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ABSTRACT 

 

The sensory profiles, phenolic composition and colour of honeybush infusions, prepared from six Cyclopia 

species (C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata), were 

determined to establish the variation between species.  The results of the sensory study were used to create 

a honeybush sensory wheel and lexicon.  The “characteristic” sensory profile of honeybush tea can be 

described as a combination of floral, sweet, fruity and plantlike flavours with a sweet taste and a slightly 

astringent mouthfeel.  Sensory results indicated that the species could be divided into three distinct groups; 

group A (C. sessiliflora, C. intermedia and C. genistoides), group B (C. longifolia and C. subternata) and 

group C (C. maculata).  Group A was associated with fynbos floral, fynbos sweet and plantlike attributes, 

group B with rose geranium and fruity sweet attributes and group C with woody, boiled syrup and 

cassia/cinnamon attributes.  Gas chromatography-olfactometry analysis of the C. maculata aroma fraction 

indicated that the spicy note of its aroma could possibly be explained by the high concentration of the volatile 

component eugenol.  However, none of the aroma impact volatiles had a specific cassia/cinnamon note.   

Large variation in the composition of the honeybush infusions was revealed through the 

quantification of the soluble solids, total polyphenol and individual monomeric polyphenolic compounds, as 

well as the absorbance (“colour”).  Infusions of C. genistoides, C. longifolia and C. sessiliflora had the 

highest soluble solids and total polyphenol content, as well as the highest absorbance values.  Only 

mangiferin, isomangiferin, hesperidin and compound C (unidentified compound) were detected in all six 

Cyclopia species.  Cyclopia genistoides, C. longifolia and C. sessiliflora, in order of prominence, contained 

the highest concentration of both mangiferin and isomangiferin whereas C. genistoides and C. maculata 

contained the highest hesperidin content.  The bitter taste present in certain Cyclopia species appeared to 

be due to a high mangiferin content, however, compounds such as isomangiferin and compound C might 

also have played a role.   

The effect of fermentation (oxidation) temperature (80°C and 90°C) and time (8 h, 16 h, 24 h and 32 

h) of C. genistoides, C. subternata and C. maculata on the sensory characteristics of their infusions was also 

investigated.  Fermentation for longer than 8 h resulted in an increase in positive sensory attributes and a 

decrease in negative sensory attributes rather than the formation of new sensory attributes.  A fermentation 

temperature/time combination of 80°C/24 hours or 90°C/16 h was required for C. genistoides, C. subternata 

and C. maculata.  Fermenting C. genistoides at 90°C would result in a honeybush infusion with slightly less 

rose geranium notes whereas C. subternata can be fermented at either 80°C or 90°C, depending on whether 

floral or apricot jam notes are desired.  Cyclopia maculata should preferably not be fermented at 90°C due to 

an increase in negative sensory attributes (hay/dried grass and green grass).  Fermentation reduced the 

soluble solids content, total polyphenol content, colour and concentration of individual polyphenolic 

compounds.  Changes in the taste and mouthfeel of honeybush tea could be attributed to changes in the 

polyphenolic composition caused by the high temperature oxidation.  Mangiferin associated with the bitter 

taste of C. genistoides, while in C. subternata astringency may be partly attributed to the mangiferin and 

isomangiferin content.  The study substantiated the need for further research on the contribution of the major 

phenolic compounds towards the taste and mouthfeel of Cyclopia species.   
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UITREKSEL 

 

Die sensoriese profiel, fenoliese samestelling en kleur van heuningbostee, berei van ses Cyclopia spesies 

(C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata en C. maculata), is bepaal ten 

einde die mate van variasie vas te stel.  Die resultate van die sensoriese studie is gebruik om „n sensoriese 

wiel en leksikon vir heuningbostee te ontwikkel.  Die “karakteristieke” sensoriese profiel van heuningbostee 

kan beskryf word as „n kombinasie van blomagtig, soet, vrugtig en plantagtige geure met „n soet smaak en ‟n 

effense frankheid.  Sensoriese resultate het aangedui dat die spesies in drie groepe verdeel kon word; groep 

A (C. sessiliflora, C. intermedia and C. genistoides), groep B (C. longifolia and C. subternata) en groep C (C. 

maculata).  Groep A is met fynbos blom, fynbos-soet en plantagtige geure geassosieer, groep B met roos 

geranium en vrugtige-soet geure en group C met houtagtige, gekookte stroop en kassia/kaneel geure.  

Gaschromatografie-olfaktometrie analises van C. maculata se aroma fraksie het getoon dat die 

speseryagtige aroma moontlik as gevolg van die hoë konsentrasie van die vlugtige komponent, eugenol, kon 

wees.  Geen van die aroma-impak vlugtige verbindings het egter „n spesifieke kassia/kaneelagtige noot 

gehad nie.   

 Groot variasie in die samestelling van heuningbostee ten opsigte van die inhoud van oplosbare 

vastestowwe, totale polifenole en monomeriese fenoliese verbindings, asook die absorbansie (“kleur”) is 

aangetoon.  Heuningbostee berei van C. genistoides, C. longifolia en C. sessiliflora het die hoogste 

oplosbare vastestowwe en totale polifenol inhoud, asook die hoogste absorbansie waardes gehad.  Slegs 

mangiferien, isomangiferien, hesperidien en verbinding C (ongeïdentifiseerde verbinding) is in al ses 

Cyclopia spesies geïdentifiseer.  Cyclopia genistoides, C. longifolia en C. sessiliflora, in volgorde van 

belangrikheid, het die hoogste konsentrasie van beide mangiferien en isomangiferin gehad teenoor C. 

genistoides en C. maculata wat die hoogste hesperidien konsentrasie gehad het.  Die bitter smaak 

teenwoordig in sekere Cyclopia spesies blyk moontlik as gevolg van die hoë mangiferien inhoud te wees, 

hoewel komponente soos isomangiferien en komponent C dalk ook „n rol mag speel. 

 Die effek van die fermentasie temperatuur (80°C en 90°C) en tyd (8 h, 16 h, 24 h en 32 h) van C. 

genistoides, C. subternata en C. maculata op die sensoriese eienskappe van heuningbostee is ondersoek.  

Fermentasie vir langer as 8 h het tot „n toename in positiewe sensoriese eienskappe en afname in negatiewe 

sensoriese eienskappe gelei eerder as die ontstaan van nuwe sensoriese eienskappe.  Om heuningbostee 

met „n optimum sensoriese profiel te verkry is „n fermentasie temperatuur/tyd kombinaise van 80°C/24 h of 

90°C/16 h nodig vir C. genistoides, C. subternata en C. maculata.  Cyclopia genistoides wat by 90°C 

gefermenteer word sal minder van die roos geranium note bevat, terwyl C. subternata by 80°C of 90°C 

gefermenteer kan word, afhangende of „n blomagtige of „n appelkooskonfyt noot verlang word.  Fermentasie 

by 90°C word nie aanbeveel C. maculata nie as gevolg van die toename van sekere negatiewe sensoriese 

eienskappe (hooi/droe gras aroma en -geur en groen gras aroma).  Fermentasie het die inhoud van 

oplosbare vastestowwe, totale polifenole, individuele polifenoliese verbindings, asook kleur verminder.  

Veranderinge in die smaak en mondgevoel van heuningbostee kon toegeskryf word aan die veranderinge in 

die polifenoliese inhoud as gevolg van die hoë temperatuur oksidasie.  Mangiferien is met die bitter smaak 

van C. genistoides geassosieer, terwyl mangiferien and isomangiferien moontlik deels frankheid in C. 

subternata veroorsaak.  Die studie het die noodsaaklikheid vir verdere navorsing op die bydrae van die hoof 

fenoliese verbindings tot die smaak en mondgevoel van Cyclopia spesies gestaaf.  
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Chapter 1 

 

INTRODUCTION 

 

The foliage and stems of the indigenous Cyclopia shrub is used to prepare a traditional South African sweet, 

honeylike herbal tea known as honeybush tea (Du Toit et al., 1998).  The Cyclopia shrub grows localised in 

the coastal districts and the mountainous areas of the Cape Floristic Region.  Honeybush tea is believed to 

be first used by the Bushmen and Khoisan for medicinal purposes; later Dutch and British settlers began to 

use it as a substitute for their regular tea (Camellia sinensis).  To date, more than 20 Cyclopia species has 

been identified but mainly three of these are currently being utilized commercially (Joubert et al., 2011).  The 

demand for honeybush tea, nationally and internationally, has increased substantially over the last decade 

with exports currently exceeding 200 tons and this growth is expected to continue (Joubert et al., 2011).  

Honeybush tea is currently exported to 18 countries with the Netherlands being the top importer followed by 

Germany, the United Kingdom (UK), Poland and the United States of America (USA).  Until recently, exports 

consisted mainly of C. intermedia, C. genistoides and C. subternata, however, as the demand began 

exceeding the supply, the focus, due to necessity, shifted to include other Cyclopia species, such as C. 

sessiliflora, C. longifolia and C. maculata. 

The only descriptors, additional to sweet and honeylike, used to describe the flavour of honeybush 

tea were flowery, fruity, grassy and burnt (Du Toit & Joubert, 1998; Du Toit & Joubert, 1999).  According to 

the Foodstuffs, Cosmetics and Disinfectants Act (Anon., 2002) honeybush tea refers to the product obtained 

from the leaves, flowers and stems of the Cyclopia genus.  There is no reference to specific Cyclopia species 

nor is it required to indicate Cyclopia species on the packaging.  Only certain brands, mostly those found in 

speciality shops or up-market farm stalls, consists of one Cyclopia species (Joubert et al., 2011).  Most 

products are a mixture of two or more Cyclopia species or blends of honeybush and rooibos (Asphalatus 

linearis) and other indigenous South African plants and fruits (Joubert et al., 2008).  The South African 

quality standards for the export of honeybush tea according to the Agricultural Product Standards Act (Anon, 

2000) state that, in terms of taste and aroma, honeybush “must have the clean characteristic taste and 

aroma of honeybush and that it shall be free from any foreign flavours and odours which detrimentally effect 

the characteristics of the product”.  However, neither the “characteristic” taste and aroma nor what is 

considered to be foreign and detrimental to the taste and aroma of the product are defined.  Variation in 

sensory quality due to differences in localities, environmental conditions, processing parameters and the 

inherent species differences is not taken into account.  Consequently, the lack of standardised terminology 

with which to describe the characteristic honeybush flavour, as well as the fact that no information is 

available with regards to the differences between different Cyclopia species results in considerable variation 

in the sensory profiles of teas currently being sold in the market place as honeybush tea.  This could lead to 

detrimental consequences as a consistent supply of high quality tea with consistent flavour profiles cannot 

be ensured without this information. 

According to literature it is the oxidative chemical reaction, more commonly referred to as 

“fermentation”, which is responsible for the characteristic taste and aroma of honeybush tea (Du Toit & 

Joubert, 1999).  However, the fermentation conditions, ranging from 70°C/60 h for C. intermedia to 80-

85°C/18-24 h for other Cyclopia species, currently employed by the industry is based on research done on 
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C. intermedia and C. buxifolia (previously classified as C. maculata) (Joubert et al., 2011).  In the case of C. 

intermedia, 70°C/60 h represents the optimum fermentation temperature-time regime.  Fermentation at 80-

85°C/18-24 h represents a trade-off between cost and optimum quality (E. Joubert, ARC Infruitec-Nietvoorbij, 

Stellenbosch, personal communication).  It is thus quite possible that the conditions employed by the 

industry are not necessarily optimum for producing honeybush tea from Cyclopia species, other than C. 

intermedia.  Higher/lower temperatures and shorter/longer fermentation periods might be required to obtain 

the characteristic honeybush flavour, depending on the species.  Once again the need for a set of 

standardised terms to describe the characteristic honeybush flavour as well as specific negative attributes 

associated with honeybush is highlighted.  Without these sensory descriptors it is very difficult to identify and 

describe tea of inferior sensory quality. 

The continuing increase in international demand for honeybush tea may lead to an interest in 

production of honeybush tea in other countries which would pose a major treat to the South African 

honeybush industry.  The development of a geographical indication (GI) for honeybush might be essential in 

the future (Blanchard Oritz, 2006; Blanchard et al., 2006).  GI is a label that is reserved for products which 

acquire the characteristic and defining qualities as a result of their geographical location (Grazioli, 2002) and 

it enables producers to distinguish their product based on its specific origin-related characteristics.  However, 

in order to establish a GI for honeybush the product needs to be described - emphasising the need for a list 

of sensory descriptors describing the typical flavour and mouthfeel attributes of honeybush tea and to 

determine the extent of similarity, but also dissimilarity in the sensory attributes of different species.   

Sensory lexicons and sensory wheels are often used in the industry or research-related 

environments to describe the sensory attributes associated with certain food and beverage products (Drake 

& Civille, 2002).  A sensory lexicon consists of a set of words describing the sensory attributes of a product 

along with definitions and/or reference standards for clarification whereas a sensory wheel is a simple 

graphical representation of the sensory lexicon.  These tools are used to standardise the terminology used to 

discuss the sensory properties related to a certain product and have been reported to increase 

communication between different role players in the industry.  The successful application of these sensory 

tools by a number of industries, i.e. wine (Noble et al., 1987; Gawel et al., 2000), beer (Meilgaard et al., 

1979) and tea (Camellia sinensis) (Bhuyan & Borah, 2001), suggests that the development of a sensory 

lexicon and wheel would make a valuable contribution to the honeybush industry.  These tools would enable 

the industry to compare the sensory profiles of different Cyclopia species as well as facilitate communication 

between the different role players in the industry.  Such tools could also be used to describe the effect a 

number of different factors, such as processing conditions and geographical origin, have on the sensory 

characteristics of honeybush tea, identify niche markets, as well as determine which Cyclopia species can be 

blended to retain a certain flavour profile. 

A list of sensory descriptors may be used to investigate the relationship between 

chemical/instrumental data and the sensory quality as the sensory terms have direct application to the 

multitude of compounds present in a food or beverage product (Drake & Civille, 2002).  Non-volatile 

compounds are detected by taste whereas volatile compounds are detected by the sense of smell (Dutta et 

al., 2003).  Flavour is the result of the combination of the basic tastes and specific aroma characteristics that 

arise from the volatile components which enter the nasal passages though the nose and the back of the 

mouth (Jackson, 2009; Ross, 2009).  The volatile compounds in honeybush tea and their relationship to 

aroma have been studied extensively by Le Roux et al. (2008) and Cronje (2010).  However, research on the 
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relationship between taste and the non-volatile compounds in honeybush tea is limited to the study Reichelt 

et al. (2010) which identified hesperetin as a flavour modulating compound with sweet enhancing properties.  

Ley et al. (2005) and Ley (2008) reported that the honeybush flavanone, eriodictyol, possesses bitter 

masking properties. 

Sour taste is usually caused by small, soluble, inorganic cations, however, it has been reported that 

certain phenolic acids have acidic or sour taste characteristics (Huang & Zayas, 1991; Peleg & Noble, 1995).  

It is thus quite possible that the sour taste in honeybush tea may be related to p-coumaric or shikimic acid 

which has been identified in Cyclopia species (Ferreira et al., 1998; Kamara et al, 2003; Kamara et al., 2004; 

Jackson, 2009).  On the other hand, bitter taste and astringency are elicited by flavonoids, such as flavanols 

and flavonols (Lesschaeve & Noble, 2005).  Based on the proposition made by McManus et al. (1981), that 

for a phenolic compound to elicit an astringent sensation it must possess two adjacent hydroxyl groups, it 

can be postulated that the xanthones, mangiferin and isomangferin, and the flavanone, eriocitrin, might be 

responsible for astringency in honeybush tea.  Identifying specific constituents in honeybush infusions 

responsible for the basic tastes, specifically bitter taste, and astringency, may be useful for many reasons.  It 

could be used as indicators of the quality and sensory properties of honeybush tea which would facilitate the 

development of a prediction model with which its sensory properties/quality could be estimated by analysing 

its chemical composition.  These taste properties are also crucial with regards to the development of value-

added products such as drinks, dairy products and food bars.   

The objectives of this study were thus to evaluate the flavour of honeybush tea and to identify 

differences and similarities between the different Cyclopia species used to produce honeybush tea and to 

develop a defined set of descriptors, in the form of a sensory lexicon and wheel, for honeybush tea.  The 

focus fell on C. maculata, recently identified for commercialisation, and gas chromatography-olfactometry 

(GC-O) was undertaken in an attempt to identify specific compounds responsible for the aroma of C. 

maculata.  Correlation between specific sensory attributes and polyphenolic compounds were evaluated in 

order to determine whether specific polyphenolic compounds in the honeybush infusion could be linked to 

certain taste and mouthfeel attributes associated with honeybush tea.  The effect of different fermentation 

temperature and time combinations on the flavour profile and the polyphenolic composition of three Cyclopia 

species, i.e. C. genistoides, C. subternata and C. maculata, were evaluated in order to determine the 

optimum fermentation conditions for each species.   
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1. INTRODUCTION 

 

The dramatic growth in the consumption of herbal teas by health conscious consumers seeking products 

associated with health and wellness coupled with the commercial success of rooibos tea has led to an 

increase in the demand for honeybush tea, both locally and internationally (Joubert et al., 2011).  Honeybush 

tea has become internationally recognized as a substitute for ordinary tea (Camellia sinensis) due to its 

associated biological properties.  Research has shown that honeybush tea possess antioxidant (Joubert et 

al., 2008a), antimutagenic (Marnewick et al., 2000; Marnewick et al., 2003), phyto-estrogenic (Verhoog et al., 

2007a; Verhoog et al., 2007b) and antimicrobial (Coetzee et al., 2008) properties.  This chapter gives an 

overview of honeybush tea; its history, botanical description, geographical distribution, chemical composition 

and the current state of the industry.  The processing methods, aroma, taste, mouthfeel and flavour 

physiology, perception and analysis, and the sensory methods employed for the estimation of tea quality are 

also reviewed.  

 

2. HONEYBUSH (CYCLOPIA SPECIES) 

 

2.1. History 

 

Honeybush tea is believed to have first been used by the native tribes in the Cape as a treatment for coughs 

and upper respiratory systems associated with infection although there are no published reports confirming 

this (Du Toit et al., 1998).  The earliest mention of the honeybush plant was in 1705 in a taxonomic script 

(Kies, 1951) and in 1772 the name “honingtee” (Dutch) was first recorded by C. Thunberg, a Swedish 

botanist (De Lange, 2002).  However, it was not until 1808 that the specific species referred to in this 

literature was classified and named C. genistoides (Greenish, 1881).  In 1815 C. Latrobe mentions the use of 

“tea-water” in the Langkloof (Latrobe, 1818), an area rich in honeybush.  A few years later, Bowie (1830) 

reported the use of the honeybush plant as an expectorant in chronic catarrh and pulmonary tuberculosis.  

According to Marloth (1925) the infusion was used by colonists as a stomachic and to alleviate heartburn 

and nausea.  Other species such as C. vogelii (renamed C. subternata) (Watt and Breyer-Brandwijk, 1962), 

C. latifolia and C. longifolia (Marloth, 1913; Marloth, 1925) were also used to prepare honeybush tea.  

Marloth (1925) first noted the regional use of specific species, probably due to their prevalence in those 

localities, i.e. C. genistoides was used in the Cape Peninsula whereas C. subternata was used in Caledon 

(Overberg) and George areas.  Despite the fact that the first branded honeybush tea “Caspa Cyclopia tea” 

appeared on the South African market in the 1960s the honeybush industry remained dormant until the 

1990s when the commercial success of rooibos led to renewed interest in honeybush tea.  The South African 

National Botanical Institute (SANBI, Kirstenbosch) and the Agricultural Research Council (ARC) initiated 

projects to investigate the commercial cultivation, processing and health-promoting properties of honeybush 

(Joubert et al., 2008b).  The complete history with regards to the development of a formal honeybush tea 

industry can be found in Joubert et al. (2011). 
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2.2. Botanical description 

 

The Cyclopia plant belongs to a very distinct genus of the tribe Podalyrieae and is classified as a member of 

the Fabaceae (Schutte, 1995).  To date more than 20 species of Cyclopia have been described in literature 

(Kies, 1951; Bond & Goldblatt, 1984; Schutte, 1995), however, only a few of these are used for the 

commercial production of honeybush tea (Joubert et al., 2011).  Cyclopia plants have woody stems with a 

relatively low leaf-to-stem ratio and are normally 1.5 m high, but these bushes can reach a height of up to 3 

m (Bond & Goldblatt, 1984; Welgemoed, 1993).  The leaves are trifoliate while the leaf shape varies between 

the different Cyclopia species – from pubescent, narrow leafed (C. genistoides) to flattened (C. intermedia 

and C. subternata) (Levyns, 1920; Marloth, 1925; Kies, 1951; Bond & Goldblatt, 1984).  Cyclopia species 

can be divided into two distinct groups depending on which fire-survival strategy the plant utilises; reseeders 

(killed by fire and re-established from seeds) or resprouters (survive fire and sprout from the woody base) 

(Van Wyk, 2008).  During the flowering period the Cyclopia bushes can easily be recognised in the field by 

their deep-yellow flowers with indented calyxes and their sweet, honeylike scent (Du Toit et al., 1998).  

Flowering usually occurs in the spring (September and October), with the exception of C. sessiliflora which 

flowers during the late autumn or early winter (May and June) (Joubert et al., 2011). 

 

2.3. Geographical distribution 

 

The indigenous Cyclopia species forms part of the Cape Floristic Region (CFR), which falls in the Western 

and Eastern Cape Provinces of South Africa (Du Toit et al., 1998).  The CFR is the smallest and richest of 

the world‟s six floral kingdoms, with more than 8700 plant species of which an astonishing 68% are endemic 

only to this area (Turpie et al., 2003).  The honeybush shrub grows in the coastal districts of the Western and 

Eastern Cape (Fig. 1) (Du Toit et al., 1998).  Unlike rooibos tea (Aspalathus linearis) which is prepared from 

a single species, honeybush tea is prepared from a variety of Cyclopia species found in different climatic 

regions of South Africa.  The tea is therefore not only known as honeybush tea to the local inhabitants, but 

has different descriptive names according to their habitat and appearance (Table 1).  Most Cyclopia species 

prefer to grow on the sandy and cooler southern slopes of the mountain ranges, with the exception of C. 

genistoides which can be found on the flat and sandy coastal areas (Du Toit et al., 1998; Joubert et al., 

2008b).  Cyclopia longifolia is endangered and only a few plants are found in the wild, however, the potential 

to cultivate this species, along with C. maculata and C. sessiliflora, is currently under investigation (Joubert 

et al., 2011) 

In the past, harvesting activities has led to the degradation and depletion, and even the extinction of 

many Cyclopia populations (Du Toit et al., 1998).  The fear of over-exploitation of the natural Cyclopia 

populations, due to the growing interest in honeybush tea, has led to the establishment of commercial 

plantations to lessen the pressure on the natural Cyclopia populations.  In terms of cultivation, C. subternata 

and C. genistoides are the two main species used (De Lange & von Mollendorff, 2006).  The cultivation of 

these species is localized to the area between the Overberg and the Langkloof area, with approximately 200 

ha under cultivation.  Cyclopia subternata grows mainly on sandy loam soil in valleys in the Langkloof, the 

Waboomskraal area near George and the Riversdal area whereas C. genistoides grows naturally in the 

coastal sandy areas from the west coast to Mossel Bay and therefore plantations have been established in 

the Overberg and Mossel Bay/Albertinia areas.  Cyclopia intermedia is not ideal for cultivation as it can only 
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be harvested every second to third year making it uneconomical to cultivate for commercial purposes 

(Joubert et al., 2011). 

 

 

 

 

 

Figure 1 Natural (a) and cultivated distribution (b) of C. genistoides, C. intermedia, C. longifolia, C. maculata, 

C. sessiliflora and C. subternata (Joubert et al., 2011). 

 

a) 

b) 
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Table 1 General information on the six Cyclopia species with commercial and potential commercial value 

Species 
Descriptive 

name 
Distribution Soil type Flowering period Comments 

Ses Heidelbergtee 
Langeberg and Warmwaterberg mountains in the southern 

region (Rare/localised) 

Well-drained 

loamy, sandy 

soils 

May/June 

Good tea quality, favourable 

growth form, slow growing, 

harvest close to the ground 

Lon 

No known 

descriptive 

name 

Van Stadens River mountains near Port Elizabeth 

Moist, sandy 

soils along the 

banks of the 

river 

September/October 
Tea quality unknown, 

harvest close to the ground 

Gen 

Kustee/ 

Heuningtee/ 

Overbergtee 

Malmesbury – Darling area, the hills and mountains on the 

Cape Peninsula and Cape Flats, Grabouw, Kogelberg, Betty‟s 

Bay, Hermanus, Bredasdorp, De Hoop, Swellendam and 

eastwards to Albertina in the southern region 

Sandy soils August/September 

Good quality tea, excellent 

growth form, harvest close to 

the ground 

Int 
Bergtee/ 

Kougabergtee 

Witteberg, Anysberg, Swartberg, Touwsberg, Rooiboerg, 

Kammanassie, Kouga, Baviaanskloof, Langeberg, Outeniqua, 

Tsitsikamma, Van Stadens mountains (most widespread) 

Rocky, loamy, 

sandy soils 
September 

Very good quality tea, slow 

growing, harvest close to the 

ground, possibly drought 

resistant 

Sub Vleitee 

Widely distributed along the coastal mountain ranges 

(Tsitsikama, Outeniqua and Langeberge) where it occurs on 

the southern slopes 

Well-drained, 

stony, loamy 

soils 

September 

Very good quality tea, 

vigorous grower, producing 

relatively thick shoots, 

harvest knee-high 

Mac 
Vleitee/ 

Genadendaltee 

Along riverbanks and streams in the south-western and 

southern region 
Wet, peaty soils August/September 

Tea quality unknown, 

vigorous growth, thick 

shoots, harvest knee-high 

Compiled from Schutte (1997), De Lange & von Mollendorff (2006), and Joubert et al. (2011).  Ses = C. sessiliflora, Lon = C. longifolia, Gen = C. genisoitdes; Int = 

C. intermedia, Sub = C. subternata, Mac = C. maculata.    
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2.4. Chemical composition 

 

Honeybush is a caffeine-free (Greenish, 1881) herbal infusion with a very low tannin content (Marloth, 1925; 

Terblanche, 1982) containing numerous polyphenolic compounds which have the ability to act as 

antioxidants and have anticarcinogenic and phyto-oestrogenic properties (Joubert et al., 2008b; Joubert et 

al., 2009).  Approximately 30% of the total polyphenol content and 4.34% of the soluble solids of fermented 

C. buxifolia is tannin (Du Toit & Joubert, 1998b).  The tannin is of the proanthocyanidin type (Marnewick et 

al., 2005).  A cup of honeybush tea was reported to contain 0.59 μg/mL fluoride and 20.5 μg/mL Ca (Touyz & 

Smith, 1982; Malik et al.,2008).  The earliest reports of the chemical composition of the Cyclopia plant date 

back to 1870 and 1881, where the presence of unknown and unidentified substances was mentioned (Watt 

& Breyer-Brandwijk, 1962).  It was only recently, in 1996, when De Nyschen et al. (1996) identified the three 

major constituents in the leaves of Cyclopia species as a xanthone C-glycoside (mangiferin) and two O-

glycosides of the flavonones (hesperetin and isosakuranetin).  Analysis to date did not shown the presence 

of isosakuranetin (Joubert et al., 2011) 

In processed leaves and stems of C. intermedia species Ferreira et al. (1998) identified xanthones 

(mangiferin and isomangiferin) along with the inositil (+)-pinitol, luteolin, the hydroxycinnamic acid 4-

coumaric acid, five isoflanones (formononetin, afrormosin, calycosin, pseudobaptigen and fujikinetin), four 

flavonones (hesperitin, hesperidin, naringenin and eriodictyol) and three coumestants (medicagol, 

flemichapparin and sophorocoumestan).  A few years later Kamara et al. (2003; 2004) identified additional 

flavonoids including hydroxyphenylethanol tyrosol and a couple 4-O-glycosyl derivatives, five glycosylated 

flavonols (including monoglucosylated kaempferols), four flavanones, two isoflavones (including wistin) and 

two flavones.  These studies were, however, limited to C. intermedia (fermented) and C. subternata 

(unfermented).  Joubert et al. (2008b) also identified a number of unknown compounds in Cyclopia species.  

Table 2 summarises the secondary metabolites identified in the plant material of Cyclopia species. 

The total polyphenol content of honeybush tea extracts has been shown by Joubert et al. (2008b) to 

differ between the different Cyclopia species and to decrease with fermentation of the raw honeybush plant 

material.  The total polyphenol content of C. genistoides was least effected by fermentation followed by C. 

sessiliflora, whereas C. intermedia and C. subternata retained less than 50% of its total polyphenol content.  

The lower total polyphenol content after fermentation of the raw plant material is attributed to the decrease in 

the xanthone as well as the flavonoid contents.  

All Cyclopia species, analysed to date, contain the three major polyphenolic compounds (mangiferin, 

isomangiferin and hesperidin) (Joubert et al., 2008b).  In a study by De Beer & Joubert (2010) only 

mangiferin, isomangiferin, hesperidin and compound B, an unidentified flavanone-glycosides, could be 

identified in all Cyclopia species analysed, namely C. genistoides, C. intermedia, C. sessiliflora and C. 

subternata.  They showed that extracts of fermented plant material contain lower concentrations of specific 

compounds than the unfermented plant material.  Unfermented C. genistoides contained the highest 

concentration of both mangiferin and isomangiferin followed by C. sessiliflora, C. intermedia and C. 

subternata (Joubert et al., 2008b).  The hesperidin content was very similar between the four Cyclopia 

species but C. sessiliflora had the highest concentration and C. subternata the lowest.  However, previously 

Joubert et al. (2003; 2008b) found that C. intermedia contained the most and C. sessiliflora the least 

hesperidin.  Compound B was present in all Cyclopia species analysed but it was significantly higher in C. 

sessiliflora compared to the other species.  In fermented C. subternata only trace amounts of compound B 
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could be identified.  Eriocitrin was present in all the Cyclopia species except C. genistoides.  The highest 

concentration was present in C. subternata and C. sessiliflora, followed by C. intermedia.  However, it is 

mentioned that there was a problem with co-elution in C. sessiliflora which could have led to overestimation.  

Compound D (an eriodictyol-glucoside) was only present in unfermented C. subternata and C. intermedia.  

Unfermented C. subternata, C. intermedia and, interestingly, fermented C. sessiliflora contained compound 

E (unidentified hydroxycinnamic acid derivative).  Compound F was detected in unfermented and fermented 

C. subternata and C. sessiliflora as well as unfermented C. intermedia.  Eriodictyol, luteolin and narirutin 

were not quantified as they were either not detected, present only as traces or co-eluted with other 

compounds.  Joubert et al. (2003) showed that C. genistoides (Overberg type) contain more mangiferin and 

less hesperidin than C. genistoides (West Coast type).  Also, it showed that the mangiferin content varied 

with the harvesting date.   

 

Table 2 Secondary metabolites identified in the plant material of Cyclopia species (Joubert et al., 2008b) 

Structure Compound type, names and substituents 

 

 

 

Xanthone 

Manigferin
a
: R1 = C-β-D-glucosyl, R2 = H 

Isomangiferin
a
: R1 = H, R2 = C-β-D-glucosyl 

 

 

 

 

Flavanone 

Hesperidin
a,c

: R1 = O-rutinosyl; R2 = OH, R3 = OCH3, R4 = OH 

Hesperetin
a
: R1 = R2 = OH, R3 = OCH3, R4 = OH 

Eriocitrin
c
: R1 = O-rutinosyl, R2 = R3 = R4 = OH 

Eriodictyol
a
: R1 = R2 = R3 = R4 = OH 

Narirutin
c
: R1 = O-rutinosyl, R2 = R3 = OH, R4 = H 

Naringenin
a
: R1 = R2 = R3 = OH, R4 = H 

Prunin
b
: R1 = O-rutinosyl, R2 = R3 = OH, R4 = H 

Naringenin-5-O-rutinoside
b
: R1 = R3 = OH, R2 = O-rutinosyl, R4 = H 

Eriodictyol-5-O-glucoside
b
: R1 = R3 = R4 = OH, R2 = O- β-D-glucosyl 

Eriodictyol-7-O-glucoside
b
: R1 =O- β-D-glucosyl, R2 =R3 =R4 =OH 

 

 

 

 

Flavone 

Luteolin
a,c

: R1 = R2 = R3 = OH  

Diosmetin
b
: R1 = R2 = OH, R3 = OCH3 

5-Deoxyluteolin
c
: R1 = R3 = OH, R2 = H  

Scolymoside
c
: R1 = O-rutinosyl, R2 = R3 = OH  
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Isoflavone 

Formononetin
a
: R1 = OH, R2 = R3 = R4 = H, R5 = OCH3 

Formononetin diglucoside
b
: R1 = O-α-apiofuranosyl-(1‟‟‟→6‟‟)-β-D-

glucopyranosyl, R2 = R3 = R4 = H, R5 = OCH3 

Afrormosin
a
: R1 = OH, R3 = R4 = H, R2 = R5 = OCH3 

Calycosin
a
: R1 = R4 = OH, R2 = R3 = H, R5 = OCH3  

Wistin
b
: R1 = O-β-D-glucosyl, R3 = R4 = H, R2 = R5 = OCH3  

Orobol
c
: R1 = R3 = R4 = R5 = OH, R2 = H  

 

 

 

Methylinedioxyisoflavone derivative 

Pseudobaptigenin
a
: R = H  

Fujikinetin
a
: R = OCH3 

  

Flavonol 

Kaempferol-5-O-glucoside
b
: R1 = R2 = H, R3 = O-β-D-glucosyl  

Kaempferol-6-C-glucoside
b,c

: R1 = H, R2 = C- β-D-glucosyl, R3 = OH  

Kaempferol-8-C-glucoside
b
: R1 = C- β-D-glucosyl, R2 = H, R3 = OH  

Kaempferol-8-C-glucoside
b
: R1 = C- β-D-glucosyl, R2 = H, R3 = OH  

 

 

 

Methylinedioxyflavonol derivative 

3‟,4‟-Methylenedioxyflavonol diglucoside
b
: R = O-α-apiofuranosyl-

(1‟‟‟→6‟‟)-β-D-glucopyranosyl  

 

 

Coumestan 

Medicagol
a
: R1 = H, R2 = OH  

Flemichapparin
a
: R1 = H, R2 = OCH3  

Sophoracoumestan B
a
: R1 = OCH3, R2 = OH  

 

 

 

Flavan-3-ol 

 

(−)-epigallocatechin gallate
c
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Phenylethanol derivative 

Tyrosol
b
: R1 = H, R2 = OH 

3-Methoxy-tyrosol
b
: R1 = OCH3, R2 = OH 

4-Glucosyltyrosol
c
: R1 = H, R2 = O- β-D-glucosyl 

Phenylethanol diglucoside
b
: R1 = O-α-apiofuranosyl-(1‟‟→6‟)-β-D-

glucopyranosyl, R2 = H  

 

 

Benzaldehyde derivative 

Benzaldehyde diglucoside
b
: R = O-α-apiofuranosyl-(1‟‟→2‟)-β-D-

glucopyranosyl 

 

 

Phenolic carboxylic acid 

p-Coumaric acid
a
 

 

 

Organic acid 

(±)-Shikimic acid
c 
 

  

Inositol 

(+)-Pinitol
a,c 

 

 

a
 Ferreira et al. (1998), 

b
 Kamara et al. (2003), 

c 
Kamara et al. (2004) 

 
2.5. The industry 
 

McKay and Blumberg (2007) reported that the overall herbal tea consumption has been increasing at an 

annual rate of 15-20% per year.  This dramatic growth is fuelled primarily by health conscious consumers 

seeking products that will help them live longer, feel better and stay healthier.  Honeybush tea has become 

internationally recognized as a substitute for ordinary tea (Camellia sinensis), mainly due to its high 

antioxidant potential, and the honeybush industry has the potential to emulate the success achieved by the 

rooibos industry (Joubert et al., 2011). 

In the early eighties, exporting honeybush tea to the United States of America (USA) was 

investigated, but a lack of supply prevented exporting (Viljoen, 1994).  Due to the inconsistent quality of 

honeybush tea a number of studies was conducted in order to develop a standardized processing method 

with adequate control to ensure that honeybush tea of constant good microbial and sensory quality are 
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produced (Du Toit et al., 1998).  However, quality problems still exist and could severely harm the reputation 

of the relatively new and still developing honeybush industry.  

The export market of honeybush has grown from 50 to 200 tonnes over the past ten years (Fig. 2) 

and currently the supply cannot meet the demand (Joubert et al., 2011).  The Netherlands are currently the 

top importer of honeybush tea with a share of almost 45%, followed by Germany, the United Kingdom (UK), 

Poland and the USA (Table 3).  Most of the tea produced (95%) is sold in bulk to overseas clients.  Until 

recently, exports consisted mainly of C. intermedia (as well as C. genistoides and C. subternata), however, 

as the demand for honeybush tea increased, both locally and internationally, the demand began exceeding 

the supply and the focus, due to necessity, shifted to other Cyclopia species, such as C. sessiliflora, C. 

longifolia and C. maculata.  Due to the fact that honeybush has huge potential in the herbal tea market, is 

unique to South Africa, can be grown organically and can be used in value-added food products, medicinal 

products and cosmetics, the rapid growth of the industry is expected to continue (Joubert et al., 2011). 

 

Table 3 Top importers of Honeybush tea in 2010 (S. Snyman, South Africa, Rooibos Council, 2011, personal 

communication) 

 Country Total (kg) Percentage 

1 Netherlands 55 841 43.98% 

2 Germany 40 285 31.73 % 

3 UK 9 900 7.80% 

4 Poland 8 010 6.31% 

5 USA 6 291 4.95% 

USA = United States of America, UK = United Kingdom.  Other countries: Sri Lanka (1.2%), Austria (0.95%), 

Australia (0.71%), Russia (0.71%), Canada (0.65%), Italy (0.26%), India (0.24%), Norway (0.14%), Lithuania 

(0.13%), Japan (0.08%), New Zealand (0.07%), China (0.05%) and Hong Kong (0.05%).  

 

 

Figure 2 Total exports of honeybush tea from 1999 to 2010 (Joubert et al., 2011).  
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Although honeybush has been known to South Africans for centuries it is only during the last few 

years that honeybush tea has appeared on our supermarket shelves (Joubert et al., 2011).  Products such 

as mixtures of honeybush and rooibos and other indigenous South African plants and fruits and ice teas are 

now available (Joubert et al., 2008b).  Although certain brands, mostly those found in specialty shops or up-

market farm stalls consists of only one Cyclopia species, most of the honeybush products are a mixture of 

two or more Cyclopia species. 

The continuing increase in the international demand for honeybush tea may lead to an interest in the 

production of honeybush tea in other countries which would pose a major threat to the South African 

honeybush industry (Joubert et al., 2011).  The development of a geographical indication (GI) for honeybush 

might also be useful, however, the industry is currently still too small (Blanchard Oritz, 2006; Blanchard et al., 

2006).  A GI is a label that is reserved for products which acquire the characteristic and defining qualities as 

a result of their geographical location (Grazioli, 2002).  It enables producers to distinguish their product 

based on its specific origin-related characteristics.  However, in order to establish a GI for honeybush the 

product needs to be described - emphasising the need for a list of sensory descriptors describing the typical 

flavour and mouthfeel attributes of honeybush tea and to determine the extent of similarity, but also 

dissimilarity in the sensory attributes of different species. 

 

3. PROCESSING OF HONEYBUSH 

 

3.1. Harvesting 

 

Sprouters (C. genistoides, C. intermedia and C. sessiliflora) can be harvested 2 to 3 years after planting, 

depending on the soil and climate (Viljoen, 2001).  The sprouters are cut back to soil level to stimulate the 

formation of new shoots from the rootstock.  After the first harvest C. genistoides can be harvested annually 

whereas C. intermedia and C. sessiliflora can only be harvested every second or third year (Joubert et al., 

2011).  The non-sprouter C. subternata is a relatively fast grower and can be harvested annually.  It is 

harvested by cutting the shoots back to between 30 and 50 cm above the ground.  About a third of the active 

growth should remain on the plant as too severe pruning places stress on the plant causing dieback (Joubert 

et al., 2011).  Bushes previously harvested tend to provide more coarse material due to their thicker stems 

(Du Toit et al., 1998).  The lifespan of a sprouter is at least 10 years whereas the lifespan of non-sprouters is 

about 7 to 8 years (Joubert et al., 2011). 

Harvesting of the Cyclopia shrub was traditionally done during the flowering period (either May or 

September, depending on the species (Du Toit et al., 1998), but due to the increase in demand many 

farmers extended the harvesting period (Welgemoed, 1993).  The presence of the flowers is believed to 

improve the distinctive sweet, honey-like flavour of the tea but a study by Du Toit and Joubert (1999) 

indicated that material processed without the presence of flowers still delivers an acceptable product.  

Therefore, today the raw plant material is harvested in the summer to late autumn before flowering occurs, 

as flowering places the plant under unnecessary stress (Du Toit et al., 1998).  C. genistoides is usually 

harvested during November and March whereas C. subternata is normally harvested in April to June 

(Joubert et al., 2011). 
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3.2. Cutting 

 

Harvested tea should be processed as soon as possible, but processing is often delayed for days (Du Toit et 

al., 1998).  Mechanised fodder cutters or tobacco cutters are used to cut the plant material into small pieces 

(2-3 mm in length) to disrupt the cellular integrity as this facilitates fermentation.  Poor cutting equipment can 

lead to coarse material with unappealing white pieces of stem in the final product which in turn influences the 

quality of the tea (Du Toit & Joubert, 1998b).  In the manufacture of honeybush tea, both the leaves and the 

stems are used which leads to a relatively low moisture content (<50%) for the fresh plant material.  The 

relatively low moisture content obviates the need for a withering stage as is used in black tea (Camellia 

sinensis) manufacture. 

 

3.3. Pre-treatment 

 

Cut plant material is pre-treated with cold water (pre-wetted) as this treatment results in more uniformly 

brown-coloured tea leaves with improved infusion characteristics (Du Toit & Joubert, 1998b).  This treatment 

decreases the presence of uncoloured bits of stems in the final product.  Additionally, pre-treatment results in 

honeybush infusions with better flavour.  The characteristic red-brown dark-brown leaf colour develops faster 

in water treated material as some of the oxidisable matter is extracted to the surface, rendering it more 

accessible to oxygen. 

 

3.4. Fermentation  

 

“Fermentation” refers to the chemical oxidation step during processing needed for the formation of the 

sought-after brown colour and sweet, honey-like flavour of honeybush tea (Du Toit & Joubert, 1998b).  

Traditionally, fermentation heaps (Marloth, 1909; Marloth, 1925) or baking ovens (Hofmeyer & Phillips, 1922) 

were used for fermentation, followed by sun-drying (Du Toit et al., 1998).  These traditional processing 

methods did not allow for control of the processing parameters and problems with mould and bacterial 

growth, as well as under- and unfermented tea resulted in honeybush tea of poor quality (Du Toit & Joubert, 

1998a).  More than a decade ago these problems were addressed by Du Toit and Joubert (1999) and 

rotation drums, similar to those conceptualised for rooibos processing (Joubert & Müller, 1997), and elevated 

temperatures (> 60°C) were introduced in order to eliminate microbial contaminants and to produce tea of 

consistent high quality (Du Toit, 1997). 

 Optimally fermented honeybush tea has a characteristic sweet taste often described as flowery, 

fruity or honey-like, while insufficiently fermented tea has a grassy taste and aroma (Du Toit & Joubert, 

1998b).  Poor fermentation conditions and slow drying can result in tea with a musty off-flavour.  Studies by 

Du Toit (1997) on C. intermedia and C. buxifolia (previously classified as C. maculata) have shown that 

fermentation temperature and time affected the quality of honeybush tea.  Longer fermentation periods (60-

72 h) were necessary when fermentation was carried out at lower temperatures (60 and 70°C), whereas 

fermentation was completed after 36 h at 90°C.  However, the fermentation period at elevated temperatures 

was more critical and good control is necessary to prevent the occurrence of flat liquors with a burnt taste 

(Du Toit et al., 1998).  Most of the compounds that enhance the brown colour of the leaves are formed 
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during the first 48 hours of the fermentation process thus prolonging the fermentation period will not 

markedly contribute to the colour development of the tea leaves (Du Toit & Joubert, 1998b). 

 Today, the industry employ fermentation conditions ranging from 70°C/60 h for C. intermedia to 80-

85°C/18-24 h for other Cyclopia species, such as C. genistoides, C. subternata and C. maculata, whereas 

the ARC ferments honeybush, for research purposes, at either 80°C/24h or 90°C/16 h (E. Joubert, ARC 

Infruitec-Nietvoorbij, Stellenbosch, South Africa, 2010, personal communication). 

 

3.5. Drying 

 

It is believed by traditional processors that the appearance of the final product is improved by sun-drying (Du 

Toit et al., 1998).  However, research has shown that the drying method used (sun-drying vs. controlled 

drying in a tunnel) did not significantly influence the quality of honeybush tea (Du Toit, 1997).  The 

characteristic aroma and taste as well as mouthfeel of honeybush tea are formed during fermentation and 

the relative short drying time does therefore not significantly influence the quality of honeybush tea (Du Toit 

& Joubert, 1998a).  Only the aroma of honeybush tea (C. intermedia) is influenced by the drying temperature 

and it seems that lower temperatures (40-50°C) produce tea with superior aroma properties compared to tea 

dried at higher temperatures (70°C).  Drying temperatures also do not significantly affect the colour, soluble 

solids, total polyphenol or flavonoid contents of C. intermedia and C. genistoides tea infusions (Du Toit & 

Joubert, 1998a).  Currently, honeybush tea is dried at 40°C for 6 hours under artificial conditions (Joubert et 

al., 2011).  

 

3.6. Sieving 

 

Honeybush tea is traditionally a very coarse product which contributed to the belief that the unrefined product 

has certain health given properties (Du Toit et al., 1998).  The tea was therefore often sold as a mixture of 

short stems and leaves.  The final product was put through an electrically driven, cylindrical sieve with a 6.5 

mm aperture screen, to remove all the pieces thicker than a match stick (Viljoen, 1994).  However, the export 

market demanded a finer product, necessitating further improvements to the sieving process (Du Toit et al., 

1998).  Today, the dried tea is sieved (200 g/30 sec) using a mini-sifter and the <12>40 mesh fraction 

collected for experimental purposes whereas five classes (extra coarse cut, regular coarse cut, regular fine 

cut, super fine cut, dust 1 and other cut) exist according to the Agricultural Product Standards Act (Act no. 

119 of 1990; Anon., 2000).  

 

4. QUALITY CONTROL 

 

4.1. Tea grading systems 

 

Grading systems are used to enable standardization and commercialization of a food product by improving 

control over its overall quality and thereby increasing consumer satisfaction (Feria-Morales, 2002).  To 

develop such systems quality parameters needs to be identified, defined and measured.  It is crucial that 

these methods are reliable, quick, simple, scientifically validated and correlated to the way that consumers 

perceive product quality.  
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 Tea (Camellia sinensis) is assessed by tea tasters which observe the appearance of the dry and the 

infused tea leaves (Sinija & Mishra, 2008).  The tasters are primarily concerned with the liquor colour, aroma 

and taste of the brewed tea liquor.  Similarly, rooibos tea of the major rooibos processors is currently graded 

by experienced tasters into seven different grades (AA, A, B, C, D, E or F) based on the appearance of the 

dry and wet tea leaves and the appearance and flavour of an infusion prepared according to a standard 

protocol (Koch, 2011). 

Tea researchers have made many attempts to explain tea quality and its quality attributes chemically 

and physically to develop equipment to replace sensory assessment (Sinija & Mishra, 2008).  In the last 

decade progress has been made, especially in terms of black tea (Camellia sinensis).  Capillary 

electrophoresis, the electronic tongue and a lipid membrane taste sensor have been successfully applied to 

black tea quality estimation (Legin et al., 1997; Horie & Kohata, 1998; Ivarsson et al., 2001a; 2001b).  

Chemical compositions and liquor colours were used to estimate the quality of black (Camellia sinensis) and 

pu-erh teas (Liang et al., 2003).  However, these techniques have not been used widely in commercial 

practices of tea production and marketing and sensory evaluation still remains the most popular and effective 

method for determining tea quality.   

Currently no universal grading system is in place for the evaluation of honeybush tea which could 

lead to teas of inferior quality being sold in the market place.  The fact that different species are used 

interchangeably further complicates this matter.  A similar grading process to that employed in the rooibos 

industry could greatly improve the quality of honeybush tea. 

 

4.2. Regulatory control 

 

According to the Foodstuffs, Cosmetics and Disinfectants Act “honeybush tea” means the product obtained 

from the leaves, flowers and stems of the Cyclopia genus (Anon., 2002).  The quality standards, in terms of 

taste and aroma, for the export of honeybush tea are defined by the Agricultural Product Standards Act (Act 

no. 119 of 1990).  The regulation states that “honeybush must have the clean characteristic taste and aroma 

of honeybush and that it shall be free from any foreign flavours and odours which detrimentally affect the 

characteristics of the product” (Anon, 2000).  No sensory descriptors are provided by the regulations.  

Regulatory control of honeybush tea, similarly to rooibos, is limited to pesticide residues and microbial 

contamination (Joubert et al., 2008b).  Each tea manufacturer exercises their own set of standards in terms 

of cut size, colour and flavour.  No specifications exist for the total polyphenol content or the antioxidant 

activity, in spite of their importance in terms of marketing health promoting properties of honeybush tea. 

 

5. TASTE AND MOUTHFEEL 

 

5.1. Oral physiology 

 

The four basic taste modalities (sweet, sour, bitter, and salty) are perceived within the oral cavity by the taste 

buds that are distributed on the tip and edges of the tongue within a variety of projections known as papillae 

(Jackson & Linskens, 2002; Worobey et al., 2006).  Humans have three types of functional taste papillae: 

fungiform (mushroom shaped located at the front of the tongue), foliate (appearing as parallel rows of ridges 

and valleys located at side of the tongue) and circumvallate (button-shaped located at the back of the 
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tongue).  The circumvallate papillae are sensitive to bitter substances, the folate papillae are sensitive to 

sour materials and the fundiform papillae preferentially detect sweet compounds (Jackson & Linskens, 

2002). 

Polarized, neuroepithelial taste receptor cells (TRCs) in clusters of 50 to 150 are organized into taste 

buds in each papillia (Beidler, 1978).  Each of these taste buds is composed of a series of elongated taste 

receptor cells that are arranged around a central core with the top of the taste bud exposed to the oral cavity 

where the microvilli of the TRCs make contact with saliva and tastants (Akabas, 1990; Worobey et al., 2006).  

It is this configuration which permits taste molecules dissolved in saliva to gain access to the taste cells 

(Worobey et al., 2006).  Additional taste buds are also found on the soft palate and epiglottis, at the back of 

the throat.  Although TRCs are not neurons the contact between these cells and sensory fibres has the 

morphological characteristics of chemical synapses.  In addition, TRCs are electrically excitable cells with 

voltage-gated Na
+
, K

+
 and Ca

2+
 channels capable of generating action potentials.  Besides TRCs the oral 

cavity also houses mechanoreceptors (MRs) which appear to be of greater importance for astringency 

perception (Weiffenbach, 1993; Trulsson & Essick, 1997).  Unlike TRCs, MRs are neurons classified 

according to the size and character of their receptive field (Kaas, 2004) as either Type I (small and distinct 

receptive fields) or Type II (large, diffuse receptive fields) (Jacobs et al., 2002).  MRs are further classified as 

rapidly adapting (RA) receptors which respond during the dynamic phase of stimulus application or slowly 

adapting (SA) receptors which respond to both dynamic and static force applications.   

The salivary glands are under collaborative parasympathetic (acetylcholine) and sympathetic 

(noradrenaline) control via the efferent (secreto-motor) fibers of the facial and glossopharyngeal nerves 

(Garrett, 1967; Garrett and Kidd, 1993). There are three pairs of major salivary glands (parotid, 

submaxillary/submandibular and sublingual exocrine) (Nieuw Amerongen & Veerman, 2002) that secrete 

saliva (containing proteins and enzymes) into the oral cavity, where they provide lubrication and initiate the 

process of digestion (Dawes & Wood, 1973; Young & Schneyer, 1981).  Salivary protein composition varies 

greatly between individuals (0.9-7 mg/mL) (Jenzano et al., 1986; Lu & Bennick, 1998). Recently, Xie et al. 

(2005) has identified 437 proteins in saliva but only the proline-rich proteins (PRPs), histatins (HRPs), α-

amylase, lactoferrin and mucins are implicated in the sensation of astringency (Yan & Bennick, 1995; Lu & 

Bennick, 1998; de Freitas & Mateus, 2001a; 2001b; Gambuti et al., 2006; Condelli et al., 2006). 

 

5.2. Taste 

 

Taste buds respond to the four classic basic tastes (Worobey et al., 2006).  Specific receptors G-protein 

coupled receptors (GPCRs) localized to the surface of the taste cells have been identified for sweet and 

bitter (Brandbury, 2004; Li et al., 2002; Ugawa et al., 2003; Worobey et al., 2006).  Zhang et al. (2003) 

showed that responses to all sweet and bitter stimuli require two signalling molecules; the T1Rs and T2Rs.  

Additional pathways may modulate sweet or bitter taste reception but do not, themselves, trigger a taste 

response.  

 

5.2.1. Sweet 

 

Sweet taste is mediated by a family of three GPCRs (the T1Rs) that combine to generate at least two 

heteromeric receptors: T1R2 and T1R3 associate to function as a broadly tuned sweet receptor, while T1R1 
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and T1R3 form a universal L-amino acid sensor (Li et al., 2002).  It is generally accepted that hydrogen 

bonding is at the origin of sweet taste chemoreception (Mathlouthi & Portmann, 1990).  The mechanism 

involves the presence of a pair, AH-B, of donor and acceptor of hydrogen bonds established with the 

corresponding B-AH unit of the receptor as well as a hydrophobic group called a “γ-centre” situated opposite 

to the AH-B couple. 

 

5.2.2. Bitter 

 

Bitter tastants are detected by members of an unrelated family of about 30 different GPCRs, with the T2Rs 

on the apical membrane of the TRCs located in the taste buds (Adler et al., 2000; Chandrashekar et al., 

2000; Matsunami et al., 2000).  Most T2Rs are co-expressed in the same subset of taste receptor cells of the 

tongue and palate epithelium suggesting that these cells are capable of responding to a broad array of bitter 

compounds (Adler et al., 2000).  T2Rs may also function as heteromeric receptors to accommodate the great 

chemical diversity of bitter tastants (Zhang et al., 2003).  Depending on the species, vertebrate genomes 

contain between three T2R genes in chickens and up to 50 in amphibians with only about 25 in the human 

genome which raises the question as to how humans can perceive such a large number of chemically 

diverse substances as bitter with such a limited number of receptors (Shi & Zhang, 2009; Meyerhof et al., 

2010). 

Unfortunately it is mostly the potential beneficial phytonutrients, such as polyphenolic acid derivates, 

flavonoids, isoflavones, terpenes and glucosinolates which are described as bitter (Drewnowski & Gomez-

Carneros, 2000).  Low molecular weight polymers (flavonoids) tend to be bitter whereas the higher 

molecular-weight polyphenols (plant tannins) are more likely astringent.  Bitter molecules occur in many 

variations; the strongest and most important representatives are certain alkaloids, terpenoids and flavonoids 

(Ley, 2008).  Bitterness of tea (Camellia sinensis) is generally due to the presence of catechins, saponin, 

caffeine and amino acids (Drewnowski & Gomez-Carneros, 2000). 

Besides the extreme wide structural range of bitterness, it is surprising that the bitter taste is very 

specific to isomers of similar molecular structure (Ley, 2008).  Very small structural variations can change the 

taste profile or strongly influence the threshold.  As an example, the hesperetin rutinoside (hesperidin) is 

tasteless but the positional isomer hesperetin neohesperidoside (neohesperedin) is strongly bitter.  Due to 

the wide variations of the structural basis of bitter tasting molecules it is difficult to generalize the molecular 

requirements.  Nevertheless, there have been several attempts to correlate structural elements with bitter 

taste to understand how taste perception works.  According to Belitz and Wieser (1985) a bitter molecule 

needs a polar group and a hydrophobic moiety.  However, the spatial distribution of the two structural 

features seems to be much more important as even a small structural change can cause dramatic 

differences in taste attributes (Ley, 2008).   

In the last few years the problem of bitter-tasting food products has surfaced again due to the 

demand for healthier food and beverage products (Ley, 2008).  Bitter taste is a major problem due to its 

negative hedonic impact on ingestion (Drewnoswki & Gomez-Carneros, 2000; Drewnoswki, 2001).  

Compounds such as certain polyphenols used for the fortification of functional food can cause serious taste 

deficiencies and reduced consumer demand for such products (Eckert & Riker, 2007).  Bitter tasting 

compounds can be diminished, both in raw materials and finished products, by a variety of different methods 

such as breeding plants to obtain less bitter varieties, optimization of fermentation of protein-containing raw 
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materials and debittering of citrus by precipitation or enzymatic degradation of naringin (Saha & Hayashi, 

2001).  The addition of sugar or other sweeteners can be used to mask bitterness however this method fails 

for nonsweet applications (Cano et al., 2000).  The addition of proteins (e.g. milk) can also be used to 

debitter products such as coffee or tea but other taste and aroma qualities are altered significantly (Ley et al., 

2005).   

There is no literature available with regards to bitter taste in honeybush infusions, however, 

according to E. Joubert (ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa, 2010, personal 

communication) there appears to be a problem with a bitter taste in C. genistoides.  This could possibly be 

due to the high concentration of polyphenolic compounds present in this particular Cyclopia species.    

 

5.2.3. Sour 

 

Sour taste is detected by the activation of ion channels that reside within the taste cell membrane (Herness 

& Gilbertson, 1999; Li et al., 2002; Ugawa et al., 2003; Brandbury, 2004; Worobey et al., 2006). Sour taste 

appears to results from either the passage of H
+
 ions through amiloride-sensitive Na

+
 channels or from the 

blockade of K
+ 

channels, which are normally open at resting potential. Sour taste is usually caused by small, 

soluble, inorganic cations, however, it has been reported that certain phenolic acids have acidic or sour taste 

characteristics (Huang & Zayas, 1991; Peleg & Noble, 1995).   

 

5.3. Mouthfeel 

 

5.3.1. Astringency 

 

Astringency can be described as a rough, dry, puckering feeling experienced after the consumption of 

certain types of fruits and beverages that are rich in plant-based polyphenols (Bate-Smith, 1954; Gawel, 

1998; Scharbert et al., 2004).  Astringency, unlike the taste sensations, is not confined to a specific region of 

the mouth but has been defined as a diffuse surface phenomenon, characterized by a loss of lubrication 

which takes about 20 seconds to develop fully (Lee & Lawless, 1991; Gawell et al., 2000). This loss of 

lubrication causes dryness of the oral surface and a tightening and puckering sensation of the mucosa and 

muscles around the mouth (Breslin et al., 1993).  Unlike taste the molecular and physiological mechanisms 

underlying astringency have not been definitively elucidated (Bajec & Pickering, 2008).  It is far from clear 

whether astringency is best regarded as a single perceptual phenomenon or as a composite term 

encompassing a number of subtle tactile sensations.  According to Bajec and Pickering (2008) most of the 

literature agrees with the hypothesis that astringency is a tactile stimulus arising from configurational 

changes of salivary proteins and their loss of lubricating properties. 

 

5.3.2. Astringent compounds 

 

There are four groups of true astringent compounds: salts of multivalent metallic cations, dehydrating agents, 

mineral and organic acids, and polyphenols (Joslyn & Goldstein, 1964).  Tannins are the primary source of 

astringency in foods and beverages (Bate-Smith, 1954; Joslyn& Goldstein, 1964; Arnold et al., 1980; 

Courregelongue et al., 1999).  Tannins can be categorized as either condensed (composed of 
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proanthocyanidins) or hydrolysable (composed of galloyl and hexahydroxyldiphenoyl esters) (Haslam & 

Lilley, 1988; Bennick, 2002).  Traditionally astringent polyphenols have been defined as intermediately sized, 

having molecular weights of 500-3000 Da (Bakker, 1998; Lesschaeve & Noble, 2005), but smaller 

compounds, such as flavan-3-ol monomers, dimers and trimers, have also been shown to be able to elicit 

astringency (Nasih et al., 1993; Peleg et al., 1998).  It is generally accepted that the greater the degree of 

polymerization and molecular weight of an astringent compound the greater its ability to precipitate proteins 

(Bate-Smith, 1973) and its perceived intensity (Arnold et al., 1980; Peleg & Noble, 1999).  According to 

McManus et al. (1981) for a phenolic compound to elicit an astringent sensation it must possess two 

adjacent hydroxyl groups.  It is thus quite possible that the soft astringent taste of honeybush could be due to 

the xanthones, mangiferin and isomangferin, and the flavanone eriocitrin.  The tannin content of honeybush 

could also influence the astringency.   

 

5.3.3. Polyphenol-protein binding 

 

Astringency caused by polyphenolic compounds is due to the formation of salivary protein-polyphenol 

complexes (Monteleone et al., 2004).  The primary reaction leading to astringency is the aggregation and the 

subsequent precipitation of proteins and mucins by the cross-linkingsurface-exposed phenolic groups 

(Kallithraka et al., 1998; Lu & Bennick, 1998; Charlton et al., 2002).  Saliva is produced by the salivary 

glands, consisting mainly of PRPs (Azen & Maeda, 1988).  There are three groups of PRPs (basic, acidic 

and glycosylated).  It is the basic PRPs which appear to be responsible for the complexation of polyphenols 

(Hagerman & Butler, 1981; Lu & Bennick, 1998).  The way in which polyphenols bind to the PRPs can be 

divided into three stages (Fig. 4) (Charlton et al., 2002; Jöbstl et al., 2004).  Firstly, the binding of multiple 

multidentate polyphenols to several sites on the protein causes the previously randomly coiled protein to coil 

around the polyphenol, making the protein more compact.  Secondly, the polyphenol fractions of the protein-

phenol complexes cross-link to polyphenol bridges and create protein dimers, and finally, the dimers 

aggregate to form large complexes and precipitate.   

The protein-binding ability of polyphenols is well documented, and has been demonstrated with a 

variety of proteins besides salivary PRPs.  These include casein (Luck et al., 1994; Jöbstl et al., 2004), 

gelatin (Oh et al., 1980; Hagerman & Butler, 1981; Yokotsuka & Singleton, 1995; Siebert et al., 1996; 

Edelmann & Lendl, 2002), bovine serum albumin (Hagerman & Butler, 1980a; 1980b; 1981), haemoaglobin 

(Bate-Smith, 1973), pectin (Hayashi et al., 2005), and HRPs (Nauratoet al., 1999; Yan & Bennick, 1995).  

More recently data have been presented indicating that mucins (Monteleone et al., 2004; Condelli et al., 

2006), lactoferrin and α-amylase are also capable of polyphenol-binding (de Freitas & Mateus, 2001a; 

2001b; Gambuti et al., 2006), and that, along with the PRPs and HRPs, these proteins are involved with the 

sensation of astringency.  The greater affinity of larger polymerized polyphenols for PRPs, and vice versa, 

has been attributed to the multidentate nature of polyphenols, which allows a single polyphenols to bind 

multiple residues of the protein (Baxter et al., 1997; Charlton et al., 2002; Jöbstlet al., 2004).  

In the case of hydrolysable tannins, the affinity of tannin-protein binding is directly related to the 

degree of galloylation (Baxter et al., 1997; Charlton et al., 2002).  Protein-tannin complexes have been 

described as both soluble and insoluble, and recent data suggests that complex solubility is dependent on a 

number of variables.  Hagerman and Robbins (1987) and Luck et al. (1994) showed that under optimal 

protein:polyphenol ratios and pH conditions, protein-polyphenol complexes are insoluble.  However, in the 
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presence of excess protein the protein-polyphenol complexes are soluble as there is not enough tannin 

present to sufficiently crosslink proteins and form aggregates (Luck et al., 1994).  These findings suggest 

that the stability of polyphenol-protein complexes depends not only on the environmental conditions of the 

reaction (Hagerman & Robbins, 1987; Kawamoto & Nakatsubo, 1997), but also on the types of polyphenol 

and protein used. 

Studies have confirmed that for condensed tannins, hydrogen bonding is the driving force of the 

interaction (Oh et al., 1980; Hagerman & Butler, 1980a, 1980b; 1981; Hagerman et al., 1998; Simon et al., 

2003), but in some cases, it appears that hydrophobic interactions may be the basis for the complexation of 

tannins with protein (Luck et al., 1994; Baxter et al., 1997; Hagerman et al., 1998; Charlton et al., 2002; 

Jöbstl et al., 2004).  Hagerman et al. (1998) suggest that polyphenol polarity is the main predictor of the type 

of association that will occur between polyphenols and proteins (i.e. hydrogen bond vs. hydrophobic 

interaction), with polar polyphenols forming hydrogen bonds and nonpolar polyphenols forming hydrophobic 

interactions. 

 

5.4. Taste analysis 

 

The oldest and most successful method used for taste analysis is by simply tasting the food product (Ley, 

2008).  In the past tea quality has been assessed by many different analytical tools, such as high-

performance liquid chromatography (Valera et al., 1996; Zuo et al., 2002), gas chromatography (Togari et al., 

1995), capillary electrophoresis (Horie et al., 1997) and plasma atomic emission spectrometry (Herrador & 

Gonzalez, 2001).  These methods, however, are time-consuming and the results are often inconsistent with 

sensory results, as tea quality is very complex (Chen et al., 2008).  More recently, electronic tongue 

technology, an application of multi-sensor systems which is applied particularly to analyse liquid phase 

foodstuffs, coupled with multivariate data analysis, has proved to be an extremely powerful analytical tool 

applied widely in foodstuffs and beverages (Hayashi et al., 2007; Chen et al., 2008).  Electronic tongues 

have been used successfully for discrimination, classification, quality control and process monitoring.   It is 

low cost, easy-to-handle measurement set-up and rapid compared to well-established analytical methods 

such as liquid chromatography and spectroscopy, but no sensors are available for some analytes and 

sometimes it is not sufficiently selective. 

 

Figure 4 PRP-polyphenol binding and subsequent protein aggregation and complex formation (Jöbstlet al., 

2004) 
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6. AROMA 

 

6.1. Odour perception 

 

Odour perception takes place in the upper part of the nasal cavity located beneath the cribriform plate, 

known as the regio olfactoria (olfactory sensory epithelium) (Fig. 5; Rothe, 1988; Negoias et al., 2008).  This 

part of the nasal mucosal contains millions of receptors although it is only 10 cm
2
 in area.  There are three 

principle types of cells: 1) olfactory receptors, 2) sustentacular cells and 3) basal cells.  Olfactory receptors 

detect, decode and transmit the sensory information about quality and intensity of odour whereas 

sustentacular cells add land-produced mucopolysaccharide to the mucus layer on the epithelial surface.  On 

the other hand, basal cells seem to be stem cells becoming active in the course of normal cell turnover 

(Rothe, 1988).  

There are two possible ways for odorous substances to reach the regio olfactoria; one way is with the breath 

of air steam via the nasal cavity (orthonasal olfaction) and the other is via the nasopharynx connecting the 

mouth with the nasal cavity during chewing and swallowing (retronasal olfaction) (Fig. 5) (Rothe, 1988; 

Worobey et al., 2006).  In both of these cases volatiles pass the regio olfactoria where after sorption in the 

mucus layer over the active surface the stimulus sets off an electrical signal within the smelling cells which 

are fitted with six to eight micro hairs per cell (Rothe, 1988).  This signal is conducted via the cribriform plate 

to the bulbus olfactorius (olfactory bulb) in the front brain.  The path of the information to the odour field of 

the brain, its registration, method of storage and the comparison with impressions received and stored in the 

brain earlier is unknown.  Approximately 500-750 odour receptor genes have been identified in humans yet 

we are able to perceive thousands of individual odour molecules (Worobey et al., 2006).  It is thus believed 

that different combinations of receptors are employed in combination to encode a complex aroma.        

 

 

 

Figure 5 Schematic of orthonasal and retronasal olfaction (Negoias et al., 2008). 
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6.2. Odour active compounds 

 

The volatile fraction of food products consist of many compounds, however, only a small number of these 

compounds are of significance in determining the aroma (Grosch, 1993).  A major task in flavour chemistry is 

thus to distinguish between the odour active compounds and the less odorous or odourless compounds 

present.  Volatile organic compounds (VOCs) have different odour activities that can be ascribed to three 

important properties of a compound: 1) the absolute threshold, 2) the intensity of the compound as a function 

of its concentration (psychometric function) and 3) its quality (Delahunty et al., 2006).  Due to these different 

properties only a few compounds in a complex aroma mixture contributes to the overall aroma (Delahunty et 

al., 2006).  Additionally, aromas of different qualities can mask or suppress one another. Compounds with 

similar qualities can blend and produce a new aroma.  Certain compounds present in concentrations below 

their odour threshold, or which has no odour activity when assessed individually, can contribute to the aroma 

when they are in a mixture (Delahunty et al., 2006). 

 Gas-chromatography-olfactometry (GC-O) is used to determine the odour activity of volatile organic 

compounds in samples and to assign a relative importance to each of these compounds (Delahunty et al., 

2006).  GC detector response cannot be used as an accurate representative of odour activity due to the 

large variation in odour thresholds and psychometric functions of odour-active compounds, however, human 

assessors can be trained to indicate for each compound eluting from the GC whether a odour is present, the 

duration of the odour activity and the quality and intensity of the perceived odour.  Three types of GC-O 

techniques have been developed: 1) detection frequency (DF) (Linssen et al., 1993; Pollien et al., 1997; van 

Ruth, 2004); 2) dilution to threshold (Acree et al., 1984; Ullrich & Grosch, 1987; van Ruth, 2004) and 3) 

perceived intensity (Miranda-Lopez et al., 1992; Da Silva et al., 1994; Guichard et al., 1995; Étiévant et al., 

1999; Étiévant, 2002; van Ruth, 2004). 

 The DF method uses a group of assessors which are required to sniff the eluate and indicate when 

they detect an odorant (Pollien et al., 1997; van Ruth, 2001; van Ruth & O‟Connor, 2001).  The compounds 

which are detected more frequently are concluded to have a greater relative importance and this is assumed 

to be related to actual odour intensity perceived at the concentration of the compound present in the sample 

(van Ruth & O‟Connor, 2001).  Flavour dilution (FD) factors serve to rank key aroma compounds in order of 

their potency (van Ruth & O‟Connor, 2001).   

In dilution analysis an extract is diluted and each dilution is sniffed until there are no longer any 

odours detected (van Ruth, 2004).  The last dilution at which a compound is detected is a measure for its 

odour potency.  Intensity methods measure the odour intensity of a compound in the GC effluent.  Dilution 

threshold methods quantify the odour potency of a compound based upon the ratio of its concentration to its 

odour threshold in air (van Ruth, 2004).  The significant contribution of each individual odorant to the overall 

aroma can be determined by calculating its odour activity value (OAV) or its relative flavour activity (RFA) 

(Grosch, 1994).  The OAV is the ratio of the actual concentration of the compound in the sample to its odour 

threshold.  Compounds with higher OAVs contribute more to the overall aroma (Guth & Grosch, 1999).  

Since the calculation of OAVs is difficult the determination of threshold values for compounds are 

problematic (Schieberle et al., 1993).  RFA can be calculated as an alternative parameter to OAV 

(Schieberle et al., 1993). 
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6.3. Volatile compounds present in honeybush 

 

The volatile fraction of unfermented and fermented C. genistoides has been studied in detail using 

headspace gas chromatography with mass spectrometry (HS-GC-MS) and GC-O detection by Cronje 

(2010).  According to these studies the same volatile compounds were present in both fermented and 

unfermented honeybush but major qualitative differences were observed.  These results are similar to those 

obtained for the effect of processing techniques on the volatile organic compounds present in black tea 

(Camellia sinensis) (Ravichandran & Parthiban, 1998).  

Le Roux et al. (2008) reported that the volatile fraction of unfermented C. genistoides consisted 

mainly of saturated and unsaturated alcohols, aldehydes and methyl ketones whereas the volatile fraction of 

the fermented C. genistoides consisted mainly of terpenoids.  The specific individual compounds identified in 

the volatile fraction of unfermented and fermented C. genistoides along with the aroma descriptors 

associated with these compounds are summarised in Table 5.  The major constituent in unfermented plant 

material of C. genistoides is 6-methyl-5-hepten-2-one which can be described as an oily, green grass, 

herbaceous compound.  Other compounds in relatively high concentrations are linalool, limonene, hexenal, 

α-terpineol, 3,5-octadien-2-one, geranyl acetone, β-cyclocitral, dihydroactinidiolide, geraniol and trans-

furanoid linalool oxide.  Linalool is the major constituent present in the aroma of fermented C. genistoides 

can be descibred as a refreshing, light, clean, floral compound.  Other compounds present are α-terpineol, 6-

methyl-5-hepten-2-one, geraniol, nerol, limonene, trans-furanoid linalool oxide, hexenal and cis-furanoid 

linalool oxide.   

 

Table 5 Odour descriptions of volatile components in the aroma of unfermented and fermented C. 

genistoides compiled by Cronje (2010) 

Compound Unfermented Fermented Aroma Descriptors 

 Area % Area %  

Hexanal 4.08 1.76 Fatty, green grass 

6-methyl-5-hepten-2-one 54.07 14.17 Oily, green grass, herbaceous 

Limonene 4.60 3.15 Citrus, sweet, orange, lemon 

3,5-octadien-2-one 2.42 0.50 - 

trans-furanoid linalool oxide 0.93 2.29 Sweet-woody, floral-woody-earthy 

cis-furanoid linalool oxide 0.81 1.67 Sweet-woody, floral-woody-earthy 

6-methyl-3,5-heptadien-2-one 1.43 - Warm spicy cinnamon-like 

Linalool 10.68 35.94 Refreshing, light, clean, floral 

α-terpineol 3.75 17.30 Fragrant, floral, sweet lilac 

β-cyclocitral 1.47 0.25 Minty, fruity, green 

Nerol 0.34 3.49 Sweet, floral 

Geraniol 0.96 10.80 Sweet, floral, rose, fruity 

Geranyl acetone 2.33 0.59 Floral, sweet-rosy, slightly green 

Dihydroactinidiolide 1.02 0.16 Sweet, floral, tobacco 

The values shown in bold are higher in either unfermented or fermented honeybush tea, respectively. 
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The aroma descriptors associated with the compounds present in higher concentrations in the 

unfermented honeybush are mainly citrus-like, herbaceous, camphoraceous and in some cases, green and 

woody whereas the aroma descriptors associated with the compounds present in higher concentrations in 

fermented honeybush are mostly sweet, floral, fruity, and in some cases, woody (Cronje, 2010).  Thus the 

compounds can be divided into two distinct groups based on their aroma descriptors: “green” and “floral”.  

The compounds associated with “green” tend to be higher in the unfermented honeybush volatile fraction 

whereas those compounds associated with the “floral” descriptors tend to be higher in the fermented volatile 

fraction. 

Cronje (2010) also identified the volatile organic compounds present in unfermented and fermented 

C. intermedia.  The eight most important odour active compounds identified in this species and the aromas 

associated with these compounds can be viewed in Table 6.  The major constituent in unfermented plant 

material of C. intermedia is linalool.  Other compounds in relatively high concentrations are geraniol, (E)-β-

damascenone, α-terpineol, 6-methyl-5-hepten-2-one and terpinolene. In the fermented C. intermedia the 

concentration of terpinolene, (E)-β-damascenone and (E)-β-ionone has decreased whereas linalool, 

geraniol, α-terpineol and nerol increased dramatically.  Additionally, the concentration of 6-methyl-5-hepten-

2-one has also increased slightly.  Linalool, geraniol, α-terpineol and nerol are therefore expected to 

contribute to the unique aroma of fermented honeybush whereas (E)-β-damascenone and terpinolene 

contribute to the aroma of unfermented C. intermedia.  

Cronje (2010) identified an array of odour-active compounds present in C. subternata.  The most 

intense odour active compounds identified can be viewed in Table 7.  According to Cronje (2010) based on 

the DF method linalool, (E,Z)-2,6-nonadienal, (E)-2-nonenal and (E)-β-damascenone could be the most 

intense individual contributors to the unique aroma of C. subternata.  Also, (E)-β-damascone, (E)-β-ionone, 

3,4-dehydro-β-ionone and 2,3-dehydro-γ-ionone can also be considered as important contributors to the 

aroma of C. subternata. 

 

Table 6 Most important odour active volatile organic compounds in unfermented and fermented C. 

intermedia identified by HS-GC-MS compiled by Cronje (2010) 

Compound 
Unfermented 

Area % 

Fermented 

Area % 
Aroma Description 

6-Methyl-5-hepten-2-one 2.7494 2.8289 
Oily-green, pungent-herbaceous, grassy, with 

fresh and green-fruity notes 

Terpinolene 2.702 0.5617 Sweet-piney, oily 

Linalool 13.158 28.878 Refreshing, floral-woody 

α-Terpineol 4.1208 8.7939 Floral, sweet, lilac-type 

Nerol 0.8906 2.8329 Fresh, sweet-rosy 

Geraniol 6.7717 13.8964 Sweet, floral, rose 

(E)-β-Damascenone 4.4832 1.0417 Woody, sweet, fruity, earthy, green-floral 

(E)-β-ionone 2.2513 1.5161 
Warm, woody, fruity, raspberry-like; resembles 

cedarwood 

The values shown in bold are higher in either unfermented or fermented honeybush tea, respectively. 
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Table 7 Most intense odour-active compounds identified in fermented C. subternata aroma (Cronje, 2010) 

Compound Aroma Descriptors % Area DF (%) 

(E)-β-Damascenone Woody, sweet, fruity, earthy green-floral 0.607 100 

Linalool Refreshing, floral-woody 23.954 100 

(E,Z)-2,6-Nonadienal Green-vegetable, cucumber, violet leaf 0.223 100 

(E)-2-Nonenal Green, cucumber, aldehydic, fatty 0.128 100 

(E)-β-damascone Fruity (apple-citrus), tea-like, minty 0.607 93 

Geraniol Sweet, floral, rose, citrus-like 25.344 93 

(E)-β-Ionone Warm, woody, fruity, raspberry-like 3.061 87 

Component C178 Not available 0.061 60 

3,4-Dehydro-β-ionone Ionone-damascone, saffron-like, fruity, leathery 0.104 87 

2,3-Dehydro-γ-ionone Not available 0.247 87 

(7E)-Megastigma-5,7,9-trien-4-one Tea-like, spicy and resembling dried fruit 0.002 60 

epi-α-Cadinol Herbaceous, woody 0.061 60 

epi-α-Muurolol Herbaceous, slightly spicy 0.034 60 

10-epi-γ-Eudesmol Woody, floral, sweet 0.117 40 

(E,E)-2,4-Decadienal Fried, waxy, fatty, orange-like 0.035 33 

The most intense contributors to aroma of honeybush are indicated in bold. DF = Detection frequency 

 

Cronje (2010) also compared four Cyclopia species with two species originating of different areas [C. 

genistoides (Albertinia), C. genistoides (Pearly Beach), C. intermedia, C. longifolia, C. subternata 

(Bredasdorp) and C. subternata (Genadendal)].  Based on the results obtained, Cronje (2010) concluded 

that the four species are qualitatively very similar but there are important quantitative differences between 

the samples (Table 8).  Quantitative differences between species from different areas also existed.   

Linalool occured in relative same concentrations in all six samples analysed, with the highest 

concentration in both the C. genistoides samples (Cronje, 2010).  (E,Z)-2,6-nonadienal and (E)-nonenal were 

present in smaller quantities in both the C. genistoides samples and the latter is also lower in C. intermedia.  

The concentration of geraniol was relatively low in the C. subternata (Genadendal) sample whereas (E,E)-

2,4-decadienal was present in much larger quantities than in the other five samples.  Component C178 was 

especially prominent in C. genistoides (Albertinia), C. intermedia as well as C. subternata (Genadendal).  

(E)-β-damascenone were more prominent in C. genistoides (Pearly beach) whereas (E)-β-damascone was 

more prominent in C. intermedia.  2,3-dehydro-γ-ione was present in higher concentrations in C. subternata 

(Bredasdorp), C. genistoides (Pearly beach)and C. longifolia.  C. subternata (Bredasdorp), C. subternata 

(Genadendal) and C. longifolia had higher relative quantities of (E)-β-ionone whereas 10-epi-γ-eudesmol 

was prominent in C. intermedia.  Epi-α-cardinoland epi-α-muurolol was present in more or less the same 

relative concentrations in most of the samples, but markedly less in C. genistoides (Albertinia).  It is thus 

stands to reason that each of these Cyclopia samples have slightly different aromas as their volatile fraction 

consists of different concentrations of specific volatile compounds.   
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Table 8 Comparison of the relative concentrations (% Area) of the most intense odour active compounds identified in six Cyclopia species (Cronje, 2010) 

Compound Aroma descriptor C. genistoides C. intermedia C. longifolia C. subternata 

 
 

Albertinia 
Pearly 
beach 

  Bredasdorp Genadendal 

Linalool Refreshing, light, clean, floral 29.38 31.7 28.88 19.67 23.95 17.41 

(E,Z)-2,6-Nonadienal Green-vegetable, cucumber, violet-leaf 0.07 0.11 0.12 0.22 0.22 0.17 

(E)-2-Nonenal Green, cucumber, aldehydic, fatty 0.05 0.07 0.11 0.12 0.13 0.09 

Geraniol Sweet, floral, rose 12.43 22.5 13.9 27.61 25.34 5.1 

Component C178 Not available 0.37 0.08 0.42 0.09 0.06 0.42 

(E)-β-Damascenone Woody, sweet, fruity, earthy, green-floral 0.67 1.37 1.04 0.72 0.61 0.5 

(E)-β-Damascone Fruity (apple-citrus), tea-like, minty notes 0.24 0.4 0.74 0.48 0.25 0.45 

2,3-Dehydro-γ-ionone Not available 0.04 0.2 0.09 0.3 0.25 0.11 

3,4-Dehydro-β-ionone 
Ionone-damascone, saffron-like, fruity, 
leathery 0.16 0.04 0.13 0.12 0.1 0.46 

(E)-β-Ionone Warm, woody, fruity, raspberry-like 1.43 0.84 1.52 2.5 3.06 2.99 

10-epi-γ-Eudesmol Woody, floral, sweet 0.06 0.02 0.59 0.1 0.12 0.22 

epi-α-Cadinol Herbaceous, woody 0.01 0.078 0.063 0.061 0.061 0.064 

epi-α-Muurolol Herbaceous, slightly spicy 0.007 0.045 0.043 0.029 0.034 0.034 

(7E)-Megastigma-5,7,9-trien-4-one Tea-like, spicy, dried fruit 0.0011 0.0017 <0.001 <0.001 0.0018 0.0014 

The highest value for each compound is indicated in bold.  
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6.4. Aroma of honeybush tea 

 

Cronje (2010) investigated eight different honeybush samples [C. genistoides (Albertinia), C. genistoides 

(Pearly Beach), C. genistoides x C. intermedia, C. intermedia, C. longifolia, C. subternata (Bredasdorp), C. 

subternata (Genadendal, flowers absent) and C. subternata (Genadendal, flowers present)] in terms of their 

sensory aroma attributes.  Quantitative descriptive analysis was used to evaluate the eight samples with 

regards to honeybush, sweet, plantlike, rooibos and lemon, as well as Earl Grey (bergamot) aroma.  All the 

samples had a moderately strong honeybush and sweet aroma.  

Cyclopia longifolia was found to have the strongest honeybush aroma whereas C. subternata 

(Genadendal, flowers absent) had the sweetest aroma (Cronje, 2010).  Additionally, Cronje (2010) reported 

that during training the judges indicated that C. subternata (Genadendal, with flowers) had a prominent pot-

pourri aroma.  The plantlike, rooibos, lemon and Earl Grey aromas were more subtle and were not equally 

strongly associated with the samples.  Cyclopia genistoides (Pearly Beach) as well as C. subternata 

(Bredasdorp) had a plantlike aroma.  Cyclopia subternata (Bredasdorp), as well as C. longifolia had a slight 

rooibos aroma, whereas C. genistoides (Pearly Beach), C. genistoides (Albertinia) and C. subternata 

(Bredasdorp) had a slight lemon aroma.  Only C. genisoitdes (Albertinia) had a notable Earl Grey aroma.   

Multivariate statistical analysis was used to highlight patterns and correlations and revealed 

interesting correlation between certain compounds and sensory aroma attributes (Cronje, 2010).  (E)-β-

damascenone and linalool were significantly negatively correlated to sweet aroma whereas 3,4-dehydro-β-

ionone and component C178were significantly positively correlated to sweet aroma.  (E)-β-ionone correlated 

significantly to honeybush aroma whereas geraniol, 2,3-dehydro-γ-ionone, (E,Z)-2,6-nonadienal and (E)-2-

nonenal correlated significantly to rooibos aroma. (7E)-Megastigma-5,7,9-trine-4-one postiviely correlated to 

plant aroma whereas 10-epi-γ-eudesmol correlated negatively to plant aroma.  Additionally, (E)-β-

damascone and (E,E)-2,4-decadienal correlated negatively to lemon aroma and epi-α-cardinol and epi-α-

muurolol negatively correlated to Earl Grey aroma. 

 Cronje (2010) concluded that honeybush and sweet aroma could be classified as generic aromas 

(i.e. typical of all honeybush species) whereas the other four aromas (Earl Grey, lemon, plantlike and 

rooibos) can be classified as species-specific aromas.  It was also suggested that further research to profile 

the sensory attributes of each Cyclopia species is needed in order to develop a valid flavour lexicon for 

honeybush tea.  

 

6.5. Aroma analysis 

 

Sensory analysis is considered to be the ultimate method to measure aroma of food products as chemical 

and instrumental procedures lack the acuity of the human senses and the ability to integrate perceptions 

(Aparicio et al., 1996).  However, sensory analysis with a human panel can be inaccurate, laborious and very 

time consuming due to adaptation, fatigue, infection and state of mind (Duta et al., 2003).   

An electronic nose (EN) can be a better alternative to conventional methods for tea tasting and 

quality monitoring during production process.  EN systems are based on inexpensive, non-specific solid-

state sensors, which are sensitive to gasses that are emitted by tea samples.  Furthermore, once an EN has 

been “trained”, it does not require a skilled operator and can potentially obtain the results in under a minute.  

Duta et al. (2003) have successfully used a metal oxide sensor (MOS) based EN to analyse tea samples 
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which were manufactured under different processing conditions.  The MOS-EN is capable of discriminating 

between the different flavours of different fermented teas (over-fermented, over-fired, under-fermented etc.).  

Bhattacharyya et al. (2007) proposed a new electronic nose-based approach for monitoring tea 

aroma during the fermentation process.  As part of this study 81 tea fermentation cycles have been 

experimented with and most of the EN readings accurately matched with colometric as well as human panel 

data.  Bhattacharyya et al. (2007) concluded that an EN can definitely be used for monitoring of volatile 

emission patterns during black tea fermentation processes with a very high degree of accuracy, reliability 

and repeatability.  Yu & Wang (2007) used an EN to classify LongJing green-tea into different quality grades 

and 90% of all the tea samples analysed were classified correctly.  

 

7. FLAVOUR 

 

Flavour is one of the most important qualities of foodstuffs and plays a major role in consumer acceptance 

(Aparicio et al., 2006).  It is a complex combination of gustation (sense of taste by the tongue), olfaction 

(sense of smell by the nose) and trigeminal (sense of irritation) sensations which may additionally be 

influenced by tactile, thermal, painful and/or kinaesthetic effects (Dutta et al., 2003; Tournier et al., 2007).  

Non-volatile compounds are detected by taste whereas volatile compounds are detected by the sense of 

smell (Dutta et al., 2003).  The sense of olfaction plays the most important role in the overall flavour 

perception.The exact mechanism of flavour perception have not yet been elucidated due to a number of 

reasons: 1) flavour perception involves a wide range of stimuli; 2) chemical compounds and food structures 

that activate the flavour sensors change as the food is eaten; and 3) the individual modalities interact in a 

very complex way (Taylor & Roberts, 2004).  

There is not much literature available describing the flavour of honeybush tea.  In most research 

articles honeybush is described as having a “characteristic honeybush” flavour (Du Toit & Joubert, 1998a).  

According to Du Toit and Joubert (1998b) the attributes considered to be important for this characteristic 

flavour of honeybush is a sweet taste and aroma combined with a mild astringent taste.  Additionally terms 

such as flowery, fruity, honeylike, grassy and musty has been used to describe the flavour of honeybush tea.  

However to date, no extensive research has been done on the flavour of honeybush tea nor has the 

differences in terms of flavour of the different species used for processing been described. 

 

8. SENSORY ANALYSIS 

 

Sensory analysis can be defined as a scientific discipline used to evoke, measure, analyse and interpret 

reactions to characteristics of foods and beverages as they are perceived by the senses (Stone & Sidel, 

1993).  Sensory evaluation is generally considered to be the ultimate method to measure flavour quality of 

food products as chemical and instrumental procedures lack the acuity of the human senses and the ability 

to integrate perceptions (Aparicio et al., 1996).   

 

8.1. Sensory lexicons 

 

A sensory lexicon is simply a set of terms used to describe the aroma, flavour, taste and/or mouthfeel of a 

specific product (Drake & Civille, 2002).  Such a lexicon usually also includes reference standards and 
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definitions for each term for clarification.  They are used as a tool for documenting and describing sensory 

perception of a selected food product.  The major steps in setting up a sensory lexicon include collecting a 

product frame of reference, generating appropriate descriptors, reviewing reference standards and 

examples, and developing a final list of descriptors.  Once a sensory lexicon is developed it can be used to 

record and define product flavour and to compare products as well as interface with consumer liking and 

acceptability as well as chemical flavour data. 

In order to generate a reliable sensory lexicon several aspects should be taken into account: 

attribute intensities must be anchored consistently; terms must be precise, clear and appropriately defined; 

reference standards provided; and the terms must be discriminating, descriptive, relevant and non-redundant 

(Meilgaard et al., 1999; Drake & Civille, 2002). 

A variety of different sensory lexicons for different products have already been developed with the 

use of quantitative descriptive analysis (Table 9).  Sensory lexicons developed for tea is limited to canned 

teas (Cho et al., 2005), green tea (Lee & Chambers, 2007; Lee et al., 2008) and more recently rooibos tea 

(Aspalathus linearis) (Koch, 2011).  No attempt has yet been made to set up a sensory lexicon for 

honeybush tea.   

 

Table 9 Examples of sensory lexicons developed for various food and beverage products 

Product Reference 

Wine Noble et al., 1987; Gawel et al., 2001; Mirarefi et al., 2004;  

 

Preston et al., 2008 

Whiskey Lee et al., 2001 

Distilled beverages Mc Donnell et al., 2001 

Cheese Bárcenas et al., 1999; Murray & Delahunty, 2000; 

 

Drake et al., 2001; Rétiveau et al., 2005; 

Bread Lotong et al., 2000 

Tea Lee & Chambers, 2007; Lee et al., 2008;  

 

Hongsoongnern & Chambers IV, 2007; Koch, 2011 

 

Cho et al., 2005; Yau & Huang, 2000 

Yerba Mate(South America beverage) Santa Cruz et al., 2002 

Tomatoes Hongsoongnern & Chambers IV, 2008 

Yoghurt Coggins et al., 2008 

Coffee Seo et al., 2009 

Almonds Civille et al., 2010 

Honey Galán-Soldevilla et al., 2005; Lorente et al., 2008 

Puree Duffin & Pomper, 2006 

Fruit Wismer et al., 2005; Le Moigne et al., 2008 
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8.2. Sensory wheels  

 

Standardized industry-specific terminology is usually presented in a wheel format with certain descriptors 

coupled to reference standards (Piggot & Jardine, 1979; Meilgaard, 1982; Noble et al., 1987; Piggot & 

Mowat, 1991).  In essence, a sensory wheel is thus a simplified graphical representation of a sensory 

lexicon.  A sensory wheel can consists of only flavour, aroma or mouthfeel attributes or a combination of 

these attributes.  A sensory wheel usually consists of two levels: 1) general/basic terms situated near the 

centre and 2) more specific descriptive attributes situated on the outer ring of the circle (Lawless & Heymann 

2010).  Additionally, the descriptors are often divided into two categories; positive and negative (Jolly & 

Hattingh, 2001; Koch, 2011). 

Sensory wheels are used extensively in both the wine (Noble et al., 1987; Gawel et al., 2000) and 

the beer (Meilgaard et al., 1979) industry is to evaluate aroma, flavour, taste and mouthfeel and to facilitate 

communication among the different role players in the respective industries and the consumer (Noble et al., 

1987).  After the success of the so-called “Wine Aroma Wheel” a sensory wheel focusing only on mouthfeel 

sensations associated with red wine has even been developed in order to accurately define and describe 

mouthfeel (Fig. 6) (Gawel et al., 2000).  Additionally, a number of articles describing the development of 

sensory wheels for a wide variety of different food products, such as fish, fruit, whiskey, brandy and honey, 

have been published (Table 10). 

In terms of tea, a flavour wheel for black tea (Fig. 7) and rooibos tea (Fig. 8) has been developed for 

use by processors, graders, extract producers and flavour companies (Bhuyan & Borah, 2001; Koch, 2011).  

The black tea sensory wheel consist of 22 terms describing the odour, taste and mouthfeel of black tea and 

are divided into eight categories: 1) Aromatic, fragrant and sweet; 2) Overfired; 3) Poor; 4) Baggy, papery 

and smokey, 5) Sour; 6) Mouthfeel; 7) Metallic; and 8) Fullness.  Each of these categories are used to group 

together specific groups of adjectives describing the specific odour, taste and mouthfeel of black tea (Bhuyan 

& Borah, 2001).  On the other hand, the rooibos tea sensory wheel is divided into two groups: positive (13 

terms) and negative (14 terms) to describe the sensory attributes associated with rooibos tea (Koch, 2011).  

The sensory wheel contains terms describing the flavour, taste and mouthfeel of rooibos tea and can be 

grouped into 11 categories: 1) Sweet; 2) Fruity; 3) Woody; 4) Floral; 5) Spicy; 6) Mouthfeel; 7) Basic; 8) 

Vegetative; 9) Chemical; 10) Micro; and 11) Earthy.   

The honeybush sensory wheel could be used as an aid during honeybush tea evaluation and for 

comparing and monitoring the quality and consistency of honeybush tea as well as profiling new and 

competitive products within the tea industry.  Furthermore, the honeybush sensory wheel together with the 

reference standards will enable effective training of those involved in the honeybush tea industry.  At the 

same time it would be a very useful tool to use for communication between researchers, the industry, 

marketing personnel and the consumer. 
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Table 10 Examples of sensory wheels developed for various food and beverage products 

Product Reference 

Fish Warm et al., 2000 

Kiwifruit Wismer et al., 2005 

Pawpaw fruit puree Duffin & Pomper, 2006 

Whiskey Lee et al., 2001 

Wine Gawel et al., 2000 

 
Mirarefi et al., 2004 

 
Noble et al., 1984 

Brandy Jolly & Hattingh, 2001 

Beer Meilgaard et al., 1979 

Honey Piana et al., 2004 

Tea Bhuyan & Borah, 2001 

 
Koch, 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 A mouthfeel wheel to describe the mouthfeel characteristics of red wine (Gawel et al., 2000) 

Stellenbosch University http://scholar.sun.ac.za



37 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Flavour wheel used for black tea (Bhuyan & Borah, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Flavour wheel developed for rooibos tea (Koch, 2011) 
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9. CONCLUSION 

 

Honeybush tea is a traditional South African beverage which is caffeine-free, has a low tannin content and 

contains a rage of polyphenolic compounds responsible for the health benefits associated with it.  It is also 

these compounds that might be responsible for the taste and mouthfeel characteristics of honeybush tea.  It 

has been shown that there are both quantitative and qualitative differences in the polyphenolic composition 

as well as the volatile fraction of the different Cyclopia species.  It is thus expected that the species will have 

different sensory profiles.      

 Despite the recent growth in the demand for honeybush tea the descriptors used to describe the 

flavour and taste of honeybush infusions is limited to only a handful of descriptors.  According to regulations 

with regards to the export of honeybush tea, it must have the clean characteristic taste and aroma of 

honeybush and that it shall be free from any foreign flavour and odours which detrimentally effect the 

characteristics of the product.  However, the characteristics taste and aroma is not defined, nor what is 

considered to be foreign and detrimental to the taste and aroma of the product.  Variation in sensory quality 

due to differences in localities, environmental conditions, processing parameters and the inherentspecies 

differences are also not taken into account.  Consequently, the lack of standardised terminology with which 

to describe the characteristic honeybush flavour, as well as the fact that no information is available with 

regards to the differences between different Cyclopia species indicates that there is considerable variation in 

the sensory profiles of teas currently being sold in the market place as honeybush tea.  This could lead to 

detrimental consequences as there is no way to ensure a consistent supply of high quality tea with 

unchanging flavour profiles without this information. 

 A honeybush flavour lexicon and wheel would be tools that could aid in implementing a honeybush 

grading system.  Flavour lexicons and wheels have been implemented by a number of industries and have 

been reported to increase communication between the different role players.  A flavour lexicon is a set of 

descriptors coupled with definitions and reference standards whereas a flavour wheel is simple graphical 

representation of the flavour lexicon.  Due to the simple and convenient nature of the flavour wheel it may 

prove useful to honeybush processors, extract manufactures and flavour companies.   

 One of the most influential factors with regards to the flavour of honeybush tea is the oxidative 

chemical reaction referred to as fermentation. It is this process which is responsible for the development of 

the sweet honeylike flavour of honeybush tea.  However, the conditions currently employed by the industry is 

based on research done on C. intermedia and might thus not apply to all Cyclopia species.  It is thus 

necessary to re-examine the temperature-time fermentation combinations in order to determine the optimum 

fermentation conditions for each species.   
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1. ABSTRACT 

 

Honeybush samples produced from six Cyclopia species (C. sessiliflora, C. longifolia, C. genistoides, C. 

intermedia, C. subternata and C. maculata) and representative of different geographic areas were analysed 

using descriptive analysis in order to develop a sensory profile for honeybush tea.  A total of 68 aroma and 

51 flavour, taste and mouthfeel descriptors were generated.  It was found that the “characteristic” sensory 

profile of honeybush tea can be described as a combination of floral, sweet, fruity and plantlike flavours with 

a sweet taste and a slightly astringent mouthfeel.  Similarities and differences in the sensory characteristics 

between the different Cyclopia species were also established using univariate analysis, principle component 

analysis and discriminant analysis.  Based on discriminant analysis the species could be divided into three 

distinct groups; group A (C. sessiliflora, C. intermedia and C. genistoides), group B (C. longifolia and C. 

subternata) and group C (C. maculata).  Group A associated with fynbos floral, fynbos sweet and plantlike 

attributes, group B associated with rose geranium and fruity sweet attributes and group C associated with 

woody, boiled syrup and cassia/cinnamon attributes.  Gas chromatography-olfactometry analysis of the C. 

maculata (C. maculata sample no. 3) aroma fraction indicated that its spicy aroma could possibly be 

explained by the high concentration of the volatile component, eugenol, which is known to have a warm-

spicy, dry aroma.  The variation in the sensory attributes within a specific species, especially in terms of the 

negative sensory attributes, seems to be due to different processing conditions rather than being species 

specific, however, further investigation is needed to verify this.  Additionally, a honeybush sensory lexicon 

was created by selecting 32 attributes along with a definition and reference standard for each term. A 

honeybush sensory wheel, comprising of 35 attributes, was also created to form a simple graphical 

representation of the sensory lexicon. 

 

2. INTRODUCTION 

 

The honeybush industry has grown from 50 to 200 export per annum tons in a period of ten years and today, 

the tea is exported to 25 countries with the top importers being the Netherlands, Germany, the United 

Kingdom (UK) and the United States of America (USA) (Joubert et al., 2011).  Until recently, exports 

consisted mainly of C. intermedia (as well as C. genistoides and C. subternata), however, with demand 

exceeding supply interest in other species, i.e. C. sessiliflora, C. longifolia and C. maculata, developed.  The 

rapid growth of the industry is expected to continue as honeybush has huge potential in the herbal tea 

market, as it is unique to South Africa, can be grown organically and can be used in value-added food 

products, medicinal products and cosmetics (Joubert et al., 2011).  

Despite the positive momentum of the industry internationally it is only during the last few years that 

honeybush tea has appeared on local supermarket shelves (Joubert et al., 2011).  Products such as 

mixtures of honeybush and rooibos (Asphalathus linearis) and other indigenous South African plants, as well 

as ice teas are now also available (Joubert et al., 2008).  Although certain brands, mostly those found in 

specialty shops or up-market farm stalls consists of only one Cyclopia species, most of the honeybush 

products are a mixture of two or more Cyclopia species.  Blending different Cyclopia species, without taking 

into account their different flavours, could lead to teas in the market place with inconsistent flavour profiles.  

Blending could also lead to a loss of the unique flavour associated with the individual species which could 
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possibly, in future, be used to establish niche markets.  In order to do this the distinctive flavour profile of 

each species needs to be described.   

Companies often make use of sensory lexicons and/or sensory wheels to describe the sensory 

attributes of food and beverage products (Drake & Civille, 2002).  These tools are employed to standardize 

the terminology used to discuss the sensory properties of a certain product and have been reported to 

facillitate communication between different role players in the industry.  To date no sensory descriptors, 

except for sweet and honeylike, have been established to describe the flavour of honeybush tea.  In general 

the terms “characteristic” honeybush, sweet and honeylike are used to describe the flavour of honeybush tea 

(Du Toit & Joubert, 1999).  Other descriptors, such as flowery and fruity (fermented) and grassy (un-/under-

fermented) as well as burnt (over-fermented), have also been used to describe honeybush (Du Toit & 

Joubert, 1998; Du Toit & Joubert, 1999; Le Roux et al., 2008; Cronje, 2010).  Honeybush tea must have a 

clean characteristic taste and aroma of honeybush and that it shall be free from any foreign flavour and 

odours which detrimentally affect the characteristics of the product according to the Agricultural Product 

Standards Act for the export of honeybush tea (Anon, 2000).  However, the “characteristic” flavour is not 

defined nor what is considered to be foreign and detrimental to the flavour of the product.  The different 

localities, environmental conditions, processing parameters and the inherent species differences and its 

effect on the sensory quality of honeybush tea are not taken into account.  Consequently, the lack of 

standardised terminology with which to describe flavour of honeybush tea, as well as the fact that no 

information is available with regards to the differences between different Cyclopia species indicates that 

there is considerable variation in the sensory profile of commercial honeybush tea.   

In view of these commercial challenges, the study was conducted to characterise the sensory 

attributes associated with honeybush in order to properly define and describe the flavour instead of referring 

to a non-specific term such as “characteristic” honeybush flavour.  By analysing the sensory characteristics 

of a broad range of honeybush samples from six Cyclopia species the characteristic honeybush flavour and 

the variation between the six species were established.  Additionally, the odour active compounds present in 

the aroma of a representative C. maculata sample were determined in order to gain a better understanding 

of the spicy character this specific Cyclopia species revealed.  The sensory attributes associated with 

honeybush tea were used to create a sensory lexicon and a sensory wheel to facilitate improved 

communication between producers, processors, researchers and marketers regarding the flavour of 

honeybush tea. 

 

3. MATERIALS AND METHODS 

 

3.1. Honeybush samples 

 

A total of 58 honeybush tea samples, representing six Cyclopia species, i.e. C. sessiliflora, C. longifolia, C. 

genistoides, C. intermedia, C. subternata and C. maculata, were collected.  Each of the samples of a species 

differed either in terms of the batch, geographical area, producer, harvesting date, processing conditions or 

size fraction to capture as much potential sensory variation as possible.  Batches represented either different 

bushes and/or independently processed pooled plant material.  Cyclopia sessiliflora and C. longifolia 

consisted of seven samples each, whereas the other species consisted of eleven samples each (Table 1).   
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Table 1 Illustration of the experimental design 

 Samples 

Rep C. sessiliflora C. longifolia C. genistoides C. intermedia C. subternata C. maculata 

1 Ses 1 Lon 1 Gen 1 Int 1 Sub 1 Mac 1 
2 Ses 2 Lon 2 Gen 2 Int 2 Sub 2 Mac 2 
3 Ses 3 Lon 3 Gen 3 Int 3 Sub 3 Mac 3 
4 Ses 4 Lon 4 Gen 4 Int 4 Sub 4 Mac 4 
5 Ses 5 Lon 5 Gen 5 Int 5 Sub 5 Mac 5 
6 Ses 6 Lon 6 Gen 6 Int 6 Sub 6 Mac 6 
7 Ses 7 Lon 7 Gen 7 Int 7 Sub 7 Mac 7 
8   Gen 8 Int 8 Sub 8 Mac 8 
9   Gen 9 Int 9 Sub 9 Mac 9 
10   Gen 10 Int 10 Sub 10 Mac 10 
11   Gen 11 Int 11 Sub 11 Mac 11 

Rep = Replication, Ses = C. sessiliflora, Lon = C. longifolia, Gen = C. genistoides, Int = C. intermedia, Sub = 

C. subternata, Mac = C. maculata.  

 

The complete list of samples can be found in Addendum A.  Statistically, the six Cyclopia species each 

represented a treatment whereas each sample of a species was considered an independent replication. 

 

3.1.1. Preparation of fermented material 

 

Samples not obtained from commercial processors were processed on laboratory scale.  Different batches 

were harvested from different locations in the Western Cape Province of South Africa during 2010 and 2011.  

The shoots from each batch (±13 kg) were cut to 2-3 mm lengths using a mechanised fodder cutter, divided 

into four equal parts (1.5 kg each) and placed into stainless-steel containers.  Deionised water (250 mL) was 

added to the shredded plant material and thoroughly mixed before sealing the containers with aluminium foil.  

The plant material was fermented at either 80°C for 24 h or 90°C for 16 h in preheated temperature-

controlled laboratory ovens (CAL 3200; CAL Controls Ltd., UK).  The containers were removed and dried to 

a moisture content below 10% by thinly spreading the contents onto 30 mesh stainless steel drying racks 

and placing it in a temperature-controlled dehydration tunnel (Continental Fan Works, Parow, South Africa) 

at 40°C for 6 h.  The dried tea was sieved (200 g/30 s) using a mini-sifter and the <12>40 mesh fraction 

collected.  The fractions were stored in sealed glass jars at room temperature until needed. 

 

3.2. Sample preparation 

 

3.2.1. Preparation of infusion 

 

Boiled (100°C) distilled water (900 g) was poured onto 11.25 g dry plant material and left to infuse for a 

period of 5 min where after it was poured through a fine-mesh aluminium tea strainer into a 1 L stainless 

steel thermos flask (Woolworths, South Africa).  The herbal infusion (ca. 100 mL) was served in white 

porcelain mugs covered with a plastic lid to prevent evaporation and the consequent loss of volatiles. 
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3.2.2. Temperature maintenance 

 

In order to keep the temperature of the tea as constant as possible to ensure effective sensory analysis a 

number of measures were taken as proposed by Koch (2011).  Firstly, the thermos flasks were filled with 

boiling water to heat the inner surface, secondly, the tea mugs were preheated in an industrial forced-

convection oven (Hobart CSD 1012) set to 70°C and thirdly, the infusions were kept warm in a scientific 

waterbath (SMC, Cape Town) with the temperature regulator set to 65°C throughout the sensory analysis 

process.  

 

3.3. Descriptive analysis 

 

3.3.1. Assessors 

 

A total of nine female assessors were selected to participate in this study.  The assessors were selected 

based on both availability and interest.  All of the assessors who took part in this study had extensive 

experience with sensory analysis of a wide range of different food products.  Although none of the assessors 

had any previous experience with honeybush tea, most of the judges had extensive experience in rooibos 

tea analysis.   

 

3.3.2. Training 

 

The sensory panel was trained according to the consensus method as described by Lawless and Heymann 

(2010).  Before analysing the samples, the panel was given a short summary of the objectives of the study, 

as well as instructions on the analysis procedure.  The aroma of the tea samples was analysed first by 

removing the plastic lid and swirling the sample cup several times.  Thereafter, the flavour, taste and 

mouthfeel of the tea were evaluated by sucking, and not sipping, a mouthful of the tea infusion from a round 

tablespoon.  Additionally, the assessors were requested to cleanse their palates between each sample using 

water and unsalted water biscuits (Carr, UK).  A total of 24 one-hour sessions were used for training the 

assessors.  During each one-hour session 4 to 6 of the 58 honeybush samples were analysed and the panel 

generated aroma, flavour, taste and mouthfeel descriptors.  Aroma was defined as the fragrance perceived 

through orthonasal analysis, flavour as the retronasal perception within the mouth and taste describes the 

basic taste modalities whereas mouthfeel described the tactile sensation that occurred in the oral cavity after 

drinking a sip of tea (Ross, 2009). 

 Descriptors which best described the aroma, flavour, taste and mouthfeel of the samples were 

generated during an open discussion led by the panel leader.  Relationships and redundancies among the 

descriptors were discussed in order to select the most recurring sensory attributes.  At this point, a reference 

standard for each attribute was introduced to the panel to clarify the meaning of each descriptor.  In each 

session the panel was also given a honeybush sample (C. intermedia) as a control sample. 

 A total of 68 aroma and 51 flavour, taste and mouthfeel descriptors were generated during the 

training period.  A complete list of these descriptors can be viewed in Addendum B.  This list was reduced to 

a total of 28 aroma, 23 flavour and 3 taste descriptors and 1 mouthfeel descriptor based on whether they 

were relevant, unambiguous and non-redundant (Table 2).  The maximum and minimum intensity values for 
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each attribute were discussed and compared to the attribute intensity values that had been established for 

the control honeybush sample.  Those attributes which were not present in the control sample were 

compared to samples with the highest intensity value for the specific attribute.  A score sheet containing the 

final list of descriptors together with a 10 cm unstructured line scale, as well as the maximum intensity values 

for each attribute, was developed (Addendum C).  This score sheet was used during the last few training 

sessions to familiarise the panel with the layout and procedure. 

 

Table 2 Final aroma, flavour, taste and mouthfeel attributes used for descriptive analysis 

Aroma attributes Descriptors 

Floral Fynbos floral, Rose geranium, Rose/Perfume 

Fruity Lemon, Orange, Cooked apple, Apricot jam, Cherry 

Plantlike Plantlike, Woody, Rooibos, Pine 

Sweet Fruity sweet, Boiled syrup, Caramel, Honey, Fynbos sweet 

Spicy Cassia/Cinnamon 

Nutty Walnut, Coconut 

Negative 
Dusty, Yeasty, Medicinal, Burnt caramel, Rotting plant water, 

Hay/Dried grass, Green grass, Cooked vegetables 

  
Flavour, taste and mouthfeel attributes Descriptors 

Taste Sweet, Sour, Bitter 

Mouthfeel Astringent 

Floral Fynbos floral, Rose geranium, Rose/Perfume 

Fruity Lemon, Orange, Cooked apple, Apricot jam, Cherry 

Plantlike Plantlike, Woody, Rooibos, Pine 

Spicy Cassia/Cinnamon 

Nutty Walnut, Coconut 

Negative 
Dusty, Yeasty, Medicinal, Burnt caramel, Rotting plant water, 

Hay/Dried grass, Green grass, Cooked vegetables 

 

3.3.3. Scaling 

 

After the training was completed the assessors were requested to use the score sheets to rate the intensities 

of the 28 aroma, 23 flavour and 3 taste attributes, as well as 1 mouthfeel attribute for each of the 58 samples 

during 9 sessions spread over a period of two weeks.  Each sample was analysed only once as a sample 

within a species represents a replication.  Two sessions were conducted per day during which 8 to 12 

samples were analysed.  The assessors were requested to take a 10 min break between each session to 

avoid panel fatigue.  Samples were labelled with three-digit codes and presented to each assessor in a 

randomized order.  The control honeybush sample was labelled as such so that it could be identified by the 

assessors and used for comparison.     
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3.4. Gas chromatography-olfactometry  

 

Sample preparation and gas chromatography-olfactometry (GC-O) were carried out as described by Cronje 

(2010).  An infusion of C. maculata (Mac3, Addendum A) was prepared by adding boiling distilled water (130 

mL) to 20 g of the dry leaves and stems (<12>40 mesh sieved fraction) in an insulated flask, sealing it 

immediately and allowing the tea to infuse for 15 min while swirling the contents of the flask periodically after 

which the leaves and stems were removed by filtering.  For each analysis 50 mL of the infusion was 

transferred to a 100 mL glass bottle with adapted cap, sealed and incubated at 50°C for 30 min, after which 

the headspace volatiles of the infusion were enriched by means of a SEP60 at 50°C for 17 h.   

GC-O was performed on a Carlo Erba HR gas chromatograph with a split/splitless injector and an 

FID operated at 220°C and 250°C, respectively.  The capillary column was connected to a glass effluent 

splitter with two deactivated fused silica tubing outlets of equal lengths conducting the column effluent to the 

FID and a sample collection device.  Medical air was purified by passing it through a column of activated 

charcoal and humidified by bubbling the air at about 20 mL/min through a wash bottle containing clean 

deionised water at room temperature.  The humidified air conduit was connected to the leg of a small funnel 

that was formed using a glass blower‟s torch in such a way as to allow the assessor to smell the column 

effluent without breathing in too much of the ambient air.  One of the fused silica aromas of the effluent 

splitter was inserted through a small hole into the leg of the funnel, mounted on the side of the GC in such a 

position and at such a height as to subject the assessor to as little physical strain as possible.   

The sorbed volatiles were thermally desorbed from the SEP at an injector temperature of 230°C 

without cryotrapping and were analysed on a capillary column (glass, 40 m x 0.25 mm) coated with 0.25 μm 

of PS-0890OH (DB-5 equivalent) using a temperature program of 2°C/min from 40°C to 280°C. Helium was 

used as carrier gas at a linear flow velocity of 28.6 cm/s, measured at an oven temperature of 40°C. The 

injector was operated in the split mode with a split flow of 10 mL/min. 

Members of a panel of 8 volunteer assessors were required to sniff the GC effluent and results were 

reported according to the detection frequency method.  In order to prevent sensory fatigue each assessor 

was required to sniff the effluent for 35 min after which a second person took over and sniffed for the 

remaining 35 min of the analysis.  Each person participated in the sniffing of both the first and the second 35 

min session during two consecutive analyses.  Assessors verbally announced when they were able to smell 

a compound as it eluted from the GC and each positive response was marked on the chromatogram at the 

corresponding retention time.  The total number of panel members able to positively detect an aroma at a 

specific retention time was expressed as a percentage of the total number of assessors.  A compound was 

considered to be aroma active if it was positively detected by at least 50% of the assessors (Áslaug & 

Rouseff, 2003). 

 

3.5. Development of a sensory wheel and lexicon 

 

A honeybush tea sensory lexicon was created by selecting 32 flavour, taste and mouthfeel attributes based 

on whether they were relevant, unambiguous, non-redundant and non-hedonic along with a definition.  By 

trial and error a number of reference standards were developed and included in the sensory lexicon.  

Additionally, a honeybush tea sensory wheel was created as a simple graphical representation of the 
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sensory lexicon consisting of the same 32 attributes along with three additional mouthfeel descriptors 

(Harsh, Flat/Bland and Soft/Smooth).    

 

3.6. Data analysis 

 

The data for each individual sensory attribute rated for each sample by all assessors were collected and 

analysed using various statistical techniques.  PanelCheckSoftware (Version 1.4.0, Nofima Mat, Norway) 

was used to monitor the performance of the panel.  Panel reliability was determined by subjecting the data to 

test-retest analysis of variance (ANOVA) using SAS® software (Version 9.2, SAS Institute Inc, Carry, USA).  

The Shapiro-Wilk test was used to test for non-normality of the residuals (Shapiro & Wilk, 1965).  In the 

event of significant non-normality (p ≤ 0.05) outliers were identified and removed until the data were normally 

distributed. The student t-least significant difference (LSD) was calculated at the 5% significance level to 

compare treatment means.  

Principal component analysis (PCA) using the correlation matrix was conducted using XLStat 

(Version 7.5.2, Addinsoft, New York, USA) and used to visualize the relationship between the samples and 

their attributes.  Discriminant analysis (DA) was used to differentiate between the six Cyclopia species.  In 

order to profile the Cyclopia species more effectively the data were split into two subsets, i.e. positive 

attributes and negative attributes.   

 

4. RESULTS AND DISCUSSION 

 

4.1. Sensory attributes 

 

According to Vannier et al. (1999) efficient sensory profiling requires the reduction of the number of sensory 

terms to about 10 to 20 sensory descriptors, however, Stone & Sidel (1985) and Wolters (1994) warned 

against the dangers of working with a strongly reduced set of descriptors.  According to these authors 

sensations for which no adequate descriptors are available are ascribed to different existing descriptors by 

different assessors, thus not only losing their specific information but also making the existing descriptors 

unclear and ambiguous.  For these reasons, the list of 119 descriptors  generated during training was 

reduced to 28 aroma, 23 flavour and 3 taste attributes, as well as 1 mouthfeel attribute by grouping together 

similar terms.  This eliminated redundancies and disregarded those attributes that were perceived in only a 

limited number of samples to facilitate efficient sensory profiling.  

To investigate the relative importance of the major sensory attributes, graphs of the percentage of 

samples that exhibit each attribute plotted against its average intensity and graphs that show the average 

intensity range of each individual attributes were used.  These graphs gave an indication of the perceived 

intensity of the sensory attributes in an infusion, as well as their prevalence amongst the samples.  The 

aroma attributes, fynbos sweet, fynbos floral and woody, obtained the highest scores, followed by fruity 

sweet, apricot jam and plantlike.  These six aroma attributes were perceived in at least 80% of the 

honeybush tea samples (Fig. 1).  However, considering the large average intensity ratings for 

cassia/cinnamon aroma (higher than 50 out of a 100), this attribute should also be considered important (Fig. 

2).  Rose geranium, fynbos sweet, fynbos floral, fruity sweet, plantlike and apricot jam aroma also obtained a 

relatively high average intensity scores with a maximum score of more than 25 out of 100.  In terms of the 
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negative aroma attributes, only hay/dried grass aroma was perceived in more than 50% of the samples and 

the highest maximum average intensity was 33 out of 100 for both hay/dried grass and burnt caramel. 

The flavour attributes, fynbos floral, woody and plantlike, obtained the highest scores (Fig. 1).  The 

flavour attributes followed a very similar pattern to that of the aroma attributes, however, they had lower 

maximum intensity scores.  Cassia/cinnamon flavour obtained the largest range of average intensity scores, 

from 0 to more than 30 out of 100 (Fig. 2).  Rose geranium, rose/perfume, woody and plantlike flavours 

obtained a relatively large average intensity scores with a maximum score of more than 20 out of 100.  In 

terms of the negative flavour attributes, only hay/dried grass flavour was perceived in more than 50% of the 

samples and none of the negative flavour attributes obtained a maximum average intensity score of more 

than 20 out of 100, with hay/dried grass and burnt caramel having the highest maximum intensity scores. 

Sweet taste and astringency were perceived in all 58 of the honeybush tea samples and these are 

the only two attributes, except for fynbos floral flavour, which obtained a minimum intensity score of more 

than zero.  Astringency had a very low maximum intensity score whereas sweet taste had a relatively high 

maximum intensity score. This indicated that astringency was present in all samples but at very low 

intensities and that all samples were considered sweet, although, some less than others. Bitter and sour 

taste were detected in more than 90% of the honeybush tea samples, however, at low levels.  Bitter taste 

had a slightly higher maximum intensity score compared to sour taste.   

Even though the rest of the sensory attributes occurred in less than 80% of the samples, and at 

lower average intensities, this does not necessarily mean that they should be disregarded.  These attributes 

are those which may be more species-specific.  Also, attributes rated low in intensity can still contribute 

significantly to the aroma or flavour of the tea, especially the negative sensory attributes.  Conversely, those 

attributes, for example cassia/cinnamon, which had extremely high maximum intensity scores, but were only 

present in a relatively small number of samples, cannot be seen as “characteristic” of honeybush tea. 

It can thus be concluded that the “characteristic” sensory profile of honeybush tea can be described 

as a combination of floral, sweet, fruity and plantlike flavours with a sweet taste and a slight astringent 

mouthfeel. The most detrimental negative attributes appeared to be hay/dried grass and burnt caramel 

aroma and flavour.   
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Figure 1 Scatter plots showing the percentage of samples exhibiting a certain attribute vs. the average intensity of the specific attribute. “A”, “F” and “T” in front of an 

attribute refer to aroma, flavour and taste attributes, respectively. 
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Figure 2 Minimum and maximum average intensity ratings (averages over 9 judges and 58 samples) for each attribute. “A”, “F” and “T” in front of an attribute refer to 

aroma, flavour and taste attributes, respectively.  
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4.2. Relationship between sensory attributes 

 

PCA plots are commonly used to display the relationship between sensory attributes and individual samples 

or to indicate whether certain sensory attributes are redundant and may be reduced to a simplified set of 

terms to prevent different attributes from being used to describe the identical sensory characteristic.  PCA 

plots are also used to demonstrate whether correlations exist between an aroma attribute analysed by nose 

(orthonasal) and flavour attribute analysed by mouth (retronasal).    

The PCA loadings plot (Fig. 3a) displays the positioning of and association between the sensory 

attributes associated with the honeybush samples analysed.  Most of the negative attributes are located on 

the right side of the plot whereas the positive sensory attributes are located mostly on the left side of the 

PCA loadings plot.  However, a few positive sensory attributes, such as cassia/cinnamon, woody, coconut 

and boiled syrup, are located at the top on the right hand side of the plot.  The corresponding scores plot 

(Fig. 3b) reflects the positioning of the 58 honeybush tea samples analysed relative to each other.  It is 

important to remember that although certain sensory attributes might seem to be highly correlated on a PCA 

loadings plot this is not always the case.  It is possible that attribute groupings may arise from a general 

tendency of certain attributes to change in a similar way over a large group of samples (Wolters & Alchurch, 

1994; Talavera-Bianchi et al., 2010).  It is for this very reason that it is often useful to also examine the 

correlation coefficients.   

 

4.3.1. Positive sensory attributes 

 

Based on the PCA loadings plot (Fig. 3a) most of the orthonasal (ON) and retronasal (RN) attributes are 

closely associated with one another indicating that these notes are perceived similarly on the nose, as well 

as in the mouth, but there are a few attributes (lemon, plantlike and woody) which lie further apart.  Based on 

the correlation coefficients (Table 4), there were significant correlations (p ≤ 0.05) and strong positive 

correlations (r > 0.7) between the aroma and flavour attributes for rose geranium (r = 0.864), rose/perfume (r 

= 0.720) and cassia/cinnamon (r = 0.951).  The correlation coefficients for fynbos floral (r = 0.535), lemon (r 

= 0.392), apricot jam (r = 0.365), plantlike (r = 0.547), woody (r = 0.60) and walnut (r = 0.432) aromas and 

flavours were much weaker but they are nevertheless significant (p ≤ 0.05).  The correlation coefficients thus 

show that there was in fact a significant correlation between lemon, plantlike and woody aroma and flavour.  

However, although rooibos woody aroma and flavour lie close to each other on the PCA plot there was in 

fact no significant correlation between them (r = 0.173).  The reason for this is not clear.   

The mechanism of perception of aromas and flavours is different; aromas are perceived through the 

nose whereas flavours are detected in the mouth by transportation of the stimulus from the back of the throat 

up to the olfactory receptors in the nasal cavity (Ross, 2009).  Because of the different mechanisms the 

sensory perception of certain attributes perceived by RN and ON analysis may differ.  This has been shown 

by Aubrey et al. (1999) who examined the differences between the sensory profiles of wines by ON and RN 

evaluation.  The results for ON and RN analysis were correlated for most of the descriptors, however, a few 

attributes, notably fruity notes, seemed to be more effectively evaluated by the nose.  Similar results were 

obtained during this study as the fruity notes present in honeybush tea, namely lemon and apricot jam 

aroma, were not perceived very strongly by RN analysis.  
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In terms of the relationship between the aroma and flavour attributes and the taste and mouthfeel 

attributes (Table 5, Table 6) there were quite a few significant correlations, however, none of them were very 

strong (r > 0.7).  The correlation coefficient between lemon aroma and sour taste (r = 0.440) and plantlike 

aroma and sour taste (0.447) indicate that there is a significant correlation (p ≤ 0.05) between these two 

aroma attributes and sour taste.  Similarly, there was a significant positive correlation (p ≤ 0.05) and a 

significant negative correlation between plantlike flavour and sour (r = 0.420) and sweet (r = -0.447) taste, 

respectively.  Although, sour and bitter taste, as well as astringency are often considered as negative 

sensory attributes these attributes were considered as positive sensory attributes during this study as there 

was very little variation between the samples with regards to these attributes.  Also, the attribute intensities 

of these attributes were at levels contributing positively to the flavour and mouthfeel of the samples.  It was 

only in a few samples that the intensities were high enough to be considered as negative.  

 

4.3.2. Negative sensory attributes 

 

Based on the PCA loadings plot (Fig. 3a) most of the ON and RN negative attributes are closely associated 

with one another indicating that these notes are perceived similarly and equally strong on the nose, as well 

as on the tongue.  However, there are two attributes (dusty and medicinal) which lie further apart than the 

others on the PCA loadings plot.  Based on the correlation coefficients (Table 7) there was a significant (p ≤ 

0.05) and strong (r > 0.7) positive correlation between burnt caramel (r = 0.869) and rotting plant water (r = 

0.752) aroma and flavour.  Additionally, there was a significant (p ≤ 0.05) and moderate (r > 0.5) correlation 

between yeasty (r = 0.599), hay/dried grass (r = 0.323) and green grass (r = 0.453) aroma and flavour.  As 

indicated by the PCA loadings plot no significant correlation existed between the aroma and flavour 

attributes for medicinal (r = 0.155) and dusty (r = 0.025).  On the other hand, cooked vegetables aroma and 

flavour, were close together on the PCA loadings plot, however, based on the correlations coefficient (r = -

0.030) there was in fact no significant and notable relationship between them.   

 In terms of the relationship between the negative aroma and flavour attributes and the taste and 

mouthfeel attributes (Table 8) there were a number of significant correlations (p ≤ 0.05) but none of them 

were very strong.  Burnt caramel, rotting plant water and cooked vegetables attributes appeared to associate 

with sour, bitter and astringency.  Additionally, these negative aroma attributes revealed a negative 

correlation with sweet taste.  Hongsoongnern and Chambers (2008) found that certain attributes such as 

musty/earthy, astringent and bitter were intrinsically associated with the green character of many products.  

Similarly, there seems to be a distinct association between plantlike or green attributes (rotting plant water 

and cooked vegetables) and negative taste (sour and bitter) and mouthfeel (astringent) attributes.  

Additionally, there also seem to be an association between burnt caramel and these negative taste and 

mouthfeel attributes. 
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Figure 3 a) PCA loadings plot showing the positioning of both positive and negative sensory attributes.  The letters “A”, “F” and “T” in front of the attributes refer to 

aroma, flavour and taste attributes, respectively. Cassia = Cassia/Cinnamon, Rotting = Rotting plant water, Hay = Hay/Dried grass, Cooked veg = Cooked 

vegetables.  b) PCA scores plot showing the positioning of the 58 honeybush tea samples.  The abbreviations Ses, Lon, Gen, Int, Sub and Mac in the scores plot 

refer to the specific Cyclopia species; C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata, respectively. 

  

a) b) 
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Table 4 Pearson‟s correlation coefficients (r) illustrating the relationship between aroma and flavour attributes 

Variables 

AFynbos 
floral 

ARose 
geranium 

ARose/ 
Perfume 

ALemon 
AApricot 

jam 
APlantlike AWoody ARooibos 

ACassia/ 
Cinnamon 

AWalnut 

FFynbos floral 0.535 
         

FRose geranium 
 

0.864 
        

FRose/Perfume 
  

0.720 
       

FLemon 
   

0.392 
      

FApricotjam 
    

0.365 
     

FPlantlike 
     

0.547 
    

FWoody 
      

0.604 
   

FRooibos 
       

0.173 
  

FCassia/Cinnamon 
        

0.951 
 

FWalnut 
         

0.432 

Positive significant correlations (p < 0.05) are indicated in purple.  Correlations above 0.7 are indicated in red.  The letters “A” and “F” before the attribute descriptors 

refer to aroma and flavour attributes, respectively.   

 
Table 5 Pearson‟s correlation coefficients (r) illustrating the relationship between aroma and taste and mouthfeel attributes 

Variables 
AFynbos 

floral 
ARose 

geranium 
ARose/ 
Perfume ALemon 

AApricot 
jam 

ACooked 
apple 

ACherry 
essence APlantlike AWoody ARooibos 

TSour 0.001 -0.217 -0.382 0.440 -0.250 -0.209 -0.118 0.447 0.030 -0.121 

TBitter -0.027 -0.023 0.129 0.016 0.210 -0.219 -0.002 0.078 0.076 0.108 

Astringent 0.062 -0.207 -0.305 0.076 -0.208 -0.282 0.028 0.216 0.205 -0.110 

TSweet 0.139 0.297 0.344 -0.038 0.189 0.188 0.256 -0.196 -0.216 0.049 

Variables APine 
AFruity 
sweet 

ABoiled 
syrup ACaramel AHoney 

AFynbos 
sweet 

ACassia/ 
Cinnamon AWalnut ACoconut 

TSour 0.015 -0.312 -0.226 0.325 -0.262 -0.061 -0.106 -0.224 -0.243 

TBitter -0.112 0.148 -0.143 0.206 0.122 -0.047 -0.374 -0.321 -0.138 

Astringent -0.001 -0.149 -0.216 0.330 -0.286 0.002 -0.234 -0.217 -0.147 

TSweet 0.008 0.325 0.112 -0.322 0.110 0.161 0.037 0.256 0.182 

Positive significant correlations (p < 0.05) are indicated in purple, whereas negative significant correlations (p < 0.05) are indicated in green.  The letters “A” and “T” 

before the attribute descriptors refer to aroma and taste attributes.   
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Table 6 Pearson‟s correlation coefficients (r) illustrating the relationship between flavour and taste and mouthfeel attributes 

Variables 
FFynbos 

floral 
FRose 

geranium 
FRose/ 

Perfume FLemon 
FApricot 

jam FPlantlike FWoody FRooibos FCassia FWalnut 

TSour 0.005 -0.259 -0.287 0.138 -0.157 0.420 0.256 -0.172 -0.125 -0.220 

TBitter -0.124 -0.022 0.088 0.068 0.063 0.081 0.125 -0.098 -0.349 -0.241 

Astringent 0.133 -0.199 -0.238 -0.112 0.007 0.344 0.255 -0.150 -0.222 -0.373 

TSweet 0.217 0.241 0.325 0.059 0.287 -0.447 -0.113 -0.050 0.072 0.176 

Positive significant correlations (p < 0.05) are indicated in purple, whereas negative significant correlations (p < 0.05) are indicated in green.  The letters “F” and “T” 

before the attribute descriptors refer to flavour and taste attributes.   
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Table 7 Pearson‟s correlation coefficients (r) illustrating the relationship between negative aroma and flavour attributes 

Variables ADusty AYeasty AMedicinal 
ABurnt 
caramel 

ARotting plant 
water 

AHay/Dried 
grass 

AGreen 
grass 

ACooked 
vegetables 

FDusty 0.025 
       FYeasty 

 
0.599 

      FMedicinal 
  

0.155 
     FBurnt caramel 

   
0.869 

    FRottting plant water 
    

0.752 
   FHay/Dried grass 

     
0.323 

  FGreen grass 
      

0.453 
 FCooked vegetables 

       
-0.030 

Positive significant correlations (p < 0.05) are indicated in purple. Correlations above 0.7 are indicated in red.  The letters “F” and “A” before the attribute descriptors 

refer to aroma and flavour attributes.  

 
 
Table 8 Pearson‟s correlation coefficients (r) illustrating the relationship between negative aroma or flavour attributes and taste and mouthfeel attributes 

Variables       ADusty AYeasty AMedicinal ABurnt caramel ARotting plant water AHay/Dried grass AGreen grass ACooked vegetables 

TSour -0.013 -0.189 0.001 0.365 0.362 0.170 0.235 0.040 

TBitter -0.149 -0.161 0.103 0.371 0.237 0.104 -0.013 -0.068 

Astringent -0.050 0.017 0.173 0.434 0.382 -0.044 0.220 0.050 

TSweet -0.040 0.216 0.026 -0.393 -0.419 -0.125 -0.030 -0.029 

Variables FDusty FYeasty FMedicinal FBurnt caramel FRottting plant water FHay/Dried grass FGreen grass FCooked vegetables 

TSour -0.060 -0.169 -0.156 0.345 0.342 -0.218 -0.004 0.110 

TBitter -0.071 -0.124 -0.116 0.300 0.118 0.196 -0.034 0.277 

Astringent -0.107 -0.119 0.025 0.473 0.166 0.011 0.209 0.377 

TSweet 0.184 0.169 0.072 -0.414 -0.314 -0.100 -0.090 -0.307 

Positive significant correlations (p < 0.05) are indicated in purple, whereas negative significant correlations (p < 0.05) are indicated in green.  The letters “A”,”F” and 

“T” before the attribute descriptors refer to aroma, flavour and taste attributes.   
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4.3. Segmentation of the sensory profile of Cyclopia species 

 

Discriminant analysis was used to generate a perceptual map of the six Cyclopia species in order to identify 

groupings and to determine which of the sensory attributes are responsible for these groupings.  The DA plot 

can be viewed in Fig. 4.  The DA plot indicates that the sensory attributes could effectively identify three 

groupings based on the sensory attributes; group A (C. sessiliflora, C. genistoides and C. intermedia), Group 

B (C. longifolia and C. subternata) and Group C (C. maculata) (Fig. 4). 

In order to determine which sensory attributes caused these groupings PCA scores and loadings 

plots were created, of the positive (including the basic taste attributes and mouthfeel attribute) and negative 

sensory attributes separately, in order to investigate sample patterns.  The relationship between the samples 

and the positive sensory attributes can be viewed in Fig. 5 whereas the relationship between the samples 

and the negative sensory attributes can be viewed in Fig 6.  Bar graphs indicating the differences in terms of 

aroma, flavour, taste and mouthfeel and negative attributes between the six Cyclopia species can be viewed 

in Figs. 7 to 10, respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 DA plot illustrating groupings.The abbreviations Ses, Lon, Gen, Int, Sub and Mac in the plot refer to 

C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata, respectively.  
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4.3.1. Group A 

 

The first group, group A, consisted of three Cyclopia species namely,C. sessiliflora, C. genistoides and C. 

intermedia.  These species associate with the same basic sensory attributes.  They are located at the top, 

mostly to the left, of the PCA scores plot (Fig. 5a).  This reflects a strong association with attributes such as 

fynbos sweet, fynbos floral, lemon, plantlike, sour, bitter and astringent (Fig. 5b).  There are a few samples 

situated to the right of the plot associating with caramel and woody attributes.  Although these species have 

similar sensory characteristics there were subtle differences.    

 Cyclopia sessiliflora had the highest average score for fynbos floral aroma and flavour but it did not 

differ significantly (p > 0.05) from C. intermedia (Figs. 7 and 8).  Cyclopia genistoides differed significantly (p 

≤ 0.05) from C. sessiliflora in terms of fynbos floral aroma but not with regard to fynbos floral flavour.  

Cyclopia intermedia had the second highest average score for rose geranium aroma and flavour, even 

though this is not one of the main attributes associated with group A, whereas C. sessiliflora and C. 

genistoides both had very low average scores.  Cyclopia sessiliflora had a significant stronger (p ≤ 0.05) 

lemon aroma compared to C. genistoides and C. intermedia but there was no significant difference in the 

lemon flavour of the species.  Cyclopia genistoides had the highest average score for apricot jam aroma 

whereas C. sessiliflora had the lowest average score for apricot jam aroma.  There was no significant 

difference between the species in terms of apricot flavour but C. genistoides had the highest average score. 

Cyclopia sessiliflora had a significant stronger (p ≤ 0.05) plantlike aroma and flavour compared to C. 

genistoides and C. intermedia.  Cyclopia sessiliflora had the highest average score for fynbos sweet and 

differed significantly from C. genistoides, however, it did not differ significantly (p > 0.05) from C. intermedia.   

 Cyclopia intermedia had the highest average score of the three species for sweet taste followed by 

C. sessiliflora (Fig. 9).  There was no significant difference (p > 0.05) between these two species in terms of 

sweetness, however, C. genistoides was significantly (p ≤ 0.05) less sweet than C. intermedia.  Cyclopia 

sessiliflora had a significantly stronger (p ≤ 0.05) sour taste compared to C. intermedia, however, there was 

no significance difference (p > 0.05) between C. sessiliflora and C. genistoides.  Cyclopia genistoides had a 

significantly (p ≤ 0.05) higher score compared to both C. sessiliflora and C. intermedia for bitter taste.  Also, 

C. genistoides was significantly (p ≤ 0.05) more astringent compared to C. intermedia.  However, there was 

no significant difference in astringency between C. genistoides and C. sessiliflora.  As it is the same species 

(C. genistoides) exhibiting the highest average score for both bitterness and astringency the question arises 

whether theses attributes were confused by the assessors as it has been reported by Lea and Arnold (1978) 

that astringency and bitterness may often be confused or seen as the same attribute by assessors. 

Cyclopia intermedia had the highest average score of the three species for dusty aroma, however, it 

did not differ significantly (p > 0.05), nor was there a significant difference (p > 0.05) in terms of dusty flavour 

(Fig. 10).  Cyclopia intermedia had a significantly stronger (p ≤ 0.05) yeasty aroma but once again, this 

difference was not detected by retronasal analysis.  Additionally, C. intermedia had the highest average 

score for medicinal aroma and differed significantly (p ≤ 0.05) from C. sessiliflora.  In terms of medicinal 

flavour, C. intermedia differed significantly (p ≤ 0.05) from both C. sessiliflora and C. genistoides.  Cyclopia 

genistoides had the highest burnt caramel flavour followed by C. intermedia and differed significantly from C. 

sessiliflora.  Cyclopia genistoides differed significantly (p ≤ 0.05) from both C. sessiliflora and C. intermedia 

in terms of burnt caramel flavour. There was no significant difference (p > 0.05) between the three species in 

terms of hay/dried grass aroma but C. genistoides had the highest average score.  However, in terms of 
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hay/dried grass flavour C. genistoides differed significantly from both C. sessiliflora and C. intermedia. 

Cyclopia sessiliflora had a significantly stronger (p ≤ 0.05) green grass aroma.  In terms of flavour there was 

no significant difference (p > 0.05) between the three species; C. sessiliflora had the highest average score.   

In conclusion, C. sessiliflora associated with “green” (plantlike and green grass) and lemon 

attributes, as well as sour taste, C. genistoides associated with apricot jam aroma and a slight bitter taste 

and C. intermedia appears to associate with more floral (rose geranium) notes and appears to be slightly 

sweeter compared to the other two species.  Cyclopia intermedia appears to have a problem with negative 

attributes such as yeasty and medicinal attributes whereas C. genistoides appears to have a problem with 

burnt caramel and hay/dried grass attributes and C. sessiliflora with green grass.  Based on the PCA plot of 

the negative sensory attributes (Fig. 6a and b) it appears for C. genistoides and C. intermedia as if all the 

samples located near negative attributes were samples obtained from industry for which the processing 

conditions were not available (Addendum A).  The negative attributes could thus be due to over- or even 

under-fermentation instead of being associated with a specific species.  It is very likely that the burnt caramel 

associated with C. genistoides was as a result of over-fermentation,  This specific negative attribute has 

been reported by Du Toit and Joubert (1999) to be present in tea prepared from C. intermedia which was 

over-fermented.  In the case of C. sessiliflora, it might be possible that although the tea was prepared 

according to the standard fermentation conditions used by the Agricultural Research Council (ARC) to 

ferment honeybush (80°C/24 h or 90°C/16h) that the tea might have been under-fermented resulting in the 

“green” character as the fermentation conditions currently used are based on research done on C. 

intermedia (Du Toit & Joubert, 1999) and not C. sessiliflora. Also, it is possible that the panel did not 

completely understand the difference between plantlike and green grass which could have led to the higher 

green grass mean score.  However, it is quite possible that the green character might be species-specific.   

 

4.3.2. Group B 

 

Group B, consisted of two Cyclopia species namely, C. longifolia and C. subternata.  It can thus be assumed 

that these species associate with the same basic sensory attributes.  These species are located at the 

bottom, mostly to the left, of the PCA scores plot (Fig. 13a).  This reflects a strong association with attributes 

such as rooibos, apricot jam, rose geranium, fruity sweet, rose/perfume and sweet taste (Fig. 13b).  

Additionally, there are a few C. longifolia at the top on the left side of the PCA plot associating with woody 

and caramel attributes and a few C. subternata samples situated at the bottom on the right side of the plot 

associating with attributes such as walnut and coconut.  Although these two species have similar sensory 

characteristics there are also a few differences.    

 Cyclopia longifolia had the lowest average score for fynbos floral aroma and differed significantly (p 

≤ 0.05) from C. subternata, however, there was no significant difference (p > 0.05) between the two species 

in terms of fynbos floral flavour (Figs. 7 and 8). Cyclopia subternata had the highest average score for both 

rose geranium aroma and flavour but there was no significant difference (p > 0.05) between the two species. 

Cyclopia longifolia had a higher average score for apricot jam aroma compared to C. subternata, however, 

there was no significant difference (p > 0.05) and both species had very similar average scores for apricot 

jam flavour.  Both C. longifolia and C. subternata had very low average scores for plantlike aroma and 

flavour but C. subternata had the lowest average score for plantlike aroma whereas C. longifolia had the 

lowest average score for plantlike flavour.  Cyclopia subternata and C. longifolia had the two highest average 
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scores for fruity sweet aroma and relatively low average scores for fynbos sweet.  Cyclopia subternata had a 

higher average score for coconut aroma compared to C. longifolia however there was no significant 

difference (p > 0.05).   

There was no significant difference (p > 0.05) between the two species in terms of sweetness, 

bitterness, sour taste or astringency (Fig. 9).  Cyclopia subternata had a slightly higher average score for 

sweetness and a slightly lower score for sour taste and bitterness.  The average score values for astringency 

for the two species were very similar.    

 Cyclopia subternata had a higher average score for dusty aroma, however, there was no significant 

difference (p > 0.05) and there was no difference between the two species in terms of dusty flavour (Fig. 10).  

Cyclopia longifolia had quite a high average score for burnt caramel aroma and flavour compared to C. 

subternata, however, there was no significance difference (p > 0.05).  Although there was no significant 

difference (p > 0.05) in terms of rotting plant water aroma, C. longifolia had a higher average score.  Cyclopia 

longifolia had a significantly higher (p ≤ 0.05) average score for rotting plant water flavour compared to C. 

subternata.  There was no significant difference (p > 0.05) between the two species in terms of hay/dried 

grass aroma and flavour; in both cases C. longifolia had a higher average score.    

Based on these results it is clear that there are very little differences between these two species in 

terms of aroma, flavour, taste and mouthfeel.  The only difference was the fact that C. longifolia had a 

significantly (p ≤ 0.05) lower fynbos floral aroma.  Furthermore, C. longifolia seemed to have had higher 

average scores for all negative attributes compared to C. subternata although none of them were significant.  

Cyclopia longifolia have a problem with rotting plant water flavour.  This could be due to the fact that there 

were a few samples in the C. longifolia sample set which were commercial samples for which we did not 

have any processing information and the fact that some of the samples were fermented at 70°C for 60 h.  As 

mentioned previously the latter might not be the most suitable fermentation conditions for this specific 

species as it is based on a study done on C. intermedia by Du Toit and Joubert (1999).  A smaller sample 

set was also used for C. longifolia compared to C. subternata which could have caused these slightly higher 

average scores for the negative attributes.  Furthermore, there were a limited number of samples present 

which were fermented according to the standard fermentation conditions used by the ARC. 

 

4.3.3. Group C 

 

Group C, consisted of only one Cyclopia species namely, C. maculata.  This indicates that this species had 

very different sensory attributes compared to the other Cyclopia species analysed.  Cyclopia maculata is 

located at the bottom on the right side of the PCA scores plot (Fig. 13a).  This reflected a strong association 

with attributes such as cassia/cinnamon, boiled syrup, walnut, cooked apple and coconut (Fig. 13b).   

 Cyclopia maculata had one of the lowest average scores for fynbos floral aroma and the lowest 

average score for fynbos floral flavour (Fig 7 and 8).  Similarly, C. maculata also had one of the lowest 

average scores for rose geranium aroma and flavour.  Although there was no significant difference between 

the rose/perfume aroma of the six species, C. maculata had the highest average score for rose/perfume 

flavour.  Cyclopia maculata only differed significantly (p ≤ 0.05) from C. sessiliflora in terms of this attribute.  

Cyclopia maculata had a significant stronger (p ≤ 0.05) cooked apple aroma than all of the species, except 

for C. intermedia. However, the cooked apple flavour was undetectable. Cyclopia maculata had one of the 

lowest average scores for plantlike aroma and flavour. Even though C. maculata had the highest average 
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score for both woody aroma and flavour, C. maculata only differed significantly (p ≤ 0.05) from C. longifolia in 

terms of woody aroma.  Cyclopia maculata had a relatively high average score for fruity sweet aroma.  

Cyclopia maculata had a significantly higher (p ≤ 0.05) average score for boiled syrup aroma compared to 

the rest of the species. Cyclopia maculata had one of the lowest average scores for fynbos sweet.  Cyclopia 

maculata had a significant stronger (p ≤ 0.05) cassia/cinnamon spicy aroma and flavour compared to the 

other species.  Cyclopia maculata had a significantly stronger (p ≤ 0.05) walnut aroma and flavour compared 

to the other species. Also, C. maculata had one of the highest average scores for coconut aroma, however, it 

did not differ significantly (p ≤ 0.05) from any of the other species.  Cyclopia maculata had one of the highest 

average scores for sweet taste and the lowest scores for sour taste, bitter taste and astringency (Fig. 9).  

Cyclopia maculata had the highest average score for dusty aroma although the difference was only 

significant (p ≤ 0.05) with regard to C. longifolia and C. genistoides (Fig. 10).  There did not seem to be any 

other specific negative attribute present in C. maculata except for hay/dried grass aroma and flavour for 

which C. maculata had quite a high average score.   

In summary C. maculata is thus not considered to be a very floral species, however, in comparison 

to the other species associated relatively strongly with a spicy cassia/cinnamon aroma and flavour. Although 

it appears as if there is a fruity sweet note present, the overall sweetness was described as boiled syrup.  

Cyclopia maculata seemed to also have a cooked apple, walnut and coconut character.  The presence of 

this spicy cassia/cinnamon note was unexpected as neither honeybush tea nor C. maculata specifically have 

previously been described as a spicy tea.  Cinnamon-like or spicy volatile compounds (6-methyl-3,5-

heptadien-2-one, 4-Acetyl-1-methyl-cyclohexene, (+)-p-Menth-1-en-9-al, eugenol and (7E)-Megastigma-

5,7,9-trien-4-one) have, however, been identified in a number of Cyclopia species (Le Roux et al., 2008; 

Cronje, 2010) and it was postulated that one or more of these volatiles may be responsible for the spicy 

note.  In order to identify which compound/combination of compounds are responsible for this characteristic 

aroma note, a representative spicy C. maculata sample (Mac3) was selected and analysed using GC-O.  A 

list of the odour active compounds identified in C. maculata (Mac3) and the aroma attributes associated with 

these compounds are provided in Table 9.  The sensory attributes associated with C. maculata (Mac3) can 

be viewed in Fig. 11. 

The prominent spicy note could possibly be attributed to the high relative concentration of eugenol 

(Table 9).  Eugenol is described as having a warm spicy, dry aroma and it is the only volatile component 

identified in Mac3 associated with a spicy aroma. Eugenol has previously been identified as an odour active 

compound of C. genistoides (Le Roux et al., 2008) and C. subternata (Cronje, 2010). In Mac3 it was more 

prominent, comprising more than 2% of the total volatile fraction (% of area) compared to less than 0.1% for 

C. genistoides and C. subternata. 

The floral notes present in C. maculata are extremely low, however, this could perhaps be due to the 

overwhelming spicy note which might have caused lower scores to be awarded for floral notes by the 

assessors.  It is difficult to evaluate more subtle attributes if one sensory attribute is particularly strong.  A 

number of odour active volatile compounds associated with floral, fruity, woody and sweet aromas were 

identified (Table 9).  Unknown compound C178, (E)-β-ionone and (E,E)-2,4-decadienal have previously been 

linked to the sweet aroma in C. subternata (Cronje, 2010). (E)-β-ionone, which has a woody floral aroma, 

was linked to the typical honeybush aroma (Cronje, 2010).  It is thus not surprising that these volatile 

compounds were also present in the infusion of Mac3, described as very sweet and woody.    
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The pine and nutty notes detected in this particular sample by descriptive analysis could be linked to 

quite a few odour active compounds identified in Mac3.  Both (E,E)-2,4-heptadienal and (E)-2-octenal are 

described as nutty, whereas pinolene is described as having a sweet-piney aroma.  The only volatile 

component identified in Cyclopia species associated with a coconut aroma to date is (R)-octan-5-olide; this 

compound was not identified as one of the aroma active compounds present in Mac3.  Possibly, the coconut 

aroma could be due to one of the unidentified components or one of the components for which no aroma 

descriptors was available. 

There are quite a number of odour active components associated specifically with green aroma 

notes which were not detected by descriptive analysis.  This could be due to the overwhelming spicy aroma 

as well as the prominent green character of some of the other Cyclopia species to which C. maculata was 

compared to during descriptive analysis.  

Although certain compounds can thus be linked to specific aroma notes it is important to realise that 

aromas of different qualities can mask or suppress one another and compounds with similar qualities can 

blend and produce a new aroma and certain compounds present in concentrations below their odour 

threshold or which has no odour activity when assessed individually can contribute to the aroma when they 

are in a mixture (Delahunty et al., 2006). 
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Figure 5 a) PCA scores plot showing the positioning of the 58 honeybush tea samples. The abbreviations Ses, Lon, Gen, Int, Sub and Mac in the scores plot refer to 

the specific Cyclopia species; C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata, respectively.  b) PCA loadings plot showing 

the positioning of the positive, taste and mouthfeel sensory attributes.  The letters “A”, “F” and “T” in front of the attributes refer to aroma, flavour and taste attributes, 

respectively. Cassia = Cassia/Cinnamon.   

a) b) 
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Figure 6 a) PCA scores plot showing the positioning of the 58 honeybush tea samples. The abbreviations Ses, Lon, Gen, Int, Sub and Mac in the scores plot refer to 

the specific Cyclopia species; C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata, respectively.  b) PCA loadings plot showing 

the positioning of the negative sensory attributes.  Rotting = Rotting plant water, Cooked veg = Cooked vegetables.  The letters “A” and “F” in front of the attributes 

refer to aroma and flavour attributes, respectively.  
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Figure 7 Average attribute intensities for aroma attributes present in the Cyclopia species.  Bars with different alphabetical letters are significantly different from each 

other (p ≤ 0.05).  The letter “A” in front of the attribute name refers to aroma. Attributes with a mean score of less than 5 and which did not differ significantly are not 

shown. 
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Figure 8 Average attribute intensities for flavour attributes present in the Cyclopia species.  Bars with different alphabetical letters are significantly different from 

each other (p ≤ 0.05).  The letter “F” in front of the attribute name refers to flavour.  Attributes with a mean score of less than 5 which did not differ significantly are 

not shown.  

 

 

Figure 9 Average attribute intensities for the taste and mouthfeel attributes present in the Cyclopia species.  Bars with different alphabetical letters are significantly 

different from each other (p ≤ 0.05).  The letter “T” in front of the attribute name refers to taste. 
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Figure 10 Average attribute intensities for the negative aroma and flavour attributes present in the Cyclopia species.  Bars with different alphabetical letters are 

significantly different from each other (p ≤ 0.05).  The letter “A” and “F” in front of the attribute name refers to aroma and flavour, respectively.  Attributes with a mean 

score of less than 5 which did not differ significantly are not shown. 
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Table 9 Odour active compounds and aroma descriptors associated with each compound identified by means of GC-O in the volatile fraction of Mac3 

Compounds Detection frequency (%) Area % Aroma descriptor* 

(E)-2-nonenal 100 0.71 Green, cucumber, aldehydic and fatty 

(E)-β-damascenone 100 3.71 Woody, sweet, fruity, earthy green-floral 

(E)-β-damascone 100 1.5 Fruity (apple-citrus), tea-like with slight minty notes 

(E)-β-ionone 100 9.91 Woody, floral 

(E,E)-2,4-nonadienal 100 1.17 Fatty-soapy 

(E,E)-3,5-octadien-2-one 100 0.94 Fatty, fruity, mushroom 

(E,E,Z)-2,4,6-nonatrienal 100 0.73 Oat-flake like 

(E,Z)-2,6-nonadienal 100 0.96 Green-vegetable, cucumber or violet leaf 

1-octen-3-ol 100 0.40 Mushroom 

2,3-dehydro-γ-ionone 100 0.06 Tobacco-like 

2-methylbutanoic acid 100 0.05 Cheesy, sweaty, sharp 

3-methylbutanoic acid 100 0.04 Acid acrid, cheesy, unpleasant 

6-methyl-6-(5-methylfuran-2-yl)-heptan-2-one 100 0.25  

A benzyl ester 100 0.10  

Nonanal 100 1.15 Floral 

Bovolide 100 0.64 Celery- and lovage-like, fruity and pleasant 

Eugenol 100 2.30 Warm-spicy, dry 

Hexanal 100 7.65 Fatty-green grassy odour 

Hotrienol 100 0.65 Floral, fruity 

m/z 163 unknown compound 100 0.06  

Phenylacetaldehyde 100 0.21 Floral, Lilac 

Piperonal 100 0.06 Floral 

Unknown C178 100 0.66  

Unknown C269 100 0.07  

Unknown m/z 91 compound 100 0.32  

(E,E)-2,4-decadienal 87.5 0.29 Deep fried 
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Table 9 continued 

Compounds Detection frequency (%) Area % Aroma descriptor* 

2-phenylethanol 87.5 0.29 Mild, warm, rose-honey-like 

6-methyl-5-hepten-2-one 87.5 23.26 Oily-green, pungent-herbaceous, grassy, with fresh and green-fruity notes 

Safranal 87.5 0.82 Herbaceous (saffron) 

2-ethyl-3-methylmaleimide 75 0.04  

cis-linalooloxide 75 0.17 Sweet floral, green, fruity 

Geraniol 75 22.86 Sweet, floral, rose 

Linalool 75 8.41 Refreshing, floral-woody 

p-anisaldehyde 75 0.14 Sweet, floral, "hay-like" 

Unknown oxo-edulan type compound 75 0.08  

α-terpineol 75 3.72  

(E,E)-2,4-heptadienal 62.5 4.01 Fatty, nutty, hay, fishy 

2,3-dehydro-α-ionone 62.5 0.30  

trans-calamenene 62.5 0.45  

Unknown compound 62.5 0.01  

Unknown compound 62.5 0.03  

Unknown compound 62.5 0.01  

Unknown m/z 135 compound 62.5 0.07  

Unknown m/z 83 compound 62.5 0.13  

(E)-2-octenal 50 0.59 Burnt, mushroom, fatty, nutty 

(E,Z)-2,4-decadienal 50 0.04 Deep fried 

3-hydroxy-α-damascone 50 0.05  

Calamenene-1,11-epoxide 50 0.06  

Geranylformate 50 0.28 Fresh, green-rosy, fruity 

Terpinolene 50 0.18 Sweet-piney, oily 

Unknown C162 50 0.06  

Unknown compound 50 0.22  

β-selinene 50 0.07  

*Compiled from Cronje (2010),  Linssen et al. (1993), Petka et al. (2006), Venkateshwarlu et al. (2004), Wang et al. (2008), Morales et al. (1995), Sanz et al.,(2002). 
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Figure 11 Spider plot reflecting the mean scores for the aroma attributes associated with C. maculate (Mac3) as determined by descriptive analysis. The letter “A” in 

front of the sensory attribute refers to aroma.  
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4.4. The sensory wheel 

 

A sensory wheel for honeybush was created by selecting 28 flavour and 7 taste and mouthfeel attributes to 

form a simple graphical representation of the sensory lexicon.  As the basic taste modalities (sweet, sour and 

bitter), as well as mouthfeel (astringency) usually form part of most sensory wheels these four descriptors 

were also included on the sensory wheel.  The 35 terms were assembled to form a three-tiered wheel 

consisting of ten sectors: floral, fruity, spicy, nutty, sweet, taste and mouthfeel, earthy, chemical and 

vegetative (Fig. 12).  The two classes of attributes (positive and negative) are located on the outer tier and 

the generic terms used to group together a certain class of adjectives are located in the middle tier, whereas 

the more specific attributes are located in the inner tier.  The terms were also grouped together based on 

whether it was taste and mouthfeel or flavour attributes. 

 Aroma and flavour wheels, as well as mouthfeel wheels, have been developed for a variety of food 

and beverage products such as fish (Warm et al., 2000), kiwifruit and pawpaw fruit puree (Wismer et al., 

2005; Duffrin & Pomper, 2006), whisky (Lee et al., 2001), brandy (Jolly & Hattingh, 2001), wine (Gawel et al., 

2000; Mirarefi et al., 2004; Noble et al., 1984), beer (Meilgaard et al., 1979) and honey (Piana et al., 2004).  

Sensory wheels have also been developed for black tea (Camellia sinensis; Bhuyan & Borah, 2001) and 

rooibos tea (Aspalathus linearis; Koch, 2011).  A number of first- and second-tier descriptors such as floral 

(rose, perfume, geranium, lilac, orange blossom, violets), fruity (citrus, berry, apricot, stewed fruit), sweet 

(honey, caramel, toffee) and green (green grass, hay, vegetative, herbaceous) are often used to describe 

these products.       

 The sensory wheel developed for honeybush in this study can be used as a communication tool 

between researcher institutions, industry and marketing companies.  Additionally, it can be used for 

comparing and monitoring the quality and consistency of honeybush tea as well as profiling new and 

competitive products within the tea industry.  It should be noted that this was the first attempt to develop a 

sensory wheel for honeybush and although the list of descriptors is useful and comprehensive for the 

sensory characterisation of honeybush, the list of terms may be incomplete as it is based on a sample size of 

only 58 honeybush tea samples.  It is thus expected that some adjustments will need to be made in future.   

 It would be beneficial to eventually develop flavour wheels tailored for each Cyclopia species as not 

all the descriptive terms currently included on the sensory wheel necessarily apply to all Cyclopia species.  

For example, the spicy (cassia/cinnamon), nutty (walnut) and fruity (cooked apple) notes was only present in 

one Cyclopia species, C. maculata.  These terms would therefore not be applicable to the other Cyclopia 

species.    

 

4.5. The sensory lexicon 

 

The honeybush tea sensory lexicon developed during this study is shown in Table 10.  The lexicon 

comprises a descriptive term together with a definition and a reference standard for each term.  Attributes 

determined orthonasally and retronasally were grouped together as flavour terms and mouthfeel 

(astringency) were grouped with the three taste modalities (sweet, bitter and sour) as taste terms.  

Obtaining suitable qualitative reference standards that accurately exemplify specific attributes is a 

challenging task because of the unique sensory characteristics of each food and beverage product.  A book 

of standardised definitions and reference standards was compiled by Civille and Lyon (1996), however, the 
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proposed definitions and references are not always well-suited to the product being evaluated.  The process 

of selecting appropriate references can thus not be limited to a literature study but requires time-consuming 

examination of a wide range of products and chemicals until the most suitable substance has been identified. 

Although references can be qualitative or quantitative, only qualitative reference standards were 

used during this study.  These references are essential when developing sensory lexicons since they allow 

for clarification of the terminology for future use or comparison.  Attribute intensities were rated in relation to 

the control honeybush sample, or to the samples exhibiting the most prominent or the weakest intensities of 

a specific attribute when the attribute was absent in the control (Munoz & Civille, 1998).  

The importance of reference standards, i.e. to assist in the understanding of flavour terminology, has 

been noted by a number of authors (Noble et al., 1984; Wolters, 1994; Munoz & Civille, 1998; Drake & 

Civille, 2002).  In this study it was necessary to assign specific definitions and reference standards to each 

descriptor to facilitate communication as most of the sensory attributes had a specific meaning within the 

context of honeybush tea.  Using a food, chemical or any other substance that communicate the concept of 

specific attributes to the assessors increases their understanding and improves the clarity of attribute 

terminology (Drake & Civille, 2002).  Meilgaard et al. (1979) suggested reference standards to define beer 

flavour terminology but these standards were prepared using a single compound in a beer base.  One of the 

major problems with this approach is the inability of a single compound to validly reproduce a complex 

aroma characteristic.  An alternative approach is a commercial sensory kit consisting of flavour essences, 

however, these essences can be extremely unstable and degrade readily.  For both of these systems of 

defining reference standards major problems result from the difficulty in handling of the standards. To 

provide standards which have consistent, characteristic aromas at suitable intensities Noble et al. (1987) 

suggested that reference standards should be prepared using foodstuffs available throughout the world 

during most of the seasons.  For this reason most of the reference standards chosen for this study to 

represent honeybush flavours are readily available foodstuffs.  Where no appropriate flavour, essence or 

foodstuff could be determined honeybush tea prepared from a specific Cyclopia species is suggested.  The 

standardised terminology can facilitate improved communication among the different role players in the 

industry.  These descriptors could facilitate both the definition and protection of the reputation of high quality 

products from inferior ones, as well as encourage successful promotion of honeybush tea based on its 

unique sensory qualities.  In future research honeybush tea can be described using this set of objectively 

determined flavour attributes.  Given the many different Cyclopia species available, the number of attributes 

was not reduced to 10 to 20 attributes as suggested by Vannier et al. (1999) as it seemed appropriate to 

maintain the integrity of the present lexicon so that a larger pool of attributes would be available to choose 

from when conducting a study on a specific Cyclopia species.  This being said, the list of terms may be 

incomplete and should be continually expanded as necessary.   
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Figure 12 Sensory wheel comprising 28 flavour and 7 taste and mouthfeel terms that describe the sensory 

attributes of the 58 honeybush tea infusions.    
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Table 10 Sensory lexicon describing flavour and mouthfeel characteristics of honeybush infusions analysed by descriptive analysis 

1
st
 Tier Attribute  2

nd
 Tier attribute Definition Reference Standard 

FLORAL 
AROMA 

Fynbos floral* Floral aroma note associated with the flowers of fynbos vegetation Honeybush tea prepared from C. intermedia (3 g/100 mL) 

Rose geranium Floral aroma note associated with the rose geranium plant Fresh rose geranium leaf (10 mm x 10 mm)/Rose geranium oil (0.005%) 

Rose/Perfume Floral aroma note associated with rose petals Crushed petals of one rose
a
 

FRUITY 
AROMA 

Lemon Aromatic associated with general impression of fresh lemons Lemon juice (5%) 

Orange Flavour reminiscent of orange peel Orange flavour (0.01%) 

Apple, cooked The flat, slightly sour aroma and flavour of cooked apples Apple Puree (2.5 g/100 mL) 

Apricot jam Sweet flavour reminiscent of apricot jam Superfine apricot jam (15 g/100 mL hot water) 

Cherry Fruity aroma note associated with cherry essence Cherry essence (0.005%) 

PLANTLIKE 
AROMA 

Plantlike* Slightly sour aromatic characteristic of freshly cut fynbos plant material Honeybush tea prepared from C. sessiliflora (3 g/100 mL) 

Woody* 
Aromatic associated with dry bushes, stems and twigs of the fynbos 
vegetation 

Honeybush tea prepared from C. maculata (3 g/100 mL) 

Rooibos 
Aromatic associated with dry bushes, stems and twigs of Aspalathus 
linearis(rooibos) 

FTNF Rooibos Extract (2%)
b
 

Pine Aroma reminiscent of pine needles Fresh pine needles 

SWEET 
AROMA 

Fruity sweet 
Sweet aromatic reminiscent of non-specific fruit especially berries and 
apricot jam 

Superfine apricot jam and strawberry jam (5 g each/100 mL hot water)
b
 

Boiled syrup Aroma note associated with boiled syrup Golden syrup (10 g/100 mL hot water) 

Caramel Sweet aromatic characteristic of molten sugar or caramel pudding Caramel, natural flavour (0.4%)
b
 

Honey Aromatics associated with the sweet fragrance of fynbos honey Wild flower honey
b
 

Fynbos* Aroma note reminiscent of the fynbos plant Honeybush tea prepared from C. intermedia (3 g/100 mL) 

SPICY 
AROMA 

Cassia/ 
Cinnamon 

The sweet woody spicy aromatic of ground cinnamon/cassia bark Soak cinnamon/cassia bark in water overnight
a
 

NUTTY 
AROMA 

Walnuts Aroma note associated with fresh (not rancid) walnuts Freshly chopped walnuts
c
 

Coconut Aromatic associated with desiccated coconut  Desiccated coconut 

NEGATIVE 
AROMA 

Dusty Earthy  aromatic associated with wet hessian or wet cardboard 
Old, dry tree bark (Jacaranda mimosifolia) (1 piece/100 mL hot water, infuse for 5 min, 
filter)

a
 

Medicinal Aromatic characteristic of band-aid, disinfectant-like (phenolic) Place a Band-aid adhesive bandage in a petri dish and cover
d
 

Rotting plant water Slightly sour aromatic characteristic of rotting plant water 
Grass (Pennisetum clandestinum) (30 shredded blades/100 mL hot water, store 1  
week, filter) 

Hay/Dried grass Slightly sweet aromatic associated with dried grass or hay Dried grass (Pennisetum clandestinum)
b
 

Green grass Aromatic associated with freshly cut green grass 
Cis-3-hexen-1-ol (0.005%)/Green grass (Pennisetum clandestinum) 
1 shredded 20 mm blade of fresh green grass (Pennisetum clandestinum)

e
 

Cooked 
vegetables 

An overall aroma note associated with canned/cooked vegetables Brine from canned green beans (5%)
f
 

Burnt caramel Aromatic associated with blackened/acrid carbohydrates Caramel, natural flavour (0.4%) 

TASTE AND 
MOUTHFEEL 

Sweet   Fundamental taste sensation of which sucrose is typical Sucrose (0.1%)
g
 

Sour Fundamental taste sensation of which citric acid is typical Citric acid (0.035%)
 g
 

Bitter Fundamental taste sensation of which caffeine is typical Caffeine solution (0.03%)
 g
 

 
Astringent The drying, puckering sensation on the tongue and other mouth surfaces Alum solution (0.05%)

 e
 

*For certain sensory attributes (fynbos floral, plantlike, woody and fynbos sweet) no adequate reference standard has yet been found and honeybush tea prepared 

from specific Cyclopia species are recommended for these attributes.  Suppliers of the chemicals/products are given in Addendum D.  All reference standards 

prepared using distilled water.  
a
Civille & Lyon (1996), 

b
Koch (2011),

c
Heisserer & Chambers (1993), 

d
Lee & Chambers (2007),

e
Galan-Soldeville et al.(2005),

f
Preston 

et al.(2008), 
g
ISO 5496:1992.
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5. CONCLUSION 

 

The “characteristic” sensory profile of honeybush tea can be described as a combination of floral, sweet, 

fruity and plantlike flavours with a sweet taste and a slightly astringent mouthfeel.  Using DA the six Cyclopia 

species analysed could be divided into three distinct groups based on their sensory properties; group A (C. 

sessiliflora, C. intermedia and C. genistoides), group B (C. longifolia and C. subternata) and group C (C. 

maculata).  Species in the same group had very similar sensory characteristics and it would thus be possible 

to blend these species together without altering the typical flavour associated with these species.  It should, 

however, be kept in mind that even within a group there are subtle differences between the species.  Group 

A associated with fynbos floral, fynbos sweet and plantlike attributes, group B associated with rose geranium 

and fruity sweet attributes and group C associated with woody, boiled syrup and cassia/cinnamon attributes.  

The spicy aroma of C. maculate could be explained by the high concentration of the volatile component 

eugenol which is known to have a warm-spicy, dry aroma.  Also, the floral, pine, nutty and woody notes 

could be explained by the odour active compounds present in C. maculata.  More research is needed to 

verify this as these results are based on one C. maculata sample.   

The variation in the sensory attributes within a specific species, especially in terms of the negative 

sensory attributes, seems to be due to different processing conditions rather than being species-specific.  

Most of the samples associated with negative sensory attributes were commercial samples and not 

necessarily optimally processed.  This could have resulted in the emergence of the negative sensory 

attributes.  The fermentation conditions used during processing was not provided for most of the commercial 

samples and those that were, indicated that the tea was fermented at 70°C for 60 hours or 80-85°C for 16-24 

hours.  These fermentation conditions are not necessarily optimum fermentation conditions for all the 

Cyclopia species.  It is thus highly possible that some of the latter samples might have been over- or even 

under-fermented.  However, further investigation is needed to verify this observation.  The honeybush 

sensory lexicon as well as the sensory wheel consisting of flavour, taste and mouthfeel attributes may well 

find invaluable application in future research, panellist training, quality control and marketing.  These tools 

are crucial in standardizing the sensory quality of honeybush tea and could assist in identifying niche 

markets for specific Cyclopia species in future.  
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1. ABSTRACT 

 

Quantification of the levels of soluble solids, total polyphenol and individual monomeric polyphenolic 

compounds, as well as the absorbance of the infusions prepared from different batches of six Cyclopia 

species revealed that large variation exist within and between the different Cyclopia species.  Factors such 

as locality, climate, soil condition and variation in processing conditions could contribute to this variation.  

Infusions of C. genistoides, C. longifolia and C. sessiliflora had the highest soluble solids and total 

polyphenol content, as well as the highest absorbance values.  Only mangiferin, isomangiferin, hesperidin 

and compound C were detected in all six Cyclopia species.  Infusions of C. genistoides, C. longifolia and C. 

sessiliflora in order of prominence contained the highest concentration of both mangiferin and isomangiferin 

whereas C. genistoides and C. maculata contained the highest hesperidin content.  These species would 

thus be ideal for production of extracts containing high levels of these phytochemicals.  The bitter taste 

present in certain Cyclopia species appears to be due to the high mangiferin content, however, compounds 

such as isomangiferin and compound C might also play a role.  Hesperidin, considered to be tasteless, also 

correlated significantly with bitter taste.  The impact of other constituents present in honeybush, such as 

amino acids, polysaccharides, volatile components, their interaction and their influence on the flavour should 

be considered in future research in order to gain more insight into the relationship between the sensory 

characteristics and the chemical composition of honeybush tea. 

 

2. INTRODUCTION 

 

Flavour is one of the most important qualities of food products and mainly determines whether a food 

product is accepted or rejected by the consumer (Dattatreya et al., 2002).  Flavour is determined by the 

result of the combination of the basic tastes and more specific flavour characteristics that arise from the 

volatile components which enter the nasal passages though the nose and the back of the mouth (Jackson, 

2009; Ross, 2009).  The four basic taste modalities (sweet, sour, bitter and salty) are perceived within the 

oral cavity by the taste buds and are associated with components such as sugars, polysaccharides, alcohols, 

acids, phenolics and nucleic acids (Jackson & Linskens, 2002; Worobey et al., 2006; Jackson, 2009).  On 

the other hand, astringency is a diffuse surface phenomenon characterized by a loss of lubrication which 

causes dryness of the oral surfaces and a tightening and puckering sensation (Lee & Lawless, 1991; Breslin 

et al., 1993; Gawell et al., 2000).  Sour taste in food products is caused by small, soluble, inorganic cations 

or organic acids (Ramos Da Conceicao Neta et al., 2007; Jackson, 2009) whereas bitter taste and 

astringency are elicited by flavonoids, such as flavanols and flavonols (Lesschaeve & Noble, 2005).  

Unfortunately, it is polyphenolic compounds with their unique biological activities which are responsible for 

the many health benefits associated with honeybush tea (Joubert et al., 2008a).   

Aroma is defined as the fragrance perceived through orthonasal analysis and is determined by the 

volatile fraction (Ross, 2009).  The volatile fraction of food products consist of many compounds however, 

only a few of these compounds are of significance in determining the aroma (Grosch, 1993).  These 

compounds are known as odour active compounds (Delahunty et al., 2006).  Aromas of different qualities 

can mask or suppress one another, compounds with similar qualities can blend and produce a new aroma 
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and certain compounds present in concentrations below their odour threshold or which has no odour activity 

when assessed individually can contribute to the aroma when they are in a mixture (Delahunty et al., 2006).   

The identification of specific compounds present in honeybush tea and the variation between the 

different Cyclopia species can be useful for many reasons.  Components which influence honeybush flavour 

could serve as an indication of the quality and flavour characteristics of the herbal infusion.  This would make 

it possible to distinguish between high and low quality tea based on the levels of specific components.  Also, 

if certain flavour impact compounds could be linked to taste and mouthfeel characteristics certain sensory 

characteristics of a honeybush infusion can possibly be predicted by the levels of these specific compounds.   

Joubert et al. (2008b) and De Beer & Joubert (2010) investigated the qualitative and quantitative 

differences in the polyphenolic composition of hot water extracts of fermented Cyclopia species.  These 

studies were limited to C. subternata, C. intermedia, C. genistoides and C. sessiliflora.  The volatile 

components and its effect on the aroma of honeybush infusions (C. genistoides, C. intermedia and C. 

subternata) have been studied extensively by Cronje (2010).  To date, only hesperetin and eriodictyol of the 

Cyclopia polyphenols have been linked to taste.  Hesperetin has been identified as a flavour modulating 

compound with sweet enhancing properties (Reichelt et al., 2010a; 2010b) whereas eriodictyol possesses 

bitter masking properties (Ley et al., 2005; Ley, 2008).  Both hesperetin (Joubert et al., 2003) and eriodictyol 

(De Beer & Joubert, 2010) are found in low quantities in honeybush extracts.  Ley (2008) reported 

hesperidin, present in honeybush, as tasteless and its positional isomer, neohesperidin, as strongly bitter.   

This study was conducted in order to establish whether significant correlations exist between certain 

chemical/instrumental parameters and the sensory characteristics of honeybush infusions prepared from six 

Cyclopia species (C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata).  

For this reason batches were selected to include large variation in composition.  The focus of the study was 

on non-volatile compounds and their link to taste and mouthfeel.  The variation in the levels of soluble solids, 

total polyphenol and phenolic compounds as well as spectrophotometric colour measurements were related 

to the sensory profiles of the infusions prepared from the different Cyclopia species.   

 

3. MATERIALS AND METHODS 

 

3.1. Samples 

 

The honeybush infusions used for this study (n = 57) were the same as those used for descriptive analysis 

described in Chapter 3. 

 

 

3.2. Sample preparation 

 

An aliquot (100 mL) of each infusion prepared for descriptive analysis (Chapter 3) was filtered through 

Whatman No. 4 filter paper and allowed to cool.  The soluble solids content was determined and the 

remaining part of the infusion transferred into several microfuge tubes (2 mL) and stored in a freezer at -

18°C until required for further analysis. 
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3.3. Chemicals 

 

The reagents required for the quantification of the total polyphenol content were Folin-Ciocalteu‟s phenol 

reagent (Merck, Cape Town, South Africa), anhydrous sodium carbonate (Saarchem, Gauteng, South Africa) 

and gallic acid (Sigma Aldrich, St. Louis, USA).  Chemicals required for high performance liquid 

chromatography-diode-array detection (HPLC-DAD) analysis were 99.8% formic acid (BDH, VWR 

International, Poole, UK), HPLC FarUV gradient grade acetonitrile (BDH) and ascorbic acid (Sigma-Aldrich).  

Mangiferin (Mg) and naringenin (Nar) were supplied by Sigma-Aldrich whereas hesperidin (Hd), hesperetin 

(Ht), luteolin (Lut), eriocitrin (ErioTrin), narirutin (NarRut) and eriodictyol (Erio) were supplied by 

Extrasynthese (Genay, France).  A Modulab Water Purification System (Continental Water Systems 

Corporation, San Antonio, TX, USA), containing in sequence carbon, reverse osmosis and deioniser 

cartridges, was used for preparation of laboratory grade water which was further treated with a Milli-Q 

academic water purifier (Millipore, Bedford, MA, USA) to prepare HPLC grade water for preparation of the 

mobile phase. 

 

3.4. Soluble solids content 

 

The soluble solids (SS) content of the infusions was determined gravimetrically by evaporating 20 mL 

aliquots of the filtrate of the honeybush infusion, in triplicate, to dryness on a steam bath (Merck) in pre-

weighed nickel moisture dishes, followed by oven drying at 100°C for 1 h.  The moisture dishes were allowed 

to cool in a desiccator before re-weighing.  The results were expressed in mg/L infusion.   

 

3.5. Total polyphenol content 

 

The total polyphenol (TP) content of the honeybush infusions was determined using a Biotek Synergy 

HTmultiplate reader (Biotek Instruments, Winooski, USA) as described by Arthur et al. (2011).  After 

defrosting the filtrate sample at room temperature the sample was diluted to obtain a soluble solids content 

of between 0.2 and 0.3 mg/mL in order to obtain absorbance values within the range of the calibration curve.  

Gallic acid was used to prepare a calibration curve ranging from 1 mg/L to 10 mg/L in the final reaction 

volume.  Twenty μL of each standard, sample and assay control (deionised water) were transferred in 

triplicate into a clear 96-well flat bottom plate (Greiner Bio-one, LASEC, Cape Town, South Africa).  Folin-

Ciocalteu‟s reagent (10 x diluted; 100 μL) and sodium carbonate solution (7.5% w/v; 80 μL) were added 

followed by mixing using an EppendorfMixMate (Merck).  The plates were incubated at 30°C for 2 hours in a 

temperature-controlled laboratory oven whereafter the absorbance was measured at 765 nm.  The TP 

content was expressed as mg gallic acid equivalents (GAE)/L infusion.  

 

3.6. Individual polyphenolic compounds 

 

An Agilent 1200 system comprising of a quaternary pump, autosampler, on-line degasser, column oven and 

diode-array detector (Agilent Technologies Inc., Santa Clara, USA) with Chemstation 3D LC software was 

used for HPLC-DAD analysis.  A Zorbac Eclipse XDB-C18 column (150x4.6 mm, 5 µm particle size, Agilent) 

was used for separation of the compounds at 30°C with acetonitrile (A) and 0.1% formic acid (B) as the 
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solvents.  The flow rate was set to 1 mL/min and the following solvent gradient was used: 0-6 min (12%), 7 

min (18%), 14 min (25%), 19 min (40%), 24 min (50%) and 29 min (12%) as described by De Beer & Joubert 

(2010).  Aliquots of stock solutions of each compound were defrosted at room temperature ca. half an hour 

before preparing the working solutions (Mix 1 to 5) (Table 1).  The standard mixtures and infusions were 

filtered using 4 mm Millex-H.V. hydrophilic PVDF 0.45 μm syringe filter devices (Millipore, Bedford, USA) and 

2 mL disposable PP syringes into wide-necked HPLC autosampler vials with shell-style inserts and closed 

with screw caps.  Each standard mixture (1-5) was injected at 10 μL and standard mixture 1 also at 15 and 

20 mL in order to set up an appropriate standard concentration curve for each compound.  The concentration 

of the compounds in the different mixtures and the correlation coefficients for each of the calibration curves 

are summarised in Table 1. For the infusions an injection volume of 10 μL was used.  Retention times and 

spectral characteristics were used for peak identification and peak area integrations were performed using 

Chemstation software.  The peak areas of compounds were quantified at 288 nm [compound C (unknown 

compound), compound D (possibly an eriodictyol glucoside), eriocitrin, compound B (possibly a flavanone 

glucoside), narirutin, hesperidin, eriodictyol, compound F (possibly a flavanone glucoside), naringenin and 

hesperetin] and 320 mm [mangiferin, isomangiferin, compound E (unidentified hydroxycinnamic acid 

derivative), compound A (possibly scolymoside) and luteolin].  Quantification of all compounds, except for 

compounds A to F and isomangiferin, was carried out using the appropriate standard curves.  Compounds A 

and E were quantified as luteolin equivalents whereas compounds B to D and F were quantified as 

hesperidin equivalents.  Isomangiferin was quantified by means of an absorbance ratio in terms of 

mangiferin (D. De Beer, ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa, 2010, personal 

communication). 

 

3.7. Absorbance as measure of colour 

 

Spectrophotometric measurements of each sample were carried out using a Biotek Synergy HT multiplate 

reader.  After defrosting and mixing the filtrate on a vortex mixer, 100 μL were transferred in triplicate into 

wells of a clear 96-well flat-bottom microplate (Greiner Bio-one) followed by thorough mixing of the well 

contents for 30 seconds using an Eppendorf MixMate.  Absorbance of the infusion was measured at 10 nm 

intervals ranging from 370 to 700 nm.  Using Gen5 Secure software (Biotek Instruments), values for the 

integral of the absorbance spectrum across the wavelength range of 370 to 570 nm were obtained, i.e. the 

Area Under the Curve (AUC) reflecting the “total colour” of the sample.  Normalised AUC (AUCnorm) was 

calculated based on the average SS content of all the samples.   

 

Table 1 Composition of standard mixtures 1 to 5 and correlation coefficients for each calibration curve 

 Concentration of compounds in standard mix (μg/mL) 

Standard mix ErioTrin NarRut Hd Erio Nar Ht Mg Lut 

Mix 5 0.69 0.26 1.22 0.29 0.27 0.28 3.64 0.14 

Mix 4 22.35 8.32 39.59 9.27 8.74 9.19 118.21 4.55 

Mix 3 37.82 14.08 66.99 15.69 14.78 15.55 200.05 7.70 

Mix 2 61.89 23.04 109.62 25.68 24.19 25.44 327.36 12.60 

Mix 1 85.96 32.00 152.25 35.67 33.60 35.33 454.67 17.50 

R
2
 of calibration 

curve 
0.99995 0.99995 0.99995 0.99995 0.99995 0.99995 0.99992 0.99995 

Stellenbosch University http://scholar.sun.ac.za



95 
 
3.8. Data analysis 

 

The data were subjected to analysis of variance (ANOVA) using SAS® softwatre (Version 9.2, SAS Institute 

Inc, Cay, USA).  The Shapiro-Wilk test was used to test for non-normality of the residuals (Shapiro &Wilk, 

1965) and in the event of significant non-normality (p ≤ 0.05) outliers were identified and removed until the 

data were normally distributed.  Principal component analysis (PCA) was performed using XLStat (Version 

7.5.2, Addinosoft, New York, USA) to visualize the relationship between the samples and their composition.  

 

4. RESULTS  

 

The mean, standard deviation (SD), minimum, maximum and range values for SS, TP, AUC, AUCnorm and 

the individual polyphenolic compounds of all the honeybush infusions analysed are summarised in Table 2 

whereas the mean values for SS, TP, AUC, AUCnorm and the individual polyphenolic compounds of each 

individual Cyclopia species are summarised in Table 3.  The variation between the samples within each 

species can be viewed in Addendum E.  The association between the chemical/instrumental parameters as 

well as between the individual honeybush samples are displayed on the principal component analysis (PCA) 

loadings and scores plots (Fig. 1a, b).  Table 4 shows the correlation coefficients for the 

chemical/instrumental variables.  Typical chromatograms for the infusions of fermented C. sessiliflora, C. 

longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata are shown in Fig. 3. 

 

4.1. Soluble solids content 

 

The average soluble solids content of the infusions differed considerably between the species ranging from 

658.33 to 2891.67 mg/L (range of 2233.33 mg/L) (Table 2).  The normalised soluble solids content (based on 

the exact mass of the tea leaves used during preparation of the infusion) gave similar results indicating that 

the small variation in the mass did not have a significant effect on the soluble solids content of the tea 

infusions and this parameter was thus excluded during further analysis.  The soluble solids content of the 

infusions of the different species followed the order - Cyclopia genistoides ≥ C. longifolia ≥ C. sessiliflora ≥ C. 

subternata ≥ C. intermedia ≈ C. maculata (Table 3).  Similar results are reflected by multivariate analysis as 

the soluble solids content is situated on the right hand side of the PCA loadings plot (Fig. 1a) associating 

predominantly with three of the Cyclopia species namely, C. sessiliflora, C. longifolia and C. genistoides (Fig. 

1b).  The SS content correlated significantly with the TP (r = 0.906), mangiferin (r = 0.762) and isomangiferin 

(r = 0.873) contents, as well as with the AUC (r = 0.907) (Table 4).  Weak correlations with SS content (r < 

0.6; p ≤ 0.05) were observed for narirutin, hesperidin and compound C.  

 

4.2. Total polyphenol content 

 

The average total polyphenol content of the infusions was 298 mg GAE/L with a range of 579.72 mg GAE/L 

(Table 2).  Thus, there was considerable variation between the infusions in terms of the total polyphenol 

content with a maximum of 616.98 and a minimum as low as 37.25 mg GAE/L.  Based on the TP content two 

distinct groups could be identified, i.e. group 1 consisting of C. sessiliflora, C. longifolia and C. genistoides 

with the higher mean total polyphenol content and group 2 consisting of C. intermedia, C. subternata and C. 
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maculata with the lower mean total polyphenol content (Table 3).  On the PCA loadings plot (Fig. 1a) the 

total polyphenol content is situated very close to the soluble solids content and thus associated with C. 

genistoides, C. sessiliflora and C. longifolia (Fig. 1b).  The TP content strongly correlated with the SS (r = 

0.906) and isomangiferin (r = 0.803) contents and AUC (r = 0.875) (Table 4).  Correlation of mangiferin and 

compound C with total polyphenol content was less than 0.7.  Hesperidin, eriocitrin and compound B gave 

correlations with TP of less than 0.4 (p ≤ 0.05). 

 

4.3. Absorbance as measure of colour 

 

The average AUC value was 59.02 with a range of 121.92 (Table 2).  Similarly to the TP content the species 

formed two distinct groups, i.e. C. sessiliflora, C. longifolia and C. genistoides had the higher AUC values 

while the lower values were observed for C. intermedia, C. maculata and C. subternata (Table 3).  On the 

PCA loadings plot (Fig. 1a) AUC is situated close to both the SS and TP content and associates with C. 

genistoides, C. sessiliflora and C. longifolia (Fig. 1b).  The AUC correlates strongly with the SS (r = 0.907), 

TP (r = 0.875), mangiferin (r = 0.810) and isomangiferin (r = 0.886) contents (Table 4).  However, taking into 

account the variation in the SS content and the effect it has on the AUC value normalisation of AUC values 

(based on the average SS content of all the samples analysed) was done.  However, normalisation did not 

have a huge effect on the AUC values (Fig. 2).  The values lowered slightly, but, the relative differences 

between the species remained constant.  This indicates that the differences in the absorbance values reflect 

differences in the hue of the colour and not simply the differences in the SS content.  Three distinct groups 

formed with C. sessiliflora and C. genistoides having the highest AUCnorm values, followed by C. longifolia, 

C. intermedia and C. maculata and C. subternata having the lowest AUCnorm value (Table 3). 

 

4.4. Individual polyphenolic compounds 

 

All the polyphenolic compounds, except compounds A, B and F, were located on the right side of the PCA 

loadings plot (Fig. 1a) reflecting a relationship with C. genistoides, C. longifolia and C. sessiliflora (Fig. 1b).  

Compounds A and B reflected an association with C. subternata whereas compound F reflected an 

association with C. intermedia and C. maculata (Fig. 1a,b).  Isomangiferin strongly correlated with both 

mangiferin (r = 0.908) and compound C (r = 0.722) whereas eriocitrin strongly correlated with compound A (r 

= 0.716) and compound B (r = 0.821; p ≤ 0.05; Table 4). 

Only four of the polyphenolic compounds (mangiferin, isomangiferin, hesperidin and compound C) 

were detected in all six Cyclopia species (Table 3).  The mangiferin and isomangiferin contents of Cyclopia 

genistoides were the highest (p≤0.05) followed by C. longifolia and C. sessiliflora with C. intermedia, C. 

subternata and C. maculata having the lowest contents.  Cyclopia genistoides and C. maculata contained 

the highest concentration of hesperidin followed by C. longifolia whereas C. sessiliflora, C. intermedia and C. 

subternata had the lowest concentration.  The content of compound C in infusions of C. genistoides and C. 

sessiliflora was significantly (p ≤ 0.05) higher than that of the other species.  Their contents did not differ 

significantly (p > 0.05).  The lowest content was observed for C. maculata.  

Eriocitrin was not detected in C. genistoides and C. intermedia (Table 3).  Cyclopia sessiliflora and 

C. subternata had the highest eriocitrin content followed by C. longifolia.  Eriocitrin was detected in C. 

maculata at low concentration.  Narirutin was only detected in one of the six Cyclopia species, namely C. 
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longifolia, while compound A was only detected in C. longifolia and C. subternata.  Cyclopia subternata 

contained approximately three times as much narirutin than C. longifolia.  Compound B was detected in the 

same two species as well as C. sessiliflora.  Cyclopia sessiliflora had the highest concentration of 

compounds B followed by C. subternata and C. longifolia.  Compound F was only present in C. intermedia.     

 

4.5. The relationship between the chemical composition and sensory attributes 

 

Sour taste significantly (p ≤ 0.05) correlated with the SS (r = 0.363), TP (r = 0.373), isomangiferin (r = 0.315), 

compound B (r = 0.261) and compound C (r = 0.301) contents and AUC (r = 0.446; p ≤ 0.05).  The strongest 

correlation between bitter taste and composition was for mangiferin (r = 0.740).  Furthermore, the SS (r = 

0.530), TP (0.455), isomangiferin (r = 0.623), hesperidin (r = 0.299) and compound C (r = 0.445) contents 

and AUC (r = 0.632) also correlated significantly but to varying extents with bitter taste.  A significant but 

weak negative correlation was observed between eriocitrin and bitter taste (r = -0.292).  There was no 

compositional parameter which had a significant positive correlation with sweetness, however, significant 

negative correlations between sweet taste and SS (r = -0.485), TP (r = -0.463), mangiferin (r = -0.568), 

isomangiferin (r = -0.544) and compound C (r = -0.271) contents and AUC (r = -6.24) were observed (Table 

5).  A general trend can be identified; all those compositional parameters strongly correlating with bitter taste 

correlates negatively with sweet taste.  There was no strong correlation between astringency and the 

compositional parameters, however, weak, but significant, correlations of astringency with SS (r = 0.337), TP 

(r = 0.278), mangiferin (r = 0.392) and isomangiferin (r = 0.384) contents, as well as AUC (r = 0.466) were 

observed.   
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Table 2 Average values, standard deviation, minimum, maximum and range for the concentrations of SS, TP and the individual polyphenolic compounds of the 

honeybush infusions analysed, as well as AUC and AUCnorm values.   

 SS SSnorm TP AUC AUCnorm Mg IsoMg ErioTrin NarRut Hd Comp A Comp B Comp C Comp F 

Mean 1799.60 1801.29 298.64 59.02 56.54 48.71 23.13 2.07 0.11 6.90 2.40 1.78 9.65 0.22 

SD 577.66 577.59 156.95 27.34 12.48 58.91 18.79 2.50 0.42 4.30 4.81 2.94 12.88 0.66 

Minimum 658.33 657.75 37.25 15.64 28.67 0.00 1.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maximum 2891.67 2889.10 616.98 137.56 93.03 201.03 66.25 7.38 1.80 17.54 18.80 10.24 51.91 3.88 

Range 2233.33 2231.35 579.72 121.92 64.35 201.03 64.41 7.38 1.80 17.54 18.80 10.24 51.91 3.88 

SD = Standard deviation; SS = Soluble solids, SSnorm = SS normalised, TP = Total polyphenol, AUC = Area under the curve (370 – 570 nm), AUCnorm = AUC 

normalised, Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; NarRut = Narirutin; Hd = Hesperidin; Comp A = Compound A; Comp B = Compound B; 

Comp C = Compound C; Comp F = Compound F.  All chemical/instrumental analysis provided in mg/L except for SSnorm, AUC, AUCnorm and TP (mg GAE/L). 

 

Table 3 Mean values for the concentrations of SS, TP and the individual polyphenolic compounds for each Cyclopia species 

Means 

Species SS TP AUC AUCnorm Mg IsoMg ErioTrin NarRut Hd Comp A Comp B Comp C Comp F 

Ses 1957.10 bc 425.98 a 71.15 a 63.88 a 42.43 bc 29.55 b 5.07 a 0.00 b 5.85 bc 0.00 c 6.86 a 24.02 a 0.00 b 

Lon 2301.00 ab 385.33 a 74.00 a 53.71 b 64.31 b 35.30 b 2.87 b 0.95 a 7.97 ab 3.03 b 1.58 c 6.03 b 0.00 b 

Gen 2383.20 a 428.10 a 89.45 a 65.29 a 150.63 a 47.95 a 0.00 c 0.00 b 9.99 a 0.00 c 0.00 c 24.02 a 0.00 b 

Int 1400.00 d 218.83 b 48.28 b 55.54 b 17.40 d 13.60 c 0.00 c 0.00 b 4.43 c 0.00 c 0.00 c 3.91 b 1.17 a 

Sub 1611.70 cd 230.55 b 37.73 b 41.44 c 2.44 d 5.24 c 4.82 a 0.00 b 3.02 c 10.72 a 4.04 b 2.37 b 0.00 b 

Mac 1384.20 d 180.87 b 43.39 b 54.22 b 18.45 cd 13.89 c 1.06 c 0.00 b 10.16 a 0.00 c 0.00 c 1.44 b 0.00 b 

Data marked with different letters in the same column were significantly different at p=0.05. Ses = C. sessiliflora; Lon = C. longifolia; Gen = C. genistoides; Int = C. 

intermedia; Sub = C. subternata; Mac = C. maculata; SS = Soluble solids; TP = Total polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC 

normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; NarRut = Narirutin; Hd = Hesperidin; Comp A = Compound A; Comp B = Compound B; 

Comp C = Compound C; Comp F = Compound F.  All chemical/instrumental analysis provided in mg/L except for AUC, AUCnorm and TP (mg GAE/L). 
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Figure 1 a) PCA loadings plot showing the positioning of the chemical/instrumental parameters. SS = Soluble solids; TP = Total polyphenol; AUC = Area under the 

curve (370 – 570 nm); Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; NarRut = Narirutin; Hd = Hesperidin; Comp A = Compound A; Comp B = 

Compound B; Comp C = Compound C; Comp F = Compound F. b) PCA scores plot showing the positioning of the 72 honeybush samples. Ses = C. sessiliflora; Lon 

= C. longifolia; Gen = C. genistoides; Int = C. intermedia; Sub = C. subternata; Mac = C. maculata. 
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Table 4 Correlation coefficients for the chemical/instrumental variables 

Variables SS TP AUC AUCnorm Mg IsoMg ErioTrin NarRut Hd Comp A Comp B Comp C Comp F 

SS 1 
            

TP 0.906* 1 
           

AUC 0.907* 0.875* 1 
          

AUCnorm 0.467* 0.554* 0.759* 1 
         

Mg 0.762* 0.698* 0.810* 0.593* 1 
        

IsoMg 0.873* 0.803* 0.886* 0.645* 0.908* 1 
       

ErioTrin 0.23 0.315* 0.03 -0.223 -0.221 -0.053 1 
      

NarRut 0.386* 0.325* 0.241 0.056 0.19 0.375* 0.271* 1 
     

Hd 0.448* 0.354* 0.540* 0.465* 0.488* 0.516* -0.251 0.049 1 
    

Comp A 0.053 0.018 -0.207 -0.498* -0.280* -0.302* 0.716* 0.143 -0.370* 1 
   

Comp B 0.126 0.295* 0.014 -0.127 -0.22 -0.109 0.821* 0.018 -0.282* 0.536* 1 
  

Comp C 0.591* 0.608* 0.552* 0.420* 0.655* 0.722* 0.057 0.007 0.215 -0.225 0.165 1 
 

Comp F -0.014 -0.001 0.022 0.078 -0.14 -0.06 -0.301* -0.098 -0.189 -0.181 -0.221 -0.105 1 

*Values marked with an asterix are significantly different from 0 with a significance level of p = 0.05.  Values in bold are higher than ± 0.7.  SS = Soluble solids; TP = 

Total polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; NarRut = 

Narirutin; Hd = Hesperidin; Comp A = Compound A; Comp B = Compound B; Comp C = Compound C; Comp F = Compound F. 
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Table 5 Correlation coefficients (r) for the taste and mouthfeel attributes and the chemical/instrumental variables 

Variables SS TP AUC Mg IsoMg ErioTrin NarRut Hd Comp A Comp B Comp C Comp F 

TSour 0.363* 0.373* 0.446* 0.237 0.315* 0.225 -0.094 0.092 -0.088 0.261* 0.301* -0.080 

TBitter 0.530* 0.455* 0.632* 0.740* 0.623* -0.292* 0.074 0.299* -0.201 -0.242 0.445* -0.009 

TSweet -0.485* -0.463* -0.624* -0.568* -0.544* 0.112 0.033 -0.157 0.228 0.135 -0.271* -0.109 

TAstringent 0.337* 0.278* 0.466* 0.392* 0.384* -0.049 -0.083 0.043 -0.189 0.028 0.214 0.044 

*Values marked with an asterix are significantly different from 0 with a significance level of p=0.05.  Values in bold are higher than ± 0.7. SS = Soluble solids content, 

TP = Total polyphenol content, AUC = Area under the curve (370 – 570 nm), Mg = Mangiferin, IsoMg = Isomangiferin, ErioTrin = Eriocitrin, Comp B = Component B, 

NarRut = Narirutin, Hd = Hesperidin, Comp A = Component A, Comp C = Component C, and Comp F = Component F.   

 

 

 

 

Figure 2 Absorbance values for Cyclopia species (C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata).  a) Average values 

and b) normalised according to the soluble solids content.   
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Figure 3 HPLC-DAD profiles for fermented C. sessiliflora (a), C. longifolia (b), C. genistoides (c), C. 

intermedia (D), C. subternata (E) and C. maculata (F).  1 = Mangiferin, 2 = Isomangiferin, 3 = Eriocitrin, 4 = 

Narirutin, 5 = Hesperidin, 6 = Compound A, 7 = Compound B, 8 = Compound C, 9 = Compound F.  

  

a) b) 

c) d) 
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5. DISCUSSION 

 

5.1. Variation in the chemical composition 

 

The large variation in the SS, TP, AUC and polyphenolic profiles of the six Cyclopia species was not 

unexpected as Joubert et al. (2003; 2008b) and De Beer and Joubert (2010) reported qualitative and 

quantitative differences between certain Cyclopia species.  This large variation between the species could 

possibly be due to the different localities, climates, soil conditions, survival strategies (Schutte, 1997), the 

age of plant/regrowth (Joubert et al., 2011), the presence of flowers/pods (Du Toit & Joubert, 1998) and the 

leaf-to-stem ratio (E. Joubert, ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa, 2010, personal 

communication).  However, investigation into each of these factors would be necessary to confirm this.  In 

addition to these factors the large variation in the chemical/instrumental parameters between and within each 

specie could also be due to the different processing conditions, in particular the fermentation temperature 

and time combinations used as it is well known that extensive heat treatments during fermentation have a 

detrimental effect on the levels of SS, TP and individual polyphenolic compounds (Du Toit & Joubert, 1999; 

Joubert et al., 2008b). The long fermentation and or/high fermentation temperatures used by industry 

(70°C/60 h, 80-85°C/≥16 h) would have contributed to the much lower levels of SS, TP and the individual 

polyphenolic compound contents.  For example, Int9, Int10 and Int11 (Addendum A) were fermented by 

industry and all three infusions had very low TP and specific polyphenolic compounds contents (Addendum 

E).  Also, certain samples had a higher stem content resulting in a lower TP content.  Normalisation of the 

AUC values (based on the SS content) indicated that the differences in the absorbance values reflect 

differences in the hue of the colour and not simply the differences in the SS content.   

 Infusions of C. genistoides not only had the highest concentration of the xanthones, mangiferin and 

isomangiferin, as previously reported (Joubert et al., 2008b; De Beer & Joubert, 2010) but, together with C. 

maculate, also had the highest hesperidin content (De Beer & Joubert, 2010).  Their investigation was limited 

to C. genistoides, C. sessiliflora, C. intermedia and C. subternata. Cyclopia subternata contained the lowest 

concentration of these three polyphenolic compounds, while being one of the two species containing 

compound A. 

 

5.2. The relationship between the chemical composition and sensory attributes 

 

Sour taste in food products is caused by small, soluble, inorganic cations and not by polyphenolic 

compounds (Jackson, 2009) which could explain the low correlation values between the polyphenolic 

compounds and sour taste.  However, it has been reported that certain organic acids such phenolic acids 

have acidic or sour taste characteristics (Huang & Zayas, 1991; Peleg & Noble, 1995; Ramos Da Conceicao 

Neta et al., 2007).  According to Ramos Da Conceicao Neta et al. (2007) sour taste intensity is related to the 

total molar concentration of all organic acid species that have more than one protonated carboxyl groups 

plus the concentration of the free hydrogen ions.  The phenolic acids p-coumaric and shikimic acid have 

been previously identified in Cyclopia species (Kamaraet al, 2003; Ferreira et al., 1998) but they have not 

been detected in the infusions.  Previously the sour taste was significantly correlated to lemon and plantlike 

(green) sensory attributes (Chapter 3) indicating that a sour taste in honeybush tea may be related to the 

compounds responsible for the plantlike (green) flavour associated with under fermented honeybush tea. 
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Bitter taste is elicited by structurally diverse compounds and no clear definition of the molecular 

properties that confer bitterness has yet been proposed (Lesschaeve & Noble, 2005).  According to 

Lesschaeve & Noble (2005) bitterness (and astringency) is elicited by flavonoid phenols such as flavanols 

and flavonols.  Several of these types of compounds were present in varying concentration in the infusions. 

The chemical nature of the flavonoid phenols depends on structural class, degree of hydroxylation, other 

substituents and conjugations as well as the degree of polymerisation which in turn have an effect on its 

taste properties (Aherne & O‟Brien, 2002; Ley, 2008).  Some flavonoids are very bitter whereas others are 

not, depending on the type of glycoside chain (Drewnowski & Gomez-Carneros, 2000).  Naringenin 

(flavanone neohesperidoside) and neohesperidin (hesperetin neohesperidoside) are very bitter whereas 

hesperidin (hesperetin rutinoside) is tasteless (Ley, 2008).  Both eriocitrin and narirutin, similar to hesperidin, 

contain a rutinoside chain indicating that they might also be tasteless.  Some of the flavanones in honeybush 

tea might thus very well be responsible for the bitter taste.  It is quite interesting that hesperidin correlated 

significantly to bitter taste as this specific compound has been reported as tasteless by Ley (2008).   

The moderate significant correlation between bitter taste and the xanthone, mangiferin (r = 0.740), 

indicates that this specific polyphenolic compound might be responsible for bitter taste in honeybush 

infusions.  Cyclopia genistoides, the species with the highest mangiferin content, was shown to be 

significantly more bitter compared to the other Cyclopia species (Chapter 3).  It is also possible that certain 

compounds, such as eriodictyol, might act as taste modulators.  Hesperetin have previously been identified 

as a sweet enhancing flavanone whereas eriodictyol have been identified as a bitter masking compound 

(Reichelt et al., 2010a, b).  

It is also possible that the bitter taste could be due to the specific amino acids present as it is known 

that certain amino acids (in the L-form) such as leucine, phenylalanine, tryptophan and tyrosine have a bitter 

taste (Solms, 1969).  As previously mentioned, a general trend could be identified; all those compositional 

parameters strongly correlating to bitter taste correlates negatively to sweet taste.  It is known that slight 

changes to the structure of many sweet and bitter tasting compounds can cause a change in their taste 

quality from sweet to bitter and vice versa (Jackson, 2009).  For example; the amino acids previously 

mentioned to have a biter taste have a sweet taste in its D-form (Solms, 1969). 

There was no strong correlation between astringency and the compositional parameters.  The weak, 

but significant correlations between astringency and the SS (r = 0.337), TP (r = 0.278), mangiferin (r = 0.392) 

and isomangiferin (r = 0.384) content respectively indicate that these compositional parameters might play a 

role in the mouthfeel of honeybush infusions.  The weak correlations could perhaps be due to the fact that 

there was not a lot of variation between the astringency of the honeybush infusions analysed or it is possible 

that the panel could have confused astringency for bitterness which according to Lea & Arnold (1973) often 

happens.  It might also be an indication that the chemical parameters considered in this study do not 

represent the compounds responsible for the subtle astringency of honeybush.  Whether a specific 

compound exhibit astringency or not, depends on the structural characteristics of the compound.  In general 

astringent polyphenols are intermediately sized with molecular weights of 500-3000 Da (Bakker, 1998) but 

smaller compounds, such as flavan-3-ol monomers, dimers and trimers, have also been shown to elicit 

astringency (Naish et al., 1993; Peleg et al., 1998).  Scharbert et al. (2004) reported that astringency in black 

tea (Camellia sinensis) was due to the presence of a series of flavonol glycosides and not high molecular 

mass polyphenolic compounds.  McManus et al. (1981) proposed that for a phenolic compound to elicit an 

astringent sensation it must possess two adjacent hydroxyl groups, a structural requirement fulfilled by the 
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xanthones.  However, eriocitrin, which also possess two adjacent hydroxyl groups, did not significantly 

correlate with astringency, nor did compound A (tentatively as the flavone scolymoside) which also possess 

two adjacent hydroxyl groups.  The presence of flavan-3-ol epigallocatechingallate (EGCG) which has 

previously identified in unfermented C. subternata (Kamara et al., 2004) contributes to the astringency in 

black tea (Camellia sinensis) (Scharbert et al., 2004; Scharbert & Hofmann,2005).  However, no EGCG was 

detected in the infusions of fermented C. subternata.  

It is known that honeybush tea has a low tannin content (Greenish, 1881; Marloth, 1925; Terblanche, 

1982) and thus the very low average score obtained by descriptive analysis for astringency is not 

unexpected.  It is possible that the quantification of the tannin content could reveal more insight into the 

astringency of honeybush tea but the levels were so low in the honeybush infusions used for this study that it 

was unquantifiable by the MCP tannin assay (unpublished results).  This assay was developed for red wine 

analysis (Mercurio et al., 2007).  By using another method of tannin quantification it might be possible to 

precipitate and quantify those compounds associated with astringency.  Koch (2011) found no correlation 

between the astringency of rooibos (Asphalatuslinearis) and the tannin content as determined using the 

MCP assay.   

Based on the analysis used during this study the only conclusion in terms of taste which can be 

made is that bitterness might be caused by the xanthone, mangiferin, and that a relationship between the 

xanthones and astringency exist.  The sour taste and more importantly the sweet taste of honeybush tea 

could not be explained by the phenolic composition of the infusions and further analysis of the chemical 

composition of honeybush infusions would be required in order to identify the compounds responsible.  

 

6. CONCLUSION 

 

Quantification of the levels of soluble solids, total polyphenol, absorbance as indication of colour and nine 

polyphenolic compounds in infusions of different batches of six Cyclopia species revealed that large variation 

exist within and between the different Cyclopia species.  This large variation between the species could be 

due to many different factors, such as different localities, climates, soil conditions, survival strategies, the age 

of plant/regrowth, the presence of flowers/pods, the leaf-to-stem ratio and different fermentation 

temperature/time combinations used during processing.  Mangiferin, isomangiferin, hesperidin and 

compound C were the only polyphenolic compound detected in all six Cyclopia species whereas eriocitrin, 

narirutin, compound A, B and C was only detected in some of the Cyclopia species.  Cyclopia genistoides 

had the highest content of the xanthones whereas both C. genistoides and C. maculata had the highest 

hesperidin content.  These two species would thus be ideal for the production of extracts containing high 

levels of mangiferin, isomangiferin and hesperidin.   

Large variation in the composition of honeybush tea samples reflected large variation in the sensory 

quality of the herbal infusions, especially in terms of taste and mouthfeel.  The correlation coefficients 

indicated that bitter taste was related to the TP content as well as the mangiferin, isomangiferin, compound 

C and hesperidin content.  Unfortunately, it is these three polyphenols (mangiferin, isomangiferin and 

hesperidin) with their unique biological activities which are responsible for the many health benefits 

associated with honeybush tea.  Not surprisingly, C. genistoides, a species identified as bitter (Chapter 3), 

had the highest mean SS, TP, mangiferin and isomangiferin contents as well as the highest mean AUC 

value.  Additionally, C. genistoides also contained high concentrations of hesperidin and compound C.  
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Based on the high levels of mangiferin in C. genistoides and the strong significant correlation between 

mangiferin and bitter taste it appeared as if this compound might in fact be responsible for the bitter taste 

associated with this species.  Plant improvement studies are currently focussing on selections based on 

phytochemical content.  This could cause problems with regards to the sensory quality of the tea if the taste 

characteristics of the specific compounds are not taken into account.   

No specific compound could be linked to the sweet taste of the infusions, however, sweetness was 

significantly negatively correlated to all components associated with bitterness.  Astringency seemed to be 

caused by the xanthones, possibly due to the presence of two adjacent hydroxyl groups.  It is possible that 

the tannin content may also play a role in astringency, however, the tannin content was unquantifiable by the 

MCP tannin assay. The effect certain taste modulating compounds, such as hesperetin and eriodictyol, could 

have on the taste of honeybush infusions should also be kept in mind.  Additional research is needed to 

confirm the effect specific polyphenolic compounds have on the taste and mouthfeel of honeybush infusions.  

The impact of other components present in honeybush, such as amino acids, polysaccharides, volatile 

components and the interaction between these components, and their influence on the flavour should be 

considered in future research in order to obtain a more comprehensive picture of the effect the chemical 

composition has on the flavour of honeybush tea. 
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1. ABSTRACT 

 

The effect of fermentation temperature (80°C and 90°C) and time (8 h, 16 h, 24 h and 32 h) on the sensory 

characteristics of infusions of honeybush was investigated in order to establish the optimum fermentation 

conditions.  The effect of fermentation conditions on the polyphenolic composition and the effect these 

changes have on the taste and mouthfeel properties of honeybush tea were determined.  This was achieved 

by examining the changes in the soluble solids and total polyphenol content, instrumental colour and the 

concentration of specific polyphenolic compounds, such as mangiferin, isomangiferin and hesperidin of the 

infusions.  Fermentation resulted in an increase (positive sensory attributes) and decrease (negative sensory 

attributes) of sensory attributes rather than the formation of new sensory attributes.  In order to produce 

honeybush tea with an optimal sensory profile a fermentation period of 80°C/24 or 90°C/16 h is required for 

C. genistoides, C. subternata and C. maculata.  Fermenting C. genistoides at 90°C would result in a 

honeybush infusion with slightly less rose geranium notes.  Cyclopia subternata can be fermented at either 

80°C or 90°C, depending on whether a floral or apricot jam tea is desired.  C. maculata required a 

fermentation temperature of 80°C as fermentation at 90°C results in an increase of negative sensory 

attributes (hay/dried grass aroma and flavour and green grass aroma).  A fermentation time period of 24 h 

are required for C. maculata in order to effectively reduce the intensity of the negative sensory attributes 

Fermentation reduced the soluble solids content, total polyphenol content and the concentration of the 

polyphenolic compounds.  Absorbance, as a measure of colour, decreased with increasing fermentation 

temperature and time, reflecting the change in the polyphenolic composition.  Changes in the taste and 

mouthfeel of honeybush tea could be attributed to changes in polyphenolic composition caused by high 

temperature oxidation.  A significant correlation between the polyphenolic compounds, specifically the 

xanthones, mangiferin and isomangiferin, and bitter taste existed in C. genistoides whereas these 

compounds appeared to be correlated to astringency in C. subternata.  The concentration of these 

compounds appear to be important as C. subternata contains a fraction of that present in C. genistoides. 

Cyclopia maculata on the other hand revealed a relationship between astringency and hesperetin.    

 

2. INTRODUCTION 

 

Chemical oxidation, more commonly referred to as “fermentation”, is responsible for the characteristic dark 

brown colour and the sweet, honeylike flavour of honeybush tea (Du Toit & Joubert, 1998a).  Traditionally, 

fermentation heaps (Marloth, 1909; Marloth, 1925) or baking ovens (Hofmeyer & Phillips, 1922) were used 

for fermentation, followed by sun-drying (Du Toit et al., 1998).  These traditional processing methods did not 

allow for control of the processing parameters and problems with mould and bacterial growth, as well as 

under- and unfermented tea resulted in honeybush tea of poor quality (Du Toit & Joubert, 1998a).  More than 

a decade ago these challenges were addressed by Du Toit and Joubert (1999) and elevated temperatures (> 

60°C) were introduced in order to eliminate microbial contaminants (Du Toit et al., 1999) and to produce tea 

of consistent high quality.  Rotation drums for fermentation and drying is used in industry (Joubert et al., 

2011). 

Du Toit and Joubert (1999) investigated the effect of different fermentation temperature and time 

combinations for C. intermedia and C. buxifolia (previously classified as C. maculata) (Schutte, 1997) 

showing that the development of the optimum characteristic sweet, honeylike flavour, with no grassy 
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undertones, depended on the fermentation-time combinations, with higher temperatures requiring shorter 

times.  Honeybush fermented at 60°C, 70°C and 80°C was still under-fermented after 24-36 h and 

possessed an unpleasant grassy flavour whereas fermentation for longer than 36 h at 90°C resulted in a 

burnt flavour.  The changes in sensory properties with fermentation were accompanied by a decrease in the 

levels of soluble solids, total polyphenol and individual polyphenolic compounds such as mangiferin, 

isomangiferin and hesperidin (Du Toit & Joubert, 1999; Joubert et al., 2008). 

Fermentation at 70°C for 60 h and 90°C for 36 h was selected as the optimum fermentation 

conditions for these two Cyclopia species.  Currently industry employs fermentation conditions ranging from 

70°C/60 h for C. intermedia and 80-85°C/18-24 h for other Cyclopia species such as C. genistoides and C. 

subternata (Joubert et al., 2011), whereas the Agricultural Research Council (ARC, Infruitec-Nietvoorbij, 

Stellenbosch, South Africa) ferments honeybush, for research purposes, at 90°C/16 h (E. Joubert, ARC 

Infruitec-Nietvoorbij, Stellenbosch, South Africa, 2010, personal communication). 

Until recently, exports consisted mainly of C. intermedia, but as the demand for honeybush tea 

increased, both locally and internationally, the focus, due to necessity, shifted to other Cyclopia species 

(Joubert et al., 2011).  The fear of over-exploitation of the natural Cyclopia populations also played a role in 

the establishment of commercial plantations to lessen the pressure on the natural Cyclopia populations (De 

Lange & von Mollendorff, 2006).  Currently, C. intermedia, C. genistoides and C. subternata are the three 

main species being utilized commercially (Joubert et al., 2011).  The potential to cultivate C. longifolia, C. 

sessiliflora and C. maculata is currently under investigation.  It has become necessary to re-evaluate the 

fermentation temperature-time combination used in terms of sensory properties, chemical composition and 

extract colour of honeybush infusions in order to produce honeybush tea of optimum quality.  

The objective of this study was thus to determine the effect of different fermentation temperature-

time combinations on the sensory characteristics of three Cyclopia species (C. genistoides, C. subternata 

and C. maculata) and, thereby, to establish optimum fermentation conditions for each.  Changes in phenolic 

composition were also determined in order to establish whether certain changes in the composition could be 

linked to changes in taste and mouthfeel attributes of the honeybush infusions.  

 

3. MATERIALS AND METHODS 

 

3.1. Preparation of fermented material 

 

Three batches plant material of each of the Cyclopia species, C. genistoides, C. subternata and C. maculata, 

were harvested from different locations in the Western Cape Province of South Africa during 2010 and 2011 

(Table 1).  More than one plant per species was harvested and pooled to form a batch.  The plants were 

harvested by removing two thirds of the shoot lengths.  The shoots from each batch (±13 kg) were cut to 2-3 

mm lengths using a mechanised fodder cutter, divided into eight parts (1.5 kg each, one for each 

temperature/time combination) and placed in stainless-steel containers.  Deionised water (250 mL) was 

added to the shredded plant material and thoroughly mixed before sealing the containers with aluminium foil.  

The samples were placed in preheated CAL 3200 temperature controlled laboratory ovens (CAL Controls 

Ltd., UK) at 80 and 90°C.  Every 8 h (8 h, 16 h, 24 h and 32 h) two containers (one from each oven) were 

removed and dried by spreading the contents onto four 30 mesh stainless steel drying racks and drying it in 

a temperature-controlled dehydration tunnel (Continental Fan Works, Parrow, South Africa) at 40°C for 6 h to 
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a moisture content of less than 10%.  The dried tea was sieved (200 g/30 s at 90 rpm) using a mini-sifter 

(SMC, Cape Town) and the <12>40 mesh fraction collected.  The fractions were stored in sealed glass jars 

at room temperature until needed.  The experimental design can be viewed in Table 2 and consists of eight 

treatments and three blocks for each of the three Cyclopia species.  Each block represents a 

temperature/time combination.  Each sample was analysed in triplicate.     

 

3. 2. Preparation of infusions 

 

The infusions of the samples for descriptive analysis and chemical/instrumental analysis were prepared as 

described in Chapter 3.   

 

3.3. Descriptive analysis 

 

Descriptive analysis was conducted as described in Chapter 3.  For this part of the study additional twelve 

one-hour training sessions were introduced (four per species) in order to select relevant sensory attributes 

(positive and negative) for each species (Table 3) from the sensory wheel.  Nine judges rated the intensity of 

the selected aroma, flavour, taste and mouthfeel attributes for each of the samples.  Each sample was 

analysed in triplicate on the same day and Compusense® five (Compusnse, Guelph, Canada) were used to 

capture the data 

 

Table 1 Sample information for each Cyclopia species 

Specie Batch Harvesting date Area (Farm) Source 

C. genistoides a 24.11.2010 Bredasdorp (Toekomst) Cultivated 

 

b 01.12.2010 Pearly Beach (Koksrivier) Cultivated 

 

c 29.11.2010 Pearly Beach (Koksrivier) Cultivated 

C. subternata a 09.12.2010 Stellenbosch (Helderfontein) Cultivated 

 

b 18.01.2011 Barrydale (Kanetberg) Cultivated 

 

c 07.02.2011 Napier (Tolbos) Cultivated 

C. maculata a 03.05.2010 Riviersonderend (Boskloof) Wild 

 

b 28.06.2010 Riviersonderend (Boskloof) Wild 

  c 15.11.2010 Riversdale (Romansrivier) Wild 

 

Table 2 Illustration of the experimental design for fermentation-temperature combinations used for each of 

the Cyclopia species 

Time 8 h 16 h 24 h 32 h 

Temperature 80°C 90°C 80°C 90°C 80°C 90°C 80°C 90°C 

Batch a 1 2 3 4 5 6 7 8 

Batch b 1 2 3 4 5 6 7 8 

Batch c 1 2 3 4 5 6 7 8 
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3.4. Chemicals 

 

The chemicals and reagents required for this study are identical to those listed in Chapter 4.  Acetic acid (2 

%) (Fluka, Sigma-Aldrich, Steinheim, Germany) was used as HPLC mobile phase B instead of formic acid 

(0.1%) to improve quantification of the xanthones in C. subternata (De Beer & Joubert, 2010). 

  

3.5. Chemical/Instrumental analyses 

 

All chemical and instrumental analyses were carried out as described in Chapter 4.   

 

3.6. Data analysis 

 

The sensory and chemical/instrumental data were subjected to analysis of variance (ANOVA) using SAS® 

software (Version 9.2, SAS Institute Inc, Carry, USA).  The Shapiro-Wilk test was used to test for non-

normality of the residuals (Shapiro & Wilk, 1965) and in the event of significant non-normality (p ≤ 0.05) 

outliers were identified and removed until the data were normally distributed.  The student‟s t-least significant 

difference (LSD) was calculated at the 5% significance level to compare treatment means.  Principal 

component analysis (PCA) was performed using XLStat (Version 7.5.2, Addinosoft, New York, USA) to 

visualise the relationship between the samples and their attributes.  

 

Table 3 Selected sensory attributes for C. genistoides, C. subternata and C. maculata 

Species Cyclopia genistoides Cyclopia subternata Cyclopia maculata 

Positive attributes 

Fynbos floral, Rose 

geranium, Lemon, 

Apricot jam, Plant-like, 

Woody, Fruity sweet, 

Boiled syrup, Fynbos 

sweet, Spicy 

Fynbos floral, Rose 

Geranium, 

Rose/Perfume, apricot 

jam, Cherry essence, 

Plant-like, Woody, 

Rooibos woody, Fruity 

sweet, Caramel, Fynbos 

sweet, Spicy, Walnut 

Fynbos floral, Rose 

Geranium, 

Rose/Perfume, Plant-

like, Woody, Pine, Fruity 

sweet, Boiled syrup, 

Fynbos sweet, Spicy, 

Walnut 

Negative attributes 

Dusty, Medicinal, Burnt 

caramel, Rotting plant 

water, Hay/Dried grass, 

Green grass, Cooked 

vegetables 

Dusty, Burnt caramel, 

Rotting plant water, 

Hay/Dried grass, Green 

grass, Cooked 

vegetables, Seaweed 

Dusty, Burnt caramel, 

Rotting plant water, 

Hay/Dried grass, Green 

grass, Cooked 

vegetables 

Taste and mouthfeel 
Sweet, Sour, Bitter, 

Astringent 

Sweet, Sour, Bitter, 

Astringent 

Sweet, Sour, Bitter, 

Astringent 

*All attributes were analysed as aromas and flavours except for fruity sweet, boiled syrup, caramel and 

fynbos sweet which were only evaluated as aromas. 
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4. RESULTS 

 

According to statistical terminology a main effect is the effect of one independent variable on the dependent 

variable (Rutherford, 2001).  In this study it refers to the effect of temperature or time on a sensory attribute 

or a chemical/instrumental parameter.  If there was significant statistical interaction (p ≤ 0.05) between 

temperature and time the main effects could not be interpreted, and instead the interactions were 

interpreted.  An interaction occurs when the effect of one independent variable on the dependent variable 

changes, depending on the level of another independent variable (Rutherford, 2001), for example, the effect 

of the fermentation temperature on a specific sensory attribute or chemical/instrumental parameter was 

influenced by the fermentation time.  The F- and p-values for each temperature-time combination of each 

sensory attribute and chemical/instrumental parameter can be viewed in Addendum F and Addendum G, 

respectively.  The main effects will be discussed first, followed by the interactions.  Only sensory attributes 

with an average intensity of more than 10 (positive sensory attributes) and more than five (negative sensory 

attributes) are included in the discussion.  

 

4.1. Effect of fermentation temperature and time on sensory attributes 

 

Cyclopia genistoides 

 

The main effects of four sensory attributes, rose geranium (Fig.1), fynbos floral, and fynbos sweet aroma, as 

well as sweet taste (Fig. 2), could be interpreted.  Only fermentation temperature had a significant (p ≤ 0.05) 

effect on the rose geranium aroma of C. genistoides.  Tea fermented at 80°C had a significantly (p ≤ 0.05) 

stronger rose geranium aroma compared to tea fermented at 90°C, but the difference in the average 

intensity is only five.  Although the average intensity has doubled, at this low intensity the difference would 

hardly be noticeable.  The rose geranium aroma was also influenced by the fermentation time (Fig. 2a).  The 

average intensity of the rose geranium aroma increased significantly (p ≤ 0.05) as the fermentation time 

increased from 8 h to 24 h.  On the other hand, fynbos floral (Fig. 2b) and fynbos sweet aroma (Fig. 2c), as 

well as sweet taste (Fig. 2d) increased significantly (p ≤ 0.05) as the fermentation time increased from 8 h to 

16 h, but after 16 h of fermentation there was no significant (p > 0.05) difference in the average intensities of 

these attributes.  Fynbos floral and fynbos sweet aroma are considered important aroma attributes, as both 

have average intensity attribute values higher than 30, even after 8 h.  Furthermore, the difference between 

the lowest average intensity and highest average intensity for these two attributes are approximately 10 (out 

of 100).  

The main effects for apricot jam, plantlike and fruity sweet aroma (Fig. 3), fynbos floral and plantlike 

flavour, bitter taste and astringency (Fig. 4) and hay/dried grass and cooked vegetables aroma (Fig. 5) could 

not be interpreted as there was significant (p ≤ 0.05) interaction between fermentation temperature and time 

for these sensory attributes.  The apricot jam aroma average intensity was not significantly (p > 0.05) 

affected during fermentation, however, the highest average intensity was obtained at 90°C/24 h and the 

lowest at 80°C/32 h. (Fig. 3a).  The average intensity of plantlike aroma was significantly (p ≤ 0.05) higher in 

C. genistoides fermented at 80°C/8 h compared to C. genistoides fermented at 90°C/8h (Fig. 3b).  The 

average intensity of fruity sweet aroma remained relatively stable throughout fermentation, but similar to 
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apricot jam aroma, the highest average intensity was obtained at 90°C/24 h of fermentation (Fig. 3c).  The 

average intensity for fynbos floral (Fig. 4a) and plantlike flavour (Fig. 4b) was significantly (p ≤ 0.05) lower 

and higher, respectively, in C. genistoides fermented at 80°C/8 h compared to all other temperature-time 

combinations.  The average intensity of bitter taste (Fig. 4c) decreased at 80°C as the fermentation time 

increased from 8 h to 24 h, whereas, at 90°C the average intensity only decreased significantly (p ≤ 0.05) 

between 8 h and 16 h.  The decrease in the average intensity of bitter taste at 80°C was substantial 

(approximately 15 (out of 100).  Bitter taste was less intense at 90°C at 8 h and 16 h fermentation time.  

Special attention should be given to this specific attribute when determining the optimum fermentation 

conditions for C. genistoides.  Astringency followed a similar pattern as bitter taste (Fig. 4d).  The average 

intensity of astringency decreased significantly (p ≤ 0.05) between 8 h and 16 h.  Furthermore, the 

temperature appears to play a role if the fermentation time is 16 h or less as C. genistoides fermented at 

80°C had significantly (p ≤ 0.05) higher average intensity values at 8 h and 16 h than at 90°C.  It appears as 

if most of the changes in terms of the flavour and taste attributes as well as astringency stabilised after 16 h.   

Interestingly, the average attribute intensity of hay/dried grass aroma (Fig. 5a) decreased with 

fermentation time at 80°C, whereas at 90°C the average attribute intensity remained stable.  However, a 

reduction of less than five (out of 100) in the average attribute intensity would hardly be noticeable and a 

fermentation temperature of 90°C should not be overlooked.  A similar trend was observed for cooked 

vegetables aroma (Fig. 5b).  The first 16 h of fermentation at 80°C resulted in a significant (p ≤ 0.05) 

reduction of cooked vegetables aroma, similar to a level present in honeybush fermented at 90°C.  

The effect of fermentation temperature and time combinations on the sensory properties of C. 

genistoides can be displayed by means of the PCA loadings plot and scores plot (Fig. 6) which reflect, 

respectively, the positioning of the sensory attributes and the positioning of the 24 honeybush samples 

analysed with respect to each other.  The loadings plot shows that the negative sensory attributes, except for 

dusty aroma and green grass flavour, are situated on the right hand side of the plot whereas the positive 

attributes are situated on the left hand side (Fig. 6a).  Cyclopia samples fermented at 80°C/8 h, 80°C/16 h 

and 90°C/8 h (Fig. 6b) are situated on the right side associating with the negative sensory attributes.  Longer 

fermentation times, with the exception of two samples, are situated on the left side of the plot associating 

with the positive sensory attributes.   

 

Cyclopia subternata 

 

The main effects of four sensory attributes, rose geranium (Fig. 7), fruity sweet and rotting plant water aroma 

as well as astringency (Fig. 8), could be interpreted.  Fermentation temperature had a significant (p ≤ 0.05) 

effect on the rose geranium aroma of C. subternata.  Tea fermented at 80°C had a significantly (p ≤ 0.05) 

stronger rose geranium aroma compared to tea fermented at 90°C.  The rose geranium aroma was also 

influenced by the fermentation time (Fig. 8a).  The average intensity of the rose geranium aroma increased 

significantly (p ≤ 0.05) as the fermentation time increased to 24 h.  The average intensities of fruity sweet 

aroma (Fig. 8b) increased significantly (p ≤ 0.05) as the fermentation time increased.  The first 16 h of 

fermentation resulted in a significant (p ≤ 0.05) reduction in rotting plant water aroma (Fig. 8c) and 

astringency (Fig. 8d).  Rose geranium is considered one of the important aroma attributes associated with C. 

subternata (Chapter 3), although the highest average intensity was less than 15 (out of 100). 
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The main effects for fynbos floral, apricot jam, plantlike and fynbos sweet aroma (Fig. 9), fynbos 

floral and plantlike flavour, sweet taste (Fig. 10) and burnt caramel and cooked vegetables aroma (Fig. 11), 

could not be interpreted as there was significant (p ≤ 0.05)  interaction between temperature and time for 

these sensory attributes.  The fynbos floral (Fig. 9a) and fynbos sweet aroma (Fig. 9b) increased significantly 

(p ≤ 0.05) as the fermentation time increased to 24 h at 80°C whereas at 90°C the aroma intensities for 

these aroma attributes remained unaffected (p > 0.05).  The reverse is true for apricot jam aroma (Fig. 9c).  

Apricot jam aroma increased significantly (p ≤ 0.05) with fermentation time at 90°C, whereas at 80°C the 

aroma intensities remained unaffected (p > 0.05).  Plantlike aroma (Fig. 9d) decreased substantially with 

fermentation time at 80°C, however, at 90°C plantlike aroma remained unaffected (p > 0.05).  Fynbos floral 

and fynbos sweet aroma attributes, similar to C. genistoides, can be considered important for aroma as the 

maximum average intensity of these attributes was more than 40 (out of 100).  

Fynbos floral flavour (Fig. 10a) followed the same trend as fynbos floral aroma.  Fynbos floral flavour 

increased significantly (p ≤ 0.05) with fermentation time at 80°C whereas at 90°C the flavour intensity 

remained unaffected (p > 0.05).  Fermentation at 80°C for 24 h resulted in a significant (p ≤ 0.05) reduction of 

the plantlike flavour aroma (Fig. 10b), to levels present in tea fermented at 90°C.  In the latter case, the 

plantlike flavour intensity remained unaffected (p > 0.05) by fermentation time.  The sweet taste (Fig. 10c) 

increased slightly, but significantly (p ≤ 0.05) at 80°C as the fermentation time increased.  At 90°C sweet 

taste fermentation time had no effect for the first 24 h (p > 0.05).  Fynbos floral are the most important flavour 

attribute to consider as the maximum average intensity of this attribute was 30 (out of 100).    

The first 8 h of fermentation resulted in a significant (p ≤ 0.05) reduction, to the level of intensity at 

90°C, of burnt caramel aroma (Fig. 11a) at 80°C.  Fermentation at 90°C had no effect on the intensity of 

burnt caramel aroma (p > 0.05).  In order to reduce the cooked vegetables aroma (Fig. 11b) a fermentation 

time of 24 h at 80°C was required.  It appears as if fermentation time plays a very important role in reducing 

the average intensities of the negative sensory attributes if C. subternata is fermented at 80°C.  On the other 

hand, a fermentation time had no effect at 90°C.   

The effect of fermentation temperature and time has on the sensory properties of C. subternata can 

be viewed in Fig. 12 which depicts the positioning of the sensory attributes and the positioning of the 24 

honeybush samples analysed with respect to each other.  The loadings plot (Fig. 12a) shows that the 

negative sensory attributes, except for dusty aroma and flavour and green grass flavour, are situated on the 

right side whereas the positive sensory attributes are situated on the left side.  The scores plot (Fig. 12b) 

reveals that C. subternata fermented for 8 h lies to the right side associating with the negative sensory 

attributes indicating that a fermentation of at least 16 h are required.  Also, a distinction can be made 

between C. subternata fermented at 80°C and 90°C.  Cyclopia subternata fermented at 90°C mostly lie at 

the bottom and those fermented at 80°C mostly lie at the top on the left side of the scores plot.  This 

indicates that if the fermentation temperature is increased to 90°C C. subternata tends to become more fruity 

sweet with apricot jam notes, whereas, fynbos sweet with floral notes are associated with C. subternata 

fermented at 80°C.  
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Cyclopia maculata 

 

The main effects of astringency, hay/dried grass aroma and flavour (Fig. 13) and fynbos floral and fynbos 

sweet aroma (Fig. 14) could be interpreted.  Fermentation temperature had a significant (p ≤ 0.05) effect on 

astringency (Fig. 13a), hay/dried grass aroma (Fig. 13b) and flavour (Fig. 13c).  These three sensory 

attributes were significantly (p ≤ 0.05) higher in tea fermented at 90°C.  Fynbos floral (Fig. 14a) and fynbos 

sweet aroma (Fig. 14b) were influenced by the fermentation time. Fynbos floral aroma increased significantly 

(p ≤ 0.05) as the fermentation time increased to 24 h.  The highest average intensity value for fynbos sweet 

aroma was obtained after 24 h of fermentation, however, it did not differ significantly (p > 0.05) from C. 

subternata fermented for 16 h. Fynbos floral and fynbos sweet aroma are both important aroma attributes as 

their maximum intensities was more than 40 (out of 100).   

 The main effects for fynbos floral flavour, sweet taste (Fig. 15) and rotting plant water, cooked 

vegetables and green grass aroma (Fig. 16) could not be interpreted as there was significant (p ≤ 0.05) 

interaction between temperature and time.  Fynbos floral flavour (Fig. 15a) remained relatively stable as the 

fermentation time increased, however, at 80°C/24 h the fynbos floral flavour was significantly (p ≤ 0.05) 

higher compared to 90°C/16h and 90°C/32 h.  The sweet taste (Fig. 15b) increased significantly (p ≤ 0.05) 

from 8 h to 24 h at 80°C whereas at 90°C the sweet taste decreased slightly from 8 h to 24 h.   

Rotting plant water aroma (Fig. 16a) decreased significantly (p ≤ 0.05) as the fermentation time 

increased from 8 to 24 h at 80°C, whereas at 90°C the aroma intensity remained unaffected (p > 0.05). The 

first 8 h of fermentation at 80°C resulted in a significant (p ≤ 0.05) reduction in cooked vegetables aroma to 

the same level than at 90°C (Fig. 16b).  At 90°C the average intensity of green grass aroma (Fig. 16c) 

increased significantly (p ≤ 0.05) with fermentation time, however, at 80°C a fermentation time of 24 h 

effectively reduced the green grass aroma compared to 8 h.   

The PCA loadings plot and scores plot (Fig. 17) which depict the positioning of the sensory attributes 

and the positioning of the C. maculata samples (n = 24) analysed with respect to each other, illustrate the 

relationship between the sensory attributes and fermentation temperature/time combinations.  From the 

loadings plot (Fig. 17a) it is clear that all the negative sensory attributes, except for dusty aroma, are situated 

in the top two quadrants.  It appears as if the different batches played larger role as all the samples produced 

from batch a are situated on the right side of the scores plot (Fig. 17b) and batch b and c are situated mostly 

on the left side of the plot.  However, a general trend can still be observed as the majority of the C. maculata 

fermented at 90°C are situated at the top end of the plot while the majority of the C. maculata fermented at 

80°C are located at the bottom of the plot.  Cyclopia maculata fermented at 80°C thus appears to associate 

with a sweet taste and floral attributes whereas at 90°C it tend to associate with the negative sensory 

attributes and astringency. 
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Figure 1 Effect of fermentation temperature (80 vs. 90°C) on the rose geranium aroma of C. genistoides.  The letter “A” in front of the attribute name refers to aroma. 

 

 

Figure 2 Effect of fermentation time (8, 16, 24 and 32 h) on the a) rose geranium aroma, b) fynbos floral aroma, c) fynbos sweet aroma and d) sweet taste of C. 

genistoides.  The letters “A” and “T” in front of the attribute name refer to aroma and taste, respectively.  
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Figure 3 Average aroma intensity values of a) apricot jam  aroma b) plantlike aroma and c) fruity sweet aroma for honeybush (C. genistoides) fermented at 80°C 

and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical letters referring to 

honeybush fermented at 80°C are in bold.  The letter “A” in front of the attribute name refers to aroma. 

Figure 4 Average flavour and taste intensity values of a) fynbos floral flavour, b) plantlike flavour, c) bitter taste and d) astringency for honeybush (C. genistoides) 

fermented at 80°C and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical 

letters referring to honeybush fermented at 80°C are in bold.  The letters “F” and “T” in front of the attribute name refer to flavour and taste, respectively. 
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Figure 5 Average negative aroma intensity values of a) hay/dried grass aroma and b) cooked vegetables aroma for honeybush (C. genistoides) fermented at 80°C 

and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical letters referring to 

honeybush fermented at 80°C are in bold.  The letter “A” in front of the attribute name refers to aroma. 
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Figure 6 a) PCA loadings plot showing the positioning of both positive and negative sensory attributes for C. genistoides.  The letters “A”, “F” and “T” in front of the 

attributes refer to aroma, flavour and taste attributes, respectively.  Rose = Rose geranium, Burnt = Burnt caramel, Cooked veg = Cooked vegetables, Rotting = 

Rotting plant water, SS = Soluble solids, TP = Total polyphenol, AUC (370 – 570 nm) = Area under curve, Mg = Mangiferin, IsoMg = Isomangiferin, Comp C = 

Component C, Comp D = Component D.  b) PCA scores plot showing the positioning of the 24 honeybush (C. genistoides) samples.  The letters “a”, “b” and “c” refer 

to the specific batch. 
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Figure 7 Effect of fermentation temperature (80 vs. 90°C) on the rose geranium aroma of C. subternata.  The letter “A” in front of the attribute name refers to aroma. 

 

 

Figure 8 Effect of fermentation time (8, 16, 24 and 32 h) on the a) rose geranium aroma, b) fruity sweet aroma, c) rotting plant water aroma and d) astringency of C. 

subternata.  The letter “A” in front of the attribute name refers to aroma. 
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Figure 9 Average aroma intensity values of a) fynbos floral aroma, b) fynbos sweet aroma, c) apricot jam aroma and d) plantlike aroma for honeybush (C. 

subternata) fermented at 80°C and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the 

alphabetical letters referring to honeybush fermented at 80°C are in bold.  The letter “A” in front of the attribute name refers to aroma. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Average flavour and taste intensity values for a) fynbos floral flavour, b) plantlike flavour and c) sweet taste for honeybush (C. subternata) fermented at 

80°C and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical letters 

referring to honeybush fermented at 80°C are in bold.  The letters “F” and “T” in front of the attribute name refer to flavour and taste, respectively. 
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Figure 11 Average negative aroma intensity values of a) burnt caramel and b) cooked vegetables for honeybush (C. subternata) fermented at 80°C and 90°C for 8 

h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical letters referring to honeybush 

fermented at 80°C are in bold.  The letter “A” in front of the attribute name refers to aroma. 
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Figure 12 a) PCA loadings plot showing the positioning of both positive and negative sensory attributes of C. subternata.  The letters “A”, “F” and “T” in front of the 

attributes refer to aroma, flavour and taste attributes, respectively. Rose = Rose geranium, Burnt = Burnt caramel, Hay = Hay/Dried grass, Cooked veg = Cooked 

vegetables, Rotting = Rotting plant water, SS = Soluble solids, TP = Total polyphenol, AUC (370 – 570 nm) = Area under curve, Mg = Mangiferin, IsoMg = 

Isomangiferin, ErioTrin = Eriocitrin, Hd = Hesperidin, Comp A = Component A, Comp B = Component B, Comp C = Component C. b) PCA scores plot showing the 

positioning of the 24 honeybush (C. subternata) samples.  The letters “a”, “b” and “c” refer to the specific batch.  

a) b) 
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Figure 13 Effect of fermentation temperature (80 vs. 90°C) on the a) astringency, b) hay/dried grass aroma and c) hay/dried grass flavour of C. maculata.  The 

letters “A” and “F” in front of the attribute name refer to aroma and flavour, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Effect of fermentation time (8, 16, 24 and 32 h) on the a) fynbos floral aroma and b) fynbos sweet aroma of C. maculata.  The letter “A” in front of the 

attribute name refers to aroma. 
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Figure 15 Average attribute intensity values of a) fynbos floral flavour and b) sweet taste for honeybush (C. maculata) fermented at 80°C and 90°C for 8 h, 16 h, 24 

h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the alphabetical letters referring to honeybush fermented at 

80°C are in bold.  The letters “F” and “T” in front of the attribute name refer to flavour and taste, respectively. 

 

 

 

 

 

 

 

 

 

Figure 16 Average negative attribute intensity values of a) rotting plant water aroma, b) cooked vegetables aroma and c) green grass aroma for honeybush (C. 

maculata) fermented at 80°C and 90°C for 8 h, 16 h, 24 h and 32 h.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05) and the 

alphabetical letters referring to honeybush fermented at 80°C are in bold.  The letter “A” and in front of the attribute name refers to aroma. 

a) b) 

a) b) c) 
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Figure 17 a) PCA loadings plot showing the positioning of both positive and negative sensory attributes for C. maculata.  The letters “A”, “F” and “T” in front of the 

attributes refer to aroma, flavour and taste attributes, respectively. Rose = Rose geranium, Rotting = Rotting plant water, Hay = Hay/Dried grass, Cooked veg = 

Cooked vegetables, Burnt = Burnt caramel, SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = Isomangiferin, Comp C = Component C, Hd = 

Hesperidin, Erio = Eriodictyol,  ErioTrin = Eriocitrin, Ht = Hesperetin , AUC (370 – 570 nm) = Area under curve, AUCnorm = Area under curve normalized. b) PCA 

scores plot showing the positioning of the 24 honeybush (C. maculata) samples.  The letters “a”, “b” and “c” refer to the specific batch. 

a) b) 
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4.2. Effect of fermentation temperature and time on composition and colour 

 

Cyclopia genistoides 

 

The effect of fermentation temperature (80°C vs. 90°C) on the composition of C. genistoides are summarised 

in Table 4 whereas the effect of fermentation time (8 h, 16 h, 24 h and 32 h) are summarised in Table 5.  The 

two fermentation temperatures used to ferment C. genistoides differed significantly (p ≤ 0.05) with regard to 

its effect on the SS, mangiferin and isomangiferin contents and instrumental colour with 80°C being less 

detrimental than 90°C.  The TP, compound C and compound D contents were not influenced by fermentation 

temperature.  On the other hand, the TP and individual polyphenolic compounds contents, as well as 

instrumental colour decreased as the fermentation time of C. genistoides increased.  The SS content was 

the lowest at 24 h.  The curves for absorbance and normalised absorbance can be viewed in Addendum H.   

 

Cyclopia subternata 

 

The effect of fermentation temperature (80°C vs. 90°C) on the composition of C. subternata are summarised 

in Table 6 whereas the effect of fermentation time (8 h, 16 h, 24 h and 32 h) are summarised in Table 7.  The 

SS, TP, isomangiferin, compound C and compound B contents, as well as instrumental colour of C. 

subternata infusions, were significantly (p ≤ 0.05) higher when the tea was fermented at 80°C compared to 

90°C.  There was no difference between the two fermentation temperatures with regards to the concentration 

of mangiferin, compound A, eriocitrin and hesperidin.  The content of TP and individual polyphenolic 

compounds decreased significantly (p ≤ 0.05) as the fermentation period of C. subternata increased.  The 

same effect was also observed for instrumental colour.   

 

Cyclopia maculata 

 

The effect of fermentation temperature (80°C vs. 90°C) on the composition of C. maculata are summarised 

in Table 8 whereas the effect of fermentation time (8 h, 16 h, 24 h and 32 h) are summarised in Table 9.  

Fermentation temperature had no significant effect on any of the parameters.  Fermentation time, however, 

played a significant role (p ≤ 0.05), with the content of several of the individual phenolic compounds, i.e. 

mangiferin, isomangiferin, hesperidin and eriocitrin content decreasing.  Eriodictyol increased significantly (p 

≤ 0.05) as the fermentation time increased from 8 h to 16 h.  Increased fermentation time significantly (p ≤ 

0.05) reduced the TP content.  SS content showed no clear pattern, whilst instrumental colour were not 

significantly affected (p > 0.05). 

 

4.3. Relationship between composition and taste and mouthfeel 

 

PCA plots are commonly used to demonstrate whether correlations exist between certain sensory attributes 

and the chemical composition of a product.  It is often more useful to examine the correlation coefficients  as 

certain groupings may arise from a general tendency of certain attributes to change in a similar way over a 

large group of samples (Wolters & Alchurch, 1994; Talavera-Bianchi et al., 2010).  For this reason, the PCA 

plots and the pearson correlations coefficients will be considered.  The focus will fall on the taste and 
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mouthfeel attributes as these are the sensory attributes influenced by the polyphenolic composition.  Only 

significant (p ≤ 0.05) correlations, albeit positive or negative, will be discussed.   

  

Cyclopia genistoides 

 

Examining the PCA loadings plot (Fig. 6) reveals that all of the chemical/instrumental parameters are 

situated in the same quadrant (top) of the loadings plot as the negative taste and mouthfeel attributes, i.e. 

sour and bitter taste and astringency.  Sweet taste, on the other hand, is situated directly opposite all of the 

chemical/instrumental parameters.  In order to determine whether certain compositional parameters, 

specifically the polyphenolic compounds, influenced the taste and mouthfeel of C. genistoides the correlation 

coefficients between the basic tastes and mouthfeel and chemical/instrumental parameters were compared 

(Table 10).  This revealed that sweet taste negatively correlated with all chemical/instrumental parameters 

whereas bitterness positively correlated with all the chemical/instrumental parameters (p ≤ 0.05).  Sour taste 

correlated significantly (p ≤ 0.05) with all the parameters, except for SS content.  Interestingly, there was no 

significant (p > 0.05) correlation between astringency and any of the chemical/instrumental parameters.   

 

Cyclopia subternata 

 

As for C. genistoides, the PCA loadings plot for C. subternata (Fig. 12) reveals that all the 

chemical/instrumental parameters are situated in the top right quadrant except eriocitrin.  Eriocitrin is situated 

in the bottom right quadrant along with sour and bitter taste, as well as astringency.  The correlation 

coefficients of the basic tastes and mouthfeel with the chemical/instrumental parameters of C. subternata are 

summarised in Table 11.  Sweet taste negatively correlated with all parameters (r varies between -0.461 to -

0.820), except eriocitrin and compound B (p ≤ 0.05).  Sour taste significantly correlated only with compound 

C (r = 0.478), whereas bitter taste significantly correlated with mangiferin (r = 0.456), compound A (r = 

0.560), compound C (r = 0.616) and hesperidin (r =0.495).  Astringency significantly (p ≤ 0.05) correlated 

with all parameters, except for eriocitrin.   

 

Cyclopia maculata 

 

All the chemical/instrumental parameters, except for hesperetin, are situated in the bottom, right quadrant of 

the PCA loadings plot (Fig. 17).  Hesperetin is located on the left hand side of the PCA loadings plot.  Only 

sour taste is located on the right side, whereas bitter and sweet taste as well as astringency are located on 

the left side of the PCA loadings plot.  The correlation coefficients of the basic taste and mouthfeel attributes 

with the chemical/instrumental parameters of C. maculata are shown in Table 12.  Only the SS content 

correlated significantly with sour taste (r = 0.447), whereas, all of the chemical/instrumental parameters, 

except for hesperetin, negatively correlated with astringency (p ≤ 0.05).  On the other hand, hesperetin 

positively correlated with astringency (r = 0.555).   
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Table 4 Effect of fermentation temperature (80 vs. 90°C) on the composition of C. genistoides infusions 

Temp 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L)  

Comp C 
(mg/L)  

Comp D 
(mg/L)  

AUC  

80 2471.2 a 469.7 a 130.29 a 54.21 a 18.1 a 5.63 a 93.95 a 

90 2303.2 b 433.83 a 106.62 b 46.8 b 15.7 a 4.07 a 84.17 b 

LSD 117.22 
 

36.25 
 

11.42 
 

4.45 
 

2.46 
 

2.14 
 

6.27  

Values in the same column with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp C = Component C, Comp D = Component D, AUC = Area under the curve (370-570 nm), LSD = Least significant difference. 

 

Table 5 Effect of fermentation time (8, 16, 24 and 32 h) on the composition of C. genistoides infusions 

Time 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L)  

Comp C 
(mg/L)  

Comp D 
(mg/L)  

AUC  

8 2497.45 a 490.36 a 153.71 a 61.53 a 22.32 a 7.45 a 97.291 a 

16 2373.1 ab 465.89 ab 121.12 b 51.55 b 16.56 b 5.75 ab 90.434 ab 

24 2207.71 b 429.1 b 99.51 c 42.97 c 14.64 b 3.23 b 82.625 b 

32 2470.46 a 421.72 b 99.47 c 45.97 bc 14.09 b 2.99 b 85.877 b 

LSD 165.77 
 

51.27 
 

16.15 
 

6.3 
 

3.48 
 

3.03 
 

8.8642  

Values in the same column with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp C = Component C, Comp D = Component D, AUC = Area under the curve (370-570 nm), LSD = Least significant difference. 
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Table 6 Effect of fermentation temperature (80 vs 90°C) on the composition and colour of C. subternata infusions 

Temp 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L) 

Comp A 
(mg/L) 

Comp C 
(mg/L) 

ErioTrin 
(mg/L) 

Comp B 
(mg/L) 

Hd 
(mg/L)  

AUC  

80 1664.61 a 245.09 a 4.41 a 5.16 a 3.76 a 2.92 a 6.54 a 4.24 a 3.17 a 34.57 a 

90 1527.73 b 205.14 b 2.01 a 3.47 b 3.51 a 2.00 b 5.89 a 2.79 b 3.01 a 28.03 b 

LSD 105.23 
 

30.55 
 

3.1 a 1.3 
 

0.4 
 

0.8 
 

0.8 
 

1.2 
 

0.3 
 

3.02  

Values in the same column with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp A = Component A, Comp C = Component C, ErioTrin = Eriocitrin, Comp B = Component B, Hd = Hesperidin, AUC = Area under the curve 

(370-570 nm), LSD = Least significant difference. 

 

 

Table 7 Effect of fermentation time (8, 16, 24 and 32 h) on the composition and colour of C. subternata infusions 

Time 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L)  

Comp A 
(mg/L)  

Comp C 
(mg/L)  

ErioTrin 
(mg/L)  

Comp B 
(mg/L)  

Hd 
(mg/L)  

AUC  

8 1672.91 a 266.05 a 6.48 a 6.14 a 4.36 a 4.10 a 7.18 a 4.99 a 3.77 a 34.79 a 

16 1622.41 ab 242.97 ab 3.20 ab 4.96 ab 3.81 b 2.65 b 6.52 ab 4.10 ab 3.24 b 32.90 ab 

24 1522.04 b 203.97 bc 1.47 b 3.26 bc 3.20 c 1.46 c 5.60 b 2.48 b 2.74 c 27.65 c 

32 1567.31 ab 187.47 c 1.15 b 2.91 c 3.19 c 1.62 bc 5.55 b 2.51 b 2.60 c 29.85 bc 

LSD 148.82 
 

43.21 
 

4.43 
 

1.88 
 

0.54 
 

1.18 
 

1.06 
 

1.70 
 

0.47 
 

4.28  

Values in the same column with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp A = Component A, Comp C = Component C, ErioTrin = Eriocitrin, Comp B = Component B, Hd = Hesperidin, AUC = Area under the curve(370-

570 nm), LSD = Least significant difference. 
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Table 8 Effect of fermentation temperature (80 vs 90°C) on the composition and colour of C. maculata infusions 

Temp 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L)  

Comp C 
(mg/L)  

Hd 
(mg/L)  

Erio 
(mg/L)  

ErioTrin 
(mg/L)  

Ht 
(mg/L)  

AUC  

80 1875.06 a 274.12 a 12.62 a 12.41 a 2.5 a 11.81 a 0.25 a 10.99 a 0.14 a 39.581 a 

90 1948.01 a 283.74 a 10.66 a 11.82 a 1.82 a 10.95 a 0.19 a 10.01 a 0.09 a 40.232 a 

LSD 118.99 
 

35.25 
 

3.59 
 

2.38 
 

0.93 
 

1.44 
 

0.07 
 

2.88 
 

0.06 
 

3.8511  

Values in the same row with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp C = Component C, Hd = Hesperidin, Erio = Eriodictyol,  ErioTrin = Eriocitrin, Ht = Hesperetin, AUC = Area under the curve (370-570 nm), LSD 

= Least significant difference. 

 

Table 9 Effect of fermentation time (8, 16, 24 and 32 h) on the composition and colour of C. maculata infusions 

Time 
SS 

(mg/L)  
TP 

(mg GAE/L)  
Mg 

(mg/L)  
IsoMg 
(mg/L)  

Comp C 
(mg/L) 

Hd 
(mg/L)  

Erio 
(mg/L)  

ErioTrin 
(mg/L)  

Ht 
(mg/L) 

 
AUC  

8 1884.10 ab 295.78 a 18.59 a 15.68 a 2.59 a 13.21 a 0.15 b 13.44 a 0.11 a 41.93 a 

16 1955.88 ab 309.36 a 13.57 a 14.02 a 2.76 a 12.73 a 0.26 a 11.48 ab 0.15 a 40.68 a 

24 1808.66 b 242.22 b 7.43 b 9.39 b 1.69 a 9.89 b 0.24 ab 8.57 b 0.13 a 37.76 a 

32 1997.50 a 268.35 b 6.98 b 9.36 b 1.58 a 9.69 b 0.24 ab 8.50 b 0.09 a 39.26 a 

LSD 168.27 
 

49.85 
 

5.07 
 

3.37 
 

1.32  2.03 
 

0.10 
 

4.07 
 

0.09  5.45  

Values in the same row with the same letters are significantly different (p ≤ 0.05).  SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = 

Isomangiferin, Comp C = Component C, Hd = Hesperidin, Erio = Eriodictyol, ErioTrin = Eriocitrin, Ht = Hesperetin, AUC = Area under the curve (370-570 nm), LSD = 

Least significant difference. 
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Table 10 Correlation coefficients for the taste and mouthfeel attributes and the chemical/instrumental variables of C. genistoides infusions 

Variables SS TP Mg IsoMg Comp C Comp D AUC 

TSweet -0.520* -0.668* -0.698* -0.639* -0.594* -0.495* -0.599* 

TSour 0.291 0.582* 0.673* 0.594* 0.712* 0.575* 0.638* 

TBitter 0.482* 0.416* 0.605* 0.543* 0.430* 0.488* 0.514* 

Astringent 0.288 0.153 0.299 0.228 0.040 0.174 0.258 

*Values marked with an asterix are significantly different from 0 with a significance level of p=0.05.  Values in bold are higher than ± 0.5.  SS = Soluble solids, TP = 

Total polyphenol, Mg = Mangiferin, IsoMg = Isomangiferin, Comp C = Component C, Comp D = Component D, AUC = Area under the curve (370-570 nm). 

 

Table 11 Correlation coefficients for the taste and mouthfeel attributes and the chemical/instrumental variables of C. subternata infusions 

Variables SS TP Mg IsoMg Comp A Comp C ErioTrin Comp B Hd AUC 

TSweet -0.518* -0.461* -0.727* -0.641* -0.591* -0.820* 0.164 -0.216 -0.614* -0.416* 

TSour 0.034 0.084 0.302 0.188 0.156 0.478* -0.075 0.089 0.069 -0.041 

TBitter 0.353 0.351 0.456* 0.387 0.560* 0.616* 0.076 0.301 0.495* 0.344 

Astringent 0.530* 0.742* 0.702* 0.663* 0.723* 0.786* 0.195 0.552* 0.459* 0.543* 

*Values marked with an asterix are significantly different from 0 with a significance level of p=0.05.  Values in bold are higher than ± 0.5.  SS = Soluble solids, TP = 

Total polyphenol, Mg = Mangiferin, IsoMg = Isomangiferin, Comp A = Component A, Comp C = Component C, ErioTrin = Eriocitrin, Comp B = Component B, Hd = 

Hesperidin, AUC = Area under the curve (370-570 nm). 

 

Table 12 Correlation coefficients for the taste and mouthfeel attributes and the chemical/instrumental variables for C. maculata infusions 

Variables SS TP Mg IsoMg Comp C Hd Erio ErioTrin Ht AUC 

TSweet -0.156 -0.104 0.018 -0.041 0.134 -0.124 -0.187 -0.047 0.293 -0.145 

TSour 0.447* 0.337 0.002 0.131 0.147 -0.029 0.317 0.183 -0.392 0.364 

TBitter -0.007 0.048 0.009 0.051 -0.065 -0.080 -0.048 -0.091 0.070 0.141 

Astringent -0.551* -0.582* -0.527* -0.616* -0.588* -0.574* -0.530* -0.659* 0.555* -0.567* 

*Values marked with an asterix are significantly different from 0 with a significance level of p=0.05.  Values in bold are higher than ± 0.5.  SS = Soluble solids, TP = 

Total polyphenol, Mg = Mangiferin, IsoMg = Isomangiferin, Comp C = Component C, Hd = Hesperidin, Erio = Eriodictyol,  ErioTrin = Eriocitrin, Ht = Hesperetin , AUC 

= Area under the curve (370-570 nm). 
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5. DISCUSSION 

 

High temperature chemical oxidation, more commonly referred to as “fermentation”, is responsible for the 

characteristic dark brown colour and the sweet, honeylike flavour of honeybush tea (Du Toit & Joubert, 

1998a).  In the present study it was demonstrated that no new sensory attributes developed during 

fermentation from 8 h to 32 h, but the average attribute intensity of the sensory attributes increased or 

decreased.  In general, the positive sensory attributes increased with fermentation time whereas the 

negative sensory attributes decreased.  It is possible that some of the sensory attributes intensities did not 

increase/decrease by fermentation, but that the perceived intensity changed due to the increase/decrease in 

the intensity of another attribute.  Furthermore, differences also existed between the different species.     

The characteristic sensory profile of honeybush tea was described in Chapter 3 as a combination of 

floral, sweet, fruity and plantlike flavours with a sweet taste and a slightly astringent mouthfeel. The most 

detrimental negative sensory attributes were shown to be hay/dried grass and burnt caramel aroma and 

flavour.  Cyclopia genistoides also had a problem with a bitter taste.  These attributes mentioned above 

should thus mainly be taken into account when determining the optimum fermentation conditions for the 

production of honeybush tea.  In order to produce honeybush tea (C. genistoides) with an optimal sensory 

profile a fermentation period of at least 16 h was required in order to increase the average attribute 

intensities of the positive sensory attributes and lower the average intensities of the negative sensory 

attributes to an acceptable level.  However, at 80°C/16 h bitter taste may still pose a problem and increasing 

the fermentation time to 24 h will result in a significant (p ≤ 0.05) reduction.  Although the hay/dried grass 

aroma remained stable at 90°C the highest average intensity value (six) was very low and would hardly be 

noticeable.  A fermentation temperature of 80°C and a fermentation time of 24 h would thus be 

recommended for C. genistoides.  Alternatively, a fermentation temperature of 90°C and a fermentation time 

of 16 h may be used, but will result in a honeybush infusion with less rose geranium notes as the rose 

geranium aroma was significantly (p ≤ 0.05) higher in C. genistoides fermented at 80°C.   

In terms of C. subternata a fermentation temperature of either 80°C or 90°C can be used, depending 

on whether a floral (fynbos floral and rose geranium) or apricot jam  honeybush tea is desired.  It is possible 

that the volatile components responsible for the floral notes are more sensitive to higher temperatures 

compared to those responsible for the apricot jam aroma.  Another possibility is that the significantly (p ≤ 

0.05) lower fynbos floral and rose geranium notes in C. subternata fermented at 90°C might cause the 

perceived intensity of the apricot jam aroma to be higher.  A fermentation time of at least 16 h is required to 

effectively reduce the rotting plant water aroma and astringency of C. subternata.  Similar to C. genistoides a 

fermentation period of 24 h would be recommended to effectively reduce/eliminate the negative sensory 

attributes and to increase the intensities of the positive sensory attributes.     

Cyclopia maculata requires a fermentation temperature of 80°C/24 h in order to effectively reduce 

the rotting plant water and green grass aroma.  Although both rotting plant water and cooked vegetables 

aroma can be reduced to an acceptable level after only 8 h of fermentation at 90°C, green grass aroma 

increases significantly (p ≤ 0.05) at this temperature.  This is quite interesting as Du Toit and Joubert (1998b) 

reported that a grassy aroma is associated with insufficiently fermented honeybush tea (C. buxifolia).  

Furthermore, Le Roux et al. (2008) and Cronje (2010) reported that the volatile compounds present in the 

highest concentrations in unfermented honeybush tea (C. genistoides) were associated with green aroma 
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attributes.  One would thus expect the grassy aroma to decrease as the fermentation temperature and time 

increased.  It is possible that another aroma may mask or suppress the green grass aroma at 80°C.  

Additionally, astringency and hay/dried grass aroma and flavour were significantly (p ≤ 0.05) higher in C. 

maculata fermented at 90°C.  The highest fynbos floral flavour and sweet taste average intensities were also 

obtained at 80°C/24 h.  A fermentation temperature of 80°C and a fermentation time of 24 h would thus be 

recommended for this particular species.         

These differences between the species could be attributed to the quantitative and qualitative 

differences in the chemical composition, i.e. the volatile fraction (Cronje, 2010) and the polyphenols (De Beer 

& Joubert, 2010).  It is known that neither new volatile compounds (Le Roux et al., 2008; Cronje, 2010) nor 

new major monomeric polyphenolic compounds form during fermentation (De Beer & Joubert, 2010).  

However, the concentration of certain compounds increase whereas others decrease, i.e. hexanal, 6-methyl-

5-hepten-2-one, limonene, 3,5-octadien-2-one, 6-methyl-3,5-heptadien-2-one, β-cyclocitral, geranyl acetone 

and dihydroactinidiolide decrease during fermentation in C. genistoides, whereas trans-furanoid linalool 

oxide, cis-furanoid linalool oxide, linalool, α-terpineol, nerol and geraniol increase (Le Roux et al., 2008; 

Cronje, 2010).  Most of the volatile compounds which decrease are associated with aroma attributes such as 

fatty, green and grassy while the volatile compounds which increased associated with sweet, woody, fruity 

and floral aroma attributes.  It is thus not surprising that during fermentation only the aroma attribute 

intensities increased or decreased and no new aroma attributes developed.  The impact of other 

components and specifically the interaction between these components and the volatile compounds could 

also help to explain the differences in the sensory profiles between the species, batches and samples. 

 Fermentation reduced the soluble solids content, total polyphenol content and the concentration of 

the individual polyphenolic compounds quantified.  Also, absorbance as a measure of colour decreased with 

increasing fermentation temperature and time reflecting the change in the soluble solids content.  This is 

similar to the results obtained in Chapter 4.  The decrease in the bitter taste associated with C. genistoides 

with fermentation can be attributed to the decrease in the mangiferin and isomangiferin content as there was 

a relatively strong significant correlation between bitter taste and each of these two compounds.  They were 

present at very high levels compared to the other species.  Additionally, bitter taste might also be influenced 

by compound C and D.  In C. subternata mangiferin, compound A and C also appear to play a role in bitter 

taste.  The fact that hesperidin, which is tasteless (Ley, 2008), correlated significantly (p ≤ 0.05) to bitter taste 

could be explained by the fact that there was very little variation in the bitter taste of the C. subternata 

samples.  Similarly, the lack of correlations of bitter taste with any of the polyphenolic compounds in C. 

maculata could be explained by the lack of variation in bitter taste between the samples.  The absence of a 

bitter taste in C. maculata could also be due to the presence of eriodictyol, which possess bitter masking 

properties (Ley et al., 2005; Ley, 2008), and hesperetin, a compound with sweet enhancing properties 

(Reichelt et al., 2010a; 201b),  

The sweet taste in C. genistoides and C. subternata correlated negatively with most of the 

chemical/instrumental parameters whereas in C. maculata there existed no significant (p > 0.05) correlation 

between sweet taste and the chemical/instrumental parameters.  No specific compound could yet been 

linked to sweet taste, however, it is clear from these results that sweet taste is not associated with any of the 

major polyphenolic compounds quantified in this study. Other types of compounds may play a role. For 

example, certain amino acids (mostly in the D-form) such as leucine, phenylalanine, tryptophan and tyrosine 
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have a sweet taste (Solms, 1969).  Further studies are needed to determine which compounds and to what 

extent play a role. 

It is surprising that the xanthones appear to be related to the bitter taste, and not astringency, as 

McManus et al. (1981) proposed that a phenolic compound with two adjacent hydroxyl groups would elicit an 

astringent sensation.  This structural requirement is fulfilled by the xanthones and one would expect a 

correlation to exist between astringency and the xanthones.  This is not the case for C. genistoides nor C. 

maculata, but in C. subternata mangiferin and isomangiferin correlate relatively strongly to astringency.  It is 

possible that the concentration of these compounds may play a role as a fraction of that present in C. 

genistoides was present in C. subternata.  Interestingly, hesperetin (sweet enhancing flavanone) correlated 

significantly with astringency (r = 0.555).  This could possibly be explained by the fact that hesperetin was 

only present in one of the C. maculata batches (batch c).  As mentioned previously (Chapter 4), It is possible 

that the quantification of the tannin content could reveal more insight into the astringency of honeybush tea 

but the levels were so low in the honeybush infusions used for this study that it was unquantifiable by the 

MCP tannin assay (unpublished results).  Furthermore, the impact of other compounds, as well as the 

interaction between the different compounds and their influence on the taste and mouthfeel should be 

considered in future research in order to obtain a more comprehensive picture of the effect the chemical 

composition has on the taste and mouthfeel properties of honeybush tea.    

 

6. CONCLUSION 

 

Chemical oxidation or “fermentation” resulted in an increase (positive sensory attributes) and decrease 

(negative sensory attributes) of sensory attributes rather than the formation of new sensory attributes.  

Fermentation at 80°C/24 h is recommended for C. genistoides (stronger rose geranium aroma) but an 

acceptable product can be obtained by fermenting at 90°C/16 h.  Cyclopia subternata can be fermented at 

either 80°C or 90°C, depending on whether a floral or apricot jam notes is desired.  Cyclopia maculata 

requires a fermentation temperature of 80°C as fermentation at 90°C resulted in an increase of negative 

sensory attributes (hay/dried grass aroma and flavour and green grass aroma).  A fermentation time period 

of 24 h is required for C. maculata in order to effectively reduce the intensity of the negative sensory 

attributes.   

No specific compounds could be linked to the sweet taste of honeybush tea, however, sweet taste 

correlated negatively to most compounds correlating to bitterness.  The decrease in bitter taste and 

astringency can be attributed to the decrease in the concentration of the polyphenolic compounds with 

fermentation.  The xanthones, mangiferin and isomangiferin, appear to be important polyphenolic 

compounds with regards to bitter taste and astringency.  Furthermore, the concentration of the xanthones 

seems to be important.  At low concentrations they appear to be perceived as bitter whereas at very high 

concentrations they elicit astringency.  Cyclopia maculata on the other hand revealed a relationship between 

astringency and hesperetin.  The impact of a number of other components present in honeybush, such as 

amino acids, polysaccharides, volatile compounds and the interaction between these components could 

additionally influence the changes occurring in the sensory profiles of these species during fermentation and 

need to be considered in future studies.  Attention should also be given to taste modulating compounds such 

as eriodictyol and hesperetin.     
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Chapter 6 

 

GENERAL DISCUSSION, RECOMMENDATIONS AND CONCLUSIONS 

 

The success of any food product depends mainly on its sensory quality and consistency.  Quality control and 

sensory assessment are used to analyse quality and to ensure a reliable supply of a standardised product 

with unchanging sensory characteristics.  Currently, the sensory quality of honeybush infusions is not 

monitored by a standard set of parameters.  Until recently, honeybush infusions were produced using C. 

intermedia, C. genistoides and C. subternata, however, as the demand began exceeding the supply, the 

focus shifted to include other Cyclopia species, such as C. sessiliflora, C. longifolia and C. maculata (Joubert 

et al., 2011).  In industry one species is often substituted for another or blended with one another without 

considering the different sensory profiles of each species.  Variation in sensory quality due to inherent 

species differences, as well as differences in localities, environmental conditions and processing parameters 

are not taken into account, resulting in considerable variation in the sensory profile of honeybush infusions 

currently being sold in the market place.  This could lead to detrimental consequences as a consistent supply 

of high quality honeybush infusions with unchanging flavour profiles cannot be ensured.  Furthermore, in a 

market where new herbal tea products are appearing daily, it is becoming increasingly important to 

successfully differentiate honeybush infusions from its competitors to identify niche markets.  In order to do 

this an accurate definition and description of the sensory attributes associated with the product is required.  

To date, no research has been published on the sensory profile of Cyclopia species as previous research 

mainly focused on the chemical and medicinal properties of honeybush infusions.  Moreover, no standard set 

of tools are available to the industry to monitor the sensory quality of honeybush infusions.   

In terms of processing, fermentation conditions ranging from 70°C/60 h for C. intermedia (Du Toit & 

Joubert, 1999) to 80-85°C/18-24 h for other Cyclopia species currently employed by the industry, is based on 

research done on C. intermedia and C. buxifolia (previously classified as C. maculata) (Joubert et al., 2011).  

It is quite possible that these conditions are not necessarily optimum for producing honeybush infusions from 

Cyclopia species, other than C. intermedia and C. buxifolia.  In addition, previous research only considered 

one sensory attribute, namely the characteristic sweet aroma (Du Toit & Joubert, 1999).  The effect of 

fermentation temperature and time on species beside C. intermedia thus needs to be investigated in order to 

determine the optimum fermentation temperature-time regime for each Cyclopia species to prevent the 

production of honeybush infusions of inferior sensory quality.  A set of standardised terms to describe the 

characteristic honeybush aroma and flavour, as well as specific negative attributes associated with 

honeybush infusions is needed to achieve this.  Tools such as sensory lexicons and sensory wheels are 

often used in the industry or research-related environments to describe the sensory attributes associated 

with a certain food and beverage product (Drake & Civille, 2002).  The successful application of these 

sensory tools by a number of industries, i.e. wine (Noble et al., 1987; Gawel et al., 2000), beer (Meilgaard et 

al., 1979) and tea (Camellia sinensis) (Bhuyan & Borah, 2001) industries, suggest that the development of a 

sensory lexicon and wheel would make a valuable contribution to the honeybush industry.   

The objectives of this study were, therefore, to develop a suitable set of sensory descriptors that can 

be used to describe the sensory characteristics of honeybush infusions, to determine whether there exist 

differences in the sensory profiles of six Cyclopia species, and to determine whether some of these 
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descriptive attributes, i.e. taste and mouthfeel, are associated with specific phenolic compounds, with the 

aim of identifying some of the major sensory impact compounds of honeybush infusions.  Changes in the 

sensory characteristics and phenolic composition of honeybush infusions prepared from three Cyclopia 

species (C. genistoides, C. subternata and C. maculata) during different temperature-time fermentation 

combinations were determined.  This enabled establishment of optimum fermentation conditions.  This also 

gave insight into the change in the phenolic honeybush composition and the role of the phenolic composition 

in the perceived taste and mouthfeel characteristics of honeybush infusions.  Furthermore, the aroma of C. 

maculata was investigated by means of gas chromatograpgy-olfactometry (GC-O) to identify aroma-impact 

volatiles.   

The sensory properties of 58 honeybush samples prepared from six fermented Cyclopia species (C. 

sessiliflora, C. longifolia, C. genistoides, C. intermedia. C. subternata and C. maculata) were evaluated by 

characterising the aroma, flavour, taste and mouthfeel attributes of their infusions.  In order to capture as 

much variation as possible, samples from different localities, commercial producers, harvesting dates, 

processing conditions and size fractions were used.  Experimental samples prepared for research purposes 

were also included.  Descriptive analysis was used to establish sensory profiles for all the samples and by 

comparing these profiles the variation in their sensory attributes was established.  In addition, a honeybush 

sensory wheel and a sensory lexicon consisting of descriptors, definitions and reference standards were 

developed by selecting the most frequently occurring positive and negative sensory descriptors.   

Analysis of the sensory profiles of the honeybush samples revealed that the “characteristic” sensory 

profile of honeybush infusions can be described as a combination of floral, sweet, fruity and plantlike flavours 

with a sweet taste and a slight astringent mouthfeel.  Similarities and differences in the sensory 

characteristics between the different Cyclopia species were also established and, based on discriminant 

analysis, the species could be divided into three distinct groups; group A (C. sessiliflora, C. intermedia and 

C. genistoides), group B (C. longifolia and C. subternata) and group C (C. maculata).  Group A associated 

with fynbos floral, fynbos sweet and plantlike attributes, group B with rose geranium and fruity sweet 

attributes and group C with woody, boiled syrup and cassia/cinnamon attributes.  The most detrimental 

negative sensory attributes appeared to be hay/dried grass and burnt caramel aroma and flavour.  It 

appeared as if most of the variation in the sensory attributes within a specific species, especially in terms of 

the negative sensory attributes, was due to different processing conditions rather than being species-

specific.  Most of the samples associated with negative sensory attributes were commercial samples and not 

necessarily optimally processed and this could have resulted in the emergence of the negative sensory 

attributes.  The fermentation conditions used during processing was not available for most of the commercial 

samples and those that were, indicated that the infusions was fermented at 70°C for 60 hours or 80-85°C for 

16-24 hours.  These fermentation conditions are based on a study done on C. intermedia and C. buxifolia, 

however, the same conditions are not necessarily optimum fermentation conditions for all the Cyclopia 

species.  It is thus very likely that some of the latter samples might have been over- or even under-

fermented.  Besides, these conditions are based on a study which only considered the sweet aroma of 

honeybush infusions (Du Toit & Joubert, 1999).  In order to effectively determine the optimum fermentation 

conditions, a number of sensory attributes should be considered and not just the sweet aroma of honeybush 

infusions.   

The spicy cassia/cinnamon note present in C. maculata was unexpected as honeybush infusions 

have not previously been described as “spicy”.  However, cinnamon-like or spicy volatile compounds (6-
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methyl-3,5-heptadien-2-one, 4-acetyl-1-methyl-cyclohexene, (+)-p-menth-1-en-9-al, eugenol and (7E)-

megastigma-5,7,9-trien-4-one) have been identified in a number of Cyclopia species (Le Roux et al., 2008; 

Cronje, 2010) and it was postulated that one or more of these volatiles may be responsible for the 

cassia/cinnamon-spicy note.  In order to identify which compounds are responsible for this characteristic 

aroma note, a representative cassia/cinnamon-spicy C. maculata sample was selected and analysed using 

GC-O.  Although eugenol is known to have a warm-spicy, dry aroma reminiscent of cloves rather than a 

cassia/cinnamon spicy aroma it was the only compound associated with a spicy aroma identified in C. 

maculata.  The spicy aroma could thus possibly partly be due to the high concentration of eugenol although 

this compound is not usually associated with a cinnamon aroma.  In general aromas of different qualities can 

mask or suppress one another, compounds with similar qualities can blend and produce a new aroma, and 

certain compounds present in concentrations below their odour threshold or which has no odour activity 

when assessed individually can contribute to the aroma when they are in a mixture (Delahunty et al., 2006).   

Large variation existed in the levels of soluble solids, total polyphenol and individual monomeric 

polyphenolic compounds, as well as the absorbance of the infusions between the different Cyclopia species 

and the different samples for an individual species.  Factors such as locality, climate, soil conditions, survival 

strategies (Schutte, 1997), the age of plant/regrowth (Joubert et al., 2011), the presence of flowers/pods (Du 

Toit & Joubert, 1998) and the leaf-to-stem ratio (Joubert, ARC Infruitec-Nietvoorbij, Stellenbosch, South 

Africa, 2010, personal communication) could contribute to this variation.  Only mangiferin, isomangiferin, 

hesperidin and compound C (unidentified phenolic compound) were detected in all six Cyclopia species.  

Infusions of C. genistoides, C. longifolia and C. sessiliflora in order of prominence had the highest 

concentration of both mangiferin and isomangiferin whereas C. genistoides and C. maculata had the highest 

hesperidin content.  These species would thus be ideal for production of extracts containing high levels of 

these phytochemicals.   

Having developed a set of descriptors to describe the flavour of honeybush infusions, and having 

established that there is considerable variation in the sensory and polyphenolic profiles of the different 

species and between the different samples from individual species, it was determined whether correlations 

could be found between certain sensory attributes, specifically taste and mouthfeel, and specific compounds 

in a honeybush infusion, with the focus being on non-volatile phenolic components.  The bitter taste present 

in C. genistoides appeared to be due to the high mangiferin content, however, compounds such as 

isomangiferin and compound C (unidentified phenolic compound) might also play a role.  Hesperidin, 

considered to be tasteless (Ley, 2008), also correlated significantly with bitter taste.  The xanthones also 

appeared to be linked to astringency.   

With the understanding gained from having analysed the relationship between composition and 

sensory quality of honeybush infusions, the effect of fermentation on the sensory characteristics and 

phenolic composition was investigated in order to determine the optimum fermentation temperature/time 

combinations for C. genistoides, C. subternata and C. maculata and to validate the relationship between 

specific polyphenolic compounds and bitter taste and mouthfeel.  Fermentation resulted in an increase 

(positive sensory attributes) and decrease (negative sensory attributes) of sensory attributes rather than the 

formation of new sensory attributes.  This is not surprising as the sensory profile is influenced by the 

chemical composition and it is known that no new volatile compounds (Le Roux et al., 2008; Cronje, 2010) or 

detectable monomeric phenolic compounds (De Beer & Joubert, 2010) form during fermentation.  However, 

it has been reported that the concentration of certain volatile compounds increase whereas others decrease 
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which would results in changes in the sensory profile of honeybush infusions.  In order to produce 

honeybush infusions with an optimal sensory profile a fermentation period of 80°C/24 hours or 90°C/16 h is 

required for C. genistoides and C. subternata.  Fermenting C. genistoides at 90°C would result in a 

honeybush infusion with slightly less rose geranium notes, but an acceptable product can be obtained.  

Cyclopia subternata can be fermented at either 80°C or 90°C, depending on whether floral or apricot jam 

notes are desired, whereas C. maculata requires a fermentation temperature of 80°C.  Fermentation of C. 

maculata at 90°C results in an increase of negative sensory attributes (hay/dried grass aroma and flavour 

and green grass aroma).  A fermentation time period of at least 24 h is required for C. maculata in order to 

effectively reduce the intensity of the negative sensory attributes.  In the future, different fermentation 

temperature/time combinations may be used as a means of manipulating the flavour characteristics of 

certain Cyclopia species.   

Fermentation reduced the soluble solids content, total polyphenol content and the concentration of 

the individual polyphenolic compounds quantified.  Absorbance as a measure of colour decreased with 

increasing fermentation temperature and time, reflecting the change in the soluble solids content and 

polyphenolic composition.  The decrease in bitter taste and astringency could be attributed to the decrease 

in the concentration of the polyphenolic compounds with fermentation.  In C. genistoides the bitter taste 

seemed to be caused by a high concentration of xanthones whereas these compounds appeared to cause 

astringency in C. subternata, confirming the previous results indicating that these compounds might be 

linked to bitter taste and astringency.  The concentration of the xanthones seems to be important as C. 

subternata contains a fraction of that present in C. genistoides.  These compounds were negatively 

correlated with astringency in C. maculata but no correlation with bitterness was observed.  Infusions of this 

species confirm higher levels of mangiferin and isomangiferin than C. subternata, but not to the extent 

present in C. genistoides.  Another reason could possibly be the very small variation which exists between 

the different C. maculata samples in terms of astringency.  Also, the presence of measurable quantities of 

eriodictyol, a compound possessing bitter masking properties and hesperetin (Ley et al. 2005; Ley 2008), a 

compound with sweet enhancing properties (Reichelt et al., 2010), in C. maculata could possibly explain the 

low average intensity score for bitter taste in this particular Cyclopia species.   

This study scientifically demonstrated for the first time the variation which exists in the sensory 

profiles of a number of Cyclopia species.  These differences, coupled with blending and the lack of quality 

control, indicate that a number of products on the market place most likely have inconsistent flavour profiles.  

Blending also leads to a loss of the unique flavour associated with individual species which could possibly, in 

the future, be used to establish niche markets.  On the other hand, blending could also result in a 

standardised honeybush infusion as the sensory profile of a particular species can be adjusted by blending it 

with one or more species.  Consumer sensory analysis using the standard nine point hedonic scale and the 

target consumer (Lawless & Heymann, 2010) can be used in future to measure degree of liking of the 

different Cyclopia species.  Combining these results with results obtained by descriptive analysis could 

indicate sensory drivers of liking (McEwan et al., 1998).  This would enable the identification of species with 

the most commercial potential.   

The effect of both fermentation time and temperature on the sensory profile and chemical 

composition of the infusions of C. genistoides, C. subternata and C. maculata was also shown.  The 

optimum fermentation time and temperature conditions were determined for each species.  From the results 

it was evident that the same processing conditions can not be used for all Cyclopia species.  It was shown 

Stellenbosch University http://scholar.sun.ac.za



145 
 
that the polyphenolic profile of the species differs and that the levels of some of these compounds may partly 

explain the variation in the taste and mouthfeel characteristics of the species.  In future, different 

fermentation temperature and time combinations may be employed to manipulate the flavour characteristics 

of certain species.  Consumer sensory analysis may additionally facilitate determination of optimum 

fermentation temperature and time regimes for specific species by pinpointing the most acceptable (and 

unacceptable) sensory characteristics associated with honeybush infusions.   

Although certain compounds, such as the xanthones, were linked to bitter taste and mouthfeel 

(astringency) the impact of other constituents present in honeybush, such as amino acids, polysaccharides, 

volatile components, their interaction and their influence on the flavour should be considered in future 

research in order to gain more insight into the relationship between the sensory characteristics and the 

chemical composition of honeybush infusions.  Only with the findings obtained from such studies it may then 

be possible to formulate a prediction model based on the chemical composition of honeybush infusions, 

which could be used to predict sensory quality.  This is important with regards to plant improvement as 

selections are currently based on phenolic compounds such as the xanthones (Joubert et al., 2011) which 

could cause problems with regards to the sensory quality of the infusions if the taste characteristics of the 

specific compounds are not taken into account.  In order to effectively reduce the levels of these compounds 

to obtain an acceptable taste and mouthfeel profile increased fermentation temperatures and times might be 

needed, which has cost implications due to increased energy demand.   

A sensory wheel and lexicon were developed to facilitate the characterisation and description of 

honeybush sensory characteristics in a way that can be understood by anyone.  These tools lend itself to the 

training of sensory panels and quality control personnel in the industry, and may be useful for improving the 

communication of product characteristics between different role players in the industry.  It would also be 

beneficial to eventually develop flavour wheels tailored for each Cyclopia species as not all the descriptive 

terms currently included on the sensory wheel necessarily apply to all Cyclopia species.  Analysing the 

sensory profiles of a number of samples prepared from one Cyclopia species from different localities and 

harvesting seasons would add great value to these tools since this would provide an indication of the 

seasonal variability in the sensory profile of honeybush.  This would allow for refinement of the sensory 

terminology as redundant attributes can be removed while new attributes may be added.  Some of the 

attributes may be rephrased or broken down into more suitable descriptors.  The term astringency, for 

instance, is a multifaceted concept which may be divided into a number of sub-qualities.  Gawel et al. (2000) 

developed several groupings for astringent mouthfeel characteristics associated with red wine such as 

drying, unripe, harsh and surface smoothness.  The term astringency is likely too general to describe all 

mouthfeel characteristics associated with a honeybush infusion.  These tools will not only be able to improve 

understanding and communication of different honeybush attributes, but may also form the foundation of 

many future studies involving sensory related aspects of honeybush.   
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ADDENDUM A 

Sample information for C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. 

subternata and C. maculata 
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Specie Geographic area (Producer) Harvesting date Fermentation Drying Fraction 

Ses 1 Helderfontein (ARC) 1/3/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Ses 2 Helderfontein (ARC) 1/3/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Ses 3 Helderfontein (ARC) 1/3/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 

Ses 4 Helderfontein (ARC) 1/3/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Ses 5 Riversdale 3/2/2010 80°C/24 h 40°C/6 h <12>40 mesh 

Ses 6 Riversdale 3/2/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Ses 7 Bredasdorp 27/1/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Lon 1 Bredasdorp (ARC) 22/2/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Lon 2 Bredasdorp (ARC) 22/2/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Lon 3 Bredasdorp (ARC) 22/2/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 

Lon 4 Bredasdorp (ARC) 22/2/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Lon 5 Bredasdorp 2009 Unavailable Unavailable <12>40 mesh 

Lon 6 (De Lange) 2009 70°C/60 h Unavailable <12>40 mesh 

Lon 7 Loerie (De Lange) Augustus 2008 70°C/60 h Unavailable <12>40 mesh 

Gen 1 Koksrivier (ARC) 24/03/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Gen 2 Koksrivier (ARC) 24/03/2010 80°C/24 h 40°C/6 h <12>40 mesh 

Gen 3 Koksrivier Overberg 19/01/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Gen 4 Koksrivier Overberg 19/01/2010 80°C/24 h 40°C/6 h <12>40 mesh 

Gen 5 Koksrivier West Coast 19/01/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Gen 6 Koksrivier West Coast 19/01/2010 80°C/24 h 40°C/6 h <12>40 mesh 

Gen 7 KoksrivierKirstenbosch 19/01/2010 90°C/16 h 40°C/6 h <12>40 mesh 

Gen 8 KoksrivierKirstenbosch 19/01/2010 80°C/24 h 40°C/6 h <12>40 mesh 

Gen 9 Bredasdorp Nov-09 Unavailable Unavailable <12>40 mesh 

Gen 10 Koksrivier 

18/01/2010; 

16/01/2010; 

21/01/2010 

Unavailable Unavailable <12>40 mesh 

Gen 11 Bredasdorp 

2/04/2009; 

18/11/2009; 

3/12/2009 

Unavailable Unavailable <!12>40 mesh 

Int 1 Helderfontein (ARC) 15/03/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Int 2 Helderfontein (ARC) 15/03/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Int 3 Helderfontein (ARC) 15/03/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 

Int 4 Helderfontein (ARC) 15/03/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Int 5 Kritzinger 2009 Unavailable Unavailable <12>40 mesh 

Int 6 Helderfontein 17/11/2009 90°C/16 h 40°C/6 h <12>40 mesh 

Int 7 Ackerman 24/11/2009 Unavailable Unavailable Unavailable 

Int 8 Nortje 1999 & 2000 70°C/60 h Unavailable Unavailable 

Int 9 Nortje 5/6/2009 70°C/60 h Unavailable <12>40 mesh 

Int 10 CHT Co 1/12/2009 80-85°C/≥16 h Unavailable Coarse 

Int 11 Haarlem 10/3/2000 70°C/60 h 40°C/24 h <2.00 

Sub 1 Barrydale (ARC) 23/03/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Sub 2 Barrydale (ARC) 23/03/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Sub 3 Barrydale (ARC) 23/03/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 

Sub 4 Barrydale (ARC) 23/03/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Sub 5 Helderfontein (ARC) 3/3/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Sub 6 Helderfontein (ARC) 3/3/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Sub 7 Helderfontein (ARC) 3/3/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 
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Sub 8 Helderfontein (ARC) 3/3/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Sub 9 Helderfontein (ARC) 17/11/2009 90°C/16 h 40°C/6 h <12>40 mesh 

Sub 10 Behr (CHT Co) 7/10/2009 85°C/24 h Unavailable <12>40 mesh 

Sub 11 Du Toitskloof Unavailable 70°C/72 h (Pods present) 40°C/6 h <12>40 mesh 

Mac 1 Riversdale 3/2/2010_Batch a 90°C/16 h 40°C/6 h <12>40 mesh 

Mac 2 Riversdale 3/2/2010_Batch a 80°C/24 h 40°C/6 h <12>40 mesh 

Mac 3 Riversdale 3/2/2010_Batch b 90°C/16 h 40°C/6 h <12>40 mesh 

Mac 4 Riversdale 3/2/2010_Batch b 80°C/24 h 40°C/6 h <12>40 mesh 

Mac 5 Riversdale (CHT Co) Feb-10 80-85°C/≥16 h Unavailable <12>40 mesh 

Mac 6 Riversdale (CHT Co) Feb-10 80-85°C/≥16 h Unavailable Superfine 

Mac 7 Riversdale (CHT Co) Feb-10 80-85°C/≥16 h 40°C/6 h <12>40 mesh 

Mac 8 Welgedacht 2/12/2009 90°C/16 h 40°C Sweepings 

Mac 9 Welgedacht 2/12/2009 90°C/16 h (Flowers present) 40°C/6 h <8>12 mesh 

Mac 10 
Genadendal museum 

(Flowers present before sieving) 
2009 Overnight in baking oven Unavailable <12>40 mesh 

Mac 11 Riversdale (CHT Co) Feb-10 80-85°C/≥16 h Unavailable <12>40 mesh 

Ses = C. sessiliflora, Lon = C. longifolia, Gen = C. genistoides, Int = C. intermedia, Sub = C. subternata, Mac 

= C. maculata.  Batch a and batch b refer to plant material harvested at the same location on the same day 

but from different areas. 
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ADDENDUM B 

A complete list of the descriptors generated during the training period 
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Aroma attributes Descriptors 

Floral Fynbos floral, Rose geranium, Rose petals (dry), Rose petals (fresh), Perfume 

Fruity Fruity, Lemon, Orange, Apple, Cooked apple, Apricot jam, Banana, Bananna 

bread, Berry, Guava, Cherry essence, Dried fruit mix, Raisins, Lemon essence, 

Lemongrass 

Plantlike Fynbosplantlike, Geranium plantlike, Herbaceous 

Woody Woody, Rooibos woody, Pine, Smokey, Plankey, Burnt 

Sweet Fruity sweet, Boiled syrup, Caramel, Honey, Fynbos sweet 

Spicy Cinnamon, Cassia, Nutmeg, Mixed spices 

Nutty Walnut, Coconut, Almond 

Negative Dusty, Musty, Mouldy, Rotting plant water, Seaweed, Hay/Dried grass, Green 

grass, Cooked vegetables, Soapy, Medicinal, Yeasty, Green beans, Sour, 

Sweaty, Compost, Wet carpet, Fishy, Burnt caramel, Burnt vegetables, Penicillin, 

Antiseptic 

Other  Minty, Cheesy, Earl Grey, Whiskey, Oily, Metallic 

 

 

 

Flavour, taste and 

mouthfeel 

Descriptors 

Taste Sweet, Sour, Salty, Bitter 

Mouthfeel Astringent, Flat, Bland 

Floral Fynbos floral, Rose geranium, Rose petals (dry), Rose petals (fresh), Perfume 

Fruity Fruity, Lemon, Orange, Cooked apple, Apricot jam, Banana, Berry, Guava, 

Cherry essence 

Plantlike Fynbosplantlike, Geranium plantlike, Herbaceous 

Woody Woody, Rooibos woody, Pine 

Spicy Cinnamon, Cassia, Nutmeg, Mixed spices 

Nutty Walnut, Coconut, Almond 

Negative Dusty, Musty, Mouldy, Rotting plant water, Seaweed, Hay/Dried grass, Green 

grass, Cooked vegetables, Soapy, Medicinal, Yeasty, Green beans 

Other  Minty, Earl Grey, Whiskey, Oily, Metallic 
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ADDENDUM C 

Questionnaire for trained panel – honeybush tea profiling 
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Date: _________ Session: ___ Judge no: ___   Name: ____________  Sample:________ 

BASIC 

Min – Max: 0-40 
Default: 0 

SOUR 
0 
 

100 

Min –Max: 0-60 
Default: 0 

BITTER 
0 
 

100 

Min – Max: 5-30 
Default: 5 

ASTRINGENT 
0 
 

100 

Min  - Max: 5-50 
Default: 20 

SWEET 
0 
 

100 

FLAVOUR Max 

FLORAL 

30 Fynbos floral 
0 
 

100 

60 Rose Geranium 
0 
 

100 

60 Rose/Perfume 
0 
 

100 

FRUITY 

25 Lemon 
0 
 

100 

10 Orange 
0 
 

100 

0 Apricot jam 
0 
 

100 

0 Cooked Apple 
0 
 

100 

0 Cherry essence 
0 
 

100 

PLANTLIKE 

20 Plantlike 
0 
 

100 

40 Woody 
0 
 

100 

10 Rooibos 
0 
 

100 

40 Pine 
0 
 

100 

SPICY 60 Cassia/Cinnamon 
0 
 

100 

NUTTY 

10 Walnut 
0 
 

100 

10 Coconut 
0 
 

100 

NEGATIVE 

30 Dusty 
0 
 

100 

0 Yeasty 
0 
 

100 

50 Medicinal 
0 
 

100 

40 Burnt caramel 
0 
 

100 

0 Rotting plant water 
0 
 

100 

50 Hay/Dried grass 
0 
 

100 

0 Green grass 
0 
 

100 

0 Cooked vegetables 
0 
 

100 

R 

R 

R 

R 
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AROMA Max                                                             

FLORAL 

40 Fynbos floral 
0 
 

100 

70 Rose Geranium 
0 
 

100 

60 Rose/Perfume 
0 
 

100 

FRUITY 

30 Lemon 
0 
 

100 

40 Orange 
0 
 

100 

50 Apricot jam 
0 
 

100 

25 Cooked Apple 
0 
 

100 

20 Cherry essence 
0 
 

100 

PLANTLIKE 

40 Plantlike 
0 
 

100 

50 Woody 
0 
 

100 

0 Rooibos 
0 
 

100 

50 Pine 
0 
 

100 

SWEET 

60 Fruity sweet 
0 
 

100 

50  Boiled syrup 
0 
 

100 

50 Caramel 
0 
 

100 

0 Honey 
0 
 

100 

50 Fynbos sweet 
0 
 

100 

SPICY 75 Cassia/Cinnamon 
0 
 

100 

NUTTY 

40 Walnut 
0 
 

100 

30 Coconut 
0 
 

100 

NEGATIVE 

40 Dusty 
0 
 

100 

60 Yeasty  
0 
 

100 

50 Medicinal 
0 
 

100 

70 Burnt caramel 
0 
 

100 

60 Rotting plant water 
0 
 

100 

50 Hay/Dried grass 
0 
 

100 

60 Green grass 
0 
 

100 

20 Cooked vegetables 
0 
 

100 

R = Control sample attribute intensities, Min = Minimum attribute intensity, Max = Maximum attribute intensity.

R 

R 

R 

R 

R 
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ADDENDUM D 

Suppliers of compounds used as reference standards during descriptive analysis training 

and compilation of the honeybush sensory lexicon 
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Compound/Product Supplier 

Honeybush tea Agricultural Research Council, Stellenbosch, South Africa 

Rose geranium oil La Motte, Franschoek, South Africa 

Lemon juice Tru-Lem, Brookes‟, South Africa 

Orange flavour (ukrma010055a002) Sensient Flavours, South Africa 

Apple Puree Purity, South Africa 

Superfine Apricot jam & Strawberry jam All Gold, South Africa 

Cherry essence Moir's, South Africa 

FTNF Rooibos extract Rooibos Ltd., Clanwilliam, South Africa 

Golden syrup Illovo, South Africa 

Caramel flavour Wild®, Comhan products, South Africa  

Wild flower honey Hillcrest, Franschoek, South Africa 

Cassia/Cinnamon bark Robertson, South Africa 

Band-aid Elastoplast, Hamburg, Germany 

Cis-3-hexen-1-ol  Fluka, Sigma-Aldrich, Steinheim, Gemany 

Canned green beans KOO, Pioneer Foods, South Africa 

Sucrose Huletts, South Africa 

Citric acid Sigma, Sigma-Aldrich, Steinheim, Germany 

Caffeine Fluka, Sigma-Aldrich, Steinheim, Gemany 

Alum (aluminium potassium sulfate) Sigma-Aldrich, Steinheim, Germany 
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ADDENDUM E 

Variation, mean, SD, minimum, maximum and range of C. sessiliflora, C. longifolia, C. 

genistoides, C. intermedia, C. subternata and C. maculata 
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Table 1 The variation between the C. sessiliflora samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS TP AUC AUCnorm Mg IsoMg ErioTrin Hd Comp B Comp C 

Ses1 1650.00 299.87 50.93 55.12 15.51 17.04 4.51 3.83 5.63 17.06 

Ses2 1878.33 367.96 62.42 59.29 20.79 22.04 5.19 5.00 8.76 26.57 

Ses3 1653.33 347.54 51.81 56.07 18.14 18.61 3.87 4.08 5.75 16.02 

Ses4 1806.67 343.95 64.16 63.30 20.16 21.01 4.25 4.86 8.14 19.17 

Ses5 2453.33 616.98 104.71 76.32 104.27 53.48 6.17 9.16 5.49 35.94 

Ses6 2415.00 429.03 95.03 70.13 88.41 48.83 5.80 8.73 4.01 31.69 

Ses7 1843.33 576.54 69.00 66.96 29.75 25.82 5.70 5.27 10.24 21.67 

Mean 1957.14 425.98 71.15 63.88 42.43 29.55 5.07 5.85 6.86 24.02 

SD 337.71 123.36 20.85 7.77 37.37 15.08 0.87 2.18 2.22 7.63 

Minimum 1650.00 299.87 50.93 55.12 15.51 17.04 3.87 3.83 4.01 17.06 

Maximum 2453.33 616.98 104.71 76.32 104.27 53.48 6.17 9.16 10.24 21.68 

Range 803.33 317.10 53.78 21.20 88.75 36.44 2.30 5.33 6.23 4.62 

Compounds not detected: narirutin, compound A and compound F.  Ses = C. sessiliflora; SD = Standard deviation; SS = Soluble solids; TP = Total polyphenol; AUC 

= Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; Hd = Hesperidin; Comp B = 

Compound B; Comp C = Compound C.  All chemical/instrumental analysis provided in mg/L except for TP (mg GAE/L), AUC and AUCnorm. 
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Table 2 The variation between the C. longifolia samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS TP AUC AUCnorm Mg IsoMg ErioTrin NarRut Hd Comp A Comp B Comp C 

Lon1 2525.00 476.85 82.52 58.48 81.63 47.13 4.76 1.51 6.33 5.47 2.02 8.64 

Lon2 2665.00 465.60 82.42 55.33 100.69 52.04 5.01 1.63 7.58 5.58 2.39 9.63 

Lon3 2618.33 454.91 79.34 54.08 71.06 44.37 4.05 1.68 8.00 3.57 1.46 9.33 

Lon4 2633.33 535.38 86.96 59.04 102.32 51.42 4.35 1.80 8.50 4.94 1.94 11.66 

Lon5 2638.33 506.68 105.62 71.45 69.34 32.77 1.89 BD 14.09 1.64 3.26 2.95 

Lon6 1548.33 172.65 46.24 53.28 15.44 9.54 BD BD 4.19 BD BD BD 

Lon7 1478.33 85.25 34.86 42.06 9.68 9.83 BD BD 7.11 BD BD BD 

Mean 2300.95 385.33 74.00 53.71 64.31 35.30 2.87 0.95 7.97 3.03 1.58 6.03 

SD 540.20 178.97 24.64 6.16 37.67 18.62 2.21 0.89 3.05 2.47 1.21 4.91 

Minimum 1478.33 85.25 34.86 42.06 9.68 9.54 0.00 0.00 4.19 0.00 0.00 0.00 

Maximum 2665.00 535.38 105.62 71.45 102.32 52.04 5.01 1.80 14.09 5.58 3.26 11.66 

Range 1186.67 450.13 70.77 29.39 92.64 42.50 5.01 1.80 9.90 5.58 3.26 11.66 

Compounds not detected: compound F.  Lon = C. longifolia; SD = Standard deviation; BD = Below detection; SS = Soluble solids; TP = Total polyphenol; AUC = 

Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; NarRut = Narirutin; Hd = 

Hesperidin; Comp A = Compound A; Comp B = Compound B; Comp C = Compound C.  All chemical/instrumental analysis provided in mg/L except for TP (mg 

GAE/L), AUC and AUCnorm. 
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Table 3 The variation between the C. genistoides samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS TP AUC AUCnorm Mg IsoMg Hd Comp C 

Gen1 1970.00 369.37 81.49 73.86 136.24 35.65 7.46 9.33 

Gen2 2091.67 408.20 78.30 66.90 165.12 39.74 8.65 10.32 

Gen3 2378.33 606.85 80.98 60.76 153.12 42.18 9.08 28.25 

Gen4 2600.00 512.87 94.88 65.16 199.05 47.61 11.78 30.86 

Gen5 2426.67 380.06 70.98 52.16 100.56 45.92 13.02 34.19 

Gen6 2441.67 357.36 80.54 58.94 116.15 48.87 13.45 37.18 

Gen7 2536.67 421.64 87.81 61.73 164.34 60.74 BD 49.08 

Gen8 2558.33 434.72 92.76 64.70 194.74 66.25 14.17 51.91 

Gen9 2891.67 578.08 137.56 85.00 201.03 55.89 13.62 5.02 

Gen10 2370.00 324.36 92.27 69.52 144.72 51.55 13.26 3.47 

Gen11 1950.00 315.54 86.45 79.17 81.91 33.03 5.43 4.63 

Mean 2383.18 428.10 89.45 65.29 150.63 47.95 9.99 24.02 

SD 284.37 98.14 17.48 7.69 39.87 10.27 4.42 18.19 

Minimum 1950.00 315.54 70.98 52.16 81.91 33.03 0.00 3.47 

Maximum 2891.67 606.85 137.56 85.00 201.03 66.25 14.17 51.91 

Range 941.67 291.30 66.58 32.84 119.12 33.22 14.17 48.44 

Compound not detected: eriocitrin, narirutin, compound A, compound B and compound F.  Gen = C. genistoides; SD = Standard deviation; BD = Below detection; 

SS = Soluble solids; TP = Total polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; Hd 

= Hesperidin; Comp C = Compound C.  All chemical/instrumental analysis provided in mg/L except for TP (mg GAE/L), AUC and AUCnorm. 
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Table 4 The variation between the C. intermedia samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS TP AUC AUCnorm Mg IsoMg Hd Comp C Comp F 

Int1 1828.33 270.85 57.12 55.73 26.11 19.72 5.21 6.57 1.71 

Int2 2003.33 377.25 68.09 60.79 37.81 25.72 7.19 8.49 1.90 

Int3 1725.00 369.76 53.43 55.47 21.94 17.78 5.39 5.23 1.33 

Int4 1781.67 339.29 63.36 63.57 25.50 20.36 6.13 5.41 1.51 

Int5 1930.00 324.60 100.54 93.03 27.51 18.79 8.16 6.17 1.23 

Int6 2040.00 325.50 67.73 59.29 32.76 25.48 1.93 7.47 3.88 

Int7 953.33 77.08 30.20 56.77 4.77 5.54 7.68 BD BD 

Int8 803.33 105.28 27.92 62.33 6.43 5.48 3.65 1.76 BD 

Int9 968.33 89.88 28.48 52.43 6.34 5.48 BD 1.93 BD 

Int10 658.33 45.16 15.64 42.33 2.19 2.29 2.58 BD BD 

Int11 708.33 82.52 18.56 46.68 BD 2.99 BD BD 0.93 

Mean 1400.00 218.83 48.28 55.54 17.40 13.60 4.42 3.91 1.17 

SD 570.93 136.39 26.30 6.80 13.61 9.24 2.82 3.23 1.14 

Minimum 658.33 45.16 15.64 42.33 0.00 2.29 0.00 0.00 0.10 

Maximum 2040.00 377.25 100.54 93.03 37.81 25.72 8.16 8.49 3.88 

Range 1381.67 332.08 84.90 50.70 37.81 23.43 8.16 8.49 3.78 

Compounds not detected: eriocitrin, narirutin, compound A and compound B. Int = C. intermedia; SD = Standard deviation; BD = Below detection; SS = Soluble 

solids; TP = Total polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; Hd = Hesperidin; 

Comp C = Compound C, Comp F = Compound F.  All chemical/instrumental analysis provided in mg/L except for TP (mg GAE/L), AUC and AUCnorm. 
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Table 5 The variation between the C. subternata samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS AUC AUCnorm TP Mg IsoMg ErioTrin Hd Comp A Comp B Comp C 

Sub1 1783.33 39.56 39.69 306.32 1.50 3.72 6.14 2.33 15.99 5.02 2.91 

Sub2 1826.67 44.13 43.07 345.03 1.80 4.93 7.38 3.09 18.80 9.90 4.08 

Sub3 2155.00 48.59 40.35 349.67 2.01 4.61 7.15 3.06 17.03 6.51 3.31 

Sub4 1661.67 42.21 45.41 264.39 2.13 4.87 6.56 2.99 14.50 9.21 3.80 

Sub5 1388.33 31.54 40.52 201.32 2.87 5.41 4.08 2.63 8.36 1.65 1.71 

Sub6 1638.33 42.06 45.79 235.73 3.91 7.14 5.41 3.05 10.67 4.11 2.26 

Sub7 1775.00 44.06 44.45 251.96 4.33 7.83 6.21 3.67 10.86 2.48 2.35 

Sub8 1536.67 39.36 45.64 234.72 4.02 7.25 5.38 2.90 9.56 3.28 2.22 

Sub9 1481.67 26.33 31.77 129.39 4.04 6.04 2.02 2.14 3.79 BD 1.82 

Sub10 1058.33 17.02 28.67 37.25 0.27 1.85 BD 4.70 3.19 2.26 BD 

Sub11 1423.33 40.12 50.45 180.21 BD 3.95 2.71 2.68 5.21 BD 1.57 

Mean 1611.67 230.55 2.44 5.24 4.82 3.02 10.72 4.04 2.37 37.73 41.44 

SD 285.45 92.56 1.52 1.77 2.35 0.69 5.38 3.36 1.15 9.20 6.38 

Minimum 1058.33 37.25 0.00 1.85 0.00 2.14 3.19 0.00 0.00 17.02 28.67 

Maximum 2155.00 349.67 4.33 7.83 7.38 4.70 18.80 9.90 4.08 48.59 50.45 

Range 1096.67 312.42 4.33 5.98 7.38 2.56 4.33 9.90 4.08 31.57 21.78 

Compounds not detected: narirutin and compound F.  Sub = C. subternata; SD = Standard deviation; BD = Below detection; SS = Soluble solids; TP = Total 

polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = Eriocitrin; Hd = 

Hesperidin; Comp A = Compound A, Comp B = Compound B; Comp C = Compound C.  All chemical/instrumental analysis provided in mg/L except for TP (mg 

GAE/L), AUC and AUCnorm. 
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Table 6 The variation between the C. maculata samples analysed as well as the mean, SD, minimum, maximum and range 

Sample SS TP AUC AUCnorm Mg IsoMg ErioTrin Hd Comp C 

Mac1 1716.67 271.56 58.20 60.43 22.27 20.25 1.87 10.73 2.60 

Mac2 2051.67 349.11 71.67 62.43 40.72 31.96 2.46 12.41 4.03 

Mac3 1588.33 241.46 54.03 60.68 23.97 18.70 1.49 12.35 2.65 

Mac4 2058.33 364.87 77.10 66.83 51.30 32.93 2.51 17.54 4.95 

Mac5 948.33 98.17 30.75 57.81 4.38 4.42 BD 9.37 BD 

Mac6 1255.00 155.09 39.38 56.25 7.08 6.44 BD 16.07 BD 

Mac7 1188.33 70.44 35.94 53.93 6.27 5.92 BD 12.22 BD 

Mac8 1611.67 209.05 41.71 46.26 20.02 14.46 1.87 8.98 1.65 

Mac9 885.00 51.95 19.40 38.93 4.11 3.90 BD 4.64 BD 

Mac10 1073.33 104.81 23.73 39.60 19.31 10.00 1.48 4.35 BD 

Mac11 850.00 73.05 25.38 53.32 3.57 3.77 BD 3.09 BD 

Mean 1384.24 180.87 433.90 54.22 18.45 13.89 1.06 10.16 1.44 

SD 444.99 113.39 19.47 9.14 15.89 10.86 1.07 4.69 1.85 

Minimum 850.00 51.95 19.40 38.93 3.57 3.77 0.00 3.09 0.00 

Maximum 2058.33 364.87 77.10 66.83 51.30 32.93 2.51 17.54 4.95 

Range 1208.33 312.92 57.70 27.91 47.73 29.17 2.51 14.46 4.95 

Compounds not detected: narirutin, compound A, compound B and compound F.  Mac = C. maculata; SD = Standard deviation; BD = Below detection; SS = Soluble 

solids; TP = Total polyphenol; AUC = Area under the curve (370 – 570 nm); AUCnorm = AUC normalised; Mg = Mangiferin; IsoMg = Isomangiferin; ErioTrin = 

EriocitrinHd = Hesperidin; Comp C = Compound C.   All chemical/instrumental analysis provided in mg/L except for TP (mg GAE/L), AUC and AUCnorm. 
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ADDENDUM F 

F- and p-values for each sensory attribute for the interaction between temperature and time 

Stellenbosch University http://scholar.sun.ac.za



166 
 

Cyclopia genistoides   Cyclopia subternata   Cyclopia maculata 

 

Temp x Time 

  

Temp x Time   

 

Temp x Time 

Attribute F value Pr > F   Attribute F value Pr > F   Attribute F value Pr > F 

AFynbos floral 0.290 0.831 

 

AFynbos floral 4.650 0.019 

 

AFynbos floral 3.340 0.050 

ARose geranium 3.320 0.051 

 

ARose geranium 1.970 0.165 

 

ARose geranium 0.740 0.548 

ALemon 0.950 0.444 

 

ARose/Perfume 2.330 0.119 

 

ARose/Pefume 1.390 0.287 

AApricot jam 0.680 0.577 

 

AApricot jam 2.280 0.124 

 

APlantlike 1.320 0.307 

APlantlike 3.820 0.034 

 

APlantlike 6.320 0.006 

 

AWoody 0.190 0.902 

AWoody 0.100 0.956 

 

AWoody 2.220 0.131 

 

APine 0.320 0.812 

AFruity sweet 1.860 0.182 

 

AFruity sweet 1.640 0.226 

 

AFruity sweet 1.810 0.192 

ABoiled syrup 0.370 0.778 

 

AFynbos sweet 4.110 0.028 

 

ABoiled syrup 0.410 0.746 

AFynbos sweet 1.260 0.326 

 

ASpicy 0.550 0.655 

 

AFynbos sweet 1.540 0.248 

ASpicy 0.690 0.571 

 

AWalnut 0.310 0.818 

 

ASpicy 3.320 0.051 

ADusty 1.710 0.211 

 

ADusty 7.530 0.003 

 

AWalnut 0.450 0.718 

AMedicinal 0.970 0.433 

 

ABurnt caramel 6.840 0.005 

 

ADusty 0.520 0.676 

ABurnt caramel 2.630 0.091 

 

ARotting 1.490 0.261 

 

ABurnt caramel 1.380 0.290 

ARotting 1.450 0.270 

 

AHay 0.070 0.973 

 

ARotting 10.660 0.001 

AHay 1.620 0.230 

 

AGreen grass 4.260 0.025 

 

AHay 1.280 0.319 

AGreen grass 0.380 0.768 

 

ACooked veg 3.630 0.040 

 

AGreen grass 5.100 0.014 

ACooked 5.020 0.014 

 

Aseaweed 1.140 0.368 

 

ACooked veg 11.980 0.000 

TSweet 2.000 0.160 

 

TSweet 4.190 0.026 

 

TSweet 4.170 0.026 

TSour 0.800 0.517 

 

TSour 4.880 0.016 

 

TSour 0.700 0.568 

TBitter 15.930 <0.0001 

 

TBitter 1.210 0.344 

 

TBitter 1.130 0.371 

Astringent 5.460 0.011 

 

Astringent 2.340 0.117 

 

Astringent 1.460 0.268 

FFynbos floral 4.650 0.019 

 

FFynbos floral 4.140 0.027 

 

FFynbos floral 1.030 0.409 

FRose geranium 4.660 0.019 

 

FRose geranium 1.640 0.225 

 

FRose geranium 1.230 0.336 

FLemon 2.780 0.080 

 

FRose/Perfume 2.410 0.111 

 

FRose/Perfume 0.800 0.517 

FApricot jam 1.670 0.220 

 

FApricot jam 0.520 0.678 

 

FPlantlike 1.490 0.259 

FPlantlike 1.820 0.189 

 

FPlantlike 2.560 0.097 

 

FWoody 0.980 0.429 

FWoody 0.930 0.452 

 

FWoody 1.820 0.190 

 

FPine 0.770 0.531 

FSpicy 0.870 0.481 

 

FSpicy 1.490 0.260 

 

FSpicy 1.100 0.381 

FDusty 0.030 0.994 

 

FWalnut 0.720 0.555 

 

FWalnut 1.050 0.401 

FMedicinal 0.820 0.506 

 

FDusty 1.700 0.214 

 

FDusty 0.820 0.505 

FBurnt caramel 0.970 0.433 

 

FBurnt caramel 1.410 0.281 

 

FBurnt caramel 0.600 0.628 

FRotting 5.230 0.013 

 

FRotting 1.330 0.304 

 

FRotting 2.530 0.100 

FHay 0.830 0.499 

 

FHay 0.310 0.818 

 

FHay 2.360 0.115 

FGreen grass 1.330 0.303 

 

FGreen grass 0.750 0.540 

 

FGreen grass 1.530 0.249 

FCooked veg 3.440 0.046   FCooked veg 6.030 0.007   FCooked veg 3.520 0.043 

Rotting = Rotting plant water, Cooked veg = Cooked vegetables, Hay= Hay/Dried grass. Significant 

interactions are indicated in bold.  
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ADDENDUM G 

F- and p-values for each chemical/instrumental variable for the interaction between 

temperature and time 
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Cyclopia genistoides 
 

Cyclopia subternata 
 

Cyclopia maculata 

 
Temp x Time 

  
Temp x Time 

  
Temp x Time 

Variable F value Pr> F 
 

Variable F value Pr> F 
 

Variable F value Pr> F 

SS 0.410 0.744 
 

SS 0.330 0.802 
 

SS 0.290 0.829 

TP 0.900 0.465 
 

TP 0.810 0.507 
 

TP 0.410 0.750 

Mg 1.730 0.206 
 

Mg 0.640 0.603 
 

Mg 0.440 0.728 

IsoMg 1.490 0.259 
 

IsoMg 0.230 0.875 
 

IsoMg 0.490 0.694 

Comp C 0.560 0.652 
 

Comp A 0.600 0.628 
 

Comp C 0.960 0.440 

Comp D 0.870 0.481 
 

Comp C 0.740 0.546 
 

Hd 0.460 0.717 

AUC 0.900 0.465 
 

ErioTrin 0.850 0.489 
 

Erio 0.200 0.896 

    
Comp B 0.300 0.828 

 
ErioTrin 0.600 0.628 

    
Hd 1.110 0.378 

 
Ht 0.600 0.628 

    
AUC 1.930 0.171 

 
AUC 0.720 0.555 

SS = Soluble solids, TP = Total polyphenol, Mg = Mangiferin, IsoMg = Isomangiferin, Comp C = Component 

C, Comp D = Component D, AUC = Area under the curve (370 - 570 nm), Comp A = Component A, Comp B 

= Component B, Hd = Hesperidin, Ht = Hesperetin, Erio = Eriodictyol, ErioTrin = Eriocitrin. 
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ADDENDUM H 

Absorbance and normalised absorbance values for Cyclopia species (C. genistoides, C. 

subternata and C. maculata) 
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