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Abstract Natural selection serves as an important agent to drive and maintain interspecific divergence. Populus
rotundifolia Griff. is an alpine aspen species that mainly occurs in the Qinghai–Tibet Plateau (QTP) and adjacent
highlands, whereas its sister species, P. davidiana Dode, is distributed across southwest and central to northeast
China in much lower altitude regions. In this study, we collected genome resequencing data of 53 P. rotundifolia
and 42 P. davidiana individuals across their natural distribution regions. Our population genomic data suggest that
the two species are well delimitated in the allopatric regions, but with hybrid zones in their adjacent region in the
eastern QTP. Coalescent simulations suggest that P. rotundifolia diverged from P. davidiana in the middle
Pleistocene with following continuous gene flow since divergence. In addition, we found numerous highly
diverged genes with outlier signatures that are likely associated with high‐altitude adaptation of these alpine
aspens. Our finding indicate that Quaternary climatic changes and natural selection have greatly contributed to
the origin and distinction maintenance of P. rotundifolia in the QTP.

Key words: aspen, gene flow, high‐altitude adaptation, Qinghai–Tibet Plateau, speciation.

1 Introduction
Understanding how species originate and maintain is a central
question in evolutionary biology (Savolainen et al., 2013). The
initial divergence between populations was previously assumed
to be driven by geographical isolation in the allopatric speciation
(Mayr, 1963). In the absence of gene flow, differentiation
between populations increases gradually as a result of natural
selection and/or random processes like mutation and genetic
drift. Recently, speciation with gene flow has been frequently
reported based on population genomic studies from a wide
range of species (Nosil, 2008; Abbott et al., 2013; Taylor &
Larson, 2019; Chaturvedi et al., 2020). Despite the homoge-
nization effect of the high level of gene flow, natural selection
could play a key role in maintaining the status of closely related
species (Hoskin et al., 2005; Karrenberg et al., 2019). Individuals
grown in different geographic regions would be under different
selective pressures and are therefore adapted to different local
environmental conditions (Savolainen et al., 2013; Zhang et al.,
2019a; Jia et al., 2020a, 2020b). In this case, introgression is

supposed to be reduced in the genomic regions containing
genes involved in local adaptation (Via, 2012). Therefore, in
addition to neutral evolutionary forces, natural selection also
plays an important role in driving allopatric speciation and
maintains their distinctiveness in contact regions (Hoskin
et al., 2005). For example, natural selection was inferred to
drive genomic divergence between two teosinte subspecies
despite continuous migrations (Aguirre‐Liguori et al., 2019).
Using genomic data, Riesch et al. (2017) analyzed stick insect
speciation and showed transitions from a few adaptive loci in
early phases of speciation to genome‐wide differentiation in
species pairs diverged at different timescales and connected
with various levels of gene flow. Moreover, many speciation
studies have found that divergence between two closely related
species was accompanied with gene flow and also observed the
existence of hybrids in the parapatric distributions with
indistinctly differentiated niches (Martin et al., 2013; Clarkson
et al., 2014; Wang et al., 2016, 2019; Han et al., 2017; Ma
et al., 2018, 2019; Zhang et al., 2019b).
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The high alpine species diversity and exceptionally diverse
endemics of the arid Qinghai–Tibet Plateau sensu lato (QTP)
(Liang et al., 2018) provide a unique chance to investigate how
species originated and adapted to high‐altitude environment
(Liu et al., 2014). Here we focus on two closely related aspen
species: an alpine aspen distributed in the QTP and adjacent
regions (Populus rotundifolia Griff.) and its sister species P.
davidiana Dode distributed in the low‐altitude region. Both
species belong to sect. Populus of the genus Populus L.
(Salicaceae), which contains approximately seven species with
widespread distribution throughout the Northern Hemisphere
(Zhang et al., 2018; Wang et al., 2020a, 2020b). Aspens are
commonly recognized as “keystone species” in boreal and
temperate forests and usually play a pioneer role following
forest disturbance (Edenius et al., 2011; Berrill et al., 2017; Zheng
et al., 2017; Fan et al., 2018; Rogers et al., 2020). Populus
rotundifolia occurs mainly in the Hengduan Mountains and the
Himalayas with the high‐altitude preference (Zheng et al., 2016),
where harsh abiotic stresses usually exist, such as low level of
oxygen partial pressure (Streb et al., 2005), low precipitation or
temperatures (Bliss, 1962; Li et al., 2007; Manel et al., 2012; Ma
et al., 2019), and strong UV radiation (Norsang et al., 2011). In
contrast, P. davidiana has a wider distribution, ranging from
southwest and central to northeast China with minor extensions
to the adjacent countries (Zheng et al., 2017; Hou et al., 2018;
Rogers et al., 2020). Early studies using complete plastid
genomic data (Zhang et al., 2018) and resequenced genomes

(Wang et al, 2020b) constructed phylogenetic trees of the genus
Populus and showed that P. rotundifolia and P. davidiana are
distinct species with the closest relationship of all Populus
species. Because of subtle morphological differentiation
between the two species, some researchers treated them as
one species (P. davidiana; Hou et al., 2018, 2020; Rogers
et al., 2020). However, their genetic and ecological differ-
entiations are significant, suggesting that they could have been
under strong divergent ecological selection (Zheng et al., 2017).
Previous studies using the molecular dating approach showed
that these two species diverged from each other in the recent
past and gene flow might have continued to the current day;
hybrid populations with ongoing gene flows were detected in
intermediate areas between their distributions (Zheng et al., 2017;
Shang et al., 2020). In fact, from a recent phylogenomic study of
the genus Populus, there is frequent interspecific gene flow even
between distantly related species across the whole genus
(Wang et al., 2020b).
To better understand the speciation divergence process of

these two recently diverged aspen species and adaptive patterns
of P. rotundifolia to the high‐altitude environment, we collected
genomic data of 95 samples from the whole distribution of the
two species. We aimed to address the following questions.
When did P. rotundifolia diverge from P. davidiana? Is there gene
flow accompanied the divergence or not? Were genes with
signatures of positive selection in P. rotundifolia correlated with
adaptation to the alpine environment? Both lines of evidence are

Fig. 1. Sample locations of sampled Populus davidiana and P. rotundifolia populations. Pie charts at sampling locations indicate
the distribution of genetic groups identified by ADMIXTURE analysis when K= 2. The map was retrieved from Google Earth
(https://www.google.com/earth/). Elevation data for the map were derived from SRTM elevation data through the WorldClim
data website (https://www.worldclim.org/).
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critical to illuminate the speciation history and high‐altitude
adaptation of P. rotundifolia.

2 Material and Methods
2.1 Sample collection, sequencing, and read mapping
Silica‐gel dried leaves of 53 Populus rotundifolia and 42
P. davidiana individuals from 38 populations covering their
geographical distributions in China were collected for DNA
extraction (Fig. 1; Table S1). For each population, sampled
individuals were at least 100 m apart. Total genomic DNA was
sequenced on the HiSeq X Ten platforms (Illumina, Inc. San
Diego, California, U.S.). Raw reads were filtered using
TRIMMOMATIC version 0.36 (Bolger et al., 2014) with the
following parameters: “SLIDINGWINDOW: 4:15, LEADING: 3,
TRAILING: 3, MINLENGTH: 36.” The quality‐filtered reads
were mapped to the Populus trichocarpa Torr. & A. Gray ex
Hook. reference genome version 3.0 (Tuskan et al., 2006)
using BWA‐MEM version 0.7.10 (Li & Durbin, 2009) with default
parameters. The alignments were sorted by SAMTOOLS version
0.1.19 (Li et al., 2009). Local realignment was carried out
to correct the misalignment around indels by Realign-
erTargetCreator and IndelRealigner in GATK version 4.0.5.1
(DePristo et al., 2011).

2.2 Single nucleotide polymorphism calling and filtering
Multi‐sample single nucleotide polymorphism (SNP) calling
was implemented in GATK version 4.0.5.1 using Haploty-
peCaller and GenotypeGVCFs tools (DePristo et al., 2011).
Single nucleotide polymorphisms were further filtered using
the following criteria: (i) removal of sites with a quality score
less than 30, base quality less than 10, or more than two
alleles; (ii) removal of sites that overlapped with known
repeat elements as identified by RepeatMasker (Tarailo‐
Graovac & Chen, 2009) or occurred in 5‐bp windows around
any indel; and (iii) sites with extremely low (<3×) or
extremely high (>60×) coverage per sample, or genotype
quality score <10 were assigned as missing data. We retained
SNPs with missing genotype rate <20% and minimum allele
frequency (MAF) >0.05 across all sampled individuals. Finally,
we used the software SNPEFF version 4.3 (Cingolani et al., 2012)
to annotate the filtered SNPs.
Individuals with close kinship might result in an inaccurate

estimate of population structure. Thus, we used the KING
program (Manichaikul et al., 2010) to identify kinships for all
samples and excluded individuals exhibiting closer than third‐
degree relationships (Manichaikul et al., 2010).

2.3 Population structure and phylogenetic analysis
We used VCFTOOLS version 0.1.15 (Danecek et al., 2011) to
convert the input data and used PLINK version 1.90 (Purcell
et al., 2007) to remove linked sites with the parameter set as
“–indep‐pairwise 50 5 0.4.” Principal component analysis was
applied for all SNPs using the smartpca program in the
software EIGENSOFT version 6.1.3 (Price et al., 2006). We also
used the software ADMIXTURE version 1.23 (Alexander
et al., 2009) to estimate population structure of these two
species with a K‐value setting ranging from 1 to 5. For further
insight into the population structure among these two
species, we undertook an identity‐by‐descent blocks analysis

using the algorithm from BEAGLE version 4.1 (Browning &
Browning, 2007, 2013) with the following parameters:
“ibdtrim = 100 window= 100 000 overlap= 10 000 ibdlod=
10”. Finally, concatenated SNPs were used to construct a
neighbor‐joining tree in MEGA version 6.0 (Tamura et al., 2013).

2.4 Genetic diversity
Because individuals with different genetic background might
bias the estimates of genetic diversity for the two species,
here we removed admixture individuals that were inferred
from the population structure analysis. We estimated the
heterozygosity rate and runs of homozygosity (ROH) for
each individual using the program PLINK version 1.90 (Purcell
et al., 2007). The nucleotide diversity (π), levels of genetic
differentiation (Weir and Cockerham mean FST), and Tajima's
D for each species were calculated in the software VCFtools.
The absolute sequence divergence (DXY) between popula-
tions at each site was quantified using a perl script from Ru
et al. (2018). All of the parameters except π were calculated
using a sliding window approach (2‐kb non‐overlapping
windows). The π was estimated by sum over each site
divided by the number of all callable sites. To assess the
effects of missing bases and rare SNPs on π, Tajima's D, and
FST, we used four datasets to estimate these three
parameters: (i) dataset 1 with a genotype missing rate
>20% and MAF >0.05; (ii) dataset 2 with a genotype missing
rate >20% and MAF >0; (iii) dataset 3 with a genotype
missing rate >0% and MAF >0.05; and (iv) dataset 4 with a
genotype missing rate >0% and MAF >0.

Moreover, we measured and compared patterns of linkage
disequilibrium (LD) between the two species using the
program PLINK. Population‐scale recombination rates (ρ)
along each chromosome were estimated using the software
FastEPRR (Gao et al., 2016) with default parameters.

2.5 Demographic history and gene flow
We first estimated demographic changes in population size
over time through pairwise sequentially Markovian coales-
cent (PSMC; Li & Durbin, 2011) by examining heterozygosity
across the diploid genome of a selected “pure” individual.
The parameter settings followed the default parameters.
Based on previous studies for Populus species (Tuskan
et al., 2006; Wang et al., 2016; Ma et al., 2018), the mutation
rate was set as 3.75 × 10−8 per base per generation, and we
adopted a generation time of 15 years. We carried out 100
bootstrapping simulations to estimate the variance fluctua-
tion of population size.

We further used fastsimcoal2 (Excoffier & Foll, 2011) to
estimate the timing of divergence and gene flow patterns of
P. rotundifolia and P. davidiana. At first, the 2‐D folded site
frequency spectrum was extracted from the resequenced
genomes of “pure” individuals of the two species by a
custom perl script (Ru et al., 2018). To examine the effects of
interspecific gene flow on the estimation of demographic
history, we considered five scenarios of migration: (i) strict
isolation (model1; Fig. S2); (ii) isolation with constant
migration (model2; Fig. S2); (iii) ancient migration (model3;
Fig. S2); (iv) secondary contact (model4; Fig. S2); and (v) two‐
rate model of isolation with migration (model5; Fig. S2),
where migration rates are assumed to be changed at some
time during divergence. A total of five demographic models
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were compared, and the Akaike information criterion (AIC)
was used to rank all models and choose the model that best
fits the data. For each model, 50 independent runs, with
100 000 coalescent simulations per likelihood estimation and
40 cycles of the likelihood maximization algorithm, were
carried out to obtain a reliable globe maximum likelihood
estimation. To construct the confidence interval (CI), we
used a parametric bootstrapping approach with 200
independent bootstrap replicates undertaken in fastsimcoal2.
We used a mutation rate of 3.75 × 10−8 per base per
generation and generation time of 15 years as for PSMC.

2.6 Signatures of positive selection
To identify candidate genes involved in high‐altitude
adaptation of P. rotundifolia, we combined three approaches
to select positive selection genes (PSGs), including inter-
specific differentiation index (FST), nucleotide diversity ratio
(πPda/πPro) of the lowland species (Pda: P. davidiana) to
highland species (Pro: P. rotundifolia), and Tajima's D within
P. rotundifolia. We calculated all diversity indices (FST, π, and
Tajima's D) with 2‐kb sliding window in VCFtools (–fst‐
window‐size 2000 –weir‐fst‐pop, –TajimaD 2000, –window‐pi
2000). If sites were under strong positive or purifying
selection in the highland population, a relatively high genetic
divergence and a decrease in genetic diversity will be
expected compared to the lowland population (Qu
et al., 2019). The windows exhibiting extremely high values
of FST and πPda/πPro (using the top 5% quantile of the
simulated distribution), and the negative Tajima's D were
selected as PSGs. We then used the analysis tool Singular
Enrichment Analysis in AGRIGO version 2.0 (Tian et al., 2017) to
undertake the Gene Ontology (GO) enrichment analysis for
PSGs based on the JGI version 3.1 gene annotation for P.
trichocarpa in Phytozome (Goodstein et al., 2012). We used
the χ2‐test to calculate the statistical significance of
enrichment, and P‐values (adjusted by Benjamini–Yekutieli

false discovery rate) below 0.05 were recognized as
significant.

3 Results
3.1 Genome resequencing and genetic variation
High‐quality whole‐genome resequencing data were gen-
erated for 53 Populus rotundifolia and 42 P. davidiana
individuals spanning their geographical distributions in China
(Table S1). We obtained an average sequencing depth of
16.66× with mean mapping ratio of 88% per individual (Table
S1). After discarding individuals with closer than third‐degree
relationships, a total of 61 unrelated samples, comprising 19
genetic “pure” individuals of P. rotundifolia, 24 individuals of
P. davidiana, and 18 individuals of putative hybrids, remained
for subsequent population genetic analyses. After filtering,
total of 2 959 212 high‐quality SNPs was identified for the all
61 individuals (missing rate <20%, MAF >5%; Table 1). The
numbers of SNPs for “pure” P. davidiana and P. rotundifolia
were 2 559 484 and 2 295 512, respectively. Populus davidiana
harbored more private SNPs (478 959) than P. rotundifolia
(298 021), and the two species shared 2 180 759 SNPs in total
(Table 1).

3.2 Population structure and genomic diversity
Most individuals were divided into two distinct genetic
clusters when K was set as 2, which was the optimal K‐value
with the lowest cross‐validation error, from results of
ADMIXTURE analysis (Table S2). Some individuals collected in
the adjacent regions of P. rotundifolia and P. davidiana in the
eastern QTP showed a mixed genetic makeup of the two
clusters (Figs. 1, 2C). The first principal component (PC1,
variance explained= 7.96%) identified two genetic clusters
for “pure” individuals of P. rotundifolia and P. davidiana. In
the principal component analysis plot (Fig. 2A), some

Table 1 Summary of genomic polymorphisms and variants in Populus rotundifolia (Pro) and P. davidiana (Pda) based four
datasets

Pda Pro Pda versus Pro

MAF >5% MAF >0% MAF >5% MAF >0% MAF >5% MAF >0%

Missing data= 0%
π± SD (×10−3) 5.2± 3.1 6.5± 9.4 4.6± 3.4 5.0± 9.2 ‐ ‐
Tajima's D± SD 1.08± 0.93 ‐0.32± 0.84 0.77± 1.14 0.21± 1.09 ‐ ‐
FST± SD ‐ ‐ ‐ ‐ 0.17± 0.13 0.09± 0.08
DXY± SD (×10−3) ‐ ‐ ‐ ‐ ‐ 7.5± 13.4
SNPs 927 779 2 745 146 834 810 2 320 449 ‐ ‐
Private SNPs 173 056 926 412 112 227 272 805 ‐ ‐
Shared SNPs ‐ ‐ ‐ ‐ 788 042 2 231 400

Missing data <20%
π± SD (×10−3) 7.0± 4.1 8.4± 10.8 6.2± 4.5 6.6± 10.9 ‐ ‐
Tajima's D± SD 1.16± 0.94 −0.24± 0.85 0.88± 1.16 0.29± 1.12 ‐ ‐
FST± SD ‐ ‐ ‐ ‐ 0.16± 0.12 0.09± 0.07
DXY± SD (×10−3) ‐ ‐ ‐ ‐ ‐ 10± 13.0
SNPs 2 559 484 5 989 070 2 295 512 4 961 391
Private SNPs 478 959 2 247 263 298 021 688 517
Shared SNPs ‐ ‐ ‐ ‐ 2 180 759 4 757 124

MAF, minimum allele frequency; SD, standard deviation; SNP, single nucleotide polymorphisms.
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individuals showed intermediate positions between
P. rotundifolia and P. davidiana (gray points, Fig. 2A). In the
neighbor‐joining tree, all genetically “pure” individuals of
P. rotundifolia and P. davidiana were clustered separately
(Fig. 2B). However, genetically mixed individuals clustered
randomly with either of the two species (gray line, Fig. 2B).
To estimate patterns of genetic differentiation and genetic

diversity across the genome, we excluded all genetically
admixed individuals and calculated parameters of hetero-
zygosity, ROH, π, LD patterns, Tajima's D, FST, and DXY for the
two species based on dataset 1 (MAF >0.05, missing rate
<20%; Table 1). The heterozygosity ranged from 1.34 × 10−3 to
3.37 × 10−3 across all individuals (Fig. S3). Individuals of
P. rotundifolia harbored the lowest heterozygosity (Fig. S3),
whereas individuals of P. davidiana exhibited the highest
heterozygosity and, accordingly, the lowest level of ROH
(Figs. S3, S4). In accordance with the results of hetero-
zygosity, P. rotundifolia had a relatively lower genetic
diversity (π= 0.0062± 0.0045 [mean± SD]) than P. davidiana
(π= 0.0070± 0.0041; Table 1). Populus rotundifolia had a
slightly higher recombination rate and quicker LD decay
compared to P. davidiana (Fig. 2C). Tajima's D‐value of
P. rotundifolia (Tajima's D= 0.88± 1.16) was estimated to be
lower than that in P. davidiana (Tajima's D= 1.16± 0.94). The
Weir and Cockerham mean FST between the two species was
0.16± 0.12 (Table 1), and the value of absolute sequence
divergence (DXY) was 0.01± 0.013.

3.3 Demographic history and gene flow
Demographic history estimated by PSMC showed that both
species experienced dramatic declines in population size
approximately 300 kya (Fig. 3A). Compared to the population
of P. davidiana, which experienced a slight recovery
approximately 40 kya, P. rotundifolia expanded rapidly
approximately 25 kya (Fig. 3A).

We further used a coalescent simulation‐based method
performed in fastsimcoal2 to estimate the timing of
divergence and demographic histories of the two species.
We established five models for the divergence of P.
rotundifolia and P. davidiana (Fig. S2). By comparing the
AIC values for the four scenarios, the isolation with two
stages of migration model (model5; Fig. 2C; Table 2) with
lowest AIC value and highest likelihood was the best‐fitting
model. Parameter estimates obtained from the best model
showed that P. rotundifolia had a smaller population size
(NPro= 17 294; 95% CI, 16 463–17 960; Table 3) than P.
davidiana (NPda= 134 331; 95% CI, 130 408–139 030; Table 3).
Assuming a mutation rate of 3.75 × 10−8 per base per
generation and a generation time of 15 years, the divergence
time between P. rotundifolia and P. davidiana was dated to
0.88 Ma (95% CI, 0.83–1.02 Ma; Table 3). The best‐fit model
(model5; Fig. 3D; Table 2) strongly supported that gene flow
between the two species was prevalent. Both the current
and ancient migration rates from P. rotundifolia to P.
davidiana (MPda←Pro= 5.76E‐05, MA‐Pda←Pro= 1.40E‐05) were

Fig. 2. A, Principal component analysis (PCA) plots showing the first two principal components. B, A Neighbor‐joining tree of
P. davidiana (blue) and P. rotundifolia (red) and their hybrids (grey) using P. trichocarpa as an outgroup. C, Population structure
bar plots. The scenarios of K = 2 was shown, and K = 2 is the best value according to cross‐validation analysis.
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much higher than that in the opposite direction (MPro←Pda=
2.33E‐06, MA‐Pro←Pda= 3.00E‐06).

3.4 Genome‐wide selection scans for high‐altitude
adaptation of P. rotundifolia
To identify candidate genes that could be involved in high
altitude adaptation of P. rotundifolia, we scanned the
population genomic data of “pure” P. rotundifolia and P.
davidiana through interspecific differentiation (FST), nucleotide
diversity ratio (πPda/πPro), and Tajima's D‐values within 2‐kb
sliding windows (Fig. 4). A total of 245 protein‐coding genes in
417 windows were identified under positive selection. Although
there were no significantly overrepresented GO categories
detected with false discovery rate <0.05, 15 significant GO

terms were identified using the χ2‐test. These categories were
annotated to be enriched with the cellular response to stimulus
(GO:0051716), the cellular response to stress (GO:0033554),
DNA repair (GO:0006281), and the response to DNA damage
stimulus (GO:0006974) (Table 4).

4 Discussion
In this study, we used population genomic data to investigate
divergence history and local adaptation of Populus rotundifolia
and its sister species P. davidiana. All analyses based on these
population genomic data confirmed that the two aspen
species were genetically distinct. The two species were

Fig. 3. A, Inferred demographic history for Populus davidiana and P. rotundifolia using the pairwise sequentially Markovian
coalescent method. B, Patterns of linkage disequilibrium for the two species. C, Estimated haplotype sharing between
individuals. Heatmap colors represent the total length of identity‐by‐descent blocks for each pairwise comparison.
D, Maximum likelihood parameter estimates of the best fit model (model5) in fastsimcoal2. Pda, P. davidiana; Pro, P. rotundifolia.

Table 2 Comparison of parameters estimated using fastsimcoal2 under five candidate models

Model Scenarios logL k AIC ΔAIC w

model5 IM2R −1 852 843.95 12 8 532 716.98 0 1
model3 SC −1 852 926.02 10 8 533 085.73 368.75 0
model2 IM −1 852 933.63 8 8 533 111.55 394.57 0
model4 AM −1 854 916.35 10 8 542 251.54 9534.56 0
model1 SI −1 864 849.29 6 8 587 975.99 55 259.01 0

ΔAIC, AIC difference; AIC, Akaike information criterion; AM, ancient migration; k, number of estimated parameters; logL, log
likelihood; IM, isolation with constant migration; IM2R, two‐rate model of isolation with migration; SC, secondary contact;
SI, strict isolation; w, AIC weight.
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estimated to start to diverge approximately 0.88Ma (95% CI,
0.83–1.02Ma), corresponding with the end of the Xixiabangma
glaciation (0.8–1.17Ma; Zheng et al., 2002). Coalescent
simulations showed that gene flows occurred between both
current and ancient populations after their divergence, and
hybrids were confirmed to exist in the contacting regions.
The highly diverged genes with signatures of selection are
likely associated with high‐altitude adaptation. Our results
suggest that geographic isolation caused by Quaternary
climate change might contribute to the initial divergence
between P. rotundifolia and P. davidiana, and natural selection
is supposed to play an important role in maintaining species
distinction despite continuous migrations between them.

4.1 Divergence of P. rotundifolia from P. davidiana with
gene flow
Based on population genomic data, we found that these two
species were well delimitated in their allopatric distributions
(Fig. 1). In contrast, the individuals from their contacting
regions were found to be hybrids with the admixed makeup
from two parental species (Fig. 2A). These findings support
those of previous studies reporting the distinctions of the
two species in both morphological traits and genetic
composition (Zheng et al., 2017; Shang et al., 2020; Wang
et al., 2020b).
According to the best‐fitting demographic model

conducted from fastsimcoal2, the early divergence of
two species was estimated to initialize approximately
0.88 Ma (95% CI, 0.83–1.02 Ma), which falls within the
timescale of the earliest Quaternary glaciation recognized
on the QTP, the Xixiabangma glaciation (0.8–1.17 Ma;
Zheng et al., 2002). During this cold period, ice sheets
covered a large part of the QTP and could likely fragment
the habitats of ancestral populations and therefore limit
gene flow between populations. Previous studies showed

that Quaternary climatic oscillation had important effects
on the biodiversity of the QTP (Liu et al., 2014), in shaping
both the interspecific (Xu et al., 2019) and intraspecific
(Ren et al., 2017) divergences of current species. There-
fore, the initial divergence between P. rotundifolia and P.
davidiana might be mainly influenced by Quaternary
climatic changes.

Although these two species diverged nearly 1 million years
ago, reproductive isolations are incomplete between them,
possibly because of the large population size and long
generation time of Populus species (Wang et al., 2020a,
2020b). This would have resulted in the occurrence of hybrids
in the contacting region of the two species in the eastern
QTP. In addition, seeds and pollen of Populus species are
wind‐dispersed, which further contributes to their long‐
distance dispersal, and accordingly causes frequent gene
flow between populations, even over great distances.
Moreover, gene flow might have also occurred between
allopatric populations of the two species, as suggested based
on modelling of their speciation process (Fig. S2). This
modelling was undertaken based on coalescent analyses of
joint site frequency spectra extracted from individuals of two
species when all putative hybrids from the contacting
regions were excluded. In contrast to populations in the
contacting regions, the effects of natural selection could
work against interspecific gene flow and maintain species
distinction in the allopatric distributions of two species.
Therefore, ecological selection is supposed to have played a
central role in restricting high levels of gene flow between
populations in allopatric habitats of the two species. Taken
together, gene flow seems to have been continuous during
the divergence of two species while divergent ecological
selection is supposed to maintain their genetic distinction in
allopatric distributions. Similar findings were also observed in
population genomic analyses of other aspen or poplar
species in the recent past (Wang et al., 2016; Ma et al., 2018;
Shang et al., 2020).

Finally, we note that some other poplars co‐occur with P.
rotundifolia and P. davidiana (Fang et al., 1999; Rogers
et al., 2020), which suggested that there might be potential
gene flow between these species. Indeed, previous studies
using ABBA–BABA tests (Wang et al., 2020b) and coalescent‐
based simulations (Wang et al., 2020a) showed that gene
flow occurs between either P. rotundifolia or P. davidiana and
other poplars, such as P. tremula L. and P. adenopoda Maxim.
Nevertheless, P. davidiana and P. rotundifolia are sister
species to each other, sharing the most recent common
ancestor that is not shared with any other poplar species,
and the magnitude of gene flow between closely related
species was expected to be much higher than that between
species with distant relationships (Wang et al., 2020b).
Therefore, it seems unlikely that the introgressed alleles from
other poplars can bias our inference. Moreover, obvious
gene flow in Populus species (Wang et al., 2020b) further
indicates that speciation with gene flow would be very
common in Populus species.

4.2 Genomic footprints of high‐altitude adaptation in
P. rotundifolia
Populus rotundifolia is an alpine tree in the QTP and
occupies the highest habitats among all species in the

Table 3 Inferred demographic parameters for the best‐
fitting demographic model for Populus rotundifolia (Pro) and
P. davidiana (Pda) (shown in Fig. 3D)

Parameter
Point

estimation

95% confidence intervals

Lower
bound

Upper
bound

NA 83 765 77 452 87 505
NPda 134 331 130 408 139 030
NPro 17 294 16 463 17 960
T1 186 840 168 690 259 440
T2 876 945 833 040 1 022 280
MPda←Pro 5.76E‐05 5.5E‐05 6.10E‐05
MPro←Pda 2.33E‐06 1.91E‐06 2.64E‐06
MA‐Pda←Pro 1.40E‐05 8.65E‐08 1.84E‐05
MA‐Pro←Pda 3.00E‐06 2.50E‐06 3.96E‐06

M, current migration rate per generation between species;
MA, the ancient migration rate per generation between
species; N, the current effective population sizes of each
species; NA, the ancestral effective population sizes; T,
estimated divergence time (T2, years) and the time of
change of migration rates (T1, years).
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genus Populus (Zheng et al., 2016; Shang et al., 2020; Wang
et al., 2020b). Species in highlands are exposed to various
abiotic stresses (Körner, 2003; Wang et al., 2018), such as
low level of oxygen partial pressure (Streb et al., 2005),
low precipitation or temperatures (Bliss, 1962; Li
et al., 2007; Manel et al., 2012; Ma et al., 2019), and high
levels of UV radiation (Norsang et al., 2011). For instance,
previous studies based on de novo genomes of two alpine
plants suggested that a few genes involved in avoiding UV
radiation had been duplicated, and further contribute to
the high‐altitude adaptation of these alpine plants (Guo
et al., 2018; Zhang et al., 2019b).
Based on the estimates of genetic differentiation (FST),

diversity (π), and Tajima's D, we searched for genes that
likely experienced strong selection in response to alpine
environmental stress in P. rotundifolia. A total of 245
protein‐coding genes were identified to be under positive

selection based on such a combination of different
indexes, and they are involved in the GO terms like
“cellular response to stimulus,” “cellular response to
stress,” “DNA repair,” and “response to DNA damage
stimulus” (Table 4). Alpine plants are exposed to UV
radiation, leading to cell and DNA damage (Britt, 1999).
Cell and DNA repair after damage are important for alpine
plants to live in highland regions with strong UV
radiation, which suggested that these genes could
possibly be important in high‐altitude adaptation. For
example, the Potri.012G060000 and Potri.006G159200
genes, which are homologous to AT3G18524 and
AT3G24495 genes in Arabidopsis thaliana (L.) Heynh.,
encode DNA mismatch repair proteins MSH2 and MSH7,
respectively, which form the MutS gamma (MSH2–MSH7
heterodimer) of the post‐replicative DNA mismatch repair
system in plants. In addition, these genes play important

Fig. 4. Positive selection signatures around six genes in Populus rotundifolia (Potri.006G159200, Potri.008G022300,
Potri.012G060000, Potri.013G151600, Potri.014G071900, and Potri.019G078700) involved in the functions of “DNA repair” and
“response to DNA damage stimulus”. High altitude living species P. rotundifolia (Pro) was compared with lowland species
P. davidiana (Pda). The population genetic differentiation FST value, the nucleotide diversity ratio (πPda/πPro), and Tajima's
D‐values of Pro are calculated within 2‐kb sliding windows. Chr, Chromosome.
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roles in DNA homologous recombination repair after
UV‐B‐induced DNA damage (Culligan & Hays, 2000; Wu
et al., 2003). A recent study based on qingke growing in
alpine habitats also found rapid adaptive evolution of
genes that are likely resistant to strong UV‐B radiation
(Zeng et al., 2020). It is highly likely that genes with
similar functions were subject to strong selection
pressure and therefore showed significant signatures of
selection and elevated genetic differentiation between
P. rotundifolia relative to its sister species, P. davidiana,
although further functional experiments are strongly
needed.
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