ENDOMORPHISMS OF HOMOGENEOUS SPACES OF LIE GROUPS

Erkii LAITINEN

(Received May 6, 1993)

If H is a closed subgroup of a topological group G it is well-known that there is a bijection

$$
\operatorname{Map}_{G}(G / H, G / H) \xrightarrow{\rightrightarrows}(G / H)^{H}
$$

which is actually a homeomorphism when the mapping space is equipped with compact-open topology. Homeomorphisms correspond to the subspaces

$$
\operatorname{Homeo}_{G}(G / H) \underset{\leftrightarrows}{\sim} N H / H .
$$

Our main purpose is to prove
Theorem. If G is a Lie group and H is a closed subgroup then $N H / H$ is open in $(G / H)^{H}$.

In [tD, Ch. IV.1] Tammo tom Dieck defines a universal additive invariant $U(G)$ of pointed finite G-CW-complexes for arbitrary topological groups G and computes it for compact Lie groups. As a corollary we obtain that his result is valid for arbitrary Lie groups, too.

Corollary. $U(G)$ is a free abelian group on elements $u\left(G / H^{+}\right)$where H runs through a complete set of conjugacy classes of closed subgroups H in G for any Lie group G.

The condition
(O) $N H / H$ is open in $(G / H)^{H}$
was introduced in a study with Wolfgang Lück [LL] in order to define the equivariant Lefschetz class of a G-endomorphism $f: X \rightarrow X$ of a finite G-CW-complex.

The inverse images of the subspaces $N H / H \subset(G / H)^{H} \subset G / H$ are

$$
N H=\left\{g \in G \mid g^{-1} H g=H\right\} \text { and } S H=\left\{g \in G \mid g^{-1} H g \subset H\right\}
$$

and we claim that $N H$ is open in $S H$, when G is a Lie group. It is well-known that $N H=S H$ when H is compact. As H is closed in G, both $N H$ and $S H$ are always closed in G, so that for Lie groups G the fixed point space splits as a topological sum

$$
(G / H)^{H}=N H / H+(G / H)^{>H} .
$$

The Lie theory we need can be found e.g. in the books Helgason [H, Ch.II] or Kawakubo [K, Ch.3].

Reduction to a discrete subgroup
Let G be a Lie group and H be a closed subgroup. We first claim that it suffices to prove the Theorem for all Lie groups G in the case where H is discrete. Indeed, let H_{0} denote the unit component of H. Then H_{0} is a closed and open subgroup of H and $H / H_{0}=\pi_{0}(H)$. If $g^{-1} H g \subset H$ then $g^{-1} H_{0} g \subset H$ is a connected set which contains e, whence $g^{-1} H_{0} g \subset H_{0}$. Then it holds for the Lie algebras that $L\left(g^{-1} H_{0} g\right) \subset L\left(H_{0}\right)$, but as they have the same dimension they must coincide. By connectedness $g^{-1} H_{0} g=H_{0}$ and $N H \subset S H \subset N\left(H_{0}\right)$. We can therefore assume that $G=N\left(H_{0}\right)$, i.e. that H_{0} is normal in G. Then the normalizer of the discrete subgroup $\pi_{0}(H)=H / H_{0}$ of G / H_{0} is $N \pi_{0}(H)=N H / H_{0}, S \pi_{0}(H)=S H / H_{0}$ and it clearly suffices to prove the claim for the subgroup $\pi_{0}(H)$ of G / H_{0}.

Lie algebra of the centralizer
Let G be a Lie group and let H be a discrete closed subgroup of G. The centralizer

$$
Z H=\left\{g \in G \mid g h g^{-1}=h \text { for } h \in H\right\}
$$

is a closed subgroup of G and is normal in $N H$ for any closed H. When H is moreover discrete, then it holds $(N H)_{0}=(Z H)_{0}$: each $g \in(N H)_{0}$ can be connected to e by a path g_{t} in $N H$. The corresponding conjugations $c_{g_{t}}: H \rightarrow H$ give a homotopy from c_{g} to $c_{e}=i d_{H}$. As H is discrete, the homotopy is constant and therefore $c_{g}=i d_{H}$, i.e. $g \in Z H$. We conclude that $L N H=L Z H$.

Recall that the adjoint representation of G in $L G$ is defined by attaching to an element $g \in G$ the differential $\operatorname{Ad}(g): L G \rightarrow L G$ of the conjugation $c_{g}: G \rightarrow G$.

Lemma. $L Z H=\{X \in L G \mid X=A d(h) X$ for $h \in H\}$.
Proof. A closed subgroup H of a Lie group G is itself a Lie group with Lie
algebra

$$
L H=\{X \in L G \mid \exp (t X) \in H \text { for } t \in \mathbf{R}\}
$$

see [H, Theorem II 2.3] or [K, Theorem 3.36]. Hence

$$
\begin{aligned}
L Z H & =\{X \in L G \mid \exp (t X) \in Z H \text { for } t \in \mathbf{R}\} \\
& =\left\{X \in L G \mid c_{h}(\exp (t X))=\exp (t X) \text { for } h \in H, t \in \mathbf{R}\right\}
\end{aligned}
$$

as $A d(h)$ is the differential of c_{h}, the last set equals to

$$
\begin{aligned}
& =\{X \in L G \mid \exp (t X)=\exp (\operatorname{tad}(h) X) \text { for } h \in H, t \in \mathbf{R}\} \\
& =\{X \in L G \mid X=\operatorname{Ad}(h) X \text { for } h \in H\}
\end{aligned}
$$

as exp is a diffeomorphism near the origin. This proves the Lemma.

Proof of the Theorem

Let G be a Lie group and let H be a closed discrete subgroup. The quotient space G / H is then a smooth manifold and the projection $\pi: G \rightarrow G / H$ is a smooth covering projection. Then the diagrams

commute for each $h \in H$, where $l_{g}: G / H \rightarrow G / H$ is left translation by g and $c_{g}: G \rightarrow G$ is conjugation by g. As the exponential map exp is a local diffeomorphism at the origin $0, \exp (0)=e$ and similarly π is a local diffeomorphism at the unit element e and $\pi(e)=e H$, the composite $\pi e x p$ is a diffeomorphism of a small enough open disk $U_{h} \subset L G$ onto its image $V_{h} \subset G / H . \quad V_{h}$ is an open neighborhood of $e H$ and the diagram

commutes. In paricular $U_{h}^{A d(h)}$ is diffeomorphic to V_{h}^{h}.
By the Lemma $L Z H=\{X \in L G \mid X=A d(h) X$ for $h \in H\}$. As the spaces in question are finite-dimensional vector spaces, we can choose a finite set $h_{1}, h_{2}, \cdots, h_{n} \in H$
such that $L Z H=\left\{X \in L G \mid X=A d\left(h_{i}\right) X\right.$ for $\left.i=1, \cdots, n\right\}$. Let $U=\bigcap_{i=1}^{n} U_{h_{i}}$ and $V=\bigcap_{i=1}^{n} V_{h_{i}} \quad$ The map $\pi \exp$ restricts to a diffeomorphism $U \rightarrow V$, which induces a diffeomorphism

$$
U \cap L Z H=\bigcap_{i=1}^{n} U_{h_{i}}^{A d\left(h_{i}\right)} \leftrightharpoons \bigcap_{i=1}^{n} V_{h_{i}}^{h_{i}}=V^{\left\{h_{1}, \cdots, h_{n}\right\}}
$$

Choose U and consequently V is so small that $\pi \exp (U \cap L Z H)=V \cap(Z H / H)$ holds. Then the neighborhood V of the point $e H=G / H$ satisfies

$$
V \cap(Z H / H)=V \cap(G / H)^{\left\{h_{1}, \cdots, h_{n}\right\}} .
$$

But clearly we have $Z H / H \subset N H / H \subset(G / H)^{H} \subset(G / H)^{\left\{h_{1}, \cdots, h_{n}\right\}}$ so in fact equality

$$
V \cap(N H / H)=V \cap(G / H)^{H}
$$

holds. Hence $N H / H \subset(G / H)^{H}$ is open at the point $e H \in N H / H$. Using the left action of $N H / H$ we see that $N H / H$ is open in $(G / H)^{H}$. This proves the Theorem.

Proof of the Corollary

Recall tom Dieck's definition of the universal additive invariant of a topological group G. An additive invariant consists of an pair $(B, b), B$ an abelian group and b an assignement which associates to each pointed finite G-CW-complex X an element $b(X) \in B$ such that $b(X)=b(Y)$ if X and Y are pointed G-homotopy equivalent and that the condition

$$
b(X)=b(A)+b(X / A)
$$

holds when A is a pointed subcomplex of X. An additive invariant (U, u) is universal if every other additive invariant factors through it uniquely. A universal additive invariant is uniquely determined by the usual Grothendieck construction, and it is denoted by $(U(G), u)$.

It follows by an easy argument that $U(G)$ is always generated by the classes $u\left(G / H^{+}\right)$[tD, Proposition IV.1.8]. Although not explicitly stated, the proof that there are no relations between the classes $u\left(G / H^{+}\right)$uses implicitly the fact that G is a compact Lie group since it is based on the Euler characteristics $\chi\left(X^{H} / N H\right)$, which are guaranteed to exist if G is a compact Lie group since then $X^{H} / N H$ is a compact ENR but not otherwise (cf. the example given below.)

Let G be a Lie group. Using our Theorem we can alternatively proceed as follows. As noted in [LL, p. 495], the condition (O) implies that a G-CW-complex structure on X induces a relative $N H / H-C W$-complex structure on the pair $\left(X^{H}, X^{>H}\right)$. The quotient $\left(X^{H} / N H, X^{>H} / N H\right)$ is then an ordinary relative CWcomplex (possibly non-Hausdorff) whose cells correspond to the G-cells of X of type G / H. If $n(X, H, i)$ is the number of such i-cells, it follows that the numbers
$n(X, H)=\sum_{i \geqq 0} n(X, H, i)$ are G-homotopy invariants of X as

$$
n(X, H)=\chi\left(X^{H} / N H, X^{>H} / N H\right) .
$$

Then $(\mathbf{Z}, n(X, H))$ is an additive invariant such that

$$
n\left(G / H^{+}, H\right)=1, n\left(G / K^{+}, H\right)=0 \text { for } K \text { not conjugate to } H \text {. }
$$

This proves the Corollary.

Example

We conclude with an example taken from Fuchsian groups. Let $G=\operatorname{PSL}(2, \mathbf{R})$ considered as the group of Möbius transformations

$$
g(z)=\frac{a z+b}{c z+d}, a d-b c=1, a, b, c, d \in \mathbf{R}
$$

of the complex plane. Let H be the discrete subgroup of translations

$$
h(z)=z+n, \quad n \in \mathbf{Z} .
$$

Then it is easy to check that the normalizer $N H$ of H in G consists of translations

$$
n(z)=z+b, \quad b \in \mathbf{R},
$$

whereas $S H$ equals the affine transformations

$$
s(z)=m z+b, \quad m=1,2, \cdots, b \in \mathbf{R} .
$$

In particular $N H / H$ is a circle S^{1} and $S H / H=\mathbf{N} \times S^{1}$.
Taking $X=G / H$ gives an example of a finite G-CW-complex (a zero-cell) with $X^{H} / N H$ a countable discrete set and therefore of infinite Euler characteristic.

References

[tD] T. tom Dieck: Transformation Groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter, Berlin-New York, 1987.
[H] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, New York-San Fransisco-London, 1962.
[K] K. Kawakubo: The Theory of Transformation Groups, Oxford University Press, Oxford-New York-Tokyo, 1991.
[LL] E. Laitinen and W. Lück: Equivariant Lefschetz classes, Osaka J. Math. 26 (1989), 491-525.

Department of Mathematics,
P.O. Box 4 (Hallituskatu 15)

00014 University of Helsinki, Finland

