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Abstract 
 

Abstract 
 

Individuals of the cnidarian genus Physalia are a common sight at New Zealand beaches and 

are the primary cause of jellyfish stings to beachgoers each year. The identity of the species 

and the environmental factors that determine its presence are unknown. Lack of knowledge of 

many marine species is not unusual, as pelagic invertebrates often lack detailed taxonomic 

descriptions as well as information about their dispersal mechanisms such that meaningful 

patterns of distribution and dispersal are almost impossible to determine. Molecular 

systematics has proven to be a powerful tool for species identification and for determining 

geographical distributions. However, other techniques are needed to indicate the causal 

mechanisms that may result in a particular species distribution. The aim of this study was to 

apply molecular techniques to the cnidarian genus Physalia to establish which species occur 

in coastal New Zealand, and to apply models to attempt to forecast its occurrence and infer 

some mechanisms of dispersal.  

 

Physalia specimens were collected from New Zealand, Australia and Hawaii and sequenced 

for Cytochrome c oxidase I (COI) and the Internal transcribed spacer 1 (ITS1). Three clans 

were found: a Pacific-wide clan, an Australasian clan and New Zealand endemic clan with a 

distribution confined to the Bay of Plenty and the East Coast of the North Island. Forecasting 

Physalia occurrence directly from presence data using artificial neural networks (ANN) 

proved unsuccessful and it was necessary to pre-process the presence data using a variable 

sliding window to reduce noise and improve accuracy. This modelling approach outperformed 

the time lagged based networks giving improved forecasts in both regions that were assessed. 

The ANN models were able to indicated significant trends in the data but would require more 
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data at higher resolution to give more accurate forecasts of Physalia occurrence suitable for 

decision making on New Zealand beaches. 

 

To determine possible causal mechanisms of recorded occurrences and to identify possible 

origins of Physalia the presence and absence of Physalia on swimming beaches throughout 

the summer season was modelled using ANN and Naϊve Bayesian Classifier (NBC). Both 

models were trained on the same data consisting of oceanographic variables. The modelling 

carried out in this study detected two dynamic systems, which matched the distribution of the 

molecular clans. One system was centralised in the Bay of Plenty matching the New Zealand 

endemic clan. The other involved a dynamic system that encompassed four other regions on 

both coasts of the country that matched the distribution of the other clans. By combining the 

results it was possible to propose a framework for Physalia distribution including a 

mechanism that has driven clan divergence. Moreover, potential blooming areas that are 

notoriously hard to establish for jellyfish were hypothesised for further study and/or 

validation. 
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Chapter 1: Introduction  
 

 

1.1 Introduction 

 

Modelling of marine populations has primarily focused on commercial fish populations with 

many models and model types developed to assess population levels and predict future yields 

(McAllister & Kirkwood 1998; Cotter et al. 2004; Pelletier & Mahevas 2005). Although in 

recent years with the advent of genetic studies depicting how populations are linked at a 

genetic level there is a growing interest in how marine larvae disperse to determine and 

understand theses linkages (Cowen et al. 2000). Compared to other marine taxa, jellyfish have 

been neglected in marine research for the past 100 years (Haddock 2004). More recently, 

there has been an increasing awareness of the role jellyfish have within the marine ecosystem, 

particularly with respect to the threat of climate change and higher rates of eutrophication 

within ocean systems. Both have been linked with increases in jellyfish populations (Mills, 

2001; Purcell and Arai, 2001; Parsons and Lalli, 2002) with consequent environmental 

problems such as blocked nets in aquacultural enterprises, and high populations that can affect 

fish stocks by severely depleting eggs, small larvae and plankton (Purcell et al. 2007).  As a 

result, there is renewed interest in identifying environmental factors that influence jellyfish 

abundance and dispersal to assess any potential impacts. However, there is considerable 

difficulty defining a jellyfish populations as there are potential issues with species taxonomy 

and few datasets of appropriate population data exist (Purcell 2005), therefore the ability to 

establish base population levels for species in specific geographic regions is restricted. 

Despite this, there is considerable opportunity to utilise molecular techniques to define 

populations so that were possible datasets can be related to the populations, providing that it is 

possible to identify shortcomings in the data and it is treated appropriately (Elith et al. 2006).  
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1.2 Cnidaria in New Zealand 

 

The phylum Cnidaria encompasses all true corals and their relatives (eg hydroids, sea 

anemones and sea fans). The phylum is highly diverse with many species displaying brilliant 

colouring which when combined with the radial symmetry that is characteristic of cnidarians 

(Barnes 1980) creates a beauty that is surpassed by few other animals. Eight hundred and 

ninety five species of Cnidaria have been recorded in New Zealand waters, representing 

nearly 10% of the world’s diversity (Smith & Gordon 2003) of these 210 are unnamed. 

Species range from the endemic tree-like black coral (Antipathes fiordensis) through to the 

brilliantly coloured sea anemone, Corynactis australis and include 26 species of jellyfish. The 

phylum Cnidaria has traditionally been split into three classes (Anthozoa, Hydrozoa and 

Scyphozoa) but because of recent interest in genetic analysis of the phylum this is subject to 

debate. The class Cubozoa was added to the phylum in 1975 and consists of species that have 

a free swimming planula larva that settles and develops into a sessile polyp (Collins 2002). 

Because of further genetic information Marques & Collins (2004) proposed that a new class, 

Staurozoa, could be formed from the Scyphozoans giving a possible five classes in the 

phylum (Anthozoa, Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, Figure 1.1). In spite of 

the rapid progress made in the higher-level classification of Cnidaria there has been little 

change within the class Hydrozoa to which the genus Physalia belongs, as this appears to be a 

clade well supported by genetic analyses (Collins 2002).  
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Figure 1.1: Taxonomic tree of the Hydrozoa as proposed by Collins (2002). 

 

The class Hydrozoa contains 3702 nominal species (Bouillon et al. 2006) of which 134 are 

considered to be present in New Zealand (Bouillon & Barnett 1999). Hydrozoans are often 

not considered to be true jellyfish as the medusa is not the dominant form for many species 

(Barnes 1980). The order Siphonophora, to which the genus Physalia belongs, is considered a 
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highly specialised Hydrozoan order that has evolved from an essentially sessile benthic 

existence to become pelagic. Members exist as large pelagic colonies composed of modified 

polypoid and medusoid individuals. Siphonophorans are classified into three groups based on 

the presence or absence of two features that are associated with pelagic life. Species that 

possess swimming bells are classified as physonect species These species are considered to 

have evolved from the cystonects, which possess a float but in turn evolved into the 

calycophores, which are characterised by having both features (Collins 2002). The presence 

of a float made it possible for the early siphonophores to evolve from a benthic to pelagic 

existence as the float enables the individual to move around the ocean through the passive use 

of winds and currents. Some species such as the pacific Nanomia bijuga have been recorded 

at depths between 10m and 800m (Robinson et al. 1998) as they are capable of regulating the 

gas content of the float. The development of the swimming bell, as in Lensia conoidea, is an 

adaptation for self-locomotion within the pelagic realm rather than relying on external factors.  

 

The bluebottle is a common jellyfish in New Zealand that is readily identified by beachgoers, 

predominantly because the species is responsible for most of the stings inflicted on these 

people each year. There is considerable taxonomic confusion about which species are found 

in coastal New Zealand. The literature suggests the species most likely to be present are the 

Physalia physalis (Portuguese man-of-war) and Physalia utriculus, although neither has been 

categorically confirmed as present in New Zealand (Bouillon & Barnett 1999; Collins 2002; 

Bouillon et al. 2006). Furthermore, the existence of P. utriculus as a species is highly 

debateable as according to Totton (1960) and Bouillon et al. (2006) only P. physalis exist as a 

species and this view is supported by the Integrated Taxonomic Information System 

(http://www.itis.usda.gov) however, Collins (2002), Mandojana (1990), Yanagihara et al. 

(2002) and Alam et al. (2002) all use the name P. utriculus in their papers highlighting the 

taxonomic issues already present within this genus. 
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Compounding this confusion, molecular data have revealed that another jellyfish species, 

Aurelia aurita (the moon jellyfish), historically considered to be a cosmopolitan species with 

little geographic morphological variation is actually a complex of seven closely related 

species (Dawson & Jacobs 2001). Like A. aurita, Physalia inhabits all the world’s oceans 

with little morphological variation (Totton 1960). The last taxonomic review of Physalia was 

conducted by Totton in 1960 and little detailed taxonomic study of the genus has been 

undertaken since. This suggests that Physalia may also turn out to be a species complex, 

initially identifiable through molecular techniques and then by a thorough revision of the 

taxonomy as part of an “integrated taxonomy” approach, as suggested by Dayrat (2005).    

1.3 Surf Lifesaving New Zealand and Physalia  

For the past 99 years New Zealand beaches have been patrolled by volunteer surf lifeguards 

who take care of many incidents that range from complex water rescues to providing simple 

elements of first aid. Currently, there are 72 surf lifesaving clubs in New Zealand that patrol 

from approximately late October until mid March. Because the beaches are patrolled by 

volunteers, clubs have developed a method of accurately recording all aspects of their work, 

primarily for funding purposes. The result is a highly professional organisation that has 

detailed records of every patrol that has been carried out stretching back at least 10 years. 

Each report records basic environmental conditions (wind direction and intensity, wave height 

and surf conditions) as well as detailing anything that has happened during the patrol. Within 

this data there are records of incidents where surf lifeguards have treated members of the 

public for jellyfish stings. These records can be considered a proxy for the presence of 

Physalia as this is the only genus of jellyfish that is known to be capable of stinging people in 

New Zealand (Slaughter et al. 2009). As with most data that have not been collected for 

scientific purposes there are several issues concerning its accuracy but because there are few 
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long term datasets that contain records of jellyfish incidences (Mills 2001) the Surf Lifesaving 

New Zealand dataset presents an opportunity for further study. 

 

1.4 Artificial Neural Networks 

Current knowledge about patterns of marine larvae dispersal patterns is limited particularly 

for species that have a wider dispersal pattern other than near-coastal (Shanks et al. 2003; 

Kinlan et al. 2005). For instance Shanks et al. (2003) when suggesting an optimum distance 

been marine reserves for connectivity could only find 32 taxa that had the necessary dispersal 

information from which to make a recommendation. From the findings it was noted that all 

but one taxon had a larvae dispersal distance of less than 400 km. A key determinate of the 

distance that a species could disperse was if the larvae were able to feed (Kinlan et al. 2005). 

With species that had non-feeding larvae dispersal, estimates were approximately 30km, 

whereas for feeding larvae, it was approximately 100km. Because of the lack of information 

on pelagic species with large scale dispersal capability the majority of attempts to model 

marine larvae dispersal has focused on coastal species. 

 

Models that have been used to determine marine larvae dispersal include those based on 

Eulerian and Lagrangian flow models (Cowen et al. 2000; Siegel et al. 2003; Daewel et al. 

2008), differential equation models (Eckman 1996) and/or qualitative models based on direct 

observation (Olson 1985). A new development in modelling marine larvae dispersal has been 

to use high-resolution ocean circulation
 
models to generate individual-based

 
models (Cowen 

et al. 2006). The accuracy and realism of such models depends on the accuracy of the input 

data particularly the biological information that is available. The study by Cowen et al. (2006) 

was able to define pelagic larval duration, larval behaviour in terms of vertical
 
and horizontal 

swimming capabilities, and adult spawning strategies within the model increasing the 

relevance and accuracy of the findings. In cases where little is known about the biology 
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and/or dispersal patterns of the target species it may be necessary to use other data-driven 

methods to identify parameters that can be then be used into an individual-based
 
model. 

Physalia inhabits a complex environment that is highly variable so it is necessary to consider 

a large number of variables to determine those most likely to affect the populations. 

Furthermore, each variable potentially includes significant noise masking true patterns. 

Artificial Neural Networks (ANN) have shown considerable promise in their ability to model 

data, especially noisy and incomplete ecological data (Lek et al. 1996; Olden & Jackson 

2002b; Joy & Death 2004; Cocu et al. 2005) however, their use in ecology is still not widely 

accepted despite having been shown to out-perform conventional approaches (Lek et al. 1996; 

Brosse et al. 1999; Mutanga & Skidmore 2004).  

 

ANNs were designed as simple models of the human brain mimicking the way it can tackle 

complex problems (Crick 1989). The brain of a human consists of over 100 billion neurons 

that are interconnected to form a complex network that is able to organise and recognise 

complex sensory inputs. Furthermore, when the brain repeatedly receives similar sensory 

inputs it is able to recall previous responses to the given stimuli and over time optimise its 

response through learning. An ANN is a computer algorithm that mimics that process.  

 

There are many types of neural networks, each with their own particular purpose. For 

example, self organising maps (SOM) are clustering and vector quantisation algorithms often  

used to identify key variables and can be compared to principal component analysis (Kohonen 

1990; Brosse et al. 2001). One of the more common ANN, often used for prediction, is the 

multilayer perceptron (MLP) (Rumelhart & McClelland 1986; Lek et al. 1996). An MLP is 

made up of three primary layers or groups of artificial neurons (input, hidden and output) 

(Figure 1.2). The initial layer is termed the input layer. The input layer represents the data 

entering the network. Each variable that is input into the network is assigned a node or neuron 
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within the input layer. The next layer is the hidden layer; this may be a single layer or group 

of layers depending on the complexity of the network. The hidden layer also has neurons 

embedded within it. The number of neurons is decided upon by the researcher. Each 

individual neuron in the input layer is connected to every neuron in the hidden layer. Each 

neuron processes information through the use of mathematical functions linked within a 

network (Batchelor 1998) (Figure 1.3). As in the animal neuron, each processing element 

receives input (µi in Figure 1.3) from many other neurons. Each input, µi, is multiplied by its 

associated weight or coefficient that dictates the strength or size of the input. The modified 

inputs are summed and the result (a) is further modified by a transfer function f(a) that is 

either fed forward to other neurons or becomes the network’s output. The data that each input 

neuron contains is processed through the hidden layer neurons where the data is usually 

summed and a nonlinear function (activation function) is applied to the sum resulting in a 

value being obtained for each variable. The information that is produced in the hidden layer is 

then transferred to the output layer. The output layer normally consists of a single neuron 

representing the desired output from the model. If more than one output is desired then 

additional output neurons can be added.  

 

Figure 1.2: Visual representation of a multilayer perceptron neural network consisting of an 

input layer one hidden layer and an output layer. 
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Figure 1.3: Diagrammatic representation of a single artificial neuron. The symbols µ1-4 

represent input variables.   

 

Before the data is processed by the network it is randomly broken into two or three subsets. 

The largest of the subsets is referred to as the training subset as this is the data that is 

repeatedly processed by the network in the training stage. The training stage refers to the 

process by which the network learns patterns in the data. To improve the accuracy of the 

model, the backpropagation algorithm was developed (Rumelhart et al. 1986). The 

backpropagation technique is a type of supervised training. During training the network 

algorithm adjusts the weights of the network connections over many hundreds of iterations to 

minimise by least squares, the difference between the network output (prediction) and the 

observed data. To further calibrate the network, output is checked using the least squares 

method against the second subset, the test set, and the connection weight associated with each 

neuron is adjusted in series of iterations to optimise the model output. In other words, the 

weights are adjusted to minimise the error between the network or modelled output and the 

observed response. This process is commonly referred to as training the network. While the 

least squares method is used to fit standard statistical models, the difference with ANN 

models is that there is greater complexity. ANN models learn by iteration and can model any 

non-linearity in the data. The production or validation subset is a subset of the data that is set 

aside from the training process. Once the network is trained then the network predictions are 
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compared with the observed data in the production set to test the network’s ability to 

generalise and adapt to new data.  

 

The speed that a backpropagation network learns is controlled by the leaning rate parameter. 

As a neuron passes a value from one layer of the network to the next, the value is modified by 

the connection weight. Each time the data is processed by the network the weighting of each 

connection between neurons is adjusted at a rate determined by the leaning rate parameter to 

either positively or negatively reinforce the connection, changing the importance of each 

variable to change within the model (Olden & Jackson 2002b). In other words, variables that 

have large connection weights, either positive or negative, within the model have a larger 

influence on how that variable affects the output than variables with smaller connection 

weights. The goal of training the network is to adjust the weights until a global minimum 

error is reached so that the network is considered optimised. However, if a network converges 

to a local minimum then misinterpretation of variable contribution and reduced network 

accuracy may result (Olden & Jackson 2002b). To reduce the problem of convergence to a 

local minimum and smoothing the transverse of the error surface, momentum has been used 

(Lek et al. 1996; Brosse et al. 1999; Olden & Jackson 2002b; Joy & Death 2004). The 

learning rate that is set to regulate the magnitude of the change in weights and the momentum 

adds a proportion of the pervious iteration’s change to the contention weights to the current 

iteration’s change. The result of training a network with an appropriate learning rate and 

momentum is that there is a high degree of probability of model convergence on the global 

instead of a local minimum (Olden & Jackson 2002b).  

 

Perhaps the greatest criticism of using ANNs to model ecological data is the lack of 

explanatory information that the models give in relation to importance of individual variables 

and interactions that occur between them. This has lead to ANNs being labelled as ‘black 



 11 

boxes’ (Olden & Jackson 2002b). The lack of explanatory power is of some concern, as it is 

difficult to interpret and therefore comment on the relationships that are occurring within the 

studied system. There have been several approaches proposed to overcome the problem, 

ranging from the development of the neural network diagrams such as a Hinton diagram 

which is able to show the strength of the connection weights (Hinton et al. 1986) to a method 

of using the connection weights method proposed by Olden & Jackson (2002b) to rank the 

average importance of the variables relative to each other after the model was run many times. 

For a full review of methods used to determine variable importance see Olden & Jackson 

(2002b), Gevery et al. (2003) or Olden et al. (2004). 

 

Because of the rapid development with regard to network types and architecture there are no 

established or recognised guidelines to follow unlike standard statistical modelling 

techniques. For instance Lek et al. (1996) used a simple network containing a single hidden 

layer that used a sigmoid activation function to model fish populations. Six years latter Visen 

et al. (2002) trialled six network architectures with different levels of complexity and 

different activation functions to classify grain seed. While the rapid development of ANNs 

has resulted in a trial and error approach to determine if a network type or particular network 

architecture is appropriate, most take an experimental approach to the optimisation of the 

number of neurons. Many studies train networks with different combinations of neurons and 

then choose the highest performing combinations (Ozesmi & Ozesmi 1999; Visen et al. 2002; 

Liang et al. 2003). In contrast, the more traditional statistical techniques have clearly defined 

criteria for when a particular technique is appropriate and when it is not. It is important to 

point out that ANNs are still under development with regard to model selection and 

optimisation. As time progresses and as theoretical considerations develop, general rules and 

guiding criteria will emerge in the same way as for standard statistical modelling techniques. 
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The application of molecular techniques to establish phylogenetic relations and identify 

potential cryptic species is now widespread in ecology (Head et al. 1998; Ballard & Whitlock 

2004; Baker & Bradley 2006). Additionally, the use of models to answer important questions 

in ecology is a long established discipline.  However, it is unusual that both techniques are 

combined to answer scientific questions or that one approach is used to validate the 

information gained from the other. While there are many benefits from using both approaches 

in any study, for example, independent validation of the identification and possible 

explanation of patterns in ecological data, the two techniques are very dissimilar and 

practitioners have widely different skills, training and interests and have limited 

understanding of the other discipline. As a result, the benefits of a multidisciplinary approach 

may be lost. In ecology in particular, the greatest benefits of a combined approach will be the 

earlier identification of important processes and relationships particularly with species or 

systems that are relatively unstudied. 
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1.5 Aims 

 

The overall aim of this thesis was to investigate which species of Physalia are present in New 

Zealand and to use ANN modelling to identify and understand the key processes that drive 

their occurrence on beaches used by the public for swimming. Molecular techniques were 

used to indicate whether Physalia in New Zealand belongs to a complex of two or more 

species and to identify their distribution. The Surf Lifesaving New Zealand dataset of jellyfish 

stings (a proxy for Physalia presence) was used to generate a predictive ANN model to 

identify key factors that influence the incidence of Physalia at New Zealand beaches and 

forecast periods of high risk of jellyfish incidence so that surf lifeguards can warn members of 

the public. By combining both techniques it was expected that a clearer interpretation of 

Physalia distribution in New Zealand coastal waters could be achieved. 

The specific objectives were to: 

• Determine which species of Physalia are present in New Zealand and map their 

distribution around the coastline using molecular techniques. 

• Identify climate and oceanographic variables that may influence the presence of 

jellyfish at New Zealand beaches.  

• Develop a predictive model to forecast Physalia occurrence in New Zealand.  
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1.6 Thesis structure 

 

This thesis comprises five chapters (Chapters 2-6) written in manuscript format.  

 

Chapter 2 details a molecular analysis of Physalia specimens collected from New Zealand, 

Australia and Hawaii the purpose of which was to determine which species of Physalia occur 

in New Zealand waters. Also detailed is how the results of this study affect the choice of 

molecular markers for Cnidarians particularly the use of cytochrome c oxidase I (COI) for 

species identification.  

Chapter 3 describes a pilot study that explores the efficacy of using an artificial neural 

network to model the presence of Physalia based on unprocessed oceanographic data  

Chapter 4 integrates the knowledge gained in Chapter 3 to improve model accuracy by 

applying a time lag function to the input data at a local scale and to begin to determine 

important features in the study system. 

Chapter 5 applies the novel use of a modified sliding window analysis to pre-process input 

data to forecast periods of high probability of Physalia occurrence in two regions of New 

Zealand using ANN. An additional goal of this chapter was to assess the potential for the 

development of a Physalia risk assessment index.   

In Chapter 6 the model is expanded to encompass the majority of the New Zealand coastline 

so that variables likely to influence Physalia presence can be determined and compared 

among regions. This chapter also compares important contributory variables identified by the 

ANN’s against those identified by a Naϊve Bayesian Classifier.   

Chapter 7 comprises an overall discussion that synthesises the research presented in previous 

Chapters and presents recommendations for future research.  
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Chapter 2: Molecular systematics of the genus Physalia (Cnidaria: 

Siphonophora) in New Zealand 

 

2.1 Abstract 

 

Physalia physalis (Portuguese man-of-war) and P. utriculus (bluebottle) have both been 

described as present in New Zealand waters, however reports are often conflicting and the 

presence of neither species has ever been confirmed. The utility of mitochondrial cytochrome 

c oxidase I (COI) DNA barcodes for identification of cnidarian species is debatable and has 

yielded mixed results due to an unusually slow rate of evolution in anthozoans. I seek to 

clarify which species of Physalia are present in New Zealand and to establish whether COI 

can be used for species identification. Fifty four specimens collected from 13 locations around 

New Zealand and Australia were sequenced for both COI and the first internal transcribed 

spacer (ITS1) of the nuclear ribosomal gene cluster. Sequences were analysed using 

maximum likelihood and split decomposition neighbour networks to determine conflict 

between clans (the unrooted analog of clades). Three clans were identified from both the COI 

and ITS sequences, none of which correspond to P. physalis. It appears that COI can be used 

as a species identification tool for non-anthozoan cnidarians and slow evolutionary rates may 

be confined to the Anthozoa. The results are complex and it is possible that hybridisation has 

occurred as clans are not consistent between the two genes. Nevertheless, it seems that there 

are at least three species of Physalia present in New Zealand and only one of these is likely to 

be a named species (P. utriculus).  
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2.2 Introduction 

 

The diversity of jellyfish has often been underestimated due to their morphological
 
simplicity 

and the historical belief that oceans provide little barrier to gene flow so there are few 

opportunities for allopatric divergence (Palumbi 1992; Knowlton 2000; Dawson and Jacobs 

2001). As a consequence there are believed to be a number of widespread cosmopolitan 

species in ocean ecosystems. With the growing use of molecular techniques, studies are now 

showing that species once thought to be cosmopolitan often consist of many cryptic species. 

For example, Dawson and Jacobs (2001) showed that Aurelia aurita (the moon jellyfish), 

commonly believed to be cosmopolitan with little or no geographic variation, can be 

reclassified into seven species based on molecular information. Another cosmopolitan species 

is Physalia physalis (L.) (Portuguese man-of-war), which is thought to inhabit all the world’s 

oceans (Lane 1960; Yanagihara et al. 2002). There is considerable potential for the genus 

Physalia to contain hidden cryptic diversity as the last taxonomic review was over 50 years 

ago  (Totton 1960). The primary issue that needs to be addressed within this genus is the 

number and identity of species and the extent of their geographical distributions, as there is 

significant debate over this. 

 

According to the taxonomy of Cnidaria proposed by Collins (2002), Physalia is placed in the 

Siphonophora and considered a sister taxon to all other siphonophores. Physalia taxonomy 

has been revised many times from Lamark’s early revision (Lamark 1801) through to a 

revision by Totton (1960), however it is still unclear exactly how many species are in the 

genus, with two species commonly named P. physalis and P. utriculus. The existence of P. 

utriculus as a distinct species is highly debateable. According to Totton (1960) and Bouillon 

et al. (2006) only P. physalis should be recognised as a species and this view is supported by 

the Integrated Taxonomic Information System (http://www.itis.usda.gov), however Collins 
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(2002), Mandojana (1990), Yanagihara et al. (2002) and Alam et al. (2002) all use the name 

P. utriculus in their papers. Driving this debate are overlapping distributions and similar 

morphological descriptions. Physalia physalis is considered to have a global distribution 

(Totton 1960; Pages and Gili 1992; Bouillon et al. 2006) whereas P. utriculus is regarded as 

confined to the Pacific (Yanagihara et al. 2002). The morphological characteristics used to 

differentiate the species are not precise and subject to interpretation. For example, the 

descriptions of both P. physalis and P. utriculus are very similar, with two features commonly 

used to differentiate them; (1) P. utriculus has a single main fishing tentacle while P. physalis 

has multiple main tentacles, and (2) P. physalis has a larger float (10-25 cm in length) than P. 

utriculus (4-8 cm) (Fenner 1997). The possibility that medusae classified as P. utriculus may 

just be juveniles of P. physalis has not been ruled out. However, Totton (1960), after 

examining individuals from around the world, noted that although there was variation, in his 

opinion this was not sufficient to indicate additional species, highlighting that identification of 

individuals is difficult. Molecular techniques, as the initial part of an “integrated taxonomy” 

approach (Dayrat 2005), provide a possible tool for resolving the taxonomic ambiguity of 

Physalia and determining how many species are present in this genus. 

 

An integrated taxonomic approach to determining whether there are cryptic species in the 

genus Physalia has potential problems, especially with respect to choosing which genes to 

analyse. To detect and determine potential species boundaries it is important to use genes that 

evolve rapidly enough to detect such boundaries, furthermore a voucher specimen needs to be 

deposited for morphological exploration of any molecular results. Le Goff-Vitry et al. (2004), 

Collins et al. (2005), Dunn et al. (2005), Govindarajan et al. (2005), Collins et al. (2008) and 

Moura et al. (2008) have all successfully used the mitochondrial gene, 16S rDNA, to examine 

hydrozoan species boundaries. An alternative approach is the use of mitochondrial gene 

cytochrome c oxidase I (COI) as a DNA barcode and therefore a universal way of identifying 
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species as proposed by Hebert, Cywinska et al. (2003). However, it has been suggested that 

COI evolves at a much slower rate in Cnidaria than in other taxa (Hebert, Ratnasingham et al. 

2003). This view has been based  particularly on data from the Anthozoa (Shearer et al. 2002; 

Shearer and Coffroth 2008) where it appears that rates of mitochondrial evolution are up to 20 

times slower than in other taxa (Shearer et al. 2002). However, recent research by Huang et 

al. (2008) and Govindarajan et al. (2005) indicated that the Hydrozoa display normal patterns 

of evolution. Dawson and Jacobs (2001) suggested that the substitution rate is higher in the 

scyphozoan, Aurelia aurita, and that COI can be used to discriminate potential species. The 

choice between the use of 16S or COI is compounded by a lack of published sequences to 

guide selection and validate results. There is one published sequence for P. physalis for both 

16S (AY935284) and COI (AY937374) in Genbank. These sequences are from the same 

specimen. There is also one 16S sequence for P. utriculus (AY512511). Because COI is 

capable of determining species boundaries in Hydrozoa and is recognised as a primary gene 

choice in species identification it is appropriate to use COI alone to identify potential species 

boundaries in Physalia.  

 

An issue with using mtDNA for species identification is that mtDNA diversity is not always 

correlated with nuclear gene diversity as processes such as greater dispersal by males than 

females can cause mtDNA to diverge while nuclear genes do not (Moritz 1994). It is therefore 

is important to use both sources of genetic information when assessing evolutionarily distinct 

populations (Cronin 1993). The internal transcribed spacer (ITS) is a commonly used region 

for this purpose as it evolves rapidly and can differentiate between closely related species 

(Hills and Davis 1986; Tang et al. 1996; Collins et al. 2000). Moreover ITS has been used for 

this purpose within the Scyphozoa (Dawson 2003), Anthozoa (Goulet and Coffroth 2003) and 

Hydrozoa (Zhang et al. 2009) to good affect.  
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P. physalis and P. utriculus have both been described as present in New Zealand waters 

(Carson 1965; Wesrerskov and Probert 1981; Bouillon and Barnett 1999), however reports 

are conflicting and the presence of neither species has been confirmed. Using DNA sequences 

from the mitochondrial gene COI and the first internal transcribed spacer (ITS1) of the 

nuclear ribosomal gene cluster, we seek to determine the diversity and identity of Physalia 

species in New Zealand waters, and in particular whether there is evidence for the presence of 

Physalia utriculus. 

 

2.3 Materials and Methods 

 

2.3.1 Sampling 

A total of 54 specimens were collected from 13 locations around New Zealand and Australia 

(Figure 1).  Specimens were either collected directly from the ocean or from the beach as they 

washed ashore. Excess sea water was removed from each specimen by blotting with a paper 

towel before being placed in 100% ethanol and stored at -20ºC. A brief morphological 

analysis was conducted to establish if there were any specimens that conformed to the P 

utriculus morphology, as described by (Fenner 1997), with a predominant fishing tentacle of 

up to 1m in length and pneumatophore, up to 50mm in length. Further COI sequences were 

sourced from Dr Brenden Holland (University of Hawaii) for Brisbane (3), Hawaii (2) and 

Midway (1), one of which Dr Holland identified as P. utriculus but was assigned the code 

Midway 1 throughout the analysis because of the uncertain taxonomic status of P. utriculus. 

One COI sequence labelled P. physalis (Atlantic Ocean) was obtained from GenBank 

(AY937374). 
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Figure 2.1: Locations of Physalia collection sites 

 

2.3.2 DNA extraction and sequencing 

Tissue from the oral arms or main fishing tentacles was cut from each specimen and total 

genomic DNA was extracted from the cut tissue using either the DNeasy Tissue Kit 

(Qiagen) or the AxyPrep Multisource Genomic DNA Miniprep Kit (Axygen) following the 

manufacturers’ protocols. 2.5µl of extracted DNA was amplified by polymerase chain 

reaction (PCR) in a total volume of 25µl with 2.5µl 10 x PCR buffer (Qiagen), 2.5µl 8mM 

dNTPs (i.e. 2mM of each, New England Biolabs), 1.2µl of each 10µM primer (Invitrogen) 

and 0.2µl (1 unit) of Taq polymerase (5 unit/µl; Qiagen). The PCR reaction began with two 

minutes denaturation at 94ºC, followed by 33 cycles of 40 seconds at 92ºC, 40 seconds at 

45ºC and 90 seconds at 72ºC, finishing with a five minute extension at 72ºC and cooling to 

4ºC. Mitochondrial cytochrome c oxidase subunit 1 (CO1) was amplified using the primers 
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HCO2198 (5’-TAAACTTCAGGGTGACCAAAAAATCA-3’) and LCO1490 (5’-

GGTCAACAAATCATAAAGATATTGG-3’) (Folmer et al. 1994). The internal transcribed 

spacer 1 (ITS1) region of the nuclear ribosomal gene cluster was amplified using the primers 

Cas18sF1 (5’-TACACACCGCCCGTCGCTACTA-3’) and Cas5p8sB1d (5’-

ATGTGCGTTCRAAATGTCGATGTTCA-3’) (Ji et al. 2003). Amplifications were 

confirmed by electrophoresis. PCR products (2-3µl) were sequenced (10µl total volume) 

using 0.5µl BigDye™ (Applied Biosystems), 2µl sequencing buffer and 0.8µl of 10mM 

primer. The sequencing reaction began with a 1 minute denaturation at 96ºC, followed by 25 

cycles of 10 seconds at 96ºC, 5 seconds at 50ºC and 4 minutes at 60ºC, then cooling to 10ºC. 

Sequencing products were purified by ethanol precipitation, air dried and run on an ABI-

PRISM 377 automated sequencer (Applied Biosystems) according to manufacturer’s 

instructions. Both strands were sequenced to improve accuracy. Sequences were obtained for 

both genes for all specimens except four specimens New Brighton 103, Auckland East 14 and 

Nelson 1 where only COI was obtained and Taranki 1 where only ITS1 was obtained. 

 

2.3.3 Phylogenetic analysis 

Sequences were aligned using PRANK (Loytynoja and Goldman 2005) with default 

parameters and in four cases of obvious misalignment of large sections of sequence, were 

adjusted by eye. The total length of the alignment was 566 bp for COI and 456 bp for ITS1. 

Phylogenetic trees were constructed using maximum likelihood (ML) as implemented in the 

program PAUP*4 (Swofford 2002) using a heuristic search with starting trees obtained by 

stepwise addition and tree bisection-reconnection (TBR) branch swapping. Trees were also 

constructed using distance methods and maximum parsimony but as these were broadly 

congruent with the ML trees only the likelihood trees are presented. Due to the unavailability 

of close outgroups, trees were left unrooted. Parameters for the ML model were determined 

by MODELTEST using AIC (Posada and Crandall 1998). One thousand bootstrap replicates 
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were performed to estimate clan support. As the trees presented in this paper are all unrooted 

we prefer to use the term “clan” (sensu Wilkinson et al. (2007)) rather than “clade” to denote 

the unrooted analog of a monophyletic group. Split decomposition neighbour networks were 

calculated for both genes using SplitsTree4 (Hudson and Bryant 2006) to assess potential 

conflict within the datasets. For genes where areas of conflict were identified a sliding 

window was implemented across the gene. Window lengths starting at 50 base pair (bp) and 

increasing by 50bp up to 75% of the length of the gene were assessed. For each window 1000 

parsimony bootstrap replicates were performed in PAUP*4 using the fast stepwise addition 

option. For each window the bootstrap support for each node was extracted using a MATLAB 

7.6.0 script and conflicting signals were isolated.  

2.4 Results 

Results of the morphological analysis are displayed in Table 2.1, but the species 

identifications to not match the clans identified by either COI or ITS (see below). The best-fit 

models of nucleotide sequence substitution, estimated by MODELTEST, are for COI the 

K81uf+I+Γ model (nucleotide frequencies = A: 0.3839, C: 0.1416, G: 0.1683, T: 0.3062 , 

proportion of invariant sites = 0.2100, gamma shape parameter = 0.7202, rA-C = 1.000, rA-G 

= 9.8019, rA-T = 3.7476, rC-G = 3.7476, rC-T = 9.8019, rG-T = 1.000 ), and for ITS1 the 

TVM+G model (nucleotide frequencies = A: 0.2699, C: 0.2089, G: 0.2385, T: 0.2828, 

proportion of invariant sites = 0, gamma shape parameter = 0.3396 rA-C = 1.0423, rA-G = 

0.7742, rA-T = 1.3478, rC-G = 0.2027, rC-T = 0.7742, rG-T = 1.000).  
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Table 2.1: Specimen morphology and corresponding COI and ITS clans and specimen name 

associated with collected specimens. For number of tentacles, “?” indicates that the original 

tentacle number is unknown. For length of bell, “short” = <50mm and long = >50mm.  

Specimen (code) Collection 

date 

COI clan ITS clan Number of 

tentacles 

Length of 

bell 

New Brighton 2 (NB2) 13/2/05 1 I multiple short 

New Brighton 3 (NB3) 13/12/05 1 I multiple short 

New Brighton 4 (NB4) 13/12/05 1 I multiple short 

New Brighton 5 (NB5) 13/12/05 1 I multiple short 

New Brighton 7 (NB7) 13/12/05 1 I multiple short 

New Brighton 8 (NB8) 13/12/05 1 I multiple short 

New Brighton 9 (NB9) 13/12/05 1 I multiple short 

New Brighton 10 (NB10) 13/12/05 1 I multiple short 

New Brighton 22 (NB22) 6/1/08 1 I multiple short 

New Brighton 32 (NB32) 6/1/08 1 I multiple short 

New Brighton 103 

(NB103) 

16/1/06 2 - multiple short 

New Brighton 109 

(NB109) 

16/1/06 2 I multiple short 

Foxton 1 (F1) 19/12/06 1 I multiple short 

Foxton 2 (F2) 19/12/06 1 I multiple short 

Foxton 3 (F3) 19/12/06 1 I multiple short 

Foxton 5 (F5) 19/12/06 1 I multiple short 

Himatangi Beach 1 

(HB1) 

10/12/06 1 I multiple short 

Himatangi Beach 2 

(HB2) 

10/12/06 1 I multiple short 

Himatangi Beach 3 

(HB3) 

10/12/06 1 I multiple short 

Himatangi Beach 5 

(HB5) 

10/12/06 1 I multiple short 

Taranaki 1 (T1) 2/2/06 - I multiple short 

Taranaki 2 (T2) 2/2/06 1 I multiple short 

Taranaki 3 (T3) 2/2/06 1 I multiple short 

Taranaki 4 (T4) 2/2/06 1 I multiple short 

Riversdale 1 (R1) 19/2/06 3 III single short 

Riversdale 2 (R2) 19/2/06 1 I multiple short 

Riversdale 3 (R3) 19/2/06 1 I multiple short 

Riversdale 4 (R4) 19/2/06 3 III multiple long 

Riversdale 13 (R13) 29/11/06 3 III multiple short 

Riversdale 18 (R18) 29/11/06 3 III single short 

Riversdale 20 (R20) 29/11/06 1 I multiple short 

Hokitika 1 (H1) 

 

26/11/05 1 I single short 

Hokitika 2 (H2) 26/11/05 1 I multiple short 

Hokitika 3 (H3) 26/11/05 1 I single short 

Hokitika 4 (H4) 26/11/05 1 I ? short 

Hokitika 53 (H53) 3/3/06 1 I single short 

Mt Maunganui 1 (MM1) 20/3/06 3 III multiple long 

Mt Maunganui 2 (MM2) 20/3/06 3 III multiple long 

Mt Maunganui 3 (MM3) 20/3/06 3 III multiple long 
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Mt Maunganui 4 (MM4) 20/3/06 3 III multiple long 
Western Australia 1 

(WA1) 

16/2/07 2 II single short 

Western Australia 2 

(WA2) 

16/2/07 1 I single short 

Western Australia 3 

(WA3) 

16/2/07 1 I single short 

Western Australia 6 

(WA6) 

16/2/07 1 I single short 

Brisbane 7 (B7) 24/11/07 2 II single short 

Brisbane 9 (B9) 24/11/07 2 II single short 

Brisbane 10 (B10) 24/11/07 2 II single short 

Nelson 1 (N1) 18/12/07 2 I multiple short 

Nelson 2 (N1) 18/12/07 2 I multiple short 

Nelson 3 (N1) 18/12/07 2 - multiple short 

Abel Tasman 2 (AT2) 7/3/08 1 I single short 

East Auckland 10 (AE10) 7/12/07 1 I multiple short 

East Auckland 14 (AE14) 5/2/08 1 - ? short 

East Auckland 15 (AE15) 9/3/08 1 I multiple short 

West Auckland 2 (AW2) 15/11/07 1 I multiple short 

 

2.4.1 Cytochrome c oxidase I 

Three clans are identified from the COI sequences (Figure. 2.2) with a minimum bootstrap 

support of 82%, with the Genbank voucher sequence for P. physalis not grouping with any of 

the clans and forming an isolated branch. The specimen (Midway 1) identified by Brenden 

Holland (University of Hawaii) as P. utriculus groups with a number of specimens from the 

entire geographic range sampled (clan 2). Specimens from Riversdale and Mt Maunganui 

form a distinct clan (clan 3) that has a high degree of internal structure when compared to the 

other clans. This clan also has the smallest geographic range of all the clans and is only found 

in the northeastern and eastern areas of the North Island of New Zealand. The remaining 

specimens formed the final clan (clan 1) which had specimens from all Australasian locations 

except Mount Maunganui. Pairwise genetic distances between clans varied between 7.3% and 

12.6% (Table 2.2). Pairwise genetic distances within clans were all <1.5% except for clan 3, 

which had a mean pairwise distance of 6.1%, despite having the smallest geographical range. 

Moreover, there was evidence of a barcoding gap (i.e. a distinct gap between the distributions 

of within-clan and between-clan distances (Meyer & Paulay 2005)) for clans 1 and 2 but not 

clan 3 (Figure 2.3). 
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Table 2.2: Mean pairwise genetic distances within and between clans of Physalia 

COI ITS 

Clan Sequence divergence (%) Clan Sequence divergence (%) 

Clan 1 1.1 Clan I 0.8 

Clan 2 1.3 Clan II 1.2 

Clan 3 6.1 Clan III 0.9 

Clan 1 and 2 9.4 Clan I and II 2.0 

Clan 1 and 3 11.6 Clan I and III 1.8 

Clan 2 and 3 11.6 Clan II and III 2.2 

Clan 1 and P. physalis 11.6   

Clan 2 and P. physalis 7.3   

Clan 3 and P. physalis 12.6   

 

2.4.2 Internal transcribed spacer 

The ITS1 tree (Figure 2.4) is similar to the CO1 tree but there are significant differences. 

Three clans are identified with a minimum bootstrap support of 55%, however it was not 

possible to obtain voucher ITS1 sequences for P. physalis or P. utriculus, so this information 

is missing. To avoid confusion between COI and ITS clans, ITS clans are referred to by 

Roman numerals. The only clan that is identical to a COI clan and has strong bootstrap 

support (79%) is clan 3/III. ITS clan I contains specimens from both COI clans 1 and 2. The 

specimens from COI clan 2 found in ITS clan I were collected from Nelson and New 

Brighton and are the only specimens from COI clan 2 found in New Zealand.  The remained 

of COI clan 2 with individuals from Western Australia and Brisbane form clan II but there is 

minimal support for this clan (55%) and the node has been collapsed. The pairwise genetic 

distances between and within ITS clans were similar, with mean pairwise distances within 

clans ranging from 0.8% to 1.2% and mean pairwise distances between clans ranging from 

1.8% to 2.2% (Table 2.2) and significant overlap between the distributions (i.e. no barcoding 

gap) (Figure 2.5). 
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Split decomposition neighbour networks (Figures 2.6 and 2.7) support the ML findings and 

highlight the clan structure found in the ML analysis. Moreover, the networks show that there 

is some conflict between ITS clans II and III particularly regarding the placing of the WA1 

(Western Australia) sequence. Results of the sliding window analysis indicate that a window 

length of 200bp of is optimal to assess potential conflict within the ITS sequences.  

Percentage bootstrap support for the inclusion of WA1 in ITS clan II or ITS clan III is shown 

in Figure 8. This analysis shows clear conflict for the inclusion of WA1 in either clan II or 

clan II. Bootstrap support for the inclusion of WA1 in ITS clan II decreased below 50% for 

windows starting at bp72 to bp132 with a corresponding rise above 50% in support for the 

inclusion of WA1 in ITS clan III, i.e the middle third of this sequence supports the placement 

of WA1 in ITS clan II, while both ends support the placement of WA1 in ITS clan III. This 

conflict is likely to be the cause of the overall low bootstrap support for ITS clan II (Figure 4) 

because when WA1 is removed bootstrap for ITS clan II increase to 91%. 
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Figure 2.2: Unrooted maximum likelihood tree for COI. Numbers on branches indicate 

bootstrap support (1000 replicates). 
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Figure 2.3: Distributions of within-clan and between-clan pairwise genetic distances for COI 
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Figure 2.4: Unrooted maximum likelihood tree for ITS1. Numbers on branches indicate 

bootstrap support (1000 replicates). 
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Figure 2.5: Distributions of within-clan and between-clan pairwise genetic distances for ITS1.

Within clan Between clans 
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Figure 2.6: Split decomposition neighbour network for COI. 

 

Figure 2.7: Split decomposition neighbour network for ITS1. 
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Figure 2.8: Percentage bootstrap support across Physalia ITS sequences for conflicting nodes 

using a 200 base pair sliding window (1000 replicates per window). 

 

2.5 Discussion 

 

As for many species with ambiguous taxonomy, molecular techniques are ideal for 

investigating the phylogenetic structure of Physalia in New Zealand waters. However, in this 

study they have generated a surprisingly complex taxonomic picture. Nevertheless, the results 

provide a solid base for further molecular and morphological investigation of the genus at 

both local and global scales. This is necessary to resolve the taxonomic structure of the genus. 

 

2.5.1 New Zealand species 

It appears that Physalia that inhabit New Zealand coastal waters are a complex, for which it is 

impossible to determine the exact number of species or the corresponding species names. 

Because of the strong molecular evidence for a species complex, a taxonomic revision of 

Physalia is necessary. Morphological revision is necessary as specimens that conform to both 
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P. physalis and P. utriculus morphology group together in clans 1/I and 2/II. Clan 3/III 

specimens only conform to P. physalis morphology (Table 2), but this may be because of the 

small number of individuals examined. The lack of specimens from clans 1/I and 2/II 

conforming to a distinct morphology highlights the ambiguity of the characteristics used to 

identify species, however, a more in-depth analysis is beyond the skill of this author and the 

scope of the study.  

 

An integrated taxonomy approach requires the use of multiple taxon identification techniques 

to differentiate species. From the molecular results obtained here it is hypothesised that the 

Physalia complex that inhabits New Zealand coastal waters consists of at least two species 

because cytonuclear discordance between clans 1/I and 2/II creates uncertainly for these clans 

as separate species. Clan 3/III is well supported for both genes and unlike other clans shows 

substantial internal structure, and the concordance between COI and ITS indicates that it has 

not recombined with other clans. Clan 3/III was the only one found in the northeast of the 

North Island, a locality that raises the possibility of a separate source area. Brodie (1960) 

released over 10,000 float cards to assess the surface ocean currents around New Zealand and 

it is reasonable to assume that Physalia would display similar movement patterns to these 

cards as they are likely to be influenced by wind and currents in a similar way. Cards released 

from the North Cape drifted down the east coast of the North Island and via the East 

Auckland Current to the East Cape. Past the East Cape the East Current continues south until 

it meets the Canterbury Current in the south of the North Island (Gardner 1961). This pattern 

of the currents may explain why clan 3/III was found in East Auckland, and Riversdale had 

both clans present. Moreover, there are two permanent eddies to the north of the Bay of 

Plenty that have the ability to act as a recycling barrier, as described for New Zealand rock 

lobster (Lasus edwardsii) larvae (Chiswell and Roemmich 1998). Rock lobster larvae that 

were spawned in the area were shown to be caught in the eddy system for as long as three 
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years, allowing them to be recruited as juvenile lobsters. If populations of Physalia have 

become trapped in the eddy system then this could explain why the clan found there shows so 

much internal structure, as subpopulations could have been isolated from each other for 

significant periods of time. Exploration and formal identification of this clan is required to 

establish whether it represents a new species. The possibility that the clan is a cryptic species 

(or species complex) is strengthened by the observation that cryptic species have been found 

in other common jellyfish such as Aurelia aurita (Dawson and Jacobs 2001) and the upside-

down jellyfish, Cassiopea (Holland et al. 2004). 

 

2.5.2 Cytonuclear discordance 

The current global initiative to use COI as a stand-alone species discriminator has been 

predominately successful across most taxa attempted (Ward et al. 2005 ; Kerr et al. 2007), but 

it is recognised by the barcoding community that there will be exceptions. In particular, 

groups that exhibit hybridisation, ancestral polymorphism and pseudogenes pose potential 

problems for barcoding (Bensasson et al. 2001; Funk and Omland 2003). Hybridisation has 

influenced the evolution of the Anthozoa, particularly in genera such as Acropora and 

Alcyonium (van Oppen et al. 2000; McFadden and Hutchinson 2004). Our results suggest that 

hybridisation may also have occurred in Physalia, as three individuals from Nelson and New 

Brighton, whose mtDNA places them in COI clan 2, have nuclear DNA that places them in 

ITS clan I, and the WA1 ITS sequence shows conflicting signal with different parts of the 

sequence placing it in two different clans, suggesting that it may be of hybrid origin. 

(McFadden 1999) suggested that Octocorallia possess many traits that predispose them to 

hybridisation including closely related, morphologically similar species with overlapping 

ranges and reproductive periods. It appears that Physalia share the majority of these traits. 

Clans have significant geographical overlap and Totton (1965) concluded that although there 

was morphological variation, it was not enough in his opinion to indicate multiple species 
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within the genus. There also appears the possibility of reproductive overlap as gonodendra 

(reproductive structures) are produced continuously on new individuals and therefore it is 

assumed that there is a steady gamete supply. Moreover, individual specimens were collected 

from all clans throughout the sampling period indicating that gametes from different clans 

could be present at the same time. 

 

It seems reasonable to suppose that COI clans 1 and 2 may have originated in the Tasman Sea 

and based on the dominant west to east wind flow over New Zealand (Heath 1985) were 

transported through Cook Strait and down the east coast of the South Island. As both COI 

clans are present on the Australian east coast, the most likely hybrid zone is located 

somewhere in the Tasman Sea. As little is known about the developmental rates of individuals 

and their rate of movement under wind and current conditions it is impossible to determine a 

localised area for further targeted sampling. It may be possible to use computer modelling to 

establish how such factors effect the dispersal of Physalia to give a clearer indication of 

where potential hybrid zones may be located. 

 

An alternative explanation for the cytonuclear discordance is that ancestral polymorphism has 

been maintained in some lineages within the genus. For this to have occurred, the common 

ancestor of COI clans 1 and 2 would need to have had two mitochondrial alleles, one of which 

became fixed in clan 2 (or the other is not represented in our sample) while clan 1 retained 

both. Although this is a plausible scenario and cannot be discounted, we consider it less likely 

than hybridisation. Hybridisation is prevalent in the Anthozoa and is thought to have an 

important role in speciation (Willis et al. 2006). Hydrozoa display similar traits to corals 

when in the polyp stage of their lifecycle and the possibility that a similar mechanism has 

occurred in Physalia seems likely, although without further study this is impossible to verify.     
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With the results indicating that hybridisation could have occurred, this highlights the need to 

include multiple genes, particularly from the nuclear genome, along with COI to gain an 

overall view of the phylogeny of the group before ascertaining whether COI can be used as a 

species discriminator. From these results it appears that COI alone is not an appropriate 

species discriminator within Physalia.  

 

2.6 Conclusion 

 

This study attempts to clarify which species of Physalia occur in New Zealand waters using 

molecular techniques. The results indicate that there are at least two and potentially three or 

more species present, and only one of these is likely to be a named species (P. utriculus). 

Furthermore, the results raise questions about the taxonomy of the genus to the point that it 

may be necessary to undertake a global review of the taxon to establish the correct 

relationships. The use of COI for barcoding was also assessed and although mtDNA evolution 

occurs at rate where species identification is possible, COI should not be used as a stand-alone 

species identifier until the issues with the taxonomy are resolved. 
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Chapter 3: Using Multi-Layer Perceptrons to predict the presence 

of jellyfish of the genus Physalia at New Zealand beaches 

 

3.1 Abstract 

 

 The apparent increase in number and magnitude of jellyfish blooms in the oceans of the 

world has lead to concerns over potential disruption and harm to global fishery stocks. 

Additionally, jellyfish causes problems for bathers on swimming beaches throughout the 

world, as their sting cause discomfort or even death. Because of the potential harm that 

jellyfish populations can cause to humans and economic activity and to avoid impact it would 

be helpful to model jellyfish populations so that species presence or absence can be predicted. 

Data on the presence or absence of jellyfish of the genus Physalia was modelled using Multi-

Layer Perceptrons (MLP) based on oceanographic data. Results indicated that MLP are 

capable of predicting the presence or absence of Physalia in two regions in New Zealand and 

of identifying significant biological variables. 

 

3.2 Introduction 

 

Jellyfish blooms have the potential to change the species composition in an ecosystem 

through altering the availability of food resources, and therefore, threatening fisheries 

(Graham et al. 2001). Furthermore, it has been reported that jellyfish populations are 

increasing in both the intensity and frequency of blooms (Mills 2001; Purcell 2005). As well 

jellyfish often cause beach closures because of the risk to public (Purcell et al. 2007). To 

begin to understand potential impacts to marine ecosystems the investigation of factors that 

contribute to the formation of a bloom and that determine jellyfish movement is necessary. By 

understanding the factors that influence the movement and distribution of individuals there is 
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potential to develop models to predict where and when jellyfish are likely to occur. The 

ability to predict jellyfish occurrence will allow warnings to be issued to safeguard fisheries 

and mitigate the threat of jellyfish stings on swimmers at beaches in coastal regions.  

 

The genus Physalia is one of the most commonly found jellyfish on New Zealand beaches, 

and is the most commonly found stinging jellyfish. Physalia is considered to be one of the 

more primitive living jellyfish as it lacks many of the morphological characteristics associated 

with species that evolved later (Collins 2002; Dunn et al. 2005). In particular Physalia only 

have a pneumatophore (float) and lack a swimming bell (Collins 2002) causing them to 

permanently inhabit the surface of the ocean (Lane 1960). Also the lack of any swimming 

mechanisms means that Physalia is completely dependant on ocean winds and currents for 

movement. The only adaptation for movement Physalia possess is the float, in that there are 

two morphs one with a left hand sail and one with a right hand sail, allowing individuals to 

move at slightly different angles in the same wind condition (Barnes 1980). These 

characteristics mean that potentially any Physalia population movements can be modelled 

based on wind, current and swell information. For this reason Physalia are an ideal target 

species to investigate the problem of predicting the occurrence of jellyfish populations based 

on oceanographic data. Because detailed scientific datasets on jellyfish are virtually non-

existent we used a data set that has been collected for non-scientific purposes. The dataset was 

sourced from Surf Lifesaving New Zealand (SLSNZ). Surf Lifesaving New Zealand is a 

volunteer organisation that provides surf lifeguards on beaches throughout New Zealand.  

 

Because SLSNZ is a volunteer organisation it is reliant on community funding to operate and 

subsequently has developed sophisticated recording systems to document all aspects of their 

service to the community. The result is that there are detailed records in electronic format of 

every patrol that has occurred on the 72 patrolled beaches in New Zealand from the 200/2001 
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season. The unique aspect of this dataset is that incidents involving jellyfish stings have been 

recorded. Based on investigation of the data and the fact that Physalia is the only stinging 

species regularly recorded we regarded the data held by SLSNZ as a proxy presence/absence 

dataset for Physalia in New Zealand.  

 

Clearly such data is noisy with non-linear patterns. Artificial Neural Networks (ANN), and 

Multi-Layer Perceptrons (MLP) in particular have shown great promise in their application to 

identify factors that influence biological populations, particularly in a complex environment 

(Lek et al. 1996; Olden & Jackson 2002b; Joy & Death 2004) however, their use for this 

purpose in ecology is still not widely accepted despite having been shown to outperform more 

conventional techniques (Lek et al. 1996; Brosse et al. 2001; Mutanga & Skidmore 2004). 

The combination of high model performance and the ability to determine variable 

contributions to the model makes ANN a valuable tool for understanding the underlying 

factors that drive the presence of Physalia at New Zealand beaches.  

 

The aim of this study was to investigate the potential of an ANN model to predict the 

presence of Physalia on New Zealand beaches based on oceanographic data and to use the 

model to determine factors that may cause or inhibit the occurrence of Physalia. 

 

3.3 Method 

 

3.3.1 Data 

As the goal of this work was to predict the presence of Physalia jellyfish on New Zealand 

beaches from oceanographic data, two data sets were sourced and combined into the final 

modelling data set. These sets were oceanographic data and data from Surf Lifesaving New 

Zealand (SLSNZ) 
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3.3.2 Oceanographic data 

 Oceanographic data was sourced from the National Institute of Water and Atmosphere 

(NIWA). The data contained time series outputs from NOAA/NCEP Wavewatch III model 

hindcast (Tolman 1998) representing eighty 1.25×1 degree global grid cells surrounding New 

Zealand. Each cell contained three-hourly measurements of five variables (significant wave 

height (m), peak wave period(s), peak wave direction (°N) and U and V wind vector 

components (ms
−1

)). MATLAB® was used to transform and manipulate the files so that they 

were able to be incorporated in the models. All variables were transformed to daily data 

points, by averaging each of the eight data points for each day. Furthermore, from the U and 

V wind vector components, wind velocity (ms
−1

) and direction were calculated. The circular 

mean (Fisher 1995) was used for all directional variables. Once the transformations had been 

completed each file contained daily data for significant wave height (m), peak period (s),peak 

direction (°N), wind velocity (ms
−1

) and wind direction(°N). For each region, data from a cell 

was included if the cell was less than 250km distant from the centre of the region. For this 

work the oceanographic data for two regions in New Zealand were extracted, West Auckland 

and the Bay of Plenty. The oceanographic cells associated with each of these regions are 

shown in Figures 3.1 and 3.2, respectively. 
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Figure 3.2: Oceanic cells associated with the Bay of Plenty region 

 

3.3.3 Surf Lifesaving data 

Data concerning jellyfish incidents was sourced from Surf Lifesaving New Zealand (SLSNZ). 

SLSNZ maintains an electronic database of all patrol records. We accessed the records of 

patrols carried out from the 2000/2001 season to the 2004/2005 season. The database 

recorded all incidents of jellyfish stings. In addition all patrol records carried out during this 

time period were also extracted. Records that showed a beach headcount of zero (that is, there 
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were no people on the beach) were excluded, as clearly there will be no jellyfish incidents if 

no one is swimming at the time. The use of the SLSNZ data restricted the study to dates late 

southern hemisphere spring to early autumn as this is the time when lifeguards patrol the 

beaches. It must be noted that this data is not continuous but is dependant on when patrols 

where carried out, which were primarily in the weekends but for between mid December and 

the end of January daily patrols are carried out. 

 

3.3.4 Final Data Sets 

The West Auckland data set contained 434 data points of which 100 (23%) represented the 

presence of Physalia. The West Auckland data set contained 36 variables from six ocean 

cells, with five continuous variables each, and six single month periods in binary format. The 

Bay of Plenty data set contained 411 data points of which 79 (19%) represented the presence 

of Physalia. The Bay of Plenty data set contained 51 variables from nine ocean cells of five 

variables each, and six single month periods. Months in both regional data sets were 

represented using an orthogonal binary encoding of six digits, for example January was 

represented by the code 001000. 

 

3.3.5 Training and Evaluation of MLP 

Standard three neuron-layer MLP were used in these experiments, and the learning algorithm 

used was unmodified back-propagation with momentum. The MLP used was coded by Mike 

Watts in C
++

. Each network modelled a single region, that is, there was only one output 

neuron per network, where the output indicated the predicted presence or absence of Physalia 

at the region on that particular day. 

 

The method of training and evaluating the MLP (and also selecting the parameters) was 

similar to that suggested in Flexer (1996) and Prechelt (1996). To determine optimum 
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parameters a total of 64 runs were carried out over each region, where each run used a 

different combination of hidden neuron layer size, learning rate and momentum. Each run 

consisted of 1000 trials. For each trial, the training and test data set was randomly divided into 

a training set, consisting of two-thirds of the available data, and a test set consisting of the 

remaining one-third. A MLP was then created with randomly initialised connection weights 

and trained over the training data set. The accuracy of the MLP over the training set was then 

evaluated to determine how well the network had learned the training data. The accuracy of 

the MLP was then evaluated over the testing data set to determine how well the network 

generalised. Accuracy was measured as both the percentage of examples correctly classified 

and using Cohen’s Kappa statistic (Cohen 1960). Whereas percentage accuracy is easily 

interpreted, it is also easily biased by unbalanced numbers of classes. That is, percentage 

correct may be misleadingly high when the data set in question has only a small number of 

examples from one class. The Kappa statistic takes the number of examples of each class into 

account and thus yields a less biased measure of accuracy than percentages (Cohen 1960). 

 

For each trial the contributions of each input neuron to the output of the network was also 

determined, using the method of Olden and Jackson as described in Olden & Jackson (2002b). 

This method has been experimentally determined to give the least-biased estimate of the 

contribution of each input neuron (Olden et al. 2004) and has been used previously in 

ecological modelling applications (Joy & Death 2004). 

 

At the completion of the 64 runs, the run with the highest mean kappa over the testing sets 

was selected as the winner for that region. The accuracy of the networks within this run was 

then evaluated over the validation data set. A sensitivity analysis was also performed over the 

significant continuous input variables of the best-generalising network within that run. That 

is, a sensitivity analysis was performed over each non-binary variable of the MLP with the 
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highest testing Kappa of the winning run. This was to illustrate the response of the network to 

variations in these variables so that the influence of strongly contributing inputs (as 

determined above) could be investigated. 

 

3.4 Results and Discussion 

 

3.4.1 Training Parameters 

The optimal training parameters for each region, as determined by generalisation accuracy, 

are presented in Table 3.1. The number of hidden neurons and amount of training required for 

the Bay of Plenty region was substantially greater than that required for the West Auckland 

region. Although a general rule of thumb for determining the architecture of MLP is that the 

number of connections should be less than the number of training examples (data points and 

associated input variables). However, with the networks for the Bay of Plenty, reducing the 

number of hidden neurons so that this rule was observed meant that the performance of the 

networks was unacceptably low. 

 

Table 3.1: Optimal training parameters by region, “Neurons” refers to the number of hidden 

layer neurons. 

 

Region Neurons Epochs Learning rate Momentum 

West Auckland 5 200 0.05 0.1 

Bay of Plenty 15 500 0.1 0.1 

 

3.4.2 Accuracies 

The accuracies of the MLP for each region are presented in Table 3.2 as both overall 

percentage correct and as Cohen’s Kappa statistic. It is apparent that the networks for both 

regions were able to generalise reasonably well. For the West Auckland region, the validation 

accuracies were the highest accuracies recorded for both regions. While the results for the Bay 
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of Plenty region would seem to indicate that overtraining has occurred, as could be expected 

from the size of the networks, the high validation accuracy shows that the networks were none 

the less still able to generalise beyond the training data. 

 

There was a relatively large gap between the percentage accuracies and Kappa values over the 

test data sets. This indicates that a relatively large number of test presence examples were 

falsely classified as absences. A large number of false negatives could be expected to yield a 

high validation accuracy if the number of presences in the validation set is very low. However 

analysis of the validation data showed that the distribution of occurrences in the validation 

data set was equal to that of the training and testing set. Also, a large number of false 

negatives would adversely affect the Kappa statistic for the validation data set, which plainly 

did not happen. 

 

Table 3.2: Mean and standard deviation of accuracies per region. “Train” is the accuracy over 

the training data sets, “Test” is the accuracy of the test data set and “Validate” is the accuracy 

over the independent validation data set. 

Region  Train  Test  Validate 

% 80.88/1.82   77.79/3.26 82.0/1.96 
West Auckland 

κ 0.35/0.07  0.25/0.08  0.37/0.07 

% 95.13/1.77  75.15/3.99  81.89/4.02 
Bay of Plenty 

κ 0.83/0.06  0.19/0.09  0.45/0.10 

 

3.4.3. Most Contributing Variables 

The four variables that positively contributed the most to the networks for each region are 

presented in Table 3.3, and the four variables that negatively contributed the most for each 

region are presented in Table 3.4. It is immediately apparent from both of these tables that the 

contributions of the inputs for the Bay of Plenty region networks were much larger than for 

the West Auckland region networks. This is almost certainly because of the greater amount of 
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training that the Bay of Plenty region networks received through an increased number of 

epochs: as the method of Olden and Jackson (2002) is a decompositional, weight-based 

method, a larger amount of training meant that the magnitudes of the connection weights were 

able to grow larger than was the case with the West Auckland region networks. Therefore, the 

contributions were correspondingly higher. 

 

Table 3.3: The most positively contributing variables to both regions networks  

Region  Variable Name  Contribution 

January  6.35/1.18 

December 5.67/1.27 

Wave period C  4.37/1.92 
West Auckland  

Wave period F  2.79/1.43 

January  42.85/6.64 

December  35.58/7.91 

Wind direction G  19.40/12.83 
Bay of Plenty  

Wave height J  19.19/6.67 

 

The months of January and December are significant positive variables for both regions. In 

other words, there was a greater probability of Physalia being present in these regions during 

these months than at other months examined. This is considered biologically plausible as 

December and January are both warm months (Greig et al. 1988). This means that there is 

potentially more food present for the jellyfish during these months and the increase in sea 

surface temperature allows for more rapid growth and reproduction. Moreover, there is a 

corresponding increase in people swimming at the beach increasing the possibly of a sting 

occurring. Wave period is also significant for the West Auckland region. An increase in wave 

period denotes that the waves have been generated further away (Toba et al. 1990) indicting 

that there had been sustained conditions that would transport the jellyfish into the region and 

hence increase their probability of occurring. A large wind direction was found to be 

significant for oceanic cell G in the Bay of Plenty region. If spawning grounds exist to the 

North of the region then wind from this direction is more likely to blow jellyfish into the Bay 

of Plenty area with local conditions influencing their occurrence at beaches. A larger wave 
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height, especially in combination with wind direction, enables the jellyfish to travel further, 

faster, increasing the probability of arrival in the region. 

 

Table 3.4: Most negatively contributing variables 

Region  Variable Name  Contribution 

April  -4.79/1.18 

Wind direction F  -4.75/1.67 

Wind direction E  -3.78/2.60 
West Auckland  

March  -3.59/1.64 

Wave period L  -34.46/15.0 

Wind direction H  -29.36/13.72 

Wave direction K  -29.10/10.05 
Bay of Plenty  

Wind speed G  -24.87/13.83 

 

The months of April and March had a significant negative contribution for the West Auckland 

region. That is, there was a lower probability of Physalia being present in this region during 

these months than in other months. This is also considered to be biologically plausible as the 

temperatures during this time decrease significantly (Greig et al. 1988). Increases in wind 

direction in oceanic cells E and F also decreases the probability of Physalia being present. As 

can be seen in Figure 1, as wind direction becomes more northerly, jellyfish may be blown 

past the West Auckland region or this result may indicate where a Physalia spawning ground 

is located. Chapter 2 suggests that there is a possibility of a spawning ground in the Tasman 

Sea to the southwest of Auckland which supports the model assumption that more northerly 

winds decrease the probability of Physalia presence. 

 

For the Bay of Plenty region, the wind direction in oceanic cells H and K makes a significant 

negative contribution as shown in Table 3.4. In other words, as wind direction in these cells 

becomes more northerly, the probability of Physalia presence decreases. This contradicts the 

interpretation of what happens in oceanic cell G but is reasonable as both oceanic cells H and 

K are located further away from the coast and only winds from the north-east would cause 

jellyfish to be pushed towards the bay. The situation with wave period for the Bay of Plenty 
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region is the exact opposite to the West Auckland region. This result indicates that local 

conditions are more important for the occurrence of Physalia in the Bay of Plenty region. 

 

3.4.4 Sensitivity Analysis 

Sensitivity analysis is a way to visualise how an ANN responds to the variation of a single 

variable. To perform a sensitivity analysis over variable n, all other input variables are set to 

their mean values, while the values of n are varied across the range of n, and the output of the 

ANN recorded. The advantage of a sensitivity analysis is that it allows for a more detailed 

investigation of the importance of a particular variable. Whereas an analysis of the importance 

of each input will yield a single overall value for the contribution of each input, a sensitivity 

analysis shows how the network reacts to that variable across its range. Results of the 

sensitivity analysis are shown in Figure 3.3 for Auckland and Figure 3.4 for the Bay of 

Plenty. Variables analysed from the West Auckland region showed that the networks response 

to variation from all variables examined was close to linear. The variables analysed from the 

Bay of Plenty region were nonlinear, as would be expected from the increased amount of 

training and subsequent greater contributions of the variables to the network. In particular 

wind direction from cell H strongly indicated that winds greater than 180
◦
 were not conducive 

to the presence of Physalia. Sensitivity analyses were not performed over binary variables, as 

this was not appropriate. Therefore, even though months such as January and December were 

found by contribution analysis to bevery significant for the West Auckland Region, no 

sensitivity analysis was performed for these variables. 
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Figure 3.3: Sensitivity analysis of the most significant continuous variables for the West 

Auckland region 

 

Figure 3.4: Sensitivity analysis of the most significant continuous variables for the Bay of 

Plenty region 

 

3.4.5. Issues and Improvements 

As is often the case with ecological data sets, the data used in this study is very noisy. This is 

because the presence and absence of jellyfish were inferred from reported jellyfish stings of 

swimmers. This results in several potential gaps in the data set: firstly, because it is clearly 
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possible for jellyfish to be present and not sting people; secondly, it is possible that some 

stings were not reported; thirdly, because beaches are not uniformly patronised over time, as 

there are many more swimmers during the weekend and public holidays than there are during 

the working week. While a multi-year survey of Physalia populations would be ideal for this 

study, the data used here was all that was available. 

 

3.5 Conclusion 

 

The study investigated the potential for using an MLP model to predict the presence or 

absence of jellyfish of the genus Physalia at the beaches in two regions of New Zealand. The 

results of input variable contribution analysis of the resulting networks are also presented. The 

results have shown that MLP models are capable of identifying patterns in the presence of 

Physalia in the two target regions from oceanographic data. Although the contribution 

analysis allows for further optimisation to generate and investigate additional hypotheses 

concerning Physalia presence and absence based on oceanographic data further exploration 

and refinement is necessary to draw meaningful conclusions. 

 

As MLP are able to model Physalia occurrence from simplified data that lacks ecological 

relevance a more though exploration of data can occur. Work presented in Chapter 4 will 

explore methods of increasing accuracy and ecological relevance through the use of time lags 

within the input data. Whereas Chapter 6 will expand the study to other regions of New 

Zealand, and identify and clarify oceanographic features and time frames that influence 

Physalia dispersal around the New Zealand shoreline. 



 51 

Chapter 4: Using time lagged input data to improve prediction of 

stinging jellyfish occurrence at New Zealand beaches by Multi-

Layer Perceptrons 

 

4.1 Abstract  

 

Environmental changes in oceanic conditions have the potential to cause jellyfish 

populations to rapidly expand leading to ecosystem level repercussions. To predict 

potential changes it is necessary to understand how such populations are influenced by 

oceanographic conditions. Data recording the presence or absence of jellyfish of the 

genus Physalia at beaches in the West Auckland region of New Zealand were modelled 

using Multi-Layer Perceptrons (MLP) using time lagged oceanographic data as input 

data. Based on the Kappa statistic MLP models are shown to generalise well and give 

improved predictions of the presence or absence of Physalia compared to previous 

studies. Moreover, an analysis of the network contributions indicated that an interaction 

between wave and wind variables at different time intervals can promote or inhibit the 

occurrence of Physalia. 

 

4.2 Introduction 

 

The oceans of the world are undergoing fundamental shifts in their environments, primarily 

through anthropogenic influences (Arai 2001). Factors such as changing temperatures and 

currents may change the distribution of many pelagic marine species such as jellyfish and 

those changes may have ecosystem level repercussions. Jellyfish species are well known to 

cause problems for swimmers around beaches, block nets used in aquaculture enterprises such 
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as salmon farms and large numbers severely reduce fish stocks by severely depleting eggs, 

small larvae and plankton (Purcell et al. 2007). Several recent studies have noted that there is 

circumstantial evidence that jellyfish (Cnidaria) populations are increasing (Mills 2001; 

Purcell 2005) and that the changing marine environment is the main cause. To determine the 

true effect of a changing marine environment on pelagic species large scale population 

movements of such species need to be understood. Population movements of pelagic species 

are difficult to determine because few large scale datasets exist and consequently little work 

has been done in this area. One of the few studies that have attempted to model pelagic 

jellyfish population dynamics over a large area was carried out by Johnson et al. (2001) who 

modelled Chrysaora quinquecirrha in the Gulf of Mexico. Their aim was to estimate possible 

suitable locations for an intermediate life-stage of this species using information from the 

Gulf of Mexico circulation model (Johnson & Perry 1999). Their model predicted potential 

areas in which the intermediate life-stage could settle and complete their lifecycle validated 

against known areas of polyp settlement. There is a growing need for this type of information 

for other species of jellyfish so that bloom patterns, population dispersion and species ranges 

can be understood and predicted.  

 

In an initial study Pontin et al. (2008) (Chapter 3) we explored the potential for an MLP to 

model the presence or absence of Physalia using data sourced from Surf Lifesaving New 

Zealand (SLSNZ). Despite that a simple approach was used, the study demonstrated that it 

there was potential for the MLP to identify patterns in the data which when refined may lead 

to the ability to forecast Physalia presence. The aim of the present study was to explore the 

use of a time lag in the input data to better represent the relationship between the data and 

Physalia presence at beaches. At better representation of the relationship increase the 

potential to predict Physalia presence on New Zealand beach can be assessed.  
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4.3 Methods 

 

4.3.1 Oceanographic Data 

Oceanographic data was sourced and processed as in Chapter 3.  Time lags were created by 

time-stepping the data from one to six days. In other words data from one to six days prior 

was included into the final datasets. For this study the oceanographic data from the West 

Auckland region in New Zealand was extracted (Figure 4.1). The West Auckland datasets 

contained variables from six ocean cells, with five variables each for each day that was time-

stepped, and an index for the date measured from the 1
st
 of October for each year (Table 4.1). 

Furthermore, a dataset was created for window length of one in which the date index was 

removed to determine if the addition of a date index of this nature was appropriate.  

A

B

ED

F

C

West Auckland 
Region

Auckland

 

Figure 4.1: Oceanic cells associated with the West Auckland region 

4.3.2 Surf Lifesaving Data.  

Data recording jellyfish incidents was sourced from Surf Lifesaving New Zealand (SLSNZ). 

SLSNZ maintains an electronic database of all patrol records from the 2000/2001 season 

including all incidents of jellyfish stings. We accessed the records of patrols carried out from 

the 2000/2001 season to the 2004/2005 season. Data from the West Auckland region was 

used in this study. The West Auckland region comprises 8 patrolled beaches with an average 

patronage of 290 people present on each beach (SEM 18.96). Records that showed a beach 

headcount of zero, in other words when nobody was swimming, were excluded from the 
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dataset. The result was a minimum of 56 beach patrons recorded in the region at one time. An 

occurrence corresponded to one or more of the beaches in the region recording a jellyfish 

sting. It is acknowledged that there will be correlation between the numbers of swimmers 

present and the number of stings but using presence/absence data across the region will 

minimise the effect of either a large or small number of swimmers present. The use of the 

SLSNZ data restricted the study to dates from late southern hemisphere spring to early 

autumn as this is the time when lifeguards patrol the beaches. The West Auckland dataset 

comprised 432 data points of which 100 (23%) represented the presence of Physalia. 

 

4.3.3 Training and Evaluation of MLP 

Standard three neuron-layer MLP were used to model the data, and the learning algorithm 

used was unmodified back-propagation with momentum. The MLP used, was coded by Mike 

Watts in C
++

. The method of training networks was as in Chapters 3 except each run consisted 

of 100 trials as apposed to 1000 as no loss of accuracy was noted with the small number of 

trials. MLP accuracy was measured as both the percentage of examples correctly classified 

and using Cohen's Kappa statistic (Cohen 1960). Whereas percentage accuracy is easily 

interpreted, it is also easily biased by unbalanced classes. In other words, percentage correct 

may be misleadingly high when the dataset in question has only a small number of examples 

from one class. The Kappa statistic takes the number of examples of each class into account 

and thus yields a less biased measure of accuracy than percentages.  

 

For each trial the contributions of each input neuron to the output of the network was also 

determined, using the method of Olden and Jackson as described in Olden & Jackson (2002b). 

This method has been experimentally determined to give the least-biased estimate of the 

contribution of each input neuron (Olden et al. 2004) and has been used previously in 

ecological modelling applications (Joy & Death 2004). 
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At the completion of the runs, the run with the highest mean kappa over the test sets was 

selected as the winner for the particular lag length for that region. The accuracy of the 

networks within this run was then evaluated over the validation dataset. The results were then 

compared and the best dataset and hence time lag was selected. A sensitivity analysis was 

then performed over the significant input variables of the best-generalising network within 

that run. A Sensitivity analysis was performed on the four variables that made the highest 

contribution to the next as indicated by the Olden score. Sensitivity analysis was carried out to 

determine the response of the network to variations in the input variables so that the influence 

of strongly contributing inputs could be investigated.  

 

4.4 Results and Discussion 

 

4.4.1 Training Parameters 

The optimal training parameters for each dataset, as determined by testing accuracy, are 

presented in Table 1. In general was would be expected, datasets with smaller time lags 

optimised with fewer neurons and epochs than larger time lags. An exception was a time lag 

of 6 days which required fewer epochs than for a lag of 5 days. 

 

4.4.1 Accuracy 

The accuracies of MLPs for each region are presented in Table 2. Overall percentage correct 

prediction and Cohen's Kappa statistic were calculated. The inclusion of a date index over the 

season significantly improved testing accuracy (κ 0.63) compared with the same data set 

without the date index (κ 0.22) (p= <0.001, T test). Furthermore the accuracies for both the 

train and test set for the time lagged data were better than those found by Pontin et al. (2008) 

(κ 0.35/.025), where time was represented by months using orthogonal binary encoding.   
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Table 4.1: The number of the most strongly contributing variables and optimal training 

parameters by region for each time-lagged dataset; * represents the dataset without a date 

index. The number of hidden layer neurons and learning paramters are also shown. 

Window 

length 

Number 

of 

variables 

neurons learning momentum epochs 

1* 30 3 0.15 0.7 500 

1 31 3 0.15 0.2 500 

2 61 6 0.1 0.05 500 

3 91 7 0.1 0.05 600 

4 121 7 0.1 0.05 1000 

5 151 7 0.1 0.05 1000 

6 181 7 0.1 0.1 600 

 

The dataset that produced the highest testing and validation Kappa for jellyfish presence had a 

time lag of one day and for this study contained oceanographic data that only occurred on the 

day of the event. This dataset was not considered for further analysis as it lacked ecological 

relevance because conditions that occurred in distant cells would not influence what was 

happening at beaches. The dataset that had the best test accuracy and had ecological relevance 

was the dataset that had a five day window (κ 0.40). This model however, lacked the ability to 

generalise (κ 0.27) compared to the dataset with a six day window (κ 0.38) which had a 

similar testing accuracy (κ 0.39). This possibly indicates that overtraining has occurred and 

further exploration of parameters surrounding the current optimum parameters may rectify 

this issue.  
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Table 4.2: Mean and standard deviation of performance criteria for the training, test and 

validation datasets. The performance criteria are overall percentage accuracy (%) and Cohen's 

Kappa statistic (κ). Note * represents the dataset without a date index. 

Window length Train Test Validation 

1* % 85.1/2.57 74.2/4.41 77.0/5.75 

  κ 0.54/.11 0.22/.10 0.50/0.06 

1 % 89.0/1.97 81.6/3.25 76.3/3.12 

  κ 0.77/0.04 0.63/0.07 0.30/0.13 

2 % 82.0/2.25 79.0/4.06 59.6/1.53 

  κ 0.73/0.08 0.32/0.09 0.38/0.09 

3 % 96.9/1.16 77.8/4.21 76.7/4.19 

  κ 0.91/0.04 0.38/0.10 0.33/0.08 

4 % 99.4/0.76 76.2/4.22 78.7/3.78 

  κ 0.98/0.02 0.36/0.10 0.38/0.09 

5 % 99.2/0.60 79.3/3.17 71.2/3.42 

  κ 0.97/0.02 0.40/0.09 0.27/0.08 

6 % 99.3/0.76 78.5/4.25 78.2/2.92 

  κ 0.98/0.02 0.39/0.10 0.38/0.08 

 

4.4.2 Contributing Variables 

For the dataset which had a five day window, the top eight variables that contributed to 

network prediction are presented in Table 4.3. Wind speed in cell E both on the day of the 

event and the day prior to the event had significant negative contributions. That means when 

there is wind in the cell the probability of Physalia occurring decreases. The interpretation of 

this result is counterintuitive but is reasonable when the result of the sensitivity analysis is 

considered (Figure 4.2b). The sensitivity analysis indicates that the output response of the 

network is an inverse logarithmic relationship with light winds, between 0 ms
-1

 and 3.2ms
-1

, 

decreasing the probability of Physalia occurring proportionally higher than winds greater than 

3.2ms
-1

. Iosilevskii & Weihs (2009) calculated that sailing speed in winds of less than 3ms
-1

 

would be less than 0.2ms
-1 

or 17.3 km per day. As the West Auckland region is located 

adjacent to the southern limit of the region light winds would not provide enough propulsion 

to transport individuals on to the beach on the day as the centre of the cell is ca. 115km away 

from the region. Wind direction in cell C on the day prior to an event and in cell F three days 

prior to the appearance of jellyfish also made a significant negative contribution. In other 
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words, as wind direction in these cells becomes more northerly, the probability of Physalia 

presence decreases as a northerly wind would blow jellyfish past the beach towards 

Taranaki’s coastline and outside the region. 

 

Table 4.3: Variables identified as the most influential variables contributing to the activation 

of the output. The letter and number after each variable indicates the oceanographic cell 

(Figure 4.1) in which the variable was measured followed by the time lag.   

 Variable name Contribution 

Wind speed E-0 -40.7/12.2 

Wind direction C-1 -37.5/14.2 

Wind direction F-3 -33.9/15.2 
Negative variables 

Wind speed E-1 -30.5/9.80 

Wave period A-3 42.6/13.5 

Wave height F-3 34.6/12.2 

Wave period B-3 31.6/11.0 
Positive variables 

Wind direction D-2 30.7/14.3 

 

Wave period in cells A and B three days prior to the event had significant positive 

contribution. An increase in wave period denotes that the waves have been generated further 

out to sea (Toba et al. 1990) indicating that there has been sustained conditions that are likely 

to transport the jellyfish into the region and increase their probability of an incident at the 

beach. The time lag is also highly relevant as it takes time for a swarm to travel from the outer 

cells to the beaches and corresponds well to reality. An increase in wave height in cell F three 

days prior causes an increase in the likelihood of Physalia occurrence. That could be through 

either waves being generated from wind forcing within the cell or a large swell travelling 

through the cell both of which would create conditions that would facilitate the transportation 

of Physalia into the region. Similarly, as wind direction tended towards the north that would 

cause a swarm to be blown towards the coastline. That may account for the significant 

positive contribution of wind direction in Cell D two days prior to an event. One important 

aspect the contributions indicated that wave conditions in the outer cells of the region two to 

three day prior to an event had a positive contribution to jellyfish incidence whereas wind 
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conditions on the day or the day prior to an event in the inner cells could reduce the presence 

of Physalia. These results are interesting as they seem to show the particular oceanographic 

conditions necessary to transport swarms into the region but that wind conditions close to the 

shore can dictate whether or not a swarm reaches close to the beach. 

 

 

Figure 4.2: Sensitivity analysis of the most significant contributing variables for the West 

Auckland region. 
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4.5 Conclusion 

 

This study clearly shows the potential for using MLP to predict the presence or absence of 

Physalia at beaches around New Zealand and that the incorporation of time lags within the 

data are important for increased prediction accuracy. The results showed that MLP can learn 

to predict to a limited degree of accuracy the presence of Physalia in a target region using 

time lagged oceanographic data. Furthermore, the contribution analysis generated valuable 

ecological information to assist interpretation. 

 

Future work will expand the study to other regions of New Zealand, and will investigate 

methods to improve performance, such as reducing the number of input variables by 

removing those that are highly correlated. We will also develop a better likelihood value for 

the presence of Physalia so that the models can be assessed as a possible warning mechanism 

for the general public at beaches.  
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Chapter 5: Forecasting Physalia occurrence on New Zealand 

beaches 

 

5.1 Abstract 

 

Every year over 100 are people are stung by Physalia on New Zealand beaches. With the 

potential for life threatening reactions to the stings, the feasibility of forecasting Physalia 

occurrence with artificial neural networks (ANN) as a potential basis for a warning system 

was investigated. Previous work has indicated that modelling Physalia presence based on 

oceanographic data is imprecise because of noise and ambiguities inherent to the data. To 

reduce noise a variable sliding window based on a modified cascading temporal correlation 

analysis was used to pre-process the data from the West Auckland and Canterbury regions in 

an attempt to improve ANN models. Networks based on variable sliding window pre-

processing outperformed the time lagged based networks giving improved forecasts in both 

regions. The time lagged networks gave predictions little better than chance. The models 

based on a variable sliding window indicated significant trends in the data but lacked the 

necessary resolution to accurately forecast Physalia occurrence for a real world application. 

The improved forecasts provided by the variable sliding window pre-processed models could 

be attributed to noise reduction by eliminating data that is not ecologically meaningful. This 

study further suggests the use of a modified cascading temporal correlation analysis as a noise 

reduction technique in ecological time series data.  
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5.2 Introduction 

 

Presence only modelling is being increasingly utilised to predict and understand distributions 

of species, primarily based on increasingly available historical records (Graham et al. 2004; 

Elith et al. 2006). There are several issues surrounding the use of historical records of species 

distributions that includes the lack of accurate absence data and the fact that data is drawn 

from unstructured sampling (Zaniewski et al. 2002; Elith et al. 2006). However if such 

constraints are accounted for resulting models are capable of providing a relative index for 

occurrence. Species distribution or habitat suitability maps generated from such data have 

allowed ecologists to investigate a range of ecological questions with a relative degree of 

success (Guisan & Thuiller 2005). However, species in such distribution models tend to be 

sessile or persistent in the environment over a period of time and little work has been carried 

out with transient species or highly mobile species. 

 

Artificial neural networks (ANN) are recognised to have the ability to make accurate forecasts 

from data that is noisy and nonlinear (Lek et al. 1996; Adya & Collopy 1998; Zhang et al. 

1998) which has resulted in their growing use in ecological modelling (Olden et al. 2008). 

Moreover, ANN tend to outperform standard statistical techniques when applied to noisy and 

nonlinear data (Lek et al. 1996; Brosse et al. 1999; Mutanga & Skidmore 2004). To date 

ANN have been successfully used to assess fish abundance in lakes (Brosse et al. 1999), 

soybean (Glycine wightii) phenology (Elizondo et al. 1994), to predict the maturity date of 

spring wheat (Triticum aestivum) (Hill et al. 2002) and to predict aphid (Rhopalosiphum padi) 

abundance (Worner et al. 2002; Lankin-Vega et al. 2008). ANN have been used in species 

distribution modelling to good effect despite the fact the networks give a continuous result 

between 0 and 1, which has necessitated the use of thresholds to assess presence (Manel et al. 

1999; Olden & Jackson 2002a; Gevrey & Worner 2006). Despite this, Marmion et al. (2008) 
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suggested model output can also be used as an index to gauge the possibility of species being 

present.  

 

Each year over 100 people are recorded as being stung by a species of Physalia jellyfish (Surf 

Life Saving New Zealand unpublished data). The exact species is currently unknown because 

the taxonomy of this genus is uncertain (Chapter 2), however the characteristics of the sting 

and subsequent treatment are the same for all species in the genus (Slaughter et al. 2009). 

Physalia stings primarily cause localised pain but severe stings can produce nausea, vomiting, 

breathing difficulties and cardiovascular collapse, leading to possible death (Slaughter et al. 

2009). Because Physalia is the only genus of jellyfish that is capable of stinging people in 

New Zealand (Slaughter et al. 2009) and Surf Life Saving New Zealand (SLSNZ) has 

recorded when people have been treated by lifeguards for jellyfish stings, such records create 

a proxy presence dataset for Physalia near swimming beaches around New Zealand.  

 

Physalia is dispersed by ocean winds and currents by means of a pneumatophore (float) for 

passive movement (Collins 2002) and as a result the species in this Genus solely inhabits the 

surface of the ocean (Lane 1960). Because of this characteristic Physalia population 

movements have potential to be modelled based on wind, current and swell information. 

Previous work has shown a potential to model Physalia populations for the purpose of 

identifying environmental factors, (Pontin et al. 2008; Pontin et al. 2009) (Chapters 3, 4) 

leading to the possibility of forecasting likely periods of occurrence. A difficulty arises with a 

transient species, such as Physalia whose presence or absence is influenced by biotic and 

abotic factors that are not stable over time. For instance Physalia is present in New Zealand 

coastal waters but may or may not be present in specific localities, presenting several 

challenges for forecasting its presence in a noisy environment with a great deal of temporal 

instability.  
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Worner et al. (2002) applied a modified cascading temporal correlation analysis (Thomas et 

al. 1983) to weather data when modelling R. padi migrations with the aim of reducing 

network overtraining through the network fitting the noise. A temporal cascade takes the 

target output and correlates it with the mean value of the target output variable over a defined 

time period in a series of iterations for each observed data point. The result was a significant 

improvement in network accuracy. It is reasonable to expect that there will be a high level of 

noise in the oceanographic data, so a temporal cascade could be utilised as a noise reduction 

technique. This study aims to assess the potential to forecast Physalia occurrence in two 

regions of New Zealand using ANN based on a modified temporal cascading correlation 

termed this chapter as a variable sliding window. 

 

5.3 Methods 

 

5.3.1 ANN based on a variable sliding window. 

Data from the combined SLSNZ and oceanographic dataset was extracted for the West 

Auckland and Canterbury regions for the 2000/2001 season to the 2004/2005 season (Figure 

5.1) as described in Pontin et al. (2009), as these regions were able to be validated during the 

2008/2009 season. To implement a variable sliding window it was necessary to calculate a 

likelihood index value of Physalia occurrence for each window size investigated. The 

likelihood index value was calculated as a moving average of Physalia occurrence based on 

the window size investigated. A variable sliding window based on cascading temporal 

correlation analysis (Thomas et al. 1983) was programmed in MATLAB 7.6.0 and applied to 

both regions (MathWorks 2008). Pontin et al. (2009) highlighted the importance of 

accounting for variable changes over windows of time. Therefore, correlations between 

abiotic variables and Physalia occurrence over 2 to 14 day time periods were investigated. For 



 65 

each index value and variable a matrix was created consisting of the index value and the 

number of index values immediately before, as determined by the time period that ranged 

between 2-14 days, with corresponding target oceanographic variable values (Figure 5.2). For 

each matrix the correlation coefficient was obtained between the index values and the 

oceanographic variable values. The correlation coefficients for each matrix analysed were 

collated and highly correlated periods (< -0.7 or > 0.7) were identified for each oceanographic 

variable and time period. An arbitrary decision based on length of selected periods, strength 

of correlation and number of times selected was made to determine which time period to use 

for a given Physalia likelihood index point with the selected time periods ranging from 3 to 

10 days prior for both regions. To gain the final input values for the oceanographic variables 

the mean of all oceanographic values over the selected time period for each Physalia 

likelihood index point was calculated and combined with the corresponding likelihood index 

value and date index value. At the conclusion of the pre-processing the West Auckland data 

set contained 111 Physalia likelihood index points and 31 variables and Canterbury had 75 

Physalia likelihood index points and 41 variables.  
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Figure 5.1: Oceanic cells associated with the West Auckland region and Canterbury regions. 

Regions are shown by gray shaded area.  
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Figure 5.2: Representation of a sliding window where the average value of the variable in the 

window is correlated with a moving average of Physalia occurrence (likelihood index). Only 

a sliding window of 4 days only is shown. Moving windows from 2 to 14 days were also 

investigated. 
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5.3.2 ANN based on simple time lagged data 

Data from the combined SLSNZ and oceanographic dataset was extracted for the West 

Auckland and Canterbury regions for the 2000/2001 season to the 2004/2005 season as 

described in Pontin et al. (2009). Time lags were created by time-stepping the data from one 

to six days as in Chapter 4 (Figure 5.3).  
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Figure 5.3: Representation of how time lags were created. A dataset incorporating a 2 day 

time lag for a single variable is shown with the final data in grey. Time lags from 1 to 7 days 

were investigated. 

 

5.3.3 Training and Evaluation of MLP 

Standard three neuron-layer MLP were used to model the data, and the learning algorithm 

used was unmodified back-propagation with momentum. The MLP used, was coded in C
++

. 

The method of training networks is described in Chapters 3 and 4. Variable sliding window 

network accuracy was measured by assessing the mean, mean squared error (MSE) and mean 

absolute error (MAE), as suggested by Stanski et al. (1989) and Sheiner & Beal (1981) on 

both the training and test subsets. Whereas for the time lagged networks with simple presence 

and absences percentage accuracy, Cohen's Kappa statistic (Cohen 1960) and receiver 

operating characteristic (ROC) curves (Hanley & McNeil 1982) were calculated as 

performance criteria. The 100 networks trained from the best network parameter combination 

were selected to be validated for each data type.  
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For the time lagged data the proportion of variables to examples was high especially with the 

larger time lags, to reduce the risk of overtraining training of the networks was carried out in 

two steps. The first step was to train the networks as above, utilising all of the data and then 

using the Olden scores (Olden & Jackson 2002b), to identify the percentage that each input 

variable contributed to the network. The second step was to reduce the number of variables by 

selecting variables in order of percent contribution until a total predetermined percent 

contribution was reached. Target total percent contribution was explored in steps of 10% with 

the network parameters being re-found as above for each different total percent contribution. 

The accuracy of these networks was assessed as described above.  

 

5.3.4 Validation 

The validation dataset was comprised of additional Physalia occurrence data sourced from 

SLSNZ during the period from mid December 2008 to the start of February 2009 season. As 

the data was not used in training the networks it was used as independent data to evaluate the 

networks ability to generalise. This time period was chosen as lifeguards are on the beaches 

daily at a time of high public usage. Forecast data for oceanographic variables was extracted 

from the NOAA/NCEP Wavewatch III model (Tolman 1998). The Wavewatch III model is 

run daily, generating a seven day forecast for significant wave height (m), peak wave period 

(s), peak wave direction (ºN) and U and V wind variables which are wind direction and 

intensity as vector components (ms
-1

). Twice weekly, data was extracted for this study so that 

the maximum forecast range was four days. Because of data collection error, forecasts were 

not extracted for the 21/12/08 to 3/1/09 period. Forecast data was processed for both the 

variable sliding window and presence based networks for each region as described above. 

Physalia likelihood index points varied between regions (West Auckland 51 and Canterbury 

47) because the period of continuous patrols varied between regions. Whereas, for the time 

lagged validation data the West Auckland region had 42 Physalia occurrence points and 
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Canterbury 36 respectively. The same threshold for presence (0.5) was applied to the time 

lagged networks as in Chapter 3 and 4 (Pontin et al. 2009) to determine classification of the 

network output. 

 

5.4 Results 

 

5.4.1 Forecasts based on time lagged data 

The forecasts generated from the time lagged networks in general gave predictions accuracies 

within the bounds of pervious studies with the Canterbury region having lower accuracies 

(κ=-0.17 AUC=0.483) than the Auckland region (κ=0.38, AUC=0.616). The forecasts when 

individual networks were compared tended to be highly variable with large ranges in the 

predicted value as shown by the density plot in Figure 5.4. ROC plots further highlight the 

lack of precision showing predictions little better than chance.  

 

5.4.2 Networks based on variable sliding windows 

The optimal training parameters of the variable sliding window networks for each region, as 

determined by test set accuracy, are presented in Table 5.1 along with the corresponding MSE 

and MAE for the training and test subsets. Variable contribution to each of the regions is 

shown in Table 5.2. Wind direction in cells A5, A3 and A6 all had a negative contribution to 

the model for the West Auckland region indicating that as the wind bearing increased tending 

towards the Northwest, the likelihood index of occurrence decreased. Whereas, wave period 

in cells A6, A1 and A3 had a positive influence on the likelihood index, indicating a longer 

time between waves promoted occurrence. The Canterbury region wind speed in cells C4, C5, 

C7 and C8 had a negative influence on the networks, where increased wind speed decreased 

the index of occurrence. Wind direction in cells C7 and C6, wave height in C1 and wave 

period in C2 all had a positive influence on the networks. 
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Figure 5.4: Density plot (A and C) and corresponding ROC curve (B and D) of forecast 

Physalia occurrence in both the West Auckland and Canterbury region during the 08/09 

season from time lagged networks. Each bar is a graphical representation of the distribution of 

forecasts generated from 100 neural networks. The mean forecast is represented by the 

horizontal white bar. The asterisks represent actual occurrences of Physalia with missing data 

indicated by the gap between the dotted lines. Index date is from 1
st
 October 2008. 

 

Table 5.1: Optimal training parameters for each region for variable sliding window networks. 

“Neurons” is the number of hidden layer neurons. The MSE and MAE values are the mean of 

a 100 trained networks. 

Region Neurons Learning Momentum Epochs 
Train 

MSE 
Train 

MAE 

Test 

MSE 
Test 

MAE 

West 

Auckland 
6 0.1 0.05 450 0.032 0.148 0.028 0.139 

Canterbury 7 0.05 0.05 250 0.174 0.59 0.240 0.22 
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Table 5.2: Variables identified as contributing most to the activation of the output in the West 

Auckland and Canterbury regions for the variable sliding window networks. The cell letter 

and number indicate the oceanographic cell (Figure 1) in which the variable was measured. 

 

Negative Variables Positive Variables 

Region Variable Contribution  Variable Contribution 

West 

Auckland 
Cell A5 wind 

direction 
-8.41  

Cell A6 wave 

period 
3.84 

 Cell A3 wind 

direction 
-6.45  

Cell A1 wave 

period 
3.66 

 Cell A6 wind 

direction 
-4.12  

Cell A5 wave 

direction 
3.24 

 Cell A1 wave 

height 
-3.29  

Cell A3 wave 

period 
3.14 

      

Region Variable Contribution  Variable Contribution 

Canterbury Cell C8 wind 

speed 
-7.89 

 

Cell C7 wind 

direction 
4.23 

 Cell C5 wind 

speed 
-5.75 

 

Cell C1 wave 

height 
4.10 

 Cell C7 wind 

speed 
-5.39 

 

Cell C6 wind 

direction 
3.74 

 Cell C4 wind 

speed 
-3.36 

 

Cell C2 wave 

period 
3.73 

 

5.4.3 Variable sliding window based forecasts 

Forecasted likelihood index of occurrence for Physalia in both the West Auckland and 

Canterbury regions are shown in Figures 5.5 and 5.6. The range of forecasts generated by the 

100 networks for each day varies greatly from day to day. In general, closer to the extremes 

there was less variability between the forecasts compared with periods where the forecasts 

swing from one extreme to the other. Variability between forecasts was more pronounced in 

the West Auckland region. By assessing thresholds that are optimised to maximise correct 

forecasts and minimise false positives for each region (Table 5.2) it is possible to assess 

model performance. Networks from the Canterbury region correctly classified 85% of 

Physalia occurrences compared to 67% for West Auckland although both had high false 

positive rates (42% and 42% respectively). The variable sliding window networks 
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significantly outperformed the presence based networks as they could only forecast correct 

occurrence 40% (Canterbury, false positive rate 92%) and 33% (Auckland, false positive rate 

25%).  

 

Table 5.3: Percentage of correct presence forecasts and false positives and negatives for 

Physalia occurrence for variable sliding widow networks in both the West Auckland and 

Canterbury region during the 08/09 season under different thresholds. A threshold was 

considered reached if the 95% confidence of the mean forecast (n=100) encapsulated the 

threshold. Numbers of actual Physalia occurrences are shown in brackets for the correct 

presence forecasts. Optimum thresholds are in bold.  

 

West Auckland region 

Threshold 
Correct presence 

forecast (%) (12) 

False 

absence (%) 

False 

presence (%) 

0.3 66.67 33.33 42.50 

0.35 58.33 41.67 37.50 

0.4 50.00 50.00 32.50 

0.45 50.00 50.00 30.00 

0.5 41.67 58.33 27.50 

0.55 41.67 58.33 22.50 

0.6 8.33 91.67 20.00 

    

Canterbury region 

Threshold 
Correct presence 

forecast (%) (7) 

False 

absence (%) 

False 

presence (%) 

0.3 85.71 14.29 60.00 

0.35 85.71 14.29 55.00 

0.4 85.71 14.29 42.50 

0.45 71.43 28.57 42.50 

0.5 71.43 28.57 42.50 

0.55 57.14 42.86 42.50 

0.6 57.14 42.86 40.00 
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Figure 5.5: Density plot of forecast of the likelihood index of Physalia occurrence in the West 

Auckland region during the 08/09 season. Each bar is a graphical representation of the 

distribution of forecasts generated from 100 neural networks. The mean forecast is 

represented by the horizontal white bar. The blue asterisks represent observed occurrences of 

Physalia whereas the small green diamond represents the running average of occurrence. 

Missing data is indicated by the gap between the dotted lines. Index date is from 1
st
 October 

2008. 
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Figure 5.6: Density plot of forecast of the likelihood index of occurrence for Physalia in the 

Canterbury region during the 08/09 season. Each bar is a graphical representation of the 

distribution of forecasts generated from 100 neural networks. The mean forecast is 

represented by the horizontal white bar. The blue asterisks represent actual occurrences of 

Physalia whereas the small green diamond represents the running average of occurrence. 

Missing data is indicated by the gap between the dotted lines. Index date is from 1
st
 October 

2008. 

 

5.5 Discussion 

 

The use of a variable sliding window to pre-process the environmental data to forecast 

Physalia occurrence by ANN in two New Zealand regions was reasonably successful, 

especially when compared to forecasts generated from the time lagged networks. Clearly a 

high number of false positives were forecasted however; in this application false positives are 

of minor consequence and false negatives more important. When forecasting Physalia 

occurrence the forecast must target the requirements of the end user otherwise the 

effectiveness of the forecast become limited (Johnston et al. 2005). It is envisioned that that a 

patrol captain, in charge of a given beach, is the target end user. To a patrol captain, false 
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positives are not so concerning as false negatives because they are trained to prevent incidents 

and will use anything to minimise potential incidents. Given the patrol captains mindset it 

maybe a false positive is received more favourably than a false negative for which they are 

unprepared. However, it is key that the forecasts are simple to understand and that the patrol 

captains have confidence in the likelihood index of occurrence and associated thresholds 

(Johnston et al. 2005). Many authors stress the importance of minimising false predictions 

when creating models (Gotelli 2000; Hwang et al. 2005; Liu et al. 2005) but this requires that 

false predictions can be clearly identified. Given the sources of error it is impossible to 

determine whether inaccurate forecasts are the result of model error, few people swimming on 

that day, unreported stings, or that jellyfish were present but by chance nobody happened to 

be stung. While minimisation of false forecasts is desirable, this type of prediction is similar 

to weather forecasting where a level of error is accepted. 

 

To maximise forecasts accuracy every effort is required to minimise aspects of input data and 

modelling technique that reduce accuracy while at the same time, maximising model 

representation of realistic features within the target system (Maier & Dandy 2000). For an 

accurate forecast of the likelihood index of occurrence, the model must be designed and 

trained with data that represents the desired target (Clark 2007). The time lagged networks 

have two inadequacies with respect to their input data that primarily accounts for their poor 

forecast performance. By using time lagged data in binary format, network training was 

optimised to give a binary output, through the use of thresholds. Given the issues with 

correctly assessing an actual Physalia occurrence, using time lagged data may create 

additional noise in the data and mask any patterns occurring. Whereas by using a running 

average to represent the occurrence of Physalia it allows the variable sliding window 

networks to differentiate between high and low periods of occurrence increasing the 

possibility of the networks identifying patterns in the input data (Dawson & Wilby 1998). The 
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other issue associated with the input data for the time lagged networks was the way a time lag 

was incorporated into the input data. Time lags were created by time-stepping the data (figure 

5.3) which has the potential to greatly increase the number of explanatory variables, 

especially if the number of days is high, increasing the possibility of overtraining or the 

network learning the noise in the data (Nath et al. 1997; Maier & Dandy 2000). In 

comparison, the temp variable sliding window networks were applied to a moving average of 

the variables which minimised the number of training variables but also smoothed the data 

increasing the possibility of the networks identifying patterns in the input data.  

 

Although a presence based approach has been utilised for many different ecological 

applications such as predicting fish presence (Mastrorillo et al. 1997), species distributions 

(Elith et al. 2006) and predicting bird habitat suitability (Brotons et al. 2004), it, like all other 

models, relies on the quality of the input data and explanatory variables. The input data for 

this study is extremely noisy reducing the adequacy of model fit and therefore the accuracy of 

any subsequent forecast. The use of a variable sliding window to pre-process the data 

improved forecast accuracy. By identifying and utilising time periods where the input 

variables were highly correlated with Physalia occurrence, more relevant data were identified, 

and noise was reduced such that the networks more readily learned important patterns in the 

data.  

 

Variables identified using a variable sliding window indicated the oceanographic variables 

that are likely to influence Physalia presence. In the West Auckland region, winds from the 

Northwest lower the likelihood index of occurrence indicating that Physalia individuals are 

transported into the region from the south. The variables identified in the Canterbury region 

also indicate that Physalia seems to originate somewhere to the north of the region as 

Northwest winds are important in Physalia presence. This possibly indicates that either 
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Physalia are being transported down the length of New Zealand or they are passing through 

Cook Strait. Further modelling is required particularly of the Wellington region to ascertain if 

either scenario is a possibility.   

 

The use of a variable sliding window seems to have enhanced the network’s ability to identify 

patterns as shown by the strong patterns forecasted by the networks. Furthermore, using a 

variable sliding window to analyse the input data necessitated the use of a running average 

occurrence as the target output probably gave a more realistic target especially when the 

temporal variability of records of Physalia occurrence is considered. The use of a variable 

sliding window has been demonstrated by Worner et al. (2002) the dataset used in that study 

was less complex and probably was less noisy. The fact that the approach seems successful in 

this study indicates its potential for predicting complex highly variable environmental data.  

 

Compared with weather forecasting the volume of data used to train and validate the models 

is quite small for both regions. Simply incorporating the 2008/2009 season data into the 

training data will increase the training examples available to the networks giving a greater 

representation of the problem and leading to better networks (Lek et al. 2000). Moreover it is 

possible to maximise the resolution of the input data by utilising the daily output from the 

Wavewatch III model further increasing the resolution of the forecasts. The need to develop 

an informative way of communicating the forecast to the end user is also a priority with a web 

based system preferred because of ease of access. The use of thresholds to forecast Physalia 

occurrence derived from the likelihood index of occurrence is possible, however, false 

positive rates are high which may reduce confidence in the forecasts over time (Johnston et al. 

2005). But including the forecasted likelihood index of occurrence will allow any end user to 

assess the likelihood index of occurrence. That information will increase the relevance of the 
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information until such time more and better data reduce false positive rates to acceptable 

levels. 

 

In summary, the ANN network ability to forecast Physalia occurrence in the West Auckland 

and Canterbury regions was enhanced through the use of a variable sliding window to pre-

process the input data. Although the use of a variable sliding window eliminated much of the 

noise in the data the forecasts were limited to general trends. Despite this result there is 

potential to increase the resolution of the forecast so that a real time forecasting system can be 

implemented.  
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Chapter 6: Predicting the occurrence of Physalia at New Zealand 

beaches using Multi-Layer Perceptrons and Naϊve Bayes 

Classifiers 

 

 

6.1 Abstract 

 

Observing or monitoring pelagic species population levels is very difficult. Currently there 

has been limited development of a theoretical framework that assists understanding how a 

pelagic population may aggregate or be redistributed through oceanographic processes. This 

study seeks to use artificial neural networks (ANN) and a Versatile Quantum-inspired 

Evolutionary Algorithm (VQEA) mapped to feature space with a Naϊve Bayes Classifiers 

(NBC) to model the presence and absence of Physalia in New Zealand coastal waters as a 

model system to explore possible effects of oceanographic processes on a pelagic population. 

ANN accuracies achieved improved on previous studies of the Physalia dataset but were 

outperformed by the NBC. Both models achieved classification accuracies so that was 

possible to identify significant oceanographic influences with confidence of capturing a true 

representation of the system. The models indicated that New Zealand appears to have two 

independent systems driven by currents and oceanographic features that are responsible for 

the redistribution of Physalia from North of New Zealand and the Tasman Sea and their 

subsequent presence in coastal waters.  
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6.2 Introduction 

 

Climate change is predicted to cause changes that will have significant as well as varied range 

of impacts on many species (Fischlin et al. 2007). There is a general expectation that the 

phylum Cnidaria will increase its populations, primarily through the expected increase in 

ocean temperatures and higher rates of eutrophication (Mills, 2001; Purcell and Arai, 2001; 

Parsons and Lalli, 2002). Increases in jellyfish populations have been known to block nets 

used in aquaculture enterprises, such as salmon farms, and high populations can affect fish 

stocks by severely depleting eggs, small larvae and plankton (Purcell et al. 2007). 

Additionally, jellyfish cause a great deal of discomfort or potentially death to swimmers 

(Bailey et al. 2003). Clearly it would be useful to predict when such species become 

troublesome, however there are several issues. First, only a limited number of datasets of 

appropriate population data exist (Purcell 2005), restricting the ability to establish base 

population levels for species in specific geographic regions. Two, Cnidarian populations 

naturally undergo large fluctuations, which may mask or prevent the identification of changes 

to their population levels (Lynam et al. 2004; Purcell 2005). 

 

Because of a lack of data, researchers may be forced to use datasets collected for purposes 

other than research. While such data potentially lacks the rigour associated with that collected 

for scientific purposes such data may provide a viable alternative for study if potential 

shortcomings in the data are recognised and treated accordingly (Elith et al. 2006). Identifying 

population fluctuations is also difficult, especially the accurate identification of population 

maxima and minima in the bloom cycle so that trends can be correctly identified. Establishing 

when a bloom has occurred is difficult because as Graham et al. (2001) describes there are 

two types of blooms; true and apparent. True blooms are when a rapid change in a jellyfish 

population has occurred and apparent blooms are when a stable population has been re-
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dispersed.  Distinguishing between the bloom types may be impossible without detailed 

records of the surrounding areas. To aid in distinguishing bloom types an understanding of 

how the marine environment influences jellyfish movement is required.  

 

To date, the number of studies that have attempted to determine to what extent the marine 

environment influences jellyfish populations either to infer population movement or actual 

recorded effects have been limited. Johnson et al. (2001) used large scale circulation models 

to model pelagic Chrysaora quinquecirrha population dynamics in the Gulf of Mexico with 

the aim of determining probable polyp areas. Johnson et al. (2001) wanted to identify possible 

suitable locations for an intermediate life-stage of this species using information from the 

Gulf of Mexico circulation model. Key variables and processes that were identified through 

modelling this system, were that wind forcing played a dominate role in the distribution 

patterns encountered and that currents were also highly relevant. The extent to which these 

variables are important to population movement of jellyfish species is questionable as the 

species that inhabit the depths would not be affected by wind forcing whereas others are 

capable of significant movement by themselves. For example, Chironex fleckeri has been 

recorded as having a straight line speed of 212m an hour (Seymour et al. 2004).  

 

The genus is Physalia is considered to be one of the more primitive extant Hydrozoan genera 

as it lacks many of the morphological characteristics associated with later evolving species 

(Collins 2002; Dunn et al. 2005). In particular Physalia lacks any swimming mechanisms 

causing Physalia to be completely dependant on ocean winds and currents for movement and 

dispersal (Lane 1960). Two morphs have evolved with regard to their sail, one with a left 

hand sail and one with a right hand sail, allowing individuals to move at slightly different 

angles in the same wind condition (Totton 1960; Barnes 1980). This apparent reliance on 

wind and currents potentially means that Physalia population movement can be modelled 
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using wind, current and swell information. For this reason Physalia is an ideal model species 

to investigate and identify factors that influence pelagic cnidarian populations based on 

oceanographic data. 

 

Artificial neural networks are potentially a very powerful technique for modelling species 

populations and identifying key factors that influence their populations, especially for 

Cnidarians that live in a complex and changing environment. Because oceans are highly 

variable a large number of features, that potentially could contain significant noise in their 

data, need to be considered. Standard statistical techniques have been shown to be often out-

performed by ANN when applied to complex data (Lek et al. 1996; Brosse et al. 1999; 

Mutanga & Skidmore 2004). In particular Multi-Layer Perceptrons (MLP) have shown great 

promise in their application to problems with noisy and complex data (Lek et al. 1996; Olden 

& Jackson 2002b; Joy & Death 2004) however, their use in ecology is still not widely 

accepted.  

 

There is a growing use of Quantum-Inspired Evolutionary Algorithms (QEA) to replace the 

use of  Evolutionary Algorithms, as they have been shown to been to superior (Han & Kim 

2004; Venayagamoorthy et al. 2005). A current generation QEA is the Versatile Quantum-

inspired Evolutionary Algorithm (vQEA) proposed by Platel et al. (2007) to overcome 

irreversible choice and the phenomenon of hitchhiking that can occur in QEA. vQEA 

improves QEA by updating the attractors without considering their fitness and performing a 

global synchronisation so that generation t+1 corresponds to the best solution found at 

generation t. vQEA was found to significantly outperform both Classical Genetic Algorithm 

and QEA when compared using benchmark classification problems. Because it is possible to 

translate each generation from the algorithm to feature space it is possible to assess what 

features are being identified through the use of robust classifiers such as Naϊve Bayes 
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Classifiers (NBC) (Friedman et al. 1997) giving a powerful technique for feature 

identification (Kotsiantis 2007). Moreover, NBC, which are normally less accurate than ANN 

(Kotsiantis et al. 2006), have been shown to be comparable and sometimes superior for 

instance-based learning when used of with state of the art algorithms (Domingos & Pazzani 

1997; Kotsiantis 2007).  

 

Initial attempts to model Physalia presence or absence for selected regions around the New 

Zealand shoreline indicated ANN were able to identify patterns within the data (Pontin et al. 

2008). With relevant time lags added to the models, ecological realism as well as accuracy 

improved (Pontin et al. 2009) which indicated that identification of relevant features was 

possible. The aim of the present study was to use and compare ANN and the Versatile 

Quantum-inspired Evolutionary Algorithm in conjunction with an NBC to identify and clarify 

oceanographic features and time frames that influence Physalia dispersal around the New 

Zealand shoreline.  

 

6.3 Methods 

 

6.3.1 Data. 

Data from the combined SLSNZ and oceanographic dataset was extracted for five regions in 

New Zealand (West Auckland, Bay of Plenty, Taranaki, Wellington and Canterbury) for the 

2000/2001 season to the 2004/2005 season (Figure 6.1) as described in Pontin et al. (2009). 

Time lags were created by time-stepping the data from one to six days (Figure 6.2). In other 

words data from one to six days prior to the target event was concatenated and included as the 

final dataset. Time lags of up to six days were investigated because time-stepping rapidly 

increases the number of features in the dataset to the point that feature numbers would exceed 

examples, leading to overtraining.  
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Figure 6.1: Oceanic cells associated with each of the five regions examined. Cells that are 

associated with a particular region are shown by ID codes in which the letter indicates the 

associated region, except for the West Auckland region which is represented by an A, and the 

number identifies individual cells within a region.  

 

6.3.2 Training and Evaluation of MLP 

Standard three neuron-layer MLP were used to model the data, and the learning algorithm 

used was an unmodified back-propagation with momentum. The method of training networks 

was as in Chapters 3, 4 and 5. Network accuracy was measured by assessing Cohen's Kappa 

statistic (Cohen 1960). As the proportion of features to examples was high especially with the 

larger time lags, to reduce the risk of overtraining training of the networks was carried out in 

two steps. The first step was to train the networks as above utilising all of the data and then 

using the Olden scores (Olden & Jackson 2002b), indentify the percentage that each input 

feature contributed to the network. The second step was to reduce the number of features by 

selecting features in order of percent contribution until a total predetermined percent 
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contribution was reached. Target total percent contribution was explored in steps of 10% with 

the network parameters being re found as above for each different total percent contribution. 

The accuracy of these networks was assessed as described above.  

 

6.3.3 Naϊve Bayesian Classifier 

The Versatile Quantum-inspired Evolutionary Algorithm (vQEA) (Platel et al. 2007) was 

used as the wrapping optimization algorithm. We chose a population structure of ten 

individuals organized in a single group, which is globally synchronized every generation. This 

setting was reported to work well for a number of different binary optimization benchmarks  

(Platel et al. 2008). The learning rate was set to θ = π /100 and the algorithm was allowed to 

evolve over a total number of 3000 generations except for the Wellington region which 

evolved for 1000 generations. The reduced number of generations was a result of the 

Wellington region containing a much higher number of features. This significantly increased 

the time to evolve a generation and as the availability of the hardware needed to carry out the 

computations was limited the number of generations was reduced. To guarantee statistical 

relevance 30 independent runs were performed, using a different random number seed for 

each of them.  

 

In every generation the chromosome of each individual in the population was translated into 

the corresponding feature space. Naϊve Bayesian Classifier (NBC) was then trained and tested 

using k-fold cross-validation procedure. Parameter k was set for each dataset individually and 

are summarised in Table 6.1. Classification error was assessed by Cohen's Kappa statistic 

(Cohen 1960) across both the entire dataset and the test dataset only. Features that were 

selected by the NBC in 90% of the runs were compared to the eight features that had the 

greatest contribution to the finalised MLP. As there was a high degree of correlation between 

some variables if a model selected a feature and the other model selected another feature that 
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had a high correlation with the initial feature then this was considered a comparable selection 

between model types. Highly correlated features were not removed from the dataset because 

even though a feature is correlated it still may provide significant performance improvement 

when analysed in conjunction with other features (Maier & Dandy 2000; Guyon & Elisseeff 

2003). 

 

6.4 Results 

 

6.4.1 MLP accuracies 

The best performing network model based on a combination of time lag and network 

parameters for each region is shown in Table 6.2. The optimum time lag over the regions 

ranged between 3 and 6 days. Training kappa were between 0.97 and 0.99 which when 

compared to the test kappa of between 0.26 and 0.40 was an indication that overtraining has 

occurred because of the large difference between the training and test results.  

 

Networks that were trained with a reduced number of features based on the percentage 

contribution outperformed the corresponding full dataset. In all regions the training kappa 

decreased but there was a subsequent increase in test kappa ranging from 0.11 to 0.27 (Table 

6.2). Validation accuracy was also increased by utilising a reduced number of features with 

gains of between 0.01 to 0.39 recorded (Table 6.2). The percentage contribution that 

determined the number of features selected was 50% in all regions except for Canterbury 

which was 40% (Figure 6.1).  In other words the network performed best when features 

selected from the largest contributing features represented 40% to 50% of the total 

contribution based on olden scores (Olden & Jackson 2002b). 
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6.4.2 Naive Bayesian Classifier accuracies 

Because of the strong imbalance of the datasets, the percent of correctly classified samples 

started at a high level >80%, for all regions, at the beginning of the evolutionary run. Despite 

the high initial accuracy improvements to classification accuracy were still possible in later 

generations (Figure 6.3). The average final testing accuracy reported by each individual in the 

population was significantly higher than the corresponding MLPs testing accuracies for all 

regions (p<0.03, t test). Because of the reduced number of generations that the Wellington 

region was evolved over, although gaining comparable classification accuracy with other 

regions, increased generations may improve results further. As the vQEA was evolved, the 

accuracy steadily increased with a corresponding decrease in the number of features (Figure 

6.3). 

 

6.4.3 Feature selection 

Features that had a large contribution to the MLP networks for each region are shown in 

Table 6.3. In general the features that had a large contribution to all regions except Taranaki 

were wind and wave directions at varying time lags. Taranaki however, was most influenced 

by wind speed again at varying time lags. The mean number of features identified by NBC 

across the 30 runs (Table 6.1) was higher in all regions than the corresponding features 

selected through percent contribution in the MLP (Table 6.2). When the top eight contributing 

features to the MLP are compared to features that the NBC selected in 90% of the runs it is 

clear that the models are identifying the same underlying pattern with an average of 4.8 (SEM 

0.86) features being the same or highly correlated (Table 6.2). 
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Table 6.1: Performance, parameters and number of features used to train Naϊve Bayesian Classifier (NBC) associated with each region;* 

indicates significant increase (p<0.05) compared to the best testing accuracy achieved by the MLP (Table 6.4), and ** a highly significant 

increase (p<0.001) (T test). 

Region Lag Generations Parameter k Final number of features 

selected 

Overall Kappa  Test Kappa 

West Auckland 4 3000 12 47 0.7912 0.6276** 

Bay of Plenty 3 3000 10 42 0.8159 0.6347** 

Taranaki 6 3000 7 94 0.9675 0.7034* 

Wellington 6 1000 7 159 0.949 0.6961** 

Canterbury 6 3000 9 87 0.8844 0.7082** 

 

Table 6.2: Optimised training parameters used to train MLP networks and mean Cohen's Kappa statistic for the training, test and validation 

datasets associated with each region. “Neurons” is the number of hidden layer neurons. 

Region Lag Contribution Neurons Learning Momentum Epochs Training Test Validation 

West Auckland 4 100% (151) 7 0.1 0.05 1000 0.9749 0.4016 0.2718 

Bay of Plenty 3 100% (142) 5 0.1 0.05 1000 0.9672 0.2602 0.1057 

Taranaki 6 100% (246) 6 0.1 0.1 800 0.9755 0.3749 0.1917 

Wellington 3 100% (386) 6 0.1 0.1 700 0.9725 0.4662 0.1216 

Canterbury 6 100% (281) 3 0.1 0.1 800 0.9893 0.3941 0.2897 

West Auckland 4 50% (33) 8 0.2 0.1 900 0.9004 0.5191 0.2889 

Bay of Plenty 3 50% (31) 9 0.2 0.1 800 0.8824 0.4023 0.0184 

Taranaki 6 50% (54) 8 0.2 0.3 950 0.9691 0.6479 0.2942 

Wellington 6 50% (83) 4 0.6 0.6 400 0.9947 0.5807 0.5125 

Canterbury 6 40% (45) 9 0.6 0.3 800 0.9656 0.6279 0.3021 
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Table 6.3: Features that were identified as the most influential contributing to the activation of the output for each of the five regions in the MLP. The 

letter and number after each feature indicates the oceanographic cell (Figure 6.1) in which the feature was measured and how many days prior to the 

data point the data were taken;* indicates that the feature, or another highly correlated feature, was selected by the NBC. 

Positive Features  Negative Features 

Region Rank Cell-lag Feature Contribution  Rank Cell-lag Feature Contribution 

West Auckland 3 cell 6-0 Wave direction* 58.31  1 cell 3-1 Wave period* -84.85 

 8 cell 5-0 Wave direction 43.67  2 cell 5-0 Wind speed -84.76 

 9 cell 1-3 Wave period 43.44  4 cell 1-4 Wind speed* -57.53 

 10 cell 4-2 Wind direction 41.84  5 cell 5-1 Wind speed* -55.91 

Region Rank Cell-lag Feature Contribution  Rank Cell-lag Feature Contribution 

Bay of Plenty 2 cell 3-0 Wave direction* 90.32  1 cell 6-0 Wind speed* -100.29 

 4 cell 6-1 Wind direction* 78.55  3 cell 2-1 Wave direction* -79.57 

 7 cell 7-2 Wind speed* 73.35  5 cell 4-1 Wave direction* -77.47 

 10 cell 4-0 Wind direction* 58.33  6 cell 6-3 Wind direction* -75.38 

Region Rank Cell-lag Feature Contribution  Rank Cell-lag Feature Contribution 

Taranaki 5 cell 6-3 Wind speed 30.28  1 cell 6-6 Wind speed -43.72 

 6 cell 2-1 Wave period 30.17  2 cell 6-6 Wave period -37.62 

 7 cell 7-2 Wind speed 28.53  3 cell 2-1 Wind speed* -34.69 

 9 cell 7-1 Wind speed* 26.37  4 cell 5-2 Wave period* -32.58 

Region Rank Cell-lag Feature Contribution  Rank Cell-lag Feature Contribution 

Wellington 1 cell 10-1 Wind direction* 35.14  2 cell 3-5 Wave direction* -34.90 

 5 cell 10-5 Wind direction* 31.28  3 cell 10-4 Wave period -34.48 

 6 cell 7-1 Wave direction 31.14  4 cell 8-5 Wave direction* -32.36 

 7 cell 4-5 Wind speed 30.99  8 cell 3-1 Wave period* -30.76 

Region Rank Cell-lag Feature Contribution  Rank Cell-lag Feature Contribution 

Canterbury 2 cell 1-4 Wave direction 55.83  1 cell 3-6 Wave direction -60.39 

 3 cell 2-3 Wind direction 52.03  4 cell 3-6 Wind direction* -51.77 

 5 cell 7-1 Wind direction* 50.93  6 cell 8-2 Wind speed -42.22 

  8 cell 7-6 Wind direction* 40.93   7 cell 8-4 Wave direction* -41.85 
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Figure 6.2: Evolution of NBC for classifying Physalia presence in five New Zealand regions (A: West Auckland, B: Bay of Plenty, C: Taranaki, D: 

Wellington and E: Canterbury) in relation to the number of features incorporated in the model and classification accuracy (percentage correctly 

classified). The different gray levels correspond to the generation in which a given data point was obtained, the lighter the colour the later the 

generation. Note the Wellington region was only evolved over 1000 generations compared to 3000 generations for the other regions. 

E 
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6.5 Discussion 

 

The reduction of features included in the MLP networks, through the use of a contribution 

analysis, increased the network accuracy and ability to generalise over a wider area than 

achieved previously (Chapters 3,4 and 5) (Pontin et al. 2008; Pontin et al. 2009). The primary 

explanation for the improvements in accuracy is the reduction in noise within the input data 

and the improvement to the proportion of features to examples (Nath et al. 1997; Maier & 

Dandy 2000).  As the less relevant features were eliminated the proportion of features to 

examples decreased subsequently reducing the noise and increasing performance. A similar 

process was achieved with the NBC with performance increasing as features were discarded. 

Although the NBC outperformed the MLP in classifying Physalia presence both model types 

identified similar noteworthy features to each other. Because these features were identified 

independently with similar importance they can be considered to have a greater importance 

and therefore more relevance to the system (Bowden et al. 2005; Muttil & Chau 2007). By 

using the variables identified by both ANN and NBC as an ensemble is possible to accurately 

identify variables with high contribution to the system. Moreover, a greater precision is often 

gained with ensembles (Araujo & New 2007; Lankin-Vega et al. 2008).When assessing the 

ecological role that a feature has within a given system, the MLP networks provide additional 

knowledge to that of an NBC as it is possible to determine how the network responds to a 

feature, either positively or negatively, which is not possible with a NBC.  

 

When features with high contribution to a region’s MLP networks are examined (Table 6.4) it 

is clear that each region has distinct patterns that can be extrapolated out to indicate possible 

explanations for the movement and origin of the blooms. Moreover, the patterns in all regions 

except Bay of Plenty appear interlinked to a degree. A similar conclusion can be drawn from 

the features selected by the NBC for the Bay of Plenty as it appears that oceanographic 
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conditions to the north of the region play an important role in determining Physalia 

occurrence. Whereas, from the features identified in the other regions, there appears to be 

similar linkages between regions. The features identified by both the MLP networks and NBC 

suggests that there are two separate oceanographic systems occurring around New Zealand 

that may influence Physalia presence. One system occurs in the Bay of Plenty region and a 

more complex system incorporates The West Auckland, Taranaki, Wellington and Canterbury 

regions (Figure 6.4). 

 

It is unlikely that there are localised populations of Phyaslia inhabiting the New Zealand 

coastline. A recent survey of New Zealand Physalia species using molecular techniques 

(Chapter 2) indicated that only the Bay of Plenty had a genetically distinct population. As the 

remainder of New Zealand appears homogeneous then it is probable individuals are being 

sourced from the same area. The Bay of Plenty system suggests a blooming area between the 

North Cape eddie and East Cape eddie. There are periodic blooms of phytoplankton in that 

area during November (Murphy et al. 2001) which would provide a food source for a 

Physalia bloom. North-westerly wave and wind directions in the cells to the Northwest 

increase the possibility of Physalia occurrence (Table 6.4). But the models are indicating that 

similar wave directions to the north of the region one day prior decrease the possibility of 

occurrence. To interpret this conflicting pattern the regions current system must be taken into 

account. The East Auckland Current flows down the coast from North Cape and there are two 

permanent eddy systems in the area (Stanton et al. 1997). It is suspected that this current 

system has a greater influence on the speed and direction at which a bloom is transported. As 

wind and wave conditions either enhance or suppress a current strength (Stanton et al. 1997) 

it is hypothesised that if the current is enhanced to such a degree it is capable of either moving 

a bloom pasted the region or dispersing the bloom so that the possibility of a swimmer being 

stung is decreased, reflecting an issue in the source data  Because the model is unable to 
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factor the currents and or the possibility of a number of false negatives it may account for the 

networks poor ability to generalise.  
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Figure 6.3: Hypothesised representation of Physalia movement and blooming zones around 

New Zealand as indicated from the ANN model.    

 

For the other regions it is suggested that there is a blooming zone located west of the Taranaki 

region in the Tasman Sea (Figure 6.4). Again, each year in November there is a large increase 

in phytoplankton in this area (Murphy et al. 2001) indicating that environmental conditions 
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are suitable for a Physalia bloom. The SLSNZ data correlates with this observation as the 

earliest incidence records occur in late October in the West Auckland region and early 

November in both the Canterbury and Wellington region. The Taranaki region does not show 

any incidents until early December as beach patrols in the region do not start until that time. 

Once the bloom has formed it can be transported in multiple directions. For the West 

Auckland region a more westerly wind and swell in A4, A5 and A6 increases the possibility 

of an occurrence. These wind and wave directions also affect the Wellington region in a 

similar manner. It is expected that individuals will pass through Cook Strait as it is the only 

passage between the two main islands in over 2000km. Moreover the prevailing winds and 

currents will disperse any blooms formed in the blooming zone area toward the strait. Once an 

individual or bloom had passed through the strait it may possibly be followed by an additional 

bloom as phytoplankton is known to increase off the coast of Canterbury in January (Murphy 

et al. 2001). Canterbury often experiences more incidences later in the season than the other 

regions giving some support to this suggestion. The role that currents play in this particular 

system again cannot be quantified but the D'Urville Current is a significant current that passes 

through Cook Strait (Heath 1986) and would have a large affect on the transportation of 

Physalia in the region. However, the D'Urville current is strongly effected by wind forcing 

(Heath 1986) and as Physalia are adapted for wind dispersal the two features could be heavily 

confounded. North Westerly winds 3 to 6 days prior in cells C2 and C7 increase the 

possibility of occurrence in the Canterbury region further supporting the suggestion that 

Physalia pass through Cook Strait.  

 

The blooming zones and dispersal patterns proposed here not only provide a hypothetical 

framework for further experimental and observational studies of pelagic species movement 

and distribution but also provide significant interpretation of other results. The geographic 

dispersion based on a molecular analysis of New Zealand’s Physalia (Chapter 2) gives a 
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similar pattern with a similar interpretation but without any suggestion of a mechanism. By 

combining the two techniques it is possible to provide an independent validation of the 

models and provide a theoretical framework to interpretation of the molecular data. With the 

added effect of the identification of important geographical areas that can then be more 

intensively sampled to provide increased resolutions of crucial areas.  

 

To implement management strategies to mitigate unwanted effects of Cnidarian blooms a 

detailed understanding of their populations is required. The models presented do not provide 

this but they do provide an initial point from additional which information can be 

incorporated and model development continued. If development can be continued with 

subsequent gains in accuracy then it is highly conceivable that a real time predictive model is 

achievable. The next step from there would be taking the techniques developed and applying 

them to other species or genera at the same or larger scales to assess if patterns found are 

generalised or species specific.  
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Chapter 7: General Discussion 
 

 

The use of molecular techniques along with Artificial Neural Networks (ANN) provided 

additional interpretations about Physalia distributions in New Zealand waters than would not 

have been possible if either approach had been used in isolation. Both investigative 

approaches provide evidence for the existence of two separate oceanographic systems that 

appear to drive Physalia distribution around New Zealand. These systems may have 

contributed to possible speciation within the genus. One system is located in the Bay of Plenty 

extending south along the east coast of the North Island to Riversdale. The other system is 

thought to encompass the west coast of both main islands, Cook Strait and from Riversdale 

south along the South Island’s East coast (Figure 6.4). By identifying key environmental 

variables using both ANN and NBC models it was possible to extrapolate Physalia movement 

and identify potential blooming areas, notoriously hard to establish for jellyfish. Such areas 

may be indicative for further study and/or validation. Despite the synergy between approaches 

important issues with respect to New Zealand’s Physalia species have been identified that will 

require further research to clarify. 

 

7.1 Molecular techniques 

 

Molecular analysis of Physalia specimens from New Zealand, Australia and Hawaii generated 

a surprisingly complex taxonomic picture of the Physalia genus with three clans being 

identified. There is the potential for at least two new species to be identified from the species 

complex through closer morphological analysis. At present only P. physalis is recognised 

(Totton 1960; Bouillon et al. 2006) and given the genetic diversity found in a relatively small 

sample size, it is clear the entire genus will require a comprehensive global review using a 

fully integrated taxonomic approach that incorporates morphological and molecular analysis 
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(Dayrat 2005). A fully integrated approach will be vital in any review to ensure that 

morphological or molecular variation can be assessed accurately. From the work completed in 

this study it seems highly probable that a review will result in the re-description of P. 

utriculus and that the species name will be assigned to one of the clans identified. 

 

While the molecular results do not fully clarify which species of Physalia are present in New 

Zealand they do indicate that P. physalis is likely to be a rare species as no specimens were 

sampled. A particular criticism of this conclusion is that it is solely based on molecular data 

but if P. physalis is as common as Wesrerskov & Probert (1981) and Slaughter et al. (2009) 

suggest, then P. physalis should have been detected even with the limited sample size in this 

study. Furthermore, given the associated results with a supposedly common New Zealand 

species such as P. physalis it might appropriate to question the true status of the other 133 

hydrozoans (Bouillon & Barnett 1999) and 761 cnidarians (Smith & Gordon 2003) thought to 

be present in New Zealand. Haddock (2004) claims that cnidarians have been neglected in 

marine research for the past 100 years compared with other marine taxa, so it is likely that 

other New Zealand cnidarian genera will require a taxonomic review if their molecular 

information is examined. 

 

7.2 Modelling 

 

The development of ANN to model Physalia presence undertaken from the initial proof of 

concept to the final networks, incorporated increased ecological realism with increased 

modelling accuracy at each step. The initial approach used in Chapter 3 did not account for 

prior conditions but it did show that ANN is capable of modelling Physalia presence using the 

SLSNZ and Wavewatch III data. With species that are passive drifters, such as Physalia, and 

indeed many biological species, it is the cumulative effect of prior conditions that contribute 
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to the distribution observed (Ellien et al. 2000; Barnay et al. 2003; Ellien et al. 2004). The 

subsequent incorporation of a time lag that accounted for prior conditions in Chapter 4 

significantly enhanced the ecological realism of the model because it allowed some form of 

assessment of the effect of prior conditions to be made. Moreover, the incorporation of a time 

lag also allowed an initial assessment of significant variables that contribute to Physalia 

presence. The time lag however, greatly increased the number of input variables on which the 

networks were trained, increasing the risk of overtraining. 

 

Compounding the issue of overtraining there was a considerable imbalance in the data with 

absences comprising between 78 to 89% of the datasets. Imbalances of this nature have been 

shown to decrease model accuracy as the model will seek accurate performance over the full 

range of instances (Chen et al. 2008; Liu et al. 2008). The result is a model that is able to 

classify the majority class accurately (in this case absences) but has a poor ability to classify 

the minority class (Xu & Chow 2006; Chen et al. 2008). Because of the class imbalance the 

use of presence only data became questionable for incorporation into a forecast model. To 

provide effective forecasts a likelihood index of Physalia occurrence was devised for 

forecasting the presence only data. The likelihood index of Physalia occurrence mitigated the 

issues created by the class imbalance as the target output was transformed to a continuous 

index rather than a discrete occurrence. When combined with a variable sliding window as a 

pre-processing technique for incorporating a meaningful time component in the input data, the 

subsequent networks outperformed comparable networks based on time-lagged data (Chapter 

5). Although, the accuracy and resolution of the variable sliding window networks were still 

not sufficient for detailed forecasts, useful forecasts of general trends could be made. Those 

variables that had a large contribution to the variable sliding window networks indicated the 

oceanographic variables that appear to influence Physalia presence but because the model and 
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input data were optimised for forecasting, detailed ecological conclusions about the effect of 

these variables on Physalia populations could not be made.  

 

The main objective of Chapter 6 was to identify key variables that influence Physalia 

presence on beaches around New Zealand. Artificial neural networks trained on time stepped 

presence only data as in Chapter 3 and 4 showed an ability to identify variables that effected 

Physalia populations. By time stepping (Chapter 3 and 4) the data it allowed the identification 

and quantification of specific variable contribution to the network and hence overall system, 

but because of limitations, such as class imbalance and risk of overtraining, only general 

patterns where sought. Furthermore, as the limitations in the data were substantial, a NBC 

driven by a vQEA was trained on the same presence data as a comparison. By using the 

variables identified by both ANN and NBC as an ensemble it was possible to accurately 

identify variables with high contribution to the system.  Greater precision is often gained with 

ensembles (Araujo & New 2007; Lankin-Vega et al. 2008). 

 

The ensemble of the ANN and NBC was able to identify two separate oceanographic systems 

occurring around New Zealand that may influence Physalia presence. One system occurs in 

the Bay of Plenty region and a more complex system incorporates the West Auckland, 

Taranaki, Wellington and Canterbury regions (figure 6.4). Both models indicated the 

existence of both systems but when used as an ensemble gave the detail needed to hypothesise 

possible drivers of the systems. A strong confirmation for the existence of two systems are the 

results of the distribution of specimens identified through molecular techniques. The clan 

distribution identified in Chapter 2 closely matches the two systems identified by the models 

in Chapter 6, with one clan restricted to an area encompassing Bay of Plenty south to 

Riversdale, and another major New Zealand clan found throughout New Zealand except for 

the Bay of Plenty. Because of the similarities between the model predictions and molecular 
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patterns combined with other observations such as algal blooms (Murphy et al. 2001) and 

coastal currents (Heath 1986; Stanton et al. 1997), there is a degree of support for 

hypothesises that may direct further research to support the findings in this study. 

 

7.3 Future directions 

 

There are a number of potential research areas indicated by the findings in this study. Further 

research could clarify and confirm the findings here but there are new directions possible. Of 

particular importance is to clarify which species of Physalia occurs in New Zealand waters. 

To date, this research has assumed that all individuals within the complex behave in a similar 

matter because of the indication that as only one species was present (Wesrerskov & Probert 

1981; Slaughter et al. 2009). Whereas there may be differences between clans that, if 

accounted for within the model, may be critical for increasing the resolution of the models 

and gaining a more detailed understanding of the system. 

 

To clarify which species of Physalia actually occurs in New Zealand several approaches are 

possible. Given the relative ease of obtaining specimens from beaches, a wider and more 

intensive sampling strategy could be employed around New Zealand once funding is secured 

to process the additional specimens. The resultant specimens could be sequenced to increase 

the sample size, giving potentially greater resolution, and more information, of the 

relationships between clans. Also a detailed morphological analysis to determine if the 

molecular data correlates with the morphological characteristics of Physalia would be 

desirable. Such an integrated taxonomic approach (Dayrat 2005) has considerable benefits. 

Further assessment of the New Zealand specimens will not however, solve the basic 

ambiguity and confusion surrounding this genus, which will require a complete global review 

of its taxonomy.  
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There are a number of opportunities for further model development, both for the forecast of 

Physalia as well as understanding the oceanographic systems in which the genus inhabits. 

Key to future model development is improvement in the quantity and quality of all aspects of 

the data. Improvements to the dataset are necessary to overcome the limitations encountered 

with both the explanatory variables and the occurrence data. For the explanatory variables 

other factors should be considered such as sea surface temperature and chemical composition 

of the water and information on the direction and strength of the coastal currents. Both 

systems identified are potentially driven by the currents augmented by winds and swells 

requiring the incorporation of current variables. Unfortunately such data is not easily 

accessible and may require the implementation of a coastal monitoring program. Another 

possibility of obtaining such information was proposed by Bowen et al. (2004), they 

suggested the possibility of using satellite images to observe ocean features such as plankton 

bloom movements and infer the speed and direction of currents from such observations. This 

approach maybe of merit, however, the feasibility of incorporating such data into the models 

is limited. Despite this, such images allow, plankton blooms to be regularly identified around 

the New Zealand coast (Murphy et al. 2001). As Physalia are predatory and like all blooming 

jellyfish, require a surplus of resources to bloom (Mills 2001; Purcell 2005) the identification 

of a period that a bloom can occur would provide a biofix that would significantly enhance a 

forecast model. Moreover, if the resolution of the forecast models can be improved to reduce 

apparent false positives then further development and implementation of a warning system for 

lifeguards and beachgoers is possible. As the entire precursor information is freely available 

from the internet (ftp://polar.ncep.noaa.gov/pub/waves/latest_run) there is no limitation to 

downloading appropriate oceanographic data to automate the process and make forecasts 

available on the internet.  

 

 



 106 

In conjunction with obtaining and improving the environmental data a concerted effort is 

required to improve and enlarge the occurrence data. For this research only the 2000/2001 

summer season to the 2004/2005 summer season were analysed. The incorporation of data of 

the four seasons that have elapsed since this study began would effectively double the 

available data. The additional data would allow other regions to be model for example, 

Riversdale through to Gisborne as this region amongst others were rejected for modelling 

because of a lack of data. The Riversdale region is of particular interest as it was the only 

location sampled that had both Clan 1 and Clan 3 present (Chapter 2). If the models are 

accurately modelling the hypothesised system then when conditions favour Physalia being 

transported to the beach from the south, individuals should conform to the Clan 1 genotype. 

Whereas under more northerly conditions then it would be expected that individuals would 

belong to Clan 3, having been transported south from the Bay of Plenty as this is the only 

other location where Clan 3 is located. Because Brodie (1960) showed with float cards that 

there is a general ocean movement down the North Island east coast it is reasonable that 

individual from Clan 3 would originate from the north rather than the south.  

 

As the quality of the data was less than ideal, in respect to recording truce absence, a small 

trial with Surf Lifesaving Canterbury was conducted in an attempt to improve it over the 

summer of 2008/2009 which removed the uncertainty of prediction for that season. Lifeguards 

recorded and reported to the author if they observed Physalia whilst on duty. An incident of 

someone being stung was used as a proxy for the presence of Physalia. Because the lifeguards 

train and work in other areas outside of the patrol area on the beach on any day and at a 

distance from shore, absence of Physalia in the general area could be confirmed removing 

uncertainly in absence data. In this way the effective sample area was dramatically increased 

improving the quality of the occurrence data for that season. If lifeguards were encouraged to 

record absences that could improve model forecasts overall. 
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The occurrence of Physalia on beaches reflects the presence of populations in the general 

locality and then local conditions determine their arrival in the swimming areas. Several 

lifeguards have commented that on occasions they have seen Physalia more than a kilometre 

offshore but no Physalia were reported by lifeguards on patrol on the beach. These 

observations suggest a more complex interaction between the littoral and sublittoral zones that 

determine Physalia occurrence, than what has been modeled in this study. To overcome this 

limitation a two step model would be appropriate with the first step comprising a prediction of 

the general presence of jellyfish in a region followed by the second step using local conditions 

determine the likelihood of their presence in the swimming areas on beaches.  

 

With the increase in invasive marine species that are dispersed passively (Lewis et al. 2005; 

McQuaid & Phillips 2000) models that can accurately forecast potential rates and pattern of 

spread will assist in assessing high risk areas and the control of such species. This study has 

proposed several hypotheses about the important drivers of the systems identified in this 

research.  The results may be extrapolated to identify potential regions where jellyfish blooms 

may occur. Plankton blooms identified from satellite imagery (potentially free on the internet) 

could define an initial search area to confirm the presence of jellyfish blooms. Tracking 

technology can be used to determine the rate of movement of model specimens as well as drift 

for incorporation in a model. Such an investigation can be used for any species that is 

dispersed by passive surface movement. Such studies could contribute to a greater 

understanding of passive dispersal of organisms in oceanographic systems. 

 

Much literature has suggested that oceans provide little barrier to gene flow so there are few 

opportunities for allopatric divergence (Palumbi 1992; Knowlton 2000; Dawson & Jacobs 

2001). This thesis has shown the distribution and composition of the New Zealand Physalia 
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represents a species complex and is not a cosmopolitan species as would be expected. 

Moreover, the genetic diversity found indicated that there was some form of restriction to the 

flow of genetic information within Physalia else the genetic diversity would have been more 

homogeneous. Furthermore the models have indicated a potential mechanism that may 

explain how the complex could have arisen. To test for a mechanism that may have restricted 

gene flow it may be necessary to develop a circulation model for coastal and near coastal New 

Zealand for both surface and subsurface water movement. The latter would be necessary 

because as Physalia gametes are shed into the depths (Totton 1960) and initial larval 

development and dispersal would be determined by subsurface currents. Such a model could 

be used for any marine organism that at some stage in its life cycle has a passive dispersal 

phases and could have important applications in fisheries as well as marine biosecurity 

research. Critical to model success would be the independent biological information on 

species distributions to provide model validation.  
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Appendix A 

 

Maximum parsimony trees 

A 1.0 Cytochrome c oxidase I 

 

PN5

WA3WA2

AE14

R1

Mt2

R13

R18

Mt1

Mt3

Mt4

R4

Ne3

WA1

Br7

Ne2

B103

B109

Ne1

Bridie Is 3

Br10

Br9

P. kauai 2

P. Bribie Is P. Bridie Is 2

Kauai 1

Midway 1

Physalia physalis

H1

B32008

PN1

F5
PN2PN3

H53

B4

B7

F2

Ta3

B22008

B3

B8

AT2

AE15

T4

H4

F3

R20

H2R3B5

B2

H3

B9

B10

AE10

Ta2

F1

R2

WA6

AuckW2

1 change

Bt103

Bri6 Bri7 
Bri10 

Rd18

MT2

MT1

MT4

Rd4

MT3

Rd13

Rd1

NL3 

NL2 

WA1 

Bribie Is 2

Bribie Is 3
Bt109

Kauai 2
Bribie Is 1

Kauai 1

Midway 1

Physalia physalis

Ft5

Rd20

Bt4

Ft2

PN3

HK1

Bt10

Bt8

AE 10 WA6 

HK4 Bt3 

Bt7

Ft5 HK3
Ta4

Rd3

Bt32008

Bt22008

HK53

Ta2

HK2

Bt2 Bt9 WA3   

WA2  AW 2 

Bt5 Rd2  Ft3 

PN1 Ft1

AE15

AE14

Ta3

PN2 PN5 

AT2

91

68

71
66

60

92
98

93

 

Figure A1.1: Unrooted maximum parsimony tree for COI. Numbers on branches indicate 

bootstrap support (1000 replicates). 
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A 2.0 Internal transcribed spacer 
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Figure A1.2: Unrooted maximum parsimony tree for ITS. Numbers on branches indicate 

bootstrap support (1000 replicates). 
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Appendix B 

 

Associated publications 

 

Using Multi-Layer Perceptrons to Predict the Presence of Jellyfish of the Genus Physalia 

at New Zealand Beaches 

David R. Pontin
1
, Michael J. Watts

1
, and S. P. Worner

1
 

1
 Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand;  

International Joint Conference on Neural Networks, Hong Kong, pp. 1171-1176. 

Abstract:  

The apparent increase in number and magnitude of jellyfish blooms in the worlds oceans has 

lead to concerns over potential disruption and harm to global fishery stocks. Because of the 

potential harm that jellyfish populations can cause and to avoid impact it would be helpful to 

model jellyfish populations so that species presence or absence can be predicted. Data on the 

presence or absence of jellyfish of the genus Physalia was modelled using Multi-Layer 

Perceptrons (MLP) based on oceanographic data. Results indicated that MLP are capable of 

predicting the presence or absence of Physalia in two regions in New Zealand and of 

identifying significant biological variables. 
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Using Time Lagged Input Data to Improve Prediction of Stinging Jellyfish Occurrence 

at New Zealand Beaches by Multi-Layer Perceptrons 

 
David R. Pontin

1
, Sue P. Worner

1
 and Michael J. Watts

2
 

 
1
 Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand; 

2
 School of Biological Sciences, University 

of Sydney, NSW, Australia.  

Lecture Notes in Computer Science, 5506, 907-914. 

Abstract: 

Environmental changes in oceanic conditions have the potential to cause jellyfish populations 

to rapidly expand leading to ecosystem level repercussions. To predict potential changes it is 

necessary to understand how such populations are influenced by oceanographic conditions. 

Data recording the presence or absence of jellyfish of the genus Physalia at beaches in the 

West Auckland region of New Zealand were modelled using Multi-Layer Perceptrons (MLP) 

with time lagged oceanographic data as input data. Results showed that MLP models were 

able to generalise well based on Kappa statistics and gave good predictions of the presence or 

absence of Physalia. Moreover, an analysis of the network contributions indicated an 

interaction between wave and wind variables at different time intervals can promote or inhibit 

the occurrence of Physalia. 
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Appendix C 

 

 Matlab functions associated with genetic analysis 

The matlab functions created for implementing a sliding window analysis for genetic data are 

presented below. Functions created for pre-processing oceanographic data are detailed on the 

accompanying compact disc to this thesis. 

 

C 1.0 Obtaining the sliding window 

 

function slidwindN (inputfile,sizofwindow,numbbasepairs,numbtaxa) 

  
%function takes and input file containing sequence data in a nexus format 
%as generated from Seeq (MAC) and passes a sliding window over the data 
%writing a new nexus file in the target output directory for each window 
%selected 

  
%Inputs: inputfile = the input nexus file 
%        sizofwindow = size of sliding window desired 
%        numbbasepairs = Length of the sequences 
%        numbtaxa = number of taxa contained in the nexus file 

  
%NOTE:   This code only works with windows that are multiples of 10 

and    %  will generate a window size of 1+ the size specified.  

  
%        Total sequence length must be the same  

  
%        You must manually change the output directory in the code below 

  

  
%Writen by David Pontin, Lincoln University 5/9/09 v1.0 

  
%Functions called opennexus.m, changeDi.m 

  
Windnumber=numbbasepairs-sizofwindow; 
%calc number of windows to be used 
Data=opennexus(inputfile,numbtaxa); 
%reads the nexusfile into a cell array 
Data{4,1}=changeDi(Data{4,1},numbbasepairs,sizofwindow); 
%changes the nexus parameters to be correct for the new number of base 

pairs 
spacer=Data{7,1}; 
tf=isspace(spacer); 
counter=0; 
%ender for while loop 
start=3; 
%started at 3 to avoid [charter at start 
    while counter==0, 
        %loop identifies where the sequences beings 
        if tf(1,start)==0 
            counter=1; 
        else 
            start=start+1; 
        end; 
    end; 
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frount=spacer(1,1:start-1);  
%changes the two alignment lines to match 
endnumb=num2str(sizofwindow+1); 
seq= [spacer(1,start:start+(sizofwindow-1)) endnumb ' ]']; 
endseq=[frount seq]; 
Data{7,1}=endseq; 
spacer=Data{8,1}; 
seq=spacer(1,start:start+sizofwindow); 
frount=spacer(1,1:start-1); 
endseq=[frount seq ' ]']; 
Data{8,1}=endseq; 
 starting=start; 
for Windnum=1:Windnumber, 
    %for the number of windows need 
    Out=fopen(['Window\Window',num2str(Windnum),'.nex'],'w'); 
    %opens file 
    %NOTE CHANGE OUTPUT DIRECTORY FILENAME HERE 
    Dataseq=Data; 
    for taxa=1:numbtaxa, 
        %loop selects the target basepairs 1 taxa at a time 
        working=Dataseq{(8+taxa),1}; 
        seq=working(1,starting:starting+sizofwindow); 
        frount=working(1,1:start-1); 
        endseq=[frount seq]; 
        Dataseq{8+taxa,1}=endseq; 
    end; 
    Nrows=numbtaxa+11; 
    for BBB=1:Nrows, 
        % loop writes new file out 
    Line=char(Dataseq(BBB,1)); 
    Stransformed= num2str(Line); 
    Outstring = [Stransformed, '\n']; 
    fprintf(Out, Outstring); 
    end; 
    fclose(Out); 
    starting=starting+1; 
end; 

 

function [output]=opennexus(inputfile,numbtaxa) 
%reads the input nexusfile into a cell array 
%called by slidwindN function 
%Written by David Pontin, Lincoln University 5/9/09 v1.0 

  
%Called by slidwindN.m 
output=[]; 
infile=fopen(inputfile,'r'); 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
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output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
for rowbumb=1:(numbtaxa), 
    CurrLine1=fgetl(infile); 
    A={CurrLine1}; 
    output=[output;A]; 
end; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
CurrLine1=fgetl(infile); 
A={CurrLine1}; 
output=[output;A]; 
fclose(infile); 

 

function [dime]=changeDi(input,numbbasepairs,sizofwindow) 
%changes the nexus  parameters to correct for the new number of base pairs 
 

%Called by slidwindN.m 
%Written by David Pontin, Lincoln University 5/9/09 v1.0 

  
target=['nchar=',num2str(numbbasepairs)]; 
out=['nchar=',num2str(sizofwindow+1)]; 
dime=strrep(input,target,out); 

 

C 2.0 Analysing the sliding window 

 

function [output]=raidlog(number_of_files,folder) 
%this function reads paup log files of bootstrap output of a sliding window  
%analysis, isolates the bootstrap output that conforms to the nodes in  
%each file and then concatenates them all together. The resultant matrix is 
%then sorted by the mean support for each node in descending order and then 
%plotted out in a series of 3X3 subplots  
  

%Inputs: number_of_files = the number of input (bootstrap output) files  
%        folder = folder where the input files are located 

 
%NOTE:   the other lesser supported nodes are not plotted but 

can          %  be viewed in the output file generated. 

 

  
%M files called seqarray.m and sortcol.m 

  
%Written by David Pontin Lincoln University 19/8/09 v1.0 

 
for filenumb=1:number_of_files, 
       

data=importdata([folder,'\logfile',num2str(filenumb),'.txt'],'\t',1000); 
       startrow=strmatch('12345678901234567890',data); 
       startrow=startrow+1; 
       cont=1; 
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       counter=1; 
       while cont==1,  
           targetrow=data(startrow+counter,1); 
           targetrow=char(targetrow); 
           logica=isempty(targetrow); 
           if logica(1,1)==1, 
               cont=0; 
           else 
               counter=counter+1; 
           end;%ifelse 
       end;%while 
       data=data(startrow+1:startrow+counter,1); 
       sz=size(data); 
       Nrows=sz(1)-1; 
       Strings={}; 
       for rownumb=1:Nrows, 
           row=char(data(rownumb,1)); 
           sx=size(row); 
           ch=sx(2); 
           tf=isspace(row); 
           colnum=1; 
           Start=1; 
           End=2; 
           cont=1; 
           while cont==1, 
               if colnum==3, 
                   Strings(rownumb,3)=cellstr(row(1,ch-5:ch-1)); 
                   cont=0; 
               else  
                   if tf(1,End+1)==1, 
                       if tf(1,End)==0, 

 Strings(rownumb,colnum)=cellstr(row(1,Start:End)); 
                           colnum=colnum+1; 
                           Start=End; 
                           End=End+1; 
                       else  
                           End=End+1; 
                       end; 
                   elseif tf(1,End)==1 
                       if tf(1,End+1)==0, 
                           Start=End+1; 
                           End=End+2; 
                       end; 
                   else 
                       End=End+1; 
                   end; 
               end; 
           end; 
       end; 
       clear End Start ch colnum cont counter data logica startrow  
       clear targetrow tf sx 
       if filenumb==1, 
           output=[Strings(:,1) Strings(:,3)];  
       else 
            ss=size(output); 
            outrows=ss(1); 
            output=[output cellstr(num2str(zeros(outrows,1)))]; 
            counter=1; 
            for rownumb=1:Nrows, 
                target=char(Strings(rownumb,1)); 
                ss=size(output); 
                outrows=ss(1); 
                outcol=ss(2); 
                Tx=[]; 
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                    for Orow=1:outrows, 
                        alt=char(output(Orow,1)); 
                        T=strcmp(target, alt); 
                            if T==1, 
                               output(Orow,outcol)=Strings(rownumb,3); 
                            end;%if 
                        Tx=[Tx T]; 
                    end;%for 
                    Tx=sum(Tx); 
                    if Tx==0, 
                       sy=size(output); 
                       NCOL=sy(2); 
                       temp=cellstr(num2str(zeros(NCOL,1))); 
                       temp=temp'; 
                       output=[output; temp]; 
                       output(Orow+counter,1)=Strings(rownumb,1); 
                       output(Orow+counter,outcol)=Strings(rownumb,3); 
                    end;%if 
            end;%for 
       end; 
end; 
 clear NCOL Nrows Orow Strings T Tx alt counter filenumb number_of_files 
 clear outrow outcol outrows row rownumb ss sy sz target temp 
 ss=size(output); 
 Nrow=ss(1); 
 Ncol=ss(2); 
 headers=output(:,1); 
 temp=output(:,2:Ncol); 
 Data=[]; 
 for colnum=1:Ncol-1, 
 tempe=char(temp(:,colnum));  
 tempe=str2num(tempe); 
 Data=[Data tempe]; 
 end; 
 m=mean(Data,2); 
 markers=seqarray(Nrow); 
 Data=[markers Data m]; 
 Data=sortcol(Data,Ncol+1); 
 figs=floor(Nrow/9); 
 count=1; 
 counter=1; 
 Data(:,Ncol+1)=[]; 
 markers=Data(:,1); 
 Data(:,1)=[]; 
 for fignum=1:figs, 
    figure1 = figure('PaperSize',[29.68 

20.98],'PaperOrientation','landscape'); 
    subplot1 = subplot(3,3,1,'Parent',figure1); 
    xlim(subplot1,[0 Ncol-1]); 
    ylim(subplot1,[0 100]); 
    box(subplot1,'on'); 
    hold(subplot1,'all'); 
    plot(Data(count,:),'Parent',subplot1); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot2 = subplot(3,3,2,'Parent',figure1); 
    xlim(subplot2,[0 Ncol-1]); 
    ylim(subplot2,[0 100]); 
    box(subplot2,'on'); 
    hold(subplot2,'all'); 
    plot(Data(count,:),'Parent',subplot2); 
    title(headers(markers(counter,1),1)); 
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    count=count+1; 
    counter=counter+1; 

     
    subplot3 = subplot(3,3,3,'Parent',figure1); 
    xlim(subplot3,[0 Ncol-1]); 
    ylim(subplot3,[0 100]); 
    box(subplot3,'on'); 
    hold(subplot3,'all'); 
    plot(Data(count,:),'Parent',subplot3); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot4 = subplot(3,3,4,'Parent',figure1); 
    xlim(subplot4,[0 Ncol-1]); 
    ylim(subplot4,[0 100]); 
    box(subplot4,'on'); 
    hold(subplot4,'all'); 
    plot(Data(count,:),'Parent',subplot4); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot5 = subplot(3,3,5,'Parent',figure1); 
    xlim(subplot5,[0 Ncol-1]); 
    ylim(subplot5,[0 100]); 
    box(subplot5,'on'); 
    hold(subplot5,'all'); 
    plot(Data(count,:),'Parent',subplot5); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot6 = subplot(3,3,6,'Parent',figure1); 
    xlim(subplot6,[0 Ncol-1]); 
    ylim(subplot6,[0 100]); 
    box(subplot6,'on'); 
    hold(subplot6,'all'); 
    plot(Data(count,:),'Parent',subplot6); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot7 = subplot(3,3,7,'Parent',figure1); 
    xlim(subplot7,[0 Ncol-1]); 
    ylim(subplot7,[0 100]); 
    box(subplot7,'on'); 
    hold(subplot7,'all'); 
    plot(Data(count,:),'Parent',subplot7); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 

     
    subplot8 = subplot(3,3,8,'Parent',figure1); 
    xlim(subplot8,[0 Ncol-1]); 
    ylim(subplot8,[0 100]); 
    box(subplot8,'on'); 
    hold(subplot8,'all'); 
    plot(Data(count,:),'Parent',subplot8); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 
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    subplot9 = subplot(3,3,9,'Parent',figure1); 
    xlim(subplot9,[0 Ncol-1]); 
    ylim(subplot9,[0 100]); 
    box(subplot9,'on'); 
    hold(subplot9,'all'); 
    plot(Data(count,:),'Parent',subplot9); 
    title(headers(markers(counter,1),1)); 
    count=count+1; 
    counter=counter+1; 
    saveas(figure1,[folder,'\',folder,num2str(fignum),'.fig']); 
 end; 

 

function [output]=sortcol(input, col_to_be_sorted_by) 

%sorts all the data by a column determined by the user 
%called by raidlog function 
%Written by David Pontin, Lincoln University 5/9/09 v1.0 

 
output=[]; 
sz=size(input); 
Nrow=sz(1); 
[T O]=sort(input(:,col_to_be_sorted_by),'descend'); 
for rownumb=1:Nrow, 
    row=input(O(rownumb,1),:); 
    output=[output; row]; 
end; 

 

function [output]=seqarray(size) 

%creates a marker column with each marker being one greater than 

the       %previous  
%called by raidlog function 
%Written by David Pontin, Lincoln University 5/9/09 v1.0 

 
output=[]; 
start=0; 
for rownumb=1:size, 
    start=start+1; 
    output=[output;start]; 
end; 

 

 

 


