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ABSTRACT

This thesis develops the concept of minimum-time (Bang-Bang) controllers

and their application to missile control. Based on Pontryagin's minimum

principle, a minimum-time second order controller is derived. This controller is

then applied to control of a vertically-launched surface-to-air missile. In the

boost phase of missile flight, the minimum-time controller drives the missile

body axis from vertical to a commanded angle in minimum time. In the terminal

phase of the missile-target engagement, the minimum-time controller drives the

time rate of change of the line of sight angle to zero in minimum time. The

results obtained with the minimum time controller are compared with those

obtained with the Proportional Navigation control algorithm, which is

commonly used in tactical surface-to-air and air-to-air missile.
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1.1

DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has

been made, within the time available, to ensure that the programs are free of

computational and logical errors, they cannot be considered validated. Any

application of these programs without additional verification is at the risk of the

user.
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I. INTRODUCTION

In modern missile warfare, new technologies are producing faster, more

accurate anti-ship cruise missiles (ASCM). They are able to fly at very low

altitudes and perform a high speed 'pop-up' maneuver just before impact, in

order to defeat the ship's missile defenses, as shown in Figure 1. In order to

counter the advanced ASCM's, new control schemes must be developed to

Figure 1. Anti-ship cruise missile terminal maneuver

enable the ship's surface-to-air missiles to counter this threat.

The aim of this thesis is to illustrate the concept of Bang-Bang control and

how it applies to control of vertically-launched surface-to-air missiles. Bang-

Bang control can be used in the missile boost phase in order to turn the missile

downrange in minimum time, and also in the terminal phase, where the missile

must react very quickly in order to intercept a maneuvering target.

This work applies the minimum-time (Bang-Bang) control concept to

vertically-launched surface-to-air missiles. In Chapter II, the concept of



control is defined and solved for a second order system. In Chapter III, the

equations of motion for a vertically-launched missile in the boost and terminal

phases are developed. In Chapter IV, the boost simulations comparing missile

trajectory versus maximum thrust vector control (TVC) angle are presented.

In Chapter V, the terminal phase missile simulations are presented for a non-

maneuvering target and also for a maneuvering target.



II. CONCEPT OF BANG-BANG CONTROL

In this section the form of the optimal control for a particular class of

systems will be determined by using Pontryagin's Minimum Principle.

A. PONTRYAGIN'S MINIMUM PRINCIPLE

It shall be assumed that the state equations of the system are of the form

x = Ax + Bu, (2-1)

where A is an n by n array, B is an n by m array, and A and B may be

explicitly dependent on the states and time. For this research it will be assumed

that there is a single input; therefore, m is 1. It is specified that the admissible

controls must satisfy the inequality constraints

N. < u(t) < N+ (2-2)

where N. and N+ are the known lower and upper bounds for the control input.

It is desired to drive x from an initial state x(to) to to a desired final state x(tf),

where to is the problem start time and tf is the problem end. The optimal control

is that control which drives the state from its initial state to desired final state

using the least "cost". The cost can be any desired measure of system

performance. In the case of a minimum-time controller, the cost function can

be represented as

j = Jdt = t
f
-t .

l° (2-3)



Pontryagin's Minimum Principle states that the optimal control, u*, which

minimizes the cost function, must minimize the Hamiltonian, which is defined as

H(x(t), u(t), p(t), t)= l+pT(t)(Ax(t)+Bu(t» (2-4)

where p(t) is a Lagrange multiplier vector, and is arbitrary. p(t) can be defined

as the 'costates' of the system, and p(t) can be written as

P(t) =
Pi(t)

i_p2 (t)_r

(2-5)

The necessary condition for the optimal control u* to minimize the cost

function J is

H(x*(t),u*(t),p*(t),t) < H(x*(t),u(t),p*(t),t) (2-6)

for all times between to and tf and for all admissible controls. The asterisks in

equation (2-6) represent the optimum values, and thus,

l+p*T(t)Ax*(t)+p*T(t)Bu*(t)>l+p*T(t)Ax(*t)+p*T(t)Bu(t) (2-7)

Therefore

p*T(t)Bu*(t) < p*T(t)Bu(t) (2-8)

for all admissible u(t) and for all times from tin itial to t<-mal .
If u(t) is constrained to

±N, the optimal control U*(t) is

-•(»)-{-" ;°
r

r°U-Nsign(p;) (2-9)

l+N forp
2 <0J

v '



This indicates that the time-optimal control is 'Bang-Bang'; that is, the

optimum control switches between its maximum positive and negative values.

There are also three ideas which deserve mention:

(1) (Existence)

If all the eigenvalues of A have nonpositive real parts, then an optimal

control exists that transfers any initial state xo to the origin. If there

are positive eigenvalues (i.e. unstable roots), there may be some

region of the state space where the system is uncontrollable.

(2) (Uniqueness)

If an optimal control exists, then it is unique.

(3) (Number of Switchings)

If the eigenvalues of A are all real, and a (unique) time-optimal

control exists, then the control can switch at most (n-1) times.

Thus, an nth-order system having all real, non-positive eigenvalues has a unique

time-optimal control that switches at most n-1 times (not counting switching off

at time tfinai). For complex conjugate eigenvalues, more than n-1 switchings

may be required.[l]

B. APPLICATION TO A SECOND ORDER SYSTEM

In order to illustrate the minimum principle, consider the second order

differential equation

x = u, (2-10)

or in state space,



L A2.

"0 1T xi] |~o'

x2 [l
(2-11)

From the minimum principle, the time-optimal control for this system is ±N.

Thus the segment of optimal trajectories can be found by integrating the state

equations (2-11), with u=±N, from time to to t. This yields the results

x
2 (t)

= ±Nt + C
1

(2-12)

X!(t) =±N—+C
1
t+C2 (2-13)

where

C
1
=+Nt + x2 (t ) (2-14)

and
C2 =TN^-C1

t + x
1
(t ).

(2-15)

Ci and C2 are functions of the initial conditions and can be treated as constants.

Time can be eliminated from equations (2-12) and (2-13) by squaring the first

equation, dividing the result by 2N, and comparing the result with equation

(2-13) to obtain

x
1
(t) =^r x2

2
(t) + C

3
forU = +N (2-16)

xi(t) = -^-x 2

2
(t) + C4 forU = -N (2-17)

where



Co — Ct
2N (2-18)

C4 =C2
+-^-

4 2 2N (2-19)

C3 and C4 are functions of the initial conditions and may also be treated as

constants. Equations (2-18) and (2-19) each define a family of parabolas, as

shown in Figures 2 and 3.

Analysis of Figures 2 and 3 reveal the controls corresponding to the

following situations:

1. u*=+l implies that the initial state x lies on segment AO at time to.

2. u*=-l implies that the initial state x lies on segment BO at time to.

This defines the optimal control to reach the origin. In order to reach these

zero trajectories, the opposite value of control is required. It can be seen from

i

'X
2

J

1 1 1 . .

x V

Figure 2. Trajectories for u=-N
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Figure 3. Trajectories for u=+N

Figure 4 that the two segments AO and BO form a single curve. This curve is

known as the switching curve. All states that fall above the switching curves

will result in the control input U=-N, and those states which fall below the

switching curves will result in the control input U=+N. This curve can be

represented as

1

X!(t) =-—-X2 (t)|x 2 (t)|

2N
(2-20)

Thus, the control law can be obtained by moving all the terms of equation

(2-20) to one side:

1

U(t) = -Nsign x
1
(t) +—-x2 (t)|x 2 (t)|

2N
(2-21)
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Figure 4. Optimal switching curves

Examples of the use of this switching law is shown in Figure 5. From any

arbitrary initial state, the trajectory will follow the parabola that passes through

the start point until the trajectory reaches the optimal switching curve. Then the

control switches signs, and follows the optimum parabolic path to the origin.

Equation (2-21) is the mathematical representation of the Bang-Bang

control law. This control law can be used in numerous applications where it is

desired to transfer a state from initial conditions to desired final conditions in

minimum time. Two examples that are of interest in this research are:

1) drive a state, such as a position, to zero in minimum time. The control

law for this portion of the missile flight is of the form

U(t) = -Nsign(^x
1
(t) + ^-x 2 (t)|x 2 (t)|\ (2-22)



Ill III
JiX

2

1 ^-

i i i

Nv J x
i

Figure 5. Optimal control switching schemes

where xi(t) is the position at time t, x2(t) is the velocity at time t, and N is the

maximum admissible force that can be used to accelerate or decelerate the

state; and

2) drive the time rate of change of a state to zero. In this case it is

desired to keep a state constant, as opposed to driving it to zero. The form of

the controller is also given by equation (2-22), but X! in this case will represent

velocity and x2 will represent acceleration, with N being the maximum

admissible control with which to change the states.

In the next chapter, the application of the second order Bang-Bang

controller to boost phase and terminal phase missile control will be examined.

10



III. DEVELOPMENT OF EQUATIONS OF MOTION FOR A

VERTICALLY-LAUNCHED MISSILE

The equations of motion for a missile can be derived from Newton's second

law of motion, which states that the summation of all external forces acting on a

body must be equal to the time rate of change of its momentum, and the

summation of the external moments acting on a body must be equal to the time

rate of change of its moment of momentum (angular momentum). The time

rates of change can be expressed by two vector equations:

2*-|Mt), (3-D

and

YMi=i (3-2)^
' dt

where i indicates i
th cartesian coordinate of the vector with respect to inertial

space. By definition, H is the angular momentum, or moment of momentum, of

a revolving body. [2]

There are several assumptions that are made in order to simplify the

problem:

1

.

The mass of the missile remains constant.

2. The missile airframe is a rigid body.

3. The earth is an inertial reference, and unless otherwise stated, the

atmosphere is fixed with respect to earth.

11



In order to completely describe the motion of a missile in three dimensions,

a total of six nonlinear differential equations must be solved. However, certain

assumptions will be made in order to reduce the number of equations needed to

adequately describe the motion of the missile:

1. The X axis will be assumed to be downrange from the launch

platform to the target, the Y axis will be crossrange, and the Z axis will be

altitude.

2. The type of missile studied here is known as a skid-to-turn missile,

as this missile uses direct side force to turn. Thus, there will be no coupling

terms between the pitch and yaw axes, and one set of equations will describe

the motion in each of the Y and Z planes.

3. It will be assumed that the missile is roll stabilized, i.e., that there

will be no turning moments about the X axis.

4. Since there are no cross-coupling terms between the pitch and yaw

axes, the simulation can be broken into two problems, one where the pitch

angle is held constant, and the other where the yaw angle is held constant. In

this discussion the yaw angle will be assumed to be constant at zero. Using

these assumptions, a 3 degree-of-freedom model can be developed. The force

diagram of a 3 DOF missile in flight is shown in Figure 6. The governing

equations of motion of this missile are:

XFx =mx= -F
lift

sinym + Tcos(0m +5) - Fdrag cosym (3-3)

£F
z
=mz = -mg + F^cos^ + Tsin(Gm + 5) - F

drag
sinym (3-4)

£Mcg
= i cge = -F

lift
L

pg
cosym -Fdrag

L
pg

sinYm -TL tg
sin5

(35)

12



Lift /*\

\ xx y\ a v \

Center of \ / /s^^00** \
Pressure \ >

' jr ^^***^
\ 7 \

Drag ^00^^^^X X

/Ms y

s § ^^ Thrust

^Center of

Gravity

r

Weight

where:

Figure 6. Forces acting on a missile in flight

m missile mass (Kg)

g gravity (9.81 m/s^)

Fiift aerodynamic lift force (N)

Fdrag aerodynamic drag force (N)

Ym angle of velocity vector from reference

m angle of missile head from reference

5 TVC deflection angle

leg moment of inertia of the missile about the center of gravity

13



Lpg distance from aerodynamic center of pressure to center of

gravity

Ltg distance from TVC control to center of gravity

The aerodynamic force acting on a lifting body, in this case the wings and

control surfaces of the missile, may be resolved into two components, which

are

Fiift=CL |v*S (3-6)

and

Fdrag =CD -V^S
(3?)

where (p/2)Vm2 is the dynamic pressure in N/m2
.

The lift and drag coefficients are functions of angle of attack (a), and Mach

number. Actual values for Cl and Co must be measured, as they are highly

dependent on the airfoil geometry. However, Cl and Cd may be modeled

satisfactorily using the following approximations:

CL =0.1a (3-8)

C^^h( l + - 2a2
)- 0-9)

r max

These coefficients are in reasonable agreement with reference [2] at low

angles of attack (a<10°). The only time the missile can expect to exceed 10°

angle of attack is during the tip-over phase, when velocity, and therefore lift and

14



drag forces, are small compared to the thrust force. This is considered an

appropriate approximation for the scope of the model under discussion.

A. BOOST PHASE CONTROLLER

The primary objective of the missile control system in the boost phase of

flight is to tip the missile over and point the missile in the general direction of the

target in minimum time. Therefore, 6, the angle that the missile makes with the

horizontal reference, is a logical choice for a control variable. If the force that

creates the moment that tips the missile over can be controlled, a general

control algorithm can be formulated. This is shown graphically in Figure 6.

At launch, the missile is assumed to be in a vertical position, with the

velocity vector pointing straight up, i.e. 6 = 90° and y = 90°. In the initial boost

phase, it is assumed that the first two terms of equation (3-5) are negligible as

compared to the third. Therefore, equation (3-5) may be simplified to

-TL„„sin8
6 =

-eg

Ieg
(3-10)

In state space, this can be represented as

1
V TLcg sin8

A I eg

(3-11)

The only term in equation (3-11) that can be used to control 9 is 5, the TVC

deflection angle. A simple and effective method for controlling missile tip over

is to employ the Bang-Bang controller, developed in Chapter II, to drive to

(horizontal flight) in minimum time, as shown in Figure 7. Thus, the control law

is

15



V \

Center of

Gravity

TVC Force Perpendicular

to Missile Body

Figure 7. Boost Phase Diagram

u(t) = -Nsignfe(t)+^~e(t)|e(t)
(3-12)

where N is the maximum torque available to rotate the missile and is

determined from the relation

N = -^-sin(5max )

'Cg
(3-13)

and 5max is the maximum thrust vector control (TVC) angle available.

This indicates that for minimum tip-over time, Smax=90°, However, this

may not be desirable since all of the thrust will go to rotate the missile, while

16



none of the thrust will accelerate the missile downrange. This amounts to the

missile 'pin-wheeling' in the air. Therefore, TVC angles of less then 90° should

be used. Several TVC angles will be examined to show the tradeoffs involved.

When the missile achieves horizontal orientation (i.e. 0=0°), the control law

will continue to switch from +N to -N in an attempt to keep the missile at

exactly 0°. This phenomenon is known as 'chattering'. At this point it is no

longer desirable to use maximum control effort to correct for small changes in

9. A satisfactory method for removing the chatter from a Bang-Bang

controller is to employ linear control in a small region, of width e, about the

desired value, as shown in Figure 8.

This adapted Bang-Bang controller can be expressed mathematically as

u(t) =

Nsignfe(t)+^e(t)|e(t)|l e(t)+^_e(t)|e(t) >£

— e(t)+—-0(t)e(t)
e V 2N J

-e<e(t)+^-e(t)|8(t) <£ (3-14)

1

+N-

-e

+u(t)

X, »» ii(n\

\ v 1

+e

—

N

— -^ 1 J[Q)

\
>

Figure 8. Bang-Bang Control Law with Linear Zone

17



B. TERMINAL PHASE

1. Missile-Target Geometry

In this section, it will be assumed that the vertically launched surface-

to-air missile has completed tip-over, and has settled out to a constant speed

and altitude. The start point for the terminal engagement of the target begins

with the missile seeker acquiring the target. The geometry of the missile-target

engagement is shown in Figure 9.

Figure 9. Missile-target geometry

In describing the geometry of the missile-target encounter, several

parameters must be calculated. The angle the missile's velocity vector makes

with the inertial reference frame is defined as y:

7m = tan
-i ym

(3-15a)

18



The magnitude of the missile velocity vector Vm is given by the relation:

Vm =VVi+ Vym (3-15D)

where Vym is the vertical component of the missile velocity vector and Vxm is

the horizontal component of the missile velocity vector, measured in inertial

coordinates.

Similarly, the magnitude of the target velocity vector and and angle it

makes with the inertial reference is given by

v
t =Vvx

2
t
+ v

y

2

t (3- 16a)

and

y t
= tan

l
v
yt

(3-16b)

In computing the variables used to calculate the line of sight and its

derivatives, it is convenient to describe the relative position, velocity, and

acceleration between the target and the missile:

X = X
t
-Xm (3-17a)

Y = Yt -Ym '

(3-17b)

Vx = Vxt -Vxm (3-17c)

V
y
=Vyt -Vym (3-17d)

19



A x = Axt
- Axm (3-17e)

Ay =Ayt -Aym .
(3-17f)

The line of sight between missile and target is given by G, and is

defined as:

G = tan
IxJ

(3_18)

where X and Y are the relative cartesian positions as defined by equations (3-

17a) and (3- 17b). The first and second time derivatives of O, denoted a and a,

are computed using the relations

,
(xV

y
-YVx )

and

R 2
(3-19)

. XA
y
-YA x

2(xVx
+ YV

y
)(XY

y
-YVx )

R2 R4

In an actual missile-target engagement, it is very unlikely that the

target line of sight rate and acceleration will be measured accurately enough in

order to use 6 and a directly in the guidance algorithm. An alternative

method is to calculate estimates of a and a, denoted by 6 and a , based on

measured values of C. This is accomplished through the use of a Luenberger

Observer, as shown by the signal flow graph in Figure 10.
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Figure 10. Luenberger Observer for estimating a and G

This observer can be described in state-space form by the relation

— ^ —

G r-k 3
i

0"
G

a -2R a

G = -k2
1 G

/v R A

G rk
*

(7

+

k,

(3-21)

where R is the range from the missile to the target, R is the range rate, and ki,

k2 , and k3 are gains to be determined by the designer in order for the estimated

states to closely follow the true states.

2. Missile Guidance Laws

The objective of tactical missile guidance is to keep the line of sight

angle, a, between missile and target constant. This is desirable because if the

line of sight remains constant, while the range from missile to target decreases,

an intercept will occur, as shown in Figure 11. Two missile guidance laws will

be presented: classical proportional navigation and minimum time (Bang-Bang)

control.
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Figure 11. Constant Line-of-Sight Intercept

a. Proportional Navigation Control

The method most often used in controlling homing missiles is

known as proportional navigation, where the magnitude of the transverse

control force is proportional to the rate of change of the line of sight (a).

Lukenbill [3] conducted research into proportional navigation control and his

derivation of the proportional navigation controller is given below.

Figure 12 depicts the basic proportional navigation scheme.

Assuming that the seeker head of the missile follows the target, the transverse

acceleration perpendicular to the line of sight will equal the acceleration of the

R vector in that direction. Mathematically, the acceleration of R is

AR =(R + coxcoxR)iR +(2coxR + cbxR)ie (3-22)

where

R missile/target line of sight vector
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R = closing rate along R

R = acceleration along R

co = angular rate of change of R in inertial space

Ar = overall acceleration of R.

At this point, a missile acceleration, Am , equal to the target

acceleration, A
t ,
will make the line of sight parallel to its original direction. As

long as R remains along R (co=0) a missile/target intercept is assured. So, the

transverse acceleration command is

A
t
-Am =cbxR + 2(coxR) (3-23)
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Figure 12. Vectorial Proportional Navigation Scheme

Assuming the line of sight rate is equal to the angular rate of change of R in

inertia! space, equation (3-23) now becomes

A
t
-Am =Ra + 2R6

(3-24)

where a equal to co, and a is equal to ci).

In the classical proportional navigation scheme, the missile course

is one in which the rate of change of the missile heading is directly proportional

to the rate of rotation of the line of sight vector from the missile to the target.

As a result, this course change is intended to counteract the rotation of the line

of sight, thus returning to a constant bearing course. The movement of the
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missile and target cause the line of sight to rotate, resulting in a differential

displacement between the missile and the target perpendicular to the range line.

Figure 13 depicts this geometry. The proportional navigation guidance law

attempts to generate an acceleration command, Ac, perpendicular to the line of

sight

Assume a gyro stabilized seeker head, as in the Sidewinder

missile. If there is no torque applied to the gyro, the seeker will not rotate.

Assuming the seeker tracks the target, the gyro angle will follow the line of

sight. Applying the equation of motion for a gyro stabilized seeker

L=Icoft (3-25)

where

L = applied torque

CO = spin angular velocity

I = moment of inertia of the gyroscope

Q = rate of precession of the gyroscope.

Applying this to the case when the seeker head tracks the target, Q. is then

replaced by the rate at which the gyro is torqued in space. This is simply a,

Figure 13. Missile Acceleration Orientation
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Figure 14. Missile Acceleration Relationship

which is the line of sight rate. Thus, equation (3-25) becomes

L = Icoc. (3-26)

This torque is in turn applied to the control surface of the missile leading to the

relationship

Am =kL = kIcoa (3-27)

where k is a constant of proportionality. Referring to Figure 14, a relationship is

determined for Am in terms of the rate of change of the missile flight path angle,

ym . Given the missile velocity vector at some point in time, Vm(t), and suppose

the missile undergoes an acceleration, Am , during an interval of time, dt. The

velocity vector is then displaced and is represented by the vector Vm(t+dt). The

angle the vector is traversed is simply dym , the differential missile flight path

angle. For small angles (which are guaranteed by making dt small) the

following relationship is obvious:

Amdt = Vmdym . (3-28)
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Dividing equation (3-28) by the time interval, dt, the missile acceleration is

defined as

A =V ^s. = V 7 (3-29)^m ym ,.
vmlm W "'J

at

Combining equations (3-27) and (3-29)

Vmym =kIcod. (3-30)

Dividing through by Vm , the proportional navigation law becomes

Ym =
^klco^

, Xn j

(3-31)

or

Ym =Na. (3-32)

Equation (3-32) represents the classical proportional navigation equation where

jm = rate of change of the missile heading

c = rate of change of the line of sight

N = proportional navigation ratio.

The navigation ratio determines the sensitivity of the missile

system. A high navigation ratio will lead to rather high gains resulting in large

missile commands for small changes in the line of sight rate. On the other hand,

small values for N will lead to small missile commands for a given d . Larger

navigation ratios are preferred for head on engagements and smaller ones are

preferred for tail chase cases. For this research the navigation ratio is taken to

be four.
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In tactical radar homing missiles using proportional navigation

guidance, the seeker provides an effective measurement of the line-of-sight

rate, and a Doppler radar provides closing velocity information. [4]

b. Bang-Bang Control Minimizing Line-of-Sight Rate

In this control law, the goal is the same as in proportional

navigation control: to drive the line-of-sight rate to zero, or in other words, to

keep the line of sight constant.

Mathematically, this control law can be stated as.

u(t) = -Nsign
( rrlrrh
G +

V

0\G\
(3-33)

In order to alleviate chattering, a small linear region will be introduced, similar

to the boost phase controller:

u(t) =

-Nsign(a(t) +— a(t)|c(t)| a(t)+— d(t)|a(t)| >e

--(a(t) + -^-a(t)|a(t)|) -e<a(t) + -^-a(t)|a(t)|< 8.(3-34)
8 V 2N J 2N

In the next chapter, several simulations will be presented in order

to illustrate the effectiveness of the Bang-Bang control algorithms as compared

to Proportional Navigation, in both the boost phase and in the terminal phase of

the missile flight

3. Missile Dynamics

The signal flow graphs for the missile dynamics are shown in Figure

15.
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Figure 15. Missile Dynamics

In state-space, these signal flow graphs can be represented as

Xm "O 1
0" Xm

"0 0"

Xm

ym
=

1

Xm

ym
+

1
" ucosy

-usiny

_ym _ .ym .
1

(3-35)

29



IV.VERTICAL LAUNCH MISSILE BOOST PHASE

SIMULATION

A. OVERVIEW

In simulating the boost phase of the vertically launched missile, several

assumptions can be made to reduce the complexity of the simulation to a level

that won't detract from the concepts being presented:

1

.

The missile is limited to Mach 4.

2. The missile is limited to 30 g's of acceleration in the transverse and

tangential directions combined.

3. The speed of sound in air is constant at 340 m/s.

4. The density of air is constant at 1 Kg/m3
.

5. The missile mass remains constant.

6. The lift and drag forces experienced by the missile can be modeled by

equations (3-6) through (3-9).

B. MISSILE PARAMETERS

At launch, the following parameters define the state of the missile:

The initial missile parameters are:

Lm=4.2 m missile length

M=225 Kg • missile mass

Ltg=2.1 m length from center of gravity to tail

Lp
g
=0.15 m length from center of gravity to center

of pressure

S=0.99 m2 missile reference lift surface
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T=66800 N missile thrust

Icg=2000 kg m2 missile moment of inertia

p=l . kg/m3 density of air

Vmax=1460 m/s max missile velocity

Additionally, the launch point will correspond to inertial reference:

x(0)=0 m y(0)=0 m

Vx(0)=0m/s Vy(0)=0m/s

C. CANNISTER EGRESS

It is not possible, nor is it desirable, to have the missile commence its tip-

over maneuver until it has egressed from the launch cannister and achieved

sufficient distance from the launch platform to minimize hazards to personnel.

Thus, the TVC actuators will have a zero degree deflection for the first 0.7

seconds after launch. This will ensure sufficient missile altitude before tip-over

begins. At time=0.7 seconds the missile position and velocity are:

x(0.7)=0m y(0.7)=71.8m

Vx(0.7)=0 m/s V
y
(0.7)=204.5 m/s

D. BOOST SIMULATION AND RESULTS

The simulation was run with four values of the maximum thrust vector

control (TVC) angle: 30°, 45°, 60°, and 90°. This was done to illustrate what

effect a greater TVC angle will have on the missile trajectory and velocity.

Figure 16 shows the missile trajectories for the four cases.
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Figure 16. Missile Boost Phase Trajectories

Analysis of the trajectories shows that as the maximum TVC angle is

increased, the missile will achieve horizontal flight at lower altitudes than

smaller TVC angles. However, at angles greater than 45°, there is a significant

reduction in the downrange distance. This may be crucial if the missile is to be

fired against a target that is close to the ship at launch. At TVC angles less

than 30°, the thrust is directed toward achieving missile altitude to a larger

extent than having the missile achieve horizontal flight in minimum time. This

may be advantageous if the missile if fired against a high-altitude target, but not

against a sea-skimming missile. Another consequence of having a large TVC

angle is that much of the thrust is spent rotating the missile to horizontal at the
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expense of missile kinetic energy, which results in a longer time for the missile

to reach maximum velocity. This is shown graphically in Figure 17.

1400

Figure 17. Missile Boost Phase Velocity Magnitude Profiles

At the two highest TVC angles (60° and 90°), the first several seconds are

spent turning the missile over while not attaining much forward velocity. As a

result of a higher turning rate, higher angles of attack are generated, as shown

in Figure 18. This is not desirable because at higher angles of attack, the drag

forces that act to slow the missile down increase. Thus, it is advantageous

from an aerodynamic point of view to keep the angle of attack as small as

possible in order to minimize the drag force acting on the missile.

Figure 19 shows the missile pitch angle as a function of time. It is of

interest to note that there is not a great difference between total turning times

between the 30° TVC angle and the 90° TVC angle. This is due to the counter-
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acting lift and drag forces encountered by the missile, during high TVC angles,

that are caused by high angles of attack. This indicates that increasing the

maximum TVC angle beyond 45° may achieve a somewhat faster turning time,

but at the expense of a great loss of kinetic energy and therefore velocity. This

is of peak importance, for without sufficient velocity, a missile has little or no

chance of successfully intercepting an incoming target, particularly a

maneuvering target.
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Figure 18. Missile Boost Phase Angle of Attack Profiles
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V. TERMINAL PHASE SIMULATIONS

In order to compare the effectiveness of minimum-time 'Bang-Bang' control

as compared to proportional navigation control, several missile-target

geometries were simulated. Each geometry was run with four control system

configurations:

1. proportional navigation using analytical values of line-of-sight rate and

acceleration, which shall be referred to as 'analytical proportional navigation';

2. proportional navigation using estimates of line-of-sight rate and

acceleration, which shall be referred to as 'estimated proportional navigation';

3. Bang-Bang control using analytical values of line-of-sight rate and

acceleration, which shall be referred to as 'analytical Bang-Bang';

4. Bang-Bang control using estimates of line-of-sight rate and acceleration,

which shall be referred to as 'estimated Bang-Bang';

A. CASE ONE

In the first set of simulations, the target will be headed directly toward the

ship, flying a straight course with no maneuvers. The initial conditions are:

Missile:

x=0; z=1000m;

Vx=680 m/s (Mach 2) Vz=0;

Target:

x=7000 m; z=30m

Vx=-850 m/s (Mach 2.5); Vz=0;
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Figure 20 shows the missile-target geometries using true line-of-sight rate

and acceleration. Both proportional navigation and Bang-Bang control was able

to hit the target. Note that the trajectory using Bang-Bang control flew a

straighter course to the intercept point than the trajectory using proportional

navigation control. This indicates that Bang-Bang control is able to guide the

missile onto an intercept trajectory faster than the proportional-navigation

controller, which is continuously changing the missile flight path in order to

intercept the target.

Figures 21 and 22 show control force as a function of time for the

proportional navigation controller and the Bang-Bang controller, respectively.

The proportional navigation controller required continuous control in order to
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(Miss Dist:
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Target
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Figure 20. Case One: Missile/Target trajectories using true line

of sight rate
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correct the missile trajectory enough to enable the missile to intercept the

target. It does not leave much reserve control to counter a maneuver away

from the missile by the target. Conversely, the Bang-Bang controller applied

maximum control effort until the line of sight rate became zero, then shut off.

This allows the missile greater flexibility in case the target maneuvers in any

direction. If the linear zone were not incorporated into the Bang-Bang

controller, however, the controller would have chattered between maximum

positive and negative control force instead of shutting off. This would have

decreased the missile velocity unnecessarily just when the missile needs

maximum kinetic energy for maneuverability.
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Figure 21. Case One: Control force versus time using proportional

navigation control with true line of sight rate

Figure 23 shows the trajectories using estimates of line of sight rate and

acceleration. It is apparent here that the proportional navigation controller was

not able to react fast enough in order to hit the target. This is due to the delay

encountered while the observer filter was not matched up with the analytical

values, as shown in Figure 24. By the time the estimated value of line of sight

rate and acceleration matched the analytical values, the target was at a point

where proportional navigation could not generate enough of a control signal fast
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enough to enable target intercept. This illustrates the importance of being able

to detect, virtually instantaneously, changes in target velocity and direction.The

Bang-Bang controller also experienced the same delay before the proper

control was applied, as shown in Figure 25, but since it immediately applied

maximum control, the missile was still able to intercept the target.
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Figure 22. Case One: Control force versus time using Bang-Bang
control with true line of sight rate
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Figure 25. Case One: Control force versus time using Bang-Bang
control with estimated values for line of sight rate

Figure 26 compares the trajectories of Bang-Bang control using analytical

and estimated values of line of sight rate and acceleration. Because the

estimated values took approximately 0.25 seconds to match the analytical

values, there is a period at the start of the simulation where the estimated

trajectory has positive control applied to it, while the analytic trajectory has

negative control applied. After the analytic and estimated values matched up,

they both were able to drive the line of sight rate to zero in plenty of time to

intercept the target.
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Figure 26. Case One: Missile/Target trajectories using Bang-Bang
control, comparing true and estimated values for line of sight rate

B. CASE TWO

In the second set of simulations the target will be headed directly toward

the ship, but will initiate a 12 g vertical maneuver at problem start. The initial

conditions are:

Missile:

Target:

x=0; z=1000m

Vx=680 m/s (Mach 2) Vz=0;

x=7000 m z=30m

Vx=-850 m/s (Mach 2.5); Vz=0.
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Figure 27 shows the simulation results of the analytical proportional

navigation and analytical Bang-Bang controllers. The Bang-Bang controlled

missile was able to adjust to the 12 g vertical maneuver of the target in order to

achieve intercept. The proportional navigation controlled missile was not able

to keep up with the high g maneuver of the target, and missed the target by

about 80 meters.

Figure 28 shows the control force as a function of time for the analytical

proportional navigation controlled missile. Note that the controller did not

saturate until well into the simulation. This indicates that if more control had

been applied sooner, the missile could have intercepted the target. This is

illustrated by Figure 29, which shows the control of the analytical Bang-Bang
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Figure 27. Case Two: Missile/Target trajectories using true line of

sight rate
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Figure 28. Case Two: Control force versus time using Proportional

Navigation control with true line of sight rate

Figure 29. Case Two: Control force versus time using Bang-Bang
control with true line of sight rate

controlled missile. Neither controller went to zero as the Bang-Bang controllers

of Case One did. This is because the target is maneuvering, constantly

changing the line of sight angle.

The simulations using estimated values for line of sight rate and

acceleration are shown in Figure 30. As was the case with the analytical

expressions, the Bang-Bang controller using estimates was still able to achieve

intercept, while the proportional navigation controller missed the target. Note

that the miss distance for the proportional navigation controller in Figure 30 is
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less than the miss distance achieved with the analytical expressions. This is

because the target turned toward the missile, and the delay caused by the

observer prevented the missile from beginning to dive after the target as

quickly, thus leaving less of an altitude difference when control is applied. If the

target were to turn away from the missile, the estimates of line of sight rate and

acceleration would be worse than those obtained using analytical values.

Figures 31 and 32 are the control versus time graphs for the estimated

proportional navigation controller and the estimated Bang-Bang controller. The

delay encountered by both of the controllers is about the same as those

encountered in Case One.
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Figure 31. Case Two: Control force versus time using proportional

navigation control with estimated values for line of sight rate
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Figure 32. Case Two: Control force versus time using Bang-Bang
control with estimated values for line of sight rate
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VI. CONCLUSIONS AND RECOMMENDATIONS

This work has shown that the minimum-time (Bang-Bang) controller is an

effective algorithm for missile control, in both the boost and terminal phase of

tactical missile flight. It is particularly effective when the target has a speed

advantage over the missile or when the target is maneuvering.

As is the case with virtually all tactical missiles, the accuracy of the target's

measured position, velocity, and acceleration vectors are paramount in

accurately predicting the parameters with which the missile is controlled with a

Bang-Bang minimum time controller.

Areas for future study will include:

1. Simulating me entire missile flight from launch through intercept. The

focus of these studies will be to analyze the effects of missile velocity, tip-over

altitude, and target speed advantage on missile performance.

2. Developing more complex models in order to better understand what

the effects of a Bang-Bang controller will have on a particular missile system.

Such studies will use empirical aerodynamic and physical data for a particular

missile, such as SM-II Block IV or Vertically-Launched Sea Sparrow, and will

entail developing a 5 or 6 DOF computer model.

3. Investigating the effects of noise on measurement of line of sight and

its time derivatives, to the extent of the effect noise has on a Bang-Bang

controller.

4. Investigating the effects of plant modelling errors on system sensitivity

when using Bang-Bang controllers.
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APPENDIX 1- BOOST PHASE MATLAB PROGRAM

% VLS BOOST PHASE MISSILE SIMULATION

% T B MULL

% REVISED 22 APRIL 1992

clear;clg;

% Initial Missile Parameters

Delta=[30 45 60 90];

forj=l:length(Delta)

L_m=3.6;

M=227;

L_gt=1.8;

L_gp=0.15;

S=0.99;

T=66800;

Icg=2000;

rho=1.00;

Vmax=340*4;

dt=.02;

delta_max=Delta(j);

% --

% Initial Conditions

% L_m= missile length in meters

% M= missile mass in kilograms

% L_gt= length from center of gravity to tail

% L_gp= length from center of gravity to center

% of pressure

% S is lift surface in square meters

% T= missile thrust in newtons

% leg is the missile moment of inertia (kg mA
2)

% rho is the density of air in kg/mA3

% Vmax is the max missile velocity in m/s

% dt is simulation time step size

tfinal=10.00; % Final simulation time.
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kmax=tfinal/dt;

time=0.0;

x=0;xdot=0;xddot=0;

y=0;ydot=0;yddot=0;

gamma=90.0;

gammadot=0;

theta=90.0;

thetadot=0;

X_theta=[thetadot;theta]

;

X_x=[xdot;x];

X_y=[ydot;y];

A=[0 0;1 0];

% kmax is number of time increments

% initial time

% initial missile states (in x)

% initial missile states (in y)

% (these initial y states correspond to missile

% position and velocity after clearing the

% cannister)

% gamma is inertial to velocity vector

% in degrees (will convert to radians in loop)

% theta is inertial to missile head

% A and B matrices for determining velocity and

% position of x,y, and theta base on acceleration

% commands

B=[1;0];

[phi,del]=c2d(A,B,dt);

alpha=theta-gamma;

dtr=pi/180;

% converts A,B to discrete for simulation

% alpha is Angle-of-attack

% converts degrees to radians

V_m(l)=sqrt(X_x(l,l)A2+X_y(l,l)A2); % V_m is missile velocity magnitude

F_drag=0;

F_lift=0;

Cd=0;
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fori=l:kmax-l

%****algorithm for determining rudder deflection angle******************

% test for cannister egress(time<0.6)

iftime(i)<0.7

delta(i)=0;

else

Theta=X_theta(2,i);

Thetadot=X_theta( 1 ,i);

N=T*L_gt/Icg*sin(delta_max*dtr);

test(i)=Theta+(Thetadot)*abs(Thetadot)/(2*N);

eps=0.5;

if abs(test(i))>eps

delta(i)=delta_max*sign(test(i));

else

delta(i)=delta_max/eps*test(i);

end;

end;

F_Uft(:,i)=0-5*rho*V_m(i)A2*S*0.1*alpha(i);

Cd(i)=(2*T/(M*rho*VmaxA2*S));

F_drag(:,i)=Cd(i)*0.5*rho*V_m(i)A2*S;
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%F_drag(:,i)=0;

xddot(i)=-F_Uft(i)/M*sin(gamma(i)*dtr)+TM*cos(gamma(i)*dtr+delta(i)*dtr)...

-F_drag(:,i)*cos(gamma(i)*dtr);

yddot(i)=F_lift(i)/M*cos(gamma(i)*dtr)+T/M*sin(gamma(i )*dtr+ . .

.

delta(i)*dtr)-F_drag(:,i)*sin(gamma(i)*dtr);

thetaddot(i)=-F_lift(i)*L_gp/Icg*cos(alpha(i)*dtx)-T*L_gt*sin(delta(i)*dtr)/Icg;

% - -

X_theta(: ,i+l )=phi*X_theta(: ,i)+del*thetaddot(i);

X_x(:,i+l)=phi*X_x(:,i)+del*xddot(i);

X_y(:,i+l)=phi*X_y(:,i)+del*yddot(i);

% — -

gamma(i+l )=atan2(X_y(l ,i+l ),X_x(l ,i+l ))/dtr;

% X_y=[ydot;y];

alpha(i+ 1 )=X_theta(2,i+ 1 )-gamma(i+l );

delta(i+l)=delta(i);

V_m(i+ 1 )=sqrt(X_x( 1 ,i+l )
A2+X_y( 1 ,i+ 1 )

A
2);

time(i+l )=time(i)+dt;

end; % END OF LOOP
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evaKt'X.x'.numlstrG^X.x;']);

eval([
,

X_y\num2str(j),
,

=X_y;
,

]) ;

eval([
,V_m,

,num2str(j),
,

=V_m;']);

eval([
,

alpha
,

,num2st^(J),
,

=alpha;
,

]);

eval(['X_theta
,

,num2str(j),'=X_theta;']);

delta max
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vm=V_m(i+l)

X=X_x(2,i+D

Y=X^y(2,i+l)

Alpha=alpha(i+1)

Theta=X_theta(2,i+l

)

end;

Boostlplot2a

save bocstdata

clg;

z=length(X_x(2,:));

fork=l:length(Delta)

eval([
,

X_x=X_x\num2str(k),Y]);

eval([
,X_y=X_y ,

,num2str(k);;']);

axis([0 9000 2000]);

plot(X_x(2,:),X_y(2,:));grid;

hold on

if k==l

plot(X_x(2,l:2/dt:z),X_y(2,l:2/dt:z),
,

o')

plot(X_x(2,z),X_y(2,z),
,

o')

elseif k==2

plot(X_x(2,l :2/dt:z),X_y(2,l :2/dt:z);o')

plot(X_x(2,z),X_y(2,z),'o*)

else

plot(X_x(2,l:2/dt:z),X_y(2,l:2/dt:z),
,

o')

52



plot(X_x(2,z),X_y(2,z),
,

o')

end;

end;

hold off

title('Missile Boost Phase- Bang-Bang control');

xlabeK'Horizontal Range (m)'),ylabel('Altitude (m)');

%text(0.6,0.8,' 30° TVC angleVsc')

pause;clg;

axis('normal')

%

fork=l:length(Delta)

eval([
,V_m=V_m^num2str(k), ,

;

,

]);

plot(time,V_m);

hold on;

end;

hold off

title('V_m versus time');grid;

xlabel(Time (sec)
,

),ylabel('Velocity (m/s)');

%

pause;clg;

for k=length(Delta):- 1 :

1

eval(['alpha=alpha
,

,num2str(k),
,

;

,

]);

plot(time,alpha),grid;

hold on;

end;
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hold off

title('Plot of Alpha versus time')

xlabel(Time (sec)');

ylabelCAngle of Attack (degrees)');

pause;clg;

%

axis([0 5 -20 100]);

fork=l:length(Delta)

eval([
,

X_theta=X_theta',num2str(k),';']);

plot(time,X_theta(2,: )),grid;

hold on;

end;

hold off

title('Plot of Theta versus time')

xlabel(Time (sec)');

ylabel(Theta (degrees)');

axis('normal')
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APPENDIX 2- TERMINAL PHASE MATLAB PROGRAM

% terminal.

m

% TERMINAL MISSILE-TARGET ENGAGEMENT

% TIM MULL

%24 APRIL 1992 1130

% This model does not take drag or lift into consideration

% -uses two different methods to compute sigma derivatives:

% 1 . calculates sig_dot, sig_ddot using analytical expressions

% 2. uses an observer to estimate sighat,sigdothat,sigddothat

% 3. controls using sigmadothat,sigmaddothat

% 4. utilized bang bang on sigmadot,sigmaddot with a small linear region

% in order to alleviate controller chatter once lock has been achieved.

clear;clg;

clc;

disp([' ']);

fork=l:4

disp([*Control= \num2str(k)]);

control=k;

dt=0.01;

g/q sp * * sp 55 !p ^ 5p Initial C'onditions ^^^^^^^^^^^^^^^^^^^^^^^^h^^^^^h^^^^^^^^
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xm=0;

vxm=2*340;

axm=0;

ym=1000;

vym=0;

aym=0;

% missile horizontal position in meters

% missile horizontal velocity in m/s

% missile horizontal acceleration in m/sA2

% missile vertical position in meters

% missile vertical velocity in m/s

% missile vertical acceleration in m/sA2

xt=5000;

vxt=-2.5*340;

axt=0;

yt=30

vyt=0

ayt=0

time=0;

%

%observer stuff

pl=-100;

p2=-100;

p3=-100;

K=conv([l -pl],conv([l -p2],[l -p3]));

kl=K(4);

k2=K(3);

k3=K(2);

X=[0;0;0];

%

% target horizontal position in meters

% target horizontal velocity in m/s

% target horizontal acceleration in m/sA2

% target vertical position in meters

% target vertical velocity in m/s

% target vertical acceleration in m/sA2
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fori=l:1200 %loop 1

%ifrem(i,100)==0

%clg;

%subplot(221),plot(xm,ym)

%subplot(222),plot(time( 1 :length(U)),U)

% end;

gamma(i)=atan2(vym(i),vxm(i)); % gamma is angle of missile velocity

% vector with respect to inertial ref

Vm(i)=sqrt(vxm(i)A2+vym(i)A2); % Vm is missile velocity magnitude

X(i)=xt(i)-xm(i); % X is relative horizontal position

Y(i)=yt(i)-ym(i); % Y is relative vertical position

VX(i)=vxt(i)-vxm(i); % VX is relative horizontal velocity

VY(i)=vyt(i)-vym(i); % VY is relative vertical velocity

AX(i)=axt(i)-axm(i); % AX is relative horizontal acceleration

AY(i)=ayt(i)-aym(i); % AY is relative vertical acceleration

R(i)=sqrt(X(i)A2+Y(i)A2);

Rdot(i)=sqrt(VX(i)A2+VY(i)A2);

% sigma,sigmadot,sigmaddot are the line

% of sight between the missile and the

% target, and its 1st 2 time derivatives

c^********** NOTF ******************************************

% This simulation is using analytical expressions for sigma *

% sigmadot, and sigmaddot. Since the target's velocity and *

% acceleration cannot be measures directly, a more realistic *
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% approach is to use an observer to estimate sigmadothat and *

% sigmaddothat. *

sigma(i)=atan2(Y(i),X(i));

sigmadot(i)=(X(i)*VY(i)-Y(i)*VX(i))/R(i)A2;

sigmaddot(i)=(X(i)*AY(i)-Y(i)*AX(i))/R(i)A2...

-2*(X(i)*VX(i)+Y(i)*VY(i))*(X(i)*VY(i)-Y(i)*VX(i))/R(i)A4;

% 3rd order observer to obtain sigma.dot.hat,sigma.ddot.hat

A=[-k3 1

-k2 -2*Rdot(i)/R(i) 1

-kl 0];

B=[k3

k2

kl];

[phi,del]=c2d(A,B,dt);

X(: ,i+l )=phi*X(: ,i)+del*sigma(i);

sigmadothat(i)=X(2,i);

sigmaddothat(i)=X(3,i);

% CONTROL SECTION

%

% PROP NAV CONTROL
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if control==l % if loop 1

U(i)=Vm(i)*4*sigmadot(i);

if abs(U(i))>15*9.81 % if loop 2

U(i)=15*9.81*sign(U(i));

end; % end if loop 2

%

% PROP NAV CONTROL based on sigmadothat

elseif control==2 % if loop 1

U(i)=Vm(i)*4*sigmadothat(i);

if abs(U(i))>15*9.81 % if loop 2

U(i)=15*9.81*sign(U(i));

end; % end if loop 2

%

elseif control=3 % if loop 1

% Bang-Bang control based on sigmadothat, sigmaddothat

N=15*9.81; % N is maximum normal acceration in Newtons

test(i)=sigmadothat(i)+(sigmaddothat(i)*abs(sigmaddothat(i)))/(2*N);

eps=0.001;

if abs(test(i))>eps % if loop 3

U(i)=N*sign(test(i));

else

U(i)=N/eps*test(i);

end; % end if loop 3

%

elseif control==4
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% Bang-Bang control based on sigmadot, sigmaddot

N=l 5*9.81; % N is maximum normal acceration in Newtons

test(i)=sigmadot(i)+(sigmaddot(i)*abs(sigmaddot(i)))/(2*N);

eps=0.001;

if abs(test(i))>eps

U(i)=N*sign(test(i));

else

U(i)=N/eps*test(i);

end;

end;

%

if rem(i,50)=0

dispCworking');

end;

% Let Xmsl=[xm(i) State space representation of missile states

% vxm(i)

% ym(i)

% vym(i)];

Xmsl(:,i)=[xm(i)

vxm(i)

ym(i)

vym(i)];

Am=[0 1
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0000

0001

0];

Bm=[0;-sin(sigma(i));0;cos(sigma(i))]; % control force is perp to sigma!!

[phim,delm]=c2d(Am,Bm,dt); % convert continuous state-space to discrete

% update missile states

Xmsl(:,i+1 )=phim*Xmsl(: ,i)+delm*U(i);

xm(i+l )=Xmsl( 1 ,i+ 1 );

vxm(i+ 1)=Xmsl(2,i+l );

axm(i+l)=-sin(sigma(i))*U(i);

ym(i+l)=Xmsl(3,i+l);

vym(i+ 1)=Xmsl(4 ,i+ 1 );

aym(i+l)=cos(sigma(i))*U(i);

% Let Xtgt=[xt(i)

% vxt(i)

% yt(i)

% vyt(i)];

Xtgt(:,i)=[xt(i)

vxt(i)

**
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yt(i)

vyt(i)];

At=[0 1

0000

0001

0];

Bt=[0;axt(i);0;ayt(i)];

[phit,delt]=c2d(At,Bt,dt);

Xtgt(:,i+l)=phit*Xtgt(:,i)+delt*l;

xt(i+l)=Xtgt(l,i+l);

vxt(i+l)=Xtgt(2,i+l);

axt(i+l)=axt(i);

yt(i+l)=Xtgt(3,i+D;

vyt(i+l)=Xtgt(4,i+l);

ayt(i+l)=ayt(i);

time(i+ 1 )=time(i)+dt;

%******** check for CPA

X(i+l)=xt(i+l)-xm(i+l);

Y(i+l)=yt(i+l)-ym(i+l);

% X is relative horizontal position

% Y is relative vertical position
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R(i+l)=sqrt(X(i+l)A2+Y(i+l)A2);

%******** subroutine to interpolate the 2 closest ranges to find CPA

ifR(i+l)>R(i)

xms=[ym(i-l:i+l);vym(i-l:i+l);xm(i-l:i+l);vxm(i-l:i+l)];

xts=[yt(i-l:i+l);vyt(i-l:i+l);xt(i-l:i+l);vxt(i-l:i+l)];

rl = interp(xms(:,l:2),xts(:,l:2));

r2 = interp(xms(:,2:3),xts(:,2:3));

Rmin=min([rl r2]);

break;

end;

end;

j=k;

eval([
,

xm',num2str(j),' =xm;']);

evalCrym'.nurr^str^),' =ym;']);

evalCrx^nurrLZstrtj),' =xt;']);

eval(['yt\num2str(j),' =yt;']);

eval([
,

Rmin',num2str(j),* =Rmin;']);

eval([
,U ,

,num2str(j),* =U;']);

eval(['save data\num2str(j)]);

end;

clg;

clear

load datal
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save data5 xml yml xtl ytl

clear

load data2

xm2=xm;

ym2=ym;

xt2=xt;

yt2=yt;

save data5 xml yml xtl ytl xm2 ym2 xt2 yt2

clear

load data3

xm3=xm;

ym3=ym;

xt3=xt;

yt3=yt;

save data5 xml yml xtl ytl xm2 ym2 xt2 yt2 xm3 ym3 xt3 yt3

clear

load data4

xm4=xm;

ym4=ym;

xt4=xt;

yt4=yt;
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save data5 xml yml xtl ytl xm2 ym2 xt2 yt2 xm3 ym3 xt3 yt3 xm4 ym4 xt4

yt4

clear

%-

% This routine takes data computed in terminal.m and samples it every

% 8 data point in order to make the graphs less memory intensive

clear

load data5

xmla=[];ymla=[];xtla=[];ytla=[];xm2a=[];ym2a=[];xm3a=[];ym3a=[];

xm4a=[] ;ym4a=[]

;

k=min([length(xml),length(xm2),length(xm3),length(xm4)]);

for i=l:k

ifrem(i,8)=0

xmla=[xmla xml(i)];

ymla=[ymla yml(i)];

xtla=[xtla xtl(i)];

ytla=[ytla ytl(i)];

xm2a=[xm2a xm2(i)];

ym2a=[ym2a ym2(i)];
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xm3a=[xm3a xm3(i)];

ym3a=[ym3a ym3(i)]:

xm4a=[xm4a xm4(i)];

ym4a=[ym4a ym4(i)];

end;

end;

axis([0 5000 1200]);

plot(xmla,ymla,
,

-w
,

,xtla,ytla,
,

-w
,

,xm4a,ym4a,
,

-w
,

)

pause;

plot(xnL2a,ym2a,
,

-w
,

,xtla,ytla,
,

-w',xm3a,ym3a,
,

-w')

clg;clear

load datal

ul=U;

load data2

u2=U;

load data3

u3=U;

load data4

u4=U;

save control ul u2 u3 u4

clear

load control

dt=0.01;
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n=min([length(ul),length(u2),length(u3),length(u4)]);

tfinal=(n-l)*dt;

time=0.00:dt:tfinal;

subplot(21 1 ),plot(time,u 1 (1 :n),
,

-w'),title('control=l ');

subplot(212),plot(time,u2(l:n),
,

-w
,

),title(
,

control=2');

pause;clg;

subplot(211),plot(time,u3(l:n),
,

-w
,

),title(
,

control=3');

subplot(212),plot(time,u4(l:n),
,

-w
,

),title('control=4');
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