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Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar
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1. Introduction

For many years the search for novel solid-state materials was dominated by in-

vestigations on oxides. Within the last decades, however, this has more shifted

towards carbides and nitrides. A recent development is to combine these bi-

nary archetypical compounds in the form of carbonitrides and oxynitrides. The

major idea behind this approach is to combine the properties of both binary

single classes and show that these mixed ternary compounds exhibit new chem-

ical and physical properties and thus allow for exciting applications. For ex-

ample, technological use of oxynitrides has first been discovered in the fields of

ionic conductivity and also bifunctional catalysis [1–3]. Moreover, oxynitrides

containing transition metals are already under production as novel inorganic

pigments, thereby replacing traditional toxic materials which typically contain

cadmium [4]. Very recently, perovskite-type oxynitrides have been developed

which may lead to new thermoelectrics for high-temperature solar generators

[5]. Despite these commercial applications, the majority of the oxynitride inves-

tigations may be looked upon as fundamental research. This research is mainly

characterized by the quite elaborated synthesis of oxynitride compounds using

very advanced techniques, e.g. CVD (Chemical Vapor Deposition), Sputtering

and PLD (Pulsed Laser Deposition). These expensive techniques indicate that

the synthesis of oxynitrides is not that simple and that many of the oxynitrides

may be even metastable with respect to the educts. Also, questions about the

oxygen-nitrogen distribution, ordering and stoichiometry are difficult to solve

with X-ray techniques. This originates from the fact that N3− and O2− are

isoelectronic and therefore hard to distinguish with this method. Theoretical

investigations can answer some of these unsolved questions especially since only

one device has to be used: the computer. In this work parts of the problems will

1



2 Chapter 1 Introduction

be solved using density-functional techniques.

First, a general investigation on the 3d transition-metal oxynitrides will be

presented. The emphasis is placed on the structure and stability of these oxyni-

trides. The experimentally synthesized cobalt oxynitride was picked for a more

detailed look on anion order and stoichiometry, possibly leading to the first

magnetic oxynitride.

In addition, the oxynitrides of the fifth group (V, Nb and Ta) are explored.

Tantalum oxynitride is used as a pigment due to its bright yellow color and

is probably therefore one of the most investigated transition-metal oxynitride.

Moreover, it exhibits one specific anion order. A second peculiar phase of TaON

is listed in the inorganic crystal structure database (ICSD, [6]), and it will be

studied whether or not its existence is supported by electronic-structure theory.

Niobium oxynitride adopts the same structure type as tantalum oxynitride and

might also have the same anion order, but it is colored in blue. Since the color de-

pends on the band gap of the solid, the latter being a function of ionicity and co-

valency, theoretical calculations are ideally suited to better understand the elec-

tronic and optical properties of these compounds. Until now, vanadium oxyni-

trides are only known as non-stoichiometric compounds adopting the rocksalt

structure-type. A stoichiometrically precise vanadium oxynitride has not been

synthesized yet. Theoretical investigations will predict the first high-pressure

synthesis of VON and give detailed information about its structural and elec-

tronic properties. This work is a theoretical start of the fundamental research

of transition-metal oxynitrides and it tries to illuminate the path leading to the

carefully directed synthesis of new oxynitrides for novel future applications.



2. Electronic Structure Calculations

In 1666 Newton started with his famous work (Philosophiae Naturalis Principia

Mathematica) about mechanics and gravitation, which was published in 1687

[7]. This was the beginning of the mathematical description of the motion of

celestial bodies. Many other scientists extended and enhanced Newton’s primal

investigations, leading to an excellent description of our macroscopic world. In

1887 the great chemist Berthelot even wrote “from now on there is no mys-

tery about the universe”. At the end of the 19th century, however, the classical

theory failed to explain several experiments concerning the microscopic world

of atoms and molecules. These contradictions opened the path for a new the-

ory: the quantum theory, which was mainly developed by Planck, Einstein, Bohr

and Heisenberg [8]. It was Schrödinger, back in 1926, who combined the classical

Hamiltonian approach with the Fermat principle of light, resulting in his great

discovery, Schrödinger’s wave equation [9]. Nowadays Schrödinger’s equation

forms the basis of almost every electronic-structure calculation. During the last

decades, several different attempts have been developed to solve this equation.

These approaches can be divided into two main groups. On the one side, there

exist empirical methods which use several assumptions and parameterizations

but provide in many cases good results and gain solid insights into the calcu-

lated system. On the other side, there are the ab initio (Lat.: from the beginning)

methods, without any approximations at all, except for the Born–Oppenheimer

approximation which is applied in both particular methods. It states that the

movements of the lighter and therefore more mobile electrons may be studied in

an environment of prefixed nuclei. This is equivalent with studying the motions

of the electrons and nuclei separately. In this work the density-functional theory

(DFT) is used which is usually looked upon as being part of the ab initio meth-

3



4 Chapter 2 Electronic Structure Calculations

ods. DFT is a ground-state theory and can therefore not be used for calculation

of excited states. Even when band gaps of semiconductors are often calculated

correctly, this has no physical background. A more detailed description of this

particular method is given in the subsequent sections.

2.1 Density-Functional Theory

Traditional methods in electronic structure theory like Hartree–Fock theory are

based on the complicated many-electron wavefunction. The main objective of

density-functional theory is to replace the many-body electronic wavefunction

by the electronic density as the basic quantity. The first true density-functional

theory was developed by Thomas and Fermi in the late 1920s [10, 11]. They

calculated the energy of an atom by representing its kinetic energy as a func-

tional of the electron density, combining this with the classical expressions for

the nuclear-electron and electron-electron interactions (which can both also be

represented in terms of the electron density). The reader should remind that

the Hartree–Fock method (1930) was developed almost simultaneously. Another

early density-functional theory was proposed by Slater who constructed the so-

called Xα method where a one-parameter approximate exchange functional was

used [12]. Although density-functional theory has its conceptual roots in the

Thomas–Fermi model, DFT was not put on a firm theoretical footing until the

Hohenberg–Kohn theorem was proposed in 1964 [13]. They demonstrated that

the total energy of a system of interacting electrons is an exact functional of the

electron density:

Etot = Etot[ρ] (1)

Further they proved that the minimum value of the total-energy functional is

the ground-state energy of the system, and the density that yields this minimum

value is the exact ground-state density (ρ0),

Etot[ρ0] ≤ Etot[ρ] (2)

The Hohenberg–Kohn theorem is only an existence theorem, stating that the

mapping exists, but it does not provide any such exact mapping. It is in these
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mappings where approximations are made. One problem which arises is to find

the proper total-energy functional. Kohn and Sham approximated the solution

to this problem by decomposing the total energy into the following form [14]:

Etot[ρ] = Enn[ρ] + Een[ρ] + Eee[ρ] + T [ρ] + Exc[ρ], (3)

where Enn[ρ], Eee[ρ] and Een[ρ] are the Coulomb interactions between the nuclei,

the electrons and the nuclei and the electrons respectively. T [ρ] is the kinetic

energy of the non-interacting particles and Exc[ρ] is the so-called exchange-

correlation energy. This latter term contains all the other electron-electron con-

tributions which are not properly covered by the Coulomb interactions.

Within the framework of Kohn–Sham DFT, the intractable many-body prob-

lem of interacting electrons in a static external potential is reduced to a tractable

problem of non-interacting electrons moving in an effective potential (Veff). The

effective potential includes the effects of the Coulomb interactions between the

electrons and the exchange-correlation term and is due to the minimization of

the total energy with respect to the electron density defined as,

Veff =
δEnn

δρ
+
δEen

δρ
+
δEee

δρ
+
δExc

δρ
(4)

The wavefunction of the non-interacting electrons can be obtained by solving

the single-electron Kohn–Sham equation using Veff ,

[T̂ + Veff ]ψi(r) = ǫi ψi(r), (5)

where ψi is a one-electron wavefunction of the electronic state i and ǫi the cor-

responding Kohn–Sham eigenvalue. The solution of the Kohn–Sham equations

would be exact if the exchange-correlation within the Veff term could be cor-

rectly described. Nonetheless approximations have to be made, and the most

common is the local-density approximation (LDA) which gives an approximate

mapping from the density of the system to the total energy. The LDA is exact

for the uniform electron gas. The electronic density is given by

ρ(r) =
N∑

i=1

|ψi(r)|
2. (6)



6 Chapter 2 Electronic Structure Calculations

Thus we can get Veff through the initial electronic density and find ψi(r) from

the Kohn–Sham equation (Equation 5). Given that ψi(r), a new electronic den-

sity can be calculated according to Equation 6. Consequently, the Kohn–Sham

scheme naturally leads to an iterative procedure where the electronic density is

refined through a self-consistency cycle.

2.2 Exchange and Correlation Functionals

The correct description of the exchange and correlation energies is the central

problem within density-functional theory. The simplest method, as proposed by

Kohn and Sham [14], is the local-density approximation. In the local-density

approximation the exchange-correlation energy of the investigated system is

assumed to be the same as the exchange-correlation energy of a homogeneous

electron gas (ǫhom
xc (r)) with the same density.

ELDA
xc [ρ] =

∫
ǫhom
xc (r)ρ(r)dr (7)

Within the LDA, there exist several parameterizations for the exchange-corre-

lation energy of the homogeneous electron gas, for example the one from von

Barth and Hedin [15], which is used in most LMTO calculations. It is there-

fore astonishing that, despite these crude approximations, in many cases the

local-density approximation gives quite satisfactory results, particularly in sys-

tems with a slowly varying electron density. This can be partly attributed to

a correct description of the exchange-correlation hole within the local-density

approximation.

In strongly correlated systems the LDA approach is not sufficient anymore

and strong interelectronic correlation may be included by adding an empirical

energy U to the LDA scheme (LDA+U method). Alternatively, gradient correc-

tions can be taken into account as it has been done in the generalized gradient

approximation (GGA) for which we used the parameterizations of Perdew and

Wang [16]. The GGA approach is actually only a gradient correction of the LDA

method:

EGGA
xc [ρ] =

∫
F (ρ(r),∇ρ(r))dr (8)
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It may be generally said that LDA calculations typically result in too short

lattice parameters which can be attributed to an overbinding of the atoms. On

the other side, the GGA approach results in a slight overestimation of the lat-

tice parameters. Moreover, the magnetic properties and the magnetic moments

particularly are underestimated within the LDA method.

2.3 Applied Density-Functional Methods

The general theoretical background of DFT and its major approximations were

explained in the previous section. In this section the practical use of density-

functional theory will be illustrated. The application of DFT into the solid state

requires the implementation of the translational symmetry (Bloch’s theorem)

which has major consequences for the choice of the used basis set. Generally

the used programs can be divided into three different approaches concerning

this treatment of the basis set. On the one side one may prefer delocalized

orbitals (e.g., plane waves) which are perfectly adapted to the periodic boundary

conditions and Bloch’s theorem. On the other side one may use localized atomic

orbitals, which provide a comfortable insight into the observed system, since the

interpretation of the electronic wavefunctions in terms of atomic wavefunctions

is straightforward. Alternatively one can use a combination of both types of

basis functions.

2.3.1 Pseudopotentials

The use of a plane-wave basis is properly the most natural basis set for solid

state calculations. The major disadvantage of a pure plane-wave approach is

that the correct description of the strong oscillations of the wavefunctions close

to the nucleus require a superposition of plenty of plane waves. This, however,

is a very resource-consuming procedure and not suitable for common quantum

chemistry calculations. In order to simplify the strong oscillations of the wave-

function close to the nucleus, they are substituted by a much smoother pseudo

wavefunction. This is accomplished by a substitution of the true potential inside

the core by a suitable pseudopotential. This pseudopotential replaces the strong
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interactions of the valence electrons with the inner electrons and with the nu-

clei. The atoms can hereby regarded as perturbations in a plane-wave expansion.

Many choices of pseudopotentials are possible and they are generated from first-

principles calculations. The art is to find a pseudopotential which is both soft

and transferable. A soft pseudopotential generates pseudo-wavefunctions which

are flat near the nuclei, such that they can be described by only a few plane

waves. A pseudopotential is called transferable if it gives the correct physical

behavior of the valence electrons in any chemical environment. The quality of

the calculations can be improved by increasing the kinetic energy cut-off of the

plane waves. On the one side, this higher cut-off leads to a better description

of the strong oscillations of the wavefunction close to the nucleus, but on the

other hand many more plane waves are required to achieve this, which leads

inevitably to an increase of computational resources. In our specific cases, an

energy cut-off of 500 eV was sufficient.

The theoretical background of VASP [17–22] is based on this plane-wave/

pseudopotential approach and the program was mainly used for the relaxation

of novel compositions in known structure types. The relaxation of the atoms

and unit cells into their ground-state can be performed because the forces and

stress tensors can easily be calculated. The main goal hereby was to identify new

materials and setting up an appropriate high-pressure synthesis. More technical

details about the used methods are listed in Appendix A.

2.3.2 Augmented Plane Wave (APW)

The idea behind the augmented plane-wave method is quite similar to the one of

the pseudopotential approach. In the region between the atoms, far away from

the nuclei, the electrons can move more or less freely and they are described by

plane waves. This region is called interstitial region (II). The electrons close to

the nuclei, however, are described by atom-like functions, instead of pseudopo-

tentials. They are located within so-called muffin-tin spheres around the atoms

(A,B, region I) in the unit cell. The partition of the unit cell is illustrated in

Figure 1.
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II

I (A)

I (B)

a

b

Figure 1: The partition of a unit cell in two regions is indicated. The circles

(region I) show the muffin-tin spheres around the atoms A and B,

where region II fills the interstitial space.

There are several ways to solve the Kohn–Sham equations within these re-

gions and this has lead to several different methods (APW [23], KKR [24, 25],

MTO [26]). Essentially they are all based on the same approach of dividing

the wavefunction into a part inside the muffin-tin (MT) sphere (region I) and

one outside the MT-sphere (region II). Within the APW approach, the compos-

ite wavefunction consists of atomic functions for region I and a plane wave for

region II, as is illustrated by Equation 9.

φkn
=

∑

lm

clm,kn
Rkn,l(r)Y

m
l (ϑ, ϕ) r < RMT

= eikr r ≥ RMT

(9)

The first part of Equation 9 is simply a linear combination of radial functions

(Rkn,l(r)) times the spherical harmonics (Y m
l (ϑ, ϕ)) and describes the strong

oscillating atomic orbitals in region I. For the smoother part of the wavefunction,

a plane-wave expansion is used (second part of equation). The major difficulty

is to find out how the borderline between the regions I and II is properly dealt

with. At the muffin-tin radius, the inner wavefunctions are augmented by outer

wavefunctions, schematically plotted in Figure 2 [27].
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Figure 2: Schematic drawing of the augmentation process at the muffin-tin bor-

der utilized in the APW and LAPW method.

In the APW approach, these energy dependent wavefunctions do not have

to be differentiable at the border, but in that case, the computational effort to

solve the Kohn–Sham matrix is enormous. The solution is found in the linear

methods (LMTO and LAPW) [28].

2.3.3 Linearized Augmented Plane Wave (LAPW)

The linearization of the APW method guarantees a differentiable wavefunction

because it requires that at the border of the two regions the function in the

sphere matches the plane wave both in value and slope. Moreover only one

diagonalization of the Hamiltonian is needed due to the energy independency

of the wavefunctions which makes the LAPW approach much faster than the

APW method. The accuracy of this particular method can be tuned by changing

the muffin-tin radius (RMT). Increasing the RMT leads to an increase of region I

(see Figure 2). The remaining smoother part of the wavefunction that has to

be described by plane waves is getting smaller. Therefore less plane waves are

needed, which leads to a reduction of the size of the matrices and evidently
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will cost less computational time. RMT should not become too large, because

the spherical functions are not suited to properly describe the wavefunction far

away from the nucleus. A compromise has to be made between the required

accuracy and the available computational resources and can simply be applied

by changing RMT.

The Wien2k package [29] uses the FLAPW approach (Full potential Linear

Augmented Plane Waves). Full potential means that all electrons are properly

described and no shape approximation for the potential and charge density is

used. This program was mainly used for exact electronic structure calculations.

2.3.4 Linearized Muffin-Tin Orbital (LMTO)

The LMTO method is also a linear method which is based on the APW ap-

proach. The main difference is, however, that the outer part of the wavefunction

(region II) is not described by plane waves but by Hankel functions. Muffin-

tin potentials or also an all-electron (full potential) approach can be used for

the wavefunctions inside the muffin-tin spheres. In addition the LMTO method

is often used in combination with the atomic sphere approximation (ASA).

Within this approximation the muffin-tin spheres are blown up until they cover

100 % of the unit cell volume. Consequently, the interstitial region II completely

vanishes and the spheres will overlap with each other. The amount of overlap

of the spheres is decisive and can be reduced by the introduction of so-called

empty spheres, i.e. additional spheres without atomic nuclei. The TB-LMTO-

ASA package [30] combines the ASA with the LMTO method. Moreover, the

tight binding (TB) approach is implemented into the TB-LMTO-ASA package

and it originates from the assumption that the electrons are tightly bonded to

their nuclei and therefore the LCAO ansatz (Linear Combination of Atomic

Orbitals) can be applied. The crystal wavefunction is just a Bloch sum of the

simplified Equation 9:

ψ(k) =
∑

n

cnφkn
=

∑

n

eikrnφkn
(10)

The coefficients are determined by the Rayleigh-Ritz variational principle. The

LCAO ansatz and therefore the similarity with the Hückel methods gives this
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approach an intuitive interpretation of crystal bands since they are build from

localized atomic orbitals. The accuracy, however, does not only depend on the

basis set but also on the description of the Hamiltonian and overlap matrices.

In our case (TB-LMTO-ASA) this is done within the framework of density-

functional theory and thus without the use of any parameterization.

2.3.5 Bonding analysis: COHP

The crystal orbital Hamilton population (COHP) method [31] is used to analyze

bonding interactions between atoms and is implemented in the TB-LMTO-ASA

package. This technique can be compared with the crystal orbital overlap pop-

ulation (COOP) which is built on the Mulliken population analysis [32]. The

latter one represents an arbitrary electron partitioning in terms of atoms and

bonds. The COHP uses an energy resolved bonding descriptor which has already

been successfully applied in plenty of different systems [33–35].

As a consequence of the LCAO ansatz (Tight-Binding in LMTO) the eigen-

value one-electron problem can be written as:

∑

LL′

(HLL′ − ǫjSLL′)c∗LL′jcLL′j = 0 (11)

where HLL′ and SLL′ are abbreviations of

HLL′ = 〈φL|Ĥ|φL′〉 SLL′ = 〈φL|φL′〉 (12)

The band energy is defined as the sum over all occupied one-electron eigenvalues

(Equation 13, left). Moreover, it can be expressed as the energy integral of the

distribution of the one-electron eigenvalues (Equation 13, right).

EBand ≡
∑

j

fjǫj ≡

∫ ǫF

dǫ
∑

j

fjǫjδ(ǫj − ǫ) (13)

Combining Equation 11 and 13 leads to:

∑

j

fjǫjδ(ǫj − ǫ) =
∑

LL′

HLL′

∑

j

fjc
∗

LL′jcLL′jδ(ǫj − ǫ)

=
∑

LL′

HLL′DOSLL′(ǫ)

=
∑

LL′

COHPLL′(ǫ)

(14)
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The equation above indicates the close relation between the density-of-states

(DOS) and the COHP, since the latter is constructed by weighting the DOS

with the Hamilton matrix. The off-site COHP terms (L 6= L′) indicate the in-

teractions between the atoms. If there are bonding contributions, the system

undergoes a lowering of its energy, indicated by negative off-diagonal COHPs.

On the other side, if a structure is destabilized by antibonding contributions,

there will be positive off-diagonal COHPs. For the purpose of comparison with

the well established COOP, the negative COHP is plotted. Therefore the posi-

tive/negative region indicates the bonding/antibonding interactions.



3. Binary Oxides and Nitrides of

the First-Row Transition Metals

In this section it will be investigated if the experimental properties of the 3d

transition-metal oxides and nitrides (MN and MO, M = Sc, Ti, V, Cr, Mn,

Fe, Co, Ni) can be properly reproduced by density-functional theory. First this

is done as a test to explore the limitations of DFT and, second, the results

of these investigations will be used to prove that the oxynitrides of the 3d

transition metals are more than just combinations of the archetypical binary

compounds. The growing interest for these two binary classes has led to an

enlarged database of properties. The structural, electronic and magnetic prop-

erties of the 3d transition-metal oxides and nitrides are listed in Table 1. The

data were taken from the Inorganic Crystal Structure Database (ICSD) and

literature cited within [6].

Structure Electrical Prop. Magnetic Prop.

Oxide Nitride Oxide Nitride Oxide Nitride

Sc NaCl NaCl metal metal P -

Ti NaCl NaCl metal metal P P

V NaCl NaCl metal metal P P

Cr NaCl NaCld - semicond. - AFM

Mn NaCl NaCld insulator metal AFM AFM

Fe NaCl ZnS insulator metal AFM P

Co NaCl ZnS insulator metal AFM P

Ni NaCl - insulator - AFM -

Table 1: Experimental properties of the 1:1 binary 3d transition-metal oxides

and nitrides. P = paramagnetic; AFM = antiferromagnetic. (d indicates

a distorted structure)

14
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All monoxides crystallize in the rocksalt structure. The first three (ScO, TiO,

and VO) are reported to be paramagnetic and metallic, and the remaining ones

are insulating antiferromagnetic compounds. Apparently, at CrO, there is a

change in the electrical and magnetic properties. It is therefore too bad that

CrO is not well investigated and that only its structure is known.

The nitrides are somewhat different. Only the nitrides of scandium, titanium,

and vanadium adapt the cubic rocksalt structure. Chromium and manganese

nitride crystallize in a distorted form of rocksalt, whereas CrN is orthorhombic

and MnN is tetragonally distorted. A structural change, from rocksalt to zinc

blende, is observed when moving on to iron and cobalt nitride. Nickel nitride has

not been synthesized yet, although theoretical calculations predict its structure

as being zinc blende [34]. A more complete overview of the crystallographic data

of the transition-metal oxides and nitrides is listed in Appendix B.

3.1 First-Row Transition-Metal Oxides

As mentioned before, all the 3d transition-metal oxides adapt the rocksalt struc-

ture. Among them, ScO [36, 37], TiO [38], and VO [36, 39] are paramagnetic

metallic conductors, and MnO [40, 41], FeO [42], CoO [43] and NiO [38] are an-

tiferromagnetic insulators. CrO has been synthesized but not well investigated

yet [36]. In this section it will be investigated whether the calculated properties

of the oxides match reality. One may assume that a correct description of the

experimental properties is also indicative of the correct total energies of the ox-

ides. The latter are needed for the calculation of the relative stability of the 3d

transition-metal oxynitrides (Section 4.2). Therefore the energies of the oxides

in both the rocksalt and zinc blende structures for a nonmagnetic, a ferromag-

netic and an antiferromagnetic arrangement are compared and the most stable

configuration is determined. This calculated stable configuration is compared

with the experimental properties. The antiferromagnetic states, referred to in

Table 2, are the [111] arrangements, which can be characterized as a sequence of

ferromagnetically sheets aligned along [111] which alternate in sign. All calcu-

lated energies refer to the energy of the experimental ground state. Calculated
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energies which are even lower than the energies of the experimental phases are

symbolized in bold.

NaCl ZnS

NM FM AFM NM FM AFM

Sc 0 - - 0.346 - -

Ti 0 - - 0.317 - -

V 0 −0.094 −0.511 −0.007 −0.332 −0.358

Cr 1.361 0.297 0 0.929 0.419 0.142

Mn 2.096 0.156 0 1.332 1.303 −0.281

Fe 1.411 0.023 0 0.670 0.640 0.630

Co 0.656 0.215 0 0.259 −0.063 −0.202

Ni 0.334 0.260 0 0.251 0.104 0.183

Table 2: Calculated (GGA) total energies (eV/f.u.) of the 3d transition-metal

oxides with different spin-orientations relative to the experimental

phases. NM = nonmagnetic; FM = ferromagnetic; AFM = antifer-

romagnetic

First of all the structural properties will be examined and hereby the relative

energies of the oxides in the rocksalt and the zinc blende structure are compared.

The results from Table 2 show that the calculations are in fair agreement with

the experimental results in terms of structure. The rocksalt structure is preferred

by all oxides except MnO and CoO. The relative energies of Table 2 show an

incorrect preference of these oxides for the zinc blende structure of 0.281 and

0.202 eV, respectively. An explanation for this mismatch will be given later on.

Moreover the oxides are calculated in three different magnetic arrangements.

The calculations show that ScO and TiO are nonmagnetic, which is in good

agreement with the experimental results. All other oxides prefer the experimen-

tally found [111] antiferromagnetic arrangement independent of the structure

type. MnO and CoO have the lowest energy in the erroneous zinc blende struc-

ture, but they also favor to be antiferromagnetic. Surprising is the fact that VO

also seems to prefer this antiferromagnetic arrangement, although it should be
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paramagnetic with respect to experimental results. Until now, no experimental

proof has been given for this antiferromagnetic arrangement, but these results

are confirmed by previous calculations performed by Mackrodt et al. [44]. The

unknown phase of CrO is predicted to also be antiferromagnetic. At this point

one may say that DFT surprisingly handles the transition-metal oxides quite

well, taking only the structural and magnetic properties into account.

The next step is to determine whether the electrical properties of the tran-

sition-metal oxides can also been described by DFT. Therefore the band gaps of

these oxides will be calculated and compared with the experimental results. The

theoretical investigations show that ScO, TiO, and VO are metallic conductors,

which is again in good agreement with the experimental results from Table 1.

The highly correlated oxides MnO, FeO, CoO, and NiO are insulators and pose

a real challenge to density-functional theory. For this reason a comparison be-

tween the experimental and calculated band gaps of these compounds is given

in Table 3.

Band gap exp. Band gap calc.

MnO 3.6–3.8 1.5

FeO > 3.5 metal

CoO > 3.0 metal

NiO 3.9–4.3 0.2

Table 3: Experimental and calculated (GGA) band gaps (eV) for MnO, FeO,

CoO and NiO in the rocksalt structure.

The range of experimental band gaps may be caused by the broad composi-

tional phase width of the 3d transition-metal oxides, e.g., MnxO with 0.848 ≤ x ≤

1.000. The calculations say that FeO and CoO should be metallic conductors,

NiO should be a small bandgap semiconductor and MnO should be a semi-

conductor with a bandgap of 1.5 eV. Thus, the bandgaps are all incorrectly

calculated. Despite the fact that the structural and magnetic properties of FeO

and NiO are correct, the calculated electronic structures for these oxides are

not. The only conclusion which can be made at this point is that DFT fails
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for MnO, FeO, CoO, and NiO. This, however, is a well-known problem [45–49].

One possible solution is given by the augmentation of DFT with an empirical

parameter (Hubbard U) for interelectronic correlation [50]. The choice of the

magnitude of U is somewhat arbitrary and therefore a matter of debate.

The conclusion so far is that DFT describes the structural, electrical, and

magnetic properties of ScO, TiO, VO, and CrO quite well. The highly correlated

oxides (MnO, FeO, CoO, and NiO), however, appear as a challenge for DFT.

The properties of these oxides cannot be reproduced by DFT calculations. It will

now be investigated whether the total energies of the transition-metal oxides are

correct or not. As mentioned before, the correct total energies of these oxides are

needed to determine the relative stability of the 3d transition-metal oxynitrides

in comparison to the transition-metal nitrides and oxides. Instead of adjusting

the total energies with a DFT correction like the Hubbard U , the knowledge of

experimental calorimetric results can also be taken into account. Calorimetric

measurements show that the rocksalt structure of CoO is 37 kJ/mol more stable

than the zinc blende phase. Since CoO is the only 3d transition-metal oxide

which has been synthesized in the zinc blende phase, however, this approach

can only be applied to cobalt oxide [51, 52].

A more general attempt is to compare the calculated and experimental for-

mation enthalpies. The formation enthalpy is calculated by subtracting the sum

of total energies of the transition metal and the oxygen from the total energy

of transition-metal oxide.

M + 1
2
O2 −→ MO

The calculated total energy can be regarded as an enthalpy (H = E + pV ),

because the pressure is close to zero such that the “pV ” term vanishes. The

calculated and experimental formation enthalpies are listed in Table 4. They all

refer to the rocksalt phase of the transition-metal oxides. No experimental data

are available for ScO and CrO.

All formation enthalpies are calculated too small in comparison with the ex-

perimental values. These difference can, to some degree, be explained by the

temperature dependence of the formation enthalpy, since the calculations were
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Calc. ∆H0
f Exp. ∆H0

f ∆∆H0
f

ScO −566.4 - -

TiO −472.2 −542.7 68.5

VO −351.7 −431.8 80.1

CrO −301.4 - -

MnO −313.3 −384.9 71.6

FeO −204.9 −272.0 67.1

CoO −182.8 −237.7 54.9

NiO −211.2 −239.7 28.5

Table 4: Calculated and experimental formation enthalpies (kJ/mol) of the 3d

transition-metal oxides. ∆∆H0
f is the difference between the experi-

mental and calculated ∆H0
f .

all performed at absolute zero. The experimental results, however, refer to room

temperature (298 K). This temperature dependence, from 0 to 298 K, of the

oxide’s formation enthalpy has to be considered too. This is about 18.5 kJ/mol

[53]. Also the melting enthalpy of oxygen (0.22 kJ/mol) and the vaporization

enthalpy (3.41 kJ/mol) are neglected [53]. Thus, minor differences of about 22

kJ/mol between the calculated and experimental formation enthalpies can be

explained by including the just mentioned enthalpies. But, as can be seen, from

Table 4 the differences between experiment and theory are much larger. They are

all in the range of about 55–80 kJ/mol (except for NiO). It seems that DFT has

a systematic error either in describing the transition-metal oxides or in describ-

ing the single elements (transition metals and oxygen). The differences between

the experimental and calculated formation enthalpies of the transition-metal

oxides are plotted in Figure 3.
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Figure 3: Differences between the theoretical and experimental formation en-

thalpy, ∆∆H0
f (kJ/mol) for the 3d transition-metal oxides.

The figure shows that the underestimation of interelectronic correlation is

largest in the middle of the 3d row and falls off for the early/late 3d metals. The

used DFT method can only give a qualitative description of the 3d transition-

metal oxides, even though the properties of some oxides (ScO, TiO, VO and

CrO) are correctly calculated. Therefore the experimental formation enthalpies

will be used for further investigations.

3.2 First-Row Transition-Metal Nitrides

The first aim is to calculate the electronic structures of the nitrides in the two

mentioned structure types and compare the calculated results with the exper-

imental ones. This will be done, again as a kind of test for the used theoreti-

cal methods and explore the possibility to derive and predict properties of the

oxynitrides directly from the properties of the binary compounds. Therefore, the

total energy of the nitrides (Table 5) is calculated and compared with the experi-

mental results. The calculations were performed with different spin-orientations

denoted as nonmagnetic, ferromagnetic and antiferromagnetic, where the lat-
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ter one is an orthorhombic antiferromagnetic (110) arrangement for CrN and a

tetragonally distorted (100) arrangement for MnN.

NaCl ZnS

NM FM AFM NM FM AFM

Sc 0 - - 0.653 - -

Ti 0 - - 0.652 - -

V 0 - - 0.306 0.288 -

Cr 0.597 0.232 0d 0.388 0.059 0.092

Mn 0.821 0.096 0d 0.109 0.103 0.109

Fe 0.979 0.665 - 0 - -

Co 0.763 - - 0 - -

Ni 0.390 - - 0 - -

Table 5: Calculated total energies (eV/f.u.) of the 3d transition-metal nitrides

with different spin-orientations relative to the experimental phases.

NM = nonmagnetic; FM = ferromagnetic; AFM = antiferromagnetic.

(d distorted structure)

The results for ScN, TiN and VN are unambiguous. The rocksalt structure is

preferred over the zinc blende structure which is in accordance with the exper-

imental results [39, 54–56]. There is, as expected, no preference for a ferromag-

netic ground state. CrN and MnN are a little peculiar in comparison with the

rest since they do not have a cubic ground state. At the Néel temperature (TN

= 273–286 K), CrN undergoes both a structural and a magnetic transition to an

antiferromagnetic (AFM) orthorhombic Pnma phase [57]. In the case of CrN,

the driving force for this distortion seems to be magnetic stress, as proposed by

Filippetti et al. [58]. The results in Table 5 confirm these experimental findings.

The calculations of MnN are also in very good agreement with the experiment

and favor the antiferromagnetic distorted rocksalt type for MnN [59–61].

A structural change from rocksalt to zinc blende happens at the later tran-

sition-metal nitrides (Fe and Co) [62, 63]. These findings clearly show a thermo-

dynamical preference of the nitrides of iron, cobalt and nickel for the nonmag-

netic zinc blende phase, since the energy differences between the zinc blende and
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rocksalt structure of FeN and CoN are about 64 kJ/mol and 74 kJ/mol respec-

tively. Therefore, it seems very unlikely that FeN and CoN can be obtained in

the rocksalt structure. Nonetheless rocksalt type FeN and CoN have been syn-

thesized with sophisticated experimental efforts. Cubic rocksalt iron nitride is

denoted as γ′′′-FeN [64]. The existence of rocksalt CoN may be questioned since

the experimentally found lattice parameter of 4.27 Å for the rocksalt phase [65]

is very close to the one found for zinc blende CoN (4.28 Å [63], 4.297 Å [66]).

The calculated energy differences between the two structure types for CrN and

MnN are considerably smaller (∆E ≈ 10 kJ/mol). It is therefore surprising that

they only exist in the rocksalt structure and not in the zinc blende structure.

Moreover NiN does not exist at all. The results from Table 5, however, indicate a

clear preference for the zinc blende structure. Why could NiN not be synthesized

yet? The answer to this question is found in the following equations:

Ni + 1
2

N2 −→ NiN ∆H = 0.783 eV/Ni-Atom

4 Ni + 1
2

N2 −→ Ni4N ∆H = −0.901 eV/Ni-Atom

NiN is unstable in comparison to the elements Ni and 1
2
N2. On the con-

trary, Ni4N is more stable than the elements, which leads to the conclusion that

synthesis of NiN, under thermodynamically controlled conditions, always leads

to Ni4N.

The calculations coincide very well with the experimental electronic and struc-

tural properties of the binary 3d nitrides and the lattice parameters and volumes

should therefore also be reproducible. Generally the GGA (generalized gradi-

ent approximation) calculations result in lattice parameters which are larger

than the experimental ones [16]. Using the LDA (local-density approximation),

however, the lattice parameters are too small. Thus, the lattice parameter of

a precisely stoichiometric nitride (1:1) should be somewhere in the middle be-

tween the two used approximations (GGA and LDA). If this is not the case, it

can be concluded that the experimentally synthesized transition-metal nitride

is not precisely 1:1 stoichiometric. An experimental lattice parameter (or vol-

ume) which is larger/smaller than the calculated using GGA/LDA, indicates

additional occupied sites/empty sites within one sublattice. The experimental



3.2 First-Row Transition-Metal Nitrides 23

volumes (filled boxes) are shown in Figure 4 as well as the calculated volumes,

using the LDA- (solid line) and GGA-functional (dashed line) for the most sta-

ble ground state. The line between the data entries has no physical meaning

and is only a guide to the eye.
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Figure 4: Experimental and calculated (GGA and LDA) volumes for the

3d transition-metal nitrides. LDA = solid line, GGA = dashed line

and experimental = filled boxes.

The results presented in Figure 4 show a broad range of experimental volumes

for ScN and TiN which indicates the broad compositional range. The experimen-

tal volumes of VN and CrN are between the calculated LDA and GGA volumes.

This indicates that for these compounds the transition metal-nitrogen ratio is

very close to 1. On the other hand the experimental volumes of MnN and espe-

cially FeN and CoN are significantly larger than the calculated GGA volumes.

This indicates that, iron nitride for example, in the literature always reported

as FeN0.91, is not the correct formula. This formula presumes empty sites within

the nitrogen sublattice which should lead to a smaller volume. Therefore iron

nitride should better be written as Fe1.1N. Notice that the Fe:N ratio in both

formulas is the same. The latter formula only implies that additional sites in

the iron sublattice are occupied and explains why the experimental volume is
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larger than the calculated (GGA).

The geometric and electronic structures of the first row transition-metal ni-

trides are correctly calculated. The early nitrides (ScN–MnN) crystallize in the

rocksalt structure. The cubic cell is tetragonal or distorted orthorhombic for

MnN and CrN respectively. The latter ones have an antiferromagnetic spin

arrangement. All the other 3d transition-metal nitrides are para- or Pauli-

paramagnets. FeN and CoN adopt the zinc blende structure, which is also pre-

dicted for NiN, but the latter has unfortunately not been synthesized yet.

If the oxynitrides of the 3d transition metals are simple combinations of the

corresponding nitrides and oxides, a first crude prediction of their properties can

be made at this point. Combining the results of the first row metal oxides and

nitrides, ScOxN1−x, TiOxN1−x and VOxN1−x should adopt the rocksalt struc-

ture. CrOxN1−x and MnOxN1−x will probably also favor the rocksalt structure,

which could be distorted. The structural properties of the later 3d transition-

metal oxynitrides are much more difficult to predict, since the oxides prefer

the rocksalt structure but the nitrides change into the zinc blende structure. A

reliable prediction of the electronic and magnetic structure of the oxynitrides

seems to be even more difficult. The only reasonable solution is to calculate the

oxynitrides as well. The results are presented in Section 4.



4. Oxynitrides of the 3d Transition

Metals

Within the recent years there is a growing interest in oxynitride materials, both

in the fundamental and applied fields. The driving force for the ongoing re-

search clearly originates from the believe that oxynitrides, either containing

main-group- or transition-metals, can be chemically tuned such as to combine

the best mechanical and also electronic properties of both binary material classes

(oxides and nitrides). In spite of the promising goal, oxynitride chemistry is dif-

ficult, illustrated by the fact that only a few transition-metal oxynitrides have

been synthesized and characterized yet, for example TaON [67, 68], Zr2ON2 [69]

and CoOxN1−x [70]. Even though there are several experimental publications

on these materials and the majority of these contributions emphasizes both

synthesis and possible chemical applications, the physical properties of these

compounds play a minor role. It is quite surprising that the structural proper-

ties of only a few of these compounds, namely CoOxN1−x [70], VOxN1−x [71]

and CrOxN1−x [72, 73], are known to some degree. VOxN1−x and CrOxN1−x

are reported to exist in the rocksalt structure and CoOxN1−x is experimentally

suggested and theoretically supported [74] to adopt the zinc blende structure.

Whether polymorphism is important for the 3d oxynitrides (MOxN1−x) is an-

other challenging question. Titanium- and iron oxynitrides have also been syn-

thesized but their exact structures have not been determined yet [75, 76]. The

oxynitrides of scandium, manganese and nickel still wait for their discoveries.

25
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4.1 3d Transition-Metal Oxynitrides; Structure and

Magnetism

The daltonide binary oxides and nitrides of the 3d row transition metals crys-

tallize either in the rocksalt or in the zinc blende structure. Therefore, these

two structure types were considered for the investigation of the 3d transition-

metal oxynitrides (MOxN1−x; M= Sc–Ni), too. The main difference between the

archetypical oxides and nitrides and the oxynitrides is that the latter group is

distinguished by a variable anion order and composition. These features compli-

cate the theoretical goal enormously. For economical reasons, the calculations

presented here were performed on x = 0.5 systems (MO0.5N0.5) and should

be considered model-like approaches needed to scan the systems in the very

first place. In addition, non-spin-polarized (nonmagnetic) calculations were per-

formed at the beginning to ease understanding (see below).
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Figure 5: Energy difference between the 3d transition-metal oxynitrides in the

rocksalt and the zinc blende type, for the nonmagnetic case.
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Figure 5 presents a plot of the energy differences between the rocksalt and

zinc blende type structures for these oxynitrides. The calculations are based on

the plane-wave/pseudopotential approach, and the line between the data entries

has no physical meaning but is only a guide to the eye.

In the positive energy region the zinc blende type is preferred, whereas in the

negative region the rocksalt type is favored. The results of these calculations

turn out as qualitatively correct because they predict that the earlier oxyni-

trides will adopt the rocksalt type whereas the later ones will crystallize in the

zinc blende type; in fact, VO0.5N0.5 adopts [NaCl] whereas CoO0.5N0.5 adopts

[ZnS]. The quantitative prediction of the crossover is incorrect, though, because

CrO0.5N0.5 is falsely predicted to adopt also [ZnS] but this problem is due to

the omitted inclusion of magnetism. The same trend ([NaCl]−→[ZnS]) occurs

for the transition-metal nitrides [34] and has been explained already. Let us

qualitatively understand why the zinc blende structure is preferred to the rock-

salt structure for higher electron counts and analyze the electronic structures

of both polymorphs in more detail. For this purpose the chemical bonding sit-

uations were analyzed using the Crystal Orbital Hamilton Population (COHP)

technique, and CrO0.5N0.5 was taken as an example.
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Figure 6: Density-of-states (DOS) with local 3d projections, and crystal orbital

Hamilton populations (COHP) for the Cr–N, Cr–O and Cr–Cr inter-

actions in the lowest-energy rocksalt type structure of CrO0.5N0.5.
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The density-of-states (DOS) at the Fermi level is rather high for rocksalt-

like CrO0.5N0.5 (Figure 6), mainly caused by Cr 3d orbital contributions. The

COHP diagrams for the metal-nonmetal interactions, Cr–N and Cr–O, show

strong bonding contributions between ca. −8 and −4 eV which actually stabi-

lize the structure. On the other side, there are also strong, unfavorable Cr–Cr

antibonding interactions (spikes to the left) at the Fermi level, a consequence of

the adopted structure type.
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Figure 7: Density-of-states (DOS) with local 3d projections, and crystal orbital

Hamilton populations (COHP) for the Cr–N, Cr–O and Cr–Cr inter-

actions in the lowest-energy zinc blende type structure of CrO0.5N0.5.

The DOS diagram of CrO0.5N0.5 in the zinc blende structure (Figure 7) also

shows a significant density-of-states at the Fermi level, indicating the metallic

nature of this compound, also mainly made up from Cr 3d contributions. The

low-lying peaks around −7.5 and −5 eV are caused by nitrogen/oxygen 2p or-

bitals. The latter ones are separated by an internal 1.9 eV-wide gap from the

“cationic” Cr 3d states at the Fermi level. There are very strong Cr–N and Cr–O

bonding interactions at ca. −6 eV, just like for the preceding [NaCl] structure.

The integrated chromium–nitrogen and chromium–oxygen COHPs are quite

similar for the rocksalt (Cr–N: −3.413 eV/bond, Cr–O: −2.145 eV/bond) and

for the zinc blende structure (Cr–N: −3.635 eV/bond, Cr–O: −2.283 eV/bond)
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but indicate that the bonding is more covalent in the [ZnS] structure type. The

most prominent difference, however, is found in the Cr–Cr COHP curve because

the formerly antibonding Cr–Cr interactions at the Fermi level have now been

turned into bonding interactions. This finding is a trivial consequence of the

zinc blende type structure in which the Cr–Cr distances are wider (3.18 Å) than

in the rocksalt structure (3.00 Å) such that the “excess” electrons residing on

Cr do not destabilize the zinc blende type as much as the rocksalt type.

A closer look at the Cr–Cr COHP curve in an energy window around the Fermi

level (from −3 eV to 4 eV) allows the direct comparison, and a rigid band model

can be adopted since the COHP curves of MO0.5N0.5 (M = Sc–Ni) are quite

similar to those of CrO0.5N0.5; recall that this proposal is a qualitatively correct

but simplified explanation. Thus, the two COHPs of the Cr–Cr interaction are

shown in Figure 8 where the arrows indicate the relative position of the Fermi

level for the other transition-metal oxynitrides. As expected, the Fermi level ǫF

is shifted up when moving from scandium to nickel.
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Figure 8: Crystal Orbital Hamilton Populations (COHP) for the Cr–Cr inter-

actions of CrO0.5N0.5 in the rocksalt type (left) and the zinc blende

type (right) structure. The arrows denote the Fermi levels in the other

isostructural compounds.
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As seen in the COHP of the rocksalt structure in Figure 8, the Fermi levels

for Sc and Ti are situated in the metal–metal bonding region, indicative of the

stability of the nonmagnetic rocksalt structure type for MO0.5N0.5. Moving up to

V, the Fermi level switches from metal–metal bonding to slightly antibonding

already. Putting even more electrons into the system, that is, in the proxim-

ity of CrO0.5N0.5, the Fermi level is clearly situated in the antibonding region

which destabilizes the rocksalt structure. Nonetheless the Fermi level for the

zinc blende structure is still situated in the bonding region (see right curve in

Figure 8). Therefore, the change from the rocksalt to the zinc blende structure

becomes advantageous for higher electron concentrations.

The complexity of this theoretical treatment will now be increased to allow

more quantitative conclusions. Besides a structural change, the stabilization

of a given phase can be achieved by spin polarization leading to different spin-

occupations and a magnetization of the compound. For this reason, the next step

is to allow the systems to become magnetic in the theoretical description. Thus,

all preceding plane-wave/pseudopotential calculations for MO0.5N0.5 adopting

the ZnS/NaCl types were repeated, but now including spin polarization; the

magnetic moments, if present, were allowed to couple either ferromagnetically

or antiferromagnetically.

Keeping in mind the COHPs in Figure 8, one would expect no structural

or electronic distortion for the oxynitrides of scandium and titanium because

of ǫF being localized in the bonding region; in particular, spontaneous spin

polarization should not result from M–M states!

On the contrary the rocksalt structure of chromium- and manganese oxyni-

tride would be susceptible to spin polarization because their Fermi levels are

situated in the antibonding area of the M–M COHP. This prediction would also

hold for the later first row transition-metal (Fe, Co and Ni) oxynitrides but,

since they adopt the zinc blende structure where these antibonding interactions

are significantly reduced, the susceptibility to spin polarization should be much

smaller. The numerical results of all the calculations are shown in Figure 9, which

has the same layout as Figure 5. In addition, the most stable spin arrangement

for each structure type is used in this ”magnetic” diagram.
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As far as density-functional theory can be trusted, its predictions fulfill these

simple expectations (see above) by yielding that ScO0.5N0.5 and TiO0.5N0.5

should crystallize in the rocksalt structure and should also be nonmagnetic.

Phases with critical M–M antibonding electron counts (VO0.5N0.5, CrO0.5N0.5,

MnO0.5N0.5) may still stick to the [NaCl] structure type but lower their energies

by building up local magnetic moments; the latter are antiferromagnetically cou-

pled along [100]. A structural change is finally seen for the later 3d oxynitrides

because FeO0.5N0.5, CoO0.5N0.5 and NiO0.5N0.5 prefer the zinc blende type. In a

first approximation FeO0.5N0.5 and NiO0.5N0.5 are nonmagnetic and CoO0.5N0.5

appears to be ferromagnetic.

The accurate theoretical determination of the relative stabilities of structure

and magnetism of the later 3d oxynitrides is problematic because of two rea-
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sons. First, the systems are likely to show strong effects of electronic correlation

such that density-functional theory may reach its limits. Second, anionic or-

der/disorder competes with spin polarization: in Section 4.3 it will be shown

that a largely disordered CoO0.5N0.5 loses its local magnetic moments [74], and

for the here investigated and less disordered CoO0.5N0.5 the energy difference be-

tween the magnetic and nonmagnetic state (≈ 0.017 eV/f.u.) is less than a third

of the energy gain upon complete O/N disordering. An exception is made with

MnO0.5N0.5 because of the very large exchange splitting of the Mn atom. This

oxynitride clearly spin-polarizes and the antiferromagnetic structure is about

1.34 eV/f.u. more stable than the nonmagnetic structure. This implies that

MnO0.5N0.5 has a specific magnetic spin arrangement, although a random an-

ion order is probably preferred. The search for a magnetic 3d oxynitride should

therefore be mainly focused on the synthesis of MnO0.5N0.5.

4.2 Thermodynamic Stability

In this section a closer look at the relative thermodynamic stability of the 3d

transition-metal oxynitrides will be taken. The energy of the most stable oxyni-

tride polymorph is compared with the energies of the corresponding binary

oxides and nitrides. The formation energy, ∆Ef , of the ternary phase MO0.5N0.5

starting with the binary phases of MN and MO is calculated according to

∆Ef = EMO0.5N0.5
−
EMN + EMO

2
, (1)

thereby emphasizing the importance of the correct energetic characterization

of the two binary boundary phases, MN and MO. In a good approximation,

the formation energy ∆Ef may be interpreted as an enthalpy (See Section 3.1).

Since all the internal energies are negative, a negative value of ∆E attests a

stabilization of the oxynitride in comparison to the oxide and nitride. Further,

one must consider that density-functional theory fails for the highly correlated

systems, as seen before in Section 3. Therefore, it is better to rely on experi-

mental data. The experimental formation enthalpies (listed in Table 4) of the

transition-metal oxides are used in Equation 1. The nitrides are properly calcu-
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Figure 10: Formation energy of the 3d transition-metal oxynitrides relative to

the binary oxides and nitrides.

lated and it can be assumed that the oxynitrides are also well described by DFT,

because the later transition-metal oxynitrides (Fe, Co and Ni) adopt, in contrary

to the oxides, the zinc blende structure. The relative energy differences between

the oxynitrides and the binary phases are calculated according to Equation 1

and plotted in Figure 10.

The filled circles are the calculated values of the formation energy including

the experimental formation enthalpies of the 3d transition-metal oxides. For

ScO and CrO no experimental values are available. The line is fitted through

these points to roughly indicate the relative stability of the oxynitrides and is

only a guide to the eye. It seems that all 3d transition-metal oxynitrides are

metastable with respect to the binary phases. This fact presumably explains

why many of these oxynitrides have not been synthesized yet. It must be said

that the calculations were performed using a simple cubic cell , from which only

one ordered anion arrangement was taken into account. As mentioned before,

a statistical anion distribution is probably favored and leads to a stabilization

of the oxynitride. This, however, requires a very expensive and time-consuming

supercell approach. An additional way of including a statistical anion order is
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the consideration of the configurational entropy, which has already been applied

to related systems, Si2N2O [77] and Zr2ON2 [78], and is calculated according to:

Smix = R
∑

i

xilnxi (2)

where xi is the fraction of the corresponding atom (i) and R is the ideal gas

constant (8.314 J mol−1 K−1). The configurational entropy is based on the po-

sitional interchange of atoms, in this case the oxygen and nitrogen atoms. The

value obtained from the equation above is −5.763 J mol−1 K−1 which gives ap-

proximately 1.7 kJ/mol at room temperature. In comparison with the energy

differences (∆E) from Figure 10, the stabilization caused by the mixing entropy

is very small. These results again confirm the experimental difficulties of the

synthesis of 3d transition-metal oxynitrides. It seems that ScO0.5N0.5 should be

thermodynamically less unstable and “simplest” to synthesize.

4.3 Supercell Stoichiometry

The enthalpic stability investigations from the last section will now be extended

towards questions of phase width, magnetism and anionic order of the oxynitride

compounds. To allow for a multitude of different compositions, a 2 × 2 × 2

supercell is created, containing a total of 64 atoms of which 32 were transition

metals and 32 either N or O as presented in Figure 11.

First of all, the anion order of the oxynitrides is investigated and therefore

different anion arrangements within one specific stoichiometry; MO0.5N0.5 ≡

M32O16N16, are taken into account. The anion arrangements can be divided into

one ordered phase and several randomly distributed anions. These several anion

compositions are only calculated for the most stable structure type of the cor-

responding oxynitride. Since the supercell calculations are very time-consuming

and expensive, they were only performed for the oxynitrides of scandium and

cobalt. The results for the most stable random configuration are shown in Ta-

ble 6.
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Figure 11: Supercell containing 2 × 2 × 2 conventional cubic cells of the zinc

blende structure of CoO0.5N0.5.

In each case a random anion distribution is preferred to the ordered one, but

the energy differences are very small (about 4–7 kJ/mol). From the enthalpic

point of view no specific anion order could be confirmed because of the very small

energy differences. Detailed investigations of phase width and enthalpic stability

are intensified only on cobalt oxynitride, due to the very costly calculations.

Ordered Random

Sc −17.698 −17.722

Co −14.361 −14.407

Table 6: Calculated energies (eV/f.u.) of the supercell structures with different

anion arrangements of the 3d transition-metal oxynitrides.

The different oxynitrides CoOxN1−x with varying x were calculated using non-
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spin-polarized and spin-polarized approaches, but the energy differences between

these were negligible (vanishing moments) such that diamagnetic (or Pauli para-

magnetic) calculations turned out to be perfectly sufficient. In these supercell

calculations, the unit cell parameters as well as all atomic sites were allowed to

fully relax to their optimum values. While there is a loss of cubic symmetry upon

relaxation/deformation and especially upon changing the oxygen/nitrogen ratio,

the underlying structural principle of the zinc blende structure — fourfold coor-

dination throughout — remains intact. The relaxation of all structural elements

is most easily demonstrated by the resulting interatomic distances, for example

in the form of the radial distribution function (RDF) for the combinations Co–N

and Co–O, as shown in Figure 12.
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Figure 12: Radial distribution function (RDF) of the Co–N and Co–O inter-

atomic distances in the CoO0.5N0.5; the values were extracted from a

fully optimized supercell, containing 32 Co and 16 N/O atoms, and

interpolated using a cubic spline.

For comparison, the Co–N and Co–O bond lengths within the zinc blende-type

polymorphs of CoN and CoO are exactly 1.85 and 1.97 Å. Inside the randomly

ordered CoO0.5N0.5 modeled by using a supercell geometry, the corresponding
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spectra of interatomic distances are 1.78–1.88 Å (Co–N) and 1.88–1.98 Å (Co–

O). The structural deformation itself is due to a local optimization of bonding;

remember that the high-symmetry model employing identical sites for nitro-

gen/oxygen atoms still showed small regions of antibonding interactions close

to the Fermi level (see LMTO calculations before in Figure 8). When it comes

to the energetic result of the various anionic substitutions, an overview of the

calculus according to Equation 1 is presented in Figure 13;
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Figure 13: Theoretical ∆E-x diagram calculated for various CoOxN1−x compo-

sitions according to Equation 1.

thus, negative/positive ∆E values indicate energetically stable/unstable ternary

oxynitrides. To a good approximation, these energy differences may be inter-

preted as differences in enthalpy. The upper curve in Figure 13, in reference to

the two most stable binary phases (rocksalt CoO, zinc blende CoN), manifests

that any zinc blende-type compound belonging to the phase range CoOxN1−x is

energetically (enthalpically) unstable because of the positive sign of ∆E; thus,

CoOxN1−x should have never been observed or isolated due to the large stability

of the competing rocksalt CoO. By contrast, the lower curve of Figure 13 makes

oxynitride formation immediately understandable since it stands for CoOxN1−x

phase formation competing with metastable zinc blende CoO and zinc blende
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CoN. The curve suggests that a broad range of metastable cobalt oxynitrides

with a composition range 0.1 ≤ x ≤ 0.7 must be obtainable; in particular, a

maximum stabilization of 10–15 kJ/mol is visible for the more oxygen-rich non-

stoichiometric phases. This admittedly small energetic value can be regarded

as reliable since no bond breaking/formation is involved upon comparison with

the binary zinc blende phases; the energetic stabilization of CoOxN1−x merely

indicates the optimization of all atomic site parameters for Co, N, and O in

the ternaries. Whether the three local regions of stability in the lower curve of

Figure 13 are real or merely reflect the finite size of the computational model

can not be determined.

In summary, the formation of CoOxN1−x oxynitride materials appears to be

a kinetically controlled phenomenon as long as zinc blende CoO (as opposed

to rocksalt CoO) is one of the competing binary phases. This theoretical clue

is backed by the experimental observation of a “thermal sensitivity” reported

for CoOxN1−x [70], decomposing into rocksalt CoO, metallic Co, and molecular

nitrogen at higher temperatures (above 400 ◦C); CoN itself decomposes into Co

and N2 above 250 ◦C. Thus, it can be concluded that for moderate temperatures

(kinetic control), almost any ternary CoOxN1−x will be slightly preferred (see

lower curve in Figure 13), in harmony with the experimental observation of a

broad phase width and varying composition. Further entropy effects are not

considered here, but they will slightly favor, on the order of less than 3 kJ/mol,

the formation of ternary phases; this approximate value is based on a rough

estimate for the ideal (configurational) entropy of mixing of CoO0.5N0.5 and a

synthetic temperature of not more than 250 ◦C.



5. Oxynitrides of Vanadium,

Niobium and Tantalum

Three decades ago, the first non-stoichiometric oxynitrides of vanadium were

prepared by Brauer and Reuther [39]. The authors reported a couple of differ-

ent non-stoichiometric compositions within the phase diagram V/O/N, and the

crystal structure of all these compounds was identified as being the rocksalt type.

More than 20 years later, detailed investigations of the electronic and magnetic

properties were then performed by Wang et al. [79]. For example, the compound

VO0.5N0.5 is characterized by an electrical resistivity of about 2 × 10−3 Ω·cm

which turns out to be weakly temperature-dependent, being typical for either a

metal or a heavily doped semiconductor. Magnetic susceptibility measurements

of VO0.5N0.5 show no evidence for a magnetic ordering and yield a magnetic

moment of 0.25 µB per vanadium atom. The small effective moment is difficult

to explain keeping in mind the large effective moments of V2+ and V3+ (2.8

and 3.8 µB, respectively) [80], but it can be noted that VO0.5N0.5 is seemingly

a metal for which the idea of large localized atomic moments is ill-fitting.

In the phase diagram of V/O/N, there is only one compound (V2O5) experi-

mentally known which contains vanadium in its highest oxidation state (V5+).

Vanadium pentoxide is a comparatively “old” phase and was first synthesized

by Ketelaar in 1936 [81]. At the present time, there are two different crystal-

lographic phases of V2O5 reported [82]. In addition, electronic-structure calcu-

lations have been performed on the existence of the hypothetical phase V3N5,

the nitrogen analogue of V2O5. The predicted structure of V3N5 resembles the

Ta3N5 structure [83], but this has not been experimentally verified yet.

39
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5.1 Stoichiometrically Precise Vanadium Oxynitride

The search for possibly stable crystallographic phases of a stoichiometrically

precise VON starts with the investigation of several possible structure types [71].

The composition implies pentavalent vanadium which, as was mentioned before,

is only known from V2O5 for the phase diagram of V/O/N. The computational

search for a structurally stable VON was then carried out based on several

known structure types of the composition AB2. The effective ionic radii of V5+

for tetrahedral/octahedral coordinations are 0.36 and 0.54 Å [84], and this is

significantly smaller than for Nb5+ (0.48 and 0.64 Å) and Ta5+ (0.64 Å for

octahedral coordination). In terms of size, V5+ lies between As5+ and Sb5+ such

that a lowered V5+ coordination number is truly expected for VON. On the

basis of the used total-energy DFT method, the atomic positions as well as the

lattice parameters were optimized for all different structures; sometimes a loss

of symmetry as well as a change in atomic coordinations are often observed.

For many structure types, several different anion arrangements are possible of

which only the energetically lowest ones are considered. The results of these

calculations for several of the different structure types are shown in Table 7,

containing the energy and volume for VON in the given structure type, and also

the relative energies/volumes with respect to the lowest energy configuration.

The results for all calculated structure types are shown in Table 19 (Appendix).

As expected from purely geometric (ionic radii) criteria, the results of the

density-functional calculations clearly manifest the preference of V5+ for lower

coordination numbers. In particular, a tetrahedral surrounding is the optimum

choice for pentavalent vanadium; in fact, a tetrahedral polyhedron is found for

the classical vanadates, with more or less regular shapes and V–O distances

between 1.6 and 1.8 Å, coinciding with the sum of the ionic radii [84]. Table 7

also reflects that the different polymorphs of VON exhibit grossly varying molar

volumes, and the lowest volumes are found for the highest coordination num-

bers, as predicted by the pressure-coordination rule proposed by Neuhaus [85].

In order to derive a volume standard for one formula unit (f.u.), an expected

volume of VON may be computed as the arithmetic average of the volumes of
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Structure type cn E0 V0 ∆E ∆V

α-Cristobalite 4 −26.209 68.35 0 0

α-Quartz 4 −26.153 55.22 0.056 −13.13

Anatase 6 −26.063 32.85 0.146 −35.50

Baddeleyite 7 −25.977 27.62 0.232 −40.73

Rutile 6 −25.913 31.78 0.296 −36.57

Fluorite 8 −24.806 27.10 1.403 −41.25

Table 7: Structure type, coordination number of the vanadium atom (cn), total

energy (E0) and volume (V0) at zero pressure, relative energy (∆E) and

relative volume (∆V ) with respect to the lowest-energy configuration

for several hypothetical polymorphs of VON. Energies are given in eV

and volumes in Å3 per formula unit VON.

V2O5 and (still hypothetical) V3N5:

V(VON) = 1
5

[V(V2O5) + V(V3N5)] = 1
5
V(“V5O5N5”)

This arrives at 32.6 Å3 per formula unit of VON, suggesting that the structure

types with tetrahedral coordination (see Table 7) are somewhat loosely packed.

For a more complete picture, it is worthwhile investigating how the theoretical

polymorphs from Table 7 respond when pressure is applied. The technical de-

tails of this approach are shown in Appendix A. All the calculated polymorphs

show a more or less regular pressure-energy dependence, except for the badde-

leyite type. Surprisingly, these calculations result in two stable structures. The

first one corresponds to the original baddeleyite structure whereas the other is a

strongly distorted variant of it. The energy of this distorted form of baddeleyite

is −26.157 eV/f.u., which is almost 0.2 eV/f.u. lower in energy than the regu-

lar baddeleyite structure. The complete energy-volume dependence of these two

VON phases is plotted in Figure 14. Here, not only two but four crystallographic

phases show up. The additional two structures are high-pressure phases which,

however, do not possess a well-defined equilibrium volume and may therefore be
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considered essentially unstable under whatever conditions. Starting with the dis-

torted baddeleyite structure (I) on the right (open squares) which has the largest

volume and the lowest energy, a compression leads to the regular baddeleyite

structure (II) which appears at a slightly higher energy and smaller volume.

Upon compressing the structure even more, the monoclinic cell of baddeleyite

(II) changes into an orthorhombic cell (III) (filled squares).
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Figure 14: Energy-volume diagram of VON with four baddeleyite-related struc-

tures.

In the region of highest pressure (smallest volumes, open circles), the or-

thorhombic cell (III) changes back into a monoclinic cell (IV), and the struc-

tural formation of N2 dimers can be observed. The N–N bond length of 1.34 Å

is between those of O=O (1.21 Å) and F–F (1.42 Å) but much larger than in

the uncharged N≡N molecule (1.10 Å). Thus, the presence of an N2
2− species is

indicated which, in turn, reflects an internal redox competition yielding trivalent

vanadium, qualitatively corresponding to (V3+)2(O
2−)2(N2

2−). In fact, the coor-

dination number of vanadium increases to eight, and V3+ forms doubly capped

distorted trigonal prisms. Similar pernitride anions were reported by Kniep et

al. in the solid state structures of SrN2 [86] and BaN2 [87]. The experimental
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bond length of the double-bonded N2
2− in both structures, however, is around

1.22 Å. The comparison with the theoretical bond length of 1.34 Å as found for

the N2 dimer in the VON structure (see Figure 15, left) evidences that the N

atoms are higher charged resulting in a N–N bond somewhere between a single

and a double bond.

O

N

1.34 Å

O

N

1.70 Å

2.37 Å

Figure 15: Left: Doubly capped distorted trigonal prism predicted as the vana-

dium coordination in the unstable high-pressure monoclinic structure

(IV). Right: Distorted octahedron predicted as the vanadium coor-

dination in the distorted baddeleyite structure (I).

Although the distorted baddeleyite structure is not the energetically lowest

configuration, its volume of 34.65 Å3/f.u. also matches much better with the

one derived from V2O5 and V3N5 (32.6 Å3/f.u.). Within distorted baddeleyite,

the vanadium atom is surrounded by 1+4+1 anions which form a distorted oc-

tahedral arrangement. These octahedra are connected by sharing edges. The

distinguishing feature of this polyhedron is a single apical double-bonded ni-

trogen at a distance of 1.70 Å and four more or less coplanar anions (N,O) in

the base at distances of 1.79–2.17 Å. Another oxygen atom is situated at the

opposite position of the short V–N bond and forms a weak 2.37 Å long V–O

bond (see Figure 15, right). Several different anionic arrangements are possible

within this distorted structure, at least in principle, but it appears that only

one ordered configuration is energetically stable. Despite the fact that the dis-
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torted baddeleyite structure has been computionally derived from the regular

one, there are large differences in interatomic geometries, easily visible from a

look along the monoclinic axis given in Figure 16. The two small arrows denote

the direction of which pressure is applied on the unit cell of VON in the regular

baddeleyite structure, leading to the distorted baddeleyite structure.

N
O

N
O

Figure 16: Unit cell of vanadium oxynitride in the regular baddeleyite structure

(left) and in the distorted baddeleyite structure (right).

One may ask for the reason of having investigated the regular and distorted

baddeleyite structure type although both are not the energetically lowest struc-

tures. The clue is found in the thermochemistry of VON, and its synthesis may

proceed by the reaction given below:

V2O5 + 3VN + N2 ⇀↽ 5VON (1)

In general, a successful high-pressure synthesis requires that the volume of the

products must be smaller than the volume of the reactants. Moreover, the energy

differences between them should be so small that it can be compensated by

applying pressure. In Table 8 the energies and volumes of the reactants and also

of VON in several different structure types are listed. The energy and volume

differences (∆E, ∆V ) refer to the energy and volume of the reactants V2O5,

VN and N2 at absolute zero temperature.
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E V ∆E ∆V

Educts −132.41 200.40 0 0

α-Cristobalite −131.05 341.75 1.36 141.35

distorted Baddeleyite −130.79 173.25 1.62 −27.15

α-Quartz −130.77 276.10 1.64 75.70

Baddeleyite −129.89 138.10 2.52 −62.30

Rutile −129.57 158.90 2.84 −41.50

Fluorite −124.03 135.50 8.38 −64.90

Table 8: Comparison of the energies and volumes of the educts (V2O5 + 3 VN +

N2) and products (5 VON in several different structure types) according

to Equation 1. The energies (E) and energy differences (∆E) are given

in eV. The volumes (V ) and the volume differences (∆V ) are given

in Å3.

Clearly, the high-pressure synthesis of VON may only succeed if ∆V (see Ta-

ble 8) is negative. Therefore, VON in the α-cristobalite structure can not be

obtained although it exhibits the lowest energy. The same is true for the α-

quartz structure of VON. For the moment, the distorted baddeleyite structure

appears to be the energetically lowest polymorph which can be achieved by a

high-pressure synthesis according to Equation 1. To determine the influence of

the pressure on the chemical equilibrium and the Gibbs energy G, one first needs

to calculate the energy-volume dependence for all the polymorphs. The pressure

p is then obtained by differentiation of a Murnaghan fit of the energy-volume

diagram. Finally, the enthalpies are calculated according to H = E+ pV , where

E stands for the total energy. The reason for having been able to replace the

Gibbs energy G by the enthalpy H through a removal of the TS term in the

Gibbs–Helmholtz equation is easy to understand: to a very good approximation,

the entropic contributions of solid-state materials are negligible, and the same

is true for molecular nitrogen at absolute zero temperature. Under these condi-
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tions, the derived enthalpy is a reliable indicator for the stability of a structure

type with respect to the applied pressure. The enthalpies are plotted relative to

the ones of the reactants (Equation 1, V2O5 + 3 VN + N2) and are shown in

Figure 17.
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Figure 17: Theoretical enthalpy-pressure diagram for VON.

A pressure-induced synthesis of VON is predicted at about 12 GPa where

VON does not adopt the expected distorted baddeleyite structure but the regular

baddeleyite structure! This surprising result can be explained by the different

compressibilities of both structures. While VON in the baddeleyite structure can

be compressed more easily, the distorted baddeleyite structure is much stiffer.

Again, these results are in nice accord with the pressure-homologue rule of

Neuhaus stating that, under pressure, a compound adopts the structure of its

higher homologues (TaON, NbON) [85].

A final electronic-structure calculation of the baddeleyite structure is per-

formed by LMTO theory (GGA), shown in Figure 18. The density-of-states

with the 3d contributions of vanadium are given on the left, and the COHPs

of the shortest V–V, V–O and V–N bonds are shown at the right. There are
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weak antibonding V–V COHPs in the valence bands, indicator of the repulsive

cation–cation interactions, but the structure is held together by strong V–O/N

bonds, as indicated by the bonding V–O/N COHPs below the Fermi level.
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Figure 18: Density-of-states of VON in the baddeleyite structure with local 3d

projections and crystal orbital Hamilton populations (COHP) for the

V–V, V–O and V–N interactions.

Within the baddeleyite structure of VON, the vanadium atom is surrounded

by three oxygen atoms and four nitrogen atoms. Summing up the integrated

COHPs for each of these interactions, the V–N bond (0.195 eV/bond) turns out

slightly stronger than the V–O bond (0.162 eV/bond). The dispersion of the

bonding V–N interactions upto the Fermi level is wider than the V–O disper-

sion, which obviously expresses the more covalent nature of the V–N bond. The

calculated bandgap of 0.6 eV is very small, and it is mainly determined by filled

nitrogen states just below the Fermi level (highest occupied crystal orbitals) and

by empty vanadium states in the lowest unoccupied crystal orbitals.

5.2 Niobium Oxynitride

In 1954, Nils Schönberg discovered the first non-stoichiometric niobium oxyni-

trides [88]. He found two metallic ternary phases; NbO0.1N0.9 with the NaCl
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structure and NbO0.3N0.6 with a tetragonally distorted NaCl structure. The

synthesis of several non-stoichiometric niobium oxynitrides is also reported [89–

92]. Stoichiometric NbON was first synthesized by Buslaev, and it adopts the

baddeleyite structure as shown in Figure 16 (left). A detailed description of this

structure type is given in the next section. This chapter is mainly focused on

the geometric as well as the and electronic structure of NbON and presents

the first theoretical investigations of NbON. Pseudopotential-GGA calculations

are performed on NbON in the baddeleyite structure. The results are shown in

Table 9. The calculated lattice parameters and atomic coordinates match very

Experimental [93] Calculated

Lattice parameters (Å, ◦)

a 4.970(3) 5.029

b 5.033(3) 5.077

c 5.193(3) 5.243

β 100.23 100.07

Volume (Å3/f.u.) 31.96 32.95

Positions x y z x y z

Nb (4e) 0.2911(1) 0.0472(1) 0.2151(1) 0.294 0.049 0.219

O (4e)(A2) 0.0636(8) 0.3244(8) 0.3476(9) 0.062 0.323 0.350

N (4e)(A1) 0.4402(8) 0.7546(11) 0.4782(9) 0.442 0.755 0.477

Table 9: Experimental and theoretical structure data of NbON on the basis of

pseudopotential-GGA calculations.

well with the experimental ones. The calculated volume is a little too large but

this is a well known feature of the generalized gradient approximation (GGA).

Within this structure type there are several different anion arrangements pos-

sible. These various combinations are calculated and the results are shown in

Table 10. The position denoted as A1 is the ’nitrogen’ position from Table 9.

The last entry from Table 10 corresponds with the structural data from Table 9.

In good agreement with the experimental results, these calculations show a
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Position = Occupation Energy Volume

A1=4× O 0.335 34.06

A1=1× N; 3× O 0.355 33.60

A1=2× N; 2× O 0.261 33.22

A1=3× N; 1× O 0.173 33.16

A1=4× N 0 32.95

Table 10: Theoretical total energies and volumes of NbON as a function of an-

ionic ordering on the basis of pseudopotential-GGA calculations; the

lowest relative energy (denoted with 0 eV/formula unit) corresponds

to a total energy of −28.541 eV/f.u. and the volume is in Å3/f.u..

clear preference of one specific anion order, which is at least 16.7 kJ/mol lower

in energy than the other distributions. Moreover, this energy difference is much

larger than the differences calculated for the 3d transition-metal oxynitrides,

which are around 4–7 kJ/mol. Therefore the anions have fixed positions within

the baddeleyite structure of NbON.
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Figure 19: Band structure, density-of-states (DOS) with local Nb contributions

in black, and Crystal Overlap Hamilton Population (COHP) of the

Nb–O and Nb–N bonds in NbON calculated with the TB-LMTO-

ASA method using the LDA.
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NbON is experimentally described as a blue-colored semiconductor. Electronic

structure calculations are performed using LMTO, to investigate if the bandgap

is correctly calculated. (see Figure 19) The band structure calculations result

in an indirect bandgap of ca. 1.7 eV, which is mainly caused by nitrogen con-

tributions just below the Fermi level and niobium contributions at the bottom

of the conduction band. The COHP calculations show that the covalent Nb–O

interactions are smaller than the Nb–N interactions. Consequently the Nb–O

interactions are more ionic than the Nb–N bonds.

5.3 Tantalum Oxynitride

The very first investigations of the ternary system Ta/O/N were performed

by Schönberg almost half a century ago [94]. Schönberg described four non-

stoichiometric phases with different O:N ratios, namely TaO0.10N0.90,

TaO0.25N0.75, TaO0.35N0.65, and TaO0.50N0.50. Eleven years later, another two

tantalum oxynitrides were published by Brauer et al. [67, 68] and by Buslaev et

al. [95] almost coincidently. These two TaON polymorphs contain pentavalent

Ta and an equal O:N ratio, i.e., they are stoichiometrically precise.

The first phase, β-TaON reported by Brauer et al. [67, 68] crystallizes in the

monoclinic system and is iso-structural with baddeleyite (ZrO2). Here, the tanta-

lum atom experiences sevenfold coordination by three oxygens

(1.99–2.15 Å) and four nitrogens (2.07–2.15 Å). Together they form mono-

capped, twisted trigonal prisms which are staggered to form zigzag layers [96].

The beautiful simplicity is best appreciated by noting the TaO3N4 prisms as

shown in Figure 20. Synthetically, β-TaON was found as an intermediate in the

synthesis of Ta3N5 from Ta2O5 using ammonia. Nevertheless, the phase can also

be made by inserting oxygen into the nitrogen network of Ta3N5. This tuning

of the bandgap by changing the O:N ratio (3 O2− =̂ 2 N3−) has already been

mentioned in the introductory section.
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Ta

N

O

Figure 20: The mono-capped TaO3N4 prisms within the β-TaON structure.

The preference for a specific anionic order inside β-TaON has been confirmed

by Armytage and Fender using powder neutron diffraction [93]. Recent first-

principles calculations performed on β-TaON are in nice agreement with these

experimental results [97, 98]. Only in 2002, however, it was found that the sup-

posedly intrinsic green color of β-TaON was caused by an impurity in the oxide

precursor which was contaminated with a little Nb2O5 [99]. Under the reaction

conditions, niobium oxide also incorporates nitrogen atoms and then forms a

black Nb(OxNy) phase. The interference of this black contamination with the

actual yellow color of β-TaON lets us rationalize the green color originally men-

tioned by Brauer et al.

The other low-temperature polymorph, α-TaON, has been reported to adopt a

more complicated hexagonal structure (see Figure 21), and it was first prepared

by Buslaev et al. [95, 100]. According to the authors, the first synthetic step is

the decomposition of NH4TaCl6 at 400 ◦C which leads to Ta2N3Cl. Then, a red

powderous phase, α-TaON, is obtained by the hydrolysis of this nitrile chloride:
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5 NH4TaCl6
400 ◦C

−−−−−→ Ta2N3Cl + Ta(NH2)2Cl3 + 2 TaCl5 + 16 HCl

Ta2N3Cl + 2 H2O −−−→ 2 α-TaON + NH4Cl

Despite this relatively simple synthesis, neither the nitrile chloride nor α-TaON

was reproduced by the competing group of Brauer et al. in subsequent publica-

tions [68, 101].

According to the Buslaev et al., both compounds (tantalum nitrile chloride

and α-TaON) were characterized by powder X-ray diffraction and infrared spec-

troscopy [95]. White — not red! — single crystals of α-TaON were obtained by

a transport reaction of powderous α-TaON with NH4Cl. The best crystals (size:

2–4 mm) grew in temperature gradients from 900–1000 ◦C and 1000–1100 ◦C,

and these crystals exhibited hexagonal symmetry. A first crude crystallographic

analysis resulted in space group P6/mmm and cell parameters a = 4.21 Å

and c = 4.04 Å. Tantalum is situated at the origin whereas either O or N are

stochastical located at 0 0 1
2

(see Figure 21, top). Because of the chosen sym-

metry, no other anion could be positioned, which trivially leads to the false

composition TaN0.50O0.50. This phase, however, seems to be different from the

non-stoichiometric one found by Schönberg in 1954.

A more elaborate analysis on a better-shaped single crystal gave evidence for

a superstructure. It is also characterized by a hexagonal cell and space group

P6/mmm but it exhibits a tripled volume (a = 7.31 Å, c = 4.04 Å). Small satel-

lites around the Bragg peaks indicated the possibility of an even more complex

structure such as the antigorite type [102]. Nevertheless, in this best structural

model the tantalum atoms are located on two crystallographic different posi-

tions, namely on 1a (0 0 0) and on 2c (1
3

2
3

0). The anionic sites for O and N

were given as 1b (0 0 1
2
) (A1), 2d (1

3
2
3

1
2
) (A2), and 3f (1

2
0 0) (A3) as shown

in Figure 21, bottom. While the metal/nonmetal composition is in harmony

with the formula TaON, the precise spatial distribution of the anions O/N over

the above sites could not be clarified because of the insensitivity of the X-ray

technique to this question.
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Figure 21: Crystal structures for α-TaON derived from single crystals, with the

first approximate proposal shown at the top and the more elaborate

one, correctly corresponding to the ideal TaON composition, at the

bottom. The latter structure report, with oxygen/nitrogen atoms sit-

uated at Wyckoff positions 1b, 2d, and 3f , is part of the Inorganic

Crystal Structure Database (entry number 20321).

In this detailed α-TaON structure drawn in Figure 21 (bottom), the Ta2

atom is coordinated by five anions in a trigonal bipyramidal arrangement. The

Ta2–A2 and Ta2–A3 bond lengths of 2.02 and 2.11 Å are quite similar to the

distances found in β-TaON (Ta–N: 2.06–2.15 Å, Ta–O: 1.99–2.15 Å). The other

tantalum atom, Ta1, exhibits an unusual twofold, 2.02-Å-coordination by two

A1 anions which was already part of the simpler substructure (see Figure 21,

top). Being aware of that sub-coordination, Buslaev et al. proposed a further
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saturation of the coordination sphere of Ta1 by the six nearest A3 atoms, which

would eventually lead to an eightfold (2+6) coordination. Nonetheless, the Ta1–

A3 distances (3.66 Å) seem to be fairly large, much larger than in the ǫ-TaN

structure [103] where similar features of second-nearest neighbor coordination

are also found, but with Ta–N = 2.66 Å.

5.3.1 β-TaON

The first electronic structure calculations on β-TaON have already been per-

formed by de Width et al. [97] using density-functional theory. The results con-

cerning β-TaON match very well with theirs, and both are in excellent, if not

superb agreement with the experimental values; for numerical data, see Table 11.

Experimental [93] Calculated

Lattice parameters (Å, ◦)

a 4.9581(5) 4.99

b 5.0267(6) 5.05

c 5.1752(6) 5.20

β 99.640(7) 99.80

Volume (Å3/f.u.) 31.79 32.30

Positions x y z x y z

Ta (4e) 0.292(1) 0.046(1) 0.213(1) 0.294 0.046 0.215

O (4e) 0.064(1) 0.324(1) 0.345(1) 0.063 0.328 0.346

N (4e) 0.4449(8) 0.7566(9) 0.4810(8) 0.442 0.744 0.481

Table 11: Experimental and theoretical structure data of β-TaON on the basis

of pseudopotential-GGA calculations.
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The difference between experiment and theory seems to be almost negligible,

in the case of the spatial parameters falling into the uncertainty range indicated

by the experimental standard deviations. The theoretical volume per formula

unit is a little larger (1.5%) than the experimental number, but this slight over-

estimation of the volume is a well-known feature of the GGA functional. The

preference of the given anionic order deduced from neutron diffraction can also

be confirmed by the present calculations, namely by explicit calculations of the

energies of all possible anionic arrangements. The experimentally observed or-

dered distribution, as numerical given in Table 11, is 0.65–1.71 eV lower in

energy than all the others.

Touching upon optical properties, measurements of diffuse reflectance spec-

tra on β-TaON were carried out by Orhan et al. and resulted in a (direct)

bandgap of 2.4 eV [99]. These electronic structure calculations performed with

the FLAPW method and the GGA functional yield a theoretical value of 2.1

eV for the direct bandgap, which reflects the DFT-typical underestimation. The

close correspondence between experiment and theory is surprising and should

not be overinterpreted since ground-state DFT calculations cannot be used in

terms of properties that are due to excited states.

For the sake of completeness, the electronic structure —also by means of the

LMTO method— has been recalculated in order to investigate the bonding situ-

ation within β-TaON using the Crystal Overlap Hamilton Population technique

(COHP) [31]. The results, based on the local-density approximation (LDA),

turned out to be so similar to the preceding GGA calculations that no switch

over to LMTO/GGA calculations was necessary but show them as they are.

An overview of this LDA band structure, density-of-states and COHP curves is

presented in Figure 22.
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Figure 22: Band structure, density-of-states (DOS) with local Ta contributions

in black, and Crystal Overlap Hamilton Population (COHP) of the

Ta–N and Ta–O bonds in β-TaON calculated with the TB-LMTO-

ASA method using LDA.

The calculations yield the (expected) result that the stability of β-TaON goes

back to perfectly optimized Ta–O and Ta–N bonding up to the top of the valence

band. The COHPs also show that the Ta–O bonding dispersion is slightly more

narrow (ca. 5%) than the Ta–N dispersion, in harmony with the less covalent

bonding of the O atom. Also, it is obvious that the Ta–N bond strength is higher

than for the Ta–O combination; there are four equal Ta–N bonds, summing up

to an integrated COHP (ICOHP) of −0.817 eV or, alternatively, −0.204 eV

per single Ta–N interaction. For the Ta–O combination, there are three nearest-

neighbor interactions amount to an ICOHP of −0.463 eV, that is, −0.154 eV

per Ta–O pair.

The band structure plot itself reflects a smaller, indirect LDA bandgap of 1.76

eV, whereas the direct LDA bandgap is 2.02 eV, still very close to the experi-

mental value and to the FLAPW/GGA result. As a conclusion, the agreement

between theoretical and experimental results for β-TaON is just excellent taking

into account that oxynitrides must be considered phases in which electronic cor-

relation may play a major role. Still, common DFT parameterizations perform
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astonishingly well.

5.3.2 α-TaON

At the beginning, the first aim was to theoretically clarify the experimentally

unsolved question of anionic order. Total-energy calculations on two ordered α-

TaON structures using space group P6/mmm were performed. The first struc-

ture contains the oxygen atoms at the 1b and 2d Wyckoff positions and the

nitrogen atoms at the 3f positions; in the second one, the atomic sites are

simply reversed. In addition, several total-energy calculations on α-TaON with

more different anionic distributions were carried out, i.e., corresponding to space

groups which are lower in symmetry but probably undistinguishable from each

other by a simple X-ray diffraction experiment. In order to speed up the calcula-

tions, all the atomic sites were allowed to adopt the energetically most favorable

coordinates, but the — probably fairly reliable — lattice parameters were held

constant. The numerical results of these calculations are given in Table 12.

Symmetry (1b) (2d) (3f) Energy (eV/f.u.)

P6/mmm 1 × O 2 × O 3 × N 0.139

P6/mmm 1 × N 2 × N 3 × O 0.739

P2/m 1 × O 2 × N 2 × O, 1 × N 0.654

P2/m 1 × N 2 × O 2 × N, 1 × O 0.000

Pm 1 × O 1 × O, 1 × N 2 × N, 1 × O 0.353

Pm 1 × N 1 × O, 1 × N 2 × O, 1 × N 0.309

Table 12: Theoretical total energies of α-TaON (lattice parameters fixed) as

a function of anionic ordering on the basis of pseudopotential-GGA

calculations; the lowest relative energy (denoted with 0 eV/formula

unit) corresponds to a total energy of −26.788 eV/f.u..
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The tabular entries manifest that the supposedly hexagonal α-TaON, for its

given lattice parameters, must be lower in symmetry since at least one alterna-

tive structure with an ordered arrangement of O and N atoms is truly lower in

energy. In order to investigate this structure in more detail, the original struc-

ture (entry number 1 in Table 12 with space group P6/mmm) was optimized

and the energetically most favorable one (entry number 4 with space group

P2/m) in terms of all structure parameters. That is to say, a further optimiza-

tion (energy minimization) was performed by also allowing for an adjustment

of the lattice parameters besides the atomic positions. The numerical results of

these optimizations are given in Table 13.

Experimental Calculated

Space group P6/mmm P6/mmm P2/m

Volume (Å3/f.u.) 62.32 50.00 49.85

Energy (eV/f.u.) −27.62 −27.79

Table 13: Experimental and theoretically optimized volumes/energies for α-

TaON on the basis of pseudopotential-GGA calculations.

For these complete optimizations, the low-symmetry structure is being some-

what lower in energy than the high-symmetry one. In both cases, however,

the calculated volumes are almost twenty percent smaller than the experimental

one, a consequence of strongly shortened lattice parameters. This huge differ-

ence cannot be explained by a shortcoming of the used functional but points

into another direction. For example, upon comparing the molar volume of the

well-characterized β-TaON (ca. 32 Å3) with the various ones for α-TaON given

in the above Table (ca. 50–62 Å3), the value for the α phase seems to be un-

acceptably large, giving a first hint for the implausibility of its structure. Still

taking the (almost) hexagonal structure of α-TaON seriously, Figure 23 shows

the oxygen/nitrogen-ordered optimized structure lowest in energy. The original

structural idea of α-TaON is unchanged, namely a layer structure composed of

linearly two-coordinate Ta1 and five-coordinate (trigonal bipyramid) Ta2.
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Ta O

N

Figure 23: Energetically mostly favored anionic arrangement calculated for α-

TaON on the basis of pseudopotentials and the GGA.

A preference for linear Ta–N chains and for a trigonal bipyramid that is built

by two nitrogens in the plane and another three oxygens (see Figure 23) is ob-

served, thereby breaking the space group symmetry due to the special site 3f .

Despite the too large molar volume, the calculated planar Ta–O/N distances of

1.90/1.93 Å are significantly shortened in comparison with the experimental (or

theoretical) values found for β-TaON (Ta–O: 1.99−2.15 Å, Ta–N: 2.06–2.15 Å).

Reconsidering that α-TaON was experimentally reported to be an insulator or

semiconductor (red powder, colorless single crystals), one should expect a signif-

icant bandgap in the electronic structure. In order to stick to the experimental

data as close as possible, the experimental structure of α-TaON (ICSD entry

20321, space group P6/mmm) for the density-of-states calculations based on
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the most accurate method (Wien2k, GGA) were used. This result, including the

local projections of tantalum, nitrogen, and oxygen given in black, is plotted in

Figure 24.
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Figure 24: Theoretical density-of-states (DOS) of α-TaON, including tantalum,

nitrogen and oxygen projections in black, on the basis of FLAPW

and the GGA.

Surprisingly, the experimentally communicated α-TaON turns out to be a

metal and does not show any bandgap at all, which is in total conflict with

either a red or colorless solid. Although it is well-known that DFT systematically

underestimates bandgaps [104], at least a small bandgap and certainly not a

high DOS at the Fermi level, mostly caused by Ta and N, should be expected.

Without any doubt, theory and experiment do not at all match for α-TaON.

In a last attempt to question the experimental structure of α-TaON, a diffrac-

tion diagram [105] simulated, using the experimentally reported lattice and spa-

tial parameters given by Buslaev et al. [95], ICSD entry 20321, which itself is

based on the structure determination performed on a single crystal. Very fortu-
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nately, the authors also supplied an experimental powder diffraction diagram in

their original communication but which probably corresponds to the bulk phase,

not necessarily to the single crystal investigated. Both diagrams are presented

together in Figure 25.
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Figure 25: Experimentally reported diffraction diagram of α-TaON using

Cu−Kα1 radiation (bottom) and simulated diffraction diagram (top)

on the basis of the ICSD entry number 20321.

Clearly, the differences between the experimental and simulated diffraction

diagrams are so large both in terms of intensities and positions that the α-

TaON structure must also be questioned on experimental ground provided that

the bulk phase was identical with the single crystal. If that is the case α-TaON

cannot adopt the experimentally proposed structure by Buslaev et al. if their

own diffraction diagram is taken seriously.
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5.3.3 Discussion

Electronic structure calculations of different sophistication (pseudopotentials,

LAPW, LMTO; LDA & GGA) on β-TaON are in excellent agreement with the

experimental results, thereby confirming prior results of de Width et al. [97].

The calculated volumes are very near the experimental volume, and also the

calculated bandgaps are surprisingly close to the experimental value of (indirect)

2.4 eV. The analysis of chemical bonding yields the expected result of higher

ionicity for Ta–O bonding compared to Ta–N although the latter one turns out

to be stronger. In short, electronic structure calculations of DFT type do not

pose strong difficulties with respect to energies, spatial parameters etc. despite

the significant amount of electronic correlation to be expected in these materials.

The calculated properties of α-TaON, however, do not at all agree with the

experimental ones proposed by Buslaev et al. The difference between calculated

and experimental volumes — ca. 20% — is simply too large to assume that

the error is caused by the approximations of the DFT functional; instead, it

questions the experimental structure. Also, the aberration of the experimental

molar volume compared to the one of the β-phase is absurdly large. The huge

difference in molar volumes is also reflected by a huge difference in the total

energies for the optimized structure of the (here questioned) α-TaON and the

(well-characterized) β-TaON. Upon approximating enthalpy differences by dif-

ferences in total electronic energies, the transformation reaction between the

two polymorphs would yield

α-TaON −→ β-TaON + 314 kJ/mol,

which is extraordinary large for a phase transformation. This huge amount of

energy simply indicates that the proposed structure of α-TaON is an extremely

high-lying structure alternative on the energy axis; too high to be taken seri-

ously. Finally, a comparison between simulated and experimental XRD patterns

clearly shows that the experimentally proposed structure is incompatible with

the experimental data given by the authors; until now nobody has published

a corresponding observation before. Excluding simple faults in the XRD data

handling, the above comparison further supports the used electronic structure
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results.

As it seems, α-TaON and its crystal structure have been part of the crystal-

chemical literature since 1966 and have therefore survived the regular checks

applied to the digitally stored structure information; thus, α-TaON is still con-

tained (2005) in the Inorganic Crystal Structure Database (ICSD) under entry

number 20321, without any warning sign. The electronic structure calculations

together with Buslaev’s own diffraction diagram manifest that this entry must

be removed from the above database in order not to badly influence secondary

data generated from the databases.

5.3.4 Mixed Oxynitrides of Niobium and Tantalum

In the previous section it was shown that the baddeleyite structure is the only

stable modification of TaON at ambient conditions. Since NbON adopts the

same structure and both pentavalent ions have the same ionic radius Nb5+/Ta5+:

0.69 Å [84], it should be possible to synthesize mixed oxynitrides containing both

tantalum and niobium as well. Similar experiments have already successfully

been performed on tantalum and niobium nitrides [106]. In the case of the

oxynitrides, this exchange can be interesting due to the possibility of bandgap

tuning without changing the anionic sublattice. Remind that NbON is a blue

and TaON is a yellow semiconductor whose bandgaps are mainly determined

by the nitrogen states at the Fermi level and the transition-metal states at

the bottom of the conduction bands. The latter states will of course changed

when tantalum is substituted by niobium. GGA-pseudopotential calculations

were performed on TaON, in which tantalum is substituted by niobium. For the

reason of simplicity and computational effort only three different compositions

are included and shown in the Table 14. To determine the stability of the mixed

compounds, the energy of these compounds is compared with the energy of

the simple ternary oxynitrides (TaON, NbON). The energy difference (∆E) is

calculated by:

∆E = E(Ta4−xNbxO4N4) − x · E(NbON) − (4 − x) · E(TaON). (2)
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All total energies are negative, therefore a negative value of (∆E) implies a

stabilization of the mixed compound.

Composition Energy ∆E

Ta4O4N4 −124.12 -

Ta3Nb1O4N4 −121.65 −0.02

Ta2Nb2O4N4 −119.16 −0.02

Ta1Nb3O4N4 −116.66 −0.01

Nb4O4N4 −114.16 -

Table 14: Energy of the niobium substituted tantalum oxynitrides in comparison

with the simple ternary compounds, TaON and NbON. All energies

are in eV. ∆E is calculated relative to the energies of NbON and

TaON. (Equation 2)

From the enthalpic point of view the energy gain of mixed oxynitrides is

very small. They are even too small to state that one composition is preferred.

The configurational entropy, however, will certainly prefer the mixed phases,

so they might be experimentally accessible. Within these mixed phases several

different cation arrangements are possible. There is, however, no preference for

one specific cation order. The cations may be randomly distributed.

The electronic structure of Ta2Nb2O4N4 is calculated with LMTO and the

calculated bandgap is compared with the ones from TaON and NbON. All com-

pounds were assumed to adopt the baddeleyite structure and resemble the pre-

ferred anion order from the previous sections. The band structures are shown

in Figure 26.
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Figure 26: Band structure of Ta2Nb2O4N4 in the baddeleyite structure on the

left and density-of-states with the tantalum projections (middle) and

the niobium projections (right).

The calculations result in a direct bandgap of 1.4 eV, which is smaller than

the ones of NbON and TaON (see previous sections). One can notice the higher

niobium contribution in the density-of-states at about 2 eV, in comparison to

the tantalum states, which obviously caused the smaller gap. A smaller bandgap

indicates an absorption of larger wavelengths and a corresponding change of

color to the energetically higher part of the visible spectrum. A quantitative

prediction can not be given here since only ground-state DFT calculations are

performed, but it can be said that a significant change in bandgap for TaON

can be expected when tantalum is substituted by niobium. This leads to the

overall conclusion that niobium doped TaON can be synthesized and will lead

to a change in color and therefore can easily be used for bandgap tuning.

5.3.5 High-pressure phases of NbON and TaON

In this section the high-pressure behavior of NbON and TaON is investigated

and it will be searched for possible high-pressure phases. Since the chemical
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behavior of NbON and TaON is quite similar, the diagrams are referring to

TaON for simplicity. Whenever there are explicit differences between NbON

and TaON, these are specified in the text.

At the beginning, the search for high-pressure phases of NbON and TaON

started with eleven AB2 structures which have larger coordination numbers than

the sevenfold coordination of baddeleyite. Then, all structure types were allowed

to adopt TaON and NbON through a minimization of the total energies by

means of an independent optimization of the lattice parameters and the atomic

sites. The most important types are listed in Table 15. The effective coordination

number is calculated after Brunner and Schwarzenbach [107]. A complete list

of all calculated types is given in Appendix D. As expected, the baddeleyite

Structure type ecn E0 V0 ∆E ∆V p∗

Baddeleyite 6.5 −31.03 32.31 0 0

Cotunnite 8.1 −30.25 28.19 0.78 −4.12 30

Fluorite 7.6 −30.11 30.95 0.92 −1.36 108

Bismoclite 8.3 −30.01 27.99 1.02 −4.32 38

Table 15: Structure type, effective coordination number of the tantalum atom

(ecn), total energy (E0) and volume (V0) at zero pressure, relative

energy (∆E) and relative volume (∆V ) with respect to the lowest

energy-configuration for several hypothetical polymorphs of TaON.

p∗ indicates an approximate transition pressure. Energies are given in

eV and volumes in Å3 per formula unit TaON, p∗ in GPa.

structure turns out as lowest in energy. A pressure-induced phase transition

into the cotunnite type is predicted at roughly 30 GPa. Here, the zeroth-order

transition pressure (p∗ = −∂E
∂V

) serves as a crude approximation which lets us

exclude too high-lying structure types but detect plausible ones. Given that a

lucrative polymorph is identified, the energy-volume dependence is calculated in

detail and plotted by means of an energy-volume diagram (see Figure 27). For

reasons of brevity, the (similar) diagram of NbON is not shown. The numerical
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Figure 27: Calculated energy-volume diagram of TaON in different structure

types.

data of NbON are slightly different from TaON, reflecting the different atomic

natures but still preferring the baddeleyite structure and keeping the energetic

ordering. Like in the case of VON, the enthalpy-pressure dependence of TaON

in different structure types is calculated. The results for TaON are shown in

Figure 28.
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Figure 28: Theoretical enthalpy-pressure diagram of TaON.
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At approximately 31 GPa, a phase transformation of TaON from baddeleyite

to cotunnite appears. The cotunnite type is characterized by a ninefold coordi-

nation of the tantalum atom. The anions form trigonal prisms, capped on all

rectangular faces, around the central metal atom, as shown in Figure 29. In the

present case, there are four oxygen atoms and five nitrogen atoms bonded to

the tantalum with distances of 2.04–2.33 Å.

N

O

Figure 29: Tantalum coordination in the high-pressure cotunnite structure of

TaON, a distorted trigonal prism capped on all rectangular faces.

NbON is also predicted to exhibit almost the same high-pressure behavior

as TaON. A pressure-induced phase transition of NbON (baddeleyite) into the

cotunnite structure sets in about 27 GPa. Within the cotunnite type, niobium

has the same ninefold coordination like tantalum (Figure 29). It is worthwhile

studying whether an order of the anions can be found for phases, thus different

anion arrangements were calculated within this structure type for NbON as well

as for TaON. The energy differences between the several arrangements, however,

are tiny (less than 0.04 eV/f.u.). This leads to the conclusion that no specific

anion order is preferred within the high-pressure phases of TaON and NbON;

both might well be disordered with respect to O and N.

Electronic-structure calculations on TaON in the baddeleyite structure were
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first performed by de Width et al. [97] and extended by this work through a

chemical bonding analysis. The latter calculations yield a direct bandgap of

2.1 eV which nicely corresponds to the actual yellow-colored solid. The elec-

tronic structure of the cotunnite type of TaON also using LMTO theory and

the GGA functional was calculated. The density-of-states and a closer look into

the bonding situation of TaON are given in Figure 30.
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Figure 30: Density-of-states of TaON in the cotunnite structure with local 3d

projections and Crystal Orbital Hamilton Populations (COHP) for

the Ta–Ta, Ta–O and Ta–N interactions.

These calculations predict high-pressure TaON as a semiconductor with a very

small bandgap of 0.15 eV. There are strong tantalum–oxygen and tantalum–

nitrogen interactions below the Fermi level which stabilize this high-pressure

phase. The tantalum–tantalum interactions are small, simply because of the

large interatomic distance of 3.10 Å. As expected, the density-of-states and

COHP curves of high-pressure NbON look very much the same. One major dif-

ference, however, is that NbON is predicted to be a metallic conductor. It is

clear that, formally, there is still a pentavalent niobium (Nb5+) but parts of the

electronic density formally located in 2p states of O and N have been delocalized

over the entire structure. Similar transformations of insulating (or semiconduct-
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ing) materials into metallic ones have been reported before whenever pressure

is applied [108].

5.3.6 Anion order in VON, NbON and TaON

The anion order is one of the main characteristics of an oxynitride compound

and therefore a short summation will be given here. The arrangement of the

anions plays a major role and is already often discussed in this work. Within

the 3d transition-metal oxynitrides, the anions are randomly distributed. On the

contrary, the stoichiometric compounds VON, NbON, and TaON show a strict

order for the anion arrangements. The relative energies of the different anion

arrangements in the baddeleyite structure of VON, NbON and TaON are shown

in Table 16. Recall that in the smallest unit cell of the baddeleyite structure,

five different anion arrangements are possible.

Position=Occupation VON NbON TaON

A1 = 4× N 0 0 0

A1 = 3× N; 1× O 12.0 16.7 19.2

A1 = 2× N; 2× O 17.5 25.2 28.8

A1 = 1× N; 3× O 18.4 34.3 41.2

A1 = 4× O 11.3 32.3 15.7

Table 16: Theoretical relative energies (kJ/mol) as a function of anionic ordering

for VON, NbON, and TaON.

All three oxynitrides prefer the same anion order, where the A1 position is

occupied only by nitrogen. The relative differences between the anion arrange-

ments decrease when moving from TaON to VON. Until now it is not entirely

clear where this specific anion order originates from. Trivially, different anion oc-

cupations lead to different total energies, but the composition does not change.

This means that in the case of the baddeleyite structure the cations are always

surrounded by seven anions. In the lowest-energy configuration the cation is

coordinated by four nitrogen and three oxygen atoms. The cation–anion inter-
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actions are always strongly bonding (see Figure 22). A different coordination of

the cation will consequently not lead to a significant energy gain or loss. On the

contrary, the anions are surrounded either by four cations (position A1) or by

three cations (position A2). From the electrostatic point of view, the different

occupations of the anion positions should lead to a change of the Coulomb part

of the lattice energy. These purely electrostatic calculations were performed us-

ing the MAPLE (Madelung part of lattice energy) program package [109, 110],

assuming ideal ionic charges of +5, −2 and −3 for V, O and N, respectively.

Hereby only the attractive Coulomb interactions are taken into account. The

calculations were performed for the two extreme cases, where once the A1 posi-

tion is only occupied with nitrogen (A1 = 4× N) and once with oxygen (A1 =

4× O). The MAPLE value for the first case is 87073 kJ/mol and for the second

case 84744 kJ/mol. This indicates that in the first case (A1=4× N) the Coulomb

energy is much larger and therefore stabilizes this specific anion arrangement.

The large MAPLE value for A1 = 4× N scenario is easily explained; only in this

particular case is there a maximum number of cations around the most strongly

charged (N3−). A substitution of N3− by O2− therefore must result in a lowered

Madelung field.

These simple electrostatic calculations explain why one anion order

(A1 = 4× N) is favored over all others. It does not, however, explain why

the other ordered phase (A1 = 4× O) for VON is the second lowest in energy.

Therefore the anion–anion interactions (N–N, N–O, and O–O) are studied for

the five different anion arrangements from Table 16. The bonding analysis is

performed using the COHP technique. The integrated COHP (ICOHP) can be

regarded as an indicator of the bond strength. The ICOHPs of the N–N, N–O,

and O–O bonds for the five different anion arrangments of VON are calculated

and shown in Table 17. The ICOHP values are based on the optimized lat-

tice parameters and atomic positions and the bondlengths in every distribution,

apart from minor changes, are almost the same.
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Position=Occupation N–N N–O O–O

A1 = 4× N −0.2004 −0.0262 −0.0106

A1 = 3× N; 1× O −0.0735 −0.0209 −0.0106

A1 = 2× N; 2× O −0.0552 −0.0634 −0.0466

A1 = 1× N; 3× O −0.0245 −0.0296 −0.0272

A1 = 4× O −0.2697 −0.0128 −0.0065

Table 17: ICOHP values for the N–N, N–O and O–O bonds of VON in the

baddeleyite structures for different anion arrangements; energies in

eV/bond.

Surprisingly, all anion–anion interactions are slightly bonding reflected by

the negative ICOHP values. The ordered phases are the ones where the A1

position is occupied by only one sort of anions (A1 = 4× N and A1 = 4×

O). The strongest bonding interactions are found for the N–N bond in these

ordered phases. When the anion order is changed (e.g. A1 = 3× N; 1× O),

the N–N bond within this new arrangement is much weaker, as can be seen at

larger ICOHP values (−0.0735 eV/bond). The other bonds (N–O and O–O) are

less sensitive with respect to such an exchange. Qualitatively, these results are

in good agreement with the total energies from Table 16, where the ordered

phases are also preferred over the disordered ones. The much stronger cation–

anion interactions, however, play a more decisive role in the preference for one

specific anion order. In this case, the anion–anion interactions only support this

preference. It can generally be said that if the anion positions are coordinated

by a different number of cations, the cation–anion interactions will determine

whether there is a specific anion order or not. If the anion positions are equally

coordinated, the anion–anion interactions become more important.
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In this work the chemical properties of oxynitrides of transition metals are in-

vestigated. These investigations are performed on a theoretical basis using first-

principles calculations. First, the research was focused on the 3d transition-

metal oxynitrides (Sc–Ni) where the structural properties of only CoO0.5N0.5,

VO0.5N0.5 and CrO0.5N0.5 are known. These experimental results could be per-

fectly reproduced. Moreover, the structural properties of the other oxynitrides

are predicted. The structure changes from the rocksalt structure for the early 3d

transition-metal oxynitrides (Sc–Mn) to the zinc blende structure for the later

ones (Fe–Ni). This phenomenon can be explained in a qualitative way by a de-

tailed chemical bonding analysis with use of the COHP technique. It shows that

for a higher electron count the Fermi level lies in the metal–metal antibonding

region of the COHP for the rocksalt structure and therefore destabilizes this

structure type. The structure changes to the zinc blende where these metal–

metal antibonding interactions are less pronounced. Supercell calculations on

some of these 3d transition-metal oxynitrides revealed no pronounced prefer-

ence for one specific anion order, even randomly distributed nitrogen and oxygen

atoms are favored. Furthermore, it is this random anion arrangement which an-

nihilates the magnetic moments on the metal atom in the case of CoO0.5N0.5. For

this reason, all the oxynitrides containing ferromagnetic metals (Fe, Co and Ni)

are predicted as being nonmagnetic. The search for magnetic transition-metal

oxynitrides should be focused on MnO0.5N0.5, where the calculated energy dif-

ference between the nonmagnetic and ferromagnetic state is large enough to

withstand the influence of the anion distribution. Although a disordered anion

arrangement will entropically stabilize the oxynitride, all the oxynitrides remain

metastable with respect to the corresponding oxides and nitrides. This of course,

73
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complicates the synthesis of a 3d transition metal enormously.

Second, the stoichiometric oxynitrides of the fifth-group are investigated. Until

now there is no report about any stoichiometric vanadium oxynitride (VON).

A high-pressure synthesis of VON is proposed, starting from V2O5, VN and

N2. It should be accessible at pressures beyond 12 GPa where VON adopts the

baddeleyite structure and is a small band gap semiconductor (0.6 eV). This is in

good agreement with the pressure-homologue rule of Neuhaus; VON is waiting

for its discovery.

Within the literature there exist two possible phases of TaON, which is one of

the most investigated transition-metal oxynitrides. One phase adopts the bad-

deleyite structure and the other has a complicated hexagonal structure. The

calculated results of TaON in the baddeleyite structure match almost perfectly

with the experimental data. The hexagonal structure, however, distorts during

the relaxation of the lattice parameters and the atomic positions. A detailed

investigation of this phase showed that TaON cannot exist in this structure and

should therefore be erased from any crystal structure databases. Niobium oxyni-

tride also exhibits the baddeleyite structure, but is less investigated as TaON.

The experimental lattice parameters and atomic sites could be very well repro-

duced. For the first time the electronic structure of NbON in the baddeleyite

structure is calculated and results in a band gap of 1.7 eV, which nicely corre-

sponds to the actual blue-colored semiconductor. Electronic structure calcula-

tions on mixed tantalum and niobium containing oxynitrides show a decrease

of the band gap. Since our theoretical methods are limited to the ground state,

only a qualitative interpretation is allowed here. But it can be said that niobium

doped TaON will change its color and therefore may be easily used for band gap

tuning, without changing the anionic sublattice.

A pressure-induced phase transition of NbON and TaON is suggested to hap-

pen at 27 and 31 GPa respectively. The structure changes from baddeleyite

to cotunnite, which goes together with an increase of the coordination number

of the metal atom. Electronic structure calculations of TaON in the cotunnite

structure result in a very small band gap of 0.15 eV, NbON is even predicted

to be a metal. Within these high-pressure phases of TaON and NbON, no spe-
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cific anion order is preferred, both might well be disordered with respect to O

and N. On the contrary these oxynitrides prefer one specific anion order when

they exhibit the baddeleyite structure. The reason is found in the cation–anion

interactions for this structure type. The anion–anion interactions play a minor

role.

Overall it can be said that this work answers a few questions of the broad

field of research of the transition-metal oxynitrides and it hopefully assists to

find an appropriate synthesis of some of the calculated oxynitrides.
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A. Technical Details

A.1 LMTO

The program used was TB-LMTO-ASA 4.7 [30]. Effects of exchange and corre-

lation were treated in the local density approximation (LDA) as parameterized

by Vosko, Wilk and Nusair [111], augmented by the gradient-based corrections

of Perdew and Wang (GGA) [16]. All results rely on well-converged structures

with respect to the k-point sampling. The number of irreducible k-points was

about 300–2500, depending on the investigated system. The iterative procedure

was stopped when an energy convergence of 10−5 Ry was reached. LMTO was

mostly used for electronic structure calculations and COHP bonding analysis.

A.2 Wien2k

The required input files were prepared with the use of w2web, the fully web-

enabled interface to Wien2k. Within this full-potential method the GGA func-

tional, parameterized by Perdew, Burke and Ernzerhof [112] was always used.

Convergence of the total energy (10−4 Ry) with respect to the plane-wave expan-

sion parameter RMTKmax and the k-point sampling was checked. A RMTKmax

value of 9 turned out to be sufficient for the accuracy of the calculated total

energy.

A.3 VASP

The Vienna ab initio Simulation Package (VASP) was used for relaxation of

structures, calculation of bulk moduli, high-pressure phases and synthesis. If not
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explicitly mentioned, the exchange and correlation was treated in the general-

ized gradient approximation [16] and the interaction between the ions and the

electrons was described by ultra-soft Vanderbilt pseudopotentials [113]. The elec-

tronic as well as the ionic ground state was calculated using the conjugate gradi-

ent optimization routine until the residual force was smaller than 5×10−3 eV/Å.

Again all results rely on well-converged structures with respect to cut-off energy

(500 eV) and k-point sampling. High-pressure calculations were achieved by

manually decreasing the volume of an unit cell. The unit cell was allowed to

relax its lattice parameters and atomic sites, but within the constraints of its

symmetry and the pre-set volume, to maintain the external pressure. This was

done for several steps (−10% – +10%) leading to an energy-volume plot, from

which an enthalpy-pressure diagram can be calculated by Lumpen 3.1 [114], a

script generated for easily fitting E − V data with a Murnaghan or Birch-fit.

A.4 wxDragon

The input files of the used programs were either generated or checked by one of

the best visualization programs in theoretical chemistry; wxDragon [115]. Also

all pictures of geometric (unit cells, atoms) and electronic (bandstructure, DOS

and COHP) were visualized by wxDragon and exported as postscript.



B. Crystal Data

Table 18: Experimental and calculated properties of 3d transition-metal nitrides

(above) and oxides (below).

Compound structure type experimental theoretical

(space group) a [Å] magnet. a [Å] magnet.

ScN NaCl (Fm3m) 4.44-4.51 [55] - 4.54 0

TiN NaCl (Fm3m) 4.22-4.24 [56] - 4.26 0

VN NaCl (Fm3m) 4.13-4.15 [39, 80] - 4.13 0

CrN NaCld (Pnma) a = 5.76; b = 2.96 AFM a = 5.74; b = 3.00 AFM

c = 4.13 [57] c = 4.12

MnN NaCld a = 4.26; c = 4.19 [60] AFM a = 4.22; c = 4.13 AFM

FeN ZnS (F43m) 4.31 [62] - 4.24 0

CoN ZnS (F43m) 4.30 [63] - 4.26 0

NiN ZnS (F43m) - - 4.34 0

ScO NaCl (Fm3m) 4.54 [36, 37] - 4.52 0

TiO NaCl (Fm3m) 4.18 [38] - 4.29 0

VO NaCl (Fm3m) 4.07 [39, 80] - 4.13 0

CrO NaCl (Fm3m) - - a = 4.43; b = 4.23 AFM

MnO NaCl (Fm3m) 4.45 [40, 41] AFM 4.45 AFM

FeO NaCl (Fm3m) 4.33 [42] AFM 4.29 AFM

CoO NaCl (Fm3m) 4.25 [43, 51] AFM 4.23 AFM

NiO NaCl (Fm3m) 4.19 [38] AFM 4.20 AFM
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C. Results on VON

Table 19: Structure type, coordination number of the vanadium atom (cn),

total energy (E0) and volume (V0) at zero pressure, relative energy

(∆E) and relative volume (∆V ) with respect to the lowest-energy

configuration for several hypothetical polymorphs of VON. Energies

are given in eV and volumes in Å3 per formula unit VON.

Structure type cn E0 V0 ∆E ∆V

α-Cristobalite 4 −26.209 68.35 0 0

β-Trydimite 4 −26.206 68.36 0.003 0.01

α-ZnCl2 4 −26.206 68.38 0.003 0.03

α-Quartz 4 −26.153 55.22 0.056 −13.13

β-Quartz 4 −26.150 55.21 0.059 −13.14

PbCl2 4 −26.098 45.73 0.111 −22.62

β-Cristobalite 4 −26.093 68.96 0.116 0.61

β-ZnCl2 4 −26.091 68.96 0.118 0.61

Anatase 6 −26.063 32.85 0.146 −35.50

PbO2 6 −26.000 34.38 0.209 −33.97

TeO2 6 −25.980 31.55 0.229 −36.80

VO2 6 −25.980 31.55 0.229 −36.80

Baddeleyite 7 −25.977 27.62 0.232 −40.73

CaCl2 6 −25.914 32.02 0.295 −36.33

Rutile 6 −25.913 31.78 0.296 −36.57

Brookite 6 −25.911 31.78 0.298 −36.57

FeOCl 6 −25.884 36.37 0.325 −31.98
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Structure type cn E0 V0 ∆E ∆V

ZrO2 (Orthorh.) 6 −25.880 32.81 0.329 −35.54

ZrO2 (Tetragon.) 6 −25.837 37.53 0.372 −30.82

HgCl2 5 −25.845 43.39 0.364 −24.96

AlO(OH) 6 −25.817 33.04 0.392 −35.31

ZnO(OH) 6 −25.787 47.76 0.422 −20.59

Cu(OH)Cl 6 −25.773 40.39 0.436 −27.96

FeO(OH) 6 −25.735 38.70 0.474 −29.65

CaCl2 6 −25.748 30.51 0.461 −37.84

Cu2O 4 −25.706 30.90 0.503 −37.45

HgI2 4 −25.656 49.55 0.553 −18.8

CdCl2 6 −25.602 39.14 0.607 −29.21

HgBr2 6 −25.601 39.20 0.608 −29.15

CdI2 6 −25.600 38.16 0.609 −30.19

SiS2 4 −25.394 48.38 0.815 −19.97

EuOF 7 −25.390 28.29 0.819 −40.06

ZrOS 7 −25.303 28.89 0.906 −39.46

CdI2 6 −25.148 39.12 1.061 −29.23

TaS2 6 −25.145 37.83 1.064 −30.52

MoS2 6 −25.143 34.34 1.066 −34.01

PbFCl 8 −24.808 27.11 1.401 −41.24

Fluorite 8 −24.806 27.10 1.403 −41.25

PbFCl 9 −24.603 27.17 1.606 −41.18

AlB2 12 −20.838 25.22 5.371 −43.13



D. Results on high-pressure phases

of TaON

Table 20: Structure type, effective coordination number of the tantalum atom

(ecn), total energy (E0) and volume (V0) at zero pressure, relative

energy (∆E) and relative volume (∆V ) with respect to the lowest

energy-configuration for several hypothetical polymorphs of TaON.

p∗ indicates an approximate transition pressure. Energies are given

in eV, the volumes in Å3 per formula unit TaON and the transition

pressure p∗ in GPa.

Structure type ecn E0 V0 ∆E ∆V p∗

Baddeleyite 6.5 −31.03 32.31 0 0

ZrO2 (Orthorh.) 2× 6.2, 2× 6.5 −30.45 31.62 0.58 −0.69 134

ZrO2 (Tetragon.) 7.1 −30.33 32.24 0.70 −0.07 1600

Cotunnite 8.1 −30.25 28.19 0.78 −4.12 30

ZrNCl - −30.14 43.76 0.89 11.45 -

Fluorite 7.6 −30.11 30.95 0.92 −1.36 108

YOF 8.0 −30.09 30.77 0.94 −1.54 98

Bismoclite 8.3 −30.01 27.99 1.02 −4.32 38

PbFCl 8.0 −29.98 30.78 1.05 −1.53 110

LaSeF 12.0 −25.16 27.89 5.87 −4.42 213

AlB2 12.0 −24.87 28.16 6.16 −4.15 238
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