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ELECTRON IMAGE SIMULATION: 
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Abstract 

At present it is difficult to use direct imag e 
processing techniques to determine the specimen 
structure from electron micrographs obtained under non­
linear imaging conditions, and impossible when the effects 
of dynamical scattering are strong (as in the case of 
thick er specimens). Howev e r, computing techniques are 
available to simul ate high-re so luti on transmission electron 
microscope (HR TEM) im ages of postul a ted model 
structures. With these techniques it is possible to confirm 
the validity of interpretation of re cor ded micrographs, to 
he lp analyze crysta l defects, to characterize microscope 
param e t ers , and to determine the ranges of validity of 
co mmonly used interpretiv e approximations. Because 
proces sed micrographs can lead to suitable model 
structures and, in turn, mod e ls ca n indicate optimum 
directions for processing, th e two techniques are exce llent 
com pl eme nt s . 

Key Words: Processing, simulation , int erpretation, 
modeling, computing, hi gh-reso lution transmission 
e lectron microscopy . 
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Introduction 

The ultimate goal of the image processing of elec­
tron micrographs is to obtain all possible information 
about the specimen that may be con tained in the micro­
graph. In fact, since the e lectron microscope acts some­
what as a spa tial fr e quency filter, more informat ion is 
availab le from a "focal series" of micrographs than from 
any single image. Saxton (19B0) shows exa mpl es of the 
application of Schiske's (1973) generalization of the 
Wiener filter to focal series of micrographs under so­
called "line ar imag e " conditions. 

Under more general cond ition s the so-ca lled 
"seco nd-order" terms can alter the weights of spatial 
frequencies present in the image and e ven introduce 
higher frequencies formed from combinations of the 
fr equencies present in the linear-image con tribution to 
the micrograph . Second-order terms complicate the 
processing procedure immensely, and no satis factory 
method of incorporating them has been published. 
O'Keefe and Sanders (1976) suggested that it may be 
possible to remove the seco nd-ord er component from 
expe rimental optimum defocus images by subtracting the 
minimum contrast (or Gaussian focus) image, since this 
latt e r image is formed by se lecting the value of focus 
which produces minimum lin ear contribution to the image 
int ens ity and second-order contributions change only 
slowly with change in focus. Saxton (19 80) has proposed 
removing the second-order contribution by processing 
bright-field/dark- fi e ld pairs of micrographs, but the 
method introduces some experimental difficulties. Kirk ­
land (19B2) has proposed a computational method, but 
O'Keefe and Saxton (19B3) show that some of the 
approximations involved are unjustified. At present, 
therefore, linear transfer can be inverted, but non~linear 
transfer cannot. Thus in image reconstruction the linear 
approximation is often chosen even when it is realized 
that for thicker specimens, the approximation may be 
poor. After this initial linear step has been used to set up 
reasonable model structures and yield information on 
transfer function par a meters, simulations can be made 
both with and without non-linear effects, not only to 
assist reconstruction, but also in order to assess the 
importance of the non-linear contribution, and thus the 
reliability of the initial linear step. In some 
circumstances the linear approximation can be used to 
quite high values of crystal thickness (Tanaka and 
Jout,frey, 1984), whereas in others it fails dramatically by 
150A (O'Keefe and Saxton, 19B3). 

Present processing methods (and even future ones 
incorporating the second-order effects) are capable only 
of determining the complex amplitude (modulus and phase) 
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of the electron wave leaving the exit surface of the 
specimen. Under some conditions this electron wave is a 
simple function of the specimen structure projected in the 
direction of the electron beam, so that the structure is 
easily derived from the exit surface wave. This procedure 
is possible when the specimen scatters sufficiently weakly 
to be considered a "phase-object" or even a "weak phase 
object". Conditions of strong scattering occur for thicker 
specimens composed of heavier atoms and viewed down 
low index planes where atoms superpose exactly. These 
conditions are often those desirable in studies of periodic 
structures, especially of defects in such structures. On 
the other hand, when atom positions do not superpose, as 
for the case of defects in the thickness direction, 
interpretation is often impossible even with the aid of 
image simulation. Fortunately, biological and organic 
crystals are weak scatterers and hence can be interpreted 
as phase objects to thicknesses of several hundred 
Angstrom units; similarly many oxid~s and 0 silicate 
minerals have a thickness limit in the 50A to lO0A range, 
as do the important semiconductors Si and GaAs. 
However most metals and alloys have limits of only a few 
tens of Angstroms. For specimens thicker than the above 
limits, no simple relationship between the projected 
specimen structure and the exit-surface wave can be 
found (e.g. Jap and Glaser 1980) and image simulations 
must be used. 

For the simulation of HRTEM images, a model 
structure is proposed, assembled in the computer, and 
images computed incorporating the various microscope 
parameters. In the decade since simulated high-resolution 
image s of known crystal structures first appeared in the 
"!2-Beam Lattice Images" series of papers (Allpre ss et al., 
1972; Lynch and O'Keefe, 1972, Anstis e t al., 1973; 
O'Keefe, 197 3; Lynch et al., 1975, O'Keefe and Sanders, 
1975), it has become com monplac e to interpret HRTEM 
images of uncharacterized structures by compar ing them 
with simulated images. Such images are currently 
produced by a variety of programs written in various 
laboratories aro und the world; in fact, commercial 
packages such as Skarnulis' (1979) interactive program and 
the more general SHRLI suite of programs (O'Keefe e t al., 
1978 ) are now available. 

Theory of Simulation 

The starting point for image simulation is to model 
the electron microscope as a simple system of electron 
beam, specimen and Jens system (Fig. 1). Generally the 
initial electron beam is considered to be a parallel beam 
of plane wave e lectrons. The microscope lens system is 
replaced by one spherically-aberrated Jens which can be 
regarded as representing the objective Jens. In a real 
electron microscope the objective Jens has the crucial 
duty of re-assembling the diffracted beams emerging from 
the specimen into an image which is merely magni f ied 
further by subsequent lenses. 

In any simulation three functions representing the 
electron wave amplitude must be computed at three 
positions within the model microscope; at the exit surface 
of the specimen, f(~); at the back-focal plane (diffraction 
plane) of the objective Jens, f 1,:i and at the image plane of 
the lens, \jJ (~). The computation of the exit-surface wave 
f(~), involves mainly the model specimen structure (the 
only microscope parameter involved is the energy of the 
electrons in the incident beam). The wave at the back­
focal plane, fk' is obtained via a simple Fourier transform 
of the exit-surface wave f(~). Calculation of the image 
from the electron wave at the diffraction plane does not 
involve the specimen but only microscope parameters, 
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such as objective Jens defocus and spherical aberration; 
together with the objective aperture size and position, 
these modify fk before it is transformed into ljJ(~) , the 
image amplitude. 
Calculation of the Exit-Surface Wave 

Self et al., (1983) give details on calculating f by 
various methods and conclude that the multislice meti-iod 
(Goo dman and Moodie, 1974) is preferable. In this 
method, the steps involved in calculating the (structure 
dependent ) values of f k are: 

(i) calculation of Vk, the Fourier coeHicients of 
potential (structure factors) at rec1procal lattice points ~. 
lying in the zone perpendicular to th e electron beam 
direction. Summing over all a toms in the unit cell: 

h2 
V -k - 2TTm eV 

- e C 

(I) 

where V is the volume of the unit ce ll, and ef_ and x. 
are the Sectron scattering factor, and th e positi6n of thd 
jth atom respectively. Here the electron scattering 
factor for each atom is defined as the Fourier tr ansform 
of the potential distribution for that ato,n. Inclu sion of 
all Vk within 4A - ! of the origin of reciprocal space 
provides sufficient accuracy for most calcu lation s. 

(ii) Fourier transformation of the V values produces 
<i>p(x) the crystal potential of one unit ee l~ projected in the 
direction of the electron beam. The effect of such a thin 
"slice" of c r ysta l on the electron beam is that of a phase 
object, and the electron "tr ansmission functi on " for the 
slice is 

q(x) = exp { imp (x)Llz } 
- p -

(2) 

where Ll z is the "sli ce thickness" and o is the interaction 
parameter for e lectrons of the designated energy . 

(ii i) The exit-surface wave at the desired crystal 
thickness, H = mllz, is found from q(~) by ite ration. After 
m slices the e lec tron wave f(~) is given by 

m ( m-1 ( ) m ( m ( f ~) = [ f ~ * p ~) ] q ~) (3) 

where mq(x) is the transmission function of the mth slice 
and mp(~ )- is the small-angle approximation to the free 
space propagator for the distan ce between the (m -l )th and 
mth slices (i.e. the familiar Fresnel propagator ); * 
represents the convolution operation. The diffraction 
plane wavefield mf is obtained from mf(~) by Fourier 
transformation. Note that for heavy atoms, or unit ce lls 
large in the direction of the e lectron beam, the sl ice 
thickness Ll z may need to be chosen smaller than th e unit 
cell height. In such cases a number of projected 
potentials must be calculated and appropriate 
transmission function s stored for each slice. Many 
structures are formed from atoms su/ficiently light to 
allow slice thicknesses from 3A to 5A without intracell 
slicing. 

The it eration of (3) is best performed in reciprocal 
space, where the wavefunction exists only at the discrete 
points of the reciprocal lattice. Furthermore, as the 
Fourier components of the wavefunction fall off with 
increasing order, it is a good approximation to consider 
the reciprocal space wavefunction as bandwidth limited 
(i.e. having intensity in only a finite numb er of beams ). In 
reciprocal space, (3) becomes 

(4) 
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where Pl< and Qk are rt,he Fourier transforms of p(15) and 
q(15). This form gives f k directly and 1s the form used in 
the SHRLI programs (O'Keefe et al., 1978 ) and shown in 
Figure 1. 

Now that large amounts of computer memory are 
available to an individual user, an alternative to both the 
real-space (3) and diffraction-space (4) methods has 
become viable. This method uses the fast Fourier 
transform (F FT) algorithm of Cooley and Tukey (1965) to 
replace the convolution by an FFT followed by a simple 
multiplication and an inverse FFT (Ishizuka and Uyeda, 
1977 ). This procedure is faster than direct convolution for 
larg e numb ers of beams and extremely fast when 
programmed on an array processor. One problem is that 
only 2/3 of the extent of the FFT array can be used in 
order to avoid the aliasing produced by multiplication of 
two functions in a pseudo-periodic diffraction space, the 
pseudo-periodicity resulting from sampling the continuous 
functions f(15) and q(15). Thus only 4/9 of the two­
dimensional array can be used for active beams without 
the danger of overlap of adjacent diffraction cells over­
emphasizing the amplitudes of the outer reflections. 

Van Dyck (1980) ha s used an approximate form of (3) 
to ca lculate the scattering in real space. Although the 
di ffr~ction-space method (4) requires a time proportional 
to N (where N is the number of diffracted beams), and 
the FFT method requir es a time proportional to N log N, 
th e time for Van Dyck's sma ll-block convo lution method is 
proportional to N. Unfortunately practical trials (Sel f, 
1982; Kilaas and Gransky, 1983) showed that this method 
requir e d much larger values of N and smaller values of /', z 
than both th e FFT and diffraction-space methods, 
resulting in ca lcu lati ons that took 4 to 5 times as long as 
an FFT mul tislice to produce an equivalent result. 
Calculation of the Image-Plane Wave 

In order to compute the image plane int ensity from 
the ex it surface wave, we need to includ e the effects of 
objective lens defocus and spherica l aberration. These 
parameters act merely to change the pha ses of the 
diffracted elect ron beams passing through the aperture of 
the len s. Thu s: 

(5) 

where: 

(6) 

and [ ~ I = Zs = 2 sinQ/ >., C is the spherical aberration 
coefficient of the lens, and Kf is the amount of defocus of 
the objective lens from the Gaussian or in-focus position 
(here a negative value of M has been chosen to correspo nd 
to the underfocus condition produced by a weakened lens, 
and a positiv e value to overfocus). The objective aperture 
function Ak is unity for beams passing through the 
aperture and zero for those outside. 

The intensity in the image plane can be calculated 
by Fourier transform of 'Pk to obtain the amplitude 1µ(15) 
followed by squar ing of the amplitude: 

(7) 

Early programs (Lynch and □'Keefe, 1972) used the above 
procedure to form the image, relying on the objective 
aperture function to select the correct number of diffrac­
ted beams in order to limit the resolution in the simulated 
image to that of the electron microscope. However, it 
was soon found that images calculated with an aperture 
cutoff corresponding to that used experimentally con­
tained more detail (O'Keefe, 1973) than the experimental 
micrograph. 
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~ Mode l of a simplified electron microscope toge­
ther with the associated functions for simu latin g high­
reso lution image s, and showing the three microscope 
planes at which the e lectro n wavefield is required. 

□'Keefe and Sanders (1975) considered two types of 
"s'Tlearing" aberratio ns which could be responsible for loss 
of resolution, the convergent character of the incident 
e lec tron beam and the spread of focus produced by energy 
spread in the incid ent electrons . Both these aberrations 
have the effect of smearing the mi crosc ope image by 
making it a composite of higher-resolution images. 
Incident beam convergence produces a compos ite imag e 
formed by the summation of many im ages, each at a 
different angle within the incident cone. Spread of focus 
produces a composite formed from imag es summed over a 
range of defocus. 

O'Keef e and Sanders (1975) measured the expe ri ­
mental value of converge nce from a diffraction pattern 
obtained with the microscope illumination set as for 
imaging (Fig. 2). Ca lculation of 49 images at sampling 
positions within the convergent cone (Fig. 3) produced a 
set of images (Fig. 4) which could be summed to match 
the exper imental result (Fig. 5). Fejes (1977) included the 
effect of spread of focus, and also found a degradation in 
image resolution. 

In order to obtain a better understanding of the 
manner in which resolution is degraded by beam conver­
gence and spread of focus, we can reformulate (7) by 
taking its Fourier transform to obtain 

.. 
I~ = 'I'~ * 'I' -~ 

(8) 

where Ik is the image intensity spectrum, and * repre­
sents the convolution operation. Writing out the convol-
ution gives 

I 'P 'I'* 
\ = k' k'-k 
~ ~I ~ ~ ~ 

(9) 

Thus Ik, the image intensity spectrum, the Fourier trans­
form of the image intensity, can be calculated directly 
from the 'I' k' the aberrated diffraction-plane wavefield; 
the image intensity is formed by later Fourier transform 
of the intensity spectrum. 

Figure 6 shows the image intensity spectrum formed 
by an aberrated diffraction-plane wavefield (or image 
amplitude spectrum) consisting of five colinear diffracted 
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~ 001 diffraction pattern of Nb 2□ 29 obtained with 
illumination adjusted for imaging, anb snowing discs due 
to electron beam convergence in imaging mode. 

~ Method of including beam convergence in the 
image simulation . Eac h disc admitted by the objective 
aperture is sam pl ed at 49 points and imag es ca lculat ed at 
angles co rr espond ing to each sampling point. 

beams. We see that an amplitude spectrum containing 
terms out to h = + 2 produces an intensity spectrum with 
frequencies out to-h = + 4. As shown in the figure, each 
frequency in the intensity spectrum is made up of a 
number of terms produced by pairwise multiplication of 
members of the amp litud e spectrum. Terms containing 
the zeroth order of the amp litud e spectrum are ca lled 
first-order (o r linear image) terms (note that they do not 
occur in frequencies greater than the amplitude spectrum 
limits of h = + 2), and those containing no zeroth order are 
called second:order (or non-linear) terms. 

Linear Images 

In wavefields (and hence im ages) from spe cimens 
thin enough to be regarded as phase objects, most of the 
electron intensity resides in the ce nt ra l or zeroth order 
diffracted beam. In this type of situation the ampl itu de 
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~ Tilted-beam images obtained at ang les within one 
quadrant of the convergence cone (t he other quadrant s an~ 
generated from these images by symmetry). Th e rad11 
(ma rked a through d) correspond to those so marked in fig. 
3. The specimen is 50A thick Nb1 2O 2 9 i1;::r ged at lO0keV 
with an objective ~erture size of 0.308 A , Cs = 1.8mm, 
and defocus = -600A. 

~ Experimental image of Nb 12D 29 with inset images 
s imulat ed without (a) and with (b) inclusion of the conver­
gence effect . 

of the zeroth beam is typically 0.9 o f the amp litud e of the 
incident beam, while the stronger diffracted beams may 
attain values of 10- 3. The ratio of the weights of the first 
order terms to those of the second order is thus 
approximately one thousand times, meaning that the 
second-order terms may safely be disregarded in 
interpreting this type of image. 
Linear Im age Theory 

Dropping second-order terms in (9) we find that only 
two linear terms remain, 

(10) 

and this is confirmed by figure 6. * 
Substituting from (5) and reca lling '!'0 = '!'0 

l we 
get 

L\ = \exp {-iy (~) } +f:~exp {+i y( -~) }. (11) 

From (2) , the object transmission function for a phase 
object of thickness H is 

(12) 
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For a weak phase object (WPO) we can make a kinematic 
scattering approximation and approximate the trans­
mission function as 

WPOq(x) = 1 + io¢ (x)H 
- p -

(13) 

so that Fourier transformation gives 

WPOf 
~ = 6(~)-,.i o HV~ (14) 

Substituting for WPOfk in (11) produces th e linear 
approximation to the image intensity spectrum as, 

L\ = o H V~ sin y(~) + o H V:~ sin ,,{-~) 

* 

image 

and since V -k = V k' and y is radially symmetric for a 
prop er ly- a ligned microscope, 

L 
\ = z OH V ~ sin y (6) for 6 ~ o 

For k = 0 the zeroth frequen cy is approximately 6 (k) so 
that the full ex pr essio n is 

(15) 

Thu s for a spec imen suffi c ientl y thin that (i) the kine­
matic approximation to e lectron sca tt ering is adequate, 
and (ii) the secon d- orde r int e ns it y spectrum terms are 
small, the imag e intensity may be found by Fourier t r a ns ­
formation of (15), or alternatively an expe rim e ntal micro­
graph may be int erpre t ed as if the transfer of spatia l 
frequency V k into the im age we re cont rolled by the value 
of sin y at that value of k. Since C is always positive 
(fo r magnetic lenses) and L\f may be c h1 sen to be negative 
by und erfoc uss ing the lens , th e shape of th e c urve of sin 
y(k) against k ca n be contro ll ed to some extent by 
choosing particular values of underfocus. 

Scherzer (1949) searched for the optimum linear 
im age and found that it occurs when a va lue of defocus 
near to -Jl.5C 7' is chosen. In thi s case , s in y( k) is 

s 

1 -..---. ............... r~.---,-- .. ,~~7--.---...- .---..-1......--. • -.-.............,....--• r ,-, ...----, ,~.,,.. 

. I 
Passband 

I 
-1 f~_,__.__._--L..,..__._._,--1... -~ ......i..:::::, O ' • -~~-,__l__ • L._J~ 

O k(A- 1)----+ 

.El9.:....2:. Linear image contrast tra nsfer fu nction (plot of 
s in y (6) aga inst I 6 I) for an objective le ns c los e to 
Sch e r zer defocus. Spa tial fr e quencies are transferred 
with we ight s proportional to s in y . Frequ e ncies within 
the passb and (ma rk e d) are considered to contribute with­
out signifi ca nt attenuation. The cutoff frequency that 
de t e rmin es resolution in stru ct ure image s lies at the upp er 
lim it of the passba nd. 
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approximately equal to minus one over a band of fre­
quencies extending to 

1.5 CSl/4 7'-3/4 

Thus for frequencies within this band 

L 1
6 

= 6(6) - Zo H v
6 

and the image intensity is 

(16) 

(17) 

where L ¢(~) is a projected potential with resolution 
limited t o the highest frequency Vk falling within the 
pass band. This type o f image is extremely important, 
because it shows directly the projected potential of the 
specimen, albeit to a limited res olution, with low intensity 
(bla ck) in regions of high potential (high concentrations of 
atoms ) and high intensity (white ) in low potential regions 
(tunne ls) . This type of image is often called a structure 
image, and the particular value of underfocus is referred 
to as "Sch erze r" defocus. Figur e 7 shows a sin Y(k) curve, 
or linear image "c ontr a st transf er function" for a value of 
defoc us close to Scherzer focus; the pa ss band and cu toff 
frequency a re marked. The cutoff frequency defines the 
struct ur e imag e reso lution, or Scherzer reso lution, for any 
particular e lec tron microscope. 

uL uL 'L..1 ....11__.___.___.__.___.__..........., 
' T 

I I 
't'(u ') T(u) 

1-2 2-, }-o H n 
T.2 T,t T,o n ,., 

02 0·1 (>0 0·T 0·1 ,., ... 1·0 l•f 1·2 ,., ,., 2·0 >T ,., 
~ Representat ion of the nine spa ti a l fr e quencies 
generated in th e image intens it y spectru'Tl by an amp li­
tude spectrum co ns isting of five co lli near d iffra c t ed 
beams. The t e rm s con tributing to each frequency are 
tab ul ated in ab br ev ia t ed form--t~e term n.m rep resents 
multiplication of the pair '!1 n"ljl m from the amplitude 
spectru~. 

t 
C: 
0 

+­
u 
C: 
::, 

LL 

"' L 
::, 

+­
L 

"' a. 
<C 

Chromati c aberration 
Beam co nve r gence 

' 

~ Plots of the linear damping functions (a perture 
fun ct ion s) du8i, to a spread of focus with a gaussian half­
width of 250A (d ashed ) and a beam convergence with a 
semi-ang le of 1.4 milliradian (solid lin e) for a lOOkeV 
elect ron microscope with Cs= 1.8mm. 
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Linear Image Resolution 
Frank (1973) re-formulated the resolution-limiting 

effects of both beam convergence and spread of focus into 
expressions in reciprocal space. He showed that the 
effect on linear images is to impose envelope functions or 
soft apertures on the linear image amplitude, limiting 
transference of the higher spatial frequencies. Aperture 
functions for a Gaussian spread of focus of half-width 
250A , and for a beam convergence semi-angle of 1.4 
milliradian are shown in figure 8. The aperture function 
due to spread of focus (or chromatic aberration) slopes 
gradually to zero, transferring higher frequencies only 
partially. The convergence aperture function is steeper, 
and its shape and cutoff frequency change with changes in 
defocus; at higher degrees of underfocus the cutoff 
frequency is higher, allowing more higher frequencies to 
contribute to the image, but mid-range frequencies are 
damped. 

Whereas an accurate value of the beam convergence 
a can be measured directly from a diffraction pattern 
obtained with focussed illumination (fig. 2), the spread of 
focus 6 for a particular electron microscope must either 
be estimated by matching an experimental image with 
ones computed using different values of 6 , or approxima­
ted from known values of the chromatic aberration coeffi­
cient C and the high voltage and lens current ripple. A 
good apSroximation to 6 is obtained from 

6 = C J ( oV /V )2 + 4(6 I/1)2 + (6 E/E) 2 ( l 8) 
C 

where oV/V and 61/1 are the high voltage and lens current 
ripple (usually quoted in ppm) respectively, and oE/E is 
the fractional energy spread of the electron beam. 

Figur e 9 shows experimental images of a thin crystal 
of the block oxide Nb 12-o29 obtained on two different 
electron microscopes. l3eTow each micrograph is the 
linear image enve lop e function correspond ing to that 
microscope, and simulated imag es are inset. Notice that 
the factor limiting the reso lution of the lO0keV 
microscope is the large co nverg ence factor (se mi-angle 
1.4 milliradian), while the lMeV microscope Js limited by 
the en~ lope due to a spread of focus of 500A. The value 
of 500A was obtained by application of equation 18 to a 
chromatic aberration coefficient of 4.4mm, and high 
voltage and lens current ripples of 5ppm; the energy 
spread was taken as leV, f roducing a 6 value of 6 = 
44 J25 + 100 + l = 494 . As it happened, Nb 7o29 images computed for this lMeV microscope are not-very 
sensitive to moderate changes in the value of 6 . Images 
computed for a range of 6 values and compared with 
exp~iment stww that the correct value of 6 lies between 
400A and 600A (F ig. 10). 

It appears quite common that high voltage electron 
mi crosco pes have linear-image resolutions limited by the 
spread of focus effect, presumably because of the 
difficulty of obtaining low values of ripple. Conversely, 
lower voltage (lO0keV) microscopes are usually limited by 
the effects of the relatively large convergence angles 
used to obtain sufficient brightness on the fluorescent 
screen. Of course, spread of focus becomes a significant 
resolution-limiting factor even in lower-voltage 
microscopes if 6 is made immoderately large by 
increasing the energy spread of the electron beam leaving 
the thermionic filament. Whereas at lMeV a value of OE 
of leV produces an insignificant contribution to 6 , such a 
value at l00keV represents lDppm and contributes a larger 
proportion than the voltage and current ripple. Krivanek 
(1975) demonstrated that a high beam current of 30µA 
(corresponding to an energy spread of 5eV ha lf-width) 
reduced the linear image resolution of a 125keV electron 
microscope to worse than 3.4A. 
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Non-Linear Images 

Images obtained from thicker regions of specimens, 
as well as dark-field images, cannot be described in terms 
of linear contrast transfer functions, and hence the con­
cept of the envelope function does not apply. 

Non-Linear Resolution 
O'Kee fe (1979) extended the concept of the linear­

image envelope function to include the non-linear terms, 
and showed that neglect of the "cross-terms" present in 
the general non-linear (but not the linear) damping 
functions could lead to the overdamping and loss of higher 
frequencies in the image intensity spectrum. Figure ll (a) 
shows how the full damping function due to beam 
convergence acts on the terms contributing to each 
frequency in the intensity spectrum, while (b) shows the 
effect on these terms if linear damping envelope functions 
are applied. The degree of damping of any intensity 
spectrum term is read off the plot by considering the two 
members of the amplitude spectrum making up the term 
(fig. 6), and reading up or across from the origin of the 
damping function (located at the center of the plot). The 
0.0 term (contributing to the 0 frequency of the intensity 
spectrum) is located at the origin of the plot and is un­
damped (white). Similarly, all the n.n terms (falling along 
the bottom-left to top-right diagonal) are also undamped 
in the general case (a), but are lost if linear damping is 
applied (b). Note that those terms which contribute to the 
linear image (a nd lie along horizontal and vertical axes 
through the origin of each plot) are damped equally by 
both the general and linear damping functions (as 
indicated by the inset cross-section in (b) showing the 
familiar linear envelope profile of fig. 8). 

A plot of the difference between the general and 
linear damping functions for convergence (fig. llc) shows 
that the main e ffect of using the linear form to inc lude 
the effects of beam convergence and spread of focus in a 
simulated image is to overdamp the n.n terms co ntributing 
to the zero frequency. This has the effect of low er ing the 
mean imag e intensity level, occasionally producing 
negative values of intensity, but not otherwise serious ly 
affecting the appearance of the simulated image (negat ive 
intensities arise because the unphysical nature of the 
linear damping function violates the principle of particle 
conservation, as was pointed out by Rose, 1977). 

The image changes occasioned by using linear damp­
ing for the spread of focus effect are much more ser ious. 
Figure 12(a) shows that, as in the convergence case, the 
general damping function for spread of focus also does not 
damp the n.n terms. In addition, however, terms of the 
form n.n are not damped by the general spread of focus 
function. Thus the intensity spectrum will always contain 
frequencies out to twice the order of the highest members 
of the amplitude spectrum (unless these happen to be 
damped by a sufficiently large convergence). 

We can apply the spread of focus function of figure 
12(a) to the intensity spectrum terms listed in figure 6. 
Consider the 2 frequency in the_intensity spectrum; its 
contributing terms are the lin~ar 2.0 and 0.2 interactions, 
together with the non-linear 1.1 term. For a sufficiently 
large value of 6 , the linear terms would be heavily 
damped, but the non-linear one would not (as marked in 
figure 12a) so that this frequency would be present in the 
image. Using the linear damping function (figure 12b) the 
non-linear term is damped and the frequency will be 
missing from the image. 

Previously we discussed the structure image (or 
Scherzer) resolution limit determined by the cutoff fre­
quency at which the dominant aperture function blocks 
linear transfer into the intensity spectrum (as in figure 8). 



High-r es oluti on e l ect r on i mage s i mul a ti on 
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~ Structure image s of Nb 1 0 9 taken at (a ) lO0kV 
and (b) lMV. The inse rts at lower)eh of e ach micrograph 
are calculat ed image s for a 38.A thick cry st a l of Nb

12
o

29
. 

The ap ertur e functions (AF, plotted below each image as a 
function of ~ in reciprocal A) show the reso lut ion 
conditions under which each calcu lation was carrJed out. 
At lO0kV the physical aperture (A) at ~ = 0.308A limits 
resolution to 3.2A: the aperture function due t;o a defocus 
halfwidth of lO□A (B) limit s resolution to 2.4A; while the 
aperture function due to an incident beq,m convergen ce of 
1.4 millir adi an (C) re str ic t s it to 3.BA. The combin eg 
effect of th ese functions (D) results in an image of 3.BA 
resolution. At lMV the physical aperture (A) and 
convergence aperture funct ion (C) limit resolutions to 
1.9A and l.SA respectively. For the calculated image to 
match the experimental result required a defocus-depth 
halfwidth of SODA, resulting in the B curve shown. The 
combined effect (D) is virtually identical to 8 and yields 
an image of 2.SA resolution. 
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Fig. 10. Series of Nb 12O ;,9 imag es s imulat e d for incre as­
ing va lues of L , the spr e ad of focus halfwidth (mark e d in 
A) . Imag e res olution is deg raded as 6 inc re as es. 

F ig. 11. Int ens it y spec trum dam ping fun c ti ons due to 
beam conv e rgenc e : (a) ge ner a l (li nea r plu s non linea r ) 
co nve rg ence dampin g fun c ti on; (b) lin ea r da mping fun c ti on 
with inse t tra ce a lon g a lin ea r-imag e -t e rm dir ec ti on; (c) 
th e inacc uracy in using lin e ar damping (plot (a) minu s p lot 
(b)) . 
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Fig. 12. Intensity spec trum damping fun c tions for spr e ad 
of focus: (a) gen eral da mping fun c tion; (b) lin e ar da mpin g 
fun c tion; (c) the diff e r ence. The inse t spots show int e r­
feren ce s contributing to the 2nd ord e r frequency of th e 
int e nsit y spectrum of fig. 6. 

Non-linear transfer into the intensity spectrum gives rise 
to yet another resolution limit. This non-linear resolution 
limit is sometimes called the "fringe resolution" of the 
m icroscope, and is given by the highest frequency 
transferred into the intensity spectrum. The gen eral 
damping functions (figs. 11, 12) show that_ th e highest 
order term transferred will be of the form n.n s ince this 
type of interference term is undamped by the spread of 
focus function ( fig. 12) and passed by the convergence 
function (fig. 11) at a maximum va lue determined only by 
the value of focus; if the value of focus is chosen to allow 
the nth order member of the amplitude spectrum to 
contribute to the image via a linear interference term of 
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0.n, then the non-linear interference n.n will also be 
passed to appear in the image, even if the linear term 0.n 
is blocked by the spread of focus function. Th e fringe 
resolution of an electron microscope is thus twice as good 
as the limit set by it s linear co nvergenc e aperture 
function (provided, of course, that the microscope is 
vibration-free and is aligned sufficie ntl y accurately that 
the n.n interference falls within the narrow white arm of 
the spread of focus function, that is that the n and n 
diffracted beams form equal angles with the optic axis of 
the microscope). 
Real -Spa ce Second-Order Effects 

Whereas images from thin crystals show detail to 
the linear-image resolution of the electron microscope, 
imag es from thicker crystals contain linearl y-transferred 
detail to the same resolution plus non-line ar detail to the 
non-linear resolution limit. In structure images the phases 
of the linear cont ribu tion are chosen to be negative (by 
selecting Scherzer focus) produc ing black spots at 
positions corresponding to areas of high potential (atoms 
or unresolved groups of atoms). In general, strong second­
order contributions tend to have positive phase and 
produce white peaks at positions of high potential. These 
white peaks are sharper (coming from the high-frequency 
region of the intensity spectrum) than the linear black 
peaks, and produce the characteristic 'bla ck donut with 
white hole' image in thicker structure images. Pirouz 
(1981) has shown that inclusion of the second-order terms 
is equivalent to adding a term proportional to the square 
of the projected crystal potential, and yet another 
proportional to the projected charge density, to the thin­
crystal projected potential imag e ; a negative-going (black) 
peak in the linear image (due to an atom or group of 
unre solved atoms ) is thu s squared to add a sharper 
positive-going (whit e) pe ak into the total (linear plus non­
line ar) image. 

This e ffe c t ca n be see n in both experimental and 
computed imag es . Typi c ally an image of a wedg e cry stal 
will show periodi c bla c k spots at the thin edge and the 
same black spot s with white ce nters in thicker region s. 
Similarly, whit e spots app e ar in computed images of 
organic crystals as c rystal thickness increases (O'Keefe et 
al., 1983). A pair of images of an organic crystal 
computed using the general and lin ear damping functions 
is shown in figure 13 together wit h their difference 
( formed by subtracting the images using the SEMPER 
programs of Saxton, 1979 ). Bec ause the crystal is thin 
(19,&J the two imag es appear identical, but subtraction 
reveals a 3% differ ence in contrast. This difference 
appears at both th e positions of minima (blacks ) and 
max ima (whites ) in the image, since the non-linear con­
tribution arises from a squaring of the linear image con­
trast (Cowley, 1975 ). Although the difference (the non­
linear contribution ) has only 3% of image contrast for a 
crystal 19A thick, this figure rises to 20% at 56A thick. 
At a thickness of 94A the contrast difference is 30% and 
differences in the images are easi ly visible (fig. 14). 

In some structures non-linear contr ibuti ons can 
produce images which appear like high-resolution 
structure images (Smith and O'Keefe, 1983); the 
"dumbbell" images of Cd Te and Si viewed in [ ll0] 
orientation are good examples of images dominated by 
non-linear contributions. Fig. 15 shows a series of "weak­
phase-object images" of 8-SiC in [ ll0] orientation for 
increasing resolution. These images are the ones expected 
from very thin crystals imag e d at Scherzer defocus; they 
show that each silicon/carbon atom pair appears as an 
unresolved black spot at 2.17Areso luti on (or alternative ly, 
the tunnels in the stru c ture appear white). As resolution 
is improved the black spots elongate at 1.54A resolution 
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then split at 1.09A resolution. Images computed for the 
Cambridge University HREM show dumbbell images with 
this splitting at crysta l thicknesses of 150A, although the 
linear-image resolution of the microscope is certainly 
worse than 1.09A. Smit h and O'Keefe (1983 ) show how 
the dumbbell images ar ise from a combination of non­
linear and lin ear terms producing white spots at the atom 
positions over a limited range of crystal thickness and 
(non-Scherzer) microscope defocus . Inter estingly, images 
from thick crystals at Scherzer defocus produce a type of 
dumbbell image where one white spot falls on an atom 
position, while the other is centered on a tunnel site. 

It is considered generally well-known that the use of 
linear damping functions in imag e simulations is equi­
vale nt to an assumption that the electron beam is per­
fectly coherent. Rose (private communication - 1984) 
points out that the entire theory of STEM image forma­
tion is based on it--nevertheless it bears r epeating to 
avoid misconceptions (e.g . 0 ' Keefe and Sax t on, 1983) . 
Perfect spatial coherenc e (i.e. a condenser aperture filled 
with coherent electron waves) is possible in the case of an 
electron microscope equipped with a field emission gun 
rather than the more common thermionic kind. In this 
case the general form for the intensity spectrum ( fig. 16, 
equation 1) may be replaced by one using a linear 
convergence function (fig. 16, equation 2). However, 
perfect temporal coherence ap pe ars impossible to 
achieve, so that a linear spread of focus form (fig. 16, 
equation 3) should not be used for image s imul ation 
(except within the unphysical weak phase object domain). 
Im ages of 8 -SiC ca lcu lated with linear damping terms 
( fig. 16, equation 3) do not produce the well-known split 
white dumbbells at a crystal thickness of 150A, wherea s 
images calculated with the general form do (fig. 17). 
Dark-Field Imag es 

The general form of the intensity spectrum can be 
use d to simulate imag es in both bright-field and dark-field 
modes. In dark-fi e ld calculations all contributions to the 
intensity spectrum come from non -lin ear terms, and 
incorrect over-damping of these terms must be avoided by 
using the correct general damping functions. In the cas e 
of small-aperture dark field imaging, a large proport ion of 
the contributing beams will have convergence cones that 
intersect the objective aperture and the simu lation 
program must be capable of modelling this situation. 
Figure 18 shows diffraction patterns from a crystal of 
4Nb 2o

5
.9WO

3 
in [ 001] projection. When a small aper­

ture is centered on the 130 reflection, the defocussed 
pattern (a ) shows 9 diffracted beams passing through the 
aperture, whereas under imaging conditions portions of 19 
discs lie inside the aperture (b). Taking this effect into 
account lijima and O'Keefe (1977) successfully matched 
dark-field images ( fig. 19a,b). Centering the aperture on 
130 produced the expected sw it ch in the positions of 
bright spots in the image (fig. 19c). 
Misalignment and Crystal Tilt 

One problem that arises in high resolution electron 
microscopy is accurate alignment of the e le ctron micro­
scope and of the specimen. While determining the 
structure of takeuchiite by HRTEM, Bovin et al., (1981), 
found that their best electron micrograph showed lower 
symmetry than images simu lated from proposed models. 
Examination of the diffraction pattern revealed that the 
specimen was tilted 23 milliradian off the zone axis so 
that the center of the Laue circle was at 770. Figure 20 
shows the experimental image with inset simulations for 
crystal thicknesses of 60 Aand 150A. Note that the lower 
symmetry is more obv ious in the simulat ion for the 
thicker crystal. 
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a 
Fig. 13. Imag es of a thin (19A) crystal of copper hexadeca-
chlorophthalocyanine using (a) general and (b) linear 
damping functions. Simulation conditions are as publi shed 
for the Kyoto HAREM (e .g. Kirkland, 1982 ). Differenc e 
images a re shown above; differenc e co ntrast is 3% of 
imag e contrast. 

2.17 1.54 1.31 1.09 

Fig. 15. Resolution series of weak -ph ase,,object ima ges of 
B -Si C in [ 110] projection. Reso lution (A) is marked. 

Fig. 16. Image intensity spectrum equations for (l) 
general dam ping fun ct ions, (2) linear convergence and 
general spread of focu s , (3) linear convergence and spread 
of focus. Here the dam ping functions due to lack of 
lat era l and longitudinal coherence (i.e. convergence and 
spread of focus ) are designated by l;:l and E. 

15 62 108 154 

Fig. 17. Images of B -SiC [ 110] calculated for typicab 
operating conditions (500 kV, Cs = 3.5mm, L\f = -ll00A 
underfocus, convergence half-angle 0.3mrad, rms focus 
spread 250A) for crystal thickness ( from left) 15, 62, 108 
and 154A ; upper and lower rows calculated using 
equations (1) and (3) of fig. 16 respectively, and scaled 
individually to maximum contrast. Note the contrast 
reversal from the WPO images in fig. 15, due to the non­
Scherzer value of -llOOA defocus. 
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a 
Fig . 14. Im ages of thick (94A) copper hexadecachloroph-
thalocyanine computed with (a) general and (b) lin ear 
damping functions. Sim ul ation condit ions are for the 
Cambridge HREM (e .g. Smith and O'Keefe , 1983 ). 
Difference images (ab ov e) have 30% of imag e co ntra st. 
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Fig. 18. Diffraction patterns from [ 001] 4Nb2 D
5

.9WO 3 
for parallel (a) and focussed (b) illumination. The obiec­
tive aperture size and position are shown. Note the many 
diffraction cones intersecting the aperture in (b). 

Fig. 19. Dark-field images of 4Nb
2

O .9WO
3 

for the 
conditions of fig. 18. (a) experimental; (bJ computed with 
the aperture centered on 130; (c) computed with the 
aperture at 130. 
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Because the e ffect s of crystal tilts and electron 
beam misalignment are easily incorporated in simulation 
programs, th-e programs are useful in exploring the results 
of tilts and misalignments on high resolution images. 
Computations by Smith e t al., (1983), revealed that 
misalignments (the e ff ect of having the electron bea m at 
a slight angle to the optic axis of the objective len s) as 
sma ll as orw half milliradian could change the symmetry 
in thin (26PJ crystal images (fig. 21), whereas crystal tilts 
of up to 32 m illir adia n had littl e effect on such images. 
As the crystal thickness was increased the effect cf)f 
crys t a l tilt incr eased; for a crysta l of thickness 76A , 
sign ificant changes occurred for tilt s of 8 milliradian (fig. 
22). Thus experimental imag es in which symmetry is 
low er merely in th e thicker reg ions (as in fig. 20) indicate 
specimen tilt (or buckling ), while an extension of lower 
symme try to the thin edge probably calls for r e-a lignment 
of the microscope. 

Calcu lation of Image :; of Defects 

While high-resolution imag e s imulation theory is 
usua lly pr esen t ed for perfect crystals, it is po ss ible to 
com put e im ages of periodic and non-p e riodic faults. In 
programs us ing a multislice algorithm the method used is 
to create a large "sup e rce ll" with perfect crystal 
surrounding the fault. Such a calculation was made by 
O'Keefe and Iijima (19 78 ) for a tetragonal tungst e n bronz e 
e le ment embedded in a matrix of ten by ten unit ce lls of 
wo

3 
(fig. 23). The simulated images matched an 

exper imental fo ca l ser ies of mi c rographs of such a defect 
(fig. 24). Thi s "pe riodi c exte ns ion" method can be used to 
extend the multislice ca lc ulat ion to include not only 
faults, but also crysta l edg es (e .g. Marks and Smith, 1983). 

In simul at ing imag es of defects by th e pe riodi c 
extension method outlined above, we are ca lcu lating th e 
diffuse scatter ing fr om th e defect only at certain points 
in reciprocal space- -in e ff ect we are "sampling" what 
shou ld be a cont inuou s distribution of diffu se scatte ring at 
a finite numb er of points on a grid whose interv a l is the 
reciproca l of th e rea l- space sup erce ll. In the calc ulation 
of O'Kee fe and Iijima (1978 ), the choice of a ten by ten 
supercell produ ced a sam pling of the diffuse scattering on 
a grid ten time s finer than the reciprocal lattic e 
containing the Bragg beams from the perfect wo 3 crystal. 
A fin er sampling co uld have been produc ed by using a 
larg er supercell, but sinc e calc ulation size is always 
rest ricted (in thi s case to an array of 128 x 128 points) th e 
ca lculation would not have exte nded out far enough in 
reciprocal space. The tr ade-off in sampling fineness and 
exte nt in recipro ca l space res tri c ts 0 128 x 128 calculations 
to c,5upercell s izes of less than 40A and ideally less than 
25A. Larger programs using arrays of 256 x 256 point s 
(Krakow, 1980 ) and 512 x 512 points could safely handle 
defect cells to areas of 50A by 50A and 100A by l □0A 
re spectively. Th ese larger areas will enable the extent of 
the lattice relaxation around the defect to be broadened. 

Conclusion 

Besides the obvious use of simulated images in 
te st ing models of specimen structure, simulation programs 
a re also useful in analysing the effects of microscope 
par a meters like spread-of-focus, in determining the 
importance of maladjustment s such as misalignment and 
specimen tilt, and in setting limits on how far approxi­
mations like the "structure image" concept may be 
trusted. Modified programs can be used to explore 
unconventional imaging modes like dark-field hollow-cone 
(DFHC) and BFHC mode s (e .g. O'Keefe and Pitt, 1980). 
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With the advent of cheaper, larger memory, 32-bit, 
"super-mini" computers, it should be possible to run larg e 
(perhaps 512 x 512) simulation programs on-line in 
interactive mode. With th e addition of an associated 
array processor, such calculations should produc e an 
image only a few minutes after a new structural model is 
rea d in. The imag e would, of course, be displayed on a 
video monitor in "split screen" mode for comparison with 
a digitized experimental micrograph. 
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l00keV for C =0 1.8mm, convergence semi-ang le a = 
1.4mrad, ti = I40A, and defocus values of -1527 A (upper), 
-lO00A (center) and -625A (lower). Small misalignments 
produce changes in image symmetry. Crystal tilt effects 
are not as severe. 
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Fig. 22. Simulated images of thicker (76/SJ Nb 1 0 29 for 
increasing beam and crystal tilt (marked). Con~tions as 
for fig. 21, with a defocus of -600A • For this thicker 
crystal, tilt effects are stronger. 
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Fig. 23. (a) Structure image of a TTB element in a wo
3 matrix, and (b) the model derived from it. 

-450 -675 

-800 -800 

Experimental 

-900 

-1100 

Calculation 

-1350 

-1400 

Fig. 24. Focal series of experimental TTB images with 
defocus values marked above in A , together with best­
match simu lations from the model of fig. 23 computed for 
values of defocus marked below. 
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Additional Discuss ion 

1. Question by J. Hren - Hav e you (or others) attempted to 
take into account relaxations associated with the crystal 
thickness. And, if so, please describe the results. 
Answer - Although it is quite possible to include surface 
relaxations in the simulations (given an appropri ate model), 
I have not done so. The paper by Marks and Smith (1983) 
describes some results of relaxation at a surface parall el to 
the beam, but I have never seen any simulations including 
relaxations at surfaces perpendicular to the incident beam 
direction. 

2. Question by J. Hren - Under what conditions could you 
expect to im age the effects of defects in the thickness 
direction? 
Answer - Again, it is easily done using existing programs, 
but since an electron micrograph is largely a projection of 
the specimen structure , defects which produce overlapping 
structures in the beam direction would le ad to confused 
contrast in both ex perimental micrograph and simulated 
image. Given a reasonable thickness of specimen, it might 
be very difficult to distingu ish between s imulation s 
produced by different defect models. 

3. Comment by F. Lenz - In the earlier literatur e the 
"smea ring" of "damping" effects due to "conv erge nce" of 
"spread of focus" were often described as lack of coher­
ence, where "convergence" correspo nds to latera l and 
"spread of focus" to longitudinal coherence. ---
Answer - Yes, these are certa inl y effects due to parti a l 
coherence. I used the terms "converge nce " and "spr ead of 
focus" to describe how they were included in the s imulation 
programs. 
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4. Comment by F. Lenz - The reason why so many authors 
have neglected second-order terms in the image transfer 
relations is not only the wish to s implif y them. It was well 
known from the beginning that contrast transfer is a non­
linear process, whereas amplitude transfer is lin ear . For 
image simulation it is relatively easy to conclude from 
object properti es on image contrast without having to 
lineari ze, and it has been done before even for non-periodic 
objects. The inverse procedure, i.e. the deduction from 
image contrast of object properties is, howev er, much more 
complicated. Linear transfer ca n be inverted, non-linear 
transfer cannot. In image reconstruction one ha s to 
linearize even if one knows that for thicker spec im ens this 
may be a poor approximation. Since our original source of 
information is usually an electron micrograph, the first 
step in a reconstruction procedur e must be linear. It s 
results will not only help to set up reasonable model 
structures but also yield information on the parameters 
descr ibing the transfer function, such as the coefficients of 
spherica l aberration and axia l astigmatism and the defocus 
at which a mi crog raph was taken. 
Answer - I agree. Image reconstruction and image simula­
tion make excellent comp lementary techniques for obtain­
ing maximum information from electron micrographs. Of 
course linear image reconstruction is the idea l method to 
use with images from thin crysta ls; however image 
s imul atio n can a lso be useful in checking the degree of 
linearity of the experimental conditio ns under whic, the 
micrograph was obtained, as well as its mor e usual function 
of using the structure determined by the reconstruction to 
simu late images for comparison with experimental images 
obtained under conditions known to be non-linear, e.g . 
images from thick crysta ls, and dark-field images. 
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