 1 1 23 7 1 24 3 l l I ] 3 4
Ll | L L sli]
Y * ylu-w * T(u)
22 21 20 T %%
%2 T To ¥ LI
02 01 o0 o o7
2 1 k0 12

22 20 20 21 22

Fig. 6. Representation of the nine spatial frequencies
generated in the image intensity spectrum by an ampli-
tude spectrum consisting of five collinear diffracted
beams. The terms contributing to each frequency are
tabulated in abbreviated form--the term n.m represents
multiplication of the pair from the amplitude
spectrum.
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Fig. 8. Plots of the linear damping functions (aperture
functions) due,to a spread of focus with a gaussian half-
width of 250A(dashed) and a beam convergence with a
semi-angle of 1.4 milliradian (solid line) for a 100keV
electron microscope with CS = 1.8mm.
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Linear Image Resolution

Frank (1973) re-formulated the resolution-limiting
effects of both beam convergence and spread of focus into
expressions in reciprocal space. He showed that the
effect on linear images is to impose envelope functions or
soft apertures on the linear image amplitude, limiting
transference of the higher spatial frequencies. Aperture
functions for a Gaussian spread of focus of half-width
250A , and for a beam convergence semi-angle of 1.4
milliradian are shown in figure 8. The aperture function
due to spread of focus (or chromatic aberration) slopes
gradually to zero, transferring higher frequencies only
partially. The convergence aperture function is steeper,
and its shape and cutoff frequency change with changes in
defocus; at higher degrees of underfocus the cutoff
frequency is higher, allowing more higher frequencies to
contribute to the image, but mid-range frequencies are
damped.

Whereas an accurate value of the beam convergence
o can be measured directly from a diffraction pattern
obtained with focussed illumination (fig. 2), the spread of
focus A for a particular electron microscope must either
be estimated by matching an experimental image with
ones computed using different values of A, or approxima-
ted from known values of the chromatic aberration coeffi-
cient C_ and the high voltage and lens current ripple. A
good approximation to A is obtained from

K = ccxf( VIV)Z + 4D + SE/E) (18)

where §V/V and §i/I are the high voltage and lens current
ripple (usually quoted in ppm) respectively, and SE/E is
the fractional energy spread of the electron beam.

Figure 9 shows experimental images of a thin crystal
of the block oxide w'\lb1 O obtained on two different
electron microscopes. %e%gw each micrograph is the
linear image envelope function corresponding to that
microscope, and simulated images are inset. Notice that
the factor limiting the resolution of the 100keV
microscope is the large convergence factor (semi-angle
1.4 milliradian), while the 1MeV microscope 4s limited by
the envyglope due to a spread of focus of 500A. The value
of 500A was obtained by application of equation 18 to a
chromatic aberration coefficient of 4.4mm, and high
voltage and lens current ripples of 5ppm; the energy
spread was taken as leV, producing a A value of A=
44f75 + 100 + 1 = 494A. As it happened, Nb 7029
images computed for this 1MeV microscope are not very
sensitive to moderate changes in the value of 4. Images
computed for a range of /A values and compared with
expgriment shpw that the correct value of A lies between
400A and 600A (Fig. 10).

It appears quite common that high voltage electron
microscopes have linear-image resolutions limited by the
spread of focus effect, presumably because of the
difficulty of obtaining low values of ripple. Conversely,
lower voltage (100keV) microscopes are usually limited by
the effects of the relatively large convergence angles
used to obtain sufficient brightness on the fluorescent
screen. Of course, spread of focus becomes a significant
resolution-limiting  factor even in  lower-voltage
microscopes if A is made immoderately large by
increasing the energy spread of the electron beam leaving
the thermionic filament. Whereas at 1MeV a value of SE
of leV produces an insignificant contribution to A, such a
value at 100keV represents 10ppm and contributes a larger
proportion than the voltage and current ripple. Krivanek

(1975) demonstrated that a high beam current of 30uA
(corresponding to an energy spread of 5eV half-width)
reduced the linear image resclution of a 125keV electron
microscope to worse than 3.4A.

A,
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Non-Linear Images

Images obtained from thicker regions of specimens,
as well as dark-field images, cannot be described in terms
of linear contrast transfer functions, and hence the con-
cept of the envelope function does not apply.

Non-Linear Resolution

O'Keefe (1979) extended the concept of the linear-
image envelope function to include the non-linear terms,
and showed that neglect of the '"cross-terms" present in
the general non-linear (but not the linear) damping
functions could lead to the overdamping and loss of higher
frequencies in the image intensity spectrum. Figure 11(a)
shows how the full damping function due to beam
convergence acts on the terms contributing to each
frequency in the intensity spectrum, while (b) shows the
effect on these terms if linear damping envelope functions
are applied. The degree of damping of any intensity
spectrum term is read off the plot by considering the two
members of the amplitude spectrum making up the term
(fig. 6), and reading up or across from the origin of the
damping function (located at the center of the plot). The
0.0 term (contributing to the 0 frequency of the intensity
spectrum) is located at the origin of the plot and is un-
damped (white). Similarly, all the n.n terms (falling along
the bottom-left to top-right diagonal) are also undamped
in the general case (a), but are lost if linear damping is
applied (b). Note that those terms which contribute to the
linear image (and lie along horizontal and vertical axes
through the origin of each plot) are damped equally by
both the general and linear damping functions (as
indicated by the inset cross-section in (b) showing the
familiar linear envelope profile of fig. 8).

A plot of the difference between the general and
linear damping functions for convergence (fig. 11c) shows
that the main effect of using the linear form to include
the effects of beam convergence and spread of focus in a
simulated image is to overdamp the n.n terms contributing
to the zero frequency. This has the effect of lowering the
mean image intensity level, occasionally producing
negative values of intensity, but not otherwise seriously
affecting the appearance of the simulated image (negative
intensities arise because the unphysical nature of the
linear damping function violates the principle of particle
conservation, as was pointed out by Rose, 1977).

The image changes occasioned by using linear damp-
ing for the spread of focus effect are much more serious.
Figure 12(a) shows that, as in the convergence case, the
general damping function for spread of focus also does not
damp the n.n terms. In addition, however, terms of the
form n.n are not damped by the general spread of focus
function. Thus the intensity spectrum will always contain
frequencies out to twice the order of the highest members
of the amplitude spectrum (unless these happen to be
damped by a sufficiently large convergence).

We can apply the spread of focus function of figure
12(a) to the intensity spectrum terms listed in figure 6.
Consider the 2 frequency in the_intensity spectrumj its
contributing terms are the linear 2.0 and 0.2 interactions,
together with the non-linear 1.1 term. For a sufficiently
large value of A, the linear terms would be heavily
damped, but the non-linear one would not (as marked in
figure 12a) so that this frequency would be present in the
image. Using the linear damping function (figure 12b) the
non-linear term is damped and the frequency will be
missing from the image.

Previously we discussed the structure image (or
Scherzer) resolution limit determined by the cutoff fre-
quency at which the dominant aperture function blocks
linear transfer into the intensity spectrum (as in figure 8).




High-resolution electron image simulation

g o
T i i ok ot &
*

&

i

*
d
*

e
i

B
*
?.

b

»e
bW
- S

2Tt
srh

Fig. 9. Structure images of Nb,,0,q taken at (a) 100kV
and (b) IMV. The inserts at Iowerﬁe?t of each micrograph
are calculated images for a 38A thick crystal of Nb1 Osas
The aperture functions (AF, plotted below each image as’a
function of k in reciprocal A) show the resolution
conditions under which each calculation was carrjed out.
At 100kV the physical aperture (A) at k = 0.308A limits
resolution to 3.2A: the aperture function due o a defocus
halfwidth of 100A (B) limits resolution to 2.4A; while the
aperture function due to an incident begm convergence of
1.4 milliradian (C) restricts it to 3.8A. The combinegq
effect of these functions (D) results in an image of 3.8A
resolution. At 1MV the physical aperture (A) and
convergence aperture function (C) limit resolutions to
1.9A and 1.5A respectively. For the calculated image to
match the experimental result required a defocus-depth
halfwidth of S00A, resulting in the B curve shown. The
combined effect (D) is virtually identical to B and yields
an image of 2.5A resolution.
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Fig. 10. Series of Nby; 029 images simulated for increas-
ing values of £, the spread of focus halfwidth (marked in
A). Image resolution is degraded as 4 increases.

Fig. 11. Intensity spectrum damping functions dge to
beam convergence: (a) general (linear plus non linear)
convergence damping function; (b) linear damping function
with inset trace along a linear-image-term direction; (c)
the inaccuracy in using linear damping (plot (a) minus plot

(b)).

Fig. 12. Intensity spectrum damping functions for spread
of focus: (a) general damping function; (b) linear damping
function; (c) the difference. The inset spots show inter-
ferences contributing to the 2nd order frequency of the
intensity spectrum of fig. 6.

Non-linear transfer into the intensity spectrum gives rise
to yet another resolution limit. This non-linear resolution
limit is sometimes called the "fringe resolution" of the
microscope, and is given by the highest frequency
transferred into the intensity spectrum. The general
damping functions (figs. 11, 12) show that the highest
order term transferred will be of the form n.n since this
type of interference term is undamped by the spread of
focus function (fig. 12) and passed by the convergence
function (fig. 11) at a maximum value determined only by
the value of focus; if the value of focus is chosen to allow
the nth order member of the amplitude spectrum to
contribute to the image via a linear interference term of




0.n, then the non-linear interference n.n will also be
passed to appear in the image, even if the linear term 0.n
is blocked by the spread of focus function. The fringe
resolution of an electron microscope is thus twice as good
as the limit set by its linear convergence aperture
function (provided, of course, that the microscope is
vibration-free and is aligned sufficiently accurately that
the n.n interference falls within the narrow white arm of
the spread of focus function, that is that the n and n
diffracted beams form equal angles with the optic axis of
the microscope).

Real-Space Second-Order Effects

Whereas images from thin crystals show detail to
the linear-image resolution of the electron microscope,
images from thicker crystals contain linearly-transferred
detail to the same resolution plus non-linear detail to the
non-linear resolution limit. In structure images the phases
of the linear contribution are chosen to be negative (by
selecting Scherzer focus) producing black spots at
positions corresponding to areas of high potential (atoms
or unresolved groups of atoms). In general, strong second-
order contributions tend to have positive phase and
produce white peaks at positions of high potential. These
white peaks are sharper (coming from the high-frequency
region of the intensity spectrum) than the linear black
peaks, and produce the characteristic 'black donut with
white hole' image in thicker structure images. Pirouz
(1981) has shown that inclusion of the second-order terms
is equivalent to adding a term proportional to the square
of the projected crystal potential, and yet another
proportional to the projected charge density, to the thin-
crystal projected potential image; a negative-going (black)
peak in the linear image (due to an atom or group of
unresolved atoms) is thus squared to add a sharper
positive-going (white) peak into the total (linear plus non-
linear) image.

This effect can be seen in both experimental and
computed images. Typically an image of a wedge crystal
will show periodic black spots at the thin edge and the
same black spots with white centers in thicker regions.
Similarly, white spots appear in computed images of
organic crystals as crystal thickness increases (O'Keefe et
al.,, 1983). A pair of images of an organic crystal
computed using the general and linear damping functions
is shown in figure 13 together with their difference
(formed by subtracting the images using the SEMPER
programs of Saxton, 1979). Because the crystal is thin
(198 the two images appear identical, but subtraction
reveals a 3% difference in contrast. This difference
appears at both the positions of minima (blacks) and
maxima (whites) in the image, since the non-linear con-
tribution arises from a squaring of the linear image con-
trast (Cowley, 1975). Although the difference (the non-
linear contribution) has only 3% of image contrast for a
crystal 19A thick, this figure rises to 20% at 56A thick.
At a thickness of 94A the contrast difference is 30% and
differences in the images are easily visible (fig. 14).

In some structures non-linear contributions can
produce images which appear like high-resolution
structure images (Smith and O'Keefe, 1983); the
"dumbbell" images of CdTe and Si viewed in [110]
orientation are good examples of images dominated by
non-linear contributions. Fig. 15 shows a series of "weak-
phase-object images" of B-SiC in [110] orientation for
increasing resolution. These images are the ones expected
from very thin crystals imaged at Scherzer defocus; they
show that each silicon/carbgn atom pair appears as an
unresolved black spot at 2.17Aresolution (or alternatively,
the tunnels in the structure appear white). As resolution
is improved the black spots elongate at 1.54A resolution
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then split at 1.09A resolution. Images computed for the
Cambridge University HREM show dumbbell images with
this splitting at crystal thicknesses of 1504, although the
linear-image resolution of the microscope is certainly
worse than 1.09A. Smith and O'Keefe (1983) show how
the dumbbell images arise from a combination of non-
linear and linear terms producing white spots at the atom
positions over a limited range of crystal thickness and
(non-Scherzer) microscope defocus. Interestingly, images
from thick crystals at Scherzer defocus produce a type of
dumbbell image where one white spot falls on an atom
position, while the other is centered on a tunnel site.

It is considered generally well-known that the use of
linear damping functions in image simulations is equi-
valent to an assumption that the electron beam is per-
fectly coherent. Rose (private communication - 1984)
points out that the entire theory of STEM image forma-
tion is based on it--nevertheless it bears repeating to
avoid misconceptions (e.g. 0'Keefe and Saxton, 1983).
Perfect spatial coherence (i.e. a condenser aperture filled
with coherent electron waves) is possible in the case of an
electron microscope equipped with a field emission gun
rather than the more common thermionic kind. In this
case the general form for the intensity spectrum (fig. 16,
equation 1) may be replaced by one using a linear
convergence function (fig. 16, equation 2). However,
perfect temporal coherence appears impossible to
achieve, so that a linear spread of focus form (fig. 16,
equation 3) should not be used for image simulation
(except within the unphysical weak phase object domain).
Images of B-SiC calculated with linear damping terms
(fig. 16, equation 3) do not produce the well-known split
white dumbbells at a crystal thickness of 150A , whereas
images calculated with the general form do (fig. 17).
Dark-Field Images

The general form of the intensity spectrum can be
used to simulate images in both bright-field and dark-field
modes. In dark-field calculations all contributions to the
intensity spectrum come from non-linear terms, and
incorrect over-damping of these terms must be avoided by
using the correct general damping functions. In the case
of small-aperture dark field imaging, a large proportion of
the contributing beams will have convergence cones that
intersect the objective aperture and the simulation
program must be capable of modelling this situation.
Figure 18 shows diffraction patterns from a crystal of
4Nb,0.9WO5 in [001] projection. When a small aper-
ture” is” centered on the 130 reflection, the defocussed
pattern (a) shows 9 diffracted beams passing through the
aperture, whereas under imaging conditions portions of 19
discs lie inside the aperture (b). Taking this effect into
account lijima and O'Keefe (1977) successfully matched
dark-field images (fig. 19a,b). Centering the aperture on
130 produced the expected switch in the positions of
bright spots in the image (fig. 19¢c).

Misalignment and Crystal Tilt

One problem that arises in high resolution electron
microscopy is accurate alignment of the electron micro-
scope and of the specimen. While determining the
structure of takeuchiite by HRTEM, Bovin et al., (1981),
found that their best electron micrograph showed lower
symmetry than images simulated from proposed models.
Examination of the diffraction pattern revealed that the
specimen was tilted 23 milliradian off the zone axis so
that the center of the Laue circle was at 770. Figure 20
shows the experimental image with inset simulations for
crystal thicknesses of 60 Aand 150A. Note that the lower
symmetry is more obvious in the simulation for the
thicker crystal.
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Fig. 13. Images of a thin (19A) crystal of copper hexadeca-
chlorophthalocyanine using (a) general and (b) linear
damping functions. Simulation conditions are as published
for the Kyoto HAREM (e.g. Kirkland, 1982). Difference
images are shown above; difference contrast is 3% of
image contrast.
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Fig. 15. Resolution series of weak-phasegobject images of
B-SiC in [110] projection. Resolution (A is marked.

Fig. 16. Image intensity spectrum equations for (1)
general damping functions, (2) linear convergence and
general spread of focus, (3) linear convergence and spread
of focus. Here the damping functions due to lack of
lateral and longitudinal coherence (i.e. convergence and
spread of focus) are designated by B and E.

15 62 108 154
Fig. 17. Images of B-SiC [110] calculated for typicaj

operating conditions (500kV, C_ = 3.5mm, Af = -1100A
s
underfocus, convergence half-angle 0.3mrad, rms focus
spread 2504 for crystal thickness (from left) 15, 62, 108
and 154A ; upper and lower rows calculated using
equations (1) and (3) of fig. 16 respectively, and scaled
individually to maximum contrast. Note the contrast
reversal from the WPO images in fig. 15, due to the non-
Scherzer value of -1100A defocus.
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Fig. 14. Images of thick (94A) copper hexadecachloroph-
thalocyanine computed with (a) general and (b) linear
damping functions.  Simulation conditions are for the

Cambridge HREM (e.g. Smith and O'Keefe, 1983).
Difference images (above) have 30% of image contrast.
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Fig. 18. Diffraction patterns from [001] 4Nb 05.9WO3
for parallel (a) and focussed (b) illumination. 12he objec-
tive aperture size and position are shown. Note the many
diffraction cones intersecting the aperture in (b).

Fig. 19. Dark-field images of lthZO .9WO} for the
conditions of fig. 18. (a) experimental; (b? computed with
the aperture centered on 130; (c) computed with the
aperture at 130.
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Because the effects of crystal tilts and electron
beam misalignment are easily incorporated in simulation
programs, the programs are useful in exploring the results
of tilts and misalignments on high resolution images.
Computations by Smith et al., (1983), revealed that
misalignments (the effect of having the electron beam at
a slight angle to the optic axis of the objective lens) as
small as one half milliradian could change the symmetry
in thin (263 crystal images (fig. 21), whereas crystal tilts
of up to 32 milliradian had little effect on such images.
As the crystal thickness was increased the effect pf
crystal tilt increased; for a crystal of thickness 76A ,
significant changes occurred for tilts of 8 milliradian (fig.
22). Thus experimental images in which symmetry is
lower merely in the thicker regions (as in fig. 20) indicate
specimen tilt (or buckling), while an extension of lower
symmetry to the thin edge probably calls for re-alignment
of the microscope.

Calculation of Images of Defects

While high-resolution image simulation theory is
usually presented for perfect crystals, it is possible to
compute images of periodic and non-periodic faults. In
programs using a multislice algorithm the method used is
to create a large '"supercell' with perfect -crystal
surrounding the fault. Such a calculation was made by
O'Keefe and lijima (1978) for a tetragonal tungsten bronze
element embedded in a matrix of ten by ten unit cells of
WO, (fig. 23). The simulated images matched an
expérimental focal series of micrographs of such a defect
(fig. 24). This "periodic extension" method can be used to
extend the multislice calculation to include not only
faults, but also crystal edges (e.q. Marks and Smith, 1983).

In simulating images of defects by the periodic
extension method outlined above, we are calculating the
diffuse scattering from the defect only at certain points
in reciprocal space--in effect we are "sampling" what
should be a continuous distribution of diffuse scattering at
a finite number of points on a grid whose interval is the
reciprocal of the real-space supercell. In the calculation
of O'Keefe and lijima (1978), the choice of a ten by ten
supercell produced a sampling of the diffuse scattering on
a grid ten times finer than the reciprocal lattice
containing the Bragg beams from the perfect WO, crystal.
A finer sampling could have been produced by using a
larger supercell, but since calculation size is always
restricted (in this case to an array of 128 x 128 points) the
calculation would not have extended out far enough in
reciprocal space. The trade-off in sampling fineness and
extent in reciprocal space restrictsy128 x 128 calculations
to supercell sizes of less than 40A and ideally less than
25A. Larger programs using arrays of 256 x 256 points
(Krakow, 1980) and 512 x 512 points could safely handle
defect cells to areas of SO0A by S50A and 100A by 100A
respectively. These larger areas will enable the extent cf
the lattice relaxation around the defect to be broadened.

Conclusion

Besides the obvious use of simulated images in
testing models of specimen structure, simulation programs
are also useful in analysing the effects of microscope
parameters like spread-of-focus, in determining the
importance of maladjustments such as misalignment and
specimen tilt, and in setting limits on how far approxi-
mations like the "structure image" concept may be
trusted.  Modified programs can be used to explore
unconventional imaging modes like dark-field hollow-cone
(DFHC) and BFHC modes (e.g. O'Keefe and Pitt, 1980).
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With the advent of cheaper, larger memory, 32-bit,
"super-mini" computers, it should be possible to run large
(perhaps 512 x 512) simulation programs on-line in
interactive mode. With the addition of an associated
array processor, such calculations should produce an
image only a few minutes after a new structural model is
read in. The image would, of course, be displayed on a
video monitor in "split screen" mode for comparison with
a digitized experimental micrograph.
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Additional Discussion

1. Question by J. Hren - Have you (or others) attempted to
take into account relaxations associated with the crystal
thickness. And, if so, please describe the results.

Answer - Although it is quite possible to include surface
relaxations in the simulations (given an appropriate model),
I have not done so. The paper by Marks and Smith (1983)
describes some results of relaxation at a surface parallel to
the beam, but I have never seen any simulations including
relaxations at surfaces perpendicular to the incident beam
direction.

2. Question by J. Hren - Under what conditions could you
expect to image the effects of defects in the thickness
direction?

Answer - Again, it is easily done using existing programs,
but since an electron micrograph is largely a projection of
the specimen structure, defects which produce overlapping
structures in the beam direction would lead to confused
contrast in both experimental micrograph and simulated
image. Given a reasonable thickness of specimen, it might
be very difficult to distinguish between simulations
produced by different defect models.

3. Comment by F. Lenz - In the earlier literature the
"smearing" of "damping" effects due to "convergence" cf
"spread of focus" were often described as lack of coher-
ence, where "convergence" corresponds to lateral and
"spread of focus" to longitudinal coherence.

Answer - Yes, these are certainly effects due to partial
coherence. I used the terms "convergence" and "spread of
focus" to describe how they were included in the simulation
programs.

4. Comment by F. Lenz - The reason why so many authors
have neglected second-order terms in the image transfer
relations is not only the wish to simplify them. It was well
known from the beginning that contrast transfer is a non-
linear process, whereas amplitude transfer is linear. For
image simulation it is relatively easy to conclude from
object properties on image contrast without having to
linearize, and it has been done before even for non-periodic
objects. The inverse procedure, i.e. the deduction from
image contrast of object properties is, however, much more
complicated. Linear transfer can be inverted, non-linear
transfer cannot. In image reconstruction one has to
linearize even if one knows that for thicker specimens this
may be a poor approximation. Since our original source of
information is usually an electron micrograph, the first
step in a reconstruction procedure must be linear. Its
results will not only help to set up reasonable model
structures but also yield information on the parameters
describing the transfer function, such as the coefficients of
spherical aberration and axial astigmatism and the defocus
at which a micrograph was taken.

Answer - I agree. Image reconstruction and image simula-
tion make excellent complementary techniques for obtain-
ing maximum information from electron micrographs. Of
course linear image reconstruction is the ideal method to
use with images from thin crystals; however image
simulation can also be useful in checking the degree of
linearity of the experimental conditions under whicn the
micrograph was obtained, as well as its more usual function
of using the structure determined by the reconstruction to
simulate images for comparison with experimental images
obtained under conditions known to be non-linear, e.g.
images from thick crystals, and dark-field images.
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